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Reproductive proteins are among the most rapidly evolving
classes of proteins. For a subset of these, rapid evolution is
driven by positive Darwinian selection despite vital, well-
conserved, reproductive functions. Izumol is the only essential
sperm—egg fusion protein currently known on mammalian
sperm, and its egg receptor (Juno; formerly Folr4) was recently
discovered. Male knockout mice for Izumol and female
knockout mice for Juno are both healthy but sterile. Here, both
sperm—egg binding proteins are shown to be evolving under
positive selection. Within mammals, coevolution of Izumo1l and
Juno is also uncovered, suggesting that similar forces have
shaped the evolutionary histories of these binding partners
within Mammalia. Additionally, genomic analyses reveal an
ancient origin for the Izumo gene family, initially reported
as conserved exclusively in mammals. Newly identified
Izumol orthologues could serve reproductive functions in
birds, fish and reptiles. Surprisingly, these same analyses
support Juno’s presence in mammals alone, suggesting a recent
mammalian-specific duplication and neofunctionalization of
the ancestral folate receptor. Despite the indispensability of
their reproductive interaction, and their apparent coevolution
within Mammalia, this binding pair arose through strikingly
different evolutionary forces.

1. Introduction

In sexually reproducing species, fertilization occurs through the
recognition and fusion of haploid sperm and egg to produce
a diploid zygote. Although the processes involved in this
essential reproductive stage have been well studied, the molecular
basis of mammalian sperm-egg fusion was largely unknown
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until recently. The first essential sperm-egg fusion protein to be discovered on mammalian sperm was
Izumol. An Izumol knockout results in male mice that are completely sterile, but otherwise healthy,
while female mice exhibit a normal phenotype [1]. Recently, the egg receptor for mammalian Izumol
was discovered to be folate receptor 4 (Folr4), which was renamed Juno (or Izumo1R) [2]. Juno knockouts
result in a phenotype opposite to Izumol knockouts: healthy, yet sterile female mice, and phenotypically
normal males [2]. Izumol and Juno are the first essential sperm—-egg binding pair identified in any
species, and their conserved binding ability has been demonstrated in numerous mammals [1-3].
Additional mammalian egg proteins, including CD9 and CD81, are also known to be essential for sperm-
egg fusion [4]. Currently, it is unclear whether these egg proteins interact directly with a binding partner
on the sperm, and their precise roles in sperm-egg fusion have yet to be determined [4-7].

Comparative genomic studies have identified reproductive proteins as one of the most rapidly
evolving gene-classes across diverse taxa [8]. A priori, one might expect positively selected reproductive
genes to play secondary roles in reproductive success while proteins central to fertilization remain
generally conserved, but positive selection has been identified in many classes of reproductive proteins
including those functioning in sperm competition, sperm—egg binding and spermatogenesis [7,9-12].
Although Izumol has an indispensable role in fertilization, it too has been identified as evolving rapidly
through positive selection in both large exploratory studies and in-depth targeted analyses [7,11,13].

Izumol paralogues have also been discovered, resulting in a four-member Izumo family in mammals
[14]. Tzumol, Izumo2 and Izumo3 are expressed exclusively in the testes, while Izumo4 lacks a
transmembrane domain and is present throughout the body [14]. Molecular evolutionary study revealed
that Izumol is evolving under positive selection across Mammalia, driven by rapid evolution within
the laurasiatherian mammals, while Izumo?2 is positively selected within the Primates, and Izumo4 is
evolving rapidly in the Glires (Rodentia and Lagomorpha), probably due to a relaxation of selective
constraint [13].

Juno, previously Folr4, is also a member of a four-gene family. The mammalian folate receptor family
consists of Folrl, Folr2 and Folr4 across Mammalia, and Folr3 within Primates [15-18]. Folr1-3 are
known to bind folate by a newly described mechanism, and the heightened expression of Folrl and
Folr2 in disease-causing cells in cancers and inflammatory diseases has led to extensive research into
folate receptor-targeted therapies [19-22]. Human and mouse Juno differ from the other family members
at a number of essential folate-binding sites and are indeed unable to bind folate [2]. In mice, Folrl and
Folr2 do not interact with Izumo1; similarly, Izumo3 and Izumo4 do not interact with Juno [2].

