Library: ET Cospection

United States Department of Agriculture, Agricultural Research Service, Soil & Water Conservation Research Division. Hebrew University Jeursalem, Faculty of Agriculture, Rehovot, The Department of Irrigation.

Project No. A10-SWC-11

Grant No. FG-IS-123

RESEARCH FINAL REPORT P.L. 480

Project Title: FURTHER STUDIES ON THE BLANEY & CRIDDLE FORMULA U=KF TO ASCERTAIN THE CONSUMPTIVE USE OF WATER BY PLANTS BY MEANS OF ANALYSIS OF CLIMATOLOGICAL DATA.

November 1961 - November 1967

b y

S. Dan Goldberg, Principal Investigator and Head of Department

B. Gornat, Principal Assistant and Senior Departmental Assistant

Rehovot, November 1967

United States Department of Agriculture

National Agricultural Library

Advancing Access to Global Information for Agriculture United States Department of Agriculture, Agricultural Research Service, Soil & Water Conservation Research Division. Hebrew University Jeursalem, Faculty of Agriculture, Rehovot, The Department of Irrigation.

Project No. A10-SWC-11

Grant No. FG-IS-123

RESEARCH FINAL REPORT

P.L. 480

Project Title: FURTHER STUDIES ON THE BLANEY & CRIDDLE FORMULA U=KF TO ASCERTAIN THE CONSUMPTIVE USE OF WATER BY PLANTS BY MEANS OF ANALYSIS OF CLIMATOLOGICAL DATA.

November 1961 - November 1967

b y

S. Dan Goldberg, Principal Investigator and Head of Department

B. Gornat, Principal Assistant and Senior Departmental Assistant

Rehovot, November 1967.

e en el siño primita sectorenta su Algere interna como como como de la como de la Algerectrica primita estatura de Alacense de La como de la esta de Natare el Dereter de Staty de la como de la como

SUMMARY

VOLUME I. THE REHOVOT EQUATION

VOLUME II. GENERAL INFORMATION AND DATA

VOLUME III. LITERATURE REVIEW AND BIBLIOGRAPHY

SUMMARY*

Of the various Climatological Equations to determine the Consumptive Use of crops, none has achieved a greater popularity than the Blaney and Criddle formula. This popularity may be greatly attributed to the simple form in which this formula has been presented and the simple procedure in the determination of the Consumptive Use. However, it seemed to us, that its simplicity is its drawback. Computations carried out in this country, in Iran (in the Quasvin area), in Colombia and in other parts of the world, point clearly to the fact that if this equation presents "reasonable" deviations from actual measurements on a seasonal basis, it gives most unreasonable estimates on a shorter range of time. Indeed Israel is situated climatically in a location where the Blaney & Criddle formula should have given by far better results.

In the search for a formula that would embrace in it additional climatic variables such as: The average Temperature, the true sunshine hours (on a daily basis), the movement of the wind (wind replaces moist air by drier one) and the relative humidity (the indicator of moisture availability in the air), climatic variables that no doubt have a bearing on the Consumptive Use of crops, we decided to carry out this research.

The general procedure of the experiments has been based on the following: 1) Selected growers of high agricultrual repute, were selected to participate in the research. The common denominator of these growers was the common urge (which dominates Israeli Agricultrue) to attain high efficiency of irrigation and use water to its optimal use. The high standard of cultivation was achieved by the proper selection of the growers. 2) To carry out the observations in selected, comercially sized, agricultural plots within commercial agricultural areas. Two reasons governed this decision: a) to avoid 'Oasis'' results of isolated agricultural units, b) to be sure that common (though superb) agricultural treatment would be rendered to the observed plots. In fact, the observed plots had the same treatment

^{*)} Presented on request in a non-technical language.

as the remainder of the field. These important considerations have been offset in part by the difficulties in carrying out precise observation under crude commercial conditions. Great vigilence and a high degree of cooperation was needed and attained in these experiments. 3) The drier areas of the country have been selected where water consumption is rather high and where water deficiency is considered to be a major factor. 4) Studies have been carried out in three directions: a) The moisture regime in the observed fields. Moisture fluctuations and determinations were measured by both, gravimetric and by a Neutron Scattering devices (the former requiring a very labourious procedure) to determine and compute the net moisture requirement of the crops. The normal irrigational procedure is that irrigation is carried out at predetermined (normally accepted) schedules, the size of the irrigation is given in accordance with computations. A check is being carried out after each irrigation to verify the duty delivered. Measured over-irrigations are readjusted accordingly. b) Close to the observation plot an Agro-Meteorological station has been erected. The location and the contents of these stations has been carried out in accordance with the accepted specifications and the guidence of the Meteorological Service. Each station is capable of measuring all the desired climatic variables. c) Standard observations over the crop growth were carried out, yields were measured. Observations within plots were carried out in replications in accordance with statistical necessities. The soil property factors were included in the moisture determinations procedures.

The recordings of these observations during several seasons have been screened for authenticity and consequency, a certain amount of material had, unfortunately, to be eliminated, the remainder has been assembled and presented in this report.

Various plottings of the resluts and particularly the following two types of curves: 1. The Consumptive Use of a crop vs. various climatic factors. and 2. The Consumptive Use of one Crop vs. the Consumptive Use of each of the other crops gave rise to a form of equation which bears the following general form:

and score

what in crififactors (see pg. 36)

 $Et = KM \cdot f(a_1 T \cdot a_2 H \cdot a_3 W \cdot a_4 S)$

П

where Et is the average daily evapotranspiration. T is the temperature in Centrigrade. H is the average Relative Humidity in percent. W is the daily wind distance in K''m per day and S is the average daily hours of sunshine.

Computations were carried out to calculate multiple regressions and six evapotranspiration equations were presented, titled the REHOVOT FORMULAE.

Climatic conditions in Israel point to the fact that the <u>Temperature</u>, <u>Radiation</u> (or <u>sunshine</u>) and the <u>Crop factors</u> are significant, however, lack of significance and insignificance in the Humidity and the Wind variables respectively, have been noted. The reasons of lack of significance in the last two factors is attributed to the small variations in humidity and wind in the locations where our experiments have been taken, indeed in most of Israeli agricultural areas. This does not mean, by no means, that these factors are insignificant in windy highlands of dry climate such as Quasvin in Iran or similar global areas of similar climatic conditions.

Various computations of evapotranspiration values computed from Blaney & Criddle, Thornthwaite and the Rehovot Formula vs. measured evapotranspiration have been presented in tables which give rise to a promising use of the Rehovot Formula.

To signify the findings of this research, we may summarize it as follows:

1. The research had its aims to present an Evapotranspiration formula and this has been presented.

2. It was suggested and carried out that the formula (The Rehovot Formula) would be based on findings derived from comercially operated fields, and this has been achieved.

3. Reliable and selected data has been presented in this report used in the derivation of the Rehovot Formula and could be used by others to follow.

4. Other supporting materials, comparative values relative to other climatic Formulae and a considerable Reveiw of Literature is presented.

5. Five Publications of direct applicatory use have been published, procedures of irrigation in the respective areas of experimentation have ensued in practice.

VOLUME I. THE REHOVOT EQUATION

List of Contents

1.	Introduction	1
2.	Experimental Procedure	5
3.	Results and Analysis	10
4.	Discussion	40
5.	Comparison of Equations for Estimating Evapotranspiration	50
6.	Conclusions	60
7.	Acknowledgements	63
8.	List of Publications	64

INTRODUCTION

The effects of climatological variations on the consumption of water by plants is a well established phenomenon; indeed, a very wide range of research has substantiated that various parameters of the Astro-Meteorological factors and the agro-climatical variables have great influence on the water consumption of plants. It should be born in mind that the plants themselves, through their physiological habits and their normal growth, and the soil and water properties in which and under which these plants dwell, have certain effects on their demand for water. Today we tend to believe that even the method in which water is being applied to plants has a direct bearing on their water use, and this, without bringing into account water application efficiency practices. However, climatic variables have the greatest influence on the water use of cultivated crops. Though the Consumptive Use of a crop is defined as the total amount of moisture to be replenished to the soil to bring a crop to complete maturity, this term contains avoidable and unavoidable losses which the plants under normal cultivation enjoy no benefit from. We therefore prefer to segregate certain "losses" or water use by the plant, which governs its existence and which cannot be avoided, as the "Evapo-Transpiration" rate or sum per season. This is defined as the amount of moisture depleted from the ground by the plants which is transpired through its leaves and evaporated from the ground. Theoretically the Evapo-Transpiration could almost be considered as the only unavoidable moisture loss from the ground and could be termed as the net use by the plant.

Though many a scientist tried to give formulae and methods to establish the Evapo-Transpiration of plants under varied climatic conditions, three schools of thought are the better known: 1) Penman's Approach (Penman 1943) which fundamentally bases its calculations on the equations of Heat Balance and Diffusion; thereby getting the Potential Evaporation (this involves in addition to measurements of radiation, the measurements of air temperature, humidity,

velocity of wind and hours of bright sunlight). To obtain the Evapo-Transpiration, the Penman method utilizes certain empirical conversion indices which should convert the theoretical potential evaporation to an estimated Evapo-Transpiration of a crop. This method has gained great popularity among scientists, particularly due to the fact that it involves a very sound scientific basis. The greatest disadvantage of this method is that it involves laborious computations which put a bruden on agricultural practical research, but the greatest disadvantage, and this is the reason why some agricultural scientists have had to look for a different approach, is that it involves taking toll of Radiation measurements requireing special apparatus and skill in taking observations. For practical and common use in agriculture simpler methods are preferred. 2) The Thornthwalte method. It seems that in order to avoid difficult and often unobtainable measurements of vapour flux and heat balance, with all the complicated instrumentation involved under normal agricultural conditions, Thornthwaite suggested an empirical formula for any location on the Globe, at which maximum and minimum temperatures are recorded. It however brings into account I = a heat index which is a function of the monthly normal temperatures, and a = an empirically determined exponent which is a complicated function of I. The arithmetic solution of Thornthwaite's equation becomes very complicated and therefore, through the very fine work by Messrs. W.C. Palmer of the US Weather Bureau and A.V. Havens of Rutgers University, a graphical solution has been devised for this equation (April 1958). It was regretted that in his publication "The accuracy of meteorological estimates of Evapo-Transpiration in Arid Climates" (1961), Dr. G. Starkill came to a very definite conclusion that "Thornthwaite's fromula led to considerable underestimates of the amount of evapotranspiration". It was felt that under arid conditions where this formula is greatly needed (most underdeveloped countries are climatically arid), the Thornthwaite approach lacks the necessary accuracy. 3) The Blaney and Criddle formula. In their publication SCS-TP-96 1950, USDA, the authors suggested a very simple formula and procedure to determine consumptive use (in our case evapotranspiration) of crops from climatological data. It was made to work particularly in the Western States of the U.S. Results obtained

for seasonal allotments of water to crops have been satisfactory. This very useful information has numerous applications; for one, it puts the farm crops and the water supply (with all its hydraulic and mechanical facilities) on a common balance sheet. Of the important factors one can mention: What is the peak demand of a particular crop or set of crops? Can the irrigation system (pipes, sprinklers, canal maximum flows, etc.) stand up to this demand? For a given water supply, what extent of crop cultivation, both in acreage and period of seeding, can be successfully ventured? What is the basis of the design of the irrigation layout, storage, pumping, pipe and canal layout, type of application, etc. ?

It seemed to us that in their simple empirical equation, Messrs. Blaney & Criddle base their solution for estimating the evapotranspiration on mean temperatures and astro-geographical daylight hours, where many more simple agrometeorological factors could easily be brought into the formula (or into procedure of solution) to give a better and closer estimate for shorter and better suited critical periods of water use. Our study makes as accurate as possible measurements of moisture deficiencies in commerically grown crops with very accurate agrc-meteorological observations derived from STANDARD agro-meteorological stations situated at close proximity to our agricultural fields. The following illustration will summarize the aim of our research: assuming that we have reached through this research an improved formula or a better procedure to ascertain the moisture requirement of crops, and let us assume that in one of the less developed countries, say, India, Perisa or Central Africa, there are known results of an agro-meteorological station (or even some of the climatic data), it is our aim to estimate and foresee the extent of development of agriculture from a certain water supply, to lay foundations on the consumptive use, particularly in the critical period, and to provide design data as to the water demand that otherwise should be gotten through lengthy experimental repetitions where there is no past reliable experience.

- 3 -

.

It is a fact that the impetus to undertake a research on "Further studies of the Blaney & Criddle formula" has come from lack of reliable data for design of irrigation projects and irrigation engineering standards for better irrigation practices. This country is an example of the immense need to conserve water, to make sure that water is being used to its optimal rate and to check that none is being wasted. Winter floods and treated sewage are being directed and stored underground; city dwellers and industrial plants are rationed on their water consumption. No wonder therefore that the bulk of available water resources, from all sources, are intended for agricultural use. Having gone through an extensive study of our Hydro-Geological potential, our surface water resources, the return water from irrigation, sewage or any other conceivable source, we now see the final sum of how much water (on a yearly basis) there is to be used. By the year 1970 we hope that all this water will be put under control, either directly available for use, or stored underground for further use, and with the exception of new economical technological advances in the field of sea water desalting, we have nothing further to offer. It is therefore very important, and indeed the greatest task that faces us now in this field, to know, understand and properly apply water, soil and plant relationships to get optimal agricultural crops with the least amount of water.

In their formula U = KF, where U is the use of water in inches, K an empirical coefficient related to a certain crop (designates crop characteristics), F a sum of the monthly factors (f) for the season (sum of the products of mean monthly temperature (t) in Farenheit and monthly (p) percent of annual daytime hours). For shorter periods, Blaney & Criddle suggest u = kf which is the consumptive use in inches. For our conditions in this country as described above, and indeed in many parts of the arid undeveloped portions of the globe, we need a formula or at least a method, to determine short period consumptive use of plants. It seems that similar experience had been gained by Professor J. E. Christiansen of the Utah State University; in his letter to us dated October 2nd, 1962 he states "I found that the monthly values of k varied from a minimum of

- 4 -

0.84 to a maximum of 1.91". In a different portion of his letter he states "I have read your original letter with considerable interest because the objective in our research on evaporation and evapotranspiration is almost the same as yours - to develop a usable formula that will give more accurate results than the Blaney-Criddle formula". It only shows that this lack of usable formula requires a solution.

EXPERIMENTAL PROCEDURE

The basis of our investigations is that we enter into existing farms (or settlements) mostly in the arid sections of the country. We set up Standard Agro-Meteorological stations (details of which will be given later). We follow up practically the complete growth of all its crops (vegetable, industrial and fruit crops) with its past and present treatments, each crop with its specific recognized variables. Irrigation delivered (moisture added) by computing moisture deficiencies within the root zone, by sampling soil samples before and after irrigations, we have placed the emphasis on two distinct phases of research: 1. Crops have to be grown commercially (for many reasons). By growing crops commerically we do not mean that we enter a random farm with doubtful experience and check moisture deficiencies. What we do is to enter farms of considerable growing potential, high yields and superior practices, with a considerable degree of agricultural intelligence, that would grow for themselves commerically under the best practices through our complete moisture control. Farms are being selected in the arid portion of the country where water prices and water use practices are of great importance to them. The better and more efficient use of water is our joint interest. 2. We carry out agro-meteorological data concurrently and record through a standard, internationally recongnized practice, the normally recorded data. We believe in the concurrence of the observations to aid in a closer analytical processing of data relative to moisture demand and deficiencies of the crops grown. When we had to make the decision as to what climatological records are to be taken, we were faced with three

- 5 -

alternatives: a) to make the minimum number of variables, such as the temperatures only, or temperatures and a single additional variable; in this case we would have come back to some form of the Blaney Criddle formula with its limitations on its accuracy when computed for short period intervals. b) to indulge in rare and complicated instrumentations, of cosmic and radiation studies of the Penman vapor flux and energy heat balance, equipment and procedures cumbersome requiring highly skilled technicians seldom available in underdeveloped countries. c) to base the agro-meteorological studies on data normally obtained from standard agro-meteorological stations. The purpose in devising a standard layout for an agro-meteorological station was to lay a foundation for a standardized form of instrumentation and data recording so that it would serve agricultrual districts in crop production. Knowing in advance that some important areas of underdeveloped populations might lack some of this standard data taking, we have come to a conclusion that for once there is a standard layout for such a station, and in future such layout and data taking procedures would be the standard agro-meteorological practice. We have therefore decided to base all our climatic obervations on this.

The Agro-Meteorological stations have been set in accordance with the internationally accepted layout, and in cooperation with our well advanced Israel Meteorological Service, under their guidance and help with their punching cards and accumulation of data. We are grateful to our meteorological service for their cooperation.

True to our general conceptions we have set two experimental stations in arid sections of the country: 1) in the settlement of SAAD, situated on the western portion of the Arid Negev, close to the city of Gaza. The settlement consists of 190 grown up members, all belonging to a religious group. The total overall income of this community is about 2 million Israeli pounds per year. They possess about 2500 acres of dry farming (with supplemental irrigation), 50 acres of alfalfa, 300 acres of industrial crops, 250 acres of

- 6 -

assorted vegetables, 250 acres of plantations (citrus, and other fruit trees). The crops that have been selected for our observations included: Sugar beets, cotton, alfalfa, grapes, apples and plumps. 2) at <u>Nir Itzhak</u> on the South – western fringe of the country in a sandy and desert envirement, this remarkable settlement with its supperb and intelligent group of settlers has given us one of the most unique situations of an extremely high level of agricultural intelligence, under desert conditions with supperb crop results. Our observations here comprise five (5) crops: A lemon orchard, apricots, A vineyard, A field of Alfalfa and Ground-nuts.

Our third station Kefar Hayarok is an agricultural highschool in possession of 1000 acres of cultivated agricultural land. This establishment has placed at our disposal its entire farm facilities, buildings to house our laboratories and plots for sprinkle irrigation studies, to study consumptive use of: Apples, Peaches, Vineyard and Citrus Orchard.

Procedure in the fields: Close observations follow two main factors: the moisture changes as it appears primarily by soil samplings and the development and changes in the crop growth. For the moisture study we carried out preliminary investigations in each field to include: Moisture percentage at Field Capacity, volume-weight ratio at soil depths of 1 ft intervals (this was done by digging holes in the ground), samples have been brought to our central laboratory and physical and chemical analysis carried out, such as wilting percentage, % of salts, CaCO₃, Ph. Four holes and four sets of analysis have been carried out in each field. Further moisture studies have been taken at close proximity of these basic "holes".

As it is well known that the number of sample borings per observation are a function of the uniformity of the soil within the field, and having consulted specialist statisticians on the number of borings to be observed bearing in mind the small variance in soil characteristics, it has been decided to take moisture samples at six (6) locations in each field. Two sets of moisture observations

- 7 -

have been taken - one, a day prior to the irrigation, through which the study of the following irrigation has been computed and applied, and a second, 48 hours after application to ascertain and confirm the justifiable irrigation. Samples are taken at foot interval (subject to the depth of the root zone), weighed in our field laboratories before and after oven drying. It sould be noted that this was a highly labourious task requiring diligence and patience.

Two other independent methods verified the moisture-soil sampling results; one, water meters at the head of each plot and two, since all our fields (at least in Saad) and now in Nir Itshak and in Kefar Hayarok are sprinkle irrigated, the capacity of a sprinkler, a sprinkling line, spacing and pressure gave a proper counter check.

Moistrue study laboratory: The distance between our experimental sites and the Faculty Laboratory in Rehovot is considerable, we found it imperative, to have on each experimental site an individual local laboratory to determine soil moisture deficiencies. The laboratory consists of the following essential instruments: 1. Metler K automatic weighing scale, capable of measuring net soil weights. 1. electric soil oven (110°C), complete set of boring equipment. Field wooden cases containing 24 pre-weighed aluminium soil containers and other smaller instruments; The study of the soil structure and texture, which is performed at great intervals, these are performed in our Rehovot Base laboratory.

Although we have a Neutron device, we decided <u>not</u>to relax our gravimetric readings, and we duplicated each gravimetric by a Neutron study. We relaxed our gravimetric procedure only after two years when we were sure that with the Neutron we achieve at least as good results.

The observations over the crop growth have included the following: All the treatment of the soil, fertilization, vegetative developments and changes of the crops; in sugar beets the height of the plants, the <u>ratio between</u> the leaf area and the soil area, or L.A.I. probe, rootlets per unit area and

- 8 -

percentage of sugar. In alfalfa we observed the height of plants, height before cutting, average crop per cutting, interval between cuttings, and dry weight. In cotton we observed the average height of the plants, number of plants per unit length, distance between rows, approximate date of bloom, number of cotton balls per unit length, date of bursting of cotton ball. These indications have a direct bearing on the consumptive use of the respective plants. Similar typical observations were made on vegetables, fruit trees and other crops.

Procedure in our Agro-Meteorological Stations: In close proximity to each and every experimental area we erected, under the auspices and with the guidance of our Meteorological service, a Standard Agro-Meteorological Station. Each station consists of the following instruments: 1 Stevenson screen complete; 1 Dry Thermometer bulb placed in the screen; 1 Wet Bulb Thermometer with a cotton wick placed in the screen; 1 Maximum Thermometer placed in the screen; 2 Minimum Thermometers placed 1 inside the screen and 1 (a grass type) on the ground (outside the screen); 1 Thermograph placed in the screen; 1 Hygrograph placed in the screen; 1 Piche Evaporimeter placed in the screen; 1 Standard or recording rain gauge placed in the yard; 1 Standard Class "A" Pan property erected in the yard; 1 Anemometer mounted on a 3.5 m pole; 1 Wind Vane placed close to the anemometer; 4 thermometers to record temperatures at various depth of the soil; 1 Sunshine recorder based on a glass ball lens and paper strips capable of being burned; special radiation recording instruments are held by the Meteorological Service at several locations in the country, the recording of which are readily available to us.

All the instruments are checked and recorded three times daily, at 08.00, at 14.00 and at 20.00 daily. Field recording books and summation sheets are available daily and at the end of each month as required.

<u>The method of irrigation</u>: All our fields are sprinkler irrigated. Practically all the fields are night irrigated with low intensity irrigation of

- 9 -

about 6 mm per hour (the infiltration rate is two to three times as much). Irrigation by night avoids losses due to direct radiation and avoids harmfull wind distortions. The sprinkler pattern efficiency exceeds 90% by the Christiansen standard. Scheduling of irrigation times is pre-determined according to the best practices of each location, however, the amount of duty of water delivered at each irrigation, this is being computed carefully and checked by taking samples after irrigation (48 hours after application) to ascertain that no water is lost below the rooting zone. If water is lost below the rooting zone, this is being deducted from the effective water duty that has been applied. We do believe that under these conditions, and only under such conditions we could have a thorough control over our irrigation applications.

RESULTS AND ANALYSIS

The first step was to eliminate those data which were unsuitable for statistical analysis. These included figures for which the climate was not the dominating factor in affecting consumptive water use. Examples of discarded data were those obtained during periods of predetermined drought during the early spring when the plants had still not developed their leaves, and in cases where there was reason to believe that drainage water was included in the evapotranspiration figures.

Upon completion of eliminating unsuitable data, it was clear that although thousands of soil moisture determinations have been made, the number of reliable measurements of consumptive water use for a particular crop was not great. It was even necessary to exclude from the analysis crops for which the amount of data did not appear sufficient for making the statistical calculations. The data for the balance of the crops are presented in the accompanying tables. Each crop appears in a separate table, representing the results for each year of the study. See tables 1 - 15.

Table 1

- 11 -

Location: Saad Crop: Apples

No.	Date		Days	E.T. mm/day	Relative humidity	Direct sunlight	Wind Km/day	Mean daily temp.°C	E ⁰ Class A pan mm/day
	From	to		nun/ day	% hrs/day				
1	14.5.63	23.5.63	9	3,9	49,9	11,8	194	21,7	8,6
1 2	25.6.63	11.7.63	16	5,9 5,1	62,3	11,5	181	25,0	8,0
2	18.7.63	26.7.63	8	5,1	60,7	11,4	180	26,5	8,2
4	8.8.63	21.8.63	13	5,3	62,2	11,3	161	27,1	8,0
-	27.8.63	5.9.63	9	3,1	52,9	8,1	141	26,2	8,5
5 6	5.9.63	25.9.63	20	3,4	57,6	10,5	162	25,3	7,4
0 7	1.10.63	16.10.63	15	4,0	63,3	9,6	146	25,0	6,0
8	16.10.63	31.10.63	15	3,8	56,5	6,5	169	21,8	5,7
9	13.11.63	20.11.63	7	2,3	63,4	9,3	124	18,1	3,2
9	13.11.05	20.11.05	1						
10	1.7.64	8.7.64	7	5,4	63,1	12,0	136	20,1	7,2
11	8.7.64	13.7.64	5	5,5	64,4	12,3	140	24,0	8,8
12	20.7.64	27.7.69	7	4,8	69,5	12,2	120	25,8	7,8
13	27.7.64	3.8.64	7	4,0	69,3	11,7	127	25,3	9,5
14	12.8.64	18.8.64	6	4,5	63,5	14,0	126	20,4	5,5
15	6.10.64	12.10.64	6	4,5	64,5	10,0	122	17,7	4,2
16	1.10.64	6.10.64	5	5,4	60,7	10,2	159	21,1	3,2
17	12.10.64	22.10.64	10	4,3	73,9	8,9	99	21,8	3,7
18	5.4.65	14.4.65	9	2,1	60,9	8,4	135	16,0	4,6
19	10.5.65	17.5.65	7	3,7	65,1	12,6	139	18,5	6,6
20	17.5.65	27.5.65	10	4,5	57,6	12,1	152	20,6	8,3
21	27.5.65	1.6.65	5	4,7	53,9	12,1	155	23,9	9,3
22	9.6.65	21.6.65	12	5,1	50,7	12,5	147	24,8	8,5
23	29.6.65	13.7.65	14	6,0	66,7	12,4	161	24,7	7,9
24	20.7.65	27.7.65	7	4,4	61,8	12,3	155	24,9	9,6
25	27.7.65	1.8.65	5	5,7	60,2	12,6	136	25,1	7,5
26	10.8.65	22.8.65	12	5,6	69,2	11,5	126	25,3	7,0
27	29.8.65	14.9.65	16	4,3	67,9	11,5	122	23,9	6,2
28	14.9.65	21.9.65	7	3,7	69,1	8,6	130	24,3	5,8
29	29.9.65	31.10.65	23	3,2	62,7	8,4	123	20,9	4,6
	31.10.65	15.11.65	15	2,9	67,3	8,4	89	17,7	3,3

- -

the second s

- 12 -

Location: Saad Crop: Plums

No.	Dat	θ	Days	E.T. mm/day	Relative humidity	Direct sunlight	Wind Km/day	Mean daily	E ⁰ Class A pan
110.	From	to	Days		%	hrs/day	sun / uay	temp. oC	mm/day
1	4.6.63	10.6.63	6	6,6	49,3	8,0	189	25,5	8,6
2	18.6.63	2.7.63	14	5,9	60,4	11,5	167	24,7	8,1
3	15.8.63	27.8.63	12	3,9	59,3	11,3	150	27,1	7,9
4	27.8.63	13.9.63	17	4,5	57,5	10,5	148	26,1	7,2
5	26.9.63	8.10.63	12	3,6	61,7	9,5	142	25,2	6,7
6	8.10.63	7.11.63	30	2,9	60,4	7,9	167	22,3	5,4
7	7.11.63	18.11.63	11	2,1	65,8	9,4	117	18,5	3,3
8	9.6.64	15.6.64	6	4,0	66,2	13,0	135	25,1	6,8
9	25.6.64	28.6.64	3	5,5	67,5	12,2	88	23,6	6,5
10	28.6.64	8.7.64	10	4,8	64,8	12,1	168	23,6	7,0
11	5.7.64	13.7.64	8	4,0	64,5	12,1	169	23,5	8,1
12	13.7.64	20.7.64	7	3,8	69,6	12,0	137	24,2	8,2
13	20.7.64	27.7.64	7	3,2	69,5	12,2	132	25,0	7,8
14	18.8.64	14.9.64	27	2,9	65,9	11,2	127	24,8	5,8
15	1.10.64	22.10.64	21	2,0	67,7	9,0	115	21,5	3,9
16	3.11.64	9.11.64	6	1,7	68,9	7,5	99	18,8	3,3
17	5.4.65	14.4.65	9	4,6	60,9	8,4	135	16,0	4,6
18	17.4.65	3.5.65	17	5,0	60,3	10,5	166	18,4	5,3
19	17.5.65	1.6.65	15	5,7	56,4	12,1	153	21,7	7,9
20	14.6.65	29.6.65	15	5,3	61,5	12,7	149	23,7	7,8
21	13.7.65	18.7.65	5	4,6	58,6	12,6	152	23,0	7,5
22	20.7.65	3.8.65	14	4,0	62,3	12,5	144	24,8	7,8
23	8.9.65	19.9.65	14	3,0	71,9	11,0	123	24,5	6,0
24	19.9.65	29.9.65	10	2,7	62,9	8,6	115	23,2	5,9
25	21.10.65	31.10.65	10	2,1	63,0	7,0	135	18,5	3,7
26	31.10.65	9.11.65	9	2,0	61,0	8,5	97	18,3	3,8
-									

Location: Saad Crop: Grapes

No.	Dat	Date		E.T. mm/day	Relative humidity	Direct sunlight	Wind Km/day	Mean daily	E ⁰ Class A pan
	From	to	Days		%	hrs/day		temp. oC	mm/day
1	23.5.63	6.6.63	14	3,5	51,2	8,4	203	20,0	8,5
2	6.6.63	18.6.63	12	3,8	55,6	10,5	184	23,5	8,5
3	18.6.63	4.7.63	16	3,7	56,2	11,3	171	24,8	8,1
4	11.7.63	15.8.63	35	4,4	63,9	11,4	173	26,5	7,8
5	5.9.63	26.9.63	21	4,4	57,4	10,5	164	25,2	7,4
6	26.9.63	8.10.63	12	3,4	61,7	10,3	142	25,2	5,6
7	8.10.63	16.10.63	8	2,4	60,1	8,9	142	24,7	5,4
8	13.11.63	17.11.63	4	2,3	64,5	7,4	122	17,4	3,1
9	22.6.64	28.6.64	6	2,8	67,6	12,0	128	23,1	8,5
10	28.6.64	8.7.64	10	3,0	58,2	12,0	136	23,7	8,4
11	8.7.64	13.7.64	5	2,9	64,4	12,3	115	28,8	8,5
12	13.7.64	16.7.64	3	2,7	68,0	12,4	131	24,0	8,2
13	20.7.64	23.7.64	3	3,1	72,7	12,1	123	26,7	8,0
14	20.7.64	27.7.64	7	3,3	69,5	12,2	120	25,9	7,8
15	3.8.64	12.8.64	9	3,7	68,9	11,8	137	24,5	7,1
16	12.8.64	25.8.64	13	4,2	68,1	11,5	123	24,7	6,8
17	25.8.64	2.9.64	8	3,6	62,8	11,3	126	24,7	5,8
18	2.9.64	10.9.64	8	4,1	65,2	15,2	151	27,3	6,9
19	23.9.64	6.10.64	13	3,2	65,2	10,2	171	21,6	5,1
20	5.4.65	14.4.65	9	2,6	60,9	8,4	135	16,0	4,6
21	24.4.65	27.4.65	3	3,7	18,9	10,0	206	24,6	6,4
22	10.5.65	17.5.65	7	2,5	65,1	12,6	139	18,5	6,6
23	27.5.65	1.6.65	5	3,7	53,9	12,1	155	23,9	9,3
24	9.6.65	14.6.65	5	3,0	40,3	12,1	132	26,7	8,9
25	21.6.65	29.6.65	8	3,1	66,3	12,6	145	23,9	7,3
26	20.7.65	25.7.65	5	3,3	26,9	12,2	162	24,8	7,5
27	25.7.65	3.8.65	9	3,4	60,9	12,7	127	24,9	8,0
28	3.8.65	10.8.65	7	4,0	70,8	11,7	124	25,4	7,6
29	22.8.65	24.8.65	2	4,5	70,6	10,4	127	25,7	6,7
30	12.9.65	21.9.65	9	3,2	69,8	9,2	127	24,4	5,7
31	21.10.65	31.10.65	10	3,6	63,0	7,0	135	18,5	3,7
32	9.11.65	15.11.65	6	2,4	76,6	9,7	76	16,7	2,5

Location: Saad Crop: Cotton

No.	Dat	Date		E.T.	Relative	Direct	Wind	Mean	E
No.	From	to	Days	mm/day	humidity %	sunlight hrs/day	Km/day	daily temp. °C	Class A pan mm/day
				_					
1	13.6.63	18.6.63	5	4,4	57,6	12,2	178	23,0	8,6
2	18.6.63	23.6.63	5	4,3	53,6	11,2	163	24,7	8,9
3	2.7.63	7.7.63	5	4,8	59,7	10,0	211	25,4	8,4
4	16.7.63	22.7.63	6	5,4	58,9	11,6	178	26,4	8,7
5	31.7.63	9.8.63	9	5,1	66,9	10,9	168	26,9	6,7
6	18.8.63	25.8.63	7	4,0	61,2	11,4	153	27,3	8,2
7	25.8.63	1.9.63	7	5,1	62,3	11,0	151	26,9	9,2
8	1.9.63	9.9.63	8	4,2	61,3	10,4	150	25,9	7,1
9	28.6.64	1.7.64	3	3,6	69,1	11,9	136	24,3	7,0
10	1.7.64	8.7.64	7	3,8	63,0	12,0	136	23,3	7,2
11	16.7.64	20.7.64	4	3,3	70,9	11,7	127	24,4	8,2
12	20.7.64	27.7.64	7	3,5	69,5	12,2	120	25,9	7,8
13	27.7.64	30.7.64	3	5,7	69,9	11,7	125	25,4	7,1
14	30.7.64	3.8.64	4	5,1	68,8	11,7	128	25,2	7,1
15	2.9.64	14.9.64	12	3,3	64,2	12,3	128	23,9	6,6
16	14.9.64	1.10.64	17	2,5	65,1	9,5	131	22,4	6,1
17	21.6.65	29.6.65	8	5,0	66,3	12,0	145	23,9	7,3
18	20.7.65	25.7.65	5	5,8	62,9	12,2	162	24,8	7,5
19	3.8.65	10.8.65	7	6,1	70,8	11,7	124	25,4	7,6
20	15.8.65	24.8.65	9	5,0	71,1	10,8	122	25,8	6,5
20	24.8.65	31.8.65	7	5,1	66,2	11,8	132	24,7	6,9
22	31.8.65	7.9.65	7	3,3	66,0	11,7	125	23,5	6,3
22	12.9.65	19.9.65	7	2,5	73,0	9,3	130	24,8	6,0

- 14 -

Location: Nir Yitzhak Crop: Alfalfa

	Da	te		E.T.	Relative	Direct	Wind	Mean	Eo
No.	From	to	Days	mm/day	1977	sunlight hrs/day	Km /day	daily temp. °C	Class A pan mm/day
1	4.4.63	16.4.63	12	5,6	55,3	8,4	259	18,5	5,6
2	16.5.63	21.5.63	5	7,0	49,3	10,6	158	18,5	8,3
3	6.6.63	13.6.63	7	6,8	53,4	9,4	171	23,9	8,5
4	19.6.63	25.6.63	6	7,4	63,9	11,2	150	23,2	7,3
5	28.7.6	29.7.63	1	7,0	67,3	12,0	147	26 U	9,5
	29.7.63	5.8.63							
6				7,4	68,6	10,6	142	27,1	8,6
7	9.8.63	17.8.63	8	7,9	62,7	11,2	143	27,3	8,07
8	1.10.63	8.10.63	7	6,5	67,3	10,3	113	24,9	5,7
9	12.10.63	24.10.63	12	5,5	64,9	7,0	130	24,4	4,6
10	26.4.64	29.4.64	3	5,3	52,7	7,3	118	20,5	6,0
11	6.5.64	24.5.64	18	5,6	52,7	11,5	129	18,2	6,5
12	3.6.64	14.6.64	11	6,2	49,2	13,3	133	23,8	8,4
13	14.6.64	24.6.64	10	7,0	64,1	12,3	126	21,2	7,0
14	5.7.64	12.7.64	7	6,0	56,4	12,3	141	24,4	7,7
15	12.7.64	26.7.64	14	6,2	66,1	12,3	129	21,3	7,3
16	26.7.64	2.8.64	7	5,7	65,0	11,5	120	25,6	7,0
17	2.8.64	3.9.64	30	5,4	68,7	11,3	122	26,1	7,4

Location:	Nir Yizthak
Crop:	Peanuts

	Dat	e		E.T.	Relative	Direct	Wind	Men	Eo
No.	From	to	Days	mm/day	humidity %	sunlight hrs/day	Km/day	daily temp. °C	Class A pan mm/day
1	5.7.63	8.7.63	3	5,1	65,6	11,3	178	25,6	8,0
2	12.7.63	15.7.63	3	6,0	64,6	12,5	150	25,6	8,2
3	15.7.63	23.7.63	÷ 8	6,0	62,3	11,4	164	26,8	8,3
4	5.8.63	10.8.63	5	4,6	69,7	11,3	145	27,0	7,9
5	13.8.63	18.8.63	5	4,7	62,1	11,1	130	27,5	7,8
6	21.6.64	29.6.54	8	5,3	66,2	12,2	123	23,8	7,0
7	8.7.64	20.7.64	12	6,7	01,8	12,3	129	24,5	7,3
8	22.7.64	27.7.64	5	6,5	65,5	11,5	120	26,1	7,00
9	28.7.64	3.8.64	6	5,3	66,5	11,1	125	20,7	7,1
10	5.8.64	10.8.64	5	4,0	68,0	11,1	145	25,3	7,2
11	19.8.64	24.8.64	5	4,1	69,4	10,5	107	25,9	6,3
12	25.6.65	30.6.65	5	6,3	60,7	12,5	107	24,8	7,4
13	1.7.65	7.7.65	6	6,3	66,7	12,8	996	25,2	6,9
14	8.7.65	14.7.65	6	6,8	63,0	12,7	154	26,3	7,1
15	5.8.65	18.8.65	13	5,1	68,5	11,7	115	25,5	6,8
16	19.8.65	1.9.65	13	4,6	66,7	11,3	111	25,3	6,6
17	9.9.65	15.9.65	6	4,2	67,1	10,3	111	24,9	6,1

- 16 -

~

Location: Nir Yizthak

Crop:

Lemons

	Da	te		E.T.	Relative humidity	Direct sunlight	Wind	Mean daily	E ⁰ Class A pan
No.	From	to	Days	mm/day	%	hrs/day	Km/day	temp. °C	mm/day
1	6.3.63	23.3.63	17	3,4	63,7	7,2	180	13,9	4,2
2	4.5.63	14.5.63	10	3,3	58,0	8,9	191	20,4	7,8
3	14.5.63	26.5.63	12	3,3	44,4	9,0	191	21,4	8,5
4	2.6.63	24.6.63	22	4,4	55,8	10,8	158	26,0	8,2
5	21.7.63	8.8.63	19	3,8	71,2	11,0	153	26,8	8,5
6	12.9.63	27.9.63	15	3,5	60,9	11,1	133	24,8	6,5
7	4.10.63	29.10.63	25	2,2	67,6	8,0	118	24,1	4,5
8	16.4.64	20.4.64	4	3,2	61,5	11,2	165	16,0	5,4
9	24.4.64	27.4.64	3	2,8	39,0	10,3	117	21,5	8,1
10	15.6.64	25.6.64	10	4,7	64,7	12,2	125	23,7	7,30
11	29.6.64	2.7.64	3	4,3	51,9	12,1	121	25,2	8,60
12	6.7.64	14.7.64	8	3,5	58,0	12,4	144	24,3	7,50
13	28.7.64	21.8.64	7	2,9	66,0	11,3	125	26,1	7,20
14	4.8.64	25.8.64	21	2,1	64,6	10,3	121	25,5	6,90
15	4.9.64	22.9.64	18	3,7	65,4	9,1	119	23,1	6,0
16	11.4.65	18.4.65	7	3,9	55,0	10,8	134	18,4	6,3
17	18.4.65	28.4.65	10	3,7	31,0	10,5	148	24,5	9,9
18	2.5.65	9.5.65	7	2,4	46,7	11,4	134	19,6	6,8
19	24.5.65	30.5.65	6	3,2	43,5	12,3	109	24,0	7,7
20	7.6.65	13.6.65	6	3,0	48,4	12,1	102	26,4	7,9
21	4.7.65	11.7.65	7	3,3	64,7	12,5	106	26,2	7,0
22	11.7.65	14.7.65	3	3,2	61,6	12,1	209	24,7	8,3
23	18.7.65	21.7.65	3	3,1	55,6	13,0	121	25,1	9,0
24	21.7.65	25.7.65	4	4,6	69,6	12,0	109	24,9	7,5
25	28.7.65	1.8.65	4	5,4	66,3	12,5	124	25,9	8,1 7,1
26	1.8.65	4.8.65	3	2,7	.69,4	12,8	113 115	24,4	6,8
27	4.8.65	18.8.65	14	2,8	68;5	11,6	107	25,5	6,6
28	18.8.65	22.8.65	4	2,6	72,3	10,9	119	23,9	6,6
29	29.8.65	1.9.65	3	3,9	56,1 67,0	12,0	116	23,7	6,3
30	1.9.65	5.9.65	47	2,5	72,1	10,6	139	24,8	6,1
31	8.9.65		4	2,4	74,8	10,6	116	24,9	5,9
32 33	15.9.65	19.9.65	3	2,2	73,9	11,5	129	24,4	6,0
				,					

Location: Nir Yizthak Crop: Grapes

	Dat	9	E.T. Days mm/da	E.T.	Relative humidity	Direct sunlight	Wind	Mean daily	E ⁰ Class A pan
No.	From	to	Days	mm/day	%	hrs/day	Km /day	temp.	mm/day
1	11.5.63	17.5.63	j	3,1	42,3	9,1	179	21,8	8,8
2	11.6.63	25.6.63	14	3,0	58,3	11,8	154	23,5	8,1
3	23.7.63	8.8.63	16	3,0	6 6,8	11,2	144	26,8	8,5
4	7.9.63	16.9.63	9	2,6	63,8	10,7	126	25,6	6,6
5	12.4.64	19.4.64	7	2,5	59,4	12,0	161	16,8	5,3
6	22.4.64	29.4.64	7	2,6	55,1	10,1	123	19,0	5,8
7	3.5.64	6.5.64	3	2,8	63,5	10,2	118	16,8	5,4
8	13.5.64	20.5.64	7	3,8	63,1	12,0	134	18,3	6,6
9	26.5.64	31.5.64	5	3,3	31,2	12,2	129	25,8	8,0
10	31.5.64	3.6.64	3	3,0	57,7	12,3	121	24,3	7,4
11	3.6.64	10.6.64	7	3,0	54,6	13,0	132	22,8	7,8
12	10.6.64	14.6.64	4	3,8	39,8	13,2	135	24,9	9,1
13	17.6.64	21.6.64	4	3,7	62,4	12,2	115	24,4	7,2
14	28.6.64	19.7.64	21	4,4	58,1	12,4	131	24,5	7,6
15	14.7.64	21.7.64	7	3,4	67,2	12,2	129	24,6	7,3
16	4.8.64	17.8.64		3,9	62,7	11,3	129	25,1	7,2
17	17.8.64	26.8.64	9	4,6	67,5	11,2	109	26,1	6,3
18	22.3.65	18.4.65	27	2,8	60,4	8,8	135	16,4	4,6
19	18.4.65	28.4.65	10	2,5	31,0	10,5	148	24,5	9,9
20	28.4.65	2.5.65	1	2,8	65,2	10,3	123	17,2	5,1
21	16.5.65	24.5.65	1	4,3	60,5	12,5	124	20,5	6,1
22	30.5.65	13.6.65	1	5,4	54,5	11,3	104	24,9	7,6
23	13.6.65	23.6.65		4,7	54,1	12,7	122	24,5	9,5
24	30.6.65	11.7.65	•	3,8	64,9	12,6	105	25,7	7,1
25	11.7.65	18.7.65		3,6	63,8	12,5	166	23,9	7,9
26	18.7.65	25.7.65		3,2	66,8	12,4	113	24,9	8,1
27	-28.7.65	1.8.65	4	3,8	66,3	12,5	124	25,9	8,1
28	1.8.65	4.8.65	3	4,9	69,4	12,8	113	24,4	7,1
29	4.8.65	18.8.65	1	4,4	68,5	11,6	115	25,5	6,8
30	18.8.65	22.8.65		2,5	72,3	10,9	107	26,1	6,6
31	22.8.65	25.8.65	1	2,8	70,1	10,4	114	26,1	6,6
32	25.8.65	29.8.65		2,9	65,6	11,7	112	25,0	6,8
33	1.9.65	5.9.65		3,1	67,0	11,7	116	23,7	6,3
34	8.9.65	12.9.65	4	3,1	71,2	11,0	110	24,7	6,9
35	12.9.65	15.9.65	1	2,5	74,2	11,0	114	25,1	5,2
36	15.9.65	19.9.65		3,2	74,8	10,6	116	24,9	5,9

Location:	Nir	Yizthak
Crop:	Peac	h

	Da	ıte		E.T.					Eo
No.	From	to	Days	mm/day	Relative humidity %	Direct sunlight hrs/day	Wind Km/day	Mean daily temp. °C	E Class A pan mm/day
1	24.3.63	27.4.63	34	3,3	54,5	8,3	208	19,1	6,0
2	15.5.63	20.5.63	5	5,4	46,9	10,5	153	18,8	7,9
3	12.8.63	1.9.63	20	5,4	63,7	11,2	136	27,1	7,6
4	6.4.64	13.4.64	4	2,6	52,1	8,3	168	16,5	6,0
5	27.4.64	4.5.64	7	4,2	63,3	9,4	155	16,9	5,7
6	11.5.64	14.5.64	3	4,2	58,6	11,8	101	17,3	6,4
7	14.5.64	21.5.64	7	4,0	63,3	12,0	137	18,7	5,5
8	21.5.64	25.5.64	4	3,4	64,2	11,7	127	14,7	6,6
9	25.5.64	28.5.64	3	3,8	44,8	12,3	120	21,6	8,2
10	8.6.64	11.6.64	3	4,5	52,9	13,2	135	23,6	8,4
11	18.6.64	22.6.64	4	5,3	65,1	12,2	123	23,9	7,2
12	6.7.64	13.7.64	7	6,6	57,8	12,3	144	24,5	7,5
13	21.7.64	28.7.64	7	6,0	56,4	12,5	110	25,8	6,6
14	26.8.64	23.9.64	28	5,0	64,3	13,4	112	23,0	6,3
15	23.9.64	9.10.64	16	3,5	63,6	12,2	110	20,4	5,2
16	11.4.65	18.4.65	7	5 ,1	55,0	10,8	134	18,4	6,3
17	18.4.65	28.4.65	10	5,6	31,0	10,5	148	24,5	9,9
18	24.5.65	7.6.65	14	5,7	53,1	12,3	107	23,8	7,5
19	30.6.65	11.7.65	11	5,6	52,9	12,6	105	25,7	7,2

- 19 -

Location: Kefar Havarck Crop: Plums

	Da	te	Days	E.T.	Relative humidity	Direct sunlight	Wind Km/day	Mean daily	E ⁰ Class A pan
No.	From	to	Days	mm/day	%	hrs/day	MIY DEY	temp. °C	mm, day
1	13.4.64	23.4.64	10	4,3	69,0	10,5	230	14,9	4,9
2	12.6.64	21.6.64	9	6,2	66,3	12,0	200	23,2	8,1
3	1.7.64	14.7.64	13	3,0	65,7	12,4	205	24,5	7,3
4	22.7.64	6.8.64	15	3,6	70,8	11,4	190	23,5	7,1
5	3.9.64	9.9.64	6	3,8	67,2	10,3	176	24,7	6,3
6	22.9.64	29.9.64	7	3,3	68,3	8,0	194	23,1	6,2
7	8.10.64	15.10.64	7	2,2	65,7	9,6	169	21,8	4,4
8	28.10.64	12.11.64	15	2,1	65,2	8,3	146	19,5	5,6
-									
9	7.4.65	15.4.65	8	4,8	55,5	7,2	179	17,6	5,4
10	29.4.65	7.5.65	8	3,5	61,0	9,6	222	18,4	5,9
11	4.6.65	10.6.65	6	5,0	69,6	11,1	172	23,7	8,1
12	15.7.65	19.7.65	4	5,7	64,6	12,0	199	24,5	7,9
13	22.7.65	26.7.65	4	6,2	75,6	10,9	172	24,8	7,0
14	26.7.65	29.7.65	3	5,2	67,0	12,0	183	25,2	7,6
15	29.7.65	2.8.65	4	5,1	66,0	11,3	176	26,3	7,3
16	19.8.65	26.8.65	7	5,6	66,5	10,8	184	26,3	8,0
17	26.8.65	30.8.65	4	3,9	55,5	11,0	194	25,4	8,2
18	30.8.65	6.9.65	7	3,6	59,4	10,9	183	24,6	6,8
19	13.9.65	20.9.65	7	2,4	71,2	8,9	191	25,5	6,1
20	19.10.65	28.10.65	9	2,3	58,3	8,2	190	19,9	4,2
21	28.10.65	11.11.65	14	2,8	56,5	8,4	151	19,5	4,1

Location: Kefar Hayarok Crop: Oranges

7	Da	te	Days	E.T.	Relative		Wind	Mean	Eo
No.	From	to	Days	mm/day	humidity %	sunlight hrs/day	Km /day	daily temp. °C.	Class A pan mm/day
1	6.4.64	14.4.64	11	2,0	68,2	10,5	252	15,7	4,7
2	27.5.64	2.6.64	6	3,4	56,2	12,0	195	25,4	11,3
3	17.6.64	24.6.64	7	3,6	70,2	11,6	199	23,5	7,7
4	24.6.64	20.7.64	26	4,1	67,5	12,1	198	24,3	7,4
5	20.7.64	13.8.64	24	3,9	70,3	11,5.	184	25,0	7,1
6	17.9.64	24.9.64	7	2,5	63,7	10,1	172	23,4	5,9
7	24.9.64	29.9.64	5	1,7	56,5	9,4	193	22,9	6,3
8	7.4.65	15.4.65	8	2,6	55,5	7,2	179	17,6	5,4
9	13.5.65	21.5.65	8	2,9	64,3	11,8	250	20,3	7,3
10	15.7.65	22.7.65	7	3,0	69,7	12,2	189	24,6	8,0
11	22.7.65	2.8.65	11	3,1	66,8	11,2	176	25,5	7,3
12	12.8.65	16.8.65	4	3,9	62,2	11,6	196	25,9	8,3
13	16.8.65	23.8.65	7	3,9	67,8	10,5	180	26,2	7,3
14	30.8.65	2.9.65	3	3,9	51,3	11,4	196	24,2	7,7
15	13.9.65	20.9.65	7	3,1	71,2	8,9	191	25,5	6,1
16	20.9.65	30.9.65	10	3,6	66,3	9,5	176	23,7	5,8
17	29.10.65	7.11.65	9	2,3	46,1	8.5	157	20,1	4,3

Location: Kefar Hayarok Crop: Grapefruit

No.	Date		Days	E.T.	Relative humidity	aunlight	Wind	Mean daily	E ⁰ Class A pan
	From	to	Days	mm/day	76 100	hrs/day	Km /day	temp. °C	mm/day
1	5.5.64	13.5.64	8	3,4	64,9	10,7	240	17,4	6,1
2	13.5.64	26.5.64	13	2,8	66,0	11,7	224	17,6	6,8
3	25.6.64	13.8.64	49	4,1	68,9	11,8	192	24,7	7,2
4	19.8.64	3.9.64	15	2,8	66,0	11,5	188	25,1	7,00
5	29.9.64	8.10.64	9	2,7	53,7	9,5	225	19,3	6,4
6	8.10.64	15.10.64	7	2,3	65,7	9,6	169	21,8	4,4
7	7.4.65	15.4.65	8	2,9	56,5	7,2	179	17,6	5,4
8	15.4.65	29.4.65	14	2,3	55,2	9,6	189	20,4	5,7
9	7.5.65	13.5.65	6	3,0	60,0	12,1	184	16,8	6,4
10	13.5.65	20.5.65	7	2,4	63,6	12,0	269	19,8	6,9
11	16.6.65	28.6.65	12	3,2	62,1	9,7	196	23,9	8,0
12	15.7.65	22.7.65	7	2,3	69,7	12,2	189	24,6	8,0
13	26.7.65	2.8.65	7	4,6	66,5	11,4	179	25,8	7,5
14	12.8.65	19.8.65	7	5,1	64,2	11,5	188	26,0	7,9
15	19.8.65	23.8.65	4	4,0	68,5	10,2	181	26,3	7,3
16	30.8.65	6.9.65	7	2,7	59,4	10,9	183	24,6	6,8
17	16.9.65	30.9.65	14	2,1	66,7	8,5	176	24,1	5,8
18	19.10.65	29.10.65	10	3,6	56,8	8,2	185	19,8	4,5
19	29.10.65	7.11.65	9	3,1	46,1	8,5	157	20,1	4,3

- 22 -

.

