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The underlying reasons behindmodern terrorism are seemingly
complex and intangible. Despite diverse causal mechanisms,
research has shown that there exists general statistical patterns
at the global scale that can shed light on human confrontation
behaviour. While many policing and counter-terrorism
operations are conducted at a city level, there has been a lack
of research in building city-level resolution prediction engines
based on statistical patterns. For the first time, the paper shows
that there exist general commonalities between global cities
under frequent terrorist attacks. By examining over 30 000 geo-
tagged terrorism acts over 7000 cities worldwide from 2002 to
today, the results show the following. All cities experience
attacks A that are uncorrelated to the population and separated
by a time interval t that is negative exponentially distributed
with a death-toll per attack that follows a power-
law distribution. The prediction parameters yield a high
confidence of explaining up to 87% of the variations in
frequency and 89% in the death-toll data. These findings
show that the aggregate statistical behaviour of terror attacks
are seemingly random and memoryless for all global cities.
They enabled the author to develop a data-driven city-specific
prediction system, and we quantify its information-theoretic
uncertainty and information loss. Further analysis shows that
there appears to be an increase in the uncertainty over the
predictability of attacks, challenging our ability to develop
effective counter-terrorism capabilities.
1. Introduction
Understanding complex human interactions is vital for solving
some of humanity’s most pressing social challenges [1]. One of
these challenges is the protracted political violence that plagues
many urban regions in the world [2]. While creating data-driven
regression models can yield insights into ongoing violence [3,4],
statistical patterns can also yield insight into common trends
[5,6]. In this paper, we focus our analysis on urban attacks,
where the majority of attacks take place (e.g. for casualty and
impact maximization [7,8]), but note that rural under-reporting
is an open challenge.
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Statistical analysis of complex processes, even across diverse genres andmechanisms have value in data-

driven prediction. It has been shown that many complex processes with a multitude of different causal
factors can exhibit common statistical patterns that aid prediction, e.g. bus arrival time in busy urban areas.

1.1. Review of statistical analysis
The science of finding patterns in war stretch back to the 1940s, when Richardson showed that the intensity of
major battles in the Victorian era fits power-law distributions [9–11]. This has been reinforced for conflict and
terrorism data in the modern era [5,6,12]. Tracking trends in both large-scale wars and regional political
violence is important in quantifying the effectiveness of peacekeeping andpeace negotiation efforts [1,5,13–15].

In terms of temporal analysis (frequency or time interval between attacks), the frequency of large
terrorist attacks has also been shown to obey a power-law distribution [16,17]. Regional diffusion of
violence has been modelled by point processes with a stochastic integral kernel [18,19]. Small-scale
local events have also been studied, i.e. improvised explosive device (IED) attacks have been shown to
exhibit self-excitation behaviour modelled by a Hawkes process [20]. Long-term trend analysis has
been conducted recently [21], whereby it is argued that our current period of relative peace from
major wars is statistically insignificant.

Detailed causal mechanisms on why certain locations experience more conflict or longer duration
conflict have been studied [22]. For example, regions far from government control and rich in natural
resources tend to experience protracted conflict [23–25]. However, not all conflict is driven by such
mechanisms, e.g. protracted urban warfare in Colombian cities. It has also been shown that it is
difficult to separate the different genres of conflict, e.g. civil war and terrorism [26–28] and as such it
does make sense to consider them together from a statistical modelling or prediction perspective.

The majority of statistical studies are still focused on one of the following: (i) aggregate scale attacks
across either a large region or the whole world [5,6,9,10,12,16,17,21,29,30], (ii) highly scenario/conflict
specific violence, often with a specific violence genre (i.e. IED attacks in Northern Ireland [20], Afghan
war [18], ethnolinguistic tensions [31–33] and natural resources driven conflict [23]), or (iii) long-term
historical trends [11,34] that span several centuries and are associated with other temporal factors (e.g.
climate change [35–37]). It remains an open question whether each city experiences a common human
ecological behaviour in the frequency and size of attacks. If so, prediction engines [1,3] would inform urban
policing and counter-terrorism policies and lead to city-specific prediction engines.

1.2. Contribution
Recent attempts have examined general behaviour at national statistical levels [38] and across different
confrontation genres [39]. However, detailed geographical analysis (city scale) across all genres and
geographies is lacking. Indeed, city-scale modelling is important as counter-terrorism policies are
often adopted at the city scale (i.e. London and New York suffer disproportionately more threats and
attacks than other cities) [40]. Understanding a common ecological behaviour at detailed city
resolution can help stakeholders to create models and make forecasts.

This paper sets out to do this. In this paper, the author offers insight that inter-relates the intensity,
frequency and prediction uncertainty of terrorist attacks in different cities worldwide since 2001. The
results across different urban ecologies show that the intensity (death-toll per attack) data still obey a power
law [16,17], the frequency (interval between attacks) is exponentially distributed. Here, we show that
despite diverse conflict genres and multiple confounding mechanisms in play, all global cities suffer
attacks describable by a common statistical pattern. The memoryless nature of this pattern suggests that
multiple causal mechanisms are independent to each other and that prediction is not helped by the
knowledge of previous attacks.

