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Mapping resolution has recently been identified as a key
limitation in successfully locating the drivers of atrial
fibrillation (AF). Using a simple cellular automata model of AF,
we demonstrate a method by which re-entrant drivers can be
located quickly and accurately using a collection of indirect
electrogram measurements. The method proposed employs
simple, out-of-the-box machine learning algorithms to correlate
characteristic electrogram gradients with the displacement
of an electrogram recording from a re-entrant driver. Such
a method is less sensitive to local fluctuations in electrical
activity. As a result, the method successfully locates 95.4% of
drivers in tissues containing a single driver, and 95.1% (92.6%)
for the first (second) driver in tissues containing two drivers
of AF. Additionally, we demonstrate how the technique can be
applied to tissues with an arbitrary number of drivers. In its
current form, the techniques presented are not refined enough
for a clinical setting. However, the methods proposed offer a
promising path for future investigations aimed at improving
targeted ablation for AF.

1. Introduction
Atrial fibrillation (AF) is the most common cardiac arrhythmia
in clinical practice and is getting more prevalent in the general
population due to the ageing demographic. However, the
mechanistic origin of AF is still poorly understood. As a result,
the success rates of treatment options remain limited with future
improvements requiring a better understanding of how AF
emerges from the underlying properties of the myocardium.
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A variety of possible mechanisms have been proposed to explain the origin of AF. These include

circus movement re-entry, the leading circle theory, spiral wave re-entry (otherwise known as rotors), of
which micro-anatomical re-entry can be thought of as a subset, and the multiple wavelet hypothesis [1,2].
However, there are many contradictory findings, and no one mechanism explains all observations [3,4].
This suggests new techniques are needed both in clinical practice and research, with numerous
researchers highlighting the potential of computational simulations and machine learning [5–10]. An
issue of particular importance is that of limited mapping resolution when detecting the drivers of AF.
Errors in the accuracy of imaging data limit the efficacy of treatment by ablation, causing disagreement
when interpreted by the research community [11–13].

In this paper, we present a method whereby electrograms are extracted from a number of independent
locations in the atria and these are cross-referenced to triangulate the position of a re-entrant circuit.
By using multiple measurements, noise and local fluctuations are minimized and a prediction can
be reached without being overly reliant on the imaging resolution at any one given location. The
procedure applies machine learning methods to maximize the prediction accuracy of the algorithm. The
work here should be considered a proof of concept for the efficacy of these methods in simple models
of AF. The work does not consider some of the details that would be necessary in a realistic clinical
implementation or that are found in more detailed, continuous models of AF [6]. Nevertheless, it presents
a clear path for future investigations aiming for a potential improvement in ablation success rates based
on locating drivers from electrograms only.

The Christensen–Manani–Peters model (CMP) is a two-dimensional cellular automaton on an
architecture mimicking that of the atria [14]. While the model architecture is simplified, it preserves the
key features of discrete cardiomyocyte activation at the microscopic level, while ensuring macroscopic
conduction appears continuous. The CMP model has a particular focus on demonstrating the role
of fibrosis in initiating and maintaining AF. AF is driven through the spontaneous emergence of
re-entrant circuits which generate rapid, irregular atrial activity. This is reflected in the electrograms
generated from the model which are fractionated during AF [15]. This mechanism is a form of micro-
anatomical re-entry. These circuits form at regions with high levels of localized fibrosis. The model
also explains the wide range of AF classifications from short intermittent episodes to long-lasting
permanent AF as increasing levels of fibrosis modify the myocardium [15]. In addition to the mechanistic
benefits of cellular automata, their popularity has recently grown given their capacity to simulate
much longer timescales of atrial activity than computationally intensive continuous models [16–18].
Cellular automata models are particularly successful for allowing detailed mathematical analysis, while
preserving a very wide range of complicated phenomena [19]. Particularly in the case of AF, cellular
automata are effective at reproducing behaviour due to structural discontinuities, such as electrical
signals being blocked due to fibrosis. However, these benefits come at the cost of not reproducing
realistic phenomena in clinical AF such as the curvature of electrical wavefronts or the complex
topology of the human atria [20]. These phenomena are more typically studied using continuous models
of AF [6].

Machine learning approaches are statistical techniques implemented computationally which excel at
finding hidden insights in complex data without being explicitly programmed to do so. In particular,
machine learning has had recent successes in the medical community in classifying skin melanoma and
in genetic sequencing [21,22]. These methods often rely on having a large dataset for the models to learn
correlations (patterns) from. In clinical medicine, the lack of good-quality data in large quantities often
makes such an approach difficult. However, when working with computer simulations such as those
in the CMP model, data can be generated in sufficient quantities, and hence, the statistical insights these
models provide can offer significant improvements when analysing data. The computational complexity
of continuous models make these unsuited to generating large quantities of data [6,16]. Despite this,
continuous models are still often considered preferable when studying AF computationally. However,
two additional challenges specific to this work warrant the use of a simple cellular automaton over
more realistic models. Firstly, generating electrograms from a model of AF using modern graphics
processing unit (gpu) optimized methods is significantly faster for cellular automata than what would be
possible for continuous models of AF on a complex topology. Secondly, the training process used by our
supervised machine learning algorithm relies on accurately knowing the position of simulated re-entrant
circuits. This can be trivially achieved in a cellular automata model of AF. However, it is not clear how
re-entrant circuits, or rotors, could be easily generated at known locations in continuous models of AF
without resorting to computationally costly adaptations.

The remainder of this paper is organized as follows. In §2, we briefly introduce the CMP cellular
automata model used in this research. We describe the physiological motivation behind the model and
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outline the process of simulating electrograms. We discuss a novel visualization of electrograms and use
insights from this method to inform statistical analysis. Random forests, a machine learning technique
with consistently strong results across a number of domains, are described in §3 [23,24]. These are then
implemented in a search algorithm for locating AF drivers. Our results are presented and discussed in
§4 and §5. Finally, we outline potential future work and discuss the CMP model’s relevance to current
clinical research.

2. The Christensen–Manani–Peters model
The Christensen–Manani–Peters (CMP) model is a two-dimensional cellular automaton. Each atrial
muscle cell in the CMP model is represented by a single square in a larger square lattice of side length
L. All cells are connected to their nearest neighbours in one dimension (the longitudinal direction) and
in the orthogonal dimension with probability ν (stochastic connections, the transverse direction). This
construction is a simplified computational implementation of the real myocardium, but it preserves
the essential myocardial architecture which ensures that electrical impulses travel preferentially along
muscle fibres rather than laterally between fibres. The strong coupling in the longitudinal direction
represents individual muscle cells forming a single, long muscle fibre. The reduced coupling in the
transverse direction represents the reduced electrical conductivity between neighbouring muscle fibres.
The parameter ν controls the strength of the transverse coupling. This is manifested in the anisotropy
of electrical conduction velocities. There are periodic boundary conditions in the transverse direction
(across different muscle fibres) and open boundaries in the longitudinal direction (along a single muscle
fibre) representing a simplified cylindrical geometry of the atria [14]. The cells along the left boundary
are the pacemaker cells which are excited every T time steps.

In the CMP model, the electrical cycle of a given cell is as follows: Cells are updated in discrete time
steps. Initially a cell is at rest. In this state, the resting cell can become excited at the next time step by
a neighbouring excited cell. The cell is in the excited state for one time step after which the cell is in
the refractory state for the next τ time steps. In the refractory state, a cell is unexcitable after which the
cell re-enters the resting state. This cycle is indicative of the action potential of real cardiomyocytes. The
beating of the atria is simulated by exciting all the cells along the left boundary of the tissue. This signal
can then propagate across the tissue until it is dissipated at the opposite open boundary. The pacemaker
cells are activated every T time steps. The full excitation rules of the CMP model are summarized in the
box below.

CMP algorithm

1. All cells are connected longitudinally forming a muscle fibre.
2. A fraction ν of the transverse connections between cells are filled linking two muscle fibres.
3. A resting (excitable) cell connected to an excited cell at time step t will become excited at time

step t + 1.
4. A refractory (unexcited) cell connected to an excited cell at time step t will not become excited

at time step t + 1.
5. An excited cell at time step t becomes refractory at time step t + 1, and remains refractory for

a duration of τ time steps before returning to the resting state.
6. Every T time steps, the pacemaker cells along one of the open boundaries of the muscle tissue

are excited.
7. A small fraction δ of cells are dysfunctional and have a small probability ε of not getting

excited.

