
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2019-12

CYBER AUTOMATED RED TEAM TOOL

Edwards, Preston L.

Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/64145

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

CYBER AUTOMATED RED TEAM TOOL

by

Preston L. Edwards

December 2019

Thesis Advisor: Gurminder Singh
Co-Advisor: Alan B. Shaffer

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 December 2019 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
CYBER AUTOMATED RED TEAM TOOL 5. FUNDING NUMBERS

 6. AUTHOR(S) Preston L. Edwards

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 The Cyber Automated Red Team Tool (CARTT) is designed to address the shortage within the
Department of Defense (DoD) of trained red teams that are able to conduct security assessments of cyber
systems. CARTT, implemented in software, simulates the actions of a red team by automatically identifying
and analyzing vulnerabilities in computer systems, and then exploiting those vulnerabilities with
cyber-attack actions. It then presents the user with a summary of the results after it conducts its assessment.
An ongoing project at NPS has developed the first version of a CARTT, which can conduct vulnerability
assessments of computers. This research has extended the capability of the CARTT graphical user interface
(GUI), and software to enable an operator to select and automatically execute scripted red team attacks
against specified targets to achieve intended cyber effects. The automated nature of these attack scripts
allows their use by operators who do not have extensive training in offensive cyber operations (OCO) or red
teaming.

 14. SUBJECT TERMS
automation, CARTT, cyber, cyber automated red team tool, cyber physical systems, cyber
security, cyber systems, offensive cyber operations, penetration testing, red teaming,
vulnerability assessment

 15. NUMBER OF
PAGES
 71
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

CYBER AUTOMATED RED TEAM TOOL

Preston L. Edwards
Lieutenant, United States Navy
BS, University of Georgia, 1998

MBA, Hawaii Pacific University, 2011

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2019

Approved by: Gurminder Singh
 Advisor

 Alan B. Shaffer
 Co-Advisor

 Peter J. Denning
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 The Cyber Automated Red Team Tool (CARTT) is designed to address the

shortage within the Department of Defense (DoD) of trained red teams that are able to

conduct security assessments of cyber systems. CARTT, implemented in software,

simulates the actions of a red team by automatically identifying and analyzing

vulnerabilities in computer systems, and then exploiting those vulnerabilities with

cyber-attack actions. It then presents the user with a summary of the results after it

conducts its assessment. An ongoing project at NPS has developed the first version of a

CARTT, which can conduct vulnerability assessments of computers. This research has

extended the capability of the CARTT graphical user interface (GUI), and software to

enable an operator to select and automatically execute scripted red team attacks against

specified targets to achieve intended cyber effects. The automated nature of these attack

scripts allows their use by operators who do not have extensive training in offensive

cyber operations (OCO) or red teaming.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM STATEMENT ...2

1. Primary Question ...2
2. Secondary Question ...2

B. METHODOLOGY ..3
C. SCOPE ..3
D. BENEFITS OF STUDY ...4
E. THESIS ORGANIZATION ..4

II. BACKGROUND ..7
A. CURRENT STATE OF DOD OPERATIONAL TESTING AND

EVALUATION ..7
B. DEPARTMENT OF DEFENSE WEAPON SYSTEMS AND

NETWORKS ..8
1. Complexity and Interoperability ..8
2. Factors Affecting Cybersecurity ...9
3. Access Interface Types ..11

C. PENETRATION TESTING ...12
1. DoD Penetration Test Policy ...13

D. RED TEAM TOOLS ...14
1. Cobalt Strike...14
2. Core Impact ..15
3. Canvas ...16
4. Metasploit Framework ..16

E. RELATED RESEARCH ...17
1. Penetration Testing in a Box ...17
2. Automated Network Intrusion Process18
3. Automated Attack Model for Red Teams19
4. Automatic Executing Penetration Testing21
5. Automated Penetration Testing Based on a Threat Model22
6. Efficiency and Effectiveness of Penetration Test

Automation ...22
F. CARTT ARCHITECTURE ..23
G. CHAPTER SUMMARY ..23

III. DESIGN METHODOLOGY ..25
A. TEST DESIGN ...25

viii

B. METASPLOIT FRAMEWORK ARCHITECTURE26
C. CARTT PROCESS FLOW ...26
D. CARTT GUI DESIGN ...28
E. CARTT GUI OPERATIONS ...30
F. CHAPTER SUMMARY ..37

IV. SYSTEM IMPLEMENTATION AND TESTING ...39
A. IMPLEMENTATION AND SETUP ..39

1. Backend Applications ..39
2. GUI Implementation ..40

B. SYSTEM TESTING ..41
C. RESULTS ...45
D. CHAPTER SUMMARY ..45

V. CONCLUSIONS AND FUTURE WORK ...47
A. SUMMARY ..47
B. CONCLUSIONS ..47

1. Primary Question ...48
2. Secondary Question ...48

C. FUTURE WORK ...49
1. Perform Vulnerability Scans from within the CARTT49
2. Multiple Attack Vectors ..49
3. Software Updates ...50
4. Improved Performance ...50

LIST OF REFERENCES ..51

INITIAL DISTRIBUTION LIST ...55

ix

LIST OF FIGURES

Figure 1. Sample Kali Linux diagram layout ..25

Figure 2. CARTT flow diagram ..27

Figure 3. CARTT prototype design ...29

Figure 4. CARTT with extended cyber-attack capability ...30

Figure 5. List of vulnerabilities inside CARTT ..31

Figure 6. List of vulnerabilities by Host..32

Figure 7. Multiple modules in list window ...33

Figure 8. Only one module in list window ..33

Figure 9. Description of ms08_067_netapi exploit module34

Figure 10. Exploit setup and preparation ..35

Figure 11. CARTT established Meterpreter access session ..36

Figure 12. CARTT user terminates cyber-attack against target37

Figure 13. CARTT GUI global setting ..40

Figure 14. List of vulnerabilities inside CARTT GUI ..42

Figure 15. Description of ms08_067_netapi exploit module43

Figure 16. Exploit setup and preparation ..44

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF ACRONYMS AND ABBREVIATIONS

AEPT Automatic Executing Penetration Testing

CARTT Cyber Automated Red Team Tool

CIDR Classless inter-domain routing

CLI Command Line Interface

CVE Common Vulnerabilities and Exposures

DoD Department of Defense

DoN Department of the Navy

DOT&E Director of Operational Test and Evaluation

FY Fiscal Year

GAO Government Accountability Office

GSA Greenbone Security Assistant

GUI Graphical User Interface

HM&E Hull-Mechanical-Electrical

IP Internet Protocol

IT Information Technology

JTAG Joint Test Action Group

Lhost Local Host

MSF Metasploit Framework

NIPR Non-Secure Internet Protocol Router

NIST National Institute of Standards and Technology

Nmap Network Mapper

NPS Naval Postgraduate School

NSA National Security Agency

OCO Offensive Cyber Operations

OpenVAS Open Vulnerability Assessment Scanner

OTA Operational Test Agency

PTES Penetration Testing Execution Standard

xii

Rhost Remote Host

SBIR Small Business Innovation Research

TCP Transmission Control Protocol

Tkinter Tk interface

TTPs Tactics Techniques and Procedures

UART Universal Asynchronous Receiver-Transmitter

UML Unified Modeling Language

USB Universal Serial Bus

XML Extensible Markup Language

xiii

ACKNOWLEDGMENTS

I would like to thank my wife, Sameckia, for her encouragement and support. I

would also like to thank our daughters, Morgan and Briana. Special thanks to my advisors,

Dr. Gurminder Singh and Dr. Alan Shaffer, for taking me under your wing. Lastly, thanks

to the Navy for providing the opportunity to attend the Naval Postgraduate School.

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

The Department of Defense (DoD) relies on many advanced automated systems to

operate in environments that are increasingly threatened by cyber-attacks. These advanced

systems are also increasing in complexity to meet the performance requirements of the

DoD force. Information must travel almost instantly from the decision makers to the

execution officers in each battle domain. As a result, the required automation and

interconnectivity of DoD computer systems to enhance performance has also increased the

attack surface of these systems.

Cyber threats against these systems also continue to increase. With the

interconnectivity of networks, threat actors can seek entry into DoD networks by secondary

and tertiary methods (e.g., commercial network service providers or third-party vendors).

Nation-states like China and Russia continue to be a persistent cyber threat to DoD

networks and systems in search of vulnerabilities to exploit. These countries, among others,

continue to sharpen their cyber skills and are increasingly becoming more difficult to

defend against. As a result, DoD must remain proactive against cyber threats by

discovering and addressing vulnerabilities in systems. These systems must be tested

throughout the procurement process and after being deployed in operational environments.

The increased use of automated cyber systems has also increased the demand for

red teams to perform vulnerability assessments against these systems. The DOT&E

Cybersecurity report for 2018 emphasized the need for “all systems that transmit, receive,

or process electronic information” to receive operational tests and evaluations. The report

also noted that “the increased demand coupled with the increase in data from the tests is

stressing the test community’s cybersecurity resources.” The DoD has acknowledged the

shortage of red team experts to conduct such assessments [1].

A further challenge is that many of the automated systems are not directly

connected to the Internet. Thus, assessing a particular system across the Internet would not

be feasible. The DoD would need to deploy red teams to onsite locations for vulnerability

assessments of its cyber systems. This strain on already limited expertise and resources is

2

not maintainable. Additionally, the time required to recruit and train new personnel at a

level expected of red teams (e.g., formal classroom and on-the-job training) can take years.

A low-cost portable cyber tool designed to perform cyber security vulnerability

checks by a novice user would be ideal. Such a tool would have the capability to connect

to systems regardless of location. A cyber tool with the capability to simulate cyber-attacks

would serve as an additional resource to address the rapid increase in demand. To address

the shortage of red team experts, the tool also should have an interface that provides

feedback so that it can be operated by a non-expert user. The training time required to

employ this tool would be measurably less compared to traditional red team training. An

added benefit is that local DoD sites can implement a continuous and repeatable strategy

for assessing the vulnerability of their cyber systems. Our goal is to develop a system that

can conduct red team assessments during development, operational testing, and normal

field operations of DoD systems.