This enables us to build a simple city-specific predictor based on past attack data, andwe show both the
information theoretic uncertainty and information loss in attempting to predict the underlying terrorism
process. Finally, we use spectrogram analysis to further show that there is a growing uncertainty hidden
in the complex process.
2. Results
The geo-tagged terrorism and unconventional conflict data from the Global Terrorism Database (GTD)
[41] were analysed. All data used are available in the Dryad Digital Repository [42]. Since post-Cold
War, violence between terrorism, politics, criminal enterpriser (e.g. narcotics) has become interleaved.
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Figure 1. Terrorist attack intensity and interval in top 40 conflict cities with diverse urban scales and climates: (a) Map of terrorist incidents
(2002–2014)—the black stars indicate the top 150 conflict locations (clustered to nearest city) with highest aggregate death-tolls.
(b,c) Example of data in the highest attacked city (Baghdad) showing variations in death-toll and frequency as a function of time
(day count). (d,e) The attack intensity follows power-law distribution with exponent parameters α for two example cities. ( f ) The
predicted average attack interval parameter m̂T is linearly correlated with the average number of attacks m̂T ¼ 103:67=A, where
103.67 is the number of days in the recent 13 year interval. The actual number of attacks in each city explains for 69% of the variation
(adjusted R2 = 0.69) in the prediction parameter for all cities. Panel (g,h) shows two example cities and the negative exponential
distribution fit for interval (days) between attacks alongside the estimated parameter m̂T . Panel (i–k) shows three example cities and
their diverse population size (varies by one order of magnitude), diverse city area (varies by one order of magnitude) and different climates.
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Often, trans-national organizations like ISIS participate in all above aspects. As such, studies have shown
that it has become difficult to separate the different genres of violence both statistically and contextually
[26]. Therefore, it makes sense to consider GTD in its entirety, which is the violence between a non-state
actor and other targets (state or non-state).

The results show that the vast majority of conflict incidents occur in close proximity to an urban area
with a mean distance of 27 km. This highlights the importance of focusing on city-/town-scale resolution
analysis. Figure 1a shows a map of terrorist incidents (2002–2014), where the black stars indicate the top
150 conflict locations (clustered to the nearest city) with highest aggregate death-tolls. Figure 1b,c shows
example of data in the highest attacked city (Baghdad) with variations in death-toll and frequency as a
function of time (day count). As the data are across the whole world, a significant portion of that data are
not ‘War or Terror’ related (e.g. Colombia, Narco-War Mexico, political violence in India).

2.1. Intensity: power-law distribution
The results in figure 1d,e show that the terrorist intensity (death-toll per attack) is distributed in
accordance with the established power-law distribution [6,10,12]. The exponent parameters α for two
random cities are presented. The interesting observation is that most previous studies have considered
low-resolution conflicts (major wars) that span over 100 years or sub-national regional studies [43,44],
and it seems that the power-law distribution remains valid even for high-resolution terrorism and
non-conventional conflict data in the modern era. What is less understood is how the time interval
between attacks is distributed, and this is the focus of the paper.

2.2. Interval: negative exponential distribution
The results show that the time interval between sequential attacks t fits the negative exponential distribution.
Theprobabilitydensity function (PDF)ofanegativeexponentialdistributedvariable twith support [0, +∞) is:

f(t; m̂T) ¼
1
m̂T

exp
�t
m̂T

� �
, (2:1)
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Figure 2. Accuracy and information loss in prediction: directed K–L divergence (information loss) for predicting the time interval
between attacks. Colour indicates the number of casualties (red is highest).
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where the parameter m̂T is the distribution parameter. Note, the exponential decay rate is given by 1=m̂T and
the variance is given by m̂2

T. Indeed, there are prior work to support this for civil war models that can be
modelled using zero-inflated count models [45].

Figure 1f–h shows the terrorist attack interval in the top 40 conflict cities. In general, all cities examined
experience attacks that are separated by a time interval (t, days) that is negative exponentially distributed
� exp (� m̂T). The results show two example cities and the negative exponential distribution fit for interval
between attacks and the deaths per attack, alongside the estimated distribution parameters m̂T . Under the
maximum-likelihood (ML) estimator, the exponential distribution’s parameter m̂T is equal to the mean of
the data μ, i.e. m̂T ¼ P

i Ti=A, where Ti is the actual interval between any two attacks, and A is the total
number of attacks in the city over all time (103.67 days in 2002–2014). Figure 1f shows the predicted interval
parameter m̂T is linearly correlated with the average number of attacks m̂T ¼ 103:67=A. The actual number
of attacks in each city explains for 69% of the variation (adjusted R2 = 0.69) in the distribution parameter m̂T .

