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RESEARCH SUMMARY

Manipulating the parameters of e , a variant of the Normal
function, generates a great variety of bell-shaped curves. These
curves, or portions thereof, are useful in developing mathematical
descriptors for graphed hypotheses of the relations between continous

variables (regression relations). Like the Normal, e , responds
sigmoidally to departures from a pivotal value in X and to changes
in the point of inflection within the X-range. Slope of the sigmoidal
face at the inflection point varies additionally with change in power
of the negative exponents for the e-components . All sigmoids
are forced to zero at the extremities of the applicable range
(the pivot point, X , ± X ) to enhance control of the curve

P P _K
system by the modeler. Within this range, e varies from zero

_
to one and the appropriate form of e can be scaled to the value
of the objective curve at X . Along with curves of the class
n -K P

X , e is particularly useful in developing mathematical descrip-
tors for curves with unique shapes and/or those involving complex
interactions. A five-dimensional application is shown.
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INTRODUCTION

The December 1975 issue of Biometrics featured "A Review of Response Surface
Methodology from a Biometrics Viewpoint" by R. Mead and D. J. Pike. Along with

methods review, the authors examined applications in current biological literature

and identified a variety of statistical improprieties. The formulation of weak

hypotheses is one of these. It was noted that, when transformations are used,

simple polynomials predominate and that "Polynomials seem to be used as the

simplest readily available smoothing curve, without any appeal to their theore-
tical properties as approximations to the true response function," (p. 816-817).

In the presence of adequate incentive for analysts to follow technical direction,
this finding would suggest lack of emphasis on hypothesis development in statis-
tical texts and in the curriculums of statistical schools. In any event, a

brief discussion of hypothesis development is in order here as support for the
- K

presentation of e , a family of curves designed to facilitate mathematical
characterization of hypotheses that have been established graphically.

HYPOTHESIS DEVELOPMENT

A condition for valid statistical evaluation of hypotheses is that they be

developed independently of the data sets used for evaluation. Analysts, then,

must rely on knowledge, intuition, and conjecture to establish their concepts of

the underlying forms of the relations being considered. When expressed graphically,
possibly the usual case, mathematical descriptors for these relations must be estab-
lished as the hypotheses to be evaluated.

There is perhaps little reason to search for exact mathematical forms to rep-

resent conceptual models regarded as weak by the analysts generating them.

Descriptors based on low-degree polynomials will probably suffice.

But, as conceptual models elicit more confidence, they should be more accurately
represented by mathematical hypotheses. This could necessitate a time-consuming
search for appropriate existing functions, possibly contained in a list similar to

that provided by Mead and Pike (p. 817) . Direct development of suitable functions
by the analysts, however, may prove to be a more satisfying and perhaps even a more
efficient alternative. The exact nature and reliability of the graphed hypotheses
are emphasized in this process and full control of the form of the descriptor is

achieved by the analyst. Mathematical descriptors should meet the acceptance cri-

teria of the analysts involved (Bartlett 1947; Draper and Hunter 1969) . The parent
- K

function, e , provides a versatile base from which to develop mathematical descrip-
tors for forms of widely differing shapes.

Data sets reserved for evaluation of hypotheses and excluded as sources of infor-
mation in the development thereof may contain information beyond that included in the
original hypotheses. After evaluation, analysts are free to exhaust such data sets of
new information graphically or by any means available and to incorporate these findings
into advanced hypotheses. These may give rise to further research and to new data with
which to evaluate advanced hypotheses.

Methods for exhausting data of information directly are shown by Jensen and
- K

Homeyer (1970, 1971) and Jensen (1973). And again e is a transformation alter-
native that can be used in developing mathematical expressions for graphed
hypotheses of the relations between continuous variables.
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e~K: ITS DERIVATION, CAPABILITIES AND LIMITATIONS

_

The new function, simply identified as e , provides the analyst with a finite source
of versatile transformations for use when it is inefficient to search for alternatives

- K
or when alternatives are inadequate. While e is not a panacea for all the problems
modelers face in developing functional relationships, it along with curves of the class
Xn (n _> 1) , does serve a broad spectrum of transformation needs with no particular limi-

tations as to curve shapes for which it is most useful. Methods for developing mathe-
matical descriptors using these functions have been treated by Jensen and Homeyer (1970,

1971), and Jensen (1973, 1976).

