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In the present article, we explore the influence of undisclosed
flexibility in the analysis of reaction times (RTs). RTs entail
some degrees of freedom of their own, due to their skewed
distribution, the potential presence of outliers and the
availability of different methods to deal with these issues.
Moreover, these degrees of freedom are usually not considered
part of the analysis itself, but preprocessing steps that are
contingent on data. We analysed the impact of these degrees
of freedom on the false-positive rate using simulations over
real and simulated data. When several preprocessing methods
are used in combination, the false-positive rate can easily rise
to 17%. This figure becomes more concerning if we consider
that more degrees of freedom are awaiting down the analysis
pipeline, potentially making the final false-positive rate
much higher.
1. Introduction
John P. Hack is a cognitive scientist. He has just run an
experiment comparing reaction times (RTs) in conditions A and
B and he is pretty sure of his hypothesis that the median RT of
the two conditions will differ, but when he analyses the data,
he obtains a p-value of 0.07. Disappointed, John wonders what
may have gone wrong. After checking some papers, he
remembers that RT distributions can be quite skewed and
sometimes medians are better than means. ‘Maybe there are
more outliers than expected in my data. I have to eliminate
outliers more than two standards deviations away from the
mean!’, he determines. He opens his analysis script and
changes one variable from 3 to 2. The p-value goes down to
0.052. Karen Transformáñez passes by the office and suggests
he try the inverse transformation. ‘I use it when things don’t
work with the logarithm’, she says. John changes the name of
a function in his script and, ‘Eureka!’, he exclaims, ‘I knew the
conditions were different’ ( p-value 0.047). Is his p-value
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correct? No. Can he make any valid conclusion based on it? No. Did he have any malice when doing

the above? No. Does John exist? Definitely yes and probably we are John ourselves.
Starting in the second half of the nineteenth century, Donders and Galton kick-started the use of RTs

[1,2]. Since then, this measure has been used as a dependent variable in countless experiments.
Nonetheless, the analysis of RTs is far from trivial. Firstly, their distribution is positively right-skewed,
making it a less than perfect variable for classic statistical tests that require normal data (e.g. t-test or
ANOVA). Secondly, RTs are inherently noisy, as they usually contain outliers that do not result from
the process of interest [3].

Several alternatives exist to analyse RTs [4–6]. One of them is to ignore all these issues and just apply
classical parametric statistics on raw data. Another possible solution is to transform the data (e.g.
log-transform, inverse-transform or the square-root-transform) to better approximate a normal
distribution. A third alternative is to remove outliers from the distribution by discarding observations
above or a below a fixed cut-point, some number of standard deviations away from the mean, or a
fixed percentage of the upper and lower observations. A fourth approach is to abandon central
tendency measures and instead use alternative summaries of the data, such as Vincentizing, or rely
on statistical models such as drift diffusion, ex-Gaussian or hazard models. Although the preceding
list is not exhaustive, it serves to illustrate the following point: confronted with all these alternatives,
which one is the most appropriate given one’s study? Particularly, keeping in mind that many
methods can be combined (e.g. calculating the mean for each participant and condition after
log-transforming data, from which all trials below 50 ms and above 1000 ms have been removed, and
then performing a t-test).

Recent studies [7–9] have shown that researcher’s degrees of freedom can inflate the proportion of false
positives. This increase takes place because researchers will typically only report the analyses that
produced significant results and drop those that did not. In the particular case of RTs preprocessing,
this problem can be aggravated for at least three reasons. Firstly, due to the right-skewed distribution
of RTs and to the potential presence of outliers, many different preprocessing pipelines (PPs) exist,
each one with different virtues and shortcomings, but all of them perfectly reasonable and valid
a priori. Secondly, there is no single ideal pipeline for analysing RTs that will fit all paradigms and
experiments. And, thirdly, because RT preprocessing takes place before statistical testing starts, a
researcher may think that checking which preprocessing works better will have no impact on the
proportion of false positives in subsequent tests.

