Lineare Algebra und analytische Geometrie II

Arbeitsblatt 53

Übungsaufgaben

Aufgabe 53.1. Es seien V und W endlichdimensionale normierte \mathbb{K} -Vektorräume. Zeige, dass die Maximumsnorm auf dem Homomorphismenraum $\mathrm{Hom}\,(V,W)$ in der Tat eine Norm ist.

Aufgabe 53.2. Es seien V und W euklidische Vektorräume und sei

$$\varphi\colon\thinspace V\longrightarrow W$$

eine lineare Abbildung. Zeige, dass es einen Vektor $v \in V$, ||v|| = 1, mit

$$||\varphi(v)|| = ||\varphi||$$

gibt.

Aufgabe 53.3. Berechne für die Matrix

$$\begin{pmatrix} 2 & -3 \\ 4 & 5 \end{pmatrix}$$

- (1) die Maximumsnorm, die Summennorm, und die euklidische Norm,
- (2) die Maximumsnorm zu Maximumsnorm, Summennorm oder euklidischer Norm auf dem \mathbb{R}^2 in allen Kombinationen,
- (3) die Spaltensummennorm und die Zeilensummennorm.

AUFGABE 53.4. Zeige, dass die Spaltensummennorm auf dem Matrizenraum $\operatorname{Mat}_{m \times n}(\mathbb{K})$ gleich der Maximumsnorm im Sinne von Definition 53.1 ist, wenn man die Räume \mathbb{K}^n und \mathbb{K}^m mit der Summennorm versieht.

AUFGABE 53.5. Betrachte die lineare Abbildung

$$\varphi \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2, (x, y) \longmapsto \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix},$$

wobei der \mathbb{R}^2 mit der euklidischen Norm versehen sei. Bestimme die Eigenwerte, die Eigenvektoren und die Norm von φ .

Aufgabe 53.6. Es sei

$$\varphi \colon \mathbb{R}^n \longrightarrow \mathbb{R}, (x_1, \dots, x_n) \longmapsto \sum_{i=1}^n a_i x_i,$$

eine lineare Abbildung $\neq 0$. Bestimme einen Vektor $v \in \mathbb{R}^n$ auf der abgeschlossenen Kugel mit Mittelpunkt 0 und Radius 1, an dem die Funktion

$$B(0,1) \longrightarrow \mathbb{R}, v \longmapsto |\varphi(v)|,$$

ihr Maximum annimmt. Bestimme die Norm von φ .

Aufgabe 53.7. Zeige, dass die Matrizenmultiplikation

$$\operatorname{Mat}_{m \times n}(\mathbb{K}) \times \operatorname{Mat}_{n \times p}(\mathbb{K}) \longrightarrow \operatorname{Mat}_{m \times p}(\mathbb{K}), (A, B) \longmapsto A \circ B,$$

stetig ist.

Es sei

$$f: L \longrightarrow M, x \longmapsto f(x),$$

eine Abbildung zwischen den metrischen Räumen L und M. Die Abbildung heißt Lipschitz-stetig, wenn es eine reelle Zahl $c \geq 0$ mit

$$d(f(x), f(y)) \le c \cdot d(x, y)$$

für alle $x, y \in L$ gibt.

Aufgabe 53.8. Es seien V und W endlichdimensionale normierte $\mathbb{K} ext{-Vektor}$ -räume und

$$\varphi \colon V \longrightarrow W$$

eine lineare Abbildung. Zeige, dass φ Lipschitz-stetig ist.

Aufgabe 53.9.*

Es sei V ein endlichdimensionaler \mathbb{K} -Vektorraum und $\varphi\colon V\to V$ eine lineare Abbildung.

(1) Zeige, dass für jeden Vektor $v \in V$ die Abschätzung

$$||\varphi(v)|| \le ||v||$$

genau dann gilt, wenn für die Supremumsnorm

$$||\varphi|| \leq 1$$

gilt.

- (2) Zeige, dass φ , wenn es die Bedingungen aus Teil (1) erfüllt, stabil ist
- (3) Man gebe ein Beispiel für ein φ , das stabil ist, das aber nicht die Eigenschaften aus Teil (1) besitzt.

Aufgabe 53.10. Zeige, dass eine lineare Abbildung

$$\varphi \colon V \longrightarrow W$$

zwischen endlichdimensionalen normierten \mathbb{K} -Vektorräumen V und W genau dann stark kontrahierend ist, wenn $||\varphi|| < 1$ ist.

Aufgabe 53.11.*

Sei

$$M = \begin{pmatrix} i & 1 \\ 0 & i \end{pmatrix}.$$

- (1) Erstelle eine Formel für M^n .
- (2) Ist die Folge M^n beschränkt, ist sie konvergent?