A. PROBLEM STATEMENT

Hypothesis: The reach of Department of Defense (DoD) Red Teams can be

significantly expanded by implementation of a portable automated cyber exploitation tool

developed for non-experts to conduct red teaming activities against computer systems not

directly connected to an external network.

1. Primary Question

How can the capability of the current Cyber Automated Red Team Tool (CARTT)

be extended to enhance simulated Red Team attacks against specified computer systems

not directly connected to an external network?

2. Secondary Question

How can the CARTT tool be designed so that an operator with minimal training

use it to conduct red teaming activities?

3

B. METHODOLOGY

We will review commercially available and open source tools such as the

Metasploit Framework (MSF), Core Impact, and Network Mapper (Nmap) to evaluate their

individual capabilities in exploiting computer system vulnerabilities (e.g., mapping the

system, identifying the operating system, finding vulnerabilities), and to test whether they

can be used for CARTT.

CARTT will incorporate open source software that executes scripted cyber-attacks

against a targeted system. The process will not require extensive interaction by the

operator. The interface design will provide the user with easy to understand graphical user

interface (GUI) elements to execute commands throughout the process. CARTT will

provide the user with a list of vulnerabilities and the associated targets. Additionally, a

window element will display a menu of exploit modules resulting from a selected

vulnerability by the user. Another window element will provide the non-expert user with a

description of a selected exploit module. This is so the user may determine if the exploit

will have the desired cyber effect. A cyber-attack is conducted if the user selects the button

element to initiate the attack. A window element will provide the user with the status of

the cyber-attack.

C. SCOPE

The goal of CARTT is to implement a portable system that can automate an entire

cyber-attack scenario (i.e., cyber reconnaissance, vulnerability analysis, cyber-attack, and

assessment) against computer systems not directly connected to an external network. The

results can then be interpreted and understood by a non-expert operator. This thesis will

focus on the development and execution of the cyber-attack phase. Additionally, the GUI

design will be enhanced to accommodate the extended cyber-attack capability of CARTT.

The intent is to provide a limited proof-of-concept tool that can behave as a portable

CARTT. Accessing a computer system from an external network or executing multiple

attack vectors at once is outside the scope of this thesis.

4

D. BENEFITS OF STUDY

This tool will enable the DoD to address the increased demand for cyber Red Teams

by enabling non-expert operators who do not have extensive training in Offensive Cyber

Operations (OCO) or Red Team operations to perform continuous assessments of critical

networks and legacy systems. CARTT is a cyber tool that will enable a vulnerability

assessment strategy that supplements red teams. This will increase the chance for

discovering known and potential (zero day) vulnerability threats. Additionally, red teams

would have more time to focus, plan and portray the capabilities of the advanced persistent

threat actors.

E. THESIS ORGANIZATION

The remainder of this thesis is organized into the following chapters:

(1) Chapter II: Background

Chapter II provides the current state of operational test and evaluation challenges

of DoD systems and current penetration testing policies. It examines how DoD systems

are becoming more interconnected and complex, and how these complexities affect

cybersecurity. Next, current software tools used to exploit vulnerabilities of target

systems and previous CARTT research are covered. Lastly, a brief overview of the

CARTT architecture is provided.

(2) Chapter III: Design Methodology

Chapter III describes the CARTT design, to include the Metasploit framework, and

discusses the CARTT process flow, from importing of vulnerability reports to execution

of a cyber-attack against a specific target. The intuitive nature of the interface design and

the decision behind expanding the GUI are also presented. Finally, GUI operations are

described and demonstrated in this chapter.

(3) Chapter IV: System Implementation and Testing

Chapter IV presents the implementation of the CARTT proof-of-concept and the

test results of a cyber-attack against a known vulnerable target. The backend applications

5

like Python and Metasploit are discussed in more detail regarding how CARTT executes

command requests by the user. The TKinter application is discussed including design

decisions for future expansion capability. Next, the steps to initialize the Metasploit

framework within Kali Linux for testing and executing a selected exploit in CARTT are

presented. Finally, the test results from the experiment are presented.

(4) Chapter V: Conclusion and Future Work

Chapter V summarizes the research efforts (e.g., expanded capability and GUI

design) of this thesis. Conclusion to the research questions are provided along with

successes and limitations of the research. Finally, future work recommendations are

provided to further improve CARTT capability and performance.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. BACKGROUND

Cyber Warfare is generally accepted as its own warfighting domain. The

Department of Defense (DoD) is taking steps to ensure cybersecurity is not an afterthought

when it comes to protecting computers, networks and weapon systems. These systems are

more integrated and networked in order to enhance the warfighting effort. This

interconnectivity requires that the systems are resilient when faced with cyber-attacks from

an adversary. The systems need to be constantly assessed before, during and after

operationally deployed and used by forces in the field. While the DoD has made significant

improvements with respect to ensuring its systems, challenges and threats still remain from

advanced persistent adversaries around the world. This chapter presents background

relevant to this research in cyber security technologies, tools and techniques.

A. CURRENT STATE OF DOD OPERATIONAL TESTING AND
EVALUATION

In 2004, the National Security Agency (NSA) and the military cyber centers

developed a program to train and certify DoD red teams [2]. This was an attempt to address

the limited resources available for conducting cybersecurity assessments on DoD assets.

During the same year, the military service Operational Test Agencies (OTAs) formed a

working group to identify inexpensive cybersecurity toolkits. Ten years later, in 2014, The

OSD Director of Operational Test and Evaluation (DOT&E) revised procedures for

cybersecurity OT&E of acquisition programs to standardize the assessment process [3].

The DoD uses cyber red teams to assess the vulnerability of systems during the

development and operational test phases of the systems acquisition process. DOT&E’s

2013 Cybersecurity report found that “the majority of cybersecurity problems identified

during operational testing in FY13 could have been uncovered and resolved in early phases

of development and testing” [4]. The report also highlighted that many vulnerabilities are

found well after testing and during fielded operations. Assessments for systems during

normal fielded operations usually happen once a year, often during a major exercise.

8

DOT&E noted in 2018 that “the demand for cyber expertise to plan and execute

cyber assessments across the DoD, and for the in-depth analyses of the data produced by

these events, is rapidly increasing and stressing available resources.” Increased spending

on development of new cyber connected systems only exacerbated this problem. For

example, DoD spent over a trillion dollars to develop and maintain its weapons systems in

fiscal year 2017 [5]. And there is no indication that spending on such systems in the future

will decrease. These systems are expected to operate as designed and when needed.

However, with increasing automation and connections to networks, DoD weapon systems

are not safe from cyber-attacks. Hence, the demand for red teams will remain strong into

the foreseeable future. To address this increasing need, the Department of the Navy (DoN)

posted a Small Business Innovation Research (SBIR) topic in 2018 for a software tool

that could simulate red team actions in the assessment of DoD/DoN systems [6].

B. DEPARTMENT OF DEFENSE WEAPON SYSTEMS AND NETWORKS

The DoD must continue to develop new capabilities to address evolving threats

around the world. As new technologies are developed, the complexity of these systems

presents several issues to the DoD, as described in this section. Additionally, the military

(e.g., Combatant Commanders [COCOMS]) deploys these complex systems in joint

military and coalition environments. The requirement for these systems to communicate

with one another increases the risk for cybersecurity vulnerabilities. The challenge is to

mitigate vulnerabilities before they are leveraged by adversaries.

1. Complexity and Interoperability

Weapon systems and networks continue to increase in complexity to meet

performance requirements. Weapon systems may contain multiple smaller embedded

systems (e.g., radar system, communication system, and flight system). These embedded

systems come with their separate programming coded and rely on various software to

integrate the physical and logical control requirements. For example, if the radar system

on a Naval vessel detects an inbound threat, it may communicate a recommended

countermeasure against the threat. Connecting weapon systems to other computer systems

is a result of attempts to address the demand for more information within shorter decision

9

cycles. Due to their interconnectivity, therefore, weapon systems have become vulnerable

to cyber-attacks. The same is true for networks where DoD contractors connect to these

networks for information sharing.

Furthermore, many DoD weapon systems and networks are supported by

“commercial and open source software” [5]. The reliance on commercial software ensures

that future systems and networks will continue to increase in complexity due to

interoperability issues between different applications and protocols, which can lead to

network vulnerabilities. The DoD contracts with various vendors to procure hardware and

software for mission requirements. Additionally, it is known that DoD also employs

software that may no longer be supported by the vendor; for example, Microsoft Windows

XP installation on the Navy’s Aircraft Carrier Gerald Ford (CVN–78) is no longer being

actively supported by Microsoft [7]. The 2012 DOT&E Information Assurance and

Interoperability report noted that many interoperability issues are not reported, and that

many users of such systems usually find “workarounds” to continue to be able to

accomplish the mission [8].

Various software and protocol updates can also lead to new cyber vulnerabilities in

a weapon system or network. These complexities highlight the need for and usefulness of

an automated cyber tool that can test for such vulnerabilities.

2. Factors Affecting Cybersecurity

a. Automation and Connectivity

Automation and connectivity are two factors that have an impact on the

cybersecurity of DoD weapon systems and networks. The military has enjoyed many

technological advances that provide an advantage over adversaries. However, a DoD

Defense Science Board report in 2013 stated that automation and connectivity are

vulnerabilities that allow an adversary to conduct an asymmetric attack [9]. Many systems

are connected to each other for speed of data and information exchange. This connectivity

makes it possible for an advance adversary to gain initial access to one system on a network

and potentially pivot to another system on the same or different network. Further,

automation is risky because adversaries can inject corrupt data into a system that may

10

produce an incorrect response or reaction due to a lack of or improper security checks in

the system. Adversaries have access to many commercially available tools that can take

advantage of this automation and connectivity issue. The more advance threat actors may

develop their own tools to exploit such vulnerabilities, as well. These factors will continue

to play a role in how DoD address cybersecurity.

b. Lack of Prioritization

According to the Government Accountability Office, cybersecurity was an after-

thought by the DoD regarding weapon systems. The focus was more on Information

Technology networks. Acquisition program officers and managers did not understand that

cybersecurity needed to be a priority for weapon systems [5]. As result, the Defense

department is facing the interoperability challenges mentioned earlier among other factors.

