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In’my late father’s Will no instructions were left as 
to the publication of his Writings, nor specially as to 
that of the “ Elements of Quaternions,” which, but 
for bis late fatal illness, would have been before now, 
in all their completeness, in the hands of the Public.

My brother, the Rev. A. H. Hamilton, who was 
named Executor, being too much engaged in his cle
rical duties to undertake the publication, deputed this 
task to me.

It was then for me to consider how I could best 
fulfil my triple duty in this matter—First, and chiefly, 
to the dead; secondly, to the present public; and, 
thirdly, to succeeding generations. I came to the con
clusion that my duty was to publish the work as I found 
it, adding merely proof sheets, partially corrected by 
my late father and from which I removed a few typo
graphical errors, and editing only in the literal sense 
of giving forth.

Shortly before my father’s death, I had several con
versations with him on the subject of the “ Elements.” 
In these he spoke of anticipated applications of Qua
ternions to Electricity, and to all questions in which 
the idea of Polarity is involved—applications which 
he never in his own lifetime expected to be able fully 
to dcvelope, bows to be reserved for the hands of 
another Ulysses. He also discussed a good deal the 
nature of his own forthcoming Preface ; and I may 
intimate, that after dealing with its more important 
tqpics, he intended to advert to the great labour which
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the Avriting of the “ Elements” had cost him—labour 
both mental and mechanical; as, besides a mass of 
sufbsidiary and unprinted calculations, he wrote out 
all the manuscript, and corrected the proof sheets, 
Avithout assistance.

And here I must gratefully acknowledge the ge-’ 
nerous act of the Board of Trinity College, Dublin, in 
relieving us of the remaining, pecuniary liability, and 
thus incurring the main expense, of the publication of 
this volume. The announcement of their intention to 
do so, gratifying as it was, surprised me the less, Avhen 
I remembered that they had, after the publication of 
my father’s former book, “ Lectures on Quaternions,” 
defrayed its entire cost; an extension of their liberality 
beyond Avhat Avas recorded by him at the end of his 
Preface to the “ Lectures,” Avhich doubtless he would 
have acknoAvledged, had he lived to complete the Pre
face of the “ Elements.”

He intended also, I knoAv, to express his sense of 
the care bestowed upon the typographical correctness 
of this volume by Mr. M. H. Gill of the University 
Pl ’ess, and upon the delineation of the figures by the 
Engraver, Mr. Oldham.

I annex the commencement of a Preface, left in ma
nuscript by my father, and which he might possibly 
have modified or rewritten. Believing that I have 
thus best fulfilled my part as trustee of the unpub
lished “ Elements,” I now place them in the hands of 
the scientific public.

William Edavin Hamilton.
January Is/, 1866.

    
 



PREFACE.*
[1.] The volume' now submitted to the public is founded on 
the same principles as the “ Lectures, ”<0 ’which were pub
lished on the same subject about ten years ago: but the plan 
adopted is entirely new, and the present work can in no sense 
be considered as a second edition of that former one. The 
Table of Cont-ents, by collecting into one ■view the headings of 
the various Chapters and Sections, may suffice to give, to 
readers already acquainted with the subject, a notion of the 
course pursued: but it seems proper to offer here a few intro
ductory remarks, especially as regards the method of expo
sition, which it has been thought convenient on this occasion 
to adopt.

[2.] The present treatise is divided into Three Books, each 
designed to develope one guiding conception or view, and to 
illustrate it by a sufficient but not excessive number of exam
ples or applications. The First Book relates to the Concep
tion of a Vector, considered as a directed right line, in space of 
three dimensions. The Second Book introduces a First Con
ception of a Quaternion, considered as the Quotient of tivo such 
Vectors. And the Third Book treats of Products and Powers- 
of Vectors, regarded as constituting a Second Principal Form 
of the Conception of Quaternions in Geometry.

* * # # #
* * *

*

***

* This fragment, by tJie Author, was found in one of his manuscript books 
l*y the Editor,
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•as in the following Sections, to ternary products of vectors, a product 
of two rectors is treated as the product of the two right quaternions, of 
which those vectors are the indices (II. i. 6). It is shown that, on 
the same plan, the Sum of a Scalar and a Vector is a Quaternion.

Section 6,—On the Interpretation of a Product of Three 
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Sections, ot^ight Quaterniona for Vectors, without change of of 
the factors. Multiplication of Vectors, like that of Quaternions, is 
thus proved to bo an Associative Operation. A vector, generally, is 
reduced to the Standard Trinomial Form,

f> = ix+jy-V kz-, (C)
in which i,j, k oxo the peculiar symbols already considered (II. i. 
10), but are regarded now as denoting Three Hectangnlar Vector- Units, 
while the three scalars x, y, z arc simply rectangular co-ordinates ; from 
the known theory of which last, illustrations of results are derived. 
The Scalar of the Product of Three coinitial Vectors, oa, on, op, is found 
to represent, with a sign depending on the direction of a rotation, the 
Volume of the Parallelepiped under those three lines; so that it va

nishes when they are complanar. Constructions are given also {or pro
ducts of successive sides of triangles, and other closed polygons, inscribed 
in circles, or in spheres; for example, a characteristic property of the 
circle is contained in the theorem, that the product of the fotir suc
cessive sides of an inscribed quadrilateral is a scalar: and an equally 
characteristic (but less obvious) property of the sphere is included in 
this other theorem, that the product of the flee successive sides of an 
inscribed gauche pentagon is equal to a tangential vector, drawn from 
the point at which the pentagon begins (or ends'). Some general For- 
mulcc of Transformation of Vector Expressions arc given, with which 
a student ought to render himself very familiar, as they are of con
tinual occurrence in the practice of this Calculus; especially the four 
formula) (pp. 316, 317):

V. yN^a=aSpy - ftSya; 
'VyPa=aSj3y — fiSya + ySa/3; 

pSajJy = aSfiyp + ^Syap + ySa/Jp ; 
pSa/3y ='V/3ySap +'VyaSI3p + y'al3Syp;

in which a, /?, y, p are any four vectors, while S and V are signa of 
the operations of taking separately the sral/irand vector parts ot a qua
ternion. On the whole, this Section (III. i. 6) must bo considered 
to be (as regards the present exposition) an impCftant one; and if 
it have been read with care, after a perusal of the portions previously 
indicated, no difficulty will bo experienced in passing to any subse
quent applications of Quaternions, in the present or any other work.

(D)
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It may suffice to read Art 316, and its first eleven sub-articles, 
pp. 384-386. In this Section, tho adopted Logarithm, ly, of a Qua
ternion q, is the simplest root, q', of the transcendental equation,

^ + ? + y +

and its expression is found to be,
1/=1T? + Zj.UV5, (II)

in which T and U are the signs of tensor and versor, while L q is tho 
angle of q, supposed usually to he between 0 and rr. Such logarithms 
are found to be often useful in this Calculus, although they do not gene
rally possess the elementary property, that the sum of the logarithms 
of two quaternions is equal to the logarithm of their product: this ap
parent paradox, or at least deviation from ordinary algebraic rules, 
arising necessarily from the corresponding property quaternion 
multiplication, which has been already seen to be not generally a com
mutative operation [ffif not = (fq’, unless <f and ef be complanar'). 
And hers, perhaps, a student might consider 'irm first perusal of this 
work as closed.*

CHAPTER II.

ox DIFFERENTIALS AND DEVELOPMENTS OF FUNCTIONS OF QUA

TERNIONS ; AND ON SOME APPLICATIONS OF QUATERNIONS

TO GEOMETRICAL AND PHYSICAL QUESTIONS,................................

It has been already said, that this Chapter may bo omitted in a 
first perusal of the work.

Section 1.—On the Definition of Simultaneous Difi'cren- 
tials,................................................................................

391-495

391-393

* If he should choose to proceed to the Differential Calculus of Quaternions in 
the next Chapter (III. ii.), and to the Geometrical and other Applications in the 
third Chapter (III. iii.) of the present Book, it might be useful to read at this 
stage the last Section (I. iii. 7) of the First Book, which treats of Differentials of 
Vectors (pp, 98-102); and perhaps the omitted parts of the Section II. i, 13, 
namely Articles 213-220, with their subarliclcs (pp. 214-233), which relate, 
among other things, to a Construction of the Ellipsoid, suggested by tho present 
Calculus. But the writer will now abstain from making any further suggestions 
of this kind, after having indicated as above what appeared to him a minimum 
course of study, amounting to rather less than 200 pages (or parts of pages) 
of this Volume, which will be recapitulated for tho convenience of the student 
at the end of the present Table.
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Section 2.—Elementary Illustrations of the Definition, 
from Algebra and Geometry,......................................

In the view here adopted (comp. I. iii. 7), differentials are tu>t ne
cessarily, nor even generally, small. But it is shown at a later stage 
(Art. 401, pp. G26-C30), that the principles of this Calculus allow us, 
whenever any advantage may he thereby gained, to treat differentials 
ns infinitesimals; and so to abridge calculation, at least in many ap
plications.

Section 3—On some general Consequences of the Defini
tion, ................................................................................

Partial differentials and derivatives are introduced; and differen
tials of functions of functions.

Section 4.—Examples of Quaternion Differentiation, . .

xi 
Pages.

394-398

398-409

409-419

(K)

and (p. 411), (L)

One of the most important rttles is, to differentiate the/«cZors of a 
quaternion in situ s thus (by p. 405),

d.j/ = d3’.?' + y.d/. (I)
The formula (p. 399), d. j'* = — ff“’dj.?"*, (J)
for the differential of the reciprocal of a quaternion (or vector), is also 
very often useful; and so are the equations (p. 413),

dT? dj dirg_ d?

g being any quaternion, and a any constant vector-unit, while t is a 
variable scalar. It is important to remember (comp. III. i. 11), that 
we have not in guaternions the usual equation,

unless g and dj be ctnnplanar ; and therefore that we have not generally, 

if p be a variable vector; although we have, in this Calculus, the 
scarcely less simple equation, which is useful in questions respecting 
orbital motion,

die=^, 
a p

if a be any constant vector, and if the plane of a and p be given (or 
constant).

(M)

Section 6.—On Successive Differentials and Developments,
of Functions of Quaternions,..........................  420-435
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In this Section principles arc established (pp. 423-426), respect
ing quaternion functions which vanish together ; and a form of deve
lopment (pp. 427, 428) is assigned, analogous* to Taylofs iSeries, 
and like it capable of being concisely expressed by the symbolical 
equation, 1 + A = <'i (p. 432). As an example of partial and aucccs- 
siye differentiation, the expression (pp. 432, 433), 

p = rlc‘j*kj->k'*,
which may represent any vector, is operated on; and an application 
is made, by means of definite integration (pp. 434, 435), to deduce tho 
known area and volume of a sphere, or of portions thereof; together 
with the theorem, that tho vector sum of the directed elements of a 
spheric segment is zero : each element of surface being represented by an 
inward normal, proportional to the elementary area, and correspond
ing in hydrostatics to &e pressure of a fluid on that element.

