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We propose a new derivation of the cranking-model expression for the nuclear collective inertia tensor,
introducing explicitly the slow- and fast-motion timescales together with a parameter controlling the interplay
between the two modes. The new cranking formula is free from the mass tensor divergencies originating from
the nucleon-level crossings in the denominators of the first-order perturbation theory expressions and allows
the exploration of the unrestricted deformation space without spurious mass tensor contributions caused by
those divergencies. We apply the new formalism without extra parameter adjustments to the collective vibrations
in 208Pb.
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As it is well known, the strong interactions acting among
the nucleons are of a very short range so that nucleons in a
nucleus can be seen as “touching each other.” This allows
introducing the notion of a nuclear surface whose shape can be
identified with the nuclear shape. The equation of this surface
can be described using a set of parameters, say q ≡ {qn; n =
1, 2, . . . , d}, sometimes referred to as collective variables.
They are particularly well adapted to studying various forms
of the surface-vibrational (thus collective) motion.

In this Rapid Communication we present a new approach
to calculating the nuclear collective inertia tensor in the d-
dimensional curvilinear space of collective variables q within
the adiabatic cranking method. We introduce explicitly two
timescales and derive a new factor—called temporizer, see
Ref. [1]—in the modified expression for the inertia tensor. Its
presence takes away the problem of singularities caused by the
single-particle level crossings in the perturbation-theory mass
tensor, a strongly undesired byproduct of the first-order per-
turbation theory. At the same time we approach the solution
of the long-standing issue of the missing factor of the order
of two, see Ref. [2], in the cranking expression for the inertia
tensor.

The importance of including both the diagonal and non-
diagonal components of the inertia tensor arises naturally in
the description of the large-amplitude collective motion and
in particular fission, see recent Ref. [3]. The notion of an
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inertia tensor is a standard element in the microscopic nuclear
structure approaches such as generator coordinate (GCM)
or adiabatic time-dependent Hartree-Fock-Bogoliubov (ATD-
HFB), Refs. [4–6] and references therein. The starting point
of the present formulation of the microscopic theory of the
inertia tensor goes back to Ref. [7], see also Refs. [8–12],
whereas discussion and extensive list of references related to
the microscopic aspects of collective model can be found in,
e.g., Refs. [13,14].

Let x̂k ≡ {r̂k, p̂k, ŝk, t̂k} denote the ensemble of operators
of position, linear momentum, spin, and isospin of a nucleon
k, and let X̂ = {x̂1, . . . , x̂A} denote their full set. With the nu-
clear many-body Hamiltonian, Ĥmb(X̂, t ), the corresponding
Schrödinger equation can be formally written as

Ĥmb(X̂, t )�mb(X, t ) = ih̄
∂�mb

∂t
(X, t ), (1)

where �mb(X, t ) is the time-dependent multinucleon wave
function.

Following Bohr and Mottelson let us introduce the concept
of two energy scales: (i) the collective vibration-type energies,
which are of the order of an MeV, and (ii) the individual-
nucleonic energies, which can reach a few dozen MeV. As-
suming the orders of magnitude for the typical collective
vibration energy range as 0.5 � Ecol � 2 MeV and similarly
for the individual-nucleonic motion in the vicinity of the
typical Fermi energy as 30 � Eind � 50 MeV, from the Planck
relation, we obtain the two respective timescales: the one for
the slow collective nuclear motion

2×10−21 � τcol � 8×10−21 s (2)

and the other one for the quick individual nucleonic motion

8.3×10−23 � τind � 14×10−23 s. (3)
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The slow motion of the nuclear surface modifies the fast mo-
tion of each nucleon in a characteristic manner: its slowness
allows nucleons to adapt their motion to the instantaneous
mean field, the latter controlled by the ensemble of collective
variables q varying in time an order of magnitude slower.