Cybersecurity of a weapon system needs to be addressed at the beginning of development

and continue throughout the testing, operational and fielding phases of acquisition.

c. Cyber Red Team Resources

The DoD continues to demonstrate that overall cyber readiness is an important

aspect of defending the nation against cyber threats. The president’s fiscal year 2020

budget includes a request for $9.6 billion for the DoD to spend on cybersecurity. However,

a very small percentage appears to be allocated to support cyber red team efforts. For

example, less than 1% ($75 million) of the fiscal year 2019 budget was allocated toward

cyber tools, training. Furthermore, Cyber Command still needs to fill 40% of the positions

at its headquarters to support this effort.

The increase in demand for cybersecurity testing has also highlighted the shortage

of cyber personnel with the required expertise. This shortage is a result of the DoD having

to compete for talent with the civilian sector. Military personnel with cyber expertise can

obtain a higher salary by working for industry or contracting with the federal government

to perform the same cybersecurity services. Defense department leadership does not have

the authority to increase wages or offer higher salaries to servicemembers that have these

skills in such a high demand area. Of note, the 2016 National Defense Authorization Act

granted DoD the authority to recruit and retain a Cyber Command Workforce by

11

streamlining the civilian hiring process [10]. The Director Operational Test and Evaluation,

during the same year, stated the quality of red teams needs to be addressed through

recruitment and retention efforts [11]. Nonetheless, the department has been slow to

execute this authority (due to personnel shortages).

Training and skills development are other factors affecting the cybersecurity of

DoD systems. Each military service within the DoD provides formal classroom instruction

on cybersecurity operations to its servicemembers. Following formal instruction,

servicemembers are expected to fulfill assignments (sometimes referred to as payback

tours) throughout the DoD. While in these assigned billets, servicemembers also receive

on-the-job-training, which helps reinforce the formal instruction and increase efficiency in

the red team performance. Unfortunately, the return on this investment may not manifest

itself until three to five years, which often exceeds the length of the payback assignment

[12]. There is a general understanding that servicemembers’ proficiency and knowledge

improves over time in a particular assignment. However, the Director Operational Test and

Evaluation noted in 2017 that military members do not spend enough time in a particular

job to provide the needed continuity and experience in cybersecurity operations [13]. In

fact, the average tour length for Sailors and Marines is roughly three and a half years [14].

After that time servicemembers are required to rotate to another job assignment.

3. Access Interface Types

Another factor affecting the cybersecurity of DoD networks and weapon systems

is that automation of these systems requires that they become increasingly reliant on

connectivity to other devices. The Government Accountability Office noted that DoD

weapon systems are designed with various types of interfaces [5]. Some of these interfaces

are noticeable upon a physical inspection while others are not so noticeable. Interfaces can

be internal and external to the weapon system and can be implemented in hardware

(Universal Serial Bus and removable storage) or software (applications and programs). The

more interface points a weapon system has, the greater the potential access points an

adversary may use to disrupt the integrity of the system. Cybersecurity red teams need to

have knowledge of the various types of access interfaces.

12

C. PENETRATION TESTING

Cybersecurity of networks and weapon systems involves a continuous assessment

process and strategy. One such strategy is penetration testing which assesses the cyber-

security and resiliency of a system. It allows authorized personnel to actively try and gain

access to a particular system. The organization and penetration testers will agree to

predetermined rules such as which networks and systems are off limits for the event.

Penetration testing, however, is not an activity that should be considered in isolation. It

should be part of an organization’s comprehensive strategy to assess the cyber-security of

a network. This includes passive vulnerability scans as well. The penetration test can be

automated or conducting manually.

Red Teaming is another method in which a system’s cyber-security is assessed. Red

Teaming and penetration testing are similar in nature. Both are part of a comprehensive

agenda to test the overall vulnerability of a computer system or network. Penetration testing

probes for additional vulnerabilities that may not have been previously discovered. Red

Teaming however takes the additional step of creating system effects from a specific

adversary’s perspective. Both serve as a validation tool for proving that a security issue is

real [15]. Paul Paget (Core Security Technologies Chief Executive Officer) and Ron Gula

(former Tenable Network Security Chief Executive Officer) stated that penetration testing

helps demonstrate the “implication of an intrusion” [16]. For example, an initial

vulnerability assessment may identify a vulnerability, however, penetration testing will

highlight any system impacts. In other words, if the vulnerability is exploited, does the

system behaves differently. A more important implication may be the type of additional

access gained by the adversary by exploiting the vulnerability. In this manner, penetration

testing is used to confirm or validate that a previous vulnerability that was discovered by a

passive scan does have an impact on the security of a system. Another added benefit is that

penetration testing can also test the resiliency of a network or computer system. For

example, if a system detects an intrusion, does it shut down or continue to operate? If the

penetration test injects malware, the system may crash and need to be rebooted. On the

other hand, the system may continue to operate in a degraded mode until the restoration is

possible. Testing may reveal anomalies that were not present before the testing began.

13

Aside from vulnerability confirmation, penetration testing can provide some insight into

how an attacker may gain access to the system. With such insight, cybersecurity efforts can

focus on patching and closing those vulnerabilities discovered during penetration testing.

By implementing penetration testing as part of the overall cybersecurity strategy,

leadership can prioritize which vulnerabilities to address first and which vulnerabilities

present no obvious damage or threat to the system.

Penetration testing does have risks associated with its use as well. The major risk

associated with penetration testing is the lack of confidence in the test’s ability to not inflict

damage upon the system being tested. This is another similarity shared with Red Teaming.

Director of Operational Test and Evaluation noted that Combatant Commanders usually

place restrictions on red team assessment because of perceived safety and security concerns

related to the networks [11]. Leaders need to become comfortable with penetration testing

and red team assessments. This will require continuous education for non-cyber experts on

the benefits of penetration testing.

1. DoD Penetration Test Policy

The DoD updated its cybersecurity procedures in 2014 to include forms of Black

and White box testing throughout the acquisition phases of a system’s development [3].

The two assessments types are 1) Cooperative vulnerability and penetration assessment

and 2) Adversarial assessment. The Cooperative vulnerability and penetration assessment

are designed to identify errors and vulnerabilities in coordination with the system’s

program manager and design engineers. During this phase, vulnerabilities can be identified

and corrected early before reaching the operational and fielding phases. This is a version

of White box testing because assessors require in depth knowledge of the system being

tested. Thus, full access to the source code is needed in order to conduct the evaluation.

Conversely, the Adversarial assessment takes place in an operational environment, where

the assessors are conducting the evaluation from the end users’ perspective. The assessment

not only evaluates if the system operates as designed but can it withstand attacks from an

adversary. This process resembles the Black box testing technique. Simply put, the DoD’s

14

white and black box testing phases are designed to test the systems in the pre-operational

and post-operational phases, respectively.

Resources and planning, however, still impact the red teams’ evaluation and testing

process. The Director Operational and Test and Evaluation found that some programs are

unable to conduct the white box testing needed in the earlier phases of development to find

and correct errors. The result is a more compressed timeline making it difficult for red

teams to perform a thorough analysis of the system during its operational and fielding

phases. The DoD will benefit from a cyber automated red team tool that can help address

some of the resource constraints.

D. RED TEAM TOOLS

There are several cybersecurity tools available in the commercial market. However,

most of these tools are designed to remotely test systems over an Internet IP-based

outward-facing network interface. Furthermore, these tests are mostly focused on

enterprise information technology (IT) networks, not weapon or other specialized systems.

Some of these tools offer an open-source platform to support additional code development.

This feature can enable red teams to incorporate some of the tool’s tactics, techniques, and

procedures into their testing and evaluation of DoD systems. These cyber tools may also

allow red teams to automate many of the cyber assessment techniques used to perform

OT&E. Red teams may also customize the exploit code to address DoD specific system

cyber-attack concerns. This section discusses some commercially available and open

source tools that automate cyber-attacks, such as Cobalt Strike, Metasploit and Core

Impact. A more comprehensive list can be found in Plot’s thesis [17].

1. Cobalt Strike

Cobalt Strike is a web application software simulation tool used to emulate

adversarial attacks against a specific target. It has a graphical user interface that displays

the sessions and targets to the user in an easy to understand fashion. Users would need to

familiarize themselves with the toolbar to better facilitate adversary emulations. This tool

offers red teams a full range of techniques to select from when designing an attack scenario.

Such techniques include spear phishing and embedding malicious code inside a document

15

as well as red team collaboration capabilities. The red team collaboration allows

distributive operations across servers. Team members can execute a phishing campaign

from one server location that references a malicious website at another server location. A

drawback of this feature is that each server operates independently during the engagement.

Post engagement reporting is consolidated at the end of the event to provide a complete

picture of the scenario. Another benefit of Cobalt Strike is that it leverages a Cobalt Strike

technology known as “Malleable C2” [18]. Malleable C2 allows the red team to alter

behavior and indicator signatures while conducting cyber-attacks. This prevents

cybersecurity defenders from using known signatures to quickly identify the type of cyber-

attack emulated by the red team. However, the red team can use Malleable C2 to slightly

alter a known signature to test how quickly the malicious attack is noticed. The focus of

Cobalt Strike is to train and enhance the incident response of an organization’s Enterprise

IT systems. The initial version of Cobalt Strike was built on top of the Metasploit

Framework (discussed below) however, later versions were separated from Metasploit.

Cobalt Strike comes at a cost of $3,500 per user for one year.

2. Core Impact

Core Impact is another web-based automated cyber tool that provides vulnerability

scanning, penetration testing and after-action reports. Though this cyber tool has a friendly

user interface, it requires the users to be skilled in conducting penetration testing. It

emulates adversary cyber-attacks through its multi-vector capability. An “agent” tunnel is

installed on the target providing remoted access to the system or network. For example, if

a client on a network opens an attachment inside of an e-mail, the malicious code calls back

to Core Impact establishing the agent tunnel. These connection tunnels can be encrypted

but are established in the clear by default. Exploits are executed in Python code and are

also modifiable by the user. Core Impact allows the user to execute attacks via a “drag-

and-drop” interface [19]. This process increases the number of cyber-attacks that can be

conducted in a short time period. Red teams are able to pivot between various applications,

(e.g., web and email). This tool also allows cyber testers to escalate privileges and cover

their tracks after the attack. Systems are returned to their previous state. Agents can be

programmed to self-destruct after penetration testing is completed. This option prevents

16

inadvertently leaving a back door for a real adversary to gain access to a system or network

Core Impact is regarded as the top exploitation tool on the market. It is also among the

most expensive tools costing $30,000 per year [20].