Many papers [4–6,10–15] have addressed the problem of how to preprocess and analyse RTs. One
potential issue is that, because these papers list many available options to preprocess RTs, they might
leave the reader under the false impression that all of them can be tested sequentially until one of
them ‘works’. In the present article, we address the increase in the proportion of false positives caused
by flexibility in the preprocessing of RTs by means of Monte Carlo simulations over two real and 12
simulated datasets. For each dataset, we performed 1 000 000 independent simulations, applying a
range of preprocessing steps (i.e. different central measures, outlier removal criteria or data
transformations). Then, we measured the percentage of simulations that obtained at least one
statistically significant result at α = 0.05 (two-tailed test) as a function of the number and type of
preprocessing steps applied.

For the sake of simplicity, the statistical approach adopted in both cases relies on reducing the
distribution of RTs to a single summary statistic, such as the mean or median. Although this
approach has been challenged by alternative models, such as drift diffusion models or ballistic
models that do not reduce the RT distribution to a single statistic, our simulations and analyses are
based on summary statistics because much of the research based on RTs still follows this
straightforward approach. Just as an example, in an informal sample of the methods adopted in
recent studies, we found that 19 out of 25 sampled articles conducted an analysis of variance or
t-test on average RTs (see the electronic supplementary material for more information). Note,
however, that even drift diffusion and linear ballistic models require some data preprocessing, such
as dealing with outliers [16,17], and, therefore, it is likely that the results of the present study
still apply to them. Furthermore, these models may also have researchers’ degrees of freedom or
their own. It is not the goal of the present paper to find an optimal method to analyse RTs, but to
alert the reader of the impact of flexibility in data preprocessing, regardless of the final test or
model applied in statistical analyses. Readers interested in knowing more about the problems
of each particular RT preprocessing method have an extensive literature available [4–6,10–15] at
their disposal.
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2. Method

2.1. Description of the datasets
In this study, we used two real datasets: one provided by Ebersole et al. [18], referred to as Stroop in this
article, and another one provided by Rousselet & Wilcox [14], based on Ferrand et al. [19], referred to as
Flexicon in this article. Both real datasets correspond to repeated measures designs comparing two
conditions. In addition to using real data, we also generated simulated datasets from an ex-Gaussian
distribution parametrized in 12 different ways.

2.1.1. Stroop

From the original dataset of Many Labs 3 [18], covering several experimental paradigms, we used only
the data corresponding to the Stroop task. We refer the reader to the original paper for details on the task
design. The full dataset contains 3348 participants with 63 trials each (see electronic supplementary
material, figure S1). Before using these data in our simulations, we performed the following steps:

1. For each trial, only RT and participant ID were used.
2. After visualizing the RT distribution across participants, we found a small number of extremely long

(greater than 10 s) or short (less than 1 ms) RTs. To trim the distribution, we calculated the 1 and 99
percentiles of all the trials and participants pooled together and dropped all trials with RTs below or
above these thresholds, respectively (see electronic supplementary material, figure S1).

3. To avoid including participants contributing with very few trials, we dropped from the sample all
participants retaining fewer than 50% of the original trials after applying step 2. Thirty-nine
participants were dropped following this criterion (remaining N = 3309).

4. We equated the number of trials for all participants to 64, the closest even number, by resampling trials
at random within each participant. This was done so that in each of the simulations described below,
each participant contributed with the same number of trials and the dataset of each participant could be
divided in two halves that would be later assigned to different conditions. This simplified the coding
and speeded up the computations while making a negligible difference in the results.

2.1.2. Flexicon

The second dataset contained data from 959 participants with approximately 2000 trials each (see electronic
supplementary material, figure S2). We refer the reader to the original paper [19] for details on the task
design. The dataset was processed following the same steps as for the Stroop, with the only exception
that in step 3, no participants were dropped and in step 4, we equated the number of trials to 2000.

2.1.3. Simulated data

We also generated simulated datasets sampling data from an ex-Gaussian distribution. The ex-Gaussian
distribution has been shown to provide a good fit to empirical RT distributions [20–23] and has been
used previously to simulate RT data [14,24]. This distribution is produced by the convolution of a
Gaussian distribution and an exponential distribution and is defined by three parameters (μ, σ, τ). The
first two refer to the mean and standard deviation of the Gaussian component, while the last one
defines the exponential decay parameter. We created 12 different simulated datasets. Each dataset
contained observations sampled from one of 12 ex-Gaussian distributions, each one with a different
combination of parameters (table 1). This set of combinations of parameter values has been used in
previous simulation studies [14,24] and is representative of RT values reported in empirical papers
[21,22]. For each simulated dataset, we generated 1 000 000 observations that were randomly divided in
10 000 subsets, each one representing a hypothetical participant, of 100 observations each. These
simulated datasets allowed us to test the generalizability of the results obtained with the two real
datasets, as they cover a wider range of possible distributions of RTs.

