$\angle B \| 86$

- BEI

PUBLISHERS' REMARKS.

Patrons do well to always remember that there are three distinet departments to our business, Home Amusements, Kindergarten and School Devices and Lithographic Engraving and Printing. We have been the leading Lithographers of our section for more than thirty years. We keep a corps of artists constantly employed in making original designs and lave every facility for doing the best work in this line, buth in colors and black and white, for commercial houses, publishers, schools and colleges. We particularly solicit orters for Diplomas to be given to the graduating classes of grammar, high and normal schools.

We issue a variety of pamphlets which are intended to make the people familiar with our different undertakings. First on the list is our Educational Catalogue of eighty pages, which should be in the hands of every teacher from the kindergarten to the high school, and every dealer in books, stationery and school supplies throughout the United States who intends to hold the trade of teachers and schonl otheers. Next comes a special catalogue of apparatus for teaching Elementary Science, and then one of those "Books for 'Teachers" which we pnblish. Then there is the "little green book" ealled "The Bradley Color Scheme," which describes our apparatus and material for eolor teaching, together with "Onr Little Story," all ilhstrated booklet giving the history of the eoncem since 1860. . 111 this liturature we freely place at the disposal of our friends.

For a notice of The Kinnerganten News see last page of coror.

$$
\begin{aligned}
& \text { MIL'TON BRADLEY CO., } \\
& \text { SPRINGFIELH, MASS. }
\end{aligned}
$$

COLOR

IN THE

KINDERGARTEN.

A MANUAL OF THE THEORY OF COLOR AND THE PRACTICAL USE OF COLOR MATERIAL IN THE KINDERGARTEN.

BY MILTON BRADLEY.

MILTON BRADLEYCO.,

Copyrigiteis, 1893.
By MIITON BRADLEV (O.,
Springifieli, Mass.

INTRODUCTION.

Froebel made no mistake when he included color as a part of the first material used in his system of elementary education. The realm of color is universal; it is the first thing that attracts the child, winning his eye before he pays any attention to form. A bright color is noticed almost as soon as a peculiar noise.

All color comes from the sumlight and is contained in it. When Sir Isaac Newton discorered that a beam of sumlight could be separated into an indefinite number of colors by refraction he opened the way for the first step in color instruction.

In the First Gift Froekel presents the whole of color, so arranged that it may be separated into its most natural and scientific component parts.

He was wise in selecting six colors for this gift, insteat of the seven which had been designated by Newton and generally adopted in the popular consideration of the spectrum.

Very little color enters into the Kindergarten Ciifts, except the First. But in the Occupations color has an important place. being represented in the papers, sticks, thread, silk, worsted. beads, etc.

The most valuable color instruction is comnected with parquetry and weaving. If a child couk be in a kindergarten for two or three years much valuable work in paper cutting might be done. In the cardboard sewing some good color teaching can be begun, but the color surfaces are so small that the effect caunot be as striking as are the results in using the papers.

No exact work can be done in color with the sticks and beads because the natural color of the wood affects the dyes, making them dull, and the use of any material except wool must involve too great cost.

Kinderartners are pleased to remember that elementary instruction in form and color, so far as it has been pursued in any logical wity, originated with Frobel and has been continned in the kindergarten since his time withont essential chanme. With kindergartners it is manecessiny to argue the question why we need to teach children anything ahont color in these days when we hatve to teach them so many, many things. Becanse kindergartners understand that color more than anything else, with the possible exception of drawing, is the connecting link between art ant the sciences they reatily admit that we shonk teach it to the children for the pleasure that a correct knowledge of color will give them through life and the profit it will afford them.

As soon as he began to manufacture kindergarten material, nearly twenty-five years ago, the writer faced the difliculties in the way of a clear understanding of color and any attempt to teach the essential facts abont it. He foumd it impossible in buying colored papers from the paper mills or warehonses to match the lots previonsly parchased with any degree of satisfaction or to insure his customers that any color he had furnished them could be duplicated. 'There were no generally aceepted standards of color and every man set up standards to suit himself. if it crer oceured to him that any were necessary.

It was a realization of these facts that led the author to study the color question in its different bearings and to ultimately write and publish "Color in the schoolroom." since the apperamer of that hook the suhjeet has heen further developed, and it is with a view of putting the latest discoverios before the kindergartuers in a condensed form and of providing them with a ernice for the spectial color work involved in the Gifts and ()ecupations that the anthor ventures to offer them this little supplementary hook. In this comection he wishes to gratefully acknowledge the enthusiastic help in the experimental study of color which he has received through a term of years from teachers of every srade, from the kindergarten to the miversity. simixifiteli, Mani, May $1,1893$.

The Theory of Color.

IN ORDER to think, talk and write about any subject we must have a language or nomenclature by which thoughts concerning that suloject may be expressed. Standards of color corresponding to definite names are a pre-requisite to a nomenclature of colors. Hitherto all statements about color have been exceedingly rague, becanse of the lack of names with which to accurately define the different colors. The solar spectrum, discovered by Sir Isaac Newton two hundred years ago, contains absolutely unchangeable standards on which to base an intelligent nomenclature of colors; hut until recently no practical use has been made of them, because while writers on art since Newton's day have referred to the solar spectrum as being nature's ehart of colors, they have also proceeded to set up for themselves charts which they have elamed to be superion to that provided by nature.

In the solar spectrum there are six colors which all normallysighted persons readily select as clearly distingui-hable from the others, and they have been named by common consent red, orange, yellow, green, blue and violet. Just why Newton saw and named seven colors insteal of six, introducing indigo between the blue and the violet, is not altogether clear. But it is now stated on scientific authority that one person in a thousand seems to have an almormally delieate sense of color which leats him to select a particular violet blue as having the same or nearly the same definiteness that characterizes the six colors named above, which fact suggests that probably Newton belonged to this class, as he would not have named a color that he did not clearly see. But whatever explanation may be given for Newton's selection of a seventh color, it is now maintained
by all who have given the subject careful thought that the six colors furnish : convenient and sufticient number of standards for all pratetical purposes.

The Theory of Sir David Brewster.

Lutil very recently the Brewster or red, yellow and blue theory has been the only thing approaching a system accepted by artists and eolorists, all eise being relegated to the reahns of taste and feeling. both Newton and Trewster believed that the colors of the sol:u spectrum were prodnced by the overlapping of three sets of colored rays, red, yellow and hlue. The red lays at one emal were thonght to mix with the yellow rays to make the orange, and on the other side of the yellow the bIne lays combinel with the yollow to prodnce green. On the same principle in material colors the orange, green and purple were supposed to be mande hy the mixing of red, yellow and blue pigments.
'The whole of this theory is practically embraced in the statement that there are three primary colors, red, yellow and blue; that ly the mixtures of these three primaries the secondary colors, orange, green and violet, may be produced, and then again the secondaries may be combined in pairs to form the tertiaries, citrine, russet and olive. The adrocates of this schene further assert that the secontaries are complementary to the primaries, the green to the red, the violet to the yellow and the orange to the blue.

But it ("un now be easily proved that there is nothing of truth in this brewster theory, either as applied to the science of color or the practical use of pigments. It is at the present time well known that the orange in the solar spectrum is not produced by the overlapping or intermixing of red and yellow rays, hut that each separate color or hue in the spectrum has its own wave length and is as much a primary as the red or yellow. It is also equaliy true that in the pignentary colors the red, yellow and blue will not produce by mixture an orange, green or violet approximating the other three in tone or purity.

In the system of color instruction adrocated in these pages the solar spectrum is accepted ats furnishing the standards, but
instead of selecting three primaries, red, yellow and blue, six primaries or standards, red, orange, yellow, green. blue and violet are chosen, which with white and black furnish the means for producing scientitically all other colors. Then it will be seen that the three primaries of Brewster are here accepted and clefinitely determined, and to them are added three others from the same source as that from which he clamed to derive his. Cousequently we present the six colors to the child as original standards, instead of teaching him that there are three which must be combined to make the three others, and thus be is taught the truth and not something that will have to be mulearned later.

The Young=Helmholtz Theory.

Opposed to the Brewster theory of color is the Young-Helmholtz theory, which is quite generally accepted by the scientists of the present time. According to this theory all color in uature is contained in sunlight, which is practically white light. When a heam of sunlight, admitted into a darkened room, passes through a glass prism it is spread out like a fan into a band of

beantiful colors, beginning at one end with a dark rel, grartually changing to a brighter red, which runs into an orange and then throngh yellow, green and blue to violet, which gradually fades away into darkness. This is the solar spectrum and the effect is represented hy the accompanying diagram.

The explanation of this phenomnon is that the beam of sumlight is composed of a great number of different kinds of rays, which in passing through the prism are refracted or bent from
their slirect consse, and some are bent more than others; the red least of all, ant the violet most. It is supposed that light is propagated hy waves or molulations, in an extremely rare substance termed ether, which is supposed to occupy all space and transparent bodies. 'These waves are thought to be similat to somm wares in the air, or the ripples on the smooth smrface of a pood when a pebhle is thrown into it.

Because so many of the phenomena of light can be satisfactorily explanerl hy this theory it has been very generally adopted by the best scientists. The amomet that rays of light are refracted from a straight line in passing throngh a prism is in proportion to the number of waves or undulations per second, and in inverse proportion to the length of the waves. The red waves are refracted the least and are the longest, while the violet ars are refracted the most and are the shortest.

The wave lengths of our six standards are approximately in the proportions of the following numbers: Red, (i600; Orange, 6100 ; Yellow, 5800 ; (ireen, 5200 ; Blue, 4700 ; Violet, 4200 ; these figures representing ten millionths of a millimeter.

While, as before stated, the adherents of the Brewster theory profess to helieve that there are three primary colors, red, yellow and blue, from which all the other colors can be made, the seientists, alopting the Helmholtz theory, claim that in sumlight there are three primary colors, red, green and violet, from which all other colors in nature may be produced, or in other words that there are three color perceptions in the eye, which combine to make allother color effects.
()ntside the realm of pure science it is not a matter of interest whether all color in mature is or may he protuced from any threw eolor pereoptions, beeanse it is easily demonstrated that from no thre pigmentary colors ean all other colors be mate, and in the arts aml sciences all artificial color effects are secured liy the use of pigments. 'Therefore becanse with any three stambaris the results of pigmentary combinations are very monlik the corresponding combinations of the same staudards in colored light this theory is of no practical value.

The Standards Must Be Chosen From The Solar Spectrum.

But if six colors are selected from the solar spectrum and the best possible imitations of them mitele in pigments, as for example, in colored papers, these colors may he combined with results substantially similar to the effeets obtained by corresporting combinations of spectrom colors, except that as the pigmentary colors of the papers fill very far below the spectrum colors in parity and illumination, so their combinations must give results cormespondingly below the same combinations of the spectrom colors.

Having aheady provided the six pigmentary colors just mentioned, with white and black, as standards from which to form and name other colors in terms of the standards, some means for measuring the quantity of each color used becomes necessary. It is impossible to obtain these quantities by measuring or weighing the pigments, becanse, althongh the pigment may lee weighed or measured, the amount of the color effect cannot le determined in omees and pints. For example, if we wish to prokluce and defintely distinguish a special color between green and yellow, it is necessary that we have some means for ascertaining the amome of green and yellow entering into its composition, in order to give it a mame of any practical value. But, very fortmately, it has been discovered that if on a white disk of card or other sulstance sectors of two or more alternating colors are painted, and then the disk placed on a rapidly rotating spintle, the several colors merge into one color which is the combined effect of the several sectors painted on the disk. It is also true that the color effect is determined by the relative mumber of clegrees which measmre each of the colors.