Location: Kefar Hayarok Crop: Grape

-

No.	Date		D	E.T.	Relative		Wind	Mean	E
	From	to	Days	mm/day	humidity %	sunlight hrs/day	Km /day	daily temp. oC	Class A pan mm/day
1	19.4.64	4.5.64	15	1,8	60,0	11,0	215	17,1	6,3
2	4.5.64	10.5.64	6	1,8	63,5	11,1	222	17,7	6,3
3	21.5.64	31.5.64	. 10	2,8	60,0	13,0	206	22,5	9,2
4	31.5.64	10.6.64	10	1,8	66,6	12,3	216	22,1	7,4
5	18.6.64	2.7.64	14	3,8	69,4	11,5	143	23,9	7,5
6	14.7.64	19.8.64	34	1,9	73,3	11,8	195	25,7	7,6
7	14.8.64	24.8.64	5	2,0	70,7	11,3	173	25,5	6,3
8	24.9.64	29.9.64	5	1,8	57,6	9,4	193	23,0	6,3
9	15.10.64	28.10.64	13	2,2	61,9	9,2	164	22,2	5,1
10	7.4.65	15.4.65	8	1,6	55,5	7,2	179	17,6	5,4
11	15.4.65	29.4.65	14	2,8	55,2	9,6	189	20,4	5,7
12	7.5.65	13.5.65	6	2,2	60,0	12,1	184	16,8	6,4
13	20.5.65	2.6.65	13	2,2	69,4	10,2	164	22,0	6,1
14	2.6.65	15.6.65	13	3,2	69,7	10,4	183	24,6	8,4
15	15.6.65	28.6.65	13	2,7	62,0	9,7	197	23,9	8,0
16	19.7.65	2.8.65	14	4,5	70,4	11,5	176	25,3	7,5
17	23.8.65	30.8.65	7	4,8	59,1	11,2	192	25,7	6,8
18	6.9.65	16.9.65	10	4,2	71,3	9,8	175	24,9	6,9
19	13.9.65	20.9.65	7	3,6	71,2	8,9	191	25,5	6,1
20	19.10.65	3.11.65	15	2,3	55,6	8,4	184	19,5	4,4
21	3.11.65	7.11.65	4	3,0	43 ,0	8,1	126	21,9	4,4

- 10-10

Location:	Kefar	Hayarok
Crop:	Apples	

No.	Date			E.T.	Relative	Direct	Wind	Mean	E
	From	to	Days	mm/day	humidity %	sunlight hrs/day	Km/day	daily temp. °C	Class A pan mm/day
1	7.4.65	15.4.65	8	3,9	55,5	7,2	179	17,6	5,4
2	10.6.55	15.6.65	5	5,3	58,1	9,3	201	27,0	9,1
3	12.7.65	15.7.65	3	5,0	54,3	11,9	304	24,5	6,8
4	15.7.65	22.7.65	7	4,6	69,7	12,2	189	24,6	8,0
5	12.8.65	16.8.65	4	3,5	62,2	11,6	196	25,9	8,3
6	30.8.65	6.9.65	7	3,7	59,4	10,9	183	24,6	6,8
7	20.9.65	19.10.65	39	2,4	62,5	8,6	167	22,8	4,8
8	19.10.65	28.10.65	9	2,5	58,3	8,4	190	19,9	4,2
9	3.11.65	7.11.65	10	3,0	43,0	8,1	126	21,9	4,4
10	7.11.65	16.11.65	9	2,5	69,6	8,2	150	17,7	2,9

1 106 7

Location: Yotvata Crop: Grape

No.	Date		Days	E.T.	Relative humidity	Direct sunlight	Wind	Mean daily	E ⁰ Class A
	From	to	Days	mm/day	%	hrs/day	Km /day	temp. °C	pan mm/day
1	21.2.65	3.3.65	10	3,1	42,8	10,0	170	16,2	6,4
2	4.3.65	21.3.65	17	4,4	26,1	8,6	220	19,7	8,5
3	22.3.65	4.4.65	12	5,4	37,1	7,9	171	18,7	6,4
4	6.4.65	22.4.65	16	6,0	29,0	6,3	203	21,4	10,2
5	25.4.65	4.5.65	9	5,9	29,4	8,9	222	24,6	11,2
6	7.5.65	16.5.65	9	5,8	26,2	11,4	196	23,6	10,3
7	17.5.65	21.5.65	4	8,3	24,3	11,5	302	25,2	12,5
8	24.5.65	4.6.65	11	6,9	20,0	11,2	212	30,2	15,0
9	12.7.65	22.7.65	10	7,3	25,2	11,6	197	30,7	14,5
10	25.7.65	4.8.65	10	6,1	20,2	11,7	155	32,3	13,8
11	5.8.65	16.8.65	11	5,2	23,9	11,3	228,0	31,2	15,0
12	18.8.65	5.9.65	18	5,0	32,0	11,2	235	30,5	12,3
13	16.9.65	26,9,65	10	4,5	38,9	9,7	197	29,9	9,9

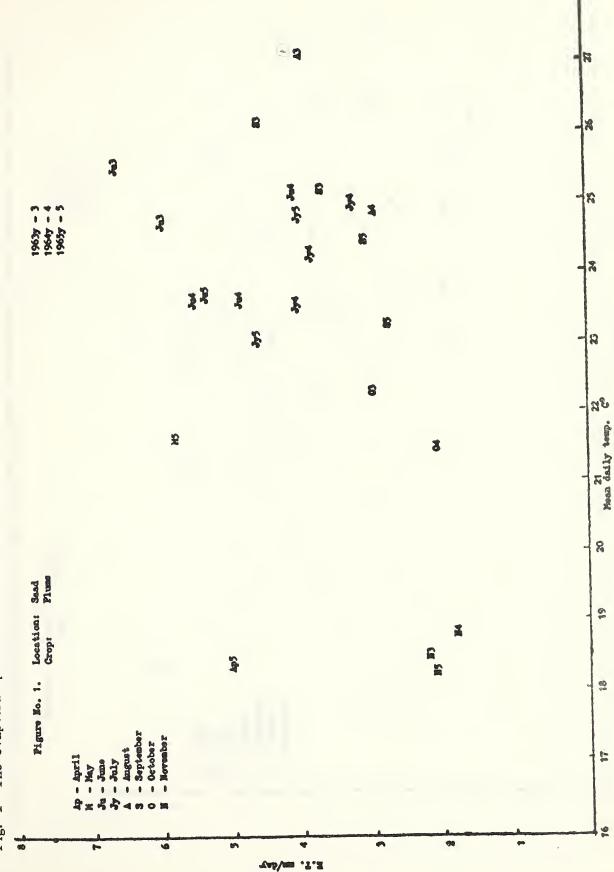
.

Т

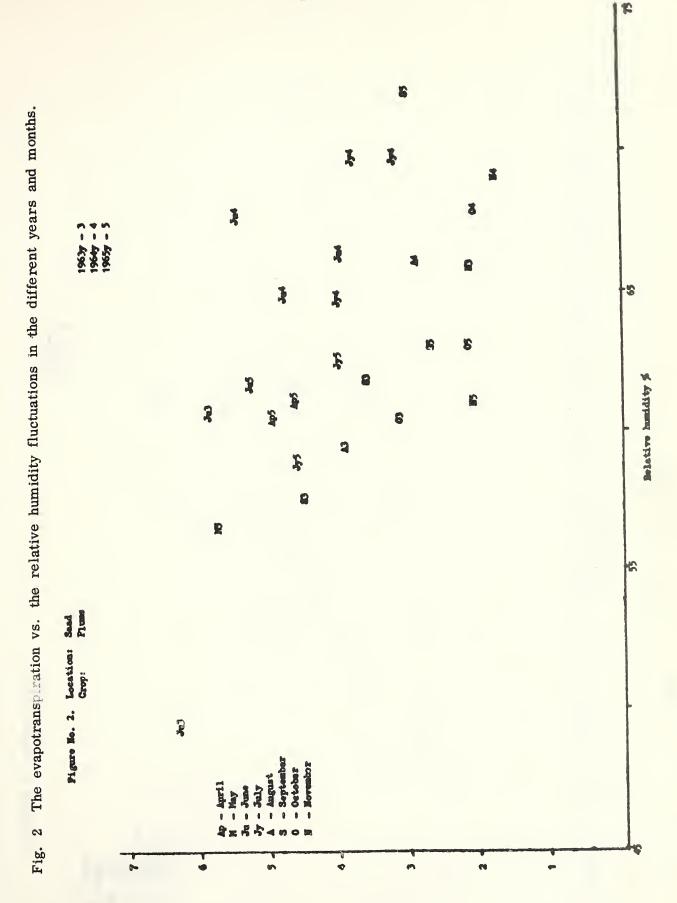
The data in the tables for the different crops are presented according to periods and include the following information:

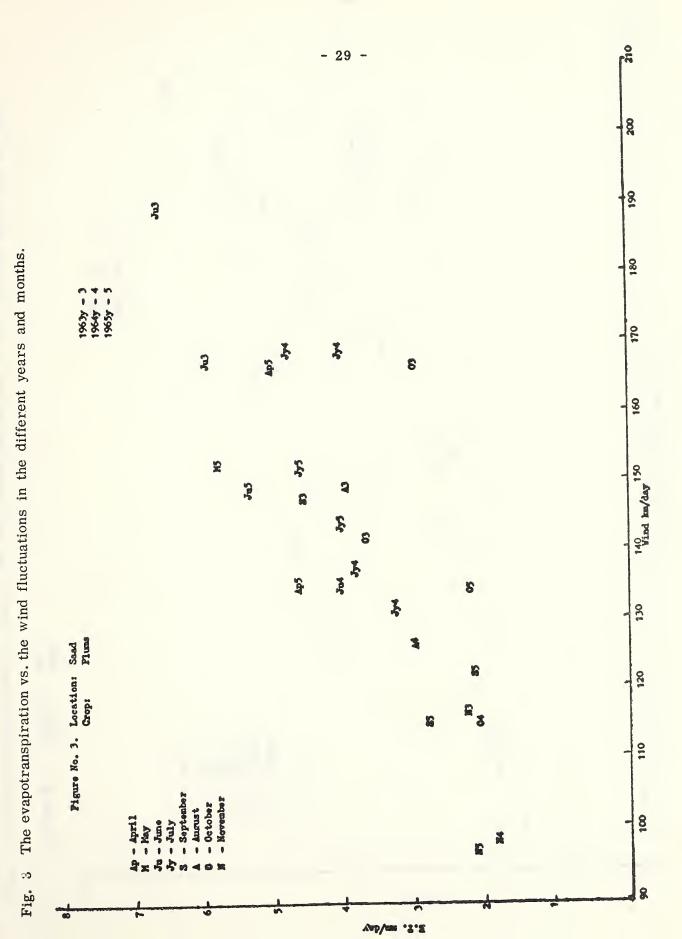
- 1. period studied
- average daily evapotranspiration for the period Et in whole numbers including the first digit after the decimal point.
- average daily temperature, in degree Centrigrade T in whole numbers including the first digit after the decimal point.
- 4. average relative humidity, in percent H in whole numbers including the first digit after the decimal point.
- daily wind distance, in kilometers W in whole numbers including the first digit after the decimal point.
- average daily hours of sunshine S in whole numbers including the first digit after the decimal point.
- 7. daily evaporation from Class A evaporation pan.

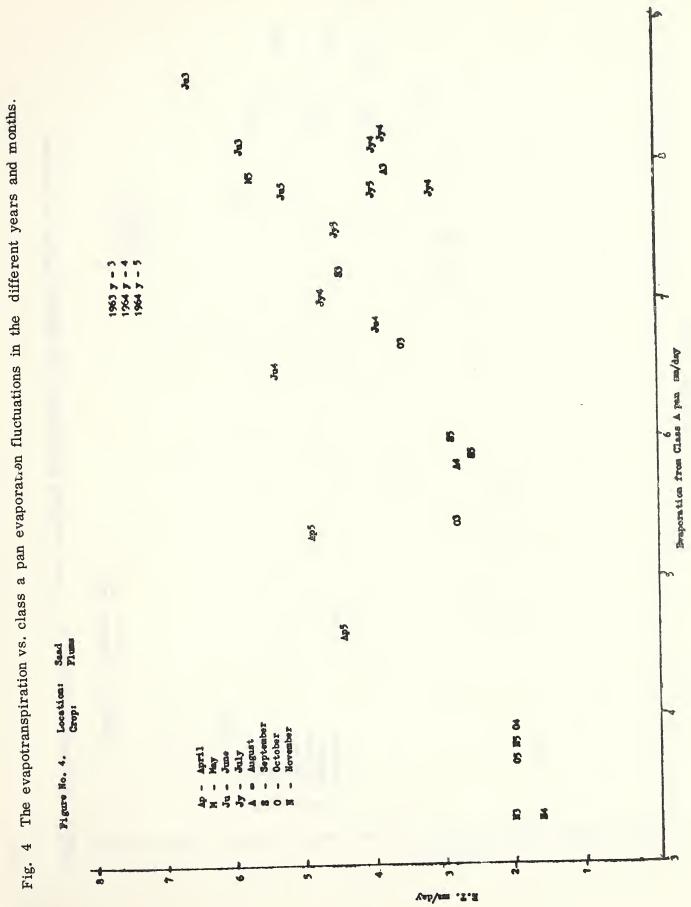
The data in the tables (excluding the Class A measurements) served as a basis for calculating the general equation. The evaporation can be used at a later stage for comparison with similar existing equations, in two forms: a) calculation of pan evaporation according to climatological factors, and b) calculation of evapotranspiration by means of evaporation data.

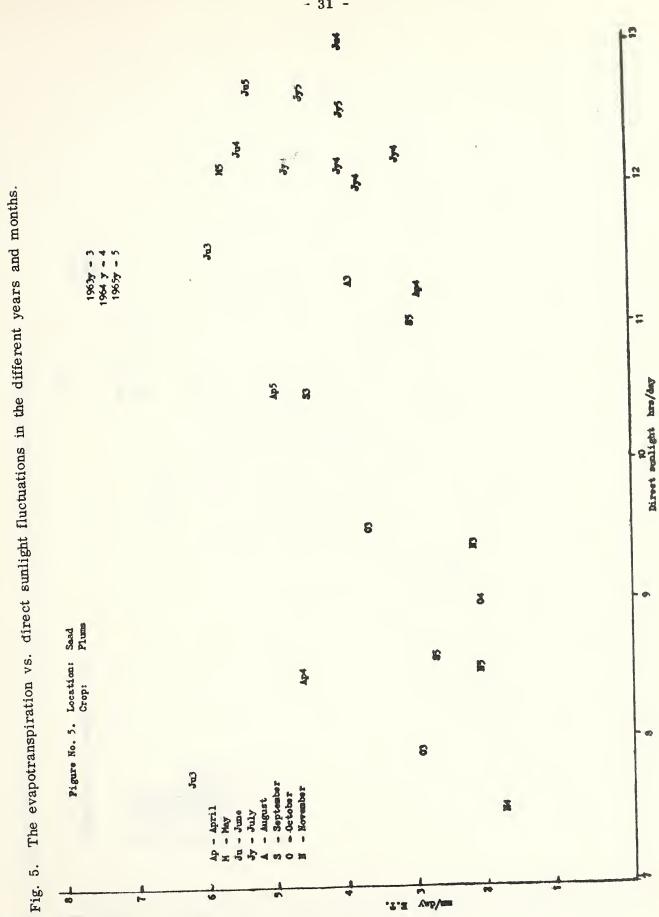

The first step in processing the data to calculate the general equation was to construct the following curves:

- 1. the consumptive water use of the crop vs. various climatic factors
- 2. the consumptive water use of one crop vs. the consumptive water use of each of the other crops.

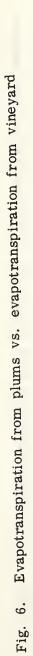

Each figure contains data for one crop in a certain region for each of the years studied, with each month indicated separately. Examples of the curves are shown in Figures 1-8. The figures show that crop type and season

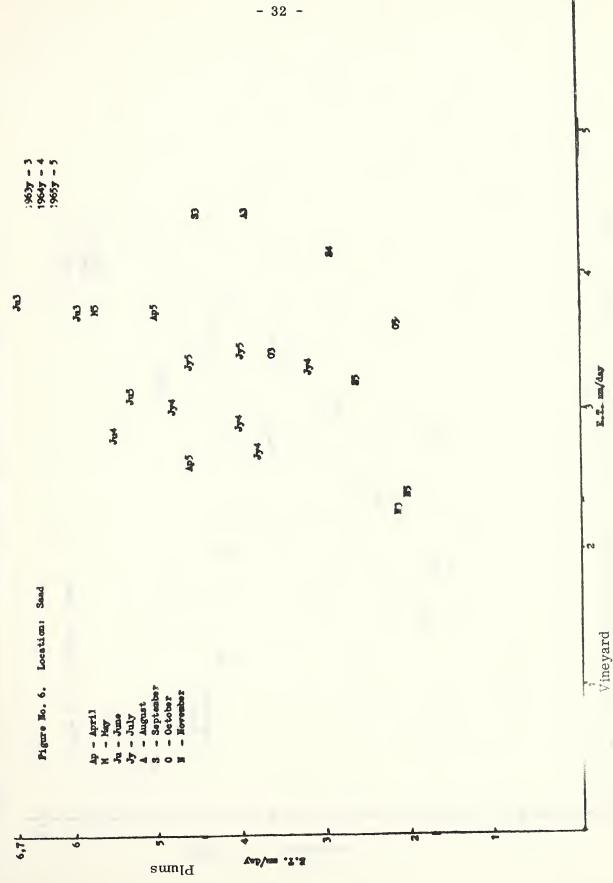



- 28 -

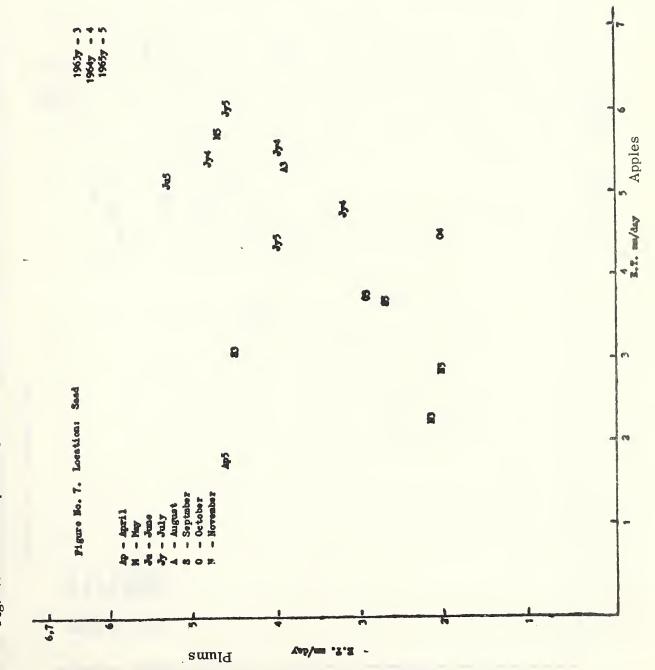


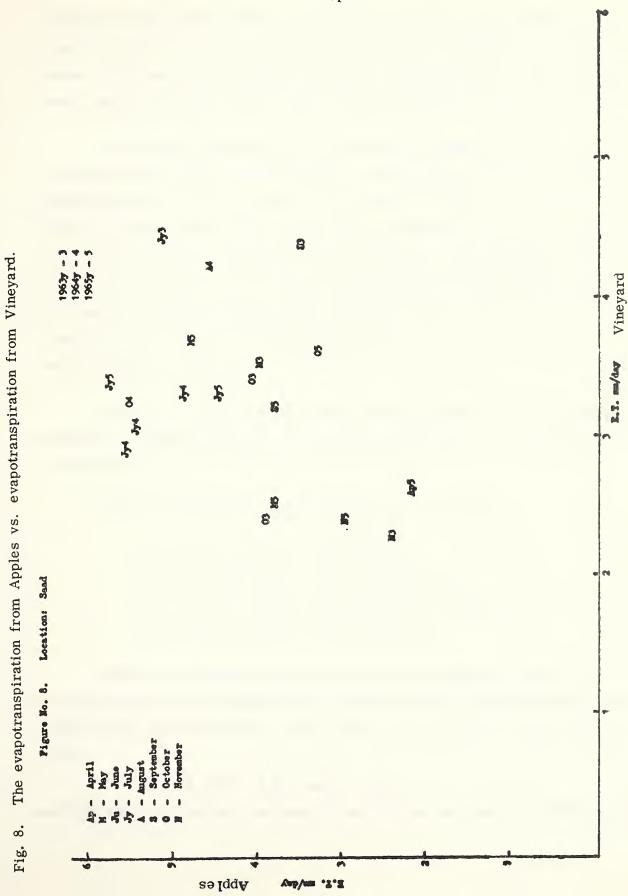
1.0





- 31 -





ς.

of the year have marked effects on the relation between evapotranspiration and climatic factors. It seems that the same plant reacts differently from one season to the next under the same climatic conditions (Figures 1-5), and other plants behave differently under similar climatic conditions (Figures 6-8).

Particularly interesting is the recurring phenomenon in some of the crops of a change in the relation between evapotranspiration and a certain climatic factor in a cyclic manner. For example, in Figure 1 the evapotranspiration increases from April to May, and occasionally to June, as the temperature rises. In July, with the same temperature, the transpiration decreases and continues to do so during August and September. During October and November when the temperature is similar to that in April, the cycle is completed with a much lower evapotranspiration rate. A similar pattern is seen in Figures 3, 4 and 5.

On the basis of the picture obtained from these figures, it was decided to combine in the general equation the following two factors: 1. crop type, and 2. season of the year.

Thus, the year was divided into 4 seasons, accordingly:

First season: April - May (Spring) Second Season: June - July (Early Summer) Third season: August- September (Late Summer) Fourth season: October- November (Fall)

Similarly, the figures show that the nature of the general equation must be multiplicative and not additive when climatic factors or the plant factor do not contribute any constant additional value. Thus, it is possible to state in general terms.

Et = KM \cdot f (a₁T \cdot a₂H \cdot a₃W \cdot a₄S) and to facilitate calculations, the general equation has been given the following form. .

The priliminary general equation had the following form:

$$\text{Log Et} = \text{KM} + \text{a}_1\text{T} + \text{a}_2\text{H} + \text{a}_3\text{W} + \text{a}_4\text{S}$$

where

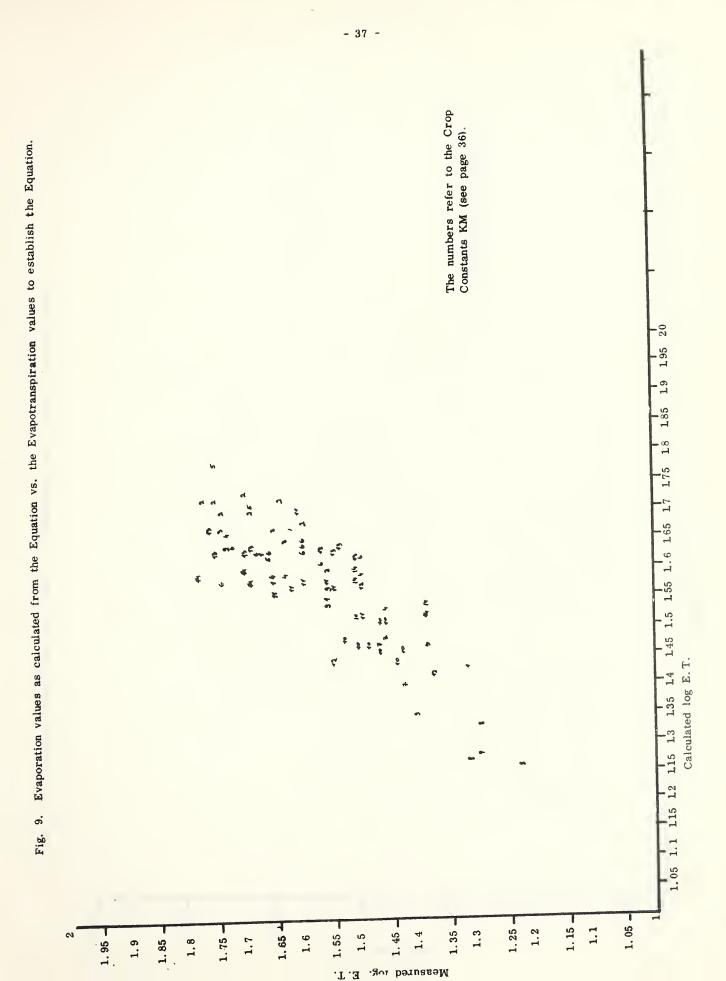
a = coefficient

KM = constant for a certain crop and a certain season

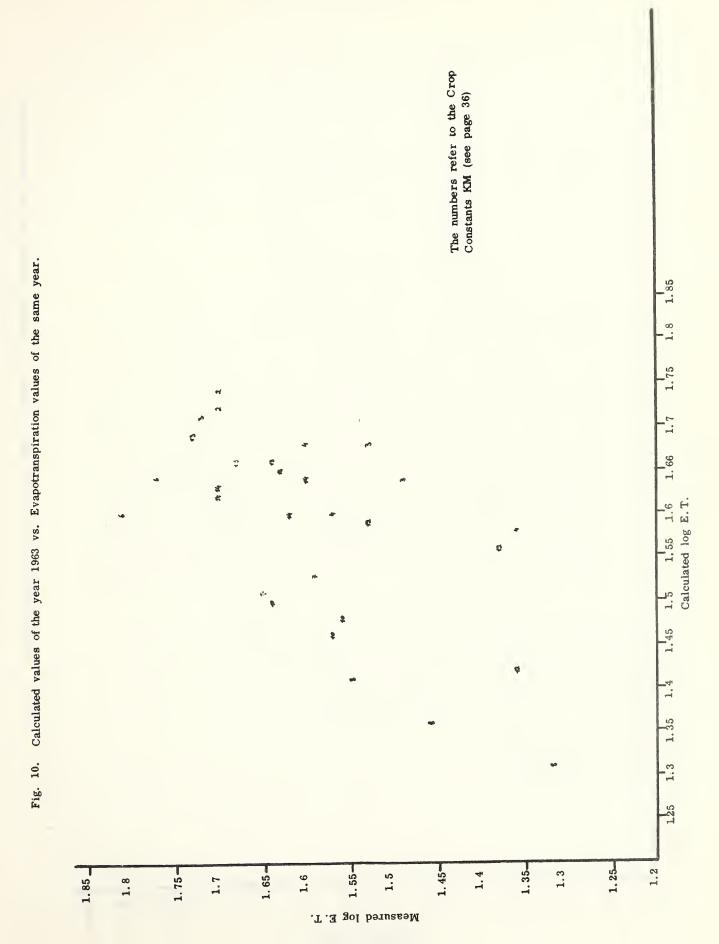
Method of Calculation

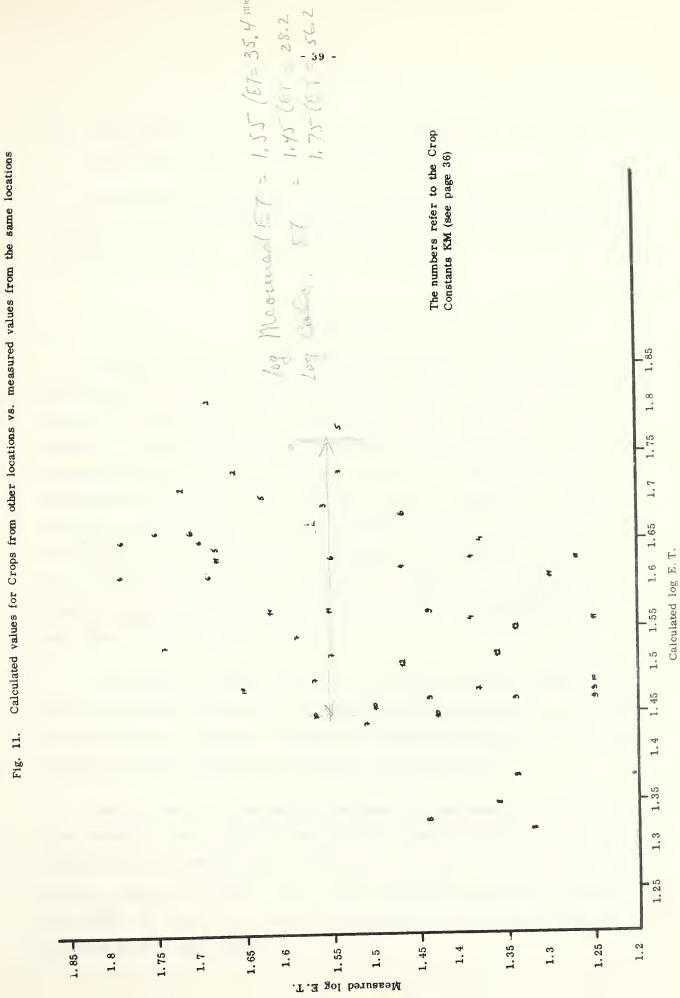
To calculate the multiple regression, data from Saad were used from 1964 and 1965 for the following crops: apples, plums, grapes and cotton. The climatic coefficients a_1 , a_2 , a_3 , and a_4 were computed from all the data, while the crop constant, KM, was calculated separately for each crop and season.

The calculation resulted in an equation with the following climatic coefficients:


Log Et = KM + 0.0011529751T - 0.000097455975H + 0.00066729054W + 0.0021551099 S

The crop constants, KM, obtained were:


Season	<u>n</u>		Apples		Plums		Grapes		Cotton
Apr.	- May	1)	1.043633	5)	1. 224279	9)	0.958378		
June	- July	2)	1.128434	6)	1.058035	1.0)	0.899247	13)	1.075189
Aug.	- Sept.	3)	1.116055	7)	0.940860	11)	1.027056	14)	1.038065
Oct.	- Nov.	4)	1.115873	8)	0.882960	12)	1.050581		


The preliminary results have been examined in three stages: a) evapotranspiration values as calculated from the equation have been compared with the evapotranpiration values used to establish the equation. Fig. 9.

b) evapotranspiration values for those <u>1963</u> crops at Saad not included in the calculation of the equation have been compared with values computed with the equation. Fig. 10.

.

c) evapotranspiration values for crops from other locations have been compared with values computed with the equation. Fig 11.

By using these comparisons it was possible to determine the degree of accuracy of the method and the reliability of the crop constants, and to consider any desirable changes in the structure of the equation.

DISCUSSION

As seen in Figures 9 - 11, the calculated values are very close to the data used to claculate the equation (Figure 9). They are quite close to the actual values of the 1963 year for most of the crops (Figure 10), but are not suitable for those same crops in regions other than those where the evapotrans piration was calculated. From this one can learn the effect of each individual region under the same climatic conditions. The main source of the regional effect on evapotranspiration is in the variable soil types, and consequently in the frequency of irrigation and the magnitude of water applied to the crop. Thus, not taking into account the regional soil factors and irrigation practices results in a certain unavoidable error in estimating evapotranspiration from only climatic and crop data.

An attempt was made to calculate by the same method the climatic and plant coefficients of each region. In most cases the coefficients were similar but not identical. Therefore, all the data from all the regions were collected and one general regression was calculated for all the values.

The final result of the multiple regression is presented in Table 16. The five variables were as follows: temperature, relative humidity, wind, hours of radiation, and evapotranspiration (the dependent variable). The constant is the general constant of the plant, and it varies according to the type of crop and the season. In Table 17 are given the deviations from the average constant for each crop in each season.

-		1						-		
	VALUE "T"	3.948	-1.470	-0.405	2.357			17.699		
	MEAN	0.23099981E C3	0.616775375 03	0.15352780E 03	0.10900923E 03	T 0.15633249E 01		0.69335271E-01 VALUE 'T'=	ST ERR= 0.92061842E-01	
	STD ERR	0.30705123E-03	0.80829429£-04	0.975560205-04	0.43653743E-03	DEPENDENT		STD ERR CF CCNST= 0.6933	E-02 RESIDUAL ST	282, 34)= 13.497
	CCEFF	0.12123132E-02	-0.11880550E-03	-6.35455985E-04	0.12469969E-02	-	0.113334	0.12271823E 01 STC	RESIDUAL VARIANCE= 0.84753228E-	VALUE 'F' (
	VAR	1 (1_)	(2) 2	(3) 3	(4) 4	(5) 5	R SQ=	CONST= (RESIDUAL	HYPOTHESIS J=0.

THE GENERAL EQUATION

Table 16. The Multiple Regression and the Statistical Analysis

- 41 -

Constant.
average
the
from
Deviations
17
Table

Season

Crop	Apples	Apples	Apples	Apples	Plums	Plums	Plums	Plums	Grapes	Grapes	Grapes	Grapes	Peach	Peach	Peach	Lemon	Lemon	Lemon	Lemon	Orange	Orange	Orange	Orange	Grapefruit	Grapefruit	Grapefruit	Grapefruit	Cotton	Cotton	Peanuts	Peantus	Alfalfa	Alfalfa	Alfalfa	Alfalfa
GROUP SIZE	. 9	13.	• 6	12.	¢.	19.	12.	11.	22.	32.	27.	7.	10.	6.	3.	.6		12.	1.	4.	5	- 2	- 1	6.	4.	5.	4.	1.	12.	10.	7.	4.	° S	3.	2 •
STD ERR	•41802238E-0	.27896967	.33009651E-0	C520086E-0	•43329046E-0	.23332156E-	.28932985E-0	.32045195E-0	.25209174E-0	.18419128E-0	20862472E-0	.39006894E-0	.35329031E-	.40891460E-0	.56850705E-0	 36352534E−0 	.30582959E-0	.2952810	.99009228E-0	.50410049E-0	<pre>•44763019E-0</pre>	.37545094E-	.99721135E-0	.430696	.495859	45690	.507	.301288	.295539	.32665	.396995	.51918	.348	0.58043301E-01	.70413025
DEV. OF CONST	0	.10830161E 0	.23023281E-0	.977716	.17721944E 0	.87771695E-0	.49991915E-0	.13863443E 0	.95494685L-0	.75791467E-0	.51717465E-C	.7021648	. 92317	.13746167E 0	.7402324	.24430361E-0	.20303371E-0	.13942868E 0	.19171716E 0	.87345900E-	.362659055-0	.77302559E-0	.15415848E 0	.558769536-	.45402	.776310	.508049146-	.5562015	.280194825-0	.18395768E 0	-54885224E-0	.26105669E 0	.23025186E 0	2757	.226083995 0
J GROUPS							1		-	-			3	4	5	1	- 2	α.	1	1	-	- 2		4	-	-	-	0	6	0	1	2	e S	34	5

	היה היה היה היה היה
--	---------------------

The regression results clearly indicate the significant effect of three factors:

6

1. the crop and season factor which is highly significant

2. the temperature factor

3. the radiation factor

The effects of relative humidity and wind were not significant. It is difficult to arrive at a general conclusion regarding these latter two factors since their range of variability in Israel is relatively narrow compared to the temperature and radiation fluctuations.

The regression was calculated from the same data three more times. In two cases one of the climatic factors was omitted, while in the third case two were disregarded. Table 18 presents the regression calculated without the wind factor, and Table 19 without the relative humidity factor. The regression in Table 20 was computed only from radiation and temperature data, and is similar to the original equation of Blaney and Criddle.

COEFF	STD ERR	MEAN	VALUE "T"
0.12077677E-02	0.30639186E-03	0.23099981E 03	3.942
-0.11824173E-03	0.80697911E-04	0.61677587E 03	-1.465
0.12617149E-02	0.43437556E-03	0.10900923E 03	2.905
	DEPENDENT	0.15638249E 01	ļ
112819			
12202209E 01 STD ERR	OF CONST= 0.519850	24E-01	ALUE "T"= 23.473
ARIANCE= 0.84503362E-02	RESIDUAL S	T ERR= 0.91925	5711E-01
J=0. VALUE °F° (283,	34)= 13.693		
	0.12077677E-02 -0.11824173E-03 0.12617149E-02 112819 12202209E 01 STD ERR ARIANCE= 0.84503362E-02	0.12077677E-02 0.30639186E-03 -0.11824173E-03 0.80697911E-04 0.12617149E-02 0.43437556E-03 DEPENDENT 112819 12202209E 01 STD ERR OF CONST= 0.519850 ARIANCE= 0.84503362E-02 RESIDUAL S	0.12077677E-02 0.30639186E-03 0.23099981E 03 -0.11824173E-03 0.80697911E-04 0.61677587E 03 0.12617149E-02 0.43437556E-03 0.10900923E 03 DEPENDENT 0.15638249E 01 112819 12202209E 01 STD ERR OF CONST= 0.51985024E-01 M ARIANCE= 0.84503362E-02 RESIDUAL ST ERR= 0.91925

Table 18. Regression without Wind.

VAR COEFF STD ERR MCM 1) 1 0.13729531E-02 0.28752988E-03 0.23099981E 0 2) 3 -0.36994834E-04 0.97741293E-03 0.15352780E 0 2) 3 -0.36994834E-02 0.43566649E-03 0.155352780E 0 2) 3 -0.36994834E-02 0.43566649E-03 0.10900923E 0 2) 3 -0.11894154E-02 0.43566649E-03 0.10900923E 0 2) 4 0.11894154E-02 0.43566649E-03 0.105638249E 0 2) 4 0.106541 0.15638249E 0 0 0.15638249E 0 2) 4 0.11226955E 0 860909026E-01 0.15638249E 0 0 0.9225 RESIDUAL VARIANCE= 0.85101350E-02 840 13.344 0.9235 HYPOTHESIS J=0. VALUE 13.343 13.343 0.23099981E Table 20. Regression with Temperature 31.3.344 13.3	923E 03 4.775 780E 03 -0.378 923E 03 2.730 249E 01 249E 01 VALUE 11= 13.876 0.92250393E-01
9531E-02 0.28752988E-03 0.23099 4834E-04 0.97741293E-04 0.15352 4834E-02 0.43566649E-03 0.10900 4154E-02 0.43566649E-03 0.10900 6154E-02 0.43566649E-03 0.105638 601 STD <err< td=""> CF 0.809909026E-01 601 STD<err< td=""> CF 0.809909026E-01 7 0.85101350E-02 RESIDUAL ST 0.85101350E-02 RESIDUAL ST ERR= 1 </err<></err<>	
4834E-04 0.97741293E-04 0.15352 4834E-02 0.43566649E-03 0.10900 6154E-02 0.43566649E-03 0.105638 601 STD <err< td=""> CF CONST= 0.80909026E-01 601 STD<err< td=""> CF CONST= 0.80909026E-01 601 STD<err< td=""> CF CONST= 0.80909026E-01 100.85101350E-02 RESIDUAL ST ER= 0.85101350E-02 RESIDUAL ST ER= 1 </err<></err<></err<>	11
14154E-02 0.43566649E-03 0.10900 E 01 STD ER 0.15638 E 01 STD ER 0.80909026E-01 0.85101350E-02 RESIDUAL ST ER 0.85101350E-02 RESIDUAL ST ER 10.85101350E-02 RESIDUAL ST ER 10.85101350E-02 RESIDUAL ST ER 10.85101350E-02 RESIDUAL ST ER 10.85101350E-02 34)= 13.344 0.2309 10 Nith Temperature and Daylight only. 0.2309 0.2307 10 STC ER 0.23677551E-03 0.2309 579763E-02 0.43342552E-03 0.1090 0.1090 034718E-02 0.43342552E-03 0.1090 0.1090	Ľ.
DEPENCENT 0.15638 E 01 STD ERR 0.80909026E-01 0.85101350E-02 RESIDUAL ST ERR= 0.85101350E-02 RESIDUAL ST ERR= ALUE 1 283, 34)= 13.344 2309 ALUE 1 283, 34)= 13.344 2309 Temperature and Daylight only. 2309 0.23679551E-03 0.2309 0.79763E-02 0.23677551E-03 0.1090 234718E-02 0.43342552E-03 0.1090	
E 01 STD ERR CF CONST= 0.80909026E-01 0.85101350E-02 RESIDUAL ST ERR= 0.85101350E-02 RESIDUAL ST ERR= ALUE F' (283, 34)= 13.344 ALUE F' (283, 34)= 13.344 ALUE F' (283, 34)= 13.346 AFUE STD ERR 0.2309 79763E-02 0.23679551E-03 0.1090 034718E-02 0.43342552E-03 0.1090	
E 01 STD ERR CF CONST= 0.80909026E-01 0.85101350E-02 RESICUAL ST ERR= ALUE F (283, 34)= 13.344 ALUE F (283, 34)= 13.344 ALUE F (283, 34)= 13.344 ALUE F 283, 34)= 13.346 Towith Temperature and Daylight only. 0.2309 CEFF STD 0.23679551E-03 0.2309 79763E-02 0.23679551E-03 0.1090 034718E-02 0.43342552E-03 0.1090	
0.85101350E-02 RESIDUAL ST ERF ALUE 'F' (283, 34)= 13.344 ALUE 'F' (283, 34)= 13.344 i with Temperature and Daylight only. 0.2309 CEFF STD ERR 79763E-02 0.23679551E-03 0.1090 034718E-02 0.43342552E-03 0.1090	250393E-01
ALUE 'F' (283, 34)= 13.344 I with Temperature and Daylight only. EFF STD ERR 79763E-02 0.23679551E-03 34718E-02 0.43342552E-03 DEPENDENT	
Regression with Temperature and Daylight only. CCEFF STC ERR 0.13679763E-02 0.23679551E-03 0.12C34718E-02 0.43342552E-03 DEPENDENT	
CCEFF STD ERR 0.13679763E-02 0.23679551E-03 0.12C34718E-02 0.43342552E-03 DEPENDENT	
0.13679763E-02 0.28679551E-03 0.12034718E-02 0.43342552E-03 DEPENDENT	VALUE .T.
0.12034718E-02 0.43342552E-03 DEPENDENT	E 03 4.770
DEPENDENT	E C3 2.777
	E 01
0.106089	
0.11166331E 01 STD ERR CF CONST= 0.81531409E-01	VALUE •T•= 13.696
RESIDUAL VARIANCE= 0.84844626E-02 RESICUAL ST ERR= 0.921	0.92111143E-01
C LED. VAL	

- 44 -

From the residual value it is seen that the simplest and yet most exact equation is that which does not include the wind factor but does include the relative humidity. The equation is as follows:

Log Et = 0.0012077677T - 0.00011824173H + 0.0012617149S + crop constant

The general crop constant for this equation is 1.2202209, and the deviations from this constant for the different crops and seasons appear in Table 21.

In the event that relative humidity data are unavailable, one can use the following equation for temperature and radiation data alone, without sacrificing much accuracy:

Log Et = 0.0013679763T + 0.0012034718S + crop constant

In this case, the general crop constant is 1.1166331, and the deviations from this constant for the different crops and seasons appear in Table 22.

A further statistical analysis was carried out to test the KM constant for the crop and season. The constant was broken into its two components, and each was tested individually:

a. one coefficient for a crop for all the seasons (Table 23)b. one coefficient for a season for all the crops (Table 24)

The first case can be used when one is interested in the annual average for the crop without considering shorter periods than entire seasons. The second case, in which a seasonal coefficient is considered without specifying the type of crop, is somewhat similar to Thornthwaite's method, and is suitable for making genral estimates.

Season	April May	June July	August September		April May	June July	August September	October November	April May	June July	August September	October November	April May	June July	August September	2	June July	August September	October November	April May		August September	October November	S	June July	August September	October September	1	August September	June July	August September	April May	June July	May September	October November
Crop	Apples	Apples	Apples	Apples	Plums	Plums	Plums	Plums	Grapes	Grapes	Grapes	Grapes	Peach	Peach	Peach	Lemon	Lemon	Lemon	Lemon	Orange	Orange	Orange	Orange	Grapefruit	Grapefruit	Grapefruit	Grapefruit	Cotton	Cotton	Peanuts	Peanuts	Alfalfa	Alfalfa	Alfalfa	Alfalfa
GROUP SIZE	¢.	13.	9.	12.	¢.	19.	12.	11.	22.	32.	27.	7.	10.	ć .	3.	.6	11.	12.	1.	4.	5°	7.	1.	6.	4.	•	4 •	11.	12.	10.	7.	4.	° œ	э.	2.
STD ERR	.41722261	.27806238	.32946662	•	.43163319	.23254525	.288	0.31929359E-01	.25137202			.38849327		.40720112	.5667883	.36289633		.29303284	.98730328	•498	٠	٠	•995	• 42		.44417014	.50566235	•	•2	.318	.38506122E	.51718485	•	0.57905607E-01	
DEV. CF CCNST	.40100027E-0	.10768333E 0	.23252513E-0	.10565883E-0	.17608322E 0	.87240829E-0	0.52739898E-0	.13783705E 0	.95989935E-0	.75496835E-0	.51C31242E-0	.69145972E-0	.92545001E-0	.13861627E 0	.75177633E-0	0.24340095E-0	0.19588976E-0	.13813542E 0	0.18987596E 0	0.90001220E-0	0.3776773E-0	0.78432512E-0	0.15399069E 0	 58434608E-0 	0.46811347E-0	0.78668241E-0	0.51815564E-0	 55590697E-0 	.28727571E-0	.18105541E 0	 56149165E-0 	 26063926E 	.23070187E 0	0.22839763E 00	•22772185E 0
J GROUPS	1	2	ę	4	5	6	7	00	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35

Table 21 Deviations from the average Constant for the different Crops.

