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Abstract

We investigate absolute bounds (or inequalities) on the mean and standard deviation of transformed data

values, given only a few statistics on the original set of data values. Our work applies primarily to

transformation functions whose derivatives are constant-sign for a positive range (e.g. logarithm, antilog,

square root, and reciprocal). With such functions we can often get reasonably tight absolute bounds, so that

distributional assumptions about the data needed for confidence intervals can be eliminated. We investigate a

variety of methods for obtaining such bounds, first examining bounding curves which are straight lines, then

those that are quadratic polynomials. While the problem of finding the best quadratic bound is an

optimization problem with no closed-form solution, we display a variety of closed-form quadratic bounds

which can come close to the optimal solution. We emphasize what can be done with prior knowledge of the

mean and standard deviation of the untransformed data values, but do address some other statistics too.
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1 . Introduction

Standard transformations of numeric data values such as logarithm, antilog, square root, square, cube, and

reciprocal are frequently appropriate as a prelude to statistical analysis of finite data sets [7]. Sometimes,

however, the data are already aggregated into counts and means, and the original data values lost. This

happens when the original data is too large to handle and/or contains sensitive information, as the

U. S.
v
Census, which publishes much of its data as aggregates. We may also deliberately create "database

abstracts" of aggregate statistics to facilitate quick statistical estimates by "antisampling" methods [10].

Statistics on the transformed values cannot be calculated uniquely when die original data is so preaggrcgated .

But if we are doing exploratory data analysis [13, 6], an estimate of a statistic on the transformed data may be

all that we need. We address one set of methods for obtaining such estimates, by finding absolute

(unconditionally guaranteed) bounds on the mean and standard deviation for data under some common

transformations.

Absolute bounds arc the only true "nonparamctric" form of estimate, and as such have advantages.

Compared to "reasonable-guess" estimates [9], biasedness of the estimator need not be dealt with, while at die

same time providing numbers close to die true answer for this category of problems. As [7] discusses,

confidence intervals for the mean and standard deviation of transformed data arc difficult to obtain and

methods are subject to exceptions, and thus absolute bounds easily obtained are appealing. Tight enough

absolute bounds can be equivalent to a good estimate. An estimate of a statistic can also be logically incorrect

when bounds are tight, i.e. it may not be a statistic of any possible distribution consistent widi the constraints.

Bounds are useful for other reasons as well. Some algorithms exploit only bounds, as die "branch and

bound" methods of [4] for retrieval of information from a database. Other advantages wc have investigated in

previous work [10, 11, 12]. In addition, the madicmatics of absolute bounds is straightforward and requires

only elementary calculus.

Our approach is to give a variety of bounds formulae for the same estimation situation. In general, wc do

not know which of several bounding methods will be the best for a problem, and this suggests the program

architecture of an artificial-intelligence "production system" [1]. We can combine results by taking die

minimum of all the upper bounds, and the maximum of all die lower bounds.

L-vcn iflhc data is transformed before being aggregated, there arc still many reasons to want statistics on die untransformed data. To
use the example of [7]. it is useful to study rainfall in the cube root of inches, 'out one may then be interested in statistics on the cube of

that, the meaningful quantity of total volume.



2. Our approach

In this work we examine transformation functions whose derivatives have a constant sign in the interval of

study. (We may be able to relax this restriction in particular cases, however; usually only a constant-sign

second derivative is necessary. Chapter 3 of [5] discusses detailed restrictions, in particular the notion of

function convexity, for the material we cover in section 3 below.) The so-called "power transformations" and

their inverses [2] satisfy this constant-sign restriction for positive data values. Six common power

transformations are log, antilog, square root, square, cube, and reciprocal, and these will be our primary

examples. Logarithm is particularly important because the mean of the logs is the log of the geometric mean

of a set of data values; reciprocal is also important because it provides the key to handling quotients of

random variables. To summarize the six example transformations:

Function first deriv. second deriv. steepest point

ln(x) + - leftside

e
x + + right side

-/x + - left side

x
2 + + right side

x
3 + + right side

1/x - + leftside

We shall assume the following statistics on the original (untransformed) data values are known:

• ii, the mean of the values (or equivalcntly, the sum of the values and the number of values)

• m, the minimum of the values

• M, the maximum of the values

Even when we do not know the minimum and maximum exactly, we can often assume extreme "safe" values

which the minimum cannot be less than and the maximum cannot be greater than, and which we can use in

our formulae. So it is reasonable to believe we can always come up with a minimum and maximum for a set

of values.

In much of what follows we also assume the following is known:

• a, the standard deviation of the values - defined as 21<i<n(x.-xt) /n, instead of the more

conventional formula with a denominator of n-1

Note we use the symbols /x and a to emphasize that we arc consider finite data populations, which are not

necessarily samples of anything.

We shall ignore linear transformations of variables as a preliminary to applying power functions, since



these can be handled trivially. For instance, fl[x) = ln(ax + b) can be analyzed by defining y = ax + b and

analyzing g(y) = ln(y), where p. =au + band a = aa .

. y x y x

Our basic idea is to find functions that arc (a) entirely above, and (b) entirely below the curve of the

function on the data-value interval. We shall consider two important cases: bounding curves that are straight

lines (sections 3 and 4) and bounding curves that arc second-degree polynomials (quadratics) (sections 5, 6, 7,

and 8). Subsequent sections consider extensions to this framework: use of subset means and standard

deviations in. section 9, use of order statistics in section 10, use of distribution fits in 11, and adjustments for

small populations in 12. We conclude with some simple test experiments in section 13.

3. Linear bounds on the mean

3.1 . Overview

For straight lines, one curve can be a tangent to the curve at some point (for convenience, the mean); the

other a secant of the curve through it at the minimum and the maximum. For curves with negative second

derivative like logarithm and square root, the tangent is an upper bound, the secant a lower bound; for curves

with positive second derivative like antilog and reciprocal, the tangent is the lower bound and the secant the

upper. These bounding lines map directly into bounds on the mean and standard deviation, for note if ax+ b

> f(x) for all x in a range, f some transformation functions satisfying our restrictions, and E denoting

expected value, then

E(ax + b)> B(f(x)), or

aE(x) + b > E(f(x)), or

aju + b > F(f(x))

F(f(x)) being the quantity we are interested in bounding.

3.2. Linear bounds on the mean

Let us apply Uiese ideas to the mean of transformed values (see figure 3-1). The tangent to f(x) at ju, has

equation

y = x*fO*) + [fOO-M*f<M)]

This leads to a well-known bound (generalized in [5], p. 70):

ju*f(/x) + [f0i)-M*f0O] = f(/O

On the other side of the curve, the secant Uirough the maximum and minimum forms a bound. This line has

equation

y = x * [(f(M)-r(m))/(M-m)l + [f(m) - m * [(f(M)-f(m))/(M-m)]J

which corresponds to the bound



Figure 3-1: Linear bounds on the mean of transformed values



/i * [(f(MH(m))/(M-m)] + [f(m) - in * [(fl(M)-fl(m))/(M-m)l]

= (|u-m)*[(f(M)-f(m))/(M-m)] + f(m)

= (l-a)flm) + afi(M) = f(m) + a(fl[M)-f(m))

where a = (/i-m)/(M-m)

To give an example, if a set of data values ranges from 10 to 100, and the mean is 23, the mean of the

logarithms of the data values has

an upper bound of ln(23) = 3.135

a lower bound of 77/90 ln(10) + 13/90 ln(100) = 2.635

Hence the geometric mean of the original data values is between e =13.9 and e -23. In general

from these formulae, the geometric mean is between n and m(M/m)a
; and the harmonic mean is between jh

and l/[l/m + 1/M - ju/mM].

3.3. Proof that tangent at the mean is optimal

Note that the bound obtained from taking the tangent at ji is optimal for the conditions we are assuming on

f. To sec this, suppose we use the tangent at some other point t, i.e. the line y = f(t) + (x-t)f(t). Then the

mean on this bound line is

EKt) + (x
r
t)f(t)] - f(t) + Oi-t)f(t)

Now we want to find the maximum of this as t varies, so we take the derivative with respect to t and set it

equal to zero:

f(t) - f(t) + Oi-t)f'(t) = o = (/i-t)f'(t)

But since we assumed that f had a constant-sign second derivative in the interval of interest, the only way this

can be zero is if ju, = t. Hence the only extreme value for the bound will be when we take a tangent at /x -- a

minimum for downwards-curving functions, and a maximum for upwards-curving.

3.4. Miscellaneous comments

In the case of a negative second derivative, the tangent bound is an upper bound, and die secant bound a

lower bound; otherwise, the reverse. Note the two bounds arc related, because they can be rewritten as

f((l-a)m + aM)and
(l-a)f(m) + al(M), where a = (/.t-m)/(M-m)

so diey represent interchanging of a weighting and functional application.