If a white disk is divided into fon equal parts by two diameters at right angles to each other, and three of these sectors are painted with the standard yellow and one of the parts with the standard green, rotation will produce a green yellow represented by three parts yellow and one of green; or if the disk is divided into 100 parts the result will le 75 prats yellow and 25 green.

If having a prismatic spectrum thrown on a sereen in a dark foom we hotd two small mirrors in the path of the light, one so placed its to receive, for example, the red rays aml the other the violut mas, the mimors maty be so mover as to retlect the rest :mat the violet rays on one spot on another sereen. 'The fesiblt oit this aromgenent will he a mingling of the two colors to prother a aosk hetween the violet and red usually ralled burple. And so we may select any other two colors and thas determine what color is proxheed by the mingling of aluy two or mose spertrman colors. But it is very inconveniont to make

 will chilkern.

The Use of the Coior Wheel.

Fig. 1.

F1:, 2.

Fig. 8.

It is an introseting fact that the rotation of the disks painted
 same :the the mating of the wor refleced lights. 'This is duc (1) the physiological bffert eableri mention of vision. If we set the exal of at chek on fire and raphilly whirl it the appearance of : cirche of light is proxlucerd hereanse the impression made on the retinat of the eye at one instant remathe matil the end of the harming stiok combes arommel to the same point again, and thas a
 the retating tish is due to the same quality of the eye.

An Fngrish selbontish, I. ('lerk Maxwell, while trying experi-
ments with painted disks less than forty years ago, happiply conceived the itest of rutting a ratial slit in each disk from ciremmference to center, so that by joining two slitterl disks they could be made to show any desired propertion of each, and hence they are called Maxwell disks.

Fig. 1 shows the method of joining the two disks ant Fig. : their appearance when properly joined to be placed on the rotating spindle of a color wheel or celor mixer, as the apparatus is often called.

Fig. : : shows two combined color disks ready to be placed on the rotating spindle and with them a large white disk the circunfereuce of which is divided into 100 parts.

Fig. 4.

Fig. 4 shows a color wheel with a combination of cliskis on the spiudle ready to be rotated.

These disks have heretofore been nsed as a curions piece of philosophical apparatus rather than as of any practical valne in coloi investigation, lant when the idea of basing a color nomenclature on the six seectrum colors was conceived the disks at once assumed a practical ralue never before ascribed to them, and now are an important factor in the only system of artistic color instruetion haseel on the scientific truths of color.
Let us suppose that the two disks shown in Fig. or are green and yellow, but with a trifle less green than in the painted disk ahove mentioned. The increased amount of yellow and the smaller quantity of green will canse a color to appear leg rotation which will be somewhat different from the first-lescribed painted disk. In order to determine ley definite measurement how much the elifference is we place behind these two mited disks a whole graduatea disk the circumference of which is clivided into 100 parts, as shown in Fig. 3. From this graduate: scale we may determine that the green yellow con in anmoned
of green 2.2 parts and yellow is parts. No aroument is necessary to prove that where all exactness of color is required it is much better to be able to express a color in such definite terms as are here used than to say that this color is a little "less greenish" than the other.

In the use of the color whee it should le rememhered, however, that a very high rate of speed must be sustained, as many an fifty revolutions to the seconl being necessary, in orlar to produce a perfect mixture.

Fig. 5.
Fig. .f shows three disks joined ready for use on the spindle. and in the same way any mamber within reasomable limits can le erombined so that any two of more colors may be mixed and the composition definitely rearored in the tems of the colons of the diskis.

The Old Theories Tested by the Wheel.

As hats heen stated, the advoeates of the Brewster or red, Pellow and hate theory clain that orange may be protuced from red and yellow. In fact learling oducators have said in one heath that "in the solar spertrmm, which is nature's chart of colors, the principal contors are red, orange, yellow, green, hlue and violet; of these ret, yellow and hlue are primaries, from Which may be mane the secondaries, orange, green and violet." Now we (an test this statement by the use of the disks.

If red amd yellow disks of medinm size are joined on the spintle in propertion, and a smaller orange disk is placed in front, the onter ring of color should ky rotation match the
orange at the center. A trial of this experiment will be not only interesting lont convincing. Althongh the result of the rotation will be a color which might under some divemmstancos be called an orange, it is in mo semse the same color as the seecetrum orange at the renter.

If we attempt to prolnce a green lix combining the vellow and blue disks the result will be surprising, hat probably not convineing, because the statement that yellow and home make green has been so persistently reiterated as a fumbamental axiom that people who have given the subject but little attention will feel that to doubt it is rank heresy. In a text book treating of color is found the following passage: "(ireen sulnstances reflect the green, i. e., the blue and yellow rays of the smonight and absorb all the others." It is a fact. hewerol, that in the mixture of bhe and yellow light there is little or no trace of green.

If a greenish bhe and a greenish yellow are used in the disks, as a matter of course a slightly green effect will he olbtained, hut with a good standard hue and stamdard yellow the result is very nearly a nentral gray. It is true that in pigments a dull green can be made from the standard blue and yellow. and from a greenish blue, as Prussian hue, aud from a greenish yellow a very fair green can be secured, but in neither case does the result approach the standard green, which has been adopted as the best imitation of the spectum green.

If red and bhe disks are joined a much more satisfactory imitation of the violet may he made than is possible in the or:ange or the green, lut it lacks the purity of the standard violet.

But when these experiments with the disks are presented in argument against the red, yellow and blue primaries, the advocates of that theory claim that in the pigments much better results are obtained, and that in the pratical nse of colo: we must depend on pigments, and hence the wheel is of wo value in the argument. This view of the case can no lomger be mantained, because the day has passed when an intelligent teacher will knowingly ignore the force of an argmment backed by scien-
tife facts. True we must use pigments in representing nature, Hout when hature has provited us with six good pigments for representing her brilliant colors why aceept only three and from them make miscrable approsimations of the other three?

Again, why shall we not consider the effects in mature which are proxlued by the varying mixtures of colored light, and investigate the principles on which they are pronluced, even thongh as artists it becomes on task to imperfectly imitate the colors to the best of our ability with the pigments at on command? If we comsitler the principles governime the color effects which are presented to onr eyes in the ever-changing landsape, can we not much better interprot these effects and thas be better prepared to imitate them on the canvas or the paper: Nearly all color in mature is prodnced by the combination of local color and rettected colors. ()ften at evening the sumlight takes on a red glow, eaused hy the refleeted smblight.

In a room where the windows open on a green lawn with many trees mearly all the light is reflected from green smfaces, and hence is green light. In such a case a correct painting of ohijerets in that room wonlal have a general green effect

In ortere to ohtain the most truthfal effects of color in mature the artist shonk have suthichent knowledge of the principles which govern the combination of colors ly reffected light so that his reason may aid his eyes.
'The afternoon light in a room on the west side of a city street may nearly all be red light, reflected from an opposite red hridk wall. 'The writer once experienced a realizing sense of this fact while examining some hack goots in a tallor's shop so situsited. He eomplained that they looked brown, lut the salesman thuthfully replied that the black was a goorl color, lut that in the aftermon the hoick wall opposite spoited the looks of all the harek goork.
'Thestory is told of an artist who wished to represent a piece of han hute-a-hmace with a hit of vellow lace thrown on it, but havine mo lace at hame evolved an artistic promuction from his limited knowledge of the science of color and gave the surface
a green color. Had he known that hae and yellow light combined make gray instead of green he woukd have avoided the error.

The fact that gray is the promenct of bue and yellow light is sometimes taken adrantage of in forming backgronnds in lithographic printing, in which a stippling of alternate dots of yellow and blue, very close together knt not overlapping, is nsed to produce a beantifully transparent gray much more pleasing than any one tint of gray. 'This result is due to the blending of the two colors in the eye with the same effect as the color's of two rotating diskis are mingled. The fact that there is a difference between the color effects produced ly mixing two pigments and the mixing of the light reflected from similar colored surfaces is a rery strong aroment for a system of color instruction based on disk comhinations, rather than on pigmentary mixtures.

A little experimenting with the rotating disks and with pigments will convinee thy one that the disk combinations form the only possible hasis at present known for logical color instraction.

Concerning the Complementary Colors.

Having shown that the three colors red, yellow and blue cannot be combined to make an urange, a green or a violet of a correponding degree of purity, we will comsider the other claim which is set up ly the adrocates of the Brewster theory, namely, that the secondaries are complementary to the primaries, the green to the red, the violet to the yellow and the orange to the blue.

All colon is contained in white light, and if we take from white light any given color, the color remaining is considered the complementary. If a small disk of standard red paper is phacel on a white wall and the eyes fixed intentiy on it ior a few secombs, and then the eyes slightly mosed back and forth, a ring of a bluish green tint will be seen surrounding the red paper. This is called the accidental color, and is supposed to be identical with the complementary, but the image is too faint to give any very exact color effect. But it is sutficient to give a clue to the complementary, and we are to infer that a color between green and blue is that which is wanted.

If now we can dotermine in what propertions red, hlne and green must be mited to produce white light, we may solve the problem. This is not possible in the use of any pigmentary colors, beealuse of the impurity of all pigments as compared with speetrimm cohors. Although the mixture of colored light reftered from the disks, which are made of pigmentary colors, gives mush purer colon than the actual mechanical mixture of the two pigments, still, being a reflection of pigmentary colors, it is far from pure, and therefore the result must be a white of a low clegree of illumination.

If we hold a white card in a bright daylight introduced through a window into a room. not necessarily direct sumlight, it appears white. If we east a shatow or shade on a portion of the eard ly interposing some oparge object, the color is changed, but lanowing that it is a white card we do not think of this as another color, hut call it a shade. It, however, is in fact a gray, and a peouliar gray called a neutral gray. We can perfectly imitate this gray ly combining a white and black disk on the when. It is a simple and interesting experiment to see what heantiful grays maty be prodnced in this way.

All such colors are known as neutral grays and they perform a sery important part in color analysis, and may be produced ly the comblination of white and llack disks.

Therefore, if red, blue and green disks of medium size are joined on the wheed and in front of them small white and back disks are combinch, we have a means for solving this problem. If thene varions disks can he so adjusted that when rotated the efteret of the then coloned disks is a mentral gray or white under a low degree of illmmination, exactly matehing a gray that may lee ohtained ly alljusting the smatl black and white disks, then ank step) in the solntion is taken, as shown in Fig. (i)

Whlt and lan armagement a rery close mateh is produced, when the combimel disks show the proportions to be red, $41 \frac{1}{2}$; blue,
 1.) and hack, no. Now if blue and green are combined in the samm fropotions, as indicated above and in quantities sumpient

When added together to fill the entire circle, of 100 parts, blue
 and the disks when rotated will give the color which is the complementary of red: namely, a blne green.

Fig. 6.

Fig. 7.

In the same way the complementary of eacly of the other standard colors, and, in fact, of any color may be obtained.

The complementary of orange is another color hetween the green and blue, but more largely blne. 'The complementary of green is a violet red, and of violet a colon between yellow and green, while yellow and blue are very nearly complementary to each ofletri.