Aufgabe 53.12.*

Bestimme eine Formel für die Potenzen

$$\begin{pmatrix} \frac{1}{2} & 1 & 0\\ 0 & \frac{1}{2} & 1\\ 0 & 0 & \frac{1}{2} \end{pmatrix}^n.$$

Aufgabe 53.13. Sei

$$W = \operatorname{End}(V)$$

der Endomorphismenraum zu einem endlichdimensionalen \mathbb{K} -Vektorraum V. Welche Eigenschaften einer Norm erfüllt der Spektralradius $\varphi \mapsto \rho(\varphi)$, welche nicht?

AUFGABE 53.14. Es sei V ein endlichdimensionaler \mathbb{K} -Vektorraum und v_n , $n \in \mathbb{N}$, eine Folge in V. Zeige, dass die Folge genau dann konvergiert (bezüglich einer beliebigen Norm), wenn für eine (jede) Basis sämtliche Komponentenfolgen in \mathbb{K} konvergieren.

Aufgabe 53.15. Zeige, dass ein nilpotenter Endomorphismus

$$\varphi \colon V \longrightarrow V$$

auf einem \mathbb{K} -Vektorraum V asymptotisch stabil ist.

Aufgabe 53.16.*

Zeige, dass ein Endomorphismus

$$\varphi \colon V \longrightarrow V$$

mit endlicher Ordnung auf einem endlich
dimensionalen \mathbb{K} -Vektorraum V stabil ist.

AUFGABE 53.17. Zeige mit jeder Charakterisierung von Satz 53.10, dass eine Isometrie $\varphi \colon V \to V$ auf einem euklidischen Vektorraum V stabil ist.

Aufgabe 53.18. Es sei

$$V = U \oplus W$$

eine direkte Summenzerlegung eines endlich
dimensionalen \mathbb{K} -Vektorraumes und es sei

$$\varphi \colon V \longrightarrow V$$

ein Endomorphismus mit einer direkten Summenzerlegung

$$\varphi = \psi \oplus \theta.$$

Zeige, dass φ genau dann asymptotisch stabil ist, wenn sowohl ψ als auch θ asymptotisch stabil sind.

AUFGABE 53.19. Es sei

$$V = U \oplus W$$

eine direkte Summenzerlegung eines endlich
dimensionalen $\mathbb{K}\text{-Vektorraumes}$ und es sei

$$\varphi \colon V \longrightarrow V$$

ein Endomorphismus mit einer direkten Summenzerlegung

$$\varphi = \psi \oplus \theta$$
.

Zeige, dass φ genau dann stabil ist, wenn sowohl ψ als auch θ stabil sind.

Aufgabe 53.20. Es sei

$$V = U \oplus W$$

eine direkte Summenzerlegung eines endlich
dimensionalen \mathbb{K} -Vektorraumes und es sei

$$\varphi \colon V \longrightarrow V$$

ein Endomorphismus mit einer direkten Summenzerlegung

$$\varphi = \psi \oplus \theta.$$

Zeige, dass die Folge φ^n genau dann konvergiert, wenn sowohl ψ^n als auch θ^n konvergieren.

Aufgabe 53.21. Zeige

$$\begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \cdots & 0 & \lambda & 1 \\ 0 & \cdots & \cdots & 0 & \lambda \end{pmatrix}^n \begin{pmatrix} 1 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \lambda^n + n\lambda^{n-1} \\ \lambda^n \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Aufgabe 53.22. Es sei V ein endlichdimensionaler \mathbb{K} -Vektorraum und

$$\varphi \colon V \longrightarrow V$$

ein Endomorphismus. Zeige, dass die folgenden Eigenschaften äquivalent sind.

- (1) Die Folge φ^n konvergiert in End (V).
- (2) Zu jedem $v \in V$ konvergiert die Folge $\varphi^n(v), n \in \mathbb{N}$.
- (3) Es gibt ein Erzeugendensystem $v_1, \ldots, v_m \in V$ derart, dass $\varphi^n(v_j)$, $j = 1, \ldots, m$, konvergiert.
- (4) Der Betrag eines jeden komplexen Eigenwerts von φ ist kleiner oder gleich 1 und falls der Betrag 1 ist, so ist der Eigenwert selbst 1 und diagonalisierbar.
- (5) Für eine beschreibende Matrix M von φ , aufgefasst über \mathbb{C} , sind die Jordan-Blöcke der jordanschen Normalform gleich

$$\begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \cdots & 0 & \lambda & 1 \\ 0 & \cdots & \cdots & 0 & \lambda \end{pmatrix}$$

mit $|\lambda| < 1$ oder gleich (1).

