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ABSTRACT

The min:'.nial cut lover "bound for k-out-of-n systems is computed and

compared wi^-h the true reliability of these systems. The size of the

system, n, :.s increased; and selected degrees of system complexity,

k/n, are studied. The resulting graphs cf system reliability versus

component reliability indicate that both size and complexity cause a

deterioration of the approximation, but "they also indicate that there

is a limit to this deterioration. The minimal cut lower bound is then

examined, theoretically, as the size of the system increases to infinity;

and the limits of deterioration are obtained.
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i. introduction

Reliability, the probability that a device will accomplish the

mission foi which it was designed, has become increasingly more difficult

to compute as devices have become larger and more complex. It is often

not feasible, even with the use of large computers, to calculate the

actual reliability of relatively simple systems. When systems such a?:

the Apollo mooncraft are considered, then clearly the task becomes

formidable, if not impossible. Knowledge of the reliability of such

systems, hcwever, is vitally important.

To comjensate for this inability to compute actual system reliability,

certain methods for approximating reliability have been developed.

Usually, these approximations tend to place lower or upper bounds on the

actual reliability and to become arbitrarily close as the performance

probability of the components increases to unity. In many cases,

however, much analysis remains to be done to determine the strengths

and weaknesses of these approximations.

While the reliability of a k-out-of-n system can be found directly

and needs no approximation, the study of such systems will allow the

characteristics of the minimal cut lower bound method of approximating

reliability to be thoroughly analyzed. This paper will conduct such an

analysis.





II. BACKGROUND AND DISCUSSION

A. DEFINITIONS

Reliability is usually thought of as being time dependent; that is,

it is the probability that a device functions properly over the interval

[0,t]. Implicit in the definition of reliability is the assumption that

the system Dr device has two states: success or failure. Birnbaum,

Esary, and Saunders [2] refer to this definition as "dichotomic

reliability," Throughout this paper use of the term reliability will

imply dichotomic reliability, This same assumption will also be. used

when referring to components and their performance probabilities,

A systen is said to be in logical series if and only if all components

of the system must perform in order that the system can function.

A systen is in logical parallel if aid only if at least one component

must perforn in order for the system to perform,

B. k-OUT-OF-n SYSTEMS

The k-out-of-n system was chosen because it is often found in

practice, and the true reliability of such a system is easily computed

or acquired from tables. This type of system functions when at least

k of its n components perform properly and fails otherwise. Examples

of such a system would include a suspension bridge which needs at

least k of its n cables to remain standing; or a cable consisting of

n wires, k of which are vital to support the maximum load. It is hard

to conceive of such a system in which the n components would not be

identical, and this assumption is usually made. The assumption is also





made that a component either performs properly or fails completely,

and that this action is independent of all other components. Thus, the

reliability of such systems, R , can be obtained by using the equation
s

for the cumulative binomial probability distribution

r - e. o p
k
'a-pr

:£
'

,

(n-B-i)
k

»

-V1*. —Ix.

where p is the probability that the individual components perform

properly. The reliability can also be obtained from numerous cumulative

binomial tables covering a wide range of values for k, n, and p. . If s.ll

components were not identical and independent, then equation (iI-B-l)

would not hold and all possible combinations of k components would

have to be enumerated.

C. MIND-TAX CUT LOWER BOUND

In every system of n components there is a group of components

which, by performing, insures that the system performs. This group

or set of components is called a "path" of the? ayatg
p_t Depending on

the redundancy built into the system, the total number of paths possible

can vary widely; and each path can contain from 1 to n components.

[
Within each path of the system there exists a minimal group of com-

ponents whose performance is absolutely essential to the functioning of

the syst em. This set of components is called a "minimal path set."

Esary and Proschan [4], in a more formal definition, describe a_jainimal

path set ar a path of which no proper subset is also a path .

In a similar fashion, there are within a system certain sets,

consisting of a minimal group of components, whose failure would cause

the system to fail. Each of these sets would be called a "minimal cut





set." In order for one of these minimal cut sets to fail, all the

components belonging to that set must fail * This means that the minimal

cut set can he thought of as forming a parallel structure or a sub-

system with all its components arranged in parallel. Since there can

be more than one minimal cut set in a system, it is entirely possible,

and even likely, that a particular component could appear in several cf

these sets. The failure of any one of the minimal cut sets is sufficient

to fail the systemj_ therefore, the colleotion of cut sets can be thought

of as forming a series structure.

