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PEEFACE.

In the present volume I have tried to make the

discussion of the various parts of the suhject, which are

here given, as full as possible; and there will be found

much which has hitherto not appeared except in mathe-

matical journals. At the same time, the treatise does

not profess to be complete. Among the parts omitted

are the investigations by Fuchs on the integration of

linear differential equations, those of Konigsberger on

the irreducibUity of differential equations, the discussion

of Pfaffs equation, the recent researches of Hermite and

Halphen, and the geometrical applications of the hyper-

geometric series by Klein ; only a very slight sketch

of Jacobi's method for partial differential equations is

attempted, and there is no indication of the methods of

Cauchy, Lie and Mayer. These, and others here omitted,

I hope to give in another volume at some future date.

While writing this volume I have consulted many

authorities in the shape of treatises, memoirs and text-

books; and, though it is impossible to give in detail

every reference, I wish in particular to mention, as

having been of great use, Boole's Treatise and his

Supplement, Moigno, Imschenetsky and Mansion; and
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I have used, to a slighter extent than these, Gregory's

Examples, Serret and De Morgan. Many references to

original memoirs will be found in various chapters.

There occur, scattered throughout the book, many

examples, amounting in number to more than eight

hundred. Most of these are taken from University and

College Examination papers set in Cambridge at various

times; some are new, and many of them are results

extracted from memoirs which have been consulted. In

the case of the last, the original authority is, I think,

always indicated. I cannot hope that, among so many,

all results given are correct and all equations set are

soluble ; and I shall be glad to receive corrections of any

mistakes actually found.

In conclusion, I wish to express the very great

obligations under which I lie to my friend and former

tutor Mr H. M. Taylor, of Trinity College, Cambridge,

for his kindness in the revision of the proof-sheets. He
has caused the removal of many obscurities and has

made many valuable suggestions of which I have con-

tinually availed myself My thanks are also due to my
friend Mr J. M. Dodds, of St Peter's College, Cambridge,

for his kindness in reading some of the early sheets.

A. R. FOESYTH.

Trinity College, Cambeidge,

September, 1885.
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CHAPTER I.

Introduction.

1. When one variable quantity y is a function of another

variable quantity x, the relation between the two may be exhibited

by means of an equation such as

</> (so, y) = 0.

In this equation constants may occur; let one of such constants be

denoted by a. If the equation be solved for y in terms of w, this

constant a will enter into the expression for y ; and, by taking

different values for a, there will in general be obtained a number

of corresponding values for y. If it be desired to indicate in the

fundamental relation the fact that the value of y depends on that

of a, this may be done by writing the above equation in the form

^K y> a) = (i).

Now it is possible to derive from this equation another, which

shall include all the values of y, which can be obtained by as-

signing all the possible values to the constant a. The differential

coefficient of y with regard to x is given by

f+ff = Q (ii),

dx oy ax

7) 7)

in which t^t- and ^r- indicate partial differentiation with regard to
ox oy

X and y respectively. Equation (ii) will in general involve the

constant a, which occurs in (i) ; and, if between these two equa-

F. 1
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tions the constant be eliminated, the result of the elimination will;

be of the form

/{•«> y> !)=» »
where / is a definite function depending on the form of the

function ^ in equation (i). Now equation (iii) is one, which

includes all the values of y, which can arise from (i) ; for, while

it is derived from the two equations (i) and (ii), in each of

which a occurs, yet of the particular value of this quantity

no special account is taken and, were any other constant as a

substituted for a in all the steps of the elimination, the result

would be the same, since the constant is made to disappear from

the result.

In the same way, if y depended on two constants a and h in

a manner defined by the equation

<I> {x, y, a, h) = 0,

and if the equations which give the first and second differential

coefficients of y with regard to x were written down, the two con-

stants a and 6 could be eliminated and the resulting equation

would be of the form

^^l-S)-» w-
In all cases the functions / and F can be deduced (by methods of

the Differential Calculus and of Higher Algebra) when the forms

^ and <^ ai'e given.

In particular, if such a form be

6{x, y) = a,

from which a is to be eliminated, then, as the equation embracing

all the values y, we have at once

dx dy dx '

no further elimination being needed.

Thus, for example, the equation

y^ ^ iax
leads to the equation
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which is the general equation of all parabolas having the same
axis and vertex.

2. Such relations as (iii) and (iii)' are called Differential

Uquatiom ; the equation (i), which is free from all differential

coeflScients, is called a solution of (iii). As, in passing from (i)

to (iii), a single arbitrary constant was removed, so conversely,

in passing from (iii) to (i), it is just to expect that a single

arbitrary constant will be introduced ; and since, in eliminating n

arbitrary constants, there are needed the equations giving the

first n differential coefficients in addition to the original equation,

so conversely, in passing from such a relation between differen-

tial coefficients up to the w'" inclusive to an equation free from

them and equivalent to this relation, it is to be expected that n

arbitrary constants will be introduced.

3. It is not difiScult to see how these arbitrary quantities must

enter into the solution of the equation. For the sake of simplicity

let us consider an equation such as

ax

in whichM and N are functions of cc and y. Let w and y represent

the Cartesian coordinates of a point P in a plane referred to two

rectangular axes ; then the equation (I) is the equation of a curve,

and -^ is the trigonometrical tangent of the angle, which the
ax

tangent to the curve at the point P makes with the axis of x,

so that the above differential equation gives the direction of a line

at every point in the plane. Let any point A be taken on the

axis of y, and let us proceed from A for a very short distance

in the direction given by the value of -^ which it has at A ; we

shall thus come to another point B. Let us proceed now from B

through a very short distance in the direction given by the value of

^ which it has at ^ ; we shall thus come to another point C.
ax

If this process be carried out for a number of directions in suc-

cession, a figure will be traced in the plane ;
and, when each of

the distances through which we suppose the tracing point to

move becomes indefinitely small, the figure will become a curve

1—2
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passing through A. This curve will have a definite equation,

which may be exhibited in the form

where y^ is the ordinate of A. Had another initial point A' been

chosen instead of A, then another curve would have been obtained

and into its equation the magnitude of the ordinate of A' would

have entered ; the same result would ensue from taking each point

in succession on the axis of y, because generally one curve and only

one passes through each such point. As each equation, or one

single equation as the representative of all, may be considered a

solution of the differential equation, it is evident that into the

solution of the example we have been considering one arbitrary

constant will enter ; and therefore, if by any method we can obtain

an equation free from differential coefficients, it must be expected

that an arbitrary constant will be contained in that equation.

But this arbitrary constant obtained by the latter method will not

necessarily be the ordinate of the point, at which the curve, repre-

sented by the solution, and the axis of y intersect ; an arbitrary

element would have entered into the equation, had the tracing of

the curve begun from a point in the plane not lying on one of

the coordinate axes.

In the example considered the equation giving -^ had only

a single root ; when it is of the form

then the integral equation will be of the form

A^+AF + q = 0,

where A is an arbitrary constant. And it is not difficult to see

that, if the differential equation be of the n* degree in ~ , then

the corresponding integral equation will contain an arbitrary

constant raised to the re"" and lower powers.

4. From what has been said as to one of the methods by
which differential equations can be constructed, it might be deemed
an easy matter to return from the differential to the integral

equation ; but this is not so. The steps of an elimination cannot
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be retraced, and therefore some other method or methods must be

adopted. The methods which are most effective for the solution

of several different forms of differential equations will be discussed

hereafter.

5. When we pass from a given integral function to the equi-

valent differential equation, the latter may prove to be of a form,

which is not included among those already known ; so conversely,

if we pass from a given differential equation, we must not expect

to arrive necessarily at a function which will be included among

those, with the properties of which we are acquainted. It is

therefore desirable to indicate what, in such a case, would be

meant by the solution of the differential equation.

When, in algebra, we ask whether any particular equation can

be solved, we thereby enquire whether the value of the variable,

which occurs in it, can be expressed in terms of known functions.

Thus, for instance, in the equation

ax = b

the value of x can be obtained immediately by a process of division.

But let the equation be

To solve this we have to introduce a function, which was not

needed for the former equation ; and, expressing f in the form

we consider the equation solved. Now equations of the third and

fourth degree can be solved by means of functions strictly analogous

to these—^the cube root and the fourth root of quantities; but

general equations of the fifth and higher degrees cannot be solved

in terms of these functions or combinations of these with similar

functions. It does not therefore follow that solutions of these

equations do not exist ; they can only be solved when functions,

unused in the solution of equations of lower degrees, are intro-

duced.

Similarly, in the case of a differential equation, when we say

that it can be solved, we do not mean to imply that the solution

must be expressed in terras of purely algebraical functions, of
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exponentials (including sines and cosines), and of logarithmic

functions (including inverse circular functions). The equation

ax
is equivalent to

2/
= «^ + -4_;

G - But suppose that the properties of the logarithm were un-

known, and that the differential equation

dx X

were proposed for solution; We should then have

. (dx

and, calling

/f=/(«'),

we should prove the relation

f{^)+f{y)=f(Fy),

and become acquainted with the properties of this new function

so as to include it amongst known functions. But, had we not

been able to deduce the properties oif(x), the value of y given by

A +
dx(dx

J «

would still have been considered a solution of the differential

equation. In fact every differential equation is considered as

solved, when the value of the dependent variable is expressed as a

function of the independent variable by means either of Jcnown

functions or of integrals, whether the integrations in the latter

can or cannot be expressed in terms of functions already Jcnown.

Thus, for instance.

is a solution of

Ce"y=A+ l-dx
J ^

dx

although the value of y cannot be expressed otherwise than in this

form without the introduction of a new function the properties of
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which can be investigated. In this way the solution of differential

equations is continually suggesting new functions to be added to

the stock of those already known.

6. Before we proceed farther, it is desirable to give definitions

of some terms used in the subject.

Any equation which expresses a relation between dependent

variables, their differential coefficients of any order whatever, and

the independent variable^ is called a differential equation.

Differential equations are divided into two species, viz. :

—

I. Ordinary differential equations, into which only a single

independent variable enters, either explicitly or implicitly, and

to this variable all the differential coefficients have reference.

Should there be several dependent variables, the number of

equations necessary for their complete determination as functions

of the independent variable is equal to the number of such

variables. Thus, for instance, we might have

in which a; is a function of the only independent variable t ; and

in which x and y are both functions of t.

II. Partial differential equations, into which two independent

variables at least and partial differential coefficients with regard to

any or all of these variables may enter. If several dependent

variables be present, the number of separate equations (must? be

the same as the number of the separate dependent variables

;

but the occurrence of such systems of equations is relatively rare.

As examples of partial differential equations we may consider

dx' dy' [dxdyj '
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9<3!> ar|r1
and -^- = -w-

ox oy

dy dsc

The order of a differential equation is the same as the order of

the highest differential coefficient it contains.

The degree is the power to which that highest differential

coefficient is raised, when the equation is in a rational form and

freed from fractions^ i^s <«^o-'")i -^-^y,^^^ v^^.c^U^ x^'tfe W^^iti

The equation

dy a
" ~ dx dy

dx

is of the first order and second degree ; the equation

cPyl+— —d.^

is of the second order and second degree.

If a differential equation bo such that, when it is rationalised

and freed from fractions, the differential coefficients and the

dependent variable enter in the first power and there are no

products of these, while the coefficients in the separate terms are

either constants or functions of the independent variables, the

equation is called linear. The following are examples of linear

equations

:

(l-a;^)g-2^J + 7z(»^ + l)2/=0,

dx^ ^ dy'
"^

Ss'
~

'

dz dz

The relation which exists between the variables themselves

without their differential coefficients and which is the most general

one possible, is called sometimes the general solution, and some-
times the primitive, of the differential equation.

7. The process of deriving the primitive from a given dif-

ferential equation will frequently be the deduction of a first
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integral of the differential equation, that is, an equation of an

order lower by unity than that of the original equation and

containing an arbitrary constant ; then of a first integral of the

latter which will be a second integral of the original equation;

and so on, until differential coefBcients cease to appear. This

will be the case when the operation has been repeated the

number of times equal to the order of the original differential

equation. Now the form of the first integral will be affected

by any transformation to which the equation may be subjected

prior to integration ; and, since a given equation may be trans-

formed in a number of different ways, there will be a corresponding

number of different first integrals. But these will not all be

necessarily independent ; and, as a matter of fact, if the equation

he of the n* order, it cannot have more than n independent first

integrals. For example, the differential equation

has the following first integrals, viz. :

—

-~ cos x + y sin x—B,

— — sin X + y cos X = C,

-£= ycot(x+a);

but they are not all independent, the four constants A, B, G, a.

being connected by the equations

B = A cos a,

= Asin a.

When a system of first integrals has been so obtained in any

case, it can be used as a simultaneous system, from which the

highest differential coefficients can be eliminated; and if inde-

pendent first integrals of the equation, equal in number to the

order of the equation, have been obtained, all the differential

coefficients can be eliminated from them so as to leave the primi-

tive. Thus from the second and third integrals in the foregoing

example we might deduce

y = B sin x + Ccos x,
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and from the first and fourth

y=Asm{x + a),

each being a primitive; these solutions are seen to coincide on

account of the relations between the constants.

/ 8. We proceed now to give reasons for the statement made

in the last paragraph.

A differential equation of the order n has n, and cannot have

more than n, independent first integrals.

From what has already been said it is clear that an integral

relation between y and x involving n arbitrary independent con-

stants would lead to a differential equation of the order n. Let

the given integral equation be differentiated n — 1 times in

succession ; the n — 1 resulting equations will involve all the

differential coefBcients up to the (w - l)"" inclusive and there will,

with the original equation, be n equations in all. Now from n

equations, in which n quantities occur, all but one of these quantities

can be eliminated. Let the n arbitrary constants be denoted by

, Cj, , G^; and from the n equations, which we have, let us

eliminate all the arbitrary constants except C^. The resulting

equation will involve the variables and the derivatives of y up to

the {n — 1)* inclusive and will also involve C^ ; it will therefore be

a first integral of the differential equation of the order n which is

equivalent to the given integral relation. Now eliminate all the

arbitrary constants except G^ ; the resulting equation will now

involve C^ and, as before, derivatives of y up to the (w — l)"" in-

clusive and will therefore be a first integral of the differential

equation ; it will, moreover, be independent of the former, since G^

is independent of G^. Proceeding in this way with all the constants

in turn, we shall obtain n independent first integrals, each of which

arises from the elimination of all but one of the n independent

constants.

As there are not more than n independent constants occurring

in the general integral equation, any other constant, which could

appear in it, must depend on (7^,6^, , C„; let ^ be such

a constant, and let the relation between them be denoted by the

equation

^{^,G„G„ ,C',.) = 0.
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Then between this, and the original integral equation, and the

n—1 equations obtained by differentiation, (forming ?i + 1 equa-

tions in all), the n constants C may be eliminated and the result

will involve the differential coefficients up to the (n — 1)'" inclu-

sive and the constant A. This would be a first integral of the

differential equation, but it is not independent of the n already

obtained ; for from these let the respective values of the quantities

G in terms of the variables and the differential coefficients of

y be derived from the separate equations, in which they occur singly

and be substituted in the equation T|r = ; this equation will then

be one involving the differentials up to the (n — 1)'" and the con-

stant A, and will therefore be the same as the foregoing. In fact

the two processes are merely different methods of obtaining the one

result, and the second shews that the first integral so obtained is

derivable from the other n first integrals. Hence the differential

equation of order n has not more than n independent first integrals.

9. It is convenient to add here two lemmas to which frequent

reference will subsequently be made.

Lemma I. Let u^,u^, , m„ be m functions of the n variables

X ,x
,

,x^, these variables being independent of one another;

if among these functions any relation, which may be represented by

i^K,M.. ,M„) = (i)

be identically satisfied, so that m^, w^, , m„ are not independent

of one another, then the equation

9m, 3«,

9tt,

9m,

9tta

''dx.

= 0. ,(ii)

9«„ du^^ 9m,

dx^' 9< 'doo,^

is identically satisfied.

Since equation (i) is identically satisfied, when for Mj, m^, , m,^

are substituted their values in terms of the independent variables,

the partial differential coefficients of F of the first order with

regard to each of these variables are separately zero. Thus we

have
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9m„ dx.

dFdu, dFdu,, dFdu^_^
r=— ^-S+^— ;r-^+ +^r- ^T"— "»

du, dx„ du„ dx, du„ dx„

dUn dx^

Let the ratios of the n partial differential coefficients of F with

regard to the m's be eliminated between these n equations, which

are linear in these quantities ; the result of the elimination is

= 0,
3ttj
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If the n—1 functions u^,u^, >w,,-i be not independent

of one another then the proposition to be proved is at once granted

;

we may therefore suppose them independent of one another.

Between the n functions m we can eliminate n—1 of the

variables; if the remaining variable, say «„, be not thereby

eliminated the result may be written in the form

If the equation of condition be written in the form

^K. ^^2 ^") _o
9(«..«^2 .O

we may write the theorem for the multiplication of determinants

in the form

3K,«2= .*J 9K.«2> ."„-i.a:J ^K^a?^, ,«„_i,«J"

The left-hand side is zero by hypothesis. Since the functions

Mj, Mg, , u„_^ are independent, the first factor on the right-

hand side is 7^ , and the second is „,
''—"'

""'—^^ . One of

these must therefore vanish. If it be the former, then ^ is ex-

plicitly independent of «„, so that u^ is a function oi u^, u.^, . .
.

, m„_j

only ; and there is thus a relation between the original n functions.

If it be the latter we have

fajj, ajjj, , a;^_i)

an equation, which corresponds to the given equation of condition

but in which there are only n — 1 functions of n — 1 variables,

since for the differentiations that now occur a;,^ may be considered

a constant. This is treated in the same manner as before ; and we

should fin-d either that there is a relation between u^, u^, ..., m,,_j

considered as functions oi x^,x^, ,a^„.^, or that a new equation

of condition involving Ji — 2 functions of n - 2 variables would

hold. If the relation between u^,u^,..., u^_^ exist, it will be of the

form

f ("i, u^,
, K-v = 0;

which will involve a;„ since we have assumed that u^, u^, ..., u^^_^

are independent of one another. Between i/r = and m„ = <^ we can

eliminate x„ and obtaia a relation between u^, u^, ...,«„.
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Proceeding in this manner and diminishing by unity each

time the number of functions, which enter into the equation of

condition, we can prove that one of the two necessary inferences

at each reduction is the statement contained in the proposition.

And when the reduction has been repeated n — 1 times the only

alternative of the proposition is that any function, chosen at will,

should be such as to satisfy ^ for some variable x which can

be chosen at will. As this is evidently not the case the truth of

the proposition follows.

10. As a particular case of the general lemmas we have the

following. Let IT and V be two functions of two independent

variables x and y ; then if V can be expressed as a function of U
alone, we must have

dx dy dy dx '

and conversely, if this equation be satisfied, then there is a relation

between U and V satisfied for all values whatever of x and y such

that

Ex. 1. Are the functions

X+ 2I/ + Z, 30-'2,y + Zz, 'ixy-xs+ iyz-'iz^

independent of one another ?

The equation of condition is

1 , 1 , %y-z =0,
2 , -2 , 2^+ 4«

1 , 3 , -.r + 4y-4«

which is evidently satisfied since

3rd row= 2 (1st row) --^ (2nd row)

;

and therefore the functions are dependent. To find the relation between
them, if we call them Mj, Mjj %> we have

2^=%+M2-42,

4y= Mi-M2 + 2«;

-u^-

and therefore

on substituting these values

Ex. 2. Prove that the functions ax"^+6/ + cz\ Ax+By + Cz and
aV (^2,, + c%) + hhj\C^a + A^c)+ c^z^{A^b + B^a) - 2abc (BCyz+ CAzx+AB.vy)
are not independent ; and find the relation between them.

'



CHAPTER II.

Differential Equations of the First Order.

11. The general dififerential equation of the first order may be

represented by

F L, y, dx\ '

where F is a, rational and algebraical function so far as the differ-

ential coefficient is concerned. In this general form the equation

cannot be integrated ; but there are certain particular forms, to

one or other of which many equations can be reduced, and which

admit of immediate solution. These forms we may call standard

forms.

12. Before considering them in detail, we will prove a pro-

position, which is merely a particular case of the general theorem

indicated in § 8, viz., that a differential equation expressible in

the form

ax

where M and N are one-valued functions of x and y, can have only

one independent primitive.

Suppose that, if it be possible, two primitives

(f>i («> y) = a>

i>2 («> y) = &.

have been obtained. From the first of these the value of / is
ax

given by

dx dy dx
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and therefore

9a! oy

Treating the second primitive in the same way we should

obtain the equation

dx oy

The elimination of M and N between these two equations

gives

dx ' dy

dx ' dy

which (1 10) shews that 02 'S some function of 0^. Hence the two

primitives are not independent ; and the second can be expressed

in the form

F {<!>,)
= b,

which is algebraically resoluble into equations of the form

01 = *.

each of which is only a repetition of the first of the primitives.

If therefore in solving such a differential equation any primi-

tive has been obtained, this may be looked upon as the general

solution of the equation ; for from it can be derived all other

primitives.

13. Standard I.

The equation Md]j = Ndx can always be solved when the

variables can be separated. For in this case the equation may
be changed to the form

Ydy = Xdx,

where F is a function of y alone, and X a function of x alone

;

and the equation can be integrated in the form

JYdy^jXdx + A,

A being an arbitrary constant.
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The variables can be separated and the equation becomes

one integral of which is

arcsin y+ arcsin x=c.

But the equation may be written

{X-x^fdyJrC). -y^fdx=0,

which, after integration by parts, gives

But
^yd^^^^

and therefore the integral is

This affords an illustration of the proposition in the preceding paragraph
;

for the latter primitive can be derived from the former by taking the sine of

both members, and the relation between the constants is

C=sinc.

Sx. 2. {x-y^)dx+ ixydy=0.

The variables though not immediately separable may become so after

substitution : write y'^=v and the equation is

xdx+xdv — vdx

=

0,

so that -+d(-)=0,
X \xj

and therefore log «+ -= constant.

Ex. 3. Solve the equations

(i) x{l+y^f+y{\+x'^f%=Q;

(ii) (y-^)(l+^fg=«(l+2/¥;

(iii) {x+yff^=a^;

(iv) O-+y^)dx-{y+0-+yf}{\+xfdy=(i;

(v) sec2:j;tanyc?.» + sec2ytan^c?y=0.

P.
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14. Standard II. Linear Form.

When the equation of the first order is linear, it may be

written in the form

where P and Q are functions of x and are explicitly independent of

y. Multiply each side by

then, since

jpJPdx _
dx

Pe^"'' = i{e''"%

the equation becomes

ax " dx

on integration (the left side is now a perfect differential) we obtain

as the primitive

ye^P''' = G+\Qe^''''dx,

that is,

y^Ge-^''''' + e-^^^''\qe^''^dx.

Ex.1. %^^^.y
dx \+x^^ x{\+x^y

As in the general case,

r xdx r

i

,Jl+a;2_ ^ . r dx Jiye '="-/.-

hence
(1+^.,)^^'+f—^j

= C+log- *

Ex.% Solve (i) a;(l-.r2)^+(2^2-l)2,= cu;3;

H-(l+^2)*

{

' dx

(ii) ^+ycosa;=-Jsin2a;;

(iii) y^+ cy^= aoos(^+/3);
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Ex. 3. Shew that the solution of the general equation may be exhibited

in the form

[G+\e^^'''dl-\.

15. An important associated form, which can be solved by the

same method, is

where P and Q are functions of x alone.

Divide by y" ; the equation then is

which is the standard form ; and the general solution is

^^-^n-vsm. ^G-{n- l)/Qe-"'-^'^^''"ci^.

Ex. A. Solve x-r-+y=y'^logx.

This becomes, after a transformation similar to the above,

the primitive of which is

_^/^l"\_--=--lo X
dx \y) y X x

^e-jf ^^_f^^lMfe-Jf

.

y

This is
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Ex. 6. Shew that the four equations in § 7 lead to the same primitive.

16. Standard III. Homogeneous Equations.

The equation when of the first degree and expressed in the

form

ax

is said to be homogeneous, when M and iV are homogeneous

functions of x and y of the same degree. In this case we can

write

N = .^fit^,

r being the degree ofM and N; and, on the substitution of

y = vx,

so that V may be considered a new dependent variable, the equation

becomes

\^-^'^-£j'^^^)='^^^)'

dx cf>iv)dv
or '

1-
, , , 7—7-T = u,

X v<p [V) — yjr (i;j

in which the variables are separated ; and the integral of this is

The primitive will be given by the substitution of - for v

if

after the integration has been performed.

If the equation however be not of the first degree but still

homogeneous in x and y, it may be written in the form

[x dx)

There are now two methods of proceeding. The first method

;o solve the equation c

solution be expressed by

is to solve the equation considering it as an equation in ^; let a

dx J
\x.
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This is the case already discussed.

The second method is to solve the equation considering it as

an equation in ^
; then we should have

1=^0=^0.)'

where p is written for -^ . Differentiating this with regard to x

we have

P='ft(P) + ^fl(P)^:dx
''

and therefore

dx _ fl (p) dp

^ ~p-A(p)

This gives on integration

iog.= c+f^^M^
J p -flip)

= C+f{p)

say ; the elimination ofp between this and

y = ¥i ip)

will give the primitive. But it is not always desirable to eliminate

p ; it may be retained as the parameter of a point on the corre-

sponding curve, in which case its use would be similar to that of

the eccentric angle of a point on an ellipse.

&. 1. Solve x+y -^='2,y.

When we write y—vx, the equation becomes

(1— «)2 X

whence —

—

\-\og(^-v)-\-\ogx=A,

(^-y)e*-»=e^= C.
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JEr. 2. Solve (i) x+y-^ =my;

Ex.Z. Solve {ax+hj+ c)-£^=Ax+By+ C.

Let *=A+ | and y= h+r], and suppose h and ^ so chosen that

ah+ hh+c=0,

Ah+Bk+C=0;
then the equation becomes

which is homogeneous.

{ak +h)^=M+ Br,,

A B C
If however - = -r , but - diflfers from each of these fractions, then the

a b c

equations giving h and k are inconsistent. Let each of the equal ratios

be equal to m ; then

{ax-\-'by+ c)-^= m(ax+ hy) + C.

Substitute aw+ hy= v

;

,, , mv+C dv

and the variables are separable.

If — = ^ = — =ra, the equation is
a e

s-"™'
dy^

dx

so that y=nx+E.

Ex. A. Solve (i) Zy-1x+ 1= {Zx-1y-Z)'^^;

(ii) (2^+4y+3)J=2y+^+l;

(iii) {Zx+ 5y + %)-£^=1y+ x+ '2,.

Ex. 5. Shew that the equation

{.P+Qx)'f^=R+Qy,

in which P, Q and R are homogeneous functions of x and y, P and § being

of the same degree, may be solved by the substitution y=w.
Ex. 6. Solve

{Ax'^+ Bxy + ax+^y + y).£^=Axy+ By'^+ a'x+ ^'y + y'.
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17. Let now the curves, whose equations are the complete

primitives of the homogeneous equation be traced; they form a

system of similar curves. For let there be drawn through the

origin any radius vector cutting all these curves and making an

angle 6 with the axis of x\ the inclination to the axis of x of

the tangent to one of the curves at the point where this radius

vector meets it is given by

and therefore all the tangents at points lying on this line are

parallel. And therefore the curves are all similar and similarly

situated.

18. Standard IV.

Equations arise in which one of the two variables does not

explicitly occur.

Consider first that class from which the independent variable

is absent. The equation will then be of the form

*{y't)

As in the general equation under Standard III. there are two

methods of proceeding. If it be possible, we may solve for ^ so

that

in which the variables are separable ; the primitive is

dy

h
- = x +^.

Or, if it be possible, we may solve for y ; suppose a solution to

be given by

y/.(%)=MP)-

Differentiating with respect to x we have
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in whicli the variables are separable ; and tbe integral is

^^jflMdp + A,

wbicb, when combined with

,y=/i(i')

for the elimination of p, will furnish the primitive. It may be

more convenient to leave p uneliminated.

Let us now consider the class from which the dependent variable

is absent. The equation will then be of the form

'^i\^' dx)

_,. dy dx _

bmce ~r zr = ^>
dx dy

this equation may be written

1 \
= 0,

dyj

an equation of the former class, and soluble by the methods thereto

applying. These methods however may be applied to the equa-

tion without making it undergo this transformation. Solving the

equation if possible for -^ , we shall have

and the primitive is therefore

y = jF{x)dx + A.

Or solving for x in terms of -^ , when this is possible, we shall

obtain

Differentiating with respect to y (the absent variable) we have

p '
^P' dy

'
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the integral of which is

y=SpF;ip)dp + c.

This, combined with

constitutes the primitive.

E,. Solve (i) J-| + »(|)'i

9,ax'

19. Standard V.

When the equation of the first order is of the n"" degree, suppose

it arranged in descending powers of the differential coefficient, so

that it may he written

m*'-<M) "-'-(£)"-
-^.-.i-^..-.

in which F^, P^, , P„ denote functions of a; and ?/. If we look

upon this as an algebraical equation in -^ , which has n roots

p , p^, ,p„ (these being functions of x and y), the equation

becomes

(|-^.)(|-^.) (|-^.)=o-

This can be true only, if one or more of the factors on the left-

hand side vanish ; and therefore any relation between x and y,

which makes a factor vanish, will be a solution of the original

equation, while no relation which does not make a factor vanish

can be a solution. Suppose then that the primitives of the equa-

tions

dx P'~
' dx P'

' dx ^" "

(deduced by means of one or other of the preceding methods) are

<p,{x,y,C,) = 0, cj>,ix,y,G,)=0, ,<f>ni^,y, 0„) =

respectively; all possible solutions of the given equation will be

contained in

<^. {x, y, C;)4>Jx,y,G,) </.„ (x, y, OJ = 0.
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But the generality of this integral will still be maintained, if all

the constants G^, C^, ,G^ be made the same, say C; for in order

to find a value of y we must equate to zero some factor on the

left-hand side of the new form, and this would give an equation of

the form

Now C is an arbitrary constant; if then all possible numerical

values be given to it, there must be included in the series of con-

sequent equations all the integrals, which can be derived similarly

from the corresponding factor of the first product. Hence we have
as the general complete primitive of the original differential

equation

<l>^{x,y,G)<^^{x,y, C) ^^{^jc,y, G) = 0.

Ex. 1

.

x^p^ - Zx-yp +y2

=

xhf

+

xT""
~ "^"^j — <") C 'vs (

Then xp-y=±x {x'^-\-y^f\

which, by the substitution y= xz, becomes

dz ,

i= ±dx.
{l+zy

When the positive sign is taken, the solution is

0= J [e« + c_e-(>; + c)]= sinh (a? H-c).

The negative sign gives z= sinh (c-x)
;

hence the general solution is

[y-x sinh {x+ c)'][y~x sinh (c - x)]

=

0.

.Ex. 2. Solve
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(vii) f+{x^y-^'^p^ry+y^^-y~y^= ().

Ex. 4. Shew that if the general equation be homogeneous in x and y, it

can be solved by the substitutions

dt
y=tx, a.

Hence solve

y^tx, x^=z.

p'-iP^+p-f^-o.

20. Standard VI. Clairaut's Form.

The equation to which this name is usually applied is

in which p stands for ~ .

ax

Differentiate the equation with regard to x : then

so that either

f =
ax

or X +/' (p) = 0.

Taking the first of these, we have p = c a, constant ; and hence the

primitive is

y = CX+f{c).

The second equation expresses a; as a function ofp, and therefore

iip be eliminated between this equation and

y=px+/(p}

a relation between y and x will be obtained.

Of these the former is evidently a solution of the equation, and

from it the differential equation can be deduced at once ; for on

differentiating we obtain

p = c,

and eliminating c we have

y=px+f{p).
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If now we turn to the other relation between x and y, which

will be that derived from the elimination oip between

y = px+f{p)l ^

0=x+f{p)]'
it is at once evident that it contains no arbitrary constant and so is

not a general solution. Yet it may be a solution of the equation;

for differentiating the first equation we have

=p

by the second equation unless -^^ be infinite; eliminating^ from the

equations y =px +f{p) and ~-=pyr& obtain

which is the original equation.

21. The relation between the two solutions, when both exist, is

easily indicated by geometrical considerations. The first solution

y = cx+f{c)
represents a family of straight lines ; if they have an envelope, it is

found by differentiating the equation with respect to c (in fact,

this is equivalent to giving c a pair of equal values for the same

values of x and y) and then we have

= ^+/(c).
The result of the elimination of c between these equations will be

the same as that of eliminating p between the two

y=px-Vf{jp),
= x+f(p),

and therefore the curve represented by the latter is the envelope

of the family of lines represented by the first solution, should these

lines have an envelope.

Such a solution of the equation, which is not included in the

primitive (but which may be derived from it in the above manner),

is called a Singular Solution. We shall shortly return to a more
detailed discussion of singular solutions.

* It should be noticed that for purposes of elimination p is merely a quantity

likely to depend upon y and x ; it is not now neeessarilv ^
' dx'
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Ex. 1. Solve y=:xp+ia

P'
The first solution is

,

<^

y=cx+-.
c

The second is given by the elimination oip between

.0=a;--5pi

and the original equation ; eliminating p we have

y^=Aax.

The ktter is the singular solution ; the curve represented is touched by all
the lines included in the primitive.

Ex.'Z. Solve (i) y=^^4.(i+^2)i.

(ii) y=px+p-pi;

(iii) ayp^+ {2x - h)p=y
;

(iv) x^(j/-xp)=yp^;

(v) y= '2,xp+y^p^.

22. There is an extended form of the equation, which can be
solved in a similar manner, viz.

:

y = xf{p)+4,{p).

To solve this, let the equation be differentiated with regard to

X ; then

P=f{p) + W'{p) +
^'{p)-\f^,

doo ^ f (p) «/>' (p)

dp f{p)-p p-f(p)'

which is linear in x and comes under Standard II.

Let the integral be

F(x, p, c) = 0.

The result of eliminating p between this and the original

equation will be the primitive.

Ex. 1. x+yp=ap^,

or y= ai>-^-

Diflferentiating with regard to x, we have

_ dp I X dp
^~ dx p p^dx'
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and therefore

dp pi^+p") 1+F'
the integral of which is

'^i^+P'f= C+a\og[p+{l+p'f},
P

and this combined with the equation is the primitive.

The equation could also have been solved by differentiating with re-

gard to y.

Ex.% Solve (i) x=yp + ap^;

(ii) y=xp+ ax{l+p'^f

;

(iii) y=xm.p+n{\+p^Y ;

(iv) y=yp^^'ipx

;

(v) y{\+p''f=n{x+yp).

Singular Solutions.

23. From the investigation of § 21 it is clear that a solution of

a differential equation can sometimes be found, which is not included

in the primitive ; such a solution does not involve in its expression

any arbitrary constant. The limitation of not being included in

the primitive is most important ; for in the latter a particular

value, say zero, could be assigned to the arbitrary constant and this

would furnish a solution but not of the nature indicated.

We proceed now to consider the theory of these Singular

Solutions of the general differential equation of the first order,

which will be written

4> i^, !/> P) = 0-

If the differential equation either be linear or be resoluble

into a set of rational linear equations (as in the case of Standard

V.) then it has no singular solution ; any solution of it apparently

of this nature is merely a particular integral derived from the

primitive by giving a particular value to the arbitrary constant

therein contained. For the present purpose therefore the equation

in p may be considered irresoluble : if it can be resolved into

factors which are not linear and not resoluble into linear factors,

then we should consider in turn each of these irresoluble factors.
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We may thus consider 0=0 as a rational and irresoluble equa-

tion of degree n. Moreover we shall assume that (^ is a one-valued

function, and that it contains no factor-^yhich ia independent of^

;

such a factor, if it were retained and equated to zero, would satisfy

the equation, but would not involve the differential coefficients.

If in any case these factors occurred, we should suppose them
removed.

;

24. The considerations adduced in the Introduction furnish

the inference that, if x and 1/ be the coordinates of a point in

a plane, the dififerential equation determines a system of curves

in that plane, which depend upon a single independent variable

parameter ; and as the differential equation determines at any

point a direction through that point, there will be n directions,

given by the values of p there, and therefore n curves will pass

through any point in the plane. To represent this system alge-

braically we need an algebraical equation of the form

/(«, y, c,, c,, ,0 = 0,

which is rational and algebraical.ana the constants in which are

alee- rational aad algeteweal ; but as only a single independent

parameter is needed, there will be among these m constants m — 1

algebraical relations. Further this function / will be one-valued,

and any factor involving « and ?/ (or either of them) but none of

the constants would be rejected for the same reason as led to the

rejection of similar factors from the differential equation. As the

differential equation cannot be resolved into simpler equations

of a lower degree, the algebraical equation is not so resoluble ; if it

were, to each algebraical equation of lower degree there would be

a corresponding differential equation of lower degree—a result

excluded by hypothesis. And the reason that m constants con-

nected by m — 1 relations are inserted instead of a single constant

is this ; the equation in the latter case would be the same as

that derived from the former with all the constants eliminated

except one, and as this elimination would usually imply operations

(such as squaring, &c.) which introduce equations other than that

wanted, the result would be that the final equation would represent

more than the single equation desired. For example, suppose that

by any process an integral is obtained in the form

{x^ + i/^—a(xcosai + 2/ sin a)}" = a' {a? + y^),
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or changing to algebraical constants

[x" + f-a{lx + my)Y = a' (x' + f),

with the condition

then the equivalent equation containing one of these constants,

as m, alone would represent not only this equation but also

{x' + y'-ai-lx + my)Y = a' {x' + f),

with the same limiting condition, and therefore would not be

equivalent solely to the first of these.

Further we have n curves passing through every point in the

plane ; hence the equation /=0, with the m— 1 equations between

the constants, must give at every point n sets of values for these

constants. Let the aggregate of the constants be denoted by G, so

that for any point in the plane G will have n values.

25. Consider now the formation of the differential equation

from the primitive

f{x, y, C)=0.

It is obtained by eliminating the constants between the m — 1

relations, this equation and the equation

8j3 Zy dx

But suppose the quantities C replaced by functions of x; the

deduction of the differential equation will be the same as before,

except that for the last equation we must substitute

dx dy dx dG dx

The result will be actually the same as before, if

d£dG_
dG dx

dCTo satisfy this equation we must have either t- zero, which
dx

leaves G constant ; or G must be determined by

dG
"•
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Let the value of G so determined be substituted in the function /.

"We may thus in general as a solution of the same differential

equation equate the discriminant of / with regard to G to zero

;

let this be written

Disctp/(a?, y, G) = 0.

26. This locus is the locus of all points in the plane at which
the parametric constants G have two or more equal values; and
in it there will therefore be included

(i) the locus of all the nodal points (double, treble, etc.) of

the system of curves ; for at such a point there are two or more
values of G, depending on the number of branches, equal to each

other, since the branches belong to the same curve;

(ii) the locus of all the cusps of the system for similar

reasons;

(iii) the envelope of the system of curves, which may be either

a single curve or several ; for any point on the envelope may be

considered as belonging to two separate but consecutive curves of

the system, the constants of these consecutive curves being ulti-

mately equal. [In the case, when the envelope can be decomposed

into several curves, it may happen that one of these is merely a

particular curve of the system / {x, y, C) = ; its equation will

be excluded as being a particular integral.]

Let these three respectively be called the nodal locus, the cus-

pidal locus, and the envelope locus.

27. If we now consider the differential equation

^ (a;. y,p) = ^

in connection wiLh the system of curves, whose equation constitutes

its general integral, it is evident that the envelope of the system is a

solution of the equation ; for at any point on the envelope (which

is a point on two consecutive curves) the direction of the tangent

is the same as that of the tangent to either of these curves at that

point ; and since the differential equation is satisfied by the quan-

tities, which are connected with the element of the system of curves,

it must be satisfied by these (unaltered) quantities, which are con-

nected with the element of the envelope.

F. 3
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But the nodal locus is not a solution of the equation; if it were,

the differential equation would, for the values of so and y at any

node, be satisfied by the corresponding value of p for this point

on the nodal locus. Remembering that the nodal locus is formed

by a series of points on our system of curves, we know that the

values of p at any such point which satisfy the differential

equation are those given by that curve of the system which passes

through the point. But as the tangent to the nodal locus at such

a point will not in general be a tangent to any of the branches of

the curve of the system at the point, it follows that the value of p
for the nodal locus differs from those values of p for the curve of

the system which satisfy the equation when substituted in it with

the coordinates of the point. And it would only be by accident

that the value of p for the nodal locus could coincide with any of

the remaining values of p, which do not belong to the curve on

which the node lies, but are furnished by other curves of the

system through that point. Hence the value of p for the nodal

locus will be such as not to satisfy the differential equation at the

point ; and the nodal locus will therefore not he a solution of the

differential equation.

Exactly similar considerations applied to the cuspidal locus

lead to a similar conclusion :

—

the cuspidal locus is not a solution of

the differential equation.

28. Now the envelope of the system can be derived from a

knowledge of the differential equation alone, i.e. without a know-

ledge of the primitive. At any point on the envelope at least

two of the branches of the different curves coincide in direction;

and therefore for such a point we shall have equal values of p
belonging to different but consecutive curves.

If now we express the condition that two values of p shall be

equal, by means of the equation

dp
"'

and eliminate p between this and the original differential equation

(in fact, equate the discriminant of </> to zero) then the locus

T)isct^(j)(x,:;/,p) = 0,

will be one at points along which two values of p will be equal,

and will obviously include the envelope.
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But besides including the envelope this equation will also give

the locus of all points

(i) at which two branches of the same curve touch, i.e. will

give all the cusps; this therefore as before is the cuspidal locus.

(ii) at which two curves which are different but not consecu-

tive touch; this locus is called a tac-locus. Thus, for instance, if we
have two infinite series of concentric circles one round each of two
points, the straight line joining the centres (and produced both
ways) is the locus of points of contact of two circles, one belong-

ing to each system.

As before the cuspidal locus is rejected, not being a solution

;

and reasoning exactly similar to that which led to the rejection of

the nodal locus indicates that the tac-locus is not a solution.

29. Hence of all these the only solution of the differential

equation is the envelope-locus; and this, and this alone, we call

the " Singular Solution " of the differential equation. Either

method of obtaining the envelope-locus may introduce some of

the other loci, which have just been shewn not to be solutions

;

and therefore in any particular case, unless the equation derived

obviously represents the envelope and nothing but the envelope,

it is necessary to try whether the result satisfies the differential

equation. Should it not do so, it may happen that the equation

can be resolved into others that are simpler; and one or more than

one of these may satisfy the equation ; these will then constitute

the Singular Solution. And those which do not satisfy the

differential equation will be found to be loci, which according to

the principles above explained ought to be rejected.

30. It is to be understood that an irreducible differential

equation has not necessarily a singular solution. Thus let the

discriminant with regard to p of

i> {«!, y.p) = o

be denoted by U, where f is a function of the variable coefScients

of p in this equation, and suppose that U cannot be resolved into

simple factors.

If the equation U= be a solution of the differential equation,

then the value of p is given by

dx dy ^ '

3—2
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and we must have the equation

identically satisfied for values of x and y connected by U=0. la

other words there must be a relation between the coefScients of

^ in <^ and their differential coefficients with regard to x and y;

but this will not in general be the case.

If we consider in particular the equation of the second degree

in the form

then the singular solution, when one exists, is S = 0, where 5'

is either LN — IT or a factor of this. In general LN— if" cannot

be resolved into factors ; and it is not itself a solution, unless

L f—V- 2M— ~ + F f—V=
\dxj dx dy \^yJ '

where LN = M^; and these in general would be two independent

simultaneous equations determining x and y as independent quan-

tities. Yet, from what we have seen, the primitive of the differ-

ential equation is of the form

L'e + 2M'c+N' = Q,

and if this be an algebraical equation, it will have a general

envelope contained in

which will be a singular solution. The explanation of the ap-

parent contradiction lies in the fact that this integral equation is

usually of a transcendental form, and so has not in general an

envelope ; and the exceptions in the first case—when the differ-

ential equation has a singular solution—are the exceptions in the

other—when the transcendental equation represents a system of

curves with a genuine envelope*.

We now proceed to consider some general examples of the

theory.

* Of. Cayley, Mess, of Math. Vol. vi. pp. 23—37. The theory of singular solu-

tions of differential equations of the first order, as at present accepted, was first

given by Cayley in the Mess, of Math. Vol. ii. (1872) pp. 6—12.
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Ex.\. p^y+p{x—y) — x=Q.

The condition thatp should have equal values is

{x-yf+ '^xy= Q,

i.e. {x+yf = 0,

or y=--r,

which is not a solution. Now the equation may be written

{p-l)(py+ x) = 0,

the solutions of which are

y — x=o and 2/^+ir^= c.

The different curves represented are obvious.

This is an example of the remark (§ 23) that, if the equation be reducible

to linear and rational factors, it has no singular solution.

In each case the corresponding figure should be drawn.

Ex. 2. phf'' cos^ a — 'ipxy sin^ a +y^ - :»^ sirf a= 0.

The condition thatp should have equal roots is

xhf'' sin* a = y^ cos^ a {y^ — x^ sin^ a),

that is {x^ sin^ a-y^ cos^ a) y'^= 0,

so that y = 0)

and y=+xtana.

The primitive is

x^+y^-2ax+ c^ cob'^ a= 0;

and the condition that o should have equal roots is

x^=(x^+y^) cos^a,

or y=+.a;tana.

The curves represented are a series of circles, the envelopes of which are

the two straight lines y=±x tan a, which constitute the singular solution.

The line 3/= is a tac-locus.

Ex. 3. ip'^x (x- a) (a; - 6)= {3a?2 _ 2.r (a+ 6)+ ahY.

The condition thatp should have equal roots is

x{x-a){x-h){Zx'^-2x{a+ h)+ abf= 0.

The primitive is

{y+ cf= x {x - a) {x -h);

and the condition that c shall have equal roots is

x{x-a)(x-h)=0.

The difierential equation is satisfied by x=0, x=a, x=h (and the cor-

responding infinite values of p) ; and these are singular solutions. The

remaining factor in thep discriminant gives

Zx=a+ h±{a?-oih+ h'^f,

and these lines are tac-loci.
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The curve y^=x (x-a) (x-b),

(0 < a < 6) consists of an oval cutting the axis of x at the origin and at a

distance a and of a curve Hke a parabola cutting the axis of ^ at a distance b

;

the tangents at all these points are parallel to the axis of y. The system

of curves is obtained by moving this curve parallel to the axis of y. The

straight lines ^=0, x=a, x=b are envelopes of the system; the hne

Zx=a+b-{a^-ab+ b'')^ m a tac-locus of real points of contact, the hne

Zx= a+ b-\-{a'^ -ab + b^f is a tac-locus of imaginary points of contact.

Ex. 4. In the foregoing make a= b ; and remove (see § 23) the factor

[x — a)2 ; the differential equation is

4xp'^= {Zx-af;

the condition that p should have equal roots is

x{Zx-af= 0.

The integral equation is

{2/+ cf=x{x— af,

and the condition that c should have equal roots is

x(x-af=0.

Common to these we have x=0, which (with the corresponding infinite

value of p) is a solution of the equation, and therefore a singular solution.

Every curve of the system has a double point; the locus of these is x=a,

which is a nodal locus ; the line x=Zaisa, tac-loous.

Ex. 5. In the foregoing let a= and remove the factor x ; the differential

equation is

4p2^9^

;

the condition that p should have equal values is

x=0.

The primitive is

and the condition that c should have equal values is

The differential equation is not satisfied by a;=0 (with the corresponding

infinite value of^).

The curve y^= afi m the semi-cubical parabola having a cusp at the origin;

and the system is obtained by moving the curve parallel to the axis of y, so

that a;=0 is the locus of cusps, and therefore is not a singular solution.

Ex.Q. p^~4m/p + 8z/^= 0;

the condition that^ shall have equal values is

The primitive is

y = c(x-cy,
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and the condition that c shall have equal values is obtained by eliminating c

between this and

so that either

agreeing with the former. Both of these satisfy the differential equation ; but

the first of them is a particular integral (corresponding to o=0) and we there-

fore consider the latter alone as the singular solution.

Kv. 7. Obtain the primitives and the singular solutions (where these

exist) of the following equations ; and specify the nature of the loci which

are not solutions but which are obtained with the singular solution.

(a) xp^ — 22/P+ 430= ;

Primitive x''= c(j/ — c)
;

Singular solutions y=±2x.

O) {x^ — a'^)p'^ — 2m/p — x^= 0;

Primitive c^+ 2cy+ a^=afl

;

Singular solution x^+y^= a^

;

Tac-locus x=0.

(r) p'+ 2xp=y,
Primitive (2x^+ Sxy+ of=4:{x^+i/f;

No singular solution
;

Cusp-locus x'^ + i/= 0.

(§) xi/p^+ (x^-y^-b^)p-xy= ;

(e) (l-f)p'=l;

(f) pm-x') = l-f;

(,)
(ax - lyf (62 -H a?pV)= o^{b+ apf.

Further examples occur in the paper by Cayley, Mess, of Math. Vol. vi. {I.e.),

and in one by J. W. L. Glaisher, Mess, of Math. Vol. xii. (1882) pp. 1—14.

MISCELLANEOUS EXAMPLES.

1 . Solve the equations :

(i) y-xp=x+yp; (ii) a{xp+ 2y)= xyp

;

(iii) x^+y=p^; (iv) xyp{\-^xy'^) = \;

(v) my-nxp=yp'^; (vi) p^=y^{y+«!p);

(vii) f+x^= axp; (viii) ^3pH.»V+ «'= ;

(ix) ax'^y^p+y='2.xp; (x) p'^+2yp<M\,x=y'^

;

(xi) y-2xp=f{xp'^)\ (xii) x^ -'^=f(l/^-xyp)

;
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(xiii) (l-^2)2-e-2!/=^2e-2«. (xiv) {iix+ypf= 0-+p'^)(jj^+na^);

(xv) (l + 62/2-3a'2y)fJ= 3OT/2-a;2; (xvi) (l-p')xy=p{ic^-y^-c^;

(xvii) ay+ hxp=xf^^{cy+exp);

(xviii) yp {x^ +y^+ a^) + x {x^+y^ - o^)= o ;

(six) {xp-yf=p'^-'2.y-p+l; (xx) («^-2/)2= a(l+y'')(^2+/)i;

(xxi) (a2+x^fp+y= {a'+xif-x;

(xxii) y =ya;+ (1 +^^)* <^ {x^ +y'^) ;

(xxiii) (iKCOs ^+ysm^W = fysm^-^cos-j^^;

(xxiv) {ofiy^-\-xhj'^+xy+ l)y+ {x^y^-x'^y'^-xy-'r\)xp= Q;

(xxv) {(^7^ -y'^) sin a+ 2ot/ cos a -?/ (^^ +y^)*} i?

= Zxy sma-(x^-y'')cosa+ x{x^+y^f,

2. Shew that, if

u=l+A^x+Y^A^'^ + -^As3?+ ...

where the quantities A are conuected by the relation

A^=mA^-i - J (to - 1) (to - 2) J^_3,

then log{M(l-a;)*}=J.3;+Ja;2

3. Integrate the equation

cos 6 (cos 6 - sin a sin </>) (f^+ cos ^ (cos <p — sin a sin 6) (^0= 0.

Shew that if the arbitrary constant be determined by the condition that

the equation must be satisfied by the values (0, a) of {6, ^), the equation

is satisfied by putting 5+0= a.

4. Prove that if the differential equation

cydx — (^+ a+ hx) dy - nx {xdy —ydx)=0

be transformed into an equation between u and x by the substitution

u(y+a+bx+nx^)=y(o + nx),

then the variables are separated, and reduce the equation to the form

dv _ dx

(j}iv)~(t> (x)

by the further substitution v=au+^,a and /3 being suitably determined.

5. Reduce the equation

axyp^ + (x^-ay^-b)p-xy=
to Clairaut's form, and hence solve the equation.

Solve the equation

''d-x+^i-'yd^=^'
where a + /3+y= 0.
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6. Shew that, if
?/i

and y^ be solutions of the equation

where P and Q are functions of ^ alone, and yi==y^z, then

z= l + ae ^'
,

where a is an arbitrary constant.

v. Prove that the variables in the equation

{^{x+y) + a^}f^=y{x+y) + b^

may be separated by the substitution x^w+v and y = ku-v, provided l- be
properly chosen ; and integrate the equation.

8. Shew that the equations

y — a;p= a(2/^+p) andy-xp= b{l+a;'^p)

are derivable from a common primitive, and determine it.

Axe the pair

x+p (1 +p^-yi=a and y- (1 +p^)-i= b

so derivable ? Also the pair

yp= ax and y^ {I -p^) = b1

9. Integrate the differential equation

X {ay^+ (ay+bxf}+y^ {bx^ + (ay+ bxf}= 0.

A tangent to a curve at any point P cuts the tangent and the normal at a

fixed point in the points M and iV and the rectangle OMP'N is completed.

Find the curve which is such that the triangle formed by the tangents at any

three points P, Q, R is equal to the triangle formed by the corresponding

points P', §', K.

10. Determine the system of curves which satisfies the differential equa-

tion

dx {(1 \-x^f-\-ny}-\-dy {(1 +/)^+ n«}= 0,

and shew that the curve which passes through the point x=Q and y='n, con-

tains as part of itself the conic

^.2 +2/2+ 2^2/ ( 1 + fiFf= n\

11. Integrate the equation

x^ y"^ _a — h x—yp
a 6

~ a+b x+yp^

and examine the nature of the solution

a b
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12. Discuss the question whether y= Q is a particular integral or a

singular solution of the equation

(-!")•= dx'

13. Obtain the primitive and the singular solution (if there be one) of

the equation

p3+ fjp2= a (y+ /u;)

.

Also of ayp^ - 4a;p +y= ;

and of xp''-2yp + x:+ 2y= 0.

14. Find and interpret the primitive and the singular solution of each

of the equations

^2=(4y+ l)(^-2/);

(ax — hyf (ffi+ a^p'^)= c^(b + ap)^.

15. Obtain the primitive of the differential equation

and shew that exactly the same equation is obtained by expressing the condi-

tion that^ should have equal roots in the differential equation as by express-

ing the condition that c (the arbitrary constant) should have equal roots in

the primitive ; and determine the geometrical meaning of this equation.

Is it a singular solution ?

16. The primitive of the differential equation

(2^2+ 1)^2+ (^2+ 2ot/ +/-I- 2)^-1- 2y2 -1-1 =

\ae^+ c{x+y) + \~xy=Q. Verify this and obtain the singular solution both

from the equation inp and from the equation in c, explaining the geometrical

signification of the iiTelevant factors that present themselves.

17. Shew that the solution of the equation

a^yp? — 4xp+y=

is c2+ 2cx (3asy - 8^2) _ 3^2„^4^ „y= 0.

Is 2x= +ay a, singular solution ?

Trace the curve and the locus given by the equation independent of an
arbitrary constant. (Woolsey Johnson.)

18. Shew that the differential equation

Zp^+ 2Mp +JV=0
which has no singular solution does not admit of a primitive representing a

system of algebraic curves. (Oayley.)



CHAPTEE III.

The General Linear Differential Equation with

Constant Coefficients.

Preliminary Formulce.

31. Before proceeding to the discussion of the linear equation

of the w"" order with constant coefficients it is convenient to formu-

late and prove certain theorems in differentiation and integration,

which will be required in that discussion.

d J"
Let D stand for -^ ; Z)^ for ^-j ; and so on. Then this symbol

D obviously is subject to the fundamental laws of algebra ; for

evidently

D' .D" u = D" .D' u = B""*' u;

D(u + v)=Du + Dv.

It is necessary to deal with negative indices ; thus if we have

and, after the algebraical analogy, we write

we have v = Du = D . D~^ v,

so that Z».Z)-' = 1.

Thus i>"' represents such an operation on any quantity that, if

the operation represented by D be subsequently performed, the

quantity is left unaltered. It at once follows that these symbols

with negative indices also follow the laws of algebra; and an

operation with a negative index is equivalent to an integration.
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But it is important to point out that the special object of these

inverse operations is to find an integral but not the complete

integral; and the arbitrary constant which arises in integration is

therefore omitted.

In what follows i/r denotes a functional symbol ; and -yfr (x)

everywhere denotes an algebraical rational function of x which can

be expanded in ascending or descending integral powers (or both)

of the variable.

32. Theorem I.

f (D) e"' = -f (a) e"'.

For since -D stands for -j-
dx

When each side is operated on with D~', the equation becomes

X)-' . D e"" = a B-^ e"'

;

or transposing the sides of the equation and dividing by a we have

Repeating these operations we obtain the equations

Z)" e°^ = a" e"",

Now as -v/r is an algebraical function which can be expanded in

powers we may write

= [4„ + J,a + ... +^X + ... +5,a-' + B^a-' + ...] e"^

33. Theorem II. IfX denote any function whatever of x, then

^ (D) {e"" X] = e"'' yJr{D + a) X.

A single operation with Z> gives

from which, if both sides be multiplied by e""'',

{e-'"=I)e'^)X = {I> + a)X
so that the effect of operating on X with e'"" De"' is to give B + a
operating on X. Let the operation be repeated ; then

(e-" i)e™) (e-« De-) X = {D + a) {D + a) X
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or (e-'"Z)'O^ = (-0+a)"X.

Operate again with e""^ Be'" : then

(e-°^ De'") (e-'" B' e"-') X={D+a){D+ af X
or (e-°"i)'OZ=(Z? + a)'Z,

and so on. If the operation be performed n times, the resulting

equation will be

e-'^D''{e'"'X\ = {D+ayX
which multipHed by e""" gives

D''{e'"'X] = e'"'{D + ayX
in which w denotes a positive integer.

Consider now the case of negative indices ; write

{D^afX^X,
so that Z=(i) + a)-"Z,.

Then the result just obtained may be written

Operate on each side with Z)~" and the result is

e"" (D + a)-" Xj = D-" e"^ X^.

Now no limitations were assigned to the form of X and there

are therefore none on that of X^, which can thus represent any

function of x ; replacing it therefore by X we have

D-" {e"" X] = e" {D + a) "" X.

Let yfr (D) be expanded in integral powers positive and negative

(if necessary) of I) ; and let e"" X be operated on by these integral

powers in succession, the equivalent values derived from the fore-

going equations being substituted and the terms collected as

before ; then the result is

f (D) {e"" X] = e""f{D + a) X.

Corollary. If we write

e«X=F
so that F is a function of oc, then

f (D) Y= e'^fiD + a) {Ye-"},

a theorem which is useful. For example, let it be required to find

a particular value of y to satisfy the equation
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With the notation adopted this -will be

1
= e D + k + a

or choosing a so that a + k = Q, this is

Ve-

y = ' JD

-kx ±_ Yp"'

= e-'^jVe"dx.

34 Theorem III. If yjr (x") be an even function of x then

i/r (D^) sin {ax + a) = i/r ( — a^) sin (ax + a).

For D'' sin (ax +a.) — ( — a/') sin (ax + a),

and the theorem follows as before.

Corollary. If T|r («) be not an even function of x it can be

expressed in the form

where ^ and
p^;

are even functions of a; ; in this case

^ (D) sin {ax + «) = {0 (D") + D^ (D')} sin (a« + a)

= 4> {— a') sin (a* + a) + a;y; (— a') cos («« + a).

If the function to be operated upon be the cosine instead of the

sine, the corresponding changes are obvious.

35. Theorem IV. This is really an extension of Leibnitz's

theorem for the successive differentiation of the product of two

quantities whose differential coefficients are known.

If "^ (x) as before denote any algebraical rational function ex-

pansible in integral powers of x, and ^' (x), ^" (x), yjr'" (x), ...

denote its first, second, third, ... differential coefficients with

regard to x, then the extended theorem is

l|r (jD) uv

= uir(D)v + nu.{r' {I))V+^ yjr" (D)v + ~ylr'" {D)v+ ...

The proof depends on Leibnitz's theorem and is similar to that
of the preceding propositions.
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The advantage of this theorem arises in cases where one of the

two quantities u and t) is a power of x, or is the sum of powers of x.

If, for instance, u =«"', the series on the right-hand side need only

be written as far as the m'* term ; and such inverse operations as

are to be carried out will be performed on a single quantity v.

Ex. Shew that, if

{D+kfy=x^V,

where 7 is a function of x only, y is given by

^-kx LaU^ Ydx'^ -4^1 1
1 e"'^ Vdx^ + 6

j j j
je"^ VdxA .

36. Another important operator which sometimes occurs is

X -r- or, with the previous notation, xD ; and similar theorems

concerning this can be enunciated.

Let F{z) denote a rational algebraical function of z expansi-

ble in powers of z; then in F (xD) we shall have terms of the form

d" d d
(xD)" which means, not x" ^7-5 , but x-r .x-j-... operating n times.

The relation between these will shortly be proved.

Theorem I. F {xD) x'^ = F (m) a;™.

For {xD) x^ = ma;™

{xD)" a;" = (xD) mxr = mV,

and so for all integral powers positive and negative. Hence the

theorem.

Ex. Prove that if U be a function of x of the form

A+Bx+Ox^+I)x>+ ...

then

1 ,. A . B _ O _^,, I) ,_
£'= TTT^TC+ 1S7TT •»+ rf/ns » + -ctT^n ^^+Fi^)''- F{Qy F{ir^F{2)- ^ F{3y

Theorem II. F (xD) x'" V=x'"F(xD + m) V.

We have xD (a;"" V) = x'^ [xD + m) V,

or (a;-" . xB . a;™) F= {xD + m) V,

so that the operators x^.xD . a;" and xD + m are equivalent. The

course of proof lies on lines exactly similar to those for the corre-

sponding theorem with F{D) ; and the result is in the enunciated

form.
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.37. The relation between the operator i)" and xD is given by

the formula

x''D'' = xD{xD-l){xD-2) ...{xD-n + 1).

The theorem can be established directly; for if m the subject of

operation be expanded in a series of terms of the form A^p'^, the

result of operating on this with D" and multiplying by a;" is zero

if m < n, and is

m(m-l)(OT-2)...(m-w + l)4^a;'",

if m > n ; but this is also the result of operating with the right-

hand side. Hence the operators are equivalent for each term of u

and so for the sum of all the terms of u, i.e. for u itself

The theorem can also be established by induction; for suppose

a;"I)''u = xD{xD-l){xD-2) ... {xD-n + l)u,

and write u = (ccD —n)v,

then D^u = «Z>"" v,

and so w""-' IT^' v = xD {xD -l){xD-2) ... (xD - n) v.

