
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2019-12

SOFTWARE-DEFINED NETWORKS: PROTOCOL DIALECTS

Sjoholmsierchio, Michael

Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/64066

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

SOFTWARE-DEFINED NETWORKS:
PROTOCOL DIALECTS

by

Michael Sjoholmsierchio

December 2019

Thesis Advisor: Geoffrey G. Xie
Co-Advisor: Britta Hale

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
December 2019

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
SOFTWARE-DEFINED NETWORKS: PROTOCOL DIALECTS

5. FUNDING NUMBERS

RCNEF
6. AUTHOR(S) Michael Sjoholmsierchio

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
Office of Naval Research , Arlington, VA 22203

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
 Software-defined networks (SDNs) are attractive to businesses and the military because they enable
centralized and policy-based control at per flow level. However, current SDN standards by the Open
Networking Foundation do not require the use of encryption or authentication for communication between
controllers and switches. We propose a novel method to add message authentication to SDN control plane
traffic via the use of a protocol dialect. A protocol dialect is a variation of an existing implementation of an
open-source protocol such as OpenFlow, achieved by either adding proxies or directly modifying the binary
code to incorporate new security measures or remove unused features. This research provides a framework
for systematic creation and evaluation of a protocol dialect, and presents a novel design of a protocol dialect
for OpenFlow. The protocol dialect includes three derivatives and provides authentication that not only is
independent of Transport Layer Security (TLS) but also may mitigate some attacks, e.g., cipher-suite
downgrade attacks, against TLS. Performance measurements from a Mininet experiment show that the
derivatives did not significantly impact the communication latency of OpenFlow, adding less than 1%
overhead when TLS is not enabled and less than 22% with TLS enabled.

14. SUBJECT TERMS
network security, software-defined networks, protocol dialect

15. NUMBER OF
PAGES

151
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

SOFTWARE-DEFINED NETWORKS: PROTOCOL DIALECTS

Michael Sjoholmsierchio
Lieutenant, United States Navy
BS, Norwich University, 2013

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN CYBER SYSTEMS AND OPERATIONS

from the

NAVAL POSTGRADUATE SCHOOL
December 2019

Approved by: Geoffrey G. Xie
 Advisor

 Britta Hale
 Co-Advisor

 Dan C. Boger
 Chair, Department of Information Sciences

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Software-defined networks (SDNs) are attractive to businesses and the military

because they enable centralized and policy-based control at per flow level. However,

current SDN standards by the Open Networking Foundation do not require the use of

encryption or authentication for communication between controllers and switches. We

propose a novel method to add message authentication to SDN control plane traffic via

the use of a protocol dialect. A protocol dialect is a variation of an existing

implementation of an open-source protocol such as OpenFlow, achieved by either adding

proxies or directly modifying the binary code to incorporate new security measures or

remove unused features. This research provides a framework for systematic creation and

evaluation of a protocol dialect, and presents a novel design of a protocol dialect for

OpenFlow. The protocol dialect includes three derivatives and provides authentication

that not only is independent of Transport Layer Security (TLS) but also may mitigate

some attacks, e.g., cipher-suite downgrade attacks, against TLS. Performance

measurements from a Mininet experiment show that the derivatives did not significantly

impact the communication latency of OpenFlow, adding less than 1% overhead when

TLS is not enabled and less than 22% with TLS enabled.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Problem Statement. 2
1.2 Research Questions . 3
1.3 Thesis Organization . 3

2 Background 5
2.1 Information Security Principles. 5
2.2 The OpenFlow Protocol. 7
2.3 Related Work . 11

3 A Formulation of Protocol Dialect Design 15
3.1 Definitions . 16
3.2 Base Communication Protocol 17
3.3 Protocol Analysis . 17
3.4 Dialect Design . 20
3.5 Security and Cost Analysis . 24
3.6 Implementation Method . 25
3.7 Dialect Management . 28
3.8 Implementation Testing . 30
3.9 Protocol Dialect . 30

4 OpenFlow Dialect Design 33
4.1 Design Objectives . 34
4.2 Base Communication Protocol 35
4.3 Protocol Analysis . 38
4.4 Dialect Design . 39
4.5 Security and Cost Analysis . 43
4.6 Implementation Method . 43
4.7 Dialect Management . 45

vii

4.8 Implementation Testing . 46

5 Experiment and Results 47
5.1 Experiment . 48
5.2 Results . 54

6 Conclusion and Future Work 59
6.1 Limitations. 59
6.2 Conclusion . 60
6.3 Future Work . 62

Appendix A Source Code Overview 65

Appendix B SDN Controller Commands and Switch Setup 69

Appendix C D1&D2 without TLS Controller Proxy 73

Appendix D D1&D2 without TLS Switch Proxy 89

Appendix E D1&D3 with TLS Controller Proxy 105

Appendix F D1&D3 with TLS Switch Proxy 117

List of References 129

Initial Distribution List 133

viii

List of Figures

Figure 2.1 Example SDN Topology. 8

Figure 2.2 SDN Timing Diagram. 9

Figure 3.1 Protocol Dialect Process Overview. 15

Figure 3.2 Protocol Analysis Stage. 18

Figure 3.3 Dialect Design Stage. 21

Figure 3.4 Security and Cost Analysis. 25

Figure 3.5 Implementation Method Stage. 26

Figure 3.6 Electromagnetic Authentication Method. 27

Figure 3.7 Dialecting Proxy Implementation Method. 27

Figure 3.8 Dialect Binary Modification Process. 28

Figure 3.9 Dialect Management Stage. 29

Figure 3.10 Implementation Testing. 30

Figure 4.1 Dialect Overview. 34

Figure 4.2 Dialecting OpenFlow Packets with TLS 36

Figure 4.3 TLS Timing Diagram. 37

Figure 4.4 OpenFlow Header Layout. 38

Figure 4.5 Key Generation Process. 41

Figure 4.6 Dialect Proxy Design. 44

Figure 5.1 Dialect Proxy Software. 47

Figure 5.2 Experiment Topology. 49

ix

Figure 5.3 Derivative 1 Message Layout. 50

Figure 5.4 Derivative 2 Timing and Execution. 51

Figure 5.5 Derivative 2 Message Layout. 52

Figure 5.6 Derivative 1 and 3 with TLS. 54

x

List of Tables

Table 3.1 Security Concerns Summary. 22

Table 3.2 Derivative Design Stack. 23

Table 4.1 Dialect Selection Summary. 33

Table 4.2 Summary of Derivative Design Choices. 40

Table 5.1 Derivative Design Selection. 50

Table 5.2 Derivative Time Performance. 56

Table 5.3 Optimized Proxy Time Performance. 56

Table 5.4 TLS Time Performance. 57

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

API application program interface

ABC Attribute Based Cryptography

DiD Defense in Depth

D1 Derivative 1

D2 Derivative 2

D3 Derivative 3

FS future secrecy

HMAC Hash Message Authentication Code

HKDF HMAC-based Extract-and-Expand Key Derivation Function

IBC Identity-Based Cryptography

IKM Initial Keying Material

IP Internet Protocol

IDS Intrusion Detection System

IPSec IP Security

MITM man-in-the-middle

MAC Message Authentication Code

NIST National Institute of Standards and Technology

NPS Naval Postgraduate School

OVS Open vSwitch

xiii

OOB out-of-band

PKG private-key generator

PCS Post-Compromise Security

PKI Public Key Infrastructure

RFC Request for Comments

RMF Risk Management Framework

SSH Secure Shell

SNMP Simple Network Management Protocol

SDN software-defined network

SP Special Publication

TCP Transmission Control Protocol

TLS Transport Layer Security

TFTP Trivial File Transfer Protocol

TTP trusted third party

VM virtual machine

xiv

Acknowledgments

To my wife, thank you for supporting me through every step of this research. Your support
at home, on the road, and at work was essential to me completing this thesis.

To my parents, thank you for reading and listening to me brainstorm at each stage of
development.

To Dr. Geoffrey Xie, thank you for your mentorship. It has been an honor to work with you
and learn how to improve in class and on this thesis. Your belief in me inspired me to be a
better student and researcher.

To Dr. Britta Hale, thank you for always challengingme to learnmore and improve each part
of this thesis. I greatly appreciate your patience with me in understanding new topics.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

CHAPTER 1:
Introduction

A software-defined network (SDN), compared to traditional routing, provides commercial
businesses and the military centralized control and management of communication net-
works. SDNs are also well suited to the growing field of cloud services and data centers
due to their adaptability, scalability, security, and logical control, and are capable of en-
hanced centralized control due to the separation of the control-plane and data-plane [1].
This separation of traffic types provides opportunities but creates security vulnerabili-
ties [2]. Consequently, we have chosen SDNs as the first platform for implementing a new
security architecture. SDNs are suitable for this new security method because of their desir-
able characteristics such as centralized network control, traffic monitoring, logical control,
threat detection, and security policy enforcement [2]. The OpenFlow protocol governs the
control-plane traffic of a typical SDN [3] and will be our focus for security improvements.

The components and communication protocol for SDNs are open-source, therefore, allow-
ing the modification of system components and the protocol within the boundaries of the
standard to improve network security. We define a protocol dialect as a variation of an
existing protocol at the binary level to incorporate additional security measures while main-
taining the core functionality of the protocol. Protocol dialects are unique, plug-and-play,
and customizable for individual organizations. This research aims to identify and demon-
strate the process of dialecting a protocol with security controls to improve authentication
and integrity. It is anticipated that protocol dialecting could be applied to other protocols
and customized to enhance information security according to an organization’s needs.

The OpenFlow protocol manages the control-plane traffic of SDNs between a controller
and its switches and is governed by the OpenFlow Foundation [3]. OpenFlow Switch
Specification Version 1.5.1 does not require encryption, but Transport Layer Security (TLS)
is the recommended default security mechanism [3]. The lack of a required encryption
mechanism is one of the first indicators that a protocol dialect may be a candidate for
improved security. Besides a lack of encryption, other indicators that a protocol dialect
may be a candidate are a lack of authentication or integrity checks inherent to a protocol.
Transmission Control Protocol (TCP) is provided as the default protocol to ensure the

1

transfer of data between SDN controllers and SDN switches [3]. TLS is the only optional
security suite recommended by the standard and is not fully implemented by all vendors [4].

SDNs require additional security controls to ensure information security [4]. The weak
separation of control plane and data plane traffic commanded by a single controller presents
a single-point of failure and new attack vectors against an SDN controller’s logic [5]. Due
to a lack of existing security support and non-perfect security, protocol dialects can increase
the time and effort spent by an attacker and become a method of Defense in Depth (DiD).
DiD is a security defense model that relies upon more than one layer of security systems or
measures to increase the difficulty of an attack. This research presents a method by which a
custom-tailored security suite may be chosen, implemented, and tested to improve security
based upon requirements of the system manager.

1.1 Problem Statement
OpenFlow, like many other communication protocols such as Telnet, SNMPv2, and Trivial
File Transfer Protocol (TFTP), lack inherent information security controls without physical
security [4]. For example, OpenFlow Switch Specification Version 1.5.1 does not require
the use of encryption or authentication for communication between controllers and switches
in an SDN [3]. However, being an open-source protocol, it is a candidate for modification
into a protocol dialect. We propose protocol dialects as a method to improve information
security. Protocol dialects increase the effort expended by an attacker against an SDN via the
OpenFlow protocol with or without TLS enabled. Protocol dialecting may be performed in
addition to a recommended securitymechanism, such as TLS for OpenFlow, andwe propose
it as a method to apply DiD. The system of protocol dialects will not be secret nor depend
upon the same secrets of an existing securitymechanism such as TLS. OpenFlow is currently
vulnerable in the aspects of confidentiality, integrity, and authentication, particularly in the
case of a man-in-the-middle (MITM) attack [4]. A MITM scenario consists of a case
where attackers are able to insert themselves between systems or operations. A MITM
may present new or unique attack vectors that are not typically possible through external
interface attacks only. For the case of a MITM, the development of a security system for
DiD included in a communication protocol that causes an attacker to spend more resources
and time to perform similar network attacks.

2

1.2 Research Questions
The introduction of a protocol dialect into an existing communication protocol adds com-
plexity to a protocol that is not readily noticeable. An increase in complexity requires
an attacker to spend more time and effort to perform an attack on a network. This thesis
addresses the following questions:

• Can a protocol dialect be effectively implemented into an existing protocol to improve
information security?

Additional questions inherent to the addition of a protocol dialect to OpenFlow in SDNs
are the following:

• How effective is the security provided by protocol dialects?
• Which attacks on TLS, if any, can protocol dialects inhibit?

1.3 Thesis Organization
Chapter 2 contains background on information security requirements and systems, the
OpenFlow protocol, and related security systems. Chapter 3 defines the design process
to create a protocol dialect for a given base communication protocol. Chapter 4 presents
one method to implement the process from Chapter 3 using the OpenFlow protocol based
on our design case and assumptions. The completed experiment and results are provided
in Chapter 5 to include problems encountered during implementation and any abnormal
results. Lastly, Chapter 6 contains conclusions based upon our results to determine the
accuracy of the hypothesis, efficiency of the dialect, and future work recommendations.

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

CHAPTER 2:
Background

The development of a protocol dialect builds upon the implementation of information secu-
rity principles, the Risk Management Framework (RMF) developed by National Institute of
Standards and Technology (NIST), and similar security systems. This research relies upon
the principles and processes developed by NIST. NIST was chosen due to the applicability
of this research to both government and civilian organizations. One way to frame and char-
acterize security gains is through NIST’s RMF [6]. Yet, the inspiration for the methodology
for protocol dialects takes its origin from side-channel authentication and new research in
the field of application program interface (API) specialization [7]. Combining these new
fields with heavily relied upon principles and terms presents the opportunity for the similar
field of protocol modification within the bounds of a protocol standard.

2.1 Information Security Principles
Terms and principles of the dialect design process are inspired by NIST Special Publication
(SP) 800-12 Rev. 1 [8]. To determine how information security can be improved requires
the classification of the types of security characteristics and what security controls assist
in providing greater security. The major information security characteristics presented by
NIST include confidentiality, authenticity, and availability [8]. Confidentiality protects
data from unauthorized disclosure to anyone besides the sender and authorized viewer. An
example of confidentiality ensures that an attacker sniffing a network is unable to determine
the contents of packets traversing a network [8]. Integrity is the ability to verify that data is
from only a specific sender and has not been modified during transit [8]. Lastly, availability
is the performance of a system to meet the needs of an organization without being prevented
normal operation by an attacker [8]. An organization’s security policy will denote which
information security objectives a dialect should be designed to achieve.

2.1.1 Defense-in-Depth
An emphasis on DiD motivates the improvement of security by layering various types of
security mechanisms and protocols [6]. DiD has especially become more important in the

5

field of network security to protect vital systems [9]. The use of multiple layers of protection
provides a more complex strategy and system that an attacker must first identify and solve
to access a system or network. Specifically in the year 2011, Jajodia et al. developed a DiD
situation awareness tool to increase the ability for personnel and systems to self-identify
vulnerabilities [9]. Jajodia et al. created a new tool called Cauldron to analyze maps of
networks and different paths for attacks. While their tool aids an operator by providing
visual aids, the underlying objective of both protocol dialects and Cauldron is to improve
security through the use of DiD.

2.1.2 Risk Management Framework Design
We design the dialect process to improve the information security of communication pro-
tocols through the addition of security mechanisms. The dialect process consists of the
identification of fields that may be modified in a protocol and the addition of a derivative in
the identified fields. A derivative is a security mechanism that meets the security require-
ments of an organization. A related concept and process is the RMF provided by NIST
in SP 800-37 Rev 2. The purpose of NIST’s RMF is to provide guidance and a process
for improving security and privacy by self-assessment and management decisions [6]. The
RMF is similar to the protocol dialects process in the stages of preparation, categorization,
selection, implementation, and assessment [6]. The following list fromNIST and their RMF
provides a summary of each of the above steps, which are similar to the protocol dialects
process and complementary to those discussed in Chapter 3.

• Prepare: Establish and determine the organization’s priorities and system that will be
selected.

• Categorize: Determine the data at risk, potential impacts, and security vulnerabilities
of concern.

• Select: Select the security mechanisms and control systems that will increase security
of the data at risk determined in the categorize step.

• Implement: Choose an implementation method appropriate for the analyzed system
and implement it.

• Assess: Determine if the controls implementation and selection meet the security
needs determined during categorization [6].

6

The RMF should be used in conjunction with the protocol dialect process to provide a
holistic approach to information security. Each organization should tailor its use of the
RMF and protocol dialect process to meet its security needs and concerns. In the case of
SDN, the priorities can be different than typical information systems due to the requirement
for availability to ensure that the system can still function normally with added security
features.

2.1.3 Post-Compromise Security
Post-Compromise Security (PCS) is an additional highly desirable security quality post-
compromise and, as such, it has become a recent focus of newer security mechanisms by
researchers such as Cohn-Gordon et al. [10]. They focus on recently developed and tested
techniques to combat the loss of confidentiality to include ratcheting. Specifically, they
present recent developments in the field by focusing on definitions, models, and operations
of authenticated key exchange. One aspect of evaluating PCS includes the assessment of
data confidentiality loss in the case of long-term key compromise [10]. A "ratcheting"
system is one recent example of a method to improve PCS by the use of one-way functions
to generate a chain of keys that are different and deleted after use [10]. This method is
important and adds another aspect of security because the past keys cannot be calculated
or created from present keys; therefore, the previous data cannot be decoded by an attacker
even if they gain access to the present keys [10]. The benefits of post-compromise security
should be included into a protocol dialect if possible.

2.2 The OpenFlow Protocol
Hu provides an insight into definitions and benefits of The OpenFlow protocol [11]. For
example, he states that the OpenFlow protocol has enabled dynamic networks in response to
growing requirements for bandwidth and management. There are two primary components
of an SDN. Those two components consist of a single controller and as many switches as are
required to complete a network. Hu describes the OpenFlow protocol as the management
method for interaction and data transfer between an SDN controller and its switches to
manage new flow requirements, topology, and setup [11]. He states that this network setup
and topology allows for a manager or system operator to configure a whole network by

7

interacting with one device instead of each traditional router individually. An overview of
a typical SDN may be found in Figure 2.1.

Figure 2.1. Example SDN Topology.

The example topology provided in Figure 2.1 provides a small network with only two
switches and six hosts. The control plane is only between the switches and controller in the
network, while the data plane exists between switches to pass data back and forth between
hosts. Due to the event-driven nature of an SDN, each switch determines how to route and
process packets from hosts using flow tables [11]. This flow is determined by the controller,
and it can also be checked by the controller to determine how often the different forwarding
rules have been applied [11].

For the transition from traditional networks, it is important that OpenFlow extensions can
be added to commercial routers via software updates to enable them for OpenFlow [11].
However, adhering to the switch specification requirements established by the OpenFlow
Foundation will ensure successful operation of controllers and switches using the OpenFlow
protocol [3]. The ports for the data plane of a switch do not communicate directly with the
OpenFlow channels [3]. The OpenFlow protocol is used to modify the flow entries in flow
tables as determined by the controller [3]. A typical timing diagram of an SDN setup and
operation can be found in Figure 2.2.

8

Figure 2.2. SDN Timing Diagram.

