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2018 Template synthesis of the Cu2O

nanoparticle-doped hollow carbon nanofibres

and their application as non-enzymatic glucose

biosensors. R. Soc. open sci. 5: 181474.

http://dx.doi.org/10.1098/rsos.181474

Received: 27 September 2018

Accepted: 25 October 2018

Subject Category:
Chemistry

Subject Areas:
inorganic chemistry/materials science/

nanotechnology

Keywords:
template synthesis, Cu2O nanoparticles, doped,

hollow carbon nanofibres, biosensors

Author for correspondence:
Renjiang Lü
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The cuprous oxide nanoparticle (Cu2O NP)-doped hollow carbon

nanofibres (Cu2O/HCFs) were directly synthesized by the anodic

aluminium oxide (AAO) template. The doped Cu2O NPs were

formed by in situ deposition by direct reduction reaction of

precursor carbonization in thermal decomposition and could

act as functionalized nanoparticles. The synthesized Cu2O/

HCFs were characterized in detail by transmission electron

microscopy (TEM), scanning electron microscopy (SEM), X-ray

diffraction (XRD), X-ray photoelectron spectroscopy (XPS),

Raman spectroscopy and inductively coupled plasma mass

spectrometry (ICP-MS). The results reveal that Cu2O/HCFs

have a tubular structure with an average diameter of

approximately 60 nm. The shape of the Cu2O/HCFs is

straight and Cu2O NPs are uniformly distributed and highly

dispersed in HCFs. Cu2O/HCFs have good dispersibility. The

electrochemical activity of Cu2O/HCFs was investigated by

cyclic voltammetry (CV), the glucose sensors display high

electrochemical activity towards the oxidation of glucose.

Cu2O/HCFs can effectively accelerate the transmission of

electrons on the electrode surface. Cu2O/HCFs are applied in

the detection of glucose with a detection limit of 0.48 mM, a

linear detection range from 7.99 to 33.33 mM and with a high

sensitivity of 1218.3 mA cm22 mM21. Moreover, the

experimental results demonstrate that Cu2O/HCFs have good

stability, reproducibility and selectivity. Our results suggest that

Cu2O/HCFs could be a promising candidate for the

construction of non-enzymatic sensor.
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1. Introduction

Owing to the special structure, good stability, unique electronic properties and the extraordinary

mechanical properties, carbon-based materials have attracted considerable attention since they were

discovered, and are widely used in many important technological fields such as catalysis [1], sensors [2],

adsorbents [3] and electronic devices [4]. Among numerous carbon-based materials, one-dimensional

hollow carbon-based materials have attracted more and more scientific and technological interest owing

to their excellent properties such as high aspect ratio, light weight, high thermal conductivity, excellent

electroconductibility and other superior characteristics [5].

To improve the practical application of one-dimensional materials, in recent years, researchers have

combined metal and metal oxides with one-dimensional carbon-based materials [6,7]. The incorporation

of metal or metal oxide nanoparticles with one-dimensional carbon-based materials may produce the

synergistic effects and may lead to the improved property of the composites [8,9]. At present, such

studies have been reported. For example, Zn ferrite/multi-walled carbon nanotube (Zn ferrite/MWCNT)

composite was prepared [10]. The Zn ferrite/MWCNT composite showed the addition of low amount,

low coating thickness and enhanced EM-wave absorption performance. Unique morphology Fe3O4/Fe-

carbon nanotube (CNT) nanocomposites at room temperature by a facile chemical synthesis method [11].

The capacitance of Fe3O4 could be extremely improved by dual conduction system containing CNTs and

Fe. Ni-TiO2/carbon nanotube photocatalysts were synthesized by a simple method [12]. The CNTs could

be applied as useful photocatalytic support for the fixation of TiO2. Hydrogen evolution was enhanced

by the Ni loading on the TiO2 nanocrystallites supported on the carbon nanotube. Combined metal or

metal oxides with one-dimensional carbon-based materials have attracted more and more scientific interest.