Molecular evolutionary analyses of gene families not only provide insight into the history of the genes,
but can also identify targets for future functional experiments [23]. No such study has been conducted
for the folate receptor family. Here, I describe the evolutionary history of the only essential sperm-egg
fusion pair currently known, Izumol-Juno, in the context of their respective gene families. I examine
the evolutionary history of the folate receptor family in vertebrates for the first time and conclude that
Juno arose through a recent, mammalian-specific duplication and neofunctionalization of an ancestral
folate receptor gene. I uncover an ancient origin of the Izumo gene family and Izumol, which has
only been previously described and studied in mammals. These newly discovered Izumo1 orthologues
could serve similar reproductive functions in fish, birds and reptiles. I identify positive selection driving
the evolution of Juno within mammals and compare these signatures of selection to those previously
reported for Izumol1 [13]. Finally, I investigate coevolution between Izumo1 and Juno within Mammalia
and identify lineage-specific signals of coordinated evolution between these binding partners. I conclude
that Izumol and Juno have distinct temporal origins, but coevolve under similar selective pressures
within the mammals.

2. Methods and results

2.1. Folate receptor family evolution

Homologous sequences for mammalian Folrl, Folr2, Folr3 and Folr4 were identified from NCBI and
Ensembl. These sequences were evaluated through a suite of techniques: reciprocal BLAST searches on
NCBI [24,25], visual inspection of alignments in MEGA v. 6.06 using MUSCLE and CLUSTALW [26-28],
phylogenetic analysis in MRBAYES and RAXML [29,30], and synteny when the target gene was present
on a contig of suitable size [25,31]. Synteny figures were constructed by hand, based on Ensembl’s Region
in Detail and NCBI's Genomic Region tools. When syntenic genes appeared to be missing for a species of
interest, or when the genome browsers provided conflicting results, BLAST searches were carried out to
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Figure 2. Sites 53, 55,74,78,102,103, 106, 135-138, 140, 171, 174 and 175 from the mature human Juno protein aligned with representative
members from both the extended folate family (blue and green synteny groups) and mammalian Juno (pink synteny group) support the
conservation of Juno in only Mammalia. These 15 sites are essential for folate binding in other Folr proteins, while Juno is known to be
unable to bind folate. Derived sites are highlighted in pink, and the total number of substitutions present in each species is displayed in
the far right column.

determine if automated annotation tools had missed (or mislabelled) the gene. These regions were also
visually inspected for large gaps or Ns that could result in a gene being dropped from the final assembly.
Additional homologues were identified and validated through this suite of analyses and a final collection
of sequences was chosen to provide key phylogenetic positions, with priority given to sequences of high
quality contained on large contigs.

The phylogeny and synteny presented here for the folate receptor family (figure 1) support the
presence of a single ancestral folate receptor of the blue synteny group (generally adjacent to ANAPC15
and/or INPPL1) for ray-finned fish, lobe-finned fish and snakes, prior to lineage-specific duplications
and losses which resulted in one Folr (currently listed as Folrl on NCBI) in alligators, birds and
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Xenopus, two to three Folr genes in turtles, and three in mammals. All members of the blue synteny
group have been maintained in this syntenic gene cluster. Two independent duplications with genomic
translocation have also occurred, producing additional synteny groups. The green synteny group is
known only from archosaurs, with two translocated Folr genes in alligators and one in birds. Juno,
the pink synteny group, appears to have split from the ancestral (blue group) folate receptor early in
mammalian evolution and has been maintained in its new chromosomal location in both marsupials and
placental mammals.

In opossum (Monodelphis domestica), Juno’s interaction with Izumo1 has been shown to be conserved
[2], and its presence in the genome is supported through both synteny (electronic supplementary
material, figure S1) and phylogeny. Due to genome quality, the evolutionary history of this gene family
could not be fully assessed in platypus (Ornithorhynchus anatinus), although flanking genes from the pink
syntenic group are present, while Juno appears absent (scaffold NW_001794203), and at least one partial
Folr gene is present in the platypus genome (XM_001513334).

The absence of Juno from non-mammalian genomes is supported through phylogeny (figure 1),
synteny analysis and examination of sites essential for folate binding (figure 2). Synteny of Juno’s
flanking genes is conserved throughout this region across most vertebrates, but Juno is only present
in mammals (electronic supplementary material, figure S1); in addition to the standard BLAST searches
on NCBI, each syntenic region in tetrapods and fish was downloaded and individually examined with
BLAST+ using TBLASTN, TBLASTX and BLASTP to confirm Juno’s absence [33].