Dysfunctional cells can block propagation along the cell strands and leave an opening for the
propagating wavefront to turn back in on itself forming a circuit (re-entry). If this circuit is long enough
(which occurs when ν is sufficiently small), the signal can continuously propagate around the circuit
forming a persistent driver of AF (figure 1). Figure 2 shows the emergence of AF on a tissue-wide scale.
In the real myocardium, the transverse decoupling of muscle fibres is associated with the build-up of
fibrosis [25–27]. Hence, the parameter ν can be thought of as a control for the degree of fibrosis in the
myocardium. We demonstrate this explicitly in previous work on the CMP model, where we have shown
how the increased prevalence of fibrosis (decreasing ν) increases the risk of AF persisting by increasing
the average path length of re-entry circuits, in agreement with clinical observations [14,15].
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Figure 1. The formation of a simple re-entrant circuit at the cellular level. An excited cell is shown in white and resting (excitable) cells
are black. Cells shown in grey are refractory (unexcitable) for the duration of the refractory period. All cells are coupled to their nearest
neighbours longitudinally—this reflects the strong coupling of cells along muscle fibres. Transverse couplings exist with probability
ν—reducing ν reflects the decoupling between adjacent muscle fibres caused by fibrosis. An excitation is initiated along the left
wall of the heart tissue and propagates left to right. When the excitation reaches a dysfunctional cell which fails to fire (marked by
a red cross), (a) the excitation in fibre B is blocked but excitations continue in fibre A above. When a coupling between the excited
and blocked strands is reached, the excited cell can send a signal propagating backwards from right to left down the blocked strand
(b). If the path length of the re-excitation is sufficiently long, the re-entrant excitation can excite tissue behind the main wavefront.
This signal can then move to the adjacent strands forming a continuously re-excited circuit. The simple re-entrant circuit shown here
is rectangular in shape and is formed from two fibres (A & B) and a single dysfunctional cell. More complicated re-entrant circuits can
consist of multiple fibres and multiple dysfunctional cells. The extract shown in (d) is for a different region of heart tissue. Here, the
same mechanism as above attempts to form a re-entrant circuit. However, the circuit path length is insufficiently long such that the
re-entrant excitation is blocked by the refractory cell to the left of the dysfunctional cell marked with a cross. Hence, a continuously
excited circuit cannot form in this tissue segment. This behaviour explicitly links the emergence of re-entrant circuits with regions of
high fibrosis (low ν). Note that the mechanism described here is for spontaneously generated circuits. The work in this paper artificially
inserts circuits into the substrate such as the one shown in (c). This ensures thatwe can keep track of the location of all circuits in themodel
for analysis.

It is helpful to understand the considerations behind the dysfunctional cell mechanism. The important
detail is that the AF mechanism in the CMP model is possible using any mechanism of unidirectional
conduction block—the stochastic failure of cells to depolarize is a simple way to include this effect
in the model. In the original CMP model, the 1000 × 1000 grid is coarse grained into a 200 × 200
grid for computational ease. A 1000 × 1000 grid would approximately account for the total number
of cardiomyocytes on the epicardial surface of the atrium. The model then treats each cell in the
coarse-grained grid as a single individual muscle cell. For single cardiomyocytes in isolation, there is
little clinical evidence for the cell stochastically failing to depolarize. However, instead of considering
the CMP model as a microscopic depiction of atrial conduction, we can think about a mesoscopic picture
where each cell in the 200 × 200 grid represents the average dynamics of the underlying 5 × 5 block of
cells. These coarse-grained blocks can still follow the same branching/connectivity rules between cells
as originally formulated for the CMP model.
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Figure 2. The formation of fibrillatory re-entrant circuits in the Christensen–Manani–Peters model for a refractory period of τ = 50.
Excited cells are shown in white, resting (excitable) cells are black and cells which are refractory (unexcitable) are shown in grey. (a) A
planarwave initiated by the pacemaker cells at the left boundary of the cylindrical heart tissue propagates from left to right alongmuscle
fibres. (b) A dysfunctional cell fails to fire, blocking the propagation of the signal along that fibre. Excited cells in the adjacentmuscle fibre
can re-excite the blocked fibre at the next vertical coupling (figure 1). (c) If the path length of the re-excitation is sufficiently long, the
re-entrant excitation can escape the unexcitable region. (d) This escaped excitation initiates a continuously activated circuit from which
chaotic waves propagate—this circuit is the driver of AF. (e) Fibrillatory waves spread across the whole tissue and prevent the formation
of new planar wavefronts at the pacemaker cells on the left boundary. (f ) If a dysfunctional cell in the re-entrant circuit fails to fire, the
circuit is stopped and fibrillatory behaviour dissipates.

Within this 5 × 5 cell block, we can consider the possibility of unidirectional conduction block due to
the imbalance between current sources and sinks—the possibility of such a mechanism has been shown
by Bub et al. [28] in a theoretical model and has also been supported by clinical evidence [29–31]. This
explains why we might expect any given block of cells to display unidirectional conduction block with
some small probability, ε, given a suitable geometric arrangement of cells with a small probability, δ.
It is also sensible to consider such an effect to be stochastic because leaking current over a number of
activation cycles can push a previously blocked group of cells over the depolarization threshold.

The parameters used in this work are ν = 0.2, τ = 50 and T = 220. We fix the coupling fraction to be
ν = 0.2, because this is the largest coupling fraction at which we typically observe paroxysmal AF [14,15].
It is important to note that all analysis in this paper is carried out at this fixed coupling fraction. However,
the model dynamics do not suggest that we would deduce largely different results for lower coupling
fractions [14]. AF is not typically observed at higher coupling fractions.

The shortest timescale in the CMP model is associated with the excitation timescale of a single
cardiomyocyte of �t = 0.6 ms. In the course-grained tissue, this corresponds to an excitation timescale for
each cell of �t∗ = 5 × 0.6 ms = 3.0 ms. The time step of 3 ms approximately corresponds to the time taken
for an electrical signal to cross a 5 × 5 block of cardiomyocytes in the real atrium along a muscle
fibre. The refractory period is chosen to be τ = 50 time steps where the unit of time is �t∗ such that
the action potential of a cardiomyocyte is 150 ms in accordance with the values seen for human atrial
cardiomyocytes. In sinus rhythm the CMP model therefore beats approximately once every 660 ms. Note
that AF can easily be induced with a different set of parameters, but these are chosen as a realistic
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reflection of atrial activity. In the original CMP model, the fraction of dysfunctional cells is δ = 0.05. This
is an arbitrary choice which allows AF to spontaneously emerge. In this work, we set δ = 0 and instead
artificially insert re-entrant circuits into the tissue. This is a reasonable concession for computational ease
because this work is not concerned with the spontaneous emergence of AF but rather the diagnosis of
AF after it has emerged. More specifically, the search algorithm presented in §3 only analyses two cycles
of electrical activity during AF. This corresponds to less than 400 ms in a realistic clinical setting. Over
this short timescale, it is reasonable to approximate the dynamics of transient rotors as stable.

3. Material and methods
A benefit of the approach studied here is that instead of relying on a single accurate measurement to
locate a re-entrant circuit, a collection can be used to determine the circuit’s location. This means that
the electrograms can be measured at a lower signal to noise ratio as no one measurement is critical to
the success of the locating algorithm. Sample electrograms from the CMP model can be seen in figure 3.
These are generated as outlined in appendix A. To locate AF drivers in the CMP tissue, machine learning
models are used. These models are trained with electrogram feature data gathered from a large number
of simulations of varying AF instances in CMP tissue. Given the preliminary nature of the work, a simple
set of features are used. These are outlined in appendix B.

For the purpose of recording training data to build the machine learning models, a 9-electrode probe
is used, arranged in a 3 × 3 array. This represents the multi-contact mapping catheters used for ablation.
Each electrode is unipolar, but electrograms can be compared across the probe as an analogue of bipolar
electrograms. The 3 × 3 probes are distributed uniformly in a 7 × 7 cell grid of the CMP tissue as seen in
figure 4. The distance between each probe and its nearest neighbours is 3 cells. This gives a resolution
comparable to clinically used ablation mapping catheters where electrodes are approximately 1 mm long
and are spaced 4 mm apart [32]. We define the probe to be on the re-entrant circuit if any part of the
re-entrant circuit is within the multiprobe’s 7 × 7 cell region.

A first look at the electrograms shows clear distinctions depending on the electrode’s relative position
from the re-entrant circuit, as shown in figure 3b. Features gathered from these individual electrodes
include: maximum voltage, minimum voltage, first stationary point position, mean voltage, waveform
skewness and other common statistical measures. A full list can be found in appendix B. With the 9-probe
array, the wavefront from the AF circuit will reach each individual electrode at a different time. Therefore,
gradients of the features can be measured across the whole electrode array in different directions giving
more effective information on the position of the AF circuit (figure 4). Note that local gradients are quite
robust measures as they do not rely on any global calibration procedure.