Now u is any general function; hence v is also a general

function. The theorem, if true for n, is thus true for W+ 1 ; it is

obviously true for the values 1 and 2 and so is true generally.

Some Properties of the General Linear Differential Equation.

38. The general type of linear differential equation of the n""

order is

dx''^^' dx''-' + ^^'
dx''-' ^^^-'dx^^-y ^'

in which X,, X^, ..., X„, Fare functions of a; (or constants) but

do not contain y; for the sake of shortness let it be written

^{D)y=V.

If this equation be integrated step by step so tbat each

integration reduces the order of the equation by unity, every

time such a reduction is effected an arbitrary constant enters,

and therefore, when ultimately the integral equation is ob-

tained, n arbitrary constants in all will have entered; or we
shall expect the primitive of a given linear differential equation



38.] GENERAL PROPERTIES. 49

to contain a number of arbitrary constants equal to the order of

the equation.

There are certain properties appertaining to all linear equa-

tions in common which simplify to some extent their integration;

the most important of these are the following.

39. I. Let 7] be any particular value of y, which satisfies

the equation; and let

y = v+Y-

Then substituting this value of y in the equation we have

But since rj is some solution of

^{D)y=V,
this equation now becomes

<E>(Z)) F= 0,

so that to solve our original equation we must solve generally this

equation, which is the same as the original equation except that

the right-hand side is now zero. When the primitive of this

equation, which will contain n arbitrary constants, as the equation

is of the w*^ order, has been obtained, it must be added to j? and

the result equated to y will be the primitive of the given equation.

This then consists of two parts :

First, the quantity v, which is called the Particular Integral

and is any solution whatever (the simpler the better) of the origi-

nal equation

;

Second, the quantity Y, which is called the Complementary

Function ; this is the primitive of the equation, when the right-

hand side is made zero.

The sum of these two parts is the primitive of the equation.

If in any particular case the right-hand side should already be

zero, the former of these parts will not occur.

The various methods available for the deduction of the

Particular Integral occur later in § 46 ; the remaining properties

are useful in the investigation of the Complementary Function,

40. II. If F= Fj be a solution of the equation

F. 4
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then Y= C^F, is also a solution, where (7, is a constant; and if

Y , Yj, , Y^he particular solutions, then
"
7=0,7.+ c,r, + + C„7„

is also a solution, where (7,, C^, , C„ are constants.

For * (D) Y^^{D) <7. 7. + <1) (D) 0^+
and each term on the right-hand side is zero. No restriction

whatever has been laid on the values of the constants G, and these

therefore are completely arbitrary ; the above value of 7 is thus

the primitive of the equation

*(2)) 7=0,

and so is the complementary function in the integral of the

equation

Hence the determination of the complementary function is

reduced to that of particular integrals of the subsidiary equation.

41. III. If a single particular integral of the subsidiary

equation be known, the order of the given differential equation

can be lowered by unity.

Let 7, be a solution of

* (Z>) 7= 0,

and let the substitution of the value Y^s be made in the equation

^{D)y=V;

then, by | 35, the left-hand side becomes

in which the operations ^, ••• are derived from <I> by temporarily

considering Z> as a magnitude and obtaining the partial dif-

ferential coefficients with regard to D.

a"*
But g^„ =«!,
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and so on; so that re-writing our equation we obtain

But by hypothesis

so that the last term on the left-hand side is removed; the quantity

F, is supposed known and therefore all the functions of it on the

left-hand side may be considered known. Let Z be written for

Dz; then the equation becomes

F, ir-'Z+{X, F. -1- nDYJD''-'Z+ ... + Z^^ F, = V,

an equation of order n—1.

Ex. As a corollary prove that, if m particular integrals of the subsidiary

equation be known, the order of the original differential equation can be

reduced by m.

42. IV. The given equation may be transformed into an

equation, from which the second term (i.e. the term involving the

differential coefficient of order one less than the order of the

equation) shall be absent.

The substitution of Y^z for y gives for the coefficient of Z)""'a

XJ^ + nDY^,

(and up to this point in the last section the assumed value of F^

was not used, so that the equation there was perfectly general)

;

since the term in D""'^ is to be absent we have

XJ, + nDY, = 0,

and therefore

or

\o^Y, = -\^X^d..,

Y, = e

no arbitrary constant being inserted as the differential equation

remains linear and of the w"" order. If this value of F^ be substi-

tuted, the differential equation in z is freed from the term in Z)""'^.

Of these properties I. and II. will be immediately useful.

4—2
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General Linear Equation with Constant Coefficients.

43. If in the general linear ^equation the coefficients oiy and

its differential coefficients be constants, it may be written

or say f{B)y=V,

in which /(D) is a rational algebraical integral function of I) alone,

and V is any function of x. It has already been proved that the

solution of the equation consists of two parts which can be obtained

separately; these will be taken in turn.

44. To find the Complementary Function.

The complementary function is the primitive of

/(-D)2/ = 0.

Now it has been proved that

/(i)) «-=/(«) e-

so that y = (r will be a particular solution of the equation, if a be

such as to make
/(a) = 0.

But f{z) is a rational, algebraical and integral function of

degree n and therefore there are n roots of the equation

Let these n roots be a, /3, . .
.

, X ; then e'^, e^% . . . , e^ are n

particular integrals of the equation

f{D)y = ^>

and the primitive is therefore

in which A, B, ..., L are n arbitrary constants. This then is the

complementary function of the original equation; and if the roots

be all real and different from one another, it is complete.

If however two roots he equal to one another, say a. and /3, then

this value of y becomes

y= {A + B)e'^+ Cet'' + ...+Le^^,

= J^e'"'+ Gey'' + ...+ Ze''^



44.J WITH CONSTANT COEFFICIENTS. 63

A^ being a single arbitrary constant (equal to the sum of two

arbitrary constants). There are now only n — 1 arbitrary constants

in y, and this is therefore not the primitive. In order to obtain the

primitive we may suppose that the roots are not equal but differ

by some quantity h which will ultimately be made zero; the part

depending on the roots a and /8 will then be

= e''4A + B(l + hx + ^^+..}j\

'[(A + B) + Bhx +Bh^^x' + ,

As the quantities A and B are arbitrary, we may assume them

infinite in such a way that, as h approaches zero, Bh is finite

and equal to B^, while A and B are of opposite sign and their

numerical difference (or algebraical sum) is finite and equal to A^;

thus the sum of the two terms Ae"^ + Be^^ becomes

e'-^A^ + B,(w + ^a>'' + l-^w' + ..}j^
= {A^ + B,x)e'^

ultimately when h is made zero.

Similarly if r roots he equal the corresponding r terms in the

complementary function will apparently coalesce into a single

term ; but it is easy to shew, by reasoning similar to that adopted

for the case of two equal roots, that the r terms will be replaced

by

e"^ [A^ + A^x + A^x^+...+ A/' '],

a denoting the common value of the r equal roots ; and the com-

plementary function will then be

y = e-^ [-4j + J,a; + ... +^X''] + +ie'^-

If now the roots be not all real, those which are imaginary

must occur in pairs ; let such a pair be 6 ±<f)i *. The corre-

sponding terms of the complementary function will be

which it is sometimes necessary to express in a form free from

• Throughout the book V^ will be replaced by i
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imaginary quantities. If cosine and sine values be substituted

for the exponentials, this expression will become

e»^ [(A' + B) cos (px + i{A'- B') sin ^x}.

Since A' and E are arbitrary constants, we may write

A'-^B' = F,

i (^' _ B') = G,

and F and G will be arbitrary ; and the corresponding terms in

the complementary function therefore become

gSj; (^cos (f)X + G sin (f>x).

Lastly, if an imaginary root be repeated the conjugate

imaginary root will also be repeated and the corresponding

terms in y will be

gxie+^i) (^' + ^"a;) + e'^ce-**) (5' + B"x).

Using the same method as before and writing

A' + B'=F, A" + B"=F,
i {A' - B') = G, i {A" - B") = G',

we obtain as the corresponding part of the complementary function

gfe {(i^ + F'x) cos </)« + (G' + G'x) sin ^x}.

Eesults analogous to those in the case of multiple repetition

of real roots are obtained in the case of multiple repetition of

imaginary roots.

45. In some cases of the general linear equation, when the

coefficients are not constants but are some functions of x, a method

somewhat similar to this will apply. Thus, it might happen that,

when for y in the equation

(i)» + Z,Z)»-+ ... + X„_,D + XJ y =

there be substituted -v/r (m, x), where i^ is a function of definite

form, the resulting equation had a factor independent of X such

as ^ im) ;
if this were so the factor would usually be of the degree

n, and so equated to zero would satisfy the differential equation

and would furnish n values of in which may be denoted by m,,

m^, ..., m,,; the primitive would then be

2/ = ^ .•f ("'i, «;)+A^^|r (m,, «) + ...+ A^-^ (ot„, x).
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If two roots were equal, as m, and m^, then writing m.^ = wi, + A

we have for the corresponding part of y

3t/c (m,, x) h d^i{r (mj, x]

dm,
"^

2l dmJ^(A^ + A^) f (m^, x) + hA

or A''^ (mj, £c) 4- B' ^^ -«|r (m^, a;),

1

on changing the constants and making h ultimately zero as before.

A similar process holds for the case of a multiple repetition of

a root m^ ; and in the case of imaginary roots the corresponding

parts of y should usually have the constants changed in the

modified expression, so as to leave the latter free from imaginary

symbols.

This process was adopted in the case of constant coefiicients,

the special form of y^ used being e™*; when the equation is

homogeneous (§ 55), that is, when it takes the form

dTy
, „_, d" \i A dy .

in which the quantities A are constants, the proper form of

^ (see § 36) to be substituted is a;'". Occasionally by a suitable

change of variable a given equation can be reduced to the above

shape.

E..I. Solve g+3|+2y=0.

When we substitute y=e"", the equation for m is

(m+ l)(OT+ 2)= 0,

so that y= Ae-'+ Be-^.

Ex. 2. Solve
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The equation for m is (m - 1)^=0,

and therefore i/= e'(A + Bx).

Ex.4:. Solve ^ +2»i2^+n^= 0.

The equation for m is

and the value of y is

{A + Bx) cos nx+ (C-f 7>.r) sin nx.

Ex.b. Solve ^2^+^^-«=0.
«;»' ax "

When we substitute x'^ for y, the equation for m is

m(OT-l)+m — 1 = 0,

so that m=+l or — 1 and the value of y is therefore

Ax-{—

.

a;

Ex.6. Solve a;3^ 3a;2^ +7^^-8y=0.
ax' ax' ax ^

With the same substitution as in Ex. 5, the equation for m is

w(m-l)(w-2)-3OT(m-l) + VOT-8 = 0,

or TO3-6m2+12TO-8= 0,

giving m= 2 thrice. Hence the value of y is

9 82

dm cm'

m being put equal to 2 after differentiation ; and thus the integral is

x''{A +B\ogx+C (log xf).

Ex. 7. Solve (a+ 6.r)2'^^.^A{a-\-bx)^+By= 0.

Let a+ 6a;=2 ; the equation will then be similar in form to the last two.

Ex. 8. Solve

(i) (i)4+ 5i)2+6)y= 0;

(ii) {D^+ a*)y= Q;

(iii) {D^-a^)y= Q;

rfic^ dx

cPy
(vi) (l+.)32+(i+,.).^+3(I+.)^-8y = 0.
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46. Returning now to the linear equation, in which the

coefficients of the differentials of y are constants, it is necessary to

find a Particular Integral of the equation

f{D)y = v,

in which F" is a function of x. Solving by the method of sym-

bolical operators, we have

and the evaluation of the right-hand side will furnish a satisfactory

value of y.

In some particular cases the form of F renders evaluation easy

;

we wiU proceed to mention some of these which occur most fre-

quently.

I. Let F" be a rational, algebraical, integral function of x;

suppose the highest power of a; in F to be the n*. To find the

particular integral, :F7jy. must be expanded in ascending powers of

D ; and as D""^' and operators of a higher order would reduce to

zero all the terms of F, all terms in this expansion beyond i)"

may be omitted. Further, if the lowest power of D in f{D)
be ly then the expansion will begin with i)~* and it does not

need to be carried on beyond D", i.e. i?-*+(*+"> ; hence in f{D) all

terms of order higher than D"^" may in this case at once be

omitted before expansion.

Ex. 1. Solve {D'^-4:D+A)y^x\

1
2

=i['+»-l+41

4+2+ 8.

and the complementary function is e^{A+Bx) ; hence the primitive is

2/= e^ {A+Bx)+i (2x^+ 4x+3).

Ex.2. Solve (D*-a'^)i/=x^.

The primitive is evidently

y= --^+Ae'"+ Be-"" + C cos {ax+ a).
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Ex.Z. Solve (i)4- 22)3 + 2)2) ^ = ^3.

1
3

^"i)2(l_2))2^

=
-^2 ( 1 + 2i) + 3i)2+ 4i)3+ 52)*+ 6i)5) a;',

terms up to the fifth being retained (§ 46). Now 1 +2^+ ... and -^ may

be considered separate operators ; operating with the former first and remem-

bering that only a particular value is wanted so that constants need not be

inserted with -jr^ , the value for y is

g + J+3^+ 12.2.

Now if -jr^ had operated first (or if the second operator had been taken dis-

tributively, each term with -jj^ , so as to be

;^2 + 1 + 3+ 4-0 + 52)2+ 62)3),

then the value for y would have become

^ + ^V3^ + 12^2+ 30.j;+36.

The primitive is

and the apparently additional part of the particular integral obtained,

when the operators are taken in the second method, is seen to be included

in the complementary function, since C and 2) are arbitrary constants.

It ia easy to see that in general not merely the terms of an order higher

than 2)""''* may be at once removed from f{D), but in the expansion

itself all terms of an order higher than 2)" may be neglected whether the sub-

sequent operator 2)"*^ be of an order greater or less than n. In particular,

if ^ be a constant, only the lowest power need be retained.

Ex. 4. Solve

(i) (2)*+ 22)3+ 32)^+ 22)+l)y = l+a;+ :i;2;

(ii) (2)3+2)2-i)+15)y= :j;2.

II. This method may be applied to evaluate y, when V is an

exponential, and to simplify the process and so render the evalua-

tion more proximate, when V contains an exponential factor. In

this case we may write

V=e'"X,
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and then
1 1V = ^rv^ e"" X

' f{D) f{D)

If Z be a constant, the vakie of y is now at once obtainable by the

preceding method. The quantity a may or may not be a root of

f(z) = 0. Suppose it to be a root r times repeated, so that for a

single root r = 1. If a be not a root, r = 0. Then expanding

f{D + a) we have

/(Z) + a) = ^;r'(a)+^^,/'-'(a) + ...,

in which/W (a) means the fj}^ differential coefficient oi f{z) with

respect to z, when a is substituted for z ; then for y we have (by

attending to the remark at the end of Ex. 3 on the last page)

r !

= C-

In particular, if r = 0, then

Ex. 1. Solve (Z)2+ i)+ l)y= e2^

Here 2 is not a root of 2^+2+ 1=0, and therefore

^-£2+ 2+ 1^* '

and the primitive is

-ixf A ^^ , T> • SM
, 1 a.

Ex. 2. Solve (2)2-4i)+ 3)y= 2e3-.

1

and the primitive is

e^-^2=x^';

i/= Ae''+ Be^ + xe'".
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J'.r. 3. Solve (i) (Z)-a)"3^= e«';

(ii) {3-^-&D+ S)y= e'+e^.

Ex. 4. The roots of the equation f(z)= are n in number, being

«!, Oj, ... , a„; obtain the particular integral of the equation

Discuss the case when two of the roots (ctj and ag) are equal.

If X be a rational algebraical integral function of x and so

expansible in powers of x, then the quantity

1

must be evaluated as before in I.

X

Ex. 1. Solve (2)2_22)+l)y=^2e3».

1
Here y=

{D-\f
,. 1

and the primitive is

Ex.'i. Solve {D-'2,fy=x'^e^.

Here

and the primitive is

i)3 ~OT*^'' >

^x3. Solve (i) (i)2+i)+ l)2y=^e»;.

(ii) {D^-lfy=x*^.

III. Suppose that V contains a sine or a cosine as a factor, so

that

F= X cos (ma; + a),

in which n and a are constants. Then we have to evaluate

y = Yuj) ^ ^^^ ("* + ")•
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Let 2/j =yTpT ^ sin {nx + a),

then 2, + i3^^=^^Xe^(-+«)

i {nx+a) JL y

It now remains to evaluate

1
X,

whicli may come under one or other of the given rules; if its

value be M + iv, then equating real and imaginary parts we have

y = u cos {nx -\-a)—v sin (nx + a).

In the case when X is a constant and cos nx is not part of the

complementary function, so that in is not a root of / {z) = 0, the

evaluation is immediate ; for then

^ X = JU a/{U + in) /(in)

If however cosn^ should be a part of the complementary

function, so that in is a root r — 1 times repeated, then since

we have

/ (D + in) =^> (in) + (^T)]/" (^'^^ +

1 „ Cx^
: =

/{B + in) f(in)'

then we separate and equate the real and imaginary parts as

before.

Ex.1. Solve ^+71^ =30 cos ax.
ax' ^

Then y= ^^5 , x cos ax

=real part of e"^ 777-—^r^-

—

-„ x

. 1 /, 2ai _N
= e"^—^ 2 1—2 2-^ H-'n^ — a^\ n' — a'' J

X cos a^ 2a sin ax
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Ex. 2. Solve ^,^+y = coax.

Then y =

B'+ \

-- real part of e" .

^^_^_^y^^

1

X

^\i

^gSinx;

and the primitive is

y= A cosa;+ -Bsin.j;+ ^irsin^.

Ex. 3. Solve (^ (-D) y = cos nx,

cos nx not being a part of the complementary function.

Let ^(Z))= 0i(i}2)+i),^^(Z)2);

then

1

0i( — m^)cos?i^+m02(~'*^) sinner

If however cos ?m; be a part of the complementary function, then the

denominator will vanish and apparently render the particular integral infinite.

But it is merely a part of the complementary function, multiplied by an in-

finite constant, which may be absorbed into the arbitrary constant ; to

evaluate the particular integral it would be sufficient to evaluate

assigning the infinite part (when h is made zero) to the complementary func-

tion and retaining the finite part as the particular integral. It is however
better in such cases to use the former method ; in fact, this method is prefer-

able only in the case of examples like that just treated.

Ex. 4. Solve

(i)

dx^'^^""^^^
'^'^ ^'^°*'' ^^®° " ^^' ^^^ ""^^^ i* ^^ "°*j unity)

;
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... dSi ^dhj
^'^' &;**'^ "^^ "" ''°^ "^ (when a is, and when it is not, unity)

;

^^^ ^+ 4y=^sin2x;

(vi) {Ifi+ OT2)'- y= {\-x)'^ cos wa;

;

(vii) (i)2_2Z)+ 4)2y=a;e^cos(3*a;+a)
;

(x) ^^+ MV= sin A^+ p"""+ ^-^

;

(xi) {Z)*+ (m2 + ?i2)i>^+m%2}y= cosJ(m+ n).j;cos|(TO->i)a;;

(xii) -T-g+y= sin I a: sm f :r.

IV. If F contain a power of a; as a factor, so that we may
write

then for the determination of the particular integral we may use

the extended form (§ 35) of Leibnitz's theorem.

Thus

where the series must be carried to the (m + l)"" term ; each of

these terms still leaves a quantity to be evaluated which may
be done by the methods of one of the preceding divisions ; if it

does not, it may be obtained by the next method, which is of

universal application. The success of this general method depends

solely on the solution of an equation, the solution of which is

requisite to obtain the complementary function, and on the in-

tegration of resulting expressions.
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V. Suppose that all the factors, which occur in V and can be

dealt with by one or other of the foregoing methods, have been

taken outside the operator and that the quantity remaining comes

under none of these heads, so that we have to evaluate ex-

pressions of the form

Let -r-Tyrr be expressed in partial fractions, each having for its

denominator a linear factor of '^{D), the constant quantities

occurring not being necessarily real ; then the fractions will be of

the form

(Z> - a)"

'

where n is an integer, A^ and a constants, and a a root of

•yjr (z) = 0. Hence

\lr{D) {JD- a)"

A

=^W/ Udx".

If imaginary quantities enter into any expression the conjugate

imaginary quantities will enter into another; such a pair of ex-

pressions must in general be combined so as to leave no imaginary

quantity in the explicit expression of the particular integral.

Ex.\. (i>2_5D+6)y=logx

1 1 1We have
Z>2-5Z>+ 6 D-Z />-2"

Hence the particular integral is

and the complementary function ia

Ae^^+BeK

Ex. 2. Let the right-hand side in the preceding example be xlogx in-

stead of log^
; then we may either integrate by parts or use the extension of

Leibnitz's theorem. The latter gives
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=a;e*' I e-^_ log x dx -e^j
j
e-^ log xdx^ - xe^ I e-'-' log xdx+ e^j je-^' logxdxl

Ex. 3. Solve

where U is a function of x. We have

1

^_

2in

^"7)2 . »,2

"

Lf.J_cr L_a
;im |^i)-m D+in

J

or, changing the variable under the sign of the integral,

in which U( is the same function of | as U is of x.

There is another method of integrating this equation which proceeds on

different lines. Multiply throughout by sin nx : then

d_f^

and therefore

^i^ sin nx~ni/ cos nx\ = V sin nx,

dv f^
-^sinnx — ni/ cos nx= -An+ j U.smn^d^.

Similarly, multiplying by cos nx and writing the equation in the corre-

sponding form, we find an integral

dy r*
-j^ cos m;r+ my sin w.r= Bn+1 U^cosn^ d^.

Eliminating -^ between these, we obtain

1 r*i/=Acoanx+Bsmnx-\-- Utsmn{x-^)d^,

agreeing with the former result.

Ex. 4. Solve (i) ^2+n'y=x^coaax,

when n^a and when n=a;

F. 5
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(ii) S-^y=^^>
where U is any function of x

;

(iii)
S-2y=4^^^^-

Ex. 5. 3y means of (iii) in £x. 4 prove that

47. Owing to the close similarity between the linear equation

with constant coefficients and the homogeneous linear equation,

the latter may be dealt with here ; it may be written in the form

where F is a function of x alone and may be a constant G. In the

latter case the particular integral is at once obtainable; it is

evidently

If the operator a; t- be denoted by ^, then (§ 37)

^"£= = ^(^-1) (^-m + l);

and the differential equation may be written

Consider the two parts of the primitive separately ; the com-

plementary function is the primitive of

Now we have already seen that

F(%)ai^ = F{p)xP.

Hence, if^ be so chosen that

F(p) = 0,

then x^ is a solution of the equation; and it p^, p^, ..., p^he the

roots of F{z) = 0, the complementary function is
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The case of equal roots has been discussed ah'eady (§ 45) ; if

two roots be imaginary, say p^ and p^, so that

/>j = a + ijS and p^ = a — i^,

then the corresponding part of y will be

a^ {A,' cos (/3 log x) + A^ sin (^S log x)],

the arbitrary constants having been changed.

Ex. If the imaginary roots a±i^he repeated r times, the corresponding

part of the complementary function will be

cc^\_{A^+A^\ogx+A^ {\oga;f+ ... +4/ (logo;)'-!} cos (;8 log ^•)

+ {Bj:+B2'logx+B^{logxy+ ... +£;(log^)'-i}sin((31og«)].

48. The particular integral is the value of

i^ (&) '

and the evaluation may be eSected in two ways, which are really

equivalent save for the difference in operators employed.

If V either be a power or contain as a factor a power of x,

say aj", then

- ' T.

In the case when T is a constant, the evaluation is easy. If m
be not a root of F{z) = 0, then we may expand {F {'^ + m)}"^ in

ascending powers of ^ and neglect all but the first term, which is

independent of ^ and in fact gives

Ob"
^~ F(m)'

The same method (of expansion) will apply when T is a rational

integral algebraical function of logo;; and since

^ log x=l,

the expansion does not need to be carried beyond y, where n is

the index of the highest power of log so in T.

If however m be a root r times repeated in F(z) = 0, then

5—2
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and we have to evaluate

If r be a constant G, then since

^l=loga;,

the value of y is

if it be a function of log x as before, the operator should be ex-

panded in ascending powers of ^ up to &" (y being retained in the

denominator), and the value of y will be given as the sum of a

number of terms of the form

y (log a')'.

that is, of a number of terms of the form

s!

(s + r)

!

(log xY

A general expression can be given for the particular integral in

the case when V takes none of these forms. Let „, . be expanded

in partial fractions and suppose some term to be

A

then y will be the sum of terms of the form

which is equivalent to

Ax^^Vx-", or Ax"-jVx-''-'^dx.

Another method of proceeding is to change the independent

variable from x to z, where x is e"; this changes ^ into ^ or D;
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and all the methods of § 46 will apply. It is easy to see that all

the cases indicated for S- are strict analogues of cases indicated

fori?.

Ex. Solve

(vii) x^-j^-{2m-\)x-^+{m^+rfi)y= n^x'^ log «.

MISCELLANEOUS EXAMPLES.

1. If there be two linear equations of degrees m and n {n>m) satisfied

by the same dependent variable, a third linear equation of degree n-m
can without any integration be derived from the first two ; and the equations

of degree m and n-m (when integrated) will suffice to furnish the integral

of the equation of order n. (Liouville.)

2. Solve the equations

^ 2^_
^"^ dx^^xdx^"^^'

^ 2^_/ 2\
^' dar'^xdx-V W^'

^^^ ^2+y=sm«sin2^.

3. Prove that the solution of

{D-\-cYy= cos diX

is y=e-™(^i+^2ij;+ ...
+^„^"i)+ (c^+a^) ^ cos U.« - » arc cot

^
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4. Obtain the general solution of the equation

in the form

2/=r^"' (A oosn't+B&mn't) + ~(\7^''''*'*">Bm n'{t-f) U'df,
n J

where U' is the same function of i that U is of t, and n! is given by

5. Solve the equations

(ii) g-12g+ 12y=16^a»";

(iii) ^ + 32^+48y=^e-2«+e2»cos2'^;

^^'^ (i+O'^"""'^'^^"'"''

6. Obtain the complementary function of the equation

in the form

2)-7r

r = M-l ffl«oos-—
c

/
2»-7r\ / 2rjr\1

y=Ce +De "**+ 2 e kJ.^cos ( a^sin— j+5, sin ( aw;sin— jj-

;

and shew that the part of the particular integral corresponding to the typical

terms imder the summation sign is

na^-^ \ e » cos-^— + a(«-^)sm — J-/(^)a!^.

v. Prove that the solution of the equation

( cos-^ l3/=cosa;

" = "
f i .r«.+iw,! . ^ _^«,+M,rr. . 2 cos a;

y= s U„e(«+i)™ + i3„e-(»+«''*}+
M = -CO e+ e"
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8. Prove that, if 3- denote x-r-

,

where A^,, A^, ..,, A^-i are arbitrary constants.

9. If P, Q, R be commutative symbols of operation the solution of

P.Q.B.u=Oia
M=P-i.O+g-i. 0+^-1.0.

10. Prove that

(i) 22''+ii)''x'' + 4D'' + ie''"*= e**;

(ii) D^x^+'-D'-ar^J)'>'-^(j) (x)

=

^'Z)"' + " (x)

;

(iii) If'i^-nYy^ 'Sf''I>y.



CHAPTEE IV.

Miscellaneous Methods.

49. Before we discuss the linear equation of the second order

with variable coefSScients there are several miscellaneous methods

which it is advisable to consider ; these apply to systems of equa-

tions which admit either of complete solution or of approach to a

solution in the shape of a first integral. It is to be understood

that the equations hereafter given are typical and not merely

isolated equations which can be integrated; it is frequently possible

to include others under some one of the following classes by means

of well-selected substitutions for either the dependent or the

independent variable. Such substitutions point out however the

limits within which the methods are for the most part effective,

so that it must be borne in mind that the methods are not of

general application to all linear equations of the second order.

50. The simplest case of all is that, in which the equation

is of the form

dx" '

where X is a function of x alone. It is immediately integrable

and the result of integration is

^=jXdx + J^,
dx"

A^ denoting an arbitrary constant. A second integration gives

= i dx i Xdx+ A^x+ A^,
d"'-y

dx"
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A^ being another arbitrary constant. Proceeding in this way we
shall have after n integrations as the general solution

y =J|
X (dxy + B^x''-' + B^x"-'

+

+B„_^x+B,,

A
in which B^ replaces '^-r and is therefore an arbitrary con-

stant.

51. Another very simple equation to be considered is

in which Y is a function of z/ alone ; but in general it isintegrable

only when n is either 1 or 2. In the case when n is 2, let the

equation be multiplied by 2 -^ : then each side may be integrated,

and we have
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52. Any differential equation which merely expresses a rela-

tion between two differential coefficients, whose orders differ by

either 1 or 2, admits of solution. As a type of the differential

equation, when the orders differ by 1, we may write

u-l ,

Let ^J{ = Y ; then the equation becomes

the integral of which is

dY
ir(Y)=j

F{Y)
= x + A.

Suppose this equation can be solved for Y and that the solu-

tion is

Y=4>{x + A),

that is

Then this is one of the cases already discussed (§ 50), and the

general integral can be obtained.

Or after obtaining the equation i/r (F) = « + J., we may proceed

thus: since

therefore

Similarly

dx'-'~j^'^"'~jF(Y)-

^jdxj.
dx"-' J jF{Y)

]F{Y)]F (Y)'

and so on, until

_[ dY f dY [ YdY
y }F{Y)JF(Y) ]F{Y)'
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an arbitrary constant being introduced after every one of the inte-

grations, whicli must be taken in order from right to left. Then

we have two equations between x, y, Y, from which Y can be

eliminated ; and the eliminant will be the primitive.

It is evident that by this method the equation

(dry dr^]^.
-'\dx"' dx"-']

can be solved.

&. 1. Solve
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the solution of which has been obtained in the form

dz

k
- = x + B.

If, after the integrations have been carried out, the equation

can be algebraically solved for z in terms of x, say

z = e{x)

(where the function 6 (x) will involve the constants A and B),

then 71 — 2 direct integrations will furnish the primitive. But

if it should be impossible to effect this algebraical resolution,

then we have

^^={A + 2ff(z)dz}K

Hence — — '»'''>»— '

^.^ = lzdx=y
dx"-'

•'

}{A+2Sf{z)dzf'

d'-'^y _ f dz r zdz
"^* ~

J {^ + 2 ff(z) dz]i]
{

dx"-* J {A + 2 ff(z) dz]iJ {A + 2 jf(z) dz}^

'

and so on ; ultimately we shall obtain ?/ as a function of z, and the

primitive will be the eliminant with regard to z of the equation

between y and z and the equation between x and z.

E..1. Solve a^g^g.

When we write z for -r^ the equation becomes

X X

BO that z= Cie"+ Cj^ "

,

X X

and' therefore y= ^e''+ 5e "+ C«+ Z),

in which A and B replace Oj^a? and c^a^ respectively.

Ea:. 2. Solve

<'^' -H'tHi)')'-
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54. In some particular cases the general differential equation

of the second order can be, by substitution, depressed so as to

become a differential equation of the first order; these cases

occur when one of the variables is explicitly absent from the

equation.

First, consider an equation in which x does not occur, so that

it may be written in the form

+(^.|.3)=»-

Let -^ = p, and then -y^ =p-j\ the equation thus becomes

^(^'^'^|) = ^'
dijl

a differential equation of the first order to find p in terms of y.

Let the solution be

P=/(2/)>

in which f{y) will include an arbitrary constant. Then the

variables are separable, since we may write

-^-dx-

and integration of this equation will lead to the primitive.

Next, consider an equation in which y does not occur, so that

it may be written in the form

Let ~- = r)\ then -^ = -^ ; the equation is transformed into
dx dx ax

^{x.pM-^,
dx]

an equation of the first order to find p in terms of x. Let the

solution be

p = F{x),

where F includes an arbitrary constant. Integrating this, we

obtain as the primitive

y = A-irjF{x)dx.
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E..I. Solve 2(2.-y)g = l + (jy.

When we write -r-=P the equation is transformed into

dp

the integral of which is

where /x is an arbitrary constant ; the primitive is given by the evaluation of

..g..,{,+(j)y.

The substitution -^—p transforms the equation into

«^^^2^.

on integration this gives

a^p

and therefore

{l+p^Y

so that the primitive is

y= fpdx=B-\- I
——,dx.

J {a'^-ix^ + Ay}^

Ex. 3. Integrate
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(Viii) y(l-logy)g + (l+logy)(gy= 0.

Homogeneous Equations.

55. There are certain classes of differential equations in

which a kind of homogeneity subsists ; and the solution of these

by suitable transformations can be made to depend upon that of

equations of lower orders. The homogeneity is constituted as

follows : if 2/ be considered to be of n dimensions, while x is of one

dimension, then -^ , since it is the limit of -r-^ , is of ti — 1 dimen-

sions ; t-| , being the limit of ^ , is of n — 2 dimensions, and so

on; and the equation is said to be homogeneous when, if these

dimensions be assigned to the corresponding quantities, the terms

are all of the same dimensions. The simplest case is, of course,

that in which n is unity.

First, let n be unity so that x and y may both be considered of

one dimension. Let y = xz and a; = e* ; then

dy _dz
dx~d6^^'

dx'' \dff' dOJ '

and so on ; and the resulting differential equation will be one be-

tween s and 0. Now it will be noticed that the coefficient of in

the index of the exponential wherever it occurs in any differential

coefficient is the number representing the dimensions of that dif-

ferential coefficient ; and therefore, when substitution takes place

in the differential equation, supposed homogeneous, the index of

in the exponential will be the same for each term of the equa-

tion, and this exponential will therefore be a factor which may be

removed. The new independent variable will no longer occur

explicitly in the equation, which will therefore be of the class

already discussed in § 54 and can have its degree depressed.
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Ex. 1. Solve X- s=H(iy+'4'
Making the substitutions of § 55 we have

(Pz , dz.dz ( /dz \\ „U
^ + Te'=r[de+V+n

When we write y^= i') the equation becomes

or, if D = ZS;

.2 J

dd
s^+^+s = {m{l + sy+n}\

ds
and therefore -

.^ ,
,„

, 7% ; — o'^-

The variables are separated and the equation can be integrated.

Ex. 2. Solve

Passing now to the general case in wMch homogeneity is con-

stituted on the assumption of n dimensions for y, we write

a; = e*, y = x^z = ze"^-

We now have

d'y {d^z
, ,„ is cZ^

,
, .,, )

and so on. It is obvious that the coefficient of 6 in the index of

the exponential, which occurs in the expression of every differential

coefficient, exactly measures the dimensions of that differential

coefficient; and as before, when substitution takes place, the

exponential will disappear and the differential equation, having

been thus transformed into one from which the independent

variable is explicitly absent, can have its degree lowered by unity.
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^.^.1. Solve x^pi=(afi+2a>y)^-Ay\

This is homogeneous if y be considered to be of two dimensions while x is

of one. Hence we substitute

and the equation becomes

S+4.+2-(l-l-2.)(|+2.)-4.^

A first integral is given by

and in tiiis the variables can be separated in the form

dz ,

the integral of which will vary (being either an inverse circular function or a

logarithm) according to the sign of A.

Ex. 2. Solve

' dx"^ dx \dx

(iii) L^.l^^i/"^'

A particular set of cases arises when n is made infinite ; the

quantities y, ~-

,

have then all the same dimensions. The

simplest method of solution is to adopt the substitution

y = e^^%

and the resulting equation between u and x will be of an order

lower by unity than the given equation.

Ex. 3. Solve
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Exact Differential Equations.

56. A differential equation of the form

.(dry ^^ dy_ \_^
'\dx^' dx^-^' ' dx' y' '"r^

is said to be exact when, on representing the left-hand member by

V, the expression Vdx is the exact differential of some function

U, which is necessarily of the form

^Adx"-" dx' y' '")

Consider first a linear exact differential equation, which may
be represented by

where the coefficients are all functions of a; ; an equation of this

form will not in general be an exact differential equation, but we

proceed to shew that, if a certain relation be satisfied by these

quantities P, the equation can be integrated once.

Indicating for convenience differentiation with regard to x by

means of dashes we have on direct integration

^P^ydx='jP,ydx,

jp,fjx^-jP:ydx + P,y,

jP,2^dx^jP^'ydx-P^y + P,y',

JP,%dx^-fpr ydx + P3" y - Ply + P^'\

and therefore

/Pc^^=/(P„-p;-i-p;'-P3"'+ )ydx

+ (P^-P^' + P;'- )y

+ {P^-p; + p:'- )y-

+ (P^-P^+PJ'- )y" +

Q,ydx + Q^y + Q^y'+ +Qn^^i:
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where the law of formation of the successive coefficients Q„Q , Q,...
is the same and, in particular,

Now the condition of integrability evidently is that there shall
be no term remaining which involves an integral of y ; and the
necessary and sufficient condition for this is that

^0 = 0,

that is,

" dx^ dx'
+(-1) -^-0-

When this equation is satisfied, the first integral is

aj;^+a.,£S+ +Q^y=jpdx + A,

where A^ is an arbitrary constant.

Ifnow the coefficients Q satisfy the corresponding condition, viz.

:

^' dx^ dx'' +^ ^^ d^^~^'

the equation is again integrable; and the process can be continued

so long as the coefficients of each successive equation thus derived

satisfy the condition of integrability.

.£!». 1. The equation

is an exact equation ; for we have

and so the condition is satisfied. Integrating each side we have

In practice it is sometimes easy to see that a given equation is inte-

grable. In many cases the quantities P are either of the form a^ or sums of

6—2
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expressions of this form ; and a;™ -— is a perfect differential coefficient, if m

be less than n ; for integrating it by parts we have

lin=m+ \ the last term is (-1)™. ot!^/.

When we apply this to the present example, the terms involving -r^ , 5-=^

are seen to be perfect differential coef&cients, and x-^+y is -j- (xy), so that

the left-hand side is a perfect differential coefficient and the equation is there-

fore exact.

Ex. 2. Prove that the equation in Ex. 1 cannot be further integrated by

the foregoing method.

Ex. 3. Solve

(ii) ix+y^ +2xy%+x%+x^%^%;

and shew that the equation

becomes integrable on being multiplied by some power of x. Obtain its

integral.

.

57. The method which is used for integrating exact equations

which are not linear may be illustrated by considering an example.

Ex. 1. Solve

On the supposition that this is an exact differential equation we may write

dU= (y -1- Zxp + 'iyp^) dx+ {x'^
+

'^y^p) dp,

where p stands for -j- . Let t/^ denote what would be the value of U ii p

were the only variable, so that

Ui=^x'^p-\-y'^p^'.

Let all .restrictions be removed, so that

dU^= (^xp -)- 2yp3) dx+ {a? -V 'iy'^p) dp,

and therefore

dU -dU-^= {y-\- xp) dx= d {xy),
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which gives on integration

that is,

and therefore the first integral is

The preceding method will be seen to lead to the following

general rule for the integration of an exact differential equation of

the n*'' order. The equation, being derivable from one of order

n — 1 by direct differentiation, will contain -^-^ only in the first

degree; if this condition be not satisfied, the equation is not exact.

Let the equation be written in the form V= 0, and integrate

Vdx as if , A were the only variable occurring in V and —- its

differential coefficient; let the result be U^. Then Ydx — dU^

involves differential coefficients of y of the order m — 1 at the

utmost; as it is an exact diffei'ential coefficient the highest differ-

ential coefficient of y which occurs can enter only in the first

degree. Repeating the process as often as necessary, we shall

ultimately have

Vdx-dU,-dU^-...=0.

Then a first integral of the given equation is

u,+ u,+ ..:=G.

Ex. 2. Solve

Ex. 3. Shew that the equation

d?y^^_^y_

iplication

deduce a first integral and the primitive,

becomes integrable on multiplication by the factor ^x'^-£--'2,xy. Hence
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Ex. 4. Integrate the equation

^V

I

«y -0

having given -that there is an integrating factor of the form X^ -7^ + X^.

(Euler.)

Linear Equation of the .Second Order.

58. "We shall here prove some of the leading properties of the

linear equation of the second order ; but the present investigation

will not for the most part anticipate the discussion of the general

linear equation, for the properties here established belong solely

to the equation of the second order.

The general form of the equation is

in which P, Q and R are functions of «_, Jhey may be merely

constant quantities.

Substitute in the equation for y a value vw, where v and w are

both functions of a? ; as yet the only limitation on them is that

their product must be equal to ?/. We then have

d'v /^div -r, \ dv /d\v T^dw ^ \ „

As we may choose a relation arbitrarily between v and w or

make either of them satisfy some condition, we will suppose it

possible to determine w so that the coefficient of v may vanish,

that is,

which, it will be noticed, is the same as the original equation with

the right-hand side equated to zero. The quantity w being now
considered known, the modified equation becomes ^U/v\jl<a^.^U^ —

d\ f^dw p\dv_B
dx^ \w djc Jdx w

'
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SO that

ax J

and therefore

v =B+A j'^^e-!P^^+ (^,e-!Pi^[wRe!P^'=dx.
J 10 J w J

It therefore follows that, if any solution whatever of the original

equation ivith the right-hand side equated to zero can he found, the

complete primitive of the original equation in its general form can

also he found. The problem of deducing this complete primitive

is therefore resolved into that of finding some single solution of

the simpler equation. This, in the most general case of P and Q
unrestricted to particular functions of x, has not yet been effected;

but in special instances it is possible to determine such a solution

as is desired, sometimes by inspection, sometimes by means of a

converging series, sometimes by means of a definite integral; but

in the two latter cases (which are usually closely connected) the

explicit evaluation of the form obtained for v is difficult or impos-

sible, though this form (§ 5) still remains the solution.

Ex. 1. Solve

dx^ " dx

A particular solution of

dx^ dx ^

is evidently 2/=^ ; hence writing y=xv'Ya. the original equation we get

dH
dx^ dx \ dx J

Hence

and therefore

dx J

v=B+f^ e^ +J5
e^

P».+%-*-
dx.

If TO= 0, this can be simplified.
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Ex. 2. Solve

(i) S-.|-H(.-I)y=X;

(ii) {ax - 6^2)^ 4. 2q.^+ 2%= ^-1.

59. If however a solutioQ of the equation when R has bee;

put zero cannot be obtained, then it is sometimes useful to remov

• • d'v
from the transformed differential equation the term involving -j-

That this may be the case w must satisfy

- dw ,^ _
2 ^- + Pw = 0,
ax

from which we find

there is no necessity for adding a constant in the integration as i

will afterwards disappear. Insert this value of w in the equatioi

and write

then the equation becomes

daS
^, + Jv = ReVF^\

In some pai'ticular cases this equation admits of immediat

solution, but these cases occur much less frequently than those t

which the preceding method applies; and the advantage of thi

form, which will be indicated shortly, lies in an altogether differen

direction. Now we know that if a solution of this equation wit

the right-hand side cqiiatodjfc^ zero can be obtained, the primitiv

of the general equation is obtainable; and we may therefore quot

our equation in the form

Ex. 1. Solve

dx-' ^^dx^ix^^
H+ ^ +.KJ-0.

Here P= --r, and therefore w=e~^-f^''''= e^ .
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Also /=^ + -L + J--J-_J_=_2
^2 4^1 4^ 4^j 4^ ^2'

so that the equation giving v is

The solution of this is

v=AafiA—
;

X'

and therefore the general integral of the first equation is

Ex. 2. Solve

?

(iii) g-4.|+(4.^-3)^=«^'.

60. The advantage of using the form
^

instead of

S+4^^^-
as typical of the linear differential equation of the second order, lies

in the fact that for all substitutions such as 2/"(«) for 2/ in the latter

equation 7 is a function of P and Q of such a form that, when the

new equation

has its second term removed by the substitution

it takes the form

Thus I is exactly the same function of P^ and Q^ as it is of P
and Q ; and we may therefore call /an invariant of the coefficients
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of the differential equation*. The equation so reduced may be

said to be in its 'normalform' ; and any two linear equations sue!

as the equations in y and z can be transformed into one another, ii

the normal form of each be the same.

If it be known that two given equations are so transformable and the equa-

tion of substitution between the dependent variables be desired, this can easilj

be obtained by using the normal form as an intermediate transformed equa-

tion. Thus in the general example the equation in y becomes transformed tc

that in v by writing

and the equation in v passes into that in z by writing

and therefore the relation which transforms directly the y-equation into the

«-equation is

Ex. 1. Prove that the equations

and (l_^2)g +22+ (^ + l)f=0,

can be transformed into one another ; and find the relation between z, {

and X.

Ex. 2. Find the value of Q which is such that the equation

may be transformed by a substitution y=zf{x) into

dx'^ xdx \ x''')

Obtain the value oif{x).

61. Let 2/j and y^ be two particular integrals of the equation

and v^ and v^ the corresponding particular integrals of

ZTZ^ + Iv = ^;

Of. Malet, Phil. Trans. (1882), p. 751.
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then

v^=^^eW-Pd« and v^ = y^e^^^'^'',

and therefore

so that s is the quotient of two different solutions of either diffe-

rential equation. We now proceed to find the equation which is

satisfied by s ; since each of the quantities y (or v) may consist of two

terms each containing an arbitrary constant factor, the quotient of

one by the other may contain three arbitrary constants (not four,

since without altering the value or generality of such a qviotient any

constant may be made unity) ; therefore the differential equation

satisfied by s, a function involving three arbitrary constants, must

be of the third order.

Indicating differentiation with regard to x by dashes, we may
write

Taking logarithms of

v;+lv^=0.

s = '-^

and differentiating it, we have

which on being differentiated gives

5 \s) V^ \vj 1), \V^

But

so that the equation is

s \sj. \vj \vj
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and from these the corresponding solutions of the equation in y
are derived by inserting the exponential factor. When any one

solution of a linear equation of the second order is known, we can

obtain the general solution; and hence any particular value of s

satisfying its differential equation will lead to the complete solution

of the first of the differential equations.

This theorem holds in regard to the general linear equation of

the second order; but its chief application arises when the linear

equation is that satisfied by the hypergeometric series ; this will

be discussed in Chapter VI.

Bx. 1. Prove that, if

s{ax-\-h)=cx+ d,

the Schwarzian derivative of s vanishes.

Ex. 2. Find the general value of s when

10^ {«, x} +a= 0,

where a is a constant.

Ex. 3. Prove that

(i) {«>'»}=-(^) {^.4;

<") (SI- ')=*•"'

(iii) {s, x}= (^^ l{s, y) - {X, y}]

;

(Cayley.)

63. Another method which is sometimes effective is that of

changing the independent variable.

Take z as the new independent variable ; then

dy _dy dz^

dx dz dx

'

d^_dly(dzVdyd^_
do^'dz" \dx) ^ dz dx"

and the original equation becomes

TzAtx) ^dzw-^^dx)^^y-^-
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As yet s is quite arbitrary and it may therefore be chosen to

satisfy any assignable condition. Thus we may choose to make

the coefficient of— vanish so that
dz

dy? dx '

and therefore z is given in terms of x by the equation

z= \dxe-^^^.

5 ^^V r.

The eliminant of this relation between z and x and the trans-

formed equation may furnish a differential equation which proves

integrable.

One integrable case occurs when the value of z is such as to

satisfy the relation

where /x. is a constant ; and then the equation takes the form

of which the integral is

y = As^ + Bz^

,

a and /3 being the roots of

m [m — l) + fi,=0;

and it is not difficult to prove that the relation which must exist

between P and Q in order that this may be the case is

Another integrable case would be furnished by

(dz\
1^ ©=«•

and so for other cases; and it will be noticed that in each case the

equation is reduced to what may be called a known form, that is,

one of which the primitive can be obtained.
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Ex. 1. Solve

^^ •^''(^^2 ^ dx °^-

Here P(l-^2)^_^^

SO that ^ = e-JPda;=gJi-*=
0?^

and 2= arc sin ^.

When the independent variable is changed to z, the equation becomes

and therefore

dzi~

J,
_ J gO arc sin ic , n c arc cos

^

EX.% (i) (^2_l)g +
^J=,2^.

^V 3^+ lc^y
f 6(^+1) V

^ ' dx^ a:^-ldx^^\{x-l){3x + 5)i '

(iv) ^ + 2^ + gy=0;

(V) (l+..)g-2.J+2y=0.

64. The property used in § 60 to obtain the relations between

the dependent variables in two equations, which are mutually trans-

formable into one another—viz. that the equations have the same

normal form—can be used to obtain the relations between the

dependent variables in two equations, the independent variables in

which are different, on the hypothesis that the equations ultimately

determine the same function; the process adopted will be similar

to the former one, as both equations will be reduced to their normal

forms in the same variable and these, being assumed identical, will

give the conditions necessary for the justification of the hypothesis.

Let the two equations, which are to be thus transformable into

one another by changing both the dependent and the independent

variables, be
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g+^4:^e^-» «

^""^ ^+2^5^+^"=^ ^''^'

in which P and Q are functions of x, and ii and S functions of z.

Writing in (i)

and l=Q-^-P^^
ax

we have "^+^2/i = (iii);

and writing in (ii),

and J=S-^-R\dR
dz

d'v
we have -j-j + Jvj^= (iv).

In (iii) changing the independent variable from x to z, we

obtain

dz" \dx} ^ dzdai'^ y'~ '

in which dashes indicate differentiation with regard to x. To

reduce this to its normal form we write

or, on the evaluation of the integral in the exponent,

the equation then becomes

S^+^2/.
= (V),
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where

and {z, x] is the Schwarzian derivative of z.

If, then, the equations be mutually transformable into one
another, the normal forms will be the same when expressed in

terms of the same independent variable; hence comparing (iv) and
(v), which are the normal forms, we have

2/2 = ^.

and G=-J.

Substituting for G in the last equation we have

I-i{z,x}=Jz'\

\dx) V dz "V \^ dx_

and substituting their values for y^ and v^ in the former equations

we have

y I
j
gSPdx — ^gSRdz

\dxj

These two equations are the conditions that the differential

equations (i) and (ii) should have the given property; the first of

them gives the relation which must exist between the independent

variables, and, when the first is satisfied, the second gives the

relation which must exist between the dependent variables.

The foregoing equations enable us to obtain the general form

of all differential equations into which (i) is transformable, and

also to obtain the connexion between two given related equations.

Thus, for instance, the equation in a given independent variable

z equivalent to (i) would have as its normal form

d^'», T A-^ + !;,,/= 0,
dz '



9S EQUIVALENT EQUATIONS. [64.

where ^^ = ^ g^ e/p..,

and J=4-i{^'-l-
Z Z

and since z and / are known in terms of x, J is also known in

terms of x and can therefore be expressed in terms of z. Every

differential equation, which is equivalent to (i) and has z for its

independent variable, must have the foregoing equation in v^ for

its normal form.

Ex. 1. Prove that the equations

^ ' dx^ ax ^

are transformable into one another by the relation

x{l-P)= l+k^;

and find the relation between z and v.

(G. H. Stuart.)

£!x. 2. Prove that the equations

dh/ 2k dy _„
and -r^„ +— -f--Bh/=^0

dx' X dx "^

are transformable into one another by the relation

^ - 1 = ia;2

;

and find the relation between y and v.

Method of Variation of Parameters.

65. It was proved (§ 58) that if a solution of the equation

could be obtained, the primitive of the equation

s-^i^'^-"
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could be obtained ; but the following method is effective in giv-

ing for this (and other linear equations) what was called in the

last chapter the Particular Integral, and it can be applied where the

methods formerly indicated cease to be applicable.

Let y^ be a solution of the equation

so that

Eliminating Q we have

and therefore

^i-'i'^'--'
of which the integral is

> Hi

dx -jpacc

Let y^ stand for the quantity of which A is the coefficient, so

that the primitive is

y = %i + ^^2-

and y^ is a particular solution of the differential equation. Then

the preceding analysis shews that any two particular solutions y^

and y^ are connected by the equation

y^ dx y^ dx~^^

where the value of G is no longer arbitrary but depends on the

forms of y^ and y^, the two particular solutions of the equation.

66. Let us now take the above value of the primitive and

substitute it in the equation

g+^l+fe=^.
7—2



100 VARIATION OF [66.

on the supposition that A and B are no longer constants but

functions of x to be so chosen that the equation shall, be satisfied.

Thus the form of 3/ is the same for the two equations, but the

constants which occur in the former case are changed in the latter

into functions of the independent variable ; to this process is

applied the name Variation of Parameters.

We have now two unknown quantities A and B, in terms of

which 3/, a single unknown, is expressed ; and we are therefore at

liberty to choose any relation between them that may be most

convenient for our purpose. When we differentiate «/ we obtain

^^B^^ + A^^ +v— +v^
dx dx dx '^' dx ^'^ dx

dx dx

'

provided

dB dA „

we shall take this last equation as the relation between A and B.

dv
Again, if we differentiate -~

, so that

dx'' dx' dx:' dx dx dx dx
'

and substitute these values in the original equation, then, since y^

and 1/2 are particular solutions of the equation when i? = 0, we have

as the result

dB dy^ dA dy.^ _ „
dx dx dx d.r

Thus
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where ^and i^ are arbitrary constants and C is an absolute con-

stant depending upon the forms of y^ and y^.

If now in the differential equation we write ^ {x) for P and
•>|r {x) for R

; f^ {x) for y^ and f^ {x) for y^ ; then the general in-

tegral of

will he

y = Ef{x) + Ff,{x)+ y t (I)
«^'*^''''

{/. (^)/. (?) -/.(*)/. (r)}rf|;

wheref (x) andf,^ (x) are particular integrals of

and are therefore connected by the relation

•''dx J'^dx

It may be noticed that we may make G unity without loss of

generality; for if it be not unity we may substitute iax f^{x) the

quantity -^f^ (a;) which, while still a particular solution, will render

the constant unity.

Ex. 1. Solve

^2-2'=("-i)(S--^^+i;

Arranged in the ordinary form this is

dhj X dy

dx''' x-\dx X-

Particular solutions of the equation without the right-hand member are x

and e* ; hence, if we take

f^{x)=x, /2(^)= e%

we may proceed as above, and have as the primitive

y= Ae^ + Bx.

As in the general case A and B are connected by

dA ^dB .

dx dx
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or -F{y)e^^^'^^y = ^-^.
(ajSG

Therefore

dx ^^' dx'

and so

C' = A-2[dyF(i/)e''^'^^^\

A first integral of the original equation therefore is

gg;/«<i. = {^ _ 2Jdy F{y) e^^^W'^*}*.

This can be again integrated since the variables are separable.

Ex. 1. Solve in this manner the equation

Shew also that the integral of this equation may be derived by the method

of § 54.

By changing the independent variable in this example from xio y obtain

the integral of the equation

g+/«i+*w (!)'=»

Ex. 2. Integrate the general equation

firstly, by neglecting the last term to obtain a subsidiary equation and then

varying the parameters

;

secondly, by applying the same method to the integral derived from neglecting

the second term

;

thirdly, by mvdtiplying by (-^ j
and then integrating each term.

It thus appears from these examples that

is integrable in the cases :

—

(a) when both P and § are functions of x,

O) when both P and § are functions of y,

(•y) when P is a function of x and § a function of y.
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Two particular methods.

68. When in the equation 3—̂ + /» = the quantity /" is a

rational algebraical function of a fractional form such that the

denominator is of a higher degree in the variable than the nume-

rator, the following method is sometimes of use.

Let a quantity

be substituted for v\ then the equation becomes

where
il P

^ ^ '^ dx-

On integrating the equation as if the left-hand side were a

complete integral, we have

Since the quantities Pj and P^ are connected as yet by only a

single relation, we may assign as a further condition to determine

them

'^'-'^
dx'

and this gives as the equation for Pj

dP"'^
1 _ p^ — r

dx > '

while, if any value of P, satisfying this be obtained, an integral of

the original equation is obtained ia the shape

It should be pointed out that the utility of this method depends

on the form of the equation which gives P,; this would be lost by
the substitution

p _ 1 dw
' w dx '

for then the equation giving P^ becomes changed to the original.
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With tbe assumption which was made as to the form of /we
may write

say, where T, U and V are rational integral and algebraical func-

tions of X. Then we may assume

'
<t>

'

leaving the constants in/(a;) as the quantities to be determined from

the equation ; but in general there are not sufficient disposable

constants arising in /to allow the equation to be satisfied. Hence

this method, like the other methods which have been proposed for

the solution of the linear equation of the second order, is not one

of universal application, but is elfective only in particular cases.

E.v.l. Solve x{1-xY'^^= %v.

Here the equation for P^ is

dP,
-Pi'=-dx ^ x(jL~xf'

Let P, = - H and substitute ; the eqviation will be satisfied by
^ X \ -X

E=F= - 1, and therefore a first integral is

dz 2
z=A,

dx X (1 — x')

, V [dx f dx
where 1°S^ = -

j ^ -
j l^^'

or vx=z{l—x).

The primitive can easily be deduced, for the equation is linear of the first

order.

Ex. 2. Solve

(i) (i-^vS+''=o;

(ii) {2x + iyix^ +x+l)'~ = 18o;

,..., dh/ ^ sin 3a-
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If a term involving -^ should occur in the equation, this term

should be removed before applying the above method.

Ex. 3. Solve

(Py
^

y-{a-iri)x dy ay ^^ ^

dsfi x(^-x) dx x{\-x) '

.... d^y a-{a+^ + \)x dy a&y _
^ ' dx^^ x{\-x) dx x{\-x) '

d^y a+\-{a+^+l)x dy aP
^ ' dx^^ x{l-x) dx x{].-x)^

Ex. 4. Shew that this method will apply to the equation

dH _ A'x^+ '2.B'x+C'

dx^'' {x^+ 'i.Ax+Bf'"

provided there be a single relation between A', B' and C" ; and find this

relation.

69. A certain class of linear differential equations can be

solved by the resolution of the operator on y into the product of

operators. Thus consider the equation

dV dy
^^^+^^ + ^2^ = 0'

in which u, v and w are functions of x ; then if the operator

be resoluble into the product

p, q, r and s being functions of x, then the equation can be

integrated. For, if we write

we have p-f + l^^^,

and therefore z = Ae'^v"^,
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and we must now integrate

which is Unear of the first order. In order that this resolution

may take place, we have the three equations

pr = u,

^"+^(£ + ') = "'

ds

to determine four quantities p, q, r and s ; but we may consider

p and r as known factors of u and treat the two remaining equa-

tions to determine q and s.

But these cannot be solved in general, and thus the method will

apply only in particular cases.

Ex. 1. Solve

(^H^-2)^J,+ (^-^)g-(6^H7^)y=0.

EE'=-Q\
r+E'=-iy,
'+ '2E'=0 >

Here we may wntep= a; + 2 and r=x — l.

If q=Ex+P a,nd s=E'x+F, we have

E+E'=\ \ EE'=-^-
-E+F+'2.E'+F'=-'iiy E'F+EF'

F-'iF'=% ^ FF

-

which are satisfied by

E=Z; E'=-2; F=4; F=l.

Hence the equation may be written

A first integral is

and the primitive is
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Ex. 2. Solve

(ii) (^-l)(^-2)g-(2^-3)J+ 2y=0;

(iii) (2^-l)g-(3^-4)J + (^-3)y = 0;

(iv) (.r2 + 3^ + 2) ^+(5^H^2L^+4)^+ (6.^2 + ^3'^.»+4)?/= 0;

(V) (^2-l)g-(3^+l)J-(^2-^)y= 0;

(vi) x'^{a-hx)^^-%x{a-'bx)'^^'i{Za-hx)y= ^a?.

70. There is a particular form into which the ordinary linear

differential equation of the second order may be changed ; multi-

plying

JPda
throughout by e^ , we may write it

dx
Lp^-|} + C.«y-o.

Let a new independent variable z be taken such that

dz=qe^^^dx;

then the equation becomes

Now Qi' ^ is a definite function of x and therefore of z\

it be d(

equation is

let it be denoted by j^, where ?7 is a function of z. Then the

izXun^y='''dz

which is the form referred to.

Sir William Thomson has indicated a methbd of approximating

to a solution of this equation by mechanical means *.

* See Froc. Roy. Soc. Vol. xxiv. (1876), p. 269.
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Ex. Express P^+§^+ jRjj= in the form t\ + jiv= 0. Prove that

v= Sf,~S^+ S^-... where

/"re rx

Jo Jo

expresses the solution of this in a series necessarily convergent for all values
of X, provided /i remains finite.

Work out the case when /i= ,-(;".

General Linear Equation.

71. The general linear equation with variable coefficients is of

the form

in which Z„, X^, X^, , X„ and Fare functions of a; alone; the

class in which the coefficients of the differential coefficients of

y are constants has been already considered. The coefficients

-^o> ^v ' ^v ™^y ^6 taken to be integral functions oi x; if

in any equation they were not actually so, the equation could be
transformed so that its coefficients would be integral functions of

X by multiplication throughout by the least common multiple of

the denominators of such fractions as occurred in the given form.

The solution of the differential equation consists, as before,

of two parts:

First. The Particular Integral which is any value of y (the

simpler the better) satisfying the equation
;

Second. The Complementary Function which is the complete

integral of the equation without the second member, that is, of the

equation

The equation (ii), being of the Jt"' order, will have in its primi-

tive n arbitrary constants—the necessary number for the complete

solution of (i) ; and the primitive is the sum of these two parts.
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72. If 2/j be a solution of (ii), then A^^ is also a solution

since the equation is linear; and therefore, if y^, y^, ,y^ be n

different particular solutions of (ii),

y = Ayi+Ay^ + + ^ny«.

where A^, A^, , A^ are arbitrary constants, is also a solution.

If now the solutions y^, y^, , y^ be independent of one another

so that no one of them can be expressed by means of a linear

function of all, or of any of, the others, then the foregoing value of

y is a solution involving n arbitrary constants ; it is therefore the

Complementary Function. In order that this may be the case

there must be no equation of the form

\yi + V2 + +\2/» = o

for any values whatever of the constants \j, \ , X„ other than

zero for each of them. If all the constants X be not zero, we have

the derived equations

d''~'ii d"'^'!!

^ dx ^ dx -^-i=».
and, since the \'s do not all vanish, the determinant obtained

by eliminating the X's must vanish, that is.

A =
d''-\

dx''-'
'
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73. It is easily proved that, if A be zero, then some equation

of the form

must exist. For otherwise let the value of the left-hand side be

denoted by u; multiply the columns in A by X.^, X^, ..., X^ respect-

ively and add them together, replacing some one column—as the

first—by their sum. Then we have

dx"-'
'

dr^
dx"-^

'

dx"-'
•

d'-'y,,

dx"-'

dx"-^

u, 2/2 i7n

= 0,

an equation of order n— 1 which determines u. Now this is satis-

fied by M = 2/j, 2/2! ••) y»» that is, it has n particular solutions which

are supposed independent. But the number of independent par-

ticular solutions which an equation can have is equal to its order,

a property which is violated by the preceding result. The fore-

going equation in u must therefore be an identity so that u is zero

and therefore, on the supposition that A is zero, there is a relation

between the n quantities y.