For a historical data sample of terrorist attacks that is n in size, the lower- and upper-bound of the
exponential distribution parameter is given as

m̂T,upper ¼ m̂T 1� 1:96ffiffiffi
n

p
� ��1

and m̂T,lower ¼ m̂T 1þ 1:96ffiffiffi
n

p
� ��1

: (2:2)

For the top 40 cities considered in the analysis, the number of attacks in 2002–2014 is between 3983 (rank 1
conflict city) to 141 (rank 40), which yields percentage changes of 3% and 14–19% to the distribution
parameter. This shows that the distribution given for the attack intensity and frequency is robust across
different urban scales and climates for large samples of data (see K–L divergence in figure 2). Figure 1i–k
shows three example cities and their diverse population size (varies by one order of magnitude), diverse
city area (varies by one order of magnitude) and different climates. A large comparison set of random cities
in the top 40 conflict cities is given in figure 3which shows a common statistical distribution across all of them.
2.3. Prediction accuracy and information loss
Exponential distributions are commonly associated with waiting time between random and memoryless
events (i.e. Poisson point processes). Therefore, the fitted negative exponential distributions in figure 1
indicate that sequential attacks in each city are unrelated. A possible reason is that each terrorist attack
depends on a large number of variables (i.e. organization, logistics, finance, personnel, evading detection
and opportunity), which suppresses any dependency between attacks. One other interesting property
means that the probability of the waiting time for the next attack is constant, irrespective of how much time
has surpassed. That is to say, one only needs to understand one single parameter m̂T in order to predict the
time for the next attack, irrespective of when the last attack was. This is similarly true for the death-toll per
attack: the number of deaths in the next attack is independent of the previous attack event’s death-toll.

As an example, figure 4 illustrates a system for prediction of the next terrorist attack and the
uncertainty of the terrorism process. The time to next attack ti is independent of the time since
previous attack ti−1, and in general the time t between attacks is negative exponential distributed with
dependency on the mean number of attacks t∼ exp (−A/T ) and the death d is power law with
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Figure 3. Terrorist attack interval and intensity in random sample of top 40 conflict cities with diverse urban scales and climates.
(a) Common exponential distribution for attack intervals across random cities. (b) Common distribution for death-toll per attack
across random cities.
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dependency on the exponent α. The uncertainty of the underlying terrorism process is logarithmically
proportional to the mean time between attacks log (eT/A). The only input parameters into the model
are the number of attacks A and deaths D aggregated over a period of T. Among all continuous
probability distributions with support [0, +∞) and mean m̂, the exponential distribution has the
largest entropy of log (em̂)

h(X) ¼ �
ðþ1

0

1
m̂
exp � x

m̂

� �
log

1
m̂
exp � x

m̂

� �� �
dx

¼ 1� log
1
m̂

� �
¼ log (em̂):

(2:3)
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This indicates a logarithmic higher information content (uncertainty) in the underlying terrorism

processes (i.e. the terrorist organizations) that plan attacks with high waiting duration m̂T .
In prediction, we assume that for an observed city that has suffered n previous attacks and these attacks

have a frequency and intensity that are both exponentially distributed with unknown parameters.
A common predictor for random and negative exponentially distributed data x is to use is the ML
predictor, which yields the following predictive density: pML(xn+1|x1,…, xn) = 1/μ exp (− (xn+1)/μ),
where xn+1 is the future data value. An improved predictive distribution free of the issues of choosing
priors is the conditional normalized maximum-likelihood (CNML) estimator, which yields the following
predictive density of the future data [46]:

pCNML(xnþ1jx1, . . . , xn) ¼ nnþ1mn

(nmþ xnþ1)
nþ1 , (2:4)

where μ is taken from the data ({x1,…, xn}).
Given that both the time interval and the intensity (death-toll) fit negative exponential distributions,

based on equation (4.1), the directed Kullback–Leibler (K–L) divergence (information loss) of adopting an
exponential model instead of using the data is

DK�L(mkm̂) ¼ log (m�1)� log (m̂�1)þ m

m̂
� 1, (2:5)

where μ is the mean of the data and m̂ is the parameter of the regression or predictor. In general, as shown
in figure 2, the negative exponential model causes a loss in information that varies between 1.2 and 2.8
nats (0.7–3.3 bits). This demonstrates that despite the seemingly accurate statistical characterization of
conflict frequency, there is a non-negligible surprise element from an information-theoretic sense.
Compared to other accuracy measures such as root mean square error (RMSE), the K–L divergence
tells us how much information is lost in creating a predictive model based on our assumption that it
fits a certain exponential distribution.