Visualizing the features from electrogram data can give significant insight into the electrical dynamics
of the CMP model without extensive statistical analysis. This can be done using a visualization we have
coined the vector feature map (VFM). Their creation, analysis and general features are described in detail
in appendix B. A VFM shows the average value of a feature at a given vector relative to the centre of the
re-entrant circuit in many different instances of the CMP model. An example is shown for the magnitude
of the dominant Fourier transform frequency of the electrogram signal in figure 5.

To locate AF drivers using electrogram features, a supervised machine learning technique known as
the random forest model is used [33]. The model is capable of giving quantitative (the distance between
the probe and the re-entrant circuit) and qualitative (the probe is/is not currently on the re-entrant
circuit) responses when given a set of electrogram feature information [34]. The random forest model
was chosen due to its relative effectiveness compared to other machine learning models. The method has
recently been used for problems such as tissue segmentation in the brain and the classification of heart
failure subtypes [35,36]. Caruana & Niculescu-Mizil [23] and Caruana et al. [24] note that the random
forest model has one of the highest average performances of any machine learning method across a wide
range of different problems. Preliminary testing on our data showed considerably higher success rates
for random forests than for other simple machine learning algorithms. The mathematical background for
random forests is described in appendix C.

The training data for the random forests were gathered from 5000 randomly generated CMP tissues
with one randomly placed AF circuit.1 The fraction of transverse connections was chosen to be ν = 0.2
as this is the critical point where instances of paroxysmal AF emerge in the CMP model [14]. Each tissue
had 64 multiprobe electrodes uniformly placed giving a total of 2 880 000 electrogram recordings.

1The choice of 5000 samples is somewhat arbitrary; early trials showed 1000 samples as the minimum number of samples required for
good results and 5000 samples were found to be consistently sufficient without taking excessively long to generate.
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Figure 3. Electrograms simulated on perfect isotropic tissue (ν = 1.0) in the CMP model using equation (A 1). Voltage is measured in
arbitrary units. Time is measured in steps of 3 ms such that at sinus rhythm the pacemaker cells activate every 660 ms (220 time steps).
(a) An electrogram recorded during regular sinus rhythm. The large depolarizations at approximately t = 100 and t = 320 correspond to
the planarwavefront crossing the electrogram recording probe. The small fluctuations at approximately t = 200 and t = 420 correspond
to the activation of a new planar wavefront at the left boundary by the pacemaker cells and the dissipation of electrical activity at
the open boundary on the right after the wave propagates through the tissue—this is a small discretization effect in the CMP model.
(b) Electrograms recorded during the rapid pacing of the heart where electrical wavefronts originate from a single point in the tissue.
The dashed and solid lines show electrograms recorded at the centre of the electrical activity and 30 cells displaced from the centre,
respectively. There are clear differences between electrograms recorded at different locations relative to the centre of electrical activity.
Note that the difference between electrograms is significantly less pronounced in imperfect, anisotropic tissue (ν < 1.0)—thiswarrants
the use of statistical techniques for analysis. These fractionated electrograms are presented in [15].

3.1. Algorithm for locating re-entrant circuits
The goal of our algorithm is to demonstrate a proof of concept where re-entrant circuits driving AF can
be located using solely electrogram information. The aim is not to create a perfect model which could be
directly transferred to more complicated scenarios, but rather, the aim is to show the feasibility of these
methods for electrical mapping in a system with large local fluctuations. As part of this approach, a small
number of simplifications are applied to the CMP model to simplify simulations and analysis.

All tissue instances are generated at a fixed transverse coupling fraction of ν = 0.2, which is
approximately the degree of fibrosis at which we observe paroxysmal AF. We also work in the low noise
limit where δ = 0. As a result, temporary critical circuits cannot spontaneously form in the tissue as
shown in figure 1c. The limitations of this decision are discussed in §5.1. The low noise limit inhibits the
formation of new, stable re-entrant circuits. Instead, a single circuit is artificially constructed by picking a
random point in the CMP tissue and removing the coupling to the muscle fibre above and below of the 28
cells to the right of the randomly chosen cell. This gives a rectangular circuit of path length 60—this is an
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7 8 9

Figure 4. Electrical wavefronts propagate in all directions from an AF driver (shown as the star in the bottom left). A 3 × 3 electrode
grid is used to record 9 simultaneous electrograms (large boxes numbered 1–9) across a region of 7 × 7 cells in the CMP model (small
squares shown in grey). By spacing out the electrodes, the approaching electrical wavefront will cross each of the electrodes in a slightly
different order and in a slightly different direction, affecting the feature behaviour seen at each electrode. Hence, taking the gradient of
features across the electrode grid can give detailed information about thewavefront flowacross the grid, enhancing our knowledge of the
driver’s position. The local zig-zagging of the electricalwavefront due to the discrete structure of the CMPmodels can occasionally result in
errors when calculating the direction of global wavefront propagation. However, by taking themean value of the gradient of features for
a fixed unit vector across different parts of the electrode grid these errors are minimized. Any remaining discrepancies are accounted for
using the constraint mechanisms described in §3.1 and appendix D. The intermediate electrode spacing used here is reflective of clinically
used mapping catheters, and offers a balance betweenmaximizing local information while ensuring that the global wavefront direction
can be accurately calculated.

100

50
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–50

–150 100500–50–100 150
X

Y

Figure 5. The vector feature map (VFM) for the dominant frequency of the electrogram’s Fourier transform on an arbitrary scale, shown
by the greyscale. The image is generated from tissues with a single ectopic cell beating every 60 time steps placed at a random location
in the tissue with transverse coupling fractionν = 0.2. The image shows strong separation between regions of unidirectional wavefront
propagation (light grey) and bidirectional wavefront propagation (dark grey). There is also a strong indicator of the driver’s centre, black
region at (0,0). Notice that the image is symmetric across the X- and Y-axes and that different featuremaps highlight differentwavefront
dynamics. There is significantdifferentiationbetweenbulk regionsbut little differentiation in small, localized regions. Combiningmultiple
vector feature maps can improve local differentiation. More details can be found in appendix B.

arbitrary choice which is slightly larger than the refractory period of τ = 50. The circuit is then artificially
forced to start driving AF by the introduction of a single ectopic beat in the circuit. This is achieved by
presetting the cell states in the circuit as is shown in figure 1b without any dysfunctional cells—the circuit
is then allowed to evolve naturally as in the original CMP model.
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Figure 6. A flow chart describing the basic AF driver location algorithm. When starting the algorithm, the simplified CMP model is run
with one or two drivers placed at random locations—the algorithm could easily be extended to more drivers if desired as outlined in
figure 7. A random position is chosen to record the first set of electrograms. Search regions are constrained as described in appendix D.
Predictions from the X and Y regressors are forced to lie within search constraints. ‘Prediction error’ initiates if the constraint region
becomes too small or predictions loop between repeated coordinates.

The procedure to be tested is split into two sections. First, the CMP tissue must be initialized to
generate fibrillatory behaviour. Once initialized, the data aquisition and processing cycle can be initiated.
The initialization phase is outlined as follows and corresponds to the ‘Start’ block in figure 6.

1. Generate an instance of the CMP model at ν = 0.2 of linear size L = 200. Do not create any
dysfunctional cells which could generate unexpected re-entrant circuits (i.e. δ = 0).

2. At a random location in the tissue, insert a single simple re-entrant circuit consisting of two cell
strands. Preset cell states as shown in figure 1b excluding the dysfunctional cell.

3. Allow fibrillation to commence and continue until the whole tissue has been reached by the
electrical activity from the re-entrant circuit. Fibrillation is defined as when more than 220
cells are active in the substrate (1.1 × L = 220)—this definition effectively distinguishes between
fibrillation and sinus rhythm as discussed by Manani et al. [15].

After the CMP model is initialized, the data acquisition and processing cycle can be used to generate
predictions of the expected location of re-entrant circuits in the tissue. This is illustrated in figure 6 and
broadly follows the steps below. As can be seen from the lack of local differentiation in the electrogram
feature in figure 5, it is a non-trivial problem whether or not electrogram dynamics can be used to
infer the position of re-entrant circuits drivers which motivates the use of a recursive method involving
multiple measurements.

4. At a random location in the tissue, place a 3 × 3 array of electrode probes and generate
electrograms at each position.
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5. Extract statistical information from the electrograms and preprocess data for compatibility with

required machine learning data structures.
6. Process data using machine learning models to output a prediction for the expected electrogram

location.
7. Calculate the constraints of possible prediction locations based on the mechanism shown in

appendix D.
8. Post-process prediction data to abide by the calculated constraints for the final prediction using

the mechanism shown in appendix D.
9. Record a new set of electrograms at the predicted position of the re-entrant circuit. If the

electrogram behaviour is consistent with the expected statistical features at a re-entrant circuit,
either end the algorithm or proceed to searching for any remaining circuits. If the position is not
consistent with the expected behaviour of a re-entrant circuit, return to step 6 and repeat the
prediction process.