74. The value of A when different from zero can be found as

follows. Let the values 2/ = J/u 2/2, •••, y« be substituted in (ii) and

from the n resulting equations let the coefficients X^, X^, ..., X„

be eliminated; then we have

dZh
dx"

'

dr%
dx''-'

'

dr%
dx"-"

Vi,

dry,

daf"

dZ%
dx''-'

'

d^-'y,

dx"''
'

dr^

dr%

2/«

+ X^A = 0.
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The determinant which is multiplied by X„ is ^ , and therefore

this equation is

which when integrated gives

Since A and lX,X~^ dx are determinate functions of x, the

constant G must be determined by some other method; compari-

son of particular terms is often effective. The value of C will

evidently change with a change in the set of fundamental integrals

Ex. Let y-y be a particular integral of the equation

when we write yi^zdx for y, the equation determining z is (§ 76, post) of order

m — 1. Let Zi be a particular integral of this, so that y-^\z^dx is a second parti-

cular integral of the y-equation ; and let Zyludx be substituted for z. Thus

the equation in ?t is of order m — 2, Let Ui be a particular integral of this

equation ; then y^\z^dx\u-^dx is a third particular integral of the original equa-

tion. Proceeding in this way by m — 1 successive substitutions we shall

arrive at an equation of the form

dw

of which an integral can be found ; and there will be, in all, m particular

' integrals y.

Prove that these particular integrals y are independent of one another

;

and shew that for this set of particular integrals

A = (-l)i™<"'-i)yj™z,™-%i™-2 Wj.

(Fuchs.)

75. The Particular Integral may now be deduced by means of

the method of the variation of parameters; this is the most sym-

metrical method, but another will be indicated in the next section.

In the equation

y = A,y,+ A,y^ + + ^n.y„

* Scott's Determinants, p. 36.
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let the ^'s be supposed functions of x instead of constants; then

the value of -^ is given by

^^A ^^+4 ^»+ +A ^
dx ^ dx ^ dx " dx

dA^ dA^ dA^^

Now as we have n functions A, while the only condition as yet

attached to them is that they are such as to make the preceding

value of y satisfy the differential equation (i), we may make them

satisfy n—1 other conditions assigned at pleasure, provided these

are not inconsistent. Let us assume as one of these conditions

dA, dA. dA,, .

and we then have

'^ = A^'-yA ^^^ ^A ^.
dx ^ dx " dx " dx

Differentiating this again we have

provided we assign as another condition

dy,dA^_^d^dA^_^
,., +^^ = 0.

dx dx dx dx
'""

dx dx

Proceeding in this way and assuming that the ^4's are such as

to satisfy

dx' dx ^ dx' dx^ dx' dx

d^y, dA d\ dA^ ,'Fy.<tL^o
dx' dx dx" dx^ d.r' dx

dr^,d_A, d^,dA_
,^"".'/„y^.,,o

dx'--' dx
"^

f/.r"-^ dx dx^-' dx

(which with the previous two make up the assignable n — l con-

ditions, not inconsistent) we have

F. ^
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The last of these, when differentiated, gives

*v_ . ^, , . ^.

,

, . ^
^2/. (^A^ ^_!:^^ 4i. , , ^r^. ^« .

cZic"-' c?«
"^

da;""' dx da;""' & '

but, as all the conditions which were assignable have been used, the

second part of the right-hand side does not vanish. If we multiply

the differential coefiScients of y thus expressed by the algebraical

coefficients which are attached to them in the equation (i) of § 71

and add the results, since y is a solution of (i), and y^, y^, ,y^

are solutions of (ii) of § 71, we shall have

F^ T f^""'^' ^^^
I

^""'y^ ^^^
I

,

^"-y. dA,\

"U*""' dx "^dx"-' dx^ da;"-' dx}'

db^'^v
Let A, be the minor of , ^J[ in A for the values r = 1, 2, ...,n;

then the n equations giving the values of —~, --=-?,
, -^

have as their solution the equation

for all the values of r. Hence

d^._FA,
dx X„A

'

and therefore

^.= C.+/^^d..

where 0, is an arbitrary constant. The value of y is therefore

the Particular Integral being

rFA , TFA rFAy^\^dx + y\^dx^ + 2'" rX^*-
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Ex. 1. Shew that, if/j (^), f^ (x), f^ (x) be three particular solutions of the

equation

in which Q and S are functions of x only, then the complete integral of

is given by

14> (j) di
y=^i/x (^)+ C2/2(^) + 0,Mx) +j\ (I) e-*^* di,

dAm <VM "MM
di ' d$ ' rf|

/i(i), /2(a /sd)

/l(^). /2(-'^), /sW
where Cj, C^, Cj are arbitrary constants and a is a determinate constant.

Ex. 2, Solve the equations

(ii) (^2 +2)g-2^g+ (^2+ 2)g-2,^2,=^8 + 2,

76. When we know one or several particular integrals of the

equation (ii) of § 71, the order of the equation can be depressed by a

number equal to the number of particular integrals known. Thus

suppose we know that 7/^ is a particular integral of the equation

;

when we change the variable from y to y^u the equation becomes

„ d"u d'"'u du

+«(^-S+^.£^- -^.-.t+x^,)'"-

or, what is the same thing,

in which X/, X^, , X\.^ are functions ofX„, Xj, , X„_, and

differential coefficients of y^ If now for -j- we substitute v, the

resulting equation is of order n~\ and the original equation has

therefore had its order depressed by unity.

8—2
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If y^ be another particular integral of (ii), then yjy^ is a value

of u, and therefore t- (— ) is a solution of the equation in v; and

this can therefore have its order depressed by unity and the order

of the new equation will be less by two than that of (ii). It will

be seen to be possible by proceeding in this way to diminish the

order of an equation by m when m particular integrals are known.

Each depressed equation remains linear.

77. When n — 1 particular integrals of an equation of the m""

order are known, the equation can be depressed so as to be a linear

equation of the first order, and as the latter can be solved, it

follows that we can obtain the general solution of an equation of the

n"" order when n—\ particular integrals are known. The following

method of obtaining the general integral avoids the process of

successive depressions of the differential equation.

Let the m — 1 particular integrals of the equation (ii) be repre-

sented by y^, 2/,, , y^_^; and let C,, C^, , C„_j be n-l
functions of x such that

y=G,y,+ C^y, + +C'„_,2/„_,

is a solution of (ii) ; as this is the only relation between the m — 1

functions, we may assign at pleasure »i — 2 other relations, provided

they are not inconsistent. Let these be

dC^ dO dC„
, ^

dy,dC,^dy^d^^ +^!^i^^ =
dx dx dx dx dx dx '

dx"-' dx dx"-^ dx^ "^
dx"-' dx

then the values of the successive differential coefficients of y are

given by

dx~ 'dx'^ 'dx^ ^ "-' dx '

dx' 'dx''^ 'dx'^ "^ »-' dx^ '

dx^ '^
' dx"-"^ ' dx"-'^

"^ "- dx"-" '
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dx"-' ' dx"-' ^ ^ dx"-'
"^ "*" "-> dx-"-'

-=«-^dadry^
^

r I dx dx"-^'

da;" c^a;"

r=i dx dx"-^^ ,.fi (£«' dx"-''

The substitution of these values in the equation (ii) gives

'
I r=l W dx""-' + ^^ ^S=^j} + ^> ,=1 dx diC"-'' "'

since y^, y^, tVn-x ^^^ particular solutions.

Let A denote the determinant

' dx"-^

' dx"-'

d^-^y,

dx"-'
•
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and

Also

and

so that

rZi dx dx"-' ^ r=i ^ dx"-'

— '• =— A ^—

'

da? dx ' dx

r=i dx dx"'^

'-|-i d^dr\ ^di'-=r' A ^!:!^' = A ^

.

rti dx' dx"-' dx rii 'dx"-' dx'

the transformed equation therefore is

Dividing by X„A we have

4« r2dA ^A^^o

the integral of which is

The corresponding value of Cy is derivable from

^'=«A,=^^;e-Il^^
aw A

and therefore

a=J, + ^j"|ie"i^;'''cZ«

for the values r =1,2, ,n— 1. Hence we have n arbitrary

constants, viz. A, A^, A^, >^n-i> ^^'^ the primitive of (ii)

is thus

2/= S A,y, + A 2 2/J-r|e J^» dx.
»-=l r=l ./ i*

Sx. Solve oompletely

where P and § are any functions of .r.
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Geometrical Application : Trajectories.

78. It has already been noticed that a differential equation is

the appropriate analytical expression of any property of a curve

which is connected with its direction and its curvature; and it there-

fore follows that the investigation of many geometrical questions

ultimately depends upon the solution of a differential equation.

In the higher parts of mathematics differential equations are of

almost universal occurrence ; but in other subjects it is less pos-

sible than it is in geometry to give examples, as there is no neces-

sarily general method of arriving at the differential equation,

while its deduction in geometrical problems is obtained almost

immediately by the use of the formulae of the differential calculus.

There will be no attempt to give here any complete classification

of applications to geometry ; there will be only a single general

problem discussed, that of Trajectories.

A Trajectory is defined to be a line which, at its points of

intersection with the members of a family of curves expressed by

one equation, cuts them according to some given law.

79. As the most general form possible, let

f{x,y,a) =

denote a family of curves of which a is the parameter ; through

any point on one curve a trajectory will pass and there will thus

be a second system of curves representing these trajectories. Let

I and 7) be the current coordinates of this second system; and

suppose the analytical expression of the law which holds at each

point of intersection be

In this equation at a point of intersection f and r) are respectively

the same as x and y, being the coordinates of that point; but

^ are not the same as / , for they indicate the

direction and the curvature of the two intersectmg curves.
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We proceed as follows.

From the equation

./(«, y. a) =

we obtain the values of all the differential coefficients of y, which

occur in the relation F=0, as functions of x, y and a ; and in

each of these expressions we substitute the value of a as a function

of X and y derived from the equation of the curve. This will be

equivalent to eliminating a between/= and the equation giving

each differential coefficient. Let these values of the differential

coefficients of y be substituted in F=0; it then becomes an

equation which involves cc, y, ^, rj and differential coefficients of r)

with respect to ^. But we have seen that x and y are the same as

f and 7), since both sets are the coordinates of the same point

;

therefore F=0 becomes a differential equation in 77 and ^ only.

80. The most frequent example of trajectories is that in

which a system of curves is to be obtained cutting a given system

at a constant angle. If this angle be a right angle, the trajectory

is called orthogonal ; if other than a right angle, the trajectory is

called oblique-

In the case of orthogonal trajectories the tangeuts at a common
point are to be perpendicular, and therefore

dy dr!_

dx d^~ '

which is for this case the formofi^=0. For the given system

of curves we have

/•(.r, ?/,«) = 0,

dx dy dx

from which we eliminate a and obtain a relation between .c, y and

-,-. which is really the differential equation of this system of

curves ; let this relation be
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Now for the trajectory we have

l = «, 3/ = '?,

and Jl = -y.^
ax dr)

and therefore the differential equation of the trajectory is

The elimination of the parameter is immediate when the equa-

tion of the given family of curves occurs in the form

<^ {x, y) = a.

For we then have

dx dy dx '

which at once gives -^ independent of a, and is the form oi \jr =

for this case.

81. When the equation of the curve is given in polar co-

ordinates the same method may be applied. For we then have

as the equation of the family of curves ; if be the angle between

the radius vector and the part of the tangent to the curve drawn

from the point back towards the line from which is measured,

we have

dd
tan d> = r -y-

;dr

\vliile, if $ be the same quantity for the trajectory, and R and H
be the polar coordinates of a point on it,

tana> = ii^.

Since the tangents are at right angles,
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and therefore

d0 ^d® , „

where R and r, @ and (but not their derivatives) are the

same.

Now

dr'^dd'dr '

eliminating c between this equation and the equation of the

curve, we find a relation of the form

de\

For the trajectory

R^r, @ = e, and _ = -_- =-__;
^dR

the differential equation of the trajectory is therefore

This, when integrated, gives the equation of the system of

curves possessing the required property.

£x. 1. Find the orthogonal trajectory of the series of straight lines

We have
'T~'"^>

and therefore the differential equation of these lines is

du

Hence, by our rule, the differential equation of the system of orthogonal

trajectories is

which on integration gives

ft series of concentric circles having for common centre the common point of

the lines.
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Ex. 2. Find the orthogonal trajectory of

>•"=«" sin wtf.

Taking logarithms and differentiating, we have

ndr _ cos n6

rdd~ sinnfl'

which is the differential equation of the family of curves. For the trajectory

we have

\ dr _ de
^Te~~ dR'

and therefore the differential equation of the trajectory is

D de cos nQ „

dn, am nQ

The variables may be separated and

dR sin«e ,n-^= -n rfe,R cosme

so that ^»= yl » cos ne,

the family required.

Ex. 3. Prove that whatever be the value of n the orthogonal trajectory

of the curves included in

is a family of conies.

Ex. 4. Shew that the orthogonal trajectory of a system of confocal

ellipses is a system of hyperbolas confocal with the ellipses.

Ex. 5. Obtain the orthogonal trajectory of the system of curves

(i) ?"sinm5=a'';

(ii) ?'^= a'log(ctan5), c being arbitrary.

Ex. 6. Shew that, \£f{x + iy) be denoted by u-\-w, where u and v are real,

then the families of curves

M= const., «>= const.,

are the orthogonal trajectories of each other,

In particular shew that, if v, so obtained, be homogeneous of order n, then

the value of w is

dv Sv
nu= x-s Vt— .

8y " dx

How may the value of u be found when n is zero ?

Ex. 7. Find a system of curves cutting at a constant angle other than

right a system of concentric circles.
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82. If one of the variables be given as an explicit function of

the other and the parameter, the equation will be of the form

y=<f)(x, a);

instead of eliminating a we may proceed as follows. Let the

equation of the orthogonal trajectory be

n = 4>{^' a),

where in the last a is to be considered an unknown function of ^

to be determined so that the curve may be the orthogonal trajec-

tory. We now have

dy _d(f>

dx dx
'

drj _d<f> d(f) da

d~^~d^^d^dl'

and therefore

dx [d^ ^da d^)^ ^

Now, as no further differentiations are to take place, we may

write „^ in place of ^p, siace x is equal to ^; hence we have

^{d^J '^dad^ d^~

This is an equation between two variables a and ^; when

integrated it will determine the value of a, which, when substi-

tuted in

7? = ^ (?, a),

gives the orthogonal trajectory.

£x. Obtain the orthogonal trajectory of the ellipses represented by

Here



82.] MISCELLANEOUS EXAMPLES. 125

which gives

da? 2^ 2

This on integration leads to the equation

a2(l-|')=^-^Hlog|2;

therefore the orthogonal trajectory required is

MISCELLANEOUS EXAMPLES.

1. Solve the equations :

(iv) y'-{'•-mn^"'
(v) x^^+ {2-x4,{x)]f^=y^{x)-

(vi) {3,-,^1^=4' dx) dx^ \dx)

(vii) -5-^+ 2» cot nx-^+ (m^ - n^) y= 0;

(viii) -('+j)3+(«-y)J+-(|)'-!'-0i

<-) (D"-S="{(?J"-(3)T^
(x) sin2:r^J= 2y;

<'" S+(l)"/w+|*(->=«.

2. Assuming that the integral of

»+"-(.-5),=o

is of the form y=u + -, prove that the general primitive is given by

M=^ sin(a;+ a), v= Bcos{x+a).

Obtain the complete primitive of

^+1
dx^
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3. By the method of variation of parameters deduce the integral of

S-(-i)2-(--l)^-»-

4. Prove that the equation

(aj

+

\x)^+ («i+V)^+ (S+V) 2/=

has a particular solution of the form e^, provided

and hence solve the equation.

(SchlSmilch.)

5. Integrate

. „ <Pu . du
sm'' .z? -=-s+sm .K cos ;r ^r- = «•

dx'' dx

If w=0 when ^=0 and m=1 when .»=-, thenM=v'2-l when x^''-.
2 4

Also solve the differential equation

determining the arbitrary constants by the conditions that y=a and-j^=0

when .a?=0.

6. The equations

have a solution in common ; find the complete solution of each and the

necessary relation between P, P', Q, Q' supposed to be functions of x.

7. Prove that the equation

can be integrated by the method of § 68, provided the relation

(a+i)*+(6+i)*+(c+i)*=i

be satisfied for some one set of signs given to the radicals.

Find the integral when this condition is satisfied.
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8. Solve the equation

where a, b, k are constants, by assuming

y= {x-VaY{x-^hY,

and obtain the general integral.

Solve similarly the equation

also Ex. 1 in § 68.

9. Prove that, if ^ {x) be a particular integral of the equation

then x<^ ( - 1 is a particular integral of the equation

Hence solve the equation

^^=^«-^"""'^'

10. Prove that '\iz= <^{x) be a solution of

then f=(ftj;+ (;Q (/>
(

-5 1 is a solution of

/ , jM^K / (ax+h\

the constants a, 6, c, d being connected by the relation

ad—'bc=\.

Hence solve the first equation in question 8.

11. Shew how to solve the equation

c?"y A^ d-^-h^ A^ d'^-h/ A^
dal^ a + hxdai^-^ {a+bxfdai^-'^ "' (a+ bx)"'

where Xis a function oi x only and A^, ..., A^ are constants.

12. Integrate the equation

X being any function of x.
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13. Shew that, if a particular solution of the equation

be known, JTi and X^ being functions of x, the solution can be completed.

Hence solve the equation

dy - . sin^

ax ^ cos^ X

14. The primitive of

being y = Ay^+ By„

shew that the differential equation which has for its primitive

z=A'y^+ B'y^^

is

„ , . (Pz { n , -, , .s dF\ dz

+ TO |i(m - 1)^ + i (to- 1)/)^ + ?«ji?'(.^-)}«=0,

where P{x)=y\Uf
(Spitzer.)

15. Prove that, \iy-^ and y^ be two particular integrals of the equation

the roots of
?/i
= and y<i

= ^ separate each other so long as both of these

integrals remain continuous.

(Sturm.)

16. Solve the differential equations ;

(i) sin25-^+ sin5cos5-^-?/ = 5-sin^;

(") 3 + ^q^2/=^^g+log^);

(iii) ( 1 + ax2)^ + ax£= rfiy
;

(iv) x2 (.r2+ a)^+ .r (2:);2 + ffl) ^ = nh/
^ ' ^ dx^ ^ dx

jnx .

(vi) (a2-^2)g_8^J_i2y = 0;
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17. Solve the equation

where Q and R satisfy the relation

When this relation is not satisfied, can the equation be solved by the intro-

duction of a factor fi so chosen that the new coefficients satisfy the relation 1

18. Solve the equation

d^y_ hy

(Stokes.)

19. Find the form of (j) such that, if .v=(j> {£) be substituted in the equa-

tion

dx^ dx ^

it will become

and thence solve the former equation.

20. Prove that the equation

can be transformed into

s-^i-^=«

when the relation between s and x is given by

and * {z) is given by

Hence reduce the equation

to the form

dx^ xdx-'^y^'' ' ^

21. Solve the equation

where A and B are constants.

F.
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Verify that the equation

dx^^ \ii?^^ ilx) dx^ afi

is transformable into the foregoing equation by the substitution

X= sin (arc tan z ),

provided 5'2=4.B^-4:A + fi.;

and find the relation between y and v. Hence solve the second equation.

22. By transforming the dependent variable from y to e^ solve the

equation

pP dPdj_^
ax' ax ax

Hence solve the equation

dh>

d.j;2
+

(Sparre.)

23. Prove that the complete integral of the equation

d^a- 5 fdtrY ,22a

vfhere a is the Sohwarzian derivative of y with regard to x, is

y {A' + B'x+ C'x'^)=A +Bx+ Cx\

24. The arc of a plane curve measured from a fixed point j4 up to a point

P whose rectangular co-ordinates are x and y is denoted by s ; obtain the

general Cartesian equations of the curves for which the following equations

respectively hold :

(i)
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26. Integrate completely the equation of the curve in which the radius

of curvature is proportional to the arc measured from a fixed point.

27. Find the curve in which the product of the perpendiculars from two

fixed points on the tangent is constant.

28. Find the curve which has an evolute similar to itself.

29. Find a differential equation of the first order of the curve, whose

radius of curvature is equal to n times the normal ; and shew that it is always

integrable when n is an integer.

In particular shew that when }i= 2 the curve is a cycloid, when «=1 a

circle, when w= - 1 a catenary.

30. Obtain a system of curves cutting at a constant angle other than

right a system of confocal ellipses. (Mainardi.)

31. Obtain the orthogonal trajectories of the curves

(i) .2;2+y2 = c^;

(ii) ^2 +y2 + c2= 1 + 'icxy
;

(iii) 3? +y^ = 'iaxy ;

(iv) rr'= (?
;

in the last r and ?•' are the distances from two fixed points. ,

32. The curve for which the ordinate and the abscissa of the centre of

gravity of the area included between the ordinates x=a and x=30 are in the

same ratio as the bounding ordinate y and the abscissa x is given by the

equation

a? y^

33. The curve whose polar equation is ?-"'cosm5= a™ rolls on a fixed

straight line. Assuming that straight line to be the axis of x, shew that the

locus of the curve described by the pole in the rolling curve will have for

its equation
2m

'" {($)'-'-V"-
In particular shew that, when 2»i= l, the described curve is a catenary

;

when m= 2 the described curve is an elastica.

(Frenet.)

34. Shew that, when a first integral of the equation j^ =/(*•, y) is given

in the form -^= ^{x, y, c), then the primitive is

/
''^{dy-4>dx) = G.

(Jacobi.)

A first integral of ^=«/ (1 +2 tan^.i;) is of the form '^=y4>{x)+ c^\f {x) :

determine the primitive.

9—2



CHAPTEK V.

Integration in Series.

83. It may happen that a differential equation, the solution of

which is required, comes under none of the preceding classes which

are all of some particular form, and therefore that the methods

applicable to these fail ; recourse is then had to approximation to

obtain the value of the dependent variable. The form of approxi-

mation which is most frequently adopted is that derived from

converging series ; by retaining a large number of terms the error

can be made small, and the series may be considered to be the

value of the variable. That this method is a priori justifiable

may be seen as follows.

The given equation is a relation between the successive diffe-

rential coefficients of y and may be considered as giving the one

of highest order in terms of those of lower orders ; thus if it were

of the second order it would give -y^ in terms of -r- and y. When

differentiated once it would give ^-^ in terms of -^,, -^ and y,

dv d^z/
that is, in terms of ~- and y, since ts is expressible in terms

of these two, and so for each of the differential coefficients of

higher order, which can thus be expressed in terms of -^ and y

;

but the differential equation will not give any relation between
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dii
j- and y, which are thus independent of one another. Suppose

now that a value a be assigned to x and that for this value of x we
du

make y = A and -^ = B, which constants are, in general, arbitrary

;

then the equations derived by successive differentiation furnish the

values for x= a of the differential coefficients of y of successive

orders. Let these be denoted by G, D, E,.... Now if the value

of 2/ be ^ («), which we assume is a function expansible by Taylor's

theorem in a converging series of ascending powers of x — a, we
have

<^ {x) = ^ [a + {so — a)]

= ,(.)H.(.-<.)^-fl.(iZf)- ^) +<^- iiMl,....

where —%-r^ stands for the value of — , ,
' when a is written

da ax

for X after differentiation. Inserting now for the various coefficients

their values, we obtain

and this, if a converging series, is a solution of the given equation.

It should be remarked that for some particular value of x the

differential equation may determine not the coefficient of highest

order but one of lower order ; thus the equation

d?y 2n dy _ 2 _ rj

dx^ X dx

dii
would for values of x other than zero determine -t4, but for a; =

would give -^ = 0, if we consider infinite values of any coefficient

excluded.

The foregoing method and another, which is in practice substi-

tuted for it and which will be explained in the next article, is

almost impracticable in the case of equations which neither are

linear nor can be transformed so as to become linear ; for such

equations the determination of more than the first few terms of

the expansion would entail great labour.
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Ea;. 1. Let us apply the foregoing method to the equation

When differentiated n times the equation gives

and therefore when x=Q

d.v,)^ +
'^^ " dx^^

Now the given equation leaves y arbitrary, say= ^, and -^ arbitrary, say= 5,

whena! = 0; but-T-^=0.

Hence we have

d^ + ^y _ d^-h)

dx^~ ^ dx^^-^

similarly

= (-l)^3p(3p-3)...6.3^-^,

= 0;

^,= (-l).(3^-l)(3^-4)....5.2^

= (-iy{3p-l)(3p-4)... .5 .2. B;

and ^^= (-l)P(3p-2)(3^-5).,..4.1.y„

= (-l)»(3p-2)(3p-5)... .4.I.A.

The expansion of y is, by Maclaurin's theorem,

ydi/ x^ d^y afl d^ti x/^ dhj
-i/O'^-^

dxo ^ 2! c^V 3! dx„^ 4! (^V

This is the sum of two converging series and contains two arbitrary constants,

and is thus the primitive of the equation.

Ex. 2. Solve
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JSx. 3. Obtain an integral of the equation

dx^ dx

in the form

__ aV -,
_ inx m^x'^ mV wiV

^~
L 12 + 12

. 22
" 12 . 22

.
32

"•"

12 . 22 . 32 .

42

"

84. The preceding investigation shews that, by means of the

differential equation and the expansion of a function in terms of

the independent variable as given in Taylor's or Maclaurin's

theorem, an expression in the form of a series can be obtained for

the dependent variable ; but, instead of working through what is

sometimes a troublesome process, it is convenient to accept the

principle that a series can be obtained and so to assume for y
some series arranged according to powers of x with indeterminate

coefficients and indices. This series is then to be substituted for

the dependent variable in the differential equation, and as it is a

solution of that equation it must make the equation an identity

;

the comparison of the indices., of the independent variable will

shew the law of their progression, and the comparison of the

coefficients of the different terms involving the same powers of

the variable will give the required relations between the coefficients

in the expression assumed. The latter will then for such values of

the independent variable as leave the series converging be a

solution.

80. As the method just indicated is really equivalent to the

earlier one, it is not better suited to the solution of non-linear

equations ; but much labour is saved by it when the differential

equation to be solved is linear. One of the most important forms

to which it is specially applicable is that which may be written

^("i)+^^("i)h = ''

where cf) and i/r are rational algebraical integral functions. To

solve this, assume

where m^, m^, m^, ... are exponents in ascending order of magni-

tude; since
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dxj

the equation, with the value of y substituted in it, gives

+ A^f (mj a;"".-! + A^f (m^) a;'"^"' + . . . = 0.

In this TWj — 1 is the lowest exponent and it occurs in only a

single term; as the left-hand side of the equation just written

down is to vanish identically, this term must disappear, and therefore

AtK) = 0;

or, since J., is a coefficient of a term actually occurring and so is

not zero, we must have

i|r (mj = 0.

A comparison of the indices of the remaining terms shews that

m^ = 'm^ — l and therefore m^, = rWj + 1,

and so on; while a comparison of the coefficients of terms involv-

ing the same indices gives

A^<i>{m^)+A,ylr[m,) = 0,

and so on. Take now any value of m^ as given by the equation

i|r (mj = 0, say m^ = a; then as A^^ is quite arbitrary denote it by

A. The remaining coefficients are given by

i|^ (cH- 1)

'

_ <^{a + l) , _ <f>ia)(f>{a+l)

and so for the higher coefficients; the corresponding value of y is

thus

(l>(a)<t>{a + l)^(a + 2)
x'+..^^
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The expressions connected with the other roots may be simi-

larly obtained ; and as the equation is linear the sum of all these

values of 2/ is a solution.

Of this general form the most important example is that equa-

tion which has for a solution the series known as the hypergeome-

tric series; it is discussed in full detail in the next chapter.

Ex. 1. Prove that the primitive of the equation

cPy 'indy _
dx^ X dx ^

is given by

nx^ 7n?x^ ~\

y=A\\-
2(2m+ 1) 2.4(2«, + 1)(2m+ 3)

+Bx^-^''\ 1- mx^ m'x.2/>t4

2(3-2») 2.4(3-2?i)(5-2re) ]
Ex. 2. In the case when 2»= 1, the separate parts involving the arbitrary

constants in Ex. 1 become the same, each being

If this be denoted by v, and y — uv= w, where m and w are to be determined,

we have on substituting, since w is a solution of the original equation.

d'^w \dw
dx^ X dx

fdH 1 dM\
, g^^ _

\dx''' xdx) dxdx

As we have two arbitrary quantities u and w, we may assign any one condition

we please ; let this be

d'^u 1 du_
dx^ X dx

The value of m hence derived is A+B log x, and thus

dho 1^, ?:?<^_o
dx'^ xdx X dx '

or

d:^w \dw „„ fl mx^
,

'^^•^ wts.r'' 1

^ + ^5^ + '^"'=^^™l2-2r4 + 2r4r6-2^4^6r8+ -j
•

The value of y is now
v{A+B log x)+w,

and therefore contains two arbitrary constants, the total number necessary to

a complete integral ; hence we require only a particular integral of the equa-

tion in w. To obtain this write

w=B'+ B^x+B^v^ + B^3fl+BiX^+...;
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then

ax' X ax X

Substituting and equating coefficients of different powers of x, we have

from the

coefficient of a-"1 B^=0
;

Kfi mB' + '2,^B^=Bm;

A-i ZW^+mB^=0
;

^'"-^ (2n+ l)2An+i+ ™52.-i= 0;

Bm^
^^ ^'B,+mB,= -^^-

-"" (2^)^A„+m^.„-.=(- 1)"--^

2 AK%K%-^Y.^n
These equations give

-Si= = i?3=... =B2„-i=...,

so that no terms involving odd powers of .v occur in w. For the coefficients

of even powers we have

ro ,

,

, V -n, M'
-B£-r,{i+^)+-B'22

_
42 V2 ' /

I •" 22
.
42 '

'nfi ,, 1 ,% ™ ™'
~

22. 42.62
^^"'"^"'"'^ 22.42.62'

and generally

OT" /I 1 \ B' . TO"
-B2n=( -l)""^^

22. 42. 62. ..(2»)2(^ra'*'^i7^
"'"••"''*"'"

V"*"^""^^" 22. 42. 62.. .(2m)2-

Hence the value of y is

(4+51og.r)|l -^ +22y42-2r42762 + -]-

t
~ "22" + 22T42

~ 22 . 42 . 62 J

!l
i22.42.62...(2?i)2l^«^m-l^"-^a^-

iyj-

+ B'\\

+ 2

As B' is undetermined, there are apparently three arbitrary constants ; but

it will be seen that the expression multiplied by B' is the same as that multi-

plied by A and therefore these two constants coalesce into one new arbitrary

constant A! which may replace A + B'.
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Ex. 3. Obtain the complete integral of the equation

dx'- dx "

in the form

, / 3.r2 1 lA-3 blx*
y -i

I •^ "'"'" 23 .
33 23 . 33 . 43

"*"

. X X^ 3?
'

I
* ~ T^ "^ T9 ci5

~
t"2 H^ 09 "*" Ty12 ' 12 22 12.22.32 ' 12.22.33.42 •

j
iOgllX.

(Fourier.)

^ij;. 4. Integrate in series, and express in a finite form the integrals of,

the following equations :

—

(ii) (^_.^)g + (i_3^2)J_.,.^= 0.

86. There are two special points which arise in the integration

of some differential equations ; they owe their origin to the same
cause, but they require to be dealt with separately.

As an example of the one, let us recur to the series obtained as

a solution of the equation
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A^<f> (a) + A,f {a + 1) = 0,

A^cj) (a + 1) + ^3^ (a + 2) = 0,

A^cj}{a + k-l) + ^,„ f{a + k) = 0.

Now since y]r (a + k) vanishes and Aj^^^ is not infinite, being a

coefficient in a series supposed converging, it follows that either

j4j. or (f)(a + k — l) is zero. Rejecting the latter on account

of the hypothesis that no zero factor occurs in the numerator

we have A,^ = 0, and thence from the preceding equations we
find that the coefficients A^, A^, ..., Aj^_^ are all zero. Hence the

part of the series which precedes the term «* inside the bracket is,

on account of its coefficients, evanescent, and the series actually

must begin with the term Ca;"'^*, that is, with Gx"; and this will be

the series derived from the root b of the equation i|r (m) = 0. One
of the particular integrals has thus disappeared, but to obtain one

in its place we may proceed as in Ex. 2 in § 85. Denoting by v

the one which remains and has absorbed the other, we may write

y = uv + w,

and, after substitution, assign some one relation which shall serve

to determine u and w and render the differential equation easier

to solve; this relation will usually be determined by the special

form of the equation.

Ux. 1. Consider the differential equation

Substituting y=^o^+Ji^ + i+ ^a^™-^^...

(this is easily seen to be the necessary form), we find as the equation deter-

mining m
m («i — 1) — 4m+ 4 = 0,

i.e. (m-1) (m-4)-0.

Hence a=l and 6= 4, so that the roots difier by an integer. It will be found

that, on taking the root ot= 1, the equation is of the form discussed and that

the terms up to, but exclusive of, x^ disappear ; while the series derived from

the root m=4 is Ax^e^.

Complete the solution.

Ex. 2. Solve

"^S+-(l+-)|+ (3^-l)^= "-
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87. We now proceed to consider the other special point.

Hitherto it has been assumed that no vanishing factor occurred in

the numerator; and the result of the necessary alternative was

indicated. But a vanishing factor may occur in the numerator of

some of the coefficients of the terms within the bracket, either in

that term in which there was a vanishing factor in the denomina-

tor or in an earlier term. In the latter case all the terms which

do not have a vanishing factor in the denominators of the respective

coefficients disappear; and if such a factor never occurs in a later

term the series will end at the term next before the first which

contains that vanishing factor in the numerator, and the solution

will thus be expressed in a finite form. But some vanishing

factor may appear in the denominator of a later term and the co-

efficient of this term will then take the indeterminate form 0/0,

while the intervening terms will disappear; and all the terms after

this will contain this indeterminate coefficient. The series will

then be of the form

Ax" + Bx"*' -H . . . + Fx"^' + ^ {Kx-^'' + Lx""^' + ...),

where A; — 1 is not less than /. This may be written

A (*" 4-| x"^' + ... +2^"^') + M (x'^-' + ^x"^'^' +....],

where A is arbitrary and BjA, ..., F/A are determinate; M, being

equal to ^ x 0/0, is arbitrary (on account of the indeterminateness

of 0/0) and L/K, ... are determinate. This series is a solution

of the corresponding differential equation and therefore will be a

solution when a particular value is substituted for the arbitrary

constant; hence

.(x'
B F

obtained by writing M= 0, is a solution. In such a case there is

therefore a solution of the equation expressible in a finite form.

Ex. 1. Consider as au example



142 INTEGRATION IN SERIES. [87.

When we write y = Ax'^+ Bx'^ "*" ^+ . .
.

,

the equation to determine m is

to2-9=0,

and therefore to= -3 or +3.

For the root - 3 it is not difficult to obtain the series

t2
2 1 "1

1 + B *+ r~o .i'^ + terms in a?, a,*, oifi which vanish

, . ,r -2.-1.0.1.2.3 . -2.-1.0.1.2.3.4 , "1

+ -^^ ^[ -5.-8. -9. -8. -5.0
^-

-5. -8. -9. -8. -5.0.

7

^ +-J-
Write M instead of

-2.-1.0.1.2.3
A;-5.-8.-9.-8.-5.0

and then the series is

^^^
L^~ 7 "^"^(42-

32) (52-32) ^"(42- 32) (52-32) (62-32)*'^ "•"••]'

thus verifying the theorem that one solution of the equation is expressible in

a finite form.

Ex. 2. Verify the general theorem in the case of the equation

Ex. 3. Solve the equation

g+(y-2m)J + (m2-?m-|)y= 0.

88. Further illustrations of these special points will occur later

and they need not therefore now be considered in greater detail

;

various other points arise which will be discussed in connexion with

special equations. Thus it has not been stated that a series must

always proceed in ascending or in descending powers of the inde-

pendent variable, but the comparison of the terms in the differential

equation after the expression for the dependent variable has been

therein substituted will indicate the nature of the series. In the

case when one of the solutions becomes evanescent one method has

been pointed out, which will be useful for supplying the deficiency

thus caused ; another will be indicated below. In fact the difficul-

ties that arise are usually connected with special equations and not
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with the general equation; and therefore some special equations

will be considered. Of equations of a particular form there are

four which are more important than the others included in the class

soluble in series; these are

First, the differential equation of the hypergeometric series

which will be discussed separately in the next chapter;

Second, Legendre's equation;

Third, Bessel's equation;

Fourth, Riccati's equation

;

the last three of these will now be discussed in order. It must

of course be understood that what is carried,out here is merely the

complete solution of the differential equations and that there is no

attempt at an exhaustive investigation of the properties of the

respective functions determined by the dependent variables.

Legendre's Equation.

89. This differential equation is

or, what is the same equation,

in which the quantity n is a constant. The equation is one which

frequently occurs in investigations connected with questions in

most of the branches of applied mathematics ; in these cases n is

usually, but not always, a positive integer. The equation is one

of the second order and has therefore two independent particular

integrals, and every other particular integral can be expressed in

terms of these two; but it will be found that the form of these

fundamental particular integrals is different in the two cases when

n is, and when n is not, a positive integer.

We proceed to obtain these integrals. In accordance with the

general method of integration by series we write

y = J^x'", + A^af^ + A.x""' + ...



144 legendke's [89.

and substitute; then we have

n{n + l) (Ay^ + A^x""' + A^x'"' + ...)

= ^ {(«= - 1) (m.^,a;"-' + m^A,ar--' + mj.x'"'-' +...)}

= m^ (m^ + 1) A^x'^^ - m^ {m^ - 1) A^co'"^'^

+ m, (m, + 1) A^x''-^ - m, (m, - 1) A^x""^-^ +

and this must be an identity. An inspection of the equation shews

that, so far as powers of x are concerned, we have

m^ = m^~ 2,

or the series must be one in descending powers of x; we there-

fore now assume that m^, m^, m^, ... are arranged in descending

order of magnitude, their common difference being 2. The com-

parison of coefficients of the same powers of x gives, for those of a3™>,

{«2j (»2j +l)-n{n+ 1)} A^ = 0,

or (Wj — n) {m^ -t- n -|- 1) ^, = 0.

Now A^ is not zero, being the coefficient of the highest term in

y; hence either

m^ =n,

or Wj = — (n + 1).

The relation between the coefficients of consecutive terms arises

from equating the coefficients of x'"'-'^'^' on the two sides; it is, for

values of r greater than unity,

n{n + l)A^={m,-2r + 2) {m^-2r+S)A^

- (wij - 2j- + 4) (»?, - 2r + 3) J,_,

,

and this gives

(n — m^ + 2r — 2) (n + m^ — 2r + 3) A^

= -{m^-2r+ 4) {m^ - 2r -f- 3) A^_^.

90. Consider first the solution corresponding to

m, = n.
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The highest term is then A^x"; and the relation between the suc-

cessiYe A's is

(2r-2)(2M-2r + 3)^.. = -(w-2r+4)(w-2r + 3)^^.,,

so that

A __ (?2,-2r+4)(»-2r + 3) .

'~ 2(r-l)(2w-2r+3) '-'

^ , > ^, n(n-l){n-2) ... (w-2?-+ 4)(ra-2r+ 3) .

'^ ' 2'~\1.2.3...(r-l){2n-l){2n-S)...(2n-2r + S) "

and therefore the series becomes

„ n(n-l) _^„^ ,
n{n-l){n-2){n-S) ,n—

4

^'f 2(2w-l)'^'''''*' 2.4(27i-l)(2w-3)''^'""

Let the series within the bracket be denoted by 2/^, which is

therefore a particular solution. When n is a positive integer, the

series is finite; the last term is, when n is even,

^ n(n^l)(n-2) 2.1
^ ^ 2.4<...(n-2)n{2n-l)(2n-3)...(n + l)'

or, what is the same thing,

. .jm n\n\n\
_

^ ^ ^n\ \n ! 2w !

'

while, when n is uneven, the last term is

,_TnM»-i) n{n-l){n-2) 3.2
^ ^ 2.4...(?i-3)(n-l)(2M-l)(2n-3)...(« + 4)(»i + 2) '

or, what is the same thing,

I
-.xKn-i) n\n\{n-l)\

^ ^> \{n-l)\\{n-l)\{2n-l)r'

the numbers of terms in the two cases are respectively |w4- 1 and

When n is an integer, 2« is an even integer, and therefore a

zero factor can never enter into the denominator in this case; thus

the series considered will never come under the class considered in

§ 87 which yields two integrals.

¥. 10
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The series y^, multiplied by

2".w!n!

n being a positive integer, is usually denoted by P„ ; this function

is an extremely important one in physical applications.

Ex. 1. Verify that

2-.n\P,=-^J{x^-in,

and that P„ is the coefficient of 2" in the expansion in ascending powers of z

oi{l-2xz+z^)~K

Hence shew that v= (l- 2xz+ z^)~' is a solution of the equation

Bx. 2. Prove that the roots of the equation yj=0 are all real and numeri-

cally less than unity.

Bx. 3. Prove that the sum of the coefficients in F„ with their proper

signs is unity.

Ex. 4. Obtain the equations

(i) «P„==(2»-l)^P„_l-(m-l)P„_2;

(ii) ixi-l)'i^=nxF,-nP„.,.

In the case when n is not a positive integer the series y^ pro-

ceeds to infinity; and for convergence it is necessary that x should

be greater than unity. But in particular when 2n is equal to some

positive odd integer, say 2r — 1, then the coefficient of x"'^' has a

zero factor in the denominator, and no zero factor occurs in the

numerator either of that term or of any subsequent term; hence

(by § 86) the terms whose indices are higher than n — 2r do not

exist in this solution of the differential equation, which will there-

fore begin with cc'^^'"' multiplied by some new arbitrary constant.

But since 2n = 2r- 1, therefore n-2r = -(n + 1), or the integral

is an infinite series of descending powers of x beginning with a;"'"'^''.

To the consideration of this integral we shall now proceed.
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91. We take now the second solution of the equation deter-

mining the value of m^; this is - (w + 1), so that the term with

highest index may be taken to be A^aT^'^'^'-K The relation between
the successive coefi&cients is

{2n + 2r-l) {2r -2)A^ = (n+2r- 3) (n +2r-2) A^_,

for values of r greater than unity, and therefore

J ^ (n + l)(n + 2) (n+2r-2)
' 2'^M . 2 . 3 . . . (r - 1) (2w + 3) (2?i + 5) . . . (2n + 2r - 1) "

so that the series is

*M 2(2n + 3) "^

in + l)(n + 2)(n + S)(n + 4>) )

^
2.4(2n + 3)(2«, + 5)

-t--.-|-

Let the series within the bracket be denoted by y^, which is a par-

ticular solution; the series y^ multiplied by

2\n\nl
(2n + l)l

(n being a positive integer), is usually denoted by Q„; for con-

vergence it is necessary that x should be greater than unity. This

series y^, or the equivalent function Q^, is also of great importance

in physical investigations.

When n is a positive integer, the series proceeds to infinity.

When w is a negative integer, y^ is a finite series; if w = — 2p,

the series begins with »^*"' and proceeds forp terms; if w = — (2p + 1),

the series begins with af^ and proceeds for p + 1 terms.

When 2n is equal to an odd negative integer other than — 1,

say - (2r+ 1), then the coefBcient of x'^"'^'^^- has a zero factor in

the denominator, and no zero factor occurs in the numerator of any

term in the series; hence as before the preceding terms do not

exist and the series begins with x"^"^'''''' multiplied by some

new arbitrary constant. But since 2n = - (2r + 1), therefore

— (n + 2r + l) = n, or the integral y^ becomes an infinite series of

descending powers of x beginning with x", i.e. y^ becomes y^.

10—2
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92. We thus have the following results.

I. When n is a positive integer, there are two independent

solutions of the differential equation; (1) y,, a finite series, (2) y^

an infinite series; and the primitive is

y = Ay^ + By^.

II. When n is a negative integer, there are two independent

solutions; (1) y^, an infinite series, (2) y^ a finite series; and the

primitive is

y = Ay^ + By^.

III. When n is not integral and 2w is not equal to some odd

positive or negative integer, there are two independent solutions

;

(1) 2/j, an infinite series, (2) y^, an infinite series; and the primi-

tive is

y=^Ay^ + By^.

IV. When 2n is equal to a positive odd integer, there is only

one solution of the differential equation, for y^ becomes y^, this

solution being an infinite series; the primitive is thus not expressi-

ble in terms of y^ and y^ alone.

V. When 2w is equal to a negative odd integer, there is only

one solution of the differential equation, for y^ becomes y^, this

solution being an infinite series; the primitive again is not expressi-

ble in terms of y^ and y^ alone.

93. It therefore remains to obtain the complete integral in

the last two cases. Let v denote the single particular integral ob-

tained, so that V stands for y^ in IV. and for y^ in V.; and let

y =uv — w,

where u and w are, as yet, indeterminate. When this is sub-

stituted in the differential equation, we have

s{<i-^') gl +..(« + !)» +.ja-«.)g-2«£

,
„ c^M ,, 2\ dv

,

^^doo^^-'^^dx^"' {*^^~*'^£j"'"''<^'*+-^^^
d [,^ ,^ dv

dx
-0.

But since i) is a sokition the last term disappears; and as the

only condition imposed on u and tu is that y must satisfy the equa-
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tion, we may arbitrarily assign another, which will be so chosen

that the coefficient of v may vanish; hence

,T ., cPu _ du „(1-.^)^,-2.^ = 0,

so that (as^ - 1) T- = constant.

As we are seeking a second particular solution it will be con-

venient to make it as simple as possible; hence we may give a

definite value to this constant and write

and therefore a suitable value of u is given by

fx + IN

-i'°«(S
If the constant had been made — A, the value of u would in

its most general form have been

-i^iog(:4^)+^.

The equation to determine w now becomes

d (.^ „, dw] , .

.

-dv

of which we want the Particular Integral. Hitherto the equations

have been quite general ; the two cases must now be considered

separately.

94. Consider first the case of 2m equal to a positive odd inte-

ger; then

^ ^ + 2.(2n-H3r''

and therefore

(w+l)(w+2)(n + 3)(«-f-4) ,,, ,

^ 2 . 4 . (2n 4- 3) (2n + 5)
^ '

l{(i-^^)£}+'^(-+i)-

= -2(n-Hl) -(n+., ,

(n-^2)(>^+3) ,„«,

+ 2(2w + 3)
^
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Let w = B.cc-^"^^ + B^x-^"^'^ + ^^a;-"'^'' + . . .
;

then substituting and equating the coefficients of corresponding

terms in x we have from the terms involving as"'""^^'

-S, {n (n + 1)- (ii + 1) (71 + 2)} = - 2 (m + 1),

so that -Bi = 1

;

while from the terms involving a;"'"'^^''' we have

B^ {n (n + 1)- (n + 2r) (n + 2r- 1)} + (w + 2r - 2) (n + 2r - 1) B^_^

(w + l)(w + 2) (w + 2r-,l)

2 . 4 . . . (2r - 2) (2«, + 3) (2« + 5) . . . (2n + 2r - 1)

'

or, what is the same thing,

B^ (2r -1)2 (n+r) = {n + 2r-2) (n + 2r - 1) B^_,

(w + l)(w+2) (n + 2r-l)
2.4...(2r-2)(2w + 3) (2n + 5) ... {2n+2r -1)'

The general value of B^, deducible from this, is complicated;

the values of the earlier coefficients are

„_ (n+2)(n + 2)(3n + 4<)

^ 3(2w + 3)(2w+4) '

o _ (ra + 2) (w + 3) (n + 4)-(w + 5) (SOn" + llQn + 92)
' 3.4.5(2« + 3)(2«, + 4)(2?i + 5)(2?i + 6) '

and so on ; but there is no advantage in writing down more of the

coefficients, as the expression will soon be put into a different form.

Let the value of w with these coefficients substituted be denoted

by Wj ; then the new solution of the original differential equation

in the case when 2m is equal to an odd positive integer is

and the primitive of Legendre's equation is

(X 4- 1\

95. Consider now the case of 2n equal to an odd negative

integer; then

v = x''-
''<^"~^)

r-^ ^ n(n-l)(n-2)(n- S) ,

2(2n-l)"' + 2.4(2ft-l)(2m-3)" "^ "••"
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and the equation determining w is

Let w = C^a;"-'4-(7X"' + C^3a'''"'+---;

then substituting and equating the coefficients of the highest

term, we have

C^{n{n + 1) -n{n -\)} ='2.n,

or G, = \;

and equating the coefficients of the terms involving a;''"^'"^' we have

C, {w (?i + 1) - (w - 2r + 1) (n - 2r+ 2) } + (n - 2r + 3) (w - 2r- -f 2) G^_^

n(n-l) {n-2) ... {n- 2r + 2)
:(-ir'2

2.4... (2r-2)(2n,-l) ... (2w-2r + 3)"

As in the preceding case, the coefficients soon become compli-

cated ; a different form will be given to the solution, but the

values of the earlier coefficients are

in-l)in-2)iSn-l)
3(2w-l)(2n-2) '

(n-l){n- 2) (n - 3) (w - 4) (30w° - 50n + 12)
^~ 3.4.5(2?i-l)(2n,-2)(2re-3)(2n-4) '

and so on. Let the value of w with these coefficients be denoted

by w^; then the new solution of the original differential equation

in the case when 2n is equal to an odd negative integer is

and the primitive of Legendre's equation is

y = Ay^ + Bw, + 1 By, log
^J^j)

.

Ex. Prove that the Particular Integral of the equation

is XP„.i where X is a constant ; and that the Particular Integral of the equation

is "K'Qn+x where X' is a constant,
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Relation between the particular solutions.

96. We have now obtained the complete integral of Legendre's

equation in all cases when «, is a real constant, by deducing two

integrals which are linearly independent (§ 72) of one another.

But we know (§ 65) that when one integral of a differential equa-

tion of the second order has been found, the primitive can be

expressed in terms of it and, if necessary, of other functions, and

therefore any other integral is so expressible; we proceed to

x)btain this relation for the cases—viz. I., II., III. above—in which

it has not been obtained. The first form in which it may be

given is derived by meaas of § 65. We may define P^ and Q^ by

the generalised equations

^ n(2n) f n{n-l)
" 2''n(n)n(n)r 2(2w-l) ^'

and - ^-nWnC^) { l^n + \){n + 2)
ana y„- jj(2n + l) f + 2(2« + 3)

"^ +'

whether n be integral or not; 11 (m) is Gauss's 11 function and is

r (n + 1), and in the case of n integral is n ! (see next chapter, § 125)

;

and P^^ and Q„ are still integrals of the Legendre's equation, since

they are respectively constant multiples of y^ and y^. We there-

fore have

[Y-a?)^^-2x^-§^ + n{n + l)Q,=0;

multiplying the former by Q„ and subtracting the latter multiplied

by P^, we have

(^->)(«.§-^.t)=^.

where j4 is a constant, which is definite and not arbitrary since Q^
and P„ are definite functions. To find A we consider the terms

containing the highest powers of x; these are

or

n(2w-i-i)
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and in P _Il(^
2"n(n)n(«) '

^^"^^ ^ = i^St)^'^ + ('^ + !» = !'

since U (2n + 1) = (2w + 1) H (2«) ; and therefore

This gives

or, its equivalent

and therefore

^»_P^« = _J_
^»

cZa; "dec »' - 1

'

d /P„\ _ 1

dx\pj (l-^^)P/'

?„_ p <^^ [" dx

no constant being needed, as may be seen by comparing the coeffi-

cients of the highest powers of x in the expansion of the two sides

in descending powers of x.

97. This resTilt may be written in a different form ; but it is first neces-

sary to prove two relations between the functions given by Legendre's equation

for different values of n.

From the expressions given in the preceding article we find that the

coefficient of a?"+i-2r jj^ P„+j-P„.j is

, y n(2m-2) (n-l)(n-2)...{n-2r+ 2)

^ ' 2''-in(m-l)n(»-l) 2.4...2?'(2/i + l)(2fi-l)...(2M-2r-H)

the last factor is easily simplified into

(2ra+l)2(2?i-l),

and therefore the coefficient is

f_-.y
n(2w) n(n-l)(n-Z)...(n-2r+2)

'^ ' 2^U{n)nin) 2.4:...2r{2n-l){2n-3)...{2n-2r+ 3){2n-2r+l)^ ^ ''

Hence the coefficient of a^'^"" in

• n-l

dx dx

is ( lY(2n\l)
°^^^^ ^(r.-l)...(>^-2r+ 2)(»-2r+ l)

^ ''
^^"^ '2»n(?i)n(TO)2,4...2»-(2»i-l)(2ra-3)...(2m-2r-|-l)'
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that is, is the coef&oient of the same power in (2?i + 1) P„. These two ex-

pressions are thus equal term by term ; and therefore

In the case when «, is a positive integer this leads to a finite series for

- , VIZ.

:

dP,

dJ'-''^---

^^=(2«-l)P„.i+ (2n-5)P„_3+(2ji-9)P„_5+.

the last term of the series {n + l)P-^ or nP^Q..&. n), according as n is even

or odd.

If m be not a positive integer, the series will proceed to infinity and will

dP
still be the value of -3-^

,
provided x be greater than unity.

98. Now by § 95 vsre see that

is a solution of the differential equation, if w be determined as the

Particular Integral of

dx\- dx) dx

= 2{(2^-l)P,_, + (2n-5)P„.3+...},

by the formula just obtained. To obtain this Particular Integral

we write

and substitute; since

the left-hand side has, as the coefficient of a2,._i-P„_2,.+i,

w (m -H 1) - (w - 2r -f 1) (w - 2r -f- 2)

= 2 (2r - 1) (m - r -H 1)

;

and therefore

<^2r-i (2^ - 1) (n - r -fl) = 2ra - 4r -)- 3.
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The value of w is therefore now definite ; and the correspond-

ing solution of Legendre's equation is

. „ . foo+l\ \2n-l „ ,
2n-5 „

the last term being

(n-l)(in + l)

2n-^
^ 5{n-2) "-'^

P.,

when n is even, and

1 p •
1

when n is odd.

99. We have now to compare this solution with Q„. Let it

be supposed expanded in a series of descending powers oi x; it

must then be of the form

where A and B are constants. Now in the series the term in-

volving x" does not occur, since

p+l\ 111
and therefore A miist be zero ; hence the coefficients of the powers

between x" and x'^"'^^'' exclusive of the latter disappear; this is

easily verified for the first few. The above solution is therefore

a constant multiple of Q„, and thus

T. 1 Z^+lA f2w-lD
,

2w-5 „

+ ^^^^-^P„-.+
}

2to-9

5(w-2)

-iPJog{'^)-Z.,

where 2^ stands for the series which, when n is integral, is a func-

tion of degree n — 1. Hence

^P~^^°^^-l F'
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and therefore

""dxypj x'-i p:

where U is an integral function of x of degree not higher than

2n — 2. When we suhstitute on the left-hand side from § 96, it

becomes

B 1 d;

or B = P: + {x'-1)TJ,

where the right-hand side is a finite integral function of x. This

is true for all values of x ; writing a; = 1 we have B = value of P^
when X is unity. Now in Ex. 1 of § 90, P^ was indicated as the

coefficient of z^ in the expansion of (1 — 2xz + z^)'^ in ascending

powers of z ; and therefore the value of P^ when a; = 1 is the

coefficient of /' in the expansion of {l — 2z + s^)"*, i.e., of (1 —z)~^.

This coefficient is unity ; so that P^ when a; = 1 is unity; and thus

B =1 and the equation becomes

Q. = iPJog ('-±\)-Z„.

Ex. 1. The following properties, analogous to those of P„, hold for §„ :

(i)

(ii) %^-%i=(2»+i)?„;

(iii) .%!+(». l)%i = (2.+ l).f.

Ex. 2. Obtain the properties of the integrals Q corresponding to those of

the integrals P given in Ex. 3, § 90.

The further development of the properties of the functions which are the

particular solutions of Legendre's equations does not depend merely upon the

differential equation ; the student will find most ample investigation of their

analytical properties and their applications to mathematical physios in the

excellent treatise by Heine

—

Handhuoh der Eugelfunctionen. The treatises

by Todhunter, The functions of Laplace, and by Ferrers, Spherical Harmonics,

will prove useful.
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Bessel's Equation.

100. This differential equation is

or, what is the same thing,

in which w is a constant ; it will be assumed that n is real.

This equation, like Legendre's, occurs in investigations in applied

mathematics and there n is usually an integer ; but, as in the case

of the preceding differential equation, this limitation will not be

imposed on the value of n.

To solve the equation we write

y = A^x'^' + A^x'^ + A^x'^'+

and substitute ; we then have

(m/ - n') A^x'^' + (m/ - n') A^x'^' + (m/ -n')A^x'"'+

+ A^x'"^^' + A,x'^^^+ = 0,

which must be identically satisfied. Hence, from a comparison of

the indices, we have

m^ = m^+ 2,

"^3 = ™3 + 2>

or the series is one in ascending powers of x, the common difference

of the indices of the powers being 2 ; and thus m,. = m^ + 2 (r — 1).

Taking the term in x with the lowest index we have

m^ = n'

since A^ is not zero ; and therefore

m^ = + n, or m^ = — n.

The coefficient of x^'^^^ on the left-hand side must be zero,

and therefore

{(m, + 2ry-n'}A^,, + A^=0,
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or, since m^ = r^,

A ^- 1

101. Consider first the solution corresponding to

m^ = + n.

The coefficients A are then given by

A^

so that

^r+i 2V(ra + r)'

A=(-ir^
^

(r - 1) !
2'"-" (n + 1) (n+ 2) ... (w + r - 1)

for values of r greater than unity; and the series, which is a

solution of the differential equation, becomes

^.^"[1- +
,2'(n+l)^2!2'(w + l)(n+2)

+
...J.'3l2'{n + l){n + 2)(n + 3)'

where A, is an arbitrary constant. When to A^^ is assigned the

particular value . where 11 (w) is Gauss's function 11 and is

the sanie as T(n + 1), then the expression is denoted by J^^, so

that

J.=
2''U{n) 2^(n+l) '^2!2*(m+l)(w+2)

= 2 (-1X gr.
^=0 U{n+r)U{r) \2j

which is usually called the Bessel's function of order n. When n

is positive, whether integral or not, the series proceeds to infinity

and, for finite values of the variable, is obviously converging.

Thus AJ^, where A is an arbitrary constant, is one solution of the

differential equation. Before considering the form of J^, when n

is a negative integer, it is convenient to obtain the solution

corresponding to the case
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The work is the same as before with the change of sign of n,

and the solution is

. -n+2r

2\-n+l) ' 2l2\-n + l){-n+2)

3 !
2"(- K, + 1 ) (- 71 + 2) (- w + 3 )

"^
•

J

'

where B^ is an arbitrary constant. To B^^ assign the value

„-„„ r ; then the resulting expression is exactly the same

function of — m as J^ is of + n, and may therefore be denoted by

J-^> so that

T __
'^'"

r. <^
,

<^ 1
-" 2-"n(-w)L 2X-W+1) 2!2X-?i + l)(-n, + 2) ""J

,.=on(-n + r)n(r)V2;

If now n be negative, whether integral or not, or be positive

but not integral, this series proceeds to infinity and, for finite

values of the variable, is converging ; in this case BJ_^ is another

solution of the differential equation.

If n he not an integer, then, whether it be a positive or negative

quantity, J^ and /_„ are two independent and determinate par-

ticular solutions of the differential equation and the primitive is

y = AJ^ + BJ_^.

102. If n he an integer other than zero, two cases arise. First,

linhe a negative integer and equal to —p,& zero factor occurs in

the coefficient of all terms after x^ inclusive within the bracket;

and therefore by § 86 the terms which precede this disappear, and

/„ becomes

,=j, n(»i + r)n(r) \2)

or, what is the same thing,

s=« (-1)*+" /xY^'

,^0 n(.s)n(s + p) \2)
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since n+p = 0. Now this last expression is (-1)*'/^, that is, is

(— iyj_^ ; so that in the case when w is a negative integer one of

the particular solutions, /„, is, in its modified form, only a con-

stant multiple of the other, J_^.

Similarly it may be proved, or it may be at once deduced from

the foregoing, that when n is a positive integer one of the par-

ticular solutions, J_^, is only a constant multiple of the other, J^.

When n is zero, the two solutions coincide. Hence in every

case when n is integral whether positive, zero, or negative, we may
write

but that this equation may be valid it must be remembered that

it refers to the respective limiting forms of the particular solution

of the differential equation when the superfluous terms of the

latter for the special value of n have been removed from the

expression in the general case ; and the relation merely gives this

limiting form. It however shews that when n is integral it is

sufficient to take the positive square root of n^ and to consider, as

the corresponding particular solution, the function associated with

that square root.

It thus remains to find a second particular solution in two

cases in order to have the primitive ; and these two cases are

First, when n is zero :

Second, when n is an integer which (from the above explanation)

may be considered positive.

103. To obtain these particular solutions it is convenient to

have some fundamental properties proved.

It may be at once verified that

« S-^.dx 1

'
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aud from the last two we have

dx " "-'

dJ _ _

Dividing the first of these throughout by *""* and the second

by .-c"""' and subtracting the latter from the former we have

Similarly

2

Now it is evident from the general value of J that J^ = Q;

hence the preceding equations give

J.-. =
I
[^Jn -{n + 2)/„,, + (ri + 4)/„^ - . . . ad inf

}

;

this series is converging.

Ex. Prove that

dJ 2
-^ = -{Wn-{n+ 2)Jn^i+ {n+ '^)Jn*i- - ad inf.}

.