- 46 -

Table 22

Regression - Temperature, Humidity & Sunshine for Crop Constants without Seasons. Table 23 VAR COEFF STD ERR MEAN VALUE "T" (1)1 0.11925620E-02 0.20543412E-03 0.23171945E 03 5.805 (2)2 -0.16001812E-03 0.71229739E-04 0.61869726E 03 -2.247 3) 0.22868213E-02 0.39046403E-03 0.10934882E 03 5.857 4) 5 DEPENDENT 0.15686963E 01 0.254030 RSQ =053712 FORTRAN ERROR 14 IGNORED, RETURN TO EXECUTION ERROR CONDITION AT CONST= 0.11412981E 01 STD ERR OF CONST= 0.65143612E-01 VALUE 'T'= 17.520 RESIDUAL VARIANCE= 0.10212400E-01 RESIDUAL ST ERR= 0.10105642E 00 HYPOTHESIS J=0. VALUE *F* (307, 9)= 25.986 VARIANCE AND COVARIANCE MATRIX OF COEFF. 1 2 3 1 0.42203179E-07 -0.11307697E-08 -0.27654240E-07 -0.11307697E-08 0.50736757E-08 -0.21568972E-08 2 -0.27654240E-07 -0.21568972E-08 0.15246216E-06 3 J GROUPS DEV. OF CONST STD ERR GROUP SIZE Crop 40. Apples 0.18563744E-0. 1 0.49524295E-01 48. Plums 2 0.25279421E-01 0.17033817E-01 0.12519152E-01 88. Grapes 3 -0.79275712E-01 Peach 4 0.92554866E-01 0.27592038E-01 19. Lemon 5 -0.75046223E-01 0.20423922E-01 33. Orange -0.73346578E-01 0.28428243E-01 17. 6 7 Grapefruit -0.57892323E-01 0.26994690E-01 19. 0.24715109E-01 23. Cotton 0.35092168E-01 8 0.12063153E 00 0.28776883E-01 17. Peanuts 9 0.28405418E-01 17. Alfalfa 10 0.23466033E 00

									- 49	-					
VALUE • T•	2.845	-1.195	1.487			E •T•= 14.607	E 00							Season	April May June July August September October November
& bunshine for beasonal constants without or ope-	0.23171944E 03	0.61869729E C3	0.10934881E 03	T 0.15686963E 01		0.87961201E-01 VALUE	ST ERR= 0.12920309E							GROUP SIZE	67. 115. 97. 38.
	0.40060095E-03	0.10242731E-03	0.58694630E-03	DEPENDENT		CF CONST=	01 RESIDUAL	• 3}= 6.098	MATRIX OF COEFF.	3	-07 -0.29120366E-07	-07 -0.41646887E-08	-08 0.34450597E-06	STC ERR	0.24963649E-01 0.14490529E-01 0.16434002E-01 0.26655250E-01
Table 24 Regression Temperature, Humidty VAR COEFF	(1) 1 0°11396847E-02	(2) 2 -0.12238229E-03	(3) 4 0.87295394E-03	(4) 5	RSQ= C.048614	CONST= 0.12848703E 01 STC ERR	RESIDUAL VARIANCE= 0.16693439E-01	HYPOTHESIS J=0. VALUE "F" (313,	VARIANCE AND COVARIANCE M	1 2	1 0.16048113E-06 0.12593632E-07	2 0.12593632E-07 0.10491353E-07	3 -0.29120366E-07 -0.41646887E-08	J GROUPS DEV. OF CONST	1 -0.50173154E-02 2 0.44283525E-01 3 -0.24881230E-01 4 -0.66308618E-01

2 4 3

Comparison of Equations for Estimating Evapotranspiration

In order to compare the equation obtained with other methods and equations, data from 10 crops were used. The actual monthly evapotranspiration for each crop was compared to values calculated from the equation henceforth called "the Rehovot Equation" and also to values derived with the Thornthwaite and Blaney-Criddle equations (see Tables 25-34). The crop coefficients for the Blaney-Criddle equation were obtained from two sources: a. coefficients determined by Blaney during his visit to Israel in 1961, and b. data published by Blaney and Criddle in California for similar climatic regions.

The distribution of deviations of the values calculated with the three equations from the measured values is shown in Figure 25. The deviations are expressed as percentages of the measured evapotranspiration values, and are divided into 5 size groups: 1. \pm 10%; 2. \pm 10% to \pm 30%; 2. \pm 30%.

Table 25Computed & measured monthly evapotranspiration in mm.
A PPLES

Month	April - May	June - July	Aug - Sep	Oct - Nov
Blaney Criddle Coeff.		Avarage Seaso	nal Coeff.	0.65
Rehovot Coeff.	1.26759470	1.33548391	1.250205584	1.23695946

RESULTS

Rehovot Formula	Thornthwaite Formula	Blaney Criddle Formula	Actual Measurement
114.7	88.5	107.3	121.0
147.0	129.9	118.7	153.0
158.1	151.2	125.2	158.0
133.3	160.7	123.2	149.0
120.0	126.7	106.3	125.0
108.5	97.0	95.2	121.0
97.2	42.5	81.0	69.0
127.1	136.8	117.1	150.0
117.0	114.0	101.0	121.0
69.0	97.0	91.9	195.0
102.0	64.8	92.2	63.0
117.8	92.0	107.6	42.0
150.0	129.9	118.7	153.0
158.0	136.8	122.9	169.0
127.0	136.8	118.0	167.5
114.0	114.3	103.1	120.0
102.3	82.3	90.4	99.5
87.0	47.5	72.0	88.5
96.0	61.6	90.0	117.0
141.0	131.0	120.0	159.0
155.0	145.2	124.0	149.0
127.1	148.3	118.0	109.0
117.0	117.4	117.0	92.0
99.2	82.3	90.0	75.0
93.0	58.0	80.0	84.0

Table 26Computed & measured monthly evapotranspiration in mm.PLUMS

Month	April - May	June ~ July	Aug - Sep	Oct - Nov
Blaney Criddle Coeff.		Avarage Seaso	nal Coeff. c	0.65
Rehovot Coeff.	1.40440174	1.31495399	1.22218311	1.08854787

RESULTS

Rehovot Formula	Thornthewaite Formula	Blaney Criddle Formula	Actual Measurement
138.0	129.9	118.7	190.0
151.9	151.2	125.2	183.0
124.0	160.7	123.2	125.0
114.0	126.7	106.3	129.0
77.5	97.0	95.2	95.5
69	47.5	78.0	72.0
117.8	136.0	117.1	90.0
108.0	114.0	101.0	87.0
74.4	82.0	91.9	62.0
138.0	64.8	92.2	145.0
164.3	92.0	107.6	169.0
144.0	129.8	118.7	159.0
151.9	139.8	122.9	130.0
117.8	136.8	118.0	124.0
108.0	114.3	103.1	86.5
71.3	82.3	90.4	66.5
62.0	47.5	80.0	62.0
132.0	58.3	90.0	129.0
135.0	121.4	117.0	193.0
145.7	141.6	124.0	100.0
117.8	141.4	118.0	112.0
96.0	114.6	102.0	105.0
77.5	88.2	93.0	68.0
63.0	60.7	82.0	63.0
132.0	61.6	90.0	141.0
155.0	89.2	108.0	108.0
135.0	131.0	120.0	150.0
145.0	145.2	124.0	175.0
117.8	148.3	118.0	153.0
108.0	117.4	117.0	90.0
71.3	82.3	90.0	75.0
63.0	58.0	80.0	84.0

Month	April - May	June - July	Aug - Sep Oct ~ Nov
Blaney Criddle Coeff.		Avargae	Seasonal Coeff. 0.65
Rehovot Coeff.	1.3194994	1.36464397	1.30120554
		RESULTS	
Rehovot	Thornthwaite	Blaney Criddle	Actual
Formula	Formula	Formula	Measurement
138.8	127.4	122.0	167.0
142.0	143.6	120.0	167.0
111.3	68.0	94.0	102.0
131.1	85.0	114.0	118.0
162.6	126.4	119.0	148.0
170.5	144.0	126.0	189.0
145.7	143.6	120.0	120.4
119.4	71.3	97.0	164.0
158.7	95.6	116.0	178.0
170.0	136.9	121.0	172.0
177.0	158.4	130.0	174.0

Table 27 Computed & measured monthly evapotranspiration in mm. PEACH

Table 28Computed & measured monthly evapotranspiration in mm.LEMON

Month	April - May	June - July	Aug - Sep	Oct - Nov
Blaney Criddle Coeff.	0.4	0.5	0.55 0.6	0.5 0. 4
Rehovot Coeff.	1.20275194	1.20687893	1.08775362	
		RESULTS		
Dahamat	The armst laws a sta	Dianary Griddla	Actual	
Rehovot	Thornthwaite	Blaney Criddle	Actual	
Formula	Formula	Formula	Measurement	
106.0	127.4	72.5	102.3	
112.0	157.9	96.5	132.0	
120.5	169.2	100.0	117.8	
87.0	143.7	100.6	117.8	
79.0	108.5	103.5	105.0	
113.0	126.4	91.1	141.0	
117.0	144.0	93.8	105.4	
89.0	143.7	100.8	68.2	
76.5	111.2	103.5	111.0	
121.0	95.6	62.0	90.0	
119.0	136.9	93, 4	120.9	
123.0	158.4	96.0	86.8	
89.0	143.6	100.8	72.0	
79.5	114.3	105.0	75.0	

		ORANGE		
Month	April - May	June - July	Aug - Sep	Oct - Nev
Blaney Criddl Coeff.	e 0.4	0.55	0.55	0.5
Rehovot Coeff	1.13983640	1.13983640	1.14987975	1.07302382
		RESULTS		
Rehovot Formula	Thornthwaite Formula	Blaney Criddle Formula	Actual Measurement	
72.5	58.3	55.4	60.0	
84.0	85.7	64.4	89.0	
102.0	121.4	96.9	111.0	
110.5	141.6	102.9	124.0	
100.0	141.5	100.9	120.9	
92.0	114.3	78.3	63.0	
71.3	61.7	56.1	78.0	
110.0	145.2	103.9	96.1	
103.0	148.3	101.3	114.7	
92.0	117.4	79.2	102.0	
Table 30 C	computed & measure	d monthly evapotran	spiration in mm.	
1 2010 30 0	omputed & measured	GRAPE FRUIT		
Manth			Aug Son	Oct Nov
Month	April - May	June - July	Aug - Sep	Oct - Nov
Blaney Cridd Coeff.	le 0.4	0.55	0.55	0.5
Rehovot Coef	f. 1.17130535	1.18177989	1.14955121	1.7637739
		RESULTS		
Rehovot	Thornthwaite	Blaney Criddle	Actual	
Formula	Formula	Formula	Measurement	
90.0	85.7	64.4	93.0	
95.0	121.4	96.9	123.0	
108.5	141.6	102.9	127.7	
100.0	141.5	100.9	108.5	
91.5	114.3	78.3	84.0	
94. 5	88.2	70.5	77.5	
77.5	61.6	56.1	75.0	
90.5	89.2	65.9	83.7	
98.5	131.0	99.5	96.0	
108.0	145.2	103.9	99.2	
100.0	148.3	101.3	132.5	
92.0	117.4	79.2	66.0	
87.0	82.3	69.3	111.6	

Table 29Computed & measured monthly evapotranspiration in mm.
ORANGE

Table 31 Computed & measured monthly evapotranspiration in mm.

COTTON

Month	April - May	June - July	Aug - Sep	Oct - Nov
Blaney Criddle Coeff.	0.4. 0.55	0.7 0.8	0.8 0.7	0.6
Rehovot Coeff.		1.28280245	1.25520178	

RESULTS

Rehovot Formula	Thornthwaite Formula 129. 9	Blaney Criddle Formula 127.9	Actual Measurement 132. 0
129.5 140.0	151.2	153.9	158.0
135.0	160.7	151.4	142.6
123.0	126.7	113.9	138.0
127.0	114.3	143.6	158.1
134.0	129.9	127.9	150.0
141.0	136.0	151.0	179.8
128.5	136.8	145.0	164.3
115.0	114.3	110.5	87.0

Table 32Computed & measured monthly evapotranspiration in mm.

GRAPES

Month	April - Mat	June	- July	Aug - Sep	Oct - Nov
Blaney C.riddle Coeff.	Sea	sonal	Coeff.:	0.65	

Rehovot Coeff.1.131687621.151390841.175464841.15696582

RESULTS

Rehovot Formula	Thornthwaite Formula	Blaney Criddle Formula	Actual Measurement
84.9	88.5	107.3	108.5
95.7	129.9	118.7	111.0
104.1	151.2	125.2	134.0
112.5	160.7	123.2	136.5
102.0	126.7	106.3	127.0
89.5	· 97.0	95.2	89.5
106.0	160.7	117.1	130.0
97.5	126.7	101.0	106.5
73.8	64.8	92.2	86.2
87.4	92.0	107.6	91.0
98.7	129.8	118.7	114.0
104.1	136.8	122.9	104.0
103.5	136.8	118.0	127.5
96.9	114.3	103.1	96.0
83.7	82.3	90.4	112.0
71.7	47.5	78.1	72.0
71.4	58.3	90.0	54.0
82.1	85.7	105.0	69.0
93.0	121.4	117.0	86.0
101.0	141.6	124.0	64,0
106.0	141.5	118.0	59.0
97.2	114.3	102.0	54.0
90,2	88.2	93.0	69.0
70.2	61.6	90.0	70.5
82.0	89.2	108.0	68.0
92.1	131.0	120.0	88.5
100.7	145.2	124.0	140.0
100.3	148.3	118.0	124.0
97.8	117.4	117.0	118.0
82.8	82.3	90.0	71.5

Continued on next page

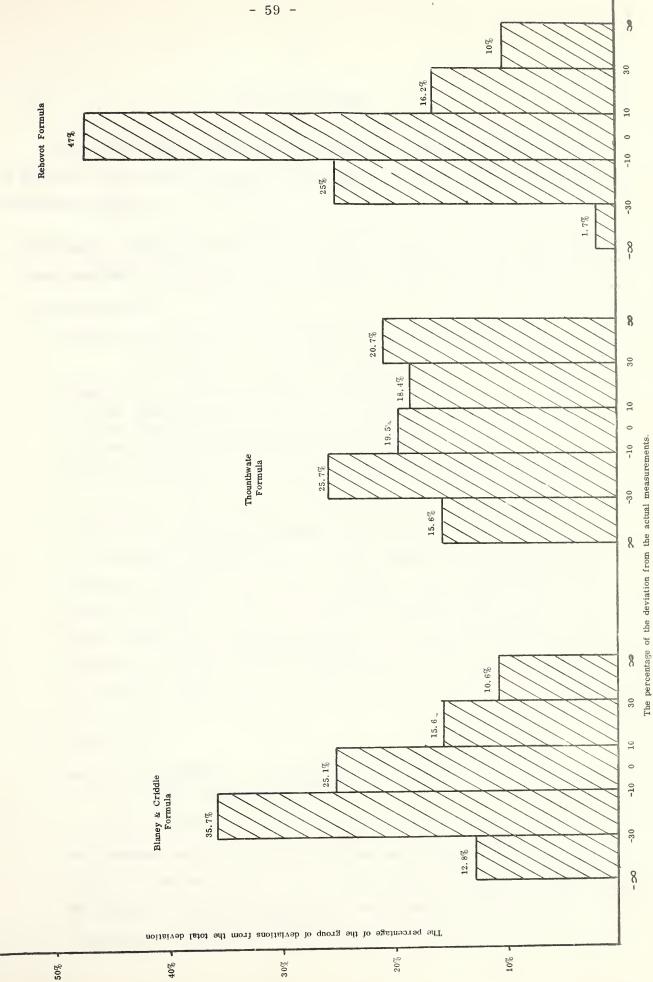
Table 32 (Continued)

Rehovot Formula	Thornthwiate Formula	Blaney Criddle Formula	Actual Measurement
74.4	57.1	81.0	81.0
87.0	127.4	122.0	96.0
102.3	157.9	104.0	90.0
105.4	169.2	138.0	93.0
106.3	143.6	120.0	93.0
96.6	108.1	108.0	79.5
72.0	68.0	94,0	77.0
85.1	84.9	114.0	118.0
99.6	126.4	119.0	100.0
103.2	144.0	126.0	111.0
108.8	143.6	120.0	121.0
77.4	72.3	97.0	81.0
102.9	95.6	116.0	124.0
104.1	136.9	121.0	156.0
108.5	158.4	130.0	117.0
108.5	143.6	120.0	130.0
97.2	114.3	108.0	90.5

Month	April - May	June - July	Aug - Sep	Oct - Nov
Blaney Criddle Coeff.	0.7.0.75	0.8 0.95	0.95 0.8	0.75
Rehovot Coeff.	1.48823899	1.45743416	1.4575291	
		RESULTS		
Rehovot Formula	Thornthwaite Formula	Blaney Criddle Formula	Actual Measuremen	t
183	97.2	108	168	
202.5	127.4	141	218	
211	157.9	156	213	
212	169.2	189	217	
197	143.6	170	237	
164	68.0	97	159	
194	85.0	118	174	
201	126.4	149	198	
203.5	143.6	170	168	
178.5	111.2	130	162	
210	144	176	186	

Computed & measured monthly evapotran spiration in mm. $\hfill{A}\,L\,F\,A\,L\,F\,A$ Table 33

Table 34 Computed & measured monthly evapotranspiration in mm. PEANTUS


Month	April - May	June - July	Aug - Sep	Octo - Nov
Blaney Criddle Coeff.	- Mile	Seasonal Coeff. 0.7		
Rehovot Coeff.		1.41113998	1.28206852	
		RESULTS		
Rehovot Formula	Thornthwaite Formula	Blaney Criddle Formula	Actual Measuremen	it
193	169.2	145	180	
135	143.6	143	128	
135 181.5		143 133	128 159	

135189

201

190.0 144140138.5 143.6143190136.9143158.4134

197

CONCLUSIONS

This Final Report, summarizes in effect, five years of strenious work, the results of which appear in these three volumes. It is our desire to emphasize the following points:

- 1. The Rehovot Formula (or Formulae) is presented in six versions, each having advantages and disadvantages, the comments to which will appear hereunder:
 - 1.1 Version No. 1.

log Et = 0.012123132T - 0.001188055H - 0.0000394669W + 0.01249969S + (0.12271823 [±] KM)

Where T is in Degress Celcius on a daily average.H is the daily average of the Relative Humidity in percent.W is the movement of the Wind in k"m per day.S is the actual daily Sunshine hours on an average basis.KM is the deviation of the specific Crop from the general Coefficient.

The values of KM in this equation appear in Table 17 on page 42. This equation is the most general form presented, in that it embraces all the climatic variables that have been examined during the research. It has been pointed out in the text, that three – the Temperature, the Sunshine & the Crop – were significant, while the remaining two – the Relative Humidity was found less significant while the Wind was actually insignificant (causes for the less significance and the insignificance will be given later on).

1.2 Version No. 2

log Et = 0.012077677T - 0.0011824173H + + 0.012617149S + (0.12202209 \pm KM)

The values of KM in this equation appear in Table 21 page 46. This equation might seem less exact then version No. 1 due to the fact that it has one less variable (the Wind), however it may be assumed that the influence of Wind is insignificant, and therefore in practice, this formula may be found to be just as exact.

1.3 Version No. 3.

Log Et = $0.013679763T + 0.012034718S + (0.11166331 \pm KM)$ The values of KM in this equation appear in Table 22 page 47. This equation brings into consideration the three significant variables only (the Temperature, Sunshine & Crop). Generally speaking this equation bears resemblence to the Blaney & Criddle equation with Crop Coefficients of <u>Seasonal nature</u>.

This equation is less exact, and should be used only when Relative Humidity Data is not available.

1.4 Version No. 4.

log Et = 0.013 72 95 31T - 0.000036994834W + 0.011894154S + + (0.11226955 \pm KM)

This is the least practical equation, in that the Wind factor is insignificant, making the equation of a doubtful use.

1.5 Version No. 5.

log Et = 0.01192562T - 0.0016001812H + 0.022868213S + + (0.11412981 \pm KM)

The values of KM in this equation appear in Table 23 page 48. This equation is similar to version No. 2 with the exception that KM in this case has <u>yearly values and not seasonal values</u>. This equation could be best used, when the inter-seasonal changes are

rather slight or when the seasonal variations are little known.

1.6 Version No. 6.

log Et = 0.011396847T - 0.0012238229H + 0.0087295394S + + (0.12848703 \pm KM)

The values of KM in this equation appear in Table 24 page 49. This equation is similar to version No. 5 with the exception that the Crop Coefficient is <u>Universal</u> to all the Crops, and there are four coefficients on a seasonal basis. The four seasons represent diverse periods of physiological plantal activities. This equation bears some resemblence to the Thornthwaite's approach.

2. The basis of our studies, indeed, the derivation of the Rehovot Formulae, are a product of a tremendous number of observations (the observations appearing in our Volume II Information & Data are only the selected portion of the actual takings), taken in <u>controlled commercial fields</u>. In spite of the fact that we had the utmost cooperation from our selected commercial growers, it should be admitted that we often faced difficulties that arrise from such a Union. Having gove through a highly strenious period, we are still convinced, that for the sake of authenticity, Et equations should be based on commercial field findings. The lack of significance in our Humidity and Wind variables, is no doubt, due to the samll climatic variations in Israel of these two factors and due to the insufficient number of data of variable nature that we possessed.

This study may enlighten future students on Et to select greater climatic diversity in greatly dispersed areas, and plan a greater plan of operation for periods of eight to ten years.

Should the selection be challenged whether to operate in "commercial" fields as against the operation on "experimental plots", we definitely prefer the "commercial" approach.

- 3. The Data appearing in Volume II INFORMATION AND DATA may be of great help to students carrying future studies on Evapotranspiration. This material has been very carefully selected and compiled.
- 4. Great effort has been placed to carry out a comprehensive review of the relevent material, this in itself may be of use to Evapotranspiration students, Volume III LITERATURE REVIEW AND BIBLIOGRAPHY may be of help.

ACKNOWLEDGEMENTS

The Principal Investigator wishes to acknowledge with thanks and appreciation the help extended by:

- 1. Mr. B. Gornat M.S., the Chief Assistant, for most capable participation through all the phases of this research.
- 2. To all other members of the Department for their help.
- 3. To the Director of the Kfar Hayarok Agricultural School, who lended his complete support in establishing our Central Laboratory and the use of the School's Fields.
- 4. The Kibutzim Saad, Nir Itzhak and Yotvata, for active participation in the experimentations.
- 5. Dr. J. Putter, for his devoted help in the Statistical studies.
- 6. The Director and Staff of the Israel Meteorological Service for belp and guidence on Agro-Meteorological matters.
- 7. Mr. Z. Tropp M.S. for Programming and Computing.
- 8. Mr. D. Sadan of the Extension Service for general agricultural advice and very sincere cooperation.

LIST OF PUBLICATIONS

- D. Goldberg, B. Gornat, D. Sadan The Use of U.S.W.B. Class A, Evaporation Pan Data for the Determination of Water Consumption and Irrigation Schedule of Ground Nuts Growing in Sandy Soil. Bulleting 498 of the National and University Publications. 1965.
- D. Goldberg, M. Shmueli, B. Gornat Field Experiments on Consumtive Water Use and Irrigation at Yotvata (1964/5). Bulletin 508 of the National and University Publications. 1966.
- D. Glodberg, B. Gornat, D. Sadan A study of Irrigation Practices of Groundnuts in the Bsor Area with the aid of U.S.W.B. Class "A" Pan. The Ktavim Journal Volume 16, No. 2, 1966.
- D. Goldberg, B. Gornat, D. Sadan The Relation Between Water Consumption of Peanuts and Class "A" Pan Evaporation during the Growing Season. Soil Science, published in October 1967 (not yet received).
- D. Goldberg, B. Gornat, D. Sadan Estimating the Consumptive Water Use of Sugar Beets During Autumn and Winter. Scientific Publications, Pamphlet No. 123 The National and University Publications. 1967

í

- 64 --

VOLUME II. GENERAL INFORMATION AND DATA

List of Contents

1.	General description and maps	1
2.	General meteorological data	7
3.	Soil data	20
4.	Crop and irrigation data 1963	27
5.	Crop and irrigation data 1064	39
6.	Crop and irrigation data 1965	56

GENERAL INFORMATION AND DATA

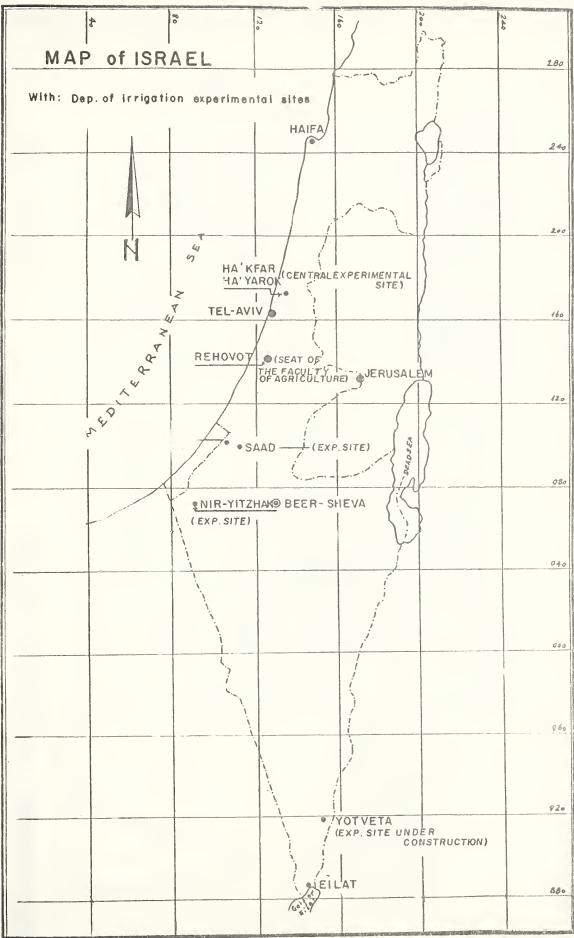
General description of our experiments: To those who know little of our farm and our farming practices, I wish to state that practically all of our work is performed in communal settlements (Kibbutzim) which are based on large estates of over 1000 acres each (completely irrigated), owned and worked collectively by their own member farmers. The map of Israel (attached) and the maps of the individual settlements (also attached), indicate their location. The only exception is Kefar Hayarok, which is also run collectively, but it is an Agricultrual Secondary school.

Some explanations to the attached map of the country: Jerusalem is the Capital, while Tel-Aviv is the largest city (population about 360,000) and with its neighbouring sister cities the population is about 700,000. Rehovot is the seat of the faculty of agriculture. Kefar Hayarok is a Secondary agricultural school and it possesses an agricultural area of 4000 dunams. We have good facilities there which give good promise to become our central Laboratory. Saad is commual settlement of a religious group. They normally grow the following: 10,000 dunams of non-irrigated winter grain, 200 dunams of irrigated alfalfa and pasture, 1200 dunams of industrial crops, 1000 dunams of vegetables, 1000 dunams of assorted fruit trees. Not in all crops we can enter, this depends upon prior negotiations. Nir Itzhak is deep in the Southwest Negev, where the rainfall is very small (see our climatic map attached). They normally grow the following: 270 dunams of Citrus Orchard (Oranges & Lemons), 230 dunams of assorted plantations, 1620 dunams of industrial crops (including Ground nuts and Potatoes), 65 dunams of alfalfa. Several thousand dunams of winter grain with supplemental irrigation.

Each experimental site has three distinct elements: 1. An agro-Meteorological station. 2. A complete field moisture study laboratory. 3. The various <u>commercial</u> fields in which irrigation is conducted under our instructions and the local moisture study sites (random taken) where soil samples are taken to our field laboratory.

bine had bin den had bin <u>boner stab</u> (bine had bine had bin bone had bine had bin We study the following crops in the following locations:

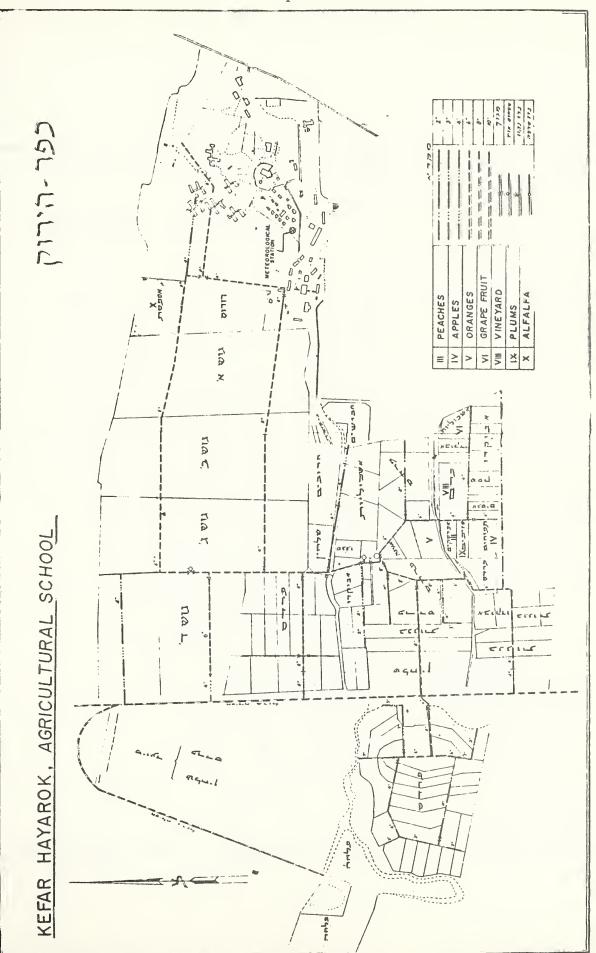
In Saad


100 dunams of cotton Acala 442.45 dunams apples.56 dunams plums.45 dunams vineyard.

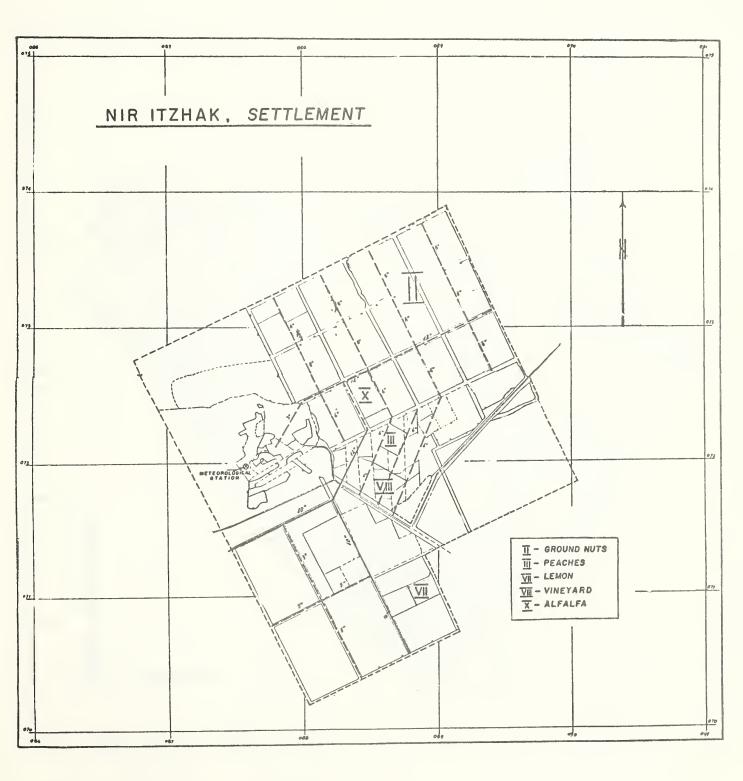
In Nir Itzhak, Out of a total area of 400 duname of through huts greve the carry observation on a plot of 40 duname.

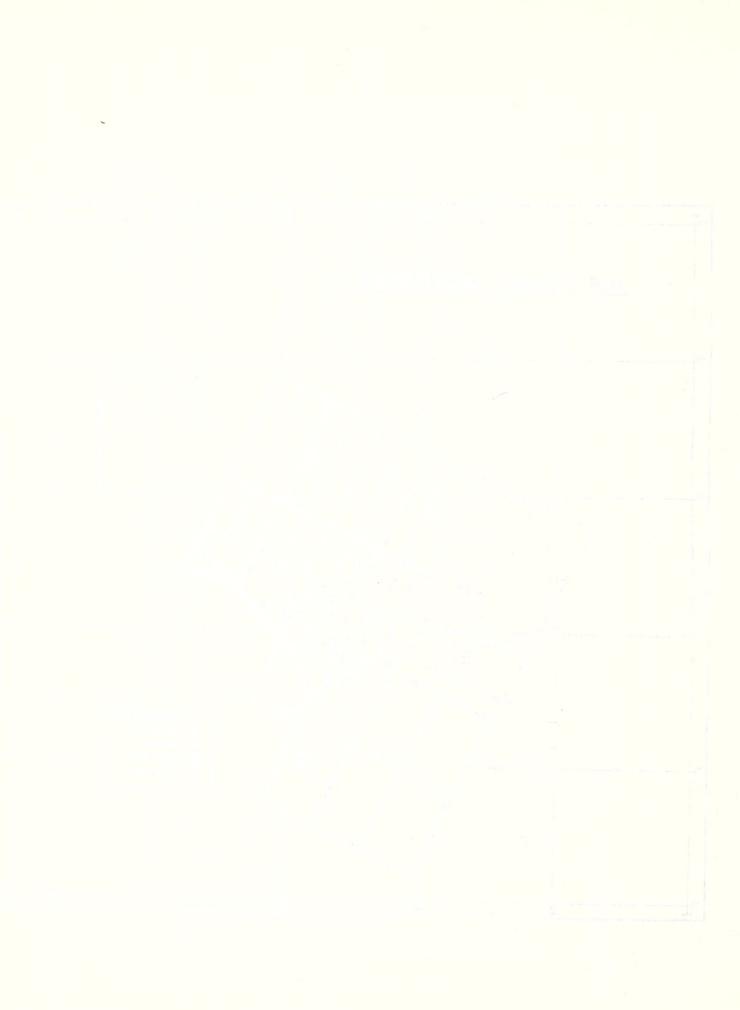
65 dunams of alfalfa.36 dunams of lemons.23 dunams of peaches.58 dunams of vin yard.

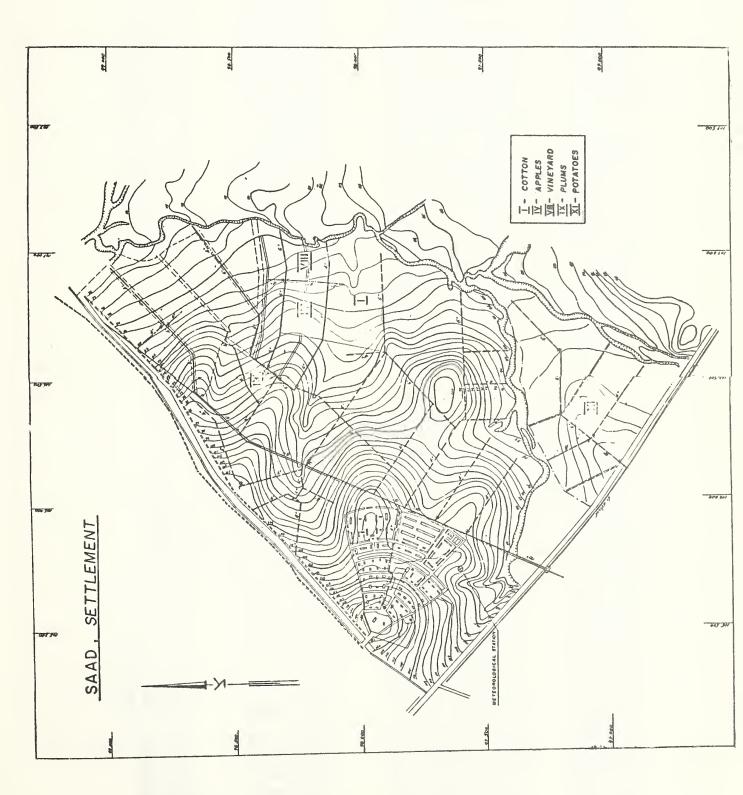
In Kefar Hayarok


12 durame of apples.
 25 durame of eranges.
 12 durame of grapefruit.
 5 durame of plumes.
 5 durame of peaches.
 21 durame of vineyard.

- 3 -


S.T.L.





- 4 -

			13.6 11.9 13.1 13.2 13.2 13.2 13.2 13.6		7.1 11.4 11.4 11.4 12.6 13.4 8.8 8.8 8.8 8.8 8.8 11.6 11.6	14.1 13.6 15.0 15.8 15.8
	111		13.8 13.6 13.2 13.2 13.2 13.0 14.0		7.8	the set of the
nda	A H		14.8 13.6 14.8 14.8 14.6 15.6 15.6 15.8		9.4 114.2 114.6 114.6 114.6 11.1 11.1 11.1	
פרמורי	≥		17.3 11.6 17.6 17.6 17.4 16.5 18.0 18.0 18.0		14.0 116.8 116.8 117.4 117.4 118.3 117.9 117.9	
ם בייומי	>		21.0 20.4 20.6 20.6 20.0 20.7 21.3 21.3		19.8 19.8 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.8	* -
ט ב ל ה הסמפרסורה היומית הממוצעת	15		22 22 22 22 22 22 22 22 22 22 22 22 22		22.0 25.5 25.5 25.5 25.5 25.5 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6	
	IIV		25.7 24.3 25.4 25.4 25.4 25.4 25.4 25.4 25.4		22.6 22.6 22.6 22.6 22.6 22.6 22.9 22.6 22.0 22.6 2 26.2 26.2 26.2 26.2 26	
T A B L E III Average Daily Temperature (°C)	ЛПУ		26.4 25.9 25.9 25.4 25.4 26.4 26.2 26.2 26.2		23.8 27.6 27.6 27.6 27.6 26.9 23.2 23.3 23.2 25.6 26.0	21.5 30.8 31.2 33.4 33.4 33.4
L E beratur	۲ ۲		24.9 23.9 23.0 23.0 23.0 23.5 23.5 23.5 23.5 23.5 23.5		25.2 25.2 25.2 25.2 25.6 25.6 23.0 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	20.2 28.2 29.6 31.4 31.0
A B r Temp	×		23.2 23.2 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21		19.4 23.0 23.0 25.2 23.0 25.2 23.0 20.2 20.2 20.2 20.2 20.2	26.2 25.2 26.8 27.6 27.2
T e Dail	X P.	×	20.0 19.4 20.0 19.6 19.0 19.0 19.0	л	15.4 19.9 18.0 20.2 20.2 20.2 19.4 15.5 20.0 18.5 20.0	22.0 22.2 22.2 22.2 22.5 22.5 22.5
Averag	опt XII	×.	15.4 13.8 13.1 15.1 14.7 15.3 15.3 15.4	%	9.3 114.6 114.6 114.6 115.1 114.0 114.0 114.9 113.5 113.5 113.5	15.4 16.4 15.6 16.7 17.6 17.6 16.9
7	M Year Year	r	19.9 18.8 19.9 19.1 19.1 20.0 19.5 20.1	87 8	16.1 20.5 19.5 20.6 19.8 21.7 20.4 10.4 17.1 17.1 19.5 19.5 19.5	2007 2017 2017 2017 2017 2017 2017 2017
	н н н		שכר חיפה, הר הכרי נתניה מל אביב, חוק לוד, נמל המשו מזה	r n	הר כנען המה דוד, שי רמה דוד, שי משמה הצמק בית שאן בית שאן בית בינין בית ביניל באר שבע ביר בדן	ופנה טבריה, קריה רגניה אי סדום, ביח"ר אילה
	n F	L	שכר חיפה, הר הכרמל נתניה מל אביב, חוף מל אביב, הקריה לוד, נמל התעופה	r n	Mt. Kena'an Mt. Kena'an Tabor, Agr. School Tabor, Agr. School Ramat David, Aerod. Ramat David, Aerod. Varia, Hospial Mishmet David, Aerod. Varia, Hospial Mishmet Nathan Mishmet Vard Pariation Mishmet Vard Pariation Mishmet Vard Pariation Mishmet Vard Pariation Mishmet Vard Second Carve Tar Variation Second Second Set Sheba Motod Istol Beit Sheba Second Set Sheba Second Second Second Second Second Second Second Second Second	ופנות בתומע בעריה, קרית שמושע דפנות בריה, קרית שמושל בווס דוביומו דוס דוביומו דוס דוס דוס דוס דוס דוס דוס דוס דוס דו
		NO	1- I <u>-</u>		קלאי ורפה ירם ילאס bi	מראל וי
	z o	6 I (e e e rrya	NO	Mt. Kena'an Tabor, Agr. School Ramat David, Acrod. Afula, Hospital Mishmar ha'Emeq Heftsibah, Gilboa' Beit Shean Jenin Ramallah Jerusalen, Palace Hol Beit Jimal Beer Sheba D A N R I F T	Shemue
	I I	RE	At. Cai lom a v, Shor v, Hak rport	6 I 0	Kena'an or, Agr. Scl at David. Ia, Hospita Ia, Hospita Ia, Hospita Shean iallah iallah salen, Pala Jimal Sheba	, Qir. S a A Factor
	T A	ΑL	Acre Haifa, Mt. Carmel Tel Shalom Natanya Tel Aviv, Shore Tel Aviv, Hakirya Lod, Airport Gaza	RE	Mt. Kena'an Tabor, Agr. School Ramat David, Aero Afula, Hospital Mishmar ha'Emeq Heftsibah, Gilboa' Beit Shean Jenin Ramallah Jerusalem, Palace H Beit Jimal Beer Sheba Beer Sheba	Datna Tiberias, Qir, Sl Deganya A Jericho Sedom, Factory Eilat
התנודה		ST	8.5 6.0 8.6 7 9.4 1 10.7 1 10.7 1 10.7 0.5 C	ILL		9.5 7.4 7.4 9.4 10.3 9.9 8.0 10.8 E
היומיו		0 A	9.5 7.0 6.3 8.9 9.3 9.3 9.3 9.3 9.9 9.9 9.9 9.9 9.9	Η		10.5 9 8.6 7 8.6 7 10.4 9 11.3 10 10.9 9 11.4 10
ובממוז	n m	A, C	10.0 9 7.3 7.3 9.6 9.6 9.2 8 9.3 9.3 10.1 9 112.2 11 110.3 9	ต่	•	9.5 9.5 11.7 12.4 11.4 11.4 11.4 11.4 11.2 1
2 1	I V I	4	10.6 1 7.6 11.1 9.4 9.8 9.8 10.5 1 13.7 1 13.7 1 10.5 1			13.1 1 11.8 1 13.5 1 14.5 1 12.6 1 12.6 1 12.8 1
Lacar			10.1 1 8.3 8.3 11.6 1 9.5 9.6 10.4 1 14.8 1 11.0			14.2 13.1 14.9 15.2 13.2 13.3
ע ו	IA		8.8 7.1 10.5 9.2 9.6 13.4 10.8		10.8 13.1 14.5 13.6 11.7 11.7 11.5 11.5 11.5 11.5 11.5 11.5	14.4 12.7 14.8 15.5 14.0 14.5
E] re (°C)	ПЛ		8.2 6.4 9.8 8.6 9.2 12.1 10.6		10.5 12.2 12.8 12.8 12.8 13.0 14.5 11.4 11.2 11.2 11.9	13.4 12.0 13.8 13.9 13.9 13.9
B L peratur	ША		8.3 6.2 9.6 8.7 9.2 9.2 11.8 11.8		10.8 12.1 12.8 12.5 12.5 11.2.5 11.6 11.6 11.6 11.8 11.8 15.3	13.4 11.7 13.5 13.5 13.3 13.3 13.3
T A B of Temper	X		9.2 6.2 9.8 9.7 9.7 9.7 11.9 11.9			13.5 11.5 13.5 14.2 11.6 11.6
TABLE IV ポレコロ Average Daily Range of Temperature (°C) にいたいたい アンパンス	×		10.9 7.1 11.1 9.9 9.9 11.0 11.0 13.5 11.4			14.1 10.9 13.3 14.0 11.1 11.1 11.1
Daily R	t h		10.7 6.6 10.1 10.1 11.0 11.0 11.0 13.0 10.5			12.1 9.1 10.9 10.6 10.6 11.3
erage I	M o n I Tite XII Year		9.0 5.9 8.9 9.8 9.4 9.4 9.4			9.5 4 7.1 3 10.2 9 9.8 4 11.0
Ar	M		9.5 6.8 9.0 9.0 9.0 10.0 110.0		8.5 11.7 13.6 11.6 9.4 9.4 13.5 13.6 13.6	12.4 10.4 12.4 11.9 12.4

Aver	age M	onthly	, Minim	ם ב ל ה VI E L E VI Average Monthly Minimum Temperature (°C) אלארטא Average Monthly Minimum Temperature (°C) אלא אלא אלא אלא אלא אלא אלא אלא אלא אל	L E	e (°C)	15.50	BLE VI ボゲコロ Temperature (°C) กบราวาก		נביניכו	שורת	טגנפר	Averag	T A B L E V Average Monthly Maximum Temperature (°C)	hly Ma	T A	Temp	T A B L E ximum Temperature	°C) €
X	Mont	t h	e e				-			חודש	E C		1	Month	H H				
X.	×	×	X	XII XI X IX IX	ΠΛ.	IV	>		Ħ	II	н	NOTTATO		IIA IIIA XI X IX IIX	X	×	X	H.	F
1																			

סמפרטורת המקסימום ההודשית הממוצעת

9245

-212

Ħ

Ħ

2

>

5

Þ

24
25
g-m
0
5
E
12
-
Ţ
Por .
Z
0
)met
Ċ
1
12
Ы
Ł
[et
3
◄
0
C

	M	2	.5	3	4	4	44	24.1
								21.1 24
						30.3 25		
						9 32.4		
						4 32.9		
						2 31.4		
						8 31.2		
						31.8		
						32.0		
×						33.3		
*						29.8		
5			_	-	-	22.5	-	
x. xuite narte	עכו	חיכה, שרי הכרמל	היפה, הי הכרמל	חל שלום	ILITLA!	תל אביב, חוף	לוד, נבול התעופה	ALL
STAL REGION	Acre	Haifa, Carmel Ave.	Haifa, Mt. Carmel	Tel Shalom	Natanya	Tel Aviv, Shore	Lcd, Airport	Gaza
<	4.1	6.4	00 00	4.7	17	3.0	7.7	43
0	4.5	6.8	4 . 8	4.0	5.0	3.6	5.5	4.7
A.	4.8 4	7.2	6.0	5.3	5.6	4.2	2.6	5.1
	6.9	9.7	8°6	1.1	8.0	C.5	19. 4 19. 4	1.4
	10.4	14.0	13.1	11.4	11.6	9.8	8.11	11.3
	14.8	18,1	16.7	15.1	15.6	13.7	12.6	15.0
	18.3	20.8	19.7	17.8	19.0	17.1	15.9	17.8
	19.4	22.2	20.8	39.2	19.8	17.9	16.6	18.7
	16.5	19.9	18.8	17.4	9*2E	15.3	14.9	16.7
	13.0	16.4	15.2	14.0	13.8	11.3	10.6	13.8
	8.9	10.6	10.6	10.5	9.7	7.7	6.5	9.3
	5.4	7.0	7.0	6.7	6.8	4.9	3.6	5.4

15.0 21.3 24.4 25.8 23.6 25.6 17.7 24.7 24.5 25.4 21.8 21.7 28.9 28.6 30.2 20.4 28.7 ເ ເ 31.1 23.2 27.6 35.0 35.4 30.5 33.8 34.2 37.8 35.9 35.8 33.9 32.7 38.9 37.4 37.2 41.3 39.8 33.0 33.0 33.0 40.434.3 39.8 38.3 38.1 41.3 42.2 39.4 35.0 33.2 33.2 38.4 34.5 37.4 38,3 35.6 37.9 36.7 40.0 40.9 33.9 34.5 37.0 33.3 36.1 39.5 33.1 36.4 40.4 34.3 37.7 39.3 40.2 33.1 33.0 36.7 36.7 37.7 33.3 33.6 35.4 36.4 37.4 37.4 37.4 35.2 35.2 31.1 ų X.ILL HHL.D 21.3 25.3 25.4 הר כנען תבור, ביה״ם החקלאי רכת דוד, שי תמוכה משמר הצמק Een axl Jenin Jenuszlem, Palace Hotel DK/2 driver Jenuszlem, Palace Hotel ביה בימל חפציבה, גלברע באר שבט Ramat David, Aerod. Taber, Agr. School Mishmar ha'Emeg Heftsibah, Gilboa' REGION Mt. Kena'an **Beit Shean** Beer Sheba Beit Jimal Jenin B. HILL 0.1 8 4 6 4 4 9 6 0 0 0 8 6 6 4 9 6 0 6 0 2°0 4°0 8.0 7.2 9.5 9.5 11.4 11.2 11.4 5.4 11.9 11.9 11.4 14.7 14.7 12.8 14.1 15.8 15.6 15.6 15.6 15.6 14.0 17.8 15.8 17.6 18.7 18.5 14.9 18.0 19.5 14.6 18.8 17.1 18.7 20.4 19.1 19.6 15.8 19.0 13.2 16.8 14.6 15.6 16.1 17.4 14.5 17.6 13.0 10.2 11.3 8.9 10.3 13.4 12.8 13.6 12.9 14.5 5.7 8.3 3.7 6.3 9.4 7.2 10.5