The algorithm uses four random forest models, two classification and two probabilistic. The
classification models are used to check if the probe is positioned on the driver’s X- and Y-axes. The
responses for the two probabilistic models are the probabilities of the driver lying on each transverse cell
column on the X-axis and each longitudinal cell strand on the Y-axis—this is an adaptation of the
regression style models typical in random forests in which a continuous scale is broken into discrete
ranges and each of the ranges is considered its own class. The benefits of the probabilistic approach over
typical regression models is that it is easier to implement additional levels of post-processing in any
predictions. The probability of the re-entrant circuit lying in each class can then be processed to infer the
predicted position of the re-entrant circuit in a given direction. The probabilistic models can be made
from classification (qualitative) models where instead of the majority rule, the response is given by

Pi = ki

k
, with k =

K∑

i=1

ki, (3.1)

where Pi is the probability for the particular response i, ki is the number of data samples that have
response i and k is the total number of responses. These probabilities do not consider that electrogram
measurements may have been taken previously which gave information as to the direction of the
re-entrant circuit from particular regions in the tissue. The post-processing procedures described in
appendix D account for this.

In a general case, it may occur that there are multiple re-entrant circuits present in a single tissue. To
test our methods for this scenario, we repeated the procedure outlined at the start of this section with a
simple change that two re-entrant circuits are randomly placed in the tissue (with a minimum separation
of 10 cells vertically to avoid overlap). We then adjust the search algorithm to start looking for a second re-
entrant circuit after the first is found. However, note that the machine learning models used are still only
trained on simulations with a single re-entrant circuit—the flexibility of our model to search for multiple
drivers without explicitly learning to do so is one of the major benefits of our approach. The adaptation
to multiple drivers is possible because of the limited interference in the electrical activity between
competing drivers. In a system with two stable drivers, tissue closer to the first driver exhibits electrical
activity which can be closely approximated by the activity one would expect if the second driver was
not present. This is demonstrated in figure 11 in appendix B. This principle can be implemented in our
algorithm as outlined in figure 7 where the extension to tissues with multiple drivers is also described.

4. Results
The features used by the machine learning models are described in appendices B and C. All features
described have some discriminatory capacity for the classifier models. Not all features are strictly
necessary for generating good results (as determined using the Gini index, which is discussed in
appendix C); however, the low computational cost associated with the different statistical measures
warrants the inclusion of the full set of features. The most discriminatory features include the wavefront
direction, the maximum and minimum electrogram voltages, the intensity of the electrogram signal, the
maximum value of the voltage gradient and the magnitude of the largest Fourier transform frequency.
For an example model, the feature ranking is shown in figure 13 in appendix C. As noted in §3, local noise
restricts the efficacy of any individual classifier. Hence, the results presented here are based on the rotor
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(a) (b) (c)

(d) (e) ( f )

Figure 7. Adiagramhighlighting the keymechanismbehind the extension of a single driver location algorithm to an arbitrary number of
drivers. (a) A single driver tissuewhere the driver has been placed at the circular boundary to indicatewavefronts propagating fromabove
andbelow (small stars).Wavefront collisions are expected (dotted line) andobserved (wavy line) at the centre of the tissue. (b/c) The grey
regions indicate the search regions for a second driver inferred by observing the absence of wavefront collisions at the expected position.
(d) A second driver is found (big star). This two-driver system can be conceptually split into two single driver tissues, (e/f ). These can be
searched using the same recursive strategy starting at (a). Note that, in the current work, the mechanism for finding multiple drivers is
simplified to only predict the position of expected collisions in one dimension; however, this could easily be extended to the full geometry
in future work.

Table 1. The success rate of the algorithm described in figure 6. The results are generated from 1500 simulations each of the single and
double driver tissues. The prediction success corresponds to the classifier models outputting a final positive prediction which lies on a
position which if ablated would terminate the re-entrant circuit. The mean number of jumps refers to the total number of electrogram
grid recordings required before reaching a final prediction—i.e. for each jump, one electrogram from each point on the 3 × 3 grid is
generated over two fibrillatory cycles. Features are then extracted from these electrograms, processed and used to predict a displacement
from a re-entrant circuit as outlined in §3.1. Note that, for the second circuit, the number of jumps required is in addition to those required
to find the first circuit.

target driver prediction probability mean jumps

one circuit 95.4% 5.0± 1.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

two circuits, circuit 1 95.1% 5.2± 2.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

two circuits, circuit 2 92.6% 6.1± 4.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

search algorithm which combines multiple separate machine learning models and a series of constraint
mechanisms to make predictions.

Table 1 shows the results from the driver search algorithm. The prediction success is consistently
high both for the single-circuit and two-circuit scenarios. Additionally, the prediction is reached after a
small number of electrogram recordings, typically approximately 5–6. For comparison, the probability of
recording an electrogram on the re-entrant circuit at any given point in the tissue is just under 2%.

The results indicate that the algorithm is capable of locating simple re-entrant circuits on randomly
generated CMP tissues with excellent prediction rates from a small number of recording locations. These
results support the possibility of using statistical learning techniques for locating AF drivers on heart
tissue using indirect feature measurements, derived from the accessible electrograms.

5. Discussion
It is clear from the results in §4 that a statistical analysis of electrograms can be used to extract information
as to the location of re-entrant drivers in the CMP model, an idealized mathematical model of AF
focusing on the discretized structure of the atrial myocardium and the electrophysiological action
of fibrosis.
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In recent work, we have reviewed issues concerning the limited resolution of mapping technologies

used during ablation, and have found that these limitations make it hard to identify distinct mechanisms
of AF in clinical practice [11]. If re-entrant circuits are to be ablated, terminating AF, these issues must be
addressed. However, the methods proposed here suggest a promising line of inquiry for future work in
more realistic models of AF, with a final aim that these approaches may mitigate some of the mapping
resolution issues currently observed during catheter ablation. Such an approach maximizes accuracy by
minimizing errors due to local noise.

5.1. Future work
In its current form, our driver-mapping approach is not refined enough for use in clinical practice—the
simplifications in the CMP model do not accurately represent real electrical behaviour in the heart.

Limitations in the current work come under three categories: (a) intrinsic limitations in the original
CMP model, (b) limitations in our simplified implementation of the original CMP model, and (c)
limitations arising in the data analysis and machine learning procedures.

(a) The CMP model is not a fully realistic model of the atria. It represents a simplified two-
dimensional cylindrical topology of the myocardium and has all cells arranged in a consistent square
lattice. The refractory period of cells are uniform and fixed, and the cell-to-cell conduction velocities
at the microscopic level are constant, traversing one cell-to-cell coupling per time step. In this current
form, the CMP model is not suited to studying some of the rate-dependent effects typically studied in
continuous models of AF. However, the CMP model’s explicit focus on tissue anisotropy and the presence
of fibrosis demonstrates that the key features of AF can spontaneously arise without the need for the
extra details studied in other computationally intensive models [6]. Furthermore, inhomogeneities in
refractory period can be implemented with small adjustments to the model. Future work could consider
testing the proposed search mechanisms in this adjusted model.

(b) In our implementation of the CMP model, we worked in the low-noise limit at δ = 0 where new re-
entrant circuits could not form after the tissue had been initialized with one or two artificial circuits
in the tissue. This was done for computational simplicity and is a small source of noise compared
to the effects of stochastic coupling on wavefront dynamics. The exception is that non-zero δ does
allow for small local fluctuations on short timescales as shown by figure 1d. In a simple re-entrant
circuit-searching algorithm, these fluctuations can occasionally be mistaken for circuits. However, these
fluctuations dissipate after a single cycle of electrical activity. Therefore, a full implementation of the
search algorithm could easily account for these fluctuations by recording electrical dynamics over two
or more periods. This implementation of the CMP model only analysed tissues with simple, two fibre
re-entrant circuits typically formed in the real CMP model from a single dysfunctional cell. In the full
CMP model, re-entrant circuits can form consisting of multiple fibres and multiple dysfunctional cells.
On a local level, this can lead to different electrical dynamics. However, the global electrical dynamics
are very similar across the different types of re-entrant circuit. It is also rare for complicated re-entrant
circuits to form. Therefore, the simple circuit implementation represents the typical case that would be
relevant in a realistic setting. Note also that predictions at the local level should be possible regardless of
circuit morphology because we expect all circuits to a be a source of electrical wavefronts.