3. Canvas

Canvas by Immunity Inc. is an automated penetration test scripted in Python. Its

users must have an extensive knowledge of penetration testing and exploitation techniques.

During testing, a listener shell is established on the target to receive further exploitation

commands. Canvas has a feature called “Most definitely” (Mosdef), which is a dynamic

shellcode generator [21]. This feature allows penetration testers the ability to pivot between

various host on a network regardless of the different operating systems used [22]. Canvas

has over 800 exploits but provides limited vulnerability scanning capability. Further, it only

conducts scans for IP addresses on a given network. Canvas documentation states that the

platform was designed to facilitate the development of other security products. The

platform’s MOSDEF session also allows red teams to develop other exploits or payloads

to attacks systems [23]. Canvas is well-known for providing the ability for 3rd party

exploitation add-ons.

4. Metasploit Framework

Metasploit (also known as Metasploit Framework) is an automated open-source

software platform available to penetration testers. A major benefit of Metasploit is that it

contains an array of automated modules designed to execute cyber-attacks. Metasploit

modules contains various software written to execute a particular function (or purpose)

when deployed against a system or network. The five types of modules are: 1) Exploit, 2)

Auxiliary, 3) Post-Exploitation, 4) Payload or 5) No Payload [24]. Exploit modules are

designed to target specific vulnerabilities and gain access. Auxiliary modules perform

functions such as scanning or denial of service. The post exploitation modules further

enumerate the target trying to find other avenues to exploit. Exploitation can be executed

in automatic or manual mode. This gives the user the option of attacking multiple

vulnerabilities at once or one vulnerability at a time [24]. Another feature of Metasploit is

Meterpreter. Meterpreter is an advance payload that establishes a command shell and

17

executes inside of memory. This feature makes detecting the Metasploit session harder for

intrusion detection applications [24]. With Metasploit, penetration testers are able to pivot

into other processes or sessions to maintain a persistent presence on a system. The

Metasploit open-source framework is very popular in the cyber development community.

Penetration testers can modify existing modules or developed new modules in an effort to

identify vulnerabilities in a system or network. The Metasploit Framework is universal in

that many security platforms such as Cobalt Strike, Core Impact and Canvas, among others,

can use Metasploit modules as part of their penetration test events. There are also

commercial editions of Metasploit beginning from $5,000 per user per year [25].

These adversarial simulation tools provide a variety of techniques that may be used

to assess DoD systems. However, they all assume that the user has extensive knowledge

of exploits, adversarial attacks, and penetration testing.

E. RELATED RESEARCH

Research teams have been experimenting with various models and techniques to

automate all or portions of penetration testing. One benefit of automation is that it can

significantly reduce the amount of time needed to conduct an assessment of a system. For

example, evaluators will not spend time on rote and tedious task. More time will be

dedicated toward discovering the more difficult vulnerabilities and assessing the system

impact of those discoveries. This section presents various approaches by researches to

automate penetration testing.

1. Penetration Testing in a Box

In 2015, a research team from Northern Kentucky University designed a security

assessment tool to address the high cost of conducting vulnerability assessments and to

streamline the process. The researchers acknowledge that penetration testing can be a

complicated endeavor depending on the complexity of a network. And if an organization

wanted a more detail assessment, then the price tag would inherently increase [26].

The “penetration architecture” that the researcher proposes consist of a Pentest Box

that is positioned behind the firewall of the organization, a computer on the outside of the

18

firewall connected by a Virtual Private Server. The Virtual Private Server will allow for

the viewing of the vulnerability data via a Secure Shell callback from the Pentest Box to

the computer located outside of the organization’s firewall [26]. The vulnerability data is

accessible via a web application hosted on the Pentest Box. The research team relied on

opensource software as part of the Kali Linux suite (i.e., the Metasploit Framework (MSF),

Network Mapper (Nmap), and Open Vulnerability Assessment System (OpenVAS)) to

conduct the experiment.

The researchers pointed out that the limitations of the Pentest Box is based on

available resources in terms of hardware, configurations and budgets. The objective of the

box also factors into its design: 1) only conducts vulnerability scans, 2) cyber (exploitation)

attacks included in the assessment, and 3) what procedure are automated during the

assessment [26].

2. Automated Network Intrusion Process

Researchers at the Technical Educational Institute of Crete demonstrated how

combining opensource tools can be used to automate a cyber-attack across the internet [27].

For the demonstrations, the researchers used the MSF, Nmap, and Python to automate the

process. They showed how an attacker could either initiate an attack on a single target or

on multiple targets at once “under certain circumstances,” (e.g., the system or network has

to have a valid vulnerability).

The experiment was designed with a computer system vulnerable to a Metasploit

module. The vulnerability (CVE 2009–4188) consisted of a hardcoded account located on

the 5.5 Tomcat server. The exploit uploaded a JavaServer Page via an http PUT request

[27]. This action provided a remote shell back to the automated system. The experiment

highlighted that two Metasploit modules were needed to gain access to the server. After

gaining access, the researches established a Meterpreter shell session, which allowed them

to maneuver away from the previously compromised service onto the operating system.

19

3. Automated Attack Model for Red Teams

Three graduate students from the Florida Institute of Technology published an

article titled “Toward an Automated Attack Model for red teams” analyzing various cyber-

attack models used by red teams [28]. The authors described Red Teaming as a necessary

process for assessing the vulnerabilities of a system. Plus, it is important to understand how

a potential adversary may seek to gain entry into a connected system. One issue with red

teams is that there is no universally excepted method for assessing vulnerabilities within a

system. Further, the type of red team method is more determined by the requirements and

terms set by the organization being assessed. Four cyber-attack models were presented

by the authors: 1) Threat modeling, 2) Attack trees, 3) Collaborative attack modeling and

4) Insider threat model.

The Threat modeling approach uses dataflow diagrams to illustrate the layout of

the different components of a particular application or system. The idea is that each

component of the system is a potential target for an attack by an adversary. For each target,

the model identifies various cyber-attacks (i.e., denial of service, buffer overflow) that may

be employed against the target. The targets are then displayed in a decision tree format.

The path leaving the target represents the decisions an adversary would need to make in

order to affect that particular target in the software application or system. User of this model

would need to determine a ranking system for the threats based on priorities that are

consistent and helps to focus efforts on the more likely threats. The model would also

provide recommendations for mitigating the potential threats identified. The dataflow

diagram approach assumes red teams will be able to discover more vulnerabilities as more

components are added to the diagram.

The Attack tree model is broken down into three branches: “root,” “leaf” and

“child” nodes [28]. The cyber-attacker's goal or mission is designated as the root of the

tree. The leaf is the pathway in which the attacker travels to reach the goal. The actual

cyber-attacks are represented by the child nodes. In addition, logical symbols such as AND

or OR can be used to determine the cyber-attack flow. For instance, OR can represent that

an event will occur because any of the previous “child” steps occurred. Whereas the AND

logic means that all of the previous “child” steps must occur. Another feature is the value

20

metric. Nodes can contain information like probability, cost or adversary characteristics.

Having this information facilitates decision regarding the likelihood and resources required

regarding a particular cyber-attack. Again, this model emphasizes the need for red teams

to understand the threat in order to assess the security of a system.

The Collaborative attack model is a hybrid between a decision trees network model

and a Wiki page. The model uses three terms to describe elements in the model:

preconditions, transitions and postconditions. Preconditions may describe the state of a

system or the capability of the adversary. The state of the system can be defined as

conditions that would make it possible for an adversary to conduct a cyber-attack in the

first place. Postcondition describes the state of the systems after a system has been

compromised (i.e., what can the adversary do after gaining access). Like a network, the

transitions connect the preconditions with the postconditions. The transition is the steps

taken to maneuver through to the postcondition. Transitions uses the AND logic similar to

the Attack tree model—all preconditions must be met before transitioning to the

postconditions [29]. The information is then documented onto a Wiki page with detailed

information like code or other vulnerabilities that red team members can access, view or

provide updated information. The Wiki page was designed to allow collaboration with

knowledgeable professionals as well novice. As such any person can add their experience

with cybersecurity to the web page.

The name of the last model, Insider threat model, is self-explanatory. The Insider

threat model’s point of view is from the access and privileges the user already has to a

system or network. Red teams would carry out attacks as if they were insiders. Red teams

would have to assume characteristics of a potential insider (e.g., knowledge, disgruntle,

malicious intent). The purpose of the model is to document actions that an insider would

take to exploit a particular system. Further, red teams can use this information to develop

countermeasures to prevent a would-be adversary from conducting an attack.

The authors contend that red teams should have quick access to information

regarding cyber-attacks, the system, the adversary and various countermeasures. They

propose that the information can and should be automated. The automation method

recommend by the authors is the use of Unified Modeling Language (UML) for design

21

visualization and Extensible Markup Language (XML) to display the attack and defense

methods. UML is used by software designers in order to provide greater detail. XML is a

simple text file used to describe data. The implication is that red team automation would

be more simplified because these languages are more suitable to programming the

software. Instead of initially assessing the source code of an application like the Threat

model, the automated red team model looks at modeling the particular cyber-attack first.

In other words, what is the intent of the adversary and the capabilities required to conduct

such an attack. This information is evaluated by the red teams and cataloged into the

Extensible Markup Language format for automation. Next, the cyber-attack success matrix

is delineated using UML. The XML text descriptions can be parsed using specific software

tools to generate code. And the final phase of the model is to develop a countermeasure for

the cyber-attack. Once the documentation is complete, red teams can review and automate

the attacks by parsing the XML.