In the k-out-of-n systems, there are k components in a minimal

path set, vhich means that (n-k) components could fail without affecting

the performance of the system. Failure of one more, however, would

cause the system to fail. Therefore
T
there are (n-k+l) components in

a minimal cut set. The total number of minimal cut sets is. then,

simply the number of subsets of size (n-k+l) that can be chosen from
-

.

"

"

the set of n components. This quantity is given by:

n n!

( ) = — . (II-C-I)
n"k+1

(n-k+l)! (k-l)l

A physical representation of this structure would be ( v,n ) cut set

subsystems in series with each subsystem containing (n-k+l) components

in parallel.

Example: In a 3-out-of-5 system, a minimal cut set would contain

(n-k+l), or (5-3+l)=5, components in parallel; and there are (n_k+]_),

t- 51

or (O = = 10 » different ways to obtain these cut sets. The
KX 3! 2!

physical representation would appear as:

8





I— k

3

k

5

10

Theoretically, the representation with the minimal cut structures

in series c:>uld be used to compute the reliability of the system. This

would be siaple and straight forward except when a single component

appears in nore than one minimal cut structure, * Computing this

reliability would then become a cumbersome task, to say the least. This

issue can be avoided, however, by substituting identical and independent

components in place of the repetitions. It is clear, however, that

such substitutions would make the struct ire more likely to fail and

would, in fact, form an upper bound on the probability that the structure

fails, or a lower bound on the reliability of the system. This type cf

structure is then used to form the minimal cut lower bound on a system's

reliability.

In the k-out-of-n system it has been established that each minimal

cut structure would have (n-k+l) components in parallel, and that

( , ., ) of these structures would be connected in series. If p is the
Nn-k+l y r

probability that an individual component functions properly, then (l-p)

is the probability that it fails. The probability that all components

of a minimal cut structure for a k-out-of-n system fail is:

(l-p)
n-k+1

. (II-C-2)

1

A detailed and mathematical proof of the validity of the minimal

cut lower bound is given by J. D. Esary and F. Proschan in [5 J.





The probability that the cut structure does not fail, its reliability,

is given by

1 - (l-p)
n-k+1

(II-C-3)

Since there are ( v -,) cut structures in series, the approximate

reliability of the system, R , using the minimal cut lower bound then
a

becomes:

R
a

= ~1 . (l-p)
n"k+1

] Wl''. (II-C-4)

Equation (lI-C-4) now represents the basic equation for computing the

minimal cut lower bound for any k-out-of-n system with identical and

independent components.

For the logical series or logical parallel systems, the equation

for the minimal cut lower bound reduces to an equation which computes

the system's true reliability. This should be obvious, since each

component is a minimal cut set in a logical series system; and in the

logical parallel system, all the components form one minimal cut set.

This fact am. be seen in an elementary w£,y by substituting into the

two equations (iI-B-l) and (lI-C-4) "the value k = n for the series

system and k = 1 for the parallel system. The two equations would

reduce to:

(a) series system (k = n) R = R = p ,
(lI-C-5)

(b) parallel system (k = l) Ra
= R - 1 - (l-p)

n
. (lI-C-6)

The minimal cut lower bound is. ther~ ff)rr , n -p~"-f™+ ^p7rrnT';

TP ti r>ri

in the two extreme cases of the logical series or lop-ip.al -parallel

systems; but how good is the approximation between these two limits?

10





Ill . NATURE OF THE ANALYSIS

A. THE PROBLEM

The theoretical interest of the hounds is that they offer the means
in reliability studies of approximating structures having complex
component arrangements with structures having only series and parallel
arrangements . The practical interest cf the bounds is that they can
be useful for structures having reliability functions tedious to
evaluate exactly, but whose paths and cuts can be determined by in-
spection. Such structures are quite numerous

.

While the validity of the minimal cut lower bound has been proven,

much remains to be done to determine just how "useful" it is in the

practical sense. Is the minimal cut lower bound always a good approximation

to a system's true reliability? How does the lower bound behave as the

complexity or the number of components increases? Does the approximation

depend in any way on the ratios of components in the cut sets to the

total number of system components? If the minimal cut lower bound is

not a good approximation, what causes the deterioration? Can the amount

of deterioration be determined or defined?

The study of k-out-of-n systems will allow some light to be cast on

these and related questions and will aid in developing a stronger base

for theoretical implications

.