מלה וירדן JORDAN RIFT Ç

1

24	23,2	3.4	4.3	0.2	5.8
	25.2				
29.1					
	35.8 3				
	39.8 3				
	41.3 39				
	41.4 41				
	41.1 41				
	1 40.3				
	7 33.1				
	1 32.7				
23.9		26.7			
Lafna Lafra	acr:	Deganya A Deganya A			
	6.3	L.5 I	14 17 17	6.5	F 0.1
	5.1 (
	7.2				
	9.8				
	14.4			.,	
					14
প্রা					
	19.0	17.0	18.5	21.3	20.0
17.1	21.6 19.0	19.7 17.0	21.1 18.5	23.7 21.3	22.5 20.0
12.0 17.1	22.8 21.6 19.0	21.2 19.7 17.0	21.7 21.1 18.5	24.3 23.7 21.3	22.7 22.5 20.0
15.8 38.0 17.1	20.7 22.8 21.6 19.0	18.4 21.2 19.7 17.0	19.5 21.7 21.1 18.5	21.9 24.3 23.7 21.3	20.6 22.7 22.5 20.0
11.6 15.8 38.0 17.1	20.7 22.8 21.6 19.0	14.4 18.4 21.2 19.7 17.0	16.4 19.5 21.7 21.1 18.5	17.8 21.9 24.3 23.7 21.3	15.8 20.6 22.7 22.5 20.0

טבלה TABLE VIII

Absolute Minimum Temperature (°C) טמפרטורת המינימום המוחלטת

STATION	Μ	1 on t	h								W	717	T	
STATION	שנת Year	ХП	XI	х	іх	VIII	VII	VI	v	IV	III	II	I	התחנה

A. COASTAL REGION

א. איזור החוף

0.9 1.2 7.1950 24.1957

אילת

מאריך

Acre Date	-0.5 6.2.1959	1.5 1.1953	4.5 30.1953 24.1958	10.0 21.1956	12.0 29.1956	15.1 15,1929	15.5 5,1932	11.7 10.1939	7.5 2.1932	4.2 2.1946	1.2 3.1928	-0.5 6.1959	0.0 23.1957	עכו מאריך
Haifa, Lower Town Date	-1.6 25.1.1907	0.2 28.1924	5.0 29.1953	13.0 23.1899	16.5 28.1938	19.0 9.1900	19.0 4.1939	14.6 11.1932	9.6 1.1908	6.0 1.1956	2.0 3.1928	(0.0) 6.1950	-1.6 23.1907	חיפה, האית האריך
Haifa, Mt. Carmel Date	-3.0 6.2.1950	3.2 19.1953	4.9 30.1953	13.5 22.1941 22.1946	15.0 10.1953	19.4 22,28.1949	18.0 5,1949	14.2 2.1943	11.3 6.1944	5.0 6.1943	0.5 6.1943	-3.0 6.1050	1.0 27.1950	דיפה, הר הכרמל תאריך
Greater Tel Aviv Date	-1.9 7.2.1950	-1.1 31.1878	3.3 20,21.1908	7.2 30.1878	10.0 29.1903 30.1956	15.0 22,1878	13.9 1,5,1874	10.0 1,2.1874 7,10.1878	4.4 5.1878	2.5 2.1946	1.0 22,23.1945 2.1048	-1.9 7.1950	-1.5 8.1949	תל אביב רבתי ^{תאריך}
Lod-Ramia Date	-2.5 30.1.1950	0.7 12.1953	0.8 ; 26.1959	6.7 21.1956	9.5 29.1956	14.6 9.1951	14.0 2.1952	9.5 6.1957	5.9 1.1956	0.5 2.1946	-0.5 2.1948	-2.2 7.1950	-2.5 30.1950	לוד־רמלה _{מאריך}

B. HILL REG	וסא												רים	ב. איוור הה
Mt. Kena'an Date	-9.0 6,2,1950	-2.4 20.1053	-1.7 29.1053	5.9 14,1048	10.7 30.1949	13.0 22.1949	12.2 2.1052	9.1 2.1943	5.7 1.1948	0.2 6.1949	3.0 6.1943 23.1953	-9.0 6,1050	-6.4 5.1942	הר כנען מאריך
Tabor, Agr. School Dato	-5.4 7.2.1050	0.0 21.1953	0.2 29.1953	10.2 14.1948	14.5 28.1956	17.4 6.1940	15.6 12.1058	10.4 3,1943	7.9 6.1944	3.5 1.1956	-0.3 24.1942	-5.4 7.1950	-1.2 23.1957	תבור, ביה־ס התקלאי תאריך
Ramat Dav., Aerod. Dato	-11.5	-2.8 31.1948	-0.4 31.1953	4.4 15.1948	10.3 11.1953	16.1 22.1949	14.3 3.1953	10.5 3.1949	5.0 0.1944	-0.6 2.1946	-1.3 8,1955	-11.5	-5.3 8.1949	רמת דוד, ש׳ מעופה מאריך
Heftsibah-Gilboa' Date	-4.6 7.2,1950	1.2 31.1948	3.2 29.1953	10.6 14.1948	14.4 10.1953 28.1956	19.0 22.1949 25.1960	16.9 12.1958	12.7 3.1943	8.3 1.1948	2.8 2.1946 1.1956	0.4 2.1948	-4.6 7.1950	0.2 6.1942 8.1949	הפציבה־גלבוע ^{מאריך}
Jerusalem Dato	-6.7 23.1.1907	5.0 22.1905	-0.6 20.1908	0.0 24.1871		10.6 23,26.1871 28,31.1871	9.4 2.1871	7.2 2.1900	3.3 13.1901	-1.1 6.1886	-2.4 13.1910 6.1943	-5.1 6.1950	-6.7 25.1907	יריושלים תאריך י
Beit Jimal Dato	-3.0 27.1.1925	0.7 27.1924	4.0 19.1953	11.9 27.1024	11.1	16.5 1.1926	15.6 13.1922	11.3 12.1933	9.4 1.1926	4.5 6.1949	0.5	-2.3 6.1950	-3.0 27.1925	בית ג׳מל ^{מאריך}
Beer Sheba Date	-5.0 31.1.1925	0.5 11.1945	2.5 30.1953	6.0 16.1926	9.4 17.1928 22.1930	12.0 31.1934	12.0 8.1923 13,14.1933	8.0 3.1928	4.5 2.1932	0.0 2.1946	-1.5 23.1945	-4.0 7.1950	-5.0 31.1925	באר שבע ^{תאריך}
C. Japann D.		1	1	1	1	I	1	1	1	· · ·	1	•		1 ber ben fe ûns an ben 175 b.
C. JORDAN R													. *	ג. שקע הירד
Dafna Dato	-5.2 6.2.1950	0.4 31.1948	0.4 29.1953	9.2 15,1948	12.6 28.1956	17.0 13.1940 25.1960	15.8 12.1958	12.5 2.1949	6.8 1.1948	2.4 1.1956	0.8 3.1950	-5.2 6.1950	-2.0 8,9.1949 27,1950	דפנה תאריך
Tiberias Date	-3.3 27.12.1898 31.12.1898 21.1.1011	3.3 27,31.1898	4.4 19.1908	10.0 14,15.1898	10.0 19.1894	13.3 9.1898	13.9 31.1898	13.8 5.1939	9.4 6,9.1808	6.1 11.1806 10,11.1898	3.9 21.1898	-1.0 6.1930	-3.3 21.1911	טבריה האריך
Sedom Date	3.0 24.1.1957	5.5 13.1950	6.4 26.1958	15.0 30.1956	19.5 28.1956	23.0 16.1958	21.5 1.1954	19.6 3,1943	11.5 7.1950	8.5 1,2,1956	6.4 1,1945	4.0 3,4.1957	3.0 24.1957	סדום תאריך

20.2 15.1045 21.3 5.1952 17.0 27.1945

13.8 4.1936 9.0 1.1056 4.9 1.1959

1

5.3 13.5 18.8 30.1953 27,30.1949 30.1955

0.9 7.2.1950

Eilat

Date

3.0 12.1953 , i

1	1	-		12.9 10.8 11.5 11.5 10.0 10.7 10.7		6.1 10.3 10.6 11.0 11.0 7.1 7.1 7.9 9.1		9.7 11.1 13.0 12.9 12.2	
		H.		12.6 1 11.4 1 12.1 1 12.1 1 12.2 1 12.2 1 11.5 1 11.5 1 11.5 1		6.7 11.3 11.3 11.5 11.5 11.5 11.5 11.5 11.3 11.3		6 2 2 H H C 9	
Locas	A	E		14.9 14.3 14.3 14.3 14.2 14.1 14.1 14.0 14.4 14.0		8.5 13.6 13.6 13.4 13.4 13.4 13.5 13.5 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5		1 2.51 3.61 1 2.21 1.21 1 1.21 1.21 1 1.21 1.21 1 2.21 1.21 1 2.21 1 7.11 1.21 1 7.21 1.21 1.21 1.21 1.21 1.21 1.21 1.2	
רמורה		2		18,8 16,8 16,8 18,6 18,6 18,1 17,2 17,2 17,2 18,1 18,1		13.7 18.5 3 16.9 3 16.9 3 16.9 3 19.2 1 19.2 1 19.2 1 11.7 1 11.7 1 17.0 1 17.0 1		17.5 19.7 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3	
ත a (°C)		7		Z3.1 20.9 22.9 22.4 21.9 22.4 21.9 22.5 1 22.5 1 22.5 1 22.5 1 22.5 22.5 1 22.5 1 22.5 22.5		19.6 1 23.8 1 23.8 1 23.0 1 22.4 1 19.6 1 19.6 1 19.6 1 19.6 1 19.6 1 19.6 1 22.1 0 19.6 1 22.1 0 12.2 1 19.6 10 100 100000000000000000000000000000		21.3 1 24.8 1 22.1 2 27.1 2 27.1 2 26.6 2 26.6 2 77	
ן ב ל הממוצעו		5		25.8 23.2 23.2 24.6 24.6 24.2 24.2 25.6 25.6 25.5 25.5 25.5 25.5 25.5 25		21.9 25.5 25.5 25.5 25.5 25.5 22.5 22.5 22		24.6 27.5 27.5 38.0 38.0 28.8 28.8 28.8 28.8 28.8 28.8	
ר, ה נת בשי		II		27.6 28.5 28.2 26.2 26.2 26.2 25.2 25.2 25.2 25.2 25		23.1 2 27.1 2 27.1 2 27.1 2 28.8 2 28.8 2 27.4 2 27		26.1 2 29.3 2 31.4 3 31.8 3 30.7 2 30.7 2	
IX 800° 75		ШЛ		28.0 24.9 26.9 26.9 26.6 26.6 27.2 26.6 27.2 27.2 27.2 27.2		22.9 22.1 22.1 22.1 22.1 22.1 22.1 22.1		26.2 2 29.1 2 31.4 3 30.5 3 30.5 3	
E E		IX N		26.6 23.0 23.8 25.1 25.2 25.1 25.1 25.5 25.1 25.6 2 25.5 25.5 25.5 25.5		20.8 22.6.3 22.6.3 22.6.4 22.7.7 22.6.4 22.7.7 22.6.4 22.7.7 22.6.4 22.7.7 22.6.4 22.7.7 22.7		24.9 27.6 27.6 27.6 29.5 30.2 27.8 30.2 27.8	
A B L ature (°C)		X		21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5		18.4 23.3 23.3 23.4 22.5 22.4 22.4 22.4 22.4 22.4 23.4 19.4 19.4 19.4 21.6 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4		21.8 23.9 26.3 26.5 26.5 21.4 21.4	
T A	д	X	×	19.4 18.4 18.1 18.1 18.1 18.0 17.8 17.8	_	14.4 18.5 18.5 17.0 17.0 17.0 18.4 17.0 18.4 18.4 18.4 18.7 16.7 16.7 16.7		16.8 20.6 18.4 21.2 20.5 19.0	
TABLEIX TC COC at 0800 at Carter CoC at 0800 at the carter (OC) at 0800 at 0800 at 0800 at 0800 at the carter of	H H	XI	24	14.0 13.5 13.2 13.2 13.2 12.5 12.5	x Li	8.3 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11	er;	11.8 15.1 15.2 14.1 14.1	
Avera	o M	Year		20.5 18.5 20.1 19.6 19.8 19.7 19.7		15.4 19.5 19.7 19.7 19.3 20.6 19.7 15.5 15.5 19.6 15.5	ada	18.8 21.7 21.0 23.1 23.4 23.4 23.4	
			E E E N	שכד היפה, הר הברמל נתניה תל אביב, חוף מל אביב, הקריה לוד, נמל המעופה		سداد، درستام المراجمية Mt. Kena'an Tabor, Agr. School Tabor, Agr. School Tarid, Lor Arid, Agr. Arod. Anila, Hospital Cerr, rit, W. ritition Mishmar bar bar bar bar bar bar bar bar bar b	<i><i><i><i>i</i></i></i></i> ^{<i>i</i>} <i>^{<i>i</i>}</i>	דפנה מבריה, קרית שמואל Qir. Shemuel tiberias, Qir. Shemuel tiberias, דגניה א שופום ליותר כדום, ביוז"ר Sedom, Factory Factory Eilat	
	N OI F V F S		AL REGIO	Acre Haifa, Mt. Carmel Tel Shalom Natanya Tel Aviv, Shore Tel Aviv, Hakirya Lod, Airport Gaza	REGION	Mt. Kena'an Tabor, Agr. School Ramat David, Aerod. 'Afula, Hospital Mishmar ha'Emeq Heftsib. 't, Gilboa' Beit Shean Jenin Ramallah Jerusalem, Palace Hol Beit Jimal Beet Sheba	RDAN RIFT	Dafaa Tiberias, Qir. Shemue Deganya A Jericho Sedom, Factory Eilat	
הלח	=	I	AST	71 76 75 73 75 75 75 75 75 75 75 75 75 75 75 75 75	ILL	333338383838	J O	79 76 76 59 59	
זות היו	r a	н	C O	3 3 3 3 3 3 3 3 3 3	H	25 2 2 2 2 2 8 2 8 2 2 2 2 2 2 2 2 2 2 2	Ċ,	78 76 60 60	
זסית (₆)		Ħ	A.	68 76 76 71 72 71	ря́	E 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		72 72 56 55	
		IV	ľ	65 64 64 74 63 73 71 71		5 5 K 5 7 5 6 5 7 8 8 5 7 8		63 64 64 F	
ל ה גוצעה ב		>		66 69 60 70 70 70 70 70 70 70 7		8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		60 558 44 45 33 33	
X :nau		5		8 8 9 8 8 8 8 8 8		52 52 52 54 57 57 57 57 57 57 57 57 57 57 57 57 57		59 59 58 58 59 59 59 59 59 59 59 59 59 59 59 59 59	
L E) at 0806		ΠΛ		5 8 3 9 3 8 4 3 5 8 9 9 9 8 4 3		*********		858444	
A B]		TIIV		22238833		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		8 8 61 8 2 2 2 2 8	
T A lagadity		XI		85338538		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		63 63 52 52 49 49 49 40 11 10	
ative H		×		******		7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		61 57 58 58 52 53 53 53 53	
TABLE X オピーン ロックコン	n t h	X		9 3 2 A 7 8 6		6 5 5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		68 61 61 57 62 58 53 58 57 58 57 53 10cal Standard	
Avera	M o	Ycar XII		66 68 68 73 66 73 73 73 73 73 73 73 73 73 73 73 73		22 23 23 23 23 23 23 23 23 23 23 23 23 2		66 65 33 664 69 55 65 33 49 56 • 1 59 • 1	
		,							

- 10 -

	1	1	H		16.9 13.8 16.4 16.4 16.9 17.0 17.2 17.2		,	8.7 15.6	16.2	16.2	2.51 17.5	17.7	16.0	11.6	15.6	9			2
		-	H		17.4 16 14.4 13 16.9 16 17.1 16 17.1 16 17.1 16 17.1 16 17.1 16 17.1 16 17.1 16 17.1 17 17.1 17 17.1 17 17.1 17 17.1 17 17.1 17											4 16.3		9 15.3 17.2 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7	
	רממפר	r Đ								1 17.3			1 16.7			2 17.4		1 16.9 17.7 9 18.3 0 20.6 0 21.4	
			H					4 11.5 7 18.6	7 19.4	1.01 0			8 19.1			2 19.2		2 19.1 2 19.7 2 20.9 8 24.0 8 24.0	
	הממפרטורה (C°) הממוצעת בשעה		2		0 21.2 8 18.7 2 21.8 2 21.2 2 21.8 2 21.2 2 21.8 2 21.2 2 21.8 2 21.2 2 21.8 2			3 23.7		1 23.6			2 23.8			4 24.2		22222 22222 22222 22222 22222 22222 2222	2
а п	יממוגנ		>		3 25.0 8 22.8 1 26.2 8 24.0 8 24.0 6 23.7 3 27.3 8 25.2 8 25.2			2 29.3	4 26.7		5 31.3		4 20.2			2 29.4		27.6 31.3 31.3 30.1 2 30.1 2 30.2 2 30.2 2 30.2 2 30.2 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1	5
5	גע בש		ИИ		2 27.3 5 24.8 6 24.8 6 24.8 6 24.8 6 24.8 7 28.1 5 26.6 6 29.3 6 29.3 8 27.6 6 29.3			9 20.3 3 31.2	30.4	31.4			31.4			31.2		30.9	
X	ar •00		IIA I		29.2 29.2 29.6 29.6 29.6 29.5 29.4 29.4 29.4 29.4 29.4 29.4 29.6 29.0 20.6			32.8		32.7			32.6			32.6		35.3	
E	at 14(ШЛ		20.0 20.0 20.4 20.4 20.4 20.4 31.0 31.0 31.0			3.0.28	32.8	33.1			32.7			32.8		33.4 35.0 35.0 37.6	
TI	Average Temperature (°C) at 1400*		X		28.9 28.1 28.1 28.7 28.7 28.7 28.7 29.7 29.3			31.4	30.9	31.5			31.3		29.8	30.5		31,6 33.7 33.8 33.9 35.9	
A B	eratur		×		26.9 24.4 27.6 26.3 26.3 26.3 26.3 26.3 28.2 28.2 28.2 28.2 28.2			29.3	28.6	29.4			28.9			28.4		20.5 30.5 32.1 32.1	
H	Temp	t h	X	×	23.8 21.4 23.8 23.8 23.0 24.4 24.4 23.7			25.0	23.7	23.3			24.6			24.1	-	23.4 25.55 24.6 27.7 27.0 27.0	
	rerage	а 0	ž	×	18.9 15.9 18.8 18.7 18.7 18.8 18.8 19.0	×	1	11.1	18.2	18.2	19.6	19.7	17.8	13.6	17.6	18.2	1 9	17.8 18.8 19.2 21.2 21.2 21.3	0.44
	Ā	X	Att	115	23.7 21.0 23.8 23.3 23.3 23.9 23.9 24.0 24.0	-		25.4	24.9	25.6	27.4	27.7	25.3	21.0	24.4	2.4	2	23.1 27.0 27.1 27.1 29.6 29.6	4 8
		1 1	:	Entr NO	עכו חיפה, הר הכרמל גתניה הל אביב, חוף הל אביב , הקריה לוד, גמל המעופה			הר בנען תבור, ביה־ס החטלאי		עפולה, בית החולים	השבור העבוק הפציבה, בלברצ	בית שאן	1212	Jerusalem, Palace Hotel arty 1771, 2011	בית בימל	באר שבע	E . F . F .	Dafina Dafina Dafina Dafina Dafina Dafina Diserias, Qir. Shemuel ארקרק שבוזאל Deganya A ארקר איז של	
		NOITATO		TAL REGI	Acre Haifa, Mt. Carmel Tel Shalom Natanya Tel Aviv, Shore Tel Aviv, Hakirya Lod, Airport Gaza			Mt. Kena an Tabor, Agr. School	Ramat David, Aerod.	'Afula, Hospital	Heftsibah, Gilboa'	Beit Shean	Jenia Domellab	Jerusalem, Palace Ho	Beit Jimal	Beer Sheba	DAN RIFT	Dafina Tiberias, Qir. Shemu Deganya A Jericho Sedom, Factory	
	E		I	AS	64 54 54 51 50 50 50 50 50 50 50 50 50 50 50 50 50	LL L		60	:2	56	207	12	23	99	56	22	OR	51 50 50 51 50 51 51 51	2
	לחורת ה	F	п	00	60 52 52 53 53 54 50 54 50 50 50 50 50 50 50 50 50 50 50 50 50			22	57	33	2 13	8	62	62 4	55	50	ີ ປ	57 57 58 58 58 58 58 58 58 58 58 57 57 57 57 57 57 57 57 57 57 57 57 57	8
	יחסית	Ð	III	Å	56 56 56 56 56 56 56 56 56 56 56 56 56 5	ណ័		22 22	5	22 3	25	3	នេះ	3 3	2	4 2		22242	3
a n	(%) LC		N		63 57 50 57			1	52	46	16	4	48	9T 27	46	43		838888	8
л Г	ומרצער		٧		61 61 63 63 63 63 63 63			38	44	36	36	33	8	42	33	3		26 26 26	23
	n)		6 P	4	5	2 2	36	8:	ដ ជា	42	-		28 23 38 40	1
E	DAL		5		63 55 55 55 66 61 61 61	•		5 6			a. e.	- 6-3	6.3 4	দ পদ	101	3			
IIX	1400° 770		и и		64 63 68 66 58 55 72 70 68 66 68 66 68 66 68 66 63 66 63 65 63 65 63 65 63 65 63 65 63 65 64 63 65 66 64 66 64 66 64 66 64 66 64 66 64 66 64 66 64 66 65 66 65 56 55 56 5			8 8		39			3			38		3 E X E Z S	P 4
LE XII	% at 1400• HDD		ПЛ						41	39		8	42		41			3 K 8 8 8 8 8	2
ABLE XII	idity (%) at 1400° ADD				50 50 50 50 50 50 50 50 50 50 50 50 50 5			88	43 41	40 39	3 8	39 38	42	41 44 43	43 41	33			2
TABLE XII	• Humidity (%) at 1400• 770		ли ии		63 64 67 68 58 56 58 56 68 68 66 68 61 58 51 50 51 50 51 50 51 50 51 50	9 9 9		40 39	44 43 41	42 40 39	54 55 55 39 38 38 38	39 38	44 43 42	41 44 43	45 43 41	38		328338	Standard Time
TABLE XII	Relative Humidity (%) at 1400° µVO	ħ	пл ни хи		59 63 64 63 67 63 64 54 58 56 56 54 59 75 56 54 59 75 56 56 66 66 56 56 56 66 56 56 51 50 72 56 51 50 72 56 51 50 72 56 51 50 51 61 63 63 64			43 41 39 42 40 39	43 44 43 41	37 42 40 39	54 55 55 39 38 38 38	36 38 39 38	39 44 43 42	4/ 45 44 48 44 43	43 45 43 41	42 38 38		14 86 93 88 88 17 88 88 88 18 88 88 88 18 88 88 18 88 88 18	Local Standard Time
TABLE XII	Average Relative Humidity ($\%$ at 1400° LUUE CUUE ($\%$	Month	х лу ин и		55 59 63 64 60 63 67 68 49 54 58 56 62 54 58 56 61 54 58 56 62 54 58 75 61 57 58 72 61 56 66 68 56 56 66 58 61 50 51 50 61 63 61 63 61 61 61 63			41 43 41 33 41 33 41 33	45 43 44 43 41	41 37 42 40 39	50 47 54 54 53 53 42 37 39 38 38	42 36 38 39 38	39 44 43 42	50 45 48 44 43	47 43 45 43 41	45 40 42 38 38		8 8	Local Standard Time

- 11 -

	1	1	1	12.6	11.5	13.3	12.7	13.3		6.6	4.	r, r	- 00	2.	۰. ۱	7.7	8.6	9		0 0	م م	no	
	-	п			11.9 11.	13.2 13									12.8 12.3	-	9.0 8.6				14.6 13.9	.7 16.3	
נטמפו	4				12.4 12																	4 17.7 8 17.7	• 10
"מורה											-	12.5			4 14.4		1 12 1				6 16.9	3 20.4	रता वदावर तदग
טבל ו הממפרטורה (C°) הממוצעת בש		N										0 15.2 6 16.0			5 I8.4	• • •	2 14.1			8 16.9 9 19.6		0 25.3	r nqr
ם וממרצע נממרצע		>				.5 20.5 9 20.7						3 20.6			9 23.5		1 205			5 20.8 3 24.9		5 30.0 4 30.5	
יל ו נת בשי		IV .		4 23.4		8 23.9						6.22 C			7 25.9		8 21.0			0 21.5		1 33.5 9 33.4	
XIII Л 2000• лл		IIA		1 25.4		.2 25.4 6 25.8						4 20.0			C 20 E		2 24.0			1 26.0		4 35.1	
XIII at 2000*		NII		8 26.1		1 26.2 6 26.6						9 20.4			5 28.1 8 25.7		5 22.2			9 26.7 7 29.1		4 35.4	
L E (°C)		X		24.8		5 25.1						8 24.2			6 20-5 27 8		9 20.5			9 24.9 3 27.7		2 32.4	
αğ		×		3 22.2		2 22.5						2 21.8			3 23.6 s 21.3		3 18.9 8 21.0			2 21.9 2 25.3		8 23.2 1 28.0	
T A Temperat	t h	IX	X. X.	9 18.3		2 13.7 1 18.2			ų			1 18.2	-		1 19.3 0 17.6		5 15.3		-1	7 17.2 9 21.2 6 10.2		9 22.8	
erage	0 1	XII	***	2 13.9		5 14.2			% 5			13.4 13.4			1°+1 · 0		2 13.4		0 A	0 12.7		2 17.9 2 17.0	
Av	M	Year	ĥ	19.2	18.6	19.5	19.7	19.8	8 8	14.4	19.0	18.8	17.8	20.3	20.02	14.6	16.0	18.0	54	19.0 22.0	12	26.2	
			Entr NO	עכו חותר דר דרוון	תישונים הבינה	נהניה תל אביב, הוף	תל אביב, הקריה לוד. וול המסומה		ר ההרים	הר כנטן	תבור, ביהיס החקלאי שמה שנה מין מנומה	רכת דוד, שימצוטה. שפולה, בית התולים	משמר העמק	חפציבה, גלברע	ETA UNI	רמאללה	ירושלים, מלון פלאס Jerusalem, Palace Hotel Jerusalem, Palace Hotel בית נימל	באר שבש	1.2.1	דכנה טבריה, קרית שמואל Tiberias, Qir. Shemuel ניוס שווריש, A survey A		סדום, ביח"ר אילת	
	C F F	VIIION	TAL REGIC	Acre Haifa Mt Carmel	Tel Shalom	Natanya Tel Aviv, Shoro	Tel Aviv, Hakirya Lod. Airport	Gaza	REGION	Mt. Kena'an	Tabor, Agr. School Pamar David Aerod	'Afula. Hospital	Mishmar ha'Emeq	Heftsibah, Gilboa*	Jenin	Ramallah	Jerusalem, Palace Hot Beit Jimal	Beer Sheba	DAN RIFT	Dafna Tiberias, Qir. Shemue Decanva A	Jericho	Sedom, Factory Eilat	
הלתות	E	I	AS	11	22	12	12 00	2.5	ILL	78	12 0	0	81	11	2 F	13	62	12	OR	12 69 1	69	58 49	
ות היה	ι. Γ	II	C 0	5 5	16	2 12	77 80	74	H	75	74	10	82	22	17	38	61 01	76	ア び	72	69	51 48	
) חית מית (%	121	III	Α.	74	1 12	77 72	52 52	2	'n	73	ខ ៖	24	82	6 7	: F	76	12	22	9	r s.r	3	41	
טבלה VIS היחסית (%) הממרצעת בשעה		IV		74 74	1	80 75	12	22		60	65	3 5	80	66	5 6	10	69 71	67		68 60	22	34	
ל ה זוצעת ב		>		11	74	81	78	62		47	36	99	52	56	29	09	61 66	57		ខ្លះ	41	88	
VIX •		IV		5	12	81 76	79 69	38		15	24	69	7	20	ec 99	68	3 2	60		ច ន ង	40	88	
2000 2000		IIV		78	8	84 76	62	2 20		21	99	2 2	81	59	£0	75	73 73	8		3 3 8	40	31	
B L (%) at		ЛП		76	38	81	18	78		5	69	3 2	82	83	01	80	71	63		29 29	43	នេន	9
T A midity		IX		12	74	02 02	74	8 12		68	99	69	80	62	70 F	82	1 1	69		3 22 2	49	9 X	Standard Time
те Нш		×		19 15	88	74 70	74	15		60	282	3	13	58	6 29	69	72	23		2 2 2	8	t	Stand
T A B Average Relative Humidity (%)	t h	X		69	12	76	22	78		62	12 62	2 99	4	99	21	69	r 5	20		899	58	5 5	Local
verage	ц 0	XII		85	26	78 78	62	79		26	2	12	81	5	3 22	62	r 1	4		666	R.	82 15	•
¥	M	Near XII		74	3 12	78	12 22	EL		63	66 76	20	62	64	00 02	74	r 1	83		835	2	98	

n – r

- 12 -

.

			N. XIIIC EALF	עכו חיפה, הר הכרמל מל שלום מל אביב, הקריה מל אביב, הקריה לוד, נמל התעופה עזה	ב. איזור ההרים	הר כנען רמת דוד, ש' תעופה רמת דוד, ש' תעופה משמר העמק משמר העמק בית שאן בית שאן בית גילו בית גימל בית גימל	r ada e.cel	דכיה שבריה, קרית שמואל דעוה א' סדום, ביחיר אילת
E.	11	I		67 68 69 71 70 70		76 73 73 73 73 73 73 73 74 74 70 74 70 70 70 70 70 70 70 70 70 70 70 70 70		70 67 56 49
ส กกร่	r A	п		$\begin{array}{c} 69\\ 69\\ 71\\ 71\\ 71\\ 71\\ 71\\ 71\\ 71\\ 71\\ 71\\ 71$		$\begin{array}{c} 73\\ 66\\ 62\\ 62\\ 62\\ 62\\ 62\\ 63\\ 63\\ 63\\ 63\\ 63\\ 63\\ 63\\ 63\\ 63\\ 63$		70 71 50 50 48
הלחות היהסית (%) היומית		Η		67 67 68 68 68 67		$\begin{array}{c} 69\\ 66\\ 67\\ 66\\ 66\\ 66\\ 63\\ 63\\ 63\\ 63\\ 63\\ 63\\ 63$		66 66 57 46 43
(%) นำ		N		68 68 64 64 68 69 69 69		$\begin{array}{c} 55\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\$		$ \begin{array}{c} 61 \\ 63 \\ 64 \\ 63 \\ 63 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61$
יומית ה יומית ה		>		68 67 58 58 70 58 70 58 70 58		$\begin{array}{c} 44\\ 48\\ 53\\ 52\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22$		30377945 303775 20377575 20377
ב ל נו		IV		73 70 70 73 70 73 70 73 70 73 70 73 70 73 70 73 70 73 70 73 70 73 70 73 70 73 70 70 70 70 70 70 70 70 70 70 70 70 70		$\begin{array}{c} 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$		$ \begin{array}{c} 53\\51\\53\\36\\28\\28\\28\end{array} $
کم در		ΠΛ		70 76 71 71 71 71 72 72		$\begin{array}{c} 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		50 23 26 23 26 26 26 26 26 27 26 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27
ы ы т () ()		VIII		69 75 70 70 70 70 70		$\begin{array}{c} 500 \\$		3350452
erage Daily Relative Humidity		XI		40 67 60 60 60 60 60 60 60 60 60 60 60 60 60		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		57 49 7 36 36 36 36 36 36 36 36 36 36 36 36 36 36 37
Selative		×		883412000000000000000000000000000000000000		0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0		$\begin{array}{c} 53 \\ 44 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 2$
Daily F	Ч	X		62 62 69 69 72 869 72		$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		$\begin{array}{c} 61 \\ 61 \\ 62 \\ 64 \\ 62 \\ 64 \\ 64 \\ 64 \\ 64 \\ 64$
erage]	ont	IIX		67 69 73 73 73 73		$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$		71 65 50 50 50
Av	M	Acar		63 65 65 65 65 73 70 70		$\begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 $		61 57 59 49 39
	NOLT 1 TO	NOTIVIC	A. COASTAL REGION	Acre Haifa, Mt. Carmel Tel Shalom Natanya Tel Aviv, Shore Tel Aviv, Hakirya Lod, Airport Gaza	B. HILL REGION	Mt. Kena'an Tabor, Agr. School Ramat David, Aerod. 'Afula, Hospital Mishmar ha 'Enreq Heftsibah, Gilboa' Beit Shean Jenin Ramallah Jerusalem, Palace Hotel Beit Jimal Beer Sheba	C. JORDAN RIFT	Dafna Tiberias, Qir. Shemuel Deganya A Jericho Sedom, Factory Eilat

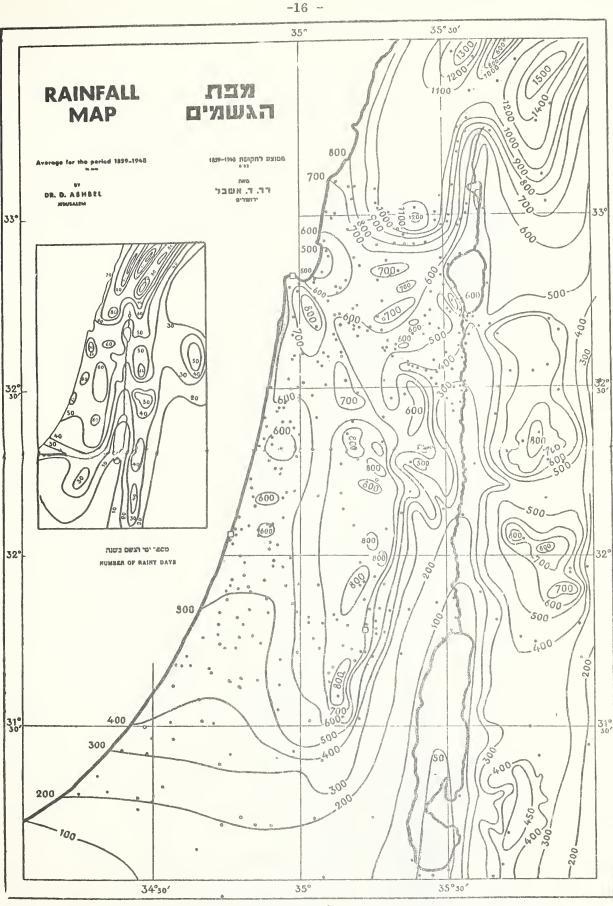
TABLE XV ALART

- 13 -

	TABLE XVIII	טבלה	
של עצמותיוק (בדרגות בושרו)	יותמרבעים המשוקללים (והעצמות של רוחות הקרקע (בי-ה/י	שכיוות הכיותים
PAROTIERON OF OTRECTTONE AND PORCE OF	BURPACE WINDS ON DR	B MELLER AND WEARPERD MEANS	

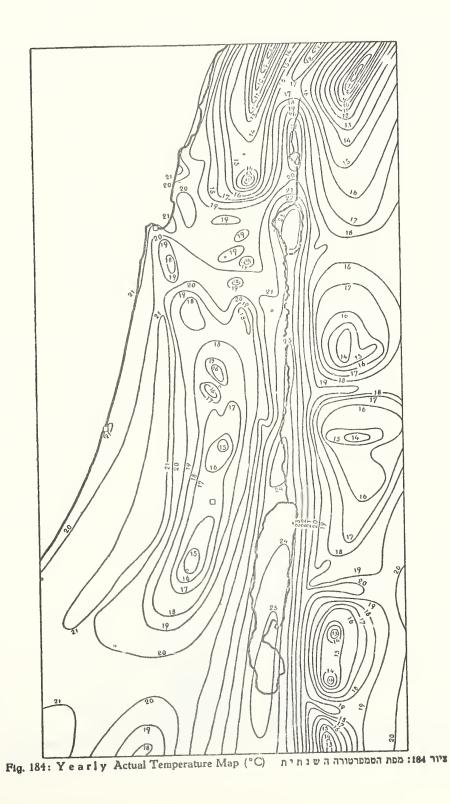
PARQUERTO OF DIRECTIONS AND POLICE OF BULFACE WILLIG IN PER MILLIG AND WENGETED MEANS OF THEIR PORCE (BEADFORT)