Taken together, these experiments prove that the complementaries of the olf primanies are not fonnd in the secondaries.

How to Secure a Color Nomenclature.

As has heen seen in the use of the green and yellow disks, a rariety of lues between two adjacent standards may be produced and thas all the spectrom colors imitated.

The possibility of initating these colors having been discovered, the way to establish a definite nomenclature of colors becomes plain. Each standard has only to be designated by some fixed symbol and measured by the use of the gradtated disk to determine the amomit of each color which enters into any given combination. To this end for convenience the following symbols are adopted:-

R for red, O for orange, l' for yellow, (ifor green, lif for
han :and V for violet. If semese us for white and B would be adopted for back hand it wot alrealy been used for hate and therefore we employ N for the Latin word niger, imlicating hand. If ith theses symbols and the graduated disk divided into for parts we have a perfect and simple decimal nomenelature for all colons which cam be made from our standards.

Now let ns motice the practical advantage that wonld result from a gemeral :nloption of this nomenclature. Suppose a customer to visit a wholesale dealer in San Francisco in quest of a larqe quabtity of palper of a special color. He has a sample somewhat mear the color and presents it to the dealer. This may be a colon between orange and yellow, and he says, "I want something a little more yellowish than this." The dealer is an agent for some Eastern mannfacturer and is ready to order it, if the customer ("aln furnish a sample, but it is impossible to express in worts just how much "more yellowish" the color must lee. Aso the costomer is in great haste and a week's delay for the mail is :m important item. But the dealer is provicled with a condor wheel. a duplicate of which is in use at his mill in the bast. Therefore he slips the orange and the yellow disk on the spintle and in a very few mimates the exact color is peonlucenl and aceppted hy the constomer. This may be Y. 35 , O. 倞, and a telegran is sent immediately for 100 reams regular size :md weight, color (). (i.5, Y. :35, and 'tis done, and the next hay ina Now lengland mill the paper is heing coated with a color (xatetly the same as that shown on the wheel in the sam francison stome 'This is momance. hecatise we have for years been twhhoning colors from our oflice to the mill, several miles amay.

Tints and Shades.

Exery conder in mature is moditied by light. A high degree of illumination, as bright smmight, reluces the color, forming a tint of the colon. If at shatow is thrown on a color it is obscured, until ats the hadme derpens the color is lost in darkness. These effects ate callew shades of color. In pigments tints and slades may low penduced loy the use of white and black pigments; with
the wheel by white and black disks. Neither in pioments nor with the disks are the results absolntely like the real effect of sunlight and deep shadows. In pignents black does not produce as perfect shades as various other dark pigments, while white pioments give fairly good tints.

With the disks the reverse is true, and the black disks give beautiful transparent shades, while the impossibility of recuring a perfeetly white disk, together with some effect of rotation not perfectly uaderstoon, introduces in the lighter tints of some colors a violet gray effect that is not as pure a tint of the color as is secured by the mixture of white pigments. This is most noticeable in the red and the blue. It is not seen in the violet, and appears very slightly in the orange and green and but little in the yellow. On the whole the disk comblinations of colors are much purer than the mixture of the same colors in pigments, and the quantity of each can be measured amb recomped.

The shades of yellow as shown on the wheel will not be readily accepterl, but careful comparison with the yellow paper in shaclow proves that heretofore an orange yellow shade las been used for a yellow shade.

As much dissatisfaction had been expressed with the papers provided for the kindergarten, this scheme of color was first applied to the production of a systematic line of such papers. First the six standarls and blark and white were made and then two spectrum colors between each two standards. so as to provide eighteen spectrum colors, which are considered suthicient for types of all the pure colors in mature. Lastly two tiuts and two shades of each were made.

Scales of Color.

When we armange one of the spectrom colors with its tints on one side of it and its shades on the other, in regular order, from lightest tint to darkest shade, a color scale is formed, as shown in each of the horizontal lines in the following rhart. Each color is called a tone of the scale and each scale consists of fire tones. The standard or hue is called the key tone; bence we speak of the red scale or the blue green scale.

Now when we place a series of scales with the key tones in the same order as fombl in the spectrom we have an arrangement like that illustrated in this "Chart of Spectrum Scales."

$\begin{gathered} \text { T. J.T.2. } \\ \text { V.T.2. } \end{gathered}$	$\begin{gathered} \text { T. V.T. I. } \\ \text { V.T.1. } \end{gathered}$	$\begin{gathered} \mathrm{TR.1} \\ \mathrm{~V} . \end{gathered}$	$\begin{gathered} \text { Ii. V.s. } 1 . \\ \text { V.S. } 1 . \end{gathered}$	$\begin{gathered} \text { R.V.S.2. } \\ \text { V.S.2. } \end{gathered}$
13. V. T. 2 .	13. V. T. 1.	B. V.	B. V.S. 1.	13. V. S. 2.
V. B. 'T. 2.	Y. B. T. 1.	V. B.	V. B. S. 1.	V. B. S. 2.
13. 'T. 2.	B. 'T. 1.	13.	13.S. 1.	B. S. 2.
X.G. B. 'T.e.	N.C. B. T.1.	A. G. B.	X.G.B.S.1.	X (i, B.S.s.2.
G. B. T. 2 .	C. B. T. 1.	G. B.	G. B S. 1.	G. B. S. 2.
	13. (\%.'T. 1.	13. 6 .	B. G. S. 1.	13. A. S.e.
(1. T. 2.	G. '1. 1.	G.	G. S. 1.	2.
Y.G. T.e.	1. (a. 'T. 1.	I. G	Y. G.S 1.	1. ©. S. 2.
G. 1.T.2.	G. 1. T. 1.	G. 1.	G. Y.S. 1.	(\%)Y.S.2.
1. T'	1.T.1.	1.	Y.S. 1.	リ.s 2 .
O.1.T.2.	(1. 1. T. 1.	O. Y.	O. Y.S.1.	0.Y.s.2.
$\begin{gathered} \text { Y. O.T. } 2 . \\ \text { O.T.Z } \end{gathered}$	$\begin{gathered} \text { I. O.'T. } 1 . \\ \text { O.'t. } 1 . \end{gathered}$	$\text { Y. } \mathrm{O} \text {. }$	$\begin{gathered} \text { Y.O.S. } 1 . \\ \text { O.S.1. } \end{gathered}$	$\begin{gathered} \text { Yo.S. } 2 . \\ \text { O.S. } 2 . \end{gathered}$
IR. (1). T. 2.	R. (). 'T. 1.	R. 0 .	R.O.S. 1.	R. O.S.2.
O.1. Т. 2.	O. R. 'T. 1.	O. R.	O. R.S 1.	O. R.S.2.
IR. T. 2 .	R. '1'. 1.	12.	IR.S.1.	R. S. 2.
V. R. T. 2 .	V. R T. 1.	V.li	V. R. S.1.	V. R. . S.e.

It will be noticed in this diagram that three scales intermediate between blue and green are shown instead of two, as between each other two standards. The eolor nearest the hlue marked X.(i. B. is introduced to bring the spectrom nearer perfection, but is not necessary in elementary work.
()ne of the whef ams of color instruction is the hamonious combination of colors, and this chart serves as the basis of the therory of harmonies.

Classification of Harmonies.

While it is not to be supposed that the theory of harmonies can he tanght to kindergarten puphils. the laws of harmonies are here brietly outlined for the teacher, so that all the use of colors may be such as shall not violate these elementary laws, even thongh the limitations of the material employed render impossible the most subtle and perfect harmonies.

The value of a given harmony depends on the hues, tones and quantities of the several colors user. This is a sulject about which it has thes far been impossible to protitably talk or write because of the lack of definite standards of colors and color terms on which to base statements of facts or proposed theories, but with these supplied by the color wheel we may hope for rapid advance in the near future.

For the present the division of hamonies into classes in very much a matter of personal opinion, because on knowletge of the principles governing harmonies is as yet so limited, but Mr. Henry T. Bailey, State Supervisor of Drawing in Massachnsetts, has suggested a classification which seems to be better than anything else proposed, in which he classes all harmonies under these five heads: Contrasted, Dominant, Complementary, Analogous and Perfected.

Contrasted.-'The contrasted harmonies are those in which color is contrasted with non-color, or more accurately in which an active color, that is, a tone from the spectrum cirenit, is comtrasted with a passive color, white, black, gray or silver and gold; for example, a blue green tint with white, or green blue with warm gray No. 1.

Dominant.-lisy dominant harmonies we mean those in which are combined different tones in one color scale. For example. red tint No. 1, red shade No. 1, or green blue tint, green blue, green blue shade. A dominant harmony composed of grays, or white, gray and black, is sometimes called a neutral hammony.

Complementary. -This term refers to those harmonie's in which are combined opposite or complementary colors in the spectrom circuit. The best of them are those which exhibit not only opposition in color but also opposition in toue. That is, tints of one color with shades of its complementary proluce a more pleasing effect than do complementaries of equal value. The best complementary harmonies contain one or more passive colors.

Analoyous.-This name is applied to those harmonies in which are combined tones from analogons scales. The best analogons
harmonies are produced when we take tints from one side of the key tone and combine them with shades from the scale on the opposite side of that containing the key tone.

Prfected.-liy perfected harmonies we mean those in which analogons colors are combined with the complementary of the key color ats yellow green tint, green, blue green shade, with violet med. Also those in which the effect of one amalogons harmony is complementary to the effect of another. All coloring in nature and in the examples of the best historic art will be fonme to conform to one of these five harmonies.

From the fact that this division of hamonies is based on the science of color we must not suppose that it furnishes any definito rules for forming the best hamonies. With our present knowledge rules can only at the best prevent certain absolutely hand comblinations and give indications of the loest effects. The best hamomies can at present only be determined by a consensus of the opinions of trained artists in color. But the immediate ralue of a scheme of color with a nomenclature of color based on stamiarts will he found in the possibilities it offers for disCusion ly means of verbal and printed reports of the experiments and opinions of artists and of their productions.

The ultimate value of this system may be seen in the possibility of formulating rules for a very large number of the best harmonice lased on the average opinions of many artists and expresen in the terms of our nomenclature.

Broken Colors.

I_{11} aldition to the spectrmm standards and intermediate hues and their tints and shades which are included in the chart of spectrum soales, there is another class of colors which in genemal tems may be called froken colors, or gray colors.

A broken color, as a broken red for example, is a standard red mixed with meutral gray, that is with back and white. In still other words, a lorkencolor is a tint of that color in shadow; or again we may saly it is alsarle of a tint or a tint of a shade.

It mature nearly all colors are broken. First, there is always more or less vapor together with other imprities in the air, so
that even in a clear tlay objects a few hmolred feet from us are seen throngh a gray veil, as it were, and in a misty or hazy day this is rery evident. In the ase of somewhat distant foliage the general color effect is produced by the light refleeted from the agoregation of leaves, some of which may be in bright smolight and others in shadow, with a mixture of broken twigs. All these tints and shades of green ank brown are mingled in one general effect in the eye. Also, owing to the rounded forms and irregular illumination of objects, we see very little full or loeal color in nature.

Therefore the study of broken colors becomes the most fascinating branch of this whole subject. It also has an interest beeause nearly all the colors fonnd in tapestries, hangings, carpets, ladies' dress goods, ete., come mader this head. In fact it would be hazardous for an artisan or an artist to use any full spectrom color in his work, except in theads, lines or dots. A considerable quantity of pme, standard green, for instance, would mar the effect of any landscape.