The timing diagram in Figure 2.2 was constructed using Mininet packet captures and
analysis with Wireshark [12], [13]. In this timing diagram, it may be observed that a
switch notifies its connected controller via an OpenFlow-Hello type OpenFlow packet. The
initial detection and configuration can be observed through both the Hello type OpenFlow
messages as well as the Features-Request, Set-Config, and Features-Reply. These packets
transfer the necessary information to the controller to determine the capabilities of the
switch and prepare it for operation [3]. Lastly, when a new packet arrives at the switch and
it does not have a matching entry in a flow table, then it queries the controller for the correct
action as found in the OpenFlow Packet-in and Packet-out messages [3].

2.2.1 OpenFlow Vulnerabilities
The OpenFlow standard only provides TLS as a recommended default security mechanism;
[3] however, there aremanyother securitymechanisms that should be considered for their use
as a potential dialect. If OpenFlow does not have TLS enabled, it would be just as insecure
as Telnet, Simple Network Management Protocol (SNMP)v2, and TFTP. Therefore, the

9

following background is provided on recommended security systems as options to improve
security via a dialect.

Even with TLS enabled, there are many different types of attacks on TLS as described by
Sheffer et al. [14]. Some of those attack methods include the following:

• SSL Stripping
• STARTTLS Command Injection Attack
• BEAST
• Padding Oracle Attacks
• Compression Attacks
• Certificate and RSA-Related Attacks
• Theft of RSA Private Keys
• Diffie-Hellman Parameters
• Renegotiation
• Triple Handshake
• Virtual Host Confusion
• Denial of Service

Avariety of attacks onTLS arewell published and readily available to an attacker. OpenFlow
and TLS present opportunities for an attacker to gain access to data, especially control-plane
traffic, if TLS is not implemented correctly [4]. These attack methods include the ability
to modify a network without requiring direct physical access to network components. This
research does not aim to replace or modify TLS, but rather adds another defense layer for
DiD to protect OpenFlow’s control-plane traffic.

One attack against TLS that is particularly relevant to this research is DROWN [15].
DROWN is an example of a cross-protocol attack in the general category of a cipher-suite
downgrade attack. In this type of attack, discovered by Aviram et al., TLS is potentially
vulnerable if a previous version of TLS is still supported by the device using TLS to encrypt
traffic [15]. The attacker is able to utilize the previous version of TLS to target a device
such as a server. This type of attack can cause the decryption of traffic that is utilizing the
TLS connection. See section 4.4 for more details on using Protocol Dialects to counter
cipher-suite downgrade attacks through another authentication system.

10

The attack surface for an SDN is different from traditional networks. All decisions in an
SDN are assigned to one controller for a network, and Xu et al. identified the possibility of
new types of attacks on the decision center of the network. Xu et al. evaluated three SDN
controllers and found 15 previously unknown vulnerabilities [5]. The attacks evaluated
consisted of race conditions, which can occur in an SDN’s controller [5]. Attacks that
disable or harm the controller negatively affect or disable the rest of the network. The
primary concerns for these types of attacks are availability and confidentiality [5].

The attacks discovered by Xu et al. are possible due to the asynchronous nature of the SDN
control plane [5]. The new attack is called a state manipulation attack SDN and is evaluated
using Xu et al.’s software ConGuard to determine if the race condition exists [5]. This
type of attack can cause data to be stolen or availability to be threatened [5]. Xu’s research
demonstrates that with this new type of technology (SDN), variants of existing types of
attacks are still being discovered.

2.3 Related Work
Specialization of binary source code to reduce vulnerabilities to code-reuse attacks has
been a relatively new field of study in the past decade. API specialization and side-channel
authentication are two defense methods related to protocol dialects. API specialization is
a defense system designed against code-reuse attacks. An example of a code-reuse attack
is the targeting of a particular function in a process to bypass non-executable memory
protection to transfer control of that function to an attacker [7]. Previous defense methods
in the field of code-reuse attacks include control-flow integrity and pointer controls to
protect programs from being manipulated by attackers [16]. A recent implementation
of code specialization to reduce generic attacks has been demonstrated through an API
specialization system titled Shredder [7]. An API is the predetermined interface method for
a program. The Shredder system analyzes a given API and reduces the opportunities for an
attacker to perform code-reuse attacks [7].

Protocol dialecting is also related to the more historic applications of side-channel authen-
tication, such as electromagnetic side-channel authentication. Both methods are similar in
nature to the concept of protocol dialects because they both modify original code and system
operation within the bounds of a system to add security. Side-channel authentication uses

11

modification of electrical signals without influencing the data passed along themedium [17].
This identification of side-channel exploitation as a method of defense was identified by
Sakiyama et al. Exploitation of keys for cryptographic systems can be a vulnerability to
physical systems through power analysis [18]. Instead, side-channel authentication uses
signals to add authentication data for verification using physical information leakage [18].

2.3.1 API Specialization
API specialization has been researched and formalized byMishra and Polychronakis in their
system Shredder [7]. To start their work, they identified shell code vulnerable to code-reuse
attacks [7]. A code-reuse attack occurs when malware is able to exploit a system but utilizes
functions that a specific interface did not require to perform its purpose [7]. The Shredder
system provides a defender the ability to enforce customized policy on memory calls for a
process to block excess functions not required. The use of system calls that are not required
for the original program to function are also blocked [7]. The enforced control of program
operation and function calls reduces those available to an attacker.

This shredder system also removes functionality that is not desired by the host organization.
The removal of code-reuse opportunities is another type of DiD, because Shredder would
analyze API code and remove those attack opportunities before public implementation or
release [7]. While protocol dialects do not aim to remove capabilities or features inherent
to the design of a standard, they do share the goal of modifying source code to increase
difficulty of an attack on a network protocol.

2.3.2 Side-Channel Authentication
Electromagnetic side-channel authentication utilizes an existing electronic system tomanip-
ulate and verify the physical layer to provide additional layers of authentication security [17].
The manipulation of the physical layer with layering levels of noise and inserted additional
data can provide a different form of authentication than a traditional Hash Message Au-
thentication Code (HMAC) [17]. A HMAC is the product of a shared secret and message
to create a Message Authentication Code (MAC). Side-channel authentication does not
violate a protocol standard [17].

Side-channel authentication adds authentication data inside of an original transmission,

12

while appearing like normal data when observed by an attacker. This extra information
can be used to provide data transfer in methods not originally anticipated by a developer
in a standard. A benefit of using side-channel authentication is the minimal cost and
change to the original system, and it does not interact with the original software [17]. In
an implementation by Perazzone et al., a side-channel authentication scheme consists of
fingerprint-embedded authentication for additional security and to prevent sniffing attacks
against the system [17]. The method defined by Perazzone expands upon the work by
Sakiyama because it incorporates more security [17]. Security is enhanced by Perazzone
because the side-channel authentication added includes a tag generated by secret keys and
code books. This tag is then verified by the receiver before processing the data [17].
Side-channel authentication provides another security mechanism besides just HMAC [17].

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

CHAPTER 3:
A Formulation of Protocol Dialect Design

This chapter describes the step-by-step process of creating a dialect for a protocol and
integrating it into an existing base communication protocol. Dialecting is the process by
which a dialect is created and applied to a base communication protocol. The dialect
overview process summarizes the objectives, options, and actions at each stage of the
process. The chosen dialect options and implementation for this research and the OpenFlow
protocol is discussed in Chapter 4.

Each stage of the process requires independent analysis and decisions by an organization
or a dialect designer; however, we present a typical or general option for each stage as
well as our choice for each stage as an example. This process performs in linear order and
involves intermediate analysis checks to ensure that the dialect will meet an organization’s
requirements before time is spent in implementation and management. If an intermediate
analysis check does not pass an organization’s requirements then repeat the previous stage
is repeated. Figure 3.1 demonstrates the overall process to dialect a protocol.

Figure 3.1. Protocol Dialect Process Overview.

15

Once a base communication protocol, such as OpenFlow, is chosen it must be analyzed
in Stage 1: Protocol Analysis. This stage identifies the protocol standard and identifies
potential locations where a dialect or modifications can be made that are within the bounds
of the base protocol standard. In Stage 2: Dialect Design consists of selecting an existing
security standard or scheme for the option(s) identified in a protocol. Next, in Stage 3:
Security and Cost Analysis, both the security of the dialect chosen and overhead costs are
analyzed. Security and cost results are then compared against the designing organization’s
security requirements. Examples of cost concerns in the case of an SDN or network
are efficiency, speed, and availability. If the cost and security provided do not meet
organizational requirements, then the dialect designer must return to the previous stage.
If cost and security goals are met, then Stage 4: Implementation Method consists of
determining the best method to include the dialect chosen into the existing protocol. In Stage
5: Dialect Management, the support mechanisms to support day-to-day dialect operation
are determined. Lastly, in Stage 6: Implementation Testing, the dialect is tested to ensure
that it correctly operates inside the base communication protocol.

The protocol dialect process can be performed on protocols that are already implemented in
a system; however, it is preferably performed prior to a planned transition to a new network
type such as an SDN. The concept and goals of this process are similar to NIST’s RMF
because of the similar objective to classify risks, select security controls to reduce risk, and
implement those controls to improve information security [6]. Therefore, it is recommended
that NIST’s SP 800-37 is used in conjunction with the security system of protocol dialecting
to provide a more comprehensive approach to network security. In summary, the protocol
dialect process is versatile and designed to be chosen and implemented uniquely to an
organization to fit their needs.

3.1 Definitions
The following terms are defined for this research:

• Base Communication Protocol: A selected communication network protocol that has
an established standard such as Internet Protocol (IP), TCP, and OpenFlow.

• Dialect: A protocol dialect is a variation of an existing protocol at the binary level to
incorporate additional security measures, while maintaining the core functionality of

16

the protocol.
• Derivative: A security mechanism incorporated into a dialect.
• Dialecting: The process of creating a dialect and including it into an existing base
communication protocol.

• Dialect Designer: The administrator or team that performs the dialecting process.
• MS1: The dialect created for this research specific to OpenFlow and our implemen-
tation.

3.2 Base Communication Protocol
A base communication protocol is the original network protocol that exists in a currently
employed system or will be installed in a future system. A base communication protocol
should be selected with the objective of improving one or more information security char-
acteristics. This process can be applied to open-source protocols and proprietary protocols
if the standard is known and established. Authenticity, integrity, and/or confidentiality
are potential qualities that will be improved by the addition of a dialect. The selection of
a communication protocol may also require the adherence to any applicable Request for
Comments (RFC)s to ensure that the protocol will still communicate with exterior sys-
tems if required. Overall, the most important aspect of the base communication protocol
stage is the selection of the correct protocol, which can be modified and will improve the
organization’s information systems.

3.3 Protocol Analysis
Protocol analysis of a base protocol is the examination of the protocol standard selected as
the base communication protocol. There are two main steps in this stage. The first step
evaluates the protocol standard to determine the port numbers used, header layout, header
content, header rules, message types, connection details, and included security options.
Once evaluation of the protocol standard is complete, then identification of preferential
option locations can occur. Understanding and analyzing the protocol standard to be
modified aims to determine the best location for dialect modifications. Some locations for
dialecting a protocol include fields in the base communication protocol’s header and the
experimenter type message.

17

Desirable characteristics of locations to place dialects are consistency, large bit-space, low
requirements, and randomness. Consistency means that the dialect is included in every
message or a header field used to transport every data message. However, a dialect may also
be added in its own communication channel and message packets. For example, a normal
packet may be sent in the command channel, but another logical layer of authentication
can be added with separate communication packets containing a dialect. A large available
bit-space with low requirements is an ideal location because it provides flexibility for
modification and larger bit strength for digests. Overall, while there are desirable locations
to include a dialect, the ability to modify a protocol or its operation is critical to performing
the dialecting once an ideal location has been identified. The protocol analysis stage, as
shown in Figure 3.2, is placed following the selection of a base protocol and before dialect
design.

Figure 3.2. Protocol Analysis Stage.

3.3.1 Protocol Standard
The protocol standard for the base protocol is a required document for performing all dialect
design and implementation. An example of a protocol standard for OpenFlow would be
OpenFlow Switch Specification Version 1.5.1 (Protocol Version 0x06) [3]. An open-source
protocol is an example of a protocol that is readily available for analysis and dialect option
identification. The open-source characteristic is vital for the dialecting process because it
allows for the transparency of use and requirements for each field in the chosen protocol
and the protocol’s overall operation. Observing the protocol in operation is beneficial to
determine the potential systemoperation thatmay be used as a dialect. A standard is essential
to this process, because it allows for the option analysis and identification of potential fields

18

or methods of modification into a dialect. However, if a protocol is designed with a dialect
in mind, then it can become part of the standard creation process. To determine standard
operating procedures for a protocol, such as OpenFlow, the following standard requirement
field types should be analyzed:

• Port numbers
• Header Layout
• Header Content
• Header Rules
• Message Types
• Message Handling
• Connection Setup
• Connection Maintenance
• Recommended Security Schemes

The above list of protocol standard characteristics provides the blueprint for the typical
operation of a system that utilizes networking such as an SDN. A protocol dialect pro-
vides the opportunity to improve a different information security requirement compared
to a recommended security system with a standard. For example, if a recommended se-
curity system already provides authenticity for the base communication protocol, it may
be desirable for the organization to select a security scheme and derivative that improves
confidentiality. The above list is only a general minimum requirement before proceeding to
option identification. The analysis of each section of the above required fields for a protocol
is then evaluated for its feasibility of modification within the bounds of the standard.

3.3.2 Option Identification
Once a protocol’s standard has been reviewed, the next step in the evaluation process is
option identification. Option identification consists of assessing areas of a standard that
can support a dialect. The header of the protocol and experimenter message type are two
examples of locations suitable for dialecting the OpenFlow protocol. Preferred fields of
a standard are those that allow for change without violating the original standard. Some
typical quality descriptors that are preferred for protocol dialecting include:

• Randomness

19

• Minimal Requirements
• Large Bit-size
• Employed Across Message Types
• Headers

Each listed quality influences the potential success of a dialect. A random field allows for
modification because it typically requires fewer specific bits. Randomness also aligns with
functions like a hash where randomness is also used towards a security principle. Random
fields can be observed in a variety of protocols where there are typically counters that may
be sequential over time, but start randomly. It should not be assumed that randomness
will hide a security function; it can provide a small amount of obfuscation if a normally
random field is used for side-channel communication or a dialect. When a standard has
strict requirements, it may then require translation instead of direct modification to account
for changes that are not allowed in the standard in a protocol. As long as translation can
occur before devices that require a standard, then it is allowed to use a dialect.

Another desirable quality of a standard for dialection includes fields or message types that
allow for large bit-size. A large bit-size is desirable because it allows for functions that
require large digests. With the incorporation of larger digests, it is possible to include
improved security mechanisms. For example, it is desirable to include a larger digest size
such as 256 bits compared to 32 bits due to the possibility of forgeries.

For ease of implementation, it is beneficial to use the same dialect type across messages.
Therefore, if there is a field or allowance for a dialect across messages this may reduce the
memory required at a dialecting proxy or on a machine by only including one dialect.

Lastly, headers are a useful method of including a protocol dialect. Headers are useful
because they are typically used across messages types, they have clear definitions on bit
requirements, and they typically include some kind of randomness. A header provides an
opportunity for a dialect to be used in a variety of conditions and messages.

3.4 Dialect Design
The dialect design stage consists of selecting a security scheme to be employed with the
dialect as the security derivative. This stage includes the pairing of identified option

20

locations that have limited requirements and a chosen security control. Once the combined
locations and desired security qualities are known, then a list of security mechanisms,
which ideally have previously been evaluated, can be created. Security concerns should
be based upon previous organizational doctrine and the security manager’s decision to
ensure that priorities and controls reduce vulnerabilities or impacts of an attack. While
this stage takes place after protocol analysis, it is set before security and cost analysis.
The dialect design intermediate analysis for performance and security are performed after
design to ensure that security, efficiency, and safety standards are met before implementing a
dialect into the base communication protocol. If dialect design is not successful in meeting
an organization’s security or efficiency requirements, then this stage is repeated until both
security and efficiency havemet the organization’s requirements. See Figure 3.3 for location
of the dialect design stage inside the dialect creation process.

Figure 3.3. Dialect Design Stage.

3.4.1 Security Concerns
Information security risks and organizational impacts should be determined before a dialect
is created. This requirement is set so that the dialect can adequately meet the needs of an
organization based on its self-assessed vulnerabilities and impacts. A corresponding quality
for impact is also required to determine the relative priorities between different types of
threats [6]. This research assumes NIST’s definitions of security threats to information
systems [8]. Table 3.1 summarizes NIST’s SP 800-12 Rev. 1 security concerns for
information systems that apply to data in transit of the control-plane traffic of an SDN [8].

The above security qualities are at risk from various styles of attacks by an adversary. For
example, if integrity of command packets in the control-plane to a switch could be modified

21

Table 3.1. Security Concerns Summary.
Security Concern Objective
Confidentiality Only the intended recipients are able to read the data in a transmission.
Integrity The data in transit has not been modified intentionally or unintentionally.
Availability The system is operating normally and not precluded from operation.
Authenticity Data origin can be verified and entity authentication.

before reaching a switch, then an attacker could modify flows of an SDN switch or its
configuration. Table 3.1 provides a list of security concepts that guide the dialect designer
to determine what kind of derivatives should be chosen. For example, if the organization’s
security concern is confidentiality, then TLS may be one of the derivatives selected for a
dialect. The chosen security objective of concern influences the derivative selected.

3.4.2 Security Schemes
A derivative is comprised of a security scheme, dependent upon the security goal. Table 3.2
shows example goals, e.g. confidentiality and authenticity, as well as example protocols and
algorithms which may be used to achieve these. One or more derivatives are included inside
of one dialect. The process to create a derivative starts with the selection of an information
security principles as an objective. Once a security principle has been selected then a
corresponding protocol choice and algorithm class should be selected. For cases when
confidentiality is desired, encryption is selected, whereas signatures or a MAC algorithm
are selected for authentication. The previous stage of option identification is then used to
determine howmuchmemory and processing resources are available to the security scheme.
The protocol options for Table 3.2 are recommended by Samociuk [19].

The derivative design stack in Figure 3.2 shows example options of algorithms and types of
security modules to be used inside of a derivative. A security algorithm should be chosen
that supports the level of security required for an organization, as not all options provide
equivalent levels or types of security. Other considerations for the security algorithm chosen
include storage space and processing speed. The objective is to ensure that the equipment
can support normal operations and traffic.

22

Table 3.2. Derivative Design Stack.

3.4.3 Key Management
Key management generates and manages the secret keys used in the protocol dialect. The
secrecy and generation of keys is a critical concern for each of the above recommended
security mechanisms in Table 3.2 [19]. The determination of a key management system and
policy is required to ensure that the system can operate under normal conditions such as
rollovers and in the case of a compromise. We considered the following key management
mechanisms options for dialect MS1:

• Public Key Infrastructure
• Attribute Based Cryptography
• Identity-Based Cryptography
• out-of-band

Each of the above crypto systems and associated key distribution mechanisms presents dif-
ferent requirements, pros and cons, and complexity for incorporation into an existing com-
munication system. As one example, Public Key Infrastructure (PKI) is already required
for the TLS security scheme which is recommended by the OpenFlow Switch Specification
standard [3]. Benefits of using a similar PKI system for both an inherent security mechanism
such as TLS and protocol dialects would reduce the requirement to create another system
for use when managing the dialect. Other benefits of PKI include the variety of deploy-

23

ment models such as up-cross-down, flexible bottom-up, and top-down [20] and extensive
research that has been performed on the key management system. However, other systems
provide benefits with regard to security issues that have been identified with PKI [21].