PRS	100 0	OB	BEBVA	TIONE	1 1	940	- 47	m	התבסי	herph		00-01	ADINA	TE8 33	f 1é	1 8	54 4	78 27	ro 2 m	ורדיגט	ersp	87/	17701		5001	281 r8b	183 908	14	รสภ
		0	EPTE	BER		טמברי	00						.A1	NUURT TIM	8 08	00137 1990	W						J	ULT		יזלי			
F	N	NE	E	SE	s	SW	W	NW	x	Ľ	N	NE	R		-	SW	w	NW	Σ	[N	NE	E	SE	\$	SW	W	NW	X
0	6	85	159	4	23	90	264	38	50 667		12	14	81		20 1	139 4	468	20	65 794		14		48	6	18	120	37.5	8	40
•	50	29	25	4	6	21	94	13	242		50	8	50			4	89	4	145		18	4			10	22	144	4	194
	6		4		4	6	13	4	37		8				4	14	6	8	28	- {	4				6	48	89	6	195
а																4										_	-		
;																													
ē ≦																						-							
F		112	188	8		117			1.3		34	22				63 5		26	1000		20	12	48	8	34	200	612	18	1.5
									4	Ļ				TIM	E 14	אינח			l									,	
						4			\square	ſ			_							ſ									
1	13 29					8	29 125	4	34 241							12		16	52		4					6	16	6	32
	119		4		4	38		81 134	486		54 63						232	63 125	315 436		40 121				*	6 28	99	69 153	210
	52	8	2			10	63	58	187		30	\$	2			6	85	48	173		22					18	99	55	194
	1					4	10 2	10	28							4	4	6	12		4						16	4	24
7																													
X	217	2	6		6		416		1000		47	2	2			42 5			1000		191				8		460		1000
Ĕ	3.0	4.0	3. 3		2.7	3.1	2.8	5.0	2.9	Ę	.8	1.0	4.0	744.00	-	2,8 2	2.8	2.9	2.8	(2.9		-	_	2.0	3.8	3.8	2.9	3.0
0									[0]	r				IBAU	E 20 4	13/10/			16	1									
1	123					6	110	48	297		72				6	6	99	69	352		1 37		4				67	22	238
	142 98						100 104	96 81	351 304		41 30					20 1	146 59	115 59	422		227					16 20	115 89	105 65	463
	8		0			1)	13	13	34		12					0	4	4	20		4					20	8	8	e .
	4						10	2	16		4					8	4	8	12										
																	1												
¥0 ¥	375		8			10	337	240	1000		67				6	36 3	126	249	1000		181		4				273	104	1000
						10	1/1	6.40	11000										1000										
F	2.0		3.0			2.2	2.1	2.3	2.1	Ľ	- 7			1	.0 4	.2 2	2.0	2.0	1.9	1	2.0		1.0			2.3	2.1	2.2	2.1
F	2.0			EMBE:		2.2 רצסבר		2.3	2.1	Ľ	- 7		2	IOVEN	ara	במבר		2.0	1.9	Į	2.0		******	TUBE		2.3 37091		2.2	2.1
F	<u> N</u>	NĒ		emori Se				2.3 NW	·		.7 N	NE	E	IOVEN		במבר		2.0 NW			2,0 N	NE	******	TOBE				2.2 NW	2.1
F			E		5	יצסכר אצ	5 W	NW	X		ы		E	IOVEN: TIM SE	ara IE CO S	במבר שיטה שיטה SW	w	NW	<u>×</u> 4		N	NĘ	oc E	SIE	а т 5	370P1 SW	W	NW	<u>×</u> 16
F			DECI			שסכר	3		·			15	-	IOVEM THM	ara IE CO	במבר קיצה	าน		X			NĘ	00		n 1	370P1 SW	N		X
F 0 1		10 26 48	DECT E 115 363 39	SE	9 · 5 16	32 50 51 51 51 51 51 51 51 51 51 51 51 51 51	3 W 57 42 46	NW 8	¥ 238 477 185		N 2	15 54 63	£ 208	IOVEN: TIM SE	ARR IE 68 5 6 13 10	במבר קיטה 5W 19 4 15	96 23 38	NW 17 2 6	¥ 4 325 383 218		N	NE 42 34 18	00 E 322 137 46	SIE	а т 5	37091 5W 50 22 8	W 103 18 18	NW 14 4 2	¥ 16 579 245 108
F 0 1 9		10 26	DECT E 115 363	SE	9 · 5 16 6	720CF 720CF 91 91	3 W 37 42	NW 8	¥ 238 477		N 2 13	15 54	E 208 264	10VEM THM SE 6 10	BRR IE 08 S 6 13	במבר שיטה SW 19 4	96 23	NW 17 2	¥ 4 325 383		N 8 12	NE 42 34	00 E 322 137	SIE	а т 5	50 22	W 103 18	₩ 14 4	¥ 16 579 245
F 0 1 9 8 4 8		10 26 48 16	DECT E 115 363 59 18	SE	9 · 5 16 6	32 50 51 51 51 51 51 51 51 51 51 51 51 51 51	3 W 57 42 46 22	NW 8	238 477 185 72		N 2 13	15 54 63	E 208 264	10VEM THM SE 6 10	ARR IE 68 5 6 13 10	במבר קיטה 5W 19 4 15	23 38 27	NW 17 2 6	¥ 4 325 383 218 58		N 8 12	NE 42 34 18 8	00 E 322 137 46 18	SIE	а т 5	37091 5W 50 22 8	W 103 18 18	NW 14 4 2	¥ 16 579 245 108 40
F 0 1 5 6 6		10 26 48 16	DECT E 115 363 59 18	SE	9 · 5 16 6	32 50 51 51 51 51 51 51 51 51 51 51 51 51 51	3 W 57 42 46 22	NW 8	238 477 185 72		N 2 13	15 54 63	E 208 264	10VEM THM SE 6 10	ARR IE 68 5 6 13 10	במבר קיטה 5W 19 4 15	23 38 27	NW 17 2 6	¥ 4 325 383 218 58		N 8 12	NE 42 34 18	00 E 322 137 46	SIE	а т 5	37091 5W 50 22 8	W 103 18 18	NW 14 4 2	¥ 16 579 245 108 40
F 0 1 9 8 6 6 8 7 7 2⊡ 8	N 4 4 2 6	10 26 48 16 6	DECI E 115 363 59 18 8 363	SE 10	5 16 6 10 4	2000 500 32 32 81 34 14 10 74	¥ 57 42 46 22 8	NW 8 4	238 477 185 72 20		N 2 13 15 4	15 54 63 2	E 208 264 63	ючем: тэм SE 6 10 8	BRR IE 08 5 13 10 10	15 4 15 4 15 13 4 51	96 23 38 27 8	NW 17 2 6 2 2	¥ 4 325 383 218 58 12		N 12 16 6	NE 42 34 18 8 2	00 E 322 137 46 18 2 519	SE 14 12 26	B 7 26 6	50 22 8 6 4	W 103 18 18 6 4 149	NW 14 2 2 2	2 16 579 245 108 40 8 40 8
F 0 1 9 8 6 6 8 7 7 ≥9	N 4 4 2 6	10 26 48 16 6	DECI E 115 363 59 10 8	SE 10	5 16 6 10 4	2000 500 32 32 81 34 14 10 74	¥ 57 42 46 22 8	NW 8 4	¥ 238 477 185 72 20		N 2 13 15 4	15 54 63 2	E 208 264 63	10 V EM SE 6 10 8 24 2.1	BRR IE 08 5 13 10 10	دودد ۳۵ 58 15 13 4 15 13 4 51 2.7	96 23 38 27 8	NW 17 2 6 2 2	¥ 4 325 383 218 58 12		N 12 16 6	NE 42 34 18 8 2	00 E 322 137 46 18 2 519	SE 14 12 26	B 7	50 22 8 6 4	W 103 18 18 6 4	NW 14 2 2 2	2 16 579 245 108 40 8 40
F 0 1 9 8 6 6 8 7 7 2⊡ 8	N 4 4 2 6	10 26 48 16 6	DECI E 115 363 59 18 8 363	SE 10	5 16 6 10 4	2000 500 32 32 81 34 14 10 74	¥ 57 42 46 22 8	NW 8 4	238 477 185 72 20		N 2 13 15 4	15 54 63 2	E 208 264 63	10 V EM SE 6 10 8 24 2.1	BRR IE 08 5 6 13 10 10 10	دودد ۳۵ 58 15 13 4 15 13 4 51 2.7	96 23 38 27 8	NW 17 2 6 2 2	¥ 4 325 383 218 58 12		N 12 16 6	NE 42 34 18 8 2	00 E 322 137 46 18 2 519	SE 14 12 26	B 7	50 22 8 6 4	W 103 18 18 6 4 149 1,6	NW 14 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 16 579 245 108 40 8 40 8 4 1000 1.6
F 0 1 8 6 8 6 8 7 7 1 1 1 1	N 4 4 2 6 1 6 7,6	10 26 48 16 6	DECI E 115 363 59 10 8 363 2.0	SE 10	5 16 6 10 4 36 2.1	2000 500 32 32 81 34 14 10 74	W 57 42 46 22 8 175 2.5 89	NW 8 8 4 20 	238 477 185 72 20 1000 2.2		N 2 13 15 4 34 2,6	15 54 63 2 154 2,4	E 208 264 63 335 1.7	107KM TIM 5E 6 10 8 24 2,1 10 5 8	ARR E 08 5 6 13 10 10 10 10 39 2.6 4 8 4 8 4 8 4	دودد ۳۷۵ 5W 15 13 4 15 13 4 51 2.7	W 96 23 38 27 8 152 2,4	NW 17 2 6 2 27 1.7	2 4 323 383 218 38 12 1000 2,0		N 8 12 16 6 42 2_3	NE 42 34 18 8 2	000 E 3222 137 46 18 2 519 1.5 8	SE 14 12 26	B 7	50 22 8 6 4	W 103 18 18 6 4 149	NW 14 4 2 2 2 2 2 2 2 1.6	2 16 579 245 108 40 8 40 8 40 1000 1.6
F 0 1 9 9 4 9 7 2 9 9 7 2 9 9 9 7 2 9 9 8 4 9 9 7 2 2 9 8 4 8 9 8 4 9 8 8 4 9 8 8 4 8 9 8 8 4 8 9 8 8 8 8	N 4 4 2 6	10 26 48 16 6	DECI E 115 363 59 10 8 563 2.0	SE 10	5 16 6 10 4	2000 500 32 32 81 34 14 10 74	W 57 42 46 22 8 175 2.3	NW 8 8 4	238 477 185 72 20 1000 2.2		N 2 13 15 4 34 2,6	15 54 63 2	E 208 264 63	10 V KM TIM SE 6 10 8 24 2, 1 11	ARR E 08 5 6 13 10 10 10 2,6 39 2,6 4 4 2,6	בככר קיטה 5W 15 13 4 15 13 4 51 2.7 2.7	96 23 38 27 8 152 2,4	NW 17 2 6 2 27 1.7	2 4 325 383 218 58 12 1000 2,0		N 8 12 16 6 42 2_3	NE 42 34 18 8 2	00 E 322 137 46 18 2 519	SE 14 12 26	B 7	50 22 8 6 4 90 1.6	W 103 18 18 6 4 149 1,6	NW 14 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 16 579 245 108 40 8 40 8 4 1000 1.6
F 0 1 0 8 4 9 7 20 X F 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0	N 4 4 2 6 1 6 2 2 2 2 4 6	10 26 48 16 6 106 2,8 6 4	DECI E 1115 363 59 10 8 563 2.0 18 67 46 10	SE 10	5 16 6 10 4 36 2.1	32 5W 32 10 14 10 74 2,0 24 24 24 28 16	3 W 37 42 46 22 8 175 2.3 89 167 126 71	NW 8 8 4 20 1,8 10 26	238 477 183 72 20 1000 2.2 4 177 356 286 125		N 2 13 15 4 34 2,6 25 800	15 54 63 2 134 2,4	E 208 264 63 535 1.7 13 44	107KM TIM 5E 6 10 8 24 2,1,2 TD 4	ARR IE CB 5 6 13 10 10 10 22.6 5 4 2 17	במבר שיטה 5W 15 4 15 13 4 51 2.7 31 2.7 30 70 70 70 21	96 23 38 27 8 152 2,4 63 148 131 91	NW 17 2 6 2 27 1.7 4 69 65 10	2 4 323 383 218 38 12 1000 2.0 2.0 142 422 308 91		N 8 12 16 6 42 2_5 20 81	NE 42 34 18 8 2	000 E 322 137 46 12 2 519 1.5 6 18	SE 14 12 26	B 7	37091 3W 50 22 8 6 4 90 1,0 1,0	W 103 18 18 6 4 149 1,6 50 144	NW 14 4 2 2 2 2 1.6	x 16 579 245 108 40 8 40 8 40 1000 1.6 1.6 332 397 121
F 0 1 8 6 8 6 8 7 7 1 1 1 1	N 4 4 2 6 16 7,6 22 46 30	10 26 48 16 6 106 2,8 6 4	DECT E 1115 363 59 18 8 563 2.0 18 67 46	SE 10	5 16 6 10 4 36 2.1	32 5W 32 19 14 10 74 2,0 74 2,0 24 24 24 28	W 57 42 46 22 8 175 2.3 89 167 126	NW 8 8 4 20 1,8 10 26 28	238 477 185 72 20 1000 2.2 4 177 356 286		N 2 13 15 4 34 2,6 29 00 54	15 54 63 2 134 2.4	E 208 264 63 335 1.7 13 44 19	107KM TIM 5E 6 10 8 24 2,1,2 TD 4	ARR IE CB 5 6 13 10 10 10 22.6 5 4 2 17	במבר שיטה 5W 15 4 15 13 4 51 2.7 2 1 2 3 21 23	96 23 38 27 8 152 2,4 63 148 131	NW 17 2 6 2 27 1.7 1.7 4 69 65	2 4 323 383 218 38 12 1000 2,0 2,0 142 422 308		N 8 12 16 6 42 2_5 20 81 119	NE 42 34 18 8 2	000 E 322 137 46 12 2 519 1.5 6 18	SE 14 12 26	B 7	37091 50 22 8 6 4 90 1.8 26 14 10 8	W 103 18 18 6 4 149 1,6 50 144 137 30	NW 14 2 2 2 2 2 2 2 2 1.6	2 16 579 245 108 40 8 40 1000 1.6 1.6
F 0 1 9 6 6 7 5 10 1 0 7 11 10 1 1 0 1	N 4 4 2 6 16 3, 6 22 46 30 8 4	10 26 48 16 6 106 2,8 6 4	DECI E 1115 363 59 10 8 563 2.0 18 67 46 10	SE 10	5 16 6 10 4 36 2.1	32 5W 32 10 14 10 74 2,0 24 24 24 28 16	3 W 37 42 46 22 8 175 2.3 89 167 126 71	NW 8 8 4 20 1,8 10 26 28	238 477 185 72 20 1000 2.2 4 177 356 286 125 44		N 2 13 15 4 34 2,6 29 00 54	15 54 63 2 134 2.4	E 208 264 63 335 1.7 13 44 19	107KM TIM 5E 6 10 8 24 2,1,2 TD 4	ARR IE CB 5 6 13 10 10 10 22.6 5 4 2 17	במבר שיטה 5W 15 4 15 13 4 51 2.7 2 1 2 3 21 23	96 23 38 27 8 152 2,4 63 148 131 91	NW 17 2 6 2 27 1.7 4 69 65 10	2 4 325 38 12 12 1000 2,0 2,0 422 422 308 91 17		N 8 12 16 6 42 2_5 20 81 119 57	NE 42 34 18 8 2	000 E 322 137 46 12 2 519 1.5 6 18	SE 14 12 26	B 7	37091 50 22 8 6 4 90 1.8 26 14 10 8	W 103 18 18 6 4 149 1,6 50 144 137 30	NW 14 2 2 2 2 2 2 2 2 1.6	x 16 579 245 108 40 8 4 1000 1.6 1.6 332 397 121
F 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0	N 4 4 2 6 16 7.6 22 46 30 8 4 110	10 26 48 16 6 106 2.0 6 4 16 6 4 16 6 4	DECT E 115 363 59 10 8 363 2.0 18 67 46 10 8	3E 10 2.0 4 4	5 16 6 10 4 36 2.1 8 18 8 2 2 2 38	32 5W 32 60 14 10 74 2,0 74 2,0 24 24 28 16 6 6 6 6	W 377 422 46 222 8 175 2.3 175 2.3 89 167 126 71 22 473	NW 8 8 4 1.8 10 26 28 12 76	238 4777 183 72 20 10000 2.2 4 1777 356 286 125 64 8 10000		N 2 13 15 4 2,6 25 00 54 27	15 54 63 2 134 2.4 10 6 2	E 208 264 63 335 1.7 13 44 19 2 78	10 V EM TIM SE 6 10 8 2.4 2.1 10 8 2.4 10 8 4 13 2 2	BRR IE 08 5 6 13 10 10 10 10 10 10 22.6 4 17 8 4 51	2010 93 21 25 21 23 19 4 23 19 4 100	132 36 23 38 27 8 132 2.4 63 148 131 31 15 8 3296	NW 17 2 6 2 27 1.7 4 69 65 10 2 150	2 4 325 385 216 58 12 1000 2,0 1000 2,0 1000 422 422 308 91 17 16		N 8 12 16 6 42 2_5 20 81 119 57 2 279	NE 42 34 18 8 2 104 2.0 4 4 2 4	000 E 3222 137 46 18 2 5199 1.5 18 18 16 18	SE 14 12 26 1.5 4	R 7 S 26 6 32 1.2 12 6 2 2 2 2	370071 3W 50 22 8 6 4 90 1.0 1.0 1.0 1.0 8 4 226 1.4 10 8 4 26 1.4 10 8 4 22 26 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	103 18 6 4 149 1,6 50 144 137 30 4 2 2 367	NW 14 4 2 2 2 2 1.6 75 99 24 2 2 2 12	2 16 579 245 106 40 8 40 1000 8 1000 1000
F 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0	N 4 4 2 6 16 7.6 22 46 30 8 4 110	10 26 48 16 6 106 2.0 6 4 16 6 4 16 6 4	DECT E 115 363 59 10 8 363 2.0 18 67 46 10 8	3E 10 2.0 4 4	5 16 6 10 4 36 2.1 8 18 8 2 2 2 38	32 5W 32 60 14 10 74 2,0 74 2,0 24 24 28 16 6 6 6 6	W 377 422 46 222 8 175 2.3 175 2.3 89 167 126 71 22 473	NW 8 8 4 1.8 10 26 28 12 76	238 477 183 72 20 1000 2.2 4 4 177 356 286 125 44 8		N 2 13 15 4 2,6 25 00 54 27	15 54 63 2 134 2.4 10 6 2	E 208 264 63 335 1.7 13 44 19 2 78	10 V EM TIM SE 6 10 8 24 2.1 2 10 4 13 2 2 19 1.9 2	BRR E 08 5 6 13 10 10 10 10 10 10 10 10 10 10	95 21 23 23 21 23 19 4 21 23 19 4	132 36 23 38 27 8 132 2.4 63 148 131 31 15 8 3296	NW 17 2 6 2 27 1.7 4 69 65 10 2	2 303 216 50 12 1000 2,0 142 422 308 91 17 16		N 8 12 16 6 42 2_5 20 81 119 57 2 279	NE 42 34 18 8 2 104 2.0 4 4 2 4	000 E 3222 137 46 18 2 5199 1.5 10 10 10 10 10 10 10 10 10 10 10 10 10	SE 14 12 26 1.5 4	R 7 S 26 6 32 1.2 12 6 2 2 2 2	370071 3W 50 22 8 6 4 90 1.0 1.0 1.0 1.0 8 4 226 1.4 10 8 4 26 1.4 10 8 4 22 26 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	103 18 6 4 149 1,6 50 144 137 30 4 2 2 367	NW 14 2 2 2 2 2 2 2 2 2 2 2 4 2 2	2 16 579 245 106 40 8 40 1000 8 1000 1000
F 0 1 9 8 4 9 7 1 9 X \$	N 4 4 2 6 16 7.6 22 46 30 8 4 110	10 26 48 16 6 106 2.0 6 4 16 6 4 16 6 4	DECT E 115 363 59 10 8 363 2.0 18 67 46 10 8	3E 10 2.0 4 4	5 16 6 10 4 36 2.1 8 18 8 2 2 2 38	32 5W 32 60 14 10 74 2,0 74 2,0 24 24 28 16 6 6 6 6	W 377 422 46 222 8 175 2.3 175 2.3 89 167 126 71 22 473	NW 8 8 4 1.8 10 26 28 12 76	238 477 185 72 20 1000 2.2 2 4 4 177 356 286 125 44 8 1000 2.5		N 2 13 15 4 2,6 25 00 54 27	15 54 63 2 134 2.4 10 6 2 10	E 208 264 63 335 1.7 13 44 19 2 78	10 V EM TIM SE 6 10 8 24 2.1 2 10 4 13 2 2 19 1.9 2	BRR IE 08 5 6 13 10 10 10 10 10 10 22.6 4 17 8 4 51	95 21 23 23 21 23 19 4 21 23 19 4	132 36 23 38 27 8 132 2.4 63 148 131 31 15 8 3296	NW 17 2 6 2 27 1.7 4 69 65 10 2 150	2 4 325 385 216 58 12 1000 2,0 1000 2,0 1000 422 422 308 91 17 16		N 8 12 16 6 42 2_5 20 81 119 57 2 279	NE 42 34 18 8 2 104 2.0 4 4 2 4	000 E 3222 137 46 18 2 5199 1.5 18 18 16 18	SE 14 12 26 1.5 4	R 7 S 26 6 32 1.2 12 6 2 2 2 2	370071 3W 50 22 8 6 4 90 1.0 1.0 1.0 1.0 8 4 226 1.4 10 8 4 26 1.4 10 8 4 22 26 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	103 18 6 4 149 1,6 50 144 137 30 4 2 2 367	NW 14 4 2 2 2 2 1.6 75 99 24 2 2 2 12	2 16 579 245 106 40 8 40 1000 8 1000 1000
F 0 1 9 6 6 7 70 W 1 1 9 8 8 9 7 10 8 8 9 7 10 1 1	N 4 4 2 6 16 7.6 22 46 30 8 4 110	10 26 48 16 6 106 2.0 6 4 16 6 4 16 6 4	DECT E 115 363 59 10 8 363 2.0 18 67 46 10 8	3E 10 2.0 4 4	5 16 6 10 4 36 2.1 8 18 8 2 2 2 38	24 24 28 16 14 10 24 24 28 16 6 6 6 6 6 4	w 57 42 46 22 8 175 2.5 167 126 71 22 475 2.5 54	NW 8 8 4 4 1.8 10 26 28 12 76 2.6	238 4777 1853 72 20 2.2 2.2		N 22 13 15 4 34 2,6 25 800 54 27 27 204 27	13 34 63 2 134 2.4 10 6 2 2.6	E 208 264 63 1.7 1.3 44 19 2 78 2.1	24 5E 6 10 8 2.1 10 8 2.1 10 10 8 4 15 2 19 1.9 7 TIM	ARR 15 6 13 10 10 10 10 10 10 10 10 10 10	2022 2077 5W 15 4 15 15 4 51 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	W 96 23 38 27 8 132 63 148 131 91 132 63 148 131 91 15 0 396 2.5	NW 17 2 6 2 27 1.7 4 69 69 69 69 10 2 150 2.6 -8	2 4 325 383 216 58 12 12 2.0 2.0 422 308 91 17 16 1000 2.5 8 339		N 8 12 16 6 42 2-3 20 81 119 57 2 279 2.8 198	NE 42 34 18 8 2 104 2,0 4 4 10 2,0 2 2	000 E 322 137 46 18 2 2 319 1.5 6 18 16 16 34 2.2 10	SE 14 12 26 1.5 4	R 7 S 26 6 32 1.2 12 6 2 2 2 2	3 mp1 3 W 50 22 8 6 4 90 1.8 26 14 10 8 4 68 2.6 14	W 103 10 10 10 10 10 10 10 10 10 10	NW 14 4 2 2 1.6 12 75 99 24 2 2.12 2.7 32	2 16 579 245 108 40 8 4 1000 1.6 302 307 121 6 8 1000 2.6 322 339
F 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 4 4 2 6 16 7.6 22 46 30 8 4 110 2-3	10 26 48 16 6 2.0 6 4 16 6 4 16 6 4 2.9	DECI E 1115 365 399 10 8 365 2.0 18 67 46 10 8 149 2.5 199 267	3E 10 2.0 4 4	5 16 6 10 4 36 2.1 8 18 8 2 2 2 38	24 24 28 16 14 10 24 24 28 16 6 6 6 6 6 104 2.8 4 22	W 57 42 46 22 8 175 2.3 167 126 71 22 475 2.5 94 103	NW 8 8 4 4 20 1.8 10 26 28 12 12 76 2.6 2 50	238 477 185 72 20 1000 2.2 4 177 356 286 125 44 8 8 1000 2.5 9 472		N 2 13 15 4 34 2,6 29 000 54 27 204 27 204 24	15 54 63 2 134 2.4 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 10 10 10 10 10 10 10 10 10 10	E 208 264 63 1.7 13 44 19 2 78 2.1 143 119	10 V EM TIM SE 6 10 8 24 2.1 2 10 4 13 2 2 19 1.9 2	ARR 15 6 13 10 10 10 10 10 10 10 10 10 10	231 250 350 350 350 350 350 350 350 351 351 351 351 351 351 351 351 351 351	96 23 36 27 8 152 2.4 63 148 131 91 15 0 9 596 2.5 68 140	NW 17 2 6 2 27 1.7 4 69 69 10 2 69 10 2 .6 150 2.6 .8 75	2 4 323 383 216 38 12 1000 2,0 2,0 2,0 2,0 2,0 1000 2,0 1000 2,0 50 8 91 17 16 1000 2,3 8 8 8		N 8 12 16 6 22 3 20 81 119 37 2 279 2.8 1198 111	NE 42 34 18 8 2 104 2,0 4	000 E 3222 137 46 18 2 2 519 1.5 18 16 16 16 2.2	SE 14 12 26 1.5 4	R 7 S 26 6 32 1.2 12 6 2 2 2 2	3 mp1 3 W 50 22 8 6 4 90 1.6 14 10 8 4 68 2.6 14 10 14 10	W 103 10 10 10 10 10 10 10 10 10 10	NW 14 4 2 2 1.6 12 75 99 24 2 212 2.7 32 105	2 45 168 40 8 40 8 40 8 40 8 40 1000 1.6 3.52 3.67 121 8 8 4 1000 2.6 3.22 3.67 12,55 3.72 3.67 1.68 4.0 1.68
F 0 1 1 9 8 4 4 6 7 7 10 X F 0 1 1 1 0 7 1 1 0 7 1 1 0 7 1 1 0 7 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N 4 4 2 6 1 6 3, 6 4 4 6 3, 6 4 4 6 3, 6 8 4 4 110 2, 3	10 26 48 16 6 106 2.0 4 16 6 4 16 6 4 16 6 2.9	DECI E 1115 363 399 10 8 8 2.0 18 67 46 67 46 10 8 149 2.5	3E 10 2.0 4 4	5 16 6 10 4 36 2.1 8 18 8 2 2 2 38	32 130 5 32 10 14 10 14 10 14 10 24 24 24 24 24 24 24 24 24 24	W 57 42 46 22 8 175 2.3 175 2.3 175 2.3 105 126 71 22 475 2.5 94 103 65 22	NW 8 8 4 1 20 10 26 28 12 12 76 2.6 2.6 2 50 36	238 477 185 72 20 2.2 20 2.2 20 2.2 20 2.2 20 2.2 20 2.2 8 1000 2.2 8 1000 2.5 10000 2.5 1000000000000000000000000000000000000		N 2 13 15 4 25 800 54 27 204 24 27 204 24 27 204	13 34 63 2 134 2.4 10 6 2 2.6	E 208 264 63 3355 1.7 13 44 19 2 78 2.1 143 119 6	24 5E 6 10 8 2.1 10 8 2.1 10 10 8 4 15 2 19 1.9 7 TIM	ARR 15 6 13 10 10 10 10 10 10 10 10 10 10	22.4 2 1000 1077 1077 1077 105 105 105 105 105 105 105 105	W 96 23 38 27 8 132 2.4 63 148 131 31 15 8 326 2.3 40 46	NW 17 2 6 2 27 1.7 4 69 69 10 2 69 10 2 .6 150 2.6 .8 75	2 4 325 363 218 369 12 1000 2,0 1000 2,0 422 422 422 308 91 17 16 2,3 455 455		N 8 12 16 6 22 3 20 81 119 37 2 279 2.8 1198 111	NE 42 34 18 8 2 104 2,0 4	000 E 322 137 46 18 2 2 519 1.5 8 18 16 16 2 2 2 2 2 2 2 2 2 18 8	SE 14 12 26 1.5 4	R 7 S 26 6 32 1.2 12 6 2 2 2 2	3 mp1 3 W 50 22 8 6 4 90 1.6 14 10 8 4 68 2.6 14 10 14 10	W 103 10 10 18 6 4 149 1,6 50 144 137 30 4 2.5 113 69	NW 14 4 2 2 2 2 1.6 12 75 99 24 2 212 2.7 32 30 6	2 16 579 245 108 40 8 4 1006 1.6 302 307 121 8 4 1000 2.6 32 339 351
F 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 4 4 2 6 1 6 3 2 6 2 2 4 6 30 8 4 1 10 2 - 3	10 26 48 16 6 106 2.0 4 16 6 4 16 6 4 16 6 2.9	DECI E 1115 363 59 18 8 563 2.0 18 67 46 10 8 149 2.5 199 267 42	3E 10 2.0 4 4	5 16 6 10 4 36 2.1 8 18 8 2 2 2 38	32 130 5 32 10 14 10 14 10 14 10 24 24 24 24 24 24 24 24 24 24	W 57 42 46 22 8 175 2.3 167 126 71 22 473 2.5 54 103 65	NW 8 8 4 1 20 10 26 28 12 12 76 2.6 2.6 2 50 36	2 23.8 477 185 72 20 1000 2.2 11000 2.2 4 177 3566 125 44 8 10000 2.5 16 102.5 16 1000 17.7 16 1000 12.5 16 125 16 1000 17.7 197		N 2 13 15 4 25 800 54 27 204 24 27 204 24 27 204	15 34 63 2 134 2.4 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 10 6 10 6 10 6 10 6 10 6 10 10 10 10 10 10 10 10 10 10	E 208 264 63 3355 1.7 13 44 19 2 78 2.1 143 119 6	24 5E 6 10 8 2.1 10 8 2.1 10 10 8 4 15 2 19 1.9 7 TIM	ARR 15 6 13 10 10 10 10 10 10 10 10 10 10	22.4 2 1000 1077 1077 1077 105 105 105 105 105 105 105 105	W 96 23 38 27 8 132 2.4 63 148 131 31 15 8 326 2.3 40 46	NW 17 2 6 2 1.7 4 69 69 69 69 10 2 150 2.6 -8 75 51	X 4 325 38 38 216 58 12 1000 2.0 422 308 91 17 16 309 2.5 30 8 31 10000 2.5 8 31 12 10000 12 12		N 8 12 16 6 42 2-3 20 81 119 37 2 279 2.8 1111 63	NE 42 34 18 8 2 104 2,0 4	000 E 322 157 46 18 2 219 1.5 10 10 10 10 10 10 10 10 10 4	SE 14 12 26 1.5 4	R 7 S 26 6 32 1.2 12 6 2 2 2 2	37001 300 22 8 6 4 900 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	W 103 10 10 10 10 10 10 10 10 10 10	NW 14 4 2 2 2 2 1.6 12 75 99 24 2 2.7 32 105 30	2 16 579 245 108 40 8 4 1000 1.6 332 372 372 121 6 8 4 1000 2.6 5 2.5 5 1222
F 0 1 1 9 8 4 4 6 7 7 7 2 X F 0 1 1 0 7 2 X F 0 1 0 0 1 0 2 X F 0 1	N 4 4 2 6 1 6 3 2 6 2 2 4 6 30 8 4 1 10 2 - 3	10 26 48 16 6 106 2.0 4 16 6 4 16 6 4 16 6 2.9	DECI E 1115 363 59 18 8 563 2.0 18 67 46 10 8 149 2.5 199 267 42	3E 10 2.0 4 4	5 16 6 10 4 36 2.1 8 18 8 2 2 2 38	32 130 5 32 10 14 10 14 10 14 10 24 24 24 24 24 24 24 24 24 24	W 57 42 46 22 8 175 2.3 175 2.3 175 2.3 105 126 71 22 475 2.5 94 103 65 22	NW 8 8 4 1 20 10 26 28 12 12 76 2.6 2.6 2 50 36	238 477 185 72 20 2.2 20 2.2 20 2.2 20 2.2 20 2.2 20 2.2 8 1000 2.2 8 1000 2.5 10000 2.5 1000000000000000000000000000000000000		N 2 13 15 4 25 800 54 27 204 24 27 204 24 27 204	15 34 63 2 134 2.4 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 10 6 10 6 10 6 10 6 10 6 10 10 10 10 10 10 10 10 10 10	E 208 264 63 3355 1.7 13 44 19 2 78 2.1 143 119 6	24 5E 6 10 8 2.1 10 8 2.1 10 10 8 4 15 2 19 1.9 7 TIM	ARR 15 6 13 10 10 10 10 10 10 10 10 10 10	22.4 2 1000 1077 1077 1077 105 105 105 105 105 105 105 105	W 96 23 38 27 8 132 2.4 63 148 131 31 15 8 326 2.3 40 46	NW 17 2 6 2 1.7 4 69 69 69 69 10 2 150 2.6 -8 75 51	X 4 325 36 38 12 1000 2.0 216 38 12 1000 2.0 2.0 142 422 308 91 17 16 10000 2.5 8 31 17 16 309 455 329 124		N 8 12 16 6 42 2-3 20 81 119 37 2 279 2.8 1111 63	NE 42 34 18 8 2 104 2,0 4 4 10 2,0 2 4 10	000 E 322 157 46 18 2 219 1.5 10 10 10 10 10 10 10 10 10 10 10 10 10	SE 14 12 26 1.5 4	R 7 S 26 6 32 1.2 12 6 2 2 2 2	37001 300 22 8 6 4 900 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	W 103 10 10 10 10 10 10 10 10 10 10	NW 14 4 2 2 2 2 1.6 12 75 99 24 2 212 2.7 32 30 6	2 16 579 245 108 40 8 4 1000 1.6 332 372 372 121 6 8 4 1000 2.6 5 2.5 5 1222
F 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 4 4 2 6 1 6 3.6 2 2 2 4 6 30 8 4 1 10 2 2.3 14 16 2 2	10 26 48 16 6 2.9 6 4 16 6 4 16 6 4 16 2.9 16 30 4	DECI E 1115 363 59 18 8 563 2.0 18 67 46 10 8 149 2.5 199 267 42	3E 10 2.0 4 4	5 16 6 10 4 36 2.1 8 18 8 2 2 2 38	32 53 32 14 14 10 74 2,0 24 24 24 24 24 26 6 6 6 6 6 104 2.8 6 6 6 6 6 6 6 6 6 6 6 6 6	w 577 422 8 175 2.5 175 2.5 126 71 22 475 2.5 167 126 71 22 475 2.5 167 126 71 22 4 167 126 167 167 167 167 167 167 167 16	NW 8 8 4 1 20 10 26 28 12 12 76 2.6 2.6 2 50 36	238 477 185 72 20 2.2 1000 2.2 4 177 3566 125 44 8 2.6 2.6 2.2 2.4 1000 2.5 5 4.4 8 1000 2.5 5 4.4 8 1000 2.5 9 72 2.5 9 72 2.5 8 4 72 2.0 8 100 100 2.2 2 100 100 100 100 100 100 100 100 100		N 2 13 15 4 34 2,6 25 100 34 27 204 27 204 27 204 27 204 27 17 15 4 27 15 15 15 15 15 15 15 15 15 15	15 54 63 2 134 2.4 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 6 2 10 10 10 10 10 10 10 10 10 10	E 208 264 63 3355 1.7 13 44 19 2 78 2.1 143 119 6 10 278	24 6 8 8 24 2.1 7 10 8 7 10 8 7 10 8 7 10 10 8 7 10 10 8 7 10 10 8 8 10 10 10 8 8 10 10 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10	ARR E 00 5 6 13 10 10 10 10 10 10 10 10 10 10	251 254 254 254 255 251 253 251 253 253 253 253 253 253 253 253 253 253	95 23 38 27 8 152 2,4 63 148 131 91 15 6 2,4 63 148 131 91 15 8 8 8 8 8 8 8 8 8 140 46 2,5 22,5 140 22,5 22,5 22,6 22,7 8 140 152 22,6 22,6 22,7 8 152 22,6 22,7 8 152 22,6 22,7 8 152 22,7 8 152 22,7 8 152 22,7 8 152 22,7 8 152 22,7 8 152 22,7 8 152 22,7 8 152 22,7 8 152 22,7 8 152 22,7 8 152 22,7 8 152 22,7 8 152 22,7 8 152 22,7 152 152 152 152 152 152 152 152 152 152	NW 17 2 6 2 17 2 17 4 69 65 100 2 65 150 2 6 75 51 10	X 4 325 36 38 12 1000 2.0 216 38 12 1000 2.0 2.0 142 422 308 91 17 16 10000 2.5 8 31 17 16 309 455 329 124		N 8 12 16 6 42 2-3 20 81 119 37 2 279 2.8 1111 63	NE 42 34 18 8 2 104 2.0 4 4 2.0 2.0 2 4 10 2.0 2 4 10 2.0 2 4 10 2.0 2 4 10 2.0 2 4 10 2.0 2 10 10 10 10 10 10 10 10 10 10 10 10 10	000 E 3222 137 46 18 2 2 519 1.5 10 10 10 10 10 10 10 10 10 10 10 10 10	SE 14 12 26 1.5 4	B 7 26 6 32 1.2 12 6 2 2 2 2 1.7 	30001 300 222 8 6 4 90 1.6 14 10 8 2 6 8 2 6 14 10 12 2 14 10 12 2 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 8 8 8 8 8 8 8 8 8 8 8 8	W 103 10 10 10 10 10 10 10 10 10 10	NW 14 4 2 2 2 2 1.6 12 75 99 24 2 212 2.7 32 30 6	x 16 579 245 40 8 40 8 40 1000 1.6 532 3907 121 8 8 1000 2.6 522 351 222 40 4 1000 121 121 121 121 121 121 12


TABLE XVII ULC

שכיחות הכיונים והעצבוה של רוחות הקרקע (בי-וי) המפוצעים הצועוקלים של צובוקויוע ובררגות בישהי) PREQUERCY OF DERECTIONS AND FORCE OF SUBFACE WINDS (IN THE MILLE) AND WEIGHTED MRANS OF THMIS PORCE (BRAUPORT)

								aur fu	10 101	ida or a	JRFA	CIE WI	R <i>D</i> 6 (1	8 7168	MILLI	2) 4110	WRIC	ORTED I	BRANS	07 1	THITE	PORO	e (br		-			
PRI	10D (0₩ 0B		TION			47	311	maption	negen	00	008.01					178 2	2702,111	אוררינט	np.	5¥.	11101		Bea		ba	P	13/13/1
					r	נאר			_	-			FEBR	ME 0		620			-			31	ANGU	BY	"1813	p		
F	N	NE	E	SE	\$	SW	W	NW	Σ	N	N	6 6	SI	5	SW	W	NW	Σ		N	NE	E	SE	\$	3W	W	••w	Ξ
	4	10	160	ž	12	44	65 52	4	303						46	50	11	580			30	99	18	4	24	86	18	215
	8	32	40	8	10	40	97	6	316 249						6 - 44	44	4	286		4	44 :	269 46	14	4	30 36	26	14	405
	2	6	20	12	8	24 10	32 10	2	100 24			4 1		4	11	33		63			6	14	-4	6	63	44		137
	2	z			-	10	10		4			8 .	8 1	2 9	4	8		21			4	4			16	80 4		44
1 ≥0											(0				9												•
X	35		384	26		144		18	1000			5 41			111	242	21	9 1000	-		147		30		181			1000
Ē	2.3	2.5	1.8	3.2	2.3	2.6	2.5	2.2	2.2	2.	2.	4 1.1	-	2.0	-	2.0	1,8	2.3	2	. 3	2.4	2.0	1.9	2.6	3.5	5.1	1.4	2.4
0									-					1ME 14	1 1/10			1 91	Г				-					
1	0	- 6	18		4	50	30	4	120		2	4 g	7 4	2	31	66	10	134		50	4	16		4	24	44	12	124
	24 40	2 0	26 12	4	12	16 42	143	28 39	255	21		33 92	-	6	23 60	128	18 20	234 281		20 20	14	30 20	18		22 46	106	46	234
4	30	4	112		2	36	87	30	201	9) 1	3 1	3	11	29	96	20	191		12		12	4	14	26	70	14	146
1					2	20 4	50 20		32			4 I 4	5 4	8	13	22	4	31 30				10	4	6	54 20	65	8	133
1 ≥n							- 4		4					2	11	4		17							14	6		20
X	102	20	60	22			493		1000	.70					178		80	13	-	72	50	96	20			4 30		1000
Ē	2.9	2.3	2.3	2.0	2.3	3.1	3.0	3.0	2.9	2.7	3.3	3 2.	-	3.4	-	3.0	2.7	2.9	2	.3 :	2.2	2.7	5.0	2.9	3.9	3.3	2.6	3.2
0		_							32				1	ME 20	190			27	-						_			16
	36		183	4		12	37	8	300	5		10		4	6	62	11	280		12	20	163			2	73	88	300
	22	4 20	77 22	2	8	30 28	135	34 39	322	20				6	49	150 73	66 44	217	1	26 24	16 30	99 16	4	6	26 40	107	39 28	345
1	18		4		6	12	22	16	76	11			6		9	27	5	57		10	4	4		_	50	88	6	72
						4	4		0	l					2	6 11		13		8	8			2	10 0	10	2	36
7 ≧9																												
X	110	24	286	6	8	86	313	135	1000	76	3	1 33	7	10	79	311	127	1000	Ŀ	74	72	284	4	10	106	311	123	1000
F	2.3	2,0	1.5	1.7	3.8	2.7	2.9	2.6	2.1	2.	2.0	6 1.0	5	1.6	2.3	2,4	2.4	2.1	2	. 5 .	2.3	1.9.	2,0	2.8	3. 5	2,4	2,1	2,2
			л	7HE		ירני							т	HAY ME 0	מאי פעת פ	,							APRE	ե	7mb#			
F	N	NE	E	SE	s	S₩	W	NW	Σ	N	N	E (54	s	S₩	W	NW	Σ	F	N	NE	E	Sē	\$	SW	W	NW	Σ
0	23	21	81	4	53	89	241	21	313	1	2 1	2 13	5 4	12	61	166	16	32 420		19	29	184	4	13	73	96	21	443
	29	21 17	33		6	23	133	23 13	270	24					14	133	14 14	287		19 6	31 33	104	4	13 6	23 27	100	6 10	304
		4					4		8	14	6	8	8		6	6	2	44		v	4	13	a	8	13	13	10	31
		2			2	8			B			4	5 1	2	2	2		12		2	2	2				8		12
7 ≥ 9																												
Σ	69		124	4			449	57	1000	64	6	6 23	9 20	20	8 121	392	46	4	E	46	103	336	10	44	138	200	57	1000
F	1.9	2.2	1.5	1.0	1.3	1.7	1,6	1.9	1.6	2.1	2.	7 1.		1.4		1,9	5.0	1,9	11	.9	2,4	1,7	1,0	2.2	1.9	2.0	1.7	12.0
										-	-			inence 14	e et3/10/			1	r									T1
1	6	4	6	4			5	6	28	10			9	4	6	34	6	60	- 1	13	6	17		4	89	71	19	139
	23 142	8	8	4		6 17	100 22	48	191 527	24		8 1. 2 ·	2 6 8	6	4 32	79 178	32 03	165 384	8	19 71	2	17 8	0	17	29 44	94 181	32 79	218 367
4	33 10	8	8	9	4	13	96 13	69 6	221 29	72		2		2	20	114	89 14	299		29	2	10	8		15	83	50	191
	10						1)	9	69			4	3	*	4	26 4	14	56		6				8	10 R	13	8	33
1 ≥e							2	5	4																	R	8	4
Σ								267						16				1000									184	
F	3.1	2.4	1.0	«.4	₩ .0	3.2	3.0	3.1	13.0)	2.	t ≪ • ;	2 1.1		2.3 ME 20		2.1	3.4	5.1	12	.0 :	<u>(, 1</u>)	e, 2 i	c. 4 3	4.4	2.6	1,10	3,0	2.8
0				encentration of the					0	-								20	Г						in the second			4
1	134							55	279	113		21				10.4		257		58		63		15		125	4	267
	121	4	4		6	21 6	183 33	171 33	510 187	91		2 (4 (4	38 6	166 87	103 03	^08 239		90 71	10 8	40 13		4	40 · 53	94	83 52	408 273
	8						8	2	12	16		6				14	6	56 16		4	4	8			4	15	อ	29
2	•											v				4		4		15				8	8			17
¥ ≩0																												
-	402	4	. 4				504		1000			0 40				375		1000			82 1			12	63	109	141	1000
		2.0	9.0		2.0	9. A						6 1.4		2.0											2.5.			


כל הסקות לפי שעון המרץ התקין - שי גריניץ - 1 בייניץ - 1 בייניץ - 1 בייניץ באואבה האוא - 6.5.ד. + 2 TELL CIST SCHUT - T - TENT MAL MAN MAN - T - TROPOLES

the could be

40 41-

- 17 -

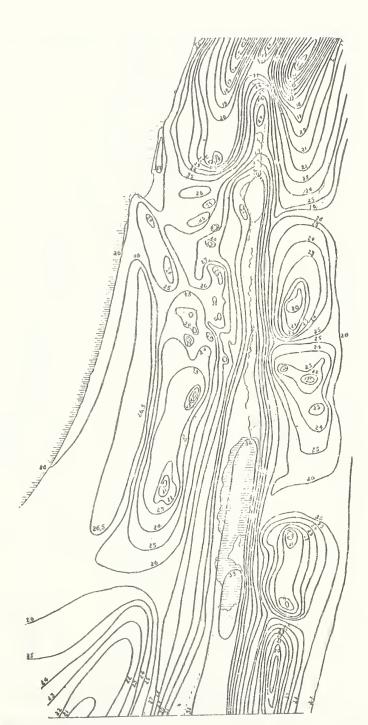


Fig. 186 : July Mean Actual Temperature (C) ציור 186 : הממוצעת לחורש יולי

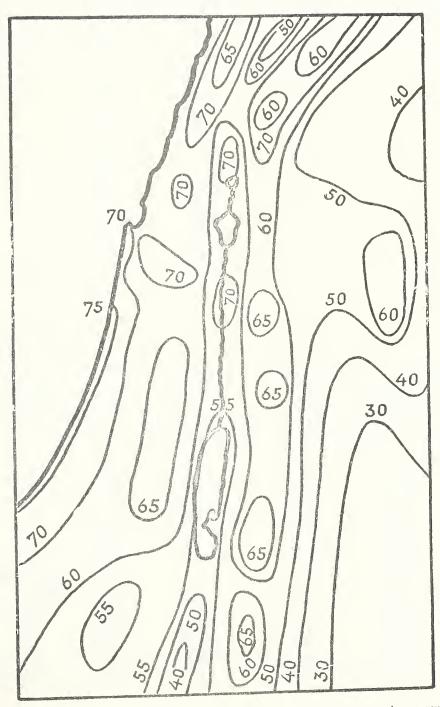


Fig. 95: Yearly Relative Humidity in % .

Crop: LEMONS

Location: Nir-Yitzhak

Depth cm.	Classi- fication	Field Density	Field Capacity %	Wilting Point %	Porosity %	CaCO ₃ , %
	mounter	Denorty	(per volume)	(per volume)	10	per weight
	1				1	
0-30	Sand	1,67	10.0	3.5		3.0
30-60	2.5	1,58	11.5	4.4		6.0
60-90	8.8	1,61	12.1	4.4		6.0
90-120	**	1,66	12.1	3.9		4.0
120-150	8.8	1,67	12.2	4.1		3.0
150-180	Loamy sand	1,69	17.0	7.1		10.0
180-210	11	1,70	17.0	7.4		14.0
210-240	_	1,64	16.4	-		-
240-270	-	1,66	16.0	-		-
270-300	-	1,64	16.0	-		-

Crop: ALFALFA

Location: Nir-Yitzhak

Depth cm.	Classi- fication	Field Density	Field Capacity % (per volume)	Wilting Point % (per volume)	Porosity %	CaCO ₃ , % per weight
1-	ļ 3		· .		4	
0-30	Sand	1,70	13.4	5.8	37.5	4.5
30-60	1.5	1,69	12.9	4.6	37.5	4.5
60-90	11	1,62	13.3	4.8	40.0	5.0
90-120	8.8	1,68	12.6	4.6	38.0	4.5
120-150	11	1,65	15.5	4.5	39.0	4.5
150-180	Sandy Clay Loar	1.07	17.4	8.0	37.6	13.0
180-210	ŤŤ	1,69	15.6	6.7	37.6	10.0
210 - 240	Sand	1,64	12.4	6.0	39.5	11.0
240-270	1.1	1,69	11.0	4.6	37.5	8.5
270-300	11	1,69	10.7	4.3	39.0	9.0

		-	

Crop: GROUNDNUTS, Var. "Virginia"

Location: Nir-Yitzhak

Depth cm	Classi- fication	Field Density	Field Capacity % (per volume)	Wilting Point % (per volume)	Porosity %	CaCO ₃ , % per weight
0-30	Sand	1,68	11.0	4.7		5.0
30-60	**	1,66	11.2	4.6		5.0
60-90	**	1,63	11.4	5.8		8.0
90-120	**	1,61	11.8	6.2		8.0
120-150	**	1.57	13.0	6.0		5.0
150-180	**	1,61	11.0	5.9		5.0
180-210	**	1,70	12.0	5.7		4.0
210-240	TT	1,64	15.0	7.9		6.0
240-270	Loamy sand	I 1,68	21.9	12.3		14.0
270-300	**	1,79	21.2	11.8		13.0

Crop: GRAPES, Var. "Alfons"

Location: S a a d

Depth cm	Classi- fication	Field Density	Field Capacity % (per volume)	Wilting Point % (per volume)	Porosity %	CaCO ₃ , % per weight
0-30	Loam	1,43	30.6	14.1	47.4	21.9
30-60	Clay loam	1, 53	31.6	16.4	43.7	22.3
60-90	ŦŦ	1,63	32.2	17.0	40.0	22.3
90-120	11	1,69	31.8	20.7	38.0	26.0
120-150	**	1,6 9	31.8	20.9	38.0	22.8

Crop: GRAPES, var. "Alfons"

Location: Nir-Yitzhak

Depth cm.	Classi- fication	Field Density	Field Capacity % (per volume)	Wilting Point % (per volume)	Porosity %	CaCO ₃ , % per weight
0-30	Sand	1,66	10.4	4.65	38.8	4.0
30-60	F F	1,62	12.0	5.2	40.2	6.0
60-90	¥ ¥	1,60	13.1	5.0	40.5	6.0
90-120	**	1,67	13.5	5.1	38.5	6.0
120-150	Υ F	1,71	13.7	4.8	35.6	6.0
150-180	11	1,69	12.7	5.0	37.6	4.0
180-210	Sand Loam	1,67	21.8	11.0	38.5	10.0
210-240	Sandy Clay Loam	1,68	25.8	16.2	37.8	16.0
240-270	¥ 7	1,67	25.5	17.2	36.4	11.5
270-300	Sandy Loam	1,63	21.0	12.7	39.8	10.0

Crop: PEACHES, Var. "Ventura"

Location: Nir - Yitzhak

Depth cm.	Classi- fication	Field Density	Field Capacity % (per volume)	Wilting Point % (per volume)	Porosity %	CaCO ₃ , % per weight
0-30	Sand	1,60	10.5	4.5		5.0
30-60	**	1,60	12.0	5.4		6.0
60-90	F F	1,69	13.5	5.7		6.0
90-120	9 .9	1,64	14.8	5.8		6.5
120-150	**	1,62	15.4	5.2		5.5
150-1 80	Loamy Sand	1,72	17.2	8.3		11,5
180-210	**	1,70	16.0	8.3		12.0
210-240	Sand	1,69	15.0	6.0		10.0
240-270	F F	1,60	15.0	5.6		9.0
270-300	**	1,65	14.7	7.6		8.0

网络拉拉拉 计工具 医胆管支张的 计分子文字

and the second second second

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</t

Crop: COTTON, Var. "Acala 4-42"

Location: Saad

Depth cm.	Classi- fication	Field [,] Density	Field Capacity % (per volume)	Wilting Point % (per volume)	Porosity %	CaCO ₃ , % per weight
0-30		1,31	29.7	13.4	52,0	13.3
30-60		1,42	28.4	15.1	47.0	10.8
60-90		1, 48	29,1	15.6	45.7	15.5
90-120		1,49	30,2	16, 3	45, 4	16.0
120-150		1,50	30,8	15,9	45.0	16.0

Crop: POTATOES. var. "Uptodate"

Location: S a a d

Depth cm.	Classi- fication	Field Density	Field Capacity % (per volume)	Wilting Point % (per volume)	Porosity %	CaCO ₃ , % per weight
0-30		1,43	30.0	14.8	47.4	12.0
30-60		1,42	28.0	16.1	47.8	14.5
60-90		1,48	30.0	17.3	45.7	14.0
90-120		1.48	29.8	17.3	45.7	20.5
120-150		1.57	30.5	19.7	42.3	22.5

Crop: APPLES

Location: S a a d

Depth cm.	Classi- fication	Field Density	Field Capacity % (per volume)	Wilting Point % (per volume)	Porosity %	CaCO ₃ , % per weight
0-30	Loam	1,43	30.0	14.4	47.4	19.3
30-60	11	1,46	31.4	16.0	46.3	24.0
60-90	Clay loam	1,62	34.0	19.9	40.4	24.1
90-120	¥ \$	1,62	33.2	21.1	40.4	25.7
120-150	11	1,61	33.6	21.6	40.6	24.1
150-180	-	1,69	34.5	-		_
180-210	-	1,69	36.5	-	_	_

Crop: PLUMS

Location: S a a d

Depth cm.	Classi- fication	Field Density	Field Capacity % (per volume)	Wilting Point % (per volume)	Porosity %	CaCO ₃ , % per weight
0-30	Sandy loam	1,45	29.8	15.3	46.6	9.4
30-60	Loam	1,54	30.8	17.5	43.4	19.8
60-90	Clay loam	1,61	31.4	19.7	40.8	_
90-120	Clay loam	1,65	32.6	19.4	39.3	_
120-150	Clay loam	1,66	33.2	20.0	39.0	21.5
150-180	Clay loam					
180-210	Clay loam					
210-240	Clay					
240-270	Clay					

Soil Data KEFAR HAYAROK

Crop: PEACHES APPLES and PLUMS

Depth cm.	Classi- fication	Field Density	Field Capacity % (per Volume)	Wilting point % (per Volume)	Hy coscopic Water %	CaCO ₃ , % per weight	рН
0-30	Sand loam	1,68	· 26,2	13,0	1,77	0,1	7,2
30-60	₹ ₹ ₹	1,68	30,7	` 14,7	3,78		7, 2
60-90	Loam	1,67	31,6	15,6	4,95	-	6, 8
90-120	Clay loam	1,69	31,8	15,6	5,12	0,2	7,1
120-150	99 99	1,69	32,4	15, 4	5,11	0,9	7,2
150-180	₹¥ ¥ 9	1,66	31,5	15,0	5,56	1,0	7,3
180-210	<u> 17</u>	1,67	34,9	17,2	5,94	1,3	7,4

Crop: ORANGES

Depth cm.	Classi cation	1	Field Density	Field Capacity % (per Volume)	Wilting point % (per Volume)	Hy oscopic Water %	CaCO ₃ , % per weight	рĦ
0-30	Loam	Sand	1 67	96 C	11.0	0.00		2.2
0-30	roam	DHING	1,67	28,6	14,2	2,03	* 1.00x	6,6
30-60	Loam		1,68	30,9	15,0	4,00		6,5
60-90	Clay I	Loam	1,70	32,3	16,2	4, 92	0,4	1 . 2
90-120	8.8	7 9	1,72	33,9	16,8	5,01	1,7	d p is
120-150	9 Y	ΨŶ	1,71	35,0	17,5	5,23	1,5	7,4
150-180	* *	8 Y	1,70	36,7	17,8	5,66	1,3	7,5
180-210	۴Ÿ	99	1, <mark>68</mark>	36,6	18,2	5,87	1, 1	5,5

Crop: GRAPES

Depth. cm.	Classi- fication	Field Density	Field Capacity % (per volume)	Wilting Point % (per volume)	Hy soscopic Water %	CaCO ₃ , % per weight	pН
0-30	Sand loam	1,71	23,4	12, 1	2,50	0,6	7,1
30-60	Loam	1,63	25,9	13,2	4,30	0,2	7,0
60-90	Clay loam	1,59	26,2	13,2	4,79	0,3	6,7
90-120	f f 9 f	1,72	28,4	14,5	4,86	1,4	7,3
120-150	11 11	1,81	28,2	14,0	3,74	3,4	7, 2
150-180	***	1,74	27, 1	13, 2	3,64		7,2
180-210	19 11	1,78	27,5	13,7	3,37	0,8	7,3

Crop: GRAPEFRUIT

Depth cm.	Classi- fication	Field Density	Field Capacity % (per volume)	Wilting Point % (per volume)	H rescopie Water %	CaCO ₃ , % per Weight	pН
0-30	Sand loam	1,66	26, 1	13,2	3,83	0,2	1
30-60	Loam	1, 62	31,3	15,5	3,90	0,2	7,3
60-90	Clay loam	1,65	32,7	15,6	5,47	<u>0</u> ,3	7,3
90-120	FY 99	1,63	33,6	16,2	5,64	1,0	7,7
120-150	9 9 9 9	1,60	53,8	17,3	5,94	1,2	7,8
150-180	11 TT	1,61	37,0	17,8	6,60	1,2	7,9
180-210	FT TT	1,67	37,6	18,2	6,42	1,5	8,0

- 27 -

CROP AND IRRIGATION DATA

Type of crop	Distance between trees	Distance between rows	Location
Oranges	4 meters	6 meters	Kfar Hayarok
Grapefruit	11	11	1' 11
Apples	11	4 meters	TT TT
Peaches	ħ	5 meters	11 TT
Plums	11	**	77 F7
Grapes	2 meters	3 meters	77 7 7
Apples	4 meters	5 ¹ / ₂ meters	Saad
Plums	**	**	E 2
Grapes	2 meters	3 meters	11
Peaches	4 meters	5 meters	Nir Itzhak
Lemons	11	6 meters	8.6 J. B.
Grapes	2 meters	3 meters	99 97

Note: only in the Apples in SAAD there is a cover crop of Rhodes Grass.

* 20

CROP AND IRRIGATION DATA 1963

ALFALFA

Nir - Yitzhak

(Depth of sampling : 150 cm)

Amount	Date	Irrigation	Moistu	re Deficit	Sampling
given m ³ /dunam	of Irrigation	Interval, Days	Daily	Total	Date
Rain 3.6 + 25	16.3		0.5	6.9	26.2.63 12.3.63
					17.3.63
					25.3.63
70	1.4	16	6.5	26.1	29.3.63
					4.4.63
60			5.65	67.8	16.4.63
50	29.4				26.4.63
					2.5.63
70	5.5	6			3.5.63
					7.5.63
54	14.5	9	8.5	33.9	11.5.63
					16.5.63
70	25.5	11	7.0	34.8	21.5.63
	3.6	8			27.5.63
					5.6.63
					6.6.63
	17.6	14	6.8	42.4	13.6.63
					19.6.63
100	28.6	11	7.4	44.4	25.6.63
					30.6.63
135	26.7	28	4.0	59.6	15.7.63

*) IMPORTANT REMARK:

m³/dunam is equivient to mm of R.

The second state of the state

ALC 10 0 (2000) 10 0704C

ALFALFA (Cont.)

