
Swat

n
ss

fflWKfwo

•'
•

not

M
ffifi

KtiE

!Jffi

liin

»i

iSfls
1

':.';

isn

••''''''-'''

SffiPI

MSB!

KG

m
SSHzSKEW

tfKfisft

- jrary, NFS
Mont ere./, CA 93943

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
MICROCOMPUTER NETWORKING:
A CP/M-BASED APPLICATION

by

Thomas M. Carnahan

and

Michael K. Waters

September 1983

Thesis Advisor: G. E. Latta

Approved for public release; distribution unlimited

T210151

SECURITY CLASSIFICATION OF THIS PACE (Whmn Data Snfr,d)

Dudley Knox Library

REPORT DOCUMENTATION PAGE
»£po»' NUMee»

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (mnd Submit)

Microcomputer Networking: a CP/M-Based
Application

5. TYPE OF REPORT & PERIOD COVERED
Master's Thesis
September, 198 3

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORfaJ

Thomas M. Carnahan
Michael K. Waters

8. CONTRACT OR GRANT NUMBER'*;

» PERFORMING ORGANIZATION NAME ANO AOORESS

Naval Postgraduate School
Monterey, California 93940

10. PROGRAM ELEMENT. PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME ANO AOORESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE

September, 19 8 3
13. NUMBER OF PAGES

145
14. MONITORING AGENCY NAME » AOORESSfl/ dlttoront Iron Controlling Otllct) 15. SECURITY CLASS, (ol thii report)

UNCLASSIFIED
15*>. DECLASSIFICATION/ DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (ol thlt Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol tho abstract antorod In Block 20, It dlllmront from Report;

IS. SUPPLEMENTARY NOTES

19. KEY WOROS (Contlnuo on rovotoo aldo It nocooamry "*d Idontlty by block numbar)

microcomputer, networks, CP/M, Local Area Network, Computer
Interfacing, Computers Software, Software Engineering, Apple
Northstar

20. ABSTRACT 'Continue on ravaraa ttdm II nocoaaary and Idontlty by block numbar)

This thesis examines a topology and protocol for interconnection
of microcomputers to allow them to communicate with each other.

An application is offered based on the CP/M operating system and

other industry standards. A low-cost hardwired implementation
for connecting microcomputers is provided with software to allow

file transfers. The implementation was developed by redesigning
and assimilating existing software utilizing modern software
engineering techniques.

DO FORM
I JAN 73 1473 EDITION OF 1 NOV 88 IS OBSOLETE

S/N 0102- LF- 014- 6601 SECURITY CLASSIFICATION OF THIS PAGE (Whon Dmtm Mntarac

Approved for public release; distribution unlimited-

Microcomputer Networking: a CP/M-Based Application

by

Thomas M. Carnahan
Lieutenant Commander, United States Navy
B.S., United States Naval Academy, 1971

and

Michael K. Waters
Lieutenant, United States Navy

B.S., Oregon State University, 1977

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September 1983

ABSTRACT

This thesis examines a topology and protocol for

interconnection of microcomputers to allow them to

communicate with each other. An application is offered based

on the CP/M operating system and other industry standards. A

low-cost hardwired implementation for connecting

microcomputers is provided with software to allow file

transfers. The implementation was developed by redesigning

and assimilating existing software utilizing modern software

engineering techniques.

TABLE OF CONTENTS

I. INTRODUCTION 8

II. NETWORKING 10

A. NETWORK STRUCTURES 12

B. NETWORK PROTOCOL 13

1. The ISO/ANSI Open System Interconnection
(OSI) Model 14

a. Physical Layer 14

b. Data Link Layer 15

2. Types of Data Link Protocols 16

a. Unrestricted Simplex 16

b. Stop and Wait 17

c. Positive Acknowledgment with Retrans-
mission 17

d. Stop and Wait Sliding Window 20

e. Sliding Window with Pipelining 21

f. Piggybacking 21

3. Summary 22

III. CP/M 24

A. HISTORY OF CP/M 24

B. ORGANIZATION OF CP/M 26

C. SYMBOLOGY 28

D. COMMANDS 31

1. Built-in Commands 31

2. Transient Commands 34

IV. RS-232-C INTERFACE 38

V. PRINCIPLES OF SOFTWARE ENGINEERING 47

A. SOFTWARE DESIGN OBJECTIVES 48

1. iModif iability 48

2. Understandability 49

3. Reliability 49

4. Efficiency 50

B. SOFTWARE DESIGN PRINCIPLES 50

1. Modularity 50

2. Abstraction 52

3. Localization 53

4. Hiding 53

C. TOOLS FOR SOFTWARE DESIGN 54

1. Choice of Programming Language 54

2. Programming Style 55

VI. DESCRIPTION OF PROJECT SOFTWARE 57

A. DISCUSSION OF REQUIREMENTS AND ASSUMPTIONS 57

B. DESIGN DECISIONS 59

C. SOFTWARE IMPLEMENTATION PLAN 62

D. THE MAIN PROGRAM (CROSS.ASM) 64

1. Actions by the Sending Computer During
Transfer 67

2. Actions by the Receiving Computer During
Transfer 69

E. DESCRIPTION OF THE MACRO LIBRARIES 7

1. Macro Assembly 70

2. Advantages o,f a Macro 71

3. Criteria for Dividing Macros Between
Libraries 72

VII. CONCLUSIONS AND RECOMMENDATIONS 73

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

UPLOAD PROGRAM

DOWNLOAD PROGRAM

FLOWCHARTS

MAIN PROGRAM LISTING

MAIN MACRO LIBRARY

APPLE I/O MACRO LIBRARY

NORTHSTAR I/O MACRO LIBRARY

LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

77

81

85

91

109

129

135

142

144

LIST OF FIGURES

4.1 DB-25 Connector Pinout for RS-232-C 43

4.2 Project Network Protocol 45

C.l CROSS.ASM Main Program 85

C.2 CROSS.ASM Main Program (continued) 86

C.3 CROSS.ASM SEND$ROUTINE Program 87

C.4 SEND$ROUTINE (continued) 88

C.5 CROSS.ASM RECEIVE$ ROUTINE Program 89

C.6 RECEIVE$ ROUTINE (continued) 90

I. INTRODUCTION

The trend of microcomputer capabilities has increased

dramatically in the last few years, mainly due to improved

technology and decreasing hardware costs, increasing the

number of applications available to users who would otherwise

have to utilize mainframes or simply do without computer

power. A primary need of many small organizations, including

schools, businesses, and military units is to be able to

have more than one microcomputer share data and files. Since

not all microcomputers use the same formatting of disks, the

same programs, or the same operating systems, it is

impossible to take the programs and data from one

microcomputer disk and run them on another microcomputer

made by a different manufacturer, otherwise known as

transportability.

In many applications, a user may wish to communicate with

distant users or share a peripheral connected to a different

microcomputer. This must be done without disconnecting the

original user from the peripheral and swapping cables every

time someone needs to use it, as might happen when a printer

is needed, for example. Unfortunately, there is no industry

standard by which all diskettes are formatted, however a

method for transferring information within standards that do

exist would solve many of these problems. This introduces

the concept of a network to share files, data, and

information. Many networking systems are commercially

available [Ref. 1] but would be prohibitively expensive for

the small microcomputer user. This thesis examines some of

the industry standards accepted through common practice,

discusses a few of the fundamentals of microcomputer

networking, and provides a low-cost means of data transfer

within those standards. The primary goal is to begin to

study various means for allowing multiple manufacturer

microcomputers to transfer files at low cost.

Modern principles of software engineering have been

utilized to redesign and enhance some existing routines which

are applicable to microcomputer intercommunication.

Commercially available products were used where appropriate

and inexpensive. Further enhancements are also offered such

as low cost telephone communications.

A working model of the design was constructed in the

Mathematics Department Microcomputer Laboratory at the Naval

Postgraduate School as a foundation for an ongoing project to

implement a local area network.

II. NETWORKING

The idea of a single large computer serving all of an

organization's needs is being replaced by a situation where a

large number of smaller computers share resources to meet all

users' needs. These systems of separately interconnected

computers are called networks. They don't necessarily have

to be connected with wire, as telecommunications, microwaves,

and satellites are frequently used to allow computers to

exchange information. Many authors restrict the terminology

of networks to systems where computers operate autonomously,

independent of each other with no master/slave relationships

[Ref. 2: p. 2]. Since many simpler computer connections

evolve into larger systems of autonomous computers, no such

distinction will be made here and the term networks will be

applied to any system of interconnected computers.

There are a number of reasons that networking systems

have come into existence. The first is that many

organizations have a number of independent computers already

and later have a desire to share information between them to

avoid reinventing the wheel. Frequently each computer

carries information peculiar to a small area of the

organization and management wants to assimilate the data for

the whole organization.

10

The second reason is that reliability may be increased

through networking, particularly if the cost of lost data

processing is high. In this situation, it may be

catastrophic to have one of your computers fail. Rather than

buy a spare computer which sits unused waiting for the

primary computer to fail, a networking scheme allows the

other computers in the system to compensate for one of the

computer's failure, usually with no interruption in user

services.

The third reason for networking is for purely economic

considerations due to technology. Since about 1970, it has

been more economical to allow dispersed field offices process

data on their own inexpensive yet powerful microcomputers

rather than collecting the data to be sent to some national

processing center. Summaries may then be sent occassionally

to the central management, reducing the communications costs

of transmitting volumous raw data. Large mainframe computers

are about ten times faster than microcomputers but cost about

a thousand times more.

Finally, convenience of networking allows more than one

person to have access to computer resources, even to the

point of both of them working on the same files which can be

later assembled to make one report. An extension of this

process implies electronic mail and improved human

communications using the network as a tool.

11

A. NETWORK STRUCTURES

Networks are basically composed of hosts, switching

elements, and transmission lines. They are usually connected

together using one of two general methods. The first is

point-to-point, or store-and-forward, where any pair of hosts

or nodes that wish to communicate with each other are

connected together. If they don't share a communication

line, they must communicate indirectly by sending the whole

message to a third node which receives the message and then

sends it on to the intended receiver. Topologies, or

physical connection schemes, used in point-to-point networks

may include the star, loop, or branch arrangements, or a

combination of these.

The second major connection method is broadcasting. In

this design, the nodes may share a communications channel

which carries all messages. Each node is capable of

receiving all information on the channel, so something in the

message must specify the intended receiver, allowing all

other nodes to ignore the rest of the message. The most

common broadcast topologies for small networks are the ring

and bus networks. A ring is different from a loop in that

the loop requires the whole message be sent to the next node

for receipt or forwarding, while the ring operates by having

each bit travel around on its own, being received by everyone

on the network but processed only by the intended receiver.

12

Access to a broadcast network is allocated statically using

time slices or dynamically by having someone centrally

control access or allowing each node to determine their own

eligibility to use the network.

For the project described by this thesis, it was decided

to use a broadcast channel bus network structure with

decentralized dynamically controlled access. This topology

seems to allow the greatest flexibility for enhancements and

growth to the system without a high overhead commitment nor

major restructuring when new nodes are added in the future.

B. NETWORK PROTOCOL

In order for two or more computers to exchange

information, there must be a mutually established set of

rules and conventions governing the manner in which they will

communicate. The collective grouping of these rules and

conventions is known as a "protocol" [Ref. 2: p. 11].

Protocols are designed to accomplish different goals and

overcome different problems.

The number in existence today is at least as large as the

number of computer manufacturers. Computers with different

protocols cannot communicate, therefore the need for an

absolute standard is great.

In an attempt for standardization, the International

Standards Organization (ISO) and the American National

13

Standards Institute (ANSI) proposed a model to serve as a

guideline for protocol designers in achieving uniformity.

1. The ISO/ANSI Open System Interconnection (OSI) Model

In order to reduce the complexity of intercomputer

communication, the model is divided into seven hierarchical

layers. The layers are (in order from highest to lowest):

LAYER NUMBER NAME

7 Applications Layer

6 Presentation Layer

5 Session Layer

4 Transport Layer

3 Network Layer

2 Data Link Layer

1 Physical Layer

Each layer above the Physical Layer exchanges data with the

next lower layer via well-defined interfaces. At the lowest

level, the Physical layer of two computers exchange

information. All seven layers perform different functions

on data passed to them. Only the lower two levels have

direct application to this thesis and the reader is referred

to Tanenbaum [Ref. 2: p. 15-21] for an in-depth description

of the upper five layers,

a. Physical Layer

It is the responsibility of the physical layer to

transmit bits between computers. A few of the design issues

14

involved at this level include: choosing the medium to be

used in the communications channel; picking voltage levels to

differentiate "ones" bits from a "zeroes" bits; deciding

whether or not data can be sent in both directions

simultaneously; deciding how much time is occupied by a

bit; and what pins will carry what signals on the network

connectors.

It is assumed this layer is responsible only for

accepting raw data and transmitting it across the channel

without regard for structure or meaning contained within the

bit stream. The physical layer has no responsibilty for

ensuring the transmitted information arrives at its

destination or is not altered enroute.

b. Data Link Layer

As data is transmitted over a channel, there

exists a very real possibility of some of it being lost or

damaged. The task of this layer is to ensure that all data

passed upwards from the Physical layer is screened. Only

error-free output is passed from this layer upward to the

Network Layer (Layer 3). This is normally accomplished in

the sender by dividing the transmitted data into frames (a

unit of data consisting of a set number of bytes), passing

the frame to the Physical layer which transmits it. The

other computer's Physical layer receives the frame and passes

it up to its Data Link layer which in turn determines if the

15

frame was damaged or duplicated. An acknowledgement is sent

for good frames received, and depending on the protocol in

use, for the bad ones too. Depending on the acknowledgement

received, the transmitting computer sends another frame with

the process continuing until all frames have been received

error-free. At this point, the Data Link layer passes the

entire message up to the next higher layer.

2. Types of Data Link Protocols

One way of categorizing protocols is to group them

by complexity. "Simplex" protocols only provide one-way

transmission and are the most rudimentary. "Sliding Window"

protocols are more efficient and also more complex. To

better illustrate the functions of the Data Link layer, three

Simplex and two sliding window protocols will be examined

along with a technique called "piggy-backing". These just a

few of a large variety of protocols in use.

a. Unrestricted Simplex

This first method is unrealistic and is presented

only as a basis for understanding inherent problems with

protocols. It includes the following assumptions:

1. Data is transmitted sequentially in only one direction.

2. The transmitting and receiving computers are always
ready.

3. The time required to process data on either side is
insignificant.

4. The transmission channel never loses or damages a

frame.

16

The process is straightforward. The receiver

enters a "waiting" loop prior to arrival of a frame. The

sender fetches a file or other collection of data which it

divides and forms into frames. The frames are then passed

in sequential order to the Physical layer until all have been

sent. Every frame arrives undamaged at the receiving

computer's Physical layer and is passed upward to the other

layers.

b. Stop and Wait

This Simplex method deals with the problem of the

sender flooding the receiver with data faster than it can be

processed. Still, it is assumed that the data flows in one

direction and arrives error-free.

The easiest way to handle this problem is to

require the receiver to provide feed-back to the sender.

This can be done by requiring the sender to wait for a signal

from the receiver indicating that it has completed its

processing. Once received, the sender transmits another

frame. During this short interval, the receiver processes

data, clears its buffers, and reenters its waiting loop.

c. Positive Acknowledgement with Retransmission

It is unrealistic to assume that the

communication channel is error-free. Static on the line or

electro-magnetic pulses from a wide range of sources can

change bits or damage frames. If the sender appends a

17

"checksum" (a special code) to a frame before transmission,

it can be used on the receiving end to determine if any

changes occurred in transmission. Depending on the code

used, not only can errors be detected but they can also be

corrected. This discussion will not deal with the generation

of such codes. For more information on these, the reader is

referred to Tanenbaum [Ref. 2: p. 125-132] for an excellent

discussion on Hamming and cyclic redundancy codes.

Given that a receiver has the ability to detect

errors, several methods are used to replace a damaged frame.

One way is to have the receiver withhold the acknowledgement

if the frame received was damaged. After the sender has

transmitted a frame, it waits a predetermined amount of

time. If an acknowledgement is received, it sends the next

frame in the sequence. If no signal is returned, the sender

retransmits the same frame. This would continue until either

an acknowledgement was received or a certain number of

retransmissions had been sent (in which case, it would abort

the process). One problem with this method is the

possibility of duplicate frames being received if the

acknowledgement signal itself is damaged or not recognized by

the sender. One way to deal with this is to give each frame

a sequence number. This number would be contained within a

field of a "header" attached to the beginning of the frame.

By checking the header field containing that frame's sequence

18

number, the receiving computer could determine if a duplicate

had been received and simply discard it.

A second method involves positive acknowledgement

whether the frame is damaged or not. This time, it is the

sender that enters a waiting loop. Upon completion of

processing, the receiver acknowledges with a "success" or

"failure" code to indicate receipt of a good or bad frame.

If the sender receives a "failure", it retransmits the same

frame. If it receives "success", the sender transmits the

next sequential frame. Again, the possibility exists for

the acknowledgement to be lost and a duplicate received.

The next two examples are of protocols belonging

to the "sliding window" class. In these, both sender and

receiver maintain lists. The sender's list contains sequence

numbers of the frames it is allowed to send and the

receiver's list contains frame numbers it is allowed to

receive. The lists are referred to as the "sending window"

and "receiving window" respectively. For each number

contained in the sending window, there is a corresponding

frame kept in the sender's buffer, the number of frames

depending on buffer size. When an acknowledgement is

received, the lower limit of the sending window is

incremented by one. When a new frame is brought into the

buffer from peripheral storage, the upper limit is

incremented by one. Effectively, the sequence numbers

19

represent the frames that have been sent but which have not

been acknowledged.

The receiving window contains sequence numbers

corresponding to the maximum number it can hold in its

buffer. Unlike the the sender, this window's size is

constant. Any frame received with a sequence number falling

outside its range is discarded. When a good frame is

received with a number corresponding to the lower limit of

the window, the receiver processes or stores the frame,

returns an acknowledgement with the sequence number of that

frame to the sender, and advances both boundries of the

window by one. This arrangement allows great flexibility in

that each side has more control over the communication,

d. Stop and Wait Sliding Window

This is essentially the same as the Simplex form.