Here is a table of the linear bounds for our six common transformations:



Function Upper mean bound Lower mean bound

natural log ln(/x) (l-a)ln(m) -1- aln(

antilog (l-a)e
m + aeM e^

square root A (l-a)Vm + aVM
square (l-a)m

2
4- aM 2

,
2

cube (l-a)m
3 + aM 3 S

reciprocal a/m + (l-a)/M l//i

where a = [/i-m]/[M-m]

3.5. Accuracy of linear mean bounds

To illustrate effectiveness of the bounds, we tabulate the bounds for in = 10, M = 100, f= In, and for

[t = 19,28,37,46,55,64,73,82, and 91. The "bounds range fraction" is the ratio of the distance between the

bounds to the total range of the function on the values, the difference between f(M) and f(m); it indicates the

quality of the estimate.

bounds range fractionmean <jtx) upper bound lower bound boui

19 2.944 2.533 .179

28 3.332 2.763 .247

37 3.611 2.993 .268

46 3.829 3.224 .263

55 4.007 3.454 .240

64 4.159 3.684 .206

73 4.290 3.914 .163

82 4.407 4.145 .114

91 4.511 4.374 .059

It is typical that the estimates are best for extreme /x, and the error is worst for a particular value inside the

range. We can calculate tiiis value. Assume f has negative second derivative (the other case is analogous).

Then we want to find the maximum of the function representing the difference of die tangent and. secant

bounds, or

g(x) = f(|Li) - (l-a)f(m) - af(M), where a = (jti-m)/(M-m)

We find tiiis by setting to zero the derivative with respect to ju, in other words

dg(ju)/dx = = df(u)/dx + f(m)/(M-m)- f(M)/(M-m)

f(/i) = (f(M)-f(in))/(M-m)

Or in other words, the maximum error occurs for any function f (that satisfies our conditions) for a mean at

die point where die tangent to f is parallel to the secant through die endpoints. This makes sense because Uiis
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is the point at which h» stops "turning away" from the secant and begins turning back towards it. Note by

Rollc's Theorem there is always one such point where the lines arc parallel, and the constant sign of the

second derivative ensures diat there is never more than one such point.

For specific f we can tabulate the point of maximum error from this formula, as a function ofm and M.

Function Worst ju,

natural log (In x) (M-m)/ln(M/m)

antilog(e
x

) ln[(c
M

-e
m
)/(M-m)]

square root (M-m)2
/4f7M - /m]

square (M+m)/2
cube V[(m

2+mM +M 2
)/3]

reciprocal v'(mM)

The maximum error may then be obtained as |f(/i.) + f(M) - [(jli -m)(l(M)-fl[m))/(M-m)]|.

3.6. Bounds on the standard deviation, given mean

A simple application of the linear bounds on the mean of transformed values is to bounding the standard

deviation of a set of values given only die maximum (M), minimum (m), and mean (jn). The variance is

computed:

2(x-/i)
2
/n = 2x

2
/n - /m

2

But since square is a continuous function with a constant-sign second derivative, we can bound the second

summation, and hence the bounds on the variance are:

lower bound: /a - /x -
upper bond: m2 + (ju-m)(M

2-m2)/(M-m) - jn
2 = juM + jum - mM - \x

2 = (/x-m)(M-ju.)

And so the bounds on the standard deviation are:

lower bound:

upper bond: V'[(/x-m)(M-ju.)]

We will use this result frequently.

4. Linear bounds on the standard deviation

There arc two methods we can use to bound the standard deviation of a set of transformed values. First, we

can use the two bounds lines used previously, bound the sum of the squares, and subtract out die effect of the

mean (i.e. use the formula 2x /n - [2x/n]). Second, we can construct two new lines passing through f(x) at

die mean of the transformed values.



4.1. Sum-of-squares bounds

Bound line y = ax + b has second moment (sum of squares) equal to

F[(ax + b)
2
] = H[a

2
x
2 + 2abx + b

2
] = a

2
(a

2 + ii
2
) + 2ab/i + b

2 = (a/i + b)
2 + aV

For our two bounds lines:

tangent: a = f(/i), b = [fi» - ju * f(ju)]

secant: a = (f(M)-n»)/(M-m), b = [f(m) - m * [(f(M)-f(m))/(M-m)]]

hence the tangent bound on the sum of the squares is

(a
2 + /i

2
)[f(/x)

2
j + 2/*[f(/i)][fl[/i) - p * f»] + [fi» -

ii
*

?(li)]
2

= <x
2
[f(it)]

2 + [fi»]
2

and the secant bound is

/?
2
(a

2+ /x
2
) + 2juyS[f(m) - m)8] + [f(m) - mp]2

where^ = [f(M)-n»]/[M-m]

To find bounds on the variance, then, we subtract the larger of these two bounds from the square of the

lower bound on the mean to get the upper bound; and subtract the smaller of these two bounds from the

square of the upper bound on the mean to get the lower bound. The standard deviation then has upper

bound the square root of the variance upper bound, and lower bound the square root of the variance lower

bound.

To return to our previous example, suppose f= In, m = 10, M = 100, ti = 23, and also suppose a - 10. Then

the bounds on the sum of squares are

tangent: 629 * (1/23)
2 + 2 * 23 * (1/23) * [ln(23) - 23 * (1/23)]

+ [ln(23) - 23 * (1/23)]
2 = 1.19 + 4.28 + 4.57 = 10.04

secant: ($ = ln(100/10)/(100-10) = .02558; hence bound is

(.02558)
2
* 629 + 2 * 23 * .02558 * [ln(10) - 10 * .02558] + [ln(10) - 10 * .02558]

2

= .412 + 2.409 + 4.189 = 7.010

Now since the bounds on the mean are 2.635 and 3.135 from our analysis in section 3, the bounds on the

square of the mean are 6.95 and 9.82. Hence bounds on the variance are 10.04-6.95 — 3.09 and

7.01-9.82 = -2.81, and bounds on the standard deviation arc thus 73.09 = 1.76 and 0.

4.2. Special standard-deviation bounds lines

To bound the standard deviation of the transformed values we can use different bound lines than for die

mean. First, let us assume we know an exact value for the mean of the transformed data values - call it cp.

Distance from <p to each transformed data value is what needs to be linearly bounded, so we use secants

through f(x) at <p (sec figure 4-1). We assume f(x) is monotonic, and hence f (<p) is unique, so let F (<p)=i>

(i.e., <p = f[f)). So to get an upper bound on the standard deviation of the transformed values, we use a line



II)

below f(x) for x<//, and above for x>/>; and to get a lower bound, a line above f(x) for xO, and below for x></.

(Vice versa for a monotonically decreasing fix).) Now since we assume f(x) has a constant-sign second

derivative in the interval, the line segment from m to v must lie constantly to one side of fl(x), and similarly the

line segment from v to M. Hence choose the extensions of those two line segments into lines as our bounds

lines. These lines have equations

y = (x-p )(H»-f(m))/(r-m) + fl>)
v

y = (x-i>)(f(M)-H»)/(M-f) + IV)

Now:

o) = F[(y-n»)
2
]

And if y = m(x-j>) + fi» this is:

E[[m(x-iO + fi» - fi»]
2
]
= E[m2(x-")2]

- m2
[o

2 + (v-ii)
2
]

Hence using the formula for the variance, the second moment about the mean, the variance of the

transformed values is bounded by

[a
2 + (r-

J
a)

2
][(^-fIm))/(

J
u-m)]

2
and

and

[a
2 + (^)

2
][(fl(M)-*)/(M-,)]

2

Hence the standard deviation is bounded by

V[a
2 + (*<-iti)

2
]
[(n»-f(M))/(*>-M)] and

V[a
2 + (^M)

2
][(f(r)-f(m))/(^m)]

They are upper and lower bounds respectively for curves with positive second derivative, and vice versa for

negative second derivative. Hence the bounds are just an "adjusted" standard deviation of die original values

times the slopes of the lines from the mean of the transformed values to the minimum and maximum on the

interval.

Note since

of(p) is between <j[(f(ju.)-f(m))/(/i-m)]

and a[(f(M)-f(/i))/(M-/i)], for f'(x) constant-sign

a rough approximation of the standard deviation of die transformed values (as opposed to bound) may always

be obtained from of(i>), and this will be increasingly good an approximation as cr gets smaller. Also note that

for a narrow range of mean bounds, the difference between our standard deviation bounds is a rough

approximation of the second derivative of fat v.