B. ANALYSIS TECHNIQUE

The problem was investigated in the following manner: A base system

of n=10 components was chosen, and k was allowed to vary from 1 to 10.

The true system reliability for each value of k was obtained from

"Barlow, R. E. and Proschan, P., Mathematical Theory of Reliability ,

p. 207, «Tohn Wiley and Sons, Inc., 1968.

11
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of deterioration be determined or defined?

The study of k-out-of-n systems will allow some light to be cast on

these and related questions and will aid in developing a stronger base

for theoretical implications
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B. ANALYSIS TECHNIQUE

The problem was investigated in the following manner: A base system

of n=10 components was chosen, and k was allowed to vary from 1 to 10.

The true system reliability for each value of k was obtained from

"JBarlow, R. E. and Proschan, F., Mathematical Theory of Reliability .

p. 207, John Wiley and Sons, Inc., 196TT
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cumulative binomial tables, rounded off ~o four significant decimals,

and plotted on a graph of system reliability versus component performance

probability. (Figure III-C.l) The minimal cut lower bound for each k

was then calculated using equation (II-C--4) on an IEM-360 computer. The

resulting calculations, rounded off to four significant decimals, were

plotted on a graph similar to the one above. (Figure III-C.2) Main-

taining the ratios of k to n established in the base system, the value

of n was increased to 20, 40> and 80; and the resulting true system

reliability and minimal cut lower bound were obtained in the manner

described above. (See Appendix A for values.) Due to the size of the

numbers involved, 80 factorial, it was not feasible to increase the

value of n past 80. This was not, however, a limiting factor in the

analysis.

In order to study the results more closely, k to n ratios of .2,

.5, and .8 were selected; and the values of 'both true reliability and

the lower bound for these ratios were plotted for each system of size

n. (See Figures III-C.3 f 0.4, 0,5, C.6.) These four graphs were then

used to answer questions raised in part A above and to establish any

developing trends.

C. DISCUSSION OF GRAPHS

The graph of figure III-C.1 was plotted to show the relative "S-

shapedness" of the k-out-of-n systems and to show the family of curves

which results as k varies from the logical parallel system to the

logical series system. The notion of S-shapedness is discussed in

detail in references [2], [3], and [4].

12





True Reliability of the k-0ut-of-10 Systems
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Figure III-C.1

The graph of figure III-C.2 shows the family of curves generated by

the minimal cut lower bound for the k-out-of-10 systems. The graph

shows clearly that the lower bound and the true system reliability are
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Minimal Gut Lower Bound of the k-0ut-of-10 Systems
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the same in the logical parallel and logical series system. Of interest

also is the fact that the logical series system is a better approximation

of the true reliability than the minimal cut lower boiuid when k=8 and 9,

and the value of p is approximately .6 to ,8. This phenomenon becomes

Ik
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True Reliabilities and Minimal Cut Approximations

of the lc-0ut-of-10 Systems

Component Performance Probability (p)

Figure III-C.3

more obvious for the n = 20 systems, and then tends to disappear as n

increases further. (See the values listed in the tables of Appendix A.)

Figure III-C.3 establishes the relationship of the minimal cut lov.'er

bound to the true system reliability for n=10 and k/n =.2, . 5» and- *8»

15





3

°8

c

•H
i-l

0)

-p
ro

CO

True Reliabilities and Minimal Cut Approximations

of the k-0ut-of-20 Systems
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Figure III-C.4

The graph shows that as the k/n ratio increases, higher component per-

formance probability is required to acheive equally good approximations

of true reliability. The graph also reveals that as the ratio of k/n

increases, the actual deviation of the minimal cut lower bound curve from

the true reliability curve increases and then decreases.
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of the k-0ut-of-40 Systems

.2 .4 .6

Component Performance Probability (p)

Figure III-C.5

Figures III-C.4, C.5» and C.6 show that as the value of n is

increased, the deviation of the two curves for a certain range of p

increases. It is also obvious that both types of curves are steepening

as the value of n increases. It is known that in the limit as n goes to
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Figure III-C.6

infinity, the reliability of k-out-of-n systems jumps from to 1 at the

point where p = k/n; and these graphs suggest that as n increases, the

minimal cut lower bound may also have some "critical" value of p at which

it jumps from to 1, It is clear from the graphs that this critical value

of p (p = p critical) is also dependent on the k/n ratio.