2.4. Spectrogram analysis
The frequency and intensity of violence have shifted over the past decade and this will affect the long-
term accuracy of the proposed prediction model. Spectral analysis has the potential to observe the
different frequency components of attacks and how they shift with time (2002–2014). As a hypothesis,
it can potentially distinguish low-frequency (long time interval T/A) high-casualty (death-toll D/A)
attacks from high-frequency low-casualty attacks. Spectral analysis using short-time-Fourier transform
(STFT) is used on each city to produce spectrogram plots. The parameters used are Hamming
window of size 128 (days), with non-overlap size of 120, 128 fast-Fourier transform sampling points to
calculate the discrete Fourier transform. In general, the STFT of a discrete sequence x[n] is defined as:
X(m, v) ¼ Pþ1

�1 x[n]w[n�m] exp (� jvn), where w[n] is the window function and ω is the continuous
frequency, and the spectrogram is defined as |X(m, ω)|2.

In figure 5, the results show the magnitude of the frequency of attacks as a function of time. Figure 5a-
left shows the growing number of attacks and figure 5a-right shows that the deaths per attack is
uncorrelated with the attack frequency. Digging deeper using spectrogram analysis, the author shows
that there is a rapid growth (G = 1.2–0.5) in the magnitude of low-frequency attacks (b), and a slow
growth (G = 0.3–0.2) in the magnitude of high-frequency attacks (c). The results indicate that the
growth in the number of attacks and deaths is largely due to low-frequency attacks, which are
causing a disproportionately high number of deaths (see the high variance in (a-right)). Figure 5d,e
shows the spectrogram of the attacks for two example cities, with slices of low- and high-frequency
magnitude variations as a function of time (days). The growing number of attacks (and deaths) is not
due to population increases, as shown by the lack of correlation in figure 6.

The spectrogram trend we see is not universal, but the insight is general. That is to say, an abundance
of small-casualty attacks gives our prediction greater accuracy (less information loss), whereas fewer
high-casualty attacks leads to a poor estimation of the statistical parameter(s) used for prediction—
leading to growing uncertainty in predictions. Specifically, we see greater high-casualty attacks in Iraq
and Afghanistan, but not so in Colombia and Mexico.

In summary, the spectrogram analysis reveals that the growth in death-tolls from terrorist attacks
seems to be due to an increase in the number of slower (1 attack per 100 days) and bigger-casualty
attacks (over 10 deaths per attack). Referring back to the entropy of the terrorism process (i.e. entropy
is log (eT/A)), the growing number of low-frequency (large T/A) and high death-toll indicates that
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the underlying terrorism process and organization is increasing in uncertainty. It is unclear how to
combine the entropy measures if the high death-toll attacks are dependent on the longer planning
process, and this is the focus of future research.
0645
3. Discussions and conclusion
Conflict has transformed over recent human history. Post-Cold War conflict is dominated by political
violence, interleaved with serious international criminal activities and ethnolinguistic civil war [47].
Post 9/11 conflict on the Eurasian continent is also dominated by counter-terrorism and Islamic
violence [48,49]. Data collection on understanding these different facets of conflict has been critical to
quantitative research in the political and social sciences [50].

Despite the seemingly complex reasons that drive modern terrorism, conflict and violence, this
paper has shown that all modern conflicts exhibit common frequency and intensity patterns that
can be modelled accurately to give true predictive powers to smart city systems. By examining
over 30 000 geo-tagged conflict data points over 13 recent years, the paper demonstrates the
following. The number of attacks and the death-toll is uncorrelated to the population of the city.
The attacks are separated by a time that is negative exponentially distributed � exp (� m̂T) and the
number of deaths per attack follows power-law distributions. The prediction parameters explain
69–87% of the variations in real data. While the parameters of the distributions vary between cities
and with time, these findings show that the frequency of terror attacks is random and
memoryless. By memoryless, we mean that the probability of a new attack is largely or entirely
independent of previous attacks. This seems contradictory to some existing studies which suggest
excitation and de-escalation effects [18,20]. This could be because across a city, we have averaged
out micro-scale dynamics; but it is nonetheless thought provoking from a prediction point of view.
That is to say, understanding historical attacks (and its pattern) gives no extra predictive power to
future attacks at the city scale, and is true for all cities suffering all genres of conflict (e.g. from
Mosul to Medellin).

The distributions found in this paper can be used to predict the next attack and the K–L divergence is
used to show that approximately 0.7–3.3 bits of information is lost through the predictions. As such,
future work should focus on integrating generalized statistical models presented in this paper with
microscopic excitation and mechanical models [20], as well as detailed causal mechanisms related to
resources [51] and climate [52].

Using spectrogram analysis, it was uncovered that the growth in death-tolls is due to a growing
number of slower but higher-casualty attacks. Combining the spectrogram analysis with the entropy
analysis, the combined results seem to indicate a logarithmically increasing uncertainty in the
underlying terrorism random process. The growing uncertainty could be because the causal
mechanisms are becoming more multifaceted and cannot be pinpointed to a well-defined set of
mechanisms (e.g. inequality and grievances [53–55]). This is, of course, speculative at this point,
but this growing uncertainty makes prediction and developing counter-terrorism strategies more
challenging.