104. To obtain the desired particular solution in the case

when n is zero we substitute

y = uJ^ + w
in the differential equation

d^ii 1 dy -

da^ xdx ^

and the result is

d^'w 1 dw _
J
(d^u 1 du\ _ dii, dJ^

dx' X dx ~ " \daf x dx) dx dx
'

To make the coefficient of J. vanish we have

d^'u 1 du _
da;' X dx '

11
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which is satisfied by
u = log X

;

the equation determining w is now

(fw , 1 diu
_

2 dJ^

X c

2

dx^ X dx X dx

-J.
X '

4

X
{2/, -4J, + 6/, -8/3 +...}.

dV„ 1 dJ^ T _'"^ T

dx' +5^"^ ""«' "

Now from the equation

it follows that

is the Particular Integral of

^ .
1^ + ,, = '^'

T
dx^^xdx^^ a;^ "

The general term in the right-hand side of the equation

determining w is

we have therefore for this term

X = (-l) il!-l4

Hence

*.=2{J-,-K. +Ke-Ks + i'^:o- };

and therefore a solution of the original equation is

/„log«; + 2{/,-iJ, + iJ-e-i'^a + i^.o- }•

Let this be denoted by F„ ; then the primitive of the equation

d^y I dy
,

.

ax X ax

where A and B are arbitrary constants.
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105. To obtain the second particular solution in the case when
n is an integer -ft^e write

so that

' X dx \ x^J X dx

=
V''^'^-^'[(''

+ ^)'^n..-(n + i)J„..+ (n + 6)J„^-...].

Now

IW lyj^ ^^_r,^ nl-^
dx' X dx \ «7 a;

\ being a constant; and therefore a value of lu satisfying

d^w 1 dw /., n'N (— IX ^ / , n \ r

^ r{n+r) "^^

Let Wj be a quantity satisfying

then a suitable value of w will be

r=K W + 2?'

The right-hand side of the equation giving w^ must be transformed. By

the general relation between three successive Bessel's functions we have

^ T J-J

©2 /2\ /2\

hence also

^•K!)'-'.-^-<|)'-'.-<i)-'.-'.=4'.-'.=-'.^

also

11—2
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and so on ; and the general equation is

n(n-i)y ^,-n(»-i)y j-„--j-^y ^^___^y j^

n(ft-l)2

or, what is the same equation,

Also, by actual substitution we have

\dx^ X dx x'') af^ x^ |_ dx''' x dx \ x^ ) ^' x dx J

"^L X dx'^ x^ ^J'
so that, on writing m=n-p,

Xdx'^^xdx'^ x^j "x"^ x"-p " \x dx ^ x^ "J

'

"Sp being a constant. If p be not zero, the right-hand side ia

_Hri-pl
_

^n-p + l 'Vj>-1 <

while Up be zero, the right-hand side is

2» ^

If now we substitute in the equation for w^ the value

p=»i-l J

a comparison of the two sides of the equation gives

Qn-p +

1

if^ be not zero, and gives

2%Xo=-|n(TO)2''+i

if^ be zero; and therefore, whatever jj may be,

^ _ 2"-p 1 n(n)
'' n-pu{p) 2

Hence the value of w, is

p=n-i 1 /9\'>T r

' ^ ^
'^ pto n-p\xj n(p)'
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and therefore the second particular solution of BesseVs equation in

the case when n is a positive integer other than zero is

-iU(n) X ^ ^^^ '^"

p=o n-p \x/ n (p)
'

Let the right-hand side be denoted by F„; then the primitive

is given by

y = AJ^ + BY^.

Ex. 1. Another method of obtaining a second particular solution is em-
ployed by Hankel as follows. Any linear fimction of the particular solutions is

also a particular solution ; hence in the general case such a solution is given by

sin 2nn- *

which is then perfectly determinate ; while in the particular case of n an

integer it takes the form 0/0 since (
— l)''t7„= i^_„. Prove that when evaluated

this assumes the form

where <ir {z)= -7-logIl{z);

and identify this with the solution already obtained.

{Math. Ann. I. p. 469.)

Ex. 2. The series for J"„ is always a converging series ; but, when z is

large, the convergence is slow and it is convenient to have a series proceeding

in descending powers of z. Prove that

^Kl)'{'- '"-t:ig.-""'^-}-('-i-i)

^(i)'{^- "'-"'"r.(ff'"-"''^-}-K'-i-i)-
so that the series terminates, if 2n be equal to an odd integer.

(Lommel.)

106. The relation between the two linearly independent in-

tegrals J^ and /_„ may be found as in § 96. We have

f^.+l^ + (i_»^^. = o
ax X ax \ X /
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and ^!^+i^» + ^_!^V =0-

and therefore

(d%, d'J-^j\l (dJ„
J-

_ dJ_„, j\_

which gives

^J _^/ =^
dx -" dx " X

where ^ is a constant which, however, is not arbitrary since J^

and tT, are definite functions. To obtain the value of A it is—

n

sufficient to consider the highest terms only in the left-hand side;

when these are substituted, we find that

^ = =,n TT U.\ O-nrr/ ^\ ('»+«)



107.] LEGENDRE AND BESSEL. 167

we have

^^
" "^'^ i~ ^^'^'^"^^Tx + {'' ^" + 1)-™ («^+ 1)1 y = 0.

Let the dependent variable be changed to ^ where

the equation now becomes

Let the independent variable be changed from x to ^ where

then after slight reductions the equation becomes

When we make n infinite, we have

which is Bessel's differential equation.

When all these operations are combined, we have, as the result,

that the limit of

when n is infinite, is Bessel's function of order m, cf) being the

independent variable.

It would appear from the foregoing process that ^ is infinite

;

this however is avoided by making x approach indefinitely closely

to the value unity. The geometrical analogue of this relation be-

tween <j) and X is that whereby any very small portion of a spherical

(or other) surface in the neighbourhood of a point is studied by

assuming it ultimately to coincide with the tangent plane of the

surface at that point and to be magnified in that plane.

Ex. Verify that the above expression becomes, in the limit, a multiple

In this connexion the student may consult Heine, Theorie der Kugel-

functionen, 2nd edition, vol. I. p. 182 ; Lord Rayleigh, Proc. Lond. Math. Soc.

vol. IX. p. 61.
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The complete integral of Bessel's differential equation has been obtained

for every case ; the further development of the properties of the functions

which occur in that integral cannot be given here. The student will find

the functions fully treated by Lommel in his Studien iiber die BesseVsche

FunctioTien and in several papers by the same writer in the Mathematische

Annalen, vols. ii. iii. iv. ix. xiv. xvi. ; in particular the paper in vol. xiv.

deals with differential equations which are integrable by Bessel's functions.

Eeference should also be made to Neumann's Theo'rie der BessePsohen Fwne-

tionen and to Heine's Tkeorie der Kugelfunctionen, 2nd edition, where (vol. I.

p. 189) a list of memoirs referring to the functions is given ; Todhunter's

Functions of Laplace, Lam4 aiid Bessel contains many of the properties.

For a general property of all linear differential equations similar to those

which have just been discussed and which give rise to functions depending

upon a constant parameter the student may consult, in addition to the fore-

going, Sturm, Liouville, vol. I. ; and Routh, Proa. Land. Math. Soc. vol. x.

ElCCATi's Equation.

108. Riccati's differential equation is

but it is convenient to consider first the more general form

If in the latter the independent variable be changed from x to

z, where z = «", and the dependent be changed from y to u, where

y = uz, the equation becomes

du b „ c ~-2

dz a a

which is Riccati's form.

109. Consider now the more general form.

Firstly, it can he integrated in finite terms when n = 2a.

For assuming y = ux" we find on substitution

ax

so that a:'-''^ + bu' = ca;''-".
ax

In the case when n= 2a this becomes

K -;-= c — bu :

ax '
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the variables are separable and u is expressible in terms of ex-

ponential, or circular, functions according as b and c have, or have

not, like signs.

Secondly, it can be integrated in finite terms when (n + 2a)/2n is

a positive integer.

Let the dependent variable be changed from y to y^^, where

x"A -{— = w and ^ is a constant the value of which has yet to be
2/1

_

^

determined. When substitution takes place and the terms are

rearranged, the equation becomes

-aA + bA'+(n-a + 264) - +&
—

" -
^'^ = ex':

We choose A so that the constant term vanishes, and thus J. =

or ajb.

Taking the value a/6 for A and substituting in this new form

we have, after a slight change.

Now this equation is of the same form as that with which we

began ; and the changes, that have taken place, are in the coeffi-

cients—the original a has changed to a + n, and b and c have

changed places. In this last equation we write

a + n of

the foregoing analysis then shews that the equation in y^ will be

x-^-{a+ 2n) 3/2 + ii/2 = c^"-

And the result of t successive transformations will be to reduce the

given equation either to

or to

X -^' — (a + in) y, + c_y/ = bx"

x-^-(a + in) y^ + by'' = ex"-

according as i is odd or even.
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Now, by the case first considered, this equation is integrable in

finite terms, if

n=2(a + in),

J.T, 4.
• -jr

TO - 2(1
that IS, II —

7^

is a positive integer.

Taking next the value zero for A we can easily transform the

equation into

aj -£-(«- «) 2/i + cy' = bos",

an equation which differs from the former in y^ only so far as

regards the sign of a. Adopting now for this the preceding series

of transformations we write

and the equation in y^ is

n — a X

Hence after % — \ transformations of this series (and therefore after

i transformations in all) the given equation is reduced either to

or to "" ^' ~ (*"'* ~ ") ^/i + ^Vi^ ~ "*"•

In either case the equation is integrable in finite terms, if

m = 2 {in — a),

^v. ^. -f
n + 2a

that IS, II —
7:
—

2ft

is a positive integer.

Combining then these two results we have : the equation

X -^- — ay + hy^ = ex"

is integrable in finite terms when (n ± 2a)/2n is a positive integer.

In each case the integral is given in the form of a finite

continued fraction, the last denominator of which involves either

exponential or circular functions.
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110. We can now obtain conditions that Riccati's equation

shall be integrable in finite terms. From § 108 it follows that

^ + iu'=: ex'"
ax

is transformed by the substitution ii = y/x into

*^ - 2/ + %' = c«",

where m = n — 2. Now the latter equation is so integrable when

11 + 2 = 2ni,

where i is a positive integer ; and therefore Riccati's equation is

integrable in finite terms if

m + 2 + 2 = 2i (m + 2).

Taking the negative sign we have

4>i

"' = -27^1 =

while the positive sign gives

-4(i-l)
2i-l '

or what is the same thing in the case of the latter

— 4^

2i+l'

by merely changing the integer i.

Hence Riccati's equation is integrable in finite terms, if

-4>i
"^ = 27n'

i being zero or a positive integer.

Ex. Prove that the equation

-T-+ hs^v?'= ex"*
ax

is integrable in finite terms, if

m+1 -2i + l -2i-l^ or .

k+l 2t+l 2i-l
i being an integer.

Relation between the equations of Bessel and Riccati.

111. The equations of § 108 in the form in which they have

been discussed are of the first order, but are not linear ; there are
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some important transformations which render them linear of the

second order.

In Riccati's equation let the dependent variable be changed

from u to V where

, 1 dv
6m =—^ ,

V ax

so that if u is expressible in finite terms, v will be so also ; the

equation then becomes

f^, - bcvx'^ = 0,
dx'

which might be taken as a standard form, equivalent to Riccati's

equation.

If b and c have the same sign (in which case exponential func-

tions occur in u) this equation may be written

"T-s — ax v = ;

dx''
'

while if their signs be unlike (in which case circular functions

occur in u) the equation is

dx

Both of these are integrable in a finite form for the same value of

m that renders Riccati's equation integrable.

Change the independent variable from x to z, where

qz = «'

and q = \m + 1 = - say

;

the equation then becomes

d^v n — 1 dv

dz' z dz
bcv = 0.

This therefore is integrable in a finite form if

1 , , ,
2^ +1

2i ±1 2i±l'

whence it follows that n must be equal to an odd integer ; and so

if the equation be written

d^v 2p dv ,

d?-TTz-^'' = ^'
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the condition of integrability in a finite form is that p should be

an integer.

This is reducible to its normal form by the substitution

vz^ = w,

and the equation for w is

d'w , _ P(P + 1^ ^

which is integrable in a -finite form if p be an integer.

Lastly, let w = z^t be substituted ; the equation for t is

S + 'l-'^'-^ + i)'?""'

the primitive of which is

t = AJp+
J {z (- hcf] +BJ.CP + i)

{z (- hcf].

If p + 1^ be an integer, this ceases to be the primitive ; we then

have for the primitive

t = AJ,+i [z (- hcf} + ^F^+j [z (- hcf}.

Hence the solution ofRiccaWs equation can he expressed in terms

of Bessel's functions; and, in particular, the solution of

dhi~ + Xvx'^ =

is given hy

'AJj^ {z\^) + BJ_j_{zX^)
m+2

or x^
m+2 m+2

according as m + 2 is not, or is, the reciprocal of an integer.

This is immediately derivable from a combination of the

preceding transformations.

The only case of failure is that in which »i + 2 is zero, that is,

when »i is — 2; the equation is then

which can be solved by the method of § 47.
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For further information upon this equation a memoir by J. W. L.

Glaiaher in the PhU. Trans. 1881, pp. 759—828, should be consulted, where

full references to authorities will be found ; and the connexion between

Eiccati's equation and Bessel's will be found fully discussed in the boolj and

papers of Lommel to which reference has already (p. 168) been made.

Some examples of the solution expressed by series will be found in the

Miscellaneous Examples.

Symbolical Solutions.

112. In cases when the solution of a differential equation in

series consists of a function in a finite form or when it consists of

a terminating series together with some function or functions in a

finite form, it is sometimes possible to obtain a solution of a

symbolical nature which will, when the operations therein indicated

are performed, prove equivalent to the solution otherwise obtained.

As an example, consider the differential equation

cPy „ m (m, + 1)

the solution of which has been proved to be expressible in a finite

form when m is an integer. When the dependent variable is

transformed from y to uhy means of the relation

y = ux'-'-\

the equation becomes

^-2 + 2 (m + 1) - ^ n\ = Q.
ax X ax

Consider now the differential equation

the general integral of which is

V = J.e"'" + Be-"',

and change the independent variable from x to z, where z stands

for |x*; the equation becomes

„ (Fv dv 2 _

tod \JLi6

Let this be differentiated m + 1 times with regard to z and

d'^'^^v
let t denote t-^^; then we have

2.g + (2«^ + 8)|-n=. = 0.
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Let now the independent variable be changed from z back to x;

the equation then becomes

d't 2 (m + 1) (U _ ,

dx^ X dx

Hence we have

_dr^v
~d^*'

the primitive of the original equation in y therefore is

1 dy"-'

A slightly different form may be given to this, for

^ d, n/ip'^ — V FIp"""

X

on changing the arbitrary constants; and the primitive may be

written in the form

Since the differential equation remains unaltered, when for m
is substituted — {m + 1), the primitive may be expressed in the

additional forms

Ex. 1. Prom the foregoing it can be at once deduced that the primi-

tive of

(an equation arising in investigations connected with the Figure of the Earth)

is expressible in the form
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Ex. 2. Prove that the primitive of the differential equation

can, in the case when q is the reciprocal of an odd integer 2i+l, be exhibited

in the forms

(Glaisher.)

&. 3. Prove that the primitive of the equation

is given by

u=Cx-Pd̂y cos {r^x + a)

where r is to be put equal to a? after the performance of the differentiations.

(Gaskin.)

In all these cases when the solution of the equation is thus given symboli-

cally, it is not dif&cult to identify the solution in this form with that obtained

in any other form, such as one in series by the earlier methods of this chapter,

or as cue by means of definite integrals as indicated in chapter vil.

The student who wishes for fuller information on the subject of these sym-

bolical solutions and their connexion with solutions in other forms will find a

full discussion in the memoir (Section vi.) by J. W. L. Glaisher already

(p. 174) quoted.

MISCELLANEOUS EXAMPLES.

1. Integrate in series, and express in a finite form the integrals of, the

equations

(i) -^3-V=0i
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2. Verify that a root of the equation

satisfies

(Spitzer.)

3. Obtain the primitive of the equation

d^i/ dy _ 2y

dx'' " dx 01^

in the form

qxy=A {qx-'2) +B (g'^+2)e-'"^.

4. Solve the equations

(i) ^^3+(-^+3^^)5+
(5^-'-30*-)J+(4^

+ 30)y= 0;

(iii) {3;'i+qx^)j^.^ + {{a+ 2.)qx^+ {b-c+\)x}'^^+{{a-^\)qx-bc}y= 0.

^d^z'^'^'^-^^-''^'''^-£;+''-P-''^^ + '^))y = ^

5. Transform the equation

by assuming

y=e'^''C

and in+ x+ na= ^{ — riy'

dK ^dt ,

and integrate the last equation in series.

6. Integrate in series the differential equation

and express the integral in the finite form

^ {1 - (1 - ^xff+B {1 + (1 - 4^-)^l-

(Glaisher.)

7. Obtain the general integral of the equation

'S^ + ^s,,^^ %
d;afl ^•' x^ dx

in the form

(Leslie Ellis.)

F. 12
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8. Prove that the coefficient of a™ in the exjjansion in ascending powers

of a of

(l-2a^+ a2)-»

is the solution of

i {(1 -^T""* J} +™ (™+ 2») (1 -.^r "*2/= 0.

9. Prove that, with the notation used for the solution of Legendre's equa-

tion, {P„ (cos 6)Y is a solution of the differential equation

10. Prove that, with the notation of §§ 90, 91,

•Pji + 1Vn — Qn+\Pv,=
jj ,

j^

•

(Trinity Fellowship Examination, 1884.)

11. Prove that the primitive of the equation

is given by

(^"'''^3~^^''*+^^''S+^''+™+^^('*-'"^2/=o

(Heine.)

provided m be not greater than n.

What is the primitive when m is greater than n 1

12. Shew that the solution of the equation

^((l-.^)|} +.(.+ l),= ^-^,y,

where h is an integer, may be expressed in the form

where y„ is the solution of Legendre's equation.

13. Obtain the primitive of the equation

(Heine.)

14. Prove that the equation

has, in the case when n is an integer, for its primitive

(Lommel.)
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15. Obtain the primitive of the equation

179

in the form

where

16. Verify that the primitive of

(Lommel.)

d-"'i/

dx-'"' •

/=-r^
p=m-l

IS y = ^«™ 2 [^V«{2(-vr)»}+5,r„.{2(-a,:.)*}],
p=

where aj, oi,...) a„,_i are the roots of the equation a"'= l ; and that of

where a^, u^,... , oj,,, are the roots of a^"' + ' = - i.

(Lommel.)

17. The primitive of the equation

IS

and that of

d-u

ia y= r[AJQ(ei)+B}\(e'')]. (Lommel.)

(See, for connexion between these two equations, Ex. 10, p. 127.)

18. Prove that, with the notation of § 101,

2
•^n«^l-n+ >^n-l'^-n= --sin lln,

n not being an integer, and that

'n*'n + l~'^it + l''ii—

"

(Lommel.)

19. The difierential equation

d"-u ,du dQ
+^Q:jz + iQ'+^+<^-

m(m
dx^ dx

is integrable in finite terms, whatever function of .r is denoted by Q, provided

m be an integer.

12 2
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20. The equation

is integrable in finite terms, if

d^u r d-u,

''»+^-
2J+ 1

where i is a positive integer or zero.

(Malmsten.)

21. Prove that the coefficient of A» + i in the expansion of e'»<'^"+-r^)J

satisfies the differential equation

d^u „ »(p+ l)

dx^ x'

(Glaisher.)

22. Shew that, ify=X be the solution of the equation

(^ being a constant), then the solution of

is given by

dx'^ " X dxf^-^

m{p+l)~lf 1 dy X
^ \x'^-^dxj a;™-i"

Hence solve the equation

dx^ xdx
(Leslie Ellis.)

23. The equation

(^-^)g-^4^'^-

is integrable in finite terms in the following cases :

1. when - is an odd integer

;

2. when-j(l—
j
+4-1 is an odd integer

;

3. when- + -^(l— I +4-^ is an even integer.

24. Prove that the equation

(ce+ 6^)

admits of finite solution.

(«+6^)^2g+ (c+ e:s»)^J+ (/+^^)«=X



EXAMPLES. 181

1. when any one of the four quantities a-j3 is an even integer,

2. when any two of the quantities

are odd integers
;

where oj, a^ and ft, jSj are the roots of the respective quadratic equations

and J anfi (jijS - 2) +J cn^+/= 0.

(Pfaff.)

25. Prove that the three expressions

{1 a^x^ 1 a*x^ 1 aV \

^ ~^i -W +
(p-i)(i.-f) 2!2« - (p-i)(^-f)(i»-|) 3T2-8+ -J

'

^^ V i' ^i'(p-i) 2! ^(i.-i)(p-l) 3!+-|'

r+i' ^i'C^-i) 2! +^(p-i)(p-i) 3! +•••;•

are all particular integrals of the equation

-J— - aH =^ ^^

,

—- u
;

ax' x'

and shew that, whenp is not an integer, these three expressions are equal to

one another. Obtain, in this case, a second and independent particular

integral.

26. Prove that the solution of

may be written in either of the forms

y=x-P-'^ (x^
-J- J {x-'p + ^ {Ae"^ + Be-<^)}

,

(Boole.)

Prove that the integral of the same equation may also be written in the

form

(Donkin.)
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27. The solution of the equation

X^+ {m+ n+{a + P) 3;}-£^+(mp+na+ aPx)i/=

can be expressed in the form

Obtain that of

d^u dy

in the form

^=^«'^£(«"'^)+^«'"£^«"''"^^'^'^>-

(Spitzer.)

28. The orthogonal trajectory of the system of surfaces of revolution

given by P„=cr''''"^, where P„ is the solution of Legendre's equation and its

argument x is the cosine of the vectorial angle of any point, is given by the

equation



CHAPTER VI.

Hypergeometric Series.

113. The series

1.7 1 . 2
. 7 (7 + 1)

a(a+l)(a + 2)/3(/3+l)(^ + 2)

1.2.3.7(7 + l)(7 + 2)

is called the hypergeometric series and is usually denoted by

F{a, /3, 7, x); the four quantities a, y3, 7, a? are called its elements

and of these x alone is variable. The elements a and /3 may be

interchanged without affecting the value of F; if either of them

be a negative integer the series will consist of a finite number of

terms, otherwise it will proceed to infinity. It will be assumed

that 7 is not a negative integer, so that infinite terms may be

excluded.

If a; be less than 1, the series is converging, but if x be greater

than 1, the series is diverging. If x be unity, the series is con-

verging if 7 — a — ;8 be positive, and diverging if 7 — a — yS be zero

or negative.

The series is one of very great generality and includes as

particular examples very many of the series which occur in

analysis. The following examples admit of easy verification

:

I. 0-+xr = F{-n,^,^,-x).

II. (1 + xT + (1 - xf = 2F{- in, - In + \, I x').

III. log(l+.r; = ^F(l, 1, 2, -^).
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IV. log\+^ = 2^Fill,lcc%

=i^(l,Al,l).

VI. coshx=F{a,^,h~j.

VII. cos nx = F{^n, — Jre, ^, sin^ a:).

IJx. 1. Prove that all the differential coeflacients of the series will be

diverging for the value ;j;=l if the series itself be diverging for that value
;

and that all the differential coefficients from and after one of some order will

be diverging for the value a;= 1 though the series be converging for that value.

.Ea;. 2. Express as hjpergeometric series

(i) sin t, the variable element in the series being fi ;

(ii) sin nt, the variable element in the series being sin^ t

;

(iii) cos lU, the variable element in the series being - tan^ t.

Others are given by Gauss at the beginning of his earlier memoir (referred

to in § 134).

114. Let the coefficient oi x'' be written A^; then the relation

connecting consecutive A's is

(1 + r)(7 + r) A,^^ = (a + r) (^ + r) A,.

Consider the differential equation

(^ + a)(&+;8)-^^(& +7-l)|^ = (i)

in which ^ stands for the operator oo -,-. A solution of this equa-

tion can be obtained in a series : let this series be given by

2/ = 5„*'^ + 5X*^ + 5X"''-l-

Substitute this value in the differential equation, which must

be identically satisfied ; each separate power of a; must therefore

disappear in virtue of the quantity multiplying it being zero.

Thus for the lowest power we have

and from the vanishing of the coefficients of the higher powers the

relation between the successive quantities B is given by
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We shall assume that B^ is not zero as the relation B^ = would

make all the B's zero ; and thus the former equation is satisfied

by either

or /4 = 1 - 7.

115. Take first the value /a = 0; then the relation connecting

the quantities B becomes

(1 + r) (7 + r) £,,, = (a + r) (;S + r)B,.

Now when 5„ = 1 = J.,, the relation just proved, compared with

that which connects the A's, shews that B^ = A^; and therefore the

series assumed for y becomes the hypergeometric series. Thus

one solution of the differential equation (i) is F{ai, /8, 7, x).

Let the operating factors in (i) be expanded and terms of the

same order collected ; then the equation may be written

[(1 - «)^' + {7 - 1 - a; (a + /3)} ^ - a/3 a;] ?/ = 0.

But ^=a; -7-,
ax

rJ — 30 -.a \
3C 1 yax ax

with these values inserted the above equation, after rearrange-

ment and division by x^{l —x), becomes

dx"^ x{l-x) dx x{l-x)y ^ ^
''

which is the differential equation satisfied by F{a., ^, 7, x).

Take next the value /i = 1 - 7 ; the relation connecting the

quantities B becomes

(l+r)(2-7 + r)5,^, = (a+l-7 + r)(^ + l-7 + r)5r.

Let B^=l; this equation shews that the quantities B are the

successive coefiicients in a hypergeometric series whose constant

elements are respectively a + 1 — 7, ;8 + l — 7, 2—7. The series

assumed for y begins with o^'^ ; hence this value of y is

x^"'F{a+l-rf, ^ + 1-7, 2-7, x)

and this also is a solution of the differential equation (1).
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We have thus two particular integrals of this differential

equation ; and therefore any other particular integral which is

finite for vahies of x less than unity may be represented by

AF{a, fi, y, x) + Bx^-" F(oi+l-y,^ + l-j,2-y,x),

in which A and B are constants, the values of which may be

determined by comparing powers of x. If in this expression A
and B denote arbitrary constants, it furnishes the primitive of (1).

116. To reduce (1) to its normal form we must compare it

with the general linear equation of the second order. We then

have

x{l — x) X 1 —X

x{l-x)'

and therefore the invariant I, being

i

becomes, after some reductions,

rJP

ax

1-V , 1-V^ X''-fj,^ + ^<'-l

* x' +*(«-l)^"^^ x{x-l)
where

Let this invariant be denoted either by I or y]r{x) ; the latter

form will be convenient when the independent variable comes to

be changed.

Thus equation (1), by the substitution

becomes

^^ + ^fi^) = ^ (2).

in which ^jr (x) denotes the foregoing function of x.
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Set of 24 particular integrals.

117. We now proceed to find some further particular integrals

of this differential equation. It follows from the investigation

of § 64 that the conditions, which must be satisfied in order that

the equations

and J+^t.(*) = (3),

should be transformable into one another are firstly,

'dt\-i
v=z\

and secondly,

'='^dx
=^^''

M^>^] + (£)V.(«)-tW=0 (4).

Hence, if we consider y^r^ (t) as a given function of t, the latter

equation will give the value of t in terms of x; and when this

value is found the former will furnish the relation between

V and z.

Now assume that the function ^{r^ (t) is such as to make

equation (3) the normal form of the equation satisfied by

a hypergeometric series with constant elements a', /3', y ; and

suppose that we can obtain from (4) a value of t in terms of x.

Then, since the value of u will be at once derivable from that of t,

we have a solution of (2) in the form

ut^^' (1 - 1)^
(«'+^+1-^''

F(oi', 0, i, t).

which is distinct from the value of v, which we have already had.

118. The general solution of (4) will give t as a, function of

X, a, /3, 7, a', ^', y'
; let us select those forms of this function which

make t dependent on x alone, and independent of the two sets of

constant elements. We may, to obtain these, write

[t, x] = 0,

'dfs^.< : f (X).
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The former of these on multiplication by t"^ is directly inte-

grable in the form

t" r^ = C,

and proceeding with the integration, we have

4
^

" ^ ~ C {Gx + C)

_ax + b

ex + d

on changing the constants. This is the general value of t which

makes the function [t, x} vanish; but the conditions require that

(ad — hcY
,

fax + 6\ , , ,

or

and this will not be satisfied for arbitrary values of these constants,

which must therefore be determined. Now

t(^)
^ Aa?+Bx^- G

x" (1 - xy

where A = l— ij?,

0=1-^;
and we may write

, ,^. ,A'f + Ft+C'

Hence the constants a, h, c, d must be such as to satisfy

Ax' + Bx^+G
x" (1 - xf

_ , - , A' (ax + ly + B' {ax + h) {ex -\-d) + C' {ex + df
-{ad be)

{ax + hf{cx + dy{{e-a)x+d-bY

The quantities a, /S, 7 (and therefore A, B, Cwhich are functions

of them) are arbitrary and thus the numerator and denominator

of the left-hand fraction can have no common factor except a
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constant and similarly for the right-hand side. Hence we may
write

= (ad - hey [A' (ax + hf + B' (ax + h) (ex + d) + 0' (ex + d)'],

mx" (1 - xf = (ax + If (ex + df {(e - a)x + d- 6}^

in which ni is constant. The latter of these equations will deter-

mine the values of a, b, c, d which are admissible ; the former will

then serve to indicate the relations of a, /3', 7' to a, yS, 7 in order

that the expression at the end of § 117 may be a solution of (1).

119. Comparing now the coefficients of the different powers

of X on the two sides of the latter equation, we find that the

following sets of values for the constants will make the equation

identically satisfied:

(i) c = = b = a — d; m = a^;

(ii) c = = d — b = a + b; m — (f;

(iii) a = Q = d = c—h; m=¥;
(iv) a = = d—h=e+d; m=b^

;

(v) b = 0=c-a = c + d; m = a^

;

(vi) d = = c— a = a + b; m = ¥.

These values substituted in the expression for t in terms of

X give:

(i) t=x; (ii) t=l — x; (iii) t= -;
SO

(iv) t^^; (v) t = ^-, (vi) f =^^,
^ ^ 1—X X — 1 X

respectively; and these form the complete system of values of t

required.

120. We now transform the first of the two equations by

means of each of these in turn and obtain the necessary relations

between a', /3', 7' and a, /S, 7. Consider first the set of values (i).

We have

Ax^ + Bx+C = A'x' + Bx+C'
so that

A = A', B = B', 0=0':
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or, what is an equivalent set of equations,

When expressed in terms . of the constant elements, these

relations are

(a'-^7=(a-^r,

(7'-a'-;8')^=(7-a-^f;

and (remembering that an interchange of the first and second con-

stant elements makes no change in a hypergeometric series), we

find that these are satisfied by

(1) «' = « 13' = ^ 7=7;

(2) a' = 7-a ^' =y-^ 7'=7;

(3) a' = a-7 + l ^' = /3-7 + l ^ = 2-7;

(4) a'=l-a ;S'=l-/3 7=2-7.

Since t = x,-j- is unity and therefore u is unity for this value

of t ; and the particular integrals of the v equation, which cor-

respond to these four sets of values, are respectively

^iY(l_^)i(v-a-P+l)^(^_„^ 7-/3, 7, *),

a;'-*^(l-a;)*'''+^+'-^'j^(a-7+l, /S-7 + I, 2-7, !c\

*^-^(l-«)*'^-"-^+^'i^(l-a, 1-/3, 2-7, x).

Now these are integrals of equation (2) ; in order to obtain the

corresponding integrals of equation (1) we must multiply- each of

them by

a;-^^(l-^r*'"+^+i-^';

and therefore four particular integrals of equation (1) are

(I) y = F{<x,^,y,x);

(II) 3,= (1-^)^—^i^(7-«,7-A7,«');

(III) y = a;'-^F(cc-y + l,^-y + l,2-y,x);

(IV) y = x^-^ (1 - xy-'-^ F(l-a,l-/3,2-y, x).
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Treating now the relation t = l — x in the same way we find

other four particular integrals in the forms

(V) y = F(a,^,a + ^-ry+l,l-x);

(VI) y = x^-'F(oL-ry + l,^-ry + l,a + 0-j + l,l-x);

(VII) y = (l-xy-''-^F{y-a,ry-^,j-a-^+l,l-x);

(VIII) y = x^-''(l-xy-''-^F(l-a, 1-^, y-a- j3+l, 1-x).

And from the relation t = - we have as one particular integral

(IX) y = x-'F{a,a-ry + l,a-^+l,l).

121. All the particular integrals for the different values of t

can be found in the above manner. Each value of t leads to four

particular integrals so that there are in all 24 of these. But this

laborious method of obtaining the remainder need not now be

adopted ; it is possible to write down, from the nine foregoing, the

following fifteen to complete the set.

(X) y = x-^F(^^,^-j+l,^-cc+l,l);

(XI) y = x"-'' (1 - xy-"-^ F^l-a,j-a,^-oi + l,iy,

(XII) y = of-' (1 - xy—^F(l - /3, 7 - A a - /3 + 1, ^) ;

(XIII) y = 0--xy^F[<x,y-^,a-^ + l,j^;

(XIV) 2/=(i-^r^-^(^''y-«,/3-a + i,Y^);

(XV) 2/
= aj^-^(l-^)^—'^(«-7+l, 1-A a-/3+l, j^) ;

(XVI) y = x^-'{l-ccy-^-'F(^^-j+l,l-oi,^-oi+l,^;

(XVII) y=il-xy''FUy- /3, % ^i)

!
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(XVIII) .y = [l-x)-' i^(A 7-«, %^) ;

(XIX) 2/ = ^^-v(i_^)v-«-i^(^«_^+l, 1_^, 2-7,^);

(XX) ;,^x'-'(l-xy-'-'F(^-ry + l,l-0i,2-^y.^^y,

(XXI) y = x-''F(a,CL-y + l,a+^-ry+l,'^y,

(XXII) 2/ = ^-^ir(^^,^_^+l,a + ^-7 + l,^);

(XXIII) y = x---y(i-a;)y-'^-^Ffi-r,^ry-a,y-a-^+l,'^y,

(XXIV) 3^=a^-^ (1 -xy—^ F (l-/3, 7 -/3, 7-a-/3+l, ^] .

Relatiojis between the particular integrals.

122. Let all these integrals be denoted by

2/1.2/2' .y2a.2/=4

the suffixes and the numbers of the foregoing equations correspond-

ing to one another ; these quantities y are not independent, for, by

the ordinary property of a linear differential equation of the second

order (of which they all are solutions), there is between any three

of them yx, y,,,, y, a relation of \k\& form

yA = Ay^ + By„

and we must find these relations for the different combinations of

the integrals. But certain cases will arise in which either A or B
wiU be zero and therefore the corresponding integrals will differ

from one another only by a constant factor; and these can be

recognised by the application of the following lemma.

If there he two solutions of the differential equation (1) developed

in the same ascending powers of x and both series be converging, then

they differ from one another only hy a constant factor.
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For the sake of simplicity suppose one of the solutions to be
^ {% /S, 7, x) and the other when developed in ascending powers
of X to be given by

y = A + Bx + Gx'-\-

Substituting this value of y in the differential equation we should,

by a process similar to that in § 114, find y = AF{a, /3, 7, x), which
proves the lemma.

123. Let us apply this lemma to obtain the particular in-

tegrals which are equal to y^ ; this we shall suppose to be a con-

verging series so that x<l. Then y^ is also a converging series

proceeding in the same ascending powers of a; as y^ ; the first term
in each is unity; the constant factor of the lemma is therefore

1 and we have

2/1 = 2/2-

The next one in the list which, expanded in ascending powers of x,

begins with x" is y^ ; if we select from

F{cL,^,a + ^-<y + \, l-x)

the coefiicient of x", we shall find it to be

, ^v„ «(a + l) (a-t-w-l);Q(/3 + l) {^ + n-l)
^ ^ 1.2 «.(a + ^-7+l)(a-l-y3-7+2) (a-l-/3-7+«)

i^(a+n, /3+?i, a+/3-7-|-?i + l, 1).

But in this coefficient F is converging (and so has a finite value)

only if

a + /3 - 7 + « + 1 - (a -f- w) - (/3 -I- «-)

be positive (see § 113), that is, if 1 — 7 — w be positive. Hence

from and after some definite term the coefiicients of the powers

of X will be diverging series ; and we cannot then consider the

series F (a, ^, a + ^ — j+1, 1—x) to be converging though ex-

pansible in ascending powers of x. Hence y^ is not equal to y^

.

Dealing with y^, y^^, y,^, y^^, y,„ in the same way it will be

found that the last two alone are converging series at the same

time as F (a, 0, 7, x) ; and hence we have

2/1=3/2=2/17 = 2/18 (i)-

Again y^ and y^, y^ and y,, y^^ and y,,, y,„ and y^^ are derived

from each other by exactly similar transformations of elements

;

F. 13
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thus to pass from jr, to y^ the former is multiplied by x ~'', the new

first and second elements being obtained by subtracting the old

third from the old first and second and adding unity to each result,

and the new third element by subtracting the old third element

from 2. This process will be seen to be the same for all and

therefore

ys=y4 = 2/i9=.y2o (")•

Ex. Prove that

2/6 =3/6 =J/si=y22 (iii).

2'7 =2/8 =y23=2'M (iv),

Vi =yi2=yi3=yi6 W.

yio=2/ii=yi4=yi6 (^^O-

124. It thus appears that the 24 integrals can be divided into

six classes ; and the equal members of these classes we may denote

respectively by Fj, Y^, Y^, Y^, Y^, Y^ corresponding to the above

sets of quantities in order. It remains to find such relations as

there may be between these owing to the fact that they are solu-

tions of the differential equation.

Now Fj and F^ are converging for those values of x which are

less than 1, while F^ and F^ are converging for those values of x

which are greater than 1 ; as the former therefore are converging

while the latter are diverging and vice versa, there can evidently

be no equations connecting Y^ and F^ with Y^ and F^. We there-

fore must find the equations between any three of the set

F,, F^, F3, F,; and any three of the set F^, F„ F,, F,; and it will

be sufiicient to have those equations into which F^ enters, as, by

changes of the elements and division by a factor throughout, any

one of the quantities F could be transformed into F^. Thus

the equations required will be those connecting the following six

groups :

—

F F Y Y Y Y Y Y Y Y Y Y Y Y Y
Y Y Y

Let the equation for the first of these groups be

Y,= MY, + NY„
or y^ = My, + Ny,.

To determine M and N the substitution of any two particular

values of x will be sufiicient ; let then x = l and x = and suppose
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1 —7 a positive quantity so that a3^~''''is zero when x = ; we have

for these two cases

To evaluate M and X we must obtain the relations between the

series for argument unity, to which we now proceed.

Introduction of Gauss's H function.

125. The coefficient of «" in

is

a(a+l) (g + m-l);5(/3+l) (/3+m-l)
j _ 7 + m - 1 1

1.2 m. 7(7+1) (y + m-l) { 7-1 J

a^ («+!)(« + 2) (« + m-l)(/3 + l)...(/3+m-l)
7(7-1)" 1.2.3 (»ft-l). (7+l)...(7 + m-l)

= coefficient of a;"* in ,^-,. F(a. + 1, /3 + 1, 7 + 1, x);
7(7-1)

and the term on the left-hand side independent of x vanishes

so that

F{a,^,r^,x)-F{oi,^,r^-l,x)

=-^"^^(«+l. ^+1.7+1.-)

7
^^i^(a, A7--)-

But from the diflferential equation satisfied by F (a, /3, 7, x) we

have

^[ri-{a + &+l)x]=oi^F-x{\-x)^^.

Let the value of F {a, /3, 7, x) when x is made unity be denoted

fPF
by -Fj (a, /8, 7) ; the value of -5-5 when « is made unity is finite and

therefore

13—2
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F,{a,^,i)-F,{oi,^,^-l)-
1 VdF-

7 — 1 \_dx_ »= !

a/3

or, changing 7 into 7 + 1, we have

Similarly

and therefore

^'^"' ^' 'y)-7(7+l)(7-a-^)(7+l-«-^)^^("' ^' ^ + 2)

_ (7-")(7+l-«)--(7+^-l-a)(7-/3)(y+l-/5).--(7 + ^-l-^)
7(7+l)...(7 + i-l)(7-a-/S)(7+l-a-/3)...(7 + A-l-a-/3)

126. Let

1.2.3. .h

(0+i)(^+2) (^+^')
h' be denoted by 11 {k, z)

;

then

„, _ , n(fc, 7- 1)11(^,7- a -y8-l) „ , _ , ,.

Since

1 . 2. 3...A;. (i + l)...(A; + .2)=l. 2 . 3...^. (s+ l)(s + 2)...(^ + A:),

we have

1.2.3......^(l + l)(l + f)...(l + |)

= 1.2.3...^.(a+l)(^+2)...(^ + A;);
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and so

^^ ^*'
'^ - (z + l)(z + 2)...{z + k)

^

1 . 2.3 2

^-1)(}4)-{^H
on the supposition that z is an integer. From this transformation

and from the original definition alike we have

1+z
U{k,z + l)=U Qc, z)

^-^"
These equations shew that for a given value of z the function

n (h, z) tends towards a limiting value as k approaches infinity,

and that this limiting value is finite. As then 11 (oo , ^:) is a function

of z alone, let it be denoted by 11 {z) ; the last equation shews that

n(0 + i) = (^+i)n(^)

and the former shews that, if z be an integer

Ii{z) = z\,

while in any case we have

n(^) = r(^+i),

where F (^ + 1) is the Gamma Function of Euler.

In the equation giving F^ let k become infinite; then every

term of the series F^ (a, /8, 7 + oo ) is zero except the first, which is

unity. If we substitute for 11 (00 , 7 — 1) and the other functions

the values 11 (7 — 1), then we have

F(. R v_ n(7-i)n(7-«-/3-i)
.f',(a,^,7)-jj(^_«_l)n(7-/3-l)-

Eoo. 1. From the expansion of < in a series of ascending powers of sin t,

prove that

Eis. 2. Prove that

n(-z)n(z-l)=7r cosec ztt.

Ex. 3. Obtain the relations

(i) F^{a,^,y)F^{-a,^,y-a) = \;

(ii) F^{a,^,y)F^{a, _fty-/3)= l.
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Ex. 4. Prove that

.-^^n (.)

n
(.-

1) n (.- ?)
n (.- ?^^) = (2.)^<»-^>n M.

(Gauss.)

Determination of constants in the relations o/"§ 124.

127. The equations of § 124 now become

1
N-.

i^.(a, /3, a + /S- 7+1)

n(/3-7)n(a-7)
n(a+^-7)n(-7)'

and therefore

j^
n(i-7)n(7-«-/3-i)

^

n(;8-7)n(«-7)
U{-a)U(-l3) -n(a+^-7)n(-7)

_ n(7-l)n(7-a-;8-l)
~n(7-a-l)n(7-;8-l)'

from which with the use of Example 2 in the preceding set it is

not difficult to deduce that

n(7-l)n(a-7)n(/3-7)
n(i-7)n(a-i)n(/3-i)*

These then are the values of the constants in the equation

(i) Y, = MY, + NY,.

Similarly, if we write

(ii) Y,=MJ, + N^Y„

we should find that the values of M^ and i\^, are

jf_ n(7-i)n(-«)n(-/3)
• n(l-7)n(7-a-l)n(7-/3-l)'

X n(7-a-/3)n(-7)'

It is easy to shew that the following are the four equations

corresponding to the other four groups in order :

(iii) Y, = M^Y, + N,Y,,
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Where M = U(y-l)U(y-.-^-l)
» n(7-a-l)n(7-^-l)'

U(j-l)U{a+l3-y+l)
n (a - 1) n (/3 - 1)

where M = n (y- 1) n (a ->y) n (-^)
^ n (1 -7) n (a- 1)0(7-^-1)'

n(-^)n(a-7)
^ n(a-;S)n(-7)-

(v) Y, = IIX + I^X,

where M - n (7-l)n (^-7) H (- «)

^~n(i-7)n(^-i)n(7-a-i)'

n(-a)n(^-7)
^* n(^-a)n(-7)-

(vi) F, = Jf,F, + i^,F„

where M = " (7 "D n (/3 -a-1)
' n(^-i)n(7-a-i)'

n(7-i)n(«-^-i)
^ ii(«-i)n (7-/3-1)-

It should be remarked that the labour of deducing these con-

stants need not be repeated for each equation ; each equation with

its constants can be deduced from the first equation and its con-

stants.

128. We now pass to a diflferent set of equations which connect

any two of the particular integrals and their differential coefficients.

It has been proved that, if F, and F^ be two particular integrals

of the equation

then ^,^^_F,^• = Ce-^^'^^
U/iD Q/00

where C has a constant value which depends upon the pair of

particular integrals selected. In the case when the equation is

that satisfied by the hypergeometric series we have
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^_ ri-{a.+P + l)x 7 ,

7-a-/3-l
x{i — x) X \ — X

and therefore

The value of C in any equation may be determined either by a

comparison of coefficients of the same power of x on the two sides

or by the substitution of a particular value of x.

Example 1. Let

^i = y3 = a''"'^(«-7 + l,y8-7 + l,2-7,a;);

Y^=y, = F{a,l3,r^,x).

Let eacli side be expanded in ascending powers of x ; the term

involving the lowest power of x in

' dx

'^^^i-y.
is — X ^ ; the term involving the lowest power of x in

•" dx
'

is — (1 — 7)0;"'*'; hence equating the coefficients of the lowest

powers we have

C=-(l-7)=7-l,
and therefore

Example 2. Let

F, = y, = i?'(«, /3, « + /3-7 + l, 1 -x)

;

F, = 2/j=i?'(a, /3, 7, «).

We proved before that

in which M and N are definite constants. This gives on differen-

tiation

dx dx dx

'
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and therefore

from the result of the last example. Now from the values of M
and If we have

M^U(y-l)U(-ry)U(oi + /3-y)
-A^ n(i-7)n(a-i)n(yQ-i) •

But U{1 -j) = (l-ry)U{-j) =- {y- l)U i-y),
and therefore

-^/n_ n(7-i)n(a + ^-7)
if^^ ^ n(a-i)n(jS-i) '

and the equation becomes

^'^da; ^'dx ll(a-l)n(/3-l) * ^^ '^^

&!. Prove that

„ ^3 _ „ %5 _ n(a + ^-y)n(l-y) y :7-«-S-l

and that

„ <%!_„ ^yiO _ n(y-l)n(/3-a) -y ,,sV-a-/3-l

129. In all the foregoing investigations the quantities a, /3, y
have been supposed to be independent, and the series have con-

sequently retained their most general form; but many important

applications are made by assigning either one or two relations

between the three constant elements, or by giving numerical

values to one or more of them. Such applications (as for instance

to elliptic integrals) cannot be discussed here ; but the student

who wishes for information on these points will find at the end of

the chapter a list of the more important memoirs dealing with

hypergeometric series.
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Special cases of integration in a finite form.

130. We pass now to consider some special cases wlien the

liypergeometric series can be expressed in a finite form.

It has been proved (§ 61) that the quotient s of any two par-

ticular integrals of the equation

satisfies the equation

\ [s, x] = J,

where 7 is a function of x only ; and it has been further shewn

that, from any particular value of s which satisfies this equation,

the value of the two particular solutions of the former equation

can be "obtained. In the case of the hypergeom.etric series the

value of I is

•(A),
1-X^ 1-v^ X'-,jJ' + v^-l

«' {x-iy x{cc-i)

\, fi, V being definite functions of the constants a, /3 and 7 ; so that

for this series the differential equation which gives s may be

written

If then a relation between s and x can be found which is

expressible in finite terms, then from the formulae of § 62 the

hypergeometric series will be expressible in finite terms. This

cannot be expected to occur in the case when the parameters are

general ; and from the few instances given it will be seen that the

values of X, fi, v are definite numerical constants.

There are in all fifteen separate cases, and no more ; for the

proof of this reference should be made in the first place to the

memoirs of Schwarz (see § 134) to whom the investigation, in a

completely different form, is originally due.

It is convenient to recapitulate here the general formulae of transformation

of the function {s, x] for the changes of the variables ; the special examples

given in Ex. 3, § 62 are particular cases of the general relations which are

<-i-©'i'.^^(g)'<'.^-(S)'«^. (i),
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{Sl.4=»
As additional examples we may take

203

(").

.(iii),

(as+ b g^+ffl _ (yx+
.(iv).

Another formula, which will prove useful, is that which arises by sup-
posing s^=x; then we have

so that

, 1 i-=- cc

n

-1

therefore

and
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Firstly, let

^^cr-l s"-!
0-4-1 s" + 1

'

then {s,a,} = {S,x} + (f^)\s,^
while by (iii)

But a = s''; therefore

l-A

and thus

4o-
I

O—l] _ 1-^ ((7 +

Secondly, let

so that the relation between s and a; is

S"-1N

.S" + 1
= 1 — CB

;

then f^r= *
Vcia;/ 1 — a;

'

Again using (i), we have

but in this

dT__
dx~ '

{T, x] = {l-x, x] = 0,

,1-i,

{S, ^}=i

2T''
'

so that we have

1-i
(1-coy
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Also, since

we have x =
4(7

(°- + lf'

and therefore

f'^l}=(l-^)|-

When these substitutions are made in the original equation

which gave {s, x], it becomes

f^' ^5 = 4(1^'-

=^[<^

x^{l-x)

1 1-1 -i

I
H i r '

b)""^ «' "^a;(a;-l)

This is of the same form as the equation (A) in the general

case, and is identical with it when we write

and then the relation between s and x is

= 1 — a;,

or a; =

Now X' = (1 - 7)^ /i' =(a - /3)^ ,/''= (y - a - ^)' ; then remem-

bering that 7 — a — y8 must be positive in order that the series

may converge and assuming that a is greater than /8 (which

is permissible), we find

1 1 /Q
1

1 1
'' = *-27.' ^ = -2^' 'y=^-n-

If it be desired to have positive, we can change the sign of w;

and then the elements of the hypergeometric series are

= i + i;. /3=i, 7 = 1 +^«=4
2n ' ^ 2w
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and the relation between s and x is

The latter gives

and therefore

l-«" /I \h

l-(l-a^)^

{i+(i-^)¥

while s'-i = (1 - a;)*a;^"=^{l + (1 - a;)^}".

Now the two particular solutions, when the equation is in its

normal form, are

G/-^ and C/\
and the relation between the dependent variable v in this case and

the dependent variable in the ordinary differential equation is

(§ 116)

y = vx-iy{l- x)-i («+^+i-t),

which becomes

y = VX V2 2«/ (1 — «)

in the special case.

Hence the primitive of the differential equation

is y = 0,^"» {1 + (1 - xjf + C, {1 + (1 - xj}\

Moreover on comparing these two particular solutions

{1 + (1 - «)V" and so"" {1 + (1 - xff

with the set of particular solutions, we find that they correspond

to I. and III. respectively ; in fact, the relations are



131.J IN A FINITE FORM.

^11 + 1' l' i + l,^\
= r[i + (i-4'r

207

(I.)

^-d ^\l-l' -h' i-.i4=2"Mi+(i-^)t (11.)

2 ' 2n' 2n'

2 2n' 2n'

the comtnon factor x » having been removed from the latter.

These two relations are of course equivalent to one another.

132. Case II. From what has been proved in the last case

it follows that, when we assign the particular value 2 to n, we have

the relation

4>a^

? =
(a-' + 1)^

as a solution of

1 — i 1 — 1 I — 1
'

L(i-f)^ r ^(?-i).

Firstly, let

then

l(f. + i) = i;

_ 3

_3Ii!±Il+i

and

Secondly, let

then

and

Hence

(^^-ir

1 -i 3
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and the relation is f =
.

Thirdly , by writing ^^ = S^„
we at once have [a; f,} = 3 {a, fJ = -

1

where | =

(1 + 3^3^/

o-^'-l

Fourthly, let a- = s^ ; then

/da
K r,l =

(J)
{«,-} + k,y-

Now {S,<.} = {S,S^}=^;
oo"

,, , 1 /cZctV 120-" 3

Hence is /: 1 = ^ - ^^ ~ ^
.

and the relation is ^^ =

(i + sfsT

2sV3
'

Fifthly, let ^3 = |4-J;

4
then {s, |:j=___{5, ^J

_ 4 27 4^. (g.-iy

27 g^

- 8 (^/-l)-

and the relation is A = «' + ^^V'j-l
_

s^-2sV3-l

Sixthly, let ^5=^/;
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Also

and

Hence
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{?a.f.}
=

Kr.} =

4 4

^/

+
^^(fa-l)^ I,

1 T^ J. 2 T

and the relation is f^
V+2sV3-r
_/-2sV3-l.

It therefore follows that a solution of

1-X' l-i,^ V-/i^+,/»-r
r 71 TTa T
(l-xf w (x— 1)

X = l = M. v = ^,

X =
s'+2s?v/3-l

{s, x] =

in the case when

is sfiven by » , _ , .

Vs*-2sV3-l^

From this relation the value of s can be found (it is a some-

what complicated function of x) and thence s' ; and this will lead

to the solution of the equation

133. Case III. From the two preceding cases a new one

can be constructed.

For let, in Case II.,

4z

then

by Case I. ; and so

{z, x\ =

= x\

(1 - xY

{s. z] = (^j
[{s, x] - [z, xW

dx\

dzj

dx\

~\dz)

= T +

3_ J g
x'

'^ x{\- x)_

A
z'^z{z+iy

14
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Now change z into — z, so that

4^ //4-2sV3 + l

{z-\t * V-s* + 2sV3 + l

then {,,,) = ^,,_,} =
J
+ _i__^

A comparison with the general formula shews, that the last

relation between z and s is a solution, provided

and therefore o = — /3=|^, 7 = f-

Hence by means of the preceding relation we can obtain the

primitive of

in a finite form.

Ex. 1. Shew that from Case ll. can be derived in a finite form the

solution of

^(i-^)3+(i-V^)J-ife/=o.

Ex. 2. Shew that from Case m. can be derived in a finite form the

solution of

Further cases will be found in the Miscellaneous Examples at the end of

the chapter.

It may easily be verified that, for all the examples given, we have on

taking positive values of A, ft, v that

X + Zi+io 1;

the case of X + /x + j'=l is integrable by the simpler method of § 68. See

Ex. -7, p. 126.

134. For further information on the subject of the hypergeometric series

the following memoirs should be consulted :

Gauss, " Disquisitiones generales circa seriem infinitam

1.7 1 . 2.'y(y+l) '

Oes. Werh, t. ill. pp. 123—163.

" Determinatio seriei nostrre per tsquationem differentialem secundi

ordinis," id. pp. 207—230.
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KuMMER, " Ueber die hypergeometrische Reihe," Crella, t. xv. pp. 39

—

83 and 127—172.

ScHWARZ, " Ueber einige Abbildungsaufgaben," CrelU, t. lxx. pp. 105

—

120;

"Ueber diejenigen Falle in welchen die (?aMSsische hypergeome-

trische Reihe eine algebraische Function ihres vierten Ele-

mentes darstellt," Crelle, t. lxxv. pp. 292—335.

C.iTLEY, " On the Schwarzian derivative and the Pplyhedral Functions,''

Camh. Phil. Trans, t. xiii.
;

in the last of which references will be found to further memoirs.

There is also a meinoir by Gouesat which may be consulted with great

advantage—" Sur liquation diflKrentielle qui admet pour int(5grale la s^rie

hyperg^ometrique " {AnTiales de I'e'cole normale sup^rieure, Sdr. ll. t. x.)—in

which by developing a method due originally to Jacobi he obtains the results

of Kiimmer and Schwarz.

MISCELLANEOUS EXAMPLES.

1. Prove that if

((j2+ 62 -2a6 cos (^)-''= ilo+ 24i cos (^ + 2^2 cos 2(/) + 2^13 cos 3</)+...

then Ar may be written in any of the forms

(Gauss.)

2. Obtain a solution of the equation

as a hypergeometric series ; A, B, C, D, E, Fare supposed to be constants.

(Gauss.)

3. A function is said to be contiguous to F{a, ft y, x) when it is derived

from it by changing one and only one of the constant elements by unity. Let

14—2
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i^(a+ l,0,y,^) be denoted by 7^„+; F(a-l,^,y,x)hy F^-; &nA F{a,p,y,x)

by F. Then prove the following relations :

(i) Q= (fi-a)F+aF^^~^F^^;

(ii) =iy-a-l)F+aF^+-(y-l)F^_;

(iii) = {y-2a-(fi-a)x}F+a(l-a:)F^_^-{y-a)F^_;

(iv) =y{a-{y-^)x}F-ay{l-x)F^+ + {y-a){y-IS)xF^+;

(v) = {y-a-^)F+a{l-x)F^^-(y-p)F^_.
(Gauss.)

4. Prove that

(l-x) F(a, ft y, x) F{\-a,\-^,l-y,x)-\

=^^r3^^^^(''. A r+ l. ^)^(l-a, 1-/3, 2-y,^).

(Gauss.)

5. By changing the independent variable in the differential equation verify

the following equations

:

(i) {\+yf-F{ia, %a + l-y,y,y)= F{a, a + J, y, ^^,)

(ii) {l+yf^F{a, a + i-/3, P+i,f)=F{a, ft 2ft ^-^^

(Gauss.)

.).

(Gauss.)

(iii) F{a,^,a + ^+ l, sin2 6) =F Ua, 2^, a+ /3 + J, sin^
.

(Kummer.)

Prove also that, by changing the variable from .r to — 8.r {1 + (1 - xf}~^,

/a <H:1 2a+ 3
3in2 24Vco8-2«5Pr" '^ ?^±^ ^4sin^\

^>^2' 6 ' 3 'SmJSj-cos fii'^^, g , g , ^^^,^ j.

(Kummer.)

6. Shew that the functions P„ and (J„, which are the independent solur

tions of Legendre's equation, may be expressed by hypergeometrio series in the

forms

the variable x of Legendre's equation being connected with | by the relation

2x= |+ |-i.

(Heine.)
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v. Shew that, if the independent variable in Legendre's equation be
restricted to be less than unity, the primitive may be represented by

where the series, if infinite, are convergent.

(Heine.)

8. Denoting the series

^y ^\\g '/)'^\' ^^°^^ ^^^^ i^ satisfies the differential equation

(l-^)^'^ + {«+ ^+ l-(a+^ + y+ 3).^'}*^

+ {6c-x{a^+^y+ya+ ci+^+ y + \)}'^-a^yF=Q;

and obtain two other particular solutions of the equation in the respective

forms

Express the first of these three solutions in terms of the other two (see

§77).

9. Verify that another solution of the differential equation in the last

question is

(l-^)''i^{(°+ '^'^^+;'^+ ''),^}.

where 3^+ l = 2(^+€-a-/3-y).

Hence derive two other solutions from the results given in the last question.

10. The equation

-(i-)g+(f-24f-}y=o

has a particular solution of the form a;" ; determine n and obtain the primitive.

Hence express sin"'^ as a hypergeometric series.

(Goursat.)

11. Obtain in a finite form the primitive of

.'•(i-.^-)3+Hi-2x)J+7-y=o;

also of

•<'->S+*l+^^=«'
(Goursat.)
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12. Prove that the relation

X (g8+ i4a4-n)3

x-\~ 108si(s4-l)*'

satisfies the equation

Hence obtain in a finite form the primitives of the equations :

(ii) ^a-*')fS+(f-M^)t!-^f2/=o.dx^^"-^ ^^ ' dx

13. Prove that the relation

{z-\f _ (i8+ 14s^+ l )»

42 ~ 108s*(s*-l)*'

satisfies the equation

"z2 ^(1-2)2^2(1-2)-

Hence obtain in a finite form the primitives of the equations

(i) ^(l-^)g+(|-^^)J+ Jjy = 0;

(ii) x{\-x)'2,Hi-^i^)%'i%y=o.



CHAPTER VII.

Solution by Definite Integrals.

135. The principal methods which lead to expressions for the

dependent variable in terms of the independent variable by means
of what are ordinarily called known functions have now been given;

there is however another method which certainly leads to a solu-

tion of some differential equations though the full evaluation by

the operations indicated may not be carried out. This method

consists in expressing as a definite integral the value of the de-

pendent variable-; its chief application in ordinary differential

equations arises in the case of a certain general class of linear

equations which can otherwise be solved in series, though not in

so concise a form. The method is however of primary importance

in the solution of those linear partial differential equations of order

higher than the first which arise in investigations in mathematical

physics ; in fact, in some questions these solutions by means of

definite integrals constitute the only solutions hitherto obtained.

Here, however, we are concerned with the application to ordinaiy

differential equations.

136. The method applies with peculiar advantage to linear

equations into the coefEcients of which x enters only in the first

degree and in which there is no term independent of y or of

differential coefficients of y ; such an equation, in its most general

form, is
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where the a's and 6's are constants. This may be written

where ^ and ^^ are rational integral algebraical functions of the

order n in general, though the order of either may diminish

through the vanishing of some of the coefficients. To solve this

equation we assume

y = /e^« Tdt,

where 7 is a function of t but not of x ; the form of this function

and the limits of integration (supposed independent of sc) are to

be determined by substituting this proposed value of y in the

differential equation. Since

§=Ife-Tdt,

the result of the substitution may be expressed in the form

Jxe^f <j> {t)Tdt +/e^«^ (t) Tdt = 0,

which must be identically satisfied. The former of the terms, on

being integrated by parts, is replaced by

[e^^<j.{t)T]-ie^f^{<j>{t)T}dt;

and therefore the identity becomes

d
[e^«0(<)T]-Je^'« {<p{t)T]-f{t)T dt = 0,

_dt

the first term being taken between the limits of the integral, as

yet unknown. Now this will be satisfied, if we make

for all values of t included within the range of integration, and

at the limits. The former of these equations determines T as a

function of t ; the latter will determine the limits of this assumed
integral.
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137. To derive the value of T we write the first equation in

the form

and therefore

where A is an arbitrary constant. Hence the value ofj is

y -/' dt

taken between limits of integration defined by the equation

p. 'i,f.(«)
dt = 0,

these limits being independent ofx.

138. We have now to determine the limits,

equation

Consider the

xt+ 'Pit)

Ae J*«)
dt

H-K

where fi^ is a constant. Let (3^ be a value of t independent of x

and satisfying the equation; \e.\, fi^, ...
, fi^ be other constants and

/Sj, ... , /3^ be corresponding values of t, all independent of x.

Then if the value

y = AA e=^Tdt + Aj e=^Tdt+...
h, hi

be substituted in the equation and if for each of these definite

integrals (T being assumed to have the value before obtained)

a single integration by parts be effected, as in the preceding

analysis, then that the equation may be satisfied we must have

a[^
'*«),

(t) + A„ e J 0(0 + ...=0;

and when this is identically satisfied the foregoing value of y is

a solution of the equation. This last identity will indicate such

necessary relations as may subsist among the arbitrary constants A,

and so will fix the number of independent constants; when this

number is the same as the order of the differential equation the

foregoing value of y is the complete integral, but if it be less the .

necessary number of particular integrals to make up the • complete
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integral must be otberwise determined. Examples will be given

hereafter.