Section 6.—On the Differentiation of Implicit Functions 
of Quaternions; and on the General Inversion of a Li
near Function, of a Vector or a Quaternion : with 
some connected Investigations,...................................... 435-495

In this Section it is shown, among other things, that a Linear 
and Vector Symbol, of Operation on a Vector, p, satisfies (p. 443) a 
Symbolic and Cubic Equation, of the form,

0 = M — ; (N)
whence - ni'^ 4 ^2 = ,p, • (N')

= another symbol of linear operation, which it is shown how to de
duce otherwise from as well as the three scalar constants, m, m!, ni'. 
The connected algebraical cubic (pp. 460, 461),

Jf =>« + »i'c + ;«"<!24.c3 = 0, (0)
is found to have important applications ; and it is provedf (pp. 460, 
462) that if SX^p = Sp^X, independently of X and p, in which case 
the function is said to bo self-conjugate, then this last cubic has three 
real roots, ci, Ct, cj; while, in the same case, the veeM' equation,

Np<^P = Q, (P)
is satisfied by a system of Three Heal and Dcetangular Directions: 
namely (compare pp. 468, 469, and the Section III. iii. 7), those of 
tho axes ot a (biconcyclio) system of surfaces of the second order, to- 
presented by the scalar equation.

* At a later stage (Art 375, pp. 609, 510), a new ^ntineiation of Taylofe 
Theorem is given, with a new proof, but stiU’in a form adapted to quaternions.

t A simplified proof, of some of the chief results for this important ease of 
self-conjugation, is given at a later stage, in the few first subarticles to Art. 416 
(pp. C98, 699).
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Sp^p = CpS + C’, in which G and C’ are constants. (Q) 
Cases are discussed; and g*eneral forms (called cyclic, rectangular, 
focal, bifocal, &o., from their chief geometrical uses) are assigned, 
for thc vector and scalar functions ^p and Sp^p: one useful pair of 
such (rgclie') forms being, with real and constant values of g, X, p,

^p=pp + VXpp, Sp^p=pp» + SXppp. (R)

And finally it is shown (pp. 491, 492) that if fg he a linear and gtM- 
ternion function of a guaternion, g, then the Symbol of Operation, f, 
satisfies a certain Symbolic and Biguadratic Eguation, analogous to the 
cubic equation in and capable of similar applications.

xiii 
Pages.

CHAPTEE III.

ON SOME ADDITIONAL APPLICATIONS OP ftUATEKNIONS, WITH

SOME CONCLUDING KEMAEKS, . . 495 tO thc Cud.

This Chapter, like tho one preceding it, may he omitted in a first 
perusal of tho Volume, as has indeed heon already remarked.

Section 1.—Ecmarks Intioductoiy to this Concluding 
Chapter,..............................................'........................

Section 2—On Tangents and Normal Planes to Curves in 
Space,...............................................................................

Section 3.—On Nonnals and Tangent Planes to Siu'faces, 
Section 4.—On Osculating Planes, and Absolute Normals, 

to Curves of Double Curvature,.....................................
Section 5—On Geodetic Lines, and Eamilies of Surfaces,

In these Sections, dp usually denotes a tangetd to a ettrve, and v 
a normal to a surface. Some of the theorems or constructions may 
perhaps he new; for instance, those connected with the cone of paral
lels (pp. 498, 613, &c.) to tho tangents to a curve of douMe curvature; 
and possibly tho theorem (p. 525), respecting reciprocal curves in 
space ; nt least, the deductions here given of these results may serve 
as exemplifications of the Calculus employed. In treating of Families 
of Surfaces by quaternions, a sort of analogue^yr^. 529, 530) to the for
mation and integration of Partial Bifferenlial Equations presents 
itself; as indeed it had done, on a similar occasion, in tho Lectures 
(p. 674).

Section 6.—On Osculating Circles and Spheres, to Curves 
in Space; Tvith some connected Constructions, . . .

Tho analysis, however condensed, of this long Section (III. iii. 6), 
cannot conveniently he performed otherwise than under tho heads of 
tho respective Articles (389-101) which compose it; each Article

495-496

496-501
501-510

511-515
515-531

531-630
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(S')

being followed by several subarticlos, which form with it a sort of 
iSeries.*

Akticlb 389__ Osculating Circle defned, as the limit ol a circle,
which touches a given ctirve (plane or of double curvature) at a given 
point V, and cuts the curve at a wear point Q (see Fig. 77, p. 511). 
Deduction and interpretation of general expressions for the vector k 
of the centre s. of the circle so defined. The reciprocal of thc radius 
KP being called the vector of curvature, vra have gcnerallg,

Vector of Oiirvature = (n — k)-i = = .i "V = &c.; (S)
Idp dp dp

and if the arc (s) o{ the curve be made the independent variable, then
Vector of Curvature = D^p = 4^. 

ds-
Examplcs: curvatures of helix, ellipse, hyperbola, logarithmic spiral; 
locus of centres of curvature of helix, plane evolute of plane cUipso,

Akticle 390.—Abridged general calculations; return from (S') 
to(S),..................................................................................................

Article 391.—Centre determined by three scalar equations ;
Polar Axis, Polar Developable,...........................................................

Article 392—Veetor Equation of osculating circle,....................
Article 393.—Intersection (or intersections) of a circle with a 

plane 'curve to which it osculates; example, hyperbola,....................
Article 394.—Intersection (or intersections) of a spherical curve 

with a small circle osculating thereto ; example, spherical conie ; con
structions for the spherical centre (or pole') of the circle osculating to 
such a curve, and for the point of intersection above mentioned, . .

Article 395—Osculating Sphere, to a curve of double curvature, 
defined as thc limit of a sphere, which contains the osculating circle to 
thc cqfvo at a given point p, and cuts the same curve at a near point 
Q (comp. Art. 389). Tho centre s, of thc sphere so found, is (as usual) 
the point in which the polar axis (Art. 391) touches the eusp-edge of 
the polar devdopaUe. Other general construotion for thc same centre 
(p. 551, comp. p. 573). General expressions for the vector, a = os, 

' and for the radius, 72 = 8?; .B'* is the spherical curvature (comp. Art. 
397). Condition of Sphericity and Coefficient of Non-spherieity
(S - 1), for a curve in space. When this last coefficient is positive 
(as it is for the helix), the curve lies outside the sphere, at least in thc 
neighbourhood of the point of osculation,........................................

Article 396.—Notations r, r, .. for D,p,,Drp, &o.; properties 
of a curve depending on tho square (ffi) of its arc, measured from a 
given point p; r = unit-tangent, r = vector of curvature, »•"* = Tr' = cur
vature (or first curvature, comp. Art. 897), v = rr' = binormal ; the

531-535

535, 530

537
538, 639

539-541

541-549

549-553

* A Table of initial Pages of all the will bo elsewhere given, which will
much facilitate reference.
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three planes, respectively perpendicular to r, r', v, arc the 
plane, ^0 rectifying plane, apd thc osculating plane; general theory 
of lines and planes, vector of rotation, axis of displacement, oscui-
lating sereic surface ; condition of derelopability of surface ofe/nanants, 

Akticlb 397.—Properties depending on thc cube (s’) of the arc; 
Radius r (denoted here, for distinction, by a roman letter), and Vector 
j-’r, of Second Curvature ; this radius r may be cither positive or ne
gative (whereas tho radius r oi first curvature is always treated as 
positive'), and its reciprocal r'* may be thus expressed (pp. 563, 559),

d’o ■ r"Second Curvature* = r'* = S „ (T), or, r'> = S —-, (T')
VdpU’p TT

the independent variable being the are in (T'), while it is arbitrary in 
(T): but quaternions supply a vast variety of other expressions for this 
important scalar (sec, for instance, the Table in pp. 674, 675). We 
have also (by p. 660, comp. Arts. 389, 396, 396),

Vector of Spherical Curvature = 8p"1 = (p - v)"' = (U)
= projection of vector (r') of {simple or frst) curvature, on radius {E) 
of osculating spltere : and if p and J? denote the linear and angular 
elevations, of the centre (a) of this sphere above the osculating plane, 
then (by same page 560),

p = r tan P= JJ sin P=rr = rD,r.

Again (pp. 560, 661), if we write (comp. Art 396),

X = V =r''r + rr' = Vector of Second Curvature plus liinormal, (V) 

this lino X may bo called the Rectifying Vector; and if E denote the 
inclination (considered first by Lancret), of this rectifying line (X) to 
tho tangent (r) to the curve, then

tan j3'= r*"* tan P=J'^'r. (V')
Enown right cone with rectifying lino for its axis, and with H for its 
semiangle, which osculates at p to thc,developable locus of tangents to 
tho curve (or by p. 668 to the cone of parallels already mentioned); 
new right cone, with a new semiangle, C, connected with H by the 
relation (p. 662),

XV

Pages.

554-559

(U)

3 
tan C= - tan J3,4

which osculates to the cone of chords, drawn from the given point r

(v-)

* In this Article, or Series, 397, and indeed also in 396 and 398, several re
ferences are given to a very interesting Memoir by M. de Saint-Venant, “ jSttr 
let lignes courics non planes in which, however, that able writer objects to such 
known phrases as secmid eurvatrire, torsion, &c'., and proposes in tlieir stead a new 
name ** eambrure,” which it has not been thought necessary hero to adopt. 
{Journal de V Ecole Polgteehnigtu, Cahier xxx )
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to other points Q of the given curve. Other osculating eonee, eylinders, 
helix, and parabola ; tliis last being (pp. 5C2, 66C) the parabola which 
osculates to the projection of the eitrve, on its oicn osculating plane. De
viation of CKrre, at any near point q, from the osculating circle at p, 
decomposed (p. 5C6) into <tco rectangular deviations, from osculating 
helix and parabola. Additional formulm (p. 67G), for the general 
theory of emanants (Art 396) ; case of normallg emanant lines, ox oi 

• tangentially cmanant planes. General auxiliary spherical curve (pp. 
676-578, comp. p. 515)5 new proof of tho second expression (V') for 
tan II, and of thc theorem that if this ratio of curvatures bo constant, 
the proposed curve is a geodetic on a cylinder: new proof that if each 
curvature (r’*, r"*) be constant, the cylinder is right, and therefore 
the curve a helix,..............................................................................

AunciiE 398.—Properties of a curve in space, depending on tho 
fourth and^fifth powers («i, *5) of its arc (s),..................................

This Series 398 is so much longer than any other in the Volume, 
and is supposed to contain so much original matter, that it seems 
necessary hero to subdivide the analysis under several separate heads, 
lettered as (a), (Ii), (e), &c.

(а) . Neglecting s®, we may mite (p. 678, comp. Art. 396),

OP, = p, = p + ST + + Is’r" + ; (W)

or (comp. p. 587), p, = p + x, t + y,rT' + c,rv, (W)
with expressions (p. 588) for the coefficients (or co-ordinates) x,, y,, c„ 
in terms of r‘, r, r", x, r*, and «. If «® be taken into.account, it be
comes necessary to add to the expression (W) the term, yiijS’r"; 
with corresponding additions to tho scalar coefficients in (W), intro
ducing r"' and r": the laws for forming which additional terms, and 
for extending them to higher powers of tho arc, are assigned in a 
subsequent Series (399, pp. 612, 617).