While there are many benefits to PKI, some of the PKI-based systems have proven insecure
due to companies and governments being able to access keys in the infrastructure [21].
Another disadvantage of using the existing PKI includes the time and effort for setup of
public and private key pairs [21]. These issues have prompted the necessity for identifying
other options for this research. The flexibility needed for initial prototyping may require a
different initial key management system or out-of-band (OOB) key distribution. An appro-
priate key management model must also be chosen to reflect the trust model incorporated
into a system. In SDNs, a controller is inherently trusted; therefore, it may be used as
the key manager in the system. The security objective of a derivative may be the same or
different from already included security mechanisms; however, the use of different keys is
preferred to ensure that the compromise of one set of keys does not compromise multiple
security schemes. For example, if TLS is enabled in an SDN, separate keys should be used
for the derivative.

3.5 Security and Cost Analysis
Security and cost analysis are required following dialect design. This stage ensures that the
security and cost of the dialect meet that of the organization’s needs. Security evaluation of
the dialect is conducted using informal analysis and previous research. Previous research
into the level of security provided by a scheme must be evaluated against any other security
schemes used. The cost of the dialect is another important factor. Here we define cost as the
resources and efficiency of the dialect in comparison to the original base communication
protocol.

Each component of an SDN must be tested for the cost of processing, power, and storage
to ensure that availability is not sacrificed due to the increased security. For example,
the selection of a key management system will require memory for keys, algorithms, and
working space. Key management may also influence the amount of extra traffic on the
network not related to normal data flow. While either security or cost can be evaluated
first, both must be checked to ensure that the dialect both improves security and does not

24

sacrifice system availability. The Security and Cost Analysis stage is shown in Figure 3.4.

Figure 3.4. Security and Cost Analysis.

3.6 Implementation Method
The implementation method stage follows the analysis stage and confirms that security
and cost requirements have been met. During this stage the method of implementation is
selected that will determine how the dialect will be added to the system for long-term use.
The implementation method supports the integration of the dialecting software with the
existing system. Some security concerns and priorities of this stage include ensuring that
the dialect cannot be bypassed and that it does not negatively affect system performance.
See Figure 3.5 for the overall process diagram for this stage. The implementation method
may also affect resource usage of the original system components. For example, a dialecting
proxy would utilize its resources to perform the transformation of a protocol and, therefore,
does not require the modification of original system components.

There are various methods by which a protocol dialect could be incorporated into a base
communication protocol. Each implementation method provides unique benefits and re-
quirements. Some examples of the various methods to implement a protocol include binary,
proxy, and electromagnetic side-channel. We propose that one or more methods could be
used to add a dialect. Chapter 4 details the one implementation method chosen for this
research, which supported multiple derivatives.

25

Figure 3.5. Implementation Method Stage.

3.6.1 Side-Channel Authentication Methods
Electromagnetic side-channel authentication is another method of implementing a dialect
[17]. While not performed in this research, this method presents another way to add
authentication to a protocol while still meeting the requirements of a protocol standard.
Side-channel authentication has been performed through both electromagnetic methods
and timing [17]. Background information on each of these two methods is provided in
Chapter 2. The benefit of performing side-channel authentication is that the protocol does
not need to be modified directly. Therefore, this method could be chosen if there are no
preferred locations in which a dialect can be added directly. Side-channel authentication
may or may not require the addition of other components in the network to verify signals
as the dialect itself before the data stream is passed to the controller or switch. An example
of an Electromagnetic side-channel authentication protocol dialect implementation method
may be found in Figure 3.6.

Figure 3.8 demonstrates how a potential side-channel authentication system would work.
For example, instead of the use of a proxy a signal encoder could be used to perform
frequency, voltage, or other electrical signal modification. The direct modification of
the electrical signal would be performed by an encoder at the after the original signal is
generated by the controller. The authenticator would then authenticate the side-channel
data before passing on the signal to the switch. The use of one implementation system does
not limit the use of another type for additional layers of defense.

26

Figure 3.6. Electromagnetic Authentication Method.

3.6.2 Dialecting Proxy
Adialecting proxy is anothermethod to implement a dialect. In this case, the proxywould be
called a dialecting proxy and would intercept packets that are sent from a controller modify
them in accordance with the dialect then send the new packet across the network. Once the
packet reaches the destination, a corresponding dialecting proxy at the target intercepts the
packet to verify the dialecting, and then it passes it to the target component. This process
would be repeated for traffic that is sent back to the controller from the switch. A block
diagram of the setup of this architecture and method can be found at Figure 3.7. This proxy
implementation assumes that they are placed in-line with their counterpart devices and that
one is assigned to every device in the network.

Figure 3.7. Dialecting Proxy Implementation Method.

3.6.3 Binary Modification
Binary modification for dialect implementation consists of changing the root code of a
component to include the security mechanism. This form of modification allows for direct
modification of open-source components. The new security mechanism introduced by a
dialect must not negatively affect the operation of any existing security mechanisms. There

27

aremany benefits to binarymodification of standard components such as a similar number of
components, integrated hardware/software, and fewer opportunities for the added security
control to be bypassed. Binary modification and inclusion of a dialect can be performed as
shown in Figure 3.8. In this work, we will not perform binary modification of the controller
or switch, but will demonstrate the use of dialects using proxies.

Figure 3.8. Dialect Binary Modification Process.

3.7 Dialect Management
The dialect management stage follows the selection process for determining the method
to include the dialect. Dialect management focuses on the day-to-day maintenance of the
dialect as well as recovery systems and procedures in the event of a compromise. The
Dialect management Stage can be found below in Figure 3.9. Important attributes of the
dialect implementation include effort required by the system administrator and scalability.
Scalability in this case is defined as the ability for the system to support the expanded
growth in the number and types of devices. This stage does not present a similar selection
of options for generic use. Instead, this stage requires a selection of processes and policies
to support the dialect.

28

Figure 3.9. Dialect Management Stage.

3.7.1 Attributes
Scalability is an important attribute of dialect management especially in the case of an SDN
because an SDN must be scalable. As a network changes and grows, an SDN is expected to
adapt and grow as well. Therefore, the scalability of implementation and key management
must adapt with the SDN to ensure that each part of the dialect is still performed in any
additional or replaced hardware. Scalability is one consideration for dialect management to
ensure that SDN size is not limited.

As a system grows and equipment must be replaced or added. It is preferred that minimal
work is required of system administrators to add a dialect or expand the SDN network. The
ideal effort required by a system manager would be none, while the most extreme would be
coding modification of a switch or controller to incorporate a dialect. System manager’s
efforts are evaluated based on the time to install a dialect and ease of management. Lastly,
time overhead caused by the dialect directly influences the likelihood that it can maintain
a level of availability required for a network. The efficiency of dialect management is not

29

directly related to the cost analysis already performed on the dialect.

3.8 Implementation Testing
Implementation testing is the final stage of development for a protocol dialect, as seen in
Figure 3.10. In this final stage, the dialect is tested to ensure that it is successfully integrated
into the protocol and system within security and availability requirements. Implementation
begins with testing system performance and operation without a dialect. Then, with normal
traffic speed recorded, operation is tested again with the dialect included in the protocol. The
comparison between the two speeds provides a ratio. The percent increase in time delay for
traffic depends upon an organization’s needs and security concerns. While implementation
testing should be performed virtually first with mock systems, it should also be tested with
the physical devices to ensure that simulations are accurate.

Figure 3.10. Implementation Testing.

3.9 Protocol Dialect
Upon completion of the protocol dialecting process, a specific protocol dialect is ready
for implementation into an organization. The selected protocol dialect, as a product of
the organization, would then modify traffic and components of the communication system
selected. In this case, the OpenFlow protocol is tailored to meet security requirements

30

of a specific organization. A dialect, if applied to a network, would be applied to all of
the components that interact in a domain. In the case of OpenFlow, if a controller was
modified, all switches managed by that controller would be required to have the same
dialect. If authentication was added by a dialect, then if a switch was to be connected
in the future it must be modified before connecting to the system to ensure that it could
communicate with the system. While this may increase the time to add a switch to the
system, the additional time required would depend upon the options and dialect chosen by
the dialect designer.

Once a protocol dialect is in place, it provides another layer of defense against attacks. This
additional layer, while providing more DiD, can also provide a means of attack detection
if paired with an Intrusion Detection System (IDS). An IDS is a system designed to detect
attacks against a system or protocol for the purposes of alerting an administrator or log. An
IDS can be built directly into the dialecting software or proxy or as a separate component.
For example, if an attacker was able to break TLS and send packets that pass encryption
checks by either a controller or switch, the dialect would still have to be broken before
an attacker was able to send authentic commands. The extent to which TLS attacks can
be detected and a protocol dialect can be efficiently incorporated into OpenFlow will be
examined in the next chapter through experimentation.

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

CHAPTER 4:
OpenFlow Dialect Design

This chapter describes the actions taken at each stage of the dialecting process to create a
dialect titled Message Seal 1 (MS1) for the OpenFlow protocol. A summary of the options
selected for the dialect in this research is provided in Table 4.1. This research analyzes the
case in which an organization is transitioning to an SDN. The objective of this dialect is to
add data authentication to OpenFlow in addition to the existing authentication performed
by TLS. This additional security does not rely upon TLS and assumes that a compromise
of TLS can occur. The dialect’s implementation can be extended to also protect the initial
handshake for setting up a TLS session. The dialect will continue to operate once TLS has
been established to add another layer of security.

Table 4.1. Dialect Selection Summary.
Stage Base Protocol Protocol Analysis Transport Security Key Management Implementation Method

Design Space
OpenFlow
TCP
IP

Transaction ID
Length
Version
Type
Data
Buffer ID

TLS
Secure Shell (SSH)
IP Security (IPSec)
MAC Scheme
Signature Scheme
Encryption Scheme

PKI
OOB
Identity-Based Cryptography (IBC)
Attribute Based Cryptography (ABC)
Ratcheting

Binary
Proxy
Electromagnetic Side-Channel
Timing Side-Channel

Design Choice OpenFlow Transaction ID HMAC OOB Proxy

The objective of this dialect is to increase the level of effort and time expended by an attacker
to modify any switch settings or operation. The primary information security objective is
authentication. If an attacker is able to modify switch configuration or flows then they may
modify topology, operation, and availability nefariously or against an organization’s preset
configuration. Preferably, per the standard’s recommendation, TLS is enabled in an SDN to
secure the communication between the controller and switches [3]. The derivative security
mechanisms and protocol dialect provided here is not designed as a replacement to TLS.

Figure 4.1 represents the final goal of the dialecting process. In this case, two derivatives
add the desired security goals of the dialect. This diagram demonstrates that the Controller
and Switch are no longer directly connected. Instead, each device is connected to a proxy
which takes unchanged OpenFlow packets and creates the dialect. The dialect only exists
between the proxies, and in this case, two are used. Derivative 1 (D1) demonstrates that a

33

protocol dialect can be used to modify the OpenFlow header directly before translating back
to a normal OpenFlow Hello at the target device. The second derivative, Derivative 2 (D2),
comes in the form of two messages where the authentication message is an experimenter
type message. Both of these derivatives form the dialect MS1.

Figure 4.1. Dialect Overview.

4.1 Design Objectives
For this research, we assume that an attacker is able to observe and manipulate command
traffic between the proxies of an SDNcontroller and its switches. We assume that the attacker
can access the physical lines of communication between the switches and controller of an
SDN. It is also assumed that an attacker has the ability to generate false command packets
based on open-source knowledge of the protocol and location on the network. This scenario
threatens confidentiality, integrity, authenticity, and availability of a network, particularly
when TLS is not enabled.

TLS is not a perfect solution. Chapter 2 identified a variety of attacks on TLS. To improve
overall system security, we propose protocol dialects as an additional security layer for DiD.
The objectives of this dialect is to enforce earlier authentication, add protection to the TLS
handshake, and additional authenticity of OpenFlow data. OpenFlow data includes version
numbers, commands, responses, settings, and flow rules.

Without a dialect, SDN switches and controllers utilize TLS to perform authentication.

34

Instead, with D1, the authentication process is started with the first OpenFlow packet.
Authentication is important because a modified OpenFlow packet can invoke changes in the
network not desired by the system manager. Attacker modification of the original packets
is also a concern because integrity and authentication is not enforced by the standard unless
TLS is used. Therefore, a dialect designed for message authentication can be used to reduce
the capabilities of an attacker. Without improved DiD, the potential for system modification
or damage due to unauthenticated packets or commands can lead to system downtime or
compromise, and a subsequent loss of availability.

4.2 Base Communication Protocol
We selected OpenFlow as the base communication protocol because of its open-source
availability and highly desirable network characteristics, as discussed in Chapter 1. The
operation of an SDN relies upon the correct decisions and commands by a controller to
its switches. Since the controller is the single point of command and influences all other
switches under its control, we selected OpenFlow as the first protocol to add protection
to. We assume that TLS will be enabled to provide confidentiality; however, initial testing
for this implementation was not encrypted because TLS is off by default in the emulation
software selected for testing (Mininet) [12]. In the current OpenFlow standard, the Open
Networking Foundation does not require the use of encryption or authentication for commu-
nication between controllers and switches utilizing OpenFlow [3]. The dialecting method
that we selected for this implementation uses the existing message system for protocol
enhancement.

Open-source controllers have enabled organizations to adopt and modify controllers to fit
their organizational needs [22]. Some of the example benefits of SDN controllers identified
by Khondoker et al. include ease of management, adaptability, efficiency, and security [22].
Open-source controllers and switches allow for easier analysis and modification for a new
dialect. Open-source is preferred so that security can be added directly into the protocol;
however, open-source is not required. Before modification and establishment can begin, a
controller must be selected so the interface options and features available to the system can
be identified [3]. A comparison of open-source controllers and their features was completed
by Khondoker et al. [22]. The studied controllers include POX, Ryu, Trema, FloodLight,
and OpenDaylight.

35

For this research, we selected both POX and ovs-testcontroller as the controllers for the
experimental SDN. While the ovs-testcontroller was not evaluated by Khondoker it is
mentioned in other sources in regards to enabling TLS in Mininet [23]. Both controllers are
easy to use and and open-source. In this design, a dialect can add security to both OpenFlow
and TLS which encrypts OpenFlow. For example, when a dialect is applied as a wrapper
for a packet that is protected by TLS then additional integrity is added to the packet. A
wrapper adds protection to the encrypted OpenFlow data as well as preventing modification
between the proxies. Therefore, this process adds another layer of security to protect against
modified command packets from reaching the devices attached to the proxies. The packet
encapsulation and timeline for setup are illustrated in Figure 4.2.

Figure 4.2. Dialecting OpenFlow Packets with TLS.

An important consideration of the base communication protocol is the recommended se-
curity system provided by the standard. Since TLS is the recommended default security
mechanism in the OpenFlow Switch Specification, OpenFlow dialects must not interfere
with proper TLS operation [3]. For example, MS1 must not interfere with the TLS hand-
shake from performing successfully, as demonstrated in Figure 4.3.

The timing diagram in Figure 4.3 was created from Wireshark packet traces captured
during a Mininet experiment with OpenFlow operation while TLS was turned on. We
incorporated protection against interfering with TLS by using two different derivatives

36

Figure 4.3. TLS Timing Diagram.

inside of one dialect. D1 provides security by an authentication code incorporated into the
32-bit transaction-ID that does not modify the total number of packets sent during the TLS
handshake. D2 adds a 1:1 authentication message for every normal OpenFlow message and
is used once TLS is established.

This second derivative relies upon amessage type provided by theOpenFlow standard called
the experimenter type message [3]. This type of message provides a variable length data
field to increase the digest size and, therefore, strength of authentication. The modification
of the transaction-ID as a signature field is less secure; therefore, its use is limited to
before the TLS handshake (see Section 4.4 for more detail). During the setup process, each

37

transaction-ID is augmented to improve authentication of both the setup and OpenFlow
commands.

Overall, the modification of packets using the existing system and protocol is key to the
MS1 dialect design. Adherence to an original design of a protocol makes the change less
obvious to an adversary, however, still useful as a security feature. The use of the existing
protocol and components removes the requirements that proxies are able to create or run
the same software used in other components. A dialect may also be applied as a wrapper
that only adds security around the existing protocol so that an existing security mechanism
does not need to be modified or known by the proxies to still operate.

4.3 Protocol Analysis
For this research, we chose the OpenFlow protocol header and transaction ID as the first
potential field for a useful dialect. The OpenFlow header is shown in Figure 4.4.

Figure 4.4. OpenFlow Header Layout. Adapted from [24].

The transaction ID field was chosen because it is utilized across all message types, is
typically set randomly, and provides the largest field for manipulation by a dialect in the
OpenFlow header [3]. The other fields in the OpenFlow header, which are smaller, are
version, type, and length [3]. The primary restriction on the transaction ID field is that it
is used for conversation tracking between a controller and a switch [3]. The transaction ID
field is the same between a controller and switch in a normal SDN [3]. In a dialected SDN
that manipulates the transaction ID field, a dialecting proxy should translate any modified
field back to its original values before being provided to either the controller or the switch.
We later determined that this requirement can be mitigated by providing a set transaction

38

ID number to the controller or switch at the proxy after the message has been checked.
However, conversation tracking would be required for multiple switches connected to one
controller. In this research only one controller and switch pair were tested.

The second potential option for the OpenFlow dialect was presented by functionality in-
cluded in the protocol standard. The OpenFlow switch specification [3] provides another
message type, called experimenter, that is not normally used except by vendors or re-
searchers. This message type is not symmetric; however, it does provide for an identification
field and then a variable length data field. This message type provides the opportunity for a
dialect because it can be used for transporting a digest or authentication code of a sufficient
length that a dialecting proxy can then confirm before transferring to the intended recipient.

4.4 Dialect Design
To determine security improvements beneficial to OpenFlow, we selected authenticity as
the primary security objective of our dialect. We assume an attacker is able to observe all
traffic, intercept, modify, and retransmit packets in a timely fashion. Therefore, since there
are no included authentication or integrity checks built into the OpenFlow protocol, this
is an ideal starting point for a security derivative. The process of designing a derivative
begins with the selection of an information security principle, as noted in Table 4.2.

To add authenticity, we selectedMACas the class of algorithmbecausewewished to design a
solution that is lightweight relative to TLS, asmeasured by computational overhead incurred.
In this case, aMACwould be computed and checked for each OpenFlow packet using shared
secrets preinstalled at both the controller and switches. Without knowing the shared secret,
attackers would be forced to brute-force the MAC. We further selected HMAC because of
its avalanche effect which will fill a normally random field with seemingly random bits that
create a large change in output based on even a small change in input. Latter, in Section 4.7,
the selection of key management methods that influenced the selection of HMAC instead
of a digital signature will be discussed. The use of symmetric keys in this dialect design
also led to the selection of HMAC for authentication and integrity.

The selection of dialect keys unique and separate from TLS is important to the derivatives
in this design. Different keys for TLS and the dialect are necessary for security and
implementation reasons. Dialect keys that are distinct from TLS keys ensure that leakage

39

Table 4.2. Summary of Derivative Design Choices.

and vulnerabilities are not introduced against TLS. In the implementation of this system,
the use of proxies ensured that the keys were different. We controlled key life via our key
generation method demonstrated in Figure 4.5. .