S3 a[(f(M)-f(r))/(M-r)] - a[(H>)-f(m))/(j>-m)] S3 2crf»

So the width of the bounds varies proportionately with the magnitude of die second derivative at the mean of

the transformed values.
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Linear bounds on the standard deviation of transformed values
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4.3. Handling inexact transform means

But this assumes we know v, the mean of the transformed values, exactly. We do for the square function,

for instance. Otherwise there is an adjustment we can make. Let the upper and lower bounds on the value v

which maps to the transform mean be v
{

and v^.
r

ITien the bounds on die variance of the transformed values

are

max[max
p <^ [a

2 4>-r)2
][(f^)-f(m))/(,-m)]

2
,

max, <„<„ [a
2
+(li-p)

2
]mP>m))/(p-M)]

2
]

andmin[min <v<v [a
2
+(/i-^)

2
][(f(v)-f(m))/(j/-m)]

2
,

min
, <„<„ k 2 + (/i-^)

2
][(f^)-f(M))/(r-M)]

2
]

Since max(max(g(x)*s(x)),max(h(x)*s(x))) = max(max(g(x)*s(x),h(x)*s(x))) = max(max(g(x),h(x))*s(x)), we

can simplify:

max^ ^ p
[max[(f(^)-f(M))/( J/-M)J

2
,(f(^)-f(m))/(r-m)]

2
]*[a

2 + (M -f)
2
]]

and min^ ^^ [min[(f(^) f(M))/(^M)] 2
,(f(^)-f(m))/(^m)]

2
]*[a

2+ ( J
a^)2]]

First, suppose f(x) is monotonically increasing (like all of our six important functions except 1/x). If the

second derivative is positive, then the inner max is the first subexpression in the first bound above, and the

inner min is the second subexpression in the second bound. We can then rewrite die formulae:

max [(f(^)-f(M))/(,-M)]
2
*[a

2
+ (j^)

2
]VL~- U

and min, <,<, [(n»-f(m))/(„-m)j
2
*[a

2+ (/x-^)
2

]

Note that these represent the product of two functions which arc both monotonically increasing with respect

to v. For a monotonically increasing f(x), /x is a lower bound on v. The product of two monotonically

increasing functions is a monotonically increasing function. The max of a monotonically increasing function

is the value at the rightmost point, and the min is at the leftmost point. So the revised bounds on the variance

of the transformed values, given f(x) increasing and with positive second derivative, are

upper: [(fT^ u
)-f(M))/(^ u-M)]

2
*[a

2 + (/x-ru)

2

J

lower: [(f(i;
I

)-f(m))/(
yi;

m)]
2
*[a

2
+(

J
Lt^

L)
2
]

Similarly if f(x) has a negative second derivative (again, assuming the first derivative is positive), we can show

by analogous reasoning that the bounds are:

upper: [(fir
L
)-f(m))/(r

L
-m)]

2
*[a

2+ (
i
ti -*'

I

)
2
]

lower: [(fl[i'u>f(M))/(^v
-M)]

2
*[a

2
+(/i-i'u)

2
]

Using our example of f= In, m- 10, M- 100, [i -23, a- 10, we use die previously found linear bounds on
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the mean of the logarithms of yu = c
3 135 = 23 and p

L
= e

1635 = 13.9. Hence bounds on the standard deviation

of the logarithms are:

V[10
2 + 9.1

2
][(2.635-ln(10))/(13.9-10)] = |. 5 6

V[10
2 + 2

][(ln(100)-3.135)/(100-23)] = t] Q C.

both being better than the sum-of-squares bounds in section 4.1.

Unfortunately, revised formulae for monotonically decreasing functions are not as easy. The partial

derivative of the bounds expressions must be set to zero and inverted. Consider the case for the upper bound

for a curve with a negative second derivative (like 1/x):

= a/ar[[(f(j/)-f(M))/(^-M)]
2
*[a

2
+ (M-" )

2
]]

= 2[(n»-f(M))/(*>-M)J * [(f»(r-M) - (f(^)-f(M)) /(*>-M)
2
]
* [o

2 + {ii-v)
2
]\

+ [(fW-f*M))/(i>-M)r*-20i-*)

[(fdO("-M) - (n»-f(M)) / (r-M)
2
]
* [a

2+(^)
2
]} = [(n>H(M))/(r-M)] * Qi-p)

which is then solved for i>, and the value substituted in the function differentiated above to obtain the bound.

Analogously, the other bound is found by solving

[(f»(*-m) - (Kr)-f(m)) / (,-m)
2
]
* [a

2 + (/i-*>)
2
]]

= [(fi»-f(m))/(r-m)] * (fi"")

4.4. Evaluating standard-deviation bounds

The sum-of-squares bounds of section 4.1 are hard to evaluate, but we can examine the slope-based bounds

of the last section, provided we assume v is known exactly. We are interested in knowing the largest possible

difference between the upper and lower bounds for an exact r, or the maximum of

DC) = a
2
[[(f!M)-f(r))/(M-^]-[(f(r)-f(m))/C-m)]]

where a
2 = a

2 + (ix-v)
2

For four of our functions - x
2

, x
3

, 1/x, and Vx - this is straightforward to find:

• x
2

: D(i>) = o
2
[(i> + M)-(i> + m)] = a

2
(M-m), so D is constant.

• x
3

: D(*>) = a
2
[(v

2 + uM + M 2
)

- (v
2 + vm + m 2

)] = a
2
[v(M-m) + (M2

-ra
2
)]. This has

maximum at v -M of a
2
(M-m)(2M-m).

o 1/x: D(p) = oJl/i>m - 1/*>M] = a
2
(l/m - l/M)/e. This has a maximum at v = m of

a
2
(M-m)/m 2M.

• Vx: D(v) = ct
2
[(1/(vV + VM)) - (l/(Vv + Vm))] = a

2
(VM-y/m)/(p + (VM-Vm)^ +

V(tnM)). This has a maximum at v =m of a
2
(l/Vm - 1/Vlvl).

For transcendental functions like ln(x) and c
x wc can attack the problem with an infinite scries obtained

from the Taylor series expansion of the function about v; when the curve is relatively flat in the interval of

interest, the approximation will be good.
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EX") = a
2
[((f(f)-f(M)))/(^M)-((f(^)-f(m))/(^-m))]

I .ct us expand the first quotient in the brackets into a series.

(fl»-f(M))/(»>-M) = [f(r) - [f(i>) + (i>-M)f» + (*<-M)
2f»/2! + ... ]] / (*-M)

-[f» + (j/-M)f"<>)/2! + (f-M)
2r»/3! + ...

]

'i=lt oo

Hence

•2,-, lftM [HDH ^)/i']

v

D(^)-a2
i=lto00

[[^-m)
i
"
1

^)/i!]-[("-M)
i
-
1

f
i
(r)/i!]]

We need to take the derivative with respect to v of this in order to sec if it has a maximum in the interval. The

condition for the maximum is thus:

= 2. = lto00
[[(^m)

i
-
1>-M) i

- 1
]f
i+1

(0/(i+l)*(i-l)!)]

To approximate this we can take the first few terms:

= (M-m)f»/2! + (2r(M-m)-(M + m)(M-m))f»/3!
= (M-m)[f»/2 + (2#/-m-M)f"(")/61

As an example, consider f{x) = e
x

. Then:

= (M-m)[e"/2 + (2//-m-M)e"/6] = (M-m)e"(l/2 + v/3 - m/6 - M/6)

which can be solved iteratively for v.

5. Quadratic bounds on means: Taylor-series methods

5.1 . The problem

A straight line is not a very good approximation to a function with a strong curvature. An obvious next

step to improve our estimates of the mean is to constnict quadratic bounds lines of the form y = ax +bx + c

and compute the mean along those:

E[ax
2+ bx-f c] = a(a

2+ /i
2
) + b/x + c

However, finding quadratic bounds curves is not as easy as it might seem. We generally cannot just use the

Taylor series about some point of the curve, as with the estimates (not bounds) of [9], because while such

approximations may stay close to the curve of the actual function on some range, they may be above and

below it at different places. For instance, take the 3-tcrm Taylor scries for f(x) = ln(x) about x= 1, which is

+ (x-l)*(l/l) + (x-l)
2
*(-l/l

2
)/2 = -.5x

2 + 2x - 1.5

At x = 2 this is .5, below the logarithm curve value ln(2) = .69, but at x= .5 this is -.625, above the logarithm

curve value ln(.5) = -.69. Hence the approximation curve crosses ln(x), and cannot be used as a bound on the

values of the latter.
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5.2. Quadratic bounding by vertical shifting

There is a way wc can use arbitrary polynomial approximations to get bounds: we can shift the

approximation curve upwards or downwards until it no longer crosses the target curve in the interval. To put

this formally for the Taylor series, we want to bound fljx) on the interval m to M by the function

h(x) = flCt) + (x-t)f(t) + .5f'(t)(x-t)
2 + K

where t is some arbitrary point in the interval, and K is some constant. If we choose t=u (for quadratic

bounds a convenient, but not necessarily best-bound point), then the mean of the approximation function is

E[h(x)l = u» + (jti-/x)f(t) + .5[a
2 + n

2
- 2/x

2 + /x
2
] f'(t) + K

= fiii) + .5a
2
f"(0 + K

Ifwe do not choose t=/x the formula is slightly more complicated:

fit) + Oi-t)f(t) + .5(a
2 + (/i-t)

2
)f"(t) + K

Note for the particular function f(x) = x the Taylor series has only three terms, and hence an exact formula

for the mean of the square of a set of data values is

H
2 + .5a

2
(2) = n

2 + a
2

The lower and upper bounds arc then found from substituting K.. and K
L , which are respectively the

maximum and minimum values in the interval of study of the error of the approximation e(x), defined as

e(x) = f(x) - f(t) - (x-t))f(t) - .5(x-t)
2
f"(t)

Since the interval is finite, we cannot just find die zeros of the derivative of e(x). Zeros have to lie within die

data-value interval, and they must be compared to two other points, the function values at the maximum and

minimum of the range. In other words:

K
u

is max[c(m),e(M), e^), e(z
2
), ...]