(c) Finally, there are some limitations that arise during data analysis of the electrograms. Electrograms
generated from the CMP model are typically cleaner than real atrial electrograms where consistent
measurements across the tissue are not always possible. Despite this, the most important features such as
the direction of electrical propagation across a set of electrodes can still be found accurately using clinical
electrograms [37–40]. By taking the gradient of feature values across the electrode probes in clinical
practice, much of the same statistical information that has been used in this work can be calculated
and analysed. Note that the local zig-zagging of wavefronts due to the cellular automata can result in
errors when taking the gradient of feature values across the probe. However, by taking the mean value
of multiple gradients with the same unit vector, these errors are minimized. Any remaining errors are
mitigated through the inclusion of a constraint mechanism. Although there could be concerns that a
discretized wavefront inhibits the convergence of our algorithm, our high success rate suggests that this
is not a major factor.

As electrograms were analysed using supervised machine learning methods, it is also clear that the
amount of accurate clinical data required to train models will be severely restricted. In the short term, this
might appear to be a major limitation. However, other medical studies have recently shown the efficacy
of using simulations to pre-train machine learning models for clinical use before refining the models
using clinical data. This process of ‘pre-training’ before the models are slowly improved through the
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acquisition of real data has had recent success applied to gene splicing by Rosenberg et al. [41]. It is also
important to consider whether any artefacts in the dynamics of the CMP model may have affected the
success of our algorithm in a way that could not be applied in a more realistic setting. Of particular note
is the perfect isotropy along muscle fibres which may lead to wavefronts travelling in the longitudinal
direction being unrealistically uniform. Despite this concern, this particular artefact is more likely to
hinder the success of machine learning algorithms than be a benefit since wavefront uniformity can
limit the model’s capacity to distinguish between different regions of the CMP tissue. On the whole, this
should be seen as a secondary concern when adapting this work to more realistic settings.

As a final note, it is interesting to highlight surprising parallels between the CMP model and recent
developments in the mechanistic understanding of AF. Hansen et al. [12] have recently demonstrated
that micro-anatomical re-entrant circuits forming in the transmural region with variable orientation,
between the epicardium and the endocardium, can result in a complex variety of breakthrough patterns
observed at the surface of the epicardium. The surface of the epicardium is typically what is mapped
during ablation and for most electrophysiological studies of the atria. These breakthrough patterns can
appear as full rotors, partial rotors or concentric activity—a direct explanation of observations that
were previously seen as in direct conflict but which can now be explained from a single mechanism.
Nattel et al. [3] has suggested this may act as a unifying mechanism for the understanding of AF.
Interestingly, the work by Hansen et al. specifically associates the emergence of AF with the formation
of micro-anatomical re-entrant circuits at the edges of regions with high fibrosis, in direct agreement
with the mechanism described by the CMP model. Although the two-dimensional formulation of the
CMP model is currently unable to investigate the formation of varying breakthrough patterns at the
epicardial surface, a three-dimensional implementation should be able to reproduce the key features of
these observations.

6. Conclusion
Despite major research efforts focusing on the theoretical background and clinical understanding of AF
in recent years, ablation success rates have remained disappointing since the 1990s. Major improvements
will only be possible given significant developments in our mechanistic understanding of AF and new
technological approaches to ablation. The methods demonstrated here apply the benefits of machine
learning and couple it with the capacity for large-scale simulations of cardiac electrical activity in cellular
automata to locate re-entrant circuit for targeted ablation. The work presented here is a first step in a
simplified theoretical model that demonstrates a clear potential for locating re-entrant circuits with high
success from electrograms alone. It is clear that the current work ignores many of the details which will
be crucial when applying these methods in a more realistic setting, particularly with regard to the lack of
topological complexity in the CMP model and the inability to reproduce realistic wavefront curvature—
these issues should be considered for any future work. Given the efficiency of the model, extending
the two-dimensional CMP tissue to a three-dimensional structure should be computationally easy and
investigated as a priority.
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Appendix A. Electrogram simulation
For the CMP model, electrograms can be simulated using the following equation:

V(X′, Y′) =
∑

X,Y

�X(∇xV) + �Y(∇yV)

(�X2 + �Y2 + �Z2)3/2 , (A 1)

https://github.com/MaxFalkenberg/AF-Clean
https://doi.org/10.5061/dryad.675260p
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Figure 8. An example of an electrogram showing a short period of fibrillation driven by a re-entrant circuit. The electrogram has been
recorded on the point of re-entry. More details can be found in [15].

where (X, Y) are the cell positions on the CMP tissue, ∇xV = V(X, Y) − V(X − 1, Y) and ∇yV = V(X, Y) −
V(X, Y − 1) are the discretized gradients, (X′, Y′) is the position of the probe, �X = X − X′, �Y = Y −
Y′ and �Z is the distance between the probe and tissue surface. V(X, Y) is set to be the state of the
cell, where a resting cell has a state value of 0 and an excited cell has a state value of 50 in arbitrary
units. For a refractory cell, the state value is a linear interpolation between these two extremities. This
action potential was chosen as it simplifies the process but it can be mapped back to a more realistic
representation—doing so has a negligible effect on analysis.

Examples of electrograms in perfect isotropic tissue with fibrillation generated by a point source are
shown in figure 3 of the main text. An example of an electrogram generated at the point of re-entry is
shown in figure 8.

Appendix B. Electrogram visualization and analysis
The features generated from the electrogram data are listed in table 2. For analysis, the gradient of these
features is calculated across the multi-electrode grid described in figure 4. The relative time at which
the sampling of raw electrode data starts can be exploited to calculate an approximate direction of the
wavefront across the electrode grid.

Feature visualization is an exceedingly useful tool in enhancing the understanding of our system,
informing the design of machine learning models and at various levels of code verification.

There are a vast array of standard feature visualizations available in machine learning libraries.
However, these do not account for the spatial dependence of our electrograms. Therefore, we have
principally relied on a custom visualization which we have coined the ‘VFM’.

In the simplified CMP model with a single artificial re-entrant circuit, each simulated heart tissue
has the AF driver positioned at a different random position. Therefore, an electrogram recorded at the
tissue centre is likely to show different behaviour in different heart instances. However, at a fixed vector
away from the AF driver we would expect the general behaviour of features to be largely consistent
independent of where in the heart tissue the driver is located. By simulating thousands of different heart
instances, we can map the behaviour of features to a single image where each coordinate corresponds to
the feature behaviour at that given vector away from the driver. This process is visualized in figure 9. The
value shown in a VFM is the average over many instances. As such, these behaviours are not necessarily
seen in individual tissue instances—the visualizations only indicate general trends.

The general regions on a VFM showing distinct flow dynamics are shown in figure 10. The key
conclusions from VFM analysis are the following:

— There is poor feature separation in the bulk. Although there are some indicators differentiating
between regions of unidirectional flow and bidirectional flow, this transition is not sharp across
tissue instances.
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Table 2. The features used for electrogram analysis. For an in-depth description of individual functions see thescipy andnumpy
documentation.a The features were primarilly chosen for ease of use, descriptive capacity and speed at which they could be generated
for large quantities of data. Before being processed, the raw electrogram data were sampled to ensure consistent preprocessing. This
was done by cropping the raw data between the first two maxima of the dominant Fourier frequency. This ensured the output sample
was a consistent length (one driver cycle period) and the sampling was started at the same point in the cycle. The time at which the crop
is started relative to the initial recording time corresponds to feature 24 in the table. Note that as the initial recording time is arbitrary, this
cannot be used as a feature for an individual electrode probe, but the gradient of the initial crop time across a multi-electrode probe can
bemeasured. The sample data are represented by the label ‘X’ in the table. The gradient of the sample data is denoted by ‘g(X)’. Functions
described by ‘f# - f#*’ correspond to an operation involving other features listed in the table. For the Fourier features labelled with (*),
the largest 9 frequencies and their corresponding amplitudes are calculated.

feature name scipy function

1. maximum value numpy.max(X)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. minimum value numpy.min(X)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. amplitude f1 - f2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. intensity numpy.sum(numpy.absolute(X))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. maximum gradient numpy.max(g(X))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. minimum gradient numpy.min(g(X))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7. amplitude gradient f6 - f5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8. max. gradient time numpy.argmax(g(X))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9. min. gradient time numpy.argmin(g(X))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10. amplitude gradient time f9 - f8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11. number of 0 V crossovers numpy.argwhere (g(X)[i] * g(X)[i+1] < 0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12. first 0 V crossover time numpy.min(f11)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13. largest Fourier frequencies* numpy.fft.rfftfreq(X)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14. largest Fourier amplitudes* numpy.absolute(numpy.fft.rfft(X))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15. Fourier sum numpy.sum(f14)[:10]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16. relative Fourier amplitudes* f14[i] / f15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17. mean scipy.stats.describe(X)[2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18. skewness scipy.stats.describe(X)[4]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19. kurtosis scipy.stats.describe(X)[5]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20. maximum time numpy.argmax(X)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21. minimum time numpy.argmin(X)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22. amplitude time f20 - f21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23. variance post minimum numpy.std(X[f21:])
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24. sample start index (see caption)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aDocumentation for bothscipy andnumpy can be found at https://docs.scipy.org/doc/.