It is a vely interesting diversion to analyze samples of the dress goods sold each season under the most wonderful mames. For example, "Eeru" is a broken orange yellow, with a nomenclature of $0.12, \mathrm{I}^{*} .15, W^{\top} .17, N .56 . \quad$ "Lin," is quite different in color, but the difference is largely in the quantity and proportions of white and lolack, thus: ().7, Y.6, W.f, N.s1. "Styx," is a broken red, thos: R.10, W.21, N.69; "dshes of Roses" is a hroken violet red, thus: R.R $\frac{1}{4}, ~$ V. $2 \frac{1}{7}, ~ W .15 \frac{1}{2}$, N. 74 ; "IIamneton," is a loroken orange: O.73, W.94, N.sis; "Old Rose," broken red: R.fis $\frac{1}{2}, ~ W .24 \frac{1}{2}, ~ N .10 ; ~ "() a s i s, " ~$ broken yellow green: Y.7, G. $10 \frac{1}{2}$, W.82,$~ N .74 ; ~ " E m p i " e: " ~$ G.181, 13.11, W.161, N. 53.

So we might analyze "Elephants' Breath," "Bahy Blue," "Nile Green" "Crushed Strawherry" and lumdreds of other names used by the manufacturers and dealers, but while the same names occom with considerable regularity each season the colors change with the demancis of the godless of fashion.

The names of a number of natural pigments have heretofore
heen the hest-reconnized stambards for color names, and tmong these are "Vermillion," "larnt Sieman," "Raw Sienna" ant "Indian Red."

The following are the analyses of three samples of vermillion of the best tule oil colors in the market: R.sif, (0.14, W.6; R.87, O.8. W.б: R.j0, O.24, N.26.

These three stumples of "Enront Nienua" analyze as follows : American, R.12, O.f, W.: N. N. $8 \frac{1}{2}$; German, R.2.2 $\frac{1}{2}, ~ O .11 \frac{1}{2}$,

Similar samples of "Raw Siema" analyze as follows: O.1× $\frac{1}{2}, ~ Y .6 \frac{1}{2}, ~ N .75 ; ~ O .17, ~ Y .14, ~ W .1, ~ N .68 ; ~ O .8 \frac{1}{2}$, Y.3 $\frac{1}{2}$, W. ${ }^{2}$, N.s6.

Two samples of "Indian Red" analyze as follows: R.111 $\frac{1}{2}$, O.7, W.4, N.772 $\frac{1}{2}$ R.133, (0.1:3 $\frac{1}{2}, ~ W .2 \frac{1}{2}, ~ N .70 \frac{1}{2}$.

From these figures it is readily seen that no use of pigmentary names can lee relied on for a nomenclature.

The So=called Tertiary Colors.

In the Lherwster theory of color the tertiaries hold an inportant place. they are spoken of as a specitic elass of colors, and are divided into three different lines, namely: "Citrines," "Russets" and "(Olives."

It is claimed that the union of orange and green makes citrine; of orame and of purple, russet; of green and purple, olive. It must he evident to every one giving the subject any careful thought that as in this system orange is, for example, a mixture of red and yellow in indefinite proportions, and green is the mixture of blue and yellow in various quantities, the name (itrine can hase no definite meaning, as the orange may be any color fron fer to yellow, while the green may be a mixture of blue and yellow pigments in any proportion, so that if these indefinite secondaries are mixed in indefinite proportions the result must he very dissimilar.

Moreover, althongh the names citrine, russet and olive are familiar and cencenient terms for three general classes of colors, it is prohnlate that no two persons would agree very nearly as to any single color best representing either class.

There are rarions colors which are recognized as coming within the line of citrines. The following are analyses of two which may be considered fair samples: First, O.21 $\frac{1}{2}$, Y.8, W. $6 \frac{1}{2}, ~ N .83 ; ~ s e c o n d, ~ O .4, ~ Y .19 \frac{1}{2}, ~ W .3, ~ N . ~ 73 \frac{1}{2} . ~ B o t h ~ a r e ~$ broken orange yellow, but the last is much less broken and much lighter.

An analysis of two examples of olives gives G.13, B.6, W.12, N.69, and G.19, B. $11 \frac{1}{2}$, W. $10 \frac{1}{2}$, N.59. The last is lighter and much less broken than the first, having 30 ± 2 parts of color, while the other has but 19. Both are broken blue greens.

From two samples of russet we get R.36, O.4, W.9, N.51 and R.47, O.7, W.8, N.38. The latter has more color, i. e., is less broken, and is also lighter. Both are broken hlue greens.

So in all these cases we have for the term citrine a gray orange yellow; for olive, gray blue green, and for russet, gray orange red, each of which is a spectrum bue mixed with white and hack.

Probably many people will think that these combinations of color do not express what they mean when they say citrine, olive or russet, which shows that some more definite terms are required than those which we are accustomed to use.

How the Grays are Classified.

As we have seen that a broken color is a gray color, if, for example, we add more hack and white to a russet which is a gray orange red, reducing the proportion of color at the same time, we shall pass the line where it shoukl be called a gray orange red or a russet, and shall have a russet gray, or a gray with a little red and orange in it, i. c., a warm gray.

If the olives are treated in the same way we have cool grays. If we take only white and black we have nentral grays. If a little green is mixed with neutral grays we have a line of green grays. Thus all grays may for conrenience be classed as neutral, warm, cool and green grays.

The term warm color is applied to auy color at the red end of the spectrum, including red, orange and yellow. The green blues, blues and violet blues, with possibly the violet, may be
called cool colors, while the green is a cloubtful color in this sense.

Simultaneous Contrasts.

The subject of Simultaneous Contrasts is very interesting and relates to the mutual effect that two colors have on each other when placed in juxtaposition. Much has been published on this subject, entire books laving been written regarding it, but they have been of comparatively little value, because of the lack of any definite standards of color, and hence the lack of any clear statement about the colors to which they refer. Therefore it has been impossible for a reader or a student to exactly repeat the experiments described.

A very good illustration of the effect of Simultaneous Contrasts may be seen by first monnting on a piece of carlboard one square each of the six standard colors and pasting on the center of each a smaller disk of some gray, a dark nentral gray, for example. When this is done it will be difticult for the person making the experiment to convince another that all the gray disks came from the same sheet of paper.

A Revlew of the Bradley Color Scheme.

To sum up brietly the Color Scheme which the writer has tried to present in the foregoing pages, it may be stated as follows :-

First, six standard colors are selected from the solar spectrum and their locations absolutely fixed by their wave lengths, so that they can at any future time be referred to for comparison with pigmentary colors.

Second, the hest-possible pigmentary imitation of these six colors are made, which, with the purest white and blackest black form eight standards of color. From these pigmentary standards Maxwell disks are made, by which intermediate spectrum hues are determined and named, and by which a complete and simple nomenclature of colors in terms of the standards is possible and practicable. In accordance with this nomenclature a line of colored paper's has been prepared for elementary instruction in color.

This system of color instruction is based on the belief that
the study of color as seen in nature should he the first thing to occupy our attention and that the art of mixing pigments to produce corresponding effeets will be a very simple matter to oue who has the color sense properly trained.

Some Color Definitions.

All color terms used by artists, naturalists, manufacturers, tradesmen, milliners and the members of our households are as indefinite as one might naturally expect from the utter lack of a logical basis for the whole subject of color.

Withont definitions or means for intelligently naming any color, it is not strange that the terms used in speaking of colors and color effects are so contradictory as to lose much of their force, if perchance they retain anything of their original meaning. For example, probably most people apply the term shade to any modification of a color, either a hue, tint or shade.

It is true that a coucise and reasonably full dictionary of color terms must be the ontcome of long experience in the study of the science of color and its use in our every-day lives, and at the best only suggestions can be made at present. But as there must be a begimning and some terms seem to be fairly well established, the following incomplete list of definitions is offered, always subject to amendment by the majority vote, for whenever such changes indicate advance they should be welcome.

Standard Colors.-As used in this system of color nomenclature, the best pigmentary imitation of each of the six spectrum colors red, orange, yellow, green, blue and violet, and black and white.

Pigmentary Colors.-All colors used and produced in the arts and sciences. This is in distinction from colors seen in nature, as in flowers and the solar spectrum. The term refers not only to pigments in the strictest sense but to all surfaces coated, paiuted or dyed artificially.

Pure Colors.-A pure or full color, also called a saturated color, is the most intense form of that color withont the admixture of white or black or gray. All spectrum colors are pure, while no
pigmentary color is absolutely pure, hut the pigmentary color which approiches most nearly to the corresponding color in the spectrom must be selected as the pigmentary type of purity for that color. For example, the standard for green must be the best possible pigmentary imitation of the spot in the spectrum which by general consent is called green, and so not only for the six standards but for all their combinations which produce the other color's in mature.

In pigmentary colors the term pure is entirely one of relative degree. As processes of mamufacture are improved and new chemical discoveries made, there is good reason to believe that we shall have much more intense colors and hence much better imitations of spectrim colors than are at present possible. Therefore as our pigments become purer those now accepted as full colors will in time become tints or broken colors and new stamctarls will be adopted.

Hue.-The hne of a color is that color mixed with a smaller quantity of another color. An orange hue of red is the standard red mixed with a smaller quantity of orange. With the disks pure hues are secured only by mixing two standards adjacent in the spectrom circuit.

Local Color.-The term applied to the natural color of an object when seen in ordinarily good daylight and at a convenient distance, as a sheet of paper at arms length, a tree at twice its height, ete.

Tint.-Any pure or full color mixed with white, or reduced hy strong light. In the disk combinations a spectrum disk combined with at white disk.

Shude.-A full molor in shatow, i. e., with a low degree of illumination. In disk combinations a disk of a spectrum color combined with a hack disk prodnces by rotation a shade of that color. In pigments the admixture of hack does not usually produce as satisfactory a shanle of a color as may be secured with some other pigments and each artist has his own preferences in making shades of the rarions colors on his palette.

Scate.-A scale of color is a series of colors consisting of a
pure or full color at the center and graduated by a succession of steps to a light tint on one side and a deep shade on the other.

Tone.-Wach step in a color scale is a tone of that color, and the full color may be called the normal tone or the key tone In art this word has had such a variety of meaning as to render it very convenient for Amateur Art Critics, together with such terms as breadth, atmosphere, quality, values, ete., but in the consideration of color it shonld have this one, definite menning.

Whrm Colors.-Red, orange and yellow, and combinations in which they predominate.

Cool Colors.-Lsually consitlered to be green, blue and violet, and the combinations in which they predominate. But it is. perhaps, questionable whether green and violet may properly be termed either warm or cool. The term cool as applied to colors is quite indefinite, except in a general way, but red, orange and yellow are universally considered as warm, and blue and green bhe as cool.

Neutral Gray.-Pure black and white mixed by disk rotation, or white in shatow. Black and white pigments mixed to not usually produce a neutral gray, but rather a bhe gray.

Warm Giay. - A nentral gray with the almixture of a small quantity of red, orange or yellow.

Cool Gray.-A nentral gray with a small quantity of a cool color.