(б) . Analogous expressions for t", v", k", o', and p', R, P', JI',
to serve in questions in which i® is neglected, are assigned (in p. 579) ; 
t" v', k, X, a, and /», II, P, R, having been previously expressed (in 
Scries 397); while t", v", k", X", <r", Seo. enter into investigations 
which take account of s®: tho arc s being treated as the independent 
variable in all these derivations.

(c). One of the chief results of the present Series (398), is tho 
introduction (p. 581, &c.) of a new auxiliary angle, J, analogous ii|; 
several respects to tho known angle II (397), but belonging to a 
higher order of theorems, respecting curves in space: because thc iww 
angle Z depends on the fourth (and lower) powers of thc arc s, while 
Lancret’s angle II depends Only on s® (including s' and s-).. In fact, 
while tan II is represented by the expressions (V')j^ whereof one is 
r'l tan 7’, tan J admits (with many transformations) of the following 
analogous expression (p. 681),

tan /=72’'>tan2’i

Pages.

559-578

678-Cl2

(X)
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where S,’ depends* by (4) on while r' and P depend (397) on no 
higher power than s’.

((f). To give a more distinct geometrical meaning to this new angle 
J, than can be easily gathered from such a formula as (X), respecting 
which it may be observed, in passing, that /is in general more simply 
defined by expressions for its cotangent (pp. 581, 688), than for its 
tangent, we are to conceive that, at each point r of any proposed 
curve of double curvature, there is drawn a tangent plane to the sphere, 
which osculates to the curve at that point; and that then the 
envelope of all these planes is determined, which envelope (for reasons 
afterwards more fully explained) is called here (p. 581) the “ Cir- 
cutnseribed Developable being a surface analogous to the “ Rectifying 
Developable” of Lancret, but belonging (c) to a higher order of ques
tions. And then, as the known angle S. denotes (397) the inclina
tion, suitably measured, of the rectifying line (X), which is a genera
trix ot the rectifying developable, to thc tangent (r) to the curve; so 
the new angle / represents the inclination of a genes-ating line (^), of 
what has just been called the circumscribed developable, to the same 
tangent (r), measured likewise in a defined direction (p. 581), but 
in the tangent plane to the sphere. It may be noted as another ana
logy (p. 682), that while .B" is a right angle for a platie curve, so / 
is right when the curve is spherical. Por the helix (p. 686), the an
gles S and J are ejKaZ; and the rectifying and circumscribed deve- 
lopables coincide, with each other and with the right cylinder, on 
which the helix is a geodetic line.

(c). If the recent line be measured from the given point p, in 
a suitable direction (as contrasted with the opposite), and with a suit
able length, it becomes what may be called (comp. 396) the Vector of 
Rotation of the Tangent Plane ((f) to the Osculating Sphere ; and then 
it satisfies, among others, the equations (pp. 579, 581, comp. (V)),

v"^ = V—;, T^ = 7J“>oosec/;

this last being an expression for the velocity of rotation of the plane 
just mentioned, or of its normal, namely the spherical radius R, if the 
given curve be conceived to be described by a point moving with a eon-

xvii 
Pages.

(XO

* In other words, tho calculation of »•’ and P introduces no differentials 
higher than the third order; but that of K requires the/owri/t or<fer of differen
tials. In the language of modern geometry, the/onnrr can he determined by 
the consideration of four consecutive points of tJie curve, on by that of two consecu
tive osculating circles ; but the latter requires the consideration of two consecu
tive osculating spheres, and therefore offee consecutive ^)ot«ts of tho curve (sup
posed to be one of double curvature). OtJier investigations, in the present and 
immediately following Series (398, 399), especially those connected with what 
we shall shortly call thc Osculating Ttvisted Cubic, will be found to involve the 
consideration of six consecutive points of a curve.

d
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slant velocity, assumed = 1. And if we denote by v the point in which 
the given radius B or rs is nearest to a consecutive radius ot the same 
kind, or to tho radius of a consecutive osculating sphere, then this point v 
divides tiu) line vs internally, into segments which may (ultimately) bo 
thus expressed (pp, 580, 581),

pv=J? sin’ J, cos? J.
But these and other connected results, depending on have their 
known analogues (with S tor IT, and »• for J?), in that earlier theory 
(c) which introduces only (besides «’ and : and they aro all in
cluded in the general theory oteinanant lines and planes (396, 397), of 
which some new geometrical illustrations (pp. 582-584) are here 
given.

(/). New auxiliary scalar «= cot /sec P= See.), = ve
locity of centre s of osculating sphere, if tho velocity of tho point p of 
tho given curve be taken as unity (c); n vanishes with S, cot /, and 
(comp. 395) tho coefSciont S-^ 1 (= nrr'i) of non-sphcricity, for tho 
case of a spherical curve (p. 584). Arcs, first and second curvatures, 
and rectifying planes and lines, of tho cusp-cdges of the polar and 
rectifying* dovelopables; these can all be expressed without going 
beyond s®, and some without using any higher power than or diffe
rentials of the orders corresponding; n=«r, and ti-nr, are tho 
scalar radii of first and second curvature of tho former cusp-edge, ri 
being positive when that curve turns its concavity at s towards tho 
piren curve at p : determination of tho point R, in which the latter 
cusp-edge is touched by the rectifying fine X to the original curve 
(pp. 584-587).

(p). Equation with one arbitrary constant (p. 687), of a cone of 
thc second order, which has its vertex at the given point p, and has 
contact of tho third order (ov four-side eontaef) with tho cone of chords 
(ZQT) from that point; equation (p. 590) of a cylinder of the second 
order, which has an arbitrary lino pe from p as ono side, and has 
contact of the fourth order (or five-point contact) with tho curve at p; 
the constant above mentioned can bo so determined, that the right lino 
PE shall be a side of the cone also, and therefore a. part of tbo intersect 
tion oi cone and cylinder; and then the remaining or curvilinear 
part, of the complete intersection of those two surfaces of the second

* Tho rectifying plane, of the cusp-edge of tho rectifying developable, is tho 
plane of X and r', of which the formula LIV. in p. 687 is tho equation; and tho 
rectifying line rh, of tho same cusp-edge, intersects the absolute normal pk to tho 
given curve, or the radius (r) of first curvatuto, in thc point H in which that 
radius is nearest {e) to a consecutive radius of the same kind. But this last theo
rem, which is hero deduced by quaternions, hod boon previously arrived at by 
M. de Saint-Venant (comp, the Noto to p. xv.), through an entirely different 
analysis, confirmed by geometrical considerations.
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order, is (by knoxtm principles) a gauche curve of the third order, 
or what is briefly called* a Tieieied Cubic : and thia last curve, in 
virtue of its construction above described, and whatever tho as
sumed direction of the auxiliary lino pe may be, has contact of the 
fourth order (or five-point contact} with thc given curve of double emr- 
vaturo at p (pp. 687-590, comp. pp. 663, 672).

(A). Determination (p. 690) of the constant in tho equation of the 
cone (g}, so that this cono may have cowteef of tho fourth order (or 
five-side contact} with the cone of elwrds from p; the cone thus found 
may be called tho Osculating Oblique Cone (comp. 397), of the second 
order, to that cone of chords; and tho coefficients of its equation in
volve only r, r, r', r', r'', r", but not r'", although this last derivative 
is of no higher order than r*', since each depends only on sfi (and lower 
powers), or introduces only fifth differentials. Again, the cylinder 
Iff) will have contact of tho fifth order (or six-point contact) with the 
given curve at p, if the line pe, which is by construction a side oi that 
cylinder, and has hitherto had an arbitrary direction, be now obliged 
to be a side of a oortain cubic cone, of which the equation (p. 590) in
volves as constants not only nr’rr’r", like that of tho osculating cone 
just determined, but also r‘". The two cotus last mentioned have the 
tangent (r) to the given curve for a common side, \ but they have also 
<Arfa other common sides, whereof one at least is real, since they aro 
assigned by a cubic equation (same p. 590); and by taking this side 
for the line pe in (y), there results a new cylinder of the scewirf order, 
which CK<s tho oseidating oblique cone, partly in that right line pe itself, 
and partly in a gauche curve of tho third order, which it is proposed to 
caU. an Osculating Twisted Cubic (comp, again Iff}), because it has con
tact of the fifth order (or six-point contact) with the given curve at p 
(pp. 690, 591).

(£). In general, and independently of any question of osculation, 
a Twisted Cubic (ff), if passing through the origin o, may be repre
sented by any one of the vector equations (pp. 592, 593),

xix 
Pages.

* By Dr. Salmon, in his excellent Treatise on Analytic Geometry of Three 
Dimensions (Dublin, 1862), which is several times cited in the Notes to this final 
Chapter (III. iii.) of these Elements. Tho gauche curves, above mentioned, have 
been studied with much success, of late years, by M. Chasles, Sig. Cremona, and 
other geometers: but their existence, and some of their leading properties, ap
pear to have been first perceived and published by Prof. Mobius (see his Eary- 
eentric Calculus, Leipzig, 1827, pp. 114-122, especially p. 117).

t This side, however, counts as three (p. 614), in the system of tho six lines of 
intersection (real or imaginary) of these two cones, which have a common vertex p, 
and aro respectively of the second and third orders (or degrees). Additional light 
will bo thrown on this whole subject, in tho following Series (399) ; in which also 
it will bo shown that tlioro is only one osculating twisted cubic, at a given point, 
to a given curve of double curvature; and that this cubic curve can be determined, 
without resolving any cubic or other equation.
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(Y); or (^ + c)p = a, (Y')
or yap+p^yp+ypyhpp^O,

(A.)

Vap+Vp^p = 0, 
or p=(^+<!y’a, (T">t 
in which a, X, {i. are reaZ and vectors, hut e is a variable sca
lar ; while denotes (comp, thc Section III. ii. 6, or pp. xii., xiii.) a 

and vector function, which is Itere generally sclf-eonjugatc, 
of the variable vegtor p ot the cubic curve. The number at the scalar 
constants, in the form (Y'"), or in any other form of the equation, is 
found to he ten (p. 593), with thc foregoing supposition that the curve 
passes through tlw origin, a restriction which it is easy to remove. 
The curve (Y) is cut, as it ought to ho, in three points (real or imagi
nary), by an arbitrary secant plane ; and its three asymptotes (real or 
imaginary) have the directions of the three vector roots p (see again 
the last cited Section) of the equation (same p. 693),

Vi3^/3 = 0: (Z)
so that by (P), p. xii., these three asymptotes compose a real and rect
angular system, for the ease of self-conjugation of tho function 
m(T).