Aufgabe 53.23. Es seien V und W endlichdimensionale normierte $\mathbb{K}\text{-Vektor-r\"{a}ume}$ und

$$\psi \colon V \longrightarrow W$$

ein Isomorphismus. Es sei

$$f: V \longrightarrow V$$

ein Endomorphismus und

$$q := \psi \circ f \circ \psi^{-1}$$

der entsprechende Endomorphismus auf W. Zeige, dass f genau dann stabil (asymptotisch stabil) ist, wenn dies auf g zutrifft.

Aufgabe 53.24. Es sei $\varphi \colon V \to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraumes V. Zeige die folgenden Aussagen.

- (1) Wenn φ asymptotisch stabil ist, dann konvergiert die Folge $(\det \varphi)^n$, $n \in \mathbb{N}$, gegen 0.
- (2) Wenn φ stabil ist, dann ist die Folge $(\det \varphi)^n$, $n \in \mathbb{N}$, beschränkt.
- (3) Wenn die Folge φ^n , $n \in \mathbb{N}$, konvergiert, dann konvergiert die Folge $(\det \varphi)^n$, $n \in \mathbb{N}$, gegen 0 oder gegen 1.

Aufgabe 53.25.*

Man gebe ein Beispiel für eine Matrix, die nicht stabil ist, für die aber die Folge $(\det \varphi)^n$, $n \in \mathbb{N}$, gegen 0 konvergiert.

Es sei T eine Menge, M ein metrischer Raum und

$$f_n \colon T \longrightarrow M$$

 $(n \in \mathbb{N})$ eine Folge von Abbildungen. Man sagt, dass die Abbildungsfolge punktweise konvergiert, wenn für jedes $x \in T$ die Folge

$$(f_n(x))_{n\in\mathbb{N}}$$

konvergiert.

AUFGABE 53.26. Es sei $M_k = ((a_{ij})_k)_{1 \leq i \leq m, 1 \leq j \leq n}$ eine Folge von reellen $m \times n$ -Matrizen und

$$\varphi_k \colon \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

die zugehörige Folge von linearen Abbildungen. Zeige, dass die Folgen der Einträge $(a_{ij})_k$ für alle i, j genau dann konvergieren, wenn die Folge der Abbildungen punktweise konvergiert.

Aufgaben zum Abgeben

Aufgabe 53.27. (2 Punkte)

Es seien V und W endlichdimensionale normierte \mathbb{K} -Vektorräume und $\varphi \colon V \to W$ eine lineare Abbildung. Zeige die Abschätzung

$$||\varphi(v)|| \le ||\varphi|| \cdot ||v||$$

für alle $v \in V$.

Aufgabe 53.28. (5 (1+3+1)) Punkte)

Berechne für die Matrix

$$\begin{pmatrix} 6 & -2 \\ -5 & 7 \end{pmatrix}$$

- (1) die Maximumsnorm, die Summennorm, und die euklidische Norm,
- (2) die Maximumsnorm zu Maximumsnorm, Summennorm oder euklidischer Norm auf dem \mathbb{R}^2 in allen Kombinationen,
- (3) die Spaltensummennorm und die Zeilensummennorm.

Aufgabe 53.29. (3 Punkte)

Sei V ein euklidischer Vektorraum und sei

$$\varphi \colon V \longrightarrow V$$

eine lineare Abbildung derart, dass eine Orthogonalbasis aus Eigenvektoren von φ existiert. Zeige, dass

$$||\varphi|| = \max(|\lambda|, \lambda \text{ ist Eigenwert von } \varphi)$$

gilt.

Aufgabe 53.30. (6 Punkte)

Es sei M eine $n \times n$ -Matrix über \mathbb{K} . Zeige, dass die folgenden Aussagen äquivalent sind.

(1) In der Folge M^n , $n \in \mathbb{N}$, gibt es eine Wiederholung, d.h.

$$M^n = M^m$$

für ein Zahlenpaar n < m.

- (2) In der Folge $M^n, n \in \mathbb{N}$, kommen nur endlich viele verschiedene Matrizen vor.
- (3) Die Folge M^n , $n \in \mathbb{N}$, wird letztlich (also ab einer bestimmten Stelle) periodisch.
- (4) Die Jordanblöcke zu M über \mathbb{C} haben die Gestalt

$$\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \cdots & 0 & 0 & 1 \\ 0 & \cdots & \cdots & 0 & 0 \end{pmatrix}$$

oder (λ) mit einer komplexen Einheitswurzel λ .

Aufgabe 53.31. (6 Punkte)

Die reelle Ebene \mathbb{R}^2 sei mit der euklidischen, der Summen- oder der Maximumsmetrik versehen. Bestimme, abhängig von der gewählten Metrik, die maximale Anzahl von Punkten $P_1, \ldots, P_n \in \mathbb{R}^2$ derart, dass die Metrik auf der Teilmenge $T = \{P_1, \ldots, P_n\}$ die diskrete Metrik induziert.