18





D. THEORETICAL DISCUSSION

The graphs of section C above indicate that as the number of com-

ponents in a system increases, the minims.l cut lower bound approaches a

limit which jumps from to 1 at a critical value, p « An analytical
c

proof of th:.s characteristic will now be presented, and a solution for

the value o:? n obtained,
c

The following notation will be used:

R (n,cv,p) = [1 - (l-p)
n"k+1 -n (

n
)

; where n is the number of components

in a system; a is the ratio of the number of components in a minimal path

to the total number of components in the system (a = k/n) ; and p is tha

performance probability of an individual component.

L(n) = ( t-.-t) • l(n ) denotes the length (number of cut structures in

series) of the minimal cut structure representation.

\v
T(n) = (n-ki-1). V/(n) is the width (number of components in parallel) of

a cut structure.

6(n,p) = (1-p) " = (l-p) • 6(n,p) denotes the probability that a

cut structure will fail.

Theorem: limxxm „ / \ .

R (n.a.p) = 1 if p ^ p* *c
= if p < p* -^c

cv 1 .

1 -a- ^-o(
where p = 1 - ot + a

Proof: First, as n-*», the reliability of a logical series system

(a = 1) is 1 at p = 1 and for p < 1, (See equation (lI-C-5).) For

the logical parallel system (a = 1/n), the reliability as n -* °° is for

p = and 1 for p > 0. (See equation (lI-C-6).) Since these two extreme

systems already satisfy the theorem, only the systems with l/n < a < 1

will be considered.

19





Similarly, strictly reliable (p=l) ar.d strictly unreliable (p=0)

components obviously produce strictly reliable (R (n,a-,p) = 1) and
a

strictly unreliable (H (njQ'jp) = 0) systems. Again, with the extreme

values of p already satisfying the theorem, only components with < p < 1

will be used.

Note that

- (

n
)

\(n,»,p) -
n^ |_

1 ~ (1-I>) (III-D-1)
ir-w

%Z ^ - ^(n s p)3
L(n)

• (III-D-2)

Taking logarithms,

lim _ n / „ \ lim , r „ ,.
/ \"iL(n)

In K (n,o/,p) = In L1 - 6 (n,p)J v '

n—kx> a v » l r '
n~~,co

Thus,

l™ {1, R
a
(n,or,p)3 = IZ L (n ) ^ ("1 - 5(n,p)3

lim rt\Ad \ ln fl~6(n,p)]
«, L(n) 6(n,p) -^A-^-
n-*» 6 (n,p)

_. lim ln (1-S) . a &t \ . nSince
&
_~ > L = -1, and 6(n,p) -* as n -• <*

,

then
lim _ / \ lim

In R
a
(n,or,p) - - ™ L(n) 6(n,p) . (lII-D-3)

The expression for L(n) can be simplified. Observe that

it \ (
n

\
n! k n!

L^> ~ ^n-k+V ~ (n-k+1)! (k-1 ) !
" (n-k+1 ) (n-k) ! k!

on / n s a ,m

1* a

where a ~b means , = 1 . Also using Stirling's formula,
n n n-*=° b

n

20





n! ~ n
rtt-v, _-n

(2tt)
2

, observe that (n_k )

n \ n!

(n-k)! kJ

n+-g- --n fn vi

(1-o:)n v ' * e v ' (2tt) ^crn) ** e ^tt)^

(2tt) n (1-or) or

(III-D-4)

Thus, combining equations (lII-D-3) and. (III-D-4),

L(n)
a

(2tt) n (1-cx) a

-in

71 n(1-o) o
(1-o) v ' o-

A(or)

n (1-0/)^ J a

n

where

A(>) =

(2n)« (1-*)
3/2

The limit of the function can now be expressed as:

^ {in R
a
(n,a,p)} .

lim A(o/)

3:
71 n(1-cc) a

n

6
(n »p)

lim A(o)

~Z \(l-or) a?
Vp) (1^)n+1

lim A 1 (cr)

O^j1^ a
a

Vp) (1w*)n
•

where A' (c/) = (1-p) A(or) .

21





ITow,

J£ £ln E
a
(n,0fp)]

lim A* (cy)
"

d- o)(
1-a)

'

n

(lII-D-5;

Let ©(or,p) =

(l-a0 O
"a)

«
Q'

If 9(cv,p) < 1, then clearly ^ {in R
a
(r.,cy,p)} - 0.