Following this concept, the explicit dependence of the
Hamiltonian on time can be replaced by an implicit depen-
dence via collective variables, q = q(t ). Under these circum-
stances the adiabatic theorem of Refs. [15,16] becomes appli-
cable. It reads: “If the Hamiltonian of a system is dependent
on time, the Schrödinger equation of motion (1) has in general
no stationary solution. But in the limit when the change of the
Hamiltonian is made infinitely slow, the system, when started
from a stationary state of the Hamiltonian at t0, passes through
the corresponding stationary states for all t .” Accordingly
one may adapt the notation for the Hamiltonian Ĥmb(X̂, t ) →
Ĥ ad

mb(X̂ ; q) with q = q(t ) and the Schrödinger equation in (1)
takes the form

Ĥ ad
mb(X̂ ; q)�ad

mb(X, q, t ) = ih̄
∂�ad

mb

∂t
(X, q, t ). (4)

Since according to this formulation the time dependence
of the Hamiltonian appears only through the slowly vary-
ing collective variables, it will be instructive to con-
sider the time evolution of the Hamiltonian as a series
of time-independent Hamiltonians at the progressing in-
stants t → t1, t2, . . . , t�, . . . with the corresponding collec-
tive coordinates q1, q2, . . . , q�, . . . and the static Hamiltoni-
ans, Ĥ ad

mb(X̂ ; q1), Ĥ ad
mb(X̂ ; q2), . . . , Ĥ ad

mb(X̂ ; q�), . . .. For each of
those Hamiltonians we can write the induced stationary forms
of the Schrödinger equation:

Ĥ ad
mb(X̂ ; q�)�mb;k (X ; q�) = Emb;k (q�)�mb;k (X ; q�). (5)

In what follows we may simplify the notation by ignoring the
evident index � which becomes superfluous.

At this point we follow the standard approach of con-
structing �ad

mb(X, q, t ) as the linear combination of the above
stationary solutions

�ad
mb(X, q, t ) =

N∑
k=0

Ck (t )�mb;k (X ; q)eiϕk (t ), (6)

with

ϕ̇k (t ) = −Emb;k (q)

h̄
; q = q(t ). (7)

Let us emphasize that both �ad
mb(X, q, t ) and �mb;k (X ; q) play,

in this discussion, a role of auxiliary reference functions
[the ensemble {�mb;k (X ; q)} can be treated as a set of basis
wave functions] and should not be attributed any meaning
of solutions of the collective motion problem at this stage;
discussion of collective properties of interest in this article
will follow the definition of the collective equation of motion,
see Eqs. (38)–(40).

In this linear combination, the evolution of Ĥ ad
mb(X̂ ; q) in-

duced by varying q is now represented by the Ck (t ) coeffi-
cients. We can add that the time enters this wave function in
two fashions: by a rapid one in the exponentials eiϕk (t ) and a
slow one in the Ck (t ) coefficients and in q = q(t ). By “slow”

we mean that modifications of the first order in t produce
modification of Ck (t ) and q(t ) only at most at a second order.

To describe the collective motion in the spirit of the Bohr
formulation, we introduce the nuclear collective Hamiltonian

Ĥcol = T̂col + V̂col(q). (8)

The above expression of the collective Hamiltonian is for-
mally independent of the preceding discussion; however,
relations (4)–(7) will serve to construct in particular T̂col

in the spirit of the Bohr collective model. The associated
Schrödinger equation governs the collective nuclear motion
formally attributed to a new quantum structureless object here
referred to as quanton; quanton energies are interpreted as the
energies of the nuclear collective motion.

Collective potential energy in Eq. (8), in most frequent
phenomenological realizations of the approach is constructed
using the Strutinsky method. The collective kinetic energy
operator is constructed using the notion of the collective
inertia tensor. The latter is usually calculated using the
generic perturbation-theory expression [7,17,18], employing
the equations of evolution of the Ck (t ) coefficients. The corre-
sponding expression for the mass tensor components

Bnm(q) = 2h̄2
N∑

j=1

〈�mb; j (X ; q)| ∂

∂qn
|�mb;0(X ; q)〉

× 〈�mb; j (X ; q)| ∂

∂qm
|�mb;0(X ; q)〉∗

× 1

Emb; j (q) − Emb;0(q)
(9)

employs the auxiliary basis �mb; j (X ; q) of Eq. (5). Above, N is
the number of wave functions from (5) retained for the model
description of the collective properties via inertia tensor; it
plays a role of a cutoff parameter of the method, usually
selected in such a way that the results of interest do not depend
on it in any significant manner. It has been demonstrated in
Chapter 1 of Ref. [1] that this well-known expression can be
significantly improved and in fact should be replaced by a new
formula, whose justification is briefly presented below.