The process to create the MAC tag follows three steps. The first step is the generation and
delivery of OOB Initial Keying Material (IKM). IKM is the root keying material which
will be used to seed and synchronize the key generators and is possessed only by the parties
using the dialect. This IKM is used in conjunction with salts to create a pre-TLS key by
a HMAC-based Extract-and-Expand Key Derivation Function (HKDF). For this design,
we selected time as our salt to synchronize values without having to store values in the
proxies. HKDF uses SHA-512 to generate an ephemeral key for the MAC tag creation via
another hash algorithm, in this case, BLAKE2b. Use of different hash algorithms for key
generation and tag generation provides additional DiD. The keys used in the BLAKE2b
function for MAC tag generation will change every five seconds for improved security due
to short MAC tag size in D1. BLAKE2b generates a key with the length that is required for

40

the transaction ID. Key management and generation follows the structure in Figure 4.5:

Figure 4.5. Key Generation Process.

While the 32-bit field is the largest modifiable field in the OpenFlow header, a 32-bit
long MAC is relatively weak against forgeries. Therefore, the protocol governing the
establishment of the MAC keys and digests must support a relatively short-lived MAC in
order to mitigate the risks of using a MAC of a short bit-length. The primary concern due
to the small bit-space available for modification is the life of the MAC tag. Not only are
MAC tag forgeries a concern, but second preimage attacks are possible; this means that
another key may be found that can produce the same MAC tag in a short time [25].

Second preimage is the primary concern as a threat to D1. A second preimage occurs when
a message that creates the same MAC tag as the authentication tag will contain different
OpenFlow commands than the original message. These types of message are a concern
because they pose a threat to authentication. If a second preimage is available for a given
MAC tag then that OpenFlow message could potentially change the network topology or
perform unauthorized operations on the network. Therefore, as a countermeasure to the
potential for attacks on the life of a MAC tag, we have developed a key generation scheme
that ensures a short MAC life.

Five seconds was selected as the amount of time for key rollover because Mininet operation
also relies upon 5 seconds. This time frame is also shorter than the time required to break

41

half of the bit-strength of that provided by the field. The amount of time to complete a SDN
controller and switch setup without TLS enabled is approximately 5 seconds. The SDN
controller and switch also check for liveliness every 5 seconds; therefore, 5 seconds ensures
that each new key andMAC life persist for one liveliness check. The estimate for the time to
perform the MAC in this research correlates with previous estimates in the original research
for Blake2 [26]. The machine specifications used to determine the time to create a MAC
using python was a 1.8 gigahertz processor and 8 gigabytes of random access memory. The
justification and selection of 5 seconds is demonstrated below:

We also built in defense in depth by using a SHA-512 key generator with a BLAKE2b
MAC generator. This combination of hash functions, OOB initial key material system,
and short-lived MAC life enable more defense for the limited bit space. Overall, the key
management systems or generation ensure that the time to produce a required forgery is
larger than the time in which the key is used. In summary, an extremely short lifetime was
chosen for the MAC creation key to reduce the possibilities of successful MAC forgeries
and increase the possibility of detecting such forgery attacks.

The short 32-bit field is particularly vulnerable to forgeries, so we included in the dialect a
second derivative (D2) that generates a companion OpenFlow message of the experimenter

42

type to carry a full-length MAC for a given OpenFlow message. A dialecting proxy handles
both the 32-bit field modification for transaction-ID and experimenter type message to
ensure that messages are verified as authentic before they are passed on to the intended
receiver. The limiting factor with D2 is the necessity to send a 1:1 number of authentication
messages as well as original messages for OpenFlow commands and data flow.

We selected a hybrid approachwhere D1 is used during the initial OpenFlowHello exchange
between a controller and a switch before TLS is established; then, D2 is used to generate
experimenter type messages after the TLS handshake has been completed successfully. D1
adds another authentication mechanism prior to TLS. By adding another authentication
layer to the system, we can reduce the possibility of an cipher-suite downgrade attack such as
DROWN [15]. By also using D2 with a message dedicated to security our scheme provides
greater bit strength and another layer of authentication without requiring an interface with
TLS.

4.5 Security and Cost Analysis
Security analysis for this work leverages research already performed through both formal
and computational methods on the underlying algorithms, and in the case, of TLS. We did
not consider a separate protocol analysis for the composed security, but leave such security
analysis as future work. For D1, a MAC was selected that can be set for bytes output so
that existing research can be utilized and not depend upon truncation of a MAC tag. Cost
analysis is the limitation imposed by the dialect. An assessment of overhead caused by
dialect will be given in Chapter 5.

4.6 Implementation Method
A dialecting proxy was chosen as the primary method of testing and including a dialect
into OpenFlow. It was selected because this dialect is designed for integration with a mes-
saging system and does not rely upon electromagnetic monitoring or modification. Timing
authentication was not chosen because of the potential negative impact on availability of
the network. This proxy allows for modification without affecting the rest of the system and
can be used with various types of derivatives. Specifically, for OpenFlow and Mininet, this
design allows for rapid prototyping and modification without any changes being required to

43

the switch or controller software. The overall design of the dialecting proxy in Figure 4.6.

Figure 4.6. Dialect Proxy Design.

Figure 4.6 demonstrates the steps the dialecting proxy will take to receive, process, dialect,
authenticate, and transmit a message. There is a dialecting proxy attached to each controller
or switch of the network to perform MAC checks before accepting incoming OF messages.
In this experiment, the OpenFlow packet will be received by the first module. Private-key
generation is also completed by the proxy or deliveredOOB. TheHMAC algorithm is stored
on the proxy as well so that the digest can be added to the original OpenFlow message. The
digest is created from the original OpenFlow packet minus the transaction ID.

Binary modification was selected as the backup implementation method due to the com-
plexity of code for the switch and controller system already included in Mininet. Ongoing
research in the field of binary modification is orthogonal to this research and will allow for
future modification without requiring extensive knowledge of a system or programming. A
potential security benefit to the inclusion of a dialect at the binary level is the eliminated
risk of subversion of an external device. Binary modification of a standard controller could
also prevent an attacker from being able to bypass the security system from the network.

44

4.7 Dialect Management
Dialect management is concerned with the efforts required by system administrators and
operators to maintain and include a protocol dialect within a protocol. The objective of
dialect management is to maintain a high ratio of return on security with minimal operator
effort. The effort required for the implementation of this dialect is reduced by the selection
of an appropriate implementation method and key management system. While we selected
a dialecting proxy design and OOB key management, we considered various types of key
management schemes in Section 3.4.3. The types of key management schemes considered
included IBC, PKI, ABC, and OOB. The selection of an OOB key delivery management
system reduces the required setup time and management of a trusted third party (TTP) entity
that is separate from the SDN.

OOB consists of the delivery of secret keys outside of traffic that already exist on the
network. For this research, we have chosen to start with OOB for simplicity and to provide
flexibility in the types and system requirements for including the dialect. The negative
aspects to selecting this type of key management system include automation and scalability.
The second choice for this research was PKI because it has already been designed as the
key management system for TLS [3]. PKI can be modified for use with a dialect instead
of just relying upon TLS. For example, by using the pre-shared keys from a PKI system in
addition to different keys and security systems for the dialect we are able to add security
benefits. Even though such a dialect may not achieve future secrecy (FS) flows before the
TLS set-up, the use of a modified PKI system and not just TLS presents the opportunity to
add more security layers.

Another option for keymanagement included IBC. An IBCoperates by associating "between
identities, public keys, and validity" [27]. Inclusion of IBC would remove the requirement
for public keys because identity featureswould be used for encryption [27]. In comparison to
PKI, ABC incorporates attributes of a recipient to determine part of the security scheme [21].
ABC, for the future, contains desirable qualities for an SDN because the controller could
have identity features of installed network components preregistered in memory. This rapid
update of private keys would be produced by a private-key generator (PKG) [27]. The trust
relationship, PKG location, and time to update are limiting factors for inclusion in an SDN
due to the concern for availability. While there are a variety of types of PKI and ABC that
do not always require a TTP, the flexibility of dialect design allows for the introduction of

45

different methods to perform key management. For this research, OOB provided simplicity
and flexibility for testing.

4.8 Implementation Testing
Implementation testing ensures that the dialect will not negatively affect network perfor-
mance beyond a given threshold. For our research, we measured the increase in latency
incurred by derivatives to understand the performance trade-off. This percentage is chosen
because it is deemed that the security benefits justify the network delay due to the security
goals chosen. The goal of preventing non-authentic packets from causing unauthorized
network changes requires the rebalancing of priorities of integrity and availability. Ideally,
the increase in latency should be much less than that incurred by TLS, which has a much
wider range of security goals than the derivatives. Implementation testing for this research
requires the establishment of baseline performance data of the SDN before dialecting the
protocol and performance after implementation. Once the dialect has been installed and
is operational, it is run under normal network conditions to ensure an organization’s per-
formance requirements are met. Lastly, due to the inclusion of the protocol dialect in the
messaging system and base communication protocol of OpenFlow, implementation testing
requires verification that no change to the OpenFlow standard occurs.

46

CHAPTER 5:
Experiment and Results

The experimentation for this research includes Python script prototyping while leveraging
open-source SDN emulation software. The dialect presented here utilizes three different
derivatives to add security. The first derivative modifies OpenFlow Hello messages trans-
action IDs to include a MAC before establishing TLS. The second derivative creates an
experimenter type message which is used to authenticate messages once TLS has been es-
tablished. The third derivative wraps TLS and OpenFlow messages to add another security
layer without requiring access to TLS keys. This chapter details the process to create these
dialects and evaluate them using the SDN emulation software.

The first stage of experimentation consisted of testing outside of the SDNemulation software
(Mininet) to perform rapid code development using Python libraries. The second stage of
the experiment incorporated Python scripts and Mininet. Lastly, TLS was enabled with
Mininet and Python scripts for the proxies. Programming and testing in Python first allowed
for dialect creation, input/output management, and logic before integration with Mininet.
The design process from Chapter 3 and options from Chapter 4 are included in this
experiment as a proof of concept. An example of the message-handling process performed
inside of a pair of proxies attached to a controller and switch for derivatives is shown in
Figure 5.1:

Figure 5.1. Dialect Proxy Software.

47

Figure 5.1 demonstrates two key functions performed by the dialecting proxy: (1) a MAC
creation function that intercepts every outboundOpenFlow packet, adds aMAC inside of the
OpenFlow header (D1), creates an additional experimenter packet (D2), or wraps contents
(Derivative 3 (D3)) for verification before forwarding the original packet to the intended
destination; (2) a MAC verification function that authenticates that data sent by the other
proxy. Therefore, Figure 5.1 shows one-way of the two-way authentication. The process for
both proxies in a system requires the receipt of a message, parsing for applicable contents,
creation of a MAC tag, message reconstruction, and forwarding to the next device in the
communication chain. In this experiment, if a message fails the authentication check then
the receiving proxy will discontinue the set up process. The process of passing command
data between controller and switch is identified in Figure 3.7.

5.1 Experiment
MininetNetworkEmulatorwas selected as the virtual software for this experiment [12]. This
emulator system generates and processes actual OpenFlow packets at bit level and supports
open-source SDN controller and switch software systems that are widely used. Initial
experimentation was performed using Python only to test different security algorithms and
processes that the proxy uses. Once the security derivativeswere designed and tested outside
of the emulator, they were then integrated into Mininet. This system was selected because
of the quick ability to prototype and perform packet analysis all on one system. The second
part of this experiment is tailored for use with Mininet and analysis using free software
such as Wireshark [13] for packet sniffing. Wireshark allowed the detection and parsing of
packets in the emulated system to observe and time baseline operation, and to verify and
time dialect implementation. The experiment topology may be found in Figure 5.2.

This topology utilized our selected SDN emulator, Python scripts for the proxies, and the
POX open-source controller on one machine. The switch and controller for the SDN run
the same software that is used in physical systems; however, the physical ports have been
reconfigured to operate on a single machine. In this configuration, the Open vSwitch (OVS)
switch is assigned to an external controller IP address which is the IP address of the Switch
Proxy. In this design, both the controller and switch lack knowledge of the proxy. This
topology requires no modification of the switch or controller software before installation
of the dialect. The proxies then coordinate their communication. Instead of one client-

48

Figure 5.2. Experiment Topology.

server relationship, there are now three. This relationship and topology allows for different
versions of OpenFlow to be used between a controller and switch via the proxy system. It
is anticipated for this research that the attack vector would be between the two proxies.

The first experiments utilized Mininet without TLS enabled so that each packet could be
observed between the proxies while using D1 and D2. The second portion of the experiment
utilized TLS and required a different controller. The controller utilized with TLS enabled
was the ovs-testcontroller and a TLS procedure for Mininet [23]. The layout for this
experiment was the same as Figure 5.2.

5.1.1 Derivative 1: OpenFlow Hello Transaction ID Modification
D1 modifies the transaction ID field in OpenFlow Hello messages to include a MAC tag
to add authentication to the initial message exchange between a SDN controller and its
switches. This MAC tag is verified at a receiving proxy before the message is passed to
the intended destination. The pre-TLS key is created from a HKDF using SHA-512 and
an OOB IKM. This pre-TLS key will be 512 bits long and is used by the MAC generator
algorithm, BLAKE2b, to create a MAC designed to have an adjustable output. It is adjusted
to a compressed size of 32 bits to fit in the transaction ID field of OpenFlow headers. A
new key is generated every 5 seconds to improve security of the MAC tag. A summary of
the security mechanisms, algorithms, and design choices for this derivative included in the
script may be found below.

The creation of OpenFlow messages using the open-source python-openflow library was
customized to show the binary position of the transaction ID bytes. The byte "x08" was

49

Table 5.1. Derivative Design Selection.

identified as the last portion of the OpenFlow header; therefore, the remaining bytes are
removed since they are part of the transaction ID. This python-openflow library also allowed
for identification of the binary differences between messages. Overall, the format for the
OpenFlow Hello message after modification with D1 has the layout shown in Figure 5.3.

Figure 5.3. Derivative 1 Message Layout. Adapted from [24].

While many types of messages demonstrate this same byte pattern, the initial focus of this
research and byte modification was OpenFlow Hello. This message type was chosen for
a proof of concept because it is sent as the first means of establishing communication and
version negotiation between an SDN controller and switch [3]. This is the first type of
message sent before any TLS session is established. Later derivative designs allow for
other tools such as larger security bit space, key management options, and TLS protection.
D1 stands as an example of Protocol Dialect that exists within the bounds of the protocol.
However, this restrictive space is not a replacement for TLS and should be combined with

50

other derivative options that provide greater bit-level security and options.

5.1.2 Derivative 2: Experimenter Type Message
D2utilizes a larger bit space to ensure security of anotherOpenFlowmessage by transporting
a MAC and an associated transaction ID number. The experimenter message is defined in
the OpenFlow switch specification [3]. The components of the second derivative consist
of the OpenFlow Header, Experiment ID, Experiment Type, and variable-length data field.
The OpenFlow header contains the type of message, OpenFlow version, and length fields
as required by the OpenFlow Switch Specification standard [3]. Ideally, if dialect software
was located on a switch or controller, then both D1 and D2 could be used to provide more
security for each OpenFlow message. To ensure that the security benefits of both are
enforced, the derivatives should be linked. The overall timing and execution of using both
an experimenter type message and OpenFlow message may be found in Figure 5.4.

Figure 5.4. Derivative 2 Timing and Execution.

Each field of the experimenter type message has been tailored for use by D2. The D2
message is not sent by itself, but instead is paired with another OpenFlow message that it
verifies by containing the MAC for both the OpenFlow command and experimenter type
message. TheOpenFlowheader alsomatches the requirement of a normal experimenter type
message. We selected an arbitrary experiment ID and type values for testing because they

51

are only utilized between proxies. The arbitrary values may confuse packet-monitoring
software such as Wireshark, but should be set to a value different than the OpenFlow
standard-approved experiment IDs. The experiment type message has been set to a value
to represent Naval Postgraduate School (NPS) for testing.

Experiment_ID = b"\x01\x01\x01\x01"

Experiment_type_nps = b"\x02\x02\x02\x02"

The experiment ID does not need to be approved by the OpenFlow Foundation before system
integration because it only interacts with the dialecting proxies, not the SDN controller or
switch. The overall layout of the message is shown in Figure 5.5.

Figure 5.5. Derivative 2 Message Layout.

In future work the above message type could be used for key exchange, protocol dialect
updates, and other management features, depending on design choice of incorporation of
such features. This designwas createdwith the purpose of compliancewith the requirements
of the OpenFlow standard [3] even though it is only sent between proxies. The D2 message

52

type abides by the requirements of the OpenFlow standard since it can be tailored to fit
an organization’s requirements and could be approved by the OpenFlow Foundation in
the future. Yet, the new message type does not need to be approved by the OpenFlow
Foundation to work with an existing SDN system because it is only sent between the proxies
in this implementation.

5.1.3 Derivative 3: TLS and OpenFlow Derivative
Due to the implementation method that was chosen for this research, another derivative
was designed for DiD consisting of both TLS and OpenFlow. This derivative is wrapped
externally to both TLS and OpenFlow data. The derivative starts after the first OpenFlow
Hello message with D1 and is sent for every TLS and OpenFlow message following. If
authentication does not pass during this step then the connection is broken. The proxies, in
this experiment, do not have access to TLS keys, and therefore, D2 could not function as
designed. The separation of keys also improves DiD by reducing the damage to security
if the proxy or the SDN devices are compromised. To add protection to TLS during the
handshake and operation we added a wrapper that used the same BLAKE2b MAC. D3
appends a 512-bit MAC to every message, verified at the next proxy, and is removed before
being sent to the corresponding device. This additional security is only provided between
proxies, each of which is assumed to be colocated with its communicating device. The
layout of this message and process may be found in Figure 5.6.

5.1.4 TLS and Mininet
TLS is off by default for Mininet. Therefore, part of this experiment required enabling TLS
for both a switch and controller. Only a few online sources provide a recommended method
to enable TLS [23]. The following steps to setup TLS are updated for the newest version
of Mininet at the time of this writing and provide additional instructions. Establishing
TLS in Mininet requires that keys are created and registered with an Open vSwitch and
ovs-controller [23]. The only other changes to the Mininet TLS procedure for this research
was the modification of the IP address and port number for the remote controller [23].
The addresses and port numbers assigned with TLS matched those in Figure 5.2. The
programs that were utilized to create the TLS enabled OVS, start the controller with TLS,
and associated proxies may be found in Appendix A.

53

Figure 5.6. Derivative 1 and 3 with TLS.

5.2 Results
The results from this experiment are separated into two main sections: those consisting
of results with and without TLS enabled. However, before these results were obtained,
control tests were performed. The control tests for this experiment consisted of running

54

Mininet with andwithout TLS enabledwith no proxies. The first experiment with the dialect
included in the system via proxies containing D1 and D2 with TLS disabled. The second
portion of the results were obtained with TLS enabled and proxies containing D1 and D3.
Results from the experiment with TLS turned off were obtained using Wireshark. For the
second set of results with TLS enabled results were obtained from terminal output from
the ovs-testcontroller. Wireshark was not used for the second portion of the experiment
because of the encryption of data provided by TLS.