Neutral Colors.-A term usually applied to gray, white. hlack, silver and goll ; hut the term rasslve colors has heen suggested as better, with Active colors for the pronouncerl eolors, such as the spectrom colors and their combinations. This suggestion is made because the word ueutral shoukd be confinet to black and white and their combinations. while the term passive can be used more broadly.

The term neutral has also sometimes heen improperty applied to all grays and very broken colors.

Broken Colors-Often improperly called lroken tints. For simplicity a tint is described as a pure color mixed with

White, and athate as the color mixed with black; the corresponding broken color is the same color mixed with both back and white or neutral gray. A tint of a color thrown into a shadow or a shate of a color in bright sumlight gives a broken color. For various reasons a very large proportion of the colors in mature are broken. Broken colors are much easier to combine hamonionsly than full colors, or even tints and shades.

In disk combinations when a pure color is combined with both a white and black disk the result will be a broken color. When a color is mixed with both black and white, i. e., with gray, and becomes therehy a broken color, it then belongs to a hoken scale abd has no place in any pure scale, i. e., a scale in which the key tone is a pure color. Neither has a broken scale of a color any place in a chart of pure scales or spectrum seales.

Luminosity.-The luminosity of a color is determined by compraing it with a nentral gray. When a color scems to be of the same brightness as a given neutral gray, i. e., not lighter nor (larker, then that gray is its measme of lmminosity.

Potentinlity.--'The ability or strength of a color to effect other colors by combinations with them. For example, white has a greater potentiality than hack, yellow greater than red, and violet the least of all the spectrmn colors.

Ruyy of Light.-The finest smposable element of lightimpression in the eye.

Beam of Light. - A number of rays.
(${ }^{\prime \prime \prime}$ lity.-This term seems to he used rather indefinitely when applied to color, but perhaps it is not far removed from the term hne or kint of color.

Trelue.-This word as applied to art is much abused and one which wives trouble to many. It may be difticult to define this from, although it has a rery definite meaning to the artist. It is the one subject which must be carefnlly considered by the engraver or artist who attempts to interpret nature in black and white. It is the thing that the photographic plate usually fails to give in color subjects.

Complementary Colors.-As white light is the sum of all color if we take from white light a given color the remaining color is the complement of the given color. When the eye has been fatigued by looking intently for a few seconds at a red spot on a white wall and is then slightly turned to the wall, a faint tint of a bluish green is seen, and this is called the aceidental color of the red, which is supposed to be identical with its complementary color. If with the disks we determine a color which with a given color will procluce by rotation a nentral gray, we have the complementary color more aceurately than by auy other means at present known in the use of pigmentary colors.

Harmony. - Two colors are said to be in harmony or to combine harmonionsly if the effect is pleasing when they are in juxtaposition of are used in a composition.

Spectrum Circuit.-If a pigmentary imitation of the solar spectrum with the addition of violet red at the ret end and red violet at the violet end be matle, and the two ends joined, we shall have a spectrum circuit. This may be in the form of a circle, an ellipse or an oval.

Primary Colors. - In the Brewster theory, red, yellow and hue. In the Young-Helmholtz theory red, green and violet are termed primary colors because it is supposed that from these three sensations all color preceptions are experiencerl. But this theory is questioned by many scientists to-day. Practically every spectrum color is a primary, because each has its own wave length.

Secondary Colors.-In the Brewster theory orange, green aml purple are called secondary because it is clamed that they are produced by the combination of primary colors in pairs.

Tertiary Colors.-A term used in the Brewster theory to denote three classes of colors called russet. citrine and olive, made by mixing the secondaries in pairs. These are all broken spectrum colors. The orange and priple produce russet; the orange and green form citrine; the green and purple, olive. There seems to be no good reason for perpetuating the indefinite terms secondaries and tertiaries as applied to color.

Color Material in the Kindergarten.

TH E object of this section of our manual is to suggest some methorls for the presentation of color to the kindergarten chikhen throngl the material used. Color is so miversal that ahmost exerything aromd ns furnishes some lesson, when the teacher and the chiddren have once learned to heed it.

No real kindergartner will for a moment conclude that becanse certain sugestions are printed in a mannal of instruction such methols are to be followed to the exclusion of all ohers. but if enongh examples are here shown and the reasoms given why they are used, the teacher may readily judge whether certain other methods which may suggest themselves to her mint may he substituted without viohating any fundamental principle.

The teaching of color when properly conducted is certain to he interesting to hoth teacher and pupil. It is not an isolated study, hat is closely comnected with other edncational topics and with our daily lives.

As the study of language which tanght the child to express himself correctly only in the lesson of the day would be almost worthless, and the reading lesson wonk be of little value which simply tamght the pupil to rean one text book, so that color instruction is valueless which does not bring something more than the mere platime to be derived from it for the moment. It shoukt had the pmpil to doser observation, to see color where he has never thonght of looking for it, to discover harmonies where be never knew before they could be fombl, and shoud uhtimately leal him to the practical application of what loe lats learned in the arts and manufactures.

The mothox of development and the length of the lesson must be left largely to the teacher's judgment. Each lesson
should be carefully prepared, and in developing the lessous there are three important topics to be remembered and held definitely in mind by the teacher, namely: Recognition, arrangement and use. The child should be tanght to recognize the particular colors, to know them wherever he sees them, just as he would know a familiar face; he slould be able to arrange spectrum colors in their proper order and to use them in making hammonions combinations.

Short lessons are recommended, as experience proves that ten or fifteen-minute lessons accomplish better results than longer ones.

As the sun is the somce of all color in mature and the solar spectrum the chart of color standards, the child should first be made familiar with the spectrum.

The Prismatic Spectrum.

A cheap glass prism which can be bought for a few cents will serve the purpose of the kindergarten in the absence of the expensive one sold with an ordinary outfit of physical apparatus. As no kindergarten ought to be held in a room deroid of sumlight it is well to allow one or more prisms to so hang that the children may see a spectrum somewhere in the room much of the time.

To show a clear spectrum bright sunlight is essential ant a clear day desirable, as light clonds dim the brightness of the colors. Hold the prism with as steady a hand as possible aud a little experimenting when no children are present will determine the best location for operating. If there should be inside or outside blinds the effect will be greatiy improved by closing them, so as to darken the room as much as possible. But even without a darkened room a color spot can easily be shown.

The spectrum may be thrown wherever the colors can be seen clearest, whether it be on the wall or on the floor. Some colors develop brightest in one place and some in another. So wheu a particular color is to be studied the spectrom must be presented where that color can be seen most favorably.

Look at the spectrum as a whole and what can be seen? First
call the particular attention of the pupils to the ontside colors of the spectrum, the red aut violet; next take the two colors which follow these, namely, the orange and blne, and lastly study the green and the yellow, the central colors of the spectrmm band. 'This order' seems to be the best to follow. The orange very likely may be fomd to be the most difficult one to handle, aud therefore will require greater care.

The Colored Papers.

Distribute samples of colored papers in the six colors, red, oringe, yellow, grees, hue and violet. Ask the pupil to match the ontside colors of the spectrum in the paper. Ask for the names of these colons; match colors next to these in the same way, and lastly match the central ones. 'Fell them that all these colors and many more are in the sumlight, and see if the spectrm reminds them of anything they have seen before, as the rambow or the sm shining throngh a glass of water.

Call attention to the fact that these six colors are the ones mose (${ }^{\text {leatly }}$ seen in the sjectrum, and tell the pupil they are called the spectrmm standards. These coloss must be observed antil they become fixed standards, the child's own property just as much as the mental image of the ball, "ube or eylinder.

Each standard must be marle the subject of particnlar study, and fixed in the mind by comparison with the spectrm. If the Whik! thmks when he sees red, "This is like my spectrmm red," and forms a correct conclusion, be is ready for orange, and so with riteh of the colors.

If it were possible at each lesson to show the chikdren a spectrum in a perfectly dark room they conk get a definite idea of the exatot red, orange, yellow, ete., but as this is impracticable, and on vary many days no natmial spectrum can be obtained, a paler spectrm is a vuluable smbstitute for general instruction. From the colored papers a very pleasing and valuable imitation of a reald solar'sperotrum can be made. 'This will have the six stantard colors and two intermediate colors or spectrum hues between calch two stamdards, with the violet red at the red end dut the red violet at the violet end. While these colors are
not found in the spectrmm, they are frequently met in nature aud form a complete spectrmm circuit.

The Rainy=day Spectrum.

This paper spectrum has been aptly temed a "Rainy-rlay Spectrim."

The following diagram gives the dimension of the space to be occupied by each color in a well-arljusted prismatic solar spectrom, with a length of thirteen inches ontside the red and

violet. The artificial spectrom becomes a necessity for use insteal of the "real spectrm" when the consideration of the intermediate hne is taken up, becanse, except with a long spectrum in a dark room, nothing more than a general impression of the color of the six standaris ean lee ohtained from a sum spectrim.

During their early lessons the teacher shonld ask the children to bring from home samples of the color which they are studying. Bits of worsted and silk or of cloth or paper, together with plants, leaves and flowers will answer the pmpose.

Allow the children to groub the colors that are similar and develop the idea of resemblance and difference of colors and bring out the fact that while there are many similar colors there is only one standard of a color, and to the standard colors we give the names red, orange, yellow, green, blne and violet, and by these standards all colors are tested and classified, and hence the importance of training the eye to recognize the spectrum standards readily.

Ask for any sample of red that may have been bronght. If those are prodnced which do not mateh the stamdard tell the children that they are not pure colors hut are mixed with black. white or both or some other color. 'They may also be told that pure colors are not necessarily the most beantiful in combination. 'ralk abont the colors in nature and tell them there is
but little pure color seen there, for the reason that the speetrum colors are subdued hy the gray of the atmosphere.

W ith this brief general introduction of the subject, a definite line of work is suggested with the apparatus and material which is reeommended for the entire kindergarten course. As this relates exclnsively to the color work, no eonnection with other work is indieated and each teacher must use her own judgment as to place abd seasons for making the connections.

Value of the Color Wheel.

Some educators who reeognize the value of the color wheel in determining facts regarding color and in establishing a nomenclature on which the practical analysis of colors may be based are somewhat in doubt as to its value in the kindergarten and lower grades of sehool, and need a little information on this point in order to be convineed that it has its place here, while there are others who favor its use in these very grades, but are not sure how best to apply it and are also asking for light in the same direction.

Many teachers who have made the trial are convineed that this appamatus is fully as useful in the lowest grades, as in the ligher, and it is with that belief that the following suggestions are offered.
'The color wheel is of great value in the lowest grades, because with it a large class can be tanght as rapidly and as thoroughly as a single pupil, and a great number of color comhinations can be produced with a facility and in a purity of color mot possible with any other apparatus or material.

In the use of pigments in elementary grades the teacher is eonfined to water colors or colored erayous, both of which are very imperfectly adarped to gain satisfactory results. With water colors in cakes or tubes it is impossible for an expert to evenly cover any considerahle smrface with a color approaching a pure tome, and as commonly used the result is a mere tint of the required color. The same thing is equally true with colored pencils, while pastels are evidently unfit for little children to handle in the kindergarten or the schoolroom.

As soon as the children have become familiar with the standard colors by the use of colored papers they can be taught to recognize the tints and shades of those standards, althongh some teachers maintain that the spectrum hues between the standards should be next considered, leaving the tints and shades till later.