A variant of the normal, the new function is defined as

n

1

(X/X
p
) 1

(Xj/Xp) - 1 (X
T
/X

p )

(Xj/Xp)

n

<_ X £ 2X
p

where,

e

X
P

I

X
I

n

natural logarithm base.

- K
pivot point in X, for e

point of sigmoidal inflection in X.

absolute departure of I from zero to Xp or, from 2Xp to Xp.

power of negative exponents for e.

The divisor X is retained throughout the equation for e to preserve correspond-

ence with the proportional X-format of the descriptor development system associated

-K
with e in Jensen and Homeyer (1970).

The left numerator, like the Normal, generates a system of bell-shaped curves about

X . These curves reach the maximum value of 1.0 at X , decline sigmoidal ly and sym-

P P
metrically on either side of X^ with increasing absolute departure of X from X^, and

reach zero -at-^— . Sigmoids on either side of X^ are forced into different areas

of two-dimensional space by shifting I, the point of inflection, and the slope of the

sigmoidal face at I, changes with n.

User control of the curve system is enhanced if all curves of the set range in

value from zero to one within a finite domain of X. To achieve this property, curves

generated by the left numerator have been forced through zero at X
p

± X
p

as follows:
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-T -T -T
Let the left numerator = e and let e ° - e at X = or 2X . Consider the

-T -Tr> -1
residuals generated by 1-e . Expanded by the inverse (1-e °) and subtracted from

one, we have

e"
K

= l-(l-e"
T
°)

_1
(l-e"

T
)

which simplifies to the final form,

e"
K

= (e"
T

- e"
T
°)(l-e"

T
0)

-1

Then, the right numerator and the denominator serve to force curves of the left

numerator through zero at X ± X . This domain, along with X , can be altered to
p p

&
p

accommodate skewed conceptual models by adding constants (+ or -) to the X-scale. The
- K

apparent complexity of e is much reduced by the fact than in application the right
numerator and the denominator reduce to constants or approach zero and can be deleted.

Sample arrays of curves from the left half of this function (a mirror image of
the right half) are shown in figure 1. Sets are shown for n = 1.5, 5.0, 5.0, and
10.0. Each set has curves progressing from X^/X =0.1 at the left to 0.9 at the

right. It is evident that a great variety of sigmoid (and bell-shaped) curves can
- K

be generated with e . These curves or any portions thereof provide an almost endless
potential for matching graphed curves and describing them mathematically. Given that
Y is the peak value of Y (the dependent variable) on the objective curve, the
P _ j(

selected e function may be scaled to that curve through multiplication by Y .

A descriptor (X ) , adopted as a hypothesis in its entirety, may be fitted to per-

tinent data by least squares in the simple model,

ZXpY/ZX

2
Y = 6X + e, where the e are NID (0, a ), constant variance, and 3

2

T

Weighted regression procedures are recommended where the variance about
regression is not uniform over the ranges of the independent variables. In such
cases, reasonable success in achieving constant variance has been obtained by

2 2
solving for departures (Y^ - Y^) or d^ as a suitable function of the related

Y^ in d^ = bY
n

. Then the weight, w, for each observation is set equal to 1/Y
n

and a

weighted 3 in Y = 3Y is estimated as 3 = ZwYY/EwY .

More complex, generally iterative fitting procedures, such as the Newton- Raphson
method, can be used to arrive at statistical estimates of internal model parameters
(see Damaerschalk and Kozak 1977; Draper and Smith 1966).
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e"*: A FIVE-DIMENSIONAL APPLICATION

The flexibility of e in representing a complex relation is evident in the
five-dimensional interaction pictured in figure 2. Here an index to intensity of

deer use of forest openings created by clearcutting in western Montana is expressed
as a function of opening size, height of new vegetation, depth of slash in the
opening, and depth of dead and down timber adjacent to the opening. (Data were
provided by L. Jack Lyon, Wildlife Research Biologist, Forestry Sciences Laboratory,
Intermountain Forest and Range Experiment Station, Missoula, Montana)

.

The data at hand, however, were initially committed to statistical evaluation
of the linear effects of the above and other independent variables on the intensity
index. These were virtually the simplest regression hypotheses that could have been
developed. In this case, the evaluation provided only weak support for expected
results and yielded little new information.