139. This is the most general method of obtaining the limits

;

it includes as a particular set the limits obtained by taking those

roots of the equation

e ^•t'W =0

which are independent of x ; they obviously make

= 0,/-/:-i-

and they are usually the simplest obtainable. When this equation

indicates only two limits distinct from one another, these will

give the only definite integral immediately derivable in such an

example. If, however, more than two, say r + 1, limits be indi-

cated, then r particular integrals may be constructed ; in fact,

denoting these limits by a, /3j, /S^, ...
,

/S,., we obtain as the cor-

responding solution

2/ = V{^, f'e^'rdi
S=l i J a

Ex. 1. To apply the foregoing to obtain the general integral of the

equation

Here we have with the above notation

and therefore

or, changing the sign of the arbitrary constant, this is

while, in accordance with the general rule, the equation determining the

limits is

Now this is satisfied by <= oo when /i is zero and by <=0 when ;i= -^o!
hence we may take as the limits of the definite integral and oo. The
integral thus becomes

aA e
"+^

dt.
J
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It must be noticed that, just as in the general case one of the definite

integrals alone was not a solution of the differential equation, so this is not

a solution of the equation since the terms outside the integral are

- -"0

instead of zero. This value of y is therefore the Particular Integral of the

equation

Now the quantity T does not change, if for t we write at, where m is a

root of the equation

moreover the limits of the definite integral are unaltered since in the equa-

tion determining those limits the term xt in the exponent has changed into

xa)t which, so far as this equation is concerned, is the same as changing a; into

.va, a change which has no effect on the limits since they are independent of

x. Hence we have another definite integral in the form

z-i-uixt

e
"+^

d(<ot),

or, when the a> is moved outside the sign of integration, it is

/x — +taxi

e
"

dt.

D

Forming now these definite integrals for all the (m + l)* roots of unity

and adding them together we find as the expression for y, which has to be

substituted,

(71+1 (11+ 1 ^1+ 1

/=
—+X!t /•« -+0>JCt (=<> — +M"J!«

e »+^ dt+oAA e
»+i dt+ -l-coM„ e

"+1

J a Jo
dt.

When this value is substituted, as in the general investigation, the terms

which are under the integral sign vanish identically and that part of the

expression taken between the limits, which is fiunished by the integral in-

volving Ar, is Ar ; hence the resulting equation, when this value of y is sub-

stituted in the differential equation, is

Ao+A^+ +A^=0.

If then this single condition be satisfied among the n -t- 1 arbitrary con-

stants, the above expression for y is the primitive of the differential equation
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Ex. 2. Prove that the above expression for y is the primitive of the

equation

provided the constants A satisfy the condition

^0+^+^2+ + A^=a.

Ex. 3. Prove that the primitive of the equation

is, for positive values of x, given by

+5
J"_^«»

(» - a)- ("+« (« -^)- <^+^' c;».

Obtain the corresponding primitive for negative values of x.

(Petzval.)

Ex. 4. To solve

d^y dy „

where a and q are constants. Here

(^ (;)= «2 - j2 and ^{t) = at,

Hence the integral of the equation is

taken between the limits given by

To obtain the limits, write

and suppose a positive ; then two roots of the equation are given by

t= -k-q and t= —q.

If now X be restricted to positive values, a third root is given by

t= -aa

,

while when x is negative a third root is given by

so that
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As in either case we have three values given by the limits equation we can
construct two distinct particular solutions, and so have the primitive. Thus
when X is positive the primitive is

y^A{ {f- q^f"-'^ e^dt + B I
''

{fl- j2)^«-i
e*" dt,

J -i J -co

whUe, when a; is negative, the primitive is

!/=A
I _

{t^-q^f"--'^et^dt +B f°° (f - ff''-'^ e*"" dt.

Ex. 5. Verify that, when a lies between zero and 2, the primitive of the

equation is

«= 0i re^^^oo^'sin^-l^c^e + C^^i-" r &l^'^^^^Y^-'>'6de,

unless a be unity, in which case the primitive may be written

u=r S^ COS e ,f^ +5 log (^ sin2 ff^ ae.
J

(Boole.)

Ex. 6. Obtain by means of definite integrals the primitive of Bessel's

equation.

140. The foregoing general linear differential equation is one

with variable coefficients which are of the first degree in the

independent variable; and the definite-integral solution was ob-

tained by means of a linear differential equation of the first order

determining the unknown function T. It is not, however, the

only type of differential equation to which the assumed form of

integral is applicable ; it is, in fact, a particular case of a more

general process, indicated by the following proposition.

The solution, by means of definite integrals, of the general linear

differential equation of the n* order, whose coefficients are not con-

stant hut functions of the independent variable of degree not higher

than m, can he made to depend upon the solution of a linear dif-

ferential equation of order not higher than m, the coefficients of

which are variable.

This proposition we proceed to prove. Let the differential

equation be denoted by
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where X, (for all values of the suffix r) is a function of x only, of

degree not higher than m, given by

a; = a,. + h^x + c.x' + + ky"" + W%
while for some values of r some of the coefficients of the highest

powers of as may vanish. Taking as the particular solution the

same form as before, we write

y=le"'Tdt

with the limits as yet undetermined, and T an unknown function

of t. Now this value of y gives

dx' J'
e'^fTdt;

and therefore the equation, when this expression for y is substi-

tuted in it, becomes

je'^T [fX^ + «"-'X„_, + +tX, + X,]dt = 0,

which must be identically satisfied. Rearranging the expression

fX„ + f-^Z„_,+ + tx^ + x„

so that it may proceed in powers of x, and writing

«,/" + «„_/"'+ +a,t + a, = U„

hj'" + K-r'+ +Kt + K=u„

we transform the above equation into

|e-T [U, + U,x + U,x'+ + f^„,.,*"-' + TJ^x-]dt = 0.

Now the left-hand side is the sum of m + 1 integrals of the

form

L'^TUXdt

;
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and each of these can be integrated by parts until the variable x
ceases to occur except in the exponential. Thus we have

/'
e'^TUydt = e''\x'~'TU^ - oT'^ (TU;) + x"^' ^J (TU;) -

df

+ i-irje-§.(TU;)dt,

the part without the sign of integration being taken between the

limits of the integral, as yet undetermined. Denoting the ex-

pression

dt
af-^TU. - x^-' ~ (TU;) +... + (- IX- ^, {TU,)

df

by V^ for all values of r except zero (in which case no integration

by parts is necessary) and applying the foregoing formula to each

of the definite integrals on the left-hand side of the equation, we

change the equation into

r=l

+ /e'^{m„-|(TC7,) + |(m,)- +{-ir^.xTuj\dt=o.

This will be identically satisfied if the unknown function T be

chosen so as to satisfy the equation

TU,-^(TU,) + ^,{TL\)- + (-!)"' |,.(mj =
dt df dr

for all values of t between the limits of integration. These limits

must be determined by

tv. = 0.

Now this equation determining T is linear with variable co-

efficients, and it is of the order m, but may degenerate to one of

lower order ; when it is solved, a definite-integral solution of the

original equation is derivable.

Hence the proposition follows as enunciated above.

Since the equation which determines T is of order m, it will

have m independent particular solutions ; these may be denoted

by T^, T^, , T„,. Corresponding to these there will be m
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particular solutions of the original equation obtained by sub-

stituting for T in

these m values in turn.

141. In the case when m = 2 the equation which determines

T becomes

or, what is the same thing,

The following are some of the special cases in which this

equation can be integrated very simply.

(1) When the coefficients a, h, c are such that the equation

df dt^ "

is satisfied for all values of ^ ; in this case the value of T is easily

proved to be

^/f.J^;^i

(2) On multiplying the equation throughout by JJ^, we can

rewrite it in the form

dt\ ' dt) ""'"^'dt ^Adt df V '

the left-hand side of which is a perfect differential if

dt^ ' '' '\dt df »

that is, if

' df ' dt ^
" '

If the values of a, b, c be such as to make this an identity, then

the value of T is given by
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which leads to the result

(3) When the equation in T is reduced to its normal form by
the substitution

the new equation is

^4:-»®)"-»s(l)-
An integral of this equation is at once obtainable when ©

vanishes, i.e. when

Further, immediately integrable cases are furnished when '2^ is

a constant, or is of the form X (e +ft) ~^, or of the form X (e +ft)
~*.

In any case, whatever be the relations among the constants in

the functions U, the solution of the equation determining T is of

the form

while the equation giving the limits of the definite integral is

^^[^U,T-^^{UJ) + U,T] = 0,

which is satisfied by the values of t, if any, common to

T= and ^ = 0.
at

Ex. Integrate, by means of a definite integral, the equation

where |i is a constant.

F. 15
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142. Another set of equations to which the method of solution

by definite integrals can be applied is the set derived from

for different values of n. To solve this we assume

where t denotes an unknown function of x alone and P an unknown

function of p alone, both of which functions, as well as the limits

of the integral, have to be determined. Differentiating the value

of y twice and substituting in the equation, we find

Choose the unknown function t so that

'dt^

and suppose that X is positive and equal to d', so that the differential

equation is

Then the equation which determines t is

— = c«'"
dx '

and therefore

^n + 1 m

if m denote ^n + 1. Hence we have

1 dt _'m , 1 d^'t _in{m—l)
t dx X t ddi? x^

Let the equation involving the integrals be multiplied through-

out by x^jmt ; it becomes, after a very slight reduction,

m Je-^' ip' - 1) Ptdp - (m - 1) Je"'" Ppdp = 0..
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Integrating the first term by parts, we have

me^'(p'-l)P +mje-'"~ l(p'-l)p\dp-(m-l)je-''Ppdp^(

Now this will be identically satisfied if we make

d

for all values of p included between the limits of integration

defined by

[e-^' (j)' - 1) P] = 0.

The former equation serves to determine P as a function of^; it

is of the first order and linear and its solution is

m+ l

P=^(/-l)'"-'™,

A being an arbitrary constant ; and the equation which gives the

limits is

le-^'ip^-l) 2»
J=0.

The latter equation is satisfied by p = oo , and by p = + 1 provided

the exponent of p" — ! is positive ; this requires that m should

either be positive and greater than unity, or be negative, and

therefore that n should not lie between zero and — 2. Assuming

that this condition is satisfied, we are in a position to construct two

definite integrals ; these are

!-.'
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Hence the primitive may be represented by

-j^ m+l /-oo OT+1

A'i (^ + e-^'){p'-l) 2m dp + BJ e-^'ip'-lf^dp;

substituting for t we have

y = AC{l -p^y^* cosh (^^ a;4»+i) dp

,00 2e?) in+i n+4,

+ B e"»+2 (/-I) ^^+*dp,

as the primitive of the equation

for values of n not lying between and — 2.

Hx. Prove that the primitive of the same equation may, with the same

conditions applying to n, be given in the form

1
'^

.^.u

(Lobatto.)

Application to the Hypergeometric Series.

143. In order to obtain a definite integral which shall satisfy

the differential equation of the hypergeometric series we assume

y=l{\-vxyVdv,

where V is an imknown function of v only and »i is a constant

;

the form of V, the value of m, and the limits of the integral have

to be determined. From this value of 2/ we at once have

'^y = -m{vV{\-vxT-''dv,
dx

= m [m - 1) L'' V{1 - vxy-'dv
;
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SO that, when these values are substituted in the equation

*^^~*^3+{'y-(" + ^ + ^)*^S-"'^2/
= 0.

it becomes

/
F(l - vxY ' [m (m - 1) v^x (1-x)- niv (1 - vj;) {7 - (a + /S + 1) x]

- «/3 (1 - vxy] dv = 0.

The coefficient of a;V within the brackets is of the second degree

in m, which is as yet an undetermined constant; let m be so

chosen that this coefficient vanishes, so that m is given by

- m (m - 1) — m (a + y8 + 1) - ayS = 0,

or TO^ + »i (a + j8) + a/3 = 0,

whence m may be taken equal to either — a or — jS. As the

differential equation is unaltered when a. and y8 are interchanged,

either of these roots may be taken ; we shall take

m = — a,

and then, substituting this value, we find that the equation

F(l - vxy''~^ [a{a. + l)v^x + (XV {j- X (a + ^ + ry + 1)}

-a^{l-2vx')]dv=0

must be identically satisfied. Rearranging the expression within

the brackets under the sign of integration and dividing out by the

factor a, we transform the equation into

JV{1 - w)"""^ (a + l)v(v-l) xdv

+ [F (1 - vx)
"""^

{vy - j8) (1 - vx) dv = 0.

Integrating the first term by parts we have

-rv(l- v) (1 - vx)-"-^ + j{l - v^y^-^ b (1 - «) V\ dv,

and therefore the equation becomes

-[Vv{l-v){l-vx)-'-^]

I

+j(l-vx)-'-^ ^^{v{l-v)V}-{^-vy)V dv= 0.
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Now this will be identically satisfied, if we take as the equation

to determine V

and assign, as the limits of the proposed integral, values of v such

that

To solve the former equation, we have

^ ^ [v 1—
'W.

Hence v (1 -v) V=Av^{l-v)y-^^

where A is an arbitrary constant ; and the equation determining

the limits is

which, on the supposition that /S is positive and 7 greater than

yS, is satisfied by v = and v = l. It therefore follows that

the equation of the hypergeometric series is satisfied by

y = AJ «P-i
(1 _ t,)Y-^-i (1 _ xv^dv,

provided /3 be positive and 7 greater than /3.

It is easy to shew that, when (1 — xv)'"' is expanded and the

coefficients of different powers of x are evaluated, the resulting

series is a constant multiple of the hypergeometric series, this

constant factor being

,P-i n _ „v-^-iv"-' (1 - v)

144. If now we change the independent variable from *' to

1 - x, the corresponding form of the differential equation is
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A solution of this equation (and therefore of the original

equation) is, from the foregoing analysis, given by

y = B( ^-\l- yy-y (1 _ ^j,)-" dv,
J

provided /S is positive and a + 1 greater than ly. If the conditions

of limitation of the parameters be satisfied, the primitive of the

differential equation of the hypergeometric series is given by the

sum of these two distinct solutions.

Sx. 1 . Obtain in terms of definite integrals the complete solution of the

equation

(see i:x. 2, p. 211).

£x. 2. Prove that,

(i) if /3 be positive and a+ 1 greater than y, then a solution is

y= ["'"m^-1(1-m)1'-^-1(1-m)~'"c?m;
J

(ii) if 7 be greater than /3 and less than a+ 1, then a solution is

y= r u^-'^il-toy-^-'^il-xu)-" du;

(iii) if y be greater than |8 and a less than unity, then a solution is

y= [''u^-'^ {i-uy-^-'^ii-mydu.

(Jacobi.)

E.v. 3. Obtain the complete integral of the equation

(where a/ + a^=l)m the form

y=A f^(l-^sin2<^)-*cZ0 +5/ ^(l-^sin2(|))-*#;
y •'0

and of the equation

,dh/_

in the form

y=xAA psin2 0(l-^sin2<^)"^o?0+5 f%in2(/)(l-ysin2<j())"^#1,

x' being the same as before.
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Solve also

(i) te'g +4yg+y= 0,

(ii) wg-4^|+y= 0,

(iii) 4^^^+4|^-y= 0,
^ ' dx^ doc ^ '

Ex. 4. Prove that, if ?i+ 1 be positive, then

is a solution of Legendre's equation ; while, if n be negative, a solution is given

by

145. This chapter contains only a slight sketch of the method of solution of

diflferential equations by means of definite integrals ; the reader who wishes

for fuller information on this part of the subject should consult two authorities

in particular. By far the most important is Petzval, Integration der linearen

Differentialgleichtingen ; the parts dealing with this method are §§ 2—5 of

Section ii.
; §§ 19—22 of Section iii.

; §§ 10, 11 of Section v. The other au-

thority is EuLBE, Inst. Colo. Int., vol. ii., c. x. ; this work, however, labours

under the disadvantage of assuming the form of the solution first and then of

finding the differential equation satisfied by it. There are two other memoirs

which might also with advantage be consulted ; one by Lobatto, Crelle, t. xvii.,

p. 363 ; and one by Jaoobi, Crelle, t. Ivi., p. 149.

A full discussion of the solution of linear differential equations by means

of series and of definite integrals will be found, together with numerous

examples, in a series of separately published memoirs by Spitzer.

MISCELLANEOUS EXAMPLES.

1. Integrate completely the equation

d"^

2. Prove that the primitive of the equation
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is given by
ri

y= {b'- -fif"-^ {A Bm xt+B cos xt)dt
J

J

where the upper sign is to be taken if x be positive and the lower if x be nega-

tive.

(Petzval.)

3. Prove that the equation

has an integral given by

sin- e~^' vdv:

and that an integral of

d^y

IS y=0 I e vdv,
J

the minus or plus sign being taken according as x is positive or negative.

Obtain the primitive of each equation.

(Petzval.)

4. Investigate the primitive of the equation

in the form

7r 1

^=A
I

^ cos {caf^ sin 0) cos ™ ^d<p
J

+Bx j^ cos (c.»™ sin 0) cos™ dcj),

Jo

for values of m not included between — 1 and + 1.

(Kummer, and Lobatto.)

5. Shew that a particular solution of

dx^^"'^' x^ y

ra,

y= xi^-*-'^
I

{v^ — aP'Y COS XV dv;
J -a
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and that a particular solution of

dx^ •' x^ "

/CD

y = x^'^^ \ {x'^-\-v'^)~^~'^(insavdv.

6. Shew that the equation

dx"*^ dx

is satisfied by
z'"/-oo _ t

y= I
2™-l e m+n^

(^^.^ (^^^

where t/^ (.r) is given by

Hence from the solution of

d^_
'dx^"^

deduce that of

d^y_
'dx^^'^y-

7. Verify that

/"^ 2n 2ii -2n

is a particular integral of

8. Shew that when the coefficients of the differential equation

satisfy the condition a^^ — a^-^ = T3^, the solution will be

y= L"* F{J.+ 5l0g f/j (ffi2 + 62^)}c?M,

where C/j= SgW^+ &!« + 6o >

and log ( FZ7i)= / -2 =J 2 ^y,^

the limits being given by

(Spitzer.)
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9. Prove that equations of the form

may be reduced to the form

of § 136, by the substitutions a;™

=

t and y = fz\ and shew that h is determined
by a quadratic equation.

(Petzval.;

10. Prove that the particular integral of

(^+ «i) (^+ «2) (^+ an)y=/(-«'),

where 3- denotes ^ ^;- , is
dx

= [77' /^^i^2 e^x) e^^-^ e^"---^ e^-.r'^ ae^de^ de^.
J Oj Oj

11. Prove that the definite integral

[ [\fi-'^ (1 -m/-^-i Z)>'-i (1
-y)^-Y-i (l-xuvydu dv

J OJ

is, when 6 > ^> and e > y > 0, a solution of the differential equation

-\-{e€-X {a^+ ^y+ ya+ a+ ^+ y + 1)}
y -aPyy= 0.

Give in the form of definite integrals the primitive of this equation.

12. The primitive of the equation

where a, /3, y are the roots of

m3+ X = 0,

and the arbitrary constants are connected by the single relation

A+B+C+I)= b{8\)-K

(Petzval.)
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13. Prove that the definite integral

J

satisfies the equation

-jf= OT26«™-2y.

(Poisson.)

14. Prove that

''-.(s)=^-)'/:'o (l-^sin2^)^'

P being Legendre's function.

(G. H. Stuart.)

15. Obtain, by means of definite integrals, the primitive of the equation

where a and c are constants.



CHAPTER YIII.

Ordhstaey Equations with more than two variables.

146. It has already appeared that in some cases, though the

integration of separate terms of a differential equation would in-

troduce new transcendental functions, the solution of the equation

as a whole can be expressed in terms of purely algebraical func-

tions. Thus, for instance, the equation

dx dy _

can be integrated in terms of the transcendental functions arc sin x,

arc sin y ; but there is an integral of the form

x{\-y'f+y(l-x'^f=G

which is equivalent to the other. We are thus naturally led to

enquire whether other cases exist in. which such an algebraical

relation between the variables of the integrals of functions can

be obtained when the integrals themselves cannot be evaluated

without the introduction of new functions. The case next in

point of simplicity, which furnishes a similar example, is that

usually known as Euler's equation, in which the object is to

find the integral algebraical relation between x and y which corre-

sponds to the equation

X'^dx+Y~^dy = 0,

where X = a + hx + cx^ -\-ex^ +fx^,

and Y=a-'rhy + cy'' + ey^ +fy*-
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To integrate this we assume

p = x +y,

dec Z*
and

so that

and therefore , _
at OB — y

A second differentiation with regard to t gives

A^p_ \ [\ dYdy 1 dXdx\ Y-'-X^ldx dy\

dt'
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an algebraical relation between x and y, though the separate

integrals require for their expression elliptic functions.

Ex. 1. Prove that another integral of the equation

dx d)i

is

I
y_^^ ^=GxY+ hxy{x+y) + a{x+yf,

and verify the theorem of § 12 in this case by shewing that the two primitives

are not independent.

Ex. 2. Prove that an integral of

dx d,y

(Y^JrX^'9
^^ ^-^^~^=C+e{x + y)+f{x + yf.

Ex. 3. Express in an integral form the relation between y and x given by

dx dy

{l-aAf (1-/)*

Ex. 4. Shew that the primitive of

dx dy

{^(i-^)(i-X^)}* ^ {y(l-y)(i-Xy)}*"

may be exhibited in the form

{x{l-y)0-\y)}^+{y{\-x){\-\x)]^=AO-\xy),

where A is an arbitrary constant.

147. There is another method of proceeding, due to Cauchy

;

it is quite different from the former.

Consider a general equation between the two variables of the

second degree of the form

= Y,x'-v2Y^x+Y, = 0,

where X^, X^, X^ Y^, Y^, Y^ are all of the second degree, the first

three in x, and the second three in y ; thus if

Xo = a^x^ + 2a^x + a^,

X, = b,x'+2b^x + b„
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we should have

Then the ratio of dy : dx is given by

But g=2(i>+rj

since u = Y^x" + 2 Y^x + F, = ; similarly

| = 2(X„2/ + ZJ

= 2(X/-X„X,)i
and therefore

a differential equation the integral of which is m = 0.

Now since Euler's differential equation is symmetrical with

regard to x and y, it is necessary that its integral m = should

be symmetrical with regard to x and y in order that the pre-

ceding analysis may apply to the present case. In order that u

may be symmetrical, we must have

and X^ — X^X^is, then the same function of x that Y^— F„ F^,

is of y. In order to obtain the integral of

dx dy

X'^ F^

where X= a + hx+ cx^ + ex^ +/*'*.

and Y is the same function of y, we must make X and

X^ — X^ X^ the same. The comparison of their coefficients will

give four equations to determine the coefficients of u; but in

u there are five independent constants (there were originally
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eight as any one can be made unity, but three equations necessary

for symmetry are satisfied) and therefore one will remain imdeter-

mined and so arbitrary. These equations giving the coefficients are

f e ha
_ 4 {h^ - a^G^ - (a^c„ + a.c, - 26„6^)

c

when the values of the determined coefficients are substituted

in u, the equation m = contains one arbitrary constant and is

thus the complete integral.

Ex. 1. Prove that the primitive of

where y-V _ &A-«o&i 1 V-V2
4 ~ fi

^.». 2. Verify that the primitive of

dx ^ dy ^Q

is ^(«H2/2) + 2^3^y=l + ao^y^

where A^-a^=A^-Va^A^.
(Cauchy.)

Chap. xrv. of Cayley's "Elliptic Functions" may be consulted with

advantage.

148. If instead of a single equation between two variables,

the relation between which is expressible in an algebraical form,

we have a system of w — 1 equations between n variables, we may

without integration of each integrable expression represent in an

integral form the dependence between the n variables in the

shape of an algebraical equation ; and as this equation is obtained

by an integration it must contain an arbitrary constant. The

process made use of in order to derive it in the general case will

be seen to differ materially from that adopted in the particular

case of n = 2.

F. 16
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Let the differential equations be

dx. dx.
1 J 2 I

dx^ _ ^
X}

\

+^ =

+ -

x^'^dx.
^ =^1 dXi x^ dx^

in which

X^ = A, + A^x^ + A,x^^+ + A^^_^ <"-' + ^,„V
for all the suffixes /* in the system. Let

f{x) = {x-x^){x-x^) («-a3„);

df(x)
and let /'

(«m) denote the value of "^ when in it, after the in-

dicated differentiation has taken place, aj^ is substituted for x ; the

value of /' (x^) will therefore be

(x^ — xj (Xi^ — X^) (Xf^ — x^J,

the vanishing factor a;^ — x^ being absent. Solving now the above

system of equations in order to obtain the algebraical ratios of

the quantities dx^, dx^, , cZ«„, we find

/(a;,) dx^ ^f (x,) dx,^ ^f (xj d^
X: X^ X}

Let the common value of these equal fractions be denoted by

dt, so that we have

dx. X dx„ X
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.{/(^JFJ 9*.
+ ;

dx„

+

.{/(«'»)}''

We shall afterwards denote a;^ + x^+ +x^hj p,so that the

left-hand side is 2 -^,

.

df

149. We can obtain another value for the expression on the

right-hand side. Let X denote the same function of a? as Xj of so^,

and let

X

be expanded in partial fractions. Since X and {f(oo)Y are both

of the degree 2n, there will be a term independent of x, which

will be A^^ ; and so we may write

X
{/wr

+

= A. +r^+^ +

a

x — x^ x — x„
+ '

B,

x-x„

- + -.

1
+ +

C.

{«>-«>
J'{x-xj {x-x^""

Multiplying up by {x — x^Y we have

X (x — xY—
J

r, s^g' =C^+B^(x — Xj) + terms multiplied by (x — x^f,

or dividing out by the common factors in the numerator and the

denominator on the left-hand side we ' have C^ + B^(x — a;,) + terms

multiplied by (x — x^y =
{x-x,)\x-x^y...{x-x„y

If X be put equal to tCj, the left-hand side becomes C^ and the

right becomes
X

{/'K)r
so that

C = X

The right-hand side of the equation in the form last writ-

ten does not involve x^, and its partial differential coefficient

with regard to x^ is therefore zero; since the two sides of the

equation are identically equal, zero must be the value of the
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partial differential coefficient of the left-hand side with regard to

ajj, and so we have

9C 97?
g-* — -Bj + (a; — a;J -^ + terms involving {x — cc^ = 0.

This is true for aU values of x, and therefore

d
Similarly B =

dx„

' ^. 1

with corresponding expressions for the other quantities B. Hence

de~dx-
X

{f'{^.)Y
+

=A+A+ + 5.-

Let the equation expressing the resolution into partial fractions

of the expression considered be multiplied throughout by [f{oc)Y ',

and let the coefficients of a?"'^ on the two sides of

x=AM{x)Y+''i^[f{x)Y+tj^^Af{x)r

be equated. None of the terms involving the quantities G can

furnish terms of so high a degree, since each begins with x^~^;-'

each of the terms involving the quantities B begins with a;^""',

and the whole coefficient from this series of terms is therefore

B, + B^+ + £„.

Since

f(x) = {x~ x^) (x-x^) {x- xj

= ijj" — «""'
(ajj + ajj + + ^„) + lower powers of x

= af^ — px"''' + lower powers,

the coefficient of a;'""' in A^^ {/(«)}" is - 2A^^p. That on the

left-hand side is ^2„_i ; and therefore

A,^_, = -2A,^p + B^ + B,+ +B„

= -2A^p + 2
df.
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Multiplying by -^ and integrating, we have

where U is an arbitrary constant. But

dp _dx^ dx^ dx^

dt ~ dt dt dt

and therefore the integral becomes

X^ X^ 7 4 12
' +4t\ + + 4r-} =^+A„K+^3+ +a;„r

Ex. 1. Prove ttat an integral of the equations

dx dit dz „

X* r* Z^

xdx ridii zdz .

JT* r* Z^

where

Z= a+ 6a'+ 0^+ ^^+ y^*+ /3i!;5+ ar^^

and T and ^ are similar functions of y and z is

f(y-2)X*+ («-^)r*+ (^-2/).^V
, s, / , , x2

, /^

f \^_;)(y^)(,_%^^ } =/3(.+2/+.)+a(.+y+.)HC,

where C is an arbitrary constant.

(Richelot.)

Ex. 2. Deduce a second integral of these equations in the form

fy%2 (y - z) X*+zV (z- ^) y *+ a;^?/^ (a; - y) z^ ^

I («-y)(y-«)(2-^) J

= C'x^yH^ + hxyz {xy +yz+zx)+ a {xy+yz+ zx^.

(Eichelot.)

The theory of these and kindred equations cannot here be carried out to

the limits of its present development, as it soon ceases to belong exclusively to

differential equations and merges into the general theory of transcendental

functions. The reader who wishes for a fuller development on the lines of

differential equations than can be given here will find a paper by Eichelot,
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Crelle, t. xxiii., pp. 354—369, very useM ; and he would do well to consult the

following papers by Jacobi,

Crelle, t. ix., pp. 394—403;

t. xiii., pp. 55—78

;

t. xxiv., pp. 28—35

;

t. xxxii., pp. 220—226,

all of which are contained in the second volume of his collected works.

Por the higher parts, chiefly in connection with the theory of transcen-

dental functions, the memoirs of Abel should be consulted.

Total Differential Equations.

150. The differential equations with which we have hitherto

had to deal have been, except in §§ 148 and 149, such as include

one dependent and one independent variable ; for the future we

shall consider those which include more than two variables. These

may be divided into two classes, one in which only one dependent

variable occurs, the other in which -only one independent variable

occurs. In equations of the former class we shall have the partial

differential coefficients of the single dependent variable relatively

to the independent variables ; these are called partial differential

equations and will afterwards be discussed. In equations of the

latter class we shall have the differential coefficients of the several

dependent variables with reference to the single independent

variable (which may be either ^xpxfissed Or implied) ; these are

usually called total differential equations.

Now if we have an integral equation

<^ («> y, ^) = G,

where (7 is a constant, we may suppose that x, y, z undergo slight

variations dx, dy, dz, which we know will be connected by the

relation

or, if we assume that x, y, z are all functions of some variable t,

then

dx^^-l-^dt, dy^^^dt, dz=^^dt;

and the foregoing equation becomes

d(j) dx d<f) dy d<j) dz _ ^
dx dt By dt dz dt
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These two are equivalent forms; the form usually adopted is the

first ; if in any case the second be given, it can at once be changed

into that of the first. Moreover,' ii ^ , -7^ , ^ have any common
dx dy dz

factor, the equation can be simplified by the removal of that

comnion factor ; and so we may consider the general form of such

an equation in the three variables as represented by

Pdx+Qdy + Rdz=0,

where P, Q, B are given functions of os, y, z and are proportional

to the differential coefficients of j>.

151. But, conversely, when any equation of the form

Pdx + Qdy + Rdz =

is given, it does not necessarily lead to an equation of the form

4> {x, y, z) = G

;

for the existence of such an equation implies that the three quanti-

ties P, Q, R are proportional to the differential coefficients of some

one function, and this is not satisfied while P, Q, R are quite

general. We must therefore find out under what circumstances

such a differential equation will lead to an integral of the given

form ; and, on the assumption that such an integral is possible,

indicate a method of obtaining it.

There will remain the further problem of obtaining a solution

of the equation when the conditions necessary for the existence 'of

such an integral as the above are not satisfied.

152. In the first place then we assume that such an integral

exists ; we must therefore have P, Q, R respectively proportional

to the partial differential coefficients of some function ^ with

regard to x, y, z, so that we may write

"^-S' "S-l- "^-l-
in which ^ is some function the vailue of which is unknown. From
the first two of these equations we have



152.] TOTAL DIFFEEENTIAL EQUATIONS. 249

dx dz J dz dx
'

Multiplying the last three equations respectively by B, P, Q
and adding, we have

which is the equation giving the relation between P, Q and B
;

and this, when identicallY_^satisfied, indicates that the proposed

differential equation leads to an integral of the form considered.

153. We shall now assume that this relation exists and that

the differential equation therefore has a primitive of the form

we have to shew how to deduce this primitive.

If we had this primitive and proceeded to form the correspond-

ing differential equation with a restriction that z should not vary,

the equation would be

Pdx + Qdy=0,

which equation would not be affected by any term in the primitive

which involved z alone.

Conversely then, if we integrate

Pdx + Qdy = 0,

-on the assumption that z does not vary, the arbitrary constant

of integration is a quantity independent of the variations of x and

y and may therefore be an arbitrary function of z. We replace

the arbitrary constant by an arbitrary function of z and so have a

relation between x, y and z. This however will not necessarily be

the integral required, for it may not satisfy the equation

Pdx + Qdy +Bdz = 0;
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we only know that it satisfies the particular form of this in the

case when z does not vary. It is therefore desirable to form the

differential equation corresponding to the integral in the form in

which it now occurs; it should yield the given differential equation

and a comparison of the two forms will lead, from the condition

that they must be identical, to an equation which will determine

the value of the arbitrary function of z. This last will also be a

differential equation ; when integrated it will contain the arbitrary

constant in the determined function of s which on substitution

furnishes the primitive. Hence we have the rule :

Let the equation he

Pdx + Qdy + Rdz = 0,

and swppose the relation

^(i-f)-«f-£)--(|-S)-.
satisfied. Integrate

Pdx + Qdy =

as if z were invariable* , and make the arbitrary constant of inte-

gration equal to 4> {^)- Substitute now so as to obtain the ori-

ginal equation and choose
(f)

{z) so that the coefficient of dz is B.

The primitive is then found.

Ex. 1. Integrate

(ydx + xdy) {a-z)+xyds= 0.

Here P=y {a-z), Q= x{a-z), R=.xy; and the equation of condition is

satisfied.

On the assumption that z is invariable the term xydz disappears and then

a — z will divide out, so that the equation becomes

ydx-Vxdy=<i,

which integrated gives

according to the rule. Differentiating this we have

ydx+xdy --^dz=Q.

* If more convenient either of the other variables might be considered tem-

porarily constant and the corresponding changes made.
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In order that the two equations may be the same we must have

d(j) _ xy cj)

dz a — z a- z

Hence 1#=_J_=J_,
dz a — z z — a

therefore 4>{z)=^C(z- a),

where C is a constant ; and the primitive is

ocy=G{z-a).

Ex. 2. Verify that for each of the following equations the condition of

integrabihty is satisfied, and obtain the primitives

:

(i) (j/+z)dx+{z-^x)dy+ {x+y)dz=0;

(ii) zydx=zxdy+yMz;

(iii) (i/+aYdx+ zdy-{y+ a)dz=0;

(iv) {x-a)dx+ (z-o)dz+ {W ~ {x - af - {z - cff dy =^0

;

(v) (2y2+ 4^22^2) xdx + {Zy+ ^x^+ (y^ + z^)~^]ydy

+ {422+ 2cm;2 + (y2+ 22)-lj zdz=0;

(vi) i2/^+yz)dx+{xz+ z^)dy+ {y^ — xy) dz= 0;

(vii) (x^y —y^—yh) dx+ {xy^ — os^ — xh) dy+ {xy'^+ xh/) dz=0;

(viii) (2^2 _j. 2xy+ 2xz^+ l)dx+ dy+ 2zdz= ;

(ix) (2^+y^+ 2xz) dx + 2xydy+xMz= du.

154. The preceding solution has been obtained on the sup-

position that the equation of condition among the coefficients of

the differential elements dx, dy, dz is satisfied ; it remains now to

consider the class of- equations for which this equation is not

satisfied, and for which there cannot therefore for these equations

be a single general integral.

Let us now assume any arbitrary relation between x, y, z of

the form

^ {«!, 2/> «) = ;

this on being differentiated gives

When the form i^ is specified, these two equations will determine

s a-nd d? in terms of x, y, dx and dy (or, generally, one of the
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variables and its dififerential in terras of the other two and their

differentials), these when substituted in the equation

Pdx+Qdy + Bdz =

will make it of the form

Mdx + Ndy = 0,

where M and N are functions of x and y, the values of which will

depend upon the form of the chosen function i/r. Now this equa-

tion may be integrated and the integral, containing an arbitrary-

constant, will together with the relation

constitute a solution of the differential equation.

For it is evident from the method of derivation of the integral

that, in combination with i|r = 0, it furnishes relations between

X, y and z such that the differential equation is satisfied.

By giving all possible forms to •y^ every possible solution will

be obtained. Each solution will be constituted by two equations.

Ex. 1. Solve

dz=aydx + hdy.

The equation of condition is not satisfied ; some relation between x, y, z

must therefore be assumed and this may be perfectly arbitrary : let it be

A combination of this with the differential equation gives

dz=af (x) dx+ hf (x),

the integral of which is

z=a \f{x)dx+hf{x)+ G.

This, mih.f{x)=y, forms the solution of the proposed equation.

Ex. 2. Obtain the most general solution of the equation

l--2-f2) ^«=

which is consistent with the relation

a^ 62 g2

Ex. 3. Find the equation which must be associated with x'^+y^=^ (2) in

order to give an integral of

{x{x-a)+ y{^- h)} dz={z- c) {xdx+y dy) ;
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and that which must be associated with

so as to satisfy

zdx+a;di/+ydz=0.

Ex. 4. Prove that, if /i be a quantity such that

ii.l^Pdx^-qdy)=dY,

then the solution of the equation may be represented by

-gj-/iiJ=^'(0).

This is Monge's form.

Ex. 5. Obtain the general equations which constitute the solution of

ydx={x-s) ((% - dz).

155. It is not at first sight clear how the equation of condition

affects the above process and, in particular, why what has been

given as the solution in the latter case is not the solution in the

former case. But the relation between the two solutions can be

seen as follows.

The elimination of the differential element dz between the two

equations in which it occurs leads to the equation

and, in order that this may be reduced to the form

Mdx + Ndy = 0,

the variable z, which occurs in it, must be replaced by its value

derived from ^ {x, y, a) = 0. Now suppose the equation of con-

dition is satisfied so that P, Q, R are proportional to the differ-

ential coefficients with regard to x, y, z of some function ; if this

function be t/t [x, y, z), then we have

1 9i|^ _ 1 9t/^ _ 1 9i|r , .

,

Bd^~QTy~Pd^ ^ ''

and the equation involving dx and dy is identically satisfied. There

will thus, on this supposition, be no other equation necessarily asso-

ciated with the equation i/r= 0, or, what is equivalent for this case,

i^=G; this by itself is sufficient for the solution of the differential

equation, and any other equation associated ' with i|f = (7 may be
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perfectly arbitrary (such as p^
= 0), for its expression will not enter

into the differential equation when formed from these integral

equations. If however the equation first written down be not that

which leads to the particular properties (A), but be another such

as % = 0, it will still be possible to derive the equation y}r= G, into

the expression of which the form of % does not enter ; and we

may therefore consider as the general solution of the differential

equation the equation

while, if we wish to determine y and z separately as functions of

ic, we associate with this any arbitrary function of x, y, z._

If however the equation of condition between the quantities

P, Q, B be not satisfied, there is no function -\|r such that the

relations (A) hold ; and thus

Mdx + Ndy =

is not an identity but leads to an integral, the form of which is

affected by the form of the arbitrary equation first written down

and which must be associated with that equation in order to con-

stitute the integral.

It thus appears that the difference between the two cases is

this ; while we may consider that in both cases two equations are

necessary to give the complete solution, in the case when the

equation of condition is satisfied one of these integral equations

(called ylr = C) is completely unaffected in form by the other (called

p^
= 0), but in the case when this equation of condition is not

satisfied one of these integral equations is affected in form by the

other.

156. The difference between the results in the two classes

having been indicated, it is now possible to adopt a method of

integration which shews the point of separation between the

processes applying to these classes. Let

X (*. 2/. ^) =

be any relation between x, y and z ; then
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We also have

Pdx + Qdy + Rdz = 0.

Let the former equation be multiplied by X (a quantity to be

determined afterwards) and added to the latter, so that

or, say, P^dx + Q^dy + R^dz = 0.

Let X be so chosen as to make P^, Q^, R^ proportional to the

differential coefficients with regard to x, y, z respectively of some

function ^ ; then the integral of the last equation is

-f {x, y, z) = G,

where G is arbitrary, and the primitive of the differential equation

is given by the two equations

^ {^, y, z) = Gr

Now since P,, Q^.R^ are proportional to differential coefficients

with regard to x, y, z, we have

or substituting for Pj, Q^, R^ and reducing, we have

^ [dx [dz dyj ^ dy \dx dzj^dz \dy dxj)

If P, Q, R be themselves proportional to differential coefficients

with regard to x, y, z, the first line in this equation vanishes and a

solution of this equation is X= 0; Pj, Q^, Pj are then independent

of X and therefore yjr (x, y, z) is independent of %.

If P, Q, R be not such as to make the first line vanish, then X

is shewn by this equation to depend upon the form of ^ and there-

fore t/t also will depend upon the form of %. The form of i|r will

in this case be determined by the method given in § 154 ; but the

foregoing investigation is useful as a means of instituting the

analytical comparison between the methods.
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Geometrical Interpretation.

157. A geometrical interpretation can be given to the differ-

ential equation and its integral, wliich will illustrate the differ-

ence between the two classes of equation explained in the last

two paragraphs.

If as usual x, y, z represent the coordinates of a point A,

the equation will then represent some locus. Let A! be a

point on the locus adjacent to A ; then dx, dy, dz are pro-

portional to the direction cosines of AA' and the differential

equation implies a relation between these direction cosines ; the

locus which it represents will therefore be some curve or family

of curves, and not a surface or family of surfaces.

158. Consider now the two differential equations

dx' _dy' _dz'

'F~'q~E ^^^'

P', Q', B! being the same functions of x', y, z that P, Q, R are

of x,y,z; their integrals are of the form

"'=^4
(ii),

where u^ and u^ are functions of x', y, z ; and as they coexist

these integrals really represent the intersection of two surfaces

each of which is one of a family. This intersection of any two

particular surfaces is a curve, and we therefore have a doubly

infinite system of curves. One curve of this system passes through

A and is determined by those values of a^ and a^ obtained by

substituting in' u^ and u^ the coordinates of A. Let A" be the

point on this curve which is consecutive to A ; then the direction

cosines of AA' are proportional to dx, dy', dz' or to the values of

P', Q', R' at A, that is to P, Q, R. Now the condition that AA",

AA' may be perpendicular is

Pdx + Qdy + Rdz = 0,

which is the given differential equation ; hence it expresses

the fact that AA' is perpendicular to that curve of (ii) which

passes through A. The solution of the differential equation
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must therefore include all the curves which cut the system (ii)

orthogonally.

If we start from A in any direction which is perpendicular to

the tangent at A to that curve of the sj^stera (ii) which passes

through A, we shall come at J.' to an adjacent curve of this system

;

moving from A' in any direction at right angles to this we shall

at another consecutive point in this path reach another adjacent

curve ; and so on. The path thus obtained must be ipcluded in

the solution of the differential equation ; and as at each point A
we may move in any one of an infinite number of directions (i.e.

in any direction lying in the normal plane at A to the curve of the

system) it follows that the solution of the equation will contain an

arbitrary function.

Let us, then, draw through A any surface we please and limit our

path so as to be in this surface ; starting from A at right angles to

the curve of (ii) there will, in general, be only one direction possible

in the surface and moving along this through a small arc we shall at

its extremity A' come to another curve ; at A! there will as before

be usually only one direction possible in the surface and it will

lead to another point A" and so on; and we shall thus obtain on

the arbitrary surface a single path passing through the point A.

Had a different point B on the same surface (but not lying in the

path through A) been the starting point there would have been

similarly obtained a single path through B different from the

former ; and so for any point.

We should therefore have on any arbitrary surface a singly

infinite series of curves.

159. This is the exact geometrical process corresponding to

the analytical process applying to the case when the equation of

condition was not satisfied. For what was there done was to assume

an arbitrary relation among the variables—this is the equation of

the arbitrary surface ; it was combined with the differential equation

and, after integration, another equation was obtained containing an

arbitrary constant which with the original arbitrary relation was

considered the solution. The new equation containing one arbi-

trary constant represents a family of surfaces; and the combination

of the two gives the system of curves which form their intersection.

Each of these curves lies on the surface first taken, and so we have

F. 17
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an infinite series of curves on this surface. The process .therefore

gives the system of lines which lie on any surface and which

satisfy the differential equation.

160. Now it may happen that the complete system of curves

(ii) can be cut orthogonally by a surface and so by a family of

surfaces; thus if the system were a series of straight lines all

passing through one point they would be cut orthogonally by any

sphere which had that point for centre. In this case any curve

drawn upon an orthogonal surface would cut the system (ii) at

right angles, since it is at every point perpendicular to some

one of the system; and such a curve would therefore be included

in the solution. Hence the general solution must include all

curves that can possibly be drawn upon any one of these surfaces

and therefore, if we look upon a surface as the aggregate of all

the curves that can be drawn on it, we may say that the surface is

included in the system of curves. As the surface is one of a family

all the members of which possess the same property, we consider

that the equation of this family of surfaces is the solution of the

equation ; and what has been said shews it to be thereby implied

that the equations of every curve that can be drawn upon one of

the family constitute a solution.

161. This corresponds exactly with the process applicable to

the case for which the equation of condition was satisfied; we there

had (§ 155) an equation yjr = C and any other arbitrary equation

X — ^> the two representing one curve on each of the surfaces ifr= G;

by taking all possible arbitrary equations % = we obtained all

possible curves on the surfaces '\jr = C and thus ultimately the

surfaces themselves into the expression of which the form of
^(^

did

not enter.

162. It only remains to shew how the equation of condition is

derivable from the geometrical considerations. The arguments

are applicable on the supposition that the system of curves repre-

sented by

dx' _ dy dz

can be cut orthogonally. If they can be cut orthogonally, as at

any point A, the tangent to the particular curve passing through A
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must coincide with the Bormal at A to the orthogonal surface.

Now the direction cosines of the tangent at A are proportional to

the values of P', Q, R' aX A, that is, to P, Q, B; and if

<j}(x',y',z') = G

be the orthogonal surface, the direction cosines of the normal at

the point x, y, z (which is A) are proportional to ^ , ^, ^; since

the direction cosines must be the same for the two lines, we must

have

Pdx~ qdy~ Bdz

Let each of these quantities be equal to /* so that

the elimination of ^ and /u, between these leads (as in § 152) to the

equation considered, which is therefore the condition that the

system of curves may be cut orthogonally.

Case of n variables.

163. In what has preceded only three variables have been

supposed to occur ; but it is easy to pass to the case when there

are more than three. In order that the equation

X^dx^+X^dx^ + X^dx^ + + XJx^ = 0,

where X^, X^, are functions oi x^,x^, , should have

a complete integral of the form

the quantities X^ must be proportional to the partial differential

coefficients^ , so that we may write

for all values 1,2, , m of /*. If now \, /*, v be three different

suffixes, we have

17—2
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or

dv
V f^J^ _ ^-^A = x —-X
\dx^ dXi^J ^9«^ '^diCi

Similarly

and

\dx^ dx),} "dx^ ''dx,

3Z_„ _ dXA = X — - Z — •

dxi^ dXyJ '^dx^ "'^x/

and therefore

\dx^ dXy_I '^\dxy c)X),J \dxi^ dx^J

If the set of equations derived from this by all possible combina-

tions of three different suffixes from among 1, 2, 3, ,n be

satisfied, then the differential equation has an integral of the

proposed form. The total number of these equations of condition

is ^n (n — 1) (to — 2) ; they are not all independent, for if there

be written down the four equations which involve three out of the

four quantities X^, X^, X^, Zp any one of them will be found to be

derivable from the other three.

Ex. Prove that the total number of independent equations of condition is

i(»-l)(n-2).

164. When these equations of condition or the necessarily

independent equations are identically satisfied, the primitive, which

must therefore exist, can be obtained by an extension of the method

adopted for equations with three variables. We integrate as if all

but two of the variables were constant and we replace the arbitrary

constant by an arbitrary function of all those variables which are

supposed constant. The equation so obtained is differentiated

with regard to all the variables and the result is made to agree

with the given equation ; the conditions necessary for this agree-

faient will serve to determine the arbitrary function which was

introduced and so to determine the primitive,

Ex. 1. It is easily verifiable that the coefficients of the differentials in

the equation

{ix^ +x^+ %x^x^ -x^ dxi+ Zx^x^dx^ - x^dx^+ Xj^dx^= 0,

satisfy the equations of condition which are four in number, three being inde-
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pendent. Following the rule we assume that only two of the variables may
change and these may be taken to be x^ and a;^ ; the integral derived is

— XjX^+ x^^x^= C=(l>,

where ^ is a function of x^ and x^. Differentiating this we have

( — .rj+ 2x^x^ dxj^ - Xjdx^+ x-^dx^= dcf),

and a comparison of this with the given equations shews that

— c?0 = {2x^+ x^) dj.\+ 2xjX2dx2.

We thus have an equation involving three differentials dcf), dx^, dx^, instead

of four (we should have, in the general case, an equation involving to— 1

differentials instead of n) ; the rule is reapplied to this and the number again

decreased by unity and so on, until we can obtain a final integral. In the

example specially considered the integral is easily seen to be

—
(t)
+ A=x^^+ XjX^^,

where A is now an arbitrary constant ; and the primitive is

Ex. 2. The following equations have a primitive of the form considered

;

obtain it for each of them.

(i) yzudx+zuxdy+ ux2/dz+xyzdu= 0;

(ii) {y+ z+ u) dx + {z+u+ x)dr/+ {ii,+ x+y)dz+ {x-\-y + z)du= 0;

(iii) z{y-\-z)dx+ z{u-x) dy+y {x- u) dz+y{ij+ z) du= 0.

Equations of a degree higher than the first.

165. Equations may arise in which the differentials of the

variables occur in a degree higher than the first; into their

solution it is not proposed to enter fully but only to indicate a

method of proceeding in some cases. The general equation of

the second degree may be taken as

Xdx'' + Ydy'' + Zdz^ + 2X'dydz + 2 Y'dzdx + 2Z'dx dy = 0,

in which X, Y, Z, X', Y', Z' are functions of x, y, and z. If

the left-hand side can be resolved into two factors, then the

equation may be replaced by two others each of the form

Pdx + Qdy + Edz = 0,

obtained by equating separately to zero the two factors. The

solution of either of these, obtained by previous methods, will

be a particular solution of the differential equation proposed;
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and the two general solutions taken together will constitute the

complete solution. In the case when each of the linear equations

is satisfied, in the sense of the preceding paragraphs, by a single

integral of the respective forms

the general solution will, as in § 19, be represented by

{ir^{x,y,z)-C}{f,{x,y,z)- C} = (A).

In the case when two separate equations are needed for the

solution each corresponding pair must be looked upon as a solution.

Now the condition that these should be solutions is that the

left-hand side of the original equation should be resoluble into

factors. The left-hand side is equal to

h{Zdz +Y'dx + X'dyf - {(
Y'^ - X.2) dM^ - 2 {ZZ'- X' 7') dxdy

+ {X''-YZ)d^f}l

and in order that this may resolve into two factors we must have

(
r'^ - XZ) dx' - 2 (ZZ' - X' T) dxdy + (X"- YZ) df

a perfect square, which will be the case if

(7'2 _ XZ) (X" - YZ) - {ZZ' - X'Y'J = 0,

that is, if

Z(XYZ+ 2 X' Y'Z' - XX" - YY" - ZZ") = ;

or, since .2" is not zero, we must have

XYZ+ 2X' Y'Z'-XX"- YY" - ZZ" = 0.

When this condition is satisfied the general solution is obtained

in the foregoing manner.

When this condition is not satisfied the proposed equation

does not admit of a single primitive of the form (A) nor of a set

of separate primitives each given by a pair of equations ; but it

does in general admit of a solution expressed by a system of

simultaneous equations.

Ux. 1. The equation

x'^dx^ -l-yWy2 — Mz^->r'iccyda)dy=

satisfies the condition ; and the equivalent equations are

xdx^ydy-'rzdz=^, xdx+ydy-zdz=Q,
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which, lead to the integrals

and therefore a general solution will be

{x^-\-y^-^z^-a){aP--\-y'^-z^-a)= Q,

i.e. (^2+/-a)2=24,

iu which a is an arbitrary constant.

Ex. 2. Solve

(i) ll'dx^ + nvmld-if-+ nn'dz''+ ilmf+ I'm) dxdy+ (Zra'+ Z'a) £^a;cfz

+ (m)i' + m'») cfecte= ;

(ii) {xdx^ydy+ zdzf z= {z'^ - x^ - y'^) (xdx+ydy + zdz) dz
;

(iii) dxdydz= ;

(iy) <fe, dy, dz

X, y, mz

dx, dy, mdz

= 0, where in is a constant.

-Er. 3. Obtain a solution of the equation

a (b-c) xdydz+ b{c-a)ydzdx + c (a-b) zdxdy=

consistent with the equation

ax'^+by^+ cz^=l.

(The former is the differential equation of the lines of curvature upon the

surface represented by the latter.)

Ex. 4 Also of the equation

x^dx, y^dy, z^dz

dx, dy, dz

^, y, 2

=

consistent with the equation

xyz=\.

Simultaneous Equations with constant coefficients.

166. We have hitherto considered only single differential

equations ; we proceed now to treat of systems of equations. The

simplest and at the same time most frequently occurring class is

that in which there is only one independent variable of which all

other variables which occur are functions; for the separate and com-

plete determination of each of these dependent variables the number
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of equations in the system must be equal to the number of depen-

dent variables. In this class are included most of the differential

equations of dynamics ; thus in the case of the chief problem of

physical astronomy—that of determining the motion of a system of

material bodies under the influence of their mutual attractions—

r

there is a single independent variable, the time elapsed from

some definite epoch, while the dependent variables are the co-

ordinates of the sevei'al bodies ; these coordinates vary with the

time and so furnish the varying positions of the bodies, and they

are individually determinate since the number of equations is

equal to the total number of coordinates. All equations dealing

with the small oscillations in a moving system of bodies are also

included ; in them there is the additional simplification that the

equations are all linear, the quantities multiplying the differential

coefiicients being constants.

The general theory of the latter will be first considered.

167. Let t denote the independent variable and D stand for

didt; taking the simplest possible general case, we shall have two
equations involving two dependent variables denoted by x and y.

As the equations are supposed linear, all the terms involving

differential coefficients of x can be gathered together, and so also

for all those involving differential coefficients of y ; and the equa-
tions may therefore be written in the form

/,(D)a;+</,,(i))y=yJ (')'

where f^,f^, ^,. (/)^ are rational algebraical integral functions with
constant coefiicients and T^ and T, are explicit functions of t alone,

a constant or a zero value not being excluded. Operate on both
the sides of the first equation with ^^ {D) and on both the sides of
the second with ^^ {D) ; then they become

^2 (^)/: (D) «; + </>, (D) ,/,. (D) y=^^ (D) T,

<Pr (^)AW ^ + </>> (B) <p, (B) y^4>^ (D) T,

Since the functions <j) have only constants in their coefiicients
it follows that
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and therefore the above equations give

{i>. (D)A iD)-<t>, (D)f, (D)} x = cp, (D) T, - cj>, (D) T, (II).

Now let l^, l^, m^, m.^ be the indices of the highest differential

coefficients in /j, /^, ^^, (j>^ respectively ; then the index of the

highest differential in ^^ (Z>)/i (D) is on.^ + \ and in ^, {D)f^ (D) is

m^+l^; of these two numbers let n denote that which is not less

than the other, so that 11 is the order of the highest differential

coefficient of x in the foregoing linear equation determining x.

To solve it we adopt the method of Chapter ill. applicable to an

ordinary single equation ; if P be any value of x which satisfies

the equation (there called the Particular Integral), and \, X^,, . . ., \
the n roots of the equation

</'.W/.W-'^xW/.W = (A).

the complete value of x is

x=A/''+A/'*+ +^„e^'+P,

where A^, A^, , A^ are arbitrary constants.

Proceed in the same way to eliminate x from the two funda-

mental equations by operating on the first with /^ (D) and sub-

tracting it from the second after this has been operated upon with

fi(D); we then have

{<l>,{D)f,(D)-4,,{D)f,(D)}y=^f,{D)T,-f,(D)T, (Ill),

and so as before

y = B/''+B/''+ + -8/"'+ Q,

where B^, B^, , B„ are arbitrary constants, and Q is the Parti-

cular Integral of the differential equation (III).

168. We have in the expressions for the two dependent

variables two sets of constants arising from the differential equations

II. and III.; they are both composed of arbitrary constants, but

we do not know whether they are independent of one another;

this dependence may exist and yet the constants may be arbitrary.

Thus any one of the constants B might be a multiple of one of

the constants A; the latter being arbitrary the former would

be so also. We therefore must determine the number of inde-

pendent arbitrary constants. To do this let the values of x and y

be substituted in either of the equations (I), say in the first ; then
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the terms involving P and Q which are particular integrals give

on the left-hand side a term T^ which will cancel with that on the

right-hand side and the resulting equation is

{AJ^ {\) -t- B,<i>, (XJ) e^'* + [AJ^ (\) -)- 5,./., (\)} e''' +

Since this is to be satisfied for all values of t, we must have the

coefficient of each exponential zero, and therefore

(B),

so that each constant B can be derived from each constant A.

The number of independent arbitrary constants in the complete

solution of the simultaneous equations is therefore n, i.e. the expo-

nent of the highest index in the operator

<i>AD)f^{D)-,^^{D)f,{D).

Hence the solution of the equations (I) is given by the foregoing

values of x and y ; the quantities X occurring in the expressions are

the roots of the equation (A), and the relations between the con-

stants are given by equations (B).

169. In exactly the same way it may be proved that, if there

be three dependent variables given by the three equations

f,{D)x + <i>,{D)y + ir,{D)z=T„

f,{D)x + 4>,{D)y + ir^{D)z = T,,

the number of independent arbitrary constants entering into the

complete solution is the index of the highest power of D in the

determinant

f,{D), cf>^(D), f^{D)

UD), ^,{D), t,(i)) .

f,{D), 03 (i)), ts(^)

170. If the roots of the equation (A) which give the coeflScients

of t in the exponents be real and unequal, the solution given above

is complete. It remains to consider the cases
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(i) when there is a pair of imaginary roots

;

(ii) when there is a pair of equal real roots
;

the case of equal imaginary roots will follow from a combination

of these two.

For the former the solution obtained remains general, but it is

desirable to change it so that the form may be free from imagi-

nary quantities. The two imaginary roots, say Xj and X^, may be

denoted by a + /Si ; hence the corresponding part of x is

that is, e°* (L^ cos /Si + L^ sin /3i),

on changing the arbitrary constants as in § 44 ; the part of y corre-

sponding to the two imaginary roots is similarly

e"' {M^ cos ^t + 1/, sin ^t).

Instead of making the necessary changes in the relations

between A and B, it is better to substitute again these expressions

in one or other of the fundamental equations and derive the corre-

sponding relations as before.

For the latter case the solution obtained ceases to be general

as two constants, say A^ and A^, become merged into one ; but it

may be proved, exactly as in § 44, that the part of x depending

upon this repeated root X is

e^\A+A't),

and the part of ?/ is

e^'(B + B't).

Ex. 1. Prove that in the latter case the relations between the four con-

stants reducing them to two independent constants are

A'f^{\)+B'<t>^{\)=0,

Ex. 2. If an imaginary root a+ /3i be repeated, write down the corre-

sponding parts of the complementary functions in x and y.

171. It may happen that the question in connection with

which the differential equations arise will afford some indication

of the form of the result. Thus in a problem relating to small
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oscillations we should expect the values of the dependent variables

to be expressed in terms of purely periodic functions ; and it would

then be proper to substitute for x and y respectively functions

of the form

Z/j cos /3i + Zj sin ^t,

M, cos I3t.+M.^ sin ^t,

instead of e * in the equations (II) and (III). By equating to zero

the coefficients of cos ^t and of sin ^t in each equation after these

values have been substituted there will be four equations linear

and homogeneous in the quantities L and M; and the eliminants

of these will furnish the values of ^. If on the other hand the

problem indicate a motion of unstable character the form of solu-

tion adopted would be

and so for y ; but if there be no external information of this

character then the ordinary method should be adopted.

Sis. 1. Solve the equations

.dx

dy

Here we have
Dx+a>y= 0\

-ax+Dy= o]'

and therefore the equation for x is

(2)2 + 0.2)^= 0,

so that x=Aaosa>t+B sin at.

Similarly y= -4' cos a>t+B' sin at.

The relations between A, B, A', B' are at once derived by substituting in

the first equation : we have

— aA sin at+ aiB cos at= — aA' COS at — aB' sin w^,

or A'=-B,a.niB'= A.

The shortest method would have been to use the first equation to give y
in terms of x, so that

_ \ dx

y~~a 'di

=A sin at —B cos at.

This method is however applicable only in particular cases.
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Ex. 2. Solve the equations

dP'x dii

When we collect the terms which belong to the separate variables, the

equations are

aDx+ {D'''+ ^'^)y= o]'

Hence the equation for x is

and the value of x is

X=L^ cos /3i<+ Zj sin /3i<+ Xj cos /Sj* + Z^ sin j3,<,

where jSj^ and jB^^ are the roots of the equation

{fi? -p)^ - a?p= ;

and the value of y is

y= i/"i sin /S^i!+ i^2 cos ^^t +M^ sin ^j,+ i/4 cos jSj^.

It is easy to prove that the relation between the constants is

Ex. 3. Solve

This might be solved by adopting the ordinary rule ; the following is

another method applicable to this form.

Multiply the second equation by m and add to the first ; then

-T {x+ mi/)=x {a+ ma')+ T/ (b + mb') +c + m</

= (a+ ma') {x + my)+ c+ md,

provided m be so chosen that

h+ mb'=m (a+ ma'),

that is, if ?w be a root of the equation

m^a'+ {a-b')m-b=0.
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The foregoing differential equation being

d{x+my) _^^
{a-\-ma'){x+ my)-\-c-\-md '

its integral is

(a+ ma') {x + my) +c+md= Ae''
<*+ ""*').

Let mj and m^ be the roots of the quadratic equation ; then this is an

integral provided m is either OTj or m^. On substituting m= m-^ we have

(a+mia')(^+mi^)+ c+ TOiC'=^/f''+'"'"'',

and on substituting to=TO2 we have

{a+ m^a') {x+m^) + c+m^d=A^e*^'^*'^'^"^,

where J.^ and A^ are arbitrary constants. These two equations constitute the

complete solution of the given pair of simultaneous equations.

Ex. 4. Solve in the same way as the last example the equations

d'^x ,
'I:^,=ax + hy

-^,=ax+hy]

Ex. 5. Solve the following equations :

(i) 5+7-^= 0. S+ 2- + 5y= 0;

(ii) J+ 5^+y=e', J+ 3y-^=«2';

, .. d'^x , . d'^y „

(vi) ^ + m^y= 0, ^ - ot2^'=0
;

(vii) J-3^-4y+ 3=0, g + ^+y + 5=0.