An important note about these results and associated time overhead from the dialect is that
Python was used as the language for the proxies. This means that any associated delays
due to being a higher-level language added time to the results. We anticipate that the
results may be significantly faster in lower-level languages; therefore, reducing the overhead
identified in this experiment. Section 4.4 notes the speed considerations with regards to
security and research associated with Blake2. Our selection of proxies also added time for
this derivative. The use of two new TCP/IP connections adds more time to the overhead
compared to binary modification of the switch or controller directly.

5.2.1 Results without TLS enabled
The following results include data fromnormalMininet operation, the addition of derivatives
1-3, and the enabling of TLS. The baseline data was collected using Mininet without any
dialect software to obtain baseline data on the timing requirements for OVS and controllers
in an emulated network. Follow-on results were found once a proxywas established between
a POX controller and OVS, and lastly after each derivative was included into the network
one at a time to assess the time added due to each derivative. All of these initial results
were collected without TLS. Timing without TLS was tested first to determine the ability
to include a dialect and confirm its operation with Wireshark.

Each experiment was measured twenty times to determine a minimum, average, and max-
imum time required to perform the setup between a POX controller and OVS in Mininet.
The time was measured from the time of the first OpenFlow Hello message to the first
OpenFlow Echo Request message. The OpenFlow Hello message signifies the beginning of
communication between a switch and controller, while the echo request type message sig-
nifies that setup of the switch has been completed by the controller. Therefore, this overall

55

time difference records the time to setup a new switch that is initialized with a controller.

Table 5.2. Derivative Time Performance.

Testing indicated that the total time increase for the setup portion of the OpenFlow com-
munication was 10.28% for a proxy that provides feedback to a user. However, it is not
expected that this increase would cause a major delay to operations because this transfer
occurs before any flow rule changes or packet-in requests. Once D1 and D2 measurements
were complete we analyzed methods that could be used to reduce the overhead identified
with the current proxy design. Therefore, for the second version of the proxy only contained
scripts for D1 and D2 as well as the TCP connections. This optimized version of the proxies
contains no print statements and reduced the overhead significantly. The results for the
optimized version of the proxies and D1 and D2 may be found in Table 5.3.

Table 5.3. Optimized Proxy Time Performance.

The results for the optimized proxy demonstrate that the overall time added to perform the
dialect during startup is less than 1%. This percent increase was also calculated against

56

the normal Mininet operation and averaged from 30 runs for each experiment. The greatest
contribution to time for these runs was the time to perform key generation and MAC
generation using hash algorithms. This simplified and optimized proxy has a minimal
performance impact on normal operations on a Mininet and imposes minimal delay in
messaging.

5.2.2 Results with TLS enabled
An experiment was also performed with the dialect and TLS enabled. The following results
were collected using the same Mininet platform; however, a different controller and proxy
were required to establish and maintain communications. Therefore, the results for this
section were first performed without proxies to establish a baseline. Once a baseline was
established, it was observed that TLS took about twice as long to establish a setup between
a controller and switch. While this controller was different from the POX controller used in
the first set of experiments, we assume that the majority of time added was due to TLS and
not the controller design itself. Once TLS was checked between the devices, the proxies
with both D1 and D3 were added. Without TLS, the proxies were able to print and identify
OpenFlow packets sent between devices. With TLS enabled this meant that the status of
messages sent and received was reported by the controller before and after decryption. The
results for testing from runs with TLS for average, maximum, and minimum may be found
in Table 5.4.

Table 5.4. TLS Time Performance.

We determined from the 30 runs that the average percent increase in overhead due to TLS
being enabled to the system was 86%. We then measured the time added due to adding

57

proxies with D1 and D3 for the set up between a controller and switch was 22% with
OOB pre-shared long-term derivative keys. This higher percentage delay accounts for the
larger data and digest being processed by BLAKE2b. These results identify the estimated
additional overhead of the derivative with TLS, but do not include the potential time to
perform key management of the dialect. These results include the time that it takes to add
D3 to TLS handshake messages from OpenFlow Hello to OpenFlow echo request. The time
to perform normal messages between the controller and switches showed no additional time
delay at the controller or switch. The time interval that OpenFlow echo requests and echo
reply are sent are every 5 seconds and they were sent and received within one second with
both TLS and D3.

58

CHAPTER 6:
Conclusion and Future Work

This chapter details limitations associated with the MS1 dialect design and the evaluation
experiment, conclusions from the overall thesis research, and recommended future work.
The main results provided from this research include: (i) formulation of a systematic
methodology for dialecting network protocols, (ii) the selected design and implementation
for an OpenFlow dialect, and (iii) the time delay associated with including MS1 into
OpenFlow using an emulator.

6.1 Limitations
The limitations for this experiment included the emulation of an environment compared to
experiment on physical components, proxy design to include error handling, formal security
analysis, and timing. One limitation inherent to starting the experiment is timing. The key
generators are synchronized using time as a salt. This means that the proxies must be
started within a second of each other or else MAC verification failures will occur, even in
the absence of an attacker. The limitation on synchronization of starting the proxies was
created to not require pre-shared salts between the proxies. For this specific implementation,
the life of a MAC was limited to 5 seconds. The decision for a 5-second MAC life may be
found in Section 4.4. The current proxy logic design supports a time interval down to 2
seconds before failing to authenticate any messages. At a MAC life of less than 2 seconds,
message authentication verification failed and the connections were broken by the proxies.
Further logic required to handle a one-key-per-message creation and validation was not built
into the proxies.

Another limitation associated with this research is the quantification of the security benefits
of protocol dialection. Formal and computational security analysis was not completed
for dialect MS1. For example, the time and resources required to break the dialected
protocol was not determined experimentally. Formal analysis is required to determine
any potential dangers associated with using two different security systems (dialect and
TLS) for OpenFlow. Each security system contained different keys; however, the keys
for both derivatives were the same. Security analysis is required to determine any risks

59

or vulnerabilities associated with use of the same keys for each derivative or if different
keys are required. This analysis is required to determine the extent to which the security
objectives have been met by the addition of one or more derivatives. Individual derivative
analysis is also necessary to verify that each derivative should be added to a dialect.

A third limitation associated with this experiment type is that we did not perform these same
tests on physical components and instead only performed operations on a single machine.
A limitation in regards to robustness and fault tolerance is that the proxy design for this
experiment was basic and designed primarily for allowing the inclusion of the security
modules by decoupling and intercepting the communication path of a switch and controller.
This proxy does not handle all cases and conditions between a switch and controller that
would be required for all operations. The proxies do not recover a dropped connection
automatically, which could lead to a denial-of-service vulnerability. Therefore, exception
handling is one limitation associated with this basic SDN proxy.

During the set up process, the chosen OpenFlow message parsing package exhibited a
limitation during proxy operation. Based on the OpenFlow message parser used in this
experiment, two out of ten messages for set up could not be dialected due they were too
large. Both large messages or small messages (near zero) can disrupt proxy operation due to
the current OpenFlow message parsing package. The package that exhibited this limitation
is the Kytos package message parser. The messages that caused failure of the parser were
excluded from the derivative process for D1 and D2. Further investigation of D2 is needed.
This limitation is not applicable to D1 and D3 because D1 is a set length and D3 operates
as a wrapper that does not analyze the internal contents of the OpenFlow packet.

6.2 Conclusion
This research provides a framework for the creation of a protocol dialect, a novel authen-
tication defense layer that can be used directly in OpenFlow, a novel method to protect
TLS handshake authentication, implementation of a dialect, and time measurements of the
proposed security measures in the Mininet testing environment. The framework provided
in Chapter 3 provides a process to add information security to existing protocols. The
experiment for this research demonstrates an example of this process with OpenFlow as a
proof-of-concept. It was determined during implementation that this process also allows for

60

authentication before TLS is enabled. In this case, the designed protocol dialect provides
enforced authentication before a TLS handshake is allowed via a proxy system and during
the handshake with D3. This design provides another layer of defense against an attacker
from performing some attacks on TLS such as a cipher-suite downgrade attack.

This dialect can provide a method of authentication on the very first OpenFlow packet that is
sent and on each following packet with few exceptions. Previous exceptions were mentioned
in Chapter 5 limitations. The proxies for this research allowed for one controller (external
to Mininet) and one switch to setup and maintain connectivity. The results from testing
demonstrated that the overhead assigned to a one-controller, one-switch, and two-proxy
system was approximately 10% or less. In the event that an optimized proxy is used, that
delay was reduced to less than 1 percent. With TLS enabled, less than 22% overhead was
added. This higher percentage with TLS accounts for a larger message due to the addition
of encryption.

This system demonstrates that dialect creation and verification should be scalable based
on the types of algorithms chosen. It is anticipated that using lower level languages in the
future would reduce the overhead identified in this experiment. The selection of a proxy
method of implementation also added time to our results because two additional TCP/IP
connections were made compared to the original SDN for this experiment. Therefore,
the results identified here are expected to be near worst-case due to the additional time to
perform Python functions.

This proof-of-concept demonstrates that it is possible to incorporate a dialect into an existing
protocol in OpenFlow. With verification through experimentation, the OpenFlow protocol
is a viable candidate for dialects and in this case the addition of a MAC into the protocol
header. Using the experimenter message format, the OpenFlow protocol also allows for
the introduction of new key management methods, dialect management, and authentication
systems using a custom-tailored message format that still meets the OpenFlow protocol
standard. This research also demonstrated that it is possible to create proxies that can
operate within a Mininet environment.

D1 provides 16-bits of security and a 5-second MAC lifespan to add an initial layer of
authentication before any follow-on handshake (with or without TLS) is allowed. The MAC
life is extremely limited to reduce the ability of an attacker from being able to determine the

61

OOB long-term keys used in the system. D1 is only used once per conversation. Unique
keys are generated every 5 seconds which improves upon the 16-bits of initial security by
D1. As another method to improve security D2, the variable data field size has allowed
for 512-bits to be added which can be used to authenticate the derivative message as well
as a corresponding OpenFlow message that is referenced by its transaction ID. Lastly, D3
is provided as an external wrapper to protect OpenFlow and TLS as an additional security
layer. This wrapper is utilized during and after the TLS handshake by encapsulating all
TLS and OpenFlow data for additional authentication.

The addition of TLS to this experiment was limited due to the proxy configuration. Running
TLS from the controller to switch would not allow for modification by the proxy, therefore
the only method to include TLS would be by creating a TLS connection from proxy to
proxy for this implementation. The ability to run both a dialect and TLS should improve
information security for the command and control channel of an SDN. It is essential that
the derivatives and TLS utilize different keys to ensure that vulnerabilities are not added to
TLS via the addition of a dialect.

Protocol dialects present challenges in both design, implementation, and analysis. A
protocol dialect takes time to design, time to implement, additional resources, and potentially
more complex security analysis. Time is added in both design, implementation, and use
when a dialect is added to a protocol. Protocol dialect design can also be reduced by future
standardization which is only modified by the use of different keys or tailored algorithm
settings. The time overhead associated with the addition of a dialect can be reduced
by an appropriate selection of algorithms and programming language. The memory and
resources required to add a dialect can also be reduced by the selection of algorithms and
key management systems as well as the location of where the dialect is installed (binary vs
proxy).

6.3 Future Work
Further research into this field requires integration with physical machines, such as those
used in production SDNs. The integration with an SDN could be performed once a physical
proxy is designed and placed in-line with an SDN controller and switch. The inclusion
within a physical system will allow for portability, testing, and verification that security and

62

performance requirements for an organization are met. Security analysis is also required to
assess the extent that security is improved by incorporating a dialect in an existing protocol.
This security analysis should also ensure that there is no vulnerability added to TLS by the
addition of the dialect. Future work should include further exception handling by both the
derivative software and proxy software. It would also include creating a multiple proxy
system that had an assigned proxy for each switch and utilizes a many switch system to test
scalability. Open-source protocols and the dialecting process enables additional layers of
security to be built into base communication network protocols.

Improvements and optimization of the functions and techniques used inside of the proxies is
recommended. One such example would be randomized salts and key management design
so that OOB is not the primary key management method. The current proxy design utilizes
time as the salt synchronization between proxies, but could be improved with salts that are
shared via D2 or randomized. D2 also has the potential use for key management in later
implementations that allow for normal or emergency key updates for the dialect. D2 also
could provide another method to improve synchronization in the event that a disconnect
occurs for fault tolerance or availability attack mitigation.

Based on the derivative overhead determined from this experiment, it may be desirable to
combine all three derivatives designed here to be in one dialect. If the derivative programs
were included into the software for a controller and switch and had access to the internal
data of OpenFlow messages, then all three derivatives could be utilized depending upon
the security analysis results for the intended network. It is important to note that limiting
additional security risks to TLS should be prioritized and considered when adding dialect,
especially for an SDN. D1 is utilized as an initial layer of defense to prevent unauthorized
connections from attempting to setup or exchange TLS key set-up information. The second
phase of communication would add security through the incorporation of D3 for the TLS
handshake and all follow on messages as a wrapper. The last phase of communication
would be D2 for dialect management such as key updates.

63

THIS PAGE INTENTIONALLY LEFT BLANK

64

APPENDIX A:
Source Code Overview

This appendix contains the required commands, scripts, and software required to perform
the experiments in this thesis. A virtual machine (VM) is provided which contains all of
the software both experiments. As another option, the scripts for the proxies, controllers,
and switches are provided in Appendices B-F. The proxies were developed utilizing the
following references during code development [28] [29] [30] [31] [32] [33] [34].

Protocol Dialect Experiment Virtual Machine:

An Ubuntu VM in .ova format is available at the following link containing all software
used in this thesis. Software included inside of the experiment VM includes Mininet 2.2.2,
Python 3.6.8, and the POX controller. The password for the VM is "default".

https://drive.google.com/file/d/16zsDmageep6gMjQ946PswjtD1IBjNi6q/view?usp=

sharing

Once the .ova file has been downloaded and imported to a Virtual Machine software the
following steps are required to repeat the experiments performed in this thesis.

To perform the TLS disabled experiment:

• Controller Command (POX Controller) (Appendix B)
• Mininet Command (Appendix B)
• Controller Proxy Synchronous Start Up (Appendix C)
• Switch Proxy Synchronous Start Up (Appendix D)

To perform the TLS enabled experiment:

• Controller Command (ovs-testcontroller) (Appendix B)
• Mininet Command (Appendix B)
• Controller Proxy Synchronous Start Up(Appendix E)
• Switch Proxy Synchronous Start Up (Appendix F)

65

Proxies and Dialect without TLS:

To run the experiment with TLS disabled (Mininet by default) requires Mininet, POX
controller, and both proxies. These proxies contain D1 and D2. The first script is ran as a
proxy for the controller in an SDN. The second script is ran as the proxy for a switch in
an SDN. The optimized version of these scripts can be ran by commenting out the print
statements provided by this script.

• Derivative 1 and 2 Controller Proxy (Appendix C): This program is the proxy that
operates with the POX controller. It serves as a client to the POX controller which
operates as a server. This controller proxy contains D1 and D2 and is started after the
POX controller has been started. The controller proxy program must run before the
proxy for the switch because the controller proxy acts as a server for the other proxy.

• Derivative 1 and 2 Switch Proxy (Appendix D): The following proxy script con-
tains D1 and D2. The proxy connects to the OVS first as a server in a client-server
relationship. This proxy then connects to the other proxy as a client. D1 and D2 in
this proxy allow for OpenFlow messages to have additional authentication security as
well as an initial authentication check with D1.

Proxies and Dialect with TLS:

To run the experiment with TLS enabled two different proxies, a TLS enabled OVS, and
an ovs-testcontroller. These proxies contain D1 and D3. The proxies provided have print
statements enable to show the results and messages that are being process. While TLS
is enabled using the following programs the proxies are unable to read the TLS encrypted
packet. The optimized versions of these scripts require commenting out the print statements
provided with each proxy. The ovs-testcontroller debug statements are the primary method
to verify and observe traffic that is being sent in the emulated network.

• Derivative 1 and 3 Controller Proxy (Appendix E): This proxy operates with the
ovs-testcontroller. It serves as a client to the ovs-testcontroller which operates as a
server and contains D1 and D3. It is designed to not read TLS packets. This script
is started after the ovs-testcontroller has been started and the Mininet environment.
This program must run before the proxy for the switch because the controller proxy
acts as a server for the other proxy.

66

• Derivative 1 and 3 Switch Proxy (Appendix F): This proxy script contains D1 and
D3. The proxy connects to the OVS first as a server in a client-server relationship.
This proxy then connects to the other proxy as a client. D1 and D3 in this proxy allow
for OpenFlow and TLS messages to have additional authentication security.

67

THIS PAGE INTENTIONALLY LEFT BLANK

68

APPENDIX B:
SDN Controller Commands and Switch Setup

TLS Disabled Controller Set up:

To start the emulation system in a method that support the addition of the proxies requires
a specific set of command to start the switch and controller. Both of these commands
must be performed before the above proxy scripts are started. The command to start the
external (outside of Mini-Net) POX controller consists of the OpenFlow version to support,
an assigned IP address, and port number for OpenFlow packets. The command to start the
POX controller must be performed inside of the folder containing POX.

./pox.py openflow.of_01 --address=127.0.0.5 --port=6633

TLS Disabled Emulator Command:

Once the POX controller has been started the Mini-Net emulation system must be started
with the specifications of an IP address for the switch proxy (appears as controller) and the
type of switch to use for the emulator. The command to start Mini-Net with an external
controller is as follows:

sudo mn --controller=remote,127.0.0.1 --mac -i 10.1.1.0/24 --switch=ovsk

TLS Enabled Environment Controller Command:

The following command is required to start an ovs-testcontroller with TLS enabled. The
certificates required by this command must be created first in accordance with [23]. This
command must also be performed before sslexp.py. In the process of establishing the
connection the ovs-testcontroller is are started first, then the Mini-Net emulator, and finally
the proxies. This means that the controller and switch will not communicate until the
proxies are started.

69

sudo ovs-testcontroller -v pssl:6633:127.0.0.5 \

- p /etc/openvswich/ctl-privkey.pem -c /etc/openvswitch/ctl-cert.pem \

- C /var/lib/openvswitch/pki/switchca/cacert.pem

TLS Emulator Script sslexp.py:

The following script is required to run the TLS enabled Mini-Net environment. This
program starts the Mini-Net environment without a controller. The controller must be
started first in another terminal window before this program is started. This script has been
modified from [23]. The IP addresses and port numbers have been modified to meet the
design of Figure 5.2.

#File: ssl_exp.py

#Name: Michael Sjoholm-Sierchio

#Modified from https://github.com/mininet/mininet/wiki/SSL-on-Open-vSwitch-a

#nd-ovs-controller

from mininet.net import Mininet

from mininet.node import Controller, RemoteController

from mininet.cli import CLI

from mininet.log import setLogLevel, info

def emptyNet():

net = Mininet(controller=RemoteController)

net.addController(’c0’)

h1 = net.addHost(’h1’)

h2 = net.addHost(’h2’)

s1 = net.addSwitch(’s1’)

net.addLink(h1, s1)

net.addLink(h2, s1)

net.start()

s1.cmd(’ovs-vsctl set-controller s1 ssl:127.0.0.1:6653’)

70

CLI(net)

net.stop()

if __name__ == ’__main__’:

setLogLevel(’info’)

emptyNet()

71

THIS PAGE INTENTIONALLY LEFT BLANK

72

APPENDIX C:
D1&D2 without TLS Controller Proxy

#Michael Sjoholm-Sierchio

#File: D1&D2_withouttls_ControllerProxy.py

#Ref: https://pymotw.com/2/socket/binary.html

#Ref: https://stackoverflow.com/questions/14043886/python

#-2-3-convert-integer-to-bytes-cleanly

Reference: docs.kytos.io kytos developer guide

Reference: Working with binary data in python dev_dungeon

Reference: Low Level OpenFlow Messages Parser used by Kytos SDN

#Platform https://kytos.io

Reference: For secure hash library https://docs.python.org/dev/library/hashlib.html?