(y). Deviation ota near point r, of thc given curve, from thc sphere 
(395) which osculates at thc given point p', this deviation (hyp. 593, 
comp. pp. 653, 584) is

__ _  risi Ti's* ns*
24n^Ji 24rrp 24>t.B ’

it is ultimately equal (p. 595) to the quarter oii the deviation (397) 
of tho same near point p, from the osculating circle atr, multiplied by 
the «i«« of the small angle sps,, which the small are ss, of tho Zociw of 
the spheric centre s (or of the cusp-edge of the polar developable) sub
tends at the same point p; and it has an outward o>x an fnwarrf direc
tion, according as this last are is coBcare or convex nt s, towards the
given curve at p (pp. 585, 595). It is also ultimately equal (p. 596) 
to the deviation PS,—p.Sj, of tho given point p from the near sphere, 
which escaZafes at the «car p,; and likewise (p. 597) to the com
ponent, in the direction of sp, of the deviation of that near point from 
the osculating circle at p, measured in a direction parallel to the nor
mal plane at that point, if this last deviation be notv expressed to the 
accuracy of the fourth order: whereas it has hitherto been considered 
sufficient to dovelope this deviation from the osculating circle (397) ns 
far as the third order (or third dimension of s); and therefore to treat 
it as having a direction, tangential to the osculating sphere (comp, 
pp. 566, 594).

(A). Tho deviation (Ai) is also equal to the third part (p. 598) of 
the deviation of tho near point p, from the given circle (which osculates 
at p), if measured in the near normal plane (at p,), and decomposed in 
tho direction of tho radius D, of the sphere; or to tho third part 
(with direction preserved) of tho deviation of the new near point in 
which tho given circle is cut by the near plane, from the near sphere : or 
finally to the third part (as before, and still with an unchanged direc-
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tion) of the deviation from the given sphere, of that other near point 
c, in which the near eirele (osculating at p») is cut by the given nortnal 
plane {at p), and which is found to satisfy the equation,

EC = 3^« - 2sp- (Bi)
©eottiutncaZ awnexion* (p. 699) between these various results (j) (Ji), 
illustrated by a diagram (Fig. 83). •

(Q. The Surface, which is tho Locus of the Osculating Circle to 
a given curve in space, may bo represented rigorously by the wctor 
ex/iressiow (p. 600),

<■>»,« = p< + r,r, sin u+r.’r,' vers «; (Ci)
in which » and u are two independent scalar variables, whereof s is 
(as before) the aro pf, of the given curve, but is not now treated as 
small; and « is the (small or large) angle subtended at the centre •&, of 
the circle, by the arc of that eirele, measured from its point of oscula
tion p,. But tho same superficial locus (comp. 392) may be repre
sented also by the vector eguation (p. 611), involving appartmtly only 
OTIS scalar variable (s),

in which and w= (»«,« = the vector of an arbitrary point
of thc surface. The general method (p. 501), of tho Section III. iii. 
3, shows that tho normal to this surface (Ci), at any proposed point 
thereof, has tho direction of to,,« — <r,; that is (p. 600), the direction 
of the radius of the sphere, which contains the circle through that 
point, and has the same point of osculation p, to the given curve. The 
locus of the osculating circle is therefore found, by this little calculation 
with quaternions, to be at the same time the Envelope of the Osculat
ing Sphere, as was to bo expected from geometrical considerations 
(comp, the Noto to p. 600).

(»>). The curvilinear locus of the point c in (i) is one branch of 
tho section of the surface (Z), made by the normal plane to the given . 
curve nt p ; and if n be the projection of c on the tangent at p to this 
new curve, which tangent pn has a direction perpendicular to tho ra
dius PS or £ of the osculating sphere at p (see again Fig. 83, in p. 
699), while tho ordinate no is parallel to that radius, then (attending 
only to principal terms, pp. 698, 599) we have the expressions,

and therefore ultimately (p. 600),
DC® 81 ftSr5r(<r —p)
—i “ M —— = const.;PD* 32 JJ8 ’

from which it follows that p is a singular point ai the section hero 
considered, but no? « cusp ot that section, although the c«ro«Z«ro 
at p is infinite: tho ordinate nd varying ultimately as the ^loor 
with .exponent | of tho abscissa fd. Contrast (pp. 600, 601), of this

(El)

(Fl)
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section, with that of the developable Loma of Tangenia, made by the 
same normal plane at p to the given curve; the vectors analogous to 
PD and DC are in thi» case nearly equal to - and — ; so
that the latter varies ultimately as the power J of the former, and the 
point p is (as it is known to be) a ettsp of this last section.

(m). a. given Cures ot double curvature is therefore gsnsrally a 
Singular Lins (p. CO 1), although «o< a susp-sdgs, upon that Surf ass (f), 
which is at once the Locus oi its osculating Circls, and the Envslojis 
ot its osculating Sphere: and the new developable surface (d), as being 
circumscribed to this superficial locus (or so as to touch it
along this singular line (p. 612), may naturally be called, as above, 
the Circumscribed Developable (p. 581).

(o) . Additional light inay be thrown on this whole theory of the 
singular line («), by considering (pp. 601-611) a problem which was 
discussed by Monge, in two distinct Sections (xsii. xxvi.) of his well- 
known Analyse (comp, the Notes to pp. 602, 603, 609, 610 of these 
Elements') ; namely, to determine the envelope of a sphere with varying 
radius E, whereof tho centre s traverses a curve in space ; or 
briefly, to find the Envelope of a Sphere with One varying Paramelcr 
(comp. p. 624): especially for tho Case of Coincidence (p. 603, &c.), of 
what are usually two distinct branches (p. 602) of a certain Charac
teristic Curve (or arete de rebroussement), namely the curvilinear enve
lope (real or imaginary) of all the circles, along which the superficial 
envelope of the spheres is touched by those spheres themselves.

(p) . Quaternion forms (pp. 603, 604) of the condition of coinci
dence (o) ; one of these can be at once translated into Mongo’s equa
tion of condition (p. 603), or into an equation slightly more general, 
as leaving the independent variable arbitrary; but a simpler and 
more easily interpretable form is the following (p. 604),

ridr=;{;Jfd7?, (G,)
in which r is tho radius of tho circle of contact, of a sphere v'ith its 
envelope (o), while r\ is tho radius of (first) curvature of thc curve (s), 
which is the locus of thc centre s of the sphere.

(j). Tho singular line into which tho two branches of the curvi
linear envelope are fused, when this condition is satisfied, is in general 
an orthogonal trajectory (p. 607) to the osculating planes of the curve 
(s); that curve, which is now the given one, is therefore (comp. 391,' 
395) thc cusp-edge (p. 607) of the polar developable, corresponding to 
tho singular line just mentioned, or to what may bo called tho curve 
(p), which was formerly thc given curve. In this way there arise 
many verifications of formulas (pp. 607, 608); for example, tho 
equation (Gi) is easily shown to be consistent with tho results of (/).

(r). With the geometrical hints thus gained from interpretation 
of quaternion results, there is now no difficulty in assigning tho Com
plete and General Lntcgral of tho Equation of Condition fp), which was 
presented by Monge under tho form (comp, p.' 603) of a non-linear 
differential equation of the second order, involving three variables
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(p, ff) considered as functions of a fourth {a), namely the co-or
dinates oi tho cwi<r« of the sphere, regarded as varyinp with the ra
dius, hut which does not appear to have been either intce/rated or 
interpreted by that illustrious analyst The general integral here 
found presents itselfatfirstinajaafernion form (p. 609), but is easily 
translated (p. 610) into the usual language of analysis. A less ge
neral integral is also assigned, and its geometrical signification exhi- 

' bited, as answering to a case for which the singular line lately consi
dered reduces itself to a singular point (pp. GIO, 611).

(s) . Among the verifications (g) of this whole theory, it is shown 
(pp. 608, 609) that although, when the two branches (o) of the general 
curvilinear envelope of tho circles of the system are real and distinct, 
each branch is a cusp-edge (or arete de rebroussement, as Monge per
ceived it to be), upon the superficial envelope of the spheres, yet in tho 
case of fusion {p) this cuspidal character is lost (as was likewise 
seen by Mongo*): and that then a section of the surface, made by 
a normal plane to the singular line, has precisely the form (?»), ex
pressed by the equation (Fi). In short, the result is in many ways 
confiiined, by calculation and by geometry, that when the condition of 
coincidence (^?) is satisfied, tho Surface is, as in (»), at onco tho Enve
lope of the osculating Sgihcre and the locus of the osculating Circle, to 
that Singular Line on itself, into which by (j) tho two branches (o) 
of its general cusp-edge are fused.

(t) . Other applications of preceding formula) might bo given; 
for instance, the formula for k" enables us to assign general ex
pressions (p. 611) for tho centre and radius of the circle, which oscu
lates at K to tho locus of the centre of thc osculating circle, to a given 
curve in space: with an elementary verification, for the case of tho 
plane evolute of the plane evolute of a plane curve. But it is time to con
clude this long analysis, which however could scarcely have been 
much abridged, of the results of Series 398, and to pass to a more 
brief account of tho investigations in tho following Series.

Article 399,—Additional general investigations, respecting that 
gauche curve of tho third order (or degree), which has been above 
called an Osculating Twisted Cubic (398, (hf), to any proposed curve 
of double curvature; with applications to the case, whore the given 
curve is a helix,...................................................................................

(rt). In general (p. 614), the tangent pt to the given curve is a 
nodal side of the eubie cane 398, (A); cme tangent plane to that cone 
(G), along that side, being the osculating plane (P) to the curve, and 
therefore touching also, along the same side, the osculating oblique cone 
(Ci) of the second order, to the cone of elwrds (397) from p; while tho 
other tangent plane to the cubic cone (Cf) crosses that first plane (F), 
or tho quadric cone (Cf), at an angle of which tho trigonometric eotan-

xxiii 
Pages.

612-621'

* Compaic the first Note to p. 609 of these Elements.
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gent (Jr*) is equal to half the differential of the radiue (r) of second 
ettrvature, divided by the differential of the are (s). And the three 
wmmon sides, pe', pe", of these cones, which remain when the 
tangent ri is excluded, and of which one at least must be real, are the 
parallels through the given point p to the three asymptotes (398, (»)) 
to the gauche curve sought; being also siefes oi three quadric cylin
ders, soeg which contain those asymptotes as other
sides (or generating lines): and of which each contains the twisted 
cuhie sought, and is cut in it by tho quadric cone

(i). On applying this First Jdetliod to the case of a given helix, it 
is found (p. 614) that the gowral cubic eoiw (fJs) breaks up into the 
system ot Si new quadric cone, (Cf), and a ; which lat
ter is the rectifying plane (396) of the helix, or the tangent plane at p 
to the right cylinder, whereon that given curve is traced- The two 
quadric cones, iflf) and (<^'), touch each other and thc plane (J’) along 
the tangent pt, and have no other real common side; whence fwo of 
the sought asymptotes, and two of the corresponding cylinders (a}, are 
in this case imaginary, although they can still be used in calculation 
(pp. 614, 615, 617). But the plane (P*) cuts thc cone {Cii, not only 
in the tangent pt, but also in a second real side pe, to which the real 
asymptote is parallel (a); and which is at the same time a siVfe of a 
real quadric cylinder which has that asymptote for another side 
(p. 617), and contains the twisted eubie : this gauche curve being thus 
tile curvilinear part (p. 615) of the intersection of the real cone {ps), 
with the real cylinder iLil-

(c). Transformations and verifications of this result; fractional ex
pressions (p. 616), for the co-ordinates of the twisted cubic; expres
sion (p. 615) for tho deviatim of the ^eZfefrom that osculating curve, 
which deviation is directed inwards, and is of the sixth order: tho 
least distance, between the tangent pt and tho real asymptote, is a right 
line PB, which is cmZ internally (p. 617) by the axis of the right cylin
der (5), in a point a such that pa is to ab as three to seven.

iff). The First Nethod iff}, which had been established in the pre
ceding Series (398), succeeds then for the case of the JlMx, with a faci
lity which arises chiefly from the circumstance (5), that for this case 
the general cubic cone (C3) breaks up into two separate loci, whereof 
o«« is a plane But usually the foregoing method requires, as in 
398, (A)), the solution of a eubie equation ; an inconvenience which is 
completely avoided, by the employment of a Second General llethod, 
as follows.