Fifteen sites known to be essential for folate binding [2,21,22] were also examined in silico. Although
a few sequences belonging to the blue and green synteny groups have one substitution among these
15 essential sites, the vast majority of non-Juno sequences show full conservation across all 15 sites in
tetrapods and fish (figure 2). Alternatively, all Juno sequences examined have between four and nine
substitutions across these sites. Four of these substitutions at essential folate-binding sites may have been
crucial for Juno’s neofunctionalization from the ancestral Folr gene, since they appear in all mammalian
Juno genes examined with the exception of two species which each have the ancestral amino acid at
one of the four sites. These patterns support the hypothesis that all Folr family members of the blue
and green synteny groups (figure 1) possess the ability to bind folate and that Juno’s loss of functional
folate-binding predates the divergence of marsupial and eutherian mammals.

2.2. 1zumo family evolution

Orthologous sequences for Izumol, Izumo2, Izumo3 and Izumo4 were identified using the protocol
outlined above for the Folr family. Additionally, Izumo family members share an approximately
150 amino acid ‘Izumo domain’ near their N-terminus, and all Izumol sequences possess an
immunoglobulin-like domain [1,14]. These domains also aided in the validation of newly discovered
Izumo proteins.

The synteny and phylogeny (figure 3) support the discovery of non-mammalian members of all four
Izumo paralogues, thereby placing the origin of this gene family 200-250 million years earlier than
previous reports. Izumo2 and Izumo3, which are adjacent on reptilian contigs, appear to share a common
ancestor with Izumol, while Izumo4 is placed most distantly. This result is not surprising in light of
Izumo4’s absent transmembrane domain and expanded expression pattern [14].

In searching for Izumo genes, an interesting pattern emerged: despite the increasing number of
assembled and annotated avian genomes (approx. 60 on NCBI), Izumol was difficult to identify
in all but the Tibetan ground tit (Pseudopodoces humilis—the only bird to have a full Izumol gene
identified). The other Izumo paralogues were not detected in birds, despite conservation in mammals
and reptiles. Additional avian Izumol sequences were discovered through SRA BLAST, and the short,
exonic sequences identified are reported (electronic supplementary material, table S1).

One common bias in sequence data is underrepresentation of GC- and AT-rich genomic regions
[34]. Izumol’s GC content is approximately 45-61% in fish and mammals, approximately 55-68% in
reptiles and 71% for Tibetan ground tit. This high GC content within the CDS of the ground tit is also
present in the surrounding genomic regions (65% GC, compared to 55% and 57% for human and turtle,
respectively). Syntenic genes, including RASIP1 and ISOC2, are also absent from all avian genomes
except the ground tit. These findings might explain the absence of Izumol sequences for many birds.
Non-avian Izumo paralogues share fairly consistent GC content within a given species, a pattern that (if
maintained in birds) could suggest that Izumo2—4 are not lost, but simply hidden due to sequencing bias
(figure 3). Alternatively, these paralogues may have been removed during the massive avian-specific loss
of ancestral genes originally identified in chicken [35].
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Figure 4. Mirrored gene trees for Izumo1and Juno containing the 30 common mammals used in PAML (table 1) and Mirrortree (table 2)
analyses. Trees were constructed using RAxML under the default model (GTR + CAT) partitioned by codon position with 1000 bootstraps.
Bootstrap support values below 70 are indicated. This figure was constructed using the APE [38] and phytools [39] packages in R.

2.3. Positive selection and coevolution in IzumoTand Juno

For both Izumol and Juno, phylogenetic analysis by maximum likelihood (PAML) [36,37] identified
signals of positive selection across 30 common mammals with full, annotated genomes and good synteny
in the target regions (table 1 and figure 4; see electronic supplementary material, table Slc for accession
numbers). These results support those reported for one of the best-studied invertebrate sperm-egg
partnerships, the lysin—-VERL system of marine abalone. Both lysin on the sperm and VERL, its receptor
on the egg, evolve under adaptive evolution [10,40]. Non-mammalian Izumol in birds, reptiles and fish
appears to be evolving under purifying selection (table 1).

Previous in-depth analysis of molecular evolution within the Izumo family identified that the positive
selection driving mammalian adaptive evolution for Izumol is localized to the laurasiatherian mammals,
being absent from both Glires and Primates [13]. To determine if this pattern is also present in Juno,
suggestive of coevolution between the binding partners, each clade was tested independently for both
Izumol and Juno (table 1). These analyses have never been performed on Juno and are more robust than
those previously carried out for Izumol in both species number and sequence coverage. Izumol’s signal
of selection within laurasiatherians was present once more, and Juno’s mammalian signal of positive
selection appears to be driven by the Primates alone (table 1).