#highlight=s

Reference: https://www.devdungeon.com/content/working-binary-data-python

Reference: https://pymotw.com/3/hmac

Reference: https://docs.python.org/3/library/hashlib.html

Reference: https://en.wikipedia.org/wiki/HKDF

import socket

import sys

import time

import binascii

import struct

import sys

import os

import datetime

import hashlib

import hmac

import base64

import binascii

import socket

from hashlib import blake2b

from threading import Timer

73

from math import ceil

from pyof.foundation.base import GenericStruct

#from pyof.foundation.basic_types import UBInt8, UBInt16

from pyof.v0x01.common.utils import unpack_message

from pyof.foundation.base import GenericMessage

from pyof.v0x04.common.header import Header

from pyof.v0x01.symmetric.hello import Hello

from pyof.v0x01.controller2switch.features_request import FeaturesRequest

from pyof.v0x01.symmetric.echo_request import EchoRequest

from pyof.v0x01.symmetric.vendor_header import VendorHeader

#***************IMPORT ABOVE********************

#__

#Setup the key and generation

print("\n")

print("Program is running")

print("Protocol Dialect Walkthrough Initiated")

print("--------------------------------------")

#print("Include starting Mini-Net here")

print("\n")

#********Read In Long-Term Key and Create Keys******

print("Reading in shared key")

#Obtain the shared secret key at the beginning of operation from a file or OOB

key = b’457c311719813785096ef45f466aead3db4e535f4a7b0d06084621c0e01220a6b

43b90879fc23189d4fed6456e31529905bdc83056feda5940444893a83808bd’

#print("Here is the key from file")

##print(key)

print("Here is the length of the key")

print(len(key))

#Creat a salt, which will change every 5 seconds

standard_time = time.time()

s = round(standard_time)

74

salt = str(s)

def salt_time(salt):

salt = int(salt)

time_check = round(time.time())

time_result = time_check - salt

if(time_result > 5):

s = round(time.time())

salt = str(s)

print("Here is the salt")

print(salt)

return(salt)

print("\n")

salt = salt_time(salt)

#******************COMPLETE MAKING SALT*************

#******************KEY GENERATOR************

data = b’597133743677397A24432646294A404E635266556A586E5A72347537782141254

42A472D4B6150645367566B59703373357638792F423F4528482B4D62516554’

hash_len = 32

length = 64

info = b""

def hmac_sha512(key, data):

return hmac.new(key, data, hashlib.sha512).digest()

ikm = hmac_sha512(key,data)

def hkdf(length, ikm, salt, info):

prk = hmac_sha512(salt if len(salt) > 0 else bytes([0]*hash_len), ikm)

t = b""

okm = b""

for i in range(int(ceil(length / hash_len))):

75

t = hmac_sha512(prk, t + info + bytes([1+i]))

okm += t

return okm[:length]

salt = salt_time(salt)

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

#print("Here is the first generated key")

#print(key)

print("*************************************")

#___

#Derivative create and check

def derivative1_create(message, salt):

print("The key is:")

salt = salt_time(salt)

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

dialected_message = message

print("Removing the previous xid to perform MAC")

mutable_bytes = bytearray(dialected_message)

message_copy = message

print("Current length is:")

print(len(mutable_bytes))

while((len(mutable_bytes)) > 4):

i = len(mutable_bytes)

i = i-1

del mutable_bytes[i]

print("The current length is:")

76

print(len(mutable_bytes))

print("The modified message without xid is:")

print(mutable_bytes)

total_message = mutable_bytes

digester = blake2b(key, digest_size = 4)

digester.update(mutable_bytes)

mac1 = digester.hexdigest()

print("Origional MAC Printed here")

print(mac1)

print("\n")

translate_hex = bytes.fromhex(mac1)

translate_hex = bytearray(translate_hex)

print("Lastly, the new xid is:")

print(translate_hex)

print("Now to add the translate mac back to the message")

total_message = total_message + translate_hex

print(total_message)

#dialected_message = message

dialected_message = total_message

return dialected_message

def derivative1_check(msg_recv,salt):

#Transaction ID 0

print("The msg_recv is:")

print(msg_recv)

transaction_id0 = b"\x00\x00\x00\x00"

#checked_message = msg_recv

print("Removing the previous xid to perform MAC")

mutable_bytes = bytearray(msg_recv)

print("Current length is:")

print(len(mutable_bytes))

while((len(mutable_bytes)) > 4):

i = len(mutable_bytes)

i = i-1

del mutable_bytes[i]

77

print("The current length is:")

print(len(mutable_bytes))

print("The modified message without xid is:")

print(mutable_bytes)

#Creating a MAC to verify that the recv message matches what is expected

print("\n")

print("The key is:")

salt = salt_time(salt)

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

#print(key)

print("The length of key is:")

print(len(key))

digester2 = blake2b(key, digest_size = 4)

digester2.update(mutable_bytes)

mac2 = digester2.hexdigest()

print("MAC Printed here")

print(mac2)

print("\n")

new_mac = binascii.unhexlify(mac2)

new_mac = mac2

new_number = int(new_mac, 16)

print("Digest_calc is:")

digest_calc = new_number

print(digest_calc)

#Deteremine the value sent by the message

binary_msg = msg_recv

msg = unpack_message(binary_msg)

print("The type of the mesage is:")

print(msg.header.message_type)

print("The xid is:")

78

print(msg.header.xid)

value1_compare = msg.header.xid

#Compare the two values and send to device is expected matches received

print("Comparing values:")

print(value1_compare)

print(digest_calc)

if(value1_compare == digest_calc):

final_message = mutable_bytes + transaction_id0

else:

final_message = b"\x11\x11\x11\x11\x11\x11"

#quit(1)

checked_message = final_message

print("The message to send on to device is:")

print(checked_message)

return checked_message

#__

#Define functions for derivative 2

#*********Create Experimenter Message**********

def derivative2_create(message,salt):

print("Creating derivative 2 message")

version = b"x04"

type_openflow = b"x04" #Experimenter type message

length_openflow = b"x08"

total_message = bytearray()

openflow_header_exp = (b’\x01\x04\x08’)

print("Here is the first portion of the header")

total_message = total_message + openflow_header_exp

print(total_message)

79

print("Setting the experiment ID")

print(b"\x01\x01\x01\x01")

experiment_id = b"\x01\x01\x01\x01"

print("The new message with the temp exp id for protocol dialecting is:")

total_message = total_message + experiment_id

print(total_message)

print("\n")

#********Read in OpenFlow message to correlate xid***

print("The experimenter type is the unique code for NPS")

print("The unique code for NPS is")

print(b’\x02\x02\x02\x02’)

experiment_type_nps = b"\x02\x02\x02\x02"

print("The new total message is:")

total_message = total_message + experiment_type_nps

#Determine the xid of the normal OpenFlow message

print("Here is the type of file read in at the proxy")

binary_msg = message

msg = unpack_message(binary_msg)

print(msg.header.message_type)

print(msg)

print("\n")

print("Here is the xid for the read in file which is used for the experiment type")

mutable_bytes = bytearray(binary_msg)

#print("Current length is:")

#print(len(mutable_bytes))

print(msg.header.xid)

value = msg.header.xid

value = (int(str(value)))

value_hex = (value).to_bytes(4, byteorder="big")

print(value_hex)

print("The new message with the experiment type (other message transaction ID is:")

total_message = total_message + value_hex

80

print(total_message)

print("\n")

#**********Create Final MAC for Verification of Experimenter Message**

print("\n")

print("The key is:")

salt = salt_time(salt)

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

#print(key)

print("Creating the data portion of the message for the MAC:")

#print("The data section with 512 bit MAC is:")

digester4 = blake2b(key, digest_size = 64)

digester4.update(binary_msg)

digester4.update(total_message)

mac2 = digester4.hexdigest()

#print(mac2)

translate_hex = bytes.fromhex(mac2)

print("The translated mac is:")

print(translate_hex)

print("The total message is:")

total_message = total_message + translate_hex

print(total_message)

derivative2_msg = total_message

print("\n")

return derivative2_msg

def derivative2_verify(openflow_msg, deriv2_message,salt):

#***Verify the OpenFlow message**********************

#It is necessary to read in both the OpenFlow Message and the Authentication Message

print("***")

81

print("Reading in the other OpenFlow message")

#This is the OpenFlow message that is being looked at first

print("Here is the type of file read in at the proxy")

msg_tocheck = unpack_message(openflow_msg)

print(msg_tocheck.header.message_type)

print(msg_tocheck)

print("\n")

print("Reading in authentication message to validate the OpenFlow message")

data_from_proxy = deriv2_message

print("\n")

print("Removing the previous MAC to perform MAC check")

mutable_bytes = bytearray(data_from_proxy)

mutable_bytes_copy = bytearray(data_from_proxy)

after_length = len(mutable_bytes) - 64

j = 0

while(True):

del mutable_bytes_copy[j]

if(len(mutable_bytes_copy) == 64):

break

while((len(mutable_bytes)) > after_length):

i = len(mutable_bytes)

i = i-1

del mutable_bytes[i]

print("The modified message without MAC is:")

print(mutable_bytes)

print("The MAC parsed out from message is:")

#mac_fill = hex(mac_fill)

print(mutable_bytes_copy)

salt = salt_time(salt)

82

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

print("Here is the key")

#print(key)

digester5 = blake2b(key, digest_size = 64)

digester5.update(openflow_msg)

print(openflow_msg)

digester5.update(mutable_bytes)

mac2 = digester5.hexdigest()

translate_hex = bytes.fromhex(mac2)

translate_hex = bytearray(translate_hex)

print("\n")

print("Generated MAC to check against Printed here")

print(translate_hex)

print("The MAC from the message is:")

print(mutable_bytes_copy)

if(translate_hex == mutable_bytes_copy):

print("The MAC has passed the check and returning to proxy")

return openflow_msg

else:

print("The MAC did not pass the check")

return b"\x11\x11\x11\x11\x11\x11"

#___

#Setup network connections

#Establish the socket settings to the controller

sock = socket.socket(socket.AF_INET, socket. SOCK_STREAM)

server_name = ’localhost’

server_address = (’127.0.0.5’, 6633)

sock.connect(server_address)

83

print("Connected to controller")

print("\n")

print("Waiting for the other proxy to connect")

#Establish the socket settings for the switch proxy

#This script is the server

sock2 = socket.socket(socket.AF_INET, socket. SOCK_STREAM)

server2_address = (’127.0.0.3’, 6673)

sock2.bind(server2_address)

sock2.listen(1)

connection, client_address = sock2.accept()

print("The other proxy has connected")

#__

#Receive hello from controller

data = sock.recv(32000)

receipt = 0

receipt = data

print("Controller 1 sent:", receipt)

print(type(receipt))

print("\n")

#Send OpenFlow Hello to deriivative1_create

receipt = derivative1_create(receipt, salt)

#Send dialected hello from controller to proxy

print("Sending openflow message to proxy")

print(receipt)

connection.sendall(receipt)

print("Data sent")

print("\n")

#Receive hello from proxy

data = connection.recv(32000)

receipt = 0

84

receipt = data

print("Switch sent:", receipt)

print(type(receipt))

print("\n")

#Check authentication of OpenFlow Hello

receipt = derivative1_check(receipt, salt)

#Send hello from proxy to controller

print("Sending data to controller")

print(receipt)

sock.sendall(receipt)

print("Data sent")

print("\n")

#Receive command from controller

data = sock.recv(32000)

receipt = 0

receipt = data

print("Controller sent:", receipt)

print(type(receipt))

print("\n")

#Send data to proxy

print("Sending data to proxy")

connection.sendall(receipt)

print("Data sent to proxy")

print("\n")

#Test Derivative 2 create

deriv2_message = derivative2_create(receipt,salt)

print("Sending experimenter to proxy")

print(deriv2_message)

connection.sendall(deriv2_message)

85

print("Data sent")

print("\n")

#Recieve data from proxy

data = connection.recv(32000)

receipt = 0

receipt = data

print("Switch sent:", receipt)

print(type(receipt))

print("\n")

if(len(receipt) > 70):

if(receipt == b’’):

print("Do not check this due to size")

else:

#Send data to controller

print("Sending data back to controller")

sock.sendall(receipt)

print("Data sent back to controller")

print("\n")

else:

#Receive derivative 2 from proxy

data = connection.recv(32000)

deriv2_message = 0

deriv2_message = data

print("Proxy sent derv2 message:", deriv2_message)

print(type(deriv2_message))

print("\n")

receipt = derivative2_verify(receipt, deriv2_message,salt)

if(receipt == b’’):

print("Empty message sent")

else:

#Send data to controller

86

print("Sending data back to controller")

sock.sendall(receipt)

print("Data sent back to controller")

print("\n")

while(True):

#Recieve command from controller

data = sock.recv(32000)

receipt = 0

receipt = data

print("Controller sent:", receipt)

print(type(receipt))

print("\n")

#Send data to proxy

print("Sending data to proxy")

connection.sendall(receipt)

print("Data sent to proxy")

print("\n")

try:

deriv2_message = derivative2_create(receipt,salt)

print("Sending experimenter to proxy")

print(deriv2_message)

connection.sendall(deriv2_message)

print("Sent experimenter to proxy")

print("\n")

except:

print("Had an exception")

print("Caused by message:")

print(receipt)

deriv2_message = b’’

#Recieve data from proxy

data = connection.recv(32000)

87

receipt = 0

receipt = data

print("Switch sent:", receipt)

print(type(receipt))

print("\n")

if(receipt == b’’):

print("Empty message sent")

continue

else:

#Receive derivative 2 from proxy

data = connection.recv(32000)

deriv2_message = 0

deriv2_message = data

print("Proxy sent derv2 message:", deriv2_message)

print(type(deriv2_message))

print("\n")

try:

receipt = derivative2_verify(receipt, deriv2_message,salt)

#Send data to controller

print("Sending data back to controller")

sock.sendall(receipt)

print("Data sent back to controller")

print("\n")

except:

print("Had an exception during verification")

88

APPENDIX D:
D1&D2 without TLS Switch Proxy

#Michael Sjoholm-Sierchio

#File: D1&D2_withouttls_SwitchProxy.py

#Ref: https://pymotw.com/2/socket/binary.html

#Ref: https://stackoverflow.com/questions/14043886/python

#-2-3-convert-integer-to-bytes-cleanly

#Ref: https://www.cyberciti.biz/faq/python-convert-string-to-int-functions

Reference: docs.kytos.io kytos developer guide

Reference: Low Level OpenFlow Messages Parser used by Kytos SDN

#Platform https://kytos.io

Reference: For secure hash library https://docs.python.org/dev/library/hashlib.html?

#highlight=s

Reference: https://www.devdungeon.com/content/working-binary-data-python

Reference: https://pymotw.com/3/hmac

Reference: https://docs.python.org/3/library/hashlib.html

Reference: https://en.wikipedia.org/wiki/HKDF

import sys

import socket

import time

import random

import binascii

import struct

import os

import datetime

import hashlib

import hmac

import base64

import binascii

import socket

from hashlib import blake2b

from threading import Timer

89

from math import ceil

from pyof.foundation.base import GenericStruct

from pyof.v0x01.common.utils import unpack_message

from pyof.foundation.base import GenericMessage

from pyof.v0x04.common.header import Header

from pyof.v0x01.symmetric.hello import Hello

from pyof.v0x01.controller2switch.features_request import FeaturesRequest

from pyof.v0x01.symmetric.echo_request import EchoRequest

from pyof.v0x01.symmetric.vendor_header import VendorHeader

#***************IMPORT ABOVE********************

#__

#Setup the key and generation

#********Read In Long-Term Key and Create Keys******

print("Reading in shared key")

#Obtain the shared secret key at the beginning of operation from a file or OOB

key = b’457c311719813785096ef45f466aead3db4e535f4a7b0d06084621c0e01220a6b

43b90879fc23189d4fed6456e31529905bdc83056feda5940444893a83808bd’

#print("Here is the key from file")

#print(key)

print("Here is the length of the key")

print(len(key))

#Create a salt, which will change every 5 seconds

standard_time = time.time()

s = round(standard_time)

salt = str(s)

def salt_time(salt):

salt = int(salt)

time_check = round(time.time())

time_result = time_check - salt

if(time_result > 5):

s = round(time.time())

90

salt = str(s)

print("Here is the salt")

print(salt)

return(salt)

print("\n")

salt = salt_time(salt)

#******************KEY GENERATOR************

data = b’597133743677397A24432646294A404E635266556A586E5A72347537782141254

42A472D4B6150645367566B59703373357638792F423F4528482B4D62516554’

hash_len = 32

length = 64

info = b""

def hmac_sha512(key, data):

return hmac.new(key, data, hashlib.sha512).digest()

ikm = hmac_sha512(key,data)

def hkdf(length, ikm, salt, info):

prk = hmac_sha512(salt if len(salt) > 0 else bytes([0]*hash_len), ikm)

t = b""

okm = b""

for i in range(int(ceil(length / hash_len))):

t = hmac_sha512(prk, t + info + bytes([1+i]))

okm += t

return okm[:length]

salt = salt_time(salt)

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

#print("Here is the first generated key")

91

#print(key)

print("*************************************")

#___

#Derivative create and check

def derivative1_create(message, salt):

print("The key is:")

salt = salt_time(salt)

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

dialected_message = message

print("Removing the previous xid to perform MAC")

mutable_bytes = bytearray(dialected_message)

message_copy = message

print("Current length is:")

print(len(mutable_bytes))

while((len(mutable_bytes)) > 4):

i = len(mutable_bytes)

i = i-1

del mutable_bytes[i]

print("The current length is:")

print(len(mutable_bytes))

print("The modified message without xid is:")

print(mutable_bytes)

total_message = mutable_bytes

digester = blake2b(key, digest_size = 4)

digester.update(mutable_bytes)

mac1 = digester.hexdigest()

print("Origional MAC Printed here")

print(mac1)

print("\n")

92

translate_hex = bytes.fromhex(mac1)

translate_hex = bytearray(translate_hex)

print("Lastly, the new xid is:")

print(translate_hex)

print("Now to add the translate mac back to the message")

total_message = total_message + translate_hex

print(total_message)

#dialected_message = message

dialected_message = total_message

return dialected_message

def derivative1_check(msg_recv,salt):

#Transaction ID 0

print("The msg_recv is:")

print(msg_recv)

transaction_id0 = b"\x00\x00\x00\x00"

#checked_message = msg_recv

print("Removing the previous xid to perform MAC")

mutable_bytes = bytearray(msg_recv)

print("Current length is:")

print(len(mutable_bytes))

while((len(mutable_bytes)) > 4):

i = len(mutable_bytes)

i = i-1

del mutable_bytes[i]

print("The current length is:")

print(len(mutable_bytes))

print("The modified message without xid is:")

print(mutable_bytes)

#Creating a MAC to verify that the recv message matches what is expected

print("\n")

#print("The key is:")

salt = salt_time(salt)

salt = str(salt)