The only difference is the fact that both sending and

receiving windows contain only one sequence number (i.e. the

window size of both is one). After sending a frame, the

sender waits for an acknowledgement of that sequence number

before sending the next. Again, the receiver evaluates the

packet for damage, checks the sequence number for

duplication, stores or processes the good frame, and returns

an acknowledgement of the good frame to the sender.

20

e. Sliding Window with Pipelining

"Pipelining" is a technique that can be employed

to solve the problem of long propogation times in the

communication channel. A typical case would be where one's

computer is communicating with another via a satellite link.

Round-trip transmission times of 20 msec or more would not be

uncommon under these circumstances. A stop and wait

protocol would be very inefficient if it had to wait that

long between sending and acknowledging a frame. Instead,

the sender transmits all frames for which there exists a

sequence number in the sender's window. Window size is

predetermined so that the sender just finishes transmission

of the last frame before the acknowledgement for the first

frame arrives. An obvious problem with this is the case

where a frame in the middle of the transmission is damaged.

Two solutions have been offered. One, the receiver discards

and does not acknowlege the defective frame and all frames

after it. The second involves the receiver saving and

acknowledging all good frames while not acknowledging the bad

frames. With this technique, frames could arrive out of

sequence, but additional complexity would involved for the

receiver to put them back in order.

f. Piggybacking

One desireable feature is the ability to transmit

data in both directions over one channel so that processes

21

running simultaneously on two computers can exchange data

during execution. A technique called "Piggybacking" allows

two computers to share the line and conduct synchronized

communication. This operation would proceed as follows:

1. Computer number one sends a frame containing data
from its currently running process to computer number
two.

2. In the meantime, computer number two prepares to send a
frame for its currently running process. In its
header, there is a one-bit "acknowledgement" field. A
"one" bit contained here means the last frame received
by this computer (number two) was good. A "zero" means
the last frame was bad.

3. Number two receives number one's frame, checks it for
errors, and puts a corresponding "one" or "zero" bit in
the acknowlegement field of the frame it is about to
send.

4. Number two sends its frame.

5. When number one receives it, number two's frame is
checked for errors in the data. Then it checks the
header for the acknowledgement. If the acknowledgement
was "good", it increments the sequence number field and
sends the next sequential frame. If "bad", it will
resend its last frame. In addition, number one will
update the acknowlegement field to reflect the status
of the frame it just received from number two. This
process continues until all data has been transmitted.

3. Summary

The variety in Data Link protocols is wide. Each is

designed to solve a certain type of problem. The efficiency

of the one in use depends on a number of factors including:

whether the protocol is pipelined or stop-and-wait, whether

piggybacking is used or not, whether the line is half- or

full-duplex, and the characteristics of transmission errors.

22

A protocol designer must consider these and other factors as

he makes tradeoffs between efficiency, effectiveness, and

cost.

23

III. CP/M

CP/M stands for Control Program for Microcomputers. It

is not a computer language, nor is it a way for computers to

control other machines, as some would have you believe.

Instead, it is an operating system, and more specifically, a

disk operating system which takes care of all of the details

involved in controlling computer hardware to complete the

many steps required by each simple command entered. For

example, if you give the command to load a program, the

operating system must determine what the load command means,

tell the disk drive to spin the disk and move the heads to

the correct position, read the directory and locations of all

of the parts of the program, determine where in memory to put

the program, and so forth. The operating system is the

interface between computer hardware and the applications

software. In general, if two different computers are each

using the same operating system, both computers will be able

to run almost all of the same software.

A. HISTORY OF CP/M

CP/M was developed in 1973 by Gary Kildall, a former

faculty member of the Naval Postgraduate School in Monterey,

California while serving as a consultant to Intel

Corporation, a large manufacturer of integrated circuit

24

chips. Intel chose another operating system, so Kildall went

on to market CP/M on his own, forming Digital Research

Corporation in nearby Pacific Grove. CP/M was based on the

Intel 8080 microprocessor chip which many microcomputers use,

so manufacturers lined up to adopt CP/M rather than develop

their own operating systems. As CP/M was revised,

flexibility increased and its popularity snowballed. As more

manufacturers adopted CP/M, more software was written to run

on it. Acceptability soon made CP/M a de facto industry

standard for microcomputers. The characteristics of CP/M

which contributed the most to its popularity are portability

and compatibility with a wide variety of microcomputers.

These qualities also make CP/M a desirable choice for the

basis of microcomputer networking.

Portability enables very different microcomputers to

exchange disks, except in cases where manufacturers use

different formats for storing data on disks. The registers

within the computers are manipulated in the same ways

regardless of manufacturer. This makes different computers

behave as if they were identical. This portability is

possible because the CP/M system actually consists of several

relatively independent parts with clearly defined interfaces.

Only one of these parts, the Basic Input/Output System

(BIOS), deals with the host computer's hardware. Only the

BIOS must be changed to adapt CP/M to another computer. In

25

this way, a program may say to print a message and the BIOS

will provide the printer address unique to the particular

computer. Programs may be written to run on CP/M in general,

and may be run on any computer, with CP/M doing the work of

figuring out the differences between all of the computer

peculiarities.

Compatibility has allowed older CP/M version programs to

be run on new versions of CP/M, calming the worries some

users have about buying a system one day and finding out

tomorrow that the industry standard has changed and he wasted

his money on an obsolete system. A program prepared to run

on CP/M version 2.2 should easily run on a CP/M 3.0 system.

B. ORGANIZATION OF CP/M

There are four main parts to CP/M. BIOS (Basic

Input/Output System) provides the translation necessary for

the computer to reach the disk drives and to communicate with

the printer, telephone modem, and other peripherals. BDOS

(Basic Disk Operating System) manages the floppy disk drives

using the directory of information stored on each disk. The

CCP (Console Command Processor) provides the needed

translation between you at the keyboard and the rest of the

system. The TPA (Transient Program Area) is like a storage

bin in the computer that holds specific applications

programs. A word processing program, for example, would be

loaded into the TPA section of CP/M.

26

When you initially load CP/M from your master system

disk, CP/M itself is loaded at the topmost free memory block

which is about seven Kbytes long. Also, two jump

instructions are placed at memory address OOOOh (The h stands

for hex, or base sixteen. This notation will be used

throughout the thesis.) and 0005h. The space up to OlOOh is

taken with file control information, disk drive information,

buffers, and other system parameters. The user may load his

program into the TPA from OlOOh to the beginning of CP/M high

in memory, starting with CCP which is about 800h long. Next

is BDOS and finally BIOS. CP/M uses the upper 18FFh of

memory.

The CCP module interprets the CP/M commands you type.

This is generally relevent only when you see the CP/M prompt

"A> n (or the prompt for a drive other than A) on the screen.

The CCP recognizes six or seven CP/M commands and several

special subcommands. These will be explained later. When

CCP doesn't recognize your command, it checks the directory

for a file written to run under a single title word (.COM

files) and loads the matching file into the TPA and runs it.

All disk drive activity passes through the BDOS section

of CP/M. BDOS is accessed by having the transient program or

CCP place an appropriate function code in register C and then

a CALL to 0005h is executed. BDOS performs a few dozen

functions involving general device-independent routines for

27

interacting with the console, printer, and disk drives. To

aid file management, it uses the File Control Block (FCB) , a

file subdirectory, or stored data string, that has

information used to describe the location, size, and

allocation of the sectors of a file on the disk. The Digital

Research Corporation manuals [Refs. 3 and 4] provided with

CP/M explain details of how BDOS works together with BIOS to

provide hardware-independent access to CP/M facilities.

The Basic Input/Output System (BIOS) is provided by the

manufacturer or software vendor rather than Digital Research

Corporation. It is the device-dependent part of CP/M

responsible for disk drive head positioning and is similar to

BDOS since it contains numerous function calls to read or

write to input or output devices and peripherals. BIOS must

be tailored to the particular microcomputer model on which it

is to operate.

C. SYMBOLOGY

There are just a few special notations which are peculiar

to CP/M.

The "greater than" symbol (>) is the prompt for CP/M. It

indicates the computer is waiting for input from the keyboard

and appears after the logged disk drive. When the system is

started up, otherwise called booted, the copyright logo is

displayed followed by a line saying "A>". This means you are

logged onto drive A, the initial default drive, and the

28

computer is waiting for a command. The cursor will be next

on the line. In a very few systems, such as Cromemco's CDOS,

the prompt is a period vice a ">"

.

File names may have from one to eight characters which

will be followed in most cases by a period and a filetype

extension of three characters. The file names may contain

upper or lower case, but most systems convert lower to upper

case, so it is a good idea to stick to upper case characters.

The name may not use a few special characters which have

unique meanings such as <>.,;:=?*{} nor control characters.

Filetype extensions identify what the file is to be used

for, since the system treats many types of files differently,

such as interpreting it as a command, as text, or as binary

data. It consists of three characters with the same

restrictions as mentioned above. There is a quasi-standard

list of extensions [Ref. 5: pp. 17-18] which are commonly

used such as .COM, .HEX, .PRN, .TXT, and .$$$. About twenty-

two of these represent about ninety percent of all

extensions, although you can make up your own, or omit it

altogether. The .COM extension is used to denote a command

file which is a program file which may be run simply by

entering the filename without the extension on the command

line.

CP/M addresses its available disk drives by capital

letters A, B, C, D, and so on through P. On some systems, M,

29

N, 0, and P are for hard disk drives. To differentiate a

disk drive from a one-letter command, the colon is used

immediately after the drive letter. For example, if you

entered "A" followed by return, the computer would interpret

this as a command to run the program A. COM. If you entered

"A:" followed by return, the computer would make A the

currently logged drive.

Another set of characters represents ambiguous characters

and file references. These are known as the wild cards. The

asterisk is used to represent an entire filename or filetype

string. The question mark is used to represent a single

character. This is why you can't use them in the titles of

the filename or filetype. For example, if you want to erase

all of the files relating to your UPLOADER program, you could

type ERA UPLOADER.* which would erase UPLOADER. ASM,

UPLOADER.HEX, UPLOADER.PRN, UPL0ADER.COM, and UPL0ADER.DOC.

Notice the "*" can stand for any string in the field

specified. The question mark means any character in that

position. If you wanted to list all of the versions of a

program on the disk, you could type DIR THESIS7.DOC which

would display THESIS1.DOC, THESIS2.DOC, THESIS3.DOC, and so

on, with the question mark being replaced by any existing

character in that position of the file name. The meanings of

the DIR and ERA commands will be explained later. For now,

30

just understand that the "*" stands for a string and the "?"

stands for a single character.

D. COMMANDS

CP/M is composed of two basic groups of commands. The

first set of instructions is known as resident or built-in

commands which are always present in memory as long as the

CCP is present. The second set of commands is called the

transient commands which exist as programs on disk and are

immediately loaded and executed when called. Each time it is

used, the command program is brought in from the disk unlike

the built-in commands which require no consulting from the

disk to run.

1. Built-in Commands

The resident commands are loaded into memory with the

CCP. They are executable whenever the prompt for a drive is

present (such as llA>" for drive A). The commands may not be

preceded by a disk name, such as A", because they are not

associated with commands or files from a particular disk

drive. Hence A: DIR would be improper. Some of these

commands may use disk drives as parameters in which case the

drive may follow the command, as in DIR A:. The following

paragraphs explain the six built-in commands.

"DIR" This command is used to list the file

directory on a particular disk. CP/M can control up to

sixteen separate disks. The default disk (the one you'll get

31

if you don't specify which drive you want) is the currently

logged drive. A class of files may also be selected using

wild card substitution characters or certain parameter

restrictions. These parameters may also be used for other

commands. The * is used as a wild card for a string (a

filename or filetype in this case), and a ? is used as a wild

character. For example, DIR *.ASM will list all of the files

on the default disk with filetype ASM. SORT?. ASM could refer

to SORT. ASM, S0RT1.ASM, and S0RT2.ASM. DIR does not tell

where on the disk the files are located nor how big they are.

"ERA" This command is used to erase a file and free

disk space for other use. In reality, the file is not really

erased, but a change is made in the unseen part of the

directory to prevent listing the file name and also making

its space on the disk available for future storage. If the

file has not been overwritten, there are means for recovering

it.

"REN" Rename. This command is used to change the

name of a file. This command requires specific names, so the

wild cards * and ? aren't permitted. For example, REN

NEW.ASM=OLD.ASM changes the name of the file OLD. ASM to

NEW. ASM.

"SAVE" This creates a file on the disk and stores

the image of the file from the contents of computer memory on

the disk. It overwrites a file by the same name. SAVE takes

32

two parameters. The first is the number of 256 byte blocks,

otherwise called the number of pages, to be saved. The

second is the file name. For example, SAVE 4 NEW.ASM creates

a file (or overwrites one) named NEW.ASM using the first IK

bytes (4 pages times 256 bytes) of transient program area.

Unchanged files need not be saved since reading a file from

the disk does not erase it.

"TYPE" is used to view an ASCII file on the console.

Control-S is used to stop scrolling. Any other key

terminates the output. Scrolling is resumed by pressing any

key. This command may only be used on text or assembly

files. Attempting to type a command file will result in

special control characters being sent to the screen which may

produce unintelligible garbage such as random characters,

clear screen, flashing letters, bell, and random cursor

movement.

"USER" allows up to sixteen people to share a system

and the disks at different times and store files under their

own number, so they can see their own directories without the

confusion of others* files, even by the same name. This does

not allow simultaneous use of one computer by several people.

USER is normally selected when CP/M is initialized.

"X:" is used where X stands for one of the sixteen

disk drives (A through P) , changing the logged drive to the

letter substituted for X.

33

Control characters are recognized by CP/M for special

functions. Chapter 4 of Hogan [Ref. 5] explains these

immediately interpreted line editing commands.

2. Transient Commands

CP/M allows some programs to be executed as commands.

These transient commands are stored on the disk, so they must

be loaded at execution time. How does CP/M know if what you

type is a command? It first checks to see if it is a built-

in command described above, and then looks at the file

directory to see if there is a command file (with the

filetype extension .COM) with the first word in your command.

If the .COM file is not found, CP/M will respond by

displaying your command followed by a question mark.

CP/M requires a number of housekeeping utilities to

manage files data, and text. The built-in commands do much

of this, but not enough. Fortunately, Digital Research

Corporation provides additional programs to aid the

programmer. Some of these are described below.

ASM assembles a source file with the extension .ASM

and produces a .HEX assembled object code file and a .PRT

print listing file. The HEX file must be converted by the

LOAD command to binary COM file in order to be executed.

DDT is a debugging tool used to locate and correct

errors, make simple changes, and trace the execution of a

program with .HEX or .COM extensions. It displays machine

34

language files in both hex and ASCII codes at the same time.

It disassembles the program and recreates the assembler file

from machine language.

DUMP is used to display files, including a

hexidecimal representation of a .COM file. Remember TYPE

doesn't allow this.

ED is a text editor which creates or modifies text or

assembler files. It is rarely used since most people prefer

to use commercially available word processors.

LOAD converts the .HEX listing produced during

assembly, and yields a .COM file which is executable merely

by entering the program title as a command.

MOVCPM changes the size of memory available to the

Transient Program Area as long as your hardware is able to

accommodate. The CP/M system is originally configured for

20K of memory.

PIP (Peripheral Interchange Program) copies files

between disks and devices. PIP may be used to change names

of files when transferring or perform a number of other

functions on files depending on the parameters which follow

the command.

STAT is a multipurpose program which tells you about

disk space and program lengths. It can set files to "read

only" to protect programs from accidental erasure, make a

35

program invisible to the DIR command, and redirect input and

output among devices.

SYSGEN transfers the actual CP/M operating system

program to a disk, allowing it to start up the computer under

CP/M. This is placed on the outer tracks of the disk.

SUBMIT is used to link compilation or executable file

management commands together. A file named XXXXX.SUB may

contain commands such as STAT *.COM, ERA *.HEX, DIR *.HEX.

When you type SUBMIT XXXX, the file XXXX.SUB is executed

which is just like you typed the three above commands, one

after the other. Various parameters and inputs may be

included in the SUBMIT command.

XSUB is a subset of SUBMIT and appears only in the

.SUB file and not in response to a CP/M prompt. When placed

at the beginning of a .SUB file, it relocates to the area

directly below CCP in order to process the command lines of

the .SUB file and thereby provides buffered console input to

the programs executed within the submit operation. Programs

that read buffered console input get it directly from the

.SUB file.

There are a number of other transient commands and

programs available commercially which perform similar

functions, many of which are used in place of the ones

Digital Research Corporation provides. These can generally

be organized into four classes. First, utilities are

36

programs which help maintain your disk collection such as

disk copiers, formatters, disk viewers, and the like. High

level languages are the second class and allow the user to

program in commands which closely resemble English. Reading

the program is then easier and more understandable than

trying to make sense out of registered manipulation and

machine instructions, although you have less control over

exactly what happens in the computer hardware. Most

programmers aren't concerned with hardware control, so high

level languages are better, particularly if they must

communicate with other's concerning their program. The third

class is applications programs. This class is farthest

removed from the hardware and machine instructions. Most are

written in higher level languages and perform special

functions. Examples are business programs for financial

accounting, real estate, inventory management, or investment

planning. The fourth class is word processing, a subset of

applications programs. These are text editors which are more

versatile than ED and allow easy editing and revising as well

as providing help menus and print formatting.

37

IV. RS-232-C INTERFACE

Once it is decided which data to transfer and what format

to use, it is necessary to actually send the data between

computers. This requires some sort of physical connection.

The type of network structure may already be decided (bus

topology in the case of the thesis project), but a computer

only knows to put data on the microprocessor data lines

internally and not how to get it onto the network. For this,

an interface is required.