— There is strong feature separation between both the bulk and the ectopic beat’s X-axis, and
between the bulk and the axis along which wavefronts collide. This means these regions will
be most susceptible to detection via statistical methods.

— Single-electrode features are symmetric across both the X- and Y-axes of the driver. However,
this symmetry can be broken by gradient features from the multi-electrode grid. The sharp
transition in Y flow direction when crossing the X-axis is visible in these features and can be
used to constrain the search region for driver detection.

— Even with gradient-based features, regions in the bulk close to the driver are hard to distinguish
from the bulk far from the driver. Hence, finding the driver from a single set of electrogram
recordings will be difficult.

— The stochastic formation of vertical couplings in the CMP model means that the transition in X
flow direction when crossing the Y-axis of the driver is only sharp at the driver (as opposed to
other positions along the Y-axis which do not coincide with the driver).

https://docs.scipy.org/doc/
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Figure 9. Consider tissues A & B, where the drivers are located at coordinate (150, 150) and (50, 50), and electrograms are recorded at
(170, 170) and (70, 70), respectively. Despite the electrograms being at different coordinates in the heart tissue, the relative vector from
the driver to the electrogram is the same in both tissues, r = (20, 20). Hence, both electrograms typically record very similar wavefront
behaviour. Note that not every tissue has electrograms recorded at every vector relative to the driver. The periodic boundary conditions of
the CMPmodel in theY (transverse) directionmean that the relative vector fromdriver to recordingposition is always takenas the shortest
distance between the twopoints—this is expressedby the individual tissues beingwrapped. Thismethodused togenerate vector feature
maps. Thousands of instances (tissues) of the CMP model are generated with a single re-entrant circuit randomly positioned in each
tissue—two such tissues, A & B, are shown in this image. At a fixed vector away from the driver, r, we expect largely similar wavefront
dynamics, and hence largely consistent electrogram features. These vectors can be mapped onto a single image by centring each tissue
on an arbitrarily chosen fixed point of the tissue’s re-entrant circuit. Each coordinate in the vector feature map then corresponds to the
average value of a feature recorded at that particular vector away from the re-entrant circuit in thousands of different heart instances.

— The spheres of influences between neighbouring re-entrant circuits are largely self-contained—
moving between the first circuit and the second, feature behaviour is almost perfectly
approximated by the feature behaviour from the nearest circuit with the exception of a very small
transition region where the wavefronts from the two circuits collide. This is shown in figure 11.

Our aim is not to find the driver in a single step but rather collate a small number of measurements
to find the driver to a high degree of accuracy. Bearing that objective in mind, the considerations above
suggest the following approach for designing a driver locating algorithm for the simplified CMP model.

Appendix C. Random forests
The random forest model is built using a set of decision trees. Each decision tree is created via the use of
labelled example responses with associated electrogram features. For a general tree, the tree’s response
space is split into J non-overlapping regions distributed according to a certain metric. For a quantitative
tree, the metric is the residual sum of squares given by

J∑

j=1

∑

i∈Rj

(Yi − ŶRj )
2, (C 1)
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Y

X

Figure 10. A schematic showing the different regions on a vector feature map associated with different wavefront dynamics. The oval
region at the centre corresponds to electrograms recorded near the AF driver—wavefronts in this region spread in all directions. The
white strips either side of the centre indicate convex wavefronts which propagate along the X-axis centred on the driver. The black
strips correspond to positions near the circular boundary where wavefronts propagating in the+Y and−Y directions from the driver
collide. Finally, the grey regions represent the ‘bulk’, usually crossed by wavefronts that are approximately planar. The dark grey regions
correspond to tissue which statistically only observes unidirectional flow in X , i.e. all electrograms in the dark grey region on the left
only observe wavefronts propagating from the right. The light grey regions represent positions relative to the ectopic beat which can
statistically observe bidirectional flow in X , i.e. positions in the light grey regions could see wavefronts approaching from either+X or
−X over various tissue instances. The transition between these regions is not always sharp and varies over tissue instances. Note that not
all vector feature maps are sensitive to all the different wavefront dynamics shown here.
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Figure 11. Vector feature maps for the mean vertical gradient across the electrode grid for the electrogram sampling start index. The
above imagehas been createdusing the regular single rotor procedure illustrated infigure 9. The imagebelow follows the sameprocedure
but has been created from tissues with a second rotor at a fixed vector 30 cells above the initial rotor (note the image is generated from
a smaller dataset which accounts for a small increase in noise compared to the above image). Rotor positions are indicated by white
crosses. Wavefronts propagate away from the dashed lines and collide at the dotted lines, marking the boundary of a given rotor’s sphere
of influence. The feature behaviour within a rotor’s sphere of influence (the regions up to the nearest dotted lines) in a double rotor
system are almost identical to the dynamics observed in a single rotor system. The dotted line at the centre shows a sharp transition
from the first rotor dynamics centred at (0, 0) to the second rotor dynamics centred at (0, 30). Note that the shift of the collision line from
Y = ±100 in the single rotor tissue to Y = −85 in the double rotor tissue can be exploitedwhen searching formultiple rotors in a single
tissue (figure 7).
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Figure 12. Simple qualitative decision tree with a maximum depth of two. The responses are whether or not the probe is on or off the
AF driver. Three features (X1, X2 and X3) with their corresponding thresholds (s1, s2 and s3) are used to create the response regions.

where Yi are the individual response values over all response regions Rj, and ŶRj is the average response
in the region Rj, given by

ŶRj = 1
|Rj|

∑

Rj

YRj . (C 2)

For a qualitative tree, the metric is instead the Gini index given by

G =
K∑

k=1

p̂jk(1 − p̂jk), (C 3)

where K is the number of possible responses and p̂jk is the fraction of responses k in region j.
The J response regions are distributed by choosing an electrogram feature Xn with threshold value s,

which splits a region into the complementary regions R1(n, s) = {X|Xn ≥ s} and R2(n, s) = {X|Xn < s}. The
feature and threshold are chosen to give the largest reduction in either of the chosen metrics at each split.
This is a greedy top-down process as the feature and threshold are chosen without considering future
splits to simplify and speed up training (figure 12).

These metrics can also be used to determine relative feature importances. In the case of a classification
random forest, a smaller Gini index indicates that the response regions are purer. This means that features
which greatly reduce the Gini index can be seen as more important (figure 13). This measure can act as a
rough summary of the feature importance and help determine future feature sets.

One of the drawbacks of decision trees is overfitting. When the tree is complex (large J), more features
are used which reduces the bias but increases the variance of the response. This makes the decision tree
overly specific to the training data, making the model very sensitive to small perturbations in the test
data. Random forests get around this through a process known as bagging. This process averages all the
individual tree’s responses, thus reducing the variance but keeping the bias low—this can be thought
of as the mathematical equivalent of the expression ‘the wisdom of the crowd’. For qualitative trees,
a majority rule is used as the overall response. This effect is amplified by de-corelating the individual
decision trees by choosing the best feature from a random subset of the total features. The size of
the random subset is

√
m, where m is the total number of features processed from the electrogram

waveforms.
The random forests built for this research were generated using the scikit-learn package in

python with 15 decision trees [43]. This number of decision trees was sufficient to give good performance
for locating the X and Y positions of the re-entrant circuit.
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Figure 13. Figure showing the top 29 features by importance of an example random forest model using the Gini index. The prefix
refers to a particular gradient/measure across the electrode grid. The suffix refers to a single electrode feature. The feature ‘start’ can
be manipulated to calculate the wavefront direction. As the random forest model is trained, the reduction of the Gini index caused from
each feature ismeasured and averaged across thewhole decision tree ensemble. From this particular random forest, themeanmaximum
voltage and standard deviation of the start index are important features. It can also be seen that from the magnitude of the Gini values,
no individual feature is suitable just by itself. These plots help determine suitable feature sets for future models.

All features used in the final random forest classifiers had some predictive capacity according to
their Gini index. Of the features described in appendix B, the most discriminatory features are shown
in figure 13. Similar quality results could have been achieved using a reduced set of features; however,
the selection of features chosen can be generated with high efficiency such that there is no computational
downside to using the full set of features.