Among various metal oxides, Cu2O, as an important class of p-type semiconductor, has been paid much

attention in enzyme-free glucose sensors in recent years owing to its high electrocatalytic activity, low cost

and good stability, and it is a promising candidate in the fabrication of electrochemical materials, [13] and

advantages of Cu2O have been intensively investigated [14]. For example, the Cu/Cu2O nanocluster-

deposited carbon spheres have been synthesized through a layer-by-layer assembly method and

subsequent in situ self-reduction process. The results showed that the Cu/Cu2O nanoclusters are

homogeneously anchored onto the carbon spheres. The double-shelled Cu/Cu2O/CSs showed

remarkable electrocatalytic activity toward glucose oxidation including two linear ranges with high

selectivity of 63.8 and 22.6 mA cm22 mM21 as well as good stability and repeatability [15]. Yazid et al.
reported a highly sensitive and selective glucose sensor based on cuprous oxide/graphene

nanocomposite-modified glassy carbon electrode (Cu2O/graphene/GCE). The proposed sensor was

successfully applied for the determination of glucose concentration in real human blood samples [16]. A

type of nanospindle-like Cu2O/straight multi-walled carbon nanotube (SMWNT) nanohybrid-modified

electrode for sensitive enzyme-free glucose detection has been fabricated, the as-prepared nanospindle-

like Cu2O/SMWNT nanohybrids exhibit much higher electrocatalytic activity on the oxidation of glucose

than the SMWNTs or Cu2O alone as the electrode-modifying material. More importantly, the

nanohybrid-modified electrodes also show good stability, reproducibility and high resistance against

poisoning by chloride ion and the commonly interfering species such as ascorbic acid, dopamine, uric

acid and acetamidophenol. These good analytical performances make the nanospindle-like Cu2O/

SMWNT nanohybrids promising for the future development of enzyme-free glucose sensors [17].

Recently, research on Cu2O-doped carbon-based materials has gradually increased. Various

morphologies of Cu2O-doped carbon-based materials have been prepared by several different methods,

such as chemical vapour deposition method, hydrothermal method, solvothermal method and wet

chemical method [18–22]. These materials show excellent performance in solar cells, sensors and

catalysis and other fields; however, there are some defects, such as uneven nanoparticle size, poor

dispersion, carbon nanotube agglomeration and other issues. The unique structure of anodic aluminium

oxide (AAO) template makes them very promising hosts for preparing one-dimensional nanomaterials.

The precursor has been applied to backfill the template, which has resulted in the formation of one-

dimensional nanostructures. Considering the composition of AAO template, it is believed that metal

doped or decorated in the prepared one-dimensional nanostructures would be obtained through the in
situ deposition reaction of AAO template. Therefore, we require a careful synthetic strategy to fabricate

Cu2O-doped HCFs with a high surface-to-volume ratio and expect to improve the electrochemical

activity of HCF film enzyme-free glucose sensors, which is still a challenging work.

Herein, we have proposed a simple and effective technique for preparing novel hollow carbon

nanofibres (HCFs) with highly dispersed Cu2O nanoparticles by using the one-step direct AAO

template route, which employed glucose as the carbon source and copper acetate (CuAc2) as the
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dopants. To investigate the structure and morphology of Cu2O/HCFs, scanning electron microscopy

(SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectra and X-ray

photoelectron spectroscopy (XPS) were carried out. Cyclic voltammetry (CV) was used to evaluate the

electrochemical detection of the Cu2O/HCFs-modified electrode towards glucose.
lsocietypublishing.org
R.Soc.open

sci.5:181474
2. Material and methods
2.1. Materials
Glucose, phosphoric acid, Na2CO3 and HNO3 (AR, Kermel Ltd, China); copper acetate and perchloric

acid (AR, Aladin Ltd, China); sodium hydroxide (AR, Jinli Ltd, China), high purity aluminium

(99.999%, Mengtaiyouyan Technology Development Center, China); anhydrous ethanol (AR, Fuyu

Fine Chemical Ltd, China) were used.

2.2. The preparation of AAO template
AAO templates were prepared by two-step anodization. High purity (99.999%) aluminium plates were

ultrasonically cleaned in the mixed solution of acetone and alcohol (v/v ¼ 1 : 1) for 30 min. All

aluminium plates were annealed at 5008C for 2 h in a conventional furnace and degreased with acetone.

The high purity aluminium plates were anodized in a 0.3 M oxalic acid solution under an applied

voltage of 40 V and at a temperature around 48C for 6 h. After accomplishing the first anodizing stage,

alumina layers were removed by wet etching in aqueous solution of 6 wt% phosphoric acid and 1.8 wt%

chromic acid at 708C for 20 min. The textured Al plates were anodized again for 72 h under the same

conditions as for the first anodizing. A subsequent etching treatment was carried out in a 6 wt%

phosphoric acid solution at 40–508C for 1 h, followed by washing and drying.