An additional technique used to investigate protein coevolution, called Mirrortree, compares two
gene trees (e.g. a ligand and its receptor) to detect similarities greater than those expected under a
standard molecular clock. Strong correlations (defined as more than 0.800) are suggestive of coordinated
changes in both genes, resulting from similar evolutionary forces [41]. Mirrortree was used to examine
the same 30 mammalian species used in the PAML analysis for coevolutionary signals between the gene
trees of Izumo1 and Juno.

Correlation values between Izumol and Juno were generated through two separate analyses on the
Mirrortree Web Server [42]: (i) using the “From trees’ option and (ii) using the “‘From multiple alignments’
option (table 2, figure 4). The ‘From trees” approach analysed the same RAXML trees used for PAML
analyses (figure 4), while the ‘From multiple alignments’ method examined a CLUSTAL N]J tree produced
on the Web Server from provided Izumol and Juno protein alignments [42]. Both analyses identified
a robust signal of coevolution between Izumol and Juno within Primates (table 2). The ‘From trees’
approach also identified a signal of coevolution within the Glires, but not across all 30 mammals or
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Table1. Positive selection is acting on both members of the essential sperm—egg binding pair (Izumo1/Juno), but is confined to different
lineages. PAML and Bayes empirical Bayes (BEB) results for clade-based selection tests. Likelihood ratio test values are presented in
columns M7 versus M8 and M8 versus M8a. M7 allows « to vary between 0 and 1, while M8 adds an additional parameter whereby
w an exceed 1; M8a (M7 with = 1) is the null hypothesis for M8 [36]. The total number of BEB sites with probability greater than
0.5 are reported before the semi-colon, followed by those sites identified as having p-values of 0.95 or better [37]. BEB sites were only
produced for clades evolving under positive selection.

gene group n M7 versus M8  M8versusM8a  BEB sites

Juno mammals 30 12.87%% 1.32%* 5; 1150+

Juno Glires 7 139 0 n.a

Juno Laurasiatheria 14 1.05 0.74 n.a

Juno Primates 9 7 7.83%%* 8, 11T*, 113L**,1231*

lzumol  mammals 30 65.03%* 4330+ 101; 28P*, 167P***, 2615**, 274A*, 276T*, 303M*
307E**, 308L***, 310T***, 390E**, 391T*, 400R*,
403R***

lzumol  Glires 7 272 0.99 na

lzumol  Laurasiatheria 14 5377 44 68+ 65; 28P**, T18H*, 167K***, 173E*,1931*, 274Q™*, 277T*,
278A%*, 298V**, 302-*,303P*, 353-*, 354T*, 382-*,
385-**

lzumol  Primates 9 0.68 0.37 n.a

lzumol  non-mammals 18 0.50 0.30 n.a

*p > 0.95,%*p > 0.975, % p > 0.99.

Table 2. Mirrortree Web Server [42] identifies lineage-specific signals of coevolution between mammalian Izumo1 and Juno. Correlation
values were generated using both Newick trees created in RAXML (figure 4), and multiple sequence alignments (MSA) created with Muscte.
Italicized correlation values lie above the Mirrortree correlational cut-off of 0.800 and are suggestive of coevolution between IzumoT and
Juno within that group.

correlation correlation

value from trees value from MSA
mammals 30 0.720 <0.000001 0.817 <0.000001
e S e oot e i
L L vey oot G oo
Primates 9 090 <0.000001 0989 <0.000001

within the Laurasiatheria (table 2). The ‘From multiple alignments” method did not identify a signal in
Glires or Laurasiatheria, but did show evidence of coevolution across all 30 mammals analysed (table 2).

These results support the hypothesis that Juno and Izumol are experiencing coordinated evolution
within the mammals. The strength of the Mirrortree signal appears to vary by clade and by method
of analysis. The discrepancies seen between the two methods could be explained by tree support. For
example, low bootstrap support within a portion of the Laurasiatheria (figure 4) might factor into the
non-significant signal of coevolution detected for that clade. The Izumol clade containing horse (Equus
caballus) has a bootstrap support value of 45 (figure 4), and the horse phylogenetic position is one of the
least correlated across the analysed mammals. Additionally, the ‘From trees” approach used trees built
from nucleotide alignments, while the ‘From multiple alignments’ method requested protein alignments,
which it used to construct each phylogenetic tree. Analysing trees built using nucleotides versus proteins
could also affect the signals identified through Mirrortree.