The majority of kindergartners, however, have thos far preferred to teach the various tones of each standard color before introducing the subject of hues, although many have not thought it wise to at once use the terms tints and sharles, rather preferring to call them light and dark colors. The chidren may be asked to bring red objeets, and thus make a collection of all sorts of reds. The simplest and first classification will naturally be into light and dark reds. With the wheel many of these colors can be imitated by using red with white or hack.

It will no doubt be found that the reds will also differ in hue, haring either orange or violet mixed with them, together with white or black, and probably both. But at tirst a little care must be used in the selection of such as can be nearly imitated on the wheel with red and white or red and hack disks, withont the use of white and black in one color. The children will then see that the standard modified by the white produces the light red and that the shades are formed by using the black disks. This fact having been taught in a general way from the samples bronght in, may then be shown more systematically by the use of a red disk combined with a somewhat smaller black or white disk. First show the full red disk in rotation and then add a small amount of hlack and rotate again. This will give a ring of pure red at the outside and a slightly darker red at the center. By repeatedly adding a little more black a series of shades of red may be seen.

In the same way the light reds may be indicated by using the white disk instead of the black. For reasons already explained on Page 19 it is not well to show very light tints in red and blue on the wheel, but when the fact is male clear that white mixed with the color results in a light red and black produces
dark red, the papers in tints and shades may be introdnced as good examples of these tones.

In the next lesson when orange is eonsidered there will be no diftienty regaring the truthfulness of the tints mate on the wheel, even when they are very light, but at first the little child will not be ahle to connect in his mind a very light tint or a Very dark shade with the standard. Each standard will perhaps afford suflicient interest for one exercise, as ten minutes is long emongh for little children to be ocempied with one lesson. No child should be less than ten feet distant from the wheel in orter to secure the best effect.

Spectrum Hues.

Having become familiar with the standards the child knows red and also oxange, for example, and may now be shown that there are a rery large number of colors between the red and the orange. With the red and orange disks combined, all the hues hetween red and orange may be mate familiar to the class. As there are four sizes of disks, we will designate them $1,2,3,4$, No. 1 being the smallest.

A sample lesson may be as follows: Show a red disk No. 3 and ask what color it is ; also an orange disk No. 2 with the sume question. Combine the two disks on the spindle with the edge of the orange rlisk merely canght on to the red, but not brojecting far enough to be noticed by the chidren, and rotate, showing them that it is red. 'Then stop and add a little orange, calling attention to the addition. Rotate and ask if they see any difference between the onter and inner part of the disk. By short steps add more orange so as to show a succession of colors betwern red and orange, calling these orange reds, until the amomint of orance nearly equals the red.
before reaching equal parts of orange and red, remove the disks and substitute orange disk, No. 3 and red disk, No. 2. login at full orange and work back through several steps nearly to one-half red, teaching that these are RED ORANGE motes. As there is $n 0$ definitely-established line of division between the class of colors called "orange red" and "red orange" which
can be explained to the children the changing of the disks and reversing of the relative sizes serves to separate in the minds the colons as indicated by the change of name from "orange red" to "red or'ange."

The hues hetween two standarls is sufficient for one lesson, aurl with each lesson the corresponding samples of papers shonld le shown.

Tints and Shades of Hues.

The tints and shades of hues can be shown by using a white or hack disk with the two combined color disks. In this case, however, all the disks should be of one size. 'The No. 2 tlisks are very convenient for a small class, as they give suthicient surface and whinl with less effort than a larger size.

In showing tints and shades of an orange red, for example, it is desirable to keep the relative proportions of orange to red approximately constant, while the amonnt of white or black is increased at each step. For example, if at the begimning the red was twice as mon as the orange the same proportion of two to one should be continned as white or hack is aldud. In presenting these experiments to the chikhen it is muneessary to accurately measure the quantities of the color each time, but by starting with approximately equal parts or a proportion of one to two or one to three, for example, it is not dillentt to retain nealy the same proportions throughont a serios of tones.

Experiments will demonstrate that the color sense of even young chikdren can be developed to a wonderful degree by these simple experiments, and they will very soon learn to speak of colors in terms as definite as those now used by the kindergarten children concerning form.

A few years ago it would have been a circumstance worthy of notice if a child shoukd have used the terms sphere, culo, cylinder, hexagon or pentagon, lut in families where there are kintergarten children these terms are now honsehold words. Largely owing to the kindergarten the days of "baby talk" have passed away and there is no reason why definite terms in color nomenclature may not be as common in the next decade ats are
mathematical terms to-day. In nature study this reform is making reppid progress, and it has been demonstrated that the chuld can as easily leam a scientific mame of a part of a plant or an animal as some other word relating to it that really means nothiug.

A little child who had become somewhat familiar with the color wheel one day said to the teacher", "What color do yon think that dress is?" referring to a suit of the so-called "malogany color." Wishing to test the juclgment of the child the reply was, "What do yon think it is?" The child replied, "Well, I rather think it is a shade of red orange," which was a very elose description of the color. And why is it not better to say a dark red orange than "mahogany color," if any definite color" expression is required?

The children may be allowed to bring samples of eloths, or flowers for analysis and after they have had some practice may be askerl, before the experiment is made, what eolors they think shonk be combined to produce the same effect on the wheel. The colors of fabries will very generally be broken colors, requiring the use of both black and white disks, and very frequently will be broken intermediate hues rather than standards. All this need not he told the children, but they may be shown the disks which by rotation form an imitation of the color and their attention called to the colors and the relative proportions in which they appear. They thos see an actual chant of the color expressed in stamdards.

In ambyzing the colors of flowers they wall generally prove to come near to the spectrm colors or their tints and can be cuite rearlily imitated, especially those of the wild flowers.

In pansies and a few other Howers the colors may be too intense to he imitated with the disks, becanse the nataral color is purer than any conresponding pigments yet discovered, from which to make the paper thisks. If snch a case occous the same Find of color con be mate and thas a name given, even though an exact match in purity cannot be prodnced.

It is reasomble to expeet that in due time such an adrance in practical chemistry may be gained that much purer and
stronger color effects can be obtained in pigments and thus the scope of color analyses enlarged.

The following exercise in color may be introluced as a recreation, after a class has made considerable progress. Make a combination of two or more disks, holding them meanwhile so that the pupils cannot see them, and have an assistant hold a sheet of cardboard or other screen in front of the wheel while the disks are being adjusted on the spindle and until a good speed has been secured in the rotation. Then ask the class what colors are mixed to produce the effect. Having secured some guesses from the pupils, let the rotation cease and the childreu will see exactly the disks which have been combined to make the color and also will learn objectively the relative proportions of the several colors used, as measured by the surfaces exposed in the several disks.

In the the theory of color presented in this mannal the complementary and perfected harmonies are based on the complementary colors as determined by the use of the color wheel, but it is doubtful if those experiments should be shown kindergarten children, and possibly the contrasted and dominant harmonies are as many definite divisions of the subject as can be profitably named to them. But combinations of the papers in analogous and complementary harmonies may be used with the little children.

The analogons combinations may be derived from the chart of spectrum scales. In the training class the wheel should be used to show how the exaet complementary colors are determined, but with the children those combinations may be approximated with the papers. For red the blue green is a soorl complementary and for orange the green blue. Theoretically the complementary of yellow is a very slight violet hlue, and of blue an orange yellow, lout in the papers, as the intermediate hues are limited to two between each two standards, the yellow and blue are more nearly complementary to each other than any other pairs. The complementary of green is riolet red and of violet the yellow greens or green yellows of the papers.

If complementary harmonies are attempted with the pajer's they must be proluced with great care, and the tints and shandes are far safer to hise tham full standards. If full standarts are introdnced the amome of that color in any design most he very small in preportion to the whole surface of the design.

Any teacher having the use of a color wheel will find proftable recreation in matching rations natural colors and oltaining their analyses, because in this way such training of the color schse is secured as will insure accurate judgment in the selection of colors for experiments and facility in their aualyses before a class.

Nothing will so rapidly train the color perception as this persomal practice, and the experience gained will enable a teacher to do excellent expert work in matching colors presented by the children and this asoid some mpleasant delays when the wheel is being operated hefore their eritieal eyes.

Ahility to use the color wheel is only acquired by practice, both in the mechanical manijulation of the machine ant in the combinations of the disks to imitate natural or pigmentary colors. No amlience is more critical or more appreciative than a company of children and very much of the good effect is lost if they detect a failure to suceessfinly produce a color, even thongh : reason may be given which wonld be entirely satisfactory to ans antult audience.

For this work a small mirror may be arranged in front of the wheel at perhaps a distance of five or six feet, so as to show the disks at the same time the wheel is being rotated. Possibly the closest matches may not he secured in this way, lut the convenimere is so great as to recomment this device to whoever wishes to make experiments.

The First Gift.

The halls of the lirst (iift sheuld be covered with wools conrespmbing as mealy an possihle to the six spectrom standards, ats this is the first expression of color that ocems in the kindergaven material and first impressions are very important to the chak. For many years, possibly ever since their inception by

Frobel, the colors of the First (ifte have been murd hearev the standards now adopted than the colors foum in the (ocempations. But the mistake has been made of using a dark puple instead of the beantiful violet of the speretrmom which is one of the most attractive colors to the child, althomgh the least aggressive. The First Gift lalls shonld he compared with the sun spectrom, and in this comparison the green and violet of the balls should be as truly remesentations of the spectrom colors as the other fome.

Sewing.

While the colored thead, worsted or silk ased in the (and sewing or embroikery affords a comecting link hetween recognition of color and color combination, the sewed line shows but a small surface of color. Nevertheless it is well to work whatever school of sewing is hsed in arordance with the theory of color. 'The application most be made to the sehool of sewing in its entirety. Any kindergartuer, howerer, will ha at linerty to modify our suggestions to suit the needs of her pupils ans dictated by her own judgment.

It seems desirable to use the six standaris in the spectrom order, incidentally thereloy making the work serme to teath this orter. After each of the six stambards have been tanght and used. let each chik make a choice of colon am then give a cemeral review.

In comection with this review allow the nse of the tiat and shate of each standart. paymo ano attention the them as thats. and shades, but allowing the chikleen to nse their own anatural expressions for these terms, as light red, dark red, etce. 'lhe unconseions expression of the standarl w:th its tint and shate seems to help, fix the standard color in mind, while it also gives a pleasing variety to the work. (Gue carch, a circle for instance. having been sewed in an stambard color, the next card maty (ennsist of three smaller circles and the sewing be dome in the tiat and shate of the standard, this being followed ly two circles on one eard sewed with the tint and shade only.

Close up this review loy allowing the little folks to choose a
color, requiring them to tell as they make the choice whether they have a standard orange, or a light or dark orange, as the case may be.

The circular school of sewing here used is intended merely as a medium for illustrating the order and sequence in which the colors may be employed in any school of sewing. The one idea intended to be expressed is that in this Occupation the spectrum colors should le used in their order and given their proper names, rather than a miscellaneons lot of colors having no value as standards and no definite names.

The accompanying designs will be readily mulenstoot without ezteuded explanation.

Fig.1.
Fig. 1 represents a card pricked for a single circle. Six of these may be sewed, one in ach of the standards.

Fig. 2

Fig. 3

Fig .2 represents a First Gift ball, and shonld, of eourse, be in ome of the standards. A thread from the cirele to the dot at the right indicates the string to the ball.