K
L

is min[c(m),e(M), e(z
1
), c(z

2
), ...]

where die z. arc all zeros of e'(x) within die interval. To find the zeros:
i

v '

3e/3x = f(x) - f(t) - (x-t)f '(t) =
[f(x)-f(t)]/(x-t) = f'(t)

We always know one solution of the above equation, x-- 1, because

[f(t) - f(t)l = (t-t) f '(t) -

But dicrc arc no other solutions for functions with constant-sign derivatives, implying no other local maxima

or minima for a Taylor-series approximation. To sec diis, note the equation says the slope of f(x) from t to

some other point must be equal to the derivative of f (x) at t. But this cannot occur if the second derivative of

f(x) (i.e., f"(x)) is constant in sign, because then each value of the first derivative (i.e., f '(x)) can occur at most

once.

Hence we can write die Taylor-scries quadratic bound in general as (noting c(ju)--O):
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upper bound: fit) + (jti-t)f(t) + .5(tr
2+ (/x-t)

2
)f"(t) + max(e(m),c(M),0)

lower bound: f(t) + (/i-t)f(t) + .5(a
2 + (/z-t)

2
)f"(t) + min(c(m),c(M),0)

For particular functions f we may be able to rule out some possibilities for the min and max. For instance,

for f(x) = x
3

, c(x) is just the fourth Taylor-scries term, (x-t)
3
*6/6, so e(M) > and e(m) < 0, and bounds are

upper bound: t
3 + (ju-t)*3t

2 + .5(a
2 + (ju-t)

2
)*6t + (M-t)

3 = 3t
2
(M-/i) + 3t[a

2 + jn
2-M 2

] + M 3

Mower bound: t
3 + (/x-t)*3t

2 + .5(a
2 + (ju-t)

2
)*6t + (m-t)

3 = 3t
2
(m-/x) + 3t[<j

2 + /A
2-m 2

j + m3

Similarly, e(m)<0 from analyzing tlie Taylor series for logarithm and square root; 0<e(m) for reciprocal; and

(Ke(M) for antilog.

5.3. An example

To illustrate, use our previous example of f=ln, m = 10, M = 100, t= /i = 23, and a = 10. Take the Taylor

series about ju. From the preceding we know that the only possible extremes occur at m, M, and /a, so note:

e(x) = ln(x) - [ln(23) + (x-23)/23 - .5(x-23)
2
/23

2
]

e(m) = ln(10) - [3.14 - .56 - .16] = 2.30 - 2.42 = -.12 = K
L

e(ji) = ln(23) - ln(23) =
e(M) = ln(100) - [3.14 + 3.35 - 5.6] = 4.6 - 0.9 = 3.7 = K

(J

Which arc the bounds offsets we have to add to the estimate of the mean of

ln(23) - .5 10
2
/23

2 = 3.06

So we estimate the mean of the logarithms is 3.06, with an upper bound of 3.06 + max(-. 12,0,3.7) = 6.76, and

a lower bound of 3.06 4- min(-. 12,0,3.7) - 2.94. The upper bound is much worse than the linear upper

bound (3.135), but the lower bound is better than the linear lower bound (2.635).

5.4. Choosing the optimal point for the Taylor series

The question arises as to the best value oft for getting an upper or lower bound. Analysis requires careful

preconditions, but we can often do something like this. Suppose that e(M) is the maximum value of c(x) on

the interval of study. The estimate of the transformed mean from taking the Taylor series about t is

f(t) + (/x-t)f(t) + .5[a
2+ (/i-t)

2]r(0

- f(t) + (/x-t)f(t) + .5[a
2+ (M -t)

2
]f"(t)] + [f(M) - f(t) - (M-t)f(t) - .5(M-t)

2
f'(t)]

= flJM) + (/i-M)f(t) + .5[a
2 + ju

2-M 2
-2/it+2Mt)]f(t)]

We want to minimize this maximum error with respect to t, i.e. we want:

= 9/91 [f(M) + Q.i-M)f(t) + .5[a
2 + ju

2-M 2
-2jit+2Mt)]f"(t)l

= (/jt-M)f'(t) + .5[(j
2 +

J
a
2-M 2

-2
J
ut + 2Mt)]f

v

"(t)] -h (M-/x)f'(t)

= .5[ff
2 + ju

2-M 2
-2/it+2Mt)]r(t)

For a function with derivatives constant in sign, this can only be zero if the expression in brackets is zero:

= a
2+ /x

2-M 2
-2/U-h2Mt
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t = [ju + M - 8M ] / 2, where 8 = ct
2
/(M-ju)

t = [a
2+ ^

2-M 2
]/2(/i-M)

y/2,whu„„M
Hence substituting back in the expression for the bound, the second derivative term must disappear, and we

get

fl(M) + (/i-M)f(0i+M-fiM)/2)

which is an upper bound provided e(M)>0 and e(M)>e(m).

By similar analysis we can show that

t = [a + m + 8 1/2, where 5 = o /(u-m)

is the best t for obtaining the other bound on the e(x) on the interval of interest, leading to a lower bound of

f(m) + (/i-m)f(0i+m+Sm)/2)

provided e(m)<0 and e(m)<e(M). For a-0 the upper and lower bounds occur at t = (ju. + M)/2 and

t=(/x + m)/2 respectively; and for a the maximum,~y[(M-/i)(ju-m)], these are both (M-m)/2.

So for the logarithm function (where e(m)<0 necessarily) /x = 23, m = 10, and M= 100, and this gives for a

lower bound for t = (23 + 10 + .5*100/(23-10))/2 = 20.3, and the bound is

f(m) + (/i-m)f(20.3) = ln(10) + 13/20.3 = 2.30 + .640 = 2.94

which is negligibly better than for the series about ju, but may represent an improvement in other cases. In

general, the Taylor series approach works well for narrow intervals of interest or intervals where f(x) is rather

flat. We can, however, use order statistics to improve Taylor-series bounds; sec section 10.

6. Quadratic bounds on means from Lagrange interpolation

Taylor scries approximations deteriorate on the edges of an approximation interval. We are more

concerned with signed maximum deviation of the approximation from die function (a concept distinct from

the Lqq approximation, which minimizes the absolute value of deviations), and a better quadratic for our

purposes comes from Lagrange interpolation method using the Chebyshev interpolation points. For a

quadratic we need three points to fit the curve dirough, giving:

h(x) = f(p)(x-q)(x-r)/(p-q)(p-r) + f(q)(x-p)(x-r)/(q-p)(q-r) + f(r)(x-p)(x-q)/(r-p)(r-q)

h(x) = (8/3(M-m)
2
)[f(pXx-q)(x-r)-2f(q)(x-p)(x-r) + f(r)(x-p)(x-q)]

where p = m + (.5- V3/4)(M-m), q = (M-f-m)/2 , and r = m + (.5+ V3/4)(M-m)

Using our example of f= In, m = 10, M = 100, n = 23, and a — 10, we have:

p= 16.029', q = 55.0, r =93.971 ;1n(p)= 2.7744, ln(q)= 4.0073, ln(r)= 4.5430

h(x) = -.0002295x
2 + .04794x + 2.0648

Hence an estimate of the mean of the logarithms for this example is

-.0002295(10
2 + 23

2
) + .04794(23) + 2.0048 - -.1444 -(- 1.1026 + 2.0648 = 3.0230
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This is an estimate, not a bound. Just as with Taylor-scries polynomials, we can get bounds from this from

knowing the cxtrcma (maxima and minima) of the error curve on the interval of interest. For Chcbyshcv (as

opposed to Taylor-series) approximations there arc two places in the interval where e(x) = 0, and hence one

local maximum and one local minimum. We can find these by solving the error curve derivative explicitly;,

for logarithm and cube this is a quadratic equation, for square root and reciprocal a cubic, and for exponential

a transcendental equation. For example, for our ln(x) example:

d/dx[ln(x) - (-.0002295x
2 + .04794x + 2.0648)] = 1/x + .000459x - .04794 =

hence .000459x
2

- .04794x + 1=0
andx = [.4794 ± V(.04794

2
-.001836)] / .000918 = 28.80 and 75.64

So the extrema of c(x) on the interval can occur at only four points: m = 10, M = 100, 28.80, and 75.64.

Computing c(x) there:

e(10) = -.2187, c(100) = .04137, e(28.80) = .10526, e(75.64) = -.05193

And hence the Lagrange-Chebyshev quadratic bounds on the mean of the transformed values are:

upper bound: 3.0230 + max(-.2187, .04137, .10526, -.05193) = 3.1283

lower bound: 3.0230 + min(-.2187, .04137, .10526, -.05193) = 2.8043

which are better than the linear bounds of 3.135 and 2.635 (and hence the Taylor series bounds too).

7. Quadratic bounds on means: one-sided methods

There are quadratic methods that avoid having to find the extrema of the error function in computing an

approximation, by constructing approximation curves entirely above or entirely below the target function in

the interval. We can do this if we can position the points of intersection of the approximation curve ax + bx

+ c with f(x) to lie either (a) outside the interval, or (b) tangent at some point. Among our six demonstration

functions, reciprocal and cube lead to cubic polynomial equations.