Table 1. Top 40 prominent conflict cities.

city (1–20) country city (21–40) country

Baghdad Iraq Musayyib Iraq

Mosul Iraq Banghazi Libya

Baqubah Iraq Farah Afghanistan

Karachi Pakistan Zareh Afghanistan

Kirkuk Iraq Jalalabad Afghanistan

Lashkar Afghanistan Kabul Afghanistan

Peshawar Pakistan Ghazni Afghanistan

Mogadishu Somalia Saidu Pakistan

Yala Thailand Kohat Pakistan

Fallujah Iraq Pattani Thailand

Kandahar Afghanistan Qalat Afghanistan

Quetta Pakistan Cotabato Philippines

Asadabad Afghanistan Tall Afar Iraq

Tikrit Iraq Meymaneh Afghanistan

Ramadi Iraq Qasr Shirin Iran

Bannu Pakistan Gardiz Afghanistan

Parachinar Pakistan Baraki Afghanistan

Narathiwat Thailand Sukkur Pakistan

Samarra Iraq Groznyy Russia

Maiduguri Nigeria Tizi-Ouzou Algeria

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:190645
9

4. Methodology
4.1. Data
The terrorism and conflict data used in this paper is sourced from 30 000+ attacks between 2002 and 2014
(13 years) from the GTD [41]. For each city and over time period T, the GTD contains the number of geo-
tagged attacks A and death-toll D from incidents, which range from small-scale assassinations (one
death) to large-scale massacres (thousands dead). A plot of the major terrorist and conflict incidents is
shown in figure 1a. The GTD data are then clustered to the nearest city.1 As a result of clustering, the
author shows that the vast majority of conflict incidents occur in close proximity to an urban area
with a mean clustering distance of 27 km. This means while most data points are in cities, some do
occur in rural and suburban areas, which is still relevant from a policy perspective. It is worth noting
that the number of attacks (and deaths) is not due to population increases, as shown by the lack of
correlation in figure 6. Therefore, models with predictive power are needed to understand the
frequency and intensity of attacks for each city.

Using the data, two variables are extracted: (i) the time interval t between each consecutive attack
(frequency), and (ii) the death-toll per attack d (intensity). Of the data obtained between 2002 and
2014, only 40 cities in the world have sufficient conflict data to obtain distributions from which
the error in ML parameter estimation is less than 20% (see Results section). These cities range from
the Middle East, West Africa, South Asia, to the Far East. A list of the cities can be found in table 1.
4.2. Metrics
In order to compare datasets, the coefficient of determination R2 is used. It is a number that indicates
how well the statistical regression model fits the data. In other words, the percentage of variance in
1Over 7000 cities and settlements were considered sourced from the National Geospatial Intelligence Agency [56].
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the data that can be explained by the proposed model. For a data vector y = [y1, y2,…yK] (with mean y)
and a predicted data vector using the regression model ŷ, the residue vector is defined as e ¼ y� ŷ. The
coefficient of determination R2 is defined as R2 ; 1�P

k e
2
k=
P

k (yk � y)2, where the numerator is known
as the residual sum of squares and the denominator is known as the total sum of squares. In this paper,
the analysis employs the adjusted R2 to take discount against extra variables in the model adjusted R2 =
1− (1−R2)((K− 1)/(K −V− 1)), where V is the number of variables in the regression model.

In order to compare between different probability distributions P (true data) andQ (regression model),
the directed information gain/loss metric is used. The K–L divergence of Q from P is DK−L(P∥Q), and it
is defined as [57]

DK�L(PkQ) ¼
ðþ1

�1
p(x) log

p(x)
q(x)

dx, (4:1)

where p(x) and q(x) denote the densities of P and Q. For exponential distributions, this is given as:
DK�L(mkm̂) ¼ log (m�1)� log (m̂�1)þ m=m̂� 1. Robustness of the results shown in figure 7 across cities
of different longitudes demonstrates that the results are valid for different regions of the world.
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Digital Repository: https://doi.org/10.5061/dryad.cj8kk41 [42]. All visualization maps are rendered from
OpenStreetMap and all pictures are drawn by the author.
Authors’ contributions. W.G. conceived the idea, sourced and analysed the data, and wrote the paper.
Competing interests. I declare I have no competing interests.
Funding. W.G. is partly funded by the Alan Turing Institute under the EPSRC grant no. EP/N510129/1.
References

1. Guo W, Gleditsch K, Wilson A. 2018 Retool AI to

forecast and limit wars. Nature 562, 331–333.
(doi:10.1038/d41586-018-07026-4)

2. Raleigh C. 2015 Urban violence patterns across
African states. Int. Stud. Rev. 17, 90–106.
(doi:10.1111/misr.2015.17.issue-1)

3. Hegre H et al. 2019 ViEWS: a political violence
early-warning system. J. Peace Res. 56,
155–174. (doi:10.1177/0022343319823860)

4. Hegre H, Metternich N, Nygard H,
Wucherpfennig J. 2017 Introduction: forecasting
in peace research. J. Peace Res. 54, 113–124.
(doi:10.1177/0022343317691330)