(«). This iS'«co»ef Method consists in taking, for a second locus ai the 
gauche oseulatrix sought, a certain Cubic Surface (fi»), of which 
every point is the vertex* ot a quadric con#, having six-point con-

* It is known that the loetts of tlie vertex of a quadrie erne, which passes 
through eix given pointe of spaee, A, n, c, n, b, f, whereof no four are in one

    
 



CONTENTS.

tact with the given curve at p: so that this n«o sttrface is cut by tho 
plane at infnity, in tho same cubic curve as the cubic cone (Cs). It is 
found (p. 620) to he a Haled Surface, with the tangent pt for a Sin
gular Line; and when this right line is set aside, the remaining (that 
is, the curvilinear') part of the intersection of the two loci, (^C2) and 
(iSa), is the Osculating Twisted Cubic sought: which gauche oseulatrix 
is thus completely and generally determined, without any such difficulty 
or apparetit variety, as might be supposed to attend the solution of a 
cubic equation (d), and with new verifications for the case of the helix 
(p. 621).

Artici.e 400—On Involutes and Evolutes in Space, ....
(o). The usual points of Monge’s theory are deduced from the two 

fundamental quaternion equations (p. 621),

S(c-p)p'=0, V(<r-p)c'=0, (Hi)

in which p and a aro corresponding vectors of involute and evolute; 
together with a theorem of Prof. De Morgan (p. 622), respecting the 
case when the involute is a spherical curve.

(4). An involute in space is generally the only real part (p. 624) of 
the envelope of a certain variable sphere (comp. 398), which has its 
centre on the evolute, while its radius H is the variable intereept be
tween the two curves: but because we have Iwre the relation (p. 622, 
comp. p. 602), 

XXV 

Pages.

621-620

+0'3 = 0, (H,’)
the circles of contact (398, (o)) reduce themselves each to e. point (cat 
rather to a pair of imaginarg right lines, intersecting in a real point), 
and the preceding theory (398), of envelopes of spheres with one 
vaiying parameter, undergoes important modifications in its results, 
the conditions of the application being different. In particular, the 
involute is indeed, as the equations (Hi) express, an orthogonal trcc- 
jectorg to the tangents of the evolute; hut not to the osculating planes

plane, is generally a Surf act, say (iSiX'of the Fourth Degree: in fact, it is cut by 
the plane of the triangle abc p a system of four right lines, whereof three are 
the sides of that triangle, and the fourth is the intersection of the two planes, 
ABO and def. If then wo investigate the intersection of tliis surface (iSi) with 
the quadric cone, (a.bcdef), or say which has a for vertex, and passes 
through the five other given points, we might expect to find (in some sense) a 
curve of the eighth degree. But when we set aside the/w right lines, ab, ac, ad, 
AB, AF, which are common to the two surfaces here considered, we find that the 
(remaining or) curviliMar part of the complete intersection is reduced to a curve 
of the third degree, which is precisely the twisted cubic through the six given points. 
In applying this general (and perhaps new) method, to the problem of the oscu
lating twisted cubic to a curve, the osculating plane to that curve may be excluded, 
as foreign to the question: and then the quartic surface (>51) is reduced to thc 
cubic surface (S^, above described.

e
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of that curve, as the singular line (398, (?)) of the former envelope 
was, to those of the curve which was the locus of the cetttres of the 
spheres before considered, when a certain condition of coincidence (or 
of fusion, 398, (/>)) was satisfied.

(e). Curvature of hodograph of evolute (p. 625); if p, Pi, Pa,.. and 
s, 81, S2,.. be corresponding points of involute and evolute, and if we 
draw right lines STi, stc, .. in the directions of siPi, SjPs, .. and with 
a common length = sp, the spherical curve PT1T2 .. will have contact 
of the second order at p, xcith thc involute ppiPo .. (pp. 626, 626).

Article 401.—Calculations abridged, by the treatment of qtiater- 
nion differentials (which have hitherto been finite, comp. p. xi.) as 
infinitesimals;* nerir ai osculating plane, circle, tcadL sphere,
tnth tho vector equation (392) of the circle; and of the first and se
cond curvatures of a carva in space,.....................................................

Sectiox 7—On Surfaces of the Second Order; and on
Curvatures of Surfaces, • ......................................

Article 402.—Beferences to some equations of Surfaces, in earlier 
ports of the Volume,.........................................................................

Article 403.—Quaternion equations of the Sphere (p^ = - 1, &c.).
In some of these equations, the notation N for norm is employed 

(comp, the Section II. i. 6).
Article 404.—Quaternion equations of the Ellipsoid, . . . .
Ono of the simplest of these forms is (pp. 807, 685) the equation,

T(ep + pic) = (c’®-t^

Pages.

626-630

630-706

630, 631
631-633

633-635

(Ii)'

* Although, for the sake of brevity, and even of clearness, some phrases have 
been used in the foregoing analysis of the Series 398 and 399, such as four-side 
or jive-side contact between cones, and five-point or six-point contact between 
curves, or between a curve and a surface, which aro borrowed from the doctrine 
of consecutive points and lines, and therefore from that of infinitesimals ; with a 
few other expressions of modem geometry, such as the plane at infinity, ; 
yet the reasonings in the text of these Elements have all been rigorously reduced, 
SO far, or are all obviously reducible, to the fundamental conception of Limits; 
compare the definitions of the osculating circle and sphere, assigned in Articles 
389, 395. The object of Art 401 is to make it visible how, without abandoning 
such ultimate reference to limits, it is possible to abridge calculation, in several 
cases, by treating (at this stage) tho differential symbols, dp, d’p, &o., as if 
they represented infinitely small differences, Ap, A’p, &o.; without taking the 
trouble to write these latter symbols first, as denoting finite differences, in tho 
rigorotis statement of a problem, of which statement ills not always easy to assign 
the proper form, for the case of points, &c., at finite distances : and then having 
the additional trouble of reducing tho complex expressions so found to simpler forms, 
in which differentials shall finally appear. In short, it is shown that in Quater
nions, as in other parts of Analysis, tho rigour of limits can be combined with 
the facility of infinitesimals.
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in which t and k arc real and constant vectors, in the dii-cctions of 
the cyclic normals. This/on» (Ii) is intimately connected with, and 
indeed served to suggest, that Construction of the Ellipsoid (II. i. 13), 
by means of a Diacentric Sphere and a Point (p. 227, comp. Fig. 58, 
p. 226), which was among the earliest geometrical results of the Qua
ternions. The three semiaxes, a, b, e, are expressed (comp. p. 230) in 
terms of t, c as follows :

o = Tt + TK;

xxvii 
Pages.

(Ii'>

«J-><! = T(t-k). (Il")
Central Surface of the Second Order (or

whence
Article 405.—General

central quadric), =/(0 = 1,......................................................
Article 406.,—General Cone of the Second Order (or quadric cone),

= • • •
Article 407.—Pifocal Form ot the equation of a central but «(»«- 

conical surface of the second order: with some quaternion formulas, 
relating to Confocal Surfaces, ...... -........................

(a). The bifocal form here adopted (comp, the Section III. ii. 6) 
is the equation,

Cfp = (Snp)2 - 2fSapSix'p + (Sa'p)’ + (1 - «’) p’ = O, (Ji) 
in which, 0= (o’ -1) (a + Saa') P. (Jf)
o, a' are two (real) focal unit-lines, common to the whole system of 
confocals; the (real and positive) scalar I is also constant for that sys
tem : but the scalar e varies, in passing from surface to surface, and 
may be regarded as a parameter, of which tho value serves to distin
guish one confocal, say (r), from another (pp. 643, 644).

(5). Tho squares (p. 644) of the three scalar semiaxes (real or ima
ginary), arranged in algebraically descending order, are,

«’=(«+1)Z», 42=(c + Saa')/’, c2 = (c-l)Z’;
o* — c’ rt’ 4-

Zi » 0
and tho three vector semiaxes corresponding arc,

aU((i + a'), iUVaa', cU(a-a').
(o). Rectangular, unifocal, and cyclic forms (pp. 644, 648, 650), 

of the scalar function fp, to each of which corresponds a form of the 
vector function ; deduction, by a new analysis, of several known 
theorems* (pp. 644, 645, 648, 652, 653) respecting confocal surfaces,

636-638

638-643

643-653

whence

(KO

(Li)

(MO

* For example, it is proved by quaternions (pp. 652, 653), that the focal 
lines of tho focal cone, which has any proposed point p for vertex, and rests on 
the focal hyperbola, are generating lines of the single-sheeted hyperboloid (of the 
given confocal system), which passes through that point: and an extension of 
this result, to the focal lines of any cone circumscribed to a confocal, is deduced 
by a similar analysis, in a subsequent Series. (408, p. 656). But such known 
theorems respecting confocals can only be alluded to, in these Contents.
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and

Pages, 
and their focal conies ; the lines a, a’ are asi/inptotes to tho focal hy
perbola (p. 647), whatever the species of the surface may be: refe
rences (in Notes to pp. 648, 649) to the Lectures,* for tho focal ellipse 
of the Ellipsoid, and for several different t/cnerations of this last sur
face.

(d). Gcnertd, Exponential Transformation (p. 651), of the equation 
of any central gtiadrie;

p = xa-\-yXa‘P, (Ni), with «Va + aa'^l, (Nf)

this auxiliary vector is constant, fot any one confocal (e); the 
nent, t, in (Nj), is an arbitrary or variable scalar; and the coefficients, 
X and y, are two other scalar variables, which are however connected 
with each other by tho relation (N/).

(c). If O!ss.y fixed value be assigned to t, the equation (Ni) then re
presents the section made by a plane through a (p. 651), which sec
tion is an ellipse if tho surface ho an ellipsoid, but an hyperbola for 
either hyperboloid; and the cutting plane makes with the focal plane 
of a, a', or with the plane of the focal hyperbola, an angle = itsr.

(ff). If, on the other hand, we allow t to vary, but assign to 
X and y oxiy cosistant values consistent with (N/), the equation (Ni) 
then represents an ellipse (p. 651), whatever the species of the surface 
may be; x represents the distance of its centre from the centre o of the 
surface, measured along the focal line a-, y is the radius of a right 
cylinder, with a for its of which the ellipse is a sectiosi, or the 
radius of a eirele in a plane perpendicular to a, into which that ellipse 
can be orthogonally projected: and the angle JZjt is now the excentrie 
anomaly. Such elliptic sections of a central quadric may be otherwise 
obtained from the unifocal form (c) of thc equation of the surface ; 
they aro, in some points of view, almost as interesting as the known 
circular sections : and it is proposed (p. 649) to call them Centro- 
Eoeal Ellipses.