Appendix D. Constraints and post-processing of predictions
The individual random forest models trained can make independent predictions about the displacement
of the current electrogram position from the driver. However, the full driver location algorithm must
use these in synergy and restrict their predictions to known constraints. The algorithm is split into two
phases, the Y regression stage followed by the X regression stage; it is shown in its full form in figure 6.

As a proof of concept, the constraints imposed here are kept reasonably simple. However, their
importance should not be underestimated in ensuring the algorithms predictions converge to the true
driver position and avoid infinite cycles of repeated prediction mistakes.
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Figure 14. A schematic showing the method used to dynamically constrain the region searched for driver location by cross-referencing
flow information against the flow direction maps shown in figure 10. This schematic uses the Y flowmap to constrain the Y predictions.
An equivalent (but less accurate) flow map can be generated for the X direction. At each point in the CMP model, the net flow across
the electrode grid can be calculated. This flow is strongly dependent on position relative to the recording position’s closest driver. White
regions indicate regions of zero net flow in the Y direction corresponding to the driver axis (centralwhite region) and the axis ofwavefront
collision (top and bottom white regions). The dark and light grey regions indicate net flow in the+Y and−Y directions, respectively.
For each set of electrogram recordings, the flow can be calculated. If+Y flow is detected, the driver must be in the−Y direction from
the current position (cases A & B), and vice versa (case C). With each new electrogram recording the search area is restricted towards the
driver’s X axis.
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Figure 15. A schematic showing the post-processing of regressionmodel predictions. Models output a probability distribution across the
full range of X or Y . The dotted lines represent upper and lower constraints (UC/LC). Probabilities outside the constraints are set to zero. A
square wave convolution is then applied which sums the probabilities of predictions over a small range in X or Y . This ensures that large
clusters of small probabilities are used for predictions (P2) instead of individual outliers with onlymarginally larger probabilities (P1). The
square wave window is of width 2 and increases in size until a peak is found with P> 0.5. If the square wave reaches a width of 8 cells,
the process is stopped and the output prediction is taken as the midpoint of the upper and lower constraints. Ignoring constraints, the
convolution process improves regression predictions from an average error of 16.2 to 13.3 cells for Y and from 6.4 to 4.7 cells for X .
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The first set of constraints use details in the change of local flow direction to dynamically restrict

the search area. The mechanism is described in figure 14. The predictions from individual regression
models may not lie within the calculated constraints. Therefore, regression models are adapted to output
a probability map for likely driver locations. The probabilities outside the constraint region are ignored
and a square wave convolution is used to improve the predictions within the constraint window by
giving a greater weight to a large cluster of slightly smaller probabilities rather than a single outlying
larger probability. This process is illustrated in figure 15.

In a multiple-driver system, after the first driver has been found, the search for the second driver
is initiated as described in figure 7. The deviation of the wavefront collision point is used to constrain
the search area to the areas marked in grey. For computational ease, our proof of concept insists that
the algorithm cannot re-enter the region in which the previous driver was found. This is a small
simplification and should not hinder the success of the algorithm in more complicated systems.

References
1. Nattel S. 2002 New ideas about atrial fibrillation

50 years on. Nature 415, 219–226. (doi:10.1038/
415219a)

2. Schotten U, Verheule S, Kirchhof P, Goette A. 2011
Pathophysiological mechanisms of atrial
fibrillation: a translational appraisal. Physiol. Rev.
91, 265–325. (doi:10.1152/physrev.00031.2009)

3. Nattel S, Xiong F, Aguilar M. 2017 Demystifying
rotors and their place in clinical translation of atrial
fibrillation mechanisms. Nat. Rev. Cardiol. 14,
509–520. (doi:10.1038/nrcardio.2017.37)

4. Lee S, Sahadevan J, Khrestian CM, Cakulev I,
Markowitz A, Waldo AL. 2015 Simultaneous bi-atrial
high density (510–12 electrodes) epicardial
mapping of persistent and long-standing persistent
atrial fibrillation in patients: new insights into the
mechanism of its maintenance. Circulation 115,
2108–2117.

5. Trayanova NA, Pashakhanloo F, Wu KC, Halperin HR.
2017 Imaging-based simulations for predicting
sudden death and guiding ventricular tachycardia
ablation. Circ.: Arrhythmia Electrophysiol. 10,
e004743. (doi:10.1161/CIRCEP.117.004743)

6. Clayton R et al. 2011 Models of cardiac tissue
electrophysiology: progress, challenges and open
questions. Prog. Biophys. Mol. Biol. 104, 22–48.
(doi:10.1016/j.pbiomolbio.2010.05.008)

7. Hood L, Heath JR, Phelps ME, Lin B. 2004 Systems
biology and new technologies enable predictive
and preventative medicine. Science 306, 640–643.
(doi:10.1126/science.1104635)

8. Winslow RL, Trayanova N, Geman D, Miller MI. 2012
Computational medicine: translating models to
clinical care. Sci. Transl. Med. 4, 158rv11.
(doi:10.1126/scitranslmed.3003528)

9. Deo RC. 2015 Machine learning in medicine.
Circulation 132, 1920–1930. (doi:10.1161/
CIRCULATIONAHA.115.001593)

10. Li Q, Rajagopalan C, Clifford GD. 2014 Ventricular
fibrillation and tachycardia classification using a
machine learning approach. IEEE Trans. Biomed.
Eng. 61, 1607–1613. (doi:10.1109/TBME.2013.
2275000)

11. Roney CH et al. 2017 Spatial resolution requirements
for accurate identification of drivers of atrial
fibrillation. Circ.: Arrhythmia Electrophysiol. 10,
e004899. (doi:10.1161/CIRCEP.116.004899)

12. Hansen BJ et al. 2015 Atrial fibrillation driven by
micro-anatomic intramural re-entry revealed by
simultaneous sub-epicardial and sub-endocardial

optical mapping in explanted human hearts. Eur.
Heart J. 36, 2390–2401. (doi:10.1093/eurheartj/
ehv233)

13. Cherry EM, Evans SJ. 2008 Properties of two human
atrial cell models in tissue: restitution, memory,
propagation, and reentry. J. Theor. Biol. 254,
674–690. (doi:10.1016/j.jtbi.2008.06.030)

14. Christensen K, Manani KA, Peters NS. 2015 Simple
model for identifying critical regions in atrial
fibrillation. Phys. Rev. Lett. 114, 028104.
(doi:10.1103/PhysRevLett.114.028104)

15. Manani KA, Christensen K, Peters NS. 2016
Myocardial architecture and patient variability in
clinical patterns of atrial fibrillation. Phys. Rev. E.
94, 042401. (doi:10.1103/PhysRevE.94.042401)

16. Lin YT, Chang ET, Eatock J, Galla T, Clayton RH. 2017
Mechanisms of stochastic onset and termination of
atrial fibrillation studied with a cellular automaton
model. J. R. Soc. Interface 14, 20160968.
(doi:10.1098/rsif.2016.0968)

17. Lord J et al. 2013 Economic modelling of diagnostic
and treatment pathways in National Institute for
Health and Care Excellence clinical guidelines: the
Modelling Algorithm Pathways in Guidelines
(MAPGuide) project. Health technology assessment
17, 1–192.

18. Ciaccio EJ, Biviano AB, Wan EY, Peters NS, Garan H.
2017 Development of an automaton model of
rotational activity driving atrial fibrillation. Comput.
Biol. Med. 83, 166–181. (doi:10.1016/j.compbiomed.
2017.02.008)

19. Wolfram S. 1986 Theory and applications of cellular
automata, vol. 1. Singapore: World scientific.

20. Alonso Atienza F, Requena Carrión J, García Alberola
A, Rojo Álvarez JL, Sánchez Muñoz JJ, Martínez
Sánchez J, Valdés Chávarri M. 2005 A probabilistic
model of cardiac electrical activity based on a
cellular automata system. Rev. Esp. Cardiol. (English
Edition) 58, 41–47. (doi:10.1016/S1885-5857(06)
60233-8)

21. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau
HM, Thrun S. 2017 Dermatologist-level classification
of skin cancer with deep neural networks. Nature
542, 115–118. (doi:10.1038/nature21056)

22. Libbrecht MW, Noble WS. 2015 Machine learning
applications in genetics and genomics. Nat. Rev.
Genet. 16, 321–332. (doi:10.1038/nrg3920)

23. Caruana R, Niculescu-Mizil A. 2006 An empirical
comparison of supervised learning algorithms. In
Proc. of the 23rd Int. Conf. on Machine Learning. ICML

’06, Pittsburgh, PA, 25–29 June, pp. 161–168.
New York, NY, USA: ACM. See
http://doi.acm.org/10.1145/1143844.1143865.

24. Caruana R, Karampatziakis N, Yessenalina A. 2008
An empirical evaluation of supervised learning in
high dimensions. In Proc. of the 25th Int. Conf. on
Machine learning, Helsinki, Finland, pp. 96–103.
New York, NY: ACM.