5. Spagat M, Johnson N, Weezel S. 2018
Fundamental patterns and prediction of event
size distributions in modern wars and terrorist
campaigns. PLoS ONE 13, e0204639. (doi:10.
1371/journal.pone.0204639)

6. Bohorquez JC, Gourley S, Dixon AR, Spagat M,
Johnson NF. 2009 Common ecology quantifies
human insurgency. Nature 462, 911–914.
(doi:10.1038/nature08631)

7. Asal VH, Rethemeyer RK, Anderson I, Stein A, Rizzo
J, Rozea M. 2009 The softest of targets: a study on
terrorist target selection. J. Appl. Secur. Res. 4,
258–278. (doi:10.1080/19361610902929990)

8. Drake CJM. 1998 The role of ideology in terrorists’
target selection. Terror. Political Violence 10,
53–85. (doi:10.1080/09546559808427457)

9. Denton F, Phillips W. 1968 Some patterns in the
history of violence. J. Confl. Res. 12, 182–195.
(doi:10.1177/002200276801200203)
10. Richardson LF. 1941 Frequency of occurrence of
wars and other fatal quarrels. Nature 148, 598.
(doi:10.1038/148598a0)

11. Klingberg FL. 1966 Predicting the termination
of war battle casualties and population losses.
J. Confl. Res. 10, 129–171. (doi:10.1177/
002200276601000201)

12. Espinal-Enriquez J, Larralde H. 2015 Analysis of
Mexico’s Narco-war network (2007–2011). PLoS
ONE 10, e0126503. (doi:10.1371/journal.pone.
0126503)

13. Roser M. 2019 War and peace. Our world in
data. See https://ourworldindata.org/war-and-
peace.

14. Lacina B, Gleditsch K. 2005 Monitoring trends in
global combat: a new dataset of battle deaths.

https://doi.org/10.5061/dryad.cj8kk41
http://dx.doi.org/10.1038/d41586-018-07026-4
http://dx.doi.org/10.1111/misr.2015.17.issue-1
http://dx.doi.org/10.1177/0022343319823860
http://dx.doi.org/10.1177/0022343317691330
http://dx.doi.org/10.1371/journal.pone.0204639
http://dx.doi.org/10.1371/journal.pone.0204639
http://dx.doi.org/10.1038/nature08631
http://dx.doi.org/10.1080/19361610902929990
http://dx.doi.org/10.1080/09546559808427457
http://dx.doi.org/10.1177/002200276801200203
http://dx.doi.org/10.1038/148598a0
http://dx.doi.org/10.1177/002200276601000201
http://dx.doi.org/10.1177/002200276601000201
http://dx.doi.org/10.1371/journal.pone.0126503
http://dx.doi.org/10.1371/journal.pone.0126503
https://ourworldindata.org/war-and-peace
https://ourworldindata.org/war-and-peace


royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:190645
11
Eur. J. Popul. 21, 145–166. (doi:10.1007/

s10680-005-6851-6)
15. Dupuy K, Rustad S. 2018 Trends in armed

conflict, 1946–2017. PRIO Report.
16. Clauset A, Young M, Gleditsch K. 2010 A novel

explanation of the power-law form of the
frequency of severe terrorist events: reply to
Saperstein. Peace Econ. Peace Sci. Public Policy
16, 1–7. (doi:10.2202/1554-8597.1213)

17. Clauset A, Woodward R. 2013 Estimating the
historical and future probabilities of large
terrorist events. Ann. Appl. Stat. 7, 1838–1865.
(doi:10.1214/12-AOAS614)

18. Zammit-Mangion A, Dewar M, Kadirkamanathan
V, Sanguinetti G. 2012 Point process modelling
of the Afghan War Diary. Proc. Natl Acad. Sci.
USA 109, 12 414–12 419. (doi:10.1073/pnas.
1203177109)

19. Gao P, Guo D, Liao K, Webb JJ, Cutter SL. 2013
Early detection of terrorism outbreaks using
prospective space-time scan statistics. Prof.
Geogr. 65, 676–691. (doi:10.1080/00330124.
2012.724348)

20. Tench S, Fry H, Gill P. 2016 Spatio-temporal
patterns of IED usage by the Provisional
Irish Republican Army. Eur. J. Appl. Math.
27, 377–402. (doi:10.1017/S09567925
15000686)

21. Clauset A. 2018 Trends and fluctuations in the
severity of interstate wars. Sci. Adv. 4,
eaao3580. (doi:10.1126/sciadv.aao3580)

22. Krieger T, Meierrieks D. 2011 What causes
terrorism? Public Choice 147, 3–27. (doi:10.
1007/s11127-010-9601-1)

23. Buhaug H, Gates S, Lujala P. 2009 Geography,
rebel capability, and the duration of civil
conflict. J. Confl. Res. 53, 544–569. (doi:10.
1177/0022002709336457)

24. Buhaug H, Gates S. 2002 The geography of civil
war. J. Peace Res. 39, 417–433. (doi:10.1177/
0022343302039004003)

25. Toft MD. 2005 The geography of ethnic violence
Identity, interests, and the indivisibility of
territory. Princeton, NJ: Princeton University
Press.