(y). And it is obvious that, by interchanging the iioo focal lines 
a, a’ in (<0) a iSeeond Exponential Transformation is obtained, with a 
Second System of eentro-focal ellipses, whereof the proposed surface is 
the locus, as well as of the first system (/),' but which have their 
centres on the line a', and are projected into circles, on a plane per
pendicular to this latter line (p. 649).

(Ji}. Equation of Confocals (p. 662),
(01)

Articie 408.—On Circumscribed Quadric Cones; and on the 
Umbilics of a central quadric,.......................................................... 653- 663

* Lectures on Quaternions (by the present author), Dublin, Hodges and 
Smith, 1853.
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(a). Equations (p. 663) of Cotijugate FoinU, and of Conjugate Di
rection!, with respect to the surface/p = 1,

/(P. P') = b (Pl), and/(p, p') = 0; (PO
Condition of Contact, o{ the same surface with the right line rp',

(/(p, p”) -1)»=(/p -1) (/p' -1); (Qi)
this latter is also a form of tho equation of the Oone^ with vertex at 
p', which is eircwnseribecl to the same quadric (/p = 1).

(fi). The condition (Qi) may also he thus transformed (p. 654), 
jypp'=a«i»<P/(p-p’), (Qi')

2’’being a scalar function, connected with/by certain relations of 
reciprocity (comp. p. 483); and a simple geometrical interpretation 
may be assigned, for this last equation.

(c). Tho Reciprocal Cone, or Cone of Normals a at p'.to the circum
scribed cone (Qi) or (Qf), may be represented (p. 665) by tho very 
simple equation.

F(,a-.Se'd)=l-, (Qi")
which likewise admits of an extremely simple interpretation.

(d), R. given riyZtZ line (p. 656) is touched by two confocals, and 
other known results are easy consequences of the present analysis ; 
for example (pp. 658, 659), the cone circumscribed to any surface of 
the system, from any point of either of the two real focal curves, is a 
cone of revolution (real or imaginary): but a similar conclusion holds 
good, when the vertex is on the third (or imaginary) focal, and even 
more generally (p. 663), when that vertex is any point ot tho (known 
and imaginary) developable envelope of the confocal system.

(c). A central quadric has in general Twelve Umbilies (p. 659), 
whereof only/o«r (at most) can be real, and which aro its into-sections 
with the three focal curves: and theseare ranged, three by 
three, on eight imaginary right lines (p. 662), which intersect the circle 
at infinity, and which it is proposd to call the Night Umbiliear Ge
neratrices of the surface.

(,f). These (imaginary) umbiliear generatrices of a quadric are 
found to possess several interesting properties, especially in relation 
\.es dao lines of curvatttre : and their locus, tor a confocal system, is a 
developable surface 663), namely tho known envelope (d) oi that 
system.

Article 409.—Geodetic Lines on Central Smrfaces of the Second 
Order,...........................................................•.................................... ,

(«). One form of the general differential equation of geodeties on 
an arbitrary surface being, by III. iii. 6 (p. 515),

Vvd*p = 0, (111), if Tdp = const., (Ri')
this is shown (p. 664) to conduct, for central quadrics, to the first 
integral.

xxix 
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p-»jE)-a = T»>yUdp = A = const'; (Si)

where P is thc perpendicular from the centre o on the tangent plane,
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and D is the (real or imaginary) seniidiameter of the surface, which 
is parallel to the tangent (dp) to the curve. The known equation 
of Joachimstal, P-D = const., is therefore proved anew; this last 
constant, however, being by no means necessarily real, if tho surface 
be wt an ellipsoiil.

(I). Deduction (p. 665) of a theorem of M. Chasles, that the tan- 
gents to a geodetic, on any one central quadric (e), touch also a eommoti 
confocal (ej); and of an integral (p. 666) of tho form,

ei sin* Vies cos* t’l = «, = const.,

which agrees with one of M. Liouville.
(c) . Without the restriction (E/), the differential of the scalar A 

in (Si) may be thus decomposed into factors (p. 666),
dA = d.J»-*7^» = 2SJ/d^-dp-^.Svdp-ld»p; (Si")

but, by the lately cited Section (III. iii. 6, p. 515), the differential 
equation of the second order,

Svdpd-p — O, (El”)
with an arbitrary scalar variable, represents thc geodetic lines on any 
surface ; the theorem (a) is therefore in this way reproduced.

(d) . But we see, at the same time, by (Si"), that the quantity h, 
or P.D = is constant, not only for thegeodetics on a central quadric, 
but also for a certain other set of curves, determined by thc differen
tial equation of the first order, Svdvdp 0, which will bo seen, in tho 
next Series, to represent the lines of curvature.

Article 410.—On Lines of Curvatui’c generally; and in particu
lar on such lines, for the Case of a Central Quadric,.........................

(a). The differential equation (comp. 409, (d)),
Sj/dvdp = 0, (Tj)

represents (p. 667) the Zih«s of Curvature, upon an ar5i7r«ri/ surface ; 
because it is a form oi this other equation,

' SrAvAp = 0, (T/)

which is the condition of intersection (or of parallelism), of (he normals 
drawn at the extremities of the two vectors p and p + Ap.

(5). The normal vector r, iq the equation (Ti), may be multiplied 
(pp. 673, 700) by any constant or variable scalar n, without any real 
change in that equation; but in this whole theory, of the treatment 
of Curvatures of Surfaces by Quaternions, it is advantageous to con
sider the expression Sr dp as denoting tho exact differential at some 
scalar function of p; for then (by pp. 486,487) we shall have an equa
tion of tho form,

dv = i>dp = a self-conjugate function e>( dp, (Hi)

which usually involves p also. For instance, we may write generally 
. (p. 669, comp. (R), p. xiii),

di' = ydp + VXdpp;

Pages.
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the scalar g, and the vcctoi-s X, ft being real, and being generally* func
tions of p, but not involving dp.

(c). This being understood, the Oeof directions o{ the tangent Ap, 
which satisfy at once tho general equation (Ti) of tho lines of curva
ture, and the differential equation Sj'dp.= 0 of the surface, are easily 
found to bo represented by tho two vector expressions (p. 6G9),

UVvX + UVrMi (Ti")
they arc thoroforo generally rectangular to each othor, as they have 
long been known to be.

(rf). The surface :7sfZ/”remaining still quite arbitrary, it is found 
useful to introduce tho conception of an Auxiliary Surface of the Se
cond Order (p. 070), of which the variable vector is p + p', and the 
equation is.

Sp'^p' = gp’^ + SKp’pp' = 1, (Hi")

or more generally = const.; and it is proposed to call this surface, of 
which the centre is at the given point p, the Index Surface, partly 
because its diametral section, made by the tangent plane to the given 
surface at p, is a certain Index Curve (p. 668), which may be consi
dered to coincide with the known “ indicatrice" of Dupin.

(«). The expressions (Ti") show (p. 670), that whatever the given 
surface may be, the tangents to the lines bf curvature the angles 
formed by the traces of the two cyclic planes of tho Index Surface 
on tho tangent plane to the given surface; these two tangents have 
also (as was seen by Dupin) tho directions of the axes of the Index 
Curv'd^. 668); and they are distinguished (as he likewise saw) from 
all other tangents to tho given surface, at the given point p, by the 
condition that each is perpendicular to its ouni conjugate, with respect 
to that indicating curve: the eqitation of such conjugation, of two 
tangents r and s', being in the present notation (see again p. 668),

Sr^r' = 0, orSr'5ir=0. (Hi'O

(/). New proof (p. 669) of another theorem of Dupin, namely 
that if a developable be circumscribed to any surface, along curve 
thereon, its generating lines are everywhere conjugate, as tangents to 
the surface, to the coiTesponding tangents to the curve.

(p). Caso of a central quadric; new proof (p. 671) of still another 
theorem of Dupin, namely that the curve of orthogonal intersection 
(p. 645), of two confocal surfaces, is a line of curvature on each,

(A). The system of the eight umbiliear generatrices (408, («)), of a 
central quadric, is the imaginary envelope of the lines of eurvatxire on 
that surface (p. 671); and roc/i such generatrix is itself an imaginary

• For the case of a central gtuidric, ff, X, ft are
t Gcncralli/ two ; hut in some cases more. It will soon he seen, tihat three 

lines of curvature pass through an umbilic oi a quadric.
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line of ctirvature thereon; so that through each of the twelve umbilics 
(see again 408, («)) there pass three lines of curvature (comp. p. 677), 
whereof however only one, at most, can he real: namely genera
trices, and tt principal section of the surface. These last results, which 
aro perhaps new, will he illustrated, qnd otherwise proved, in the 
following Series (411).

Article 411.—Additional illustrations and confirmations of the 
foregoing theory, for the case of a Central* Quadric ; and especially 
of tlie theorem respecting the Three Lines of Curvature through an 
Vmbilie, whereof two are always imaginary and rectilinear................. 674-679

(a). The general equation of condition (Ti'), or SrAvAp = 0, for 
the intersection of two finitely distant normals, may be easily trans
formed for the case of a qnadric, so as to express (p. 675), that when 
the normals at p and p' (or are parallel), the chord isp«r-
pendicular to its own polar.

(5). Under the same conditions, if the point f he given, tho locus 
of the chord ff’ is usually (p. 676') a jaorfric cone, ea,y (^C'); and there
fore the locus of the point is usually a quartic curve, with F for a 
double point, whereat <teo branches cA the curve cut each other at right 
angles, and touch the two lines of curvature.

(c) . If the point p be one of ^principal section of the given surface, 
hut not an umbilie, the cone C) breaks up into a, pair of planes, whereof 
owe, say (P), is the plane of the section, and the other, {jP'), is perpen
dicular thereto, and is not tangential to the surface; and thus the 
quartic (b) breaks up into a pair of conics through p, whereof one is 
tho principal section itself, and the other is perpendicular to it.

(d) . But if the given point f he an utnbilic, the second plane (J”) 
becomes a tangent plane to the surface; and the second conic (c) breaks 
up, at the same time, into a pair of imaginary^ right lines, namely 
the two umbiliear generatrices through p (pp. 676, 678, 679).