At this point, an advanced hypothesis was developed for the set of four indepen-

dent variables above judged to be of high utility to the land maanger. Prior know-

ledge on the forms of the relations, including interactions, between these variables

was summarized. Subject to these constraints and adhering to the data-fitting

principles of "least deviations" (Karst 1958), the data were then graphically

exhausted of associated curve form and scaling information and appeared to provide

strong support for the dynamic interaction anticipated. Procedures specified by

Jensen and Homeyer (1970, 1971), and Jensen (1973, 1976) were used to develop a

functional form X for the graphed interaction. This was refitted to the data by

least squares in the model PGR = 3(X^) + e and 6 = 0.9721. The adjusted model is

specified below:

PGR = f (VI, SI, SO, Acres)

where,

PGR = number of deer pellet groups per acre inside the opening.

VI = height of vegetation in feet, inside the opening.

SI = depth of logging slash in feet, inside the opening.

SO = depth of dead and down timber, in feet, outside the opening.

Acres = size of opening in acres.

5





PGR = fi (VI, SI, SO, Acres)

IF SI < PO

PGR =

(PO - 0.6) l
-
55

PO - SI 1.55
(0.9721) (50)

where

Y = Y S
P P

Acres + 200

260
(Xj/x )-i

1. 75

- e

1.75

1.75

lXj/X
p
J-l

} + 0. 23

Y S = 0.57 + 3.23 e
P I

^-

1

8

20 , 3 - SO

3

0.76
1

1

e
0.492

- 1

10

PO = 6.289 e

10

0. 999

10.5

2.289

X T /X = 0.897r p

IF SI > PO

m = o

0.067 e

VI
1

0.404

3.5

Limits

< SI < 4,

< VI < 8,

< SO < 3

< Acres < 500

R2 . . = .21, R 2 = .71
lin x

Graphic development of the model described by this function apparently resulted
in great sensitivity to the interaction information contained in the data. But,

since the degrees of freedom thereby sacrificed were unknown, conventional statistical
parameters were not estimable. Some indication as to the goodness-of-fit of the

functional form to the data set from which it was largely derived is provided by the

2
proportion of the total sum of squares explained by the model R =0.71 here.

2
Contrast this with the R of 0.21 achieved with a minimum-effort additive regression
model wherein linear effects of the same four independent variables have been fitted
to the data by least squares. It would appear, at least, that sharp focus on inter-

action formulation was justified.
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The complexity of the foregoing function may seem unwarranted but it must be recog-

nized that mathematical constraints are necessary to the description of relationships
involving such unique forms and strong interactions as are pictured in figure 2.

Familiarity with the descriptor development techniques used makes it possible to inter-

pret the form and magnitude of parameter effects from the function itself, although the

net functional effect is generally more important to the user and is much more easily
understood in the computer-produced graphic display (fig. 2). This has already
been determined to be an excellent medium for communicating analytical results to

users, land managers in this case. Also, e . has been found quite simple to

manipulate on a desk-top computer.

Although new data were not available to evaluate the advanced hypothesis
statistically, the model elicited intuitive confidence to the extent that it was
adopted as an interim management tool.
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The Intermountain Station, headquartered in Ogden, Utah,

is one of eight regional experiment stations charged with pro-

viding scientific knowledge to help resource managers meet

human needs and protect forest and range ecosystems.

EffifcFThe Intermountain Station includes the States of Montana,

Idaho, Utah, Nevada, and western Wyoming. About 250

million acres, or 90 percent, of the land area in the Station

territory are classified as forest and rangeland. These lands

include grasslands, deserts, shrublands, alpine areas, and

well-stocked forests. They supply fiber for forest industries;

minerals for energy and industrial development; and water

for domestic and industrial consumption. They also provide

recreation opportunities for millions of visitors each year.

Field programs and research work units of the Station are

maintained in:

Boise, Idaho

Bozeman, Montana (in cooperation with

Montana State University)

Logan, Utah (in cooperation with Utah State

University)

Missoula, Montana (in cooperation with the

University of Montana)

Moscow, Idaho (in cooperation with the University

of Idaho)

Provo, Utah (in cooperation with Brigham

Young University

Reno, Nevada (in cooperation with the Uni-

versity of Nevada)
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