Nir - Yitzhak

(Depth of sampling; 150 cm)

Amount	Date	Irrigation	Moisture	e Deficit	Sampling
given m ³ /dunam	of Irrigation	Interval, .Days	Daily	Total	Date
				1	28.7.63
			7.0	7	29.7.63
72	7.8	12	7.45	52.2	5.8.63
					9.8.63
65	18-19.8	11.5	7.9	63.0	17.8.63
					21.8.63
70	31.8	12.5			31.8.63
85	3.9	3			3.9.63
					6.9.63
65	19.9	16	4.25	55.2	19.9.63
					23.9.63
90	28.9	9	14.7	58.8	26.9.63
					1.10.63
55	9.10	11	6.5	45.3	8.10.63
7	Rain 20-22.10				12.10.63
54	25-27.10		5.5	59.4	24.10.63
					29.10.63
54	10.11	15	4.4		7.11.63
					10.11.63

Remarks : Night irrigation, 90% efficiency

Extent of crop: 66 dunam

Average fresh weight per mowing (in six mowings) : 1210 kg/dunam

a for a **a i i** *a* - 17 merce new combine

Open 1 of same har a located

kiemerska a begint orderkaanse date antoenenen. Biermerska van begint oorderkenenen

APPLES var. Grand-Alexander

Saad

(Depth of sampling : 150 cm)

Amount	Date	Irrigation	Moisture	e Deficit	Sampling
given m ³ /dunam	of Irrigation	Interval Days	Daily	Total	Date
60	6.3	-	'	i i	
	Rain	-	-	47.7	26.3.63
140	24.4	-	1.45	87.3	22.4.68
			-	61. 8	14.5.63
130	26.5	32	3.9	97.2	23.5.63
				97.8	12.6.63
1 150	22.6	26	-	109.2	20.6.63
-	_	-		22.5	25.6.63
-	_	-	_	75.9	2.7.63
130	14.7.	23	-	105.0	11.7.63
-	-	-		54.0	18.7.63
-	_	-	5.1	94.8	26.7.63
120	4.8	21	2.65	110.7	1.8.63
_	_	-	-	39.0	8.8.63
			5.3	57.0	15.8.63
130	25.8	21		108.3	21.8.63
				11.7	27.8.63
_	_	_	3.1	39.6	5.9.63
140	29.9	34	3.4	107.4	25.9.63
	_	-	-	96.0	1.10.63
	Rain, 21-25. 10		4.0	-	16.10.6
	Rain, 1-4.11	_	3.8	_	31.10.6
	10.11	-	-	-	7.11.63
		-	-	-	13.11.6
-	_	-	2.3	16.8	20.11.6

Remarks : Day irrigation, 85% efficiency Extent of orchard : 45 dunam Date of planting: 1953 Weight of crop: 2.5 tons/dunam

GRAPES, var. Alfons

Nir - Yitzhak

(Depth of sampling: 210 cm)

Amount given	Date of	Irrigation . Interval,	Moisture Deficit	Sampling	
m ³ /dunam	Irrigation	Days	Total	Date	
	1	1			
100	11.4			25.3.63	
100	30.4	19		3.4.63	
			0	2.5.63	
			41.1	11.5.63	
			59.8	17.5.63	
	30.5	30	64.6	28.5.63	
			45.3	11.6.63	
130	1.7	33	87.3	25.6.63	
			17.1	3.7.63	
70	17.7	16	79.6	14.7.63	
			45.6	23.7.63	
150	4,9	49	86.1	8.8.63	
			0	7.9.63	
			21.6	16.9.63	
120	30.10	56	79.6	30.9.63	
				3.11.63	
			25.2		

Remarks : Night irrigation, 85% efficiency Extent of crop : 58 dunam Date of planting : 1955 Weight of crop : 1.5 tons/dunam

GRAPES var. Alfons

Saad

(Depth of sampling: 150 cm and three times to 300 cm)

Amount given	Date of	Irrigation	Moistu	Sampling	
m ³ /dunam	Irrigation	Interval	Daily	Total	Date
150	6/2			63	27.3.63
150	19/5	103	1,4	130	14.5.63
-	-	-	-	-	23.5.63
-	_	-	3,55	59,4	6.6.63
-	_	-	3,8	97,6	18.6.63
180	7/7	49	3,7	157, 5	4.7.63
-	-	-	-	-	11.7.63
-	_	-	-	74,7	26.7.63
-	_	-	-	135,9	15.8.63
180	1/9	55	4,41	140	16.8.63
-	-	-	-	-	5.9.63
-	-	-	4.4	92.1	26.9.63
-	-	-	-	-	8.10.63
-	-	-	2.4	132.6	16.10.63
-	-	-	1.9	151.8	21.10.63
-	-	-	-	159.3	13.11.63
-	-	_	2.3	168.6	17.11.63

Remarks : Day irrigation 85% efficiency

Extent of crop: 40 dunam Date of planting: 1956

Weight of crop: 2.6 tons/dunam

GROUNDNUTS, var. Viriginia

Nir - Yitzhak

(Depth of sampling: 150 cm)

Amount Date given of m ³ /dunam Irrigation		Irrigation Interval Days	Moisture Deficit mm Daily Total		Age of Crop	Sampling Date
42	1.5	_		21.0	18	29.4.63
	T * 0		2	21.0	22	3. 5. 63
-	10 5	-		_	22	10.5.63
42	16.5	15	1,9	-		
-	-	-	2,2	-	37	18, 5, 63
42	1.6	15	2,0	24.0	49	30.5.63
-	-	-	_	-	33	3.6.63
-	-		-	22.5	59	9.6.63
40	16.6	15	3	19.3	62	12.6.63
-	-	-	-	-	68	18.6.63
63	28.6	12	4	41.0	74	24.6.63
-	-	-	-	12.0	80	30.6.63
47	3.7	5	-	40.8	81	1.7.63
-	_	-		38.0	85	5.7.63
54	10.7	7	5.1	53.7	88	8.7.63
-	_	-	_	35.4	92	12.7.63
45	18.7	8	6	53.0	95	15.7.63
_	_	_	-	23.7	100	20.7.63
52	26.7	8	6	61.8	1.03	23.7.63
-	_	_	_	37.0	109	29.7.63
52	2.8	7	6.4	68.1	111	31.7.63
_	_	_	_	52.8	116	5.8,63
46	11.8	9	6.4	76.0	121	10.8.63
-	-	_	_	22.8	124	13.8.63
48	18,8	7	6	41.4	129	18.8.63
40	10,0	_	_	_	132	21.8.63
- 40	-25.8	7	6.4	77.6	136	25.8.63 28.8.63 11.11.63

Remarks : Night Irrigation, 90% efficiency Date of sowing : 11, 4. 1963 Extent of crop : 100 dunam

Date of cropping: 10.9.1963 Weight of crop: 550 kg/dunam

LEMONS

Nir - Yitzhak

(Depth of sampling : 150 cm)

Amount given m ³ /dunam	Date of Irrigation	Irrigation Interval, Days	Moisture	Sampling	
			Daily	Total	Date
	4.3			1.2	6.3.63
Rain 11.0			2.8	48.6	23.3.63
80	2.5			63.3	26.4.63
				13.2	4.5.63
			3.3	46.5	14.5.63
96	30-31.5	28.5	3.35	86.7	20.5.63
				0	2.6.63
150	26.6	26.5	4.4	96.3	24.6.63
				0	28.6.63
			9.9	18.6	30.6.63
	19.7	23	6.1	67.1	8.7.63
				8.4	21.7.63
			3.8	80.7	9.8.63
60	14.8	26		90.2	14.8.63
				43.3	16.8.63
80	10.9	26	1.7	86.7	10.9.63
				-	12.9.63
75	2.10	22	3.5	64.5	27.9.63
				26.4	4.10.63
80	30.10	28	1.9	73.8	29.10.63
				0	1.11.63
			3.0	42.6	15.11.63

Remarks : Day irrigation, 85% efficiency Date of planting : 1958 Extent of orchard : 36 dunam

PEACHES, var. Ventura

Nir-Yitzhak

(Depth of sampling : 210 cm)

Amount	Date	Irrigation Interval Days	Moisture Deficit		Sampling
given m ³ /dunam	of Irrigation		Days	Total	Date
130	22.3			116	20.3.63
				0	24.3.63
120	3.5	42	3.3	126.8	27.4.63
				23.0	5.5.63
			9.5	118.6	15.5.63
130	25.5	22	5.4	145.6	20.5.63
				53.5	27.5.63
170	15.6	21	7.9	164.4	10.6.63
				31.2	17.6.63
130	29.6	14	10.0	140.8	28.6.63
				58.8	2.7.63
130	11.7	12	13.2	174.8	10.7.63
			8.1	54.9	14.7.63
				144.3	25.7.63
75	10.8	30	1.4	166.2	9.8.63
				81.9	12.8.63
125	5.9	26	5.4	189.6	1.9.63
				82.5	7.9.63
			8.2	156.3	16.9.63
150	2.10	27	9.0	200.3	21.9.63
120	2.11.	31		23.7	4.10.63
					4.11.63

Remarks : Day irrigation, 85% efficiency

Date of planting: 1957

Extent of orchard : 23 dunam

Weight of crop: 1.0 tons/dunam

PLUMS, var. Metley

Saad

(Depth of sampling : 150 cm)

given of	Date	Irrigation intervals Days	Moisture Deficit		Sampling
	oi Irrigation		Days	Total	Date
80	26,2	I	1	• •	
-	-	-	-	32	27.3.63
130	7.5	70	1.85	104	5.5.63
-	-	-	-	104.7	4.6.63
30	10(6	34	6.65	144.6	10.6.63
-	-	_	-	60.0	18.6.63
-	-	_	5.9	142.8	2.7.63
-	-	_	2.2	178.1	18.7.63
180	28.7	48	2.9.	198.3	25.7.63
-	-	_	-	0	4.8.63
-	-	_	9.5	67.7	15.8.63
-	-	_	3.9	114.0	27.8.63
150	17.9	51	4.5	190.0	15.9.63
			-	11.5	26.9.63
			3.6	55.7	8.10.63
			2.9	98.4	7.11.63
			2.1	121.8	18.11.63

Remarks : Day Irrigation, 85% efficiency

Date of Planting: 1952

Extent of orchard : 56 dunam

Weight of crop: 1.0 tons/dunam

ADDENDUM TO PREVIOUS ' PLANT DEVELOPMENT DATA

Alfalfa, Nir Yitzhak (See P. (*))

Remarks	Height of plants cm.	Dry Matter %	Yield Kg.	Date	Cutting No.
	45 cm.	31.4	1000 kg.	20.4.63	Ι
	55	30	1500	30.5.63	II
	68	35.0	1800	22.6.63	III
Not irrigated					
(failure of supply)	40		800	17.7.63	IV
	70	38	1700	15.8.63	V
			1000	15.9.63	VI
Attacked by			1000	9.10.63	VII
prodenia			800	24.10.63	VIII
			1000	6.11.63	IX
Total yield,	kg.		10500		

Groundnuts, Nir-Yitzhak (See p. ...)

	Plant	Data	
	Height	Width	Date
Planted in rows	4 cm.	6 cm.	29.4.63
5 x 60 cm.	6 ''	10 "	10.5.63
	7 ''	10 "	14.5.63
	13,5	15 ''	30.5.63
	14 cm.	15 "	3.6.63
	14 "	16 "	9.6.63
	15 "	18 "	12.6.63
	15 "	20 "	18.6.63
	20 "	30 "	24.6.63
	30 "	45 ''	30.6.63
	40 ''	60 ''	10.7.63
	45 ''	60 ''	15.7.63

- 37 -

٤

-

ORCHARDS

Apples, Sa'ad

Foliation 20/4

Loss of foliage from 15/11

Date of gathering: 20/8 - 20/9

Grapes, Sa'ad

Foliation 15/5 Loss of foliage from 10/11

Harvest 5/10 - 20/10

Plums, Sa'ad

Foliation 15/4 Loss of foliage from 15/10

Picking 5/6 - 15/6

Grapes, Nir-Yitzhak

Foliation 1/5

Loss of foliage from 1/11

Harvest 1/9 - 20/9

Peaches, Nir-Yizhak

Foliation 10/4 Loss of loliage from 15/10

Picking 10/6 0 20/6.

Crop: Grapes, Var.: Danug

Location : Saad

Date of Planting : 1956

Extent of Orchard : 45 dunams

Plant Development
ation 10,5.64
rest
1 - 20/11
s of foliage from 1, 1, 65
· · · · · · · · · · · · · · · · · · ·

Crop: Plums Var.: Metley

Location : SAAD

Date of Planting: 1957

Extent of Orchard 56 dunams

Depth of Sampling : 300 cm

Sampling Date	Moistur m ³ /dı	e Deficit mam	Irrigation Intervals Days	Date of	Amount given	Remarks of Plant Development
	Total	Daily	Days	11 rigation,	m ³ /dunam	
31.3.64		2				Foliation 19.3.64
20.4.64	88.0	4.0				
21.4.64				8.4.64	115	
26.4.64	11.0	2.2				
14.5.64			20	18.5.64	130	Picking
9.6.64			20	19.6.64	200	25/5 - 15/6
15 .6.64	24.0	4.0				
25.6.64						
28.6.64	16.5	5.5				
1.7.64						
5.7.64						
8.7.64	48.0	4.8				
13.7.64	32.0	4.0				
20.7.64	27.0	3,8				
27.7.64	22.2	3.2				
30.7.64						
3.8.64	15.6	2.2	45	3.8.64	150	
12.8.64						
18.8.64						
14.9.64	78.0	2.9			-	
6,10.64						
12.10.64						Loss of foliage from
$22.10.64 \\3.11.64 \\9.11.64$	10.2	1.7				1.11.64

- 40 -

- 4 -

Crop: Apples Var.: Grand-Alexander

Location : SAAD

Date of Planting: 1953

Extent of Orchard : 45 dunams

Sampling Date	Moistur m ³ /du	e Deficit mam	Irrigation Intervals Days	Date of Irrigation	Amount given	Remarks of Plant Development
	Total	Daily	Days	1111gation,	m ³ /dunam	
26.4.64				30.4.64	90	Foliation 8.4.64
22.5.64	96.1	4.2	24	24.5.64	100	
19.6.64	130.0	5.0	28	21.6.64	140	
1.7.64						
8.7.64	37.5	5.4				
13.7.64	27.7	5.5	25	16.7.64	90	
20.7.64						
23.7.64						
27.7.64	33.6	4.8				
30.7.64						
3.8.64	27.9	4.0	18	3.8.64	100	
12.8.64						
18.8.64	27.2	4.5				Date of gathering
25 . 8. 64			22	25.8.64	100	23/8 - 20/9
2.9.64						
14.9.64			21	15.9.64	90	Weight of crop
1.10.64						2.5 tons/dunam
6.10.64			19	4.10.64	80	
12.10.64	27.0	4.5				
22.10.6 4	43.0	4.3		25.10.64	100	
9.11.64						Loss of foliage from 15/12

Crop: Cotton Var.: Acala 4-42

Location : SAAD

Date of Planting : 20.4.64

Extent of Orchard : 100 dunam

Depth of Sampling : 150 cm

Sampling Date	Moistur m ³ /du	e Deficit unam	Irrigation Intervals	Date of	Amount given	- Remarks of Plant Development
	Total	Daily	Days	Irrigation	m ³ /dunam	
22.6.64				13.6.64	80	
25.6.64	4.5	1.5				
28.6.64	5.4	1.8				
1.7.64	10.8	3,6				
8.7.64	26.5	3,8				
16.7.64			32	15.7.64	100	
20.7.64	13.2	3.3				
23.7.64						
27.7.64	24.8	3.5				
30.7.64	17,2	5.7				
3.8.64	20.4	5.1	21	5.8.64	100	
12.8.64						
18.8.64						
25.8.64			17	22.8.64	100	
2.9.64						
14.9.64	39.7	3.3				
1.10.64	42,8	2.5				
12.10.64						
22.10.64						
9.11.64						

- 42 -

Crop Data - Kfar Hayarok

Crop: Apples Var.: Grand Alexander

Location : Kfar Hayarok

Date of Planting : 1957

Extent of Orchard 12 dunam

Sampling Date	Moistur m ³ /dı	e Deficit mam	Irrigation Intervals Days	Date of	Amount given m ³ /dunam	Remarks of Plant Development
	Total	Daily	Days	IIIgation	m ^o /dunam	
6.4.64						
14.4.64				16.4rain	9 min	Foliation 15.4.64
24.4.64				22.4.64	40	
6.5.64	23.5	2.0	22	14.5.64	60	
19.5.64						
28.5.64	28.0	3.1				
4.6.64	16.0	2.3	19	2.6.64	60	
12.6.64						
18.6.64	20.0	3.3	13	15.6.64	70	
25.6.64	15.5	2.2				
2.7.64			13	28.6.64	70	
8.7.64	15.0	2.5				
13.7.64	12.5	2.5	19	17.7.64	60	Picking 15/7-30/7
19.8.64			14	31.7.64	70	
24.8.64			19	19.8.64	60	
3.9.64						
9.9.64	17.1	2.8				
17.9.64			27	15.9.64	60	
24.9.64	18.0	· 2.6				
29.9.64	15.9	3.2				
8.10.64			26	11.10.64	70	
15.10.64						
28.10.64			21	1.11.64	60	Loss of foliage
						1.12.64

Crop :	Peaches	Var.: Smith			
Location :	Kfar H	ayarok			
Date of Plan	nting:	1957			
Extent of Orchard 5 dunams					
Depth of Sar	npling :	300 cm			

Sampling Date	Moistur m ³ /dı	e Deficit unam	Irrigation Intervals	Date of	Amount given	Remarks of Plant Development
	Total	Daily	Days	Irrigation	m ³ /dunam	
25.3.64						10.3.64 Foliation
13.4.64	45.0	2.3		16.4 rain	9 mm	
29.4.64				20.4.64	40	
5.5.64	27.0	4.5				
19.5.64	46.0	3.3	23	13.5.64	60	
25.5.64			14	27.5.64	60	
4.6.64	82.0	5.1				
1 1.6.64			11	7.6.64	70	
16.6.64						
22.6.64	59.0	5.4	19	26.6.64	60	
29.6.64						Picking 1/7 - 15/7
6.7.74						
11.7.64	42.0	3.5	16	12.7.64	60	Weight of crop
14.7.64						3.5 tons/dunam
5.8.64	70.0	3.2	16	28.7.64	70	
18.8.64	44.5	3.4				
24.8.64			22	19.8.64	60	
3.9.64						
9.9.64						
17.9.64			25	13.9.64	80	
24.9.64	28.5	4.1				
29.9.64			16	29.9.64	80	
8.10.64						
15.10.64	9.6	1.4				Loss of foliage
28.10.64			24	23.10.64	60	from 1.11.64

Crop :	Grapes	3	Var.:	Alfons
Location :	Kefar	Hayarok		
Date of Planting	g :	1956		
Extent of Orcha	rd :	21 dunar	ns	
Depth of Sampli	ng:	300 cm		

Sampling Date	Moistur m ³ /du	e Deficit mam	Irrigation Intervals	of	Amount given	Rema rks of Plant Deve lopment
	Total	Daily	Days	Irrigation	m ³ /dunam	
19.4.64						
4.5.64	27.5	1.8				
10.5.64	11.0	1.8				Foliation 15.5.64
14.5.64				14.5.64	100	
21.5.64						
27.5.64						
31.5.64	28.0	2.8				
10.6.64	17.5	1.8				
18.6.64			29	12.6.64	80	
28.6.64						
2.7.64	43.0	3.8				
14.7.64			28	10.7.64	80	Harvest
19.8.64	65.0	1.9				1/8 - 15/8
24.8.64	9.9	2.0				
3.9.64			50	29.8.64	90	Weight of crop
17.9.64	17.1	1.2				2.5 tons/dunam
24.9.64						
29.9.64	9.0	1.8				
8.10.64						
15.10.64					·	Loss of Foliage
28.10.64	29.1	2.2				1.12.65

Crop :	Plums	Var.: Ogden
Location :	Kefar Hay	arok
Date of Planting :	19	57
Extent of Orchard	5 dunar	ns

Sampling Date	Moistur m ³ /du Total	e Deficit mam Daily	Irrigation Intervals Days	Date of Irrigation	Amount given m ³ /dunam	Remarks of Plant Development
13.4.64	IOtal	Dally		16.4 rain		
23.4.64	43.0	4.3				Foliation
30.4.64				24.4.64	40	
6.5.64	17.6	3.0	19	13.5.64	60	10.3.64
18.5.64			24	27.5.64	60	
9.6.64						
12.6.64			14	10.6.64	70	
21.6.64						Picking
1.7.64			16	26.6.64	70	18.6 - 30.6
14.7.64	39.1	3.0	18	14.7.64	60	
22.7.64			14	28.7.64	70	Weight of crop
6.8.64	53.5	3.6				3.3 tons/dunam
24.8.64			20	17.8.64	60	
3.9.64		-				
9.9.64	22.8	3.8	23	9.9.64	80	
17.9.64						Loss of foliage
24.9.64	23.1	3.3				
29.9.64			18	27.9.64	80	from 15.10.64
8.10.64	19.8	· 2.2				
15.10.64	15.3	2.2				
28.10.64			23	20.10.64	60	
12.11.64						
				-		

0

10 and 1

10

. . .

es Var.: Shamouti
Kefar Hayarok
1957
25 dunams

Sampling Date	Moistur m ³ /du Total	e Deficit mam Daily	Irrigation Intervals Days	of	Amount given m ³ /dunam	Remarks of Plant Development
6.4.64						Plowering
19 <mark>.</mark> 4.64	26.0	2.0		16.4rain	9	15/3 - 15/4
30.4.64	-			28.4.64	50	
12.5.64	18.9	1.6				
20.5.64			19	17.5.64	80	
27.5.64			-			
2.6.64	20.4	3.4				
11.6.64			22	8.6.64	80	
1 7.6.64						
24.6.64	25.5	3.6	16	24.6.64	70	
20.7.64	106.0	4.1	18	12.7.64	80	
13.8.64	94.0	3.9	20	1.8.64	80	
24.8.64						
3.9.64			19	20.8.64	90	
17.9.64						
24.9.64	17.4	2.5	25	14.9.64	90	
29.9.64	8.7	1.7				
8.10.64			17	1.10.64	70	
15.10.64	7.2	1.0				
28.10.64			20	21.10.64	60	
12.11.64						Picking 1.1.65
						Weight of crop 2 tons/dunam

.

4

Crop: Grapefruit Var.: Marsh

Location : Kefar Hayarok

Date of Planting : 1957

Extent of Orchard : 12 dunams

Depth of Sampling : 300 cm

Sampling Date	Moistur m ³ /du Total	e Deficit mam Daily	Irrigation Intervals Days	of	Amount given m ³ /dunam	Remarks of Plant Development
15.4.64	IOtal	Daily		16.4 rain		Flowering
24.4.64	34.5	3.8		28.4.64	30	15.3.64 - 15.4.64
5.5.64						
10.5.64						
13.5.64	27.0	3.4	21	19.5.64	50	
24.5.64						
26.5.64	36.0	2.8				
2.6.64						
11.6.64			20	8.6.64	70	
15.6.64						
25.6.64	53.0	3.8	18	26.6.64	70	
13.8.64	201.0	4.1	17	13.7.64	80	
19.8.64			17	30.7.64	85	
3.9.64	42.0	2.8	17	16.8.64	85	
9.9.64			18	3.9.64	90	
17.9.64						
24.9.64			23	26.9.64	70	
29.9.64						
8.10.64	24.0	· 2.7	19	15.10.64	50	
15.10.64			17	1.11.64	40	Picking
						15. ll. 64
						Weight of Crop 2,5 tons/dunam

Pd., une

Location P

Date of islanding

Experience of the second second second

Depile of strengther a linear

Crop: A	lfalfa	
Location :	Kefar H	ayarok
Date of Plant	ing:	1961
Extent of Fie	eld :	25 dunams
Depth of Sam	pling:	150 cm

Sampling Date	Moistur m ³ /du	e Deficit unam	Irrigation Intervals	Date of	Amount given	Date of	Weight of crop
	Total	Daily	Days	irrigation	m ³ /dunam	Cutting	Kg/dunam
12.4.64							
19.4.64	25.2	3.6				20.4.64	1,500
26.4.64				22.4.64	103		
7.5.64	36.9	3.4					
12.5.64	24.3	4.8				15.5.64	1,500
22.5.64			27	19.5.64	100		
29.5.64							
2.6.64	64.1	5.8				5.6.64	1,400
10.6.64			19	7.6.64	103		
16.6.64	18.0	3.0					
25.6.64	23.1	2.6				26.6.64	1,400
30.6.64			20	27.6.64	100		
7.7.64	21.6	3.2					
14.7.64						14.7.64	1,200
18.7.64			18	15.7.64	80		
22.7.64	17.1	4.3					
6.8.64			18	2.8.64	80		
27.8.64	88.4	4.2				20.8.64	1,100
31.8.64							
17.9.64			24	26.8.64	80	10.0.04	1 000
$\begin{array}{c} 29.9.64\\ 5.10.64\end{array}$			19	14.9.64	80	13.9.64	1,000
12.10.64	18.0	2.6	10	11.0.04	00		
18.10.64						19.10.64	1,200
1.11.64						10.4.1.329 1.3	10.000
						Total Yield	10,300

Crop Data

Crop:	Grapes	Var.: Alfons
Location :	Nir Itz	zhak
Date of Plan	ting:	1955
Extent of Or	chard :	58 dunams
Depth of San	npling :	300 cms

Sampling Date	Moistur m ³ /du	e Deficit mam	Irrigation Intervals Days	of	Amount given m ³ /dunam	Rema rks of Plant Development
	Total	Daily	Days	II IIgation,	m ^o /dunam	
16.2.64						
10.3.64	32.0	1.0				Foliation
25.3.64						15.4.64
5.4.64				2.4.64	90	
12.4.64						
15.4.64						
19.4.64	17.7	2.5		21-22/4	rain 10mm	1
22.4.64						
26.4.64						
29.4.64	18.1	2.6				
3.5.64						
6.5.64	8.3	2.8				
10.5.64						
13.5.64						
20.5.64	19.0	2.7	51	23/5/64	95	
24.5.64						
27.5.64						
31.5.64	16.7	3.34				
3.6.64	9.1	3.0				
7.6.64						
10.6.64	20.6	2.9				
14.6.64	15.4	3.8				
17.6.64						
21.6.64	1	3.7				
28.6.64	8	0	33	25.6.64	90	

10 (B) (C) (C) (C)

: gould

DOLLESS I

reclassic in 4 off.

Less the first state of the sector's

Repig of Service 2 : 44 star

Grapes II

Crop: Grapes Var.: Location: Nir Itzhak Date of Planting:

Extent of Orchard : dunams

Sampling Date	Moistur m ³ /di	e Deficit unam	Irrigation Intervals	Date of	Amount given	Remarks of Plant Development
	Total	Daily	Days	Irrigation	m ³ /dunam	
5.7.64						
14.7.64						Harvest
19.7.64	70.9	3.4				15/7 - 1/8
21.7.64	36.4	5.7				
28.7.64			28	23.7.64	120	Weight of crop
4.8.64						2 tons/dunam
12.8.64	70.0	5.4				
26.8.64			35	27.8.64	120	
24.9.64						Loss of foliage
19.10.64			31	27.9.64	120	1.1.65

Grop - Chapes - New Location - Pro Poly Data of Pileachy: **Exists** of Contenent - C

Depth of Smalling :

- 52 -

Crop: Lemon Var.: Jurica

Location : Nir Itzhak

Date of Planting : 1958

Extent of Orchard : 36 dunams

Sampling		Moisture Deficit m ³ /dunam		Irrigation Intervals	of	Amount given	Remarks of Plant Development	
Total	al Daily	- Days	Irrigation	m ³ /dunam				
					first flowering			
3.1	1 1.3				15/2 - 15/3			
			14.4.64	60				
2.7	7 3.2							
			21-22/4	rain 10mm				
8.4	4 2.8							
5.5	5 1.8							
3.9	9 1.0							
5.2	2 1.7							
		28	12.5.64	72				
4.0	0 1.0							
5.2	2 1.3							
10.4	4 2.6							
12.2	2 2.0							
		30	11.6.64	88				
46.7	7 4.7	15	26.6.64	70	purposed thirst			
L2.9	9 4.3				at July and August			
					to cause flowering			
28.3	3 3.5				at September			
20.4	4 2.9	i.		10-06-40 10-06-40	Second flowering			
					15.9			
45.0	0 2.1	68	2.9.64	100	Picking 15/11			
		26	28.9.64	80	Weight of crop			
66.8	8 3.7	27	25.10.64	80	1.5 tons/dunam			
66.8	8		3 3.7 27	3 3.7 27 25.10.64	3.7 27 25.10.64 80			

Crop: Peaches Var.: Ventura

Location : Nir Itzhak

Date of Planting : 1957

Extent of Orchard : 23 dunams

Sampling Date	Moisture Deficit m ³ /dunam		Irrigation Intervals Days	of	Amount given	Remarks of Plant Development		
	Total	Daily	Days	gation	m ³ /dunam	-		
12.3.64						Foliation		
19.3.64	13.6	1.9				1.3.64		
9.4.64				23.3.64	90			
13.4.64	10.4	2.6						
24.4.64			23	15.4.64	30			
27.4.64			5	20.4.64	90			
4.5.64	29.7	4.2						
11.5.64			20	10.5.64	100			
14.5.64	12.7	4.2						
18.5.64								
21.5.64	28.0	4.0						
25.5.64	13.4	3.4						
28.5.64	11.3	3.8						
8.6.64			21	31.5.64	95			
11.6.64	13.5	4.5						
18.6.64			12	12.6.64	115	Picking		
22.6.64	21.3	5.3				20/6 - 1/7		
25.6.64	20.5	7.0						
6.7.64			20	2.7.64	90	Weight of crop		
13.7.64	46.0	6.6				3,3 tons/dunam		
21.7.64	55.0	6.8	21	23.7.64	120			
26.7.64	42.0	6.0						
26.8.64			1.8	10.8.64	120	Loss of foliage		
$23.9.64 \\ 19.10.64 \\ 11.11.64$	$\begin{array}{c} 140.0\\90.0\end{array}$	5.0 3.5	20 26 41	30.8.64 25.9.64 5.11.64	120 120 100	15.10.64		

Crop: Ground-nuts

Location : Nir Itzhak

Date of Planting: 12.4.64

Extent of Orchard : 40 dunam

Depth of Sampling : 150 cm

planted in raws of 5 x 60 cm

Sampling Date	Moisture Deficit m ³ /dunam		Irrigation Intervals Days	of	Amount given m ³ /dunam	Plant Development		
						Plant Width	Plant Height	Remarks
	Total	Daily						-
12.4.64				10.6.64	14			
26.4.64			2	12.4.64	7	6 cm	4 cm	
10.5.64			14	26.4.64	28	6 cm	4 cm	
15.5.64	,		14	10.5.64	28	8 cm	5 cm	
22.5.64	10.0	1.4				12 cm	8 cm	
25.5.64								
29.5.64	15.0	3.7	14	24.5.64	28	16.5	13 cm	
5.6.64		1 -				22.0	15 cm	
12.6.64	27.8	4.0	11	4.6.64	35	31.5	20 cm	
19.6.64	22.6	3.2	16	20.6.64	42	34.0	25 cm	
21.6.64						40.0	30 cm	
29.6.64	45.0	5.3	9	29.6.64	42			
8.7.64			8	7.7.64	80	54.0	40 cm	
13.7.64			7	14.7.64	38			
20.7.64	74.5	6.7				60.0	45 cm	
22.7.64			7	21.7.64	41			
27.7.64	32.5	6.5				Date of		
28.7.64			7	28.7.64	40	Croppir	g:	
3.8.64	31.5	5.3	7	4.8.64	38	15.9.64	9 5-	
5.8.64								
10.8.64	20.0	4.0	7	11.8.64	42	Weight	oï	
17.8.64			7	18.8.64	40	Crop :		
19.8.64						520 Kg/dunam		
24.8.64	20.5	4.1	7	25.8.64	41			
1.9.64								

Crop:	Alfalfa								
Location :	Nir	Itzhak							
Date of Plan	nting:	1962							
Extent of O	rchard	65	dunam						
Depth of Sau	nnling	150	cm						

Sampling		e Deficit	Irrigation		Amount		Remarl	
Date	m ³ /dı	inam	Intervals Days	of	given m ³ /dunam	Cutting Remarks	Yield	Date [•] Date [•]
	Total	Daily	Days	IIIIgation,	m dunam	itemat, np	Kg/ utilali	or carring
12.3.64				25.2.64	60			
3.4.64	48.4	2.2	40	6.4.64	90	Hay	250	2.4.64
12.4.64								
22.4.64			11	17.4.64	72	Hay	280	25.4.64
29.4.64	37.0	5.3						
6.5.64			15	2.5.64	110			
13.5.64								
20.5.64	72.1	5.2	20	22.5.64	90		1000	21.5.64
27.5.64								
3.6.64			11	31.5.64	100			
14.6.64	68.5	6.2						
21.6.64			14	14.6.64	100		1500	17.6.64
24.6.64	70.0	7.0						
28.6.64			1.1	25.6.64	90			
5.7.64								
12.7.64	42.0	6.0	13	8.7.64	90		1500	15.7.64
19.7.64								
26.7.64	86.8	6.2		16.7.64	90			
2.8.64	40.0	5.7	15 10	23.7.64 2.8.64	90		1000	13.8.61
24.8.64			15	17.8.64	90			
3.9.64	163.0	5.4	14	1.9.64			1000	11.9.64
			14	15.9.64	90			
			16	30.9.64			1000	9.11.64
			15	15.10.64				
							1000	6.11.64

and the states

Date of 21a any

in the second state of the

and the set of the set of the

Location: Saad

Crop: Apples

Samp Da		Water consumption m ³ /dunam Total Daily		Date of Irrigation	Irrigation Intervals days	Amount given m ³ /dunam	Remarks of Plant Development
5.4.65	14.4.65	19.3	2.1				Foliation
14.4.65	22.4.65	16.0	2.0	18.4.65		6.0 rain	15. 4. 65
22.4.65	27.4.65	10.0	2.0	30.4.65		80	
10,5.65	17.5.65	26.2	3.7	20.5.64	20	80	
17.5.65	27.5.65	44.7	4.5				
27.5.65	1.6.65	23.7	4.7	5/6	17	85	
9.6.65	21.6.65	61.7	5.1				Date of gathering
29.6.65	13.7.65	84.7	6.0	25/6	20	80	20/8-20/9
20.7.65	27.7.65	30.9	4.4	17.7	22	110	weight of crop
27.7.65	1.8.65	28.5	5.7	3/8	39	80	4 tons/dunam
10.8.65	22.8.65	66.9	5.6	27/8	24	130	
29.8.65	14.9.65	68.8	4.3				
14.9.65	21.9.65	26.1	3.7	15/9	19	120	
29.9.65	31.10.65	102.4	3.2	4/10		17.1 rain	
31.10.65	15.11.65	43.0	2.9			11.5 rain	loss of foliage
							from 15.12.65
Remarks:	Efficiency						
	Date of p		953 45 dunam				
	Depth of						

Location: Saad

Crop: Grapes Var: Danug

S-am p D a	oling tes		consumption dunam Daily	Date of Irrigation	Irrigation Intervals days	Amount given m ³ /dunam	Remarks of Plant Development
5.4.65	14.4.65	23.1	2.6	18.4.65		60 ram	Foliation
24.4 65	27.4.65	11.0	3. 7				5.5 65
10.5 65	17.5.65	17.2	$2^{-}5$	3/5		50	
27.5.65	1.6.65	18.3	3.7	23/5	20	60	
1.6.65	9.6.65	37.5	4.7				
9. 6. 65	14.6.65	15.0	3,0				
21.6.65	29.6.65	24.7	3.1				
20.7 65	25.7.65	17.7	3.3	5/7	43	±00	
25.7 65	3.8.65	30 9	$3_{-}4$				
3.8.65	10.8.65	28.2	4.0	20/ 8	46	150	
22 8,65	24.8.65	90	4.5				Weight of erop
29 8.65	7 9,65	49.2	5.5	10/9	21	60	1 tog/dunam harvest
12 9.65	21.9.65	29 0	3.2				
21 10.65	31.10.65	36.0	3.6	25/9	15	115	5-20 20
9 11 65	15 11 65	14.4	2.4	4/10		17 i rain	loss of fchage
				7/11		a, 5 rain	from 10/1/65
				0			
-				Kuta ang ang ang ang ang ang ang ang ang an			
Remarks:	Efficiency	of irriga	tion: 85%				
	Date of p			and the second sec			
	Extent of	orchard:	40 dunam				
	Depth of s	sampling:	300 cm				

Location: Saad

Crop: plums

Samp	-		consumption dunam	Date	Irrigation Intervals	Amount given	
		Total	Deily	hrigation	days	m ³ /dunam	Remarks of Fight Development
5. 4. 65	14. 4. 65	41.0	4.6	-			
14. 4. 65	3.5.65	85.0	5.0	10.5.65		140	Foliation
.17.5.65	1.6.65	86.0	5.7				20.3.65
14. 6. 65	29.6.65	79.5	5.3	10.6.65	31	90	
13. 7. 65	18.7.65	23.0	4.5				
20. 7. 65	3.8.65	56.0	4.0	8. 7. 65	28	175	
10. 8. 65	22.8.65	30.0	2.5				Picking
5.9.65	19. 9. 65	42.0	3.0	1.9.65	54	130	5-15/6
19. 9. 65	29. 9. 65	27.0	2.7				
21. 10. 65	31.10.65	20.7	2.1				Weight of crop
31. 10. 65	9. 11. 65	18.0	2.0				1.7 tons/dunam
							loss of foliage
							from 5.11.64
Remarks:	Efficiency	of irriga	ation: 85%				
	Date of p						
		-	56 dunam				
	Depth of			ţ,			

Location: Saad

Crop: Cotton Var. Acala 4-42

Crop. 00	Crop. Cotton Var. Acada 4 42										
	oling tes	m ³ /	dunam	Date of	Irrigation Intervals	Amount given	Remarks of Plant Development				
		Total	Daily	Irrigetion	days	m ³ /dunam					
-											
21.6.65	29 6.65	39.7	5.0				30.6.65				
20.7.65	25.7.65	29.1	5.8	10.6		90	plants height 80 cm				
3.8.65	10.8.65	42.9	6.1				" width 50 cm				
15.8.65	24.8.65	45.3	5.0	6.7	26	110	flowering beginning				
24. 8. 65	31.8.65	36.0	5.1	-			14.7.65				
31. 8. 65	7.9.65	22.8	3.3	28.7	22	85	plants height 100 cm				
7. 9. 65	12.9.65	24.3	4.9				25 flowers				
12.9.65	19. 9. 65	17.9	2.5	12.8	15	100	per plant average				
							weight of crop				
							4 tons/dunam				
Remarks	Efficiency	of irriga	tion: 90%								
		lanting: 1									
		field: 100									
	Depth of	sampling:	150 cm								
1											

Location: Nir Yitzhak

Crop: Lemon Var: Jurica

orop, n		r. ouriea				1	
	p ling tes	1	consumption dunam	Date	Irrigation	Amount	
Da	tes	m'/ Total	dunam Daily	of Irrigation	Intervals days	given m ³ /dunam	Remarks of Plant Development
						III / dullain	
11.4.65	18.4.65	27.1	3,9	1-4/4		24.7 rain	
18.4.65	28, 4, 65	36.6	3.7	18/4		5.8 rain	
2.5.65	9.5.65	2.4					
24.5.65	30.5.65	19 2	3.2	12/5		110	
7.6.65	13.6.65	17.7	3.0	5/6	24	50	
4.7.65	11, 7, 65	23.1	3,3				
11. 7. 65	14 - 7.65	9.6	3.2				
18.7.65	21.7.65	9, 3	3, 1	16/7	41	100	
21.7.65	25 7.65	18.6	4.6			L di unitari di Kata	
28.7.65	1.8.65	21.6	5.4				
1, 8, 65	4.8.65	8.1	2.7				
4.8.65	18, 8, 65	39.9	2.8				
18.8.65	22.8.65	10.5	2.6	23/8	38	100	
29.8.65	1. 9. 65	11.7	3,9				
1.9.65	5,9.65	9, 9	2.5				
8 9.65	15, 9, 65	17.1	2.4				
15.9.65	19.9.65	9.9	2.5				
5.9.65	8.9.65	6.6	2.2				
a disar kanalari - Kar						2 P	
				· A. , Charlos de Services			
				Art - Automation and a second se			
	entre series and series			distantin mangan			
3	ŝ			2 2 2			
Remarks:	Efficiency	0					
		lanting: 19		÷.			
		orchard:		1			
	Depth of	sampling:	300 cm	ا ج ج			
				1			

the work the work

Location: Nir Yitzhak

Crop: Ground-nuts Var: Virginia

-		Water	consumption	,					No. of Concession, Spin Street,
	pling tes		dunam Daily	Date of Irrigation	Irrigation Intervals days	Amount given m ³ /dunam	Plant Plant Width	Development Plant Height	
		19.0	1.0			24			
2.5,65	9.5.65	13.3	1.9	1.5.65		24			
10.5.65	23.5.65	30.0	2.3	10.5.65	9	15	9.4 cm	6 cm	
24. 5. 65	13.6.65	52.0	2.7	20.5	10	10	14.0 cm	10	
$18.6_{-}65$	24 6.65	29.4	4.9	24.5	4	35	24.5	12	
25.6.65	30.6.65	31.5	6.3	7.6	14	47	33. 7	14 cm	
1.7.65	7.7.65	37.8	6.3	18.6	11	43	51.4	24	
8.7.65	14.7.65	40 8	6.8	25.6	7	29	60.0	35	
15.7.65	4.8.65	152.0	7.6	1.7	7	26	۲ <u>۲</u>	40 cm	
5.8.65	18.8.65	66.3	5.1	8.7	7	38	1 F	45	
19, 8, 65	1.9.65	59.8	4.6	15.7	7	42	Date of		
9, 9, 65	15 9.65	25 2	4 2	22.7	7	50	Cropping:	26.9.65	
				29.7	7	37			
anna Kurta	40 Mar 10			5.8	7	41	Weight of	erop	
2 5 8	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		12.8	7	41	450 kg/d	unam	
2		,	-	19 8	7	41			
	n o py allor - Valadi Array .	Constraint and a second se	and a state of the	26.8	7	40			
urates balancier − 2			rn, kanada		-144 144		1		
	v Born tor v , Gar Age			2.9	7	32			
		Sector Provide Sector	- The second	99	7	42			
and a	· · · · · · · · · · · · · · · · · · ·	ar e Galar. Ver e Hinag	r Versuu, et Mille	16.9	7	44			
		aan voor de seerer de	Gebruar ver ver de Andre						
						1			
Bayer-		HARE - 49 -			с. С.				
Efficiency	of irrigat	tion: 85%				r (d)/ hu u a			
	lanting: 2.								
	field: 30 d								
Depth of	sampling:	180 cm							

.

Location: Nir Yitzhak

Crop: Peaches Var. ventura

-	pling tes		consumption dunam Daily	Date of Irrigation	Irrigation Intervals days	Amount given m ³ /dunam	Remarks of Plant Development
22.3.65	31/3.65	37.8	4.2	21-23/3		10.4 rain	Foliation
4.4.65	11.4.65	32.7	4.7	1-4 /4		24.7 rain	5.3.65
11. 4. 65	18.4.65	35.7	5.1	18/4		5.8 rain	
18.4.65	28.4.65	56.0	5.6	40/5		140	Picking
24. 5. 65	7.6.65	80.4	5.7				15.6-1.7
30, 6, 65	11.7.65	62.1	5.6	10/6	31	150	
					2		

the orchard was destroyed because of Nenatod attack

Remarks: Efficiency of irrigation: 85% Date of planting: 1957 Extent of orchard: 23 dunam Depth of sampling: 300 cm

Location: Nir Yitzhak

Crop: Grapes var: Alfons

	pling tes		consumption dunam Daily	Date of Irrigation	Irrigation Intervals days	Amount given m ³ /dunam	Remarks of Plant Development
22.3.65	18.4.65	75.6	2.8	23.3-4.4		31. 4 rain	
18.4.65	28.4.65	25.0	2.5	18.4		5.8 rain	Foliation
28.4.65	2.5.65	11,2	2.8	26.5		140	20. 4. 65
16.5.65	24.5.65	34.8	4.3				
30.5.65	13.6.65	85.3	5.4				
13.6.65	23.6.65	46.8	4.7	26.6	31	110	
30.6.65	11.2.65	41.4	3. 8				
11.7.65	18.7.65	25.6	3.6				
18.7.65	25 , 7.65	22.5	3.2				Harvest
28.7.65	1.8.65	15.0	3 8	26.7	30	100	15-7-1 8
1.8.65	4.8.65	14.7	4.9			n	
4.8.65	18.8.65	61.5	4.4	30 8	35	120	
18, 8, 65	22.8.65	10.2	2.5				
22.8.65	25.8.65	8.4	2.8				
25 8.65	29.8.65	16 5	29				
1.9.65	5 9.65	12 6	3.1				
8, 9, 65	12 9 65	12.6	9				
12.9 65	15.9.65	7.5	2.5				
15. 9. 65	19.9.65	12,9	3,2	27.9	28	120	Loss of foliage
			And and a second se				15 12.65

Remarks: Efficiency of irrigation: 85% Date of planting: 1955 Extent of orchard: 58 dunam Depth of sampling: 300 cm

Location: Kefar Hayarok

010p. 010	inges var.						
	Sampling Dates		Water consumption m ³ /dunam Total Daily		Irrigation Intervals days	Amount given m ³ /dunam	Remarks of Plant Development
7. 4.65	15. 4.65	21,0	2, 6				
15. 4.65	29. 4.65	51,8	3,7	10.6.65		45	Flowering
13. 5.65	21. 5.65	22,9	2,9	6.6.65	27	60	15/3 - 15/4
10. 6.65	22. 6.65	12,6	2, 1				
15. 7.65	22. 7.65	20,7	3,0	24.6.65	18	80	
22. 7.65	2. 8.65	34, 1	3, 1	13.7.65	19	80	
12. 8.65	16. 8.65	15,6	3,9	5.8.65	23	90	
16. 8,65	23. 8.65	27,6	3,9	24.8.65	19	90	
30. 8.65	2. 9.65	11, 7	3,9	$12.\ 9.\ 65$	19	90	Picking
13. 9.65	20. 9.65	21,9	3, 1				10.1.65
20. 9.65	30. 9.65	36,3	3,6	3.10.65	21	70	
19.10.65	29.10.65	37,0	3,7	1 - 19/10	rain	87,8	Weight of
29.10.65	7.11.65	21,0	2,3	23-25/10	rain	37,0	crop 3 ton/dunam
7.11.65	10.11.65	24,0	2,6	7/11	rain	15,6	
Remarks:	Efficiency	of irrigat	tion: 85%				
	Date of pl	anting: 19	57				
	Extent of	orchard: 2	25 dunam				
	Depth of s	sampling:	300 cm				

Location: Kefar Hayarok

Crop: Grapefruit Var. Marsh

A.	Tapon are					· ·····	
S-ampling Dates		Water consumpt m ³ /dunam Total Daily		Date of Irrigation	Irrigation Intervals days	Amount given m ³ /dunam	Remarks of Plant Development
7.4.65	15.4.65	23.2	2.9				
15.4.65	29.4.65	32.7	2.3				Flowering
7.5.65	13.5.65	18.0	3.0	5.5		40	15.3-15.4.65
13.5.65	20. 5. 65	16.6	16.6	25.5	20	50	
16.6.65	28.6.65	38.8	3.2	13.6	19	70	
15.7.65	22.7.65	16.8	2.3	2.7	19	70	picking
26.7.65	2.8,65	32.4	4.6	22.7	20	80	15.1.66
L2.8.65	19.8.65	35.4	5.1	10.8	19	85	
L9. 8. 65	23.8.65	16.2	4.0	25.8	15	90	Weight of crop
30.8.65	6.9.65	18.6	2.7	15.9	21	75	
16.9.65	30.9.65	29.1	2.1	5-14.10	rain	87.8	35 tons/dunam
l9.10.65	29.10.65	36.0	3.6	23 - 25.10	rain	37.0	
29.10.65	7.11.65	27.6	3.1	7.11	rain	15.6	
Remarks	: Efficienc	y of irrig	ation: 85%				
	Date of	planting: 1	.957				
	Extent of	f orchard:	12 dunam	IS			
	Depth of	sampling	300 cm				

Location: Kefar Hayrok

Crop: Grapes Var. Alfons

		Water	consumpt				
Seamp Da		m ³ /dunam		Date of	Irrigation Intervals	Amount given	Remarks of Plant Development
		Total	Daily	Irrigation	days	m ³ /dunam	
							anden na sange ana ang ang ang ang ang ang ang ang ang
7.4.65	15.4.65	13.0	1.6				
15.4.65	29.4.65	33.4	2.8				Foliation 10.5.65
7.5.65	13.5.65	13.0	2.2	15.5.65		60	
20.5.65	2.6.65	28.3	2.2				
2.6.65	15.6.65	42.3	3.2				
15.6.65	28.6.65	34.8	2.7	30.6.65	46	100	
19.7.65	2.8.65	63.3	4.5				harvest
12. 8. 65	19.8.65	16.5	2.5	20. 8. 65	51	90	5-20/8
23.8.65	30, 8, 65	33.9	4.8				
6. 9. 65	16.9.65	41.7	4.2	6.9.65	17	80	Weight of crop
13.9.65	20.9.65	25.2	3.6	5-14.10	rain	87.8	2 tons/dunam
19.10.65	3.11.65	35.2	2.3	23-25.10	rain	37.0	loss of foliage
3.11.65	7.11.65	12.0	3.0	7.11	rain	15.6	5.12.65
Daniel	TI CC°						
Kemarks:	Efficiency	0					
		lanting: 19					
		orchard:		S			
	Depth of	sampling:	300 cm				

Location: Kefar Hayarok

Crop: Apples Var. Grand Alexander

				1			
_	S-ampling Dates		Water consumpt m ³ /dunam Total Daily		Irrigation Intervals days	Amount given m ³ /dunam	Remarks of Plant Development
7.4.65	15.4.65	31.0	3.9	22.4		40	
7.5.65	13.5.65	16.7	2, 8	14.5	22	60	Foliation
10.6.65	15.6.65	26.8	5.3	4.6	21	60	10. 4. 65
12.7.65	15.7.65	15.0	5.0				
15.7.65	22.7.65	32.4	4.6	28.6	24	70	
12.8.65	16.8.650	14.1	3.5	16.7	18	60	Picking
23.8.65	30. 8. 65	22.2	3.2	1.8	16	60	15.7-30.7
30.8.65	6.9.65	25.8	3.7	26.8	19	70	
13.9.65	16.9.65	6.9	2.3	10.9	21	60	Weight of crop
20.9.65	19.10.65	93.6	2.4				
19.10.65	28.10.65	23.0	2.5	5-14/10	rain	87,8	3 tons/dunam
3.11.65	7.11.65	30.6	3.0	23-25/10	rain	37.0	loss of foliage
7.11.65	16.11.65	24.6	2.5	7.11	rain	15.6	5.12.65
Remarks	: Efficienc	y of irrig	ation: 85%				
	Date of p	planting: 1	957				
	Extent of	f orchard:	12 dunam	IS			
	Depth of	sampling:	300 cm				

Location: Kefar Hayarok

Crop: Plums Var. Ogden

Sampling Dates		Water consumpt m ³ /dunam Total Daily		Date of Irrigation	Irrigation Intervals days	Amount given m ³ /dunam	Remarks of Plant Development
						III / duitain	
7.4.65	15.4.65	37.8	4.8				
29.4.65	7.5.65	28.0	3.5	20.4.65		40	foliation
4.6.65	10.6.65	29.5	5.0	10.5.65	20	60	15.3.65
15.7.65	19.7.65	22.8	5.7	27.5.65	17	60	
22.7.65	26.7.65	24.9	6.2	18.6.65	22	70	
26.7.65	29.7.65	15.6	5.2	6.7	18	70	
29.7.65	2.8.65	20.4	5.1	20.7	14	60	Picking
19.8.65	26.8.65	39.3	5.6	4.8	15	70	20-30/6
26.8.65	30.8.65	15.6	3.9	18.8	14	60	
30.8.65	6.9.65	24.9	3.6	8, 9	21	80	Weight of crop
13.9.65	20.9.65	16.5	2.4	27.9	19	70	2 tons dunam
19.10.65	28.10.65	20.7	2.3	4-14/10	rain	87.8	
28.10.65	11.11.65	39.2	2.8	23-25/10	rain	37.0	loss of foliage
				7.11	rain	15.6	from 25.10.65
Remarks: Efficiency of irrigation			tion: 85%				
	Date of planting: 1957						
	Extent of orchard: 5 dunam						
	Depth of sampling: 300 cm						
	1	10"					

VOLUME III. LITERATURE REVIEW AND BIBLIOGRAPHY

List of Contents

1.	Pactors affecting Evapotranspiration.	1.
2.	Methods of Determining Evapotranspiration.	12.
3.	The Estimation of Evaporation and Evapotranspiration from equations or formulas.	19.
4.	Theoretical Methods Based on the Physics of Vapour Movements.	20.
5.	Theoretical methods based on the Energy Balance.	25.
6.	Empirical Methods Based on Temperature, Radiation and other Climatic Data.	39.
7.	Summary	5 2.