4. Automatic Executing Penetration Testing

Five researchers at Beihang University located in China developed a penetration

testing tool called Automatic Executing Penetration Testing (AEPT). AEPT was developed

to address the high cost of employing penetration testing teams and the inefficiency of the

penetration tests themselves [30]. The researchers divided penetration testing into four

stages as adapted from the National Institute of Standards and Technology (NIST): 1)

Planning contained the guidance regarding what is going to be tested and when (i.e., the

scope of the penetration test); 2) Discovery is the enumerating and vulnerability scanning

performed on the system or network; 3) The attacking stage is the actual penetration testing.

This stage also has the capability to provide dynamic feedback to the discovery stage if a

new vulnerability is found.; 4) The reporting stage provides the final report of the test. The

researches further divided the stages into two methods: a method to generate the testing

scheme (planning and discovery) and a method that executes the testing scheme (attacking

and reporting). Both methods are to be automated in nature. The AEPT uses a complex

pushdown automata model to automatically generate the testing scheme for which the

system will execute on the target. The researchers conducted a “proof of reachability” that

concluded the pushdown automata will reach its final state given a define set of input

22

symbols. The execution method reads in the scheme, sets the exploit module and payload,

executes the exploit and displays the result. If the exploit fails, the system calls the next

exploit module and payload and repeats the execution for that particular vulnerability. The

AEPT also iterates through each vulnerability beginning with the least difficult to the most

difficult based on a ranking scheme.

5. Automated Penetration Testing Based on a Threat Model

Although a separate research, two authors, one from Imam Abdulrahman Alfaisal

University, Saudi Arabia and the other from University of Southampton, United Kingdom

suggest the development of an algorithm that will automate a penetration test based off of

a threat model scheme that would be provided [31]. This idea resembles a “hybrid” between

the previous two researches. The researchers used a threat model from the IT Innovation

Centre; however, several models exist based on design and objectives that can be used to

highlight potential cyber-attacks. The automated penetration process proposed follows the

techniques provided in the National Institute of Standards and Technology (NIST) 800–

115 manual. The design employs a graph format populated with nodes that are linked by

edges. The nodes represent the systems to be assessed while the edges are various

relationships between the nodes (i.e., controls, connections and other hosts). The algorithm

will execute the penetration assessment until each node on the graph has been evaluate

against the threat model. The complexity of the algorithm depends on the number of nodes

on the graph. A network with multiple nodes will require a more complex algorithm.

6. Efficiency and Effectiveness of Penetration Test Automation

Researchers at Dakota State University Madison, South Dakota designed a proof of

concept tool that automates some frequently used penetration testing tools to improve

efficiency and effectiveness. The tool is scripted in Python and uses other tools such as

Nmap, Nessus, and MSF to name a few [32]. The researchers used the Penetration Testing

Execution Standard (PTES) to validate the proof of concept tool. Specifically, the tools

focused on automating the information gathering and vulnerability analysis stages of the

process. The automated tool scanned for IP addresses and web domains returning

information related to e-mail addresses, document files, hosts and service vulnerabilities.

23

The information is downloaded, parsed and saved to a file for exploitation use later. The

file is read into Metasploit for exploitation of vulnerabilities identified through the

information gathering and vulnerability analysis stages. After the exploitation stage,

Metasploit discontinues the session but leaves open the option for another engagement.

Research work continues in an effort to improve penetration testing and red

teaming. assessments. A few academic papers were discussed above, but this area is littered

with proof of concepts and testing to at least automate the rote methods of identifying

vulnerabilities and attack schemes.

F. CARTT ARCHITECTURE

The Cyber Automated Red Team Tool (CARTT) architecture is composed of open-

source software. CARTT was designed using the Kali Linux distribution platform. It allows

for vulnerability scanning and penetration testing against systems and networks. CARTT

was able to conduct vulnerability scans on 100 hosts using the Kali Linux platform [17].

Python is the programming language used for CARTT. It is a beginner friendly

programming language that uses the Tk interface (Tkinter) to display the Graphical User

Interface (GUI) to the user. This allows the user to select various options to conduct the

vulnerability assessments of a system. Tkinter also allows for the automation of many

program commands to be executed behind the seen. The buttons are arranged in a

sequential manner for ease of execution by the user. The Network mapper (Nmap) and

Open Vulnerability Assessment Scanner (OpenVAS) are the open-source tools used for

host discovery and vulnerability analysis of a network, respectively. Finally, the MSF will

import the results of a vulnerability scan and attempt to conduct a cyber-attack against a

particular vulnerability. For a more detailed discussion regarding any of the open-source

tools mentioned above, refer to Plot’s thesis work [17].

G. CHAPTER SUMMARY

This chapter discussed factors affecting DoD weapon systems and networks.

Furthermore, penetration testing was presented to include the advantages and

disadvantages of the various techniques. Lastly, cyber red team tools and previous research

24

was presented. The next chapter presents the framework for the Cyber Automated Red

Team Tool (CARTT).

25

III. DESIGN METHODOLOGY

In this chapter, we discuss the design methodology and framework of CARTT.

Specifically, this chapter describes how CARTT imports vulnerability reports, and

then allows the user to select various hosts from the report to conduct automated cyber-

attacks against.

A. TEST DESIGN

CARTT enables an operator to replicate the actions of cyber red teams by allowing

the CARTT user to select and automate scripted cyber-attacks against specified targets on

a network. Figure 1 illustrates a simple network that CARTT can operate on. As discussed

in Plot’s thesis, the Kali Linux suite is used to implement CARTT host discovery,

vulnerability analysis, and cyber-attacks methods [17]. The test platform uses the CARTT

system, along with three target hosts with different operating systems: Linux, Microsoft

Windows 7 Service Pack 1, and Microsoft Windows XP Service Pack 3. For this thesis’

proof-of-concept, a test case experiment is conducted to perform a cyber-attack against the

Windows XP target from the CARTT Kali Linux system.

Figure 1. Sample Kali Linux diagram layout

26

B. METASPLOIT FRAMEWORK ARCHITECTURE

The Metasploit Framework (MSF) architecture provides exploit and payload

modules that users may configure and execute within the framework. Exploit modules are

comprised of Ruby script commands that perform a sequence of automated steps to exploit

a vulnerability previously discovered on a target host. Generally, exploit modules are the

delivery vehicles used to establish the “connection” between the attacker and host target.

The module options are based on the previously discovered vulnerabilities.

Once a connection is established through an exploit module, a payload module is

delivered to the target. Payload modules are Ruby script code (e.g., malware, loaded onto

a system or network for execution on a target host), potentially allowing the attacker to

gain further access into a system for post-exploitation activities, such as privilege

escalation, pivoting, and deeper target analysis. When an exploit is chosen, the MSF

automatically selects the best payload to be delivered to the target.

C. CARTT PROCESS FLOW

CARTT is written in the Python scripting language, and is built on top of the MSF

architecture. Since MSF (specifically its mfconsole utility) is a command-line intensive

tool, it can be difficult for inexperience users to become proficient in its usage and full

capability. To mitigate this shortcoming, CARTT replaces the command-line interface

(CLI) of MSF with a graphical user interface (GUI) to reduce the knowledge needed by

the user to perform the procedural steps in a cyber-attack using MSF. To do this, CARTT

uses resource scripts to automate complex commands that would normally need to be

entered into a terminal window. CARTT also creates files in the background from the MSF

results generated by a particular resource code action. This allows CARTT to display the

MSF results in the GUI for viewing by the user. Figure 2 shows the entire CARTT cyber-

attack process, including identification of vulnerabilities, selection of appropriate exploit

modules, and launching of attacks. The following paragraphs describe the overall flow

depicted in Figure 2.

27

Figure 2. CARTT flow diagram

To start the process, CARTT must receive a vulnerability report generated by the

OpenVAS Greenbone Security Assistant (GSA) during the host vulnerability scan. The

report is manually downloaded from the GSA GUI into the local file directory. The GSA

provides various file downloadable formats; for this development, the file format used is

XML. This is the only manual operation currently performed during the proof-of-concept

simulation. CARTT then imports the vulnerability report from the local directory into the

MSF database. Once imported, each vulnerability is displayed in the Host Vulnerability

Descriptions window on the CARTT GUI.

Next, the CARTT GUI allows the user to search the MSF database for

corresponding exploit modules for each of the identified host vulnerabilities. The user is

allowed to select a particular host and visualize the vulnerabilities identified by the GSA

vulnerability scan. The user can then select an individual vulnerability to exploit. Once the

vulnerability has been selected, CARTT searches MSF for a list of exploit modules that

28

may be used to deliver a cyber-attack against the intended host. This list is presented to the

user for selection.

CARTT then presents the user with a description of the selected exploit module.

This assists the user in determining if the selected exploit is the appropriate exploit for the

identified target host. After the user picks an exploit module and communicates the

selection to MSF, MSF automatically selects a payload, displays the exploit status in the

GUI, and waits for the user to initiate the desired cyber-attack. Once the cyber-attack is

initiated, the CARTT interface provides feedback to the user regarding the status of the

exploit execution (e.g., if the session failed, or was properly established).

D. CARTT GUI DESIGN

The cyber-attack process described in Section 3.C is presented to the user through

the CARTT GUI. This section describes the key design decisions made in designing

the GUI.

With the extended cyber-attack capability, the CARTT GUI has evolved from its

initial prototype design (Figure 3), however, we have intentionally maintained its

simplicity to allow its operation to remain intuitive and easy to understand for the user. The

CARTT GUI, as shown in Figure 4, has a menu of buttons located on the top left side of

the GUI. Only those buttons which are meaningful at any point in time are activated; the

rest are disabled. Initially, only the MSF and Quit buttons are available to the user for

selection. A banner stating “Initialize MSF to begin” is displayed above the buttons to

prompt the user to begin using CARTT. Otherwise, the user may select the “Quit” button

to exit CARTT. Underneath the column of buttons are three small windows. These

windows provide the user a quick snapshot of the network that CARTT is connected to.

The first window displays the IP address assigned to CARTT while on the network. Second

displays the network address in Classless inter-domain routing (CIDR) format of the

network. And third displays the number of hosts that were detected on the network by

CARTT. Furthermore, immediately below this is a window that list all the hosts in order

by their IP addresses.