There are two basic types of data transfer between

computers and peripherals. Parallel transfers put the entire

eight-bit word from the data bus onto eight wires of the

network at the same time, requiring the receiver to accept

the entire eight bits simultaneously. Serial transfers send

one bit at a time over one wire to the receiver which reas-

sembles the bits to make the word. Since the microprocessor

data bus is parallel, a method is needed to convert the words

into serial bits for transfer and back into parallel at the

receiving end. Although this sounds complicated, the serial

method of transfer has some distinct advantages over the

parallel method in low cost expandable networks. Since paral-

lel transmissions must be transmitted and received

simultaneously, the length of cable connecting a computer

with a peripheral or another computer may be very limited.

38

The longer the cable, the greater the chances of distortion

on the line. In the microcomputer industry, some standards

for serial transmission have been widely accepted. These

standards make it easy to develop the Physical Layer inter-

face between microcomputers made by different manufacturers.

Both synchronous and asynchronous modes of transmission

are accepted schemes for serial transfers. Synchronous

transmission requires a special pattern of bits to be sent

before the data telling the receiver to divide subsequent

groups of bits into words. This requires a high degree of

synchronization between the transmitter and receiver.

Asynchronous transmissions add a start bit and one or two

stop bits to each word, allowing the receiver to

automatically decode the middle bits into words. The only

problem then is to ensure that both the transmitter and

receiver are transferring at about the same rate. Common

usage has defined some quantum rates among serial transfers

between computers and devices. The RS-232-C industry

standard doesn't specify particular rates, but establishes an

upper limit of about 20,000 bits per second. Most common

uses are 110, 300, 1200, 9600, and 19200 bits per second.

The designed project was operated successfully at 300, 1200,

and 9600 baud, although no anticipated failures would occur

at higher rates. In general, the more computers attached to

the network and the longer the network bus cables, the slower

39

the limits may be due to interference, line losses, and

distortion. The important thing is that all computers on the

network be set to the same rate, whatever that may be.

Just being able to send or receive data is not enough to

allow the network to operate. Each computer must be able to

communicate to others when it is physically capable of

receiving or transmitting. This is done using "handshaking"

signals. For the physical interface, these handshaking

signals are separate from the handshaking signals referred to

in Section VI and Appendix D which are treated as message

data as far as the Physical Layer is concerned. Because of

all of the possible schemes for handshaking, the Electronics

Industry Association created the RS-232-C interface

specifications which are widely accepted among microcomputer

manufacturers and users [Ref. 6], The wide acceptance and

ease of use of these standards in satisfying the network

requirements made the RS-232 serial interface the optimum

choice for a low cost expandable microcomputer network.

The RS-232 standards defined two sides of the interface.

The computer end was called the Data Terminal Equipment (DTE)

end, and the equipment on the other end which is usually

connected through the interface was called Data

Communications Equipment (DCE) since a modulator/demodulator,

or modem, is usually used to convert the data to signals for

transmission over telephone lines for long distance

40

communications. For shorter distances, as would be the case

in local area networks, one side of the interface is made to

think it is the DCE.

There are a large number of possible protocols supported

by the RS-232 [Ref 7]. The first is a one-way transmit-only

configuration as might be used by a keyboard. The second is

also one-way transmit-only, but contains more handshaking as

in the case of a paper tape reader. Third is a one-way

receive-only which might be used by a serial printer. The

fourth configuration is two-way, although only one side may

transmit at a time (half duplex), frequently used by the two-

wire modem for telephone communications. The fifth

configuration is a full duplex protocol that can transmit in

both directions at the same time as in the case of four-wire

modems. Nine other configurations are specified which are

mostly combinations of the first five but support primary as

well as secondary channel operations [Ref. 6: p. 21]. Some

computers do not come with serial interfaces built in, so

interface boards may be constructed or purchased for about

one hundred dollars to support the various protocols and even

offer some software support for controlling peripheral

devices [Ref. 7: pp. 3-16 to 3-22].

The EIA standard provides ample description of the

technical aspects of the RS-232 [Ref. 6]. It describes the

electrical signal characteristics, mechanical interface

41

characteristics (for male and female connectors), functional

interchange circuits, and communications configurations. The

RS-232-C standard is applicable to both synchronous and

nonsynchronous systems, so many of the circuits would never

be used in the network proposed, allowing future enhancements

to incorporate unused or inappropriate lines for other

purposes such as handshaking.

One of the electrical signal standards that may be

confusing to someone not familiar with the RS-232 is the

definition of binary ones and zeroes. A "mark" or binary

"one" is defined as a voltage more negative than minus three

volts with respect to ground. A "space" or binary "zero" is

greater than plus three volts. The region between plus three

and minus three volts is considered a transition state. Most

circuits use minus twelve and plus twelve volts with the

ability to withstand a 25 volt limit in an open- or short-

circuit condition.

The popular DB-25 connectors are used to attach various

RS-232 interfaces. The pinout specifications are shown in

Figure 4.1. The International Telephone and Telegraph

Consultative Committee (CCITT) has also formulated standard

circuits which are equivalent to the EIA standards. These

are shown with the circuit descriptions and purposes in Table

4.1. The circuits are also broken into the four categories

of ground, data, control, and timing.

42

11 12 13

14 15 16 17 18 19 20 21 22 23 24 25

Figure 4.1 DB-25 Connector Pinout for RS-232-C

Table 4.1 RS-232 Signals

Pin EIA

AA

CCITT Name

FG

Source Category

Ground

Function

1 101 Frame Ground
2 BA 103 TD DTE Data Transmitted Data
3 BB 104 RD DCE Data Received Data
4 CA 105 RTS DTE Control Request to Send
5 CB 106 CTS DCE Control Clear to Send
6 cc 107 DSR DCE Control Data Set Ready
7 AB 102 SG Ground Signal Ground
8 CF 109 DCD DCE Control Data Carrier Detect
9 DCE Usually +12v
10 DCE Usually -12v
11 208A Bell QM DCE Equalizer Mode
12 SCF 122 DCD2 DCE Control Secondary DCD
13 SCB 121 CTS 2 DCE Control Secondary CTS
14 SBA 118 TD2 DTE Data Secondary TD
15 DB 114 TC DCE Timing Transmitter Clock
16 SBB 119 RD2 DCE Data Secondary RD
17 DD 115 RC DCE Timing Receiver Clock
18 208A Bell DCR DCE Divided Rcvr Clock
19 SCA 120 RTS 2 DTE Control Secondary RTS
20 CD 108.2 DTR DTE Control Data Terminal Rdy
21 CG 110 SQ DCE Control Signal Quality Det
22 CE 125 RI DCE Control Ring Indicator
23 CH 111 DTE Control Data Rate Selector
23 CI 112 DCE Control Data Rate Selector
24 DA 113 TC DTE Timing Transmitter Clock
25 DTE Busy

43

The main three lines used on the RS-232 are the

Transmitted Data, Received Data, and Signal Ground (pins 2,

3, and 7 respectively). When two computers are connected

together, the output from one (pin 2) must be connected to

the input to the other (its pin 3) and vice versa. Pin 7 of

both computers are then connected together. Other pins may

be used as required. The project software was written to

minimize the number of lines required. Alternative measures

may be used as the network grows in size in that hardware may

be traded for software by using signals on lines to determine

such matters as whether the network bus is occupied or busy

which might otherwise be determined using software. Specific

signal descriptions are available for chosing the most

appropriate lines for future enhancements [Refs. 6 and 7].

Figure 4.2 shows the simple schematic for the recommended

project. The switches are used to ensure that pins two and

three are crossed for transmitting and receiving computers.

The notation of "sending" and "receiving" computers is

arbitrary in that all that is required is to have pins two

and three crossed. The convention was selected merely to

ensure this and to allow for conditions where more than one

computer may want to receive the message on the bus, with the

understanding that no more than one computer may transmit

files onto the bus using the project software. Since the

choice is arbitrary, the system would also work if every

44

computer on the network reversed the position of their

respective switch. It may be desired to use center-off

switches as a "privacy" switch which essentially disconnects

a computer from the network. Otherwise, it is assumed the

switches will be in the "Receive" position except when

initiating a transfer of files.

Data Return From Receivers

Data From Or ig inator
m

Signal Ground

RCV -JK SEND

Computer
One

Sender

RCVJ-J SEND

2 3 7

Computer
Two

Receiver

RCV/---) SEND

fij
r?

Computer
Three (etc.)

Receiver

Figure 4.2 Project Network Protocol

Implementation of the network allows for either ribbon

cable or multi-conductor wires. Each computer treats itself

as a DTE terminal and the network is viewed as a single DCE

device. Numerous DB-25 connectors may be connected to the

bus to allow simple expansion of new computers to the

network. If the bus is broken and spliced using DB-25

45

connectors, the network may temporarily become essentially

two isolated independent networks. This method may be

extended to offer nearly unlimited flexibility in networking

the various microcomputers in the laboratory.

46

V. PRINCIPLES OF SOFTWARE ENGINEERING

Software Engineering deals with such issues as, writing

software so that it can be understood, modified, and debugged

easily by others, writing programs so they can run on a

large number of computers with minimal reconfiguration

("transportability"), writing code so that it can be reused

in other programs, and increasing the productivity of

programmers. Brooks divides software into four categories:

program, programming product, programming system, and a

programming systems product [Ref. 8: pp. 4-6]. A program

is a self-contained piece of software that runs alone,

usually on one machine, and is maintained and used by one

person. It differs from a "programming product" in that the

latter can be run, tested, repaired, and extended by anyone.

On the other hand, the "programming system" is a collection

of interacting components that have been structured with

precisely defined interfaces that allow the system to run on

a variety of computers. Finally, the "programming systems

product" is a combination of the preceding two categories

with the characteristics of running on a variety of machines

and being easily understood and enhanced by others. To

achieve this level, it is estimated that nine times the

amount of effort for a simple program is required for a

programming systems product [Ref. 8: p. 6], It is highly

47

desireable to plan for this latter type of software product

when one is designing a network since many people will have

to make an input to its design and it is only useful if it

can work on a number of computers.

A. SOFTWARE DESIGN OBJECTIVES

The design and coding of complex software can be

difficult unless one has clearly defined objectives. Ross

suggests that the resultant software should have the

following desired properties: modif iabili ty, understand-

ability, reliability, and efficiency [Ref. 9: p. 57].

1. Modif iabili ty

The idea that the only thing constant in life is

change itself, should be recognized when one begins to design

software. It is estimated that between thirty to eighty

percent of data processing budgets are spent on redesign and

software changes [Ref. 10: p. 16]. There are many reasons

for making changes. Changes are made because user

requirements are often not clearly understood (even by the

user) until after the project is coded. Changes are made to

correct errors. A few errors don't surface until long after

the system has been in operation. Then, there is the program

that works so well that other users want to be added to the

network and modification is necessary for it to be compatible

with their computers. In any case, software designed for a

48

network should be easily modified to ensure that inevitable

changes are "controllable".

2. Under standability

Network software is characterized by multiple,

concurrently-running processes that interact with one

another. This interaction is responsible for complexity that

directly opposes the goal of modif iability. In order for

others to maintain the system in operating condition, they

must be able to understand how it works. It is the

responsibility of designer and programmer to provide

appropriate structure and organization in order that this

complexity be manageable.

3. Reliability

This property requires that the system produce

consistent results each time it is run. Applied to a

network, this says that the system should be thoroughly

tested and debugged. Features of the system that have the

potential for causing errors should be partitioned off or

isolated from the rest of the system so their performance can

be monitored.

In addition, the system should have the ability to

recover from failure during operation. As many potential

error conditions as possible should be anticipated and

handled in order to provide the system with "robustness".

49

4. Efficiency

A massive, slow running program can defeat the

purpose for computerizing the application if speed was an

issue. However, the goal of efficiency is often cited as an

excuse for sacrificing the other goals. Clearly, efficiency

must be carefully balanced with other trade-offs. For

example, understandability is very important to efficiency

during program testing. The extra execution overhead paid to

make the program understandable must be weighed against cost

of a systems analyst trying to debug the program when it

doesn't run. Efficiency cannot be ignored nor can it be

allowed to become all-important.

B. SOFTWARE DESIGN PRINCIPLES

Not all of the preceding goals are realizeable in their

entirety. As suggested before, many tradeoffs are necessary

to achieve an optimum mix. There are a number of principles

that when '...applied in various combinations within the

fundamental process, will work to... achieve our goals during

all of the various phases of software development' [Ref. 9:

pp. 58-60]. These are discussed briefly as follows:

1. Modularity

The principle of modularity suggests that programs be

built from a number of independent, "building-block" modules.

Each sub-program composing one of these modules has little if

any dependence on other modules except through explicit,

50

well-defined interfaces. Just as a building is constructed,

modules are built on top of other modules in a hierarchical

structure. Modules making up the lowest layer are dependent

on the facilities of the individual computer. However, the

purpose of these "foundation" layer modules is to perform the

transformation that permits the modules in the next layer to

be machine "independent". Thus, "dependence" is isolated or

"encapsulated" in the lowest modules. By simply rewriting

the foundation modules, the program can be used on other

machines without rewriting the entire program.

After one module has been coded and debugged, it can

be assembled or compiled by itself. Subsequent changes to

other parts of the program do not require reassembly or

recompilation of a completed module. Also, these completed

modules can be placed in a module library for re-use by other

programs, thereby saving additional development time on other

projects.

Modularization has a parallel in shipbuilding. By

sectioning the ship into water-tight compartments, when one

module or compartment springs a leak, the damage can be

quickly found and isolated, saving the ship from sinking.

The doors and hatches between compartments are the interfaces

that define how things may pass between compartments. They

provide the control necessary to prevent water from spreading

when there is a leak, that is, provided they are closed

51

when the leak starts. In program modules, the interfaces

define what data may pass between modules. Thus, when errors

occur, they are isolated and are easier to find.

Another feature of modularization is that it allows

one to use the module without having to completely understand

it. The real-life parallel to this is a computer. Not many

computers would exist if every technician had to understand

every circuit in the system. As is, the technician merely

follows standard trouble-shooting procedures until he finds a

circuit board that is not providing the correct output for

the right input. To repair it, he could go and learn

everything he could about the board in order to make the

repair, but more likely, he will just replace the board or

module. However, in both the real-world application as well

as software development, this is only possible if the

interfaces (range and domain of inputs and outputs) are well

defined and unchanging. An excellent discussion of the

advantages and disadvantages of modularity is contained in

Shooman [Ref. 10: pp. 107-114].

2. Abstraction

The idea of abstraction is not to remove essential

properties from something but to extract the inessential

detail. A programmer writing in Pascal need not know that

his "DO WHILE" statement will cause a positive fifteen volts

to be applied to a certain wire at a certain time. This

52

inessential detail has been "abstracted" out of his problem.

All he needs to know is when he follows certain rules, the

desired results will be obtained. An opposite analogy can be

found in the Army. When soldiers wear camouflage, it is

difficult to distinguish them from the surrounding terrain

because of the abundance of non-essential detail added to

their bodies.

In software development, abstraction goes along with

the goal of understandability. Unless abstraction is used

to reduce complexity, the program will be incomprehensible.

3. Localization

The principle of localization is concerned with

bringing similiar things into physical proximity. Grouping

code according to its function (e.g. subroutines, arrays, and

records) is an example of software localization. The ability

of the average human to remember a number of unrelated items

is very limited. This becomes obvious when one looks up a

long-distance telephone number and has to walk across the

room to dial it. When items are organized in some meaningful

structure, more can be remembered for a longer time. In a

program, this can add greatly to comprehension. The unre-

stricted use of 'GO TO's is a violation of this principle.

4. Hiding

This principle conforms to the concept of

"information hiding" as conceived by D. L. Parnas

53

[Ref. 11: p. 223], The purpose of hiding is to make features

of a module invisible or inacessible to other modules, thus

preserving their independence. An analogy of this idea can

be found on any large computer system. The user is only

permitted to access features of the machine through the

operating system, not directly. Because the operating system

"hides" features of the computer, it is able to intercede and

prevent undesireable effects that could occur if the user was

allowed direct access. In software, features are "hidden"

within modules. Within a module, only those that are

specified by the interface can be accessed from another

module. Because of this, complex interdepencies are avoided

making the modules independent and the program more easily

modified.

C. TOOLS FOR SOFTWARE DESIGN

The productivity of the network software programmer can

be increased in a number of ways. Two of these are 1)

choosing the right programming language for the job, and 2)

the use of an effective programming style.

1. Choice of Programming Language

Programmers have been dicussing the advantages and

disadvantages of using assembly language versus a higher

order language (HOL) in their work for a long time. On one

hand, it is argued that assembly language executes faster and

uses less memory to run. On the other, it is said that

54

HOL's are easier to understand and modify. In defense of

assembly language is the fact that they can directly

manipulate I/O ports and registers, a requirement for network

software. However, studies have shown that the use of HOL's

can increase productivity as much as five times over that of

assembly language [Ref. 8: p. 94]. A reasonable choice for

programming network software might be a HOL with some

capability for direct control of I/O operations. A few HOL's

offer this capability (e.g. PL/I and "C", both systems

programming languages). However, one must also look at the

system on which it is to be run. If implementation is to be

on microcomputers, one must consider the memory required by

the compiler during its operation. In the final analysis,

one must consider all facts and choose based on the merits of

the language and requirements of the application.

2. Programming Style

As mentioned before, understandability of a program

affects the amount of effort required to keep a software

product viable as it grows and evolves. Programming style is

a factor in its understandability. Style is more than just

good documentation. It includes such things as using

unique, meaningful mnemonics for variables and program

labels. It calls for reducing unnecessary branching and the

use of library functions. It says that multiple exits from

loops and subroutines should be avoided. To assist the human

55

mind with its limited short-term memory, good programming

technique dictates the use of indentation to provide logical

grouping of code for easy comprehension. More information

on programming style is available [Refs. 10 and 12].

56

VI. DESCRIPTION OF PROJECT SOFTWARE

The goal of this thesis project was to conduct

preliminary planning for a Local Area Network (LAN). In

addition, experimentation was conducted on a prototype for

the Data Link Layer of the network software. A description

of that effort follows.