A 1 (ex)
If GC^jP) = 1» then —4—*- - as n - ro

, and
n2

^ {In 3
a
(n,or

f p)} - . If e(«.p) > 1
-.

then

1^ A , (g ) QKr)
n

lim . . / \ 1
A' (a-) -7

r

n
9(«.P)

n
. lim . , / v
^ A 1 (ar)-

n—"-

n
n

e(^,p)~

Since ' n 0(0;, p) -• 0, then A,(a) SLSLlZf

n"

by the comparison test.

From the preceding arguments, the limiting behavior of R (n^p)
3,

depends on whether 6(0;, p) ^ 1 or 0(o,

,p) > 1. The inequality,

e(«.p)
?

II) a * 1

(1-o/j v J a

is equivalent to

(1-p)
(1 -0)

* (1-«)
(W)

<>"
,

or to
or a 1

p ^ 1 - (I-07 0/ = 1-or + <y = P #
c

(III-D-6)
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The proof can now be summarized in the following statement:

If p < p
c

, then ^ [In R
a
(n,or,p)} - - « and

n^ R
a (n »-»:0 - . H p ^ p

c
, then ^ (in Rjn.or.p)} =

and n^ R
a(n»a»P) = 1 -

Q.E.D.

Example: Por a k-out-of-n type system, select a k/n ratio of ,8.

The critical value of p is then:

= 1 - ,G'
8/' 2

+ .8
1/' 2

= 1 - .41 + .328

= .918 .

In the limit, as n — «»
, the minimal cut lower hound is if

p < .918 and is 1 if p ^ .918.

The table below gives the critical values of p for some selected

k/n ratios.

k/n .1 .2 .3 .4 5 .6 .7 .8 .9

Pc
.303 .465 .582 .674 .750 .814 .869 .918

„ i

.961
j

As stated earlier, it is already known that R (n,o,p), as n goes to

infinity, places all of its probability mass at k/n. Figure III-D.1 is,

then, a graph of the critical values of p for both the true system

reliability and the minimal cut lower bound. From this figure it can

be seen that the greatest deviation occurs at a k/n ratio of ,3. The

area between the two curves represents the range of values of p for

which the minimal cut lower bound is not a good approximation. This

graph, of course, is valid only in the limit as n goes to infinity.
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Critical Values of p for the k-Out-of-n Systems
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Figure III-D.1

A review of figure III-C.6 reveals that at n = 80, the minimal cut

lower bound is already approaching its limiting form. This suggests

that the lower bound converges to its limit much faster than the true

system reliability and offers one explanation as to why the logical series

2k





system is sometimes a better approximation than the minimal cut lower

bound. It also suggests that the graph of p for the lower bound in
c

figure III- 3.1 may have application to some rather modest size systems,

IV. SUI-aiARY

It is important to state once again that because the reliability of

the k-out-of-n system can be found directly and accurately, the minimal

cut lower bDuni for this type of system lias no real value. The k-out-of-n

system does, however, allow a comparison between true relaibility and

the lower bDund to be made; and this comparison offers the opportunity to

make general statements about the characteristics of the approximation.

Increasing the size (number of components) and complexity (number

of cut sets) of a system causes a rapid deterioration of the minimal cut

lower bound. Of the two, complexity appears to have a more pronounced

effect on the approximation. The deterioration does have a limit,

though; and this limit seems to be reached rather quickly.

In spite of the deterioration of the lower bound noted in this pajer,

the minimal cut lower bound remains a valid approximation. This

phenomenon csji be restated in the following way: If the lower bound

gives an approximation to the system's reliability that is acceptable,

then it can be used with confidence. If the approximation is not

acceptable, then caution should be exercised before rejecting or
"

redesigning the system. The system may already be very reliable.
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APPENDIX A

Tables of Reliabilities and Approximations

n = the total number of components in the system.

k = the number of components in a minimal path.

p = the probability the component functions properly.

rn n k« , A Nn-k« 1R - Z O P
k

' (1-p)'
S t-r .

XK
k'=k

R
a

f. , vn-k+11(
J

1 J 2
- M - ( ;-p;

J
vn-k+l y

.

1
Figures obtained from Tables of the Cumulative Binomial Probability

Distribution , Harvard University Press, 1955 > and rounded off to four
significant decimals.