29

Figure 3. CARTT prototype design

The remainder of the GUI contains windows that display various pieces of

information dependent on the actions of the user. The initial GUI screen provides a

description to the user of what information each window provides. For example, “Host

Vulnerability Descriptions” lists each vulnerability by host. Additionally, if the user were

to select a host from the ordered hosts list, only the vulnerabilities associated with that host

appear in the “Host Vulnerability Descriptions” window. On the right side of the GUI, are

five other windows. The first is an “information bar.” When the user initiates an action

within the GUI, the GUI provides “feedback” via the bar indicating that the action was

received and in progress. The three remaining bigger windows are self-explanatory: 1)

Module List, 2) Exploit Module Description and 3) Exploit Status. The Exploit Status

window provides the user feedback during the cyber-attack phase. This is where the user

can determine whether to setup, initiate or terminate the cyber-attack.

30

Figure 4. CARTT with extended cyber-attack capability

It is worth noting that the command-line interface provides more options for a user

to interact with MSF. However, the user will need to have a higher level of knowledge of

MSF and be more familiar with conducting cyber-attacks. The CARTT GUI has been

designed with a novice operator in mind (i.e., no extensive MSF or networking knowledge

is expected).

E. CARTT GUI OPERATIONS

Once the user has connected to and reviewed the network information, it is time to

review the vulnerabilities associated with the hosts on the network. The user must click

the “Generate Vulnerability List” button on the GUI. As stated earlier, for this thesis, we

will review the vulnerabilities associated with the Windows XP Service Pack 3 machine

(IP address 10.2.99.86). Figure 5 shows the list of hosts and associated vulnerabilities

31

populated inside the description window. The user may use the scroll bars on the side and

bottom of the box to either move the window area up, down or side-to-side in order to read

the vulnerabilities listed inside the window area.

Figure 5. List of vulnerabilities inside CARTT

Instead of scrolling through all the vulnerabilities listed, the user can select a

specific host to populate its vulnerabilities in the window. Figure 6 illustrates the user

selecting Host 74 with IP address 10.2.99.86. Note that the IP address is also displayed in

the top right “Host” window. This gives the user a “quick” reference of which host is in

the CARTT selection for further exploitation. As a result of the selection, the corresponding

vulnerabilities are listed in the descriptions window located below the hosts. The user can

scroll thru the list in search of a particular vulnerability for that host. Once the user selects

a vulnerability from this list, CARTT finds and presents the user with a list of exploit

modules for the selected vulnerability (see Figure 7).

32

Figure 6. List of vulnerabilities by Host

Figure 7 lists several exploit modules for the Microsoft Windows SMB Server

vulnerability. The user can scroll through the list both vertically and horizontally. For the

MS08-067 Microsoft Server vulnerability, only one exploit module is returned (see Figure

8). The MS08-067 exploit module will be demonstrated for this thesis project.

33

Figure 7. Multiple modules in list window

Figure 8. Only one module in list window

34

To assist the user in determining which exploit module to use, CARTT provides a

description of a selected module. Unlike the previous two GUI windows, the “Exploit

Module Description” window has only one scroll bar. Since the previous windows’

information were an actual list of items, they were designed to display in list format.

However, the “Module Description” window “wraps” the text in paragraph format for ease

of viewing and reading by the user. Figure 9 shows the description of the ms08_067_netapi

exploit module. Note the user will still need to scroll vertically to read the full text.

Figure 9. Description of ms08_067_netapi exploit module

The last window of the CARTT GUI is the “Exploit Status” window. This is where

the user receives feedback regarding the exploit phase of the cyber-attack. After selecting

the desired exploit module, the user clicks the “Exploit Setup” button. CARTT uses the

selected exploit module and returns a payload status from the MSF (see Figure 10). The

user is provided with the type of payload that will be used against the targeted host. CARTT

also returns confirmation that the proper exploit module and target IP address is as

35

previously selected. Next, the “Run Exploit” button is highlighted giving the user the

option to initiate the exploit against the target. It is important to note that the user still has

the option to select another exploit, vulnerability or host at this point in the operation. The

user would only need to select the preferred item in either of the previous windows.

Figure 10. Exploit setup and preparation

After initiating the cyber-attack against the target, CARTT will return another

exploit status. In this experiment, CARTT returns several items in the window. The most

important being that a “Meterpreter session 1” is open on target IP address 10.2.99.86 (see

Figure 11). The user now has remote access to the target. Note that the “Terminate Session”

button is now highlighted on the GUI. Again, the user has the option to initiate another

exploit against this target. For example, starting another reverse_tcp (Transmission Control

Protocol) shows a Meterpreter session “2” was open in the Exploit Status window.

36

Figure 11. CARTT established Meterpreter access session

At this point, the user may choose to disconnect from the target via the “Terminate

Session” button. This action terminates the cyber-attack. Figure 12 shows the feedback

acknowledgement in the CARTT GUI window if the user wishes to disengage from the

cyber-attack. At this point, the user can select another host and explore more vulnerabilities

or exit from the CARTT process by selecting the “Quit” button.

37

Figure 12. CARTT user terminates cyber-attack against target

F. CHAPTER SUMMARY

This chapter provided an overview of the CARTT design and architecture, and its

use in the cyber-attack process. CARTT imports a GSA vulnerability scan report into MSF,

then with user input, automates a cyber-attack against a specified host on a target network.

The goal of CARTT is to support the process in such a way that a non-expert user can

conduct a cyber-attack and receive feedback regarding its success or failure. The next

chapter describes the implementation of CARTT and as a proof-of-concept, demonstrates

its capability employing a realistic cyber-attack, specifically the MSF ms08_067_netapi

exploit module against a Windows XP target.

38

THIS PAGE INTENTIONALLY LEFT BLANK

39

IV. SYSTEM IMPLEMENTATION AND TESTING

The MSF provides two user interfaces for conducting cyber reconnaissance,

exploitations, and attacks: Armitage and the MSF Console. Armitage is a third-party GUI

that allows the user to perform cyber actions through a comprehensive set of GUI options.

It requires a thorough knowledge of the MSF, however, so a novice user can become

overwhelmed with its various options and functions, making Armitage a less than ideal

choice for the uninitiated. Conversely, the MSF Console (msfconsole), is an interactive

command-line style interface that requires the user to be highly knowledgeable in MSF

functionality. As such, being able to navigate the MSF functions in either interface can

prove challenging for a user not well-versed in using MSF commands. The CARTT GUI

eases this process for the novice user by automating the MSF commands to conduct a

cyber-attack as part of a red teaming event.

A. IMPLEMENTATION AND SETUP

1. Backend Applications

CARTT was built using a Python script to interface with the MSF database. Python

is a user-friendly programming language that uses scripted code to automate commands in

the MSF architecture. The original version of CARTT used Python scripted code to

automate the network and vulnerability scans, then used Python to import the scanned

results into the MSF [17]. This gave the user the ability to view and select a potential exploit

target without needing in-depth knowledge of MSF functionality.

The MSF requires initialization steps before using its exploit capability. It uses a

backend relational database called Postgresql, which must be started and initialized before

using MSF. Next the user can launch MSF from the Kali Linux command line by simply

typing “msfconsole.” CARTT simplifies these setup steps by performing all of them with

a single click of the “Initialize Metasploit Framework” GUI button. Of note, CARTT’s

initialization button employs the “-q” command-line option when launching Metasploit,

which starts msfconsole in “quiet” mode without displaying banner information such as

MSF version, current number of exploit and payload modules, etc.

40

2. GUI Implementation

As mentioned earlier (in Chapter II Section F), Tkinter was the GUI tool chosen for

the CARTT architecture. Tkinter is an application programing interface (API) that is a part

of the Python library. It is intuitive for the programmer, and easy to implement as a front-

end application for a comprehensive tool suite like MSF. For this research, Tkinter allowed

us to develop a simple GUI that alleviated the need for the user to have extensive

knowledge about MSF operations and command line interface actions to perform cyber-

attacks against a target. For more details regarding Tkinter, see Plot's thesis [17].

While developing the CARTT GUI, we wanted to keep the programming simple

and easy to understand. For example, the GUI window size is set by a global variable in

the code that is easily modifiable if additional features are required. This is done to support

future expanded capability of CARTT. Other global variables established in Tkinter for the

GUI are the type of FONT, FONT_SIZE, WIDTH, HEIGHT ROW, and COLUMN. Figure

13 shows the global settings used for the test CARTT GUI. The current ROW and

COLUMN settings provide an easy offset for adding additional labels, buttons and

windows. The title and header labels are offset from these settings.

Figure 13. CARTT GUI global setting

The interface buttons, when clicked by the user, invoke an action through the

CARTT GUI. The buttons are tied to two actions by the Python lambda function. When

41

clicked, each button initiates the corresponding action associated with the button, and the

progress bar notifies the user that their action was registered on the CARTT GUI. In other

words, the Python lambda function creates threads for multiple tasks to take place at the

same time. The window features are implemented via a Tkinter interactive “ListboxSelect”

widget. The user is allowed to scroll through a line of text and choose one item from the

list. The window is configured to call a function that fetches the user's requested item.

These features were chosen to make CARTT more user friendly.

B. SYSTEM TESTING

CARTT uses MSF commands to configure and execute cyber-attack actions.

CARTT uses the “spool” command to copy the MSF output into a text file in the

background. This text file is then parsed by the CARTT script for key vulnerability and

exploit information, to be later displayed on the CARTT GUI.

 At this point, the MSF is ready to receive information regarding vulnerable targets.

The vulnerability report is imported into the MSF database with the “db_import *xml”

command. For this testing, the OpenVAS vulnerability scan report was downloaded as an

XML file, but MSF has the capability to import other file formats from well-known

scanners, such as Nmap and Nessus. The MSF “vulns” command produces a list of the

vulnerabilities for all hosts in the XML file. CARTT subsequently copies this output into

the GUI's “Host Vulnerability Descriptions” window (see arrow in Figure 14). To find

MSF exploit modules related to a particular vulnerability, CARTT combines the MSF

keyword commands “name” and “type.” First, CARTT parses the text file for the

description of the vulnerability. Again, these descriptions are displayed in Figure 14. For

example, if a “Microsoft Windows Remote Desktop Service” vulnerability is selected by

the user, CARTT will parse the file for the selected text. CARTT then combines the text

with two of MSF keywords: “name” for the description, and “type” to return a module for

the specific vulnerability description. This entire sequence of characters is then

communicated to the MSF database at the command line interface. This combination is

passed to the MSF database using the regular expression “search” attached to the CARTT

42

string value stored in a local variable called “search_cve.” Lastly, the search_cve local

variable filters the type of module for CARTT's purpose —”exploit.”