A. DISCUSSION OF REQUIREMENTS AND ASSUMPTIONS

The microcomputer lab is slowly expanding as funds become

available and as faculty/student requirements increase. The

lab's microcomputers presently number less than a dozen but

could dramatically increase in the future depending on a

number of factors. The present configuration provides for

individual microcomputers to have their own printers, a

situation which is currently satisfactory. However, this is

wasteful and could be eliminated if sharing of printers were

available. While mechanical switching could be used to

permit this sharing, it was felt that sharing of peripheral

devices should be a feature of any future LAN.

One long-range goal is to set up an electronic "bulletin

board" that would permit students to exchange software

between computers in the lab and their own home computers.

Peripheral sharing would be beneficial in this situation,

57

especially if a common hard-disk were available to computers

on the network for mass storage.

Since experience has shown that most computer systems

experience "mushroom" effect in growth once users are

comfortable using them, it was felt that a networking scheme

designed for this application would require flexibility and

ease of expansion. On the other hand, since funding was

uncertain, the design would have to be relatively

inexpensive, at least in its early stages. Because

permanent personnel were not used on the project, the

software would have to be as simple and understandable as

possible to accommodate a high rate of personnel turnover and

the inevitable loss of knowledge. In summary, the

requirements for the future LAN were assumed as follows:

• The system would have to be relatively inexpensive.

• Software would have to be simple, reliable, and easy
to understand.

• Software would need to be flexible in order to easily
accomodate an unknown number of future enhancements.

• Connection of additional computers and devices to the
network would have to be convenient and inexpensive.

• The capability to share common peripherals and to
implement a future electronic "bulletin board" would
have to be included in preliminary planning.

• The system would have to be easy to use.

58

B. DESIGN DECISIONS

A number of successful LAN's existed on the market at the

time of this project. One of these, Xerox Corporation's

ETHERNET, had a number of design features that looked

promising [Ref. 1: p. 395], By using a bus topology with

network control shared by all microcomputers, overall

reliability of the system was high. Since there was no

central computer to go bad, failure at one node meant that

the network could continue to operate. For communication

between computers, a method called "common broadcast" was

employed. Using this, when one computer desired to

communicate with another, it simply broadcast its message

over the net. The message would be copied at all nodes, but

only the one node with the address specified in the message

would respond. This was advantageous in that new nodes could

be added easily by simply adding a new address. Ethernet

also provided each node with the ability to "sense" if the

bus was "busy" in order to prevent nodes from simultaneously

trying to use the net. Unfortunately, Ethernet and other

available networks were relatively expensive for this

application due to the requirement for special hardware

controllers used at the nodes. As a result, the decision

was made to design a system in-house that would be similiar

to Ethernet. To hold down cost, it was decided that a loss

59

of performance would be accepted where software was

substituted for more expensive hardware.

The microcomputer lab was established to support user

experimentation and familiarization with different types of

computers and equipment. Because existing computers were of

dissimiliar manufacture, it became apparent that the network

software would have to facilitate communications between

heterogeneous operating systems also. Due to the complexity

of this requirement, it seemed easier to require a standard

operating system. Since many microcomputers use Zilog

Corporation's Z-80 microprocessor, which in turn, supports

the widely-used Digital Research CP/M operating system, it

was decided that all computers on the network would be

required to have this combination of Z-80 and CP/M. For

those computers which did not have the Z-80 (e.g. Apple II

computer), participation on the network was possible by use

of commercially available interface circuit boards that

would "emulate" or make the computer appear to be a Z-80 as

"seen" by the network. It was felt that these decisions

would allow a flexible yet relatively inexpensive system.

The network program would be designed for ease of use by

employing an interactive or "conversational" dialog with the

user. In simpler terms, this means that the program would

anticipate the user's desired actions, present him a "menu"

of available options, ask him for his choice, and carry out

60

the action. This technique has gained wide acceptance in

user communities and has proven to be more "friendly" to the

casual user than previous methods which required the user to

spell out his desires. A number of articles on man/machine

interaction were used as guidelines for this part of the

endeavor [Refs. 13,14 r and 15].

To support the requirements that software be flexible and

easy to understand, it was decided to apply the principles of

modularity, abstraction, localization and hiding. Several

"macro" libraries would be created and used by the network

program. (Macros will be explained in detail later in this

section. For now, let it suffice to say that a macro is

similiar to a subroutine). This would save the programmer

from rewriting duplicate code and would "hide" much of the

unnecessary detail from anyone seeking to understand the

program. The largest library would contain machine-

independent functions while other smaller libraries would

contain functions specific to a particular computer. In this

case, small libraries were written for the Input/Output

(I/O) functions of the Apple II and Northstar Horizon

computers [Appendices F and G] . With only small changes and

minimal effort, an existing copy of one of these I/O

libraries could be adapted to work for a new computer type.

Because of their modular structure, macros could be added

easily to support future expansion. Also, because of their

61

well-defined interfaces, the macros are reuseable, thus

saving program development time and effort.

C. SOFTWARE IMPLEMENTATION PLAN

The common function performed by all networks is data

transfer. Regardless of whether the process is to share

peripherals or set up an electronic bulletin board, there is

a need for error-free data to be exchanged. The programs

written for this portion of the long-term project perform

only basic file transfers between two dissimiliar computers.

Allowances were made for future work to be done to expand to

multiple computer interaction. Rather than start from

scratch, the decision was made to modify and adapt existing

file transfer programs so that they would support network

features. The programs selected were UPLOAD. ASM and

DOWNLOAD.ASM written by Neil Konzen of Microsoft Corporation

[Appendices A and B], Attention is directed to these

programs to make a point. While they efficiently perform

their function of transferring files, they are hard to

understand. Even an assembly language programmer with a

trained eye would have to read slowly to comprehend them.

In order to keep from "reinventing the wheel", it was

decided to use existing macro routines written by Alan R.

Miller [Ref. 16] to implement the majority of macros needed

in the main macro library (CPMMAC.LIB) however, the

microcomputer I/O libraries were developed simultaneously.

62

While a HOL (higher order language) would have been a

better choice for understandability and productivity, the

decision was made to use Intel 8080 Assembly code.

Languages such as "C" were commercially available for

microcomputer application, but were not chosen because, 1)

the funds were not available to purchase the "C" compiler, 2)

the authors had had little experience with "C" and a fair

amount of 8080 experience, and 3) it was felt the amount of

time to learn a new language would be excessive. Information

on Intel 8080 assembly code is available [Ref. 17].

The Digital Research "MAC" macro assembler was chosen

for several reasons. One, it not only supported the use of

macro's but it allowed the programmer to call them from an

external file (a library) at the time of assembly. This

would keep the program from being "cluttered" with code and

would reduce the size requirements of the source program.

Second, MAC allows mnemonics that are fifteen characters

long. Here it was assumed that a longer name would carry

more meaning and therefore be more understandable. One

disadvantage to MAC is that it was designed only for Intel

8080 machine code and certain unique functions of the Zilog

Z-80 microprocessor cannot be directly invoked. One way

around this was to directly insert Z-80 machine code into the

8080 assembly code using the 'DB' pseudo operation (Define

63

Byte assembler directive). More information on other features

of MAC and Z-80 code are available [Refs. 4 and 18].

Again, CP/M was chosen because of its universality among

eight-bit microcomputers described previously. More

information is available on CP/M [Refs. 3 and 16].

D. THE MAIN PROGRAM (CROSS.ASM)

This discussion will assume that the reader has had

experience in programming Intel 8080 assembly language and

some familiarity with CP/M. Flowcharts of the program are

provided [Appendix C] and extensive documentation is in the

program listing [Appendix D] , but minimal explanation will be

made as to how the macros work. For the ambitious, detailed

explanation is available. [Appendices E,F, and G and Refs. 3

and 16]

.

To use the program for file transfer, one must load and

run the CROSS program on both computers. Assuming that

physical connections have been made correctly (described in

the previous sections), one is greeted with a prompt that

informs the user on what computer this version of the program

is designed to run. This was necessary because of a

tendency for the program's object code to be cross-loaded to

other computers where it would not run without change of I/O

parameters and reassembly.

After being informed of the computer type, the user is

presented a menu of three choices: exit from the program,

64

send a file to another computer, or receive a file from

another computer. If the program is on the wrong type of

computer or was loaded by mistake, typing the letter 'E'

(upper or lowercase) will allow the user to exit. Typing 'S'

will put the user in the "SEND" mode, while typing 'R' will

put him in the "RECEIVE" mode. Any other letter will cause

an error message to be displayed and the user returned to the

menu. (In the future, other choices could be made available

here). The user is then asked to type in the name of the

file and the program then checks to see if the file exists on

the current disk. In the "SEND" mode, if no file by that

name exists, a prompt on the screen informs the user, and

he is returned to the menu. In the "RECEIVE" mode, if the

file already exists on the current disk, the user is informed

by a prompt and asked if he still desires to receive the

named file. Typing the letter 'Y' will allow execution to

continue with the existing file being overwritten by the

received file. Typing an 'N 1 would return the user to the

menu with no transfer taking place.

Bear in mind, transfer of a file requires the user to

specify 'S 1 or SEND mode on the sending computer, and 'R' or

RECEIVE mode on the receiving computer. At this stage of

development, the two modes run independently on their own

respective computers. One could send a file called "A. ASM"

65

and tell the receiving computer that it is getting "B.ASM".

The receiving computer cannot tell the difference.

Prior to transfer, the sending program "opens" the

desired file. Basically, this process gives the program

access to the disk directory [Ref. 3: p. 100]. Using the

directory, a program can find all sectors of data on disk

belonging to the file in question. The process that does is

contained in the macro "OPEN" (use of the hiding principle

mentioned earlier).

On the receiving end, a similiar process takes place.

Once it has been determined that the file to be received does

not already exist, the receiving program "makes" the file

[Ref. 3: p. 103]. This process records the new file name on

to the disk directory and permits a file by that name to be

added to disk. This process is hidden within the macro

"MAKE".

One procedure performed by both sending and receiving

computers prior to transfer is to set up Direct Memory

Access (DMA) areas [Ref. 3: p. 104]. During transfer, the

sending computer will read a sector of data from the

specified file on its disk and write the data into a

"designated location" in its memory. At the receiving

computer, a similiar but opposite process occurs. When a

full sector of data has been received and placed in a

"designated location" in its memory, the sector is read from

66

that location and written to the receiving computer's disk

for storage. DMA is the name given to these "designated

locations" and a special function of CP/M allows the user's

program to specify where in memory the DMA area will be

located. In the CROSS program, the macro "SETDMA" uses CP/M

to perform this function.

At this point, both computers go through a process called

"handshaking" which basically synchronizes them The macro

"HANDSHAKE" performs this process for both computers. Once

handshaking is complete, the transfer begins.

1. Actions by the Sending Computer During Transfer

The first action of the sending computer is to

invoke the macro "READSECTOR". Each time READSECTOR is

called, the next sequential sector of data in the file on

disk is read, and copied into the sending computer's memory

at the DMA location. If all sectors in the sequence have

been read (end of file condition), READSECTOR notifies the

main program.

After reading a sector from disk, the program

attaches a number of bytes of data, called the "header", to

the beginning of the sector, and one byte of data, the

"checksum", to the end. The data in the header can contain

such information as the network address of the sending and

receiving computers, a sequence number, a code from the

sending program to the receiving program signaling 'end of

67

file transfer 1

, and many other pieces of information. At

this time, only one byte of the header is used. The rest of

the header is saved for future enhancements. The checksum is

used by the receiving program to verify whether or not the

data has been damaged in transfer. The whole package

including header, sector, and checksum is called a "frame".

If the end of file has not been reached, the sending

program invokes the macro "SENDFRAME". SENDFRAME goes to

the location in its memory containing the first byte of the

header (labeled ,,STARTOFFRAME"). That byte is sent to the

RS-232 port to be transmitted over the network bus to the

receiving computer. Then the byte following STARTOF FRAME

is transmitted and the next and so forth until the whole

frame has been sent.

Afterwards, the sending program enters a loop

waiting to receive ackowledgement from the receiving

computer. As the sending program waits, it repeatedly checks

the RS-232 port for receipt of the characters 'B' or 'G'.

Anything else received is ignored. A 'B' acknowledgement

causes the sending program to retransmit the same frame,

whereas a 'G' causes the sending program to reinvoke

READSECTOR and transmit the next sequential frame. Once all

sectors have been read and all frames sent, the sending

program transmits one last "dummy" frame containing garbage

data and an 'end of file 1 code in its header. Upon receipt

68

of this, the file is considered transfered and the sending

program returns to the menu.

2. Actions by the ^Receiving Computer During Transfer

Upon commencement of transfer, the receiving program

invokes the macro "GETFRAME". GETFRAME enters a loop

checking for a byte of data received at the RS-232 port, or

for an abort signal (control-C) from the user via the

keyboard. If the abort signal is received, the program

exits the loop and returns to the menu. If data is received

at the the port, it is copied into the receiving computer's

memory (beginning at the label STARTOF FRAME) and the loop

is re-entered. This continues until a whole frame has been

received. Then, the program compares the transmitted

checksum with its own internally generated checksum. If they

don't match, the data is bad (damaged). The receiving

program returns a 'B' (bad) acknowledgement signal to the

sending program and prepares for retransmission of the same

frame. If the checksums do match, the frame was good

(undamaged). The receiving program then checks the header

for an 'end of file' code. If it is not found, the receiving

program then invokes the macro "WRITESECTOR".

WRITESECTOR performs in a similiar but opposite

function to that of READSECTOR macro. The macro determines

the location in memory that corresponds to the sector of data

and copies it onto the disk leaving behind the header and

69

checksum. Once the undamaged sector is safely stored on

disk, the receiving program returns a 'G' (good)

acknowledgement signal to the sending program, and prepares

to receive the next frame.

When the "dummy" frame containing the 'end of file 1

code in the header is received, it is left in memory and the

macro "CLOSEFILE" is executed. CLOSEFILE updates the

directory with the sector locations of the new file, and

records the information onto the disk. At this point, the

file is considered received and the program returns the user

to the menu.

E. DESCRIPTION OF THE MACRO LIBRARIES

As mentioned before, a macro library is a separate file

containing macros (subprograms) used by an assembler during

its operation.

1. Macro Assembly

The assembler takes the English-like instructions

contained in the original file, e.g. CROSS. ASM (also called

the "source" file), translates them into machine code, and

puts this code into a new file called the "object" code or

"object" file. It is the "object" code that one loads and

runs to execute the program.

When the MAC assembler encounters a macro name (e.g.

READSECTOR) during assembly, it branches to the library file

and locates the subject macro. MAC then takes the English-

70

like instructions found there and translates them into

machine code. For every occurence of that macro name found

in the source file, MAC substitutes the macro's machine code

into its corresponding location in the object file.

The similiarity between a macro call and a subroutine

call exists only in the source program. Whereas the

occurence of a subroutine call causes branching to take place

during execution of the object file, the occurence of a macro

call causes branching only during assembly.

2. Advantages of a Macro

The macro has the advantage of being "inline" code.

During execution of the object file, the program does not

have to jump when it encounters the machine code generated by

a macro. This tends to make the program run faster.

However, the side effect of this is that macros "expand"

during assembly and create more machine code than a

subroutine. For example, given a macro and a subroutine with

approximately the same amount of code, four macro calls will

generate roughly four times as much code as four subroutine

calls. There are ways to reduce this side effect and one of

these was used in CROSS.ASM [Appendix D]

.

The other advantage of a macro is the ability to

specify parameters. This allows a macro to perform several

functions and only specify the desired function at time of

assembly. As an example, HANDSHAKE macro operates for the

71

sending program when the parameter TRANSMIT is specified.

The same macro performs a different action for the receiving

program when the parameter RECEIVE is used. A subroutine has

no equivalent.

3. Criteria for Dividing Macros Between Libraries

The objective is to put all macros that are

universal, that is, able to execute on any CP/M computer

without modification, into the main library file, CPMMAC.LIB.

The small number of macros that remain are those that are

machine-dependent. The majority of these are dependent

because they contain code that is used for I/O on a specific

type of computer. All of these macros are placed into

libraries bearing the name of the computer type of which they

are dependent (e.g. APPLE.LIB and NSTAR.LIB). The number of

macros and the functions they perform are the same in the I/O

libraries, the only difference between them is a small number

of variations in the code they contain.

72

VII. CONCLUSIONS AND RECOMMENDAT IONS

The thesis project was designed to be the basis for a

microcomputer interconnection scheme. To provide for further

expansion and standardization, the project was designed to

have applicability to other organizations desiring low cost

practical networking of microcomputers. Certain design

considerations included the choice of network structure,

operating system, and interface standards. For reasons

discussed in previous sections, a broadcast channel bus

topology was chosen using RS-232 serial interfaces and the

CP/M operating system. During both hardware and software

design, consideration was given for future change and

enhancements beyond the scope of the initial project which

included a working file transfer program developed as a

prototype for the Data Link Control Layer of a future

microcomputer-based local area network (LAN).

As the basis for future development in this area, the

following recommendations are provided:

1. Improve Programmer Productivity: Ways of improving

programmer productivity should be investigated. As

mentioned previously, use of a HOL should improve

productivity and understandability. Consideration should be

given to how much control over registers is available to the

73

programmer and how much microcomputer memory would be used by

the HOL compiler.

2. Reduce Assembly/Compiler Time: As the program size

increased, it became glaringly obvious that an excessive

amount of time was being spent in re-assembling previously

debugged and assembled code. Consideration should be given

to using a "linking loader".

3. Relocate The Object Code In Memory: Consideration

should be given to giving the object code the ability to move

itself into high-memory upon running but prior to data

transfer. Several methods for doing this can be found. The

reason for this is that CP/M requires all executable programs

to be located at memory location OlOOh. Once CROSS is loaded

at OlOOh, no other programs can be executed by CROSS. If

CROSS could move, then such commands as STAT, TYPE, DIR, etc.

could be run by CROSS.

4. Exper i m ent W ith Multi-Computer Operations

:

The

program developed here dealt only with two computers using

the network bus. Work needs to be conducted with one

computer interrupting and sending a message to one or more

computers. Work is needed to decide the best way to control

one computer from another. Also, experimentation is needed

to define how the computers will decide which computer will

use the network bus and how to settle disputes. It may be

74

desired to replace the hardware switches which control access

to the bus with software control.