(e) . It follows that the normal fn afra real umbilie v (of an ellip
soid, or a douhle-sheeted hyperboloid) is not intersected by any other 
real normal, except those which are in the same principal section ; hut 
that this real normal pn is intersected, in an imaginary sense, hy all 
the rwrnuAs p'»', which are drawn at points p' of either of the two «««- 
ginary generatrices through tho real tmbilie p; so that each oi these

* Many, indeed most, of the results apply, without modification, to tho case of 
the Paraioloida ; and the rest can easily he adapted to this latter case, hy the con
sideration of infinitely distant points.. We shall tljQrefore often, for conciseness, 
omit tho term central, and simply speak of quadrics, or surfaces, of the second 
order.

t It is well known that the single-sKeeted hyperboloid, which (alone of 
central quadrics) has real generating Ihws, has at the same time no real umbilics 
(comp. pp. 661, 662).
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imaginary right lines is seen anew to be a line* of curvature, on tho sur
face (comp. 410, (/<)), because all tho normals p'n', at points of this 
lino, aro'situated in ono cotnmon (imaginary) normal plane (p. 676): 
and as before, there aro thus three lines of curvature through an wn- 
bilie,

(f) . These geometrical results aro in various ways deducible from 
calculation with quaternions; for example, a form of tho equation of 
the lines of curvature on a quadric is seen (p. 677) to become an 
identity at an umbilio (v U X): while the differential of that equation 
breaks up into two factors, whereof one represents tho tangent to tho 
principal section, while thc other (SXd*p = O) assigns the directions of 
tho two generatrices,

(g) . The equation of the cone (O), which has already presented 
itself as a certain locus of ohm'ds (b), admits of many quaternion 
transformations; for instance (see p. 675), it may be written thus,

SapAp S£p^p_ .
SaAp Sa'^p ’

p being tho vector of tho vortex p, and p 4- Ap that of any other point 
p' of the cono; while a, a* aro still, ns in 407, (a), two real focal lines, 
of which tho lengths are here arbitrary, but ot which the directions 
aro coKs/rtwZ, as before, for a whole confocal system.

(h) . This cone (C), or (Vi), is also the loctis (p. 678) of a system

♦ It might be natural to suppose, from tho known general theory (410, (c)) 
of tho iico rectangular directions, that each such generatrix pp’ is crossedpcrpoidi- 
cularly, at every ono of its non-mhiliear points p', by a second (and rfwZfwZ, 
although imaginary') line of curvature. But it is an almost equally well known 
and received result of modem geometry, paradoxical as it must at first appear, that 
when a right line is directed to the circle at infinity, as (by 408, .(e)) the gene
ratrices in question aro, then this imaginary line is everywhere perpendicular to 
itself. Compare tho Notos to pages 450, 672. Quaternions are not at all re
sponsible for tho introduetidn of thispprinciple into geometry, but they recognise 
and ewjoZoy it, under tho following very simple form: that if a mn-evancscent 
vector be directed tv the circle at infinity, it is an imaginary value of the symbol 01 
(comp. pp. 300, 459, 662, 671, 672); and conversely, that when this last symbol 
represents a vector which is not null, tho vector thus denoted is an imaginary line, 
which etds that circle. It may bo noted hero, that such is the case with the reci
procal polar of every chord of a quadric, connecting any tico umbilics which are not 
in otic principal plane': and that thus the jeiadroZic equation (XXI., in p. 669) 
from which tho two directions (410, (c)) can usually bo derived, becomes an iden
tity tor every umbilie, real or imaginary: as it ought to do, for consistency with 
tho foregoing theory of tho three lines through that umbilie. And as an addi
tional illustration of tho coincidence of directions of tho lines of curvature at any 
non-umbilicar point p' of an umbiliear generatrix, it may bo added that the cone 
of chords (0), in 411, (4),' is found to tovteh the quadric along that gencratriir, 
when its t’frZfx is at any such point i'*.

f
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Pages, 
of ihm rectangular lino ; and if it bo cut by any piano porpondicular 
to a side, and not passing through tho vortex, tho section is an equila
teral hyperUla,

(»). Tho same cone ((7) has, for time of its sirftfs rr', tho normals 
(p. 677) to tho three eonfocala (p. 644) of a given system which pass 
through its vertex r; and therefore also, hy 410, (y), tho iani/cnis 
to the tZiJVS lines of curvature through that point, which are tho inter- 
scetioiu o{ those three confocals.

O'). And because its equation (Vi) docs not involve tho constant 
Z, of 407, (a), (i), wo arrive at the following theorem (p. G78):—Jf 
indefinitely many quadrics, with a common centre o, have their asymq)- 
totie eones bicotifocal, and pass through a common point p, thcirnormals 
at that point have a quadric cone (C) for their locus.

Akticle 412.—On Centres of Curvature of Surfaces, .... 679-689
(o). If O' ho the vector of tho centre s of curvature of a normal 

section of an arbitrary surface, which touches ono of the two lines of 
curvature thereon, at any given point p, we have tho two fundamental 
equations (p. 679),

o=p+UXJp, (Wi), and JZ‘'dp t-dUj/s:©; 
whence

VdpdUp = 0, (Wi"), and ^+S^=0;
Ji op

the equation (W i") being a new form oi tho general differential equa
tion of tho of curvature.

(V). Deduction (pp. 680, 681,’ &o.) of some known theorems from 
these equations; and of some which introduce tho new and general 
conception of the Indese Surface (410, (<Z)), as well as that of thc 
known Index Curve.

(<!). Introducing the auxiliary Scalar (p. 682),
'Tv dv

in which r (11 dp) is a tangent to a lino of curvature, while dv = ^dp, 
as in (III), the two values of r, which answer to tho two rectangular 
directions (Ti") in 410, (c),are given (p. 680) by tho expression,

- TA/i. cos (Z —+ Z —(X'l)
A P

in which y, X, p are, for any given point p, the constants in the equa
tion (Di") of the index surface; tho difference of tho Zwo curvatures

therefore vani«A<;4 at an umbilie of tho given surface, whatever tho 
form of that surface may he: that is, at a point, whorc^v || X or || p, 
and where consequently tho index curve is a circle.

(ff). At any other point p of tho given surface, which is as yet en
tirely arbitrary, tho values of r -mxy ho thus expressed (p. 681),

vi = ar’, rs = aj'*, (^i")
ai, 82 being tho scalar semiaxes (real or imaginary) of tho index curve 
^defined, comp. 410, (<Z), by tho equations Svp' = 0).
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(«). Tho Quadraiie eguaiion, of 'which, f"! and »'2, or the uivm'm 
tquara oi tho two last temiaxea, ore the noU, may ho written (p. 683) 
under tho aymiolical form,

Sv'i (^ + r)-'r = 0; (Yx)
which may ho developed (same page) into this other form,

r’+ rSv"* X*'+ Sv’>/>»' = 0, (Y'l)
tho linear and vector functions, and x, heing derived from tho func
tion on tho plan of the Section III. ii. 6 (pp. 440, 443).

(jf ). Ilenoo, geticralhj, tho product ot the two ciirvattirea of a »«»•- 
/w# is expressed (same p. 683) hy the formula,

= Ti rt Tv* =—S — fj/ —; (Zi)

which will ho found useful in the following series (418), in connexion 
with tho theory of the JWeaatira of Curvature.

(p). Tho given surface heing still quite general, if we write 
(p. 686),

T - Udp, r' = IT (vdp), {ki), and therefore rr'=Uv, (A'j) 
so that T and r' aro unit tangents to tho linos of curvature, it is easily 
proved that

dr' = rSr'dr, (Bj), or that Vrdr*=0; (Bj)
this general parallelism of 3? to r heing geometrically explained, by 
observing that a line of curvature on any surface is, at the some time, 
a line of curvature on the developable normal surface, which rests upon 
that line, and to which r' or vr is Mor»»a?, if r bo <a«ye»<i«T to the 
line.

(Ji). If the vector of eiirvattire (889) of a lino of curvature be 
projected on the normal v to tho given surface, the projection 
(p. 686) is tho vector of curvature of tho normal section of that sur
face, which has tho same tangent r; hut this result, and an analo
gous ono (same page) for tho developable normal surface (y), are 
virtuaUy included in Mousnior’s theorem, which will ho proved by 
quaternions in Series 414.

(*■). The vector c of a centre s of curvature of tho given surface, 
answering to a given point p thereon, may (by (Wi) and (Xi)) bo ex
pressed by tho equation,

c=:p + f’»’;
which may bo regarded also as a general form of tho Vector Equation 
of the Surface of Centres, or of tho of the centre s: the vari- 

• able vector p of tho point p of the given surface-being supposed (p. 601) 
to bo expressed ns a vector function of two independent and scalar 
variables, whereof therefore v, r, and a become also functions, 
although tho two Inst involve an ambiguous sign, on account of tho 
Tivo Sheets of tho surface of centres.

(y). Tho at 8, to what may ho called the First Sheet, has
the direction of tho tangent r to what may (on tho same plan) be 
called thc First Line of Curvature at p; and tho vector w.of the point

XXXV
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corresponding to s, on the corresponding sheet of tho Reciprocal (comp, 
pp. 507, 508) of the Surface of Centres, has (by p. 684) the expres
sion.

v = r(SpT)-'; (Da)

which may also bo considered (comp. (0) to be a form of the Veeior 
Equation oi that Reciprocal Surface.

(k). The vector v satisfies generally (by same page) tho equations 
of reciproeity,

Sv<T=S<rw = l, Sv^<r = 0, SadvsO, (D2')

Sa, Iv denoting any infinitesimal variations of tho vectors a and w, 
consistent with the equations of the surface of centres audits recipro
cal, or any linear and vector elements of those two surfaces, at two 
corresponding points; vo have also the relations (pp. 684, 685),

Spv=l, Sru = 0, Sj/u^usO. (Da")
(Z). Tho equation Sv (u - p) = 0, or more simply,

Sveu = 1, (Da)
in which w is a variable vector, represents (p. 684) tho normal plane 
to the Jirst line {j) o{ curvature at r; or tho tangent plane at s to tho 
first sheet of the surface of centres: or finally, tho tangent plane to 
that deeelopafjle normal surface (y), which rests upon the line oi 
curvature, and touches Ute first sheet along a certain curve, whereof we 
shall shortly meet with an example. And if v bo regarded, comp, (i), 
as a vector function of two scalar variables, tho envelope of the variable 
plane (E-) is a sheet of tlte surface of centres; or rather, on account of 
tho ambiguous sign (f), it is that surface of centres itself; while, in 
like manner, tho reciprocal surface (J") is tho envelope of this oMer 
planoi

Setu = 1. (D3*)
(m) . Tho equations (Wi), (Wf) give (comp, the Noto to p. 684),

d(T = dj?.Dv; (Fo)

combining which with (Cj), we see that the equations (Hi) of p. xxv. 
aro satisfied, when the derived vectors p' and o' are changed to tho cor
responding differentials, dp and da. The known theorem (of Mongo), 
that each line of Curvature is generally an involute, with tho corre
sponding Curve of Centres for one of its evolutes (400), is therefore in 
this way reproduced: and the connected theorem (also of Monge), 
that this evolute is a geodetic on its own sheet of tho surface of centres, 
follows easily from what precodes.'

(n) . In tho foregoing paragraphs of this analysis, tho given sur
face has throughout been arbitrary, or general, ns stated in (<Z) and 
(y). But if wo now consider specially the case of a central quadric, 
several less general but interesting results arise, whereof many, but 
perhaps not all, are known ; and of which some may be mentioned 
here.
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(0). Supposing, then, that not only dr=0dp, hut also v=aud 
Sp’' =/P = Iiidex Surface (410, (rf)) becomes simply (p. 610} the 
given surface, with its transported from 0 to p ; whence many 
simplifications follow.