Simultaneous Equations with variable coefficients.

172. It -will be assumed as before that there is only one

independent variable and that therefore the coexistence of m
simultaneous equations will suffice to determine the relations be-

tween the m dependent variables and that of which each is a

function.

,2i .
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Further it will be sufficient to consider systems of simultaneous

equations which are only of the first order, for to these any other

system can be reduced. Thus if into any one of a given system

a dififerential coefficient of the n^^ order should enter, such as

-T~, we could obtain an equivalent series of equations of the first

order by making the substitutions

dy dy, dy,
^ =#»_-j

•^' dxl '^^ dx ' ^' dx ' '^" dx '

which are all of the order stated; and the corresponding sub-

stitutions for all differential coefficients of order higher than

unity wiU transform any system of simultaneous equations of

any order into an equivalent system of equations of the first order.

If there be m dependent variables we must have in this system

m equations each of the form

*(-".!'.• '''£ .t-)-»-

173. The solution of this system of equations can be made to

depend upon the solution of a single differential equation of the

7n"' order connecting one of the dependent variables with the

independent variable.

For let the m equations be solved so as to give the m dif-

ferential coefficients as explicit functions of the variables, and

suppose these relations to be

-J^
= fm{'^>yi'I/2' 'VJ-

Let the first of these be differentiated m — 1 times in succession

with regard to x, and after each differentiation and before the next

let the values of -^, , -^ be substituted from the last
dx ax
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TO - 1 of these equations. There will thus be obtained, including

the first equation, m equations connecting

dx ' dx" «!«'"
'

with the variables x, y,, y^, , ?/„,; from these m equations

let the m— 1 variables y^, y^, , y„, be eliminated, and there

will result a single equation which may be represented by

J^'^'y^' dx' dx" '
djc"'

= 0.

This equation being of the m'" order has (§ 8) to independent

first integrals each involving one arbitrary constant, all the m
constants being mutually independent; and these integrals we may
represent by the equations

F (x V '^-^ —•'^ g\ = 0^
^'P^^' dx' ' dx"'-'! ^'j "

F, (oo, y„ dx
'

!h

dx"'
a =0

F {^>}lv dx'

dry,
dx"'-'

'
C.„ =

in which the constants are independent. But from the pre-

ceding equations we know the values of the differential coefficients

of y, in terms of all the variables; when these are substituted in

the set of equations F the latter take the form

*i(-^. 2/1.2/2. .2/m. ^i) = Ol

*2(«.2/i.2/2. .2/™. C'ii)
=0

^m(.!«,y„y^, ij,^, C'„) = 0-

which are sufficient to determine each of the variables y as a

function of x ; they are an integral system and contain m arbitrary

constants.

Hence we have as the general result

:

The complete solution of a system of m differential equations of
the first order between m + 1 variables depends on that of an



173.] SIMULTANEOUS DIFFERENTIAL EQUATIONS. 273

ordinary differential equation of the m'" order, and consists of m
equations connecting the m + 1 variables and containing m in-

dependent arbitrary constants.

174. The foregoing is the general theory ; but in particular

cases simplifications arise enabling much of the labour indicated

in the general theory to be dispensed with. Thus, if the equations

consist of a set each of which is linear, it may happen that an
integral of each equation of the form

Pdw + P^dy, + P^dy, + + PJy^ =

can be obtained in the form

^(pvVvy^' ,ym)=c,

and the long process would not need to be gone through. Again,

instead of determining the m independent first integrals it

would be sufficient to determine the primitive of the ordinary

equation of the m"" order, for from this could be derived other

m—1 equations in which the values of the differential coefficients

could be substituted, and an equivalent result would be so derived.

Again, in the case when the equations are all linear we can solve

them to obtain the ratios of the m + 1 differentials in the form

dx_dy^_d^_ _dy^
X- Y,- Y,- ~ YJ

which might be called the symmetrical form ; the mode of treat-

ment for these will sometimes (depending upon the form of the

denominators in these fractions) differ very materially from, and

be much more convenient than, the general process. Examples

illustrative of this will be found appended.

Ex. 1. The general method can be avoided, if integrals of all but one

equation can be obtained and, A fortiori, if all the integrals can be obtained.

Thus the equations

Idx+mdy+ ndz

=

0,

xd3e+ ydy+ zdz=Q,

lead at once to the integrals

l30+my+nz=c^; x'^+y'^+z^=c^,

which determine y and z in terms of x.

F. 18
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Ex. 2. Solve

(i)
(tdx={t-'ila;)dt,

\tdy= {tx+ ti/ + 2x-t)dt.

.... .^ J'x „dx
, ^

(") \'dfl+^dt+*''=^'

dy 2 _dx
di'^'i^^di'

Ex. 3. Solve -= = -^ = -= , where

X—ax+ hy+cz+d
T=a'x+ h'y+ c'z+ d'

Z=a:'x+ h"y+ o"z+ d'

In equations of this form it is convenient to introduce some new inde-

pendent variable and make all those variables, which already occur in the

equations given, functions of this new variable. Calling the latter t we may-

assume, as an advantageous form,

dt _dx _dy _dz

_ Idx+mdy+ ndz

IX+mY+nZ

_ Idx+mdy+ ndz

X {Ix+my + nz)+ r^

provided I, m, n, X be so chosen that

al+a'm+ a"n=\l

bl +b'm +b"n=\m

cl + c'm + (/'n =Xn

the value of r is

ld+7nd'+ nd".

Eliminating I, m, n between these three equations, we have

as-X, a', a" =0,

b, b'-X, b"

c, c', c"-X

a cubic equation determining X ; let its roots be Xi, Xj, X3. When X^ is sub-

stituted in any two of the foregoing equations the ratios oi I : m : n can be

derived ; let them be denoted hj l^ : m^ : n^ and suppose the corresponding

value of r to be r^ ; with similar expressions for the other values of X. Then

for the value X^ we have

dt _ Ijdx+ m-jdy + n^dz

t Xi {l^x+m^y + n^z) + r^

'

the integral of which is

Cjt=(l^x+ miy+ 'n^z+rjXi-^)''^ \
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Similarly c^t={l^+'m^+n^z+r^-^f''
,

and c^t=(l^+in^+n^z+r^^-^f' \

In order to obtain tlie general solution of the system of equations as given

we must eliminate t between these equations; when we write c-^=Ac2=Bc^

where A and B are arbitrary constants, the general integral as required is

given by the equations

Ex. 4. Solve in this manner the equations

dx- '^y ^ '^^

Zy+ Az 2y+ 5z'

Ex. 5. This method may also be applied to solve certain systems of

equations in which the variables do not occur so simply as in Ex. 3. Thus

let us consider

^^+ T{ax + hy)=T;

where T, T^ T^ are fimctions of t. Multiplying the second equation by I and

adding it to the first, we have

^ ix+ly)+XT(x + ly)= T+lT„

provided I and X are determined to satisfy the equations

a+la'=\,

b+lb'=lX,

so that the values of X are Xj and X2, the two roots of

(a-X)(6'-X)-a'6=0.

The integral of the foregoing equation being

(x+ly) ^^^^<^=A+\{T^+IT^) i'^'^^^dt,

the complete solution is given by

Ex. 6. Solve the systems of equations

J + i(..5,)=.

18—2



276 SYSTEM OF EQUATIONS [174.

mt—.—nHz-x)

nt-^= Vm{x-y)

, . dxW -:n=ny-'mz

-Y =lz — nx
at

dz

dt
^mx-ly

•A special system of equations in Dynamics.

176. There are two classes of simultaneous equations which

are extremely important ; one is the class already considered in

§§ 148, 149 as the generalisation of Euler's equations leading to

the higher transcendental functions ordinarily called Abeljan

functions ; the other is the system of equations which determine

the motion of a particle attracted to a centre of force which acts

according to the gravitational law. The latter may be represented

by the simultaneous equations

(i).

in which i? is a rational algebraical function of r or (a? +y^ + :^y'

the distance of the point x, y, z from the origin. To express the

complete integral three independent equations (or their equivalent)

will be necessary, and since each equation may be replaced by two

of the form

d'x
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fj or (jU (m z
If we multiply the equations (i) by -^7 . ;7 > "jT respectively, add

and integrate, we have

in which B is an arbitrary constant.

Another form may be given to the equations (i). Since iJ is a

function of r we have

dR^dRdr^xdR
dx dr dx r dr '

and so for the others ; and thus (i) becoma

d/'x_xdR^ d^y_ydR_ d^z_zdR
df~'rlk'' df~rdr' df ~ r dr'

Therefore

respectively

d'y

''df-
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where A is an arbitrary constant ; this is equivalent to

that is, to

and therefore

,, rdr
dt =

=
1

'-^
,

(ii).

J \2rUR + £) - A']i
t+a— I i

{2r' (R + £) - A'}i

From the equation just obtained we have

2E =-2i!4V(|)-,

and therefore

that is

dRdr _ ^ A^ dr dr d'r

'¥Jt~~ Vdt^ Tide'

dR__A^ d'r

dr~ r'
"^ de

'

When this value is substituted in the modified form of the

original equations, the first of them is

d^x _ d^r 2 «

'"df~'^df~ ?'

d f dx dr
or -rAf

s dr\
,

.,x .

dt\ dt

'sf-aOK^'^"-

•Let ' dj) = A
r

Adr

then the foregoing equation for - is

r[2r'{B + B)-A^]l'

X .

d^ /x\ X _

dcj)'
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and therefore

- = a^cos^ + a^sm<f> (iii).

The second and third equations similarly treated lead to

^ = b, cos
(f>
+ b, sin

<f>
(iv),

- = c,cos^ + c,sin0 (v);

and in these the constants a, 6, c are arbitrary. But they are not

independent ; for we have always

whatever be the value of 0, and therefore

{a^ + h^ + Cj") cos' ^ + 2 (a^fflj + ^^a + CiC,) cos sin ^
+« + ^2' +O sii' ^ = 1 = cos" ^ + sin"" ^

is satisfied for all values of ^, so that

<^^% + ^1^2 + c.c^ = 0)

The six constants are equivalent to three independent constants.

Further, we may put (iii) into the form

^ = PiCOs((/) + ^,),

where p^ and jS^ are arbitrary constants, and there is thus associated

with ^ an arbitrary constant and one will not require to be added

in the equation

Adr
(vu)..=/

We have now sufficient equations to determine the general

integral. By means of (vii) ^ is given as a function of r, and

therefore by (ii) as a function of t ; hence (iii), (iv), (v) give x, y, z

as functions of t. Moreover we have six independent arbitrary

constants, viz., A^, B, a and the six quantities a^, a^, 6,, h^, c^, c^

connected by the three relations (vi). These therefore constitute

the general integral of the differential equations.
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Ex. Solve in this way

Also solve by transforming to polar coordinates.

MISCELLANEOUS EXAMPLES.

1. Prove that, if

dd {m-n cos (p)^= dip {m-ncoafff,

2ot-?1 C^+ -„ +71 CCOS -~„- COS -—r^ \ =0,then

c being an arbitrary constant.

2. Let F{x) denote the integral

[" dx

Jo{{l-a;'^){\-lcV)f'

prove that the algebraical relation equivalent to

is 4 (1 - a;i2) (1 - x^i) (1 - x^)= (2 -V -V - ^3^ + JC^x^W^zf'

3. Let ^(^) denote the integral

p f
1 - /^V") *

/:{x c^«;

verify that

^ (ail) +^ (^2) + -^ (•^3)= ~ k'^x^x^^,

when ^2, 5^2, aij are related as in the previous example.

4. Verify that

^1, yi, 1

•^3) ^3) 1

=0

is an integral of

dx-^
^ + -

dXa
r +

dx^

{\-x^f {\-xif ci-xir

y being given by the relation a?-\-'f= \.

Interpret the result geometrically.

= 0,

(Cayley.)
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5. Prove that the integral of

dx dy _
(1+^)* {l+ff~

may be exhibited in the form

{\+x^){\+y^){\ + a?) = {\-:[-xyaf,

where a is an arbitrary constant ; and that of

^^
I

dy _^

may be exhibited in the form

(4x^-Ix+ J)(4yS-Iy+J)(4a^-Ia+J)= {4xya-iI(x+y+ a) + JY,

"where / and J are definite constants and a is an arbitrary constant.

Shew that the general integral of

X~*dx+r~*dy=0,

where X— (^, Z, to, wj^, 1)',

T=(k, I, m, nfy, If,

is XYZ= {k + l{x+y+ e)+m{xy+yz+sx) + nxyz}%

where Z={k, I, m, n\z, If,

and z is an arbitrary constant.

(Mac Mahon and Eussell.)

6. Prove that integral relations equivalent to

sin^^c^^ Bin^ (j)d<j) sin^ yjf d\jf_ (

AO "^ A
*" A^ J

where A^={(!-« sin^ x) (^ ~ ^ sin^ ;^) (1 - ^ sin^ x)}^,

sin •<// sin
<f>

cos 6 A6 sin 6 sin ^jA cos ^ A0
(sin^ ^ - sin^ (p) (sin^ 5 - sin^ •<//) (sin^ ^ - sin^ 6) (sin^ ^ - sin^ \jf)

sin <^ sin ^cos i/? At^ _ .

(sin^ yjf — sin^ ^) (sin^ \j/ — siv?
<l>)

~ '

, cos \Ia cos (ji sin S A5 cos ^ cos i|^ sin A0
(sin2 (9 - sin2 ^) (sin^ - sin^ i|^)

"''
(sin2 - sin^ 6) (sin^ ^ - sin^ i/r)

cos (/) cos 5 sin >//• Ai/'

(sin^ i/c - sin^ 6) (sin^ i^ - sin^ if)

Determine A and B from the conditions that (f>=a and i/'=/3 when 6=0.
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7. Find the primitives of the equations

(i) {ay — hz)da!+{cz— a!x;)dy+ {hx-cy)dz=0;

dxjy+z-'Ha;) dy{z+x-'2,y) dz{x-Vy-%z) ^^_
(j/-^)i?-^) {^-y){«'-y) {x:-z){:y-z)

(iii) (^^+yz+z^)dx+{z^+zx-\-x^)dy+{x'^+xy+y'^)dz~0.

8. Obtain the primitive of the equation

{x^-y^-\-z'')dx + zdz(j/-x)=zHy (y^-^)

in the form

le du+ V=e ,

J y-x'
where x=uz.

9. Solve the simultaneous equations

h-^^={c-a)zx,

o-j^ = {a-h)xy,

expressing each of the quantities x, y, z as elliptic functions.

10. Integrate the system of equations

do) , 7

-T- + a;^ + oy cos nt+ozsvant=Q,
dt

a<o — -j— by sinni+ 62cosw<=0,

ha COS nt+hx smnt---f - az=0,

y 1 dz -

ba> Slant-ox cos nt+ay - j-=0.

11. Integrate the simultaneous equations

where | is written for cos (at+ b) and rj for sin (at+ b).

(Euler.)

(Liouville.)
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12. Solve the simultaneous equations

13. Shew that any system of lines described on the surface of the sphere

x^+y^+ z^=r^ and satisfying the equation

(l + 2m)xdx+^(l -x)di/+ zdz=0

would be projected on the plane of x^/ into parabolas.

Find the equation of the projections of the same system of curves on the

plane oi^z.

14. Shew that Monge's method (Ex. 4, § 154) would, if we integrate first

with respect to x and z, present the solution of the equation in the preceding

example in the form

{l + 2m)x^+z^= ^(^), 2y(l-^)=-<^'(y).

Apply this to solve the problem of the preceding example and identify the

results.

15. Integrate the simultaneous equations

<Px^_dR (Px^_dR (Px^^m
dfi~dxi' dfi~dx^' ' dfi~dxj

where jB is a function of {Xj^+ X2^+ ...+Xn^) .

(Binet.)



CHAPTER IX.

Partial Difpeeential Equations of the First Order.

176. Hitherto we have been considering for the most part

dififerential equations in which the dependent variable or, in the

case of a set of simultaneous equations, variables are supposed to

be functions of only a single independent variable; we now proceed

to consider equations in which the number of independent variables

is greater than unity, and shall suppose that there is only a single

dependent variable. The latter is usually denoted by ^ ; if it be a

function of only two variables these are usually denoted by x and

y; if ^ be a function of more than two, say of n, then it is con-

venient to denote the latter by x^, x^, x^, , x^. The first

dz
partial differential coeflScients in the former case, viz., ^ and

d's

^,-are represented by^ and q respectively; in the latter case the

partial differential coefficients ^ , ^— , , ^— are represented

respectively by ^^ , ^^ > >P»-

An equation in partial differentia] coefficients is a relation

between the independent variables, the dependent variable (which

is an unknown function of those variables) and its partial differen-

tial coefficients with regard to them ; it is of the first order

when the partial differential coefficients which occur are of order

not higher than unity, of the second order when the partial

differential coefficients which occur are of order not higher than

two ;
and so on. In this chapter we shall consider only equations

of the first order.
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It may happen that we have more than a single differential

equation relating to the same set of variables; for instance we
might have two equations between z, x, y, p, q. In this case the,

two equations could be solved and from them values otp and q in

terms of x, y and z could be deduced ; these could be substituted

in the equation

dz = pdoo + qdy,

and we should thus obtain a total differential equation. Similarly

in the case of n independent variables n equations would be suffi-

cient and necessary to determine ^^,^2, ,p^', these n equations

would then be considered as furnishing a total differential equation.

When the number of equations is less than the number of partial

differential coefficients and therefore of course less than the

number of independent variables, we are not able to deduce a total

differential equation ; usually we have only a single equation given

and we then call it a partial differential equation.

As in the case of ordinary differential equations, the integration

of the equation is the derivation of all the values of z which when
substituted in the differential equation render it an identity.

Classification of Integrals.

177. Before indicating methods of integration and giving such

classes of equations as are easily integrable, it is necessary to

classify the different kinds of integrals of a partial differential

equation and to prove that the classes include all possible integrals

of the equation. For perfect generality the propositions should-

be proved for an equation involving n variables, but the proofs are

given for an equation involving only three variables ; this limita-

tion has the advantage of shortening the equations and of lessening

their number, while the slightest consideration will shew that it

is possible to pass to the general case without any additional

difficulties of analysis.

178. Suppose that we have between z, x^, x^, x^ a relation of

the form

f{z,x^,x^,.r^,a^, a„ a^ = ^ (1),
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iu which a^,a^, a^ are arbitrary constants and which contains no dif-

ferential coefficients of z. To obtain p^tP^, p^ we have the equations

dz ^' ^ dx.

.(2).
dz P' ^

3a;,

df ^^^
dz "' dx^

Between equations (1) and (2) the three arbitrary constants

can be eliminated ; if in (1) there were more than three arbitrary

constants these equations would not be sufficient for the eUmina-

tion, while if there were fewer than three there would be more

than sufficient equations. Let the result of the elimination in

the present case be denoted by

F{p^,Pi,Pi, », «i, «2. ^a) = (A),

which will be the partial differential equation corresponding to the

integral relation (1).

Conversely this integral relation (1) is a solution of (A), and it

contains three arbitrary constants. We cannot expect more than

three arbitrary constants in a solution of (A) ; for, on passing from

such a solution to the differential equation by the method in which

(A) has been obtained from (1), only three constants could be

eliminated. Hence (1) contains the greatest number of arbitrary

constants that we can expect in a solution of (A).

The name Complete Integral of an equation is given to a

relation between the variables which includes as many arbitrary

constants as there are independent variables.

179. The supposition has been made that a^, a^, a^ are con-

stants and we have deduced equation (A) from (1) and (2). But

we may suppose that a^, a^, a, are functions of the independent

variables; if they be such as to leave unaltered the forms of

Pv Pi> Ps' *^^^ ^^^ differential equation obtained by the elimination

of these functions will be the same as in the case when the quan-

tities a were arbitrary constants, for mere algebraical elimination

will take no cognisance of the value of the quantity eliminated

but only of its form. Now with the new supposition that the
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quantities a are functions of the variables x^, x^, x^, the values of

the partial dififerential coeflficients are given by the equations

dz^^ dx, da, dx, 9a„ dx, da, dx.

da, dx„

da^ dx^
0,

"i a-y a/K a^ g^j g^j -^ .
-^ >

dfda,

da, dx.

d«^' ' dx.

But the forms of p^, p^, p^ are to be the same as before when

they were given by equations (2) ; in order that this may be the

case we must have

df 9«i +^?S+§/95 = o
9aj 3*^ da^ dx^ da^ dx^

da^ dx^ da^ dx^ da^ dx^

da^ 8X3 da^ dx^ da^ dx^

.(3).

Let R denote the value of the determinant

da^

dx^

da^

dx^

da^

dx.

dx^

dx^

So.,

dx.

da,

dx^

da,

dx^

da,

dx.

so that the foregoing equations are equivalent to

*!=« ,.(4).

Now if R do not vanish these can only be satisfied by

da^ ' da^ ' da.
.(B),

and these are three equations which determine the values of

a^, a^, a, in terms of the variables. The relation (1) is still a

solution with the change in the quantities a; when the values
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just found are substituted for them we have a solution of (A)

which contains no arbitrary constant. This solution moreover will

obviously differ from a solution containing no arbitrary constant

but derived from (A) by assigning particular constant values to

a,, a^, 0^3 in (A) ; thus the result of eliminating the arbitrary con-

stants between (A) and (B) gives a new solution.

This solution is called a Singular Integral and is a relation

between the variables involving no arbitrary constant; but it is

not a particular case of the Complete Integral.

180. The equations (4) will all be satisfied if i? = 0; and as we
are now assuming that a^, a^, a^ are not arbitrary constants but

functions of the variables, this equation will be satisfied by a

functional relation between a^, a^, a^; this functional relation

may be arbitrary, so that we may write

«8 = 0(«i. (^2) (C).

in which denotes an arbitrary function. Multiplying now the

equations (3) by dx^, dx^, dx^ respectively and adding, we obtain

But from equation (C) we have

da. = 7r- da,+^ da„,
' 9aj ' da^ "

\da^ da^ daj ^ \^a^ da^ daj

Since a^ and a^ are independent, their variations da^ and da^ are

also independent ; in order that this equation may be satisfied we
must therefore have

da^ da^ da^

These equations (C) are sufiicient to determine a^, a^, a^ in

terms of the variables and the expressions so obtained will involve

the arbitrary function ^; when they are substituted in (A) the

solution takes a new form which is different from both of the other

two.

.(C).
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This solution is called the General Integral; it is a relation

between the variables involving two (or, in the case of n variables,

n — 1) independent functions of those variables together with an

arbitrary function of those two (or n — 1) functions.

The equation R = could also be satisfied by making a^ an

arbitrary function of a^ alone or of a^ alone, so that we should thus

arrive at different classes of General Integrals ; but these are all

less general than the former, in which only a single arbitrary

relation between all the quantities a occurs. This is easily seen

from the consideration that if, in equation C, a^ be expanded in

powers of a^ the coefficients are arbitrary functions of a^, while

if yjr (aj, an arbitrary function of a^, be expanded in powers of

Mj the coefficients are merely arbitrary constants; and the latter is

obviously included in the former.

181. It is thus manifest that we have three fundamentally

distinct classes of solutions of partial differential equations ; it

remains to shew that there are no others, and this will be done

by proving the following theorem :

Every solution of the differential equation is included in one or

other of the three classes of solutions of the equation which are

constituted hy the Complete Integral, the Singular Integral, and the

General Integral.

Let (A) represent the differential equation, and (1) the Com-

plete Integral of this equation ; then the equations (B) and (C)

wiU give the Singular and General Integrals ; let any other solu-

tion of the equation be represented by

f{z, m^, x^, x^) = (4).

As it is convenient to speak of z as explicitly expressed in

terms of the independent variables, we shall use -2" to represent the

value of the dependent variable derived from (1) and i^ to represent

the value derived from (4). This last equation gives

dz dx^

F. 19
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If now we make these values of the differential coefiHcients

agree with those given by equations (2), we have the three

equations

dsc^ dz dx^ dz

dx^ dz dx, 8^~
[

^ ^'

a/ d±_d± a/-^Q

dx^ dz 9«g dz

and these determine the values of a^, a^, a^ in terms of x^, x^, x^

and the dependent variable.

Now since (4) is a solution of the differential equation, we

have

F(Pu P^> Ps' ?. «1> ^2. '^s) = ^>

and since (1) is a solution, we have

^{Pl' P^' Pz' ^' "'l' «'2' «'3)=0

satisfied, when the quantities a are arbitrary. The last equation

is also satisfied when the quantities a, instead of being arbitrary

constants, become functions of the variables, provided these functions

are such as to leave the forms of p^,p^, p^ unaltered ; and we may
therefore replace them by the functions of x^, x^, x^ obtained as

their values from the equations (5), provided the necessary con-

ditions be satisfied. When this is the case the values of p^iP^iPs

are the same for the two forms of the equation (A) ; and we then

have from a comparison of these two forms the necessary equation

where in Zthe constants a^, a^, a^ are replaced by the values that

have been derived for them.

In order that the forms oi p^, p^, p^ior the new values of the

quantities a should be unchanged, the three equations of the

form

9/ dyjr df 9-\|r

dz dx,
~

dz dz ^'

dz \dx^ 9a, dx^ da, 9a;, da^ dxj
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must be satisfied at the same time as (5) ; and therefore the values

of ttj, a^, dj are such as to satisfy the equations

da, dx, da„ dx, da, dx.

But these are of the form of the equations (3) which enable us to

pass from the Complete Integral to the other two Integrals ; hence

the values of a are included among those which give either the

Complete, the Singular, or the General Integral of the equation.

And as the necessary conditions have been satisfied, we have

or the value of z derived from the given solution coincides with one

or other of the three principal integrals.

This proves the theorem and shews that the three classes

adopted include all possible solutions.

If on solving the equations (5) the quantities a be found to be

all constant, then the given solution will be a particular case of

the Complete Integral; if they be found to be functions of the

variables and there exist a functional relation between them of

the form

then the given solution will be a particular case of the General

Integral; if they be found to be functions of the variables and

there be no such functional relation between them, then the given

solution is the Singular Integral.

£x. 1. Assuming that the Complete Integral of i—pq is

investigate the nature of the solution

z-^x;!/= (x^ +2/^) sec a+ {x^ -if) tan a.

Ex. 2. Assuming that the Complete Integral oiz=px-\rqy is

loga=alog«^+(l-cs)logy + 6,

19—2
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investigate the nature of the solution

Ex. 3. Assuming that the Complete Integral oi z=px+ qy-^pq is

z= ax+ by+ ah,

investigate the nature of the solution

z+ xy= Q.

182. In the case when there are two independent variables

and one dependent, the three may be taken as the coordinates of

a point in space ; and the relations between the separate integrals

can be interpreted geometrically.

The Complete Integral, being a relation between x, y and z, is

the equation of a surface and this equation includes two arbitrary

parameters; so that the Complete Integral belongs to a doubly

infinite system of surfaces, or to a singly infinite system of families

of surfaces. This integral is of the form

4> (x, y, z, a, b) = 0.

In order to obtain the General Integral we make one of the

parameters an arbitrary function of the other, say b = (a), and

eliminate a between

(x, y, z, a, 6) = ^

b = 0(a)

This operation is really equivalent to selecting from the system

of families of surfaces a representative family and finding its enve-

lope. If a particular family be taken (which occurs when b is made

a definite function of a instead of an arbitrary function), then the

equation of its envelope is a particular case of the General Integral.

The foregoing equations as they stand represent a curve drawn on

the surface of the family whose parameter is a, while the equation

resulting from the elimination of a between them is the envelope

of the family ; hence the envelope touches the surface represented

by the first two equations along the curve represented by the three

equations. This curve is called the characteristic of the envelope

;
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and the General Integral thus represents the envelope of a family

of surfaces, considered as composed of its characteristics.

In order to obtain the Singular Integral, we eliminate the

parameters between the equations

^ (x, y, z, a, 6) = ^

dcj>

= 01

=

da

db

This operation is the same as finding the envelope of all the

surfaces included in the Complete Integral ; the three foregoing

equations give the point of contact of the particular surface

represented by the first of them with the general envelope. The

Singular Integral thus represents the general envelope of all the

surfaces included in the Complete Integral.

But when the elimination has taken place so as to leave a

relation between x, y, and z, it is necessary to ensure that the

resulting equation is that of the envelope and not that of any of

the loci which are included in the same equations. Such loci

are, for instance, the locus of conical points and the locus of

double lines, neither of which satisfies the differential equation.

It is therefore desirable to substitute the result (when it cannot at

once be recognised as the equation of an envelope) in the differ--

ential equation ; it is to be retained only when it is a solution.

It may happen that the entire system of surfaces does not

admit of this general envelope; in such a case the Singular Integral

will not exist for the corresponding differential equation, and its

non-existence will be indicated by the equations ordinarily used to

obtain it. Examples of this will hereafter occur.

As an example to illustrate the preceding discussion of the geometrical

relations between the integrals, consider the equation

aa;+hj + cz={a^+ bHc^f=l (i),

which contains two independent constants. It is easy to prove that the

corresponding differential equation is

{a;p+^q-zY=l+p^+ q^ (A),

and that the general envelope of all the planes contained in (i) is the sphere

a;^ +f+ z'= l (ii).
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Hence (ii) is the Singular Integral of (A), and the sphere represented by

(ii) touches each of the planes represented by (i) in a point.

To obtain the General Integral we eliminate a between

ax+yf{a) + z[l-a-^- {/(a)}^]*= l
]

in which /(a) is an arbitrary function. This is clearly the envelope of a family

of planes the equation of which contains only one parameter ; and it is there-

fore a developable surface. The equation of any developable surface, which

envelopes the sphere, is thus included in the above General Integral. The

process of making h a function of a is equivalent to drawing on the sphere

some definite curve; and the developable surface is the envelope of the tangent

planes to the sphere at points which lie on this line.

183. The explanation of § 179 shews how the Singular

Integral may be derived from the Complete Integral ; it is, how-

ever, possible to derive it directly from the differential equation,

as is the case in ordinary differential equations.

For the sake of brevity, suppose that there are only two

independent variables. Let the equation be

•^ {«;, y, z, p, q) = 0,

of which the Complete Integral is

F{x, y, z, a, b) = 0,

where a and b are arbitrary constants ; the Singular Integral is

obtained by combining the equation F =0 Avith

lr'^^^fb=' (^)-

Since F= is the integral of the differential equation the values

of z, p, q derived from the integral will render i|r = an identity
;

and the substitution of the values of p and q (but not that of s)

derived from F= will in general render \fr = equivalent to the

integral equation. Let this latter substitution be made, so that

p and q are replaced by functions of x, y, z, a,b; then in order to

find the Singular Integral we must form the equations analogous

to (A), which equations are

dxjr dp dyjr dq _
dp da dq da '

d^jr dp d^jrdq

dp db dq db~
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These equations may be satisfied in two ways : firstly, by writing

di]r _ ^ _ dyjr

secondly, if^ and ^ do not vanish, then

dp dq dpdq _ r.

da db db da

The latter equation implies a relation of the form

4>(p,q) = 0,

which does not involve either a or b, but may involve quantities

multiplying a and b in the expressions for p and q; that is,

quantities depending on x, y, and z. If both the arbitrary con-

stants occur in p and q (which does not always happen) the

equation ^ = would imply that they are effectively only one, or

that one of them is a function of the other ; the equations used

then give the General Integral, with which we are not now
concerned.

We thus return to

1^ = and ¥ = 0;
op dq

the elimination of p and q between these and yfr = will furnish a

relation between x, y, z, which is independent of any arbitrary

constant. If this relation satisfy the differential equation, it is the

Singular Integral ; and when the Integral is found by this method

it is necessary to see whether the differential equation is satisfied.

The reason that this precaution is necessary is similar to that

which renders the corresponding precaution necessary in the case

of ordinary differential equations; when the surfaces represented

have an envelope, this envelope will be given by the equations

+=»^ "$">• %-"
But these same equations will be satisfied by the coordiaates of

any pinch-point on one of the surfaces represented by the complete

integral; the locus of these pinch-points, however, is easily seen

not to be a solution of the equation. The equations will also be

satisfied by the coordinates of any point P at which two different
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surfaces of the system touch, and therefore by the equation of the

surface which is the locus of these points. But this surface has

not necessarily for its tangent plane at P that tangent plane which

is common to the two surfaces, and therefore the values ofp and q

(which give the direction-cosines of the tangent plane) derived

from this new locus are not the values of p and q which satisfy

the given equation i|f = 0. Such a locus corresponds to what was

before called the tac-locus (§ 28) ; and, while it may not be the only-

locus (other than the envelope) which is introduced, the possibility

of its presence renders necessary an enquiry whether the equation

between x, y, z satisfies the differential equation.

Ex. 1. The differential equation

has for its complete integral

{x — a cos a)''+ {y — a sin of + z^=W,
X being supposed a determinate constant. Forming the envelope of this sphere

by talcing

F={x - acosaY+ (y - asm a)^+z^ — X%^= 0,

Oa da

V{x^^+y^^+ z')=^K

we easily find it to be

Now taking

^=z'{\+p'+ q')-X^{{!!0+pzf + (,y+ qzy]

and following the rule for deriving the Singular Integral from the differential

equation, we have

-^= "ipz^ - 2X% [x +pz)= 0,

^^= iqz^-2Xh{y+ qz) = 0.

The last two equations are satisfied by 2=0, which though free fromp and q

is not a solution of the differential equation. In fact by drawing a figure it is

easily seen that 2= is a tac-locus, being the plane which contains the points

of contact of the different non-consecutive spheres with one another obtained

by giving all possible values to a and a.

Ex. 2. Consider the system of cones

{x- aaoB6f + (j/-asinef =(--—^
\m m-J
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in whicli m, d are arbitrary constants ; the corresponding differential equation

is easily obtained.' The equations, which give the envelope, are

These are all satisfied by

z 2a\ „

a a O,

' ^
' m'

which give .v^+y^= a^,

hut z is arbitrary.

The equations are also satisfied by

2a

m
and the corresponding eliminant is

2a . ^
z=— , X Bin 6= 1/ cos 6,

The last equation represents the envelope ; the doubly infinite system of

cones is generated by the revolution, round the directrix of a parabola, of all

the right circular cones whose vertices lie on the tangent at the vertex to the

parabola, and one slant side of any one of which coincides with the tangent to

the parabola drawn through the vertex of the cone. The equation

is that of the cylinder on which lie all the (singular) circles which are the loci

of the vertices of the cones in the revolution round the directrix.

For fuller information on the subject of the Singular Integrals of partial

differential equations of the first order a memoir by Darboux, M^moires de

rinstitut de France, t. xxvii. (1880), should be consulted.

Lagrange's Linear Equation,

184. We have seen that among the integrals of a differential

equation there is one—the General Integral—into the expression

of which an arbitrary function enters ; the deduction of the

differential equation from the integral implies the elimination of

this arbitrary function. The simplest form possible for an integral

of this nature, when there are two independent variables, is the

equation

<l>{^,
v) = (i),

in which ^ is an arbitrary functional symbol and w and i; are

definite functions of x, y and z. In order to eliminate ^ we
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differentiate with respect to each of the independent variables

and have

d<j} fdu du\ dcf} /dv dv\ _ .

du \dx ^ dz) dv \9a; ^ dz) '

d(j) /du

du \di/

du

'di
+ ?-) +

9(^ fdv

dv \dy + ^l)-».

and therefore

/9m , du\

[d-x+^d-zj

dv

;
+ ?

dv\ /du du

9^j
=
fe +

^\dy ^ dz) \dy

which, on rearrangement, gives

Pp + Qq

dz

(dv

R (ii)>

where

Q R
du du



185.]
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be a solution of the equation

Pp + Qq = R,

and let the solution of this equation obtained by the foregoing rule

be (f>{u, ii) = ; then from equations (iii) we have

-r,du ^du r^du .

ox dy oz

Since ^Ir {x, y, z) = 0, we have

the substitution of these values of p and q in the differential

equations gives

OX oy oz

We have thus three equations linear in P, Q and R; when

these quantities are eliminated we have

3-v|r 3-v^ 3-v/r = 0.

dx' dy ' dz

du du du

dx' dy' dz

dv dv dv

dx ' dy' dz

Hence there is some definite functional relation between i/r, u, v;

let it be

ylr = F{u, v), ^

where i^ is a definite function. The solution t/t {x, y, z) = is

therefore the same as

F{u, v) = Q;

and, since P is a definite while j) is an arbitrary function, this

solution is included in

4>{u, v) = 0,

that is, is included in the solution obtained by the method given in

the rule.
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This latter solution is thus the most general solution possible of
this form ; it evidently corresponds to the General Integral.

187. Corollary. The equations u- a=0 and v — b = are
integrals of the differential equation. For the general solution may
be written

where yp is an arbitrary function. Take then yjr (v) = av", where
a is an arbitrary constant ; the equation then becomes u-a=0,
which is the first of the stated integrals. Similarly for the second.

These results can be obtained independently. The foregoing
article shews that, in order that i|r (x, y,z) = may be an integral,

we must have

ex ay dz

But the equations

are actually satisfied ; hence u — a=0 and v—b = are integrals.

188. We thus see that, when there is a single arbitrary function

entering simply (that is, without any derivatives) into an integral

equation,the corresponding differential equation is necessarilylinear

;

and that the linear differential equation has for its most general

integral a relation into which an arbitrary function enters. We
therefore infer that, in the case of a differential equation which is

not linear, the arbitrary function which is essential to the General

Primitive cannot enter in a manner similar to that in which the

arbitrary function enters in the foregoing equation ; in fact, with it

will be associated in the General Primitive its first differential

coefficient.

189. In the foregoing we have limited ourselves to the case

of two independent variables ; the proof of the method when

there are n independent variables follows the former on exactly the

same lines, and the corresponding rule is :
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To obtain the most general integral of the linear equation

p,Pi + Pa+PsPs + +P.Vn=R

write down the subsidiary equations

dx^ _ dx^ _ _ dx^^ _ dz

and obtain n independent integrals of these ; let them be

Connect these quantities u by an arbitrary functional relation

4>(ui, "2, , w„)=0;

this equation is the integral required.

The proof of this, as well as that of the corresponding corollaries,

viz. that «! = «!, u^ = a^, j **„ = Q^n "^^^ integrals of the

equation, is not difficult.

Ex. I. Solve the equation a;p + i/q=z.

Lagrange's subsidiary equations are

dx dy _ dz

X y z
'

of whioh two integrals are z=ay,z=hx ; hence the solution of the equation is

It can be exhibited in the forms

y ^\xj y '^
y

which three are easily seen to be equivalent to one another.

Ex. 2. Solve the equation

{mz — ny)p+ {nx -lz)q=ly - mx.

Lagrange's subsidiary equations are

dx dy dz

mz — ny nx — lz ly — mx

'

Hence xdx-Vydy + zdz=<i, whence x''--Vy'''-\-z^= a;

and Idx-irmdy ^'iidz= Q, whence Z:r+ TOy+ mz= 6 ;

and the integral of the equation is

?,»+ JTM/ + TO3= ^ (a;^ + y'+ 0^).
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Ex. 3. Solve the equations

(i) x''2> — m/q+y^= 0;

(ii) xzp-^yzq=xij

;

(iii) (y2+ 2^ - x^)p - ixyq+ 2^2= ;

(iv) z-xp-yq= a{jxP'->ry'^-Vz'^'f;

(v) {a-x)p-^(h~y)q= G-z;

(vi) (y% - 2*4)JO+ (2?/* - ^y ) s'
= 92 (^3 _ ^s) .

(vii) /)tan.»+ 2'tan?/= tan3;

(viii) (ll^-6y + 22)jo-(6^-lO2^+ 4z)2'= 2.r-4y+ 60;

(ix) iTiPi+ (2+ ^3)^2+ (2+ ^2)i»3= S'a+ ^3-

^x 4. Solve the equation

(^2+ •^^S+ ^)i'l + (•«'3+ '^1+ Z)P2 + (^1+ X2+z)p^=Xi+X^+Xy

Lagrange's subsidiary equations are

c^iSj _ dx2 _ dx^ dz

x^+x^+ z x^+x-^+z x-^+x^+z~ x-^+x^ + x^'

Each of these equal fractions

_ dz — dx^ _ dz — dx^ _ dz-dx^ _dz+ dx-^+ dx2+ dxg
~
-(2-*i)~ -(2-^2)" -{z-x3)~'J(7+^^Tx^+^-

The integrals of these are

-=-^= iz+ X^+X2+ X3f,

and therefore the integral of the equation is

^{{z-x,)S\ {z-x,)S^, {z-x,)S^}=0,

where S stands for z+x^^+x^+.v^.

Ex. 5. Prove that in the last question, if, when z= Q, the variables be

connected by the relation

x^+x^+x^= \,

then the integral is

{(^1 - Zf+ (^2 - Zf+ {X^ - zfY {X^+ X2 + X3+ zf= {Xj^+ X^ + ^3 - Zzf.

(Mansion.)

Ex. 6. Solve the equations

(i) PiX-^ +p^2 +P3^3= '^^ ;

(ii) pi^i +^2^2 +^3^3= "'^+^>
^3

(iii) x^^zp^ 4- XgfS-jZp^+ x^x^zp^= x-^x^x^.
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Standard Forms.

190. Before proceeding to indicate a method of integration

which is applicable to the most general equation of the first order,

it is advisable to notice a few standard forms of differential

equations which admit of integration by very short processes and

to one or other of which many equations can be reduced ; as the

general method is usually much longer than that which is effective

for any of these standard forms, it is advantageous to see whether

the equation is included under one of them.

191. Standard I : Equations in which the variables do not

explicitly occur ; such equations may be written in the form

^ {p> l) = 0-

A solution of this is evidently

z= ax+by+ c,

provided a and b are such as to satisfy

-f (a, 6)=0.

If then the value of b derived from this equation be b =f{a),
the Complete Integral of the equation is

g = ax + yf(a) + c.

The General Integral and the Singular Integral must in the

case of every equation be indicated as well as the Complete Integral,

or the equation is not considered to be fully solved.

Equations which do not explicitly come under this standard

can often be included by changes oi the variables ; thus for instance

functions of x which occur in the equation might admit of associ-

ation with the p and functions of y with the q. But the changes

needed for any equation can be determined only for the particular

circumstances of the equation ; there is no general rule, since an

equation cannot always be reduced to this form.

Ex. 1. Solve -pq—k.

The foregoing shews that

z = a.r+ 6y + c
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is a solution provided

the Complete Integral therefore is

h
z=ax-\— v+c.

a"

The General Integral is obtained by eliminating a between the equations

k
z—ax-\— y+ (f){a)

where
<f>

is arbitrary.

The Singular Integral, if it exist, is determined by the equations

k

a"

0= oc-—„y

0= 1

the last equation shews that the Singular Solution does not exist.

Ex. 2. Solve pq=S(i^f^^.

This can be put into the form

z'^^dz z~V'dz

x'^dx y^dy
~

Let dZ=z~^^dz, so that (1—1?)^=/~*^,

d^=x'^dx, (m + 1)^=^+1,

dr,=f<'dy, {n + \)r,=f'+\

and the equation becomes

dZdZ

which is included under the last example.

Ex. 3, Solve the equations :

(i) p^+ q^— irfi;

(ii) a{p+ q)=z;

(iii) x'^p'^-\-y'^q^=z;

(iv) j9™ sec^" a;

+

z^^ cosec^"y = «™ -"

;

(v) p'^+ q^ = ivpq;

(vi) it>i™+i'2"+i'3"= l;

(vii) zpiPiP =x^x^^.

r. 20
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192. The differential equations included under the form

have an important interpretation when viewed geometrically. We
know that the equation of the tangent plane to the surface

z = F{x, y)

at the point f, r], t, is

and the surface is the envelope of the tangent planes. Now if

between ttz and vr there be a relation
0^ 07}

,

(dF dF\ .

all the quantities ^,r], ^ , -^ are functions of a single quantity,

and therefore there is only a single parameter in the equation of

the tangent plane. Now the envelope of a plane whose equation

is of this form is a developable surface, and hence the surface con-

sidered is a developable surface.

It therefore follows that

ir(^, q) =

is the general differential equation of a family of developable

surfaces ; and the equivalent General Integral is the integral

equation of the family.

193. Standard II.

In attempting to reduce an equation to the preceding standard

we may find it possible to remove from the equation the indepen-

dent variables, so that they no longer occur explicitly
; but it

may not be possible to remove the dependent variable, and the

equation will then be of the form

, X(^' P' ?)=o-

We assume as a tentative solution
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(f being written instead of a; + ay), in which a is an arbitrary con-

stant. We then have

_dz 9f

_

dz

^~~d^ d^~dl'

_dz 9^ _ dz

and the substitution of these in the equation gives

/ dz dz\ .

^[''dr ""di)^^-

This is no longer a partial differential equation, as there is now
only one independent variable. This independent variable does

not explicitly occur, and thus the equation conies under Standard

IV. (§ 18) of ordinary differential equations of the first order.

dz
Solving for -^ we have an equation of the form

dz . ,

the solution of Avhich is

or x + ay + b = F(z, a).

This is the Complete Integral ; the General and the Singular

Integrals may be found by the ordinary method.

Bx. 1. Solve the equation

If we make the substitutions as in the standard case, the equation becomes

or f&(a2+ «)*= cZ^,

the integral of which is

the Complete Integral of the equation therefore is

{z+ a^y={x+a'y+ cf.

20—2
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The General Integral is obtained hj the elimination of a between

and Za{z+a^f={a!+at/+e{a)}ii/+6' (a)})
'

where 6 is an arbitrary function.

It is not difficult to prove that there is no Singular Integral.

Ex. 2. Solve the equations :

(i) p^=zHl-pq);

(ii) qY=z(z-px);

(iii) p{l + q^)= q{z-a);

(iv) 1 =P2Pi +P3Pi^ +PiP^^

;

(v) Pt^+ zp2^ + zW=^^PiP2P3-

194. The relation between the integral and the differential

equation admits of a geometrical interpretation. The first step in

the process of solution is writing f for a; + ay, which is equivalent

to turning the axes in the plane of xy through an angle equal to

tan~^ a and magnifying the coordinates in that plane in the ratio

of (1 + a^y : 1. It is then assumed that ^ is a function of ^

but is independent of the coordinate parallel to the new axis

of y. Now

represents a cylinder whose axis is parallel to the new axis of y

;

and therefore the equation gives the cylinders satisfying this con-

dition. But now, returning to our original axes, since a is an

arbitrary constant, the axis of f is an arbitrary line in the plane,

and therefore also is the line taken for the transformed axis of y.

It thus follows that what we find by our process of integration will

be all the cylindrical surfaces with axes in the plane of xy which

satisfy the given differential equation.

195. Standard III.

In attempting to reduce a given equation to the first standard,

it may happen that z may be removed from explicit occurrence in

the equation, but that x and y remain, and that then the functions

of p and X may be associated with one another, and likewise the

functions of q and y ; the equation will then take the form

(P{x, p)=-f(y, q).
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We assume, as a trial solution, each of these equal quantities

to be equal to an arbitrary constant a ; from the first of the two

equations so obtained we have

p = e^{x, a),

and from the second

Integrating both of these we find that, by the first,

3 =/j {x, a) + a quantity independent of x,

and that, by the second,

z =f^ (y, a) + a. quantity independent of y.

These are evidently included in, and are equivalent to, the

equation

2=f,(x, a)+f^(y, a)+b,

where b is an arbitrary constant. This is a solution of the original

equation ; as it contains two arbitrary constants it is the Complete

Integral.

The General Integral and the Singular Integral, if it exist, are

to be deduced from this in the usual way.

Ex. 1. Solve the equation

p^-\-q^=a;+j/.

The equation rearranged in the form

comes under the standard, and we therefore write

^2 — ^= 1/ — g2= ^_

Hence p= {x+af,

q={y-af,
and therefore

which is the Complete Integral.

The General Integral is given by the elimination of a between

z=%{x+a)^+%{:y-af+x{a))

where ;( is an arbitrary function ; and there is no Singular Integral,
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Ex. 2. Solve the equations

:

(i) 02(|p2^g2)_^2+y2 .

(ii) q=xp+p'^;

(iii) p={qy + zf;

(iv) p^+q^='2,x;

(v) p^ — y^q=x'^-'y^.

Ex. 3. Shew that this method can be applied to the solution of equations

of the form

fliPu ^l)+/2(P2. 1'^+MPz, Xs)= 0.

Thus solve fully the equation

196. Standard IV.

In this class are included those equations involving partial

differential coefficients, which are analogous to the equations

included under Clairaut's form (§ 20) in ordinary differential

equations. For tw^o independent variables they are represented by

z=px+qy + <l)(j), q),

where <^ is a definite function.

A solution of this is

z = ax + by +
<f>

{a, h),

which admits ofimmediate verification. As it contains two arbitrary

constants it is the Complete Integral ; the General Integral is to

be obtained in the usual way, and there is usually a Singular

Integral.

Ex. 1. Solve the equations:

(i) z=px+qy+pq;

(ii) z=px+ qy+ {\+p'^+ q'^)^

;

(iii) z=px+qy + {ap'^+^q'^+yf

;

(iv) 2=px+ qy + 3p'q^
;

obtaining in each case the Singular Integral as well as the Complete Integral.

Ex. 2. Solve the equations

:

(i) ^=PiXi+prsX:^+P3X^+f{puP2>P3)i

(u) z= ^ p„x +{n + \){p^^...p.^Y*i ;

11—11

and obtain the Singular Integral in each case,
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Principle of Duality.

197. There exists in partial differential equations a remarkable

duality in virtue of which each equation is connected with some

other eqiiation of the same order by relations of a perfectly re-

ciprocal character. We shall consider here only equations of the

first order.

Considering the case of two independent variables only, we
write as our new dependent variable

Z=px + qy — z,

and therefore

dZ= xdp + ydg.

We take as our new independent variables p and q, which we write

X and Y for symmetry, so that

X=p and Y=q;
and then we have

_dZ_ dZ

dZ dZ „

y=Tq=dY=^-^

then z = PX+QY-Z,
so that the relations between the variables are, as stated above,

reciprocal.

If now we have an equation of the form

>/r {x, y, z, p, q) = 0,

the above relations transform it into

f{P,Q,PX + QY-Z,X, r) = o.

The integral of either of these being known, that of the other is

deducible by a process of algebraical elimination. Thus let a

solution of the second be giren, or be derivable, in the form

<^{Z,X, 7)=0.

Then we have

^dZ^dX~ .^dZ^dY'
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ttatis,
'^aS'^az^^'

The elimination of X, Y, Z between these four equations will

leave an equation in x, y, z, which will be a solution of

Ex. 1. The simplest example of an equation which can be treated by this

method is that which comes under Standard IV. (§ 196); the equation being

z=px + qy+f{p,<i),

the transformed equation is not differential, but algebraical, being in fact

-Z=f{X, T).

Thus in particular consider

z=px+qy+p^+ c^\

the transformed equation is

Hence x= -^y= -2X and y= ~
al^~

~2F,

where z=X^ + Y^-Z= -{X^+ Y^).

Hence, eliminating the quantities -Z, Y, Z, we have

— 4«=«2+2/^

which is easily seen to be the Singular Integral Solution of

z=px-^qy-\-p'^-^(^.

Ex. 2. Solve the equations

:

(i) {xp-^yq){z-'px-qy)-^pq= ^;

(ii) + l-a;(a;+/i)-2/(y+ j)=O;

(iii) ^2 («2 — x)-\- %pqxy+ (^ (y^ - y) — 2p.ra - 'iqyz+ z^= ;

(iv) (px-'rqy — z){p^x-V(fyy^=pq.

Ex. 3. Prove that the equations

(i) xflz-px-qy,p, q)+yf2{z-px-qy, p, q)=fz{z-px-qy,p, q),

(ii) F (z ~px - qy, x, y) = 0,

are reducible, by the foregoing substitutions, to standard forms.
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Ex. 4. Prove that the equation

is reducible to Lagrange's form by changing the variables so that p and y are

the new independent variables, and z -px the new dependent variable.

Hence solve the equation

q{]f
— Vf+ ^pxz=z^ + !t;p'^{x+ \).

Ex.5. Solve (z-p-qyy= l+p^ + q\

198. The process of derivation of one differential equation

from another as exhibited in the preceding article is really a trans-

lation into analysis of the geometrical principle of duality between

surfaces. When we take a fixed quadric, which we may denote by

2, then with every surface 8 there is associated another surface S',

called its polar reciprocal, which is the envelope of the polar planes

with regard to S of points on the surface S ; and the surface *Sf is

the polar reciprocal of 8', being the envelope of the polar planes

with regard to 2 of points on 8'.

The polar reciprocal of a surface depends on the subsidiary

quadric, "t, and is different for different quadrics; the quadric

most commonly chosen (on account of the geometrical simplicity)

is a sphere with its centre at the origin of reciprocation.

Let us consider as the subsidiary quadric not a sphere but a

paraboloid of revolution whose equation is

To the tangent plane at a point A on the surface 8 corresponds

a point A' on the surface 8' ; and to the point A corresponds the

tangent plane at A' to 8'. Let x, y, z, p, q be the quantities

associated with A ; and X, Y, Z, F, Q the corresponding quantities

associated with A'.

The tangent plane at x, y, z to the given surface 8 is

C?> '^> % being current coordinates) ; and the polar plane of X, Y, Z
with regard to the quadric is
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But, because the two surfaces 8 and ^S" are polar reciprocals, these

two planes are the same ; a comparison of their equations gives

X=p; Y=q; Z=px + qy-z.

Similarly, taking a tangent plane at X, Y, Z to the surface 8'

and noticing that it must be the polar plane of x, y, z with regard

to the quadric, we should obtain the equations

x = P; y=Q; z=PX+Q7-Z.
These two sets of relations are those used in the preceding method.

Other relations could be obtained by taking other subsidiary

quadrics in reference to which reciprocation should take place ; but

the preceding seem the simplest that can be found.

199. The General Integral of a differential equation involves

an arbitrary function. Ifc may be necessary to obtain an inte-

gral satisfying certain conditions; the latter will then be ob-

tained if the arbitrary function be rightly determined. The

process is equivalent to that which occurs in ordinary differential

equations, where the arbitrary constants are determined by some

particular relation or relations between special values of the

variables. In every particular problem the arbitrary function is

determined by means of the specified conditions.

Ex. 1. We know that the equation

implies that the normal to the surface represented by the integral equation is

perpendicular to a given line whose direction cosines are proportional to a,h,\;

this is the property of a cylindrical surface whose axis is parallel to that line.

The integral obtained either by Lagrange's method or by the method applied

to Standard I. is

x; — az=(j)
(jz
— hz),

where is arbitrary. Suppose that the equation of a cylinder having its

axis parallel to the line {a, b, 1) and passing through the curve x^-y^= l in

the plane of xy is desired. The section of the above surface by the plane of

OT/ is obtained by writing 2= therein, and thus it is

According to the assigned conditions it should be

A comparison of these equations shews that
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and therefore also

4,{2i-hz)={l + {ii^hzf)\

Hence the equation required is

x-az={l + (j/-hzf]^,

or, freed from radicals, is

{x - az)^ - (y - h^Y= 1 •

Ex. 2. Prove that the equation

p {x - a) + q {y -'b)= z - c

represents a family of cones having the iixed point (a, h, c) for vertex. Shew
that the member of the family, which passes through the circle

in the plane of xy, has for its equation

(az - cx)^+ {bz - (yy)^={z - c)^.

Sx. 3. Obtain the integral of the equation

p {ny — mz) + q{lz- nx) =mx — ly,

so that the section, by the plane of ot/, of the represented surface is a conic

section of eccentricity e with its centre on the line

e2+ (l_e2)(;a;+»iy)= 0.

General Method of Solution.

200. We now proceed to consider a more general method due

partly to Lagrange and partly to Charpit ; it applies to the general

equation, which may be denoted by

F(x, y, z, p, q)=0,

and its success depends, as will be seen, upon the integration of

some ordinary differential equations.

If in addition to the foregoing relation we have another between

the variables and the differential coefficients, the two can be

considered as a pair of simultaneous equations which, when solved,

will give p and q as explicit functions of oo, y and z. The values so

derived, when substituted in the equation

dz = pdx + qdy,

will render it either immediately integrable or integrable on

piultiplication by some factor ; and the integral will be a solution
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of the original equation, since the values of p and q derived from

it have in the inverse process been obtained from that equation.

Let then another relation between the quantities be denoted by

<I> (x, y, z, -p, q) = 0;

if we can find the form of <1>, we shall be in a position to use this

method of solution.

201. Now the integral of the equation gives z (and therefore

also p and q) as functions of x and y; whatever these functions

may be, they will, if substituted in the equations F= and $ = 0,

render them both identities. Let then the values of z, p, q (as

yet unknown) be supposed substituted; then the partial differential

coefficients of the left-hand members of both equations with regard

to X and «/ will all vanish, and therefore

dF dF dF dp dFdq ^
h -^p -I

— + =
dx dz ^ dp dx dq dx '

8$ a* d^dp 9*3g_Q
dx dz -^ dp dx dq dx '

dF dF dFdp d_Fd^_

dy dz ^ dp dy dq dy '

dy dz " dp dy dq dy

Eliminating ^ between the first pair of these equations, we have

/a^3$_aFa^\ fdF_d^_d_Fd^ ?2('^?£_?Z?*'\_o-
\dx dp dp dx) ^\dz dp dp dz J dx\dq dp dp dq)~ '

and eliminating ^ between the second pair, we have
oy

id_Fd^ _dj^d^\ /dFd_^_dFd^\ dpfdFd^_dFd^
\dy dq dq dy)'^'^[dz dq d^ W) ^ dy[d^ dq~ d^d^

Now ^S^^JP.
ox dxdy dy

so that from the last two equations, when added together as they

stand, the terms involving these quantities disappear; and the

result may be rearranged and written in the form
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dF
,

dF\d^
,
fdF dF\ d^ I dF dF\ 8*

V dp) dx \ dqj dy ~ '

which we may look upon as a linear differential equation of the

first order to determine <^. The method applicable to this equa-

tion is therefore the one used in the case of Lagrange's equation
;

we write down the equations (§ 189)

dp dq dz dx _ dy _ d<i>

dF dF~dF dF~_ dF_ ^~ _dF~'^dF~ T

'

dx " dz dy ^ dz ^ dp ^ dq dp dq

and obtain integrals of these. Now in order that these equations

may hold we must have

d^ = 0,

or <^ = A,

an arbitrary constant. If another integral can be obtained by

equating any two of the first five fractions, it may be written in

the form

u=B.

By the corollary in § 189, m = 5 is a solution of the differential

equation determining <I>. Now <1> = is the relation we are

seeking between x, y, z, p, q ; and the simpler this relation is, the

easier will be the deduction of ^ and q from <1> = and F= 0. We
may therefore take as the relation required the equation

u = B,

that is, we may take any one integral whatever of the foregoing

system of ordinary differential equations, provided either p ov q or

both occur in it ; when this integral has been obtained we combine

it with ^=0 and carry out the process indicated in the pre-

ceding article.

202, The following proposition is an immediate corollary from

the process of the preceding article, or it may be considered merely

as a re-enunciation of the result there obtained

:

When two equations of the first order represented by

F{x, y, z,p, q) = 0,

<I> {x, y, z, p, q) = 0,
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are such that they satisfy identically the relation

dx dp dp dx dy dq dq dy

'^^\dzd^~dp dzJ^'^Kdz dq dq dz)
"'

and are considered as two simultaneous equations giving p and q
as functions of x, y, and z, then the values of p and q derived frona

them and substituted in the equation

dz=pdx + qdy

render it an exact differential.

Another form may be given to the relation. Let

' dx'^^dz'

„ dF dF
^" = % + ^8^'

and similarly for <I> ; then the equation is easily transformed into

„ 3* ^ dF ^9* ^ dF ^

''dp ''dp^ "dq "dq
•

Ex. 1. Solve the equation

p^+ q^- 2p« - V,qy + 2a^y =0.

Writing down the subsidiary equations we have among others

dp _ dq _ dx _ dy
'2,y-'2,p~ '2,x-2q~ -2p+ 2^ ~ -2q-\-'iiy

'

Hence dp+dq=dx+ dy,

so that p-x+q—y= a.

Combining this with the original equation, which may be written

{p-xf+ {q-yf={x-yf,
we find ^{p-x)= a+{%{x-yf~a?f,

^{q~y)=a-{2{x-yf~a?}\
Hence dz=pdx+ qdy

gives idz={ix+ a)dx + {%y+ a)dy+ {dx - dy) {2 {x -yf - a^}*,

the integral of which is

2z-b= x^+ax+y^+ay +^^{2{x-yy-a^}i

-
J' log [2'(^--y)+ {2(^-2/)2-af],
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whicli is the Complete Integral. The General Integral is deducible in the
ordinary way ; there is no Singular Integral.

The above equation may, however, be solved without having recourse to

this method; but some transformations and substitutions are necessary.
Taking the equation in the form

we write Z=z- \x^- \y\

,, , dZ , dZ
so that ^ =p-x and w-=q-y.

Let the independent variables be changed by the equations

^-2/=2*Xand ^+2/=2*F;

dz
dy
'"

(-ll-ID^-'--'«-n
and therefore

The equation becomes

/dZ\^ /dZ\^

P2+ §2= 2^2,

and is thus of the form of Standard III. ; when the integral is obtained and

the new variables are replaced by the old, it will be found to agree with the

above.

Ex. 2. Solve the equations

(i) p^+ q^-'ipx-'2.qy+ \^0;

(ii) ^{p)q+py+ qx)+a?+y'^= 0;

by Charpifs method.

Also reduce both of them to one or other of the Standard Forms and so

integrate them, shewing that the integrals obtained by the two methods agree.

203. In these particular examples Charpit's method is less

laborious than the other ; but this is by no means always the case.

It often happens that an equation which furnishes an easy example

of this rule is integrable still more easily because included in some

one or other of the foregoing Standard forms ; and this causes the

method to be less used than would otherwise be the case. But it

is more general than any of them, and equations integrable by any
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of the other methods are integrable by this method ; it is more-

over important in the general theory as indicating a method of

obtaining a solution of the differential equation without any

restrictions on its form.

The limitations to success in practice are connected with the

integration of the subsidiary equations. Now these particular

limitations are just such as give rise to the methods adopted for

the different Standards and really indicate the classification therein

adopted ; in fact all the Standards are included in Charpit's form
and integration is possible hy this one method whenever it is possible

by any of the methods.