5. Design I/O Libraries for Other Microcomputer Models:

The software has been designed to modularize the code

specific to each manufacturer model. The existing libraries

may be used as a guide along with technical data unique to

any microcomputer to expand the network to any model capable

of serial transfer of ASCII characters.

6. Allo w M icrocomputers to Share Per ipherals

:

One of

the goals of any network is to allow stand-alone operation of

each computer yet the convenience of virtual control of

peripherals without any knowledge of what is "behind the

keyboard." To eliminate wasted resources and impatience on

the part of users who must wait for someone to "get off the

only machine connected to the printer," the network could

control resources by allowing anyone at any node to have

access to peripherals such as printers.

7. Interface with External Networks: By connecting this

network into larger networks and systems via modem, the

capabilities become limitless. Adding mass storage would

even allow electronic mail, long distance file transfers, and

media exchanges. Personnel with valuable information and new

software could send their discoveries to the laboratory from

across the country. Many such software packages exist for

75

this purpose which are simple to install and at costs

reasonable to the small organization with limited funds.

76

APPENDIX A: UPLOAD PROGRAM

Written by Neil Konzen (C) 1980 Microsoft

Modified and adapted for the NorthStar Horizon
by Professor Gordon Latta, Naval Postgraduate School, 1983,

BOOT EQU
BDOS EQU 5

FCB EQU 5CH
BUFFER EQU 80H

;Warm boot address
;Bdos address
;File control block
;Default dma address, and buffer

ORG 0100H

UPLOAD

:

JMP ENTRY

INIT:
RET

MVI A f 4EH
OUT 5

MVI A,37h

OUT 5

IN 4

RET
INPSTS

:

Ida STATUS
ANI RXRDY
RZ
Ida data
RET

;if any specific initialization is
; needed for proper I/O it goes here
;Most machines are already
/•initialized, hence RETURN.

/•specifics for North Star Horizon;
;8 data bits.
;2 stop bits, no parity
;N* control port
;clear the input port by a read

; input status port
; receive data available bit
; loop here till data available
;get the data byte

OUTPUT:
PUSH PSW

OTLUP

:

Ida status
ANI txrdy
JZ OTLUP
POP PSW
sta data
RET

;save output on stack

;read port status
; test output buffer empty
;loop here till ready
; recover data from stack
;ship it out

77

ENTRY:
LXI D,INMSG
mvi c,09h
call bdos
call crlf
call crlf

;display signon message

INLUP:
mvi c,01h
call bdos
cpi Odh
jnz inlup
call crlf
call crlf
LDA BUFFER
ORA A

LXI D,CMDMSG
JZ EXIT
CALL INIT
MVI C,15

LXI D,FCB
CALL BDOS
INR A
LXI D,FNFMSG
JZ EXIT

;wait here for <cr>

;read first byte of buffer
;test for a zero
; (meaning no file name entered)

.

;prepare to display command message
;but abort if no file was entered
;do any initialization now
;cpm function to open file of
;desired name.

?do so now
;ff=failure to find file, ff+l=0
;show file not found if acc=0 now
;and abort

RDYLP

:

mvi a, 'R'

CALL OUTPUT
CALL INPSTS

CPI 'S'

JNZ RDYLP
mvi a,'G'
CALL OUTPUT
LXI D,WRKMSG
CALL PRMSG

;we're all set, send out an 'R'.

;and wait for an
;answering * s 1 before going on.

; loop till communication established
;we're in contact , 'G' for go ahead

;show "uploading message 1
* on screen

READ:

MVI C,20
LXI D,FCB
CALL BDOS
ORA A

JNZ EOF

;read sequential from opened file

;this reads one 128 byte sector
;a=0 for successful read and
;not at file end.
;a not zero says end of file

78

TRYAGN

:

LXI H, BUFFER
MVI C,0
MVI D,80H

LOOP1

:

;dma address in h,l
; initial checksum in c
; sector count (128 bytes)

MOV A f M
CALL OUTPUT

XRA C
MOV C,A
INX H
DCR D
JNZ LOOP1
MOV A,C
CALL OUTPUT

;transfer the sector to
; the output port.
;computing new checksum as we go
; saving it in c

;updating the registers
;and looping till d,e=0,0

;then send across the checksum

VFYLP:
CALL INPSTS
CPI 'B'

JZ TRYAGN

CPI 'G 1

JZ READ

JMP VFYLP

EOF:

LXI D f DONMSG
EXIT:

CALL PRMSG
JMP BOOT

PRMSG:
MVI C r 9

JMP BDOS

crlf:
mvi c f 02h
mvi e,0dh
call bdos
mvi c,02h
mvi e,0ah
jmp bdos

;now wait for
;answer (handshaking signal)

.

;if it is 'b' for
;bad read, try it again.

;if it is 'g 1 for
;good read, get next sector.
;anything else is to be ignored

;get ready to print done message

;print same
;and exit gracefully

;cpm function call to
;print message.

79

CMDMSG:
DB

FNFMSG:
DB

DONMSG:
DB

WRKMSG:
DB

INMSG:
db
db
db
db
db
db
db

status:
data:
rxrdy

:

txrdy:

'COMMAND ERROR$'

' FILE NOT FOUND$

'

13 , 10 ,
' UPLOAD COMPLETE$

'

'UPLOADING. . .$'

'apple upload program'
0dh f Oah
'Type in UPLOAD FILE. NAM'
0dh,0ah, 'where file=name of desired file'
0dh,0ah, 'and nam is the type'
Odh, Oah
'Enter <cr> when ready to procede$

'

equ 0e09eh
equ 0e09fh
equ Olh
equ 02h

80

APPENDIX B: DOWNLOAD PROGRAM

Written by Neil Konzen (C) 1980 Microsoft

Modified and adapted for the Apple II
(with Microsoft CP/M) by Professor Gordon Latta,
Naval Postgraduate School, 1983.

BOOT EQU 0000H
BDOS EQU 0005H
FCB EQU 005CH
BUFFER EQU 0080H

COMSTS EQU 0E09EH
COMDAT EQU 0E09FH
RXRDY EQU 01H
TXRDY EQU 02H
APPKBD EQU 0E000H

ORG 0100H
lxi d1, inmsg
mvi c•,09h
call bdos
call crlf
call crlf

INLUP i

mvi c ,01h
call bdos
cpi Odh
jnz inlup
call crlf
call crlf

DWNLOD

:

LDA BUFFER
ORA A t,

LXI E , CMDMSG
JZ EXIT
MVI C ,19

LXI Ei,FCB
PUSH D
CALL BDOS
POP E I

MVI C ,22
CALL BDOS

;warm boot address
;bdos address
;file control block
;default dma address and
; buffer.

;print signon message

;pretty up the screen

;wait for keyboard input

;must be <cr> to continue

read first byte of buffer
zero says no
file name entered
print 'downloading' message
unless no file was entered
delete file of same name
(if any)

.

save d,e for later
do the delete
get d,e back
create file of same name
now

81

INR A

LXI D,NDSMSG
JZ EXIT

RDYLP:
CALL RDCOM
CPI 'R'

JNZ RDYLP
RDY1 : MVI E , S '

CALL WRCOM
GETGEE

:

CALL RDCOM
CPI 'R 1

JZ RDY1

CPI 'G'

JNZ GETGEE
LXI H,WRKMSG

PRLP: MOV A f M
ORA A
JZ TRYAGN

PUSH H
MOV E,A
CALL CONOUT
POP H
INX H
JMP PRLP

TRYAGN

:

LXI H, BUFFER
MVI C,0
MVI D,81H

LOOP1
CALL RDCOM
MOV M,A
MOV E f A
XRA C
MOV C,A
INX H
DCR D
JNZ LOOP1

ORA A
JZ GOODRD

;a=ff says no
;directory space.

; print
; ' no directory space' if so.

;else look for incoming '

r'

;wait here for it
;got it, send 's' as answer.
;output it

;expect 'g' in return
; (handshaking)

.

;maybe we missed it,
;try again.
; not an 'r', maybe a 'g'

; false alarm, wait some more
;contact, print
downloading message

;display same on screen
;print until occurs
;end of message,
; loop some more.
; save h,l

;send byte to screen

;get h,l back and update
;do it again, sam

;h,l point to dma address
; initialize checksum
;byte count,
; including checksum.

;get byte, send it to buffer
; save a copy in e

; update checksum
; saving same in c

;update registers
; repeating until all
;129 bytes received.
;last byte=checksum,0=good

82

BADRD:
MVI E, 'B'

CALL CONOUT
MVI E, 'B'

CALL WRCOM
JMP TRYAGN

GOODRD

:

MVI E, '

.

'

CALL CONOUT
LXI D,FCB
MVI C,21
CALL BDOS
MVI E, 'G'

CALL WRCOM
JMP TRYAGN

DONE: STA APPKBD+10H
LXI D,FCB
MVI C,16
CALL BDOS
LXI D,DONMSG

EXIT: CALL PRMSG

WRCOM:
JMP BOOT

LDA COMSTS
AN I TXRDY

JZ WRCOM
MOV A f E
STA COMDAT

RET
RDCOM:

LDA COMSTS
RAR
JC READIT
LDA APPKBD
CPI 83H
JZ DONE
JMP RDCOM

READIT:
LDA COMDAT
RET

PRMSG:
MVI C,9
JMP BDOS

;it wasn't good
;show bad on screen

;also tell the other end
;and try once more

;success
;show success on screen

;write sequential to disc

;ship out 'g'=good read
;and do iy again

;that's it, close the file
;and update the directory

;then print the
; 'done ' message.
;and exit to cpm

;read status port
; to see if
;transmit is ready.
;wait for it

;ship out data
;from 'E' register.

;read status port

;not *c,loop back

;read input on rs232 line

;cpm function to
;print string.

83

CONOUT

:

MVI
JMP

C,2
BDOS ;cpm function call

; for console out.
CRLF: mv i c ,

2

mvi e,0dh
call bdos
mvi c,2
mvi e,0ah
jmp bdos

INMSG:
db
DB
db
db
db
db
db
db

CMDMSG:
DB

NDSMSG:
DB

DONMSG:
DB

WRKMSG:
DB

'apple Download Program'
0AH,0DH, 'Type DOWNLOAD file. nam'
0dh,0ah, 'where file=desired file'
0dh,0ah, 'and nam=file type'
0dh,0ah, 0dh,0ah
'when transfer is finished, type ^C=control
0dh,0ah,0dh,0ah
'Enter <cr> when ready to start$'

' COMMAND ERROR$

'

'NO DIRECTORY SPACE$

'

13,10,' DOWNLOAD COMPLETE$

'

'DOWNLOADING' ,0

84

APPENDIX C. FLOWCHARTS

EXIT Fro«
Progrwi

START

Intttaitzttton

Otsolay
Coaputar Typ»

0<«pl«y mm

EXIT ^-^USER
^ELECTION?

SEND OR RECEIVE

STORE USER MENU
SELECTION

K)

Figure C.l CROSS. ASM Matn Program

85

SEND

5EWmmr

Inout
FTU

mg- JTtF,
BLOCK

(FC8)

RETRIEVE USER
MENU SELECTION

^-StNDO&N.
<^RECEIVE?^>.

RECEIVE

Res r^EVyouTa<

o
6

IAANCH IACK TO MENU OISRLAV

Ftgure C.2 CROSS. ASM Matn Program (continued)

8&

PRINT Til*
Not Found*

SETUP DISK
REAO/WRTJE
SUFFER IN
MEMORY

PRINT
unloading:

RETURN

HANDSHAKE
yiTH RECEIVER

Figure C.3 CROSS. ASM SENDSROUTINE Program

87

REAO NEXT
SECTOR FROM

DISK

PRINT
•Trtn*f«r
Coapl«t«*

YES

U
RETURN TO MAIN PROGRAM

SEND FRAME
(NMdr
S»ctor of

0«t»)

SET
ACKNOWLEDGEMENT

SIONAL

NO YES

FTgure C.4 SEND5R0UTINE (continued)

CALL

V
search for

Existing file

ILE FOUND?
YES

MO

6-
HAKE NEW FILE

SETUP DISK
REAO/VRITE
BUFFER IN
MEMORY

PRINT
"Ooaniocdfng"

HANDSHAKE
WITH SENDER

YES

PRINT
•OVERWRITE
•xfattng
ftl«?

OELETE OLD
FILE

PRINT »Dti
Full*

OVERWRITE-
NO

YES

V
RETURN TO MAIN PROGRAM

Figure C.5 CROSS. ASM RECEIVESROUTINE Program

8?

GET A FRAME

R AlOR

NO

YES
PRINT

•Execution
Aborted"

SIGNAL TO
SENDER I 9*0

HMd
NO

TELL SENDER
"Good Fre«e*

URITE SECTOR
70 DISK FILE

•GOOD*
FRAME?

Yn (Good Rnd)

DISREGARO LAST
FRAME (GARIAGE

DATA)

CLOSE THE
FILE

PRINT

t

"Download
Complete"

ENO$RECEIVEt

RETURN TO MAIN PROGRAM

Figure C.6 RECEIVESROUTINE (continued)

90

APPENDIX D: MAIN PROGRAM LISTING

; CROSS. ASM. ..crossloader for any CP/M based microcomputer

;Initial definitions:

TRUE
FALSE

;Computer type:

EQU
EQU

OFFFFH
NOT TRUE

Example:
If the program is for an Apple computer, the
variable "APPLE" is set to TRUE. All others are
set FALSE. This technique requires the file
"APPLE.LIB" (an I/O library written specifically

for an Apple computer) to be on the same disk as
this one during assembly. Other computers can be
added to this by creating I/O libraries for them
in the same format as "APPLE.LIB" or "NSTAR.LIB"
The I/O libraries contain only macros that know
how to perform specific I/O functions that are
machine dependent (i.e. access the RS-232 port):

;This version of the program is set up for the
;NORTHSTAR HORIZON

NORTHSTAR
APPLE
ANYCOMPUTER

EQU TRUE
EQU FALSE
EQU FALSE

The following flags are used by the macro
libraries to avoid duplication of code when a

macro is invoked more than once. Most macros used
in the libraries call subroutines. During
assembly when the macro is invoked the first time,
the code is expanded, and its specific flag is set
TRUE. On subsequent invocations, if the flag
equals TRUE, most of the code is not expanded, but
rather, calls the previously expanded subroutine.
This technique exploits the advantages of having
macros (ie. inline code and parameters) without all
of the overhead of code duplication.

91

; Flags:
PRFLAG SET FALSE
COFLAG SET FALSE
OPFLAG SET FALSE
RDFLAG SET FALSE
OTFLAG SET FALSE
MVFLAG SET FALSE
MKFLAG SET FALSE
WRFLAG SET FALSE
UNFLAG SET FALSE
DEFLAG SET FALSE
CLFLAG SET FALSE
DMFLAG SET FALSE
RPFLAG SET FALSE
CIFLAG SET FALSE
RCFLAG SET FALSE
RPKFLAG SET FALSE
CL2FLAG SET FALSE
SCHFLAG SET FALSE
SYNCFLAG SET FALSE
RDCOMFLAG SET FALSE
SENDPFLAG SET FALSE

; Invocation of the macro library follows:

IF APPLE
MACLIB APPLE
ENDIF

IF NORTHSTAR
MACLIB NSTAR
ENDIF

MACLIB CPMMAC

LOCAL EQUATE STATEMENTS

BOOT
FCB
BUFFER
BELL
DATA$ LENGTH
STOP$CODE
SEND$CODE
RECEIVE$CODE

EQU
EQU 5CH
EQU 8 OH
EQU 07H
EQU 128D
EQU OFFH
EQU OFEH
EQU OEFH

;Warm boot address
;Default file control block
;Default buffer address.
;ASCII for ring the bell.
;Length of data field.
;"End of Transmission".
;Code for "SEND" mode.
;Code for "RECEIVE" mode.

92

;* MAIN PROGRAM*
.•it*****************************

;Start the program at address 0100 hex:

ORG 0100H

Initialization

;Move the stack pointer to the end of the program;

LXI SP,ENDOFPROGRAM

; Initialize the computer for I/O operations
;with "INITIALIZE" macro:

INITIALIZE

Display Computer Type

;Tell the user which computer this program
;was designed for:

PRINT <ESC, CLEAR, LF,LF,LF,CR>
PRINT <' *>

PRINT <
• CROSSLOADER for the '>

COMPTYPE ;Macro that prints computer name
PRINT < CR,LF,LF,LF,LF,LF,LF>

Display Menu

DISPLAY$MENU:
PRINT <• •>

PRINT <' SELECTION MENU: I ,LF,CR / CR>
PRINT <' '>

PRINT <'S Send a file. ' ,LF,CR>
PRINT <' •>

PRINT <'R Receive a f ile. '
, LF,CR>

PRINT <' '>

PRINT <*E Exit.
'

, LF,LF,LF,CR>

93

PRINT <'What is your choice? *

>

;Read char from console and convert to uppercase:

READCH

Store User Menu Selection

;Check response to see if it is 'E', 'S', or ! R':

CHECK$E:
CPI 'E'
JZ EXIT

CHECK$S:
CPI 'S'

JNZ CHECK$R

; Inform user he has entered the 'SEND' mode,
;set the MODE$FIELD to SEND, and jump to next
;routine:

PRINT <ESC, CLEAR, CR f 'SEND: * ,CR,LF>
MVI A,SEND$CODE
STA MODE$ FIELD
JMP DETERMINE$FILE

CHECK$R:

;Inform user he has entered the 'RECEIVE' mode,
;set the MODE$FIELD to RECEIVE, and jump to next
;routine:

CPI 'R'

JNZ COMMAND$ERR
PRINT <ESC, CLEAR, CR, 'RECEIVE: ' ,CR,LF>
MVI A,RECEIVE$CODE
STA MODE$ FIELD
JMP DETERMINE$FILE

COMMAND$ERR:

; Informtheuser he has made an error andreturn
;him to the menu:

94

PRINT <ESC, CLEAR, CR, 'Command error: *>

PRINT <'try again * , LP, LF,LF,LF, CR>
JMP DISPLAY$MENU

Request User Input Filename

DETERMINE$FILE:
;Find out what file he wants to transfer:

PRINT 'What file do you wish to transfer? '

;Read in a string from the console with READB macro

READB

;Determine if any entries were typed in.
;The global variable RBUFF$COUNT contains the
;number of characters that were typed in
; (RBUFF$COUNT is contained in READB macro)

.