(71). For example, the semiaxes ai, 02 of the index curve aro now 
qqual (p. 681) to tho semiaxes of tho diametral section of tho given 
surface, made hy a piano parallel to the tangent plane; and Tr^is, as 
in 409, tho reciprocal JP-^ of thc perpendicular, fi?om the centre on this 
latter plane; whence (by (Xi) and Xf')) those known expressions 
for tho two* curvatures result:

5r‘=Jhi-«; J?s-> = Pa2-». (Gs)

(^). Ilonco, hy (e), if a «cm, surface bo derived from a given cen
tral quadric (of any species}, as tho locus of the extremities of normals, 
erected at tho centre, io the planes of diametral sections of the given 
surface, each such normal (when real) having the length of one ai tho 
semiaxes oi that «cc<w», the equation of this new surface^ admits 
(p. 683) of heing written thus:

Sp (0 - p-»)-ip = 0. (02)
(r). Under tho conditions (0), the expression (C2) for a gives (p. 684) 

the two converse forms,
<r = »--i(0 + r)p, (I2), p=r(0 + r)-‘<r;

whence (pp. 684, 689),
v = r(0 + r)->0o-, (J2), <r = (0-*+r<) v;

(I2’)

(J/) 
and therefore (p. C89), hy (d"), (p}, and hy tho theory (407) of con
focal surfaces,

01 = ^2 = ^2”' (K2)

if 02 he formed from 0 hy changing tho somiascs to a2b2C2; it 
being understood that the given quadric (rtis) is outhy the two confo
cals (aiJidi) and (a252‘’2)( in tho first and second lines oi curvature 
through the given point P : and that oi is here the vector of thatyfrj< 
centre s of curvature, which answers to the frst line (comp. (7). Of 
course, on tho same plan, we have the analogous expression.

* Throughout tho present Series 412, wo attend only (comp, (a)) to the curva
tures of the two normal sections of a surface, which have the directions of the two 
tines of curvature: these heing in fact what are always regarded as the twoprinei- 
pat curvatures (or simply as the two curvatures) of the surface. But, in a shortly 
subsequent Scries (414), the more general case will he considered, of tho curva
ture of ani/ section, normal or oblique.

t tVhen tho given surface is an ellipsoid, tho derived surface is tho colehratcd 
JFdve Surface of Fresnel: which thus has (112) for a symiolicat form of its equa
tion. When the given surface is an hyperboloid, and a semiaxis of a section is 
imaginary, the (scalar and now positive) square, of the (imaginary) normal erected, 
is still to he made equal to the square of that somiaxis.
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(Ka)=
for tho vector of tho second centre.

(s) . These expressions for tn, 1x2 include (p. 689) a theorem of Dr.
Salmoh, namely that the of curvature of a given quadric at a
given point arethepoZ^s of the tangent plane, with respect to tho two 
confocals through that point; and either of them may bo regarded, 
by admission of an ambiguous sign (comp. (/)), as a new Vector Form* 
tsi the Fqualion of the Surface of Centres, for tho case tfi} of a given 
f«»<ro7 quadric.

(t) . In connexion with the same expressions for oi, 1x2, it may bo 
observed that if n, rs be tho corresponding values of the auxiliary 
scalar r in (c), and if r, t stiU denote the unit tangents (y) to tho 
first and second lines of curvature, while ahe, and «2i2<’2 retain 
their recent significations (z), then (comp. pp. 686, 687, see also p. 
652),

(Ms)

n =fr =fUip Os’)"’ = &o., , (Ls)
and r2=/T'=jfU»'dp=(a* —oi’)"* = &c.; (La')
thia association of ri and oi with <12, &o., and of r2 and 02 with di, 
&c., arising from the circumstance that the tangents r and r* have re
spectively the directions of the normals V2 andvi, to the two confocal 
surfaces, (026202) and («iJiCj).

(«). By the properties of such surfaces, tho scalar here called r2 is 
therefore constant, in the whole extent of a first line of curvature; 
and the same constaneg of r2, or tho equation,

d/Dj/dp = 0, 
may in various ways he proved by quaternions (p. 687).

(a). Writing simply r and r' for n and r2, so that r* is constant, 
but r. variable, for a first line eA curvature, while conversely r is con
stant and z' variable for a line, it is found (pp. 684, 685, 586), 
that the scalar equation of tho surface of centres (») may be regarded 
as the result of tho elimination of r-* between the two equations, 
■ 1 =3.0(1+ z-'^)-2^(r, (N2), and 0=S.<r (l+r-'ji)"®^’<r; (N2’) 
whereof the latter is the derivative of the former, with- respect to the 
scalar r'. It follows (comp. p. 688), that the First Sheet of thc 
face of Centres is touched hy an Auxiliary Quadrie (No), along a Q,uartio 
Curve (No) (No'), which curve is the Locus of the Centres of First Cur
vature, for all the points of a Line of Second Curvature; the same 
sheet being also touched (see again p. 688), along tho same curve, by 
tho developable normal surface (I), which rests on thc same second Uno; 
with permission to interchange the words, first and second, through
out tho whole of this enunciation.

(w). Tho given surface being still a central quadric (0), tho vec
tors p, a, V can bo expressed as functions of v (comp. (7) (X) (/)),

* Dr. Salmon’ a result, that this surface of centres is of thc twelfth degree, may 
be easily deduced from thia form.
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and conversely tho latter can be expressed as a function of any one of 
tho former; we have, for example, tho reciprocal equations (p. 685),

a = (1 + r*^)* ^-iv, (O2), and » = (1 + v'^)"* i/ht ; (O^)
from which last tho formula (N2) may be obtained anew, by observ
ing (/;) that See = 1. Hence also, by (r), we can infer tho expres- 
■sions,*

p = ■’+»“*)’'=’’ (R0> u = ti'p=2'2: I (RsO
and in fact it is easy to see otherwise (comp. p. 645), that vg || t || v, 
and Spva = 1 = Spu, whence V2= « as before.

(«). More fuUy, thc hoc sheets ai the reciprocal of tho surface
of centres may have their separate vector equations written thus,

V, = ^g p = JZ2, »3 - 5(>ip = ; (P3')
and tho scalar equation^ oi this reciprocal sttrfaee itself, considered 
as including 5o/A shoots, may (by page 686) be thus writton, tho func
tions/and jF being related as in 408, (5),

v^-(_Fv -l)fv, (Qj)
with several equivalent forms; one way of obtaining this equation 
being tho elimination of r between the two following (same p. 686):

JV+»->v« = 1,(Q2');/u + »-v»=0. (Qs")
(y). Tho two last equations may also be written thus, for tho/)'«Z 

sheet of tho reciprocal surface,
Jswi^l, (Rj), and/Um = »', 

in which (comp. pp. 686, 689),
JFau = S ujia "’u = Su (^~* +»^*) v;

(R2')

(Rs") 
and accordingly (comp. pp. 483, 645), wo have J2V»=J’i<= 1, and 
/Vv2=/r=r.

(z). For a line of second eureature oa tho given surface, the scalar 
»• is conatonf, as before; and then the two equations (Q2'), (Qa"), or 
(II2), (R'2), represent jointly (copip. tho slightly different enunciation 
in p. 688) a certain quartic curve, in which the quadric reciprocal (Ro), 
of tho confocal (pg Ig e^, intersects the first sheet (y) of the Se- 
eiprocal Surface (Q3); this quartic curve, being at tho same time tho 
intersection of the qwdric surface (Q2') or (R2), with the quadric cone 

tit (R2'), which is biconcyelie with the ytvcw quadrie,fp=i.

* Tho equation v = V2, = the normal to the confocal (ag eg) at n, is not ac
tually given in the text of Series 412; but it is easily deduced, as above, from 
tho formulce and methods of that Scries.

t The equation (Q2) is ono of the fourth degree; and, when expanded by co
ordinates,' it agrees perfectly with that which was first assigned by Dr. Booth 
(see a Note to p. 685), for the Tangential Eqnation of tho Surface of Centres of a 
quadric, or for the Cartesian equation of the Eeciprocal Surface.
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Asticle 413.—On the Measure of Curvature of a Surface, . . 689-093. 
Tho object of this short Scries 413 is tho deduction by quaternions, 

somewhat more briefly and perhaps more clearly than in tho Lectures, 
of thoi principal results of Gauss (comp. Noto to p. 090), respecting 
the and questions therewith con
nected.

(«). Let p, Pi, P2be any three near points on a given but arbitrary 
sttr/aec, and n, si, n- the three corresponding points (near to each other) 
on tho unit sphere, which arc determined hy tiio parallelism ottho radii 
OH, OHi, OHj to the normals px, piNi, P2 N2; then the areas of the two 
small triangles thus formed will bear to each other the ultimate ratio 
p. 090),

AnRiH2 V.dVp^Uj/ „ 1 , 1 
hm. - -------= - -----=- S — 4/ —

whence, with Gauss’s definition of the wcasi/rc of curvatttre, as tho 
xdtimate ratio of corresponding areas on surface and sphere, we have, by 
thc formula (Zi) in 412, (/), his fundamental theorem,

Measure of Curvature = JJi 7f2"*,
= Lroduet of the two Principal Curvatures of Sections,

(i). If thc vector p of the surface bo considered as a function of 
two scalar variables, i and u, and if derivations with respect to these 
be denoted by upper and lower accents, this general transformation 
results (p. 691),

Measure of Curvature = 8—S — - (S—|,
V V \ V I

in which v = ;
with a verification for the notation pqrst of Monge.

(c) . Tho square of a linear element ds, of the given but arbitrary 
surface, may bo expressed (p. 691) as follows:

ds2 = (Tap2 =) «d<2 + 2/d<dM+g^tfi; (U2)
and with tho recent use (J) of accents, the measure (T2) is proved 
(same page) to be an explicit function of the ten scalai's,

e,f,9', and (U/)

the form of this function (p. 692) agreeing, in all its details, with the 
corresponding expression assigned by Gauss.*

(d) . Hence follow at once (p. 692) two of the most important 
results of that great mathematician on this subject; namely, that 
every Deformation of a Surface, consistent with tho conception of it ns 
an infinitely thin and fiexihle but inextensible solidf leaves unaltered.

(S»)

(S2')

(T2)

(T2')

* References are given, in Notes to pp. 690, &c. of the present Series 413, 
to tho pages of Gauss’s beautiful Memoir, “ Disquisitioncs generates circa SajicrJl- 
ties Citrvas" as reprinted in tho Additions to Liouvillc’s Monge.
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(V2)

(v;)

1st, the 2feasure of Ctirvature at any Point, and Ilnd, the ToMl 
Curvature of any Area : this last heing the area o{ the wnzsjwwdiny 
portion (a) of the unit-sphere.

(f). By a suitable choice of t and as certain geodetic co-ordinates, 
the expression (U2) may be reduced (p. 692) to thc following,

d«2 = dz’ + ««d»’; (Uj")
where < is the length of a geodetic arc ap, from a fixed point A