2.2. Selection of preprocessing pipelines and simulation
The goal of this study was to determine the proportion of false positives obtained when several PPs are
applied to a dataset and only the one with the lowest p-value is reported. We first describe the subset of
PPs we considered in this study and the algorithm used for the simulations.



Table 1. Parameters sets for simulated datasets.

μ 300 300 350 350 400 400 450 450 500 500 550 550

σ 20 50 20 50 20 50 20 50 20 50 20 50

τ 300 300 250 250 200 200 150 150 100 100 50 50
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The pipelines used in the following simulations differed in terms of (i) central tendency measure,
(ii) threshold values for removing outliers, and (iii) transformations of data. We selected the mean and
median as central tendency measures, as they are very often used in RT analyses, despite the
controversy about their use [14,24]. Threshold values for removing outliers were set to 2 s.d., 2.5 s.d.
or 3 s.d., based on a survey of the literature conducted by Leys et al. [10]. Two transformations
(logarithm and inverse) were selected among the ones typically used in the RT literature [5] and we
also included the possibility of not transforming the data.

We ran 1 000 000 iterations for each of the real and simulated datasets. In each iteration, we created a
random sample of participants, assigned the trials randomly to either of two conditions, applied the
previously described PPs and ran a t-test for each of those PPs:

1. Participants’ sample. Thirty participants were sampled at random from the dataset. For each participant,
all trials were selected (i.e. 64, 2000 or 100, depending on the dataset). We chose an N of 30 because it is
a reasonable number of participants for a hypothetical study and because it allowed resampling with
little overlap across simulations.

2. Force a null effect. To force a null effect on each iteration, we created two conditions artificially by
randomly assigning one half of the trials to each condition, regardless of their original assignment
in the case of the real datasets [25].

3. Preprocessing and summary statistic. For each participant, we applied different combinations of PPs.
Firstly, data were either not transformed (Raw), log-transformed (Log) or inverse-transformed (Inv).
Secondly, outliers were either not excluded or excluded using as cut-off values either 2 s.d., 2.5 s.d.
or 3 s.d. away from the participants mean (no s.d., 2 s.d., 2.5 s.d. and 3 s.d., respectively). Finally,
for each participant, condition and preprocessing combination described before, we calculated the
mean RT (Mean) and the median RT (Median). This means that in our simulations RTs could be
submitted to 24 (3 transformations × 4 outlier exclusion methods × 2 summary statistics) different
PPs. In the following sections, PPs will be named after their summary statistic, transformation and
outlier detection cut-off (e.g. Mean–Log–2 s.d.).

4. Statistical test. Finally, we ran a two-tailed paired t-test comparing the two conditions separately for
each PP (figure 1).

2.3. Analysis
We estimated the proportion of false positives under different sets of PPs by calculating the proportion of
iterations in which we found a significant p-value (α = 0.05) in at least one of the PPs considered. For
example, imagine that we consider the set of two PPs {Median–Raw–3 s.d., Mean–Raw–3 s.d.}. We
would use the proportion of iterations in which we found a significant p-value in the first, in the
second or in both PPs as an estimator of the proportion of false positives.

3. Results
Table 2 and figure 2 show the estimated proportion of false positives for different sets of PPs. For the sake of
simplicity, only a representative subset of all possible combinations (224 in total) are shown in table 2. The
proportion of false positives was equal to the α-level of the t-test, 0.05, only when a single PP was applied.
As the size of the PP set grows, the proportion of false positives increases progressively in all three datasets.