2.3. The preparation of Cu2O/HCFs
Glucose (10.00 g) and different mass CuAc2 (0.50, 1.00, 2.00 and 4.00 g) were dissolved in 100 ml deionized

water to obtain the corresponding precursors, the fabricated precursors were labelled as H-1, H-2, H-3 and

H-4, respectively. After magnetic stirring for 30 min, the AAO membranes on Al substrate were placed in a

home-made device, with the precursor in a separating funnel, and the reactor was subsequently evacuated.

After opening the funnel cock, the nano-channels of the AAO templates were filled with the precursor

depending on the atmospheric pressure. The templates were then removed from the vacuum container.

After drying at room temperature for 6 h in an ambient environment and removal of surface residues

[23], the templates were calcined in the N2 atmosphere for 3 h at different temperatures (400, 500 and

6008C). After slow cooling to room temperature, the Cu2O/HCFs were obtained after removing the

alumina template by etching with the 6 M NaOH solution.

2.4. The preparation of Cu2O/HCFs/GCE
The modified electrode was prepared as follows. Five microlitres of the suspension with dispersed

Cu2O/HCFs was coated on the pre-treated glassy carbon electrode and dried at room temperature.

Before modification, the bare GCE was polished with 1, 0.5 and 0.03 mm alumina slurry and then

washed ultrasonically in deionized water, 50% (v/v) HNO3 solution, ethanol and water for 6 min [24].

2.5. Electrochemical measurements
Electrochemical measurements were carried out on a CHI660E Electrochemical Workstation with a

conventional three-electrode system composed of a platinum wire as an auxiliary electrode, a saturated

Hg/Hg2Cl2 (SCE) as a reference electrode [15] and the modified electrode as a working electrode.
3. Results
Thermogravimetric (TG) curves of the precursor are displayed in figure 1. They revealed that the obvious

weight loss occurred from room temperature to 170, 170 to 260 and 260 to 5508C. The first step of 5%

weight loss corresponds to the evaporation of water from the precursor, and the second step of 13%
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Figure 1. TG (a) and DSC (b) thermoanalytical response curves of precursor.
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weight loss contributes to complete decomposition of copper acetate at the higher temperature with their

corresponding endothermic peaks, which is in agreement with the composition of the precursor, as shown

in the following reaction equation:

CuðCH3OOÞ2 ! CH4 þ CO2 þ CuO:

The third step of 65% weight loss for precursor may be due to the decomposition of glucose in the

precursor. Above 5508C, the weight loss of the precursor remains unchanged. Glucose reduces CuO to

Cu2O. According to the TG data, 6008C was used as the calcination temperature of the products.

The surface morphologies of the as-synthesized Cu2O/HCFs as imaged by SEM are shown in

figure 2a,b. It can be observed from the photos that the carbon nanomaterials are overlapped with

each other to form a large-area reticular morphology, the carbon nanomaterial is uniform in size, and

the shape is straight. The prepared samples have a fibre structure with the uniform outer diameter of

approximately 60 nm. The diameter and length of the samples mainly depend upon the porous nature

of the AAO membrane (SEM images of the top view, electronic supplementary material, figure S1).

Figure 2c,d shows the TEM images of Cu2O/HCFs. One can see that almost all the Cu2O/HCFs are

hollow structures and have good monodispersity. Cu2O NPs in the HCFs are highly dispersed and

have no aggregation and the average size of Cu2O NPs is about 21.5 nm. SEM and TEM display

Cu2O/HCFs outside the diameter, from which the average diameter of Cu2O/HCFs can be 60 nm.

This diameter is consistent with the pore diameter of the AAO templates.

The crystal structure of the as-synthesized catalysts was analysed by the XRD technique and their

patterns of calcination at different temperatures are given in figure 3. All relatively intense diffraction

peaks with 2u angles of 36.28, 43.58, 62.48 and 74.78 correspond to the crystal planes of (111), (200),

(220) and (311) of Cu matching well with the standard XRD pattern for Cu2O of face-centred cubic

lattice [25]. No peaks of impurity (such as Cu) were found in the XRD patterns, indicating that the

obtained particles are pure cubic phase Cu2O with high crystallinity. It must also be mentioned that
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the peaks broaden obviously; this indicates that smaller Cu2O nanoparticles were formed in HCFs.