26. Findley MG, Young JK. 2012 Terrorism and civil
war: a spatial and temporal approach to a
conceptual problem. Perspect. Polit. 10,
285–305. (doi:10.1017/S1537592712000679)

27. Raleigh C. 2012 Violence against civilians: a
disaggregated analysis. Int. Interact. 38,
462–481. (doi:10.1080/03050629.2012.697049)

28. Silke A. 2001 The devil you know: continuing
problems with research on terrorism. Terror.
Political Violence 13, 1–14. (doi:10.1080/
09546550109609697)

29. Turchin P, Currie T, Turner E, Gavrilets S. 2013
War, space, and the evolution of Old World
complex societies. Proc. Natl Acad. Sci. USA 110,
16 384–16 389. (doi:10.1073/pnas.1308825110)

30. Baudains P, Zamazalova S, Altaweel M, Wilson
A. 2015 Modeling strategic decisions in the
formation of the early neo-assyrian empire.
J. Quant. Hist. Cult. Evol. 6, 1–23. (doi:10.
21237/C7CLIO6125390)

31. Weidmann NB. 2009 Geography as motivation
and opportunity: group concentration and
ethnic conflict. J. Confl. Res. 53, 526–543.
(doi:10.1177/0022002709336456)

32. Lim M, Metzler R, Bar-Yam Y. 2007 Global pattern
formation and ethnic/cultural violence. Science
317, 1540–1544. (doi:10.1126/science.1142734)

33. Toft M. 2007 Getting religion? The puzzling case
of Islam and civil war. Int. Secur. 31, 97–131.
(doi:10.1162/isec.2007.31.4.97)

34. Dewey E. 1971 A study of possible cyclic
patterns in human aggressiveness leading to
national and international conflicts.
J. Interdiscipl. Cycle Res. 2, 17–21. (doi:10.1080/
09291017109359237)

35. Hsiang S, Meng K, Cane M. 2011 Civil conflicts
are associated with the global climate. Nature
476, 438–441. (doi:10.1038/nature10311)

36. Hsiang SM, Burke M, Miguel E. 2013
Quantifying the influence of climate on human
conflict. Science 341, 1235367. (doi:10.1126/
science.1235367)

37. Hsiang SM, Burke M, Miguel E. 2011 Climate
shocks and Sino-nomadic conflict. Rev. Econ.
Stat. 93, 970–981. (doi:10.1162/RESTa00106)

38. Picoli S, del Castillo-Mussot M, Ribeiro HV, Lenzi
EK, Mendes RS. 2013 Universal bursty behaviour
in human violent conflicts. Nat. Sci. Rep. 4, 1–3.

39. Johnson N, Medina P, Zhao G, Messinger D,
Horgan J, Gill P, Bohorquez J, Zarama R. 2013
Simple mathematical law benchmarks human
confrontations. Nat. Sci. Rep. 33, 1–6.

40. Graham S. 2004 Cities, war, and terrorism:
towards an urban geopolitics. New York, NY:
Wiley.

41. Global Terrorism Database, 2016. See http://
www.start.umd.edu/gtd.

42. Dryad Data for Cities under Terrorist Attacks,
2019. See https://doi.org/10.5061/dryad.cj8kk41.

43. Urdal H. 2008 Population, resources, and
political violence: a subnational study of India,
1956–2002. J. Confl. Res. 52, 590–617. (doi:10.
1177/0022002708316741)
44. Maume MO, Lee MR. 2003 Social institutions
and violence: a sub-national test of institutional
anomie theory. Criminology 41, 1137–1172.
(doi:10.1111/crim.2003.41.issue-4)

45. Bagozzi B. 2015 Forecasting civil conflict with
zero-inflated count models. J. Civil Wars 17,
1–24. (doi:10.1080/13698249.2015.1059564)

46. Schmidt DF, Makalic E. 2009 Universal models
for the exponential distribution. IEEE Trans. Inf.
Theory 55, 3087–3090. (doi:10.1109/tit.2009.
2018331)

47. Ugarriza J. 2009 Ideologies and conflict in the
post-Cold War. Int. J. Confl. Manage. 20,
82–104. (doi:10.1108/10444060910931620)

48. Flint C. 2003 Terrorism and counterterrorism:
geographic research questions and agendas.
Prof. Geogr. 55, 161–169.

49. Enders W, Sandler T. 2006 Distribution of
transnational terrorism among countries by
income class and geography after 9/11. Int.
Stud. Quart. 50, 367–393. (doi:10.1111/isqu.
2006.50.issue-2)

50. Vogt M, Bormann NC, Rüegger S, Cederman LE,
Hunziker P, Girardin L. 2015 Integrating data
on ethnicity, geography, and conflict: the
ethnic power relations data set family. J. Confl.
Res. 59, 1327–1342. (doi:10.1177/00220027
15591215)