2
Figures computed on an IBM-360, U.S. Naval Postgraduate School, and

rounded off to four significant decimals.
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k-OUT-OF-3 S3

k p R
3

R
a

k P R R
"

a

1 .1 .6513 .6513 6 .1 .0001 .00

.2 .8926 .8$ .2 .0064 .0000

.3 • 9718 • 9718
—>

•3 .0473 .OC
'

./: • 99 [ • 9940 .4 .1662 .00

.5 .9c .99 •5 • 3770 .00
. .9c • 999° .6 .633] .0747
.7 1. 1.0000 •7 .8497 .5417
.8 1.0000 1.000 .8 .9672 .9225
• 9 1.00, 1.000? • 9 • 9984 •9975

2 • 3 .2^ .0074 '7
1

.1 .0000 .00
.2 .6242 .2367 .2 .0009 .0000
• 3 ,

•

'

.6< .3 .0106 .00
.4 .9536 .9037 .4 .0548 .ocoo
•5 .Q f .98 •5 .1719 .0000
.6 • 9" •9< .6 .3823 .00'

.9999 .9998 •
1

.6496 .1812
.8 1.0000 .99 .8 8791 . 7144
• 9 1.0000 1.0000 • 9 .9872 .9792

•a

j .1 .0702 .0000 .'3 .1 .0000 .00
.2 .3222 .02 .2 oOOOl .00

• 3 .6172 .0691 °3 .0016 .ocoo
.1* .8327 .4d .-': .0123 .or

•5 • 9453 .8385 °5 .0547 .OC

c6 • 9£ .9' 06 .1673 .0000
.7 .

n '

.9970 • 7 .3828 .0375
.8 • 99 c'9 .9998 .8 .6778 • 38
.9 1.0000 .9999 • 9 .9298 .8869

4 1 .0128 .0000 9 .1 .0000 .0000
.2 .1209 .0000 .2 .0000 .0000
• 3 • 350U .0000 •3 .0001 .0000
.4 .6177 .0331 .4 .0017 .0000
• 5 .82 81 .3962 •5 .0.107 .0000
.6 • 9^52 .8214 .6 .0464 .0004
• 7 .9894 .9741 .7 .1.493 .0143
.8 • 9991 .9985 .8 .3758 .1593
09 1.0000 09999 •9 .8361 .6362

5 .1 .0016 .0000 10 .1 .0000 .0000
.2 .0328 .0000 .2 .0000 .0000

O .1503 .0000 •3 .0000 .0000
.4 .3669 .0000 .4 .0001 .000.1

• 5 .6230 .0366 •5 .0010 .00.1.0

.6 .8338 .4223 .6 .0060 .0060
• 7 • 9527 .8586 • 7 .0282 .0282
c8 • 9936 .9866 .8 .1.074 .1074
• 9 • 9999 .9998 O o .3487 .3487
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k-OUT-OF-20 SYSTE]

k p R R p R R
. a s a

2 .1 .6C83 .0549 12 .1 .0000 .0000
d2 .9308 80 .2 .0001 oCOOO
•3 • 992*1 74 •3 .0051 .0000
.4 • 9995 • 9988 .4 .0565 .00
•5 1. • '99 •5 .251? .0000
.6 1.00C

G

lol .6 .5917 .0000
"

•7 00 1.0000 .7 .8867 .0366
.8 loOOOO 1 .0000 .8 .9900 09176
•9 1.00( ] .0000 •9 •9999 .9098

4 .1 .1330 "00 14 .1 .0000 .0000
.2 .2 .0000 .0000
• 3 .8929 .0703 •3 .0003 .00
.4 • 9840 .8245 .4 00065 .0000
•5 • 9987 .9913 •5 .0577 .0-00
.6 1.0000 .9998 .6 .2500 .0

• 7 1.1 >99 .7 .6080 .0:00
.8 ] .0000 1.0000 .8 .9133 • 3707
• 9 1.00 loOOOO .9 • 9976 • 9923

6 .1 .oc .or 16 .1 ,0000 oOCOO
o2 .is .0000 .2 .0000 .0000
•3 .5836 100 •3 .0000 .0000
.4 .8?44 .4 .0003 .0000
-5 .9; .5 00059 oOOOO
.6 .99*-' -0835 .6 o05]o .0000
•7 1.0000 .0998 .7 * 2 J ( 3 .0000
»8 1.0000 • 99 .8 .6290 .0070
• 9 1.0000- .1 .0000 •9 • 9563 .8564