93

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

#print(key)

print("The length of key is:")

print(len(key))

digester2 = blake2b(key, digest_size = 4)

digester2.update(mutable_bytes)

mac2 = digester2.hexdigest()

print("MAC Printed here")

print(mac2)

print("\n")

new_mac = binascii.unhexlify(mac2)

new_mac = mac2

new_number = int(new_mac, 16)

print("Digest_calc is:")

digest_calc = new_number

print(digest_calc)

#Deteremine the value sent by the message

binary_msg = msg_recv

msg = unpack_message(binary_msg)

print("The type of the mesage is:")

print(msg.header.message_type)

print("The xid is:")

print(msg.header.xid)

value1_compare = msg.header.xid

#Compare the two values and send to device is expected matches received

print("Comparing values:")

print(value1_compare)

print(digest_calc)

if(value1_compare == digest_calc):

final_message = mutable_bytes + transaction_id0

else:

94

final_message = b"\x11\x11\x11\x11\x11\x11"

checked_message = final_message

print("The message to send on to device is:")

print(checked_message)

return checked_message

#__

#Define functions for derivative 2

#*********Create Experimenter Message**********

def derivative2_create(message,salt):

print("Creating derivative 2 message")

version = b"x04"

type_openflow = b"x04" #Experimenter type message

length_openflow = b"x08" #Not sure about this

total_message = bytearray()

openflow_header_exp = (b’\x01\x04\x08’)

print("Here is the first portion of the header")

total_message = total_message + openflow_header_exp

print(total_message)

print("The following is a temporary experiment ID:")

print(b"\x01\x01\x01\x01")

experiment_id = b"\x01\x01\x01\x01"

print("The new message with the temp exp id for protocol dialecting is:")

total_message = total_message + experiment_id

print(total_message)

print("\n")

#********Read in OpenFlow message to correlate xid***

print("The experimenter type is the unique code for NPS")

print("The unique code for NPS is")

print(b’\x02\x02\x02\x02’)

95

experiment_type_nps = b"\x02\x02\x02\x02"

print("The new total message is:")

total_message = total_message + experiment_type_nps

#Determine the xid of the normal OpenFlow message

print("Here is the type of file read in at the proxy")

binary_msg = message

msg = unpack_message(binary_msg)

print(msg.header.message_type)

print(msg)

print("\n")

print("Here is the xid for the read in file which is used for the experiment type")

mutable_bytes = bytearray(binary_msg)

#print("Current length is:")

#print(len(mutable_bytes))

print(msg.header.xid)

value = msg.header.xid

value = (int(str(value)))

value_hex = (value).to_bytes(4, byteorder="big")

print(value_hex)

print("The new message with the experiment type (other message transaction ID is:")

total_message = total_message + value_hex

print(total_message)

print("\n")

#**********Create Final MAC for Verification of Experimenter Message**

print("\n")

#print("The key is:")

salt = salt_time(salt)

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

#print(key)

96

print("Creating the data portion of the message for the MAC:")

#print("The data section with 512 bit MAC is:")

digester4 = blake2b(key, digest_size = 64)

digester4.update(binary_msg)

digester4.update(total_message)

mac2 = digester4.hexdigest()

#print(mac2)

translate_hex = bytes.fromhex(mac2)

print("The translated mac is:")

print(translate_hex)

print("The total message is:")

total_message = total_message + translate_hex

print(total_message)

derivative2_msg = total_message

print("\n")

return derivative2_msg

def derivative2_verify(openflow_msg, deriv2_message,salt):

#***Verify the OpenFlow message**********************

#It is necessary to read in both the OpenFlow Message and the Authentication Message

print("***")

print("Reading in the other OpenFlow message")

#This is the OpenFlow message that is being looked at first

print("Here is the type of file read in at the proxy")

msg_tocheck = unpack_message(openflow_msg)

print(msg_tocheck.header.message_type)

print(msg_tocheck)

print("\n")

print("Reading in authentication message to validate the OpenFlow message")

data_from_proxy = deriv2_message

print("\n")

97

print("Removing the previous MAC to perform MAC check")

mutable_bytes = bytearray(data_from_proxy)

mutable_bytes_copy = bytearray(data_from_proxy)

after_length = len(mutable_bytes) - 64

j = 0

while(True):

del mutable_bytes_copy[j]

if(len(mutable_bytes_copy) == 64):

break

while((len(mutable_bytes)) > after_length):

i = len(mutable_bytes)

i = i-1

del mutable_bytes[i]

print("The modified message without MAC is:")

print(mutable_bytes)

print("The MAC parsed out from message is:")

#mac_fill = hex(mac_fill)

print(mutable_bytes_copy)

salt = salt_time(salt)

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

print("Here is the key")

#print(key)

digester5 = blake2b(key, digest_size = 64)

digester5.update(openflow_msg)

print(openflow_msg)

digester5.update(mutable_bytes)

98

mac2 = digester5.hexdigest()

translate_hex = bytes.fromhex(mac2)

translate_hex = bytearray(translate_hex)

print("\n")

print("Generated MAC to check against Printed here")

print(translate_hex)

print("The MAC from the message is:")

print(mutable_bytes_copy)

if(translate_hex == mutable_bytes_copy):

print("The derivative 2 MAC has passed the check")

return openflow_msg

else:

print("The derivative 2 MAC did not pass the check")

return b"\x11\x11\x11\x11\x11\x11"

#__

#Setup network connections

#Create TCP/IP socket and UDP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

print("\n**Server is starting up**")

print("**Server is running**")

print("Ensure that Controller Proxy is running first")

#Bind the socket to the address and wait for the switch to attempt to connect

server_address = (’127.0.0.1’, 6653)

sock.bind(server_address)

print("Starting up on %s port %s\n" % server_address)

sock.listen(1)

connection, client_address = sock.accept()

#Connect to the Controller Proxy

99

sock2 = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

#Address of proxy

server2_address = (’127.0.0.3’, 6673)

sock2.connect(server2_address)

#__

#Recieve hello from switch

data = connection.recv(32000)

receipt = 0

receipt = data

print("Switch 1 sent:", receipt)

print(type(receipt))

#Send OpenFlow Hello to deriivative1_create

receipt = derivative1_create(receipt, salt)

#Send dialected hello to proxy

print("Sending hello to proxy")

sock2.sendall(receipt)

print("Data sent back to controller")

print("\n")

#Receive hello from proxy

data = sock2.recv(32000)

receipt = 0

receipt = data

print("Proxy sent:", receipt)

print(type(receipt))

print("\n")

#Check authentication of OpenFlow Hello with derivative 1

receipt = derivative1_check(receipt, salt)

#Send data to switch

100

print("Sending data to switch")

connection.sendall(receipt)

print("Data sent to switch")

print("\n")

#Recieve data from proxy

data = sock2.recv(32000)

receipt = 0

receipt = data

print("Proxy sent:", receipt)

print(type(receipt))

print("\n")

#Receive derivative 2 from proxy

data = sock2.recv(32000)

deriv2_message = 0

deriv2_message = data

print("Proxy sent derv2 message:", deriv2_message)

print(type(deriv2_message))

print("\n")

#Need to verify derivative 2 and therefore openflow message

receipt = derivative2_verify(receipt, deriv2_message,salt)

#Send data to switch

print("Sending data to switch")

connection.sendall(receipt)

print("Data sent to switch")

print("\n")

#Recieve data from switch

data = connection.recv(32000)

receipt = 0

receipt = data

print("Switch sent:", receipt)

101

print(type(receipt))

print("\n")

print("Here is the length of the message from switch")

print(len(receipt))

if(len(receipt) > 300):

print("Do not try to create derivative 2 due to size overload")

#Send data to proxy

print("Sending data back to controller")

sock2.sendall(receipt)

print("Data sent back to controller")

print("\n")

else:

#Send data to proxy

print("Sending data back to controller")

sock2.sendall(receipt)

print("Data sent back to controller")

print("\n")

#Create deriv2 message

deriv2_message = derivative2_create(receipt,salt)

print("Sending experimenter to proxy")

print(deriv2_message)

sock2.sendall(deriv2_message)

print("Data sent")

print("\n")

#************

while(True):

#Recieve data from proxy

data = sock2.recv(32000)

receipt = 0

receipt = data

102

print("Proxy sent:", receipt)

print(type(receipt))

print("\n")

if(len(receipt) <70):

#Receive derivative 2 from proxy

data = sock2.recv(32000)

deriv2_message = 0

deriv2_message = data

print("Proxy sent derv2 message:", deriv2_message)

print(type(deriv2_message))

print("\n")

#Need to verify derivative 2 and therefore openflow message

try:

receipt = derivative2_verify(receipt, deriv2_message,salt)

except:

print("Had an exception during verification of message.")

#Send data to switch

print("Sending data to switch")

connection.sendall(receipt)

print("Data sent to switch")

print("\n")

#Recieve data from switch

data = connection.recv(32000)

receipt = 0

receipt = data

print("Switch sent:", receipt)

print(type(receipt))

print("\n")

print("Here is the length of the message from switch")

print(len(receipt))

if(receipt == b’’):

103

#Send data to proxy’

print("Received an empty string from switch so not sending experimenter message")

print("Sending data back to controller")

sock2.sendall(receipt)

print("Data sent back to controller")

print("\n")

continue

else:

#Send data to proxy

print("Sending data back to controller")

sock2.sendall(receipt)

print("Data sent back to controller")

print("\n")

#Create deriv2 message

deriv2_message = derivative2_create(receipt,salt)

print("Sending experimenter to proxy")

print(deriv2_message)

sock2.sendall(deriv2_message)

print("Data sent")

print("\n")

104

APPENDIX E:
D1&D3 with TLS Controller Proxy

#Michael Sjoholm-Sierchio

#File: D1&D3_withtls_ControllerProxy.py

#Ref: https://pymotw.com/2/socket/binary.html

#Ref: https://stackoverflow.com/questions/14043886/python

#-2-3-convert-integer-to-bytes-cleanly

Reference: docs.kytos.io kytos developer guide

Reference: Working with binary data in python dev_dungeon

Reference: Low Level OpenFlow Messages Parser used by Kytos SDN

#Platform https://kytos.io

Reference: For secure hash library https://docs.python.org/dev/library/hashlib.html?

#highlight=s

Reference: https://www.devdungeon.com/content/working-binary-data-python

Reference: https://pymotw.com/3/hmac

Reference: https://docs.python.org/3/library/hashlib.html

Reference: https://en.wikipedia.org/wiki/HKDF

import socket

import sys

import time

import binascii

import struct

import sys

import os

import datetime

import hashlib

import hmac

import base64

import binascii

import socket

from hashlib import blake2b

from threading import Timer

105

from math import ceil

from pyof.foundation.base import GenericStruct

#from pyof.foundation.basic_types import UBInt8, UBInt16

from pyof.v0x01.common.utils import unpack_message

from pyof.foundation.base import GenericMessage

from pyof.v0x04.common.header import Header

from pyof.v0x01.symmetric.hello import Hello

from pyof.v0x01.controller2switch.features_request import FeaturesRequest

from pyof.v0x01.symmetric.echo_request import EchoRequest

from pyof.v0x01.symmetric.vendor_header import VendorHeader

#***************IMPORT ABOVE********************

#__

#Setup the key and generation

print("\n")

print("Program is running")

print("Protocol Dialect Walkthrough Initiated")

print("--------------------------------------")

#print("Include starting Mini-Net here")

print("\n")

#********Read In Long-Term Key and Create Keys******

print("Reading in shared key")

#Obtain the shared secret key at the beginning of operation from a file or OOB

key = b’457c311719813785096ef45f466aead3db4e535f4a7b0d06084621c0e01220a6b

43b90879fc23189d4fed6456e31529905bdc83056feda5940444893a83808bd’

print("Here is the key from file")

#print(key)

print("Here is the length of the key")

print(len(key))

#Creat a salt, which will change every 5 seconds

standard_time = time.time()

s = round(standard_time)

106

salt = str(s)

def salt_time(salt):

salt = int(salt)

time_check = round(time.time())

time_result = time_check - salt

if(time_result > 5):

s = round(time.time())

salt = str(s)

print("Here is the salt")

print(salt)

return(salt)

print("\n")

salt = salt_time(salt)

#******************COMPLETE MAKING SALT*************

#******************KEY GENERATOR************

data = b’597133743677397A24432646294A404E635266556A586E5A7234753778214125442

A472D4B6150645367566B59703373357638792F423F4528482B4D62516554’

hash_len = 32

length = 64

info = b""

def hmac_sha512(key, data):

return hmac.new(key, data, hashlib.sha512).digest()

ikm = hmac_sha512(key,data)

def hkdf(length, ikm, salt, info):

prk = hmac_sha512(salt if len(salt) > 0 else bytes([0]*hash_len), ikm)

t = b""

okm = b""

107

for i in range(int(ceil(length / hash_len))):

t = hmac_sha512(prk, t + info + bytes([1+i]))

okm += t

return okm[:length]

salt = salt_time(salt)

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

print("Here is the first generated key")

#print(key)

print("*************************************")

#___

#Derivative create and check

def derivative1_create(message, salt):

#print("The key is:")

salt = salt_time(salt)

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

dialected_message = message

print("Removing the previous xid to perform MAC")

mutable_bytes = bytearray(dialected_message)

message_copy = message

print("Current length is:")

print(len(mutable_bytes))

while((len(mutable_bytes)) > 4):

108

i = len(mutable_bytes)

i = i-1

del mutable_bytes[i]

print("The current length is:")

print(len(mutable_bytes))

print("The modified message without xid is:")

print(mutable_bytes)

total_message = mutable_bytes

digester = blake2b(key, digest_size = 4)

digester.update(mutable_bytes)

mac1 = digester.hexdigest()

print("Origional MAC Printed here")

print(mac1)

print("\n")

translate_hex = bytes.fromhex(mac1)

translate_hex = bytearray(translate_hex)

print("Lastly, the new xid is:")

print(translate_hex)

print("Now to add the translate mac back to the message")

total_message = total_message + translate_hex

print(total_message)

#dialected_message = message

dialected_message = total_message

return dialected_message

def derivative1_check(msg_recv,salt):

#Transaction ID 0

print("The msg_recv is:")

print(msg_recv)

transaction_id0 = b"\x00\x00\x00\x00"

#checked_message = msg_recv

print("Removing the previous xid to perform MAC")

mutable_bytes = bytearray(msg_recv)

print("Current length is:")

print(len(mutable_bytes))

109

while((len(mutable_bytes)) > 4):

i = len(mutable_bytes)

i = i-1

del mutable_bytes[i]

print("The current length is:")

print(len(mutable_bytes))

print("The modified message without xid is:")

print(mutable_bytes)

#Creating a MAC to verify that the recv message matches what is expected

print("\n")

#print("The key is:")

salt = salt_time(salt)

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

#print(key)

print("The length of key is:")

print(len(key))

digester2 = blake2b(key, digest_size = 4)

digester2.update(mutable_bytes)

mac2 = digester2.hexdigest()

print("MAC Printed here")

print(mac2)

print("\n")

new_mac = binascii.unhexlify(mac2)

new_mac = mac2

new_number = int(new_mac, 16)

print("Digest_calc is:")

digest_calc = new_number

print(digest_calc)

#Deteremine the value sent by the message

binary_msg = msg_recv

110

msg = unpack_message(binary_msg)

print("The type of the mesage is:")

print(msg.header.message_type)

print("The xid is:")

print(msg.header.xid)

value1_compare = msg.header.xid

#Compare the two values and send to device is expected matches received

print("Comparing values:")

print(value1_compare)

print(digest_calc)

if(value1_compare == digest_calc):

#final_message = mutable_bytes + transaction_id0

final_message = 1

else:

final_message = 0

#quit(1)

checked_message = final_message

print("The message to send on to device is:")

print(checked_message)

return checked_message

#Define functions for derivative 3

#*********Create Derivative 3 Message**********

def derivative3_create(message,salt):

print("Creating derivative 3 message")

total_message = bytearray()

total_message = total_message + message

print("Here is the original message")

print(total_message)

print("\n")

#**********Create MAC for Message**

111

print("\n")

#print("The key is:")

salt = salt_time(salt)

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

#print(key)

print("Creating the data portion of the message for the MAC:")

#print("The data section with 512 bit MAC is:")

digester4 = blake2b(key, digest_size = 64)

digester4.update(total_message)

mac2 = digester4.hexdigest()

#print(mac2)

translate_hex = bytes.fromhex(mac2)

print("The translated mac is:")

print(translate_hex)

print("The total message is:")

total_message = total_message + translate_hex

print(total_message)

derivative3_msg = total_message

print("\n")

return derivative3_msg

def derivative3_verify(deriv3_message,salt):

#***Verify the OpenFlow message**********************

print("Reading in authentication message to validate the OpenFlow message")

data_from_proxy = deriv3_message

print("\n")

print("Removing the previous MAC to perform MAC check")

mutable_bytes = bytearray(data_from_proxy)

mutable_bytes_copy = bytearray(data_from_proxy)

112

after_length = len(mutable_bytes) - 64

j = 0

while(True):

del mutable_bytes_copy[j]

if(len(mutable_bytes_copy) == 64):

break

while((len(mutable_bytes)) > after_length):

i = len(mutable_bytes)

i = i-1

del mutable_bytes[i]

print("The modified message without MAC is:")

print(mutable_bytes)

print("The MAC parsed out from message is:")

#mac_fill = hex(mac_fill)

print(mutable_bytes_copy)

salt = salt_time(salt)

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

print("Here is the key")

#print(key)

digester5 = blake2b(key, digest_size = 64)

digester5.update(mutable_bytes)

mac2 = digester5.hexdigest()

translate_hex = bytes.fromhex(mac2)

translate_hex = bytearray(translate_hex)

print("\n")

print("Generated MAC to check against Printed here")

113

print(translate_hex)

print("The MAC from the message is:")

print(mutable_bytes_copy)

if(translate_hex == mutable_bytes_copy):

print("The MAC has passed the check and returning to proxy")

print("Here is the message to forward")

print(mutable_bytes)

return mutable_bytes

else:

print("The MAC did not pass the check")

return b"\x11\x11\x11\x11\x11\x11"

#___

#Setup network connections

#Establish the socket settings to the controller

sock = socket.socket(socket.AF_INET, socket. SOCK_STREAM)

server_name = ’localhost’

server_address = (’127.0.0.5’, 6633)

sock.connect(server_address)

print("Connected to controller")

print("\n")

print("Waiting for the other proxy to connect")

#Establish the socket settings for the switch proxy

#This script is the server

sock2 = socket.socket(socket.AF_INET, socket. SOCK_STREAM)

server2_address = (’127.0.0.3’, 6673)

sock2.bind(server2_address)

sock2.listen(1)

connection, client_address = sock2.accept()

114

print("The other proxy has connected")

#__

#Receive hello from proxy

data = connection.recv(32000)

receipt = 0

receipt = data

print("Switch sent:", receipt)

print(type(receipt))

print("\n")

#Check authentication of OpenFlow Hello

receipt = derivative1_check(receipt, salt)

if(receipt == 1):

print("The check of derivative has passed.")

else:

print("The check of the derivative has not passed.")

print("Closing the connection.")

exit()

while(True):

#Receive data from proxy

data = connection.recv(60000)

receipt = 0

receipt = data

print("Switch sent:", receipt)

print(type(receipt))

print("\n")

receipt = derivative3_verify(receipt,salt)

#Send data from proxy to controller

print("Sending data to controller")

115

print(receipt)

sock.sendall(receipt)

print("Data sent")

print("\n")

#Recieve data from controller

data = sock.recv(60000)

receipt = 0

receipt = data

print("Controller 1 sent:", receipt)

print(type(receipt))

print("\n")

receipt = derivative3_create(receipt,salt)

#Send data from controller to proxy

print("Sending data to proxy")

print(receipt)

connection.sendall(receipt)

print("Data sent")

print("\n")

116

APPENDIX F:
D1&D3 with TLS Switch Proxy

#Michael Sjoholm-Sierchio

#File: D1&D3_withtls_SwitchProxy.py

#Ref: https://pymotw.com/2/socket/binary.html

#Ref: https://stackoverflow.com/questions/14043886/python

#-2-3-convert-integer-to-bytes-cleanly

#Ref: https://www.cyberciti.biz/faq/python-convert-string-to-int-functions/

Reference: docs.kytos.io kytos developer guide

Reference: Working with binary data in python dev_dungeon

Reference: Low Level OpenFlow Messages Parser used by Kytos SDN

#Platform https://kytos.io

Reference: For secure hash library https://docs.python.org/dev/library/hashlib.html?