The characteristic diffraction peak of graphitized carbon was found at 2u angles of 26.028and 42.38;
according to the literature [26], the (002) (100) crystal face was assigned to carbon. Owing to the

decomposition of glucose in the precursor to form hollow carbon nanostructures after high

temperature calcination, Cu2O nanoparticles appear in HCFs. The crystallite size was around 21.5 nm

using the Scherrer formula; this is consistent with the observation from TEM. Figure 4 shows the

Raman spectra of the samples calcined at 400, 500 and 6008C. The spectrum of our sample contains G

band at 1584 cm21 and D band at 1352 cm21. The D band represents the disordered graphite

associated with defects and amorphous carbon, whereas the G band represents the ordered graphite

corresponding to the stretching mode of the C–C bonds in the graphite plane. The D band is

assigned to the breathing mode of A1g symmetry due to the phonon interaction near the K zone

boundary, while the G band is attributed to the E2g phonon mode of the sp2 bonded carbon atoms

[27–29]. With the calcination temperature rising, Raman spectra undergo significant changes.

Specifically, the G band broadened significantly and displayed a shift to higher frequencies (blue

shift), G band moved from 1112 cm21 to 1154 cm21 and the D band D peak intensity increased from
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151.03 to 178.71. At 6008C, the peak Intensity ratio (IG/ID) was 1.22, crystalline carbon content gradually

increases and indicates that the amorphous carbon transforms into graphitized carbon, which is

consistent with the XRD results.

Figure 5a,b is O1s and Cu2p X-ray energy spectrum, respectively. As can be seen from figure 5a, the

peak at 532.38 eV was assigned to O1s of Cu2O. As we know, the binding energy of O1s in the crystal

lattice is 528.5–529.7 eV, and the binding energy of absorbed oxygen is 530.54–533.77 eV [30]. Owing
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to the combination of copper and oxygen in the precursor, the O1s peak appears in figure 5a. As shown

in figure 5b, the peaks at 932.58 and 953.38 eV were, respectively, assigned to Cu2p3/2 and Cu2p1/2 of

Cu2O, suggesting the presence of Cu2O [31]. It is reported in the literature that a satellite peak in the

XPS spectrum of Cu2p indicates the presence of Cu(II) in the sample, unobvious satellite peaks

appear in the figure 5b, of Cu(II) in the sample, unobvious satellite peaks appear in figure 5b, this

means the presence of low content of Cu(II) in the sample [32]. The results of XPS are in consistent

with the observation from XRD, it is further explained that the metal nanoparticles in the material are

mainly Cu2O particles.

To investigate the electrochemical properties of Cu2O/HCFs, the CV studies were performed in

glucose solution at a scan rate of 100 mV s21 and potential range from 0 to þ1.1 V concerning the

electrode. Zhang et al. [33] investigated the effect of pH value on the glucose electrochemical

oxidation by Cu2O/HCF-modified electrode. The result showed that it is helpful to the mutarotation

of glucose at high pH value and increasing current. Because glucose is easily oxidized under alkaline

conditions, we choose 0.1 M NaOH for non-enzymatic glucose detection. Figure 6a–c severally

displays the cyclic voltammograms (CVs) of the bare GCE, Cu2O/HCFs/GCE in 0.1 M NaOH with

and without the presence of glucose at room temperature; a is the CV curve of Cu2O/HCFs/GCE in

the blank NaOH base solution, b is the CV curve of the bare GCE in the NaOH solution containing

0.1 M glucose and c is the CV curve of the Cu2O/HCFs/GCE in the NaOH solution containing 0.1 M

glucose. From curves b and c, it can be seen that an oxidation process started at ca þ0.5 V and

reached a peak at about þ1.1 V on the modified electrodes, but the modified electrode has the more

obvious electrochemical response to glucose. Comparing a and b curves, while no peak has been

observed in the CV curve in the absence of glucose, a dramatic change was observed at the electrode

when glucose was added. Anodic peak current of Cu2O/HCFs/GCE apparently enlarged at 0.8 V.

This illustrated that the Cu2O/HCFs/GCE have the electrochemical ability of glucose oxidation,

which corresponded to the irreversible glucose oxidation due to the conversion of Cu(II) to Cu(III).