Fig :" introduces the tint, standard and shate in thee equal cirreles.

Fig. 4 a tint and shade.
Fig. 5 another armagement of standard. tint and shade on one card.

Fig. 6 shows the tint, standard and shade in three concentric sircles.

Fig. 7 another arrangement of circles for tint and shade.

fis. 4

Fig. 5

Fig. \& a very effective arangement of three equal curcles in standarl, tint and shade.

Fig. , consists of six concentric circles in the standards, with red at the outside and violet at the center.

Fig. 6.

Fig. 7.

This design can be modified in many ways. The order may be reversed by placing riolet at the ontside and red at the center. Also the same design and armagement may be nsed in tints and shades.

Fig. 8.

Fis. 9.

The use of sewing in color instruction is remberel praticathle only by the recent introdnction in kindergarten material of cot-
ton and silk threals in the standard colors and at tint and shade of cach.

Weaving.

The ()ecopation of weaving affords a greater opportunity for the practical application of color than almost any of the others, party becanse the combinations of eolors are oftentimes so important a part in developing the design, a good design heing not mfrequently spoiled by the wrong selection of color.

Determine before commencing to weave just how much of this school of work will be given and then study to adapt the true theory of color and hamony to the work as a whole. When lecrinning the weaving, select the simplest combinations of colors but choose such as will help to fix in the mind the particular color being tanght at the time. For instance, if standard red is heing studied, use red in combination in the weaving.

Contrasted harmony is the one best suited to carry out this thonght, and the following suggestions are given as an aid :-

It is always safe to combine a standard with a gray, remembering, however, that the effect of a givengray is better with some colors than with others.

Neutral grays are comprosed only of black and white and shoull theoretically combine agreeably with all active colors but with some colors the effect is more pleasing than with others.

Warm grays contain some red, orange and yellow in addition to the blatk and white, and the warm colors, red, orange and yellow or their complementaries are considered most satisfartory with warm grays, while the cool colors, green, bhe, violet and their complementaries combine better with the cool glays. The cool grays are made by adding some hlue to the hlark and white.

In the Bradley eolored papers the warm and cool grays marked No. 1 contain but a small proportion of color and usually combine well with any of the spectum standards or hes. But sometimes the dark grays are more desirable. If limited to the use of one passive color, either white or a light neutral gray is the best one to use.

It is also recommended that the mat be of the standard color and the fringe of the passive color. One reason for this arrangement, is that the mat furnishes a larger surface of color and this is desimble when a definite color is heing taught. Noreover, many teachers consider this manner of combination more pleasing, and if, for example, ar red mat and grey strips ha: ve been used the finished design may be monnted on a white ground and this a new effect produced in three colors.

Use the six standards in the order they are found in the spectrum and when they are well fixed in mind, review each and in place of the gray combine it with its own tint or shade, calling the latter light and dark colors until the terms tint and shade are taught in connection with the use of the color wheel.

This combination of the tint and shade with its standard produces dominant harmony. When considering dominant harmony the following suggestions may be found helpful.

Two tints of the same scale combine well, or two shades together produce a pleasing effect and probably in some instances a tint and a shade will give the better combination ; or a stantiard may be used with either its tints or shades if desired, though usually the full colors do not profluce as gool effects as the monlified colors. The andition of a passive color is atmissable and often improves the effect.

It is left to the individual taste as to whether the mat shall be of the tint or the shade. When the completed work is to be momuted in a book as with training classes, a pleasing effect is protuced by so arranging the work that opposite pages when considered in combination will protuce a hamony. If intermediate homes are selected for some of the mats and fringes two adjacent pages may form in combination, either analogons or complementary hamony.

For example, one page may be in yellow green and the opposite in blue green thus producing an anagons harmony or a red page with the opposite in blue green will furnish a complementary effect. Thms while each page taken ly itself may be an example of a dominant hamony, the pages loy combina-
tions in pairs facing each other may produce analogons or complementary harmonies.

Intertwining.

The relation of color to intertwining is similar to that of color to paper cutting or paper folling. Duch color effect may te developed in the mounting.

Parquetry.

Next in inportance to weaving as regarts color is parquetry. This Ocempation is valuable alike to the teacher of color and to the drawing teacher in teaching design.

It embodies the forms of the seventh Gift and increases the interest in that Gift by bringing in the element of color and by making permanent the forms of life and beanty.

Begin by arranging simple borders and rosettes. This must be done in accordance with the first principles of design in order that no wrong hahits may be aequired whieh will have to be corrected when design is studied in connection with drawing.

In the following borkers the use of colors is suggested.
Figs. 1 to f show the repetition of the same form and color. In Figs. 7 to $1: 3$ alternation of both form and color are shown. The two colors are indicated by single and double ruling in the engraved designs.

The same principles regarding colors may be morlified to apply to rosettes and other designs.

First repeat the form in a straight line with the same space lotween each two forms as in Figs 1 and -

Next repeat one form in one color, letting the forms just tonch as in Figss 3 and 4.

The same form and color are used in each Fig. 5 and Fig. 6, but the forms overlap. This is more difficult to do. The forms may overlap from center to center, or only a quarter, but the overlapping should be uniformly the same.

Fig. 5.

Fig. 6.

When beginning with young children let them paste the forms on a background of any neutral paper or even common manilla may be used. The parallel line hay be shown by a pencil line and dots may be placed to indicate the spaces. If gummed parquetry is used do not allow the child to wet the papers in his mouth. A moist camel's hair brush is a very neat way of doing it. When the ungummed parquetry is used supply each child with a drop of mucilage, a wooden tooth-pick, with which to apply the mucilage and a piece of old cotton cloth. There will he a tendency to use too much mucilage, but very little is nemled to fasten the form. Use the cloth to press the form inplace, pressing directly down upon it so as not to let it slip from its correct position. Great care must he taken to teach the child to do this work neatly. While these ways have heen suggested there is no oljection to any other mays which may be devised.

When simple repetition is well understood begin to teach alternation. This may be done in each of the Figures from 1 to b $^{\prime}$ inclusive ly using the same form and alternating two colors. The same form may be placed in groms of two or three bither touching or overlapping and alternating two colors ins in Fig. 7 .

$\mathrm{F}_{\mathrm{I} \text { (}} .7$.
Alternation may to still further illustrated ly altemating two forms in either one or two colors amb with a space between the forms, as in Figs. 8 and ! !

Fig. 10 makes use of the same form and altermates the posi-
tion, these may be spaced or may tonch, and the colors can be altemated or not just as the teacher prefers.

Fig. 11 alternates the position and color and the forms overlap. The darker squares touch at their corners before the lighter squares are pasted orer them.

Fig. 8.

Fig. 9.

Figs. 12 and 13 are suggestions for producing an alternation in both form and color and overlapping the forms.

Fig. 10.

Fli. 11.

Fis. 12.

FIf. 1: $:$

When sufficiently skillef it will add to the interest of the children if they are allowed to add a narrow maren of the same color as the mits.

The skill which is acouited in hambling the parquetry papers will prepare the chiklon for the paper cutting in which they will learn to ent the units to be repeated, and ultimately of courso they will design the mit.

As it is the object of this mamal to treat of color the sulject of form and armagement cammot he enlarged upon, and the hints given rexarling colon armanement in these fow examples of borders are equally applicable to other elementary combinations of forms.

Paper Cutting.

While the paper entting provides a means for making pleasing designs and using beautiful colors, the average kinderoartner has usmally contined herself to the use of few colors. This is surely a better comse to pursue than to introduce such a conglomeration of colon as is sometimes done.

Elementary work in color includes recognition of the six spertrum standards and with yomg children does not adrance beyond contrasted and dominant harmony during the first year. And while the following suggestions are given for carrying ont this thought, much must be left to the individual taste and jurgnent of the teacher in deciding the needs of her own pupils. Study how to apply color to the Uccupations as a whole as far as is possible. With the children the color used should be such as wonld aid in the teaching of recognition of color, and with training elasses the effect when monnted must be consirlered. During the first year many will doubtless prefer to use but one or two colors for the entire school of work, and again some will prefer to employ one color for one serpunce or series of cutting, another color for the wext and so on. Either way is allowable. 'The cotor of the momnting sherts will atil in making the harmony.

It also makes a pleasing arrangenent to w-e a tint and a shade of the same colon in the one series. 'Traming chass pupils may momet a design in the tint on the left-land page of the mounting book, and a design in the shade on the right-hand page, or the tint and shade may be combined in the same design, msing ejther of the colors for a backoround.

The entire work may be carried ont after this plan. It will be fomm that children may also do very good work if allowed to mount their work on a backgromel, and it adds to their interest. Any of the suggestions for sewing, weaving or parcuetry apply to this Occopation as well.

More adranced work may be profitably done in a training class than in a kindergarten because every teacher should know much more of her subject than she expects to teach and this is
specially true of work in color' 'This grade of work can also be introdncet in the lower primary schools especially if the children have had the advantage of a kindergarten edncation. As the number of colors stmelied is increased there is of course a larger mage of colors from which to choose, and while fominant hammony will be the safest to employ hy careful direction on the part of the teacher something may be tone with analogous hamony. With training classes this may be done in the momnting, by placing analogons colors on opposite pages of the monnting book or by placing the design on a backeromad of any analogous color before mounting it. The latter may be employed with the children. Complementary hamony may also be developed in the same manner by momonting colors which are complementary on opposite pages, while many times a narow borker line of the complementary color is sufficient to give a pleasing result.

The colors mast be selected to suit the desigu and the right proportion of each color mast be used. Many times when a unit of one color and a bategromal of another does not prodnce a pleasing effect, the combination reverset will he an improvement. Experiments amb the stury of historic art will be rery valuable ails to teachers in this work.

In making complementary color effects in a composition great care must be taken to use very little pure color, ant it is rarely that anything appronching a full color can be introduced. The broken colors are far safer and often as beantiful as the pure colors and their tints and shates.

In this manual no attempt is made to treat of any other subject than color as applied to the several Cifts and Oecupations, otherwise much might be said in criticism of the school of cutting as very generally adopted in the kindergarten work as in this Occupation more than in any other there seems to be a demand for advance in the direction of art edncation. In a school of cotting where an attempt is made to use all the waste pieces of piper in forming a clesign, the results are in many cases most dieastrous to artistic advancement and growth.

Paper Folding.

An interesting featme of this instmetive ()cenpation is the color thonght which may he developerl. Here as in paper cutting a few well chosen colors are better than many. In order to be sure that the result will be desirable the teacher mast first consider the work as a whole and then stmly the details. 'The mounting, with training chasses, is an important item when selecting the colors.

The several follet forms which are to he on one page may all be of one color if desined, am the coated papers are fomm to be very effec ive in this Ocenpation, as the white side when it is fokded over protuces with the color a contrasterl hamony which is pleasing in itself. 'This is of course the simplest arrangement possible.

Contrasted hamony may also be carried ont with the engine colored papers by choosing an active and a passive ero or which harmonize well and folling a part of the forms in each, considering how to bring ont the color to the hest alvantage in the arrangement which mast be followed in every sequence or series of fokling.

A goorl result in dominant hamony may be secured hy using two or three tones from one color seale, selecting the tone for each fokled form with reference to its position on the page when momed, using the same color seale for the entire school or if desired the effect is goon if the teacher wishes to select a different color scale for cach series or for each page.