#highlight=s

Reference: https://www.devdungeon.com/content/working-binary-data-python

Reference: https://pymotw.com/3/hmac

Reference: https://docs.python.org/3/library/hashlib.html

Reference: https://en.wikipedia.org/wiki/HKDF

import sys

import socket

import time

import random

import binascii

import struct

import os

import datetime

import hashlib

import hmac

import base64

import binascii

import socket

from hashlib import blake2b

117

from threading import Timer

from math import ceil

from pyof.foundation.base import GenericStruct

#from pyof.foundation.basic_types import UBInt8, UBInt16

from pyof.v0x01.common.utils import unpack_message

from pyof.foundation.base import GenericMessage

from pyof.v0x04.common.header import Header

from pyof.v0x01.symmetric.hello import Hello

from pyof.v0x01.controller2switch.features_request import FeaturesRequest

from pyof.v0x01.symmetric.echo_request import EchoRequest

from pyof.v0x01.symmetric.vendor_header import VendorHeader

#***************IMPORT ABOVE********************

#__

#Setup the key and generation

#********Read In Long-Term Key and Create Keys******

print("Reading in shared key")

#Obtain the shared secret key at the beginning of operation from a file or OOB

key = b’457c311719813785096ef45f466aead3db4e535f4a7b0d06084621c0e01220a6b

43b90879fc23189d4fed6456e31529905bdc83056feda5940444893a83808bd’

print("Here is the key from file")

#print(key)

print("Here is the length of the key")

print(len(key))

#Creat a salt, which will change every 5 seconds

standard_time = time.time()

s = round(standard_time)

salt = str(s)

def salt_time(salt):

salt = int(salt)

time_check = round(time.time())

time_result = time_check - salt

118

if(time_result > 5):

s = round(time.time())

salt = str(s)

print("Here is the salt")

print(salt)

return(salt)

print("\n")

salt = salt_time(salt)

#******************KEY GENERATOR************

data = b’597133743677397A24432646294A404E635266556A586E5A7234753778214125442A472D4B6150645367566B59703373357638792F423F4528482B4D62516554’

hash_len = 32

length = 64

info = b""

def hmac_sha512(key, data):

return hmac.new(key, data, hashlib.sha512).digest()

ikm = hmac_sha512(key,data)

def hkdf(length, ikm, salt, info):

prk = hmac_sha512(salt if len(salt) > 0 else bytes([0]*hash_len), ikm)

t = b""

okm = b""

for i in range(int(ceil(length / hash_len))):

t = hmac_sha512(prk, t + info + bytes([1+i]))

okm += t

return okm[:length]

salt = salt_time(salt)

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

119

#print("Here is the first generated key")

#print(key)

print("*************************************")

#___

#Derivative create and check

def derivative1_create(message, salt):

#print("The key is:")

salt = salt_time(salt)

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

dialected_message = message

print("Removing the previous xid to perform MAC")

mutable_bytes = bytearray(dialected_message)

message_copy = message

print("Current length is:")

print(len(mutable_bytes))

while((len(mutable_bytes)) > 4):

i = len(mutable_bytes)

i = i-1

del mutable_bytes[i]

print("The current length is:")

print(len(mutable_bytes))

print("The modified message without xid is:")

print(mutable_bytes)

total_message = mutable_bytes

digester = blake2b(key, digest_size = 4)

digester.update(mutable_bytes)

mac1 = digester.hexdigest()

print("Origional MAC Printed here")

print(mac1)

120

print("\n")

translate_hex = bytes.fromhex(mac1)

translate_hex = bytearray(translate_hex)

print("Lastly, the new xid is:")

print(translate_hex)

print("Now to add the translate mac back to the message")

total_message = total_message + translate_hex

print(total_message)

#dialected_message = message

dialected_message = total_message

return dialected_message

def derivative1_check(msg_recv,salt):

#Transaction ID 0

print("The msg_recv is:")

print(msg_recv)

transaction_id0 = b"\x00\x00\x00\x00"

#checked_message = msg_recv

print("Removing the previous xid to perform MAC")

mutable_bytes = bytearray(msg_recv)

print("Current length is:")

print(len(mutable_bytes))

while((len(mutable_bytes)) > 4):

i = len(mutable_bytes)

i = i-1

del mutable_bytes[i]

print("The current length is:")

print(len(mutable_bytes))

print("The modified message without xid is:")

print(mutable_bytes)

#Creating a MAC to verify that the recv message matches what is expected

print("\n")

#print("The key is:")

salt = salt_time(salt)

121

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

#print(key)

print("The length of key is:")

print(len(key))

digester2 = blake2b(key, digest_size = 4)

digester2.update(mutable_bytes)

mac2 = digester2.hexdigest()

print("MAC Printed here")

print(mac2)

print("\n")

new_mac = binascii.unhexlify(mac2)

new_mac = mac2

new_number = int(new_mac, 16)

print("Digest_calc is:")

digest_calc = new_number

print(digest_calc)

#Deteremine the value sent by the message

binary_msg = msg_recv

msg = unpack_message(binary_msg)

print("The type of the mesage is:")

print(msg.header.message_type)

print("The xid is:")

print(msg.header.xid)

value1_compare = msg.header.xid

#Compare the two values and send to device is expected matches received

print("Comparing values:")

print(value1_compare)

print(digest_calc)

if(value1_compare == digest_calc):

final_message = mutable_bytes + transaction_id0

122

else:

final_message = b"\x11\x11\x11\x11\x11\x11"

#quit(1)

checked_message = final_message

print("The message to send on to device is:")

print(checked_message)

return checked_message

#Define functions for derivative 3

#*********Create Experimenter Message**********

def derivative3_create(message,salt):

print("Creating derivative 3 message")

total_message = bytearray()

total_message = total_message + message

print("Here is the original message")

print(total_message)

print("\n")

#**********Create MAC for Message**

print("\n")

#print("The key is:")

salt = salt_time(salt)

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

#print(key)

print("Creating the data portion of the message for the MAC:")

#print("The data section with 512 bit MAC is:")

digester4 = blake2b(key, digest_size = 64)

digester4.update(total_message)

mac2 = digester4.hexdigest()

123

#print(mac2)

translate_hex = bytes.fromhex(mac2)

print("The translated mac is:")

print(translate_hex)

print("The total message is:")

total_message = total_message + translate_hex

print(total_message)

derivative3_msg = total_message

print("\n")

return derivative3_msg

def derivative3_verify(deriv3_message,salt):

#***Verify the message**********************

print("Reading in authentication message to validate the OpenFlow message")

data_from_proxy = deriv3_message

print("\n")

print("Removing the previous MAC to perform MAC check")

mutable_bytes = bytearray(data_from_proxy)

mutable_bytes_copy = bytearray(data_from_proxy)

after_length = len(mutable_bytes) - 64

j = 0

while(True):

del mutable_bytes_copy[j]

if(len(mutable_bytes_copy) == 64):

break

while((len(mutable_bytes)) > after_length):

i = len(mutable_bytes)

i = i-1

del mutable_bytes[i]

print("The modified message without MAC is:")

print(mutable_bytes)

124

print("The MAC parsed out from message is:")

#mac_fill = hex(mac_fill)

print(mutable_bytes_copy)

salt = salt_time(salt)

salt = str(salt)

salt = bytes(salt, "utf8")

key = hkdf(length, ikm, salt, info)

key = binascii.hexlify(key)

#print("Here is the key")

#print(key)

digester5 = blake2b(key, digest_size = 64)

digester5.update(mutable_bytes)

mac2 = digester5.hexdigest()

translate_hex = bytes.fromhex(mac2)

translate_hex = bytearray(translate_hex)

print("\n")

print("Generated MAC to check against Printed here")

print(translate_hex)

print("The MAC from the message is:")

print(mutable_bytes_copy)

if(translate_hex == mutable_bytes_copy):

print("The MAC has passed the check and returning to proxy")

print("Here is the message to forward")

print(mutable_bytes)

return mutable_bytes

else:

print("The MAC did not pass the check")

return b"\x11\x11\x11\x11\x11\x11"

#___

#Setup network connections

125

#Create TCP/IP socket and UDP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

print("\n**Server is starting up**")

print("**Server is running**")

print("Ensure that Controller Proxy is running first")

#Bind the socket to the address and wait for the switch to attempt to connect

server_address = (’127.0.0.1’, 6653)

sock.bind(server_address)

print("Starting up on %s port %s\n" % server_address)

sock.listen(1)

connection, client_address = sock.accept()

#Connect to the Controller Proxy

sock2 = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

#Address of proxy

server2_address = (’127.0.0.3’, 6673)

sock2.connect(server2_address)

#__

receipt = b’\x05\x00\x00\x08\x00\x00\x02\x92’

receipt = derivative1_create(receipt,salt)

#Send dialected hello to proxy

print("Sending hello to proxy")

sock2.sendall(receipt)

print("Data sent back to controller")

print("\n")

while(True):

#Recieve data from switch

data = connection.recv(60000)

receipt = 0

126

receipt = data

print("Switch 1 sent:", receipt)

print(type(receipt))

receipt = derivative3_create(receipt,salt)

#Send data from switch to proxy

print("Sending hello to proxy")

sock2.sendall(receipt)

print("Data sent to proxy")

print("\n")

#Receive data from proxy

data = sock2.recv(60000)

receipt = 0

receipt = data

print("Proxy sent:", receipt)

print(type(receipt))

print("\n")

if(receipt == b’’):

continue

receipt = derivative3_verify(receipt,salt)

#Send data to switch

print("Sending data to switch")

connection.sendall(receipt)

print("Data sent to switch")

print("\n")

127

THIS PAGE INTENTIONALLY LEFT BLANK

128

List of References

[1] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan,
N. Viljoen, M. Miller, and N. Rao, “Are we ready for SDN? Implementation chal-
lenges for software-defined networks,” IEEE Communications Magazine, vol. 51,
no. 7, pp. 36–43, 2013.

[2] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in software defined net-
works: A survey,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp.
2317–2346, 2015.

[3] “OpenFlow Switch Specification Version 1.5.1 (Protocol Version 0x06),” https://
3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/
10/openflow-switch-v1.5.1.pdf, accessed: 2018-09-02.

[4] K. Benton, L. J. Camp, and C. Small, “OpenFlow vulnerability assessment,” in Pro-
ceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software De-
fined Networking. ACM, 2013, pp. 151–152.

[5] L. Xu, J. Huang, S. Hong, J. Zhang, and G. Gu, “Attacking the brain: Races in the
SDN Control Plane,” in 26th {USENIX} Security Symposium ({USENIX} Security
17), 2017, pp. 451–468.

[6] Joint Task Force, “Sp 800-37 Rev 2. Risk management framework for information
systems and organizations: A Systems Life Cycle Approach for Security and Pri-
vacy,” National Institute of Standards & Technology, Gaithersburg, MD, United
States, Tech. Rep., 2018.

[7] S. Mishra and M. Polychronakis, “Shredder: Breaking Exploits through API Spe-
cialization,” in Proceedings of the 34th Annual Computer Security Applications
Conference. ACM, 2018, pp. 1–16.

[8] M. Nieles, D. Kelley, and P. Y. Victoria, “Sp 800-12 Rev 1. An introduction to com-
puter security,” National Institute of Standards & Technology, Gaithersburg, MD,
United States, Tech. Rep., 2017.

[9] S. Jajodia, S. Noel, P. Kalapa, M. Albanese, and J. Williams, “Cauldron Mission-
centric cyber situational awareness with defense in depth,” in 2011-MILCOM 2011
Military Communications Conference. IEEE, 2011, pp. 1339–1344.

[10] K. Cohn-Gordon, C. Cremers, and L. Garratt, “On post-compromise security,” in
2016 IEEE 29th Computer Security Foundations Symposium (CSF). IEEE, 2016, pp.
164–178.

129

https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf

[11] F. Hu, Network Innovation through OpenFlow and SDN: Principles and Design.
CRC Press, 2014.

[12] “Mininet An Instant Virtual Network on your Laptop,” http://mininet.org/, accessed:
2018-09-02.

[13] “Wireshark user’s guide,” https://www.wireshark.org/docs/wsug_html_chunked/,
accessed: 2018-09-01.

[14] Y. Sheffer, R. Holz, and P. Saint-Andre, “Summarizing known attacks on Transport
Layer Security (TLS) and Datagram Tls (DTLS),” Tech. Rep., 2015.

[15] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel, J. Steube, L. Va-
lenta, D. Adrian, J. A. Halderman, V. Dukhovni, E. Käsper, S. Cohney, S. Engels,
C. Paar, and Y. Shavitt, “DROWN: Breaking TLS with SSLv2,” in 25th USENIX
Security Symposium, Aug. 2016.

[16] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow integrity princi-
ples, implementations, and applications,” ACM Transactions on Information and
System Security (TISSEC), vol. 13, no. 1, p. 4, 2009.

[17] J. B. Perazzone, P. L. Yu, B. M. Sadler, and R. S. Blum, “Cryptographic side-
channel signaling and authentication via fingerprint embedding,” IEEE Transactions
on Information Forensics and Security, vol. 13, no. 9, pp. 2216–2225, Sep. 2018.

[18] K. Sakiyama, M. Kasuya, T. Machida, A. Matsubara, Y. Kuai, Y.-i. Hayashi,
T. Mizuki, N. Miura, and M. Nagata, “Physical authentication using side-channel
information,” in 2016 4th International Conference on Information and Communica-
tion Technology (ICoICT). IEEE, 2016, pp. 1–6.

[19] D. Samociuk, “Secure communication between OpenFlow switches and controllers,”
AFIN 2015, vol. 39, 2015.

[20] R. Perlman, “An overview of PKI trust models,” IEEE Network, vol. 13, no. 6, pp.
38–43, 1999.

[21] B. Hale, C. Carr, and D. Gligoroski, “CARIBE: Cascaded IBE for maximum flexi-
bility and user-side control,” in International Conference on Cryptology in Malaysia.
Springer, 2016, pp. 389–408.

[22] R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, “Feature-based comparison
and selection of software defined networking (SDN) controllers,” in 2014 World
Congress on Computer Applications and Information Systems (WCCAIS), Jan 2014,
pp. 1–7.

130

http://mininet.org/
https://www.wireshark.org/docs/wsug_html_chunked/

[23] “SSL on Open vSwitch and OVS controller,” Apr 2014, accessed: 2019-06-02.
Available: https://github.com/mininet/mininet/wiki/SSL-on-Open-vSwitch-and-
ovs-controller

[24] “Message Layer,” accessed: 2018-11-04. Available: http://flowgrammable.org/sdn/
openflow/message-layer/

[25] C.-H. J. Wu and J. D. Irwin, Introduction to Computer Networks and Cybersecurity.
CRC Press, 2016.

[26] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein, “BLAKE2: Sim-
pler, smaller, fast as MD5,” in International Conference on Applied Cryptography
and Network Security. Springer, 2013, pp. 119–135.

[27] A. Boldyreva, V. Goyal, and V. Kumar, “Identity-based encryption with efficient
revocation,” in Proceedings of the 15th ACM conference on Computer and communi-
cations security. ACM, 2008, pp. 417–426.

[28] D. Hellmann, “Sending binary data,” Mar 2019, accessed: 2018-11-10. Available:
https://pymotw.com/2/socket/binary.html

[29] A. Hayden, “Python 2,3 Convert integer to "bytes" cleanly,” Nov 2014, accessed:
2018-11-05. Available: https://stackoverflow.com/questions/14043886/python-2-3-
convert-integer-to-bytes-cleanly

[30] “Developer Guide,” accessed: 2018-11-02. Available: https://docs.kytos.io/
developer/

[31] NanoDano, “Working with binary data in Python,” Nov 2018, accessed: 2018-11-01.
Available: https://www.devdungeon.com/content/working-binary-data-python

[32] D. Hellmann, “HMAC - cryptographic message signing and verification,” Jul 2017,
accessed: 2019-04-10. Available: https://pymotw.com/3/hmac/

[33] “Hashlib - secure hashes and message digests,” Oct 2019, accessed: 2019-05-04.
Available: https://docs.python.org/3/library/hashlib.html

[34] “HKDF,” Feb 2019, accessed: 2019-06-02. Available: https://en.wikipedia.org/wiki/
HKDF

131

https://github.com/mininet/mininet/wiki/SSL-on-Open-vSwitch-and-ovs-controller
https://github.com/mininet/mininet/wiki/SSL-on-Open-vSwitch-and-ovs-controller
http://flowgrammable.org/sdn/openflow/message-layer/
http://flowgrammable.org/sdn/openflow/message-layer/
https://pymotw.com/2/socket/binary.html
https://stackoverflow.com/questions/14043886/python-2-3-convert-integer-to-bytes-cleanly
https://stackoverflow.com/questions/14043886/python-2-3-convert-integer-to-bytes-cleanly
https://docs.kytos.io/developer/
https://docs.kytos.io/developer/
https://www.devdungeon.com/content/working-binary-data-python
https://pymotw.com/3/hmac/
https://docs.python.org/3/library/hashlib.html
https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF

THIS PAGE INTENTIONALLY LEFT BLANK

132

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

133

	19Dec_Sjoholmsierchio_Michael_First8
	19Dec_Sjoholmsierchio_Michael
	Introduction
	Problem Statement
	Research Questions
	Thesis Organization

	Background
	Information Security Principles
	The OpenFlow Protocol
	Related Work

	A Formulation of Protocol Dialect Design
	Definitions
	Base Communication Protocol
	Protocol Analysis
	Dialect Design
	Security and Cost Analysis
	Implementation Method
	Dialect Management
	Implementation Testing
	Protocol Dialect

	OpenFlow Dialect Design
	Design Objectives
	Base Communication Protocol
	Protocol Analysis
	Dialect Design
	Security and Cost Analysis
	Implementation Method
	Dialect Management
	Implementation Testing

	Experiment and Results
	Experiment
	Results

	Conclusion and Future Work
	Limitations
	Conclusion
	Future Work

	Source Code Overview
	SDN Controller Commands and Switch Setup
	D1&D2 without TLS Controller Proxy
	D1&D2 without TLS Switch Proxy
	D1&D3 with TLS Controller Proxy
	D1&D3 with TLS Switch Proxy
	List of References
	Initial Distribution List