Figure 14. List of vulnerabilities inside CARTT GUI

To display the actual description of the selected exploit module, CARTT places the

“info” command at the beginning of the module's name. The output file of 126 lines is

parsed and the resulting description is displayed in the CARTT “Module Description”

window. Figure 15 shows the result from the command line query executed by CARTT.

This is an important step in the process, as it provides detailed information about the exploit

that may be of interest to the user, such as possible side effects of the exploit. Because a

description length can range from one sentence to multiple lines, a scroll bar is provided to

43

the user for ease of viewing. If the user is satisfied with the exploit module, they may

proceed to the next button — Exploit Setup.

Figure 15. Description of ms08_067_netapi exploit module

To setup an exploit, CARTT automates the execution of a series of otherwise

manual steps and commands. The first step is for the MSF to configure the user-selected

module for execution. CARTT combines the selected host and exploit module and inputs

them into a scripted resources code. The resource code automates the input of the required

exploit module parameters (remote host, local host, and payload).

44

CARTT automates this entire process with the click of the “Exploit Setup” button.

Figure 16 shows the exploit status after the setup has been implemented.

Figure 16. Exploit setup and preparation

CARTT initiates the cyber-attack against the remote host target IP once the user

clicks the “Run Exploit” button on the CARTT GUI. The user may terminate the exploit

session at any time by clicking the “Terminate Session” button after an exploit has been

initiated. When the exploit has completed, CARTT will inform the user that the session has

ended, at which time the user may exit the program.

45

C. RESULTS

For our implementation test, we used CARTT to target an unpatched Windows XP

Service Pack 3 system with a known vulnerability identified as a Microsoft SMB server

service relative path stack corruption. CARTT used this vulnerability to search MSF for a

suitable exploit module and returned the exploit ms08_067_netapi. This module is ranked

“great” by MSF and considered reliable based on the MSF ranking structure. Upon setup,

CARTT displays that a Meterpreter reverse-tcp payload has been selected to couple with

the exploit module. Also displayed to the CARTT user is confirmation of the attacker's

local host (lhost) IP address and the target’s remote host (rhost) IP address. Initiation of the

cyber-attack yielded an exploit and payload status stating that the reverse-tcp connection

has been established, and that a Meterpreter session has opened. This indicates to the

CARTT user that the exploitation against the targeted host was successful. At this point,

the user may terminate the cyber-attack session and close the CARTT GUI.

In summary, the msfconsole would require 5 manual commands to be entered at

the command-line to conduct this cyber-attack. CARTT automated and simplified this

process by reducing the steps required to two button clicks.

D. CHAPTER SUMMARY

This chapter described the MSF interfaces Armitage and msfconsole. It also

described how a user can manually conduct a cyber-attack against a desired target. Finally,

it demonstrated how CARTT automates the cyber-attack process making it easier for a

non-expect user to perform the task with little experience.

46

THIS PAGE INTENTIONALLY LEFT BLANK

47

V. CONCLUSIONS AND FUTURE WORK

A. SUMMARY

The goal of this thesis was to extend the CARTT capability in order to automate a

cyber-attack scenario against a designated computer system. To that end, we expanded the

user-friendly GUI to allow the user to select various scripted cyber-attacks based on

previously identified vulnerabilities. We performed a test experiment using the prototype

system against a Windows XP Service Pack 3 system. The test demonstrated that CARTT

can import scanned vulnerabilities and allow users to execute cyber-attacks against those

vulnerabilities on a targeted host. The portable prototype system was updated to provide

real-time feedback that a non-expert user can understand.

CARTT was implemented using the Python programming language, which makes

it easy for follow-on programmers to further extend the capabilities of CARTT's front-end

applications. The GUI design and the nature of the attack scripts allow CARTT to be used

by operators who do not have extensive training in offensive cyber operations or red

teaming. These benefits also address the well-known shortage of trained red teams for

conducting security vulnerability assessments of cyber systems.

This research aimed to contribute realistic value to DoD testing of computer

systems. CARTT reduces the learning curve for red teaming by allowing effective and

efficient vulnerability testing during acquisition and operational fielding of computer

systems. CARTT is ideal for red team testing legacy systems currently deployed

throughout DoD, specifically systems not connected to the internet.

B. CONCLUSIONS

CARTT combines vulnerability scanning and red teaming into one tool for a more

complete assessment. The vulnerability scanning is conducted against known cyber

vulnerabilities. Conducting red team cyber-attacks is a proactive means of determining

whether a previously identified vulnerability is valid and exploitable on a selected target.

CARTT was developed, using the MSF open source software suite, as a proof of concept

to demonstrate that a vulnerability can be validated as potentially exploitable on a target.

48

CARTT, by using the MSF suite of pen-testing tools, can have its exploit modules

modified to potentially identify new system flaws known as zero days. However, this is

something that would require red team assistance for the novice user. CARTT provides a

low-cost method for organizations to establish a robust automated testing program for

cyber systems. With CARTT as an asset to DoD, red teams will be able to focus their

efforts on the growing capabilities of the most urgent adversaries.

This research answered the following questions:

1. Primary Question

How can the capability of the current Cyber Automated Red Team Tool (CARTT)

be extended to enhance simulated Red Team attacks against specified computer systems

not directly connected to an external network?

We extended the previous CARTT prototype from an automated host discovery and

vulnerability assessment tool to one that conducts scripted cyber-attacks against computer

systems using the results of cyber reconnaissance. To support this, we expanded the GUI

to provide the user with real time feedback in preparing and executing a cyber-attack. We

demonstrated that the new prototype can successfully conduct a cyber-attack against a

Microsoft Windows XP Service Pack 3 machine. The XP machine had a well-known

parsing flaw vulnerability in the Microsoft version API, known as ms08_067. CARTT,

using an MSF exploit module, established a Meterpreter session on the vulnerable system,

giving the user complete administrative access to the target system. We also extended the

CARTT tool functionality by providing the user the option to select a follow-on exploit

module or terminate the current cyber-attack at any time during the process.

2. Secondary Question

How can the CARTT tool be designed so that a novice user can interact with it

and understand the results?

We expanded the CARTT GUI to provide the user with critical information and

feedback throughout each phase of the red team cyber-attack process. For example, the

user can scroll through the Host Vulnerability window in CARTT to view all target hosts'

49

vulnerabilities at once or select a particular host from the target list to view only the

vulnerabilities associated with that specific host.

The CARTT interface was also extended to provide the user a description of a

selected exploit module. The user can review this information to determine if the exploit

module will potentially yield the intended cyber effect. Lastly, CARTT was extended to

provide the user with the status of the cyber-attack, confirming for the user the payload,

exploit, and remote host information, as well as the cyber-attack success.

Due to limited time availability to conduct this research, we could not conduct a

study of user performance with the prototype system. We, however, believe that we have

made the process of conducting red team cyber-attacks significantly easier than the earlier

manual, time-consuming, error-prone, and technically difficult process.

C. FUTURE WORK

CARTT offers many opportunities for future research. Future work should further

expand the capability of CARTT to automate the entire cyber-attack scenario (i.e., cyber

reconnaissance, vulnerability analysis, cyber-attack, and assessment) against computer

systems. The following are recommendations to work toward that goal.

1. Perform Vulnerability Scans from within the CARTT

CARTT currently launches the OpenVAS GSA GUI from the MSF command line.

As a result, the vulnerability scans are conducted outside of the CARTT GUI. The user is

required to manually upload the list of hosts discovered by CARTT into the OpenVAS

GUI. Future work should configure CARTT to automate such vulnerability scans from

within the MSF for the user and provide feedback on the results. This allows the user to

only have to interact with one GUI tool.

2. Multiple Attack Vectors

The work in this thesis was a prototype proof of concept, thus it was kept simple

with one attacker and one target in a virtual environment. Future work should research the

possibility of CARTT conducting multiple attacks against potentially multiple targets in a

50

single session. Additionally, researchers should consider testing CARTT on real-world

systems connected to the Internet, which would need to address network security policies,

firewalls, etc.

3. Software Updates

In this thesis, CARTT used a known exploit module against a known vulnerability.

A limitation of CARTT is its inability to simulate a red team’s ability to “maneuver on the

fly” and adapt to a changing situation. Further research should determine an effective and

reliable method for CARTT to receive software updates to keep pace with the latest

vulnerabilities discovered on target systems. One method is for red teams to develop

software that can be uploaded to CARTT for testing against targets.

4. Improved Performance

This thesis focused on CARTT functionality, specifically whether it could execute

a cyber-attack. Future work should focus on improving CARTT performance regarding

speed of execution and feedback. Research may begin by looking into the NPS cyber battle

lab and the Kali Linux suite performance. For example, would the CARTT performance

improve if executed in a new environment. The Tkinter GUI interface and MSF are other

areas that future work can investigate for possible optimization.