In order to obtain the nuclear-shape-dependent inertia ten-
sor, we use the simultaneous validity of Eqs. (4) and (5) and
the expansion (6). Introducing (6) into (4), we find the system
of differential equations which govern the time evolution
of Ck (t )

Ċj (t ) = −
d∑

n=0

q̇n(t )
N∑

k=1

〈�mb; j[X ; q(t )]| ∂

∂qn
|�mb;k[X ; q(t )]〉

× eiϕk j (t )Ck (t ), (10)

where
ϕk j (t ) = ϕk (t ) − ϕ j (t ), (11)

and

ϕk (t ) = −1

h̄

∫ t

t0

dt ′ Emb;k[q(t ′)]. (12)

Since one is primarily interested in the properties of the
nuclear ground-state configurations, this system of equations
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is usually solved under the initial conditions assuming that at
t = t0 the auxiliary function �ad

mb(X, q, t0) corresponds to the
( j = 0) basis state [4]:

�ad
mb(X, q, t0) = �mb;0(X ; q) : C0(t0) = 1,

Cj>0(t0) = 0, ϕ j�0(t0) = 0. (13)

According to the adiabatic theorem, the ( j = 0) basis state
varies slowly as a function of q and it represents the lowest
energy basis state also for t < t0 and t > t0 at least for a cer-
tain lapse of time. This implies that C0(t ) ≈ 1 and |Cj>0(t )| 	
|C0(t )|. Thus for a not too long lapse of time, τ :

C0(t ) ≈ 1,

|Cj>0(t )| 	 |C0(t )|,
q̇n(t ) ≈ q̇n(t0),

�mb; j�0[X ; q(t )] ≈ �mb; j�0[X ; q(t0)],

where t0 − τ

2
� t � t0 + τ

2
(14)

and the system of differential equations takes the form

Ċj>0(t ) ≈ −eiϕ0 j (t )
d∑

n=1

q̇n(t0)

×〈�mb; j[X ; q(t0)]| ∂

∂qn
|�mb;0[X ; q(t0)]〉, (15)

where

ϕ0 j (t ) = 1

h̄

∫ t

t0

dt ′ {Emb; j[q(t )] − Emb;0[q(t )]} (16)

≈ Emb; j[q(t0)] − Emb;0[q(t0)]

h̄
(t − t0). (17)

Following the above linearity in terms of time, the time
integration of the exponential can be performed explicitly∫ t

t0

dt ′ eiϕ0 j (t ′ ) = − ih̄[eiϕ0 j (t ) − 1]

Emb; j[q(t0)] − Emb;0[q(t0)]
. (18)

This result is at the origin of the difference between the
present and the “traditional” derivation of the microscopic
expression for collective inertia tensor. It implies in particular
also a new form of the solutions of the considered system of
differential equations:

Cj>0(t ) ≈
d∑

n=1

ih̄[eiϕ0 j (t ) − 1]

Emb; j[q(t0)] − Emb;0[q(t0)]
q̇n(t0)

×〈�mb; j[X ; q(t0)]| ∂

∂qn
|�mb;0[X ; q(t0)]〉. (19)

Let us remark in passing that in the traditional approach to
solving the system of linear equations in Eq. (10) one chooses
working with indefinite integrals (primitive functions) leading
to the time-dependent factors eiϕ0 j (t ) rather than [eiϕ0 j (t )−1]
as in Eq. (19). The latter choice allows respecting the initial
condition (13) rigorously, whereas the former leads to the dis-
appearance of the contribution of these factors to the collective
mass tensor altogether. Our choice leads to the presence
of (generally rapidly) varying time-dependent factor which
is time-averaged in the present realization of the adiabatic
approximation.