51. Homer-Dixon TF. 1994 Environmental scarcities
and violent conflict: evidence from cases. Int.
Secur. 19, 5–40. (doi:10.2307/2539147)

52. Witmer FDW, Linke AM, O’Loughlin J,
Gettelman A, Laing A. 2017 Subnational
violent conflict forecasts for sub-Saharan Africa,
2015–65, using climate-sensitive models.
J. Peace Res. 54, 175–192. (doi:10.1177/
0022343316682064)

53. Collier P, Hoeffler A, Rohner D. 2009 Beyond
greed and grievance: feasibility and civil war.
Oxford Econ. Pap. 61, 1–27. (doi:10.1093/oep/
gpn039)

54. Ballentine K, Sherman J (eds). 2003 The political
economy of armed conflict: beyond greed and
grievance. Boulder, CO: Lynne Rienner
Publishers.

55. Berdal MR, Berdal M, Malone D. 2000 Greed &
grievance: economic agendas in civil wars.
Boulder, CO: Lynne Rienner Publishers.

56. Maxmind. 2015 National geospatial-intelligence
agency: cities location and population data. See
https://www.maxmind.com/en/free-world-
cities-database.

57. Cover T, Thomas J. 1991 Elements of information
theory. New York, NY: Wiley.

http://dx.doi.org/10.1007/s10680-005-6851-6
http://dx.doi.org/10.1007/s10680-005-6851-6
http://dx.doi.org/10.2202/1554-8597.1213
http://dx.doi.org/10.1214/12-AOAS614
http://dx.doi.org/10.1073/pnas.1203177109
http://dx.doi.org/10.1073/pnas.1203177109
http://dx.doi.org/10.1080/00330124.2012.724348
http://dx.doi.org/10.1080/00330124.2012.724348
http://dx.doi.org/10.1017/S0956792515000686
http://dx.doi.org/10.1017/S0956792515000686
http://dx.doi.org/10.1126/sciadv.aao3580
http://dx.doi.org/10.1007/s11127-010-9601-1
http://dx.doi.org/10.1007/s11127-010-9601-1
http://dx.doi.org/10.1177/0022002709336457
http://dx.doi.org/10.1177/0022002709336457
http://dx.doi.org/10.1177/0022343302039004003
http://dx.doi.org/10.1177/0022343302039004003
http://dx.doi.org/10.1017/S1537592712000679
http://dx.doi.org/10.1080/03050629.2012.697049
http://dx.doi.org/10.1080/09546550109609697
http://dx.doi.org/10.1080/09546550109609697
http://dx.doi.org/10.1073/pnas.1308825110
http://dx.doi.org/10.21237/C7CLIO6125390
http://dx.doi.org/10.21237/C7CLIO6125390
http://dx.doi.org/10.1177/0022002709336456
http://dx.doi.org/10.1126/science.1142734
http://dx.doi.org/10.1162/isec.2007.31.4.97
http://dx.doi.org/10.1080/09291017109359237
http://dx.doi.org/10.1080/09291017109359237
http://dx.doi.org/10.1038/nature10311
http://dx.doi.org/10.1126/science.1235367
http://dx.doi.org/10.1126/science.1235367
http://dx.doi.org/10.1162/RESTa00106
http://www.start.umd.edu/gtd
http://www.start.umd.edu/gtd
http://www.start.umd.edu/gtd
https://doi.org/10.5061/dryad.cj8kk41
http://dx.doi.org/10.1177/0022002708316741
http://dx.doi.org/10.1177/0022002708316741
http://dx.doi.org/10.1111/crim.2003.41.issue-4
http://dx.doi.org/10.1080/13698249.2015.1059564
http://dx.doi.org/10.1109/tit.2009.2018331
http://dx.doi.org/10.1109/tit.2009.2018331
http://dx.doi.org/10.1108/10444060910931620
http://dx.doi.org/10.1111/isqu.2006.50.issue-2
http://dx.doi.org/10.1111/isqu.2006.50.issue-2
http://dx.doi.org/10.1177/0022002715591215
http://dx.doi.org/10.1177/0022002715591215
http://dx.doi.org/10.2307/2539147
http://dx.doi.org/10.1177/0022343316682064
http://dx.doi.org/10.1177/0022343316682064
http://dx.doi.org/10.1093/oep/gpn039
http://dx.doi.org/10.1093/oep/gpn039
https://www.maxmind.com/en/free-world-cities-database
https://www.maxmind.com/en/free-world-cities-database
https://www.maxmind.com/en/free-world-cities-database

	Common statistical patterns in urban terrorism
	Introduction
	Review of statistical analysis
	Contribution

	Results
	Intensity: power-law distribution
	Interval: negative exponential distribution
	Prediction accuracy and information loss
	Spectrogram analysis

	Discussions and conclusion
	Methodology
	Data
	Metrics
	Ethics
	Data accessibility
	Authors' contributions
	Competing interests
	Funding

	References