51

LIST OF REFERENCES

[1] The Office of the Director, Operational Test and Evaluation, “Cybersecurity,”
Washington, DC, USA, 2018. [Online]. Available:
https://www.dote.osd.mil/Portals/97/pub/reports/FY2018/other/2018cybersecurity
.pdf?ver=2019-08-21-155613-837

[2] The Office of the Director, Operational Test and Evaluation, “DOT&E FY 2004
Annual Report,” Washington, DC, USA, 2004. [Online]. Available:
https://www.dote.osd.mil/Publications/Annual-Reports/2004-Annual-Report/

[3] The Office of the Director, Operational Test and Evaluation, “Cybersecurity,”
Washington, DC, USA, 2014. [Online]. Available:
https://www.dote.osd.mil/Portals/97/pub/reports/FY2014/other/2014cybersecurity
.pdf?ver=2019-08-22-110127-793

[4] The Office of the Director, Operational Test and Evaluation, “Cybersecurity,”
Washington, DC, USA, 2013. [Online]. Available:
https://www.dote.osd.mil/Portals/97/pub/reports/FY2013/other/2013iaiop.pdf?ver
=2019-08-22-111131-863

[5] United States Government Accountability Office, “Weapons Systems
Cybersecurity: DoD Just Beginning to Grapple with Scale of Vulnerabilities,”
Washington, DC, USA, GAO Report No.GAO-19-128, 2018.” [Online].
Available: https://www.gao.gov/assets/700/694913.pdf

[6] The Office of Naval Research, “Red Team in a Box for Embedded and Non-IP
Devices,” Washington, DC, USA, 2018 [Online]. Available:
https://www.navysbir.com/n18_2/N182-131.htm

[7] We Are The Mighty, “The military spends millions to not upgrade computer,”
Accessed: 19-Aug-2019. [Online]. Available:
https://www.wearethemighty.com/news/us-military-old-windows-
software?rebelltitem=1#rebelltitem1

[8] The Office of the Director, Operational Test and Evaluation, “Cybersecurity,”
Washington, DC, USA, 2012. [Online]. Available:
https://www.dote.osd.mil/Portals/97/pub/reports/FY2012/other/2012iaiop.pdf?ver
=2019-08-22-111536-970

[9] Department of Defense, “Resilient Military Systems and the Advance Cyber
Threat,” Washington, DC, USA, 2013 [Online]. Available:
https://nsarchive2.gwu.edu/NSAEBB/NSAEBB424/docs/Cyber-081.pdf

52

[10] Serbu, J. “Despite sluggish rollout, DoD vows to expand new hiring system for
cyber personnel,” Federal News Network, Feb. 27, 2019. [Online]. Available:
https://federalnewsnetwork.com/defense-main/2019/02/despite-sluggish-rollout-
dod-vows-to-expand-new-hiring-system-for-cyber-personnel/. [Accessed: 13-Jul-
2019]

[11] The Office of the Director, Operational Test and Evaluation, “Cybersecurity,”
Washington, DC, USA, 2016. [Online]. Available:
https://www.dote.osd.mil/Portals/97/pub/reports/FY2016/other/2016cybersecurity
.pdf?ver=2019-08-22-105129-640

[12] J. Li and L. Daugherty, “Training Cyber Warriors: What Can Be Learned from
Defense Language Training?,” RAND Corporation, 2015 [Online]. Available:
http://www.rand.org/pubs/research_reports/RR476.html

[13] The Office of the Director, Operational Test and Evaluation, “Cybersecurity,”
Washington, DC, USA, 2017. [Online]. Available:
https://www.dote.osd.mil/Portals/97/pub/reports/FY2017/other/2017cybersecurity
.pdf?ver=2019-08-19-113538-460

[14] C. Bond, J. Lewis, H. Leonard, J. Pollak, C. Guo, and B. Rostker, “Tour Lengths,
Permanent Changes of Station, and Alternatives for Savings and Improved
Stability,” RAND Corporation, 2016 [Online]. Available:
http://www.rand.org/pubs/research_reports/RR1034.html

[15] P. Engebretson, The Basics of Hacking and Penetration Testing, 2nd Edition
Rockland, MA, USA: Syngress, 2013.

[16] C. T. Phong, “A study of penetration testing tools and approaches,” M. S. thesis,
Sch. Comp. and Math. Sci., Auckland Univ. of Tech., Auckland, New Zealand,
2014. [Online]. Available:
https://openrepository.aut.ac.nz/bitstream/handle/10292/7801/ChiemTP.pdf?seque
nce=3&isAllowed=y

[17] J. A. Plot, “Red team in a box (rtib): Developing automated tools to identify, assess,
and expose cybersecurity vulnerabilities in Department of the Navy systems,”
M.S. thesis, Dept. of CS, NPS, Monterey, CA, USA, 2019. [Online]. Available:
http://hdl.handle.net/10945/62832

[18] Cobalt Strike, “Raffi’s Abridged Guide to Cobalt Strike,” May 25, 2016 [Online].
Available: https://blog.cobaltstrike.com/2016/05/25/raffis-abridged-guide-to-
cobalt-strike/

[19] S. Sidel, “Test center: Core Impact 3.1 automated pen testing tool,” Techtarget,
Accessed: Jul 28, 2019 [Online]. Available:
https://searchsecurity.techtarget.com/feature/Test-center-CORE-IMPACT-31-
automated-pen-testing-tool

https://openrepository.aut.ac.nz/bitstream/handle/10292/7801/ChiemTP.pdf?sequence=3&isAllowed=y
https://openrepository.aut.ac.nz/bitstream/handle/10292/7801/ChiemTP.pdf?sequence=3&isAllowed=y

53

[20] Core Security, Core-Impact-Pro-network-testing.pdf [Online]. Available:
https://www.e-
spincorp.com/pdf/product/CoreSecurity/CoreImpact/Datasheet/Core-Impact-Pro-
network-testing.pdf

[21] R. Harikrishnan, “Three automated penetration testing tools for your arsenal,”
ComputerWeekly, May 24, 2011. [Online]. Available:
https://www.computerweekly.com/tip/Three-automated-penetration-testing-tools-
for-your-arsenal

[22] E-SPIN, CANVAS Product Overview, E-SPIN Group. Accessed: Jul 29, 2019
[Online]. Available: https://www.e-spincorp.com/canvas-product-overview/

[23] Immunityinc, “Canvas.” Accessed: May 15, 2019 [Online]. Available:
https://www.immunityinc.com/products/canvas/

[24] E-SPIN, Metasploit-Pro-user-guide.pdf, Rapid7 Accessed: May 16, 2019
[Online]. Available: https://www.e-spincorp.com/pdf/product/Rapid7/Metasploit-
Pro-user-guide.pdf

[25] Sectools, “Vulnerability exploitation tools—SecTools Top Network Security
Tools.” Accessed: May 15, 2019 [Online]. Available:
https://sectools.org/tag/sploits/

[26] “] L. Epling, B. Hinkel, and Y. Hu, ‘Penetration testing in a box,’ Proc of the
Information Security Curriculum Development Conference, Kennesaw, GA,
USA, 2015. [Online]. doi: 10.1145/2885990.2885996

[27] V. Tilemachos and C. Manifavas, “An automated network intrusion process and
countermeasures,” in Proc of the 19th Panhellenic Conference on Informatics,
Athens, Greece, 2015, pp. 156–160 [Online]. doi: 10.1145/2801948.2802001

[28] H. T. Ray, R. Vemuri, and H. R. Kantubhukta, “Toward an automated attack
model for red teams,” IEEE Secur. Priv., vol. 3, no. 4, pp. 18–25, Jul. 2005.
[Online]. doi: 10.1109/MSP.2005.111

[29] J. Steffan and M. Schumacher “Collaborative Attack Modeling” Proc of the ACM
symposium on Applied Computing, Madrid, Spain, 2002, pp 253–259 [Online].
doi: 10.1145/508791.508843

[30] X. Qiu, S. Wang, Q. Jia, C. Xia, and Q. Xia, “An automated method of
penetration testing,” Proc of the IEEE Computers, Communications and IT
Applications Conference, Beijing, China, 2014, pp. 211–216 [Online]. doi:
10.1109/ComComAp.2014.7017198

54

[31] N. A. Almubairik and G. Wills, “Automated penetration testing based on a threat
model,” Proc of the 11th International Conference for Internet Technology and
Secured Transactions (ICITST), Barcelona, Spain, 2016, pp. 413–414. [Online].
doi: 10.1109/ICITST.2016.7856742

[32] K. P. Haubris and J. J. Pauli, “Improving the Efficiency and Effectiveness of
Penetration Test Automation,” Proc of the 10th International Conference on
Information Technology: New Generations, Las Vegas, NV, USA, 2013, pp. 387–
391. [Online]. doi: 10.1109/ITNG.2013.135

55

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	19Dec_Edwards_Preston_First8
	19Dec_Edwards_Preston
	I. INTRODUCTION
	A. PROBLEM STATEMENT
	1. Primary Question
	2. Secondary Question

	B. Methodology
	C. SCOPE
	D. BENEFITS OF STUDY
	E. Thesis Organization
	(1) Chapter II: Background
	(2) Chapter III: Design Methodology
	(3) Chapter IV: System Implementation and Testing
	(4) Chapter V: Conclusion and Future Work

	II. BACKGROUND
	A. CURRENT STATE OF DoD OPERATIONAL TESTing AND EVALUATION
	B. Department of defense weapon systems and networks
	1. Complexity and Interoperability
	2. Factors Affecting Cybersecurity
	a. Automation and Connectivity
	b. Lack of Prioritization
	c. Cyber Red Team Resources

	3. Access Interface Types

	C. Penetration Testing
	1. DoD Penetration Test Policy

	D. RED TEAM TOOLS
	1. Cobalt Strike
	2. Core Impact
	3. Canvas
	4. Metasploit Framework

	E. Related RESEARCH
	1. Penetration Testing in a Box
	2. Automated Network Intrusion Process
	3. Automated Attack Model for Red Teams
	4. Automatic Executing Penetration Testing
	5. Automated Penetration Testing Based on a Threat Model
	6. Efficiency and Effectiveness of Penetration Test Automation

	F. CARTT Architecture
	G. Chapter summary

	III. DESIGN METHODOLOGY
	A. test DESIGN
	B. METASPLOIT FRAMEWORK ARCHITECTURE
	C. CARTT PROCESS FLOW
	D. CARTT GUI Design
	E. CARTT GUI OPERATIONS
	F. CHAPTER SUMMARY

	IV. system implementation and testing
	A. Implementation and setup
	1. Backend Applications
	2. GUI Implementation

	B. system testing
	C. results
	D. chapter summary

	V. conclusions and future work
	A. Summary
	B. conCLUSIONS
	1. Primary Question
	2. Secondary Question

	C. future work
	1. Perform Vulnerability Scans from within the CARTT
	2. Multiple Attack Vectors
	3. Software Updates
	4. Improved Performance

	List of References
	initial distribution list