LDA RBUFF$COUNT ;Find out how many chars.
CPI OH ;Check for zero.
JNZ GOOD$ENTRY ;If RBUFF$COUNT not 0, jump.

BAD$ ENTRY:

;Tell user he didn't enter anything:

PRINT <BELL, ESC , CLEAR, CR>
PRINT < 'ERROR: Nothing entered '

/ CR,LF>
PRINT <' press RETURN to continue'>
READCH
PRINT <ESC,CLEAR>
JMP DETERMINE$FILE ;Go ask again.

Prepare File Control Block (FCB)

GOOD$ENTRY:

;Take the filename from the console buffer that
;was created by READB macro, and put it intothe
;File Control Block (FCB) for CP/M operations to
;be performed later:

CALL PREPARE$FCB

95

Retrieve User Menu Selection

; Retrieve and check the mode- type:

LDA MODE$FIELD ; Recall mode semaphore.
CPI RECEIVE$CODE ;If RECEIVE was specified,
JZ RECEIVE$MODE ;jump to RECEIVE$MODE,

;otherwise to SEND$MODE.

SEND$MODE:

;Branch to the send routine:

CALL SEND$ ROUTINE
JMP DISPLAY$MENU

RECEIVE$MODE:

;Branch to the receive routine:

CALL RECEIVE$ ROUTINE
JMP DISPLAY$MENU

Note: At this point, execution branches back up to
PRINT$MENU. If the user selects "E", then
execution jumps to the following label (EXIT)

:

EXIT: ;Universal program exit.

PRINT <ESC,CLEAR> ;Clear the screen
JMP BOOT ;and exit gracefully.
;End of main program.

96

SUBROUTINES*

PREPARE$FCB: ;Subroutine to fill in File Control Block
;(FCB) from a console buffer created by
;READB macro.

initialize filename with 14 ASCII zeroes.

MOVE ' ',FILE$NAME

; Prepare the FCB to
MOVE
MOVE

0,FCB+32D
<0,'

LXI

LXI

H f FCB+l

D,FILE$NAME

receive the filename.
;Zero FCB+32 (reqd. by CPM)

.

' ,0>,FCB
;Put 'Oh' in FCB+0 and FCB+12
;Put f 20h' in FCB+1 thru FCB+11
; (required by CP/M for disk
;operations.

)

;Point to first filename
; location in the FCB.

;Also point to the block that
;will hold the file name for
jscreen display.

MOVCHARLOOP

:

CALL GETCH ;A global subroutine contained
; in READB macro that returns
;one char from the console
;buffer each time it is called,

97

;When GETCH has returned all characters in the
;buffer, it set the CARRY flag. When CARRY is
;set, we want to exit this loop:

JC ENDFILLFCB ;Carry flag set if no more
;chars to read, ;so return.

CPI '.* ;Check to see if char is
;decimal point. If so, next
;char is part of " filetype",

JZ DECIMALPT ; so we branch.

NOTDECIMALPT

:

;Convert char in A-reg to uppercase.

UCASE

;Put file name in FCB+1 thru FCB+8
;This is the "Filename" field of the FCB.

MOV M,A
STAX D ;Also update the variable FILE$NAME,
INX D ;Move pointers to next space.
INX H
JMP MOVCHARLOOP

DECIMALPT:

; Decimal point found so we skip ahead to FCB+9
;and fill in the "Filetype" field of the FCB:

LXI H,FCB+9D ;Point to "Filetype" field
;of the FCB.

STAX D
INX D
JMP MOVCHARLOOP ;Get next character.

;The only RETURN for this subroutine:

ENDFILLFCB:

RET

98

SEND$ROUTINE: ; Subroutine to conduct a "SEND" operation

Open The File

Invoke OPEN macro from CPMMAC.LIB. OPEN consults
the disk directory and identifies all sectors
containing data belonging to the file whose name
is in the FCB. If the file is not found, it
branches to the label appearing in its second
parameter (NOT$FOUND is the label in this case)

:

OPEN FCB,NOT$FOUND
JMP OPEN$OK ;File found

;next part.
so jump past this

Print "File Not Found"

NOT$FOUND:

PRINT <ESC, CLEAR, 'ERROR: your file *>

PRINT FILE$NAME,14D
PRINT <* cannot be found ... Try again 1 ,CR, LF,BELL>
JMP SEND$END

Initialize Header

OPEN$OK
The file is good so we initialize any fields in
header that require it:

XRA
STA
STA
STA

FRAME$NUM
FRAME$NUM+1
STOP$FIELD

99

Setup Disk READ/WRITE Buffer In Memory

;Invoke SETDMA macro. Tell CP/M that for all
;subsequent "disk reads", read data from the disk
;and place it in memory at the location specified
;by the address "DATA$ FIELD":

SETDMA DATA$FIELD

PRINT "Uploading;"

PRINT <ESC,CLEAR>
PRINT < 'Uploading: f >

PRINT FILE$NAME,14D ; Print the file name to the CRT,
PRINT <' '>

Handshake With Receiver

; Invoke HANDSHAKE macro. This macro synchronizes
;the two computers. The parameter TRANSMIT or
; RECEIVE tells the macro which mode to use:

HANDSHAKE TRANSMIT ; (SEND or "TRANSMIT" mode)

Read Next Sector From Disk

READ$NEXT$ SECTOR:

; Invoke READSECTOR macro to get a sector of data
;from the file opened by OPEN macro. Store it in
;memory at the location set by SETDMA macro. If
;the operation is good, return a zero in the
;A-register and display a '+' on the screen.
;If not successful, return a non-zero value in the
;A-register

:

READSECTOR FCB ,
'
+

'

100

Last Sector?

JNZ ENDOFSEND ;If A-reg not equal to 0,
;all sectors of the file have
;been read, so, we're done.

Send Frame (Header and Sector of Data)

SEND$IT:

;Prepare to send the frame of data starting at label
;"START? OF$ FRAME" by invoking the SENDFRAME macro.
;SENDFRAME expects to find the number of bytes to
;send in the A-register. The variable SIZE$FRAME
;has this value:

LDA SIZE$FRAME

;Transmit the frame
; "STARTOFFRAME"

.

located at the address

SENDFRAME STARTOF FRAME

Get Acknowledgement Signal

VERIFYTRANSMIT:

Evaluate the return from the receiving computer.
If it is a 'B' (BAD), resend the frame. If it is
a 'G' (GOOD), go get the next sector in sequence.
READ$PORT macro checks the RS-232 port until it
receives a character, then transfers it to the
A-register

:

READ$PORT

CPI
JZ

B'
SEND$IT

;Read the returned character
;from port.

;Bad. . . resend.

CPI 'G' ;Good...get another if it exists.
JZ READ$NEXT? SECTOR
JMP VERIFYTRANSMIT ; Ignore everything else.

101

ENDOFSEND;

;Transfer here when all sectors of the file have
;been sent. Put a code in the header of the next
;frame telling the receiving computer we're all
;done and its OK to close the file:

MVI A,STOP$CODE ;End of file (EOF) signal.
STA STOP$FIELD ;Mark frame header with EOF.

;Then send the frame:

LDA SIZE$FRAME ;Load A-reg with frame size
SENDFRAME STARTOFFRAME ;Send EOF to receiver.

;Tell the user the transfer is complete:

PRINT <CR,LF,LF, 'UPLOAD COMPLETE' ,BELL>

SEND$END:

PRINT <' press RETURN to continue '

>

READCH
PRINT <ESC,CLEAR>
RET

102

RECEIVE$ ROUTINE: /•Subroutine for receiving a file.

Search for Existing File

Invoke SEARCH macro. SEARCH looks in the disk
directory for the filename specified in the FCB.
If found, it continues; if not found, it branches
to the label specified by its specified in the FCB.
If found, it continues; if not found, it branches
to the label specified by its specified in the FCB.
If found, it continues; if not found, it branches
to the label specified by its second parameter
("NC^MATCR" in this case):

SEARCH FCB , N0$MATCH

PRINT "OVERWRITE existing file? ...(Y/N)

;The file to be received already exists and would
;be overwritten if the transfer occurs. Notify the
;user

:

PRINT <' OVERWRITE existing file? (Y/N)'>

READCH ;Read a char from the console with
;READCH macro.

CPI 'Y'

JNZ DISPLAY$MENU ;User wants to save the old
;file. Skip it and start over

Delete Old File

; Invoke DELETE macro to delete the old file
;(a prerequisite of CP/M). Must be performed
;before one can write the new file to disk. The
;file to delete is indicated by the filename in the
;FCB. Then continue as if not matching filename
;was found:

DELETE FCB

103

NO$MATCH:

Make New File

;Once no other file by that name exists we can set
;up to write the new file to disk. This is done
;with MAKE macro. If the new file is successfully
;created, execution jumps to the label specified by
;the macro's second parameter ("DISKNOTFULL" in
;this case). If the disk is full, the user is
;notified and execution branches back to the main
;menu:

MAKE FCB, DISKNOTFULL

PRINT "Disk Full"

;Disk full, could not make new file:

PRINT <ESC,CLEAR>
PRINT < f ERROR: Disk full ',BELL>
JMP END$ RECEIVE

DISKNOTFULL:

initialize the frame header for transfer

XRA A
STA FRAME$NUM
STA FRAME$NUM+1
STA STOP$FIELD

Setup Disk READ/WRITE Buffer in Memory

;Invoke SETDMA macro. Tell CP/M that for all
subsequent "disk writes", find the data in memory
;at the location specified by the address
;"DATA$ FIELD" and write it onto disk:

SETDMA DATA$FIELD

104

PRINT "Downloading"

;Notify the user the transfer has begun
PRINT <ESC,CLEAR> ; Clear the screen.
PRINT 'Downloading: '

PRINT FILE$NAME,14D
PRINT <' '>

Handshake With Sender

HANDSHAKE RECEIVE ; (RECEIVE mode]

Get a Frame

GETAFRAME:

;Set up to receive the inbound frame. Put the
;frame size in the D-register as required by
; GETFRAME macro:

LDA SIZE$FRAME

MOV D f A

;Lookup the size of the frame
; (including the checksum).
;Store the size in D-reg for
;GET$FRAME macro.

;Invoke GETFRAME macro. It reads in the inbound
;frame a character at a time from the RS-232 port.
;The frame is stored in memory starting at location
;"STARTOFFRAME ,f

. It also returns the following
;codes in the A and B registers:

6=0, A=0
B=0, A not
B=0FFh

valid data
invalid data. Request "retransmit",
user on receiving computer aborted
the operation with control-C

GETFRAME STARTOFFRAME

;We now test the A and B registers:

PUSH PSW ;Save contents of A-register.
MOV A,B
CPI OFFh
JNZ CHECKA ;If not aborted by user, branch and

; look at A-reg.

105

PRINT "Execution Aborted"

;Confirm for the user that he aborted the transfer:
PRINT <ESC, CLEAR, BELL>
PRINT <* Program ABORTED by user ... '

>

JMP END$RECEIVE ; Return to the main program.

CHECKA:
;Not aborted by user. Check to see if the
;A-register is zero (meaning the frame was not
;damaged in transfer) :

POP PSW ;Get contents of A-register
;back.

"Good" Frame?

JZ GOODREAD ;A=0 : good frame transfer.

Signal to Sender: Bad Read

BADREAD:
;Invoke the OUTPUT macro to send the 'B' character
;to the RS-232 port and out onto the bus. Also,
;display the letter 'B' on the console screen:

OUTPUT 'B'^'B' ;Send 'B' back to sender,
JMP GETAFRAME ;and try once more.

GOODREAD

:

;Branch here if a good frame was received. Check
;STOP$FIELD in the header to see if the sending
;computer is done transferring:

LDA STOP$FIELD
CPI OFFH ;0FFH means "all done".

End of Transmission?

JZ CLOSETHEFILE

106

Write Sector to Disk File

; Invoke WRITESECTOR macro to read the data from the
;frame (disregard the header and checksum).
;Perform a "disk write" to the file on disk. For
;each good write, display a '+' on the screen:

WRITESECTOR FCB, '+'

Tell Sender "Good Frame"

;Once the data is safely on disk, signal the sender
;to transmit another frame by invoking OUTPUT macro
;to send the character 'G' to the sender to confirm
;a "good send":

OUTPUT 'G' ;Send 'g' = "good send".
JMP GETAFRAME ;set up to receive another.

Close the File

CLOSETHEFILE:
;Branch here at the end of transfer and invoke
;CLOSEFILE macro to update the disk directory:

CLOSEFILE FCB

PRINT "Download Complete 1

;Tell the user:
PRINT <ESC, CLEAR, 'DOWNLOAD COMPLETE •>

END$ RECEIVE:

PRINT <' press RETURN to continue '

>

READCH ;macro to read one char from console
PRINT <ESC,CLEAR>

;The only exit from this subroutine:

RET

107

MODE$FIELD:
FILE$NAME:

SIZE$FRAME:

DB
' DB

BUFFER AREA*

OOH ;Either "SEND" or "RECEIVE".

;Holds the file name.
DB ENDOFFRAME-STARTOFFRAME

;Frame size calculation.

FRAME BOUNDARY
STARTOF FRAME:

;This label is required to designate the beginning
;of the frame to be sent. It is used by the
;assembler to calculate frame size ... therefore,
;it must be present and must precede the frame.

STARTOFHEADER:

FRAME$NUM:
DESTINATIONADDR:
SOURCE$ADDR:
OP $CODE:

STOP$FIELD:

DB 01H ;01h is Start of
; Header (SOH)

.

DW 0000H ; Frame number.
DB OOH ;not currently used.
DB OOH ;Not currently used.
DB OOH ;Not currently used.
DB OOH ;Normally OOh.

;0FFh = end of file.

DATA$F IELD$ LENGTH: DB DATA$ LENGTH
; Allows for variable
; length data fields of
;up to size OFFh.

SPARE$BLOCK: DB 0,0,0,0,0,0,0,0,0,0
;Fields for expansion.

; WRITE SECTOR IN FOLLOWING DATA FIELD
,

DATA$ FIELD: DS DATA$LENGTH
;Data is read from
;disk to here and
; vice-versa.

CHECK$SUM:

ENDOF FRAME

EXPANSION:

DB OOH

;A label used for SIZE$FRAME
/•computation. Must immediately
; follow CHECK$SUM.

FRAME BOUNDARY

DB 8 OH
DS 36D

ENDOFPROGRAM:
END 0100H

;Overflow area.
;Stack pointer storage
;Label used by stack.

108

APPENDIX E: MAIN MACRO LIBRARY

CPM MACRO LIBRARY

;List of macros contained:

NAME PARAMETERS FLAGS

sysf
pchar
print
search
open
readsector

macro
macro
macro
macro
macro

func, ae
par
text, bytes
pointr, where
pointr, where
macro pointr, char

writesector macro po
move macro from,to f bytes
make macro pointr
delete macro pointr, where
closefile macro pointr
handshake macro transmit?
getframe macro where, size
sendframe macro start, size
setdma macro pointr
ucase macro reg
readb macro
readch macro noupper?, reg

<none>
COFLAG
PRFLAG
SCHFLAG
SCHFLAG
RDFLAG

intr,star
MVFLAG
MKFLAG
DEFLAG
CLFLAG

SYNCFLAG
RECPFLAG

SENDPFLAG
DMFLAG
<none>
RCFLAG
CIFLAG

WRFLAG

EQUATE STATEMENTS
CPM equates:

BDOS EQU 0005H

; NETWORK CONTROL EQU'S:

;bdos address

; MACRO EQU'S:
TRANSMIT EQU TRUE ;used by HANDSHAKE macro.
RECEIVE EQU FALSE;used by HANDSHAKE macro.

;Z80 EQU'S:

109

.•••••••A**
SYSF MACRO FUNC, AE
.•A**

Description:
A macro to generate BDOS calls. FUNC is the

BDOS function number that is put in C-reg.
The contents of A are stored in E if there is a
second parameter. NOTE: not an 'inline macro 1

.

Registers saved: B,D,H
Flags used: none
Useage: OPEN: SYSF 15

PCHAR: SYSF 2 , AE

PUSH H ! PUSH D ! PUSH B
MVI C , FUNC

IF NOT NUL AE
MOV E f A
PUSH PSW
CALL BDOS
POP PSW

ELSE

CALL BDOS
ENDIF

POP B ! POP D ! POP H
RET
ENDM

.••••A***
PCHAR MACRO PAR

LOCAL AROUND

Description:
An inline macro to print on character to

the console. PAR, if present, is loaded into
the A-reg. Registers saved: none
Flags used: COFLAG
Useage: PCHAR

PCHAR ' *

'

IF NOT NUL PAR
MVI A, PAR
ENDIF

110

CALL PCH2?

IF NOT COFLAG
JMP AROUND

PCH2?:
SYSF 2,AE

COFLAG SET
ENDIF

TRUE

AROUND

:

ENDM

.•••••••••A**

PRINT MACRO TEXT, BYTES, REG
.•••••A**

LOCAL AROUND , MESG

Description:
An inline macro to print a string on the

CRT. TEXT is the address of the string, BYTES
is the length. TEXT may be in quotes if
BYTES is omitted.

If the third parameter, REG, is not nul,
then the number of chars to print is expected
in B-reg. In this case, the second parameter
must not be nul, but its value does not matter.

Registers saved: HL,BC
Flags used: PRFLAG
Macros needed: PCHAR
Useage: PRINT FCB+1,11

PRINT
PRINT
PRINT
PRINT TEXT, 1,1

'end of file'
<CR,LF, 'message'

>

,12
;Prints text
;located at

;TEXT addr.
;The number of
; bytes is ex-
;pected in B-
;reg.

PUSH H ! PUSH B

IF

ELSE

NUL BYTES
LXI H,MESG
MVI B,AROUND-MESG

111

IF NOT NUL TEXT
LXI H,TEXT
ENDIF

IF NUL REG
MVI B, BYTES
ENDIF

ENDIF

CALL PBUF?