7.1 . Intersection and tangent positioning: reciprocal

Consider reciprocal first. The error curve is

e(x) - 1/x - ax - bx - c

and it can have at most three zeros which are the solutions to

= ax
3 + bx

2 + ex - 1

To keep the approximation curve "close", we can put a point of tangency at some t inside the interval - i.e., a

double zero at t - and another zero at M. We can write this function as e(x) = (x/t - l)
2(x/M - 1), which

approaches -co for small x, + eo for large x, reaches a local maximum at x = t, a local minimum at some larger

x value, and then crosses zero permanently at x - M. Then we want

(x/t - l)(x/t - l)(x/M - 1) = ax
3 + bx

2 + ex -

1

x
3
/t

2M - x
2
(2/tM + 1/t

2
) + x(2/t + 1/M) - 1 = ax

3 + bx
2 + ex -

I

a = l/t
2
M, b = -(2/tM .+ 1/t

2
), c = 2/t + 1/M
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So the quadratic lower bound on the mean is

(o
2
+n

2
)/l

2M -(2/tM + l/t
2
)/x + 2/t + 1/M

We are interested in the best lower bound possible, i.e. the largest. We can find this by setting to zero the

partial derivative of the preceding with respect to t:

= -2(a
2+ /Lt

2
)/t

3M + (2/t
2M + 2/t

3
)/*

- 2/t
2

= -(ct
2+ ^

2)/M + (t/M + l){i - t

\ = [/i-(a
2 + ju

2
)/M]/(l-/i/M)

= p.
- a

2
/(M-/i) = n - SM where 5M = a

2
/(M-/x)

So for a = this is ju.; for o a maximum, namely V[(M-ju)(jU-m)] (see section 3.6), this is m. We saw this 8M
term before in a different kind of quadratic approximation in section 5.4.

Substituting this t in the bound formula, we get a quadratic lower bound of

[(a
2V-M/x) + 2(/i-6M )(M-/i) + (m-5m )

2
] / M(jx-8H)

2

= 1/M + [(a
2+

J
Li
2-M fi ) + 2(M

J
li-ju

2
-<7

1
)] / M[(/i - aV(M-jti))

2
]

= 1/M + [M/x - a
2

- jit

2
] / M[(M/i - a

2
- ju

2
) / (M - ju]

2

= 1/M + [(M - ju)
2
/ M(M/i - a

2
- /i

2
)]

= (1/M)
[
[M/x - a

2
- jli

2 + M 2
- 2M/i + /it

2
] / (M/i - a

2
- jli

2
)]

= (1/M) [M 2
- M/x - a

2
] / [M/i - /i

2
- a

2
]

= (l/M)(M-fiM)/(/i-fiM)

Note that when a = this is equal to 1/M * M / jn = 1/jli, the linear bound. Since jli<M, a nonzero a

will cause the denominator of die fraction to decrease proportionately more than the denominator, and hence

give a lower bound greater (better) than the linear lower bound. The maximum value of a is V[(M-/j.)(/x-m)],

whereupon 5M = ju-m, and die lower bound is 1/M * [M - [i + m] / m = 1/m + 1/M - ju/mM, exactly the

upper linear bound for reciprocal (sec section 3.2).

Again, let's use our standard example of m = 10, M=100, /z = 23, o = 10, this time for the reciprocal

function. Then

6M = 10
2
/(100-23) = 1.299

And a lower bound on the mean of the reciprocals is

1/100 * (100 - 1.299) / (23 - 1.299) = .04548

This is better than the linear lower bound, calculated as 1/jli = .0435.

We can get an upper quadratic bound by only minor modifications: just create a bounding curve diat

crosses 1/x at m instead of M, and is tangent at t in the interval. We just substitute m for M in the preceding

formulae, giving

an upper bound of (a
2
f/i

2
)/t

2m - (2/tm + i/t
2
)jLt + 2/t T 1/m
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taken at t = ju, + a /(ti-m) = /i + 6

whicli can be written as (1/m) (in + 5 ) / (/x + 5 ) where 5 = a /(ti-m)

So for our example data, t = 23 + 10
2
/(23-10) = 30.69, and die upper bound is 1/10 - 13/10*30.69 = .0576.

This is significantly better than the linear upper bound of (77/90)*.l + (13/90)*.01 = .0871. Hence by using

a quadratic rather than linear bound we have narrowed the range of the answer by a factor of

(.0576-.0455)/(.0871-.0435) = .278.

7.2. Evaluation of the quadratic reciprocal bounds

We can obtain useful approximations of die quadratic bounds by replacing the quotient with the first few

terms of its binomial expansion, as here for die lower bound:

l~ w.. ., x /..2 , *2 ,3

-cel/M(M-8M)(ii-8My
1 ^l/

l

l//x + 6M(l/ti-l/M)//x + 6^1/ii- l/M)/|ti'

hence 1/M (M - 5M )(/i - 8M
)' L ~ 1/ju + (l//z

z
- l/Mti)fiM + (1//* ' 1/M /* )5m

= l//x + a
2
/M/n

2 + a
4
/(M-/x)Mii

3

Hence the difference between the quadratic bounds can be approximated by

(1/m - 1/M)ct
2
/ju

2 + (l/m(m-/i) - 1/M(M-
J
u))a

4
/

J
u

3

= [(M-m)a 2
//a

2

]
[1/mM + (m + M-

J
u)CT

2
//imM(m-/x)(M-ii)]

As suggested in the previous section, the quadratic bounds are always better than the linear bounds except at

the two extreme cases of o. We can find the ju. and a for which they are least accurate. Set the partial

derivative of die difference between die quadratic bounds to 0:

= 3/3/1 [(1/m - l/M)a 2
/it

2 + (l/m(m-ii) - l/M(M-/*))a% 3
]

= -2(l/m - 1/M)ct
2
//x

3 + [l/m(m-/x)
2

- 1/M(M-ii)
2
]<j

4
//i

3

+ -3[l/m(m-/i) - l/M(M-ju)]a
4
//x

4

2(l/m - 1/M) - [i/m(m-ii)
2

- l/M(M-ja)
2
]a

2
- 3[l/m(m-/x) - l/M(M-ju)]a

2
/ju

which can be solved itcratively.

7.3. Intersection and tangent positioning: cube

We can do something similar for the cube function:

c(x) = x - ax - bx - c

which is a third-degree polynomial just like the one for reciprocal. So we can position one intersection point

and one tangency point. This time we can write e(x) as

e(x) = (x-t)
2
(x-M) = x

3
- ax

2
- bx - c

hence

a = 2t + M, b - -(t
2 + 2tM),c = t

2M

so an upper bound on the mean is
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(2t+M)(a 2 +
J
u
2
)-(t

2 + 2tM)
J
u + t

2M
and this is a minimum when we choose a t such that

2(a
2
4-/i

2
) - (2t+ 2M)/i 4 2tM =

[(a
2
4-/i

2
)-M/i]/(/i-M) = t

t = /i - ct
2
/(M-/i) = /i - 8M

Substituting this in the equation for the bound:

* (/x-V
2
(M-M ) + 2(/i-8

iV1
)(a

2 + /i
2
-M/i) + M(a 2+ /x

2
)

= yrU - /i
3

- 2/i6MM + 2M
2
5M + fi

2M - «A + 2/ia
2 + 2/i

3

2/i
2M - 2«M a

2
- 25mM

2 + 2«M/iM + a
2M 4- ^M

= /i
3

4- 5
2
(M-/i) + (2/x + M-25M)a

2

= /i
3 + a7(M-fi) + (2/i + M - 2a

2
/(M-/i))(T

2

= /i
3

- a
4
/(M-/i) 4- (2/i4-M)a

2

^ + (2M + M - fiM)a

Similarly, a lower bound is

(2t+m)(<r
2
+/i

2
)-(t

2
+2tm)/i + t

2m

and this is a maximum when we choose a t such that

t = ju 4- a2/(/i-m) = [x + 8m

leading to a lower bound of

/i
3 + (2/i + m + 5m)a

2

Note the quadratic lower bound is always greater than the linear lower bound, /i . The difference between

the upper and lower bounds is

[M-m-SM -<5 ]a
2

which provides a useful criterion for the effectiveness of these bounds. Note this is always nonncgativc since

M - m - [8M 4- fij = M - m -a
2
(M-m)/(M-/i)(/i-m)

= (M-m)[l - ff
2
/(M-/i)(/i-m)]

Tlie largest possible value of a is (M-/i)(/i-m), so the quantity in brackets is always nonnegative.

8. Optimal quadratic bounds

The problem of finding the best quadratic approximation for our bounding purposes may be viewed as an

optimization problem in two variables. Since the quadratic curve ax + bx + c leads to a bound of

upper bound: a(or +/i ) + b/i + c + max < <M ff(x)-ax -bx-c]

lower bound: a(cr +/i ) 4- b/i + c + min 7' ~ [f(x)-ax -bx-c]

and die constant c can be moved out of the maximum and minimum, we can write:

upper bound: a(a
2+ /.i

2
) 4- b/i 4- maxm<x<M [f(x)-ax -bx]

lower bound: a(cr 4-/i ) 4- b/i 4- min ~ ~ [f(x)-ax -bx]

So we have two optimization problems for real a and b: to find the values that minimize the upper bound,
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and the values the maximize the lower bound. We have constructed a program that docs this by estimating

the gradient from exploratory steps, finding the zeros of the error function by the quadratic formula for

logarithm and cube, and by iterative bisection for antilog, square root, and reciprocal. Comparison with the

other obtained bounds is presented later in this paper. Unfortunately, die cxtrcma appear to be "broad", and

convergence is slow, so the other methods discussed in this paper seem clearly desirable in most cases. While

these other methods cannot usually get the tightest bounds, the difference is usually not much.