LITERATURE REVIEW

The literature dealing with evapotranspiration and evaporation is extensive, and many publications have appeared in the last 50 years. An attempt has been made in this brief reveiw to describe the major problems investigated by scientists during the period mentioned.

Factors Affecting Evapotranspiration

Evapotranspiration is a term expressing the combination of evaporation and transpiration. Evaporation is a process by which water is transferred to vapor by the absorption of heat energy, while transpiration is a process whereby water vapor is dispersed through the stomata of plant leaves. Thus, evapotranspiration is defined as the total loss per unit area of water used by the plant in transpiration and that transferred from the soil to the atmosphere by evaporation.

Three main factors affect the plant's ability to produce yields: 1. inherited characteristics, 2. soil factors, and 3. climate. The effect of each of these main factors is clearly manifested in evapotranspiration, which, together with photosynthesis, represent the two most important processes in the plant world. The influence of climate on evapotranspiration is of major importance, although as already indicated, it is not the only factor affecting these processes. Additional factors on which evapotranspiration depends include the specific crop, climate, soil moisture, salinity, degree of plant cover, and many others which will not be considered here. Investigators consider climate to be the most important factor affecting water consumption, while next in importance come the water supply, the soil, and the topography,

A. Effect of Climate on Evapotranspiration

Two basic physical systems are recognized as regulating the climate in close proximity to the plant: 1. the energy balance, and 2. aerodynamic transfer phenomena. Both of these systems can be sub-divided to include solar radiation, precipitation, temperature, hours of sunlight, humidity, wind velocity (or daily wind distance), and growing season. Many of these factors are interrelated, and

it is difficult to define the specific effect of each of them on evapotranspiration. It is possible to separate schematically those factors related to the energy balance which are required for the evapotranspiration process, from those factors related to the aerodynamic transfer phenomena.

Factors related to the energy balance

On the assumption that of the group of climatic factors influencing the energy balance, the main source of energy is the sun's rays reaching the earth surface, it is possible to represent the radiation absorbed by the plant surface by the following energy balance equation:

$$R_{N} = R_{I} (1 - r) - R_{B}$$

where $R_N =$ the amount of radiation absorbed by the plant surface $R_I =$ short-wave radiation from the sun, atmosphere, and clouds I = portion of short-wave radiation reflected by the plant surface $R_B =$ long-wave (heat) radiation reflected by the plant surface.

The actual quality of heat exchange depends on the vertical temperature gradient. That is, if the plant is warmer than the air it will lose heat to the air. On the other hand, a cold plant will absorb heat from the air. It has been found (17) that during a 24-hour period more energy was taken from the atmosphere than was returned to it. It has also been shown (41) that the vertical energy balance can be used to give a good estimate of evapotranspiration on an hourly or half-hour basis.

Effect of temperature

Certain researchers relate the effect of temperature to the general rate of biological processes. Since it is known that transpiration is a process controlled biologically, it is therefore also affected by the two basic laws acting on the plant under the influence of temperature: 1. Hopkin's Bioclimatic Law which states that for every degree North latitude, or rise in elevation of 400 ft, there is a 4-day

lag in blossoming. 2. Van't Hoff-Arrhenius Law stating that in the vicinity of the specific optimum temperature of a plant, an icrease of 10° C will double the rate of biological processes. The formal law is generally expressed as $Q_{10} = 2$, where Q_{10} represents a rise of 10° C, and the digit 2 represents a doubling of the rate of a biological process. Of course this is only a narrow aspect of the temperature effect, and in general it is difficult to separate the factor from the broader influence of the energy balance.

Effect of relative humidity

The relative humidity is also influenced by the general energy balance in the plant vicinity, and many investigators are attempting to reach a qualitative evaluation of evapotranspiration based on the vapor pressure gradient. Dalton (9) found, 150 years ago, that water vapor transfer depends partly on the vapor pressure gradient, that is, the difference between the vapor content of free air above the crop and the vapor content on the evaporating surface. From this it is clear that on a day when the free air above the crop has a low relative humidity (the ratio between the vapor pressure of the air and the maximum possible pressure at the given temperature is low) the values of evaporation and evapotranspiration will be high, while on a day with a high relative humidity, the vapor pressure will be lowered and the values for the above processes will be low.

Effect of day length

Many researchers relate day length to geographical latitude. North of the Equator, summer days are longer than at the Equator due to the earth's tilted axis and its movement. And since the sun is the source of all the energy used by growing plants and by evaporating water, the longer day permits a longer period for evapotranspiration.

Aerodynamic transfer processes

Workers who emphasize the importance of the energy balance in evapotranspiration processes state that heat exchange depends not only on a vertical temperature gradient, but also on aerodynamic transfer processes. Heat transfer from the evaporating surface is brought about by turbulence or convection.

The turbulence is created by winds above the plant cover. The higher the wind speed or the greater the daily wind distance, the more efficient is the turbulent heat exchange, and the greater is the degree of heat exchange (or energy) between the evaporating surface and the free air.

The effect of soil factors and water supply on evapotranspiration processes

In studying the effect of soil factors and water supply on evapotranspiration. the following are considered important: the availability of soil water in the root zone as a factor on which the transpiration rate depends, the water quality, and soil fertility. Also sometimes included are the effect of irrigation technique and the amount of precipitation (which is actually also a climatic factor). Soil moisture in the root zone is a main factor influencing the amount of water available to the plant, and this factor is related to rainfall, irrigation, and water held by the soil. In locations with an abundant and cheap water supply there is a tendency to overirrigate, and when the soil surface is frequently wet, evaporation is high and the combination evaporation-transpiration (which is actually consumptive water use) reaches high values. In the case of irrigation by flooding, a large amount of water evaporates before it succeeds in reaching the root zone. When the water surface is close to the soil surface, the values obtained for evaporation are almost the same as those for evaporation from free water surface. As the ground water drops to a greater depth, there is a decrease in the evaporation in relation to evaporation from a free water surface, until a certain soil depth is reached whereupon the capillary channels are unable to raise the water to the soil surface and the evaporation value can be disregarded.

The effect of soil moisture stress

A number of factors effect the soil moisture stress such as soil type, salinity of the water in the pores, and the total water content.

Regarding the actual transpiration resulting from an increasing soil moisture stress, there is a divergency of opinion. The classic theory of Veihmeyer (46), Veihmeyer and Hendrickson (47) and others states that soil moisture in not a

- 4 -

factor limiting actual transpiration in the range between Field Capacity and Wilting Percentage. Lemon, et al (17) have shown in their experiments that when soil moisture stress was 15 atm (a stress closely approximating that existing at Wilting Percentage), the evapotranspiration of cotton was zero, and for lower stress values, the evapotranspiration was about 1.25 mm/h. Their results indicated a gradual increase in the amount of water lost by evapotranspiration in accordance with amounts of irrigation water applied. As the application increased, the evapotranpiration values were greater. From the point of view of energy balance, it was found that all the net radiation received by the evaporating surface returned to the air as heat flow in the case that no water was transferred to the air through evapotranspiration.

If it is necessary to increase the water application for leaching salts, there will be a greater total water loss from evaporation and transpiration, even if the transpiration decreases somewhat.

The effect of irrigation method on evapotranspiration level

It has already been mentioned that if fields are flood-irrigated much water is lost by evaporation before it succeeds in penetrating the entire main root zone. Rainfall and sprinkler irrigation have a similar effect insofar as water penetration is concerned: part of the water evaporates before it reaches the full depths of the root zone and is thus not utilized for transpiration. The amounts of water supplied to the plant also has an effect on the consumptive use, and this is expressed (in addition to factors already mentioned, as the tendency to waste water in those places where it is abundant and cheap) also on the yield level. As a result of high evapotranspiration rate, within certain limits a large water application will increase yields while amounts smaller than required will reduce the yield. Every factor responsible for increasing yields .Every factor responsible for increasing yield indirectly brings about an increased consumptive water use. The area of the evaporating surface increases with the growth of foliage, as does the amount of water lost by transpiration. Similarly, within the optimum range there is a decrease in the water requirement per unit of yield. As in the case of all factors

- 5 -

responsible for raising yields, fertile soil has the effect of increasing consumptive water use. Various agrotechnical practices such as cultivation, fertilization, plant protection against diseases and insects, and others have a like effect on water use.

The effect of the specific crop on evapotranspiration

The physical mechanism is not the only process governing the transfer of water vapor from the soil and the plant to the atmosphere. There is also a biological mechanism which helps regulate transpiration. The transpiration rate depends on the degree of plant development, the amount of foliage, and the nature of the leaf surface.

The amount of radiation absorbed by the plant surface can be described by an equation which characterizes the plant's energy balance, and R_N as previously defined, is incorporated in the equation as follows:

$$R_{M} = E + K + S + G$$

where E = the energy exploited by latent heat of evaporation (540 calories are required in order to change 1 cm^3 of water to vapor)

- S = the heat exchange between the plants and the soil by conductivity
- K = the heat exchange from the plant surface to the surrounding atmosphere
 by convection

G = the energy used for photosynthesis and stored as dry matter

ł

The terms E and G can be considered as variables dependent on the specific crop. Thus, for example, the photosynthetic efficiency of evergreen trees is lower than that of deciduous trees. The energy used for photosynthesis by evergreens is less than that used by deciduous trees, and is released for other processes. Israelson and Hansen (16) mention the possible existance of competition over the sources of energy. Energy used for evaporation of water from the soil is not available to the plant. Raindrops remaining on the leaves exploit the energy, and the transpiration rate consequently decreases. The same authors also showed that the evapotranspiration rate increases until it reaches a peak at plant maturity,

after which it drops. The peak occurs at the beginning of flowering, after the vegetative growth period has ended. Lemon, et al (17) describe a similar situation for cotton. They found that the fluctuations in relative water loss are determined by soil moisture and physiological factors, while the general form of the evaporation vs. time curves is determined by meteorological factors.

Regarding the nature of the leaf surface, it is important to mention that its ability to absorb the energy of the sun's rays is determined to a certain degree by the leaf's angle in relation to the rays. In the event that the rays hit the leaf perpendicularly, there will be maximum absorption, while if the rays are parallel to the leaf surface, there will be minimum absorption. Naturally, there are intermediate conditions as well. Varying external conditions cause fluctuations and diurnal changes in stomatal transpiration by means of internal regulating mechanisms. It has been found (5, 11, 30) that transpiration reaches a temporary minimum when the relative humidity of the air is extemely low, or when the plant's saturation deficit reaches maximum values during the hot hours of noon.

Summary

The soil, plant and atmosphere together constitute one system in the transfer of water from the soil and the plant to the atmosphere. In the present review, attention has been paid to the most important individual influences of each of the factors mentioned, all three of which together are responsible for evapotranspiration. The conclusions of this review are as follows:

Meteorological factors should not be considered to the exclusion of the others
 Soil moisture stress is not the only factor governing water loss.

3. The plant acts both directly and indirectly in regulating water transport.

In the light of these conclusions, we shall now review the various approaches and techniques in calculating and measuring evapotranspiration.

- 7 -

Methods of Determining Water Loss by Evaporation and Evapotranspiration

A number of methods (15) are known for estimating the loss of water from the soil by evaporation and evapotranspiration. At the beginning of this review evapotranspiration was defined as a combination of evaporation and transpiration, where evaporation is a process by which water is transformed to vapor through the absorption of heat energy, while transpiration is a process whereby water passes as vapor through the stomata of the plant leaves.

More exact definitions of the phenomena will include:

- a. Actual evapotranspiration: the total water loss per unit area for the entire growing period of the crop.
- b. Potential evapotranspiration: the upper limit of actual evapotranspiration, obtained when soil moisture is unlimited and there is complete plant cover during the vegetative growth period. (Under such conditions, factors as soil permeability and water retention properties are disregarded).
- c. Pan evaporation: the measurement of evaporation from a standard United Weather Bureau Class A evaporation pan.

These forms of estimating water loss, their interrelations, and methods of calculation comprise the next section of this review.

The Relation Between Evaporation and Evapotranspiration

Many workers have established that there is a close relation between evaporation from a Class A pan and the evapotranspiration of various crops. In general, the attempt was to arrive at the following relation:

$$E_t = a + b E_o$$

Where E_t = potential or actual evapotranspiration E_o = evaporation from a pan or a free water surface b = a correction factor a = a constant

- 8 -

Stanhill (35) found such linear relations in Israel for various crops during the irrigation season. The equations which he derived to describe these relations are summarized in the following table:

Year	· Crop Loca	tion	Equation ($E = mm$)	Yield, Kg/dunam
1959	Acala Cotton	Gilat	$E_{t} = 0.83E_{0} - 260$	387
1960	tt tt	TT	$E_t = 0.71E_0 - 230$	373
1959	11 11	Beit Shean	$E_t = 0.60E_0 - 260$	420
1959	Pima "	TT TT	$E_t = 0.62E_0 - 220$	370
1960	Corn	Gilat	$E_{t} = 0.72E_{0} - 200$	771
1959	Peanuts	Beit Dagan	$E_{t} = 0.56E_{0} - 70$	540
1959	Sorghum	Gilat	$E_t = 0.88E_0 - 210$	825
1961	Grapes	Even Sapir	$E_{t} = 0.58E_{o} - 180$	2770
1960/61	Agave	Gilat	$\mathbf{E}_{t} = 0.22\mathbf{E}_{0}$	134

All cases, except the last two refer to annual crops having a limited irrigation season, and thus deviations were observed from the straight lines of the equations, due to the effect of the season of the year. Deviations were apparent for the months of April-May, while in most cases a linear correlation was obtained for the months of June, July, August, and even September.

A linear relation between evapotranspiration and evaporation can be expected only in the case of ever-green crops which cover the ground completely or to a constant degree. This can be seen in the results obtained for Agave.

Fuchs and Stanhill (12) examined the ratio between consumptive water use by cotton and pan evaporation in order to develop meteorological indicators for irrigation. The sigmoidal form of the curve for evapotranspiration vs. pan evaporation for various crops, and especially for cotton, as obtained by Stanhill (35), was only partly confirmed by these experiments because the observations were not begun early enough in the season. But here also there was an almost linear relation between cotton evapotranspiration and pan evaporation. The differences in slope

of the curves was due primarily to the irrigation regime and evaporation conditions. At an optimum irrigation regime the slopes depend only on evaporation conditions. These can be calculated by means of the pan data.

The above authors, in their work with non-irrigated cotton (13) found that the average slope was 0.70, the average standard deviation was 0.19, and that there was a non-significant trend towards a reduced slope as the evaporation intensity grew.

Lomas (19) found at Lod and at Gilat a high linear correlation between a Thornthwaite lysimeter located in a mixed clover-alfalfa field (see section on direct methods of measurement) and a Class A evaporation pan. The equation expressing the relation between the two parameters as given by Lomas is as follows:

$$E_{L} = 1.06 E_{A} - 0.7$$

Where $\mathbf{E}_{\mathbf{I}}$ = evaporation from Thornthwaite lysimeter (= \mathbf{E}_{t})

 E_{Δ} = evaporation from Class A pan (= E_{O})

The values 1.06 and 0.7 correspond to the symbols a and b, respectively.

No seasonal fluctuations were observed in the ratio between pan evaporation and potential evapotranspiration as measured in the lysimeter. This supports the theory that the climatic factors involved (radiation, temperature, relative humidity, and wind speed) have a similar effect on both systems.

Penman and Schofield (27) found that the ratio between evapotranspiration and evaporation (E_t/E_0) changes with the season. Penman's approach for calculating E_t is different than those mentioned above, and a special section will be devoted to a general discussion of it. Penman estimates evaporation from the soil by the use of instruments to measure the physical processes taking place in the soil as affected by climatic factors. Denmead and Shaw (10), working with corn in Iowa, reported that the ration E_t/E_0 changes with the growing season. Their results are summarized in Figure 1.

-

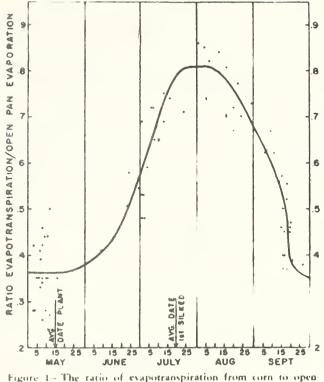


Figure 1- The ratio of evapotranspiration from corn to openpair evaporation throughout the growing season.

During the months April and May the ratio was 0.36, but there was much variability in the results for this period. This is attributed to factors such as seeding date which was different between locations and years, preparation of the seed-bed which was non-uniform during the growing period and between the different experimental locations, and to some extent the effect of runoff.

In July and August there was a period of 16 days during silking when the E_t/E_o ratio reached 0.81, after a rapid rise. During this period, the ratio grows with the leaf area, the plant is green and actively growing, and there is maximum ground cover. At the end of the growing season there is a reduction in the ratio which is initially gradual following the gradual decrease in area of living leaves, but subsequently becomes rapid due to the termination of any physiological activity by the plant.

Similar results were obtained by Stanhill (36) who arrived at an average ratio of 0.85 in Israel.

Methods of Determining Evapotranspiration

A. Direct Methods of Determining Evapotranspiration

There are various direct methods of determining the amounts of water lost by evaporation from a pan, and by potential and actual evapotranspiration. They are primarily based on measuring changes in soil moisture content, and changes in plant and soil weight. The main methods are:

I. Measurement of changes in soil moisture.

- II. Measurement of changes in weight of tanks and lysimeters.
- III. Field plot experiments.
- IV. Integration method.
- V. Inflow-outflow method for large areas.

I. Measurement of changes in soil moisture

Many field experiments conducted with plants require the periodic determination of soil water content or moisture tension. Such determinations are of paramount importance to the farmer if he is to exercise close control over the quantities of water applied in intensive agriculture. The simpler and cheaper the method, the more widely it will be used, especially by the farmer. This section will describe a number of the most commonly-used methods for making these measurements.

(a) <u>Gravimetric method</u>. Changes in soil moisture content may be measured by means of various types of boring instruments. One example is the Veihmeyer soil tube which removes cores 1" in diameter. The soil sample is dried in a standard manner $(105^{\circ}C \text{ for } 24 \text{ h})$ and the percentage moisture on a dry weight basis is computed. Richards (32) recommends this method to farmers when they are familiar with the soil and its specific properties. Only under such conditions can he compare the results obtained with the moisture percentage at wilting point, and thus determine

the time of irrigation. West and Perkman (51) used a Veihmeyer tube to remove soil samples from a depth of 4-12" (this represents 60% of the root zone of citrus trees in the study). They took 4 samples from each plot of 10 ft² in order to define accurately the soil moisture at the specified depth. From this brief description of their work it is possible to detect a number of outstanding deficiencies of the method which have been pointed out also by other workers (21, 32):

- 1. Much labor is required to obtain a large enough sample to guarantee sufficient accuracy. This is a major problem in research experiments.
- 2. The method of boring necessitates sampling each time in a new location, and even if the second sample is taken in close proximity to the first, the results may be influenced by soil variability and moisture content, even after an irrigation.
- 3. The work is difficult and unpleasant.
- 4. Stoney or gravelly soil cannot be sampled.
- 5. The measurement gives the moisture content by weight, and difficulties in determining the soil's apparent density results in inaccuracies when converting the moisture content from a weight to a volume basis.
- 6. One must wait at least 24 h until the soil samples are sufficiently dry to complete the determination.
 - (b) In situ determinations of undisturbed soil.

1. Measurement of moisture content by following changes in electrical resistance. Bouyoucos and Mick developed a gypsum block which came into wide use for measuring soil moisture in the field. By this method changes are measured in the resistance of a porous body (e.g. gypsum, fiberglass, and nylon in various forms) to the passage of an electric current. Any change in the moisture content of the soil brings about a similar change in the clock. An increase in moisture content reduces the electrical resistance between two electrodes located in the block, and vice versa. The block must be able to withstand soil conditions for extended periods of time, it

must be sensitive to moisture changes within the available moisture range, and it must be adaptable to all soil types (6, 29). The disadvantages of the method are:

- 1. The high solubility of gypsum results in a buffering effect, and the sensitivity to change drops (nylon and fiberglass units are highly sensitive to the effect of the solution).
- 2. The block is not sensitive in very wet soils.
- 3. The unit has a limited period of use.
- 4. Calibration is required. This can be done by directly translating the moisture content by weight obtained by gravimetric or tension measurements. Calibration curves of resistance as a function of moisture tension are obtained by means of pressure membranes, but these curves can change with time (21).
- 5. There is a hysteresis effect whereby the calibration curves obtained for drying and wetting are different (42).

In comparison to the gravimetric method, this measurement is much easier to carry out. Compared to the use of tensiometers, blocks can be utilized in dried soils (32) (this is of value in soils with a limited water supply, or in the case of grain crops which do not require much irrigation during the ripening period), and the cost per instrument is lower.

2. <u>Measurement of moisture content by means of scil water tension</u>. The tensiometer is the only instrument suitable for measuring water tension (21). It consists of a porous ceramic cup buried in the soil and connected by means of a water-filled tube to a manometer. As the soil moisture tension causes a drop in the height of the water column within the tube, a vacuum is created which can be measured with the manometer.

Richards, one of those most responsible for developing the instrument, and Richards and Marsh (31) have presented suggestions for timing irrigations by using tensiometers. They specify its special suitability for irrigating large areas of crops such as citrus, potatoes, vegetables, and woods (32). Tensiometers are widely used, especially in soils with a high water-retention capacity.

Characteristics of the tensiometer:

- a. It is suitable for tensions less than 0.85 atm which is the air-entry value of the instrument. (Theoretically, the pores of the ceramic cup are small enough not to permit air passage when a tension of 1 atm is applied to the water in the pores (21).
- b. When the water in the instrument is under a tension greater than one atm it begins to boil, air bubbles enter the water column, and it is necessary to refill the instrument.
- c. It is affected by temperature change. If there is a temperature gradient from the crop to the soil, there is vapor movement towards the soil and this affects the moisture tension being measured. Furthermore, temperature changes are manifested by the height of the water column because of the tube's small diameter. This also affects the measured tension.
- d. It cannot be used in all soils. In sandy soil one can obtain information on water status within the range of 50-75% available water. On the other hand, in the case of clay soils which retain much water at tensions greater than 0.85 atm, the instrument is of limited value.
- e. The readings are affected by hysteresis (33), and a large number of determinations are required to avoid large statistical errors.
- f. Calibration by the gravimetric method is required, and thus the soil moisture is expressed on a weight basis.
- g. Contact between the cup and the soil is not always satisfactory, and it may take a long time until the instrument begins to respond to changes in soil moisture.
- h. It is necessary to refill the tensiometer if the soil becomes too dry.

3. <u>Neutron scattering</u>. The method was developed when the need arose to follow soil moisture changes without disturbing the sample, and serves to measure the cumulative changes in soil moisture at a given location.

The instrument is composed of three main parts (15): a source of fast neutrons, a receiver of slow neutrons, and a scaler. The source of the fast neutrons is a mixture of Radium and Beryllium emitting gamma-rays, or Americium emitting neutrons which are freely scattered throughout the soil in all directions. In their path they collide with nuclei of different atoms in the soil and gradually lose their kinetic energy. The maximum loss of energy occurs when the neutron collides with nuclei having a mass similar to its own, such as hydrogen nuclei found in water. Thus, it is clear that the slowing-down of fast neutrons is proprtional to the soil water content. The slow, or thermal neutrons as they are called, continue their random movement, part of them returning to the radioactive source beside which is located an absorber of flow neutrons. Each thermal neutron entering the absorber causes an electric pulse which is registered by the scaler. Since most of the hydrogen nuclei in the soil are part of the soil water, it is possible to express the moisture content on a volume basis in terms of number of counts per minute (cpm).

Characteristics of the instrument:

- a. It is possible to select a number of permanent measuring locations as needed. The method is especially suited for those situations where it is desired to measure changes in moisture content with time, at the same location (37).
- b. Changes close to the soil surface cannot be measured due to the loss of neutrons to the air.

c. A calibration curve is needed based on gravimetric measurements.

d. The instrument's high cost makes it inaccessible to farmers for day_to-day use.

10 3

e. Results are affected by high organic matter content (because of the many hydrogen atoms), by the presence of B, Cl and Fe, and by the crystal lattice of water(21).

- 16 -

f. Ease and rapidity of operation (32).

4. <u>Methods based on changes in heat conductivity of the soil as a function of</u> <u>moisture content.</u> These methods (48, 49) and others not mentioned are not sufficiently developed (32), and they are used mainly in research work. The heat con ductivity of the soil generally increases with moisture content (15), and changes in the rate of temperature increase at a certain point in the soil result in changes in the flow intensity of electric current in a thermocouple (48). These changes are measured with a galvanometer at different times, and if the ratio of the galvanometer change to the thermal conductivity of the soil is known, it can be translated from terms of temperature to terms of moisture content.

Characteristics of the method:

- a. It is free from the effect of salts, as compared to the situation regarding gypsum blocks (21).
- b. It is not successful in certain soil types due to poor contact.
- c. Calibration is required for each specific soil.

II. <u>Measurement of changes in soil and plant weight by means of tanks and lysimeters</u>

Israelson and Hansen (16) described a lysimeter to which the water is supplied by means of a Mariotte system. In general, experiments with tanks and lysimeters are based on an attempt to artificially create a situation duplicating natural field conditions. Such studies are limited by the amount of soil that can be used, by the size of the tank, by arrangements for supplying water, and occasionally by the difficulties encountered in creating different environmental conditions.

<u>Methods of use</u>. The tanks should be so located in the field that the consumptive water use of the plants in the tank will be the same as that of the

surrounding vegetation. Water is supplied by a Mariotte system in sufficient quantity to maintain a constant amount in the lysimeter. The amount of water lost by evapotranspiration can be found by calculating the difference (daily or weekly) between consecutive measurements. Lomas (19) used a Thornthwaite lysimeter. McMillan and Paul (20) suggest a different method for measuring changes in the weight of large soil masses by using Archimedes' principle of floating bodies to build a floating lysimeter. Van Bavel and Meyers (45) propose automatic methods for weighing and electronic systems for recording.

The above examples are only a few of many types of lysimeters. A complete listing is not within the realm of the present review.

III. Field plot experiments. Israelson and Hansen (16) describe the work of Widtsoe who measured the amounts of water that 14 crops consumed during their growing period. The study lasted 10 years, from 1902 to 1911. The yields produced by each crop are presented on a curve as a function of the amounts of water applied. In most cases there was a rapid increase in yield with the water applied, until a certain point was reached when additional water applications resulted in a reduced yield or a very low yield increase. This change was expressed by a break in the curve. The amount of water required for growth at the break in the curve is the consumptive water use for the specific crop. In his work, the author emphasized the importance of the yield in defining consumptive water use, thus incorporating economic aspects related to the law of diminishing marginal output. Attention should be paid to the fact that Widtsoe disregarded the water loss caused by deep percolation, considering this water as though it had been exploited by the plant. Thus, the values obtained in his work are relatively high.

IV. Integration method

This method has also been described by Israelson and Hansen (16). According to this method, the consumptive water use of the plant is equal to the total production from one unit of consumptive use multiplied by the area of the crop, plus one unit of consumptive use by weeds multiplied by the area of weeds,

plus evaporation from a free water surface multiplied by the area of the surface, plus evaporation of non-cultivated land multiplied by its area.

Clearly, the major disadvantage of the method is the difficulty in gathering the basic information mentioned such as areas, units of consumptive water use by the crop, etc. From this it is also clear that the method was used only for large areas where the consumptive use per unit yield was already known. Such is not the case for new areas where specific experiments have not been conducted, and it is therefore difficult to consider this method as significant in determining the consumptive water use of a crop.

V. Inflow-outflow method for large areas

This method (16) uses the following equation:

 $U = (I + P) + (G_{S} - G_{P}) - R$

where U = the total consumptive water use of the field or the valley

I = the amount of water flowing to the valley during the 12 months of the year (inflow)

$$P = total annual rainfall (in mm) x the given area$$

R = annual flow out of the area under consideration (outflow)

<u>Notes</u>: All the volumes are measured in the same units. The value $(G_s - G_e)$ is arrived at by measuring the differences in the hight of the water table during the period studied.

The average consumptive use per unit area is obtained by the fraction U/S, where S = the given area.

The estimation of evaporation and evapotranspiration from equations or formulas.

Direct methods of determining evapotranspiration as described in the previous section are expensive and difficult to carry out. Their specific disadvan-

tages were also enumerated. Quite naturally, a search has been conducted for a suitable formula which can replace the direct methods of measurement. Such a formula can be based, in general, on the degree of evaporation, which is an easy parameter to determine, or on data obtained from standard meteorological stations. It is necessary to know the correlation between climatic conditions and the degree of evaporation at the same location.

The formulas can be divided into three main categories:

- a. Theoretical methods based on the physics of vapor movement.
- b. Theoretical methods based on the energy balance.
- c. Empirical methods based on temperature, radiation, relative humidity, and other meteorological parameters.

a. Theoretical methods based on the physics of vapor movement. Evapotranspiration is a process in which water vapor from the plant is transferred to the atmosphere. Thus, the flow of water vapor is a function of the vapor pressure gradient. As long as the vapor pressure of the air is lower than the vapor pressure of the wet soil-plant complex, there will be a movement of vapor from the complex to the air. If no factor exists to carry the water vapor from the evaporating surface, the air in contact with this surface will have a vapor pressure at saturation and will be in equilibrium with the evaporating surface. At this point the evaporation process will cease. This is the basis of the aerodynamic method by which evaporation is calculated according to the degree of movement of the evaporated vapor from the plant's surface. This approach to evaporation incorporates a number of complicated problems of microclimatology, and demands an understanding of hydro- and aerodynamic processes.

In this method, the location where the variables are measured is important since it can be assumed that the evaporating water moves not only upwards but also to the sides. The wind is of major importance in directing vapor

movement. The horizontal movement of water vapor by wind is called eduction. The study of evapotranspiration by eduction must be done on level surfaces free of any obstruction to vapor movement. The condition of the evaporating surface, its texture, and its thermal properties have a great influence on the movement and flow of air. Also, the transfer of air from a cultivated and irrigated surface to bare or dry areas brings about new microclimatological conditions. After the air reaches equilibrium with the new surface an internal atmospheric boundary layer will be formed. Under this layer, the microclimate will represent the new surface conditions, while above the layer will exist the climate of the area from which the wind originated.

The height of the layer is of practical importance. Each aerodynamic measurement must be made on a layer representing the surface in which we are interested. Since most of the measurements made to determine evapotranspiration are gradients, there is a need for a certain depth, and if the exposed area is not long enough, there is a danger of measuring the condition of the surface from which the wind came, and not of the surface in which we are interested.

In the air layer close to the plant it is possible to detect 2 layers of major importance to vapor movement: the surface layer and the laminar layer. The thickness of the laminar layer is minimal, and water vapor movement through it takes place by molecular diffusion. The transfer of air through the layer is affected by wind speed and the nature of the matter composing the surface. The movement is always laminar and horizontal.

Within the surface layer found above the laminar layer, air and vapor flow is turbulent. Air flow in this layer is affected by the roughness of the surface and the temperature. The efficiency of water vapor transfer through the laminar layer is very small in comparison to the other layers wherein air movement is turbulent. Thus, the laminar layer represents a "bottle-neck" to vapor movement.

The flow equation for vapor diffusion through this layer is analagous to the heat flow in soil, and according to Fick's Law, it can be written as follows:

$$E = \frac{D(q_2 - q_1)}{L}$$

- where E = flow of water vapor in volume per unit area per unit time q = concentration of water vapor at the upper end, q_1 , and at the lower end, q_2 , of the laminar flow; that is, on the evaporating surface and at the upper boundary of the laminar layer
 - D = diffusivity constant
 - L = the diffusion path in units of length

Dalton's equation (9) for determining evaporation as presented about 150 years ago, $E = f_u (e_s - e_a)$, is actually very similar to the above equation, where fU, a function of the wind, takes the place of the resistance component, D x 1/L. But since the laminar layer is so thin, there is no possibility of measuring the water concentration nor the wind speed at the upper boundary of this layer.

The diffusivity constant, D, must be measured at a certain spot distant from the evaporating surface and which is in a layer of turbulent flow where diffusion does not take place by molecular transfer. Therefore, the coefficient in Dalton's equation can only be found empirically.

Nevertheless, Dalton's equation, also known as the mass transfer equation, is the most widely used in the aerodynamic method, particularly in measuring evaporation from a water surface. On the water surface, the vapor pressure, e_s , can readily be determined from the temperature of the water's surface; e_a and u are measured at a certain point above the surface. To detera mine f, many studies have been conducted. One of these is the basic work done at Lake Hefner, Oklahoma, where it was found that $E = 1,214 \times 10^{-3} U_a (e_s - e_a)$

where E = evaporation in cm³/h

$$U_q$$
 = wind speed at a height of 8 m, in m/sec
 e_q and e_s = vapor pressure at the surface and at a height of 8 m,
respectively, in mg.

Similar studies were conducted at Lake Mead, Nevada, as well as by Australians and Russians who found a transfer coefficient resembling that of Lake Hefner, 1.3×10^{-3} .

If one is interested in determining evapotranspiration by means of mass transfer, the coefficient will be still more empirical since there exists here an additional resistance to that of the laminar layer -- the stomata.

A number of methods have been proposed to calculate empirically the mass tranfer coefficient of a specific crop or of a plant at different stages of growth or in different ecological environments. All are based on the equation

$$fu = \frac{e_s - e_a}{E_t \text{ measured}}$$

All the methods assumed that the evaporating surface is completely saturated, and were therefore concerned solely with the measurement or calculation of the surface temperature. All the methods require the measurement of at least the wind and relative humidity above the crop which is extremely difficult especially in a fast-growing crop. Pruitt used a lysimeter at Davis. He calculated e_s from the temperature of the leaf surface obtained with thermocouples, assuming the relative humidity in the stomata to be 100%. Wind and vapor pressure were measured 1 m above the crop. Pruitt concluded that the method is more promising, even with less accurate instruments, than the other methods.

Other equations which will be given here as examples are taken from the paper by Rohwer (33). In most cases, states the author, the results obtained

on the basis of these equations were disappointing. Fitzgerald carried out excellent observations on evaporation under controlled laboratory conditions as well as natural conditions, and arrived at the following equation:

Evaporation, E, in.
$$/24$$
 h = (0.40 + 0.199w) (e_{a} - e_{d})

where w = average wind speed on the soil or water surface, in miles/h

e = average vapor pressure at saturation at the temperature of the water surface, in. Hg

$$e_d$$
 = average vapor pressure of saturated air at the dewpoint, inches Hg

Carpenter established other constants for Fitzgerald's equation. On the basis of observations with a Piche evaporimeter, Russell obtained the following equation:

$$E = \frac{(1.96e_{W} + 43.88) (e_{W} - e_{d})}{B}$$

where $e_{w} = vapor pressure$

B = barometric pressure, inches Hg, measured at 32° F

This equation takes into account the barometric pressure, but not the wind speed.

Stelling based his equation on metric units, and so E and $(e_s - e_d)$ are given in millimeters, and w is in m/sec. His equation is:

$$E = (0.8424 + 0.01056 \text{ w}) (e_s - e_d)$$

The equation developed by Rower himself includes more climatological factors and takes the following form (the symbols represent the same parameters as above):

$$E = (1.465 - 0.0186B)(0.44 + 0.118w)(e_{s} - e_{d})$$

Rower found that the vapor transfer coefficient is a function of the barometric pressure or height, and that there is an average ratio of 0.771

between evaporation from a lake and that from a pan.

The equations presented in this brief review were developed some time ago. However, there are a number of relatively recent studies giving similar equations proposed by scientists in Russia, Argentine (1), and in other parts of the world (18). In all cases, the equations based on the vapor pressure deficit according to the principle of Dalton deal with the definition of the amount of water lost by evaporation from a free water surface, and not with evaluating the evapotranspiration rate.

b. <u>Theoretical methods based on the energy balance</u>. Aristotle first stated that three conditions must exist for evapotranspiration to take place: a) the presence of water which is the raw material for evaporation, b) a source of energy to provide the latent heat necessary for evaporation, and c) a gradient in vapor pressure between the evaporating surface and the air (36). The second condition is the basis of the approach to be discussed in this section.

The energy balance method.

In the energy balance method evaporation is obtained from measurements or calculations of the amount of energy available for the evaporation process on the soil surface. Most of the energy supplied to plants is in the form of radiation. Therefore, the radiation balance on the surface, that is, the balance of the different radiation flows between the sun, the sky and the earth, must be first examined. To calculate the energy balance one must have information on the net radiation flow, Q, in the range of the wave length important to plant growth $(0.3\mu - 60\mu)$ through the optical plane paralled to the plant surface.

$$Q = T - R + A - E$$

where T = total short-wave radiation from the sun and the sky

- R = short-wave radiation reflected by the soil and the plant
- A = long-wave radiation from the sky and clouds
- E = long-wave radiation from the soil and the plant

The energy balance on the plant surface, generally calculated on the basis of unit area of soil, can be thus written:

$$Q - LE + K + S + G$$

- where LE = the energy used as latent heat of evaporation (expressed as the height of water evaporated per unit surface multiplied by the latent heat of evaporation)
 - K = energy exchange by convection between the surface and the air
 - S = energy exchange by condensation between the surface and the soil
 - G = the equivalent energy of the accumulated dry matter, that is, the net photosynthesis multiplied by the heat required to produce the dry matter.

The equation can be simplified by using the fact that as the period is longer, the importance of S and G decreases. On an annual basis, $G^{=}Q(0.01)S=0$. Thus, these two values are insignificant compared to the other two. The amount of energy absorbed by the plant from the sun, clouds, and sky, can be measured. The different paths into which this energy is divided can also be measured. The amount of energy used as latent heat of evaporation and in heat exchange with the air are the only unknowns in the balance. The ratio between these two unknowns is known as Bowen's Ratio, and can be calculated from the temperature and the humidity gradient between the plant and the air.

Bowen's Ratio
$$-\beta = \frac{K}{LE}$$

Therefore, the energy for evaporation can be expressed as follows:

$$LE = \frac{Q - S}{1 + \beta}$$

Bowen stated that the ratio has no permanent value and changes with wind speed, height of the measurement, and roughness of the surface measured. In most normal cases, β can be computed from the following equation (27):

$$\beta = 0.606 \frac{(T_w - T_a)}{(e_w - e_a)} \times P/1013$$

where 1013 = standard atmospheric pressure in millibars

- P = atmospheric pressure
- $e_{w} e_{a} =$ vapor pressure gradient between the evaporating water surface and the air
- $T_w T_a =$ temperature gradient between the evaporating water surface and the air
 - 0.6 = density ratio of water vapor to the air according to the ratio between their molecular weights

From all the above-mentioned, it seems that the successful use of the energy balance as a method for calculating evapotranspiration depends on the following factors:

- 1. the gradients of vapor pressure and temperature above the evaporating surface
- 2. the form of air flow -- turbulent or diffusive
- 3. the gradient of air speed above the evaporating surface.

An example of this type of calculation was reported by Stanhill (36) for Israel's Northern Negev. He used average values of 49 weekly periods of measurement. (All the energy terms are expressed in equivalents of evaporation).

Energy Source	Amount in Equivalents of Evaporation	Fraction
Solar radiation from the sun and sky	8.64	1.00
Solar radiation reflected by the crop	2.00	0.23
Net long-wave radiation from the crop	2.89	0.34
Stored energy in the crop and soil	0.22	0.02
Energy to use dry matter	0.06	0.01
Net radiation available to the crop	3.47	0.40
Evapotranspiration measured with lysimeters	5.12	
Energy transferred from the air to the crop	1.65	

There is a divergence of opinion regarding the degree of practical efficiency of the theoretical evaluations based on the energy balance for estimating evaporation and evapotranspiration. Tanner (41) claims that the calculation of evapotranspiration according to the theoretical approach gives dependable results on an hourly or even a half-hourly basis, in opposition to the other methods of calculation which do not allow measurements of consumptive use for short intervals of less than 5 days.

Usually, the amounts of water used in evaporation and evapotranspiration processes are expressed in mm of water per unit time per unit area. In calculating the energy balance, one obtains practical units of energy flux density which are equivalent to the evaporation units.

$$(R_n L^{-1} f w^{-1})$$

where $R_n = net$ radiation flux density, cal. cm⁻².min⁻¹

$$R_n = (R_s + R_L) - (R_s + R_L)$$

The arrows indicate the direction of radiation.

 R_{c} = solar radiation in the same units $(\lambda \text{ wave length } = 0.3 - 2.0 \text{ A}))$ $R_{T} = long-wave radiation (heat) in the same units$ $(\lambda > 2.0 \mu)$ L = latent heat of evaporation at the temperature of the crop $(585 \text{ cal-g}, 20^{\circ}\text{C})$ $v = \text{density of water, g. cm}^{-3}$

The full energy balance of the crop volume is given by the equation:

$$R_{n}^{+} \int_{O}^{z} \nabla_{H} \cdot (\rho uT) dz + \int_{O}^{z} \frac{L \epsilon}{R} \nabla_{H} (\frac{ue}{T}) dz = S + A + E + \int_{O}^{z} C \rho_{c} \frac{\partial T}{\partial t} dz + \int_{O}^{z} C \rho_{p} \frac{\partial T}{\partial t} dz + \int_{O}^{z} \frac{\partial P}{\partial t} dz + \int_{O}^{z} \frac{\partial P}{$$

Where A = detectable heat flux (for heating the air), in cal. cm⁻². min⁻¹ S = the heat absorbed by the soil, in cal. cm⁻². min⁻¹ E = flow of latent heat (evapotranspiration) in cal. cm⁻², min⁻¹ T = air temperature, in $^{\circ}C$ or in $^{\circ}A$ according to the Kelvin scale L = latent heat of evaporation on the surface C_{n} = heat capacity of the humid air at constant pressure, in cal. g^{-1} . degree⁻¹ C = heat capacity of the crop, in calg⁻¹ degree⁻¹M = molecular weight of the air, in g P = air pressure, in millibars R_1 = universal gas constant R = specific gas constant $\left[R_1 / M = 2.876 \times 10^3 \right]$ in mb. cm³. g⁻¹. degree⁻¹ = Bowen ratio = A/E (according to the previous symbols), dimensionless $\nabla H = \partial \partial x + \partial \partial y \text{ cm}^{-1}$ ϵ = the ratio of water:air molecular weights β = air density, g. cm⁻³ \mathcal{P}_{c} = average density of the crop volume $\int w = water density$ $\delta = psychrometer constant,$ a = K. ln (Z_2/Z_1) dimensionless e = vapor pressure K = Karman Number, dimensionless t = time of measurement, minu = horizontal wind speed z = height above zero point, cm

In order to better elucidate the equation, Tanner (41) makes use of the following illustration:

A more complex mathematical expression is obtained when one attempts to describe the full energy balance of the crop volume. The three mathematical factors at the end of the equation express the changes in the storage of heat by the crop, in the air of the crop volume, and in the latent heat of the crop volume. The energy stored in the process of photosynthesis is only 1-2% and is therefore disregarded.

We shall consider the first expression:

0.

0

$$\int_{C}^{z} C \int_{C} \frac{c}{\partial t} \frac{T}{t} dZ$$

It represents the changes in heat storage according to crop height. The expression (z^2)

$$\int C_p \int \frac{\partial T}{\partial t} dz$$

represents the change in heat stored in the air of the crop volume, also according to crop height. The expression $\int_{-RT}^{2} \frac{D}{O} \frac{e}{t} dZ$ represents the changes in the latent heat stored in the crop volume. These three expressions are only small fractions of the sensible heat flux in the air, A, and of the latent heat used in evaporation, E, on a clear day. However, they can react 10% of E and A at night when $\frac{O}{O} \frac{T}{t}$ is large and A and E are small. When dZ approaches zero, all the five expressions under the integral sign approach zero, and so $R_n = S + A + E$.

The main disadvantage of this method is the complex route by which the results are obtained, but they are quite satisfactory compared to thos from a lysimeter.

The Penman Method (26)

This method of calculating evaporation, or its modification for calculating potential evapotranspiration has proved itself in a number of experiments to be the most exact for determining evapotranspiration (34). This in spite of its being built on complex calculations based on the physical principles of the process, and requires highly complicated microclimatological measurements.

The Penman Method combines the energy balance and the aerodynamic method based on the trasfer of vapor as expressed in the basic equation of Dalton (9), $E = f_u(e_s - e_d)$ and of Tanner (41) for the energy balance, $R_n = E + K + S$,

where f_{μ} = function of intensity of horizontal wind

- e = vapor pressure on the surface of the evaporating water which is the saturation vapor pressure at the temperature of the water surface, T_s
- e = vapor pressure of the atmosphere above the evaporating water surface
- $R_n =$ net radiation, the difference between the incoming radiation, and the reflected radiation and long-wave radiation
- E = the energy for evaporation
- K = the energy for heating the air
- S = heat storage in the soil, plant tissue, and other materials

- 31 -

The central idea in combining the above two approaches stems from the fact that in order to maintain continuous evaporation two conditions must be satisfied: 1. a supply of the energy required for the latent heat of evaporation, and 2. the creation of a mechanism to transfer the vapor.

The transfer of heat and vapor is controlled by the same mechanism, and other than the difference in molecular constants, the former is regulated by the difference $T_S - T_A$, while the latter by the difference $e_s - e_d$, where T_A is the air temperature and T_S is the temperature on the surface of the evaporating water.

Thus, it is possible to write the Bowen ratio K/E with a very good approximation as follows:

$$K/E = \beta = \frac{\sqrt{2}}{U} (T_s - T_A) / (e_s - e_d)$$

where 5' = psychrometer constant (0.27 when T is in degrees Farenheit, and e is in mm Hg). It has been pointed out previously that net radiation, H = E + K + S + C (symbols according to Penman), .2 where C = heating of the environment of the testing material

S = heating of the material being tested However, for a period of a few days, and sometimes even for one day, the changes in stored heat, S, can be disregarded in comparison with the other changes. The same is true regarding C, and thus,

$$H = E + K$$
,3

But from the definition of β , Bowen's ratio is

 $K = E \cdot \beta$ and so from [1] and [3] we obtain $E = \frac{H}{1+\beta} \quad \text{or } H = E(1+\beta) \qquad .4$

Penman (26) states that there are difficulties in measuring net radiation directly, but for periods of about a month or more it is possible to estimate the radiation from the daily hours of sunshine.