Following the approach of Refs. [7,9], the total energy of
the system is obtained with the initial conditions in Eq. (13)
as the expected value in the form

Etot (q, q̇, t ) ≡ 〈
�ad

mb(X, q, t )
∣∣Ĥ ad

mb(X̂ ; q)
∣∣�ad

mb(X, q, t )
〉

(20)

which, with the help of Eqs. (5) and (6), gives

Etot (q, q̇, t ) = Emb;0(q) +
N∑

j=1

|Cj (t )|2[Emb; j (q) − Emb;0(q)],

(21)

a relation applicable to the adiabatic, quasistationary motion
for t in the vicinity of t0. It can be seen from Eq. (19) that
|Cj (t )|2 are bilinear forms of the collective velocities {q̇n}
and it follows that the second term above can be interpreted
as an analog of classical kinetic energy. In the same context
Emb;0(q) is considered as potential energy of the system. En-
ergy Etot (q, q̇, t ) depends on the individual-nucleonic motion
via Cj (t ).

At this point comes the novelty of the present approach.
We describe the collective motion in the presence of the
adiabatic separation of the two timescales via averaging out
explicitly the fast-fluctuating contributions over an averaging-
time interval, say τ , in a manner which is mathematically
more rigorous than the one used in the literature. This interval
should be sufficiently long to cover the individual fast fluctu-
ations and short enough so that the slowly varying component
can still be described as slowly moving. The actual value of
τ , playing a role of an adiabaticity parameter, allows us to
control the relative contributions of the two types of motion
via comparison with the experimental data, see below, and is
expected to lie between τind and τcol

τind 	 1×10−22 � τ � 1×10−21 s 	 τcol. (22)

Time-averaging around any given instant t0 leads to

Ecol(q, q̇; t0, τ ) = 1

τ

∫ τ
2

− τ
2

dt ′ Etot (q, q̇, t0 + t ′). (23)

Using the explicit time dependence in the Cj coefficients,
Eq. (19), together with relation (21), the time integration can
be obtained exactly in the form of the following compact
expression:

ℵ0 j[q(t0); τ ] ≡ 1

τ

∫ τ
2

− τ
2

dt ′ |eiϕ0 j (t0+t ′ ) − 1|2

= 2 − 2 sinc

(
Emb; j[q(t0)] − Emb;0[q(t0)]

2h̄
τ

)
,

(24)

where sinc(x) ≡ sin(x)
x . This leads to

Ecol(q, q̇; t0, τ ) = Emb;0[q(t0)] +
d∑

m=1

d∑
n=1

1

2
Bnm[q(t0); τ ]

× q̇n(t0)q̇m(t0), (25)
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FIG. 1. Universal function ℵ0 j (q; τ ) referred to as temporizer;

x ≡ Emb; j (q)−Emb;0 (q)
2h̄ τ .

with the modified definition of the mass tensor

Bnm(q; τ ) = 2h̄2
N∑

j=1

〈�mb; j (X ; q)| ∂

∂qn
|�mb;0(X ; q)〉

× 〈�mb; j (X ; q)| ∂

∂qm
|�mb;0(X ; q)〉∗

× ℵ0 j (q; τ )

Emb; j (q) − Emb;0(q)
. (26)

The above expression differs from the usual one found in
the literature, cf. Eq. (9), by the presence of an extra factor,
ℵ0 j (q; τ ). To stress that the presence of this factor originates
from the description of the two timescales we refer to it
as temporizer, see Ref. [1], p. 30. Function ℵ0 j (q; τ ) car-
ries certain features of universality as represented in Fig. 1.
When distinction between collective and individual timescales
cannot be made, i.e., τ → 0, we have ℵ0 j (q; τ ) → 0
(as Fig. 1 shows) there is no more time-averaging possible,
and the inertia tensor vanishes, see Eq. (26). This limit creates
no intrinsic conflicts because with no time-averaging, one
can introduce neither collective Schrödinger equation, nor
quanton, nor collective inertia.

Let us mention that the traditional expression for the mass
tensor reduces, when imposing the condition of the transla-
tional motion, to nuclear mass whereas the present approach
does not give the same result under the same conditions. We
believe that the main motivation for the microscopic method
of calculation of the nuclear mass tensor as functional of
nuclear shape is both to provide the link between collective
inertia with the microscopic (single-nucleonic) degrees of
freedom and an acceptable empirical correspondence with
experimental data when inserting the corresponding mass
tensor to the collective Schrödinger equation. If particularly
motivated, one could use the presence of the empirical factor
τ and adjust it to the desired asymptotic condition.