A strong local maximum found by the optimization process is guaranteed to be the global maximum over

all quadratic curves, because the function being optimized is convex. To see this, note for the upper bound

for instance

(da
l
+ (l-^)a

2
)(a

2 +
J
Lt
2
) + (0b

T
+ (l-0)b

2
)/x

+ maxm^ x ^M
[f(x)-(^a

1
+ (l-^)a

2
)x

2
-(^b

1
+ (l-^)b

2
)x]

< a
l
{a

1+a 1
) + blM + maxm£x£M [f(x)-a

1
x
2
-b

1
x]

+ a
2
(a +/i ) + b

2
ju + maxm^ x^M

[f(x)-a
2
x -b

2
x]

since max(f(x)+ g(x)) < max(f(x)) + max(g(x)).

For our standard example, we found the optimal quadratic bounds to be 3.00 and 3.10.

9. Improving accuracy with outliers and statistics on subsets

We can tighten bounds if we know additional information about a set of data values. We may know a few

extreme values on die range (outliers), and be able to remove these points from the analysis of the rest of the

points. This helps a good deal when m and/or M arc unusually unrepresentative of die distribution (and

notice how frequently we have used m and M in our formulas). With the outliers removed, the remaining

values can have a narrower range, on which the function can be better matched by a linear or quadratic

approximation. The transformed values for die known outliers can then be added to the total mean or total

variance in a final step.

But we can generalize tliis. We can improve accuracy of bounds any time we know means and variances of

arbitrary subsets of the original data values. We may then estimate statistics on the transformed values for

each subset and combine them with the appropriate weighting.

9.1 . An example

For instance, from [8], dicrc were 6133 merchant ships with United States registry in 1982, of an average

gross tonnage of 3120 per ship. Of these, 2941 were fishing vessels, of average tonnage 199.6 gross tons; 548

were cargo ships, of average tonnage 9790 tons; 361 were tankers, of average tonnage 2670 tons. Hence there
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were 6133 - 2941 - 548 - 361 = 2283 other ships of average tonnage [(6133*3120) - (2941*200) - (548*9740)

- (361*2670)]/2283 = [19,130,000 - 588,00 - 5,340,000 - 965,000] / 2283 = 5320 tons.

Now suppose we want the mean of the logarithms of the tonnage values. Consider die upper bounds on

each of die four disjoint subsets. These arc just die logarithms of the means, or 5.30, 9.21, 7.88, and 8.57.

Hence the total upper bound is die weighted mean of these upper bounds, or

[(5.30*2941) + (9.21*548)+ (7.88*361)+ (8.57*2283)] / 6133 = 7.018. This should be compared with the

upper bound derived from the mean of die entire set, ln(3120) = 8.03, so the subdivision data gave us a

significant improvement.

Unfortunately, we do not know anything about die maximum and minimum tonnage of classes of ships, so

we cannot get a cumulative lower bound. However, we know m — 100 for diis table, and M = 200,000 is a

reasonable figure from knowledge of merchant shipping, so a global lower bound is found by

a = (3120-100)/(200000-100) = .0151

lower bound is ln(100) + a(ln(200000)-ln(100)) = 4.60 + .0151*7.60

= 4.60 + .115 = 4.715

9.2. Proof of desirability of subdivision for linear bounds

It can be proved that linear bounds on the mean are never worsened by using such subset statistics. This

can be seen graphically in figure 9-1. We consider here the case of binary subdivision, and further

subdivisions can be covered by extension. We also consider only functions concave downwards, but the other

case can be handled analogously.

First consider the lower bound. If the ranges of the subdivisions are the same as the full set, dicn the two

lower bounds must lie along the same line, and their weighted average must lie along the line too; hence the

lower bound of the full set is exactly the weighted average of die two lower bounds. If one or both of the

subsets has a narrower range of values than the full set, diis can only increase (improve) the lower bound since

a secant across a subrange lies fully above a secant across a range containing die subrange. Hence the lower

bound cannot get any worse in diis subdivision summation of linear lower bounds.

The upper bound also cannot be any worse. This time range reduction within a subset does not matter

because the upper bound is constrained to lie along the curve of die function, which is independent of where

it is sliced. The weighted average of die two subset upper bounds is a point along die line connecting two

points on the function curve. But since the function is concave downwards, this point is always below the

function. But since the upper bound on die full set is constrained to lie on the curve, die subdivision process

always guarantees a better upper bound as long as the two subdivision means arc different, and no worse if
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try h

Figure ^-1: Impiovomcnts in linear bounds from combining statistics on two disjoint sets
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they arc not different.

10. Exploiting order statistics as well

So far we have only assumed knowledge of the maximum, minimum, mean, and (sometimes) standard

deviation of sets of data values. If we have additional statistics on the data values we can do a better job of

estimating statistics on the transformed values. In this section we discuss using order statistics (e.g. medians

and percentiles). Order statistics have the nice property that they have one-to-one mappings from the original

data values to the transformed values under the monotonic transformations we arc assuming.

10.1. Usingthe median

First, assume we know a median in addition to the maximum, minimum, and mean. We can often get an

immediate improvement in the bounds on estimates. Let the error curve (linear, quadratic, or whatever) be

e(x). Then the median can be thought to partition the points into two equal-sized subranges (assume the

number of points to be large enough so that even numbers of points don't bother us). Then an upper bound

on the mean of the transformed values is the estimate given by the approximation curve plus one half the

maximum of the error curve in the range to the left of the median plus one half die maximum of the error

curve in die range to the right of the median. The lower bound on the mean is found substituting

"minimum" for "maximum" in the above rule. Thus knowing the median decreases die influence of cxtrcma

of the error curve.

10.2. Other order statistics

We can generalize these ideas to the situation where we know arbitrary order statistics on the original

distribution. Denote Uiese statistics as r pairs of the form <x ,f>, where fraction f. of the items in die
1 ii i

distribudon are claimed to lie to the left of value x . Then we can generalize die formula of section 5 as

follows:

upper bound is <estimatc from approximation curvc> -2 [f. * min [c(x)]

i-l i

lower bound is <estimate from approximation curvc> - 2. If, . . , * max , . fe(x)ll
' r i

l Ki<r x. ,<x<x l v /JI

where e(x) is the error curve a(x)-f(x), x
Q

is denned as m, with ^ = 0, and the x is defined as M (with

corresponding f of 1). Thus die effects of the extreme points of c(x) arc "diluted" by their fractional

coefficients, and the more order statistics arc known, die tighter the eventual bounds.

Under certain circumstances we can simplify the above formulae considerably. If we know even-

subdivision order statistics (i.e., f = i/r, r the number of order statistics), and if the error curve c(x) is

monotonic, then the maximum and minimum of e(x) in each subintcrval between the order statistic ordinates
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x. must lie at the endpoints. So if e(x) is monotonic increasing, the upper bound is [2 1<i<mc(x j

)]/r and the

lower bound is [2, < .

< e(x. ,)]/r; and vice versa ifc(x) is monotonic decreasing. Hence the absolute range

between the upper bound and lower bound is always the same number, |e(xm)-e(x )|/r = |c(M)-c(m)|/r.

(Note that Taylor-series quadratic approximations are monotonic if e(m)<0<e(M) or e(M)<0<c(m), conditions

which occur frequently.)

10.3. Order statistics and the standard deviation

Order statistics are also helpful in estimating the standard deviation of the transformed values, especially

order statistics for the leftmost and rightmost subranges of the interval. Recalling the bounds lines drawn

through the mean of the transformed values in section 4.2, we had to draw them so they lay entirely above the

curve to one side of the mean, and entirely above on the other side, and this is a highly conservative

assumption. Assume v is known precisely. We could probably get a better bound if we knew how many

points lay to the left of some x,, and the drew a secant of f(x) from the transform mean to it, rather than from

the transform mean to m; or if we knew how many points lay to die right of some x ,, and drew secant from

the transform mean to it instead of M. See figure 10-1.