In order to arrive at mathematical expressions which can be simply measured, the author used an equation developed by Brunt (1939) which expresses the general correlation between the ratios R_c/R_A and n/N

where n/N = ratio of actual sunshine hours to the possible number of sunshine hours

- R_c = short-wave radiation from the sun and the sky, usually in equivalents of evaporation, in mm per unit area per day
- $R_A =$ radiation from the atmosphere, usually in equivalents of evaporation, in mm per unit area per day

$$R_c/R_A = a + b n/N \implies R_c = R_A (a + b n/N)$$
 .5

Various values were found for the constants a and b. In his experiments at Rothemsted, Penman arrived at the following equation:

$$R_{c} = R_{A} (0.18 + 0.55 n/N)$$
 .6

The result he received was used as a modification in Brunt's equation for determining the heat budget, taking into consideration the entry of shortwave radiation from the sun and the exchange of long-waves between the earth and the sky.

$$H = R_{c}(1 - r - \mu) - 6T_{a}^{4} (0.56 - 0.092\sqrt{e_{d}})(1 - 0.09m)$$
7

where r = constant of returning radiation from the soil (changes with the season and soil type)

$$\begin{split} & \overbrace{O}^{-9} = \text{Boltzman constant}, \quad 2,01.10^{-9}, \\ & \text{expressed in mm evaporation per }^{0}\text{K to the 4th power} \\ & \text{T} = \text{absolute temperature in }^{0}\text{K} \\ & \overbrace{O}^{-}\text{T}_{a}^{+} = \text{theoretical radiation from a black body at } \text{T}_{a}^{-0}\text{K} \\ & \swarrow^{\mathcal{M}} = \text{fraction of } \text{R}_{c} \text{ transferred for use in the photosynthetic process.} \\ & \text{(The value of }^{h_{i}} \text{ is infinitesimal, } 0.005, \text{ and therefore disregarded).} \\ & \text{m/10= the part of the sky hidden by clouds} \end{split}$$

Penman's modification of this equation is

$$H = (1 + 3)E = (1 - r)R_{A} \cdot (0.18 + 0.55 n/N) - \mathcal{O}T_{a}^{4} (0.56 - 0.092 \sqrt{e_{d}}) \cdot (0.1 + 0.9n/N)$$

The expression $R_A(0.18 + 0.55n/N)$ is used to replace R_c in the original equation. Each parameter to the right of the minus sign is easy to define and determine. In order to complete the combination of the aerodynamic method with the energy budget, a transfer is made to Dalton's (8) basic equation:

$$E = f_{(u)} (e_s - e_d)$$

If E_a is taken as the value of evaporation obtained by substituting e_s for e_a when e_a is the vapor pressure, at ambient air temperature Giote: when the temperature gradient between the evaporating surface and the size is zero, $e_a = e_s$), then

$$E = (e_a - e_d) = e_a - \frac{e_d \cdot e_a}{e_a} = e_a (1 - h)$$

b, relative humidity = e_d/e_a

$$E_a = f(u) \quad (e_a - e_d)$$

By combining terms, the following form is obtained:

$$E_{a}/E = 1 - \frac{e_{s} - e_{a}}{e_{s} - e_{d}} = 1 - \emptyset$$

 \emptyset is defined at $e_s - e_a/e_s - e_d$

However, in 1. and 4. it was established that

$$E = H/(1 + \mu) = H/\left[(1 + \sqrt[4]{'}(T_s - T_a)/(e_s - e_d) \right]$$

And if $T_s - T_a = \frac{e_s - e_d}{\Delta}$ where Δ is the slope of e vs. T, then

$$H/E = \frac{1 - \sqrt[4]{e_s - e_d}}{\Delta (e_s - e_d)} = 1 + \sqrt[4]{ . \phi / D} \qquad [12]$$

and therefore,

$$E = \frac{(H \cdot \Delta + E_{a} \cdot \zeta)}{\Delta + \zeta}$$
[13]

From the above it is seen that evaporation can be estimated only from the conditions of the air, and if necessary, estimate of the evaporating surface's temperature can be obtained and used to indicate external evaporating conditions. In addition to the necessary constants which can be obtained from standard sources, other climatic parameters are needed, such as average air temperature, average dew point, and period of sunshine.

On the basis of Equation [13] , Penman (28) estimated values of $E_{\rm O}$ for a number of months at Lake Hefner:

Month	Observation	First Calculation	Corrected Value
August, 1950	6. 8 ^{°†}	7.4 ^{°°}	·7.8 ¹¹
November	6.0	2.4	5.7
February, 1951	0.4	1.9	1.0
May	4.4	6.1	4.0
August July	54.9	57.5	56.6

<u>Note</u>: The corrected values are in accordance with changes in heat storage.

Estimation of Potential Evapotranspiration by the Penman Method

In Penman's (28) opinion, potential evapotranspiration is a term unnecessarily extended describing potential transpiration. From his definition of potential transpiration, that is the amount of water lost by transpiration per unit time by a dense annual crop of uniform height completely covering the ground and never suffering from lack of water, it is clear why he views the

term potential evapotranspiration, which includes a combination of transpiration and evaporation, to be unnecessarily extended.

In estimating potential evapotranspiration, Penman (28) used two approaches, one empirical and the other analytical.

The empirical approach was based on the assumption that in any location it is possible to estimate evaporation on the basis of equations which he developed in 1948 (26), and by finding the conversion factor, f, which gives the potential evapotranspiration rate.

$$E_t = f.E_c$$

The empirical approach attempts to find empirical f values, and as mentioned previously in this review, Penman found that these values change with the season:

Season	f
May-August	0.8
November-February	0.6
Annual average	0.75

The analytic approach attempts to find theoretical values for the factor f. In the first stage of Penman's work with Schofield (27) in 1951, a theoretical expression was found for f composed of three factors: vapor pressure factor (f_{e}) , stomatal factor (f_{e}) , and the day length factor (f_{dl})

$$\mathbf{F} = \mathbf{f}_{(e)} \cdot \mathbf{f}_{(s)} \cdot \mathbf{f}_{(dl)}$$

The method is based on the measurement of resistance to diffusion of water vapor from the leaf to the outside atmosphere as a function of stomatal geometry. The deficiency of this approach of Penman is that one must still find E_o in order to obtain E_t . This difficulty was later overcome in 1952 by combining the aerodynamic and energy approaches for the loss of water by surfaces due to transpiration.

On the assumption that the plant cover surface temperature determining sensible heat transfer to the air is equal to the temperature within the leaf (which determines the leaf's vapor pressure), the following two formal equations are obtained:

1.
$$E_t = f_{(u)} (e_t - e_d(SD))$$

(see note below regarding SD)

2.
$$H_t = E_t + K_t$$

These are used to arrive at a third equation

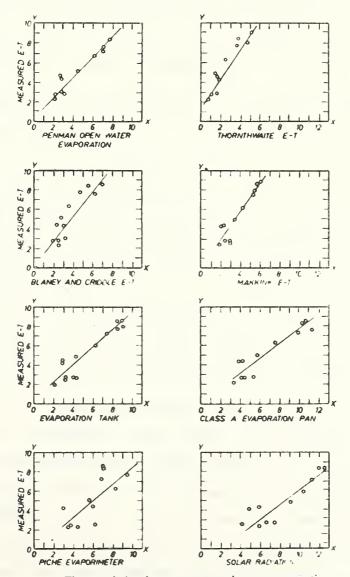
$$\mathbf{E}_{t} = \left(\frac{\Delta}{\nabla} \mathbf{H}_{t} + \mathbf{E}_{a}\right) / \left(\frac{\mathbf{R}}{\nabla} - \frac{1}{\mathbf{SD}}\right)$$

where E_t = transpiration rate. E_t will always be less than E_o since S < 1 and $H_t < H_o$

 H_{+} = heat budget of transpiration

 H_{o} = heat budget of evaporation

S = Stomatal term. Its value is about 0.9, but always less than 1. In the empirical equation S = f. In most crops this term is a function of daylength, whereby in daylight the stomata are open and evaporating. Thus, the hours of evaporation are limited by day length, and so in order to arrive at a value by means of a number of simplified assumptions, it is possible to find a function for day length, D:


$$D = \frac{N}{24} + \frac{a}{b_{11}} \sin \frac{N_{11}}{24}$$

where N = possible daylight hours

Therefore, D is the major factor in the seasonal variations mentioned in connection with the f values. (This equation is still unsuitable for practical use, but nevertheless provides a basis for an additional generalization concerning potential evapotranspiration). Stanhill (34) reports that he compared a number of methods for calculating potential evapotranspiration by means of climatic

data, and tested certain methods based on physical analysis. Only one was found suitable for practical and routine use in the field. This is the method described by Penman (26). Furthermore, he states that among the 8 methods studied (see following table), the best was Penman's since the regression slope was close to unity. The correlation coefficient was also close to unity,and the standard error was very small.

> The correlation between measured evapotranspiration and related variables (daily mean values for monthly periods).

The correlation between measured evapotranspiration and related variables (daily mean values for monthly periods).

Empirical Methods Based on Temperature, Radiation, and Other Climatic Data

The Christiansen method for estimating evaporation from a pan, and modifications for estimating evapotranspiration. At the University of Utah a number of studies have been conducted (1, 8, 7, 14, 23, 24, 22) under the direction of Christiansen. Their purpose was to develop equations which:

- 1. include most of the climatic factors influencing evaporation and evapotranspiration
- 2. are based on standard climatic data published by the meteorological services
- 3. use data easily obtained and applied for computation.

The approach in these studies was a statistical empirical one. The basic equation is

$$E = K \cdot R \cdot C$$

where E = evaporation or evapotranspiration

- K = a constant determined by analysis of many sources, dimensionless
- R = the theoretical solar radiation reaching the outer face of the earth's atmosphere
- C = empirical factor obtained from a number of sub-factors, each of which expresses the effect of some climatic factor on the evaporation or evapotranspiration process. Dimensionless.

Patil (23) studied evaporation problems in Northern Utah and relied on the work of Christiansen. His studies were conducted at 5 experimental stations, and the equation developed included factors of temperature, wind, relative humidity, and hours of daily sunshine expressed as a percentage of the total possible number of hours. He concluded that evaporation must be basically a function of the available energy received from the solar radiation. However, since the solar radiation reaching the earth's surface is measured

at a number of different locations, it is preferable to calculate the radiation received at the outer edge of the atmosphere and so the results will have a common denominator.

In order to calculate the equation, a large amount of data was gathered. Part of it was analyzed to determine the ratio between this data and the evaporation measured at the same location. All the data used in the analysis was included as part of the factor C.

$$C_c = C_t C_w C_s C_H C_M C_E \dots etc.$$

where T, W, S, H, M, E = temperature, wind, hours of sunshine, relative humidity, month, and elevation above sea-level, respectively.

Theoretically, every factor represents the specific effect of the climatic factor (for example, $C_{_{\rm W}}$ represents the effect of wind speed on evaporation), whereas all the other factors are constant.

In 1962, Patil (23) began determining the coefficients by use of second order equations, and added many months of observation (a total of 3232).

The transfer to using second order equations came after it became clear that the use of a linear equation for high values of the climatic factors gave coefficients with too high values, as the increase of the coefficient values does not grow linearily with the increase in the climatic factor. Usually for each sub-coefficient there is a general expression in the form of a second order equation.

The equations which Patil established for determining the climatic coefficients are:

$$K = 0.530$$

$$C_{T} = 1,203 + 0.0463T - 0.000204T2$$

$$C_{W} = 0.786 + 0.00385W - 0.0000047W^{2} (W = miles/day)$$

$$C_{S} = 0.458 + 0.00568S - 0.0000136S^{2} (S = \%)$$

$$C_{H} = 1.141 - 0.00336H - 0.000045H^{2} (H = \% \emptyset)$$

$$C_{E} = 0.936 + 0.00350E - 0.0000156E^{2} (E = units of 100 \text{ ft})$$

$$C_{M} = 1.000 + 0.098\cos(30N-20) (N = month, with January = 1)$$

In order to simplify the use of the equation, he entered all the coefficient values and their logarithms in tables.

The latest work published by Christiansen and Mehta (8) in 1965 includes most of the sources contained in the studies by Patil (23), Pate (24), and Mathison (22), with additional new data from Nigeria, Canada, and Peru. His final equation and the coefficients which he used are:

$$\mathbf{E}_{\mathbf{v}} = \mathbf{K} \cdot \mathbf{R} \cdot \mathbf{C}_{\mathbf{T}} \mathbf{C}_{\mathbf{W}} \mathbf{C}_{\mathbf{H}} \mathbf{C}_{\mathbf{S}} \mathbf{C}_{\mathbf{E}} \mathbf{C}_{\mathbf{M}}$$

where K = 0.468

R = radiation from outside of the earth, in units of evaporation. Values of R can be obtained from a table prepared by Napier and Shaw (1942). See Appendix 1.

$$C_{T} = 0.1532 + 0.000874T + 0.0000546T^{a}$$

Average monthly temperature in ^oT, when ^oF = 20^oC,
 $T = 68^{o}$, then $C_{T} = 1.8$.

 $C_{W} = 0.79 + 0.0037W - 0.00000383W^{2}$

Average wind speed measured at the height of the pan in miles per day.

 $C_W = 1.0$ when W = 60 miles/day or 96.56 km/day

$$\begin{split} \mathbf{C}_{\mathrm{H}} &= 1.202 - 0.00353\mathrm{H} - 0.0000381\mathrm{H}^{2} \\ \mathrm{H} &= \mathrm{Average \ relative \ humidity \ during \ the \ day \ or \ the \ average \ noon-time \ relative \ humidity. \\ \mathbf{C}_{\mathrm{H}} &= 1.0 \ \mathrm{when} \ \mathrm{H} &= 40\%. \\ \mathbf{C}_{\mathrm{S}} &= 0.402 + 0.019\mathrm{S} - 0.0028\mathrm{S}^{2} + 0.0000017\mathrm{S}^{3} \\ \mathrm{S} &= \mathrm{Daily \ hours \ of \ sunshine \ expressed \ as \ a \ percentage \ of \ the \ maximum \ possible \ number \ of \ hours. \ \mathbf{C}_{\mathrm{S}} &= 1.6 \ \mathrm{when} \ \mathrm{S} &= 801 \\ \mathbf{C}_{\mathrm{E}} &= 0.9654 + 0.0362\mathrm{E} - 0.0016\mathrm{E}^{2} \\ \mathrm{The \ height \ in \ units \ of \ 1000 \ ft} \\ \mathbf{C}_{\mathrm{E}} &= 1.0 \ \mathrm{when} \ \mathrm{E} &= 1 \ (1000 \ ft) \end{split}$$

For C_{M} no equation was proposed, but the values have been included in a table according to 16 climatic regions.

In the event that some of the climatic data is lacking, the equation still remains applicative since all the coefficients for the approximate average value of the climatic factor are equal to 1.0. In the case of application, the numerical value of the missing climatic factor can be estimated or deleted as though the coefficient was taken equal to 1.0.

The method of calculating the different coefficients and constants in <u>Christiansen's equation</u>. The first step taken by Christiansen in his work was to use data at hand to compute C_T^{--} the temperature coefficient, with all the other climatic factors constant. Since the basic equation is

$$E_{V} = K.R.C$$
, then $f(T) = E_{V}/R$

In the first analysis, the most appropriate linear function was the equation

$$E_V/R = 0.00744T - 0.0439 = K_t \cdot C_T$$

for $T = 68^{\circ}F$, $C_T = 1$, and so $K_t = 0.462$ and upon dividing by K_t ,

$$C_{T} = 0.0161T - 0.095$$

The second step was to find the ratio

$$fw = E_V/R.K_t.C_T$$

The appropriate linear function found was K_{W} . C_{W} .

The coefficients and constants of all the climatic factors were similarly found. The constants obtained by each of the steps were multiplied so that the final value of K was

$$K = K_{t} K_{W} K_{S} K_{H}$$

Experiments using Christiansen equations to estimate evapotranspiration. The first experiment was made by Grassi (14) in 1964 from data obtained from the work by Jensen and Haise. He entered the information in tables and computed R-values for the different periods from which the data was obtained. The method he used for determining the coefficients was based on Christiansen's mathematical analysis, but an attempt was made to reduce their mutual dependence.

To calculate evapotranspiration, Grassi included a number of additional coefficients:

$$C_{cl}$$
 = coefficient of cloud cover, expressed on a scale from 0 - 10
 C_{tx} = coefficient of average maximum temperature during the given period
 C_{td} = coefficient of the average difference between maximum and
minimum temperatures during one year

and also coefficients which characterize the specific crop:

C_{rc} = coefficient of crop cover, expressed as a percentage of full cropcover

$$D_a$$
 = the length of time in days after full crop cover

Grassi's first equation was in accordance to the general scheme: $E_t = k \cdot CR \cdot C_{cl} \cdot C_T \cdot C_{td}$ where each time a different plant factor is added to the climatic factors according to the crop.

The first series of equations included three equations -- for alfalfa, annual crops, and orchards (1a, 1b, 1c). C_{rc} is the factor included in the calculation of evapotranspiration for an alfalfa field:

$$\mathbf{E}_{t} = \mathbf{K} \cdot \mathbf{C}_{\mathbf{R}} \cdot \mathbf{C}_{\mathbf{c}1} \cdot \mathbf{C}_{\mathbf{T}} \cdot \mathbf{C}_{\mathbf{t}d} \cdot \mathbf{C}_{\mathbf{r}c} \cdot \mathbf{F}$$

F is the crop factor obtained by determining the ratio between actual and calculated evapotranspiration. Similarly, V_c was included as the most suitable for annual crops, while for orchards only the correction factor F was included.

It seems that for the exact estimate of evapotranspiration the relative effect of C_{rc} , the crop cover, is more important than the effect obtained by introducing V_c , the total number of days between seeding and harvest.

A second series of equations was developed on the basis of radiation from the sun and the sky, R_s (2a. 2b, 2c), and includes the same plant factors. The third series is based on the correlation between pan evaporation and evapotranspiration:

$$E_t = K \cdot E_r \cdot C_t \cdot C_{crc} \cdot F$$

The degree of accuracy of the different equations he developed depends on the accuracy of the soil measurements to determine actual evapotranspiration. Furthermore, there is a problem of adapting the equations to other parts of the world as they are based on data from the western United States. But it is possible that the error will not be large in other irrigated arid and semi-arid zones.

In 1965, Al Barrak (1) conducted an experiment in central Iraq to study evaporation in potential and actual evapotranspiration. The data were collected from standard climatic measurements made in Iraq, as well as from a limited ;

number of actual evapotranspiration data for cotton and winter grain. The data were presented in millimeters for the period between irrigations, and determined by the amount of water applied in irrigation plus rainfall minus the amount of water which passed through the soil in drainage. One of the purposes of this work was to develop a modification of the existing equations, or to find new equations which would be more suitable to the conditions in central Iraq. It was found that the modifications could be achieved by changing one or more climatic factors in the equations, or by changing the constants. The purpose was to arrive at a minimum total of absolute differences between the measured and the calculated results for the various months.

In order to achieve good agreement of the various equations to conditions in central Iraq, he included a coefficient which could represent the fluctuations in the months of the year, as a function of sin or cos. For example:

 $C_{M} = 1.0 + A \cos (Cm + B) \langle \tilde{1} / 6 \rangle$

where A and B = constants

M = number of the month.

A coefficient of this type can also be determined for other factors. If the ratio of measured to calculated evaporation is plotted against the months, then the cos curve is a better fit for the points. (The constants A and B are defined from the new curve obtained).

The modifications of the equations mentioned in this review as made by Al-Barrak are as follows: The Utah equation for determining evaporation, E = KCR, was modified by changing the coefficient of the months, C_M , so that the results would more closely agree with the data obtained.

The original values were taken from the work by Christiansen in 1960 according to data in a table. These were first multiplied by the monthly ratio between the calculated and actual evaporation, and the result plotted on a curve against the months of the year. The extent to which the curve fitted the points can be described by the equation:

K.
$$C_{M} = 1.30 \times 1.0 + 0.23 \cos \left[(M+3)(\widetilde{1}/6) \right]$$

And the final modification of the Utah equations became

$$^{E}V = 0.611R \cdot C_{T} \cdot C_{W} \cdot C_{H} \cdot C_{S} \cdot C_{M}$$

in which $C_{M} = 1.0 - 0.23 \cos \left[(M + 3)(71/6) \right]$

The results obtained from this equation were better than those obtained with the original equations. The total absolute differences between the modification and the monthly measured values was 11.0 compared to 50.9 with the original equation.

He modified the Blaney-Criddle equation (see discussion below on this equation) for determining actual evapotranspiration (in the light of insufficient data) on the basis of assumptions that the K values should be calculated so that the evapotranspiration for January would be 3.0", and for July 10.5", (The numbers represent the mid-points in what he considered to be a logical range of values).

The equation he obtained for K as a function of temperature was:

and so

$$E_t = k_{\cdot} f = (0.43 + 0.00074 t).$$

The Grassi equation (39), based on evaporation, can be treated in a similar manner to obtain

$$E_t = k \cdot E_V \cdot C_t$$

 $K = 0.568$
 $C_T = 2.115 - 0.0164$

K = 0.43 + 0.0074 t

The Blaney-Criddle Method for Estimating Evapotranspiration

The Blaney-Criddle Method (2, 3, 4) also adapted to calculate pan evaporation, is based on the correlation between average monthly consumptive water use and temperature, the percentage of monthly hours of sunshine of the total hours for the year (obtained from tables according to the latitude of the location measured), and a plant coefficient based on the plant type and growing season.

The method was developed by measuring the above correlation, and the coefficients obtained can be readily computed if one knows the monthly temperature, the latitude, the growing or irrigation season, and the monthly percentage of sunshine hours. The method is expressed mathematically as follows:

$$U = K \cdot F = \sum kf$$
 and $f = \frac{p \cdot t}{100}$

where U = consumptive water use of the crop (evapotranspiration for the entire period)

- F = total of the factors affecting monthly consumptive water use
- K = empirical coefficient, seasonal average

 $t = average monthly temperature, {}^{O}F$

p - ratio between total hours of daily sunshine per month and the total hours of daytime, expressed as a percentage (given in a table according to latitude)

k = monthly consumptive water use

f = p.t/100 = monthly consumptive use factor. (By dividing by 100, a k - value of close to 1 was obtained)

 $u = k \cdot f = monthly consumptive use, in inches$

In metric units, the monthly consumptive use (in mm) is

$$u = k \cdot p \frac{(45.7t + 813)}{100}$$

The empirical coefficient, K, is obtained by summarizing the periodic consumptive water use values, U, for an important crop in a number of locations, and then calculating the periodic consumptive use factor, F. From the above equations it is clear that K = U/F. Determinations of this type are difficult to make, and can be a source of errors due to the different conditions under which the measurements are made by different workers. Therefore, variations are to be anticipated in the values of the calculated coefficient, K. The authors relied on their personal knowledge of the physical conditions under which the experiment was conducted, and analyzed all the available data in order to prepare coefficient tables suitable for different crops under normal conditions, without taking into account the location where the crop was grown. It has been found (24) that the variation in k (the monthly coefficient) for calculating evaporation ranges from 0.84 to 0.18. The authors claim (3) that when short intervals are concerned, such as a month or less, one must recognize the factors liable to affect the crop together with the climate. For example, a crop may be attacked by insects and lose many leaves, thus reducing the plant's ability to transport water in the transpiration process.

The authors also prepared an appropriate table for the monthly coefficients, k, based on values obtained from field measurements.

The Blaney-Criddle equation is in wide use throughout the world. Engineers use it as a basis for estimating consumptive water use despite the fact that the monthly coefficient, k, is not permanent and changes during the season with temperature, other climatic factors, and characteristics of the crop in Israel this equation is used (the metric form), and it has been found that the coefficients developed by Blaney and Criddle in California are suitable also in Israel. The authors attributed the wide use of the equation (2) to the fact that dispite the disregard of many factors affecting evapotranspiration, the most important factors are the temperature and the sunshine. Records of sunshine are not always available to the farmer or engineer, while on the other hand, temperature is available at every point in the world. Thus, the sunshine

effect is determined by calculating the theoretical day length during the vegetative period of the different crops.

The ratio between monthly daylight hours to the yearly daylight hours, expressed in percentages, was entered into tables covering most of the cultivated agricultural areas of the world. The tables have a deficiency in that the data are theoretical and do not sufficiently represent the changing conditions in the given field.

In order to simplify as much as possible the use of this equation, a nomograph was prepared (See Appendix 2).

The Thornthwaite Method

In 1948, Thornthwaite developed an empirical equation also based on temperature. He assumed that the temperature is a good index of energy, and developed an exponential ratio between the average monthly temperature and the average potential evapotranspiration (38). He assumed that the amount of water lost in transpiration from a completely covered area depends more on the solar energy and temperature than on the type of crop, as long as we supply it with necessary amount of water.

The equation which he developed to estimate unadjusted potential evapotranspiration is

$$e = 1.6(10 t/I)^{a}$$

where e = potential evapotranspiration

 $t = average temperature, ^{O}C$

I = periodical or annual heat index

a = coefficient

The relation between these symbols is given by the following equations:

i = monthly heat index =
$$(t/5)^{1.514}$$

I = $\sum_{i=1}^{12} i$
a = 0.000000751³ - 0.00007711² + 0.0179211 + 0.49239

Thornthwaite based his equations on evaporation data from a number of fields with latitudes ranging from $29^{\circ}N - 43^{\circ}N$.

In order to correct the results obtained, he altered his evapotranspiration equation to give the adjusted potential evapotranspiration:

$$e = e(N/30)(H/12)$$

where the correction is based on the number of days in the month N, and the average number of daylight hours during the month = H.

Obviously, the equation in this form is not sufficiently applicative, mainly because of the difficulty in calculating a, and in order to transform it into a more useful equation, an attempt was made (50) to develop a graphic technique (see Appendix 3) to determine the potential evapotranspiration according to Thornthwaite's method. Further changes were made in order to arrive at intervals of a week and even one day in estimating potential evapotranspiration, and corrections were also made regarding the soil water status. Prior to thus, in 1957, Thornthwaite and Mather (39) prepared useful tables to calculate potential evapotranspiration rate, and in 1959 Van Hylk (44) developed a nomogram for the Thornthwaite method which seems to provide the easiest arrangement for estimating the potential evapotranspiration rate. (See Appendix 4).

A discussion on this subject can be found in the paper by Van Wijk and De Vries (43) who concluded that there is no theoretical possibility for estimating evaporation and for depending solely on temperature data as an indicator of energy available for the different processes. It can be assumed that the temperature is the important factor, if the equation is corrected empirically to the average conditions of a wide region or to the special conditions of a specific area. In both cases, the equation will not be generally applicable. The above

>

- 50 -

authors base their claims on the large difference existing between the flow of solar radiation and the temperature. For example, at a certain location they measured a temperature of 5°C in November and 5.4°C in March, while the average radiation intensity was 67 cal/cm² in November and 195 cal/cm² in March. Since evapotranspiration is a function of the number of calories, it is clear why Thornthwaite could not do without the heat index, I, as an empirical expression to complement the temperature lag behind the amounts of radiation. In summary, it is difficult to find any theoretical justification for Thornthwaite's method, even though it is based on temperature as the main factor, and the method has been accepted, apparently, because of the ease in its use rather than due to the accuracy which it provides.

Pelton, King and Tanner (25) claim that average monthly temperature and monthly evapotranspiration also depend on radiation. Because of the seasonal changes in radiation, the temperature and evapotranspiration are highly correlated, and so the estimate of evapotranspiration from a correlated temperature will also be suitable for actual evapotranspiration. The experimental equation of Thornthwaite for monthly estimates includes a correction for the general change in radiation according to latitude, but does not take into account as well the temperature lag after radiation. This lag in certain cases produces a large error in the monthly estimate. The error is smallest during the period May to August, and also in the yearly estimate. However, in the spring and winter, the errors are quite serious. Correction of the results to arrive at the adjusted potential evapotranspiration is possible, primarily due to the constancy of the amounts of radiation for long periods. It appears on the basis of experiments that also for evapotranspiration values the variability is low during the growing season and for the yearly calculation, so that if the estimate is made after adjusting the potential evapotranspiration, the Thornthwaite method is more useful than the estimate of unadjusted potential evapotranspiration.

- 51 -

In their opinion, a method based on radiation is more suitable for estimating potential or actual evapotranspiration. The average temperature method is more useful when the estimate is needed for the growing season or for the entire year, and also in a location where radiation data are unavailable. In the case that the average temperature method is used, a correction must be made for thermal lag.

One should not rely on the average temperature method for short periods such as 3-6 days, because the measurement of temperature is not suitable for representing the physical conditions affecting evapotranspiration. Conversely, the measurement of new radiation is suitable for obtaining a good estimate of evapotranspiration, even for brief periods of days or hours.

$\operatorname{SUMMARY}$

The literature survey included a number of equations developed to estimate evaporation and evapotranspiration using climatic data. A large number of equations exist which have not been mentioned, however those discussed here represent the various approaches and are also the ones most commonly used.

The various methods have been evaluated by different researchers. In a number of cases, not only the degree of accuracy was considered, but also the relative cost of the methods. Stanhill (34) prepared the following table of comparisons:

TABLE 2

A COMPARISON OF THE EQUIPMENT AND TIME NEEDED IN EIGHT METHODS OF CALCULATING POTENTIAL EVAPOTRANSPIRATION FROM CLIMATIC DATA

Method	Equipment (minimum requirements)	Cost of equipment (Israeli pounds)	Time needed for observ- ations (minutes/ day)	Time needed for each calculation (minutes)
Penman	Thermometer screen and thermometers, sunshine recorder and totalizing anemometer	1,050	10	10
Thornthwaite	Thermometer screen and thermometers	550	5	5
Blaney-Criddle	Thermometer screen and thermometers	550	5	5
Makkink	Thermometer screen and thermometers, sunshine recorder	850	5	5
Evaporation tank	Tank , still well and micro- meter depth gauge	450	5	5
Evaporation pan	Pan, still well and micro- meter depth gauge, wooden platform	100	5	5
Piche evaporimeter	Thermometer screen and evaporimeter	505	5	5
Solar radiation	Sunshine recorder	320	5	5
Gravimetric soil moisture sampling	Veihmeyer tube, hammer and jack, sampling tins, triple beam balance and drying oven.	650	180	30

The table shows that the methods based on physical analysis (Penman) are the most expensive, while those based on correlation with evaporation from a free water surface (Class A pan) are the cheapest. The empirical methods for estimating evapotranspiration (Blaney-Criddle and Thornthwaite) and the direct sampling methods are intermediate in the cost of equipment required.

From the point of view of accuracy attainable, Stanhill arrived at the following results:

A comparison of eight methods of calculating potential evapotranspiration from climatic data

TABLE 1

A COMPARISON OF EIGHT METHODS OF CALCULATING POTENTIAL EVAPOTRANS-PIRATION FROM CLIMATIC DATA

	Monthly periods			Monthly periods		СV
Method	Regression*	r	(y/x)**	Regression*	r	(y/x)**
Physical Formulae Penman	y = 0.97x + 0.96	0.96	12	y = 0.96x +1.12	0.76	36
Empirical formulae Thornthwaite Blaney and Criddle Makkink	y = 1.4 & + 1.85 y = 1.22 x + 0.72 y = 1.49 x + 0.06	0.94 0.90 0.95		y = 1.35x + 1.76 $y = 1.15x + 1.02$ $y = 1.45x + 0.15$	0.73 0.70 0.75	$38\\40\\37$
Instrument methods Evaporation tank Evaporation pan Piche evaporimeter Solar radiation	y = 0.86x + 0.74 $y = 0.70x + 0.47$ $y = 0.88x + 0.03$ $y = 0.72x + 1.04$	0.94 0.95 0.69 0.91	15	y = 0.84x + 0.73 $y = 072x + 0.36$ $y = 0.94x + 0.35$ $y = 0.70x + 0.87$	$\begin{array}{c} 0.\ 76 \\ 0.\ 77 \\ 0.\ 63 \\ 0.\ 77 \end{array}$	37 36 44 20 10***
Soil sample method Gravimetric determinations			3***			T Össiss

x measured value of potential evapotranspiration, mm per day;
 y calculated values of potential evapotranspiration, mm per day.

** Coefficient of variation around regression line, percent of mean y-value.

*** Standard error, percent of mean y-value

The best method, according to the above tables, was Penman's. Of the empirical equations tested, Thornthwaite's was more accurate than Blaney-Criddle, which in turn was less accurate than the results obtained by the correlation between evaporation from a free water surface in a pan and the evapotranspiration.

Christiansen (7) attributes the inaccuracies obtained with the Blaney-Criddle equation in the Middle East region to the fact that the values of K, the yearly coefficient, are based on determinations made in the western United States in areas where the values obtained are too low for hot, dry countries.

In another paper (24) Christiansen states that it is difficult to compare the actual evaporation to the values calculated from the Blaney-Criddle equation for pan evaporation because of the large change of the monthly coefficient, k, with location and season. Another reason is the dependence of the correlation values on the user of the equation. The fluctuations in the K values represent the main problem in using this equation.

Concerning the theoretical equations based on vapor pressure deficit, the main problem is related to the fact that the calculations use the temperature of the free water surface. The temperature of the water's surface is not available, and thus it is necessary to use the average temperature when computing evaporation. A comparison (1) showed that the temperature of the free water surface in a pan is slightly higher than the air temperature, so that the result calculated by means of the Rower equation and the others mentioned for the same group, will give evaporation values lower than those which would have been obtained had the water surface temperature been measured. The results obtained by Al Barrak (1) from the <u>Rower equation</u> were as follows: Annual values similar to those measured with an evaporation pan, where the ratio between calculated to actual annual evaporation ranged from 0.94 to 0.99. In all cases, the calculated results obtained were higher

than the actual results measured in the summer, and lower than those in the winter months.

<u>Penman equation</u>: Very high values in the summer. For the months of October-January, the average value of calculated evaporation was slightly lower than the measured evaporation.

<u>Grassi equation (3a)</u>: This method based on measurements of a Class A pan gave high values for all the months (on a monthly basis).

Blaney-Criddle equation: Gave correct results for January, but the values were lower than those obtained by the other equations tested for the summer months (June-July) when the ratio between calculated and actual evaporation was 0.53.

REFERENCES

- Ala H. Al Barrak 1964.
 Evaporation and potential Evapotranspiration in central Iraq.
 Utah Progress Report Project W.R.13. (Multilithed)
- Blaney Harry, F. and W.D. Criddle. 1961.
 Determining consumptive use and irrigation Water Requirements.
 U.S.D.A. Provisional.
- Blaney Harry, F. and W.D. Criddle. 1962.
 Determining consumptive use and irrigation Water Requirements.
 U.S.D.A. Technical Bulletin No. 1275.
- 4. Blaney Harry, F. and W.D. Criddle. 1945.
 A method of estimating water requirements in irrigated areas from climatological data.
 Wahsington U.S. soil conservation service. 23 pp
- Bonner and Galstone. 1959.
 Principles of plant physiology. (p. 117-126 in Hebrew)
 W. H. Freeman and company San Francisco.
- Cannel G.H. 1958.
 Effect of drying cycle on changes in resistance of soil moisture unit. Proc. Soil Sci. Soc. Am. 22:379-382.
- 7. Christiansen, J.E. 1966.
 Estimating Evaporation and evapotranspiration from climatological data.
 Utah State University logan Utah.
- Christiansen, J.E. and Ashwin D. Mehta. 1965.
 Estimating of pan evaporation from elimatological data.
 Utah Progress Report Project W.R.B.

9. Dalton, S. 1798.

Experimental essays on the constituation of mixed gases on the force of steam or vapor from water and other liquids in different temperatures both in torrichlian Vacum and in air on evaporation and on expansion of gases heat.

Memoiers Manchester Library and philosophical Society. 5:535-602.

- Denmead, O.T. and R.H. Shahe. 1959.
 Evaporaspiration in relation to the development of the corn crop. Agron. J. 51:725 - 726.
- 11. Encyclopaedia of Agricultural. Volume one. (in Hebrew)

12. Fuchs, M. and Stanhill. 1963. Relationship between water use of cotton crop and evaporation of U.S.W.B. standard class A pan. Rehovot Division of publication. Preliminary Report No. 410 Project No. 3 (Stensil in Hebrew)

 Fuchs, M. and Stanhill. 1963.
 Evapotranspiration from irrigated cotton and evaporation from class A pan Rehovot Division of publication.
 Prelim Rep. No. 448 Project No. 3/244 (Stensil in Hebrew)

Grassi, C.J. 1964.
 Estimation of evapotranspiration from climatic formulas.
 Utah State University. M. Sc. Thesis.

15. Hillel, D. Etal

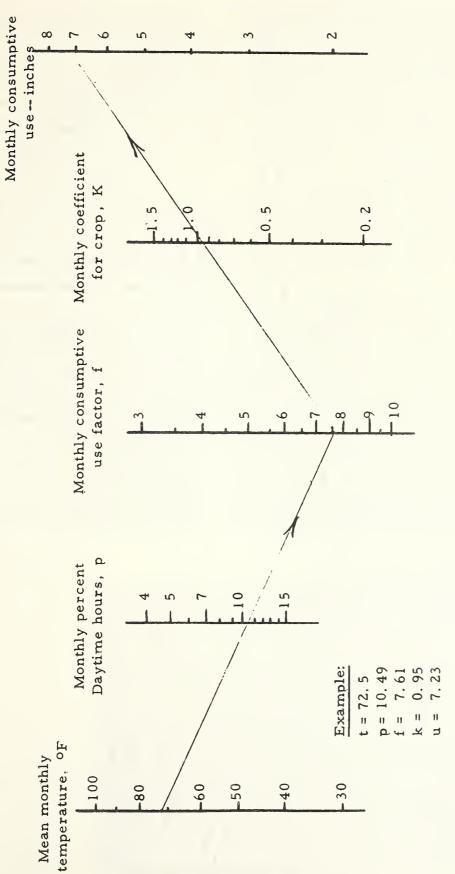
Exercises and demonstrations in soil physics Faculty of Agricultural Rehovot (Multilithed in Hebrew) The Hebrew University - Jerusalem.

- Israelsen Orson W. and Vaughn E. Hansen. 1962. Irrigation principles and practics New York John Wiley and sons pp. 231-264.
- 17. Lemon E. R. A. H. Glaser and L. E. Satterwhite. 1957.
 Some aspects of the relationships of soil plant and meteorological factors to evapotranspiration.
 Proc. Soil Sci. Soc. Am 21(5) 464 468.
- Linacre, E.T. 1963.
 Determining evapotranspiration rates.
 J. Aust Inst. Agric. Sci, 29(3) 165 178.
- 19. Lamas J. 1964.
 A simple method of assessing relative irrigation requirements.
 Agr. Meteorol (1) 142 148.
- 20. (17) McMillan, W.D. and H.A. Paul. 1961.
 Floating Lysimter.
 Agric Engng 42: 498 499.
- Marshall, I. J. 1959.
 Relation between water and soil Commonwealth agricultural Bureau London.
- 22. (186) Mathison, K.J. 1963.
- The use of climatological and related factors for estimating evaporation. Utah State University (Multilithed)
- 23. Patil, B. B. 1962.
 A new formula for the evaluation of evaporation.
 M. Sc. Thesis. Utah State University (Multilithed)

- 24 Patel, A. C. 1963.
 Comparison of four methods of computing evaporation.
 Utah State University (Multilithed)
- 25. Pelton, A.C., King, K.M. and C.B. Tanner. 1960.
 An evaluation of the thornthwaite and mean temperature method for determining potential evapotranspiration.
 Agron. J. 52: 387 395.
- Penman, H. L. 1948.
 Natural evaporation from open bare soil and grass.
 Proc. Royal Soc. of London Series A 193: 121 146.
- 27. Penman, H. L. and R. K. Schofield. 1951.
 Some physical aspects of assimilation and transpiration.
 Society of experimental Biology Symposium 5: 115 129.
- 28. Penman, H. L. 1956.
 Evaporation: An introductory Survey.
 Neth. J. Agric Sci. 4: 9 29.
- 29. Perrier, F.R. and Marsh, A. W. Performance characteristics of various electrical resistance units of gypsum materials. Soil Sci. 86: 140 -147.
- Polyakoff-Mayber, A. A. M. Mayer and D. Koller. 1959.
 Plant Physiology, pp. 118 127. (in Hebrew).
 Hebrew University Jerusalem.
- 31. Richards, S.J. and A.W. Marsh.
 Irrigation based on soil suction measurements.
 Proc. Soil Sci. Soc. Ame. 25: 65 69.

- 32. Richards, S.J. 1957.Time to Irrigate.Crops and Soils 9(8) 8 11.
- 33. Power, C. 1931.
 Evaporation from free water surfaces.
 Tech. Bull. U.S. Dep. Agric. No. 271.
- Stanhill G. 1961.
 Acomporision of Methods of calculating potential evapotranspiration from climatic data
 Israel J. Agric. Res. 11(3 4) 159 171.
- 35. Stanhill, G. 1962.
 The control of field irrigation practice from measurement of evaporations. Israel J. Agric. Res. 12(2) 51 - 62.
- Stanhill, G.
 Meteorological aspects of crop water requirements.
 National and University Institute of Agricultural Rehovot (Stensil).
- 37. Stone J. F. Shaw, R. H. and Kirkham, D. K. 1960.
 Statistical parameters and reproducibility of the neutron Method of Measuring Soil moisture.
 Proc. Soil Sci. Soc. Ame. 24: 435 - 438.
- 38. Thorenthwaite, C.W. 1948.
 An approach toward a rational classification of climate.
 Geogrl. Rev. 38(1) 55 94.
- 39. Thorenthwaite, C.W. and J.R. Mather. 1955.
 The water budget and its use in irrigation.
 U.S.D.A. year book of Agric. Water. pp. 346 358.

2 3 - 6


- 40. Thorenthwaite, C.W. 1957.
 Instraction and table for computing Potential evapotranspiration and the water balance.
 Publs Clim. Drexel Inst. Technol. Volume No. 3. Centerton N.J.
- 41. Tanner, C.B. 1960.
 Energy balance approach to evapotranspiration from crops.
 Proc. Soil Sci. Soc. Ame. 24(1): 1 9.
- 42. Tanner, C.B. and Hanks, R.J. 1952.
 Moisture Hysteresis in gypsum moisture blocks.
 Proc. Soil Sci. Soc. Ame. 16: 48 51.
- 43. Van Wijk, R. and D.A. Derries. 1954.
 Evapotranspiration.
 Neth. J. Agric. Sci. 2(2): 105 119.
- 44. Van Hylckama, T.E.A. 1959.
 A monograph to determine monthly potential evapotranspiration.
 Mon.Weath Rev. U.S. Dep. Agric. Volume 87 No. 3.
- 45. Van Bavel and L.E. Meyers. 1962.
 An automatic weighing lysimeter.
 Agric. Engng. 43:580-3 580-8.
- 46. Veihmeyer F.J. 1927.
 Some factors affecting the irrigation requirements of deciduous orchards. Hilgardia 2: 125 - 291.
- 47. Veihmeyer F.J. and A.H. Hendrikson. 1955.
 Does Transpiration decreas as soil moisture decreases.
 Tans Am. geophys. Un. 36 (3) 425 448.

- 48. Vries De, D.A. 1953.
 Some results of field determination of the moisture content of soil from thermal conductivity measurements.
 Nath. J. Agric. Sci. 1:115 121.
- 49. Vries De, D.A. 1952.
 A non statunary method for determining thermal conductivity of soil in situ.
 Soil Sci. 73: 83 89.
- 50. Wayne, C. Palmer and A. Vaghu Havens. 1958.
 A graphical Technique for determining evapotranspiration by Thornthwaite method.
 Mon Weath Rev. U.S. Dep. Agric. Volume 87 No. 3.
- 51. West, E.S. and O. Perkman.
 Effect of soil moisture on transpiration.
 Aust. J. Agric. Res. 4: 326 333.

A P P E N D I X

20° C.*	Dec.		1.19	3.80	2	9	8.16	9	11.15	12.61	14.03	15.36	16.59	17.70		. 6	9.5	20.23	. 7	1.2	1.5	1.7	21.86	1.6					
R, at top of atmosphere. Expressed as equivalent evaporation at	Nov.			5.15			9.45		12.10	13.34	14.50	5.	16.53	17.37		18.09	. 7	19.19	<u>د</u>	19.77	9.8	9.8	19.66	9.0					
	Oct.	Inches	. 6	8.70	10.12	10.44	12.66	13.78	14.80	15.74	16.60	•	17.98	18.42		18.68	18.80	18.80	. 7	18.50	18.18	17.72	7.1	15.44					
	Sept.		0.2	12.48	.52 13.5		15.29	6.0	6.6	7.1	7.4	•	7.7	17.67		7.4		6.7	.20 16.	.17 15.4	14.6	3.7	•	0.3	(1942).				
	Aug.		. 3	6.		18.02	18.41	. 6	∞.	•	18.70	•	18.05	17.53		16.88	16.10	5.2				10.77		2					
	July		hes	hes	hes	hes	. 1	9.7	9.9	0.		19.90	19.68	Ś.	•	8.2	17.55	16.71		15.77	14.73	13.60	2.3	11.11	9.77		6.96		er Shaw
	june		19.51		8	8	19.80	9.6	19.28	8	18.29	7.6	16.86	15.99		°.	6.	12.79	. 5	. 2	6.	Ŝ.	6.19	· 2	by Napier				
	May		0.	0.	с.	<u>.</u> 5	19.69	9.7	5.	19.35	6.	8.4	17.86	17.12		. 2	ε.	4.	3.1	00			7.80		om data				
	Apr.		. 2	. 1	15.89	<u>د</u>	17.12	7.5	17.90		18.16	8.0	17.85	17.50		0.	4	5.	°0	13.92	00	2	10.56	0	* **Computed from data				
	2			2	S.	. 6) T	. 6	•	.2	. 7	18.20	4.	18.63				18.19	. 7		•	80	14.92	. 6					
radiation,	Feb.**		3.93	6.65	6	9.29	10.54	11.72	12.82	13.83	14.74	15.54	16.22	16.78		17.23	17.58	17.72	17.84	17.84	17.70	17.42	17.00	15.76					
Solar	Jan.		1.76	4.59	0	S	9.03	10.52	11.97	13.35	14.63	15.81	16.88	17.84		18.68	9.	20.02	.	20.90	21.14	21.28	21.22	20.88					
Table 3.	Latitude	North	60	50	45	40	35	30	25	20	15	10	5	Equator	South	Ŝ	10	15	20	25	30	35	40	50					

** Computed it office and by inapted bitaw (1776). February computed for average of 28, 25 days.

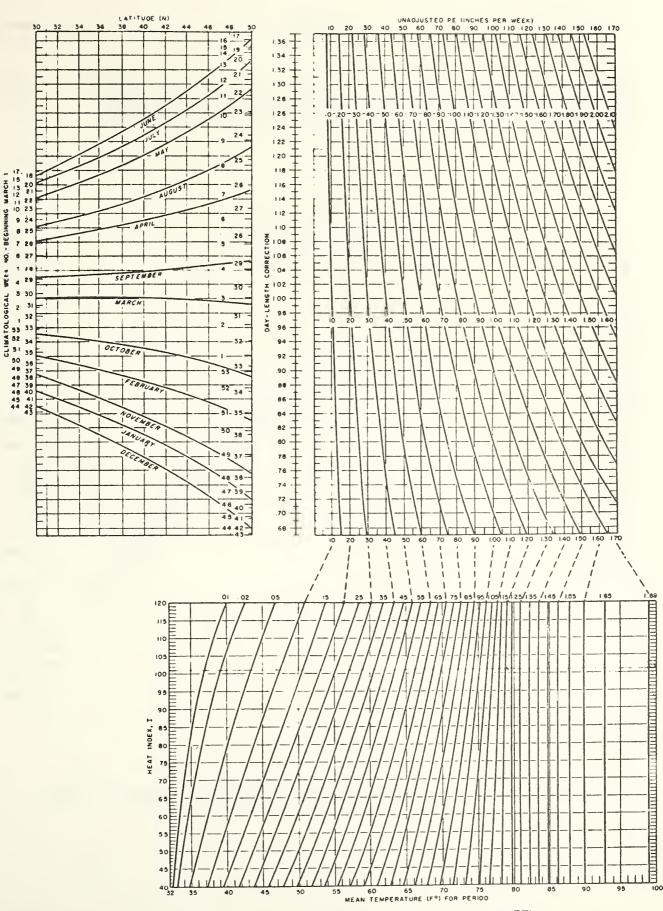


FIGURE 2 -Nomogram for computation of potential evapotranspiration (PE).

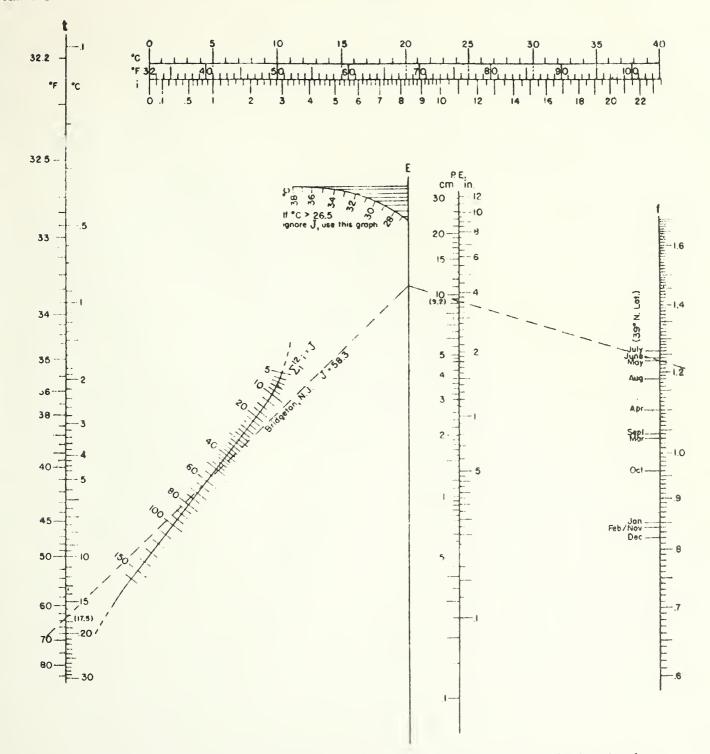
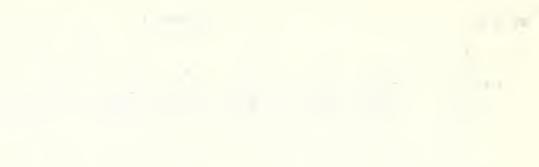



FIGURE 3 A noncogram to determine the potential evapotranspiration according to Thornthwaite's formula.