8 .1 .0004 .0000 18 ol .0000 oOOCO
.2 .0321 .0000 «2 .( ^00 .0000
•3 .2277 .0000 •3 .0000 .0000
.4 • 5841 .0000 • 4 .00 00 .0000
•5 .8684 .0001 • 5 .0002 .0 A 00
06 •9790 .5944 06 .0036 oOCOO
°7 .9987 .0877 • 7 • 0355 .ooco
.8 1.0000 .9999 .8 .2061 .0001
• 9 1.0000 1.0000 09 .6769 .3196

1C .1 .0000 .0000 20 .3 .0000 .0000
.2 .0026 .0000 .2 .0000 .0000
•3 .0^80 .000 •3 .0000 .0000
.4 .2447 .0000 .4 .0000 .0000
•5 • 5881 .0000 •5 .0000 .0000
.6 .8725 .0009 • 6 .0000 .0000
• 7 .9829 .7426 •7 .0008 .0008
.8 .9994 .9966 .8 .0115 .0115

I

c9
!

1.0000 •9999 •9 o].216 .1216
,
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k-OUT-OF-40 SYSTEMS

1,K P R
3

1 fr

R k p R «.
1

4 .1 •5769 .0000 2*1 ol . .00 .0000
.9715 .076 .2 .0000 .0000

•j

• 9994 .9818 •3 .0001 .or
.4 1.0000 .9999 .4 .0083 .0000
• 5 loOOOO 1.00c .5 01341 .0000
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• 7 1.0000 ] .0000 • 7 •9367 .0000
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• 9 1.0000 1.0000 .9 1.0000 1.0000

8 r 19 .0000 2 8 ol .0000 .0000
.2 .56 .0000 .2 oOOOO •oc
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.6 1.0000 '99 .6 .12 85 .00
• 7 1
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.8 1.00c 1.00 00 .8 .9568 .0000
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12 .1 .0004 .0000 ol .0000 .0000
• 2 ol 1 .0000 .2 .0000 .0000
•3 • 55 .0" •3 .0000 • OC'

.4 .9290 oOOOO .4 .0000 .00
°5 c9968 .0135 .5 .0001 .0000
.6 • 9999 •9933 06 «006l oOOOO
• 7 1.0000 .9999 .7 .1111 .0000
• 8 1.0000 1.0000 .8 .5931 .0000
»9 1.0000 1.0000 .9 .9845 .7607

16 .1 .0000 .0000 36 cl .0000 .0000
.2 .0052 .0000 .2 .0000 .0000
•3 .1151 .0000 •3 .0000 .0000
.if .5598 .0000 .4 .0000 .0000
•5 .9230 .0000 •5 .0000 .0000
.6 .9937 .0108 .6 .0001 .0000
o? loOOOO .9966 .7 .0026 .0000
.8 1.0000 1.0000 .8 .0759 .0000
•9 1.0000 1.0000 •9 .6290 .0014

20 .1 - cOOOO .0000 40 .1 .0000 .0000
o

• c. .0000 .0000 .2 .0000 .0000
•3 .0062 .0000 •3 .0000 .0000
.4 .1298 .0000 .4 .0000 .0000
•5 *5627 .0000 • 5 .0000 .0000
.6 .9257 .0000 06 .0000 .0000
•7 •99?6 • 2533 •7 .0000 .0000
.8 1.0000 .9997 .8 .0002 .0002
•9 1.0000 1.0000

, , .... ..-. „.. t

.9 .0148 .0148
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k-OUT-OF-•80 EMS

k P R R„
b d.

16 .1 .005: .0000
.2 • 5445 .00
°3 .9839 .0000
.4 • 9999 .0000
• 5 1.0000 ] .0000
.6 ] ,ooc 1.0000
• 7 l.C 1.0000
.8 1.0000 1.00 00
•9 1.0000 1.0000

40 .1 • c n .0000
.2 • oc .0000
•3 .0001 300
.4 .0445 .0000
5 .5445 .0000
.6 9729 .0000
•7 •

r 999 .0000
.8 1.00C0 1.0000
• 9 1.0000 1.0000

64 • 1 .00^0 .0000
.2 .0000 .0000
•3 .0000 .00
.4 oOOCO .0000
• 5 .0000 .0000
.6 .0002 .0000
•7 .0302 .0000
.8 .566/4 .0000
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