204. Thus consider first Lagrange's form, which is

R-Pp-Qq = 0,

in which F, Q, B are functions of oo, y, z alone and do not involve

p or g-. In this case

F=R-Fp-qq,

sothat __=p, _- = Q,

dF dF ^ ^ ^

thus two of Charpit's equations are

dx _dy _ dz

the equations on which the integration of Lagrange's form de-

pends. But it should be noticed that this is not a proof of

Lagrange's method for linear differential equations ; the result has

already been assumed in the derivation of Charpit's equations.

205. Now consider the typical equation of the first Standard,

which is

f {p, q) = 0,

so that F= '\{r{p, q),

in which x, y, z do not explicitly occur ; then

^-^ = ?^=0 ^=0
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The subsidiary equations now are

dp _dq _ dx _

dp

SO that we have p=a and q = h, both arbitrary constants ap-

parently. But according to the rule we must combine any one

integral with the original equation, and so we have

-«|r (a, ^) = ;

and therefore, \i q = h, we have

-«/r {a, h) = 0.

Then dz = pdx + qdy

= adx + hdy,

of which the integral is

z = ax-\-hy + c,

with the limitation between a and 6.

206. Proceeding now to the typical equation of the Second

Standard, which is

^ [z, p, q) = 0,

an equation into which x and y do not explicitly enter, we have

F= yjr [z, p, q),

and therefore

TT- = 0, and ,^ = 0.
ox oy

The equation derived from the first pair of Charpit's fractions

gives

dp _ dq

~dF~~dF'
PYz ^Tz

and therefore p = mq. Combining this with i/r = we can find both

p and q in terms of z ; let the values be f{z) for p and therefore

mf(z) for q. Substituting in

dz = pdx + qdy,

we have tttx = dx+ mdy,

r. 21
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or
I^ +C = x + my,

which agrees with the former result.

207, Passing now to the Third Standard in which the equa-

tion is

F=il>[x,p)-->^{y, q) = 0,

sothat ^-^- ^-^-^-i-
ox ox dp op

dy~ dy'dq~ dq' dz" '

we have from the subsidiary equations

dp _ dx

dx dp

or ^ dp + ~ dx=0,

that is, <j)(x,p) = a;

and therefore from the original equation

^ (y, q) = «

Solving these respectively for^ and q we have

p = e^{x, a); q = e^{y, a);

and following the rule we have

dz = 6^ {x, a) dx + 6^ {y, a) dy,

the integral of which is

z + c
=
j ^1 {«=> «) dx +jd^ (y, a) dy.

Ex. 3. Derive by Charpit's method the integral of the differential

equation of the form analogous to Clairaut's form for ordinary equations.

Ex. 4. Obtain by Charpit's method a solution of the equation

p^+qy=fip, q),

where f(p, q) is a homogeneous function of^ and q of the degree n.

Solve also xp'^+yq'^ = 'ipq.
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Jacobi's Method for the General Equation with any
number of independent variables.

208. It has been indicated in § 189 that the method used

for the linear partial differential equation in Lagrange's form can

be applied to the case when the number of variables is n ; we now
proceed to indicate the method, due to Jacobi, of solving the

general partial differential equation when there are n independent

variables. This general equation may be represented by

^(^.P,'P,' Pn'^r ,00,,) = 0,

where ajj, x^, , a;^ are the independent variables and the p's

are the partial differential coefficients of z with respect to the a;'s.

209. We will prove that, if in this equation the dependent

variable explicitly occur (and this will usually be the case since the

equation is perfectly general), then the equation <l> = can be

replaced by another with a new dependent variable, in which that

dependent variable does not explicitly occur and the number of

independent variables is increased by unity.

The differential equation ^ = has some solution ; let it be

represented by

u=f{z, x^,.A^, , .r.) = 0,

wherey is as yet an unknown function ; then we have

du du _ „

for all values of the suffix from r = 1 to »• = n.. Let these values

of p be substituted in the original equation, which therefore

becomes

du du du .

*(--l-i -i-.-. ^- =»

^ dz dz dz
'

and may be written in the form

/ du dm du du\

^•(=^"*^ ^"'"'9^' d^, '3^' d^) =
^-

21—2



oSi JACOBI'S METHOD [209.

This is a partial differential equation of the first order ; the

dependent variable u does not explicitly occur and there are n + 1

independent variables z, x^, x^, , x^. Hence the proposition

is proved.

The integral of this leads to the integral of the original

equation ; it will be proved to be possible to obtain the integral of

^ = in the form

in which a^, a^, , a„ are arbitrarj' constants.

When this integral is known, the complete integral of the

equation $ = is given by

/K. ^^2' '^n' ^> «1.«2 «n)-0,

in which z is now the dependent variable and there are the

original n independent variables.

For u =f is the integral of '^ = and '^ is a modified form of

^E" = 0, so that the latter is satisfied by u =f, and therefore

^ dz dz ds I

But since/= we have

T

and therefore p = — —i;

¥_

which is satisfied for all the suffixes r from r = l to r = n; hence

we obtain

^{^>PvP2' Pn'^^x' a;,, ,»J=0,
the original differential equation.

210. It is thus sufficient to consider differential equations

from which the dependent variable is explicitly absent. If it

explicitly occur in any given equation, it can be removed in

the manner indicated; and a transformed differential equation



210.] FOR THE GENERAL EQUATION. 325

^ = can be obtained, the integral of which will lead to the

required integral. We may therefore write the general differential

equation in the form

^(Pl>P2' •Pu'^l' '^s *J = 0.

If, in addition to i^ = 0, we have other n — 1 equations of the

form

F, = a„ F^ = a^, , F, = a,, , F^_^ = a^_^,

where F^, F^, , F^_^ are functions ot p^, p^ ,^„ (or of some
of them) and it may be, and usually will be, of iCj, a;^, , x^, and
where a^, a^, , a„_j are arbitrary constants, then from these n
equations we can obtain values oi p^, p^, ,iJ„as functions of

the x's and the as. Let these values be substituted in

dz = 2}^doc^+p^dx^+ +pj«!^;

then, if they be such as to render this an exact differential, the

integral of it will be the complete integral of F = 0. For it will

be an integral, since the values of^j,^;,,
, J>„ are derived from

n equations, one of which is F = ; and it will in its expression

involve n arbitrary constants, viz. the constants a^, a.^, , a

and the constant of integration. Moreover the integral is of the

form

which gives the dependent variable explicitly, and therefore

justifies the assumption made as to the form of the integral of
*' = 0.

The n — 1 functions F must be such that the values of the

quantities p will render the foregoing an exact differential equa-

tion; and the necessary conditions, which are

drK^^p,
dx, dx^

for all values of r and s, will serve to determine these functions.

211. Suppose that the n equations

F = 0, F, = a„ F, = a„ , i^,_, = «„_.

are solved so as to give the values of p^, p^, , p„ as functions

of the variables x ; these values will, when substituted, make each
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equation an identity. When this substitution takes place in any

two such equations as F^ = a, and F, = a„ we have

ldK_^dKdp,^dFrdp,_^
1 dx 3pi dx^ dp^ dx^

, H-"^'^" = 0,

\dx. dp^dxj dp^dxj dp^dx^ '

dp, dx^dx^ dp^dx^ dp^dx^

giving altogether n pairs of equations ; each pair is made up of

the differential coefficients, with regard to the same independent

variable, of F, and F^ when in these the values of the p's are

substituted. Between the first pair let the value of ^ be elimi-

nated ; the resulting equation is

'F ,F

where

+
F F'

.Fv Pi.

F F

dx.

9^3 +
F Fl

ft > Pi J 9-»i

_dKdj\_dKdF,
u, V J du dv dv du

F F'

_p,„p,] dx^
^i^ = 0.

\K, f;
_ v,u _
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from the r''-^ equation, and the term

from the s'** equation ; the sum of these two is zero, and thus the

term inp disappears, whatever be the values of / and s'. The

resulting equation is therefore

\K, f:]
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and therefore ss

which holds for all the values of r and s given by the different

functions ; and every combination of the functions will give such

an equation. The total number of these combinations is ^n{n-l);

and therefore the number of such equations is ^n(n — 1).

Now each equation is linear in the quantities

which are in number |n(w-l) in all, that is, the same as the

number of the equations. Since each right-hand side is zero it

follows either that each of these quantities

dx„ dcr,.

is zero, or that the determinant formed by the coefficients of these

quantities is zero.

That this cannot be the case appears as follows. Let A denote

the determinant

dp,'

dp,'

dF dF_

^Pn

dp, ' dp.

dF„,

M.

then each of the expressions

F , F
Pr-> P.'.

is the complement of a second minor of A and there are in all

\ri^ {n — iy of them; let © denote the determinant formed by

them so that @ is the determinant which is zero by hypothesis.

Let ©' be the determinant formed by the complements in A
of the constituents in © ; then we have, on multiplying © and ©'

together,

©©' = A*"''"'"^'.
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Now ©' is not infinite ; hence if @ vanish we must have

A=0.

But this would imply that among the n equations of the type

F=0 the n quantities p could be eliminated, that is, that these

equations would not suffice to determine the quantities p as

functions of the independent variables. This is contrary to

what has been assumed as to the independence of the functions

F ; hence @ is not zero.

It follows that each of the | n(n — l) quantities

9Pr- Sp^

is zero, and therefore that the conditions are sufficient to ensure

that

dz — p^dx^ +p^dx^ + +Pndx„

is a perfect differential.

213. We may therefore sum up our results, so far obtained,

as follows

:

To obtain the Complete Integral of any given equation F= we

first determine an integral F^ = a, of the equation

(F„F) = 0;

then we obtain a common integral F^ = a^ of the equations

{F„F) = (F„F,)=^0;

then a common integral F^ = a^of the equations

(F,,F)={F„F,) = (F„F,)=0;

and so on, thus obtaining in all n—1 new equations each con-

taining an arbitrary constant. The n equations which involve the

n quantities p are then solved so as to furnish the values of the p's

as functions of the independent variables and the arbitrary con-

stants, and these values are substituted in

dz = p^dx^+p^dx^-^ +pjx^.

This when integrated gives the Complete Integral of the equation

F=0.
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Each of the equations determining any one of the functions

F^ is linear in the partial differential coefficients of F, ; we have

therefore to investigate a method of obtaining the common integral

of a set of simultaneous linear partial differential equations.

Ex. Prove that if the equations

-^l(*l, ^2, , ^n, 2, Pi, Pi, •••) Pn)=0,

F^^iXj^, ^2, -, »« ^,Pl,P2, , Pn)=^,

be solved so as to give Pi,Pi, ,
jo„ as functions of x-^, x^, ... , a;„, z the

necessary and sufficient conditions in order that

dz ==pj^dxi ^-'p^dx^+ ^-p^dxn

should be an exact differential are that the aggregate of equations

\X,pJ L^l.PlJ L^2>i'2j L^'n, i'uJ

should be satisfied.

214. It is convenient to prove here an important Lemma
which will he of use when the integration of the simultaneous

equations is being considered.

li A, B, (7 be any three functions of 2m independent variables

x^,x^, '^n,Pi,P-2> yPn'^"^^ if the function {B, C) be denoted

by a, and the function {A, a) by

[A, {B, C)l

then the equation

[A, {B, G)] + [B, (G, A)] + [G, {A, 5)] =

will be identically satisfied.

Consider the left-hand member of this equation ; it consists

of the sum of a number of terms all of the same form, each of

which is the product of two first differential coefficients of two of

the quantities A, B, C and a second differential coefficient of the

third of them. It moreover is a cyclically symmetrical function

oi A, B and C and thertfore, if the terms involving the second
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differential coefficient of any one function, such as C, disap-

pear, all the terms will disappear and thus the equation will be
satisfied.

Let the quantity

dBd^_dBdO
dx^ dp, dp, a,(.v

be denoted by AJiC, so that A,, may be considered as a symbolical

operator; we may write

iB,G) = (\+\+ +A„)BC,

the operators being obviously subject to the distributive law

(\ + A,)BG = A,BC + A,BG.

Then in accordance with this notation,

[A,{B,C)] = {A, + \+ +AJ^(A, + A, + + AJBG,

and therefore [A
, (B, C)] is the sum of a series of pairs of terms

A.^A.BO-l-A^^A^^C

for all the values of r and s from 1 to m inclusive ; in the case

when r and s have the same value only a single term occurs for

consideration.

Expanding the functions thus symbolically represented, we
find that the terms depending upon the second differential co-

etfacients of G are

dA dB d'G dA dB WG dA dB d'G dA dB d'G

?.;; a.c, dpjdp, dx, dp, dpfix, dp, dx, dpfix, dp, dp, air,.9a;,

from the first of the foregoing pair, and

dA dB d'G dA dB d'G dA dB d"'C dA dB d'G

dx, dx, dp,dp, dx, dp, dj^fix, dp, dx, dp,dx, dp, dp, a«,a«,

from the second.

Selecting in the same way from [B, {G, A)] the corresponding

pair of symbolical terms and considering in them the terms which

involve second differential coefficients of C, we find them to be

respectively

95 dA d'G _ dB ?j. d'O _d^dji d'G wdA dy_
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and

dBdA d'G dBdA d'O dBdA d'G dBdA d'G

dx^dp^dpjdx^ dx^dx^dpfip^ dp.dp^dxjdx, dp,dx^dpj)x^'

The expression \_G, {A, 5)] will not contain any second dif-

ferential coefficients of G.

Hence in

[A,{B,G)\ + \B,{G,A)-\ + [G,{A,B)\

the coefficient of the term which involves ^

—

^r- is the sum of
dp.dp,

those in the foregoing, and is therefore zero ; so also are the co-

^ . , , ,, , . , . , d'G d'G WG
efficients oi those which involve 7^

—
t^t- , 7^

—tt- , ^
—

7=r-
dp^dx, opfix^ ox^dx.

If r and s be the same we need only to consider the first and

third of the above lines of terms when in them we write s=r; it

will be seen immediately that the terms in ;::-—5, r—;r- , ;c—, all
•' dp^ dp^dx/ a*/

vanish.

Since this is true whatever r and s may be, it follows that all

the terms involving second differentials of G vanish ; and therefore,

by the symmetry, the whole expression vanishes.

Solution of the Subsidiary Equations.

215. We now proceed to obtain the values oi F^,F^, ,-^„_i

from the various differential equations which they must satisfy.

To determine F^ we have

(F,FJ = 0,

or, what is the same thing,

^_F^K_^^F, dF_dJ\_dFdF^ 'dF_dF, _dF_dJ\ ^
dx^dp^ dp.dx^ dx^dp^ dp.,dx^ dx^dp^ dp„dx^~

Since this is linear in the differential coefficients of F^ we may
obtain an integral of it by using as subsidiary equations (§ 189)
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the generalised form of Lagrange's equations. Let any integral
of the system

_dF~ _dF~ ^~y^

^d^^dp^^ _dp,^

dF_ dF_ dF ^^

be denoted by

/i(^i.^=. >^»'P,>P^, ,P,^ = ay,

where a^ is an arbitrary constant ; then F^ =f^ = a, is an integral

of the original equation (F, F^) = 0.

216. We have now to find a function F^ such as will satisfy

the equations

(^,^,) = 0; {F„F,)={f^,F,) = 0.

The former of these being an equation to determine F^ is identical

in form with that which determines F^ , and therefore we shall

have the same subsidiary equations ; let

^(a^i, a;,, , x^,p^,p^, , _pj = constant

be an integral of the equations (A) different from f^=a^; then

{F<f>) = o.

If
<f)
be such a function as to satisfy

then we may take

F, = <l>^a,

as the common integral of the two equations which determine F^.

If <p do not satisfy the equation, then we shall have

the substitution of (^^ may be repeated and so on indefinitely, so

that we shall have a series of functions </> given by

(/,.<^.) = </>.; C/..<^J = </'s; ; (A, <}><-.) = fr,
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Now all these functions ^ satisfy the equation

{F, F,) =

when substituted for F^. In the identity

[A, (B, C)] + [B, {0, A)] + [G, (A, B)] =

let Fhe substituted for A and^^ for B; then

[C,iA,B)] = [C,iF,f,)] = (C,0)-0,

and therefore

[F(A,c)] = [f„{F,C)i

whatever C may be.

First let C= (p; then this equation becomes

[^. (/..'^)] = [/., (^, </>)] = (./;.0) = 0;

so that

(f^,4>)=^4.^ = F,

is a solution of

(F, F,) = 0.

Next let C = (^j ; then we have

[^. (/..<^.)] = [X,(^> </>.)] = (/.>0) = 0,

so that

is also a solution of

{F,F,)=^Q;

and so on with the whole series of functions ^, each of which is a

solution of the first of the two equations which determine F^, and

is therefore, when equated to a constant, also a solution of the

subsidiary equations A.

Now these subsidiary equations have only 2n — 1 independent

integrals at the utmost ; the functions c^j which arise from the

indefinitely repeated substitution in [f^, ^j_,) cannot all be in-

dependent of one another ; and therefore if the series of functions

do not cease we must ultimately come to some one which is

expressible in terms of those already found.

217. There are thus three alternatives to be considered :

(1), some function ^^ of the series may be identically zero

;
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(2), some function 0^ of the series is variable but expressible in

terms of the preceding functions of the series

;

(3), some function 0^ of the series may be a determinate

constant c.

We will consider these in turn.

218. (1), let (j>i=0; then ^^^= a^ will be the desired

integral ; for it is one of the series of functions and is therefore a

solution of {F, F^) = 0; also

and it is therefore a solution of (F^, F^ = 0. Hence it is a

common integral of the two equations which determine F^ and

therefore gives the second of the equations desired, viz.

<f>,.,
= F, = a,.

219. (2), let ^i be expressible in terms of the preceding

functions of the series ; suppose

<f>i
= ^i^'fi' ^> ^i> ^2. > 4>iJy

where ^ is a definite functional symbol. Proceeding now to form

(^i^j we have

when the value of (j)^ is substituted. But

(f^,F) = -{F,f,) = 0,

since /j is a solution of the equations; and (f^, f^) vanishes

identically, so that this equation becomes

But each of the differential coefEcients of ^ is a function of the

previously obtained quantities cf) ; hence
(f>,^^

is so also.

It follows therefore that ^^ and all the functions
<f>

of the series

after 0,- ai'e expressible in terms of those which precede ^j.
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Let us then seek to obtain some function of these quantities

which shall satisfy the equations

let it be given by

When this value is substituted the former equation becomes

which is satisfied identically since every function ^ is a solution of

iF,F,) = 0;

and the second equation becomes as before

o-(/.,F., = *.|.*.3^+..||^ + + *,*.

The last equation is thus the only one which must be satisfied

by ylr; and as no differential coefficients with regard to F or

f occur in it we may consider them as replaced by their respective

values and Oj. Any integral of the system

^1
~

^2
~

03
~

<Pi

e

of the form ^ =a^ will be a solution of the equation in yjr ; and

therefore we may write

F, = ^ = a„

and so we shall have the required common integral of the two

equations which determine F^.

220. (3), let (pi be some determinate constant c which will

merely depend upon the coefficients of the original differential

equation ; the series of functions thus terminates as there is no

further function to substitute. We then proceed as in the

last case to find some function of the preceding quantities
(f>
which

will be a common solution of the two equations ; let

K = xiF,f.,<t>,4>. .<^.J-
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When this is substituted in {F, F^) = the equation is identically

satisfied; when it is substituted in if^,F^) = the resulting

equation is, just as before,

in which we may replace ^j by c. An integral of this is given by

which when integrated gives

0j_i''
— 2c<^i_2 ~ constant

;

and therefore we may as in the last case write

F, = <j>^^^-2ccf,,_, = a,

as the common integral desired.

This solution is satisfactory provided i> 1.

Now i cannot be zero since <p is determined as a function of

the variables ; the only exception therefore to be considered is the

case i= 1, when

so that T^ is independent of <p. Now

and F and/^ are replaceable by and a, respectively ; if then
x^

be

independent of
<f>,

it ceases to be a function of the variables and

there is thus no solution common to the two equations to be

derived from these functions.

Should this be the case, we return to the subsidiary equa-

tions (A) and determine a new integral distinct from those already

obtained, which are

Fy=f^ — a^, (j) = constant

;

let this be

^(«;,,«j, ,^^,Pi>P„ , i)„) = constant.

F. 22
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Next we perform with the function ^ all the operations which

have been performed with the function
(f>;

then the desired

common integral

will be obtained, except in the single case when we have

where c' is a determinate constant.

From a combinatiori of these respective exceptional cases,

which are the only ones in each of which the common integral

F^ has not been obtained, we can construct a common integral

F^. For let

be substituted in {F, F^) = =
(f^, F^ ; then these equations

become

o=(/.<A)| + (/.^)|.

Now the former equation is satisfied identically since ^ and

^ are both integrals of the subsidiary equations (A) ; while since

and (/^,S:) = a-. = c',

the latter equation becomes

This is satisfied by

/,= @(c'</.-c^),

and therefore F^ = ® (c'0 - c^) = a^,

where © is any arbitrary functional symbol (which may at will be

chosen of a simple form), is the desired integral.

Hence in every case the common integral of the equations

which determine F.-^ has been found ; for convenience we may
denote it by
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221. We now proceed to obtain F^; it must be a common
integral of the equations

(F,F,) = = (f„F,) = (f„F,).

To obtain one we find, by the preceding method, an integral

common to the two equations

(F,F,)^0 = (f„F,),

which is different from /a = 0^2 ; this we may denote by

A.(a;i, a^a, > ^'n' Pi' Pi> , pj = constant.

We then form as before the series of functions

(.h' ^)=\> (.f2>\) = ^> > (A' \-i) = \', ;

then all the functions X of this series are common integrals of

the first two of the equations which determine \. For in the

identity

[^1, {B. C)] + [B, (C, A)] + [G, (A, B)] = 0.

let J. = i^ and B =f«_; then since (F, /J = 0, we have

[F, if,, G)] = [/„ {F C)].

And, substituting in the same identity A =f^ and B —f^ and re-

membering that (^,^) = 0, we havQ

[fu if.. G)] = [/„(/„ 01

These equations are satisfied whatever C may be. Now let

G = 'K; then

or (F,X,) = (/„0) = 0;

and [AAA.^)]=[A.(A'^)l

or (fu\) = (A.O) = 0.

Thus Xj is a common integral of the equations

(F,F,) = = (f„F^).

Similarly the substitution of \ for G would shew that X^ is a

common integral of these equations; and so on through all the

series of functions.

As in the former case, the number of common integrals being

limited, we shall in the series come to some integral X^ which is

22—2
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expressible, as well as those that follow it, in terms of those which

precede it, viz., F,f^,f^,X,\, , \_,. The same three alter-

natives are presented and the value of F^ the common integral in

each is determined as before ; either the single case of failure is

avoided by the choice of a new integral different from \ or in

the case of failure of the latter these two cases of failure are

combined so as to furnish a common integral. Thus we obtain

our third common integral, which may be represented by

222. The remaining functions F^ , i^^.^ may be derived

in the same way as the above ; and thus with i?'= we shall have

n equations to determine the values of the p's in terms of the

independent variables and n — 1 arbitrary constants, which, when

substituted in

dz=p^dx^+p^dx^-\- +i'„<^«„,

will render it integrable ; its integral is the complete integral

of the original differential equation.

The associated integrals are derivable from the results of

§§ 179, 180.

223. The foregoing is an exposition of Jacobi's method of integration in

its simplest form ; there are, however, developments and simplifications and,

arising out of these, methods of avoiding the exceptional cases vrhich cannot

be dealt with here. For these and for the whole theory of partial differential

equations of the first order reference should be made to the chief authori-

ties, which are Jacobi, " Vorlesungen iiber Dynamik" {Oes. Werie, Suppl. Bd.

pp. 248—269) ; Jaoobi, "Nova methodus...integrand!" {Grelle, t. ix, pp. 1

—

181) ; a very valuable memoir by Imschenetskt, Orimerfs Arohiv der Mathe-

matik und Physik, t. L. pp. 27 8—474 ; a memoir by Graindorgb, M4moires

de la Soci^t^ Royale des Sciences de LUge, II™ s^rie, t. v. ; and a treatise by

Mansion, TMorie des Equations aux derMes partielles, will prove of great use
;

full references to original authorities will be found in the last.

The equations (A) are, when each fraction is equated to dt, of the form

dx^__dF_ dp,._dF_

dt dpr ' dt dx,.

'

these are the canonical equations of motion of a system of rigid bodies
;

further discussion of them will be found in Imschenetsky. (See also Eouth's

Rigid Dynamics.)

We now proceed to consider some example.s.
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Ex. 1. To solve the equation

^=f{Pu Pi, -, Pn),

where / does not explicitly involve the independent variables. We must first

transform the equation so that the dependent variable does not explicitly

occur ; let the solution of the equation be

where the form of t/t has yet to be determined. Denoting ^ by P, and

-^by /'„^.l,wehave
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where x is given by the equation

Ex. 2. The case when / is a homogeneous function of order fi in the

^s is readily reduced to one of the forms ah-eady considered in § 191. For

we may change the dependent variable from z to |, where

/i-1

and the equation is then

l=/(^i,^2> ,U,

where |,=^ . The integral of this is

provided f{a-^^,a^, ,«„)= !.

Ex. 3. Solve

(i) z^ + zp^=p^^+p^^;

(ii) 2+ 2p3 = (p,+ft)2;

(iii) Oi - 2) O2 - 2) (ft - ^) =PiPiPi-

Ex. 4. Solve

i^= (0^2^+ iFii^a) x^ + ap^ CPi -ft) - 1 = 0.

The subsidiary equations are

— dxi _ —dx^ _ —dx^ dp^ dp2 dp^

^'A

+

«ft
~^A -aps~a {p^ -p^ " x^p^ " .v^p^ ~ x.;^^ +x^^

'

From the equality of the 1st, 2nd, 4th and 5th fractions we have

dx^ + dx^ _ dp-^+ dp2

{X^ + X^)X3~ {j}-^+ p^X^'

which when integrated leads to

(ft+i'2) (^1 + %)= «!•

We therefore (adopting the notation of the previous articles) take

^i = (ft+ft)('»i + '»2);

and we have to determine a solution of the subsidiary equations F^ = a.^ which
shall satisfy

(^1, ^2)= 0.

From the o(iualily of the 4th and 5th fractions we have
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and therefore we may write

(j> =Pi -Pi = constant.

Now (i^i ,<i>)= {Pi +Pi) 2^+ {Pi +P2) ( - 2^32)

the continued substitution in the equation

would thus not lead to a function such as is required. We therefore return

to the original subsidiary equations to obtain an integral different from

J^i=(ii and <^= constant; such an one is derivable from the equality of the

3rd, 4th and 5th fractions, which give

dpj^ - dp.2 ^ dx.j

^3 (Pi -pi) » (Pi -^2)

'

and therefore we write

\//-= a (pi —Pa) ~\^3— constant.

Now {F^, ylr)= (p^+p^)a+ {p^+p,) (-a) = 0,

and yjf therefore satisfies the two equations ; we thus have

i^2= a CPi -Pi) - i^3^= 0(2 •

We now solve the equations

to find the values ot p^, p^tPs, which are

, «! ^2 1 2

— 1 '^i "2 _ J_ .2

hence

dz=\a.^d log (.»!+ »2)+ 2^ {(«2+ 4V) ('^•«i
- ^•»2) + (•»! - ^2) '3"^'%} + 2^-q:^ 2 '^^3>

so that the general integral of the differential equation is

z+4= J ai log {x^+ .Tj) + — {xy - .JFj) («2+ i-«^3^)
- 4 «i log {xi + 2«2)

2a'

+ ( — ) arc tan j—^l

,

\aj l(2a2)*i

in which A, a^, a^ ^'I'e the arbitrary constants.

(Imsohenetsky.)

Ex. 5. Integrate the equations :

(i) PiXi^=pi+ ''p'\

(ii) J>i- + .>:2l'-i- + XzP.^=pir'it',. ;
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(iii) p^ +p^+p^= x^+ x^x^+ x.l + x^x^+ x^n^ + x^ ;

(iv) /ij +\p^ +PiX-^x^ +P3.^ix:^

=

;

(v) ^1+ix^+ x^PiJPi + x^p^p^= ;

It has already been indicated (in §§ 189—196) that several of the forms in

two independent variables which admit of immediate integration without the

use of Charpit's subsidiary equations can be generalised so as to include the

cases where the number of independent variables is greater than two.

Ex. 6. In the case when a given differential equation can be written in

the form

/l(^li^2) )'«'r,i'l,^2) )i'r)=/2('^r+l, , ^n)i'r + l) , Pn)i

the general integral is the common integral of the equations

/l= «=/2)

where a is arbitrary. For the subsidiary equations are

dx^ dp^ dx^ dpr dx^ + y <^r + i

_8/i~5/i-
- 8/,- 8/i" 8/2

^" '

8pi dx.^ dp^ dx^ ^Pr'rX 5.«r + l

from the former we have

M^ +M<^p+ +|/irf^^+|i<; 0,

and therefore

/l = a

=/=
by the given equation.

As an example of this we may take

x^^+x^^ + Oi -p^ (^3+ ^^) (^^+ x^ = 1

.

Here we may write

where a is an arbitrary constant. The integral of the former equation is

z + x^x^= Ax^+ -^ «4+ C,

where A and Care arbitrary constants. The integral of the latter is obtainable

by Charpit's method ; the subsidiary equations are

— dx^ _ — dx^ dp^ _ dp2

x^ + a x^~a p^ pi
From these we have

dp^ + dp2 dx\ + dx2

Pi +P2 x-y + x^ "
'

and therefore

iPl+P2){Xi + X2) = Ai + l.
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Hence, by combining with the equation the integral of which is sought, we
have

(*2

+

«)A +P2 (-s-'i - a) = 1

,

(.Xl-a)pj^+p^{x^+ a) = Ai\

and these give

Pi {(^1 - «)' - (x^ + af}= ^1 (^1 - a) - fe+ a),

Thus

dz=pi dx^ +P2 dx^

= A^d\og {(^1 - af - (x, + a)2} + |rf log li.

1
^2"

and therefore

.=Alog{(^x-a)^-fe+ a)^} + iIog j^'-°; +
i^^
+ "

j
+ g,.

(.l ~ O,) ~ \*2 "r "/

The complete integral of the original equation is therefore

where A, A^, B, a are arbitrary constants.

Ex. 7. Integrate

{x.,p^+ :!;i^2) ^3 +^3 (pj -^,) {^^2+ (^^+ ^.j Qp^ ^. ^^)^j ^ „_

(Imschenetsky.)

Simultaneous Partial Differential Equations*.

224. Instead of there being given only a single equation to

determine the dependent variable there may be given a number
of simultaneous equations ; if the dependent variable explicitly

occur in any of them they can all be transformed, as in § 209,

so that it shall disappear. The equations may then be taken

of the form

F^{oo^,(c^, .^^u^Vi'K' 'i'J = 0,

FJx^,x^, ,oo„,p„p„ ,PJ=0.

* This theory is due to Bour ; see authorities cited in § 223, p. 340.
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If m be greater than n the equations cannot be independent ; for

the first n of the equations may be solved algebraically so as to

give values of the p'a in terms of the variables x and these, when

substituted in the remaining m — n, must reduce them to identities

since there would otherwise be relations between the independent

variables. Thus in effect there may be given at most n simul-

taneous equations ; and we may therefore take m either equal to

n, or less than n.

225. I. Let m = n. We have thus n equations giving the

values of the n quantities p in terms of the variables ; these values,

substituted in

dz=p^dx^+p^dx^+ +p^dx^,

must make it a perfect differential if the given system have a

common solution. The conditions for this are that

dp^^dp^

for all pairs of indices ; and these, as in § 211, lead to equations of

the form

Hence the given functions must satisfy all the equations for all

possible combinations of the suffixes; and then the common
complete integral is obtained by the integration of

dz = pjix^ + p^dx^ + +p„dx^

,

and therefore contains one arbitrary constant.

It may happen however that the functions F are not indepen-

dent of one another ; in this case the determinant A

9a' ^P.' 'dp,.

is zero, and there will then be an identical relation of the form

^{F„F,, i^„,.r.,.r„
, ,r„) = 0.
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But for the purposes of integration F^ = F^= =F^ = 0; and

this therefore becomes

^(0,0, ,0,x^,a!^, ,x„) = 0.

If this be not an identity, there is a relation implied between the

independent constants, which is of course impossible; it then

follows that the given equations are inconsistent and that there

is no common integral. If it be an identity, the number of given

equations independent of one another is less than the number of

the quantities p, which therefore cannot be determined from the

given equations alone ; we must therefore have recourse to the

method which applies when m is less than n.

Thus if there be four independent variables and four equa-

tions F^ = = F^ = F^=F^ be given, there can be no common

integral in a case when there is a relation of the form

F^ = K - a-,) F^ + (x^ - x^) F^ + x^x^x^x^

;

where there is a relation of the form

there are only three independent equations.

226. II. Let m be less than n. We may suppose the equations

reduced to such a number m that they are independent of one

another, even though they were not so in the form in which they

were first given. It will be assumed that there is a common in-

tegral so far as the algebraic relations which give the dependent

functions in terms of the others indicate ; this will be the case if

these relations become identically-null equations when in them we

make use of the equations i*\ = 0, , F,^ = 0.

First Case. The functions Fj^ = Q = = i^„ may satisfy the

equations

for all values 1, 2, , m of r and s; they are therefore simul-

taneously integrable. To determine the values of the quantities p,

other n — m equations must be obtained by Jacobi's method

;

these will involve n — m arbitrary constants. From these equations

and the given m equations the values of p must be derived and be

substituted in

dz = p,dx, -I- p./lr.^ \- +p/h\ ;
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the integral of which is the common complete integral of the

original equations and contains n-m + 1 arbitrary constants.

Second Case. It may happen that for one or for several com-

binations of the indices in the series 1, 2, , m we find (K>K)
a function of the independent variables only, or (F^, F^) a deter-

minate constant. In neither case can (F^, F^) be zero; the

conditions that the equations should be simultaneously integrable

are not satisfied and there is no common integral of the proposed

equations.

Third Case. It may happen that, for one or for several com-

binations of the indices in the series 1, 2, ,m, we find results

of the form

{K,F,)=f{x^,x^, ,x^,Pi,P^ ,k)'

where / does not become identically zero on combination with the

given equations ; let there be I such combinations, so that m +

1

must not be greater than n ; then for combinations other than

these I the equations

{K, K) =

are satisfied. We now take

and substitute in the functions

where either r or s at least must be greater than m.

If then these functions all vanish, we have m + l equations

which are simultaneously integrable ; and we determine by Jacobi's

method the n — m — l remaining equations necessary to give the

complete integral, which will therefore contain n — m—l + \

arbitrary constants.

If for any combination (F^__., f^) or for one (/j./J the function

be a determinate constant or a function of the independent vari-

ables only, then the functions are not simultaneously integrable

and there is no common integral.

If for any combination {F„_i, f^ or for one (/, /J we obtain a

function j){x^,x^, , x^,p^,p^,
, p„) which does not vanish

in virtue of the equations already obtained, we proceed with the

functions ^ as we did before with the functions /. Ultimately we
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shall arrive at a finite number, not greater than n, of independent

equations which are simultaneously integrable, and then, in the

ordinary way, obtain the common integral; or we shall obtain

a result indicating impossibility of simultaneous integration, in

which ease there will be no common integral.

-£!r. 1. Obtain a common integral (if it exist) of the simultaneous equa-

tions

We have

(•^1 1 -^2) =i'l^l +Psi^2 -P^3 -i'A;

where the right-hand side will not vanish in virtue oi F^= = F2,; we there-

fore write

F^ =p^a;^+p^^ -p^^ - 'p^x^= 0.

Thus {F^,F^) = Q;

also (i^i , i^g)= - 2pj^2+ ^^^«!^= 0,

{Fi,F^)= V.psp^-<2,x^x^=0;

the three equations are therefore compatible. Let F^ be the other function

required, so that it will be determined as a common integral of the equations

{F„F,)^0={F„F,) = {F,,F^);

considering it as an integral- of

{F„F^)=0,

we write down the equations

dx^ _ dx^ _ dx^ _ dx^ _ dp^ _ dp^ _ dp^ _ dp^

~~x[~ ~^~ x^~ x^'' 'py~ Pi~ ft
~

^4
'

one integral of these is

Py= ax^,

where a is arbitrary ; we therefore tentatively write

F,^'P^= a.
x^

We then find (i^4,/'i)= 0;

and {F,,F,)^^^-^,p,.

Now on solving the equations

F^= Q=F.=F^; F^ = a,

1 1

we find pi= a.«3, p^=-Xi^^ p^= axi, p^= --'^2,
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and therefore p^pi = x.iX2,

so that {F^,F^)=0.

Hence we have the common solution in the form

Pi= ax2.

To obtain the complete common integral we have

dz= a {Xgdxj^+Xjdx^) + - {x^x-^+ x-idx^,

and therefore the common integral is

z= aXjX^+ - x^^+ 6,

where a and 6 are arbitrary constants.

Ex. 2. Obtain other integrals in the form

(i) z= ax^x^+ - x-iX^+ ;

(ii) 0=2 {x^x^ {x-^x^ - a)f + h
;

(iii) 2=2 {x-^x^ {x.^^ - a)}*+ 6.

Bx. 3. Obtain common complete integrals of the simultaneous equations :

I. p^-^(x^-\-x.^x<^-^x-^x^p^-\-{x^^-x^^-Zx^'Po,= <S\
_

ir. ix^^+x:,^p,= 0\

x^^Pi - 2^,-5^2 + («i% - 2%) Pf, - 2.»i^4iJ4= Oj

(Imschenetsky and Graindorge.)

MISCELLANEOUS EXAMPLES.

1. Integrate the equations :

(i) {m {x+y)-n{x+ z)} p+ {n {y + s)-l{y + x))q= l {z + x)-m (e+y)
;

(ii) p(s+ (^) + q{z+ ev) = z''-e'' + ti

;

(iii) x^{y~z)p+y^ (* — ^) 2'=^^ {^~y)-

2. Eorm the differential equation whose complete integral is

^2+2/H 2^ -= 2a.»+ 2/3y+ 2yz,

where a^+ 0^+ y^= a^, a being a given constant and a, /3, y otherwise arbitrary.

From the differential equation form the singular integral.

Illustrate the connection of the complete, general and singular integrals

by a geometrical interpretation of each.
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3. Integrate

and find the equation of the cone of the second degree which satisfies this

equation and passes through the point (1, 2, 3).

4. Integrate the equation

^ ' (IX ^ ' dy ^ '' dz '

where X, Y, Z are the same quadratic functions of x, y, z respectively.

Integrate also when they are quartio functions ; also when they are sextio

functions.

(Richelot.)

5. Prove that if

'^'^^r^2)-«'»i'(*A

then |^ = 4F^+ 2fa,
'oh dk

and hence that

u= {l-^hh)-^-exp{^^^.

Shew also that

'xp (h ,-^— ) . exp (kxy) = (1 - A^) ~ i exp I ,

—

yj I
•^^^ y" u^J • "^^ ^^^y'' = (^ - ^^) ' "^P \rfhk)

Similarly prove that

, (P lex''

(1 + 4M)'

6. Solve the equations

where ^'^= Vi^^i^ Va'^^^ Vs-
(Hesse.)

7. Solve the equations :

(i) p'^+ q^= x'^ + xy+y^;

(ii) pq^px+qy;

(iii) pq=py-^qx;

8. Find the equation of a surface which belongs at once to surfaces of

revolution 'defined by the equation py - qx=0, and to conical surfaces defined

by the equation px+ qy=z.
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9. If 2=/ {x, y) be any solution of the equation

tlien the curves represented by the equation

are an orthogonal system such that the product of the curvatures at any

point is constant.

lif{x, y) do not contain y, the form of the function is determined by

/(a7)=tan5(2+ tan2^)*,

where cx=^E{^ sin \6)-^ F{^^va.\ 6),

F and E being the first and second elliptic integrals and the modulus in each

case being 2~
.

10. Find the surface which cuts at right angles all the spheres which

pass through a given point and have their centres on a given line passing

through that point.

11. Find the surface in which the coordinates of the point where the

normal meets the plane of xy are proportional to the corresponding coordi-

nates of the surface.

12. Find the system of surfaces orthogonal to the curves

cosh X : cosh y : cosh z= a : b : c.

13. Prove that a solution of the differential equation

du dv ^'^_n
dx dy dz

~

is M=|0j,, (^,|, v= \<p„(t>^\, w= |(/>^, <^^

where and yjf are arbitrary functions oi'x, y and s.

Prove also that this is the general solution.

14. Shew that, if the simultaneous equations

dx dy dz

ox ay Bz

have a solution different from m= constant, then

{YZ' - rZ)dx+{ZA" -Z'A') dy +(Xr-A"y) dz=0

is reducible to an exact equation, from the integral of which such common
solution may be derived.
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Have the equations
CM ?U OU „

(y-.)g+ (.-^)g+ (^-y)g=0,

a common solution other than «= constant ?

15. Solve by Jacobi's method the equation

Pi

(Imschenetsky.)

Shew that by generalisation of the formulae, which in the case of two

independent variables are the analytical expression of the principle of duality,

this equation can be transformed into one which is linear in the partial

differential coefficients of the new variable ; and hence integrate the above

equation.

16. Solve by Jacobi's method

^i^Pi+^ip2 - 2^1^- ^ logi'a+ 26 log%= a.

(Ampere, and Graindorge.)

17. Obtain the complete common integral of the simultaneous equations :

^^iPs-
(CoUet.)

18. Obtain the complete common integral of

{x^ -xi)-p^- {x^x^ - x^^Ps+ {x^3 - x^x^ ^4= °1
;

^Xi-x^x^)p3 + {XyX^-x^^)p^=Q]
'

and that of

^3ft+ ^iPi-X\Pt- ^2^4=or
(CoUet.)

F. 23



CHAPTER X.

Partial Differential Equations of the Second and

Higher Orders.

227. It -will be assumed through practically the whole of this

chapter that there are only two independent variables ; the notation

already used for the partial differential coefficients of the first

order will be retained, and it will be convenient to introduce similar

symbols r, s, t to represent those of the second order, which are

thus defined :

"^^dx" ^~dxdy' dy''

An equation is said to be of the second order when it includes

one at least of these differential coefficients r, s, t but none of

a higher order ; the quantities p and q may also enter into the

equation, the general form of which will therefore be

F [x, y, z, p, q, r, s, t) = 0.

The complete integral of the equation is the most general

relation possible between x, y, z such that, when the value of z

derived from it and the associated differential coefiicients thence

formed are substituted in the differential equation, the latter be-

comes an identity. No condition is annexed to the definition in

regard to the form of the complete integral, which may involve in its

expression either arbitrary constants or arbitrary functions or both.

An intermediary integral is a relation in the form of a partial

differential equation of the first order such that the given differ-

ential equation can be deduced from it. It does not necessarily exist
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as one distiact from, and derivable immediately by mere differen-

tiation of, the complete integral ; when such an integral, however,

has been obtained the application of the method of the preceding

chapter will give an integral which may actually be, or may only

be a particular case of, the complete integral.

228. Hitherto it has been possible only in particular cases to

integrate the general equation. The most important of these

cases is that in which the differential coefficients of the second

order occur only in the first degree, so that the equation is linear

;

its most general form is then

Br + Ss+Tt= V,

in which B, 8, T, V are functions of x, y, z, p and q. This

equation will now be discussed; but before giving the methods

which have been used for its integration it is desirable to consider

some special forms which are simple and can be solved immediately;

it will then be possible to exclude these cases afterwards from the

general discussion.

One of the simplest cases is

r=f{x),
dz f

so that ^ = jf(x)dx + cf>(i/),

where ^ is an arbitrary function ; another integration gives

^ = jjf(x)dx'+X<p(y)+^|riy),

where both </> and -yjr are arbitrary.

Ux. Integrate s= constant.

Similarly we may integrate

r + Mp = N,

where M and iV are functions of x and of y respectively ; it may
be written

y being constant for purposes of differentiation and integration

with regard to x ; and thus

p^e-'"'''' je^'''^Ndx + cf>{y)

23—2
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where is an arbitrary function ; and therefore

[228.

z=jdxe-^'''''
Jlldxe''""'mx + 4>{

^ being an arbitrary function.

Ex. Integrate

(i) s +Mp=N;

(ii) s + 3£q=N.

+ f{y)>

Monge's method of integration of the equation

Er+8s+Tt= V.

229. Monge's method consists in a certain process for the

discovery of either one or two intermediary integrals of the form

u=f{v),

where u and v are functions of x, y, z, p, q and /is some arbitrary

functional symbol ; there is thus implied in the method a tacit

assumption that the differential equation admits of such an

integral. It is therefore in the first place proper to enquire

whether this assumption is justifiable in the general case and, if

it should prove not to be so, to indicate how the general equation

must be limited so that the assumption may be fairly made; for this

purpose it will be sufficient to proceed from the supposed inter-

mediary integral and obtain the corresponding differential equa-

tion.

230. Since u =f{v) and u and v are functions of x, y, z, p, q,

we have

du

dx

du

du du du_df/dv dv dv dv\

dz dp dq dv V9« dz dp dqj

, du du
_

du ^ du df/dv dv dv dv\
^""^

dy + ^dz+%+'dq-Jv[dy + ^Fz + 'dp + 'dq)-

. df
Eliminating the quantity ^ between these two equations we find,

as the equivalent differential equation freed from the arbitrary

function,.

rR^ + sS^ + tT^ + V, (rt - s') = F,

.

(1).
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where B^, 8^, T,, U^, ]\ are given by the relations

\q,y) ^\q,z/ \x,p) ^\z,pj'

\x, qj ^ \z, qj

''=
[prq)

'

-ir fu, v\ /M, V\ /U, V\

,1 1 1 /", v\ T . 1 dndu du dv
tlie symbols ^— , denoting, as usual, „ ^ ^ ^^ ,

\.r, yj
° dr Oi/ Oy O.v

If then this differential equation of the second order be the

same as the original equation we must have

c/; = o,

ana
Ii~ S~ T~ V '

which are four equations in all. Now when

Rr+8s+Tt= V (2)

is looked upon as the equation to be solved, these four equations

just obtained will be equations satisfied by the quantities u and v

from which the intermediary integral of (2) may be constructed.

But only two equations are necessary to determine as functions of

their independent variables the dependent variables u and v ; they

may be therefore considered as given by any two of the equations

though, in practice, these might prove too difficult to solve. When
these values are substituted in the remaining two equations the

latter must become identities; and they will in this state involve

the functions R, 8, Tand I'of the original differential equation.

There will thus be two relations amoiif/ these functions of x, y,

z, p, q which must he identically satisfied in order that the differen-

tial equation (2) may have an intermediary integral of the form
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231. There is an important deduction from this to be noted,

though not affecting our present aim ; it would be useless to seek

an integral of the assumed intermediary form for any differential

equation which is not of the form

Rr + 8s + Tt+ U(rt-s') = V.

And, just as in the particular case when U= 0, which has been

already considered, it may be proved that a differential equation

of this form can have an intermediary integral of the proposed type

only when two identical relations among the coefficients R, S, T,

U, V are satisfied.

Ex. When there are three independent variables, these may he con-

veniently denoted by x^, x\, x^ and the corresppndiug differential coefficients

of 2 by jOj
, ^2 , JO3 . Prove that, if every first minor of the determinant

dp,'

dp,'

dp,'

d±W
9a'

djr

Sx

8A

{(f),
ijr, X heing functions of z, x,, x^, x^, p„ p^, p^) vanish, then the equation

where F is an arbitrary function, will lead to a differential equation of the

second order of the form

^dx,^

S% dh
Ri7ur2+^2 9^2 +-^3 g^+ ^12-; "^^'^dx.dx.'^-^^^^d^^- ^'

*'3
' 0X,OXt^ ^^2^-^^

where R„ B^, ... , R^„ V axe functions of the variables and the first differen-

tial coefficients of z only ; and that the coefficients R satisfy the relation

R,R^^^ + R,R,,^+ R^R,i - 4.R,R,R^ - R-^^R^^R^,

=

0.

Information on this class of equations will be found in Euler, Inst. Calo.

Int., t. iii. p. 448, and Legendre, Me'moires de VAcaMmie des Sciences, 1787,

p. 323.

232. It therefore follows that we may consider as the most

general case the equation

Rr+Ss + Tt+U (rt - s') = F;

the linear equation is included in this, being given by the par-

ticular case when ?7= 0.
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We now assume that the relations between the quantities

R, S, T, ZJand V necessary for the possession of an intermediary-

integral of the assumed form are satisfied, and we proceed to

deduce this integral. We have always

dp = rdx + sdy,

dq = sdx + tdy

;

when we substitute in the above general equation the values of r

and t derived from these equations it takes the form

Rdpdy + Tdqdx + Udpdq — Vdxdy

— s{Bdy^ — Sdxdy + Tdx' + Udpdx + Udqdy).

Now let u = a and v = h

(where a and h are arbitrary constants) be two integrals of the

equations

Rdpdy + Tdqdx + Udpdq — Vdxdy — 0,

Rdy'' + Tdx'' + Udpdx + Udqdy = Sdxdy,

dz=pdx + qdy,

u and V being therefore functions of x, y, z, p and q.

Hence we have

/dv dv\ -, fdv dv\ , 9u , 9w ,

^^^ [dx+Pd-J'^'' + [d-y + ^d.)^^ + dp'^P+dq'^^ = ^'

which must be equivalent to the equations of which u = a and

V = b are the integrals. Now solving these for dp and dq, and

using the symbols of § 230, we find

and therefore

- U, dpdx - U, dqdy = T, dx' + R, dy'

= T^dx'' + R^df - 8,dxdy

;
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and similarly we obtain

(
U^dp + T^dcc)

(
U^dq + R,dy) = {U,V^ + R,T,) dxdy,

or R^dpdy + T^dqdx + U^dpdq — F, dxdy = 0.

These being identical with the former equations, we have

R^ T~ U V S'

and therefore the equation to be solved becomes

R^r + S^s + T^t + U^ (rt - s') = F,.

But we already know the solution of this equation because it was

derived from an intermediary integral ; and this integral is

u=f{v),

which is therefore an intermediary integral as required.

We thus derive the integral by making one of the functions

deduced from the two subsidiary equations an arbitrary function

of the other.

233. Let us consider in particular the case of the linear

equation when Z7=0; the subsidiary equations are now

Rdf + Tdx' - Sdxdy = 0,

Rdpdy+ Tdqdx = Vdx dy.

As the former of these is of the second degree it Can, in general,

be resolved into two distinct equations of the first degree ; each

of these in turn, when combined with the latter equation

and with

dz=pdx + qdy

if necessary, will lead to an integral system which will determine

u and V. There will thus be obtained two intermediary integrals

of the forms

except in the case when 8'' = 4iRT, when only a single integral of

this form is obtained.

234. Passing now to the more general case, when U is not
zero, we may prove that two intermediary integrals are, in general,

derivable from the subsidiary equations. Let the subsidiary equa-
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tion which involves V be multiplied by a quantity \, as yet in-

determinate, and added to the other ; the result is

Rdy' + Tdx' -(S + XV) dxdy + Udpdx + Udqdy

+ \Rdpdy + XTdqdx + X Udpdq = 0.

Now this can be resolved into two linear factors so as to be

equivalent to

(Rdy + kTdx + in Udpj (dy+T,dx+— dq\ = 0,

provided the quantities h, m, X be such as to make the coefficients

of the several terms in the expanded product the same as before.

Applying this condition we find that the relations to be satisfied

by these quantities are

kT+^R =
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To obtain the functions u and v, from which an intermediary

integral may be constructed, we must combine in pairs a factor

from the first with a factor from the second. But of the four

pos.sible combinations two must be excluded, viz., that obtained by

combining the first factors in these efpations, for it would lead to

a result

Udy = 0,

which obviously would not furnish any solution : and that obtained

by combining the second factors in these equations, for it would

lead to a result

Udx = 0,

which obviously also would furnish no solution. Hence the equa-

tions may again be replaced by the two pairs of equations

Udy + Xj Tdx + \ Udp = 0)

TJdx + X^ Rdy + \ Udq = Oj
'

and Udx + \ Rdy +^ Udq = 0)

Udy +\ Tdx + X, Udp = OJ
'

From each pair we have two integrals of the form u = a and

v = b ; and therefore also from each pair we obtain an inter-

mediary integral. These two integrals, which may be denoted as

before by

are intermediary integrals of the original differential equation, and

are distinct except when

8'=4.{RT+ UV),

when there is only a single intermediary integral obtainable.

235. We may now proceed further in the integration for

either the linear equation or the more general form. Taking

either of the intermediary integrals in the respective general cases

(or in the respective exceptional cases when the relation between

the functions which occur as coefficients in the equation is satisfied)

as the only intermediary integral obtained, we have a differential

equation of the first order; the complete integral (and the

associated integrals) of this can be obtained by the methods of

Chap. IX. This integral will be the final integral of the original

equation.
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236. In the general cases we may apply an important

proposition (now to be proved) which will considerably shorten

the further labour of deriving this final integral. This proposition

may be enunciated as follows :

When we have obtained two intermediary integrals of theform

ii'i=f{Vj) and u^ = ^{v.,},

and we consider them as simultaneous equations to determine p and

q as functions of x, y, and z, the values of p and q given by these

equations will be such as to render

dz = pdx + qdy

integrable.

Assuming this proposition established we have therefore merely

to solve the two intermediary integrals as simultaneous equations

in p and q ; to substitute the values of^ and q thence derived in

dz =pdx+ qdy

and integrate. The result will be the final integral.

237. We now proceed to establish the proposition enunciated

above. Let F =0 and <I> = respectively denote these integrals,

so that F=u^-f{v^, ^=u.,-f(v„), and first let J^=0 be a

solution of the equation

Br + 8s + Tt+U (rt-s'') = V.

We have only the single equation F=0, which is not sufficient

to enable us to express r, s and t each as functions of x, y, z, p and q ;

we can express any two of them in terms of the third and of

quantities explicitly independent of them. When these values are

substituted in the differential equation, the latter will contain one

set of terms involving this second differential coefficient of the

dependent variable and another set not involving it; and the

equation is to be satisfied identically without regard to this

differential coefficient. Now since J''= 0, we have

%F dF dF^ ^s =
dx dz dp dq

'

dF dF dF 9Z^=o-
dy dz ^ dp dq

'
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dF
dy

when tor brevity we replace ^+p^ "Y J^x ^'^'^
tT '^^ ^ *"

these give

dF dF
r = s — F

dp dq
""'

^Zt = -~s-F
dq dp

"'

Let these values of r and t be suhstituted in the differential

equation; it becomes

This must be satisfied identically without regard to s; and

therefore the coefiScient of s and the term independent of it must

both vanish. If this were not so, the equation would determine s

(and therefore also r and f) as functions of x, y, z, p and q—

a

result which, as we know, cannot be deduced from the single

equation F = 0.

Hence we have

RF^ f+TF„^J^+ F^/f - UF^F^^O,
dq "dp dp dq ^ v

y

fdF\' ^dFdF fdPy dF dF_
^[d^)-^d^dq+^[d^) -^^"dq-^^^dp-^-

The same equations will be satisfied when we replace F by

^ ; and we may therefore consider F and <J> as the solutions of the

equations

^®^Tq + ^^'^d^+^d^d^-^^^®^ = ^'

/a@Y d@d@ fdsy d® d&
^Kdq)-^d^d^-^^[d^)-^®^^-^®^d^ = ^-

238. We must now consider two cases.

(1) The linear equation, when U=0; let fj and fj be the

roots of
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so that the second equation becomes

We may therefore write

dq ^' 3p '

dq ^' dj)
~

'

thus associating ^^ with i?' and |, with <I>. The first equation, on

dividing out by ^.. becomes

and therefore B^F^ + TF„ + Ff
,
|^= 0.

But T= i2|j ^^, and the last may therefore be written

Similarly $^ + ^^ .J,^ +^^ = 0.

From the last two we have

''dp ''dp ^' "dp ^' " dp " dq "dq'

and therefore F^~-^^^^ + F,^-^,^ = 0,

which is the condition (§ 202) to be satisfied by the two functions

F and <& in order that the values oip and q derived from F=0=^
as simultaneous equations should render

dz = pdx + qdy

integrable. This proves the proposition for the case of U= 0.

(2) The general form when U is not zero.

We now proceed exactly as in § 234 ; the first equation in © is

multiplied by a quantity \ given by

\'{RT+ UV) -XUS+ U' = 0,
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and is added to the second; the resulting equation is resolved

into factors for each of the values of \ and the linear factors are

conabined as before, giving two pairs that may be retained. These

are, if \ and X^ be the two roots,

From the first and third of these equations we have

"dp ''dp~\ dp dq \ dq dp
'

and from the second and fourth

" dq 'dq~ \dpd^'^\dq^'
and therefore

F $ \-F 1> — =0
'^dp ''dp^ " dq 'dq

This shews that, for the more general form of the equation

when F= = ^ are treated as simultaneous equations, the values

ofp and q thence derived are such as to render

dz =pdx + qdy

integrable.

Hence the proposition is proved in general. When these

values of p and q are substituted, the integral of the resulting

equation is the final integral of the proposed differential equation;

it will involve in its expression either implicitly or explicitly the

two arbitrary functions which occur in the two intermediary

integrals.

239. The statement of the method of solution, as derived

from the preceding investigation, is contained in the following

Eules.
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EULE I. When the equation

is integrable by this rule, we transform it by the equations

dp = rdx + sdy,

dq = sdx + tdy,

into Rdpdy + Tdqdx — Vdxdy = s {Rdy^ — Sdxdy + Tdx^)
;

we resolve Rdy^ — Sdxdy + Tdx'' =

into the two dy — ^^dx = 0, dy — ^^dx = 0.

From the first of these linear equations and from the equation

Rdpdy + Tdqdx — Vdxdy = 0,

combined if necessary with dz = pdx + qdy, we obtain two integrals

Mj = fflj , y^ = 6j ; then

where f^ is an arbitrary function, is an intermediary integral.

From the second linear equation, combined with the same equations,

we obtain another pair of integrals u^ = a^, v^==b^; then u^ =fi{v.)

is another intermediary integral,j^ being arbitrary.

To deduce the final integral we may integrate either of these

intermediary integrals, which are differential equations of the first

order, and we must perform the integration when the two values f,

and ^ are equal. When the values of ^j and ^^ are unequal we

solve the two intermediary integrals as equations giving p and q

and substitute in

dz = pdx + qdy,

which when integrated gives the complete integral.

Rule II. When the equation

Rr + Sa + Tt + U{H- s') = Y

is intec^rable by this rule, we obtain two integrals u^ = a^ and

11^ = h^ of the equations

Udy + \Tdx + \ Udp =
Udx + X^Rdy +\ Udq =

and two integrals u^ = a^ and v^ = 6j of

Udx + X,Rdy + X,Udq = {

Udy + \Tdx +X,Udp = )

'
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where X^ and X^ are the roots of

X' (ET+ ur) + \us+iP = o.

Then u^=f^(v^) and u^=f.X'^^, where /^ and /^ are arbitrary,

are two intermediary integrals. We proceed from these exactly

as in Rule I.

240. It may, however, prove not to be possible to obtain from

the two intermediary integral values of p and q suitable for

insertion in

dz =pdx + qdy
;

and in that case we may proceed to obtain the final integral by

integrating one of the intermediary integrals, adopting for this

purpose Charpit's method as indicated in § 201. But without

actually going through the work necessary in that method to derive

the additional relation between p, q and the variables, it will be

sufficient to take, as this additional relation, any particular first

integral of the general system other than that which is being

directly integrated ; thus we may take

«*i =A\) and M, = a,

where a is an arbitrary constant. Since an arbitrary constant is a

particular case of an arbitrary function the values of p and q

derived from these equations will be such as to render

dz=pdx + qdy

integrable ; and the integral will involve one arbitrary function/
and two arbitrary constants, viz., a and the constant of integration.

This result constitutes the complete integral of the intermediary

integral ; the general integral may be derived by Lagrange's rule

(§ 180), by converting one of the arbitrary constants into ati

arbitrary function of the other and eliminating this remaining

constant between the equation so transformed and tha;t deduced

from it by differentiation with respect to that constant.

241. This method, however, ceases to be effective in the case

in which the roots of the quadratic in X, are equal ; there is then

only one system of integrals given by u^ = a and v^ = &, and so there

is only one intermediary integral given by
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and this must be integrated. Just as before we may avoid the use

of the general method for the integration of an equation of the first

order by combining the general and particular first integrals

Mj =f(v^) and Vj = b.

The values of p and q hence derived will evidently satisfy the

condition of § 202, and therefore when substituted in the equation

dz=pdx + qdi/

will give another integral of the form

w, =c.

If^ and q occur in w^, they may be eliminated by means of the

former equations v^=h and u^ =f(b); so that

is a complete integral of the equation since it involves two arbitrary

constants b and c. To obtain the general integral we must make
c an arbitrary function of b and eliminate b between the resulting

equation and that derived from it by differentiation with respect

to b.

Thus in the cases, when the roots of the quadratic are unequal

and when they are equal, we are led to a general integral, into the

expression of which two arbitrary functions entei".

It may be noticed that the foregoing reasoning would apply

equally, if there had been taken instead of the particular integral

some other particular integral such as

(k and I being disposable constants). This particular integral may,

in fact, be taken so as to render the subsequent integration as

easy as possible.

Examples will be found below.

&. 1. Solve r= aH.

Substituting for r and t in terms of s we have

dpdy- a^dxdq= s {dy'^ - a^dx^),

so that the subsidiary equations are

dy"^- €1^x^= 0,

dpdy— aMxdq= 0.

F. 24
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The former can be resolved into the two

dy-adx=0, dy + adx= 0,

the respective integrals of which are

y — aa:= A, y-\-ax=B.

Taking the first of these and combining it with the second of the sub-

sidiary ecLuations we find that the latter becomes

dip-adq^f),

which, when integrated, gives

p-ac['=A'.

Hence one intermediary integral is

p-a2'=^i(3/-aj;).

Taking the second equation y + ax=B, and proceeding in the same way,

we find

dp-{-adq=0,

which leads to

p + aq= B'

;

and therefore a second intermediary integral is

p + aq=(f)^ (2/+ ax).

We now, in accordance with our rule, treat these as simultaneous equa-

tions giving the values ofp and q ; and we find

dz=ldx{(^^(y-^^ax) + 4>^ (i/-ax)} +^dy{(t)i(y+ ax)-ct>i{y-ax)}

_(dy+ adx) (1)^(2/+ ax) {dy — adx) cj)-^ (y - ax)~
2a 2a '

which can be integrated.