The estimate of the standard deviation of the transformed values obtained from these lines is just their

slope times the original standard deviation. But to get a bound, we need a correction for the points lying more

extreme than the new point of intersection. Consider the example of curve concave downwards like

logarithm, and take the upper bound line from the transform mean to some point to the left; call the point x,,

and let it be an order statistic so that fraction p of the distribution lies to the left of it. Assume the mean of the

transformed values is known exactly. Then the correction for a bound corresponds to the situation where all

the p points are at m, which means a difference in the variance of

p*[(n>H(m))
2

- [(^-m)*(f(r)-f(x
1
))/(^-x

1
)]

2
]

where v is the number which maps functionally to the mean of the transformed values. Hence the expression

for the upper bound on the standard deviation is

[[o
2
Hli-v)

2
]M'>>f{x)y('>-x

i
)]

2 + P*(n>H(m))
2

- pl^-m)*^)-^))/^^)]
2

]

5

So using such a bounds line can give a better slope, but one pays a penalty of a correction term which

subtracts from the slope improvement. An obvious question is under what conditions use of the order statistic

helps. It turns out this has a surprising answer when v is known exactly. Denote the two slopes as s and s ,

i.e.

sm = (flW-f(m))/?-m), s
o
- (fW-f^Mr-xp

we can rewrite our expression for the upper bound as

[[a
2
+(n-p)

2
)
* s

2 + p*s
2

n
*(r-m)

2
- p's^-m)2

]

5



27

Figure /<?•!: Hxploiting order statistics for a better bounds on the standard

deviation
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This will represent an improvement on the linear upper bound [cr +{[i-v) ]s if

[a
2 + (/i-r)V > [a

2 + (]^)
2
]
* s

2 + p*s
2

n
*(i;-m)

2
- p*s

2
*(,>-m)

2

or [a
2 + (M -/')

2
][s

2

n
- s

2
] > p*[s

2

m
- sj]*(*-m)

2

So the slope terms cancel, and use of the order statistic <x,,p> is going to be helpful when:

[a
2 + (ju-*>)

2]>p*("-m)2

^orp<[(a 2 +(^)2
)/(^-m)

2
]

This result is independent of where the order statistic is within the distribution (x^, and depends only on the

standard deviation and minimum of the original distribution, and the mean of the transformed values. The

corresponding result for the rightmost order statistic is

p <[(o
2+ bi-i>)

2
)/(M-vf]

where p is the fraction of items to the right of x
^

If we know other order statistics than just the leftmost and rightmost (x
1
and x ,) wc can get better bounds,

though predicting the improvement is difficult. For instance, if we know x,, we can take a line from v to x-,

and estimate the contribution to the correction factor from the items between x, and x, differently than the

contribution of items between m and x..

10.4. Adjustment of standard deviation for an inexact transform mean

If wc do not know the exact mean of the transformed values, cp = fi», we must adjust these results. Let

the bounds on the transform mean be v
{

and v„ as in section 4.3. Assume f(x) has a negative second

derivative. The formula for the upper bound is

[[a
2+ (M^)

2
][(f(^-f(x

i

))/(^-x
i
)]

2 + p*(^)-f(m))
2
-p*[("-m)*(f(i')-f(x

1
))/(^x

1)]
2
]-
5

Since v </a, [[a +(ju.-y) ] is monotonically decreasing with v in its range. The rest of the expression is the

difference of a term and the difference of two others. The first term is monotonically decreasing with

increasing v since the second derivative of the curve is negative. This represents the second moment of f,

items grouped at m on the curve. As v increases, the possible distance these items could be off the bound line

increases, and their relative weight increases as f(f ) becomes relatively larger than f(m). Hence since this

correction term is subtracted from the slope, the effect as v increases will be for all the terms to decrease.

Hence the adjusted value for the upper bound on the standard deviation of the transform values is just

[[a
2+ (M -r, )

2
]MV] )-f(Xj))/(^ -

Xi )]

2 + p*(H>! )-f(m))
2

-p*[(»'
L-m)*(f(»'L

)-f(x
1
))/(«/L

-x
1)]

2
]-
5

substituting vu for v in the exact-p formula.

Similarly, wc substitute v . for /> to get an adjusted lower bound. Analogously, we handle curves with a

positive second derivative by substituting v. for v for an upper bound, v . for v for a lower bound.
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10.5. Quasi-order statistics from the standard deviation

If we know the mean and standard deviation of a set of data values, we can use Chchyshcv's inequality to

bound the number of items lying more than a certain distance from the mean. This information is like an

order statistic, but since it only represents an upper bound on the number of items in a region and not an

exact number of items, it must be used carefully. It can only be used for partitions of the interval of interest

into two parts, the subintcrval of points farther than a certain distance to the left (or right) of the mean, and a

subinterval of all other points of the interval. It can also only be used for an upper bound on the mean of the

transformed values, given /x, when e(x) has a maximum on the first subinterval that is more than the

maximum on the second, or for a lower bound when e(x) has a minimum on the first subinterval that is less

than the minimum on the second.

Actually, Chebyshev's inequality in the standard form (that only a fraction a /D of the points of a

distribution can lie greater than distance D units from the mean) is not the best inequality we can get, since it

refers to both tails of a distribution, and we are only concerned widi the number of points in one tail. Only

7 9 9
a /(a + D ) points can lie to the left of a point D to the left of the mean, or lie to the right of a point D to the

right of the mean. To sec this, note that if fraction f of the points lie to the left of a point D units to die left of

the mean, then their weighted second moment about the mean is at least fD , which must be less than a . But

in order for the mean to be at the place it is, this fraction f of the points must be compensated for by (1-0

points R units to the other side of the mean-. For maximal f, these other (1-0 points must all be at the same

location, for otherwise they would have a nonzero variance which plus their mean would add to the variance

of the whole distribution, and would require a lower maximum f. Hence we have tv/o equations to solve

simultaneously:

fD2 + (l-f)R
2 = a

2

fD - (1-OR =

which imply

R = Df/(l-0, fD
2
/(l-0 = a

2
, f = a

2
/(a

2+ D 2
)

Using this result, we then can put bounds on the mean of the transformed values of

upper bound: f(/x) + .5ct f'(ju)

+ (a
2
/(a

2 + D 2
)*maxm< .D(e(x))

+ (D2/(a2+D2)*max^- < x<M(e(x)),

provided the first max value is greater dian the second

lower bound: f(/x) + .5<j f '(ju)

+ (a
2
/(a

2+DVmi„m<s (c(x»

+ (D2
/(o

2+DTiiii"
rn<- <M

(c(x)),

provided the first min value is less than the second

These are the left-sided bounds; wc can also get analogous expressions for bounds using points on the right of
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a distribution. Unfortunately, wc cannot find optimal values of D for these formulas because they the

derivative cannot be applied.

Note that while it may be difficult to determine for an arbitrary e(x) whether the maximum in one interval

is greater dian in another, the Taylor-series quadratic approximation often always has this property for either

the left-side or right-side rule.

10.6. Evaluation of quasi-order statistics from the standard deviation

Let us return to the analysis in section 5.3 of our standard example with the quadratic Taylor series

approximation at ju. Choose as subintervals 10<x<33 and 33<x<100, so D= 33-23 = 10= a. Since the

error curve is monotonically increasing (e(m)<c(ju.)<e(M), and no e'(x) = except /x) the maxima on the

subintervals are at the rightmost points, and the minima at die leftmost. Hence die maxima are

e(33) = 3.50-(3.14+.435-.106)=.03 and e(100) = 3.7. Similarly for the other bound, choose D = 5, 10<x<18,

and 18<x<100; and the minima are e(10) = -.12 and e(18) = 2.89-(3.14-.217-.023) = -.01. The maximum

fraction fforx = 33 is 10
2
/(10

2+102
) = .5, and for x = 18 is 10

2
/(10

2+ 5
2
) = .8. Hence the revised bounds on

the mean of the transformed values are

lower: 3.06 - .5*.03 - .5*3.7 = 1.20

upper: 3.06 - .8*-.12 - .2*-.01 = 3.16

which are better than the bounds obtained in section 5.3.

D is a parameter here that can vary arbitrarily. Let us find the best value for it, for the case of a Taylor

scries approximation where e(x) increases with x, and a lower bound:

= a/3D[(a 2
/(a

2 + D2
))*c(

J
u-D) + (D 2

/(cr
2 + D2

))
* c(M)]

0= a/3D[[a 2
*e(

J
u-D) + D 2

* c(M)] / (cx
2 + D2

)]

soa 2
3/ai)[f(/i-D)-fl[/i)-nr(/i)-.5D

2
f'(jLi)] + [2D*e(M)]

= [a
2
[fi>-D) - fX/x) - Df(ji) - .5D

2
f"(/i)] + D2

e(M)] * 2D
Hence a

2
[-f(

J
a-D)-f(

J
Lt)-DfV)] + [2D * c(M)l

= [a
2
[f(jLt-D) - f(jn) - Df(/i) - .5D

2
f(/i)] + D2

c(M)] * 2D
or 2De(m)(l-D

2
) / a

2

= f(/i-D) + (l-2D
2
)f(/x) + D(l-D 2

)f'(iLi)) - 2Df(/iD) - 2Dft»

which wc can solve by iterative methods to find the best value of D.

10.7. Splines and order statistics

We have not referred to spline approximations in the preceding analysis because if an approximation curve

is divided into pieces with different properties then we must know how many data points arc in each to

calculate means and standard deviations on die transformed values. One might think that for a given set of

order statistics on a distribution wc may be able to create a spline approximation broken at the points at which
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the order statistics arc sited, and use that for bounding. But we still need to know means of every subinterval,

the knowledge discussed in section 9, which may be difficult to obtain. Thus splines may be difficult to use.

1 1 . Using fits to known distributions

As a final kind of information which we might have about a set of values, we might know that their

distribution is close to some well-known distribution, with a certain allowed tolerance. If the tolerance is

small we can expect quite tight bounds on the transformed values. But estimating statistics this way requires

special preparation in advance (namely, measuring fits to a predicted distribution), and is not possible with

most data presented in already-aggregated units.

11.1. General formula for known distributions

A well-known result (e.g. [3], section 7.3) gives the distribution of die transform of some probability

distribution p(x), under die transformation function f(x), as

q(y) = p(f \)')) * |df
l
(y)/dy|

as a function of y, provided f is cidier monotonically increasing of decreasing in the interval.