The possible reaction could be explained by the following equations:

CuOþ 3H2O! 2CuðOHÞ2 þH2,

CuðOHÞ2 ! CuOþH2O,

CuOþOH� ! CuOOHþ e� ! CuðOHÞ�4 þ e�

and CuðIIIÞ þ glucoseþ e� ! gluconolactoneþ CuðIIÞ:

Cu(III) is generated on the Cu2O surface rapidly and the oxidized glucose is converted to gluconic acid.

Also, the conversion of Cu(III) into Cu(II) species gives rise to the increase in the oxidation peak current

and the decrease in the reduction peak current [34]. The formation of Cu(III) species not only leads to

high catalytic activity but also plays the role of an electron transfer mediator. Moreover, the cubic

Cu2O has the characteristics of the large specific surface area and is conducive to electrochemical

reactions [35]. Figure 7 shows Nyquist plots for Faradic impedance measurement of bare GCE (red

curve) and Cu2O/HCFs/GCE (black curve) in 0.1 mol l21 NaOH containing 10 mmol l21
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Table 1. The amount of Cu in the products.

sample content of Cu in the products (wt%)

H-1 7.43

H-2 13.00

H-3 20.65

H-4 22.52
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K3[Fe(CN)6]/K4[Fe(CN)6]. The frequency range is from 0.01 Hz to 100 kHz and the amplitude is 0.21 mV.

When the electrode was modified with Cu2O/HCFs, the diameter of the semicircle became significantly

smaller, indicating that Cu2O/HCFs can effectively accelerate the transmission of electrons on the

electrode surface. The results of the electrochemical impedance spectroscopy (EIS) of the glassy carbon

electrode and the modified electrode are consistent with the results of CV.

The Cu contents of the H-1, H-2, H-3 and H-4 samples were obtained by ICP-MS, and the amounts of

Cu in the products are listed in table 1. The relationship between the peak current value and the contents

of copper was analysed. It can be seen from table 1 that as the content of copper acetate in the precursor

increases, the content of Cu in the sample is also increasing, but the content of Cu does not increase

linearly. When the mass of copper acetate in the precursor is increased from 0.5 g to 2 g, the content

of Cu in HCFs changes obviously. When the mass of copper acetate in the precursor is increased from
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2 g to 4 g, the content of Cu in MHCFs is no longer changed obviously. This coincides with the change in

the peak current of figure 8. The reason is that the content of glucose is reducing; however, the content of

glucose in the precursor is constant, and its reducing ability is also limited, only a certain amount of

copper acetate can be reduced, therefore, according to the data from table 1, the optimum doping

amount of copper acetate is 2 g.

To further discuss the electrochemical properties, the CVs of Cu2O/HCFs electrode at different scan

rates ranging from 10 to 100 mV s21 in the potential window of 0–1.1 mV in the 0.1 M NaOH solution

containing 1.0 mM glucose. The oxidative peak current increased with the increasing scan rate in the

range of 10–100 mV s21, as shown in figure 9a. A linear relationship with a linear regression equation

IðAÞ ¼ �9:58� 10�6v� 3:21� 10�5 ðR2 ¼ 0:9982Þ,

between the oxidation peak current of glucose and the square root of scan rate is observed, as shown in

figure 9b. From the results we have obtained, one can conclude that the electrochemical kinetic is

controlled by the adsorption of glucose. Figure 10a illustrates the amperometric responses of the

Cu2O/HCFs/GCE upon successive addition of various concentrations (7.99–33.33 mM) of glucose at a

work potential of 1.1 V. To achieve a homogeneous glucose concentration instantly, the solution was

vigorously stirred to ensure good distribution of electrolyte and glucose. Upon the addition of

glucose, the Cu2O/HCFs/GCE reached the dynamic equilibrium within 6 s, indicating a very fast

amperometric response of the modified electrodes. Figure 10b shows the calibration curve of different

concentrations of glucose on the modified electrodes. As can be seen from figure 10b, the Cu2O/

HCFs-modified electrode displays a good linear range from 7.99 to 33.33 mM and the linear regression

equation can be expressed as

I ¼ 8:6538� 10�8C� 4:2746� 10�5 ðR2 ¼ 0:9919Þ,
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Figure 10. (a) Amperometric responses of the Cu2O/HCF-modified electrode after successive injection of 40 mM glucose in the
0.1 M NaOH solution at the applied potential of 1.1 V. (b) Plot of the catalytic current versus glucose concentration.