3. Discussion and conclusion

Here, I describe the evolutionary history of Juno and Izumol in the context of their gene families. In doing
so, new Izumo genes in tetrapods and fish with potential roles in reproduction are described for the first
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time, and the mammalian origin of Juno is elucidated. The discovery of disparate evolutionary origins
for these proteins raises a number of future research questions. What is the function of Izumol outside
of Mammalia? How did the interaction between Izumol and the ancestral folate receptor first arise?
Since sperm, eggs and the modes of fertilization vary across the vertebrate phylogeny, whether non-
mammalian Izumo genes possess reproductive functionality is currently uncertain, but merits further
investigation. Targeted examination of expression patterns for these genes across the phylogeny and
throughout the vertebrate body is one potentially fruitful approach to address these questions.

Through bioinformatic analyses, I present evidence that the first essential sperm-egg binding
pair discovered in any organism is evolving under positive selection. I demonstrate that different
clades have driven the positive selection identified in each binding partner, and that the mammalian
conservation of Izumol-Juno binding ability and their essential function in sperm-egg recognition
have probably resulted in coevolution between these two proteins. These results support the long-
standing hypotheses that rapid evolution and positive selection observed in reproductive proteins are
often driven by coevolution between male and female proteins, either as an arms race (through sexual
conflict) or through adaptations to species-specific gamete recognition systems that are key to avoiding
hybridization. For example, positive selection and coevolution between lysin and VERL of marine
abalone are believed to have resulted from one or both of these processes [10,43].

It is unlikely that Izumol and Juno play major roles in species-specific gamete recognition for two
reasons. The first is that Juno localizes on the egg membrane. This membrane sits interior to the zona
pellucida (ZP), a major barrier in preventing hetero-specific sperm from binding to eggs in mammals
[44]. The second is the recent finding that cross-species Izumol-Juno binding is possible between human
Izumol and Juno on the Syrian golden hamster (Mesocricetus auratus) egg following removal of the ZP.
In this species pair, it appears that Juno can bind hetero-specific Izumol; however, this trend does not
appear to be consistent across mammals [3]. The same manuscript reports that human Izumol does not
bind to mouse Juno, suggesting that some level of species recognition might be carried out between
Izumol and Juno after sperm penetrates the ZP [3].

The possibility that Izumol and Juno are coevolving under the pressures of sexual conflict is also
an interesting one, which would probably be best studied in a small clade of species with varied levels
of sperm competition. A recent study using this model identified positive selection and coevolution
between Izumol on sperm and CD9 on the egg across the Mus genus [7]. The influence of sexual
selection on the evolution of a protein pair can be examined by comparing lineage-specific w values
(an indicator of selective pressure) to a proxy of sexual selection (e.g. relative testes mass). This method
produced negative results for CD9 and Izumol, but could be applied to Juno and Izumol in the
future [7].

While it is clear that selection analyses conducted across distantly related species can uncover signals
of positive selection at high taxonomic levels (e.g. Mammalia), it is important to note that they often
overlook lineage-specific or recent bouts of selection, and can be biased based on the sequenced taxa that
are currently available [45,46]. For example, Izumol is reportedly evolving under positive selection in
Mus, despite appearing to be under the influence of purifying selection in Glires [7]. In other instances,
the coarse signals identified by analysing previously sequenced species remain unchanged with the
addition of new closely related species. When Izumol was first studied within Primates, purifying
selection was identified using sequence data for just five species from online databases [13]. Recently,
both CD9 and Izumo1 were sequenced and analysed in 12 Primates, and neither gene was found to be
evolving adaptively in these groups [47]. If there are lineage-specific bouts of positive selection acting on
Izumol within Primates, they are probably hidden at the genus level, as seen in Mus.

Although Izumol and CD9 do not appear to be evolving under positive selection in the Primates,
they again display signals of coevolution [47]. Izumol and CD9 are not known to interact directly, but
the coevolutionary signals identified in Mus and Primates are suggestive of either functional associations
or interaction at the molecular level [7,47]. A similar conclusion can be drawn from the signal of
coevolution identified between Izumol and Juno in the current paper. Since the Izumol-Juno signal
of coevolution has already been validated through molecular data describing the essential sperm-—
egg binding behaviour of these proteins, my results lend support to methods such as Mirrortree for
candidate gene screening and potential identification of interacting proteins using bioinformatics [2,48].
Understanding the evolutionary histories of gene families and examining patterns of coevolution can
help inform functional studies in humans, model and non-model organisms.
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