25. Zahid S et al. 2016 Patient-derived models link
re-entrant driver localization in atrial fibrillation to
fibrosis spatial pattern. Cardiovasc. Res. 110,
443–454. (doi:10.1093/cvr/cvw073)

26. Haissaguerre M, Shah AJ, Cochet H, Hocini M,
Dubois R, Efimov I, Vigmond E, Bernus O, Trayanova
N. 2016 Intermittent drivers anchoring to structural
heterogeneities as a major pathophysiological
mechanism of human persistent atrial fibrillation.
J. Physiol. 594, 2387–2398. (doi:10.1113/
JP270617)

27. Matsuo S et al. 2009 Clinical predictors of
termination and clinical outcome of catheter
ablation for persistent atrial fibrillation. J. Am. Coll.
Cardiol. 54, 788–795. (doi:10.1016/j.jacc.2009.
01.081)

28. Bub G, Shrier A, Glass L. 2002 Spiral wave
generation in heterogeneous excitable media. Phys.
Rev. Lett. 88, 058101. (doi:10.1103/PhysRevLett.88.
058101)

29. Fast VG, Kléber AG. 1995 Cardiac tissue geometry as
a determinant of unidirectional conduction block:
assessment of microscopic excitation spread by
optical mapping in patterned cell cultures and in a
computer model. Cardiovasc. Res. 29, 697–707.
(doi:10.1016/S0008-6363(96)88643-3)

30. Ciaccio EJ, Coromilas J, Wit AL, Peters NS, Garan H.
2016 Formation of functional conduction block
during the onset of reentrant ventricular
tachycardia. Circ.: Arrhythmia Electrophysiol. 9,
e004462. (doi:10.1161/CIRCEP.116.004462)

31. Ciaccio EJ, Coromilas J, Wit AL, Peters NS, Garan H.
2018 Source-sink mismatch causing functional
conduction block in re-entrant ventricular
tachycardia. JACC: Clin. Electrophysiol. 4, 1–16.
(doi:10.1016/j.jacep.2017.08.019)

32. Medtronic Inc. 2011 Achieve Technical Manual.
33. Breiman L. 2001 Random forests.Mach. Learn. 45,

5–32. (doi:10.1023/A:1010933404324)
34. James G, Witten D, Hastie T, Tibshirani R. 2013 An

introduction to statistical learning, vol. 6. Berlin,
Germany: Springer.

http://dx.doi.org/doi:10.1038/415219a
http://dx.doi.org/doi:10.1038/415219a
http://dx.doi.org/doi:10.1152/physrev.00031.2009
http://dx.doi.org/doi:10.1038/nrcardio.2017.37
http://dx.doi.org/doi:10.1161/CIRCEP.117.004743
http://dx.doi.org/doi:10.1016/j.pbiomolbio.2010.05.008
http://dx.doi.org/doi:10.1126/science.1104635
http://dx.doi.org/doi:10.1126/scitranslmed.3003528
http://dx.doi.org/doi:10.1161/CIRCULATIONAHA.115.001593
http://dx.doi.org/doi:10.1161/CIRCULATIONAHA.115.001593
http://dx.doi.org/doi:10.1109/TBME.2013.2275000
http://dx.doi.org/doi:10.1109/TBME.2013.2275000
http://dx.doi.org/doi:10.1161/CIRCEP.116.004899
http://dx.doi.org/doi:10.1093/eurheartj/ehv233
http://dx.doi.org/doi:10.1093/eurheartj/ehv233
http://dx.doi.org/doi:10.1016/j.jtbi.2008.06.030
http://dx.doi.org/doi:10.1103/PhysRevLett.114.028104
http://dx.doi.org/doi:10.1103/PhysRevE.94.042401
http://dx.doi.org/doi:10.1098/rsif.2016.0968
http://dx.doi.org/doi:10.1016/j.compbiomed.2017.02.008
http://dx.doi.org/doi:10.1016/j.compbiomed.2017.02.008
http://dx.doi.org/doi:10.1016/S1885-5857(06)60233-8
http://dx.doi.org/doi:10.1016/S1885-5857(06)60233-8
http://dx.doi.org/doi:10.1038/nature21056
http://dx.doi.org/doi:10.1038/nrg3920
http://doi.acm.org/10.1145/1143844.1143865
http://dx.doi.org/doi:10.1093/cvr/cvw073
http://dx.doi.org/doi:10.1113/JP270617
http://dx.doi.org/doi:10.1113/JP270617
http://dx.doi.org/doi:10.1016/j.jacc.2009.01.081
http://dx.doi.org/doi:10.1016/j.jacc.2009.01.081
http://dx.doi.org/doi:10.1103/PhysRevLett.88.058101
http://dx.doi.org/doi:10.1103/PhysRevLett.88.058101
http://dx.doi.org/doi:10.1016/S0008-6363(96)88643-3
http://dx.doi.org/doi:10.1161/CIRCEP.116.004462
http://dx.doi.org/doi:10.1016/j.jacep.2017.08.019
http://dx.doi.org/doi:10.1023/A:1010933404324


22

rsos.royalsocietypublishing.org
R.Soc.opensci.5:172434

.................................................
35. Pereira S, Pinto A, Oliveira J, Mendrik AM, Correia

JH, Silva CA. 2016 Automatic brain tissue
segmentation in MR images using random forests
and conditional random fields. J. Neurosci. Methods
270, 111–123. (doi:10.1016/j.jneumeth.2016.
06.017)

36. Austin PC, Tu JV, Ho JE, Levy D, Lee DS. 2013 Using
methods from the data mining and machine
learning literature for disease classification and
prediction: a case study examining classification of
heart failure sub-types. J. Clin. Epidemiol. 66,
398–407. (doi:10.1016/j.jclinepi.2012.11.008)

37. Roney CH et al. 2014 An automated algorithm for
determining conduction velocity, wavefront
direction and origin of focal cardiac arrhythmias
using a multipolar catheter. In 36th Annual Int. Conf.

IEEE Engineering in Medicine and Biology Society
2014, Chicago, IL, 26–30 August, pp. 1583–1586.
IEEE. (doi:10.1109/EMBC.2014.6943906)

38. Cantwell CD, Roney CH, Ng FS, Siggers JH, Sherwin
SJ, Peters NS. 2015 Techniques for automated local
activation time annotation and conduction velocity
estimation in cardiac mapping. Comput. Biol. Med.
65, 229–242. (doi:10.1016/j.compbiomed.2015.
04.027)

39. Lee G et al. 2014 Epicardial wave mapping in human
long-lasting persistent atrial fibrillation: transient
rotational circuits, complex wavefronts, and
disorganized activity. Eur. Heart J. 35, 86–97.
(doi:10.1093/eurheartj/eht267)

40. Stevenson WG, Soejima K. 2005 Recording
techniques for clinical electrophysiology. J.

Cardiovasc. Electrophysiol. 16, 1017–1022.
(doi:10.1111/j.1540-8167.2005.50155.x)

41. Rosenberg A, Patwardhan R, Shendure J, Seelig G.
2017 Learning the sequence determinants of
alternative splicing frommillions of random
sequences. Cells 163, 698–711. (doi:10.1016/j.
cell.2015.09.054)

42. McGillivray MF, ChengW, Peters NS, Christensen K.
2018 Data from: Machine learning methods for
locating re-entrant drivers from electrograms in a
model of atrial fibrillation. Dryad Digital Repository.
(doi:10.5061/dryad.
675260p)

43. Pedregosa F et al. 2011 Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12,
2825–2830.

http://dx.doi.org/doi:10.1016/j.jneumeth.2016.06.017
http://dx.doi.org/doi:10.1016/j.jneumeth.2016.06.017
http://dx.doi.org/doi:10.1016/j.jclinepi.2012.11.008
http://dx.doi.org/doi:10.1109/EMBC.2014.6943906
http://dx.doi.org/doi:10.1016/j.compbiomed.2015.04.027
http://dx.doi.org/doi:10.1016/j.compbiomed.2015.04.027
http://dx.doi.org/doi:10.1093/eurheartj/eht267
http://dx.doi.org/doi:10.1111/j.1540-8167.2005.50155.x
http://dx.doi.org/doi:10.1016/j.cell.2015.09.054
http://dx.doi.org/doi:10.1016/j.cell.2015.09.054
http://dx.doi.org/doi:10.5061/dryad.675260p
http://dx.doi.org/doi:10.5061/dryad.675260p

	Introduction
	The Christensen--Manani--Peters model
	Material and methods
	Algorithm for locating re-entrant circuits

	Results
	Discussion
	Future work

	Conclusion
	References