In the traditional realizations of the discussed the-
ory, the collective characteristics of the system, Emb;0(q)
and Bnm(q; τ ), are calculated after solving Eq. (5) for

different fixed values of q, usually employing the nuclear
mean-field theory: Ĥ ad

mb(X̂ ; q) → Ĥmf (X̂ ; q). We use the phe-
nomenological deformed Woods-Saxon1 mean-field approx-
imation Ĥmf (X̂ ; q) → ĤWS(X̂ ; q → α), where the collective
degrees of freedom are defined as the coefficients of the
nuclear surface R(θ, φ; α) expansion in terms of spherical
harmonics

R(θ, φ; α) = R0c(α)

⎛
⎝1 +

∞∑
λ=2

λ∑
μ=−λ

αλ
μYλμ(θ, φ)

⎞
⎠, (27)

where α ≡ {αλ
μ}.

From now on we assume that the Woods-Saxon single-
particle energies, Esp;i(α), and wave functions, �sp;i(xi; α),
are known and that the collective total nuclear energy in
Eq. (21) has been calculated accordingly using the standard
phenomenological Strutinsky method. To proceed, we specify
the nature of excited states in the denominators in (26) adapted
to the mean-field approximation assuming as usual that only
the one-particle–one-hole bound-state energies (or two quasi-
particle excitations in the case of the BCS pairing) are retained

�mb; j (X ; q) → �mb;i,k (X ; q) = ĉ+
k ĉi�mb;0(X ; q). (28)

Above the single index j needs to be replaced by two non-
vanishing indices k ∈ Zp and i ∈ Zh specifying particle-hole
excitations and it follows that

Emb; j (q) − Emb;0(q) → Esp;k (q) − Esp;i(q) (29)

and

〈�mb; j (X ; q)| ∂

∂qn
|�mb;0(X ; q)〉

→ 〈�sp;k (xk; q)| ∂

∂qn
|�sp;i(xi; q)〉. (30)

The expression of the mass tensor takes a new form:

Bnm(q; τ ) = 2h̄2
∑
i∈Zh

∑
k∈Zp

ℵ0(i,k)(q; τ )

Esp;k (q) − Esp;i(q)

×〈�sp;k (xk; q)| ∂

∂qn
|�sp;i(xi; q)〉

× 〈�sp;i(xi; q)| ∂

∂qm
|�sp;k (xk; q)〉. (31)

Even though the above expression gives a compact repre-
sentation of the essential dependencies without pairing, all
the implied detailed and computer-programmable expressions
have been obtained in Chapter 3 of Ref. [1].

Let us comment in passing about the singularities due
to the level crossings in the denominators of the mass
tensor expressions. Even though Eq. (31) contains none,
since ℵ0(i,k)(q; τ ) → 0 when Esp;k (q) → Esp;i(q), some au-
thors choose employing the theorem of Hellmann-Feynman-
Epstein and express the matrix elements of ∂

∂qn with the help

1Here, the Woods-Saxon mean-field approach is supplemented with
the BCS pairing extension.
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of the Hamiltonian as follows:

〈�sp;k (X ; q)| ∂

∂qn
|�sp;i(X ; q)〉 = −1

Esp;k (q) − Esp;i(q)

×〈�sp;k (X ; q)|∂Ĥmf

∂qn
|�sp;i(X ; q)〉. (32)

The matrix element on the left-hand side is given by integrals
of the products of polynomial expressions and exponential
factors guaranteeing their convergence ∀ k, i. If the Hamilto-
nian in question obeys the Hellmann-Feynman-Epstein the-
orem for all eigenvalues including the degenerate ones, the
divergencies are compensated for by the corresponding matrix

elements of ∂Ĥmf
∂qn . In the opposite case, transformation in

Eq. (32) loses its validity and transforming the form (31) using
(32) is not permitted; the mass tensor expression remains
nonsingular.