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:181474
10
where I and C represent the response current and glucose concentration, respectively. With a high

sensitivity of 1218.3 mA cm22 mM21, the low limit of detection (LOD) was 0.48 mM by S/N ¼ 3,

where S and N are the standard deviation of the background current and slope of the calibration

curve, respectively. Obviously, the Cu2O/HCFs-modified electrode here possesses favourable

analytical properties. The high sensitivity was attributed to the high electrocatalytic activity of

Cu2O nanoparticles.

To evaluate the selectivity of the Cu2O/HCFs/GCE, seven possible interfering biomolecules,

threonine, valine, lysine, glutamic acid, ascorbic acid (AA), urea and NaCl, which normally coexist

with glucose in human blood were examined. The experimental results are shown in figure 11. Taking

into consideration that the concentration of glucose is at least 30 times that of AA, NaCl, urea, valine,

threonine and lysine, which is much higher than the concentrations of interfering species in human

blood [36], thus, normal physiological levels of glucose (0.1 mM), AA (0.01 mM) and NaCl (0.01 mM),

urea (0.01 mM), valine (0.01 mM), threonine (0.01 mM), lysine (0.01 mM), in 0.1 M NaOH solution by

CV measurement. As can be seen from figure 11, our fabricating sensor demonstrates high selectivity

and reliable anti-interference property by comparing the amperometric responses of other relevant

electroactive species.

It is well known that the reproducibility and stability are also two important parameters

for electrochemical sensors. The experimental results are shown in table 2. The reproducibility

experiment of the Cu2O/HCFs/GCE was carried out in the 0.1 M NaOH solution by adding 0.1 mM

glucose and measuring the current responses. In a series of five different electrodes prepared under the

same condition, the relative standard deviation (RSD) is 5.64%, indicating that the Cu2O/HCFs/GCE

can hence be a repeated preparation. The storage stability was evaluated at intervals by the measurement

toward 0.1 mM glucose in the 0.1 M NaOH solution, and the electrode was stored at room temperature

when not in use. The proposed Cu2O/HCFs/GCE retained about 89.73% of its initial response after 10

days, indicating the Cu2O/HCFs/GCE has a relatively stable electrochemical performance. Therefore,

the Cu2O/HCF we prepared is an excellent candidate for the fabrication of stable, sensitive and specific

sensors for the non-enzymatic detection of glucose.
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Figure 11. Amperometric responses of the Cu2O/HCFs-modified electrode to successive additions of glucose (0.1 mM), AA
(0.01 mM) and NaCl (0.01 mM), urea (0.01 mM), valine (0.01 mM), threonine (0.01 mM), lysine (0.01 mM) in 0.1 M NaOH.

Table 2. The current responses of reproducibility and repeated experiment.

performance testing 1 2 3 4 5

stability experiment 1.269 � 1024 1.272 � 1024 1.270 � 1024 1.284 � 1024 1.278 � 1024

repeated experiment 1.416 � 1024 1.339 � 1024 1.327 � 1024 1.295 � 1024 1.269 � 1024

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:181474
11
4. Conclusion
In summary, we have presented the fabrication of Cu2O NPs-doped one-dimensional carbon hollow

nanomaterial Cu2O/HCFs via thermal decomposition of a mixture of glucose and CuAc2 inside

cylindrical nano-channels of the AAO template and further carbonization. The photos of SEM and

TEM indicate that the diameter of the carbon hollow nanomaterials is about 60 nm, which is in accord

with the size of the pores in the AAO templates. The Cu2O/HCFs can be explained. The XRD

patterns that demonstrate Cu2O NPs have the face-centred cubic lattice. The Cu2O/HCFs/GCE show

a wide linear range from 7.99 to 33.33 mM with a high sensitivity of 1218.3 mA cm22 mM21 and a

detection limit down to 0.48 mM for glucose. The interfering species commonly presenting in the

environment have no obvious effect on the oxidation of glucose on the Cu2O/HCFs. Owing to the

ease of synthesis, good reproducibility and stability, Cu2O/HCFs become the promising

microstructures for electrochemical biosensor devices of glucose.
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