So for instance if our p(x) approximates a uniform distribution on the interval m to M, q(y) = (l/(M-m)) *

|df (y)/dy|. For f(x) = ln(x), q(y) = eV(M-m) on the interval y = ln(m) to y — ln(M); an estimate of the mean

of q(y) is

/yq(y)dy / /q(y)dy = [(ln(M)-l)M - (ln(m)-l)m] / (M-m) = -1 + [M hi(M) - m ln(m)]/(M-m)

and an estimate of die second moment about zero is

/y
2
q(y)dy / /q(y)dy = [M[ln(M)*ln(M) - 2 ln(M) + 2]

-

m[ln(m)*ln(m) - 2 ln(m) + 2]] / (M-m)

which minus the square of the estimate of die mean gives an estimate of the variance.

For p(x) uniform, f(x)=l/x, q(y) = 1/y (M-m) on the interval y=l/M to y=l/m; an estimate of the

mean ofq(y) is

[ln(l/m)-ln(l/M)]/(M-m) = ln(M/m)/(M-m)

and an estimate of die second moment about zero is (1/m - l/M)/(M-m) = 1/mM, hence an estimate of the

variance is

1/mM - [ln(M/m)/(M-m)]
2
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1 1 .2. Handling inexact fits to distributions

We have not addressed how to get bounds on means and standard deviations. We can do this by defining

an "upper fit" to., and "lower fit" co, on the discrete set of n values x
;

such that

w., = max [x. - g.l, w, = min. [x. - g.l
U i

l
i

&
i
J L i

l
i °i J

where f
8^ p(x)dx = (i-.5)/n, and p(x) is die distribution the x fit to

In other words, the fits are the maximum and minimum deviations of an x. from its value predicted by the

approximating distribution p(x).

We can exploit the assumed fact that f(x) is monotonically increasing or decreasing to say that the

maximum and minimum of the mean of the transformed values occur when die x. are all at co., or all at w,

from their predicted positions, not necessarily respectively. This is because less than an extreme deviation for

one point cannot improve prospects for a more extreme mean; all point deviations are independent of one

another, widiin the tolerances. Hence to find the extreme values of the transformed mean one just calculates

the means of

q,j(y) = p[ffy)-^] * IdfVyVdyl and

qL(y) = p[f\y>«J * |dfWdyl

We can use this same approach to get bounds on the standard deviation in the manner of section 4.1. We

just define a g(x) = [f(x)] as a new transformation function, and compute the above formulae widi g instead

of f. We then compute bounds on the mean, square them, and subtract this interval from the interval

computed on the mean of g(x).

1 1 .3. Example of inexact distribution fit

Suppose we know the distribution of x. fits an even distribution on the interval 10 to 100, to such an extent

that a point is never further dian 2 units in advance of where it would be in a perfectly even distribution, and

never more tiian 3 units behind. Then the maximum-mean distribution is a uniform distribution from 12 to

102, and the minimum-mean distribution is a uniform distribution from 7 to 97. Suppose we want to find the

mean of the logarithms of these data values. Using the formulae we obtained in section 11.1, the mean of die

first distribution is [102 ln(102) - 12 ln(12) - 102 + 12] / (102-12) = (472 - 29.8)/90 - 1 = 5.02 - 1 = 4.02; and

the mean of the second distribution is [97 ln(97) - 7 ln(7) - 97 + 7] / (97-7) = (443 - 13.6)/90 - 1 = 4.78 - 1 =

3.78. Hence the mean of the transformed values is between 3.78 and 4.02, corresponding to antilogs of 44 and

56. Note the mean of the original values must lie between (102 -f 12)/2 = 57 and (97 + 7)/2 = 52.

For an estimate of die standard deviation we use the formula previously derived for an estimate of die sum

of die squares, namely
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[M[ln(M)*ln(M) - 2 ln(M) + 2] - m[ln(m)*ln(m) - 2 ln(m) + 2]J / (M-m)

= [M(ln(M)-l)
2 -m(Ln(m)-l)?]/(M-m) + 1

For the uniform distribution 12 to 102, this is

[1 02(3.62)
2

- 12(1.48)
2
]/90 + 1 = (1338-26.2)/90 + 1 = 15.61

and for the uniform distribution 7 to 97 this is

[97(3.57)
2

- 7(.945)
2
]/90 + 1 = (1235-6.25)/90 + 1 = 14.58

From the previous paragraph we know bounds on the mean of the transformed values are 3.78 and 4.02,

hence bounds on the square of die mean are 14.3 and 16.2. Hence bounds on the variance are 15.61-14.3 = 1.3

and max(14.58-16.2,0) = 0. Hence bounds on the standard deviation of the transformed values are 1.14 and

0.

12. Small populations

Thusfar we have not made use of the size of the data population being analyzed. This is only significant if

the population is particularly small, in which case the known maximum M and minimum m (and die median

and mode too, if known) are a nonnegligible proportion of the points of the distribution. For instance, the

linear bounds represent in general die two extreme cases where (a) all die points are grouped at die mean, and

(b) all die points arc at die maximum and die minimum. Knowledge ofM and m thus decreases the distance

between linear bounds by a factor of 2/n, n the size of the data population, since it represents a weighted

modification of case (a) by two points from case (b).

13. Some experimental comparisons of the various bounds formulae

We have run some simple experiments of the effectiveness of our bounds formulae on the mean of the

transformed values. We wrote programs in INTERLISP-VAX. We used two test functions, f(x) = ln(x) and

f(x) = 1/x. For the experiments we computed upper and lower bounds derived die following ways:

• simple linear bounds (section 3)

• Taylor-series quadratic bounds, scries around the mean (section 5)

• Lagrange-Chebyshev interpolation quadratic bounds (section 6)

• For die reciprocal only, the one-sided quadratic bounds (section 7)

e Order-statistic bounds from the Chebyshcv-incquality, using a Taylor series around the mean
(section 10.5)

• Best quadratic bounds found by explicit optimization on quadratic coefficients a and b (section 8):

upper bound: a(<r
2+ ju

2
) + tyi + c + maxm<x ^M [f(x)-ax

2
-bx-c]

lower bound: a(ff
2+ ju

2
) + bju + c + min 7 7, [f(x)-ax

2
-bx-c]
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Wc discovered that our results for optimal bounds for the reciprocal curve were identical (except

for roundoff error) to those for one-sided bounds, so we have omitted the former from the

reciprocal table. Unfortunately, wc have been unable to prove the connection (that is, that the

one-sided bounds are indeed the optimal ones), though wc strongly suspect it.

Results are contained in figures 13-1 and 13-2. Since the closed-form expressions are simple computations, in

a computer implementation it is advisable to try all the different bounds methods, and take the minimum of

the upper bounds to get a cumulative upper bound, and the maximum of the lower bounds to get a

cumulative lower bound.

14. Application to correlated data

An application of these ideas is to estimation of statistics of one attribute from those of another if the

attributes are known to have a nonlinear correlation describable by a monotonic function such as we have

been analyzing. We can then bound statistics on one attribute from statistics on the other.

15. Direct optimization

We should note there is another kind of optimization that can be applied to problems of this sort. We can

make the optimization variables the values themselves of an unknown distribution and perform a constrained

optimization with objective function the statistic on which bounds are desired, and with constraints the values

of known other statistics. Conceptually, this is a nice approach since it can be applied to arbitrary states of

prior knowledge and can bound arbitrary statistics.

We have done a number of experiments which we do not have the space here to discuss, and the idea seems

to work. However, we have found that this "direct optimization" is highly sensitive to optimization methods,

starting points, and step sizes, and is surprisingly difficult to get convergence for; unlike quadratic

optimization, the function optimized is not usually convex. But there is an even more serious problem with

direct optimization, a very fundamental one: it only gives lower bounds on upper bounds, and upper bounds

on lower bounds, unlike all the other bounds discused in this paper which are upper bounds on upper

bounds, and lower bounds on lower bounds. For instance, for our standard example wc found a lower bound

on the upper bound of 3.09771 on the mean of the logarithms from direct optimization, but wc have ho idea

how much larger a bound is possible up to the quadratic-optimization bound of 3.10383 which represents an

absolute limit. Thus the utility of direct optimization is questionable in bopunded statistical estimation,, and

we do not sec it as a challenge to the methods developed in this paper. (It does provide a useful tool for

debugging the methods, however, since for instance any supposed bound we find less than the upper bound

on the lower bound is in error.)
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Figure 13-1: Some comparisons between different expressions

for bounds on die mean, for f(x)-ln(x)
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For these results the quadratic optimum v,7 as verified to be equal to the one-
sided bound when allowing for roimdofl' error.

Figure 13-2: Some comparisons between different expressions

for bounds on the mean, for f( x ) — 1/x
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16. Conclusion

We have developed some quick closed-form expressions for bounds on the mean and standard deviation of

a finite set of transformed numerical data values, where the transformation function has derivatives of

constant sign in the interval of interest. In making these estimates we use only statistics on the original set of

data values, and no actual values themselves. Our bounds provide a useful alternative to often difficult-to-

obtain confidence intervals, requiring no distributional assumptions whatsoever. Such bounds are likely to be

helpful for exploratory data analysis as an aid to getting a feel for the data, preliminary to detailed hypothesis

testing.
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