Heretofore when little attention has been given to the hamonies of color it has been popular becanse safe to execonte an entire school of fokling in one color. But in this pratetice much of beanty in the result and of education in the process has been lost. With a well grarled line of colors in the engine colored papers very beautiful and effective results can be secured in the gromping of forms in the monnting, aml some of the most raluable instruction in color combinations imparterl. While it is imposible to produce in the engine colored, or pulp colored papers, the pure standard colors which are necessaly for the
earliest folor instruction, still the Bradley line of these papers is so classified and graded that they are as educational in their way and often more beatiful in combination than the purer colors of the better graded coated papers.

Concerning Water Colors.

In a full discussion of the subject of color teaching, the use of water colors naturally calls for consideration, becanse in the past this material has been the only source from which it has been possible to derive any systematic expression of color in the elementary grades of study. The introduction of properlygraded colored papers has removed this restriction in the lowest grade of work, and the color wheel supplements the papers in the higher grades.

Water colors when skillfully nsed produce beantifully soft and delicate artistic results, but even in the hands of an artist this material is not best adapted to strong effects and full color. When a child is old enongh to neatly draw any outline and to apply water colors approximately within the contines of these lines the use of the pencil and brush may afford an imocert and valuable occupation under the proper dir ction of a teacher. But for a logical system of elementary color instruction it is almost valueless, because ouly light tints can be evenly and smoothly spread in this medium and the observation and classification of these faint expressions of color effects require the most expert judgment and best color education. Elementary color instruction must be based on standards, affording the fullest and purest expressions of color which ean be obtained, and these eannot be produced by children, nor even by experts, with the water colors put on the market in cakes and tubes.

In this statement no disparagement is intended of the beautiful color effects produced by our artists in the delieate aquarelles which adorn our drawing-rooms and are intelligently admired loy those who are best educated in color effeets. l'ut these have the same place in primary color instruction that the purest examples of poetry and prose have in elementary literary education-merely as examples of best expressions.

In pastel crayons pure and full color expersions may be pros duced, and various colors can be beantifully mingled together, but the material is not snited to the use of young children and at the best is neither neat nor couvenient for schoolrom practice.

Color Blindness.

The fact that states and cities employ experts to examine the school children to determine whether they are attlicted with color blinduess is proof that the ordinary teacher is not consitered competent to do the work At the same time if that definite instruction were giren in color which is considered essential in other subjects of no more importance, every teacher would be able to determine definitely if a child moder her care has normal color perception and if not, whether the defect is due to genuine color blindness or to a lack of knowledge how to recognize or analyze colors and to give them correct names.

The importance of such training can hardly be over estimated when one stops to consider the fact that the business merests of many individuals is at stake and that their life work may be a failure for want of proper instruction in this rery subject.

It is of momentons importance to the locomotive engineer and to the marine pilot, not only as individuals, but also because travelers throughont the word intrust their lives to them for safety. And this class of applicants for positions is lout one of a considerable number who may find a good or a had color sense the turning point in determining what occupation to choose.

There are varieties and degrees of the defect or disease gemerally known as color blindness, but recorded experiments extending ores a period of seremal years have determined that only about six per cent of the population can really be called color blime. Gemuine color hindmess hats thas far bern comsidered incmable and not in all cases can experts tell whether the dilliculty is with the eye or with the brain. 'This morertainty is not a matter of practical importance to the teacher. It is only important for her to determine whether defects exist which are equivalent to either partial or total color blindness.

The ouly way to ascertain the condition of any one with re-
ference to his color perception is by having him compare colors, and not by maming them. Formerly color charts were used for testing color blindness in children, the teacher showing the colors to the pupils and asking the names But a child soon learned, from hearing the others recite, which spot was red, which green, etc., so that the amomt of information which the teacher was able to obtain proved quite restricted and the natnral desire of the child to show that he possessed as mach knowledge as his mates stimulated him to unintentionally leceive the teacher. The better way of detecting color blimbess is through selections made by each pupil.

Moreover, it is not a matter of indifference what colors should be selected for the pupil to match. Theory and experience combine to show that certain colors afford a more satisfactory criterion of color blindness than any others. Let the teacher give to the suspected pupil a sample of a rather light tint of blnish green, and direct him to select other samples approaching this color. If his color vision is normal he will, of course, select only the varions hues of green, ranging between the extremes of greenish yellow and greenish blne. If, however, he is either red or green color hlind, he will select, in addlition to a number of green samples, some of the nentral tints-such as gray, buff and drab. The fact of color blindness being indicated by the selection of more or less of these neutral tints as matches for the green sample, the teacher may then proceed to test whether the ease is one of red or green color hlindness. For this purpose the best eriterion is afforded by asking the pupil to mateh a sample of at rather light tint of reeldish parple. If he is red color blind. dark hues, and violets will be among the colors which he will select to mateh the light redelish purple. If, on the other hant, he is green color blint, light grays and other neutral tints will he among his selections. If the selection of dark blues as matches for the light reddish purple indicates red color hlindness, an interesting confimatory test may be made by asking the pupil to mateh a sample of the most brilliant red. If he is red color blind, there will appear among
the reds which he selects to match the sample more or less of the dark shades of greens and luowns. While a teacher only rersed in the theory of color hlindness and inexperienced in the nse of tests might reasonably hesitate to take the responsibility of pronouncing the pupil color blind, these tests woukl at least warrant her in recommenting the parents of the pupil to summit the child to the eammination of an expert.

It is supposed that many more men than women are color blind, but there may be a cloubt whether this opinion is not clue to the fact that girls are bronght so much more closely into relation with colored material than boys. This problem may lue more satisfactorily solved when both boys and girls shall receive a systematic color instruction.

It must be evident to any kindergartner who carefully reads the foregoing pages that the brief suggestions regarding color instruction in the use of the kindergarten material might have been indefinitely increased by a multiplication of examples and illustrations. But it has been the purpose of the author to merely offer to competent kindergartners some general sngestious regarding the application of the trine theory of color to their work, so that it shall not he necessary for kinderyarten children to mulearn in the high sehool or miversity anything of color which they may have been tatught in the kinkergarten.

BOOKS FOR TEACHERS.
 PUBLISHED BY MLLTON BRADLEY CO.

KNIFE WORK IN TIEE SCHOOLROOM.
円IROBLEMS FOR PUPILS UNISER FOURTEEN.-BY GEOHGE B. KILBON.
This book aims to furnish the arerage teacher with a course in Elementary Mamal Training that can be carried on in any ordinary schoolroon with the leat possible expense for tools and materiat. The prohlems ean all be worked out with the pocket knife, combpass, pencil, gage and try-sumare, and they are arranged in ogical seguence. The book has 200 pages and 450 illustrations.

Price, in cloth and gilt, $\$ 1.00$

COLOR IN THE SCHOOLIOOM.

a mandal for teachers.-by milton bhainley.

This hook sets forth the peculiarities of the Bradley Scheme for Teaching Color to the pupils of our common schools and explaius the use of the Maswell Disks and Color Wheel. "Color in the Sichoolroon," also judicates what can be done along the varions lines of color instruction by the use of the Bradley Edueational Colored Pipers, which consists of stamiands, hues, shades, tints, grays, blatk and white, comprising over 100 colors.

Price, in eloth and gilt, \$1.00

CLAY MODELING IN THE SCHOOLROOM. BY ELLEN STEPHENS HILIRETH.

This book is a mammal of instruction in Clay Modeling for the Kindergarten and school, hased on the curved solids. There has long been a demand among kindergartners and primary school teachers for just such a book. The system of modeling outlined by Mrs. llidireth has the undombted sanction of use and experience. With it any one can leam to model and any child can lean to see form. The directions are so plain that they van be followed with little ditliculty. The book has numerons illustrations and 75 pages.

Price, paper covers, $\$ 0.25$

IIELPS FOR UNGRADED SCIIOOLS.

A MANUAL FOR TIIE USE OF EIUCATIONAL MATERIAL.
This book pays special attention to Language Work, Form Study, Teaching of color and Number Work, and takes up the various other branches which are liahle to be pursucd in the moraded sehool. The directions for using the material employed in commection with these studies are very phain and easily understood. The book contains 19 chapters and 130 pages.

Price, in paper covers, $\$ 0.25$
PARADISE OF CHILDHOOD.

REVISED EDITION.-BY EDWARD WIEBE.
This work is an exponent of pure Frobelian Kindergartning, and forms the hest possible fonmations for the building of a complete Kindergarten education. The revised edition contains all the matter formerly ured in "A Hand Book for the Kinderg:rrten," without any increase in price, and a paper on Kindergarten Culture, added some verr * since, making altogether 100 pages of text and 76 pages of lithographic plates.

Price, paper covers, $\$ 1.50$; cloth, $\$ 200$

BOOKS FOR TEACHERS.

PUBLISHED BY MILTON BRADLEY CO.

IN THE CHILD'S WORLD.

BY EMILIE POULSSON.-ILLUSTRATED BY L. J. BRIDGMAN.
-This is a charming book of Morning Talks and Stories for" the Kindergarten and Primary School, by the well-known author of "Finger Plays for Nursery and Kiudergarten," with numerous illustrations by the same artist. 'There are nearly fifty talks, covering a full year's course, and the book is handsomely bound and printed, with over 400 pages. Price, in cloth and gilt, $\$ 2.00$

COLOR IN THE KINDERGARTEN.
 by milton bradley.

This little book is intended to be a Manual of the Theory of Color and the Practical Use of Color Material in the Kindergarten. It contains the latest information to be obtained on this subject and is illustrated in a way that cannot fail to be helpful to all who are interested in color teaching.

Price, paper covers, $\$ 0.25$

PAPER AND SCISSORS IN THE SCHOOLROOM.

BY EMILYA. WEAVER.
This book is plamed to give a practical and systematic course in paper folding and eutting for all grades in the public and private schools. The work begins with the simple foldings adapted to the first year in school and enlarges its scope to give cutting suited to higher-grade work. With over 200 illustrations.

Price, paper covers, $\$ 0.25$

A CHRISTMAS FESTIVAL SERVICE.
 arranged by nora a. Smith.

This book is for the Home, Kintergarten and Sunday School and is made up of such songs and carols as have been fonnd popular with little children. The melodies are simple and easily learned, althongh ly good composers. Most of the songs are intended to be accompanied by natural gestures, such as will readily snggest themselves to the little ones. The book is printed with red marginal lines and topies. Price, paper, $\$ 0.25$

THE KINDERGARTEN AND TIIE SCIOOL.

BY FOUR ACTIVE WORKERS.
This book comprises five papers, as follows: Frebel-The Man and IHis Wrark, by Anne L. Page; The Theory of Frobel's Kindergarten System, by Angeline Brooks; The Gifts and Occupations of the Kindergarten, by Angeline Brooks; The Use of Kindergarten Material in the Primary School, hy Mrs. A. II. Putnam; 'The Connection of the Kindergarten with the school, by Mrs. Mary II. Peabody. linn pages. l'ilec, paper covers, $\$ 0.50$; cloth, $\$ 0.75$

THE KINDERGARTEN NEWS.

A Monthly Magazine Devoted to Elementary Education. PUBLISHED BY

MILTON BRADLEY CO., Springfield, Mass.

FIFTY CENTS A YEAR.

SEND FOR A SAMPLE COPY.