We will schematize briefly the formalism leading to the
final Schrödinger equation in the curvilinear space spanned
by the microscopically calculated inertia tensor. By solving
such an equation we are able to test the theory predictions
with selected experimental data.

In what follows we postulate that the collective space
is Riemanian and its metric is given by the mass tensor.
In classical (i.e., before quantizing in the curvilinear space)
terms, collective potential energy is fixed by the Strutinsky
algorithm

Vcol(q) = Emb;0(q), (33)

whereas the collective kinetic energy reads

Tcol(q, q̇; τ ) =
d∑

m,n=1

1

2
Bnm(q; τ )q̇nq̇m, (34)

leading to the associated Lagrangian

Lcol(q, q̇; τ ) =
d∑

m,n=1

1

2
Bnm(q; τ )q̇nq̇m − Emb;0(q). (35)

This form leads to the collective Schrödinger equation
by quantization of the associated Hamilton-Jacobi equation.
We employ the usual quantization rules in the spatial repre-
sentation, the collective position operator being simply the
collective position

q̂n = qn1̂ (36)

and the collective generalized momentum operator propor-
tional to the covariant derivative2

p̂col,n = −ih̄∇n. (37)

2Let us remind the reader that the covariant derivative of a scalar
can be identified with the corresponding partial derivative, whereas
the covariant derivative of a covariant vector is

∇n pm = ∂ pm

∂qn
−

d∑
h=1

�h
mn ph ,

where � stands for the Christoffel symbol.

TABLE I. Calculated energies in keV and reduced transition
probabilities in Weisskopf units for the Iπ = 3−

1 , 2+
1 , and 0+

2 states
in 208Pb for increasing τ , Eq. (22). The penultimate line shows the
results for the “traditional” way of mass tensor calculations like, e.g.,
in Ref. [7]. The last line shows the experimental data in Ref. [20].

τ/10−22 s E (3−
1 ) B(E3) E (2+

1 ) B(E2) E (0+
2 )

1.00 9365 158 9221 78.4 9282
3.33 3229 55.1 5047 23.8 5926
4.52 2614 45.4 4223 19.8 4786
4.94 2444 43.0 4085 19.0 4646
5.00 2423 42.7 4075 18.9 4634
6.67 2017 37.0 3943 16.9 4692
7.00 1967 36.3 3947 16.6 4868
10.0 1735 32.8 3632 13.4 4305
ℵ = 1 2690 45.0 4078 40.7 5484
Expt. 2614 33.8 4085 8.4 4868

It follows that the collective energy operator is

Ĥcol = − h̄2

2
� + Emb;0(q) (38)

with the Riemann-space Laplace operator given by

��col;i =
d∑

m,n=1

Bnm∇n∇m�col;i (39)

=
d∑

m,n=1

1√|B|
∂

∂qn

(√
|B|Bnm ∂�col;i

∂qm

)
. (40)

As an illustration, the formalism presented so far was ap-
plied to calculate the mass tensor Bmn of Eq. (31) and the total
Strutinsky energy Emb;0 of Eq. (21) in the three-dimensional
space of variables {α2

0, α2
2, α3

0} for the 208Pb nucleus using
the so-called Woods-Saxon universal mean-field approach
[19]. The corresponding Schrödinger equation with Hamilto-
nian (38) was solved numerically with an adapted algorithm
taking into account that in the curvilinear spaces we have to
deal with a nonorthogonal basis. The resulting energies of the
collective 3−

1 , 2+
1 , and 0+

2 excitations and the related B(Eλ)
reduced transition probabilities were obtained and compared
with experiment for varying τ parameter, cf. Eq. (22). The
results are shown in Table I.

Results in Table I illustrate a variation of the predictions for
the collective energies with increasing τ . Comparison shows
that selecting τ = 5×10−22 s [the middle of the interval in
Eq. (22)] leads to the differences between the theory predic-
tions and experimental results for the energies of the Iπ =
3−

1 , 2+
1 , and 0+

2 states of 7%, 0.25%, and 5%, respectively.
This shows the overall consistency of the presented approach
since the discrepancies of this order are not surprising when
employing first-order perturbation approach. Consequently
τ = 5×10−22 s can be seen as a good starting choice, whereas
more systematic comparison for several nuclei (work in
progress) would allow a more detailed analysis.