Let "^ (*) =^ /^2 (t) dt and ^ (<)= -i
J,^i

(«) dt

;

then the integral is

z=<j> (y + ax) + -^(y-ax).

The arbitrary constant of integration may be considered as absorbed in

either of the functions and \j/. Since c^j and (j}^ are arbitrary, and i//' are

also arbitrary.

Hx. 2. Solve

(6 + cq)^ r-2{b + cq) (a+ cp)s + {a + op)^ t= 0.

Transforming this by the usual relations we find that the subsidiary equa-

tions are

(b + oq)'dy^ + 2(b + cq)(a + C2))dxdy + (a+ cp)^dx^=0,

{h + cqydp dy 4- (a + cpY dqdx= 0.
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The former of these gives only a single equation

(5 + cq) dy + (a+ cp) dx^O,

so that only a single intermediary integral can be obtained for the equation,

assumed integrable by this method. When this is combined with

d2=pdx+ qdi/,

it gives adx+ bdi/+ cdz= 0,

so that one integral of the subsidiary equations is

ax+ bi/+ c3= A.

EUminating the ratio di/ : dx between the second subsidiary equation and
the modified form of the first we have

(b+ cq) dp=
(fl + cp) dq,

the integral of which is

a + cp=B{b + cq),

B being an arbitrary constant. Hence the intermediary integral is

a+ cp= {b+ cq) {ax+by+cz).

This must now be integrated ; Lagrange's process for linear equations

may be adopted. Denoting (j){ax+ by+ cz) by 0, we have as the auxiliary

equations

dx _ dy _ dz

c —c(j) b(f>
— a'

From these we have

adx + bdy+ cdz--=0,

so that ax + by+ cz=C,

and (j)= <f>
(ax+by+ cz)=

<f)
(U) is a constant.

Hence for a second integral

dy + dx<f){C)= 0,

y+ xct>(C)= C'.

The final integral of the differential equation is therefore

y + x(j) (ax+by+ cz) = \j/ (ax + by+ cz),

where <^ and i//- are arbitrary functions.

It may also be exhibited in the form

z=xd(ax+ by+ cz)+y/( (a.v+ by + az),

where d and ;^ are arbitrary functions.

Ex. 3. Integrate

(i) r + iaH= 2as,

(1) when i is not unity, (2) when / is unity

;

(ii) x^r+ 2xys+yH=0
;

(iii) q^r - 2pqs+pH= ;

(iv) x'^r—yH= 0;

(v) r - aH+ 2ah (p+ aq) = 0.

24—2
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Ex. 4. Integrate the equatiou

ar + ba + et + e {rt — 8^)=h,

a, h, c, e, h being constants.

The equation in X is

X2(ac + eA)+Xe6 + e2=o,

or, if we write \m + e=0, the equation which determines m is

m^ — hm+ac + eh^Q

;

let ni-i and m^ be its roots. The first system of integrals is

cdx + edp — m^dy=Q'\

ady+ edq — m^dx=Oj '

so that one intermediary integral is

cx+ep — m,^=F (ay + eq-m^).

The second system of integrals is

ady-\-edq — m-^dx=0,

cdx+edp — 'm^dy=0,

and therefore a second intermediary integral would be

cx+ ep —m^= (ay+ eq — m-^x).

If it were possible to solve these intermediary equations so as to express p
and q in terms of x and y, the final integral would be at once derivable ; but

this not being the case we combine any particular integral of the second with

the general integral of the first system. Thus we may take

cx+ep-m^= a,

and then F (ay+ eq- m^x)= (m^ — mj) y + a,

so that, if *• be the inverse function of F and therefore an arbitrary function,

we have

ay + eq=m^x+^{(m^ — mj) y + a}.

Thus

edz= - cxdx -aydy + (m^ + a) dx-\-\m^-\-'^ {(m.j - m^ y + a}] dy,

the integral of which is

62 +
-J

c*'2 + -^ ai/2= OTgA^ + aa:+ e {(Wa - TOi) y+ a} + ft

where © is an arbitrary function (since it is given by

(m^ - %) e (z)= J*- (z) dz,

and "*• is arbitrary) and ^ is an arbitrary constant.

This is the Complete Integral ; to obtain the General Integral we eliminate

a between the equations

ez+\(cx^-\-ay''') = 'm^-\-aX+ e{(m^-'mi)y+ a} +x{a)\

;( denoting an arbitrary function.
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Ex. 5. Solve

(i) s^-rt= a?;

(ii) qr+ {p + x)s+yt=-q+y{s'^-rt);

(iii) 2pqyr+ (j)^+ qx) s+ ay*=p^q {rt -8^) + xy.

Ex. 6. Solve

zO. + q^)r-ipqzs+ z{l+p'^)t-z^{s^-rt)+ \+p'^+ q^= Qi.

The equation which determines m is

m^ + ^pqzni +p'^qh^= 0,

so that the two values of m are equal, the common value being -pqz; and
the system of integrals reduces to one given by

. 2 (1 +p^) dx+zMp+pqzdy= 0,

z (1 + (f) dy + z^dq +pqzdx= 0.

The former by means of

dz=pdx+ qdy

gives, after division by z,

dx+pdz+ zdp= 0,

the integral of which is

x+pz= a;

the second similarly leads to

dy + qdz + zdq

=

0,

the integral of which is '

y + qz=b,

so that the intermediary integral is

F{x+pz,y+ qz)=0,

where F is arbitrary.

Proceeding as indicated in § 241, we have

x+pz— a,

y+qz=h;

and therefore zdz=pzdx + qzdy

= (a-x) dx+(b-y)dy,

the integral of which is

(x-ay+(2/-by + z^=c^

A general integral is found, as there explained, by eliminating c between

the equations

{x-cj,(c)Y+{y-^(c)}^+z^=c\

and {x-cji (c)} (^' (c) + {y -yJA {c)}^' {c) + c=0,

yjr and (j) being arbitrary functions.
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Ex. v. Solve

(i) xqr+ypt+ xy {s^ - rt) =pq ;

(ii) qh+ 4pqs+pH +p\'^ {rt - s^) = a?
;

(iii) (l + 52)^_2py«+ (l+p2)i!=(s2-rt)(l+p2 + j2)-i_(i+^2 + g,2)3.

Ex. 8. Prove the converse of the foregoing general result, viz., Let the

equation of a surface be

<i>{x,y, z, a, b, c)= 0,

where a, b, c are connected by any two conditions of the form

x{a, b,c)=0=^(a, b, c)

;

prove that the equation of its envelope will satisfy a partial differential equa-

tion of the form

Br+Ss+Tt+U{rt-s^)=V,

the coefficients of which satisfy the relation

S^=i{RT+UV).

Principle of Duality.

242. This principle, which was shewn (§ 197) to be effective

in deducing from the solution of one equation of the first order

that of another associated with the former by relations of a per-

fectly reciprocal character, may be applied to equations of the

second order. The analytical connexion consisted in taking new

variables defined by the equations

X=p, Y=q, Z=px + qy -z,

from which there were derived the reciprocal equations

x = P, y=Q, z = PX-\-QY-Z.

From these we have

ch = dP=RdX+SdY,

dy = dQ = 8dX + TdY;

so that fLY = j^y_^/

.

,-.,_— Sdx + Rdy
RT-S'

But rdx + sdy = dp- dX,

•S'/.r + tdy = dq = dY

;
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we therefore obtain, by equating coefficients,

T -S R
^ — .,rn no t t —RT-I^' RT-S" RT-8"

and also rt — s''= -j^jt^—=r,

.

RT- 8

Let tbese substitutions be applied to any equation of the form

Xr + /jLS + vt + a- {rt - s') = 0,

in which X, /jl, v, a are functions of x, y, z, p, q. Let their values

after the transformations have taken place be denoted by X', fi', v , a

respectively ; then the result of the substitution gives

\'T-ij!S-\-v'T+ a' = 0.

If then the solution of the former equation be known, that of the

latter can be obtained ; and vice versa.

Thus in particular the solutions of the two equations

^^ (f > <i)
+ s'f iP' q) + tx(P'<i) = ^

and rx («, ?/) - sf {x, y) + t cf) (x, y) =

are derivable from one another.

Ev. 1. From the solution of

derive that of

jV - 2pqs +iM= 0.

Ex. 2. Integrate the equations

(i) px + qy-sxy=z;

(ii) z{rt-s^)=pqs;

(iii) <f {z -p.v - q,y) = {j>t- qs) xz
;

(iv) p'^rJr'^pqs + ft={xp-^yq) {rt-s^)

;

(v) (1 +2^q) (r-s)= {p^ - q^) t +p''r - q^s.

Laplace's method for the transformation of the linear equation.

243. The linear equation

Rr+Ss+Tt + Pp + Qq +Zz=U

in which R, 8, T, P, Q, Z, U are functions of x and y only, can be

reduced to simpler forms. The process consists in changing the

variables.
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Let the independent variables x and y be changed to ^ and 77,

as yet undetermined; then, when ^', q',... denote ^, ^,.--the

equation becomes

{ \dxj dx dy \dyj
)

( dx dx \dx dy dy dx) dy dy

Let m and w be the roots of the quadratic equation in k

RF+8Ic+T=0,

and first suppose that these roots are unequal ; then choose f and

7j so that

dj^ dj

dx dy'

dt) _ dr]

dx dy'

which determine ^ and r). The terms involving r' and t' now dis-

appear ; and the coefficient of s', being

dy dy \ Rjdydy'

does not vanish since the roots of the quadratic are unequal. Let

the equation be divided throughout by this coefficient; then it

takes the form

d^z
-J.
dz ..^dz ,, „

244. In two cases the integral of this equation can, without
further transformation, be obtained. We may write it in the form
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SO that, if the condition

N-LM-^^ =

be satisfied, the equation becomes

where u replaces ^ + Lz. A general value of u can be obtained,

and thence a general value of z.

We may write the equation also in the form

so that, if the condition

or)

be satisfied, the equation becomes

5- + it; = V,
or)

dz
where v replaces ^ + Mz. From this, through v, a general value

of s can be obtained.

245. If however neither of these conditions between the

coefficients in the transformed equation be satisfied, it can still be

transformed by changing the dependent variable. Thus when we

write

we have

i.+^^=f

9|
+ M^ +z(N-LM-^^=V.

Denoting LM +^ — N\>yKvje may write
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and therefore

which is equivalent to

, ^, J.
idK

where L = L—jv -=—

,

A 9??

M' = M,

d_ (M\
drj

so that the same form is reproduced but with altered coefiScients.

The equation in its new form can be integrated, if the analogous

relations between the new coefficients be satisfied. From the

values of L' , M', N' we have

N' =LM-K+K^
(J),

L'M'-N' = K-^-^
or)

drj

so that as K is not zero (by hypothesis), the relation

L'M' + ^-^-N' =
07}

is not satisfied. The other condition being that the equation

L'M' + ^^-N' =

should be satisfied, is Avhen expressed in terms of the original

coefficients

dL dM 1 d'K I dKdK_

If tliis be not satisfied nor the corresponding relation derived

by the consideration of the other expression

LM + ^-^-N
07]

the process of transformation may be repeated indefinitely ; and, if

at any step of the process the requisite condition should be

satisfied, the sokition mav then be found.
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Ex. 1. Prove that for any substitution of the form

z=pu,

where w is to be the new dependent variable and p is a function of ^ and -q,

then

L2I-N+'^-i^ and iJ/- N+^~

are absolute invariants and that therefore such a transformation is ineffec-

tive for the purpose of solution.

£:c. 2. Prove that if

K,=A\-LrAL''^-h and J,= N,. - L,M,-^-^
C| dri

(the functions of the coefficients after r transformations) then

J-'-r + l
— jTg r-i^r " rt

Hence solve the equation

s+xyp= 'iyz.

(Imschenetsky.)

246. Next, consider the case when the roots of the quadratic

are equal, so that

The two equations determining ^ and t; now coincide so that

from them only one of these quantities can be obtained ; let it be

^, given by

dx dy'

and suppose ^ and y to be the new independent variables ; then

we may write r) = y. Then in the transformed equation the coeffi-

cient of r is zero, that of t' is T, and that of s' is

But m being a repeated root of

Iik' + Sk-\- T=0,

we have
s rr

'" = -2E = '"^'
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so that the coefficient of s' is

dyV^ 2E)'

which is zero. Hence the transformed equation on division

throughout by T becomes

^y 9| 92/

The case suitable for treatment by this method is that in which

L is zero ; the equation may then be looked upon as an ordinary

equation in y, the variable x being considered constant; the

arbitrary constants of integration should be replaced by arbitrary

functions of x.

Poisson's Method.

247. Poisson has shewn how to deduce a particular integral

of any partial differential equation which is of the form

P = (H-syQ,

where Pis a function o{ p, q, r, s and t homogeneous with respect

to the last three quantities, and Q is any function of the variables

X, y, z and the differential coefficients of z, which remains finite

when rt — s^ = 0.

He assumes ^ — ^ (p)>

and therefore s = rj>{p) and t = s<f)'{p) =r{<j)'(p)Y.

These values make rt — s^ =

and reduce the differential equation to

P=0.

Now P being homogeneous with respect to r, s and t, there will,

when the foregoing values are substituted, occur a common factor

throughout, being some power of r ; this may be rejected and the

remaining equation will involve only p, ^(p) and ^'(p) which when
integrated will determine the value of ^ (p) and so will lead to an

integral of the original equation. This integral, being of the form

q=-(!>(p)

can always be further integrated.
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It may be noticed that Poisson's process is equivalent to

obtaining the developable surfaces which are included under the

given differential equation, for

is the differential equation of developable surfaces.

Bx. 1. Solve r^-t^= rt-s^.

Proceeding as above we find

!-{<!>' {p)Y= Q,

so that retaining only the real values

whence q=(j)(j,)=a±p,

where a is an arbitrary constaat. The complete integral of this considered as

a partial differential equation of the first order is

where X and v are arbitrary constants ; the general integral is

2=ay+ </)(*'+2/),

where ^ is an arbitrary function.

Sx. 2. Solve

(i) t+ 2ps+ (p'^-a^)r=0;

(ii) {l + q^)r-2pqs + {l+p^)t= 0.

Linear Equations with constant coefficients.

248. We now proceed to consider equations which are linear

not merely with regard to the differential coefficients of highest

order but are so with regard to the dependent variable and all its

differential coefficients, and in which the various terms are multi-

plied by constants only. Such an equation is

[dx' dy)^

where $ is a rational integral algebraical function all the coeffi-

cients of which are constant; V may be any function of the

independent variables.
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As in the case of ordinary differential equations the complete

integral consists of the sum of two parts :

first, the most general integral of

second, any particular solution of

[dx' dy)

These will be obtained separately. For convenience, let

^ and ^ be respectively denoted by D and D'.

249. The simplest case of the general equation is that in

which only differential coefficients of the w'" order occur, so that it

may be written

(Z*" + A^ D"-' D' + A^D^-'D" + + A^D'"} z = F.

Let a,, Oj, , a„ be the n roots of

l^- + A,r''rA,r'+ +A-.f + ^„ = 0;

then the equation may be transformed into

{B-aJ)')(T)-a.J)') {D-o.,P)z=y.

To find the complementary function we write F= ; then a

solution of

will be a term in the complementary function ; and as there are

n such factors there will be n such terms.

Now the solution of

(D - X) ^ = 0,

where X is independent of x is given by

z = e (J,

C being also independent of cc. The quantity C may therefore, in

the solution of

(X) - aJD') z = 0,
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be made an arbitrary function of y, and we then have

A

= <f){y + ixx).

There is one such solution for every value of a. ; and the sum
of these different solutions is also a solution, so that the com-
plementary function is

where (ji^,
(f)^, <^„ are all arbitrary functions.

In the case, however, in which two roots a are equal this ceases

to be general, as the sum of two arbitrary functions of the same
argument is merely an arbitrary function of that argument ; the

corresponding terms are then obtained as follows.

The solution of

(D-\yz =

is z= e^* (A + Bx),

where A and B are independent of a;; hence the integral of

{D-a.Dyz=0

is z = e"" <*!'

{0 (?/) + « ->|f (y)}

= <})(y + ax) + x-^(y + ax),

where both
(f>

and tir are arbitrary; the sum of these two terms

replaces the sum of the two terms, which had coalesced into one,

and the general character of the solution is restored. Similarly,

when any number of the roots a are equal, the corresponding

terms of the complementary function, which coalesce into one,

are replaced by a series of terms derived in the same manner as

the above.

250. To obtain the particular integral we may represent it

symbolically by

1

{D-a,D'){D-aJ)')...{D-a^n)

J^ 1

iT'fD \(D \ (D

7.y

V.
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To evaluate this we resolve the second symbolical fraction into

the sum of n symbolical partial fractions, into the denominator of

each of which only one of the quantities D/D' — a enters ; thus, if

we have
1 r= n W

_ 1 '•^» iv; ^^

N^ being a constant and depending only upon the constants a.

Let V=^yjr(a;,y);

then since

{D - aD')-' = e'^k fdxe~" h

we have

1 i- P ^'

=j d^'fity + a.x-a^);

hence the particular integral of the equation is

This is the value in the most general case possible ; in particular
cases the actual evaluation becomes much more easy. Thus if V
be a function of x only we may consider {* (D, D')P as expanded
in a series of ascending powers of D' and then every term may be
neglected (so far as the particular integral is concerned) except
that which does not contain D'. Corresponding simplifications
arise in other examples.
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E:c.\. Solve ^2»_^2^^^_

(See Ex. 1, § 241.)

For the Complementary Function we have

\dx dy)\dx dy) '

and therefore
9 8ax— -ax—

=
<i>{y + ax) + ^(y-ax),

<ji and yjf being arbitrary.

For the Particular Integral we have

1

=i(l + «'^'+-)^

_ 1

"3]'

Hence the Complete Integral is

M= <^ (y +«*')+ i/f (y - cea;)+

^

Ex. 2. Obtain a solution of the equation

dfi ~ dx^

such that, when t=0, y=F{x) and ^=^^,F{x) and f{x) being known
dt dx

functions of x,

Ex. 3. Solve the equations

,.., 3% „ 3% „3%
(") 3^^ +23i%+'37^=^+^'

,..., 3% „ 3% , 3% ,, , .

("^) 3S^-2"3^ + 3^=-^(2'+'*-")'

(v) (i>-ai>')^2=^(^)+V'(y)+x('»+&^);

(vi) {B-I)Jz=x-\-^{x-Vy).

25
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Ex. 4. To solve

For the Complementary Fvmction we liave

/3 3 3\/3 3 ,3\/3 ,3 3\

i3S + 3i^
+ 8i;i3^+'"3^+"VJfc+'" 3^+"8-.j"=°'

to being a cube root of unity. The solution of

(,3^+'^32^+'^3^j"= °

hence the Complementary Function is

<t>l(2/-^i ^-^)+ <t>i{ll-a'X, z-a?x)-V<^^{y-<i?x, z-ax),

where <^i, <^2, (^g are arbitrary functions.

The part of the Particular Integral corresponding to a^ is

1 , 1 . sfi

Bs ~/3\3 ~4.5.6'
Zx dy dz \dx

and so for the other terms ; the full value is

4.5.6 '^
8

The Complete Integral is the sum of the Complementary Function and

the Particular Integral.

Bx. 5. Solve

,.v 3^ d^u 3% 32j4 _

'' ^ 3^23^ g^g^2 -^g^zg^ *5 g^g^z
'' dfdz"^ dydz^'^ dxdydz

251. Passing nov/ to the general equation, we must find the

solution of
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where <l> is of the form

'^^"dx^'-^'^^'dx^^dy'^

+

+ ^»84 +^4 + '^-

We assume as a trial solution

where h and Jc are constants yet to be determined ; for this value,

7r-= hs and 7^- = kz
;

ox oy

and therefore we have

4> (h, h)z = 0,

which will be satisfied, if h and k be determined so as to satisfy

<E> Qi, k) = 0.

This obviously makes one of the constants to depend on the

other ; let the equation be solved to determine k, so that we shall

have results of the form

k = e{h),

n in number. Taking one of them, as k = 0^{h), we have the

solution in the form

for all values ofA and h. Now the sum of any number of solutions

is also a solution, so that another is given by

where S implies summation for all values of h; and A, an

arbitrary constant, may be looked upon as an arbitrary function of

h which may vary from term to term of the series.

Similarly another value of k, such as 0^ (h), will lead to another

s olution which may be represented by

z = tBe^"^"^'^^'^

;

25—2
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and, as eacli value of k -will lead to a corresponding series, the

general solution may be represented as the sum of « series in the

form

the summation in each series extending to terms arising from all

possible values of the constants h. The fact that the coefficient

belonging to any term may be considered as an arbitrary function

of the constant which occurs in that term shews that each series

may be regarded as having in its expression one general arbitrary

function ; and thus in the Complementary Function we should be

led to expect n arbitrary functions.

252. This general result in the form of the sum of n series

each containing arbitrary elements may appear to be of slight

value. Sometimes, however, by the form of the differential

equation, a simplification is introduced such as that indicated

in the next paragraph; sometimes by conditions imposed on the

dependent variable other than the satisfaction of the differential

equation the number of terms of the series is limited to those

which contain particular values of the parametric constant.

For example, whenever a solution of the equation which

determines h is of the form

where a and /3 are determinate constants, the corresponding series

may be expressed in a finite form. For it is

that is, it is (save as to the factor outside 2) the sum of any

number of arbitrary powers of e"""*""^ each multiplied by an arbitrary

constant ; such a sum is an arbitrary function of e^"*""^ or, what is

the equivalent, an arbitrary function of a; + a^ and the series may
therefore be replaced by

where </> is arbitrary. Corresponding to the conditions which in

any particular case limit the number of terms included in the

series, there will be analogous conditions which determine the
form of the arbitrary function.
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Ex. Prove that, if the root

k=ah+ ^

occur r+ 1 times, the corresponding part of the Complementary Function is

^y{^^{x-\-ay)+y>l,^{x+ay)+ +2/%(^+ay)],

where (jbg, <^j, , <^,. are all arbitrary.

253. To obtain the Particular Integral we may represent

it by

a>(D, D')
'

the evaluation of this expression will depend upon the form of V.

Thus if

we should have

± „cia+by
6 )

as the value of z required. If V were a rational integral algebraical

function of x and y, then it would be possible to evaluate the ex-

pression by expanding the inverse operator in a series of ascending

powers of both D and D', if permissible, or of one of them. The

methods applied to the particular forms considered in § 46 in the

case of ordinary differential equations will indicate the corre-

sponding methods to be adopted for the varying forms of V.

Ex. 1. Solve

First, for the Complementary Function we must solve

{D-D'){D+D'-Z)z=0.

Let z=A^+^''

be substituted ; then

so that ^=A and /?=3-A

are the relations between h and Jc. Hence

= <^{x+y)+ e^ylr{x-y),

where and i/r are both arbitrary.
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The part of the Particular Integral corresponding to e^^+^i/ jg

* gX + 2K
' {D-D'){D+D'-Z)

- fa ^ e^y

1
.1

(l-i)'-2)(Z>' + 2-2)

1"
B'iD' + l)'^

The resiilt indicates that a term of the form ^+^v -syill arise in the Com-

plementary Function ; that this is so is obvious from the identity

The part of the Particular Integral corresponding to an/ is

1

the expansions in each case being taken no fm-ther than is necessary to

furnish non-evanescent terms. It might happen that, by a different method

of procedure such as expanding in powers of -^ , a particular integral of

apparently different form would be obtained ; it would however be found that

the two could be transformed into each other by means of the Complementary

Function.

The general integral is, as usual, the sum of the foregoing three parts.

254. Any equation such that the coefficient of a differential

coefficient of any order is a constant multiple of the variables of

the same degree may be reduced to an equation of the foregoing

form. Such an equation will be of the form
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We may either change the independent variables to u and v where

03 = e" and y = e' ; or we may represent a? ^ by ^ and y ^hj <f),

and then we have

In either case the equation is reduced to the form already con-

sidered.

Ex. 1. To solve

We have, on assuming u=loga; and »=logy,

\du dvj \du dv J

The integral of this is

(m+ n) (m+m— I)

i^m^rn

~^ \x) '^' \x)
"^
(m+ji)(m + n-l)'

where/and i^'are arbitrary.

Ex. 2. Solve

o 3^2 o9^2 02 dz
(11) ^-3^-/32r2=2'3y-^9^-

^a;. 3. Solve the equations

3a:2

^8^+^87+^8^) «+'»'»=0-

^x 4. Solve

=2xil-x^)^+{x+y-2a;^)^.
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Hx. 5. Solve

= cos (to^ + my)+ cos (^^+ ^y)

;

3% „, 3% ,322 0.32
,
„ 3z

, n

£'x 6. Solve f{w)z=H^,

where ra- denotes the operator x-^ ~—I- x^ = \-...+iv^
^
—

, / is a rational inte-

gral algebraical function of it, and IT^ is a homogeneous function of n dimen-

sions of the quantities Xi, x^, ..., x^.

Miscellaneous Methods.

255. There are several partial differential equations which

are of frequent occurrence in physical investigations; solutions

of these have frequently been obtained by methods the appli-

cation of most of which to equations other than those in connection

with which they originated is very limited. The two chief

methods are integration by means of definite integrals and inte-

gration in series ; but as each method is of special application

only, and as the variations which arise owe their origin to the

conditions imposed upon the function whose value is sought and

not to any variety in the differential equations to which it can be

applied, it is not possible to give here a full discussion. The dis-

cussion here will be limited to a few examples ; for fuller investi-

gations recourse must be had to the treatises on those branches of

mathematical physics in which the differential equations occur.

256. Consider first an equation which can be integrated by
both methods.

Such an equation is

du „ d^it' 2= a:
dt da^

,2 '
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which arises in investigations connected with the conduction of

heat. It is not without interest to indicate the different methods
which may be applied to obtain a solution.

By the method of § 249 we may write

u = e dx^ ^ (x)

where
<f)

(x) is arbitrary ; expanding the differential operator we
obtain

so that the solution contains one arbitrary function. We may
proceed otherwise thus : the solution of

is u:=e^A + e-^^B,

where A and B are independent of a; ; so that we may express the

solution of

9'tt _ldu

in the form

ga \dtl ^ (f-j ^ g~a \dtl
^ (^)

where i/r and % are arbitrary functions. In order to free the result

from symbolical operations, which would require interpretation if

they remained, we change the arbitrary functions to / and F, where

then since i/^ and % are arbitrary both / and F will be arbitrary,

whatever interpretation be assigned to f-^j . When the sym-

bolical operators in the first form of solution involving i/r and
j^;

are expanded and the terms of the same order in differentiation

are gathered together, the solution becomes
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X x' dF x' d^F
^

'^ a ^' ^ ^\ a' dt "^5! a" df
^ '-'

and this contains two arbitrary functions.

257. It may at first sight seem paradoxical that two perfectly

general solutions of the same differential equation can be obtained

of apparently so different a character. The difficulty will dis-

appear if it be noticed that the equation is only of the first order

in t while it is of the second order in x ; the former solution

contains only a single arbitrary function of x, which is all that can

be expected in the case of an equation of the first order; the

second solution contains two arbitrary functions of t, which is the

number of arbitrary functions to be expected in the case of an

equation of the second order.

If we assume that all the arbitrary functions can be expanded

in positive integral powers of their arguments, we are able to

transform one of these solutions into the other. For let

A„ /x\
<Pix)=T^J^)\

where the coefficients A„ are arbitrary, and let this value be sub-

stituted in the first solution. Then the term independent of x is

2r ^ 3!
A, +A^t+^f +^f + .

which is a series with arbitrary coefficients and so may be denoted

/xV 1
by/(i) where /is arbitrary; the coefficient of ( -j ^ is

A, + A^t + 4jf+
2!

that is, -^ ; and so for the other even powers of x. Thus the

part of the solution depending upon the even powers of x is

r.fy,^_df x' dy
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Similarly collecting the terms depending upon the odd powers
of X and writing

i^(0 = A+^«+^|«'+

(which is another arbitrary function) we should obtain the second

part of the second solution. It thus appears that the two alge-

braical expressions are equivalent, independently of the fact that

they are both solutions of the differential equation.

Solution by Definite Integrals.

258. Now let the method of § 251 be applied. We substitute

the necessary relation between the constants a and /3 is

/9 = aV,

so that w = Je°*+"'''',

for aU values of A and a, would be a solution. Instead of a write

ai so that solutions are given by

and therefore by

where \ is any constant and A and B are arbitrary functions of \.

These may be replaced by

A'e-'''''''cosa(x-\) and B'e'"""-"' sma(x-\),

where A' and B' are arbitrary functions of X. Further the sum ofany
number of solutions is also a solution. Consider that obtained by
summing any number of terms of the form of the first for all values

of X and a and assuming that while A' is an arbitrary function

of \ the form of the arbitrary function is the same for different

values of X. (The corresponding terms which would arise from the

second may be deemed included in this since so far as the variable

part is concerned we need only to change \ into A, — ^ to obtain

the first.)

Let then A = '\Jr(\)d\,
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and suppose summation to take place for all values of X between
— 00 and + 00 ; the corresponding solution is

e~»'"'' cos a (a? - X)->^(\)(^\.
J —00

This again may be multiplied by any function of a and the

summation taken for all values of a; as it stands the function is

an even one of a. and, so if the factor be taken as da it will suffice

to take and oo as the limits of a ; and thus we may take as the

solution

u=l da
I

e~"'"°* cos a (ic - X) i|r (X) d\.
Jo J -oo

The solution in this form is specially suitable for the case in which u is to

satisfy some condition, for instance that

when t is zero ; thus we are to have

da I cos o (.» - X) >/' (X) d\.
J -"

But, by Fourier's theorem, the value of the right-hand side is rr-^ (x) so that

\JA is determined ; and thus

u=-rda r e-«''"'*cosa(^-X)/(X)£;X

(Riemann.)

Ux. Obtain a solution of the equation

which is such that

3%_ ^d^u

u=f(x) and -^=F{x).

when t=0.

The result is

1 fx+at
u=i{f{x + ai)+f(x-at)} + -j^_^^F(\)d\.

(Riemann.)

259. We may again solve the equation by a method, due

originally to Laplace and extended by Poisson.

We have by a known theorem

J —00
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or, writing u — ltoiu where I is independent of u,

-U'+iUl 7 i P
e au = TT 6 .

I.

When I is any differential operation to be performed this

relation indicates that the symbolical operation e'^ can be expressed

provided e^" can be expressed.

This method may be applied to the equation

for we have

where f{x) is an arbitrary function independent of t. The fore-

going formula in equivalent operators may be applied if I be

eplaced by af
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then its value is

Ex. 2. Obtain a solution of the equation

'^^+2^+lt)-o
in the form

y=\ \f{x+ '2.uth^,y+ 2vt 6*) sin (w^+ v^) du dv

+ \\F{x+ 'i.ut h^, y+ ^vt h^) cos (m^+ v^) du dv.

Ex. 3. Verify that

M=— / ''£;(i/''«/'(^+a<sin5cos0, y + a<sinflsin<^, z+atQ,o^&)wa.6d&
^J Jo

+—^( "dcj) I "tFim + at sin 6 cos <l>,y+at sin ^ sin (j), z + at cos 5) sin 5c?(9

47r a<j Jo

satisfies the differential equation

8F=
"'

and is such that when t= then u=F{x, y, z) and g^=/(^, y, z).

Ex. 4. Obtain the value of the integral

taken over the surface of a sphere whose centre is the origin and radius R, in

the form

4jr — sinh {Bp),

where p'^=-a?+^+yK

Hence shew that the mean value over the surface of any sphere of a

function, which satisfies the equation

and is, for all points within the sphere, expressible by a convergent series, is

equal to the value of the function at the centre of the sphere.

Further information on this part of the subject and, in particular, on the

applications in physical investigations, will be found in Eiemann's Partidle

Differentialgleichwngen und deren Anwendwng aufphyeikcdische Fragen,
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Solution in Series.

260. Consider now a case of integration by means of series.

The most important equation to which this method is applied

is the equation

which continually occurs in physical investigations ; to solve it by

the method under consideration it is convenient to change the

independent variables from x, y, z to r, 6, <p given by the relations

x = r sin 6 cos cf), y = rsm6 sin
<f),

z^r cos 0,

which will in effect be changing from the Cartesian to the polar

coordinates of a point. The equation is now

d'(ru) 1 d f . ^du\ 1 d'u1 a / . „du\ 1 d'u „

and, if another change be made by writing /j, instead of cos 6, the

resulting form is

9' (ru)

dr'

261. First, let a solution be desired which is to be a function

of r only, that is, of («" + 2/^ + ^^J', so that it will be a specially

symmetrical solution ; the equation then reduces to

p
and therefore u = A-\- - ,

r

In a similar way a solution which would be a function of 6 alone,

and one which would be a function of ^ alone, may be deduced

;

but they are not so useful as that just obtained.

262. Next, suppose that solutions which are not functions of

r alone may be expanded in a series of integral powers of r ; and

in u let there be a term
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where u^ is independent of r but may be a function of and (j) the

value of which is still to be determined. Then, when the value of

u is substituted, the term on the left-hand side of the differential

equation corresponding to this particular term of u is

n
dfi [^ '^ ^ 3/^3 1 - /^' 3^'.

and the sum of all these terms is to be zero for all values of the

independent variables. The foregoing is the only term which

involves the n*'^ power of r; it therefore follows that, in order to

have the equation satisfied, its coefficient must vanish. Hence u

is determined by

/ . T\ 9 f/i 2x 9w„) 1 d^u
« (--M) «„ +

a-
|(i - M^)

a^"} +1^ 9^?
= 0,

and therefore r"M^ is a solution of the original differential equation.

The coefficients of the terms involving the differential coefficients

of M„ do not depend upon n ; and the coefficient of m„ is unaltered

if for n there be substituted — (n + 1) ; hence r"'"'^''^^ is another

solution of the original equation. These two solutions just ob-

tained may be combined into one so as to give

as a solution, ^„ and B^ being arbitrary constants ; and thus the

general value of u is

n=0 \ r I

provided u^ be determined by the equation

263. Now the general solution of this equation would give m„

as a function of Q and d) ; consider the case in which m is a

function of Q only. It is then determined by
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the independent particular integrals of which are (§§ 90, 91) P^ (/m)

^^^ Qn (/") ; the corresponding terms in ii are

Ar + ^.) P„ W + [Ay + ^;) Q„ (^).

In most physical investigations the term dependent upon Q^ (/*) is

rejected ; and then the general value of u, expressed as a function

of r and 6, that is of z and {x^ + y^, is

'^=io{(^^^"+^)^»^'
in which the ^'s and 5's are arbitrary constants. It will be

noticed that the solution formerly obtained, viz.,

A + -,
r

is the particular case obtained by making all these arbitrary con-

stants zero except A^ and 5„ and remembering that Pj(/t*) is a

constant.

264. Consider now the general case in which u„ is a function

of 6 and
(f> ; it may be expanded in a series of trigonometrical

functions of multiples of
<f)

the coefficients of which are functions

of /M. Any term of the series for u^ may be denoted by

i)„(°')cos a-(f),

where u is a function of /u, only ; and, just as in the case of the

separate terms in u considered as involving different powers of r

when each such term was a solution of the equation, this will be a

solution of the equation giving u^. Substituting and dividing out

by cos cr(f> we find that v^^"^^ is determined by the equation

This equation would also have been obtained by the substitution

in the u^ equation of

vj-'^^ sin a-cf>

;

and therefore the solution of the equation in u„ is

'% {E^ sin (T^ 'V F„ cos 0-0} «„(''

(r=l

F. 26
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the value o- = not being here included, since it gives terms

independent of (j> which have already been found.

Now, by Ex. 12, Chap, v., p. 178, the solution of the equation

giving vj-"^^ is

where y^ is a solution of the equation when o- is zero and thus

may be either P^ or Q^. Hence the corresponding term in u^ is

{E„ sin o-^ + F„ cos o-0)(l - /u,')*"

diJi"

+ {E'„ sin a^ + F, cos <r<^)(l - 1^^"^\
The term involving Q^ is usually rejected in physical investi-

gations ; the suitable value of m,^ then is

T(l - /Ji^'ME, sin «70 + F, cos ff<^) 5^"

,

it being obviously useless to include values of a higher than n.

The sum of any number of solutions of the original equation is

a solution ; and therefore the most general value of u expressed in

a series is

B
u =A +

r

We have omitted from the foregoing general value (1) the

terms which would arise from the part of u independent of r and

0, which can easily be proved to be

(2) the term dependent upon alone which obviously is M(j), and

(3) the terms usually rejected as unsuitable in physical investiga-

tions.
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Any further investigations on the solution of the equation are
connected either with other equivalent forms of solution or with
the particular solutions obtained by a determination of the con-
stants in accordance with imposed conditions. For these recourse
should be had to the authorities on the several subjects in applied
mathematics in which this equation arises; in particular, those
quoted on p. 156 will be found of great value.

Ex. 1. Solve the equation

3% a%_

in series, by transforming to polar coordinates.

Ex. 2. Prove that the equation

9%_ 2/3% 8% dhA

has a solution of the form

n=oo 1
M=e»«« 2 -P^{Ae-""-f^{ikr) + Be^'"-fn{~ikr)},

where

f M_1 I

n{n+ l) {n-\)n{n + l){n+ %) (w -2)...(w+ 3)

1.2.3...2W

2.4.6...2m.a»*

Obtain a more general solution which is not independent of the spherical

coordinate ^. (Stokes.)

Ex. 3. Shew that the general solution of the equation

or, by transformation to plane polar coordinates, its equivalent

2 /3% 1 3m 1

\ 97*2 r dr v^

fd^u ,
1 3m . 1 3%\ _ 3%

can be expressed in terms of Bessel's functions as the sum of two terms of the

form

M=cos aJii"^[{AJ^{hr)+BT^{kr)}cosn6+ {A'J^{Jcr)+B'T„{hr)] sin n&\.

n-Q

26—2
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Ampere's Method of solving the equation

Rr + 28s + Tt+ U(rt - s') = V.

265. There is another method of proceeding from the dif-

ferential equation to the intermediary integral in the case of the

general equation

Br + 2Ss +Tt+ U{rt - s') = V,

the factor 2 being inserted for convenience.

Let a new independent variable a, as yet indeterminate, be

introduced and let x and a be considered as the independent

variables so that y is a function of x and a ; then we have

dz dy
dx^P + 'idx'
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where P and Q are given by

dx dx dx dx dx dx

'

Q =R(p:-2sf+T+u('^ +^f\axj dx \dx dx dx,

As yet a is arbitrary ; let it be chosen so that P vanishes ; then

it follows from the differential equation that Q also vanishes and

thus we have

P = 0, ^=0.

266. These equations can be replaced by simpler combinations

equivalent to them. From the first we have

dx \ dx dx) dx dx '

when this value of -^ is siibstituted in the second equation the

latter becomes after a slight reduction

\ dx dxj \ dx dxj

which gives

ie^+f7^=s+(?* (i).

ax dx

where G-=8'-RT-UV.

The corresponding value of -j- is given by

dx^ ~ dx dx

or, what is the same thing,

and therefore

= Y{8± G^)-(8'-G)^;

«I+(«^«)S-^ <"'•
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These equations (i) and (ii) may replace the two first obtained;

it will be noticed that they are analogous to those in § 234. We
may also combine (i) and (ii) so as to obtain an equation in another

form, but not independent. Multiplying (ii) by U and substituting

from (i) for U -^ we have
^

'

dec

ax aoo

which easily reduces to

^|-(^^«^)|-^=« • (-)•

We may thus consider either (i) and (ii) or (i) and (iii) as the

equations which replace the two F=0 = Q. Taking then (i) and

(iii) we may rewrite them in the form

Udq + Rdy -{S± (fi) dx =
Udp -(8+ Qi)dy +Tdx =

and we have also

dz — pdx — qdy =

in which it will be noticed that doi does not occur and therefore a.

is to be considered a constant in the integrations.

267. The success of the method depends upon the possibility

of obtaining a function W of x, y, z, p and q which shall be such

that, in virtue of the relations between the differential elements

expressed by the equations (iv), its total differential shall be zero.

If this be possible, we then have

dW=^dx+^dy+^d.+ ^dp +^dg = 0;

when the values of dz, dp, dq as given by (iv) are substituted in

this, it becomes an equation involving only the two differential

elements dx and dy, which are independent and the coefBcients of

which must therefore be separately zero in order that the equation

may be satisfied. Thus we have
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either of these may be replaced by

P) 117"

which results from the elimination of 7^- between the two. This

last equation is useful in the case when U is zero, for then the two

former equations are equivalent to only one.

The function W must therefore satisfy two simultaneous partial

diiferential equations of the first order ; the method of obtaining

such a solution common to the two, when it is known to exist, is

indicated in § 226 and we may therefore now consider W a known
function.

268. A solution of the given differential equation is furnished

hy

W= constant.

For we then have

dW dW dW^ dW
dx dz -^ dp dq

'

dW dW ,^WdW^^^_
"by 'dz

" dp dq
'

dW dW
and these, on the substitution in them of the values of -?r- and ^5-

dx dy

from the foregoing equations which determine W, become respec-

tively

dW dW
-^T + Ur)y^ + (8±Gi-Usf^ = 0,

dW dW

dW dW
The elimination of the ratio of 7^ to ^;— between these gives

dp dq

{T+ Ur) (R + Ut) = (/S - Usf - G,

which, in virtue of the value of G, reduces to

Rr + 2& + Tt+U{rt- s') = F,

that is, to the original equation. The proposition therefore

follows.
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269. In order to obtain the most general intermediary inte-

gral, we must find an expression which contains an arbitrary

function. Suppose now that it is possible to derive two particular

solutions w and w^ of the equations which determine W, and

which are, owing to the double sign, really two sets; then the

equations will be satisfied by writing

F=<E>(w„w,)=0.

Since the equations in W are linear this is obviously a solu-

tion. Also the particular solutions are

Wj = constant

;

but in the integrations we had to consider a as a constant, and

therefore we may write

where /j(a) is an arbitrary function. Similarly we should have

2^2 =/2(a)>

where /^(a) is an arbitrary function. Now a is some function of x

and y, the value of which is unknown ; when we substitute in

either equation the value of a derived from the other, we obtain a

result of the form indicated.

270. It may happen that more than one general intermediary

integral can be obtained. In any case we proceed as before from

the single intermediary integral (by Charpit's method) or from the

combination of the two intermediary integrals (as in § 236) to the

general integral of the equation; and this integral will usually

involve either two arbitrary functions or three arbitrary constants.

This however is not the most general integral possible. For if we

had an original integral equation of the form

(^ {z, X, y, a^, ffl„ a,, a^, a^) = 0,

and obtained thence five other equations giving the values of

p, q, r, s, t we could between the six resulting equations eliminate

the five constants a and have a differential equation of the second

order ; and according to the form of the degree of this equation

would vary. Conversely in any case we might in the integral,

which is most general so far as the number of arbitrary constants
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which enter is concerned, expect more than three. But
<f>
= will

not necessarily he the most general integral; the only inference to

be made is that the equation containing three arbitrary constants

is not the most general integral. It can be replaced however by
one which is more general ; the method of obtaining this, due to

Imschenetsky, is similar to that employed by Lagrange for partial

differential equations of the first order—viz., variation of the con-

stants.

271. Let the integral obtained by the foregoing method be

represented by

^ =/(«'. y> a> ^> c)

;

to obtain the general integral we shall suppose c to be changed

into a function of a and b the value of which is, as yet, undeter-

mined and then consider a and b to be functions of x and y such

that p and q preserve the same forms as when a, b, c are all con-

stants. Denoting

§/ + ¥?£ and §^+ ^^^
da dc da db dc db

respectively by -r- and -^ , we have
da db'

dz dfdadfdb
dx~^ da dx db dx

'

dz dfda dfdb— = o H

—

1

—

-—
dy da dy db dy

'

and therefore, since ^ =p and ^ = q, we have

dfda_^dfdb^Q
da dx db dx '

da dy db dy '

which will be satisfied if we write

^=0 = ^.
da db



410 GENERALISATION OF [271.

The second differential coefficients are

d^z _ dp da dpdb _ ,

dx' da dx db dx '

d^z _ dp da dpdb _ dq da dqdb

dxdy da dy db dy da dx dbdx~ '

d^z dqda dqdb _ ,

dy^
~ da dy db dy

But since — is identically zero when we suppose a and h

replaced by their values in terms of x and y, we have

dx\da) da'dx dadbdx '

and l(^]=l(¥]=^
dx \daj da \dx/ da

'

,, , dp dV da dy db „
so that J + j2 5- + j-^ a- = 0-

da da ox dado ox

Similarl
dq^,Ffda^^ db^^_
da da^ dy dadb dy '

dp
^

dy da
^

djdb _^_
db dadb dx d¥ dx '

dq
^

dy da
,^y5&^o_

db dadb dy db' dy

These equations satisfy the condition

i_dp da dp db dq da dq df
_

da dy db dy da dx db dy
'

and from them there can be obtained the expressions

da^ \dh) dadb da db d¥ \daj
'

dd^ \dbj " dadb da db d¥ \da.

, . _ dy^ ^ _ dy /dp dq dq dp\ dy dp dq

da'' db db dadb \da db da db] dV da da

'
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But with the modified forms of a, b, c

^ =/('»> y> «. ^> c)

is still to be a solution of the equation

the coefficients of the second differential coefficients are unaltered

in form, since we have retained the forms of the first differen-

tial coefficients, and therefore B,, 8, T, U, V remain unmodified.

Substituting now in this equation the values of ^-^, ^—^, o~s!

and remembering that the differential equation is satisfied when

h, k, I are zero, we find that it takes the form

{E+m)h+2(S- Us) k + {T+Ur)l+U(lh- k') = V,

where the quantities r, s, t which explicitly occur and the quantities

p, q, z which implicitly occur are to be replaced by their respective

values derived from the integral

« =/(^. V' «> ^> c)

in which a, b, c are considered constants. We must now substi-

tute the expressions found for h, k, I; and then the equation, after

some reductions, will be found to be of the form

^'da' ^^'dadb^ 'db'~ "

where

T^_rr(dpdq dpdqy\
^'-^[dadb^db da)

'

in all these coefficients the quantities z, p, q, r, s, t are to be

replaced by their values in terms of x and y as derived from the

given integral equation.
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This differential equation is linear in the second differential

coefiScients of / with regard to a and b ; it is, moreover, the

equation which is to determine the value of c as a function of a

and b. Now

df^^ dfdc

da da dc da

'

so that ^-9:f+2i^^ + ^-^r^V + §^^so tnat
^^, - 3a^

+ ^
dadc da + dc' [da]

^
dc da'

'

and also for the other coefficients ; when these are substituted for

dY dY d'f
-4;, , ,, t4 the resulting equation is linear in the second
da dado dc °

differential coefficients of c with regard to a and b, and the

quantities multiplying these are functions of x, y,a,b,c, o~) or-

But we also have

^ = = ^1
da dh

'

from which the values of x and y can be found as functions of

gg og
a,b,c, 7^ , ^\ and these when substituted will make the equation

da do

one which involves only the quantities a, b, c and the differential

coefficients of c. This equation will then be of the form

A^^' +W ^'' +B^''-F
^d^'^'^^dm^^M'-^'

DG GO
where A, B, G, F axe functions of a, 6, c, ^ , ^.

Now it may not be possible to integrate directly the original

differential equation, while it may be possible to obtain, almost by

inspection, a particular solution which involves three arbitrary

constants ; or it may be possible to derive such an integral when

not obtainable merely by inspection. In either case such particular

integral can be generalised provided the solution of the equation

to be satisfied by c can be obtained ; and if this solution be repre-

sented by

e (a, b, c) = 0,
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then the new integral of the original equation is obtained from

^ =/(*. y> «. ^> c) \

= 6i(a, &, c)

da dc dc da

Qjfd6_dfdl
db do dc db

.

by eliminating a, b, c between them.

Ex. 1. Integrate the equation

r+'i,{q-x)s+ {q-xft=q.

Here R= l, 8=q-x, T={q-x)\ V= 0, V=q; thus G=0, and the equa-

tions determining W are only a single pair, viz.

/. 8TF , .dW

We denote these, as in § 226, by

0=F,= Q-(q-x)P,
0=F2=X+(q-x) r+(p+q^-qx)Z+qP.

As a condition that these equations may be integrated simultaneously

we must have

= (F„F,)=-qZ-r.

Hence we write
O^^F^^-qZ-Y;

then {F^,F^)=0; (F^, F^)=Z,

and so we take Q=F^=Z,

and then 0=(,Fi, Fr,)= ... ={F^, F^).

Hence Y=^0=Z ; X+qP=0; Q-(q-x)P=0; substituting in

0=Pdp+Qdq+Xdx+Zdz+ Ydy

we obtain Q=P{dp- qdx+qdq - xdq),

and therefore we may write as the intermediary integral

W=p+ lq^-xq+a=0.

To obtain the complete integral of this we apply Charpit's method ; we

must obtain an integral of

dx _ dy _dp _dq
^~ ^q+x~^~'0'
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This is given by 2'=/3 ; and therefore

Tb.ese values, substituted in

dz=pda!+qd^,

lead to the integral

«= /3y + ^/3^ («; - /3) - a* - c,

wbich. contains three arbitrary constants.

To obtain the modified integral (§ 271) we write this

«=/= -a»+^y+4/3« («-^) - c,

considering c as a function of a and /3. Then we have

da da

33""' 30^' dado d^do' d^~ ' ' dfi~ da' da

Hence iJj= ; Ti=l; 8^=0; Fj= ; and the equation in/ is

or, on substitution in terms of c,

dlS'-^'



271.] EXAMPLES. 415

Ex. 2. Integrate

(i) r-t='i;

(ii) ah-- Asc^qs+ AqH + tpo^

=

;

(iii)
i3;+qfr+ 2{x+ q)(2/+p)s+ (;t/+pft + 2(x + q){i/+p)=0;

(iv) x^r +2A+ fx^ - -^ j t=2z ;

(v) r+2qs+(q^-x^)i=q;

(vi) x*r- 4^qs+ 3qt+ 2ii^p

=

;

(vii) r+2qs+ qH=bH;
(viii) ips + t-p=0.

(Ampfere and Imschenetsky.)

A fuller discussion is contained in the valuable memoir by Imschenetsky,

Orunerts Arehiv der Mathematih und Physih, t. liv. ; and in the memoir by

Graindorge already (§ 223) quoted. FuU references to other authorities are

to be found there.

MISCELLANEOUS EXAMPLES.

1. Prove that the integral of the equation

as given by Monge's method is

M- ay /• _2»

{x+y)z + e''^yF{x+y)=e''^^]e "f{2y-a)cly,

where y + x is to be substituted for a after integration and / and F are

arbitrary functions.

Hence solve the equation

{p + q){r-t)= 'ki){rt-s^).

2. Solve by Monge's method the equations :

(i) qO. + q)r+{p + q+ 'ipq)s+p{l+p)t=0;

(ii) {\+pq+q^)r+ s{q^-p^)-{\+pq+p^)t= Q;

(iii) {r-t)xy-s{x''-y^)=qx-py

;

(iv) x^r -yH=xp-yq;

(v) r-2s + t=x+ (j)(x+y);

(vi) {r-s)x=-(f-s)y;

(vii) xh'-yH-'ixp+ 2z= 0;

<viii) {r-s)y+{s-t)x-\-q-p=Q;

(ix) xr+{y-x)s-yt= q-p.
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3. Solve the equation

r+t=2s,

and determine the arbitrary functions by the conditions that bz=^^ when a;=0

and as=x^ when y=0.

4 Integrate the equation

x^ y'^ a? y^'

and obtain a first integral of the equation

V yj z ^\z x) xy\ z /

5. Investigate a solution of the equation

subject to the condition ^=x^ (1 +p^), in the form

z=ay+{a?-x^f+a\og—>^ '-
.

X

6. Integrate the equation

(1 + p2) « - 2^28 + (1 + 2^) ?= 0,

having given that^ - qx=0; and shew that a particular solution is

(«2 +y^)*= c cosh -

.

Integrate also the equation

{(1 +p^) t - 2pqs+ (1 + 2^) rf=4 (rt - s^) (1 +p^+q^)

;

and discuss the nature of the solution

7. Solve the equations :

(i) e^y{r-p)= e'^{t-q);

(ii) qys=pyt+pq

;

(iii) xr+xys-\-yq=Q;

(iv) xr+ 2ys+^=4«

;

(v) 2OT-2!;+3p=0;

(vi) i!;(r-a%)=2p.

8. Prove that the only real solution of the simultaneous equations

is M=^cosa+3f sina+/3.
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9. Prove that the only real solutions which simultaneously satisfy the

equations

r+t=2a\

are comprised in

z=i^ (a+ c cos a)+ avi/ aiaa+^1/^ {a- c cos a)+^x+ yy + &,

where c^=a^-^b^ and a, 0, y, 8 are arbitrary parameters.

10. Obtain an intermediary integral of

and shew that its general integral is obtained by eliminating a between the

equations

<j>'{a)+a; + a{l+a^Pf(i/)=or

where cf> and /are arbitrary.

(Serret, and Graindorge.)

11. Integrate the equations :

(i) a^+yq+ xh'+ f soys+yH=0
;

(ii) {xp +yq) {rt - s^) + gV - ^pqs +pH= ;

(ui) {x^-t/^)(t-r)+ -i{px+ qy-z)=0.

Also solve, by changing the independent variables to ^ and ;; where 3^=^
and xy=^,

cfir — %xys+yH+ ^yq= 0;

and, by changing the independent variables to ^ and ij where x=e^'^^ and

y=^-^,
ifir -yH={xp-yq)f {x, y).

12. Integrate the equations

:

^ dx^ X dx dy^

'

.... 3%_ 2/3% ,2 9^ 2 \W ^i-<^ [di^"^ xdx~ ifiy '

... 3% _a^ 3%
'^^' 3^~^3y2'

,. , 3% 2 3%

t^ J!L4._1 /^?i + ^\ ?_—
(Gregory.)

13. Find the surface whose equation satisfies

dxdy

and whose trace on the plane of xy is the hyperbola xy=a\

F. 27
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14. Integrate the simultaneous equations

... du _dv
^

' dx~ dy

dv _
dx

^ ' dx \^x dy) \3«2 dy'^J I

3 (da
,
3/3\ /32/3

,
32j3\

|

"

™3l^fe + 3^j=^(,3^^ + 3pjJ

15. Shew that the simultaneous equations

rt+ c{r+ t)= 0,

pq+c'{py+ qx)= Q,

represent a series of coaxal paraboloids which cut any fixed plane perpen-

dicular to the axis in a series of similar conies the ratio of whose axes is

{c'-cf : (c'+cf.

16. Shew that the equation

Os+Ep+K=0

in which 6, H, K are functions of x, y, z and q can be integrated if

\3« 'dz ) \3y Zx) \3z 8y/ '

and obtain the integral.

Hence obtain the integral of

{{x +yz)s- ypq) {x+y)=qy (1 - z)

in the form

Li (»+2/)0(y)J
'

(Imschenetsky, and Graindorge.)

17. Obtain a solution of the equation

dx^'^'df'^W

in a series of ascending powers of x. (Lagrange.)

Solve the equation

3244 32m 32„ 32,^ 32^ g2„

"3T2-*-
^^ 3^+2^ 3-^. + * 3^+2/3^+'' 3-?=°'

discussing in particular the case in which the discriminant of the left-hand

side is zero.
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18. Verify that the partial differential equation

is integrable in finite terms, if b (2i±l)=2i where i is a positive integer.

Solve also

(Legendre.)

19. Shew that the complete integral of

13^_3% 23m n(n+1.)u

a? dfi dr^ r dr r^

(n being an integer) may be exhibited in the form

\r dr) r

where </> and <// are arbitrary functions ; and obtain in the form of a definite

integral the complete solution of

1 3% _ S^M 1 3m

a^ dt^ dr^ r dr
'

20. Obtain as a definite integral the solution of

2;
dW^ 1 /3F 3 7N

dsody ai+y\dx dy /

21. Obtain a solution of the equation

3m , 3%

in the form

3*"* dss^

J -COJ -00

22. Change the dependent variable from zto y in the equation

q (l+q) r - (p+ q+^pq) s+p (_l+2)) t=0,

and hence obtain the solution of the equation in the form

a;+fiz)=Fix+y+z).

23. Shew that if there be five functions z^, z^, Zg, z^, % each of which

satisfies the equations

r=a^s-^a^p+a£+a^z \

f=ibiS+b^ +b£ + biZ J
'

where the a's and b's are functions of x and y alone, then between them there

is a linear relation with constant coefficients of the form

Cj^i

+

G^z^+ G^i+ G^Zi+ Cs«r,
= 0.
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If, in addition, any four of them as «i, «2, Zg, z^ be such as to satisfy

identically the equation

Hi ^2J %i % =0,

Pv P21 Ps> Pi

?11 ^2, ?3. ?4

^1) ^2» ^3! ^4

then there is also a relation of the form

Ci«i

+

0^2+ Cs^s+ O^z^ == 0.

(AppeU.)

24. Shew that the function F (a, ft y, 6, f, «, y) given by the series

n(a+m+w-l) ^(^+ro-l)^(y+ >^-l)^(g-l)^(f-l)
n(a-i)n(m)n(ra)n(^+TO-i)n(e+ra-i)n(/3-i)n(v-i) •*'''

the summation extending for all integral values of m and n from zero to

infinity, satisfies the two equations

{x-x'^)r-xy8+ {e-{a+ ^+ Vjx}p-^yq-a0z=O,

(y _y2) J _ ^yg^ {j _ (o^.y + 1) y| J,
_ y^^ _ ayZ =0.

Hence shew that F{a, 8+c, -c, ^, f, «, y) is a solution of

{x-x^)r-'2,xys+ (^-f)t+{6-{a + b+ l)x}p+{iE~{a+&+\)y}q-ahz=0,

being an arbitrary constant. (AppeU.)

25. If there be three functions Zj, %, z^ satisfying

r= Uip+ a^q+ ffljZ,

t= C^p + C^+ CsZ,

H {P2 - %) + H {Pz - ffi) +% {Pi - <li)= 0>

where the a's, 5's and c's are functions of w and y, then there exists between

these functions a linear relation with constant coefficients.

(Appell.)

26. Shew that the integral of the equation

s-\-!iiyp-\-hyz=<i

may, by differentiation, be connected with that of

i-\-xyp + {k-Vri)yz=Ci,

h being a constant and n being an integer.

Hence solve the former equation in the case when ^ is a negative integer.

Obtain the solution when ^ is a positive integer.

(Tanner.)
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27. Obtain the solution of

in the form

^'W^'W

where (j) and -^ are arbitrary functions.

Hence integrate s—zp.

(Liouville.)

(Tanner.)

28. Integrate by Ampere's method the equations

" ' \\nyy y so) \xy y x) )

(iii) qr-'r{p-\-x)B^-yt-\-y (rt — s*) + g'=0.

(Imschenetsky.)
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Charpit's method of integration of

partial differential equations of the

first order in two independent varia-

bles, 315—322.
Clairaut's equation, 27, 310.

Classification of the integrals of a par-
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of the three classes, 289.

Complementary Function, 49, 52—55,

66, 382, 387.

Complete Integral of a partial differ-

eiitial equation, 286, 354.

Cuspidal Locus, 33.

Darboux, 297.

Definite Integrals, solution of linear

equation whose coef&cients are of
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Euler, 232, 358.
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Exact equations, 82—85.
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first order, 20
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;
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;

partial equations, 390.
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differential equation satisfied
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tions, 192—201
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cases when expressible in a
finite form, 202—210

;
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Imsohenetsky, 340, 409, 415.
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of general linear equation, condi-
tions for, 110.

Intermediary integral, 354.

Invariant of coeflB.cients of linear

equation of second order, 89.

Jacobi, 92, 211, 232, 247, 340.

Jacobi's method of integrating the
generalised form of Eider's Equa-
tion, 241.

Jacobi's method for the integration of
the general partial differential of

the first order in n independent
variables, 323—340.

Kummer, 92, 211.

Lagrange, 299, 315, 409.

Lagrange's hnear partial differential

equation, 297—301

;

generalised form, 302.

Laplace's transformation of the linear

partial differential equation of the

second order, 375—380.

Legendre, 358.

Legendre's equation, 143—156.
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;

partial, 381—391.
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Malet, 90.
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differential equations, 253.
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integration of equations of, 276.
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Nodal Locus, 33.

Normal form of linear equation of

second order, 90
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of equation of hypergeometric

series, 186.

Order, definition of, 8.

Particular Integral, 49, 57—66, 67,

383, 389.

Petzval, 232.

Poisson's method for a form of homo-
geneous partial equation, 380.

Primitive, definition of, 8.

Quotient of two solutions of linear

equation of second order, equation

satisfied by, 92.

Rayleigh, 167.
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solutions of a differential equation,

99, 112, 152, 166, 200.

Ricoati's equation, 168—174

;

reducible to Bessel's equation,

171.
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Richelot's method of integrating

Euler's equation, 237.

Riemann, 398.

Routh, 168, 340.

Schwarz, 92, 202, 211.

Schwarzian Derivative, 92, 202—209.
Series, possibility of integration in,

132;
form ofsolution when a vanish-

ing factor occurs in the de-

nominator of a coefficient,

139;
form when such a factor occurs

in the numerator, 141

;

integration of partial equations
in, 392—394, 399^03.

Simultaneous equations (ordinary),

linear with constant coefficients,

263—270

;

with variable coefficients,270

—

276.

Simultaneous partial differential

equations in one dependent varia-

ble, 345—350.
Singtdar Solutions of ordinary equa-

tions of first order, 30—39.

Singular Integral of a partial differ-

ential equation, 288

;

derived from the differential

equation, 294.
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Solution of ordinary equation, what
is to be considered a, 6.

Species, definition of, 7.

Spitzer, 232.

Standard Forms of ordinary equa-
tions of first order, 16—30

;

of partial differential equations
of first order, 304—310

;

they are particular cases in

which Charpit's method {q.

V.) proves effective, 320

—

322.

Sturm, 168.

Symbolic Operations, 43—48, 382,

393, 397.

Symbolical method for partial equa-
tions due to Laplace and Poisson,

396.

Symbolical Solutions, 174.

Tac-Loous, 35, 296.

Thomson, Sir William, 108.

Todhunter, 156, 168.

Total differential equations, which
are linear, 247—255

;

they separate into two classes,

253;
geometrical interpretation of

linear equations with three

variables, 256—259

;

case of n variables, 259
;

equations which are not linear,

261.

Trajectories, general, 119

;

orthogonal, 120.

Variation of Parameters, 98, 112, 116,
409.
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