POP B ! POP H

IF NOT PRFLAG OR NUL BYTES
JMP AROUND
ENDIF

IF NOT PRFLAG

PBUF?

PRFLAG

MOV A,M
PCHAR
INX H
DCR B
JNZ PBUF?
RET

SET TRUE
ENDIF

IF NUL BYTES

MESG

:

DB
ENDIF

TEXT

AROUND: PRINT

OPEN

ENDM

MACRO POINTR, WHERE

LOCAL AROUND
.••••••••A***

Description: An inline macro to open
an existing disk file. POINTER refers to
the file control block (FCB) . Extent and
current record number are zeroed. Branch to
location WHERE if file not found, or print
error message and branch to DONE otherwise.

112

; Registers saved: none
; Flags used: OPFLAG
;Macros used: SYSF, ERRORM
;Useage:

LXI
XRA
STA
STA
CALL
INR
JNZ

IF
ERRORM

D, POINTR
A
POINTR+12
POINTR+32
OPEN2?
A
AROUND

OPEN FCB
OPEN FCB , BOOT

;zero

;extent
;current record

;0=ok,FF means error.

NUL WHERE
'No source file. ' , AROUND;0FFh in A-reg
in unable.

ELSE
JMP
ENDIF

WHERE

OPEN2?:

OPFLAG

IF

SYSF
SET
ENDIF

NOT OPFLAG

15
TRUE

; Open the disk file.
; Only one copy.

AROUND: ;;OPEN
ENDM

.••••••A***
SEARCH MACRO POINTR, WHERE

LOCAL AROUND
.••••it***

Description: An inline macro to search
an existing disk file. POINTER refers to
the file control block (FCB) . Extent and
current record number are zeroed. Branch to
location WHERE if file not found, or print
error message and branch to DONE otherwise.

;Registers saved: none
;Flags used: SCHFLAG
,-Macros used: SYSF, ERRORM
;Useage: SEARCH FCB

SEARCH FCB , BOOT

LXI
XRA

D, POINTR
A

; zero

113

STA
STA
CALL
INR
JNZ

IF
ERRORM

ELSE
JMP
ENDIF

IF
SEARCH2 ?

:

SYSF
SCHFLAG SET

ENDIF

AROUND:

POINTR+12
POINTR+32
SEARCH2?
A
AROUND

; extent
;current record

;0=ok,FF means error.

NUL WHERE
'No source file.
if unable

WHERE

NOT SCHFLAG

' , AROUND ;0FFh in A-reg

17
TRUE

; SEARCH the disk file.
; Only one copy.

;; SEARCH
ENDM

.***•**

ERRORM MACRO TEXT, WHERE

Description: Macro to print error
message on the CRT. Message must be enclosed
in apostrophes. Optional second parameter
has branch address. If no second parameter,
go to BOOT.

; Registers saved: none
;Flags used: none
;Macros used: PRINT
;Useage: ERRORM 'message'

PRINT <TEXT>

IF NUL WHERE
JMP BOOT

ELSE
JMP WHERE
ENDIF

ENDM

114

.**
READSECTOR MACRO POINTR, CHAR
.**

LOCAL AROUND

Description: Inline macro to read a disk
sector. POINTR refers to the file control
block (FCB) . Optional second parameter is
symbol to be printed after sector is read.
Zero flag is reset if end of file.

;Registers saved: none
; Flags used: RDFLAG
;Macros used: SYSF, PCHAR
;Useage: READSECTOR FCB1

READSECTOR FCBS,'*'

IF NOT NUL CHAR
PCHAR CHAR
ENDIF

; ; to console,

IF NOT NUL POINTR
LXI D, POINTR
ENDIF

CALL READ2 ?

ORA A
IF NOT RDFLAG
JMP AROUND

set flags.

READ2?:

RDFLAG
SYSF 20
SET TRUE
ENDIF

Read disk sector
Only one copy.

AROUND:
ENDM

; ; READSECTOR

.**
MOVE MACRO FROM, TO, BYTES

i

LOCAL AROUND, MESG
.**

Description: An inline macro to move text.
If parameter 1 is a literal and parameter 3

is nul, it puts a literal string in the
location beginning at the TO address.

If parameter 3 is included,
it expects to have FROM=the "source address"

115

(or find the source address in HL-reg if
parameter 1 is nul) , and to have TO = the
"destination address" (or find the destina-
tion address in DE-reg if parameter 2 is
null) .

Registers saved:
Flags used:
Macros used: non
Useage:

HL,BC,DE
MVFLAG

e

MOVE
MOVE

'Input Text' ,FCB
0200H, BUFFER, 36d

MOVE <02h,53h, 'Text'>,FCB
MOVE
MOVE

FROM, ,20d
, , 20d

PUSH H ! PUSH D ! PUSH B

IF NOT NUL TO
LXI D,TO
ENDIF

IF NUL BYTES
LXI H,MESG
LXI B, AROUND-MESG

ELSE

; ;String move,
; ;Test.

;;Not string move.

IF NOT NUL FROM
LXI H,FROM
ENDIF

LXI B, BYTES
ENDIF ;;String/not string.

CALL MOVE2 ?

POP B I POP D ! POP H

IF NOT MVFLAG OR NUL BYTES
JMP AROUND
ENDIF

IF NOT MVFLAG
2?:

MOV A,M
STAX D
INX H
INX D
DCX B
MOV A,C

;Get byte.
;New place.
;From.
;To.
;Byte count,

116

ORA B
JNZ MOVE2 ?

RET

MVFLAG SET
ENDIF

TRUE

IF NUL BYTES
MESG:

AROUND:

DB
ENDIF

ENDM

FROM

; ;Not done.

;;One copy.
;;not MVFLAG,

; ;Text.

; ;Move.

.it***

MAKE MACRO POINTR, WHERE

LOCAL AROUND, ERROR
Description: Inline macro to create a

new disk file. POINTR refers to the file
control block address. Extent and record
number are zeroed. WHERE is an optional
parameter that, if not nul, designates
the address to branch to if CP/M can
make the new file. If it cannot make the
file (in case of "full disk"), execution
continues after the macro.

;Registers saved: none
; Flags used: MKFLAG
;Macros used: SYSF, ERRORM
;Useage: MAKE FCB

;;Zero A-register.
; extent
;current record

0=ok,FF means error.
Jump to error routine if
OFFh.

LXI D, POINTR
XRA A
STA POINTR+12
STA POINTR+32
CALL MAKE2?
CPI OFFH
JZ ERROR

IF WHERE
JMP WHERE
ELSE
JMP AROUND

ERRORM 'Disk full. ' , AROUND; LEAVES OFFH IN A-reg

IF NOT MKFLAG

117

MAKE2?:

MKFLAG

AROUND:

SYSF
SET
ENDIF

ENDM

22
TRUE

; Make new disk file,
; Only one copy.

; ; MAKE

.•A**

WRITESECTOR MACRO POINTR, STAR
.************************•**•*******•****************•******

LOCAL AROUND

Description: Inline macro to write a disk
sector. POINTR refers to file control
block. STAR is the symbol to print on
the CRT for each successful sector "write"

; Registers saved: none
; Flags used: WRFLAG
; Macros used: SYSF, PCHAR, ERRORM
;Useage: WRITESECTOR FCB, **'

WRITESECTOR FCB

NROOM?

:

IF NOT NUL STAR
PCHAR STAR
ENDIF

IF NOT NUL POINTR
LXI D, POINTR
ENDIF

CALL
ORA

IF
JNZ

ELSE

JZ

MVI
ERRORM 'ERROR: Disk full... ran out of room.

WRIT2?
A

WRFLAG
NROOM?

AROUND

A, OFFH

;set flag

;first time

;ok

. a= FFh no more room.

118

WRIT2?:

WRFLAG

AROUND:

SYSF
SET
ENDIF

ENDM

21
TRUE

;write disk sector
;only one copy.
; ; WRFLAG
;;WRITESECTOR

.••A***
UNPROT MACRO POINTR
.A***

LOCAL AROUND

Description: Inline macro to convert
R/O file to R/W. POINTR refers to file
control block address.

;Registers saved: none
;Flags used: UNFLAG
;Macros used: SYSF
;Useage:

LXI
LDA
ANI

STA

CALL

D, POINTR
POINTR+9
7FH
POINTR+9

UNPR2?

UNPROT FCB

;load from file type.
;set for R/W.
;store at beginning of file
;type.

IF NOT UNFLAG
JMP AROUND

UNPR2?:
SYSF 30

UNFLAG SET
ENDIF

TRUE

AROUND:

;set file attributes.
;only one copy.

;; UNPROT
ENDM

.•••a**

DELETE MACRO POINTR, WHERE
.••it***

LOCAL AROUND, DEL3?

Description: inline macro to delete an
existing disk file. POINTR refers to file
control block. If file is protected,
branch to WHERE or DONE.

119

;Registers saved: none
; Flags used: DEFLAG
; Macros used: SYSF, UNPROT, READCH,

UCASE, CRLF, PFNAME f PRINT
;Useage: DELETE FCB, EXIT

LXI D,POINTR
LDA POINTR+9
AN I 80H .•PROTECTED?
JZ DEL3? ;NO

;CRLF
; PFNAME POINTR
PRINT 1 is READ ONLY. Delete? '

READCH
; UCASE
CPI ,y.

IF NOT NUL WHERE
JNZ WHERE

ELSE

JNZ
ENDIF

AROUND ; qu i t

.

UNPROT POINTR
DEL3?:

CALL DEL2?
IF NOT DEFLAG
JMP AROUND

DEL2?:
SYSF 19

DEFLAG SET
ENDIF

TRUE

AROUND:
ENDM

;delete disk file.
;only one copy.

;; DELETE

.••••••••••••••if***
CLOSEFILE MACRO POINTR
.if***

LOCAL AROUND, CLOSE3

Description: An inline macro to "close"
a file to a disk. POINTR is the address of
the file control block.

NOTE: NOT FULLY IMPLEMENTED MISSING SOME
REQD MACROS.

120

;;Registers saved: none
;;Flags used: CL2FLAG
;; Macros used: SYSF
;;Useage: CLOSE FCB

IF NOT NUL POINTR
LXI D f POINTR
ENDIF

CALL CLOS2?

IF NOT CL2FLAG ;one copy.
JMP AROUND

CLOS2?:
SYSF 16 ;close disk file.

CL2FLAG SET TRUE ;only one copy.
ENDIF ;CL2FLAG

AROUND:
ENDM

;;CLOSE

.•••A**
GETFRAME MACRO WHERE, SIZE
•A***

LOCAL AROUND, GETBYTE
Description:

WHERE is the address of where you want frame
written in memory. SIZE is the number of
bytes contained in the frame.

If SIZE is nul, then this macro expects it
to be already stored in D-reg.

RETURNS

:

Registers saved: none
Flags used: RPKFLAG

B = OFFh, (ABORT)
B = 0, A = (validchecksum)
B = 0, A not (bad checksum)

Macros used:

; ;Useage:

LXI H, WHERE

IF NOT NUL SIZE
MVI D,SIZE

ENDIF

RDCOM

GETFRAME BUFFER, FRAMES I ZE

;h,l point to dma address

;byte count, including
;checksum

121

CALL RPACK2?

IF NOT RPKFLAG
JMP AROUND

RPACK2?:

GETBYTE:
MVI

RDCOM

CPI
JNZ
MOV
RET

C,0

OFFh
CONTIN
B,A

; initialize checksum

;A= OFFh, ABORT.
;A= 0, data waiting in
;TSTORAGE.
; Check for ABORT.

CONTIN:
LDA

JNZ

MVI
RET

TSTORAGE

MOV M,A
XRA C

MOV C,A
INX H
DCR D

GETBYTE

B,0

;Otherwise, get the byte from
; TSTORAGE and put in A-reg.

;get byte, send it to buffer
; update checksum, leave
;results in A-reg.
; saving same in c

;count down to zero then exit
/•subroutine.
;repeating until all 129 bytes
;in

last byte left in A-reg =

checksum
Still must be checked for
validity
(A=0: valid, A not 0:

not valid)
B=0 : No ABORT, normal exit.

RPKFLAG SET
ENDIF

AROUND

:

ENDM

TRUE

.•••••••A**
SETDMA MACRO POINTR
.•••a**

122

LOCAL AROUND

Description: Inline macro to set the
DMA address where the next sector will
be read or written.

;;Registers saved: none
;;Flags used: DMFLAG
;;Macros used: SYSF
;;Useage: SETDMA 0080H

IF NOT NUL POINTR
LXI D, POINTR
ENDIF

CALL DMA2?

IF NOT DMFLAG
JMP AROUND

DMA2?:
SYSF 26

DMFLAG SET
ENDIF

TRUE

AROUND:

;set DMA address.
;only one copy.

;; SETDMA
ENDM

.••A***
UCASE MACRO REG
.A***

LOCAL NOTUP?

Description: Inline macro to convert a
a character in any register to uppercase,
Omit parameter for A-reg.

;Registers saved:
;Flags used: none
;Macros used: none
;Useage: UCASE C

UCASE

IF NOT NUL REG
PUSH PSW
MOV A, REG
ENDIF

;save
;get value

CPI 'Z*+7
JC NOTUP?
AN I 5FH

;uppercase?
;no.
;make uppercase.

123

NOTUP?:
IF NOT NUL REG
MOV REG,

A

POP PSW
ENDIF

ENDM

;put back
; restore

;;UCASE

.••A***
READB MACRO

LOCAL AROUND , RBUFM , RBUF , CHARS? REMAINING , RBUFE

Description: Inline macro to input a line
from console. Buffer is located at end of
macro. Get characters from buffer by calling
global subroutine GETCH in this macro.
Buffer pointer RBUFP is also global.

Global address, "RBUFF$COUNT", contains the
actual number of chars read in.

Registers saved: HL,DE,BC
Flags used: RCFLAG
Macros used: none
Useage: READB

CALL GETCH

;This macro.

;Global sub-
; routine.

RDB2?:

CALL RDB2?
IF NOT RCFLAG
JMP AROUND

PUSH H ! PUSH D ! PUSH B
LXI D, RBUFM
MVI C,10
CALL BDOS
LXI H,RBUFM+2
SHLD RBUFM-2
LDA CHARS $ REMAINING
STA RBUFF$COUNT ;Save the actual number of

;chars read.
POP B ! POP D ! POP H
RET

124

;global routine to get char from buffer.
GETCH

:

CHARS $ REMAINING ,-get count
;decr with carry.
;no more chars.

LDA CHARS
SUI 1
RC

STA CHARS
PUSH H
LHLD RBUFP
MOV A,M
INX H
SHLD RBUFP
POP H
RET

RCFLAG SET TRUE

RBUFF$COUNT: DB
chars read.
RBUFP: DW RBUF
;console buffer address

RBUFM: DB RBUFE-RBUF
CHARS$REMAINING: DS 1

RBUF:
RBUFE:

AROUND:

DS

ENDIF

ENDM

40D

;get char.
;next.

;only one copy.

;GLOBAL: actual number of

;buffer pointer.

;max length
;num of chars remaining
; after call to GETCH.
;buffer start
;buffer end

;;READB

.•A**
READCH MACRO NOUPPER?,REG
.A***

LOCAL AROUND
Description: Inline macro to read one char from
console.
If the second parameter (NOUPPER?) is blank,
the char is converted to uppercase. This only
works for alphbetic characters. If not, there is
no conversion.

If the third parameter is blank, the char is left
in the A-reg. If the third parameter is specified,
then it is copied from the A-reg and placed in the
specified register.

Registers saved:
Flags used: CIFLAG

125

Macros used:
Useage:

UCASE
READCH

READCH ,D

READCH 1

READCH 4,E

converted to upper,
left in A-reg.
converted to upper,
put in D-reg.
not converted,
left in A-reg.
not converted,
put in E-reg.

CALL RDCH?

IF NUL
UCASE
ENDIF

NOUPPER?

IF
MOV
ENDIF

NOT NUL REG
REG, A

IF
JMP

NOT CIFLAG
AROUND

RDCH?:

CIFLAG
SYSF
SET
ENDIF

1
TRUE

AROUND

:

;only one copy.

; ; READCH
ENDM

i

HANDSHAKE MACRO TRANSMIT?

LOCAL AROUND, RDY, GETGEE
Description:
Registers saved:
Flags used: SYNCFLAG
Macros used:

Useage:

IF TRANSMIT?
CALL

ELSE
CALL

OUTPUT, READ$PORT

HANDSHAKE TRANSMIT (where TRANSMIT
TRUE)
HANDSHAKE RECEIVE (where RECEIVE
FALSE)

TRANSMITSYNC2?

RECEIVESYNC2?

126

ENDIF

IF NOT SYNCFLAG
JMP AROUND

TRANSMITSYNC2?:

OUTPUT 'R'

READ$PORT
CPI 'S'

JNZ TRANSMITSYNC2?
OUTPUT '

G

'

RET

;; Handshake by the trans-
; ; mitter

.

RECEIVESYNC2?:
READ$PORT

;; Handshake by the receiver,

CPI 'R'

JNZ RECEIVESYNC2?

RDY:

CWHW OUTPUT 'S'
\jCi1\j11ij2j

READ$PORT
CPI 'R'

JZ RDY

CPI 'G*

JNZ GETGEE
RET

AROUND

:

SYNCFLAG SET TRUE
ENDIF

ENDM

SENDFRAME MACRO START, SIZE
.••••A***

LOCAL AROUND, LOOP
Description:

Packetsize = header + data + checksum

Packetsize is to be given in the parameter
"SIZE", otherwise, it is expected in the A-reg.

The address of the first byte of the header field
is to be specified by the parameter "START",
otherwise, it is expected in the HL-reg.

127

; Registers saved:
; Flags used: SENDPFLAG
;Macros used: OUTPUT
; Useage

:

IF NOT NUL START
LXI H, START
ENDIF

IF NOT NUL SIZE
MVI D,SIZE

ELSE
MCV D,A

ENDIF

If given, load the frame's
starting address into HL.
Otherwise, expect it
in HL-reg directly.
If size is given
load it into D-reg.
Else, expect it in A-reg
and load it into D-reg.