The transition probabilities illustrated in the Table I are
obtained with the help of the transition matrix elements of the
multipole-moment operators between the solutions—initial
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�col;i and final �col; f states of the transition—of the collective
Schrödinger equation; we find

〈Qλμ〉i f = 〈�col;i|Q̂λμ|�col; f 〉

=
∫

R3
dα2

0 dα2
2 dα3

0 �∗
col;i(α)Qλμ�col; f (α). (41)

The multipole moment operators can be expressed for not too
large values of the coordinates αλ

μ using the uniform charge-
density approximation as

Qλμ =
∫

V
d3rρrλY ∗

λμ (42)

= 3Ze

4πR3
0

∫ 2π

0
dφ

∫ π

0
dθ sin θY ∗

λμ(θ, φ)
∫ R(θ,φ;α)

0
dr rλ+2, (43)

and it follows that for λ � 3 we have

Q20 = 3ZeR2
0

4π
√

π

[√
πα2

0 + 2
√

5

7
(α2

0)2

− 4
√

5

7
(α2

2)2 + 4

3
√

5
(α3

0)2

]
, (44)

Q2±2 = 3ZeR2
0

4π
√

π

[√
πα2

2 − 4
√

5

7
α2

0α2
2

]
, (45)

Q30 = 3ZeR3
0

4π
√

π

[√
πα3

0 + 2
√

5

3
α2

0α3
0

]
, (46)

Q3±2 = 3ZeR3
0

4π
√

π

[√
πα3

2 − 5

3
α2

2α3
0

]
, (47)

the other {λ,μ} combinations vanishing. The reduced transi-
tion probabilities are given as usual by

B(Eλ,�col;i → �col; f ) =
λ∑

μ=−λ

|〈�col;i|Q̂λμ|�col; f 〉|2. (48)

For completeness, the Weisskopf units (Wu) are defined by

BW(Eλ) = e2R2λ
0

4π

(
3

λ + 3

)2

. (49)

Selection of the 208Pb for the present comparison was
motivated by the existing experimental information about the
low-lying collective vibrational states mentioned as well as
by the fact that for this doubly magic nucleus the pairing
correlations are expected to be dominantly absent for the

small-amplitude vibrations around the spherical shape. The
latter argument allows us to ignore the pairing correlations, to
an approximation, thus limiting the extra parametric freedom
(and parametric uncertainties) in terms of the proton and
neutron pairing strengths.

Comparison of the results in Table I indicates that the main
idea of this article, i.e., the possibility of introducing directly
the microscopic two timescales for the individual (rapid) and
collective (slow) nuclear motions together with a parametric
measure of their interplay with the help of a single parameter
τ , ensures the close correspondence between the calculated
energies and the experimental data in the physically justified
τ interval. Let us emphasize that the new approach is free from
the singularities of the traditional one in terms of the crossings
of the levels in the denominators of the mass tensor formula
of Eq. (31).

Let us remark that, as seen from Table I, the B(E2)
calculated according to the traditional algorithm, i.e., corre-
sponding to ℵ = 1, can be viewed as particularly large, almost
double the value calculated according to the new algorithm
with the reference choice of τ = 5×10−22 s. In calculating
the reduced transition probabilities the decisive role for the
final result is played by the integral expression (48) given by
the integrals of the collective wave functions—solutions of the
collective Schrödinger equation involving relations (38)–(40).
The main impact on the discussed difference originates in our
case from the uncompensated singularities caused by the level
crossings in the denominators of Eq. (31) in the case of the
traditional approach.

Let us mention furthermore that the nuclear potential en-
ergies calculated using the Strutinsky method depend, among
others, on the macroscopic energy term whose contribution to
the energy curvature close to the equilibrium is not controlled.
Indeed, no parameters of the macroscopic energy term are
fitted to, e.g., collective excitations but primarily to the nuclear
masses and fission barriers. This element of the phenomeno-
logical theory can be used to optimize further the agreement
with the experimental data which can already be considered
satisfactory.
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