4. Discussion
RT data are difficult to analyse due to their right-skewed distribution and the potential presence of
outliers. Several techniques exist to address both problems. From the myriad of possible approaches,
we selected a subset of methods and analysed the increase of false positives produced by the



Figure 1. Schema of the simulation. Circled numbers correspond to the steps described in the main text. RTi,j represents the RT of
participant i in trial j. C1i,j and C2i,j denote conditions 1 or 2, respectively, assigned to each RTi,j in a given iteration. C1-SSi,k and
C2-SSi,k represent the summary statistic in a given iteration of conditions 1 and 2, respectively, for participant i after applying the kth
PP of the 24 applied in the simulation. pm,k represent the p-value when a two-tailed paired t-test is performed between conditions 1
and 2 in the iteration m when the kth PP is applied.
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application of several of them in turn. Our results indicate that the seemingly innocuous decision of using
either the mean or the median as a summary statistic can increase the proportion of false positives from
0.05 to 0.08, or up to 0.09, if several outlier exclusion techniques are used. The false-positive rate can
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Figure 2. Proportion of false positives as a function of the PP set. Each group of bars represents the proportion of false positives
obtained in the simulation for each dataset, given a specific combination of PPs. Each group name indicates which PPs were applied,
slash bars separate variations of the same parameter included in a PP (e.g. Median–Raw/Log/Inverse–No s.d. indicates that
Median–Raw–No s.d., Median–Log–No s.d. and Median–Inverse–No s.d. pipelines are considered). The proportion of false
positives was equal to the α-level of the t-test, 0.05, only when a single PP was applied.
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increase beyond 0.15 if all the described PPs are used (see third, fifth and last rows of table 2). These
numbers become particularly alarming if we consider additional degrees of freedom [9] that can
increase the false-positive rate even further. In this sense, our results are probably an underestimation
of the actual false-positive rate, as we have not exhaustively covered all possible PPs. It could be
argued that most researchers would never try all possible pipelines and combinations, and while we
partially agree, we suspect that many researchers working with RTs are likely to deem the exploration
of several approaches as not only valid, but even necessary to properly analyse RT data. Even more, it
is not necessary to perform all possible PPs every time. Researchers probably stop trying PPs once
they find one that provides a significant result. Also, they probably do not explore PPs randomly but
in an intelligent way by, for example, selecting the transformation that maximizes the difference
between conditions. Note that whether or not a researcher actually explores all PPs or not is
irrelevant: just considering them or being willing to use them is enough to inflate the false-positive
rate [7].

Preregistration provides effective means to avoid these problems. The main idea behind
preregistration consists of declaring a priori the specific procedures and the data analysis approach,
including any preprocessing of RTs. In a preregistered study, all the researcher’s degrees of freedom
are squeezed into a predefined preprocessing and analysis pipeline [9,26,27], drawing a sharp
distinction between confirmatory and exploratory analyses [28,29]. Different approaches to deal with
distributional assumptions in preregistered research have been proposed [30].

We must highlight that flexibility in data preprocessing is not the only factor with an impact on the
false-positive rate in analyses of RTs. For example, differences in skewness between conditions can also
raise the number of false positives above 5% [14] (note that no difference in skewness was present in
the simulations reported in this study as our interest was to detect false positives when distributions
in both conditions were identical). Therefore, researchers must be aware of other possible sources of
false positives even when using only a single preregistered analysis pipeline.

Given that the flexibility in the preprocessing of RTs is largely driven by attempts to correct for the
marked skewness of their distribution, the problems highlighted in this article could be ameliorated by
resorting to analytic methods specifically designed to deal with non-normal distributions, such as
bootstrapping or permutations tests, possibly combined with robust statistics such as the trimmed
mean [31]. This being said, relying on bootstrapping or similar methods does not preclude the need to
preregister studies, as the inflation of the false-positive rate discussed here is not produced by the use
of one statistical approach or another, but by selecting among different analytic approaches based
on significance.

The present study is not without limitations. Firstly, we did not test all possible PPs because the
number of potential combinations grows exponentially with each additional PP and so does
computational time. A second shortcoming is the limited availability of real datasets to perform this
kind of simulations. Although smaller datasets are available, only large datasets with information at
the trial level are suitable for the present simulations. All the scripts and data used in the present
study are available online [32] and, therefore, all simulations can be easily repeated with different
datasets, PPs or statistical tests.
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