CALL SENDFRAME2?
IF NOT SENDPFLAG
JMP AROUND

SENDFRAME2?:
DCR D

MVI C,0
LOOP:

OUTPUT M,l
XRA C

MOV C,A
INX H
DCR D
JNZ LOOP

; Subtract 1 for the checksum
; (add on later)

.

AROUND:

OUTPUT C,l
RET
SENDPFLAG SET TRUE

ENDM

128

APPENDIX F: APPLE I/O MACRO LIBRARY

APPLE. LIB macro library of I/O routines for the Apple
computer

;List of macros contained:

;NAME PARAMETERS

output macro source, reg?,cchar
rdcom macro <none>
read$port macro regstatus, recmask, dataddr
initialize macro <none>
comptype macro <none>

**
EQUATE STATEMENTS*
**

;Terminal specific equates:

ESC EQU
CLEAR EQU
L0$ LIGHT EQU
HI$LIGHT EQU
CR EQU
LF EQU
BELL EQU

1BH
• * >

')
'

'('

ODH
OAH
07H

;I/0 specific equates:

;A number of equate statements are dependent on the
;slot in which the RS-232 port resides. During
;assembly (only) , the following statement allows
;one to change only the number following the EQU in
;order to change the slot used:
;================ SLOT SELECTION =================
IO$SLOT EQU 7 ;Use slots 1 thru 7 ONLY.

129

IO$BASE EQU OEOOOH ;Base number for Microsoft
;Z80 card.

IO$OFFSET EQU (IO$SLOT*10H) +80H

TXRDY EQU 02H ^'Transmit ready" mask for
;serial I/O (slot _)

.

;Used by: OUTPUT macro.

STATUS EQU IO$BASE+IO$OFFSET+0EH
;Status register for
;serial I/O.
;Used by: OUTPUT, READ$ PORT

DATA EQU IO$BASE+IO$OFFSET+0FH
;Data register for
;serial I/O.
;Used by: OUTPUT

RXRDY EQU 01H ;"Receive ready" mask for
;serial I/O .

KEYBOARD EQU IO$BASE

.*•**************************•*****************************

OUTPUT MACRO SOURCE, REG?, CCHAR

Description: A macro that tests the output
port until it is clear, takes a data byte
and sends it out. If REG? is nul, it expects to
send a "literal" 8 bit byte from the A-reg.
In this case, SOURCE = <data byte>.
If REG? is not nul, it moves an 8-bit data
byte from the 'source' register into the A-reg
and sends it. In this case,
SOURCE = < source registers

If CCHAR is not nul, it is displayed on the crt
screen just before the data byte is sent out.
CCHAR is a confirmation character.

Registers saved: none
Flags used: OTFLAG
Macros used: none
Example: OUTPUT 63h ; a literal.

OUTPUT •Q'
; a literal.

OUTPUT E,l ; The data byte is
; contained in E-reg.

OUTPUT M,l ; The data byte is in

130

; memory location
; pointed to by HL-reg,

OUTPUT 'H',,'*'
; The char *K' is sent
; out and '*' is
; displayed at the
; screen.

OUTPUT E,l,'.'

LOCAL WRCOM, AROUND

IF NUL REG?
MVI A , SOURCE
ELSE
MOV A, SOURCE
ENDIF

IF NOT NUL CCHAR
PCHAR CCHAR
ENDIF

CALL OUTPUT2?

IF NOT OTFLAG
JMP AROUND

OUTPUT2?:
PUSH PSW

WRCOM:
LDA STATUS
ANI TXRDY
JZ WRCOM
POP PSW
STA DATA
RET

OTFLAG SET TRU]
ENDIF

AROUND

:

ENDM

.**
RDCOM MACRO

Description: An inline macro used ONLY by

GETFRAME MACRO (see CPMMAC.LIB) .

Samples the port. If data is waiting,
reads it, pushes it onto the stack, clears
the A-reg, and returns.

131

If there is no data waiting, it enters a loop.
Exit from the loop is accomplished only by
data appearing on the port or by Control-C
coming from «the console.

When the Control-C is received, a OFFh is
loaded into A-reg and it returns.

SUMMARY:
data in port reg.:

no data in port
and control-C from
console:

no data in port
and no control-C
from console:

return in A-reg
and data in TSTORAGE.

return OFFh in A-reg
(ABORT)

remain in loop checking
port and console.

;;Registers saved: none
;,-Flags used: RDCOMFLAG
;;Macros used: none
;;Example: RDCOM

LOCAL AROUND, READ$IT
CALL RDC0M2?

IF NOT RDCOMFLAG
JMP AROUND

RDC0M2?:
LDA STATUS ;S
AN I RXRDY ;S
JNZ READIT ;D

;Slot 1: 0E09Eh
;Slot 1: Olh

a at port: read
;store it, and zero
; the A-reg.

it,

LDA KEYBOARD ;Slot 1: OEOOOh
CPI 83H ;Check to see if Control C.

JNZ RDC0M2? ;Not Control-C: keep looping

MVI A, OFFh ;Control-C (signal for ABORT)
RET ;Load OFFh in A-reg and

;return.

132

READIT:
LDA
STA
XRA

RET

DATA
TSTORAGE
A

;Slot 1: 0E09Fh
;Store the data.
;Zero A-reg: Signal
; for 'data waiting 1

.

TSTORAGE:

DB OH ;Store data byte here.

RDCOMFLAG SET
ENDIF

TRUE

AROUND

:

ENDM

.**

READ$PORT MACRO REGSTATUS, RECMASK, DATADDR
**
Description: An inline macro that reads the

status of a port; if full, sends the data byte
to the A-reg; if empty, zeroes the A-reg and sets
the
zero flag.

REGSTATUS is the address of the port's status
register. RECMASK is a "bit mask" to check a specific
"ready" bit in the port. DATADDR is the address of
the data register for the port.

If REGSTATUS is nul, the macro uses the values
specified in the EQU section of this file (above) for
the values of REGSTATUS, RECMASK, and DATADDR.

;Registers saved: none
;Flags used: RPFLAG
;Macros used: none
; Example: READ$PORT
; READ$PORT 08H,02H,05H

LOCAL AROUND
IF NOT NUL REGSTATUS
LDA REGSTATUS
AN I RECMASK
JZ AROUND

LDA DATADDR
JMP AROUND
ENDIF

133

RP2?:

CALL RP2?
IF NOT RPFLAG
JMP AROUND

LDA STATUS
ANI RXRDY
RZ

LDA DATA
RET

;No input, zero A-reg &

;set zero flag.

RPFLAG SET TRUE
ENDIF

AROUND

:

ENDM

.**
INITIALIZE MACRO
**
Description: Used to initialize the

I/O routines of a specific computer.
Usually a dummy operation if not used
by the particular computer.

;;Registers saved: none
;;Flags used: none
;;Macros used: none
;;Example: INITIALIZE

NOP
ENDM

.•••••••••••A**
COMPTYPE MACRO
.**

; ;Descr iption: Used to print out the name ;;of the
computer on the screen.

;;Registers saved: none
;;Flags used: none
;;Macros used: PRINT
;; Example: COMPTYPE

PRINT <' Apple II '>

ENDM

134

APPENDIX G: NORTHSTAR I/O MACRO LIBRARY

NSTAR.LIB .. macro library of I/O routines for the
NORTHSTAR computer,

;List of macros contained:

;NAME PARAMETERS

output macro source, reg?,cchar
rdcom macro
read$port macro regstatus, recmask, dataddr
initialize macro <none>

comptype macro < n o n e >

EQUATE STATEMENTS
TERMINAL equates:

; CLEAR EQU IB 2AH
CR EQU ODH
LF EQU OAH
BELL EQU 07H
ESC EQU 1BH
;A11 of the following can be used by the macro
;PRINT to control screen attributes. The format
;used is illustrated in the following example:

PRINT <ESC, (one of the following) >

CLEAR EQU • + '

STHINT EQU ') '

ENDHINT EQU '('

ST$ INVERSE EQU 'J'
END$ INVERSE EQU 'k'
START$BLINK EQU » * i

END$BLINK EQU 'q"

ST$UNDERLINE EQU •1'

END$UNDERLINE EQU •m'
PROTECT$ON EQU '&•

PROTECT$OFF EQU 27H
MOVE$CURS EQU i_i

; Example:
;Used for X-Y addressing.

PRINT <ESC, MOVE$CURS, ROW,COL>

135

;I/0 specific EQU's:

TXRDY EQU 01H ;"Transmit ready" mask for
serial I/O.
Used by: OUTPUT

STATUS EQU 05H ;Status register for serial I/O
(slot _)

.

Used by: OUTPUT, INPUT$STS
DATA EQU 04H ;Data register for serial I/O

(slot _)

.

Used by: OUTPUT, INPUT$STS
RXRDY EQU 02H ; "Receive ready" mask for serial

I/O (slot _)

.

Used by: INPUT$STS
CONSOLES STATUS EQU 03H ;NORTHSTAR console status
CONSOLE$DATA EQU 02H ;NORTHSTAR console data

.•••it**

OUTPUT MACRO SOURCE, REG?, CCHAR
.it***

LOCAL WRCOM, AROUND

Description: A macro that tests the output
port until it is clear, takes a data byte
and sends it out. If REG? is nul, it expects
to send a "literal" 8 bit byte from the
A-reg. In this case, SOURCE = <data byte>

.

If REG? is not nul, it moves an 8-bit data
byte from the 'source 1 register into the
A-reg and sends it. In this case, SOURCE =

< source register>.

If CCHAR is not nul, it is displayed on the
crt screeb just before the data byte is sent
out. CCHAR is a confirmation character.

Registers saved: none
Flags used: OTFLAG
Macros used: none
Useage: OUTPUT 63h ;a literal.

OUTPUT •Q" ;a literal.
OUTPUT E,l ;The data

;byte is
;contained
; in E-reg.

OUTPUT M,l ;The data
;byte is in
; memory
; location

136

IF NUL REG?
MVI A, SOURCE
ELSE
MOV A , SOURCE

ENDIF

IF NOT NUL CCHAR
PCHAR CCHAR
ENDIF

OUTPUT

pointed to
by HL-reg.
The char
'K 1 is sent
out and '*

; is d isplay-
;ed at the
; screen.

OUTPUT E,l,'

; contained in a register or
; memory.

CALL OUTPUT2 ?

IF NOT OTFLAG
JMP AROUND

OUTPUT2?:
PUSH PSW

WRCOM:
IN STATUS
ANI TXRDY
JZ WRCOM
POP PSW
OUT DATA
RET

AROUND

:

OTFLAG SET TRUE
ENDIF

ENDM

.•a**
i

RDCOM MACRO
.it***

LOCAL AROUND, READ$IT

Description: An inline macro used ONLY by
GETFRAME MACRO (see CPMMAC.LIB) .

Samples the port. If data is waiting,
reads it, pushes it onto the stack, clears
the A-reg, and returns.

137

If there is no data waiting, it enters a
loop. Exit from the loop is accomplished
only by data appearing on the port or by
Control-C coming from the console.

When the Control-C is received, a OFFh is
loaded into A-reg and it returns.

SUMMARY:
data in port reg.

:

no data in port
and control-C from
console:

no data in port
and no control-C
from console:

return in A-reg
and data in TSTORAGE,

return OFFh in A-reg
(ABORT)

remain in loop checking
port and console.

;;Registers saved: none
;;Flags used: RDCOMFLAG
; ;Macros used: none
;;Useage: RDCOM

CALL RDC0M2 ?

IF NOT RDCOMFLAG

JMP AROUND

?

.

IN STATUS
ANI RXRDY
JNZ READIT

IN CONSOLE$STAT
ANI RXRDY
JZ RDC0M2 ?

IN CONSOLE$DATA
ANI 7FH
CPI 03H
JNZ RDC0M2?

(05h)
(02h)
Data at port: read it, store
it, and zero the A-reg.

;(02h)
;Nothing on console or at
;port: loop

; (02h)
;Somthing from console.
;Check to see if Control C.
;Not Control-C: keep looping

138

MVI
RET

A,OFFh ;Control-C
;Load OFFh
;return.

(signal for ABORT)
in A-reg and

READIT:
IN
STA
XRA

RET

DATA
TSTORAGE
A

;(04h)
;Store the data.
;Zero A-reg: Signal data
; waiting.

TSTORAGE: DB OH ;Store data byte here.

RDCOMFLAG SET
ENDIF

TRUE

AROUND

:

ENDM

.it***

READ$PORT MACRO REGSTATUS, RECMASK, DATADDR
.•••••••A**

LOCAL AROUND

Description: An inline macro that reads
the status of a port; if full, sends the
data byte to the A-reg; if empty, zeroes
the A-reg and sets the zero flag.

REGSTATUS is the address of the port's
sttus register. RECMASK is a "bit mask"
to check a specific "ready" bit in the port,
DATADDR is the address of the data register
for the port.

If REGSTATUS is nul, the macro uses the
values specified in the EQU section of
this file (above) for the values of
REGSTATUS, RECMASK, and DATADDR.

; Registers saved: none
; Flags used: RPFLAG
;Macros used: none
;Useage: READ$PORT

READ$PORT 08H,02H,05H

139

IF NOT NUL REGSTATUS
IN REGSTATUS
AN

I

RECMASK
JZ AROUND

IN DATADDR
JMP AROUND
ENDIF

CALL RP2?
IF NOT RPFLAG
JMP AROUND

RP2?:
IN STATUS
ANI RXRDY
RZ

IN DATA
RET

RPFLAG SET
ENDIF

TRUE

AROUND

:

; No input, zero A-reg & set
;zero flag.

ENDM

INITIALIZE MACRO
.•••••A**

Description: Used to initialize the
I/O routines of a specific computer.
Usually a dummy operation if not used
by the particular computer.

Registers saved: none
Flags used: none
Macros used: none
Useage: INITIALIZE

NOP
ENDM

.•A**
COMPTYPE MACRO
.**************•***************•***************************

; description: Used to print out the name
; ;of the computer on the screen.
;;Registers saved: none
; ;Flags used: none

140

;;Macros used: PRINT
;;Useage: COMPTYPE

PRINT <'North Star Horizon'

>

ENDM

141

LIST OF REFERENCES

1. Metcalfe, R.M. and Boggs, D.R.

,

"ETHERNET: Distributed
Packet Switching for Local Computer Networks",
Communications of the ACM , Vol. 19, No. 7, July 1976,
pp. 395-404.

2. Tanenbaum, A. S., Computer Networks , Prentice-Hall,
1981.

3. Digital Research Inc., CP/M Operating System Manual ,

1982.

4. Digital Research Inc., CP/M MAC Macro Assembler:
Language Manual and Appl ications Guide , 1980.

5. Hogan, T., Osborne CP/M User Guide , Osborne/McGraw-Hill

,

1982.

6. Electronic Industries Association, Interface Between
Data Terminal Equipment and Data Communication Equipment
Employing Serial Binary Data Interchange , 1969.

7. California Computer Systems, Asynchronous Serial
Interface Model 7710 Owner* s Manual , 1980.

8. Brooks, F. P., The Mythical Man-Month , Addison-Wesley

,

1982.

9. Ross, D.T., Goodenough, J.B., and Irvine, C.A.,
"Software Engineering: Process, Principles, and Goals,"
Compute 1"

, May 1975, pp. 54-64.

10. Shooman, Martin L., Software Engineering : Design

,

Reliability, and Management , McGraw-Hill, 1983.

11. Parnas, D.L., "On the Criteria to be Used in Decomposing
Systems into Modules", Communications of the ACM ,

Vol. 15, December 1972, pp. 1053-1058.

12. Kernighan, B.W., and Plauger, P.J., Software Tools ,

Addison-Wesley, 1976.

13. Smith, L.B., "The Use of Interactive Graphics To Solve
Numerical Problems", Communications of the ACM , Vol. 13,
No. 10, October 1970, pp. 625-634.

142

14. Mozeico, H., "A Human/Computer Interface to Accomodate
User Learning Stages", Communications of the ACM, Vol.
25, No. 2, February 1982, pp. 100-104.

15. Miller, R.B., "Response Time in Man-Computer
Conversational Transactions", a report for the
International Business Machine Corporation, 1968.

16. Miller, A.R., Mastering CP/M , Sybex, 1983.

17. Intel Corporation, 8080/8085 Assembly Language
Programming Manual , 1982.

18. Zaks, R. , Programming the Z80 , Sybex, 1982.

143

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22314

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, CA 93940

3. Professor Gordon E. Latta, Code 53Lz 1

Department of Mathematics
Naval Postgraduate School
Monterey, CA 93940

4. Professor Norman R. Lyons, Code 54Lb 1
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940

5. Department Chairman 1

Department of Administrative Sciences, Code 54Ea
Naval Postgraduate School
Monterey, CA 93940

6. LT John F. Hall, II, USN 1

SMC 1824
Naval Postgraduate School
Monterey, CA 93940

7. Salinas-Monterey User Group 1

P.O. Box 3207
Carmel, CA 93921

8. LCDR Thomas C. Carnahan, USN 2

Helicopter Squadron Light Three Siux
Naval Station
Mayport, FL 32228

9. LT Michael K. Waters, USN 2

33249 S.W. Watts
Scapoosse, OR 97056

144

10. Computer Technology Curricular Office
Code 37
Naval Postgraduate School
Monterey, CA 93940

145

202535
Thesis
C261365 Carnahan
cl Microcomputer net- :_

working: a CP/M-
_. based application,

3 .

202535
Thesis
C261365 Carnahan

c.l Microcomputer net-
working: a CP/M-
based application.

thesC261365

Microcomputer networking

3 2768 002 08555 7
DUDLEY KNOX LIBRARY

.:". l,

-'n". ''v:'.,

WMMf
": flSWBSn :

BkloK

rM'Kffl

swbf

'''-r' 1
'

.'''•.•' i

!v: '
•)'''

-; '.'
;

'i
''!' ''"'"

llllillir

nonHSr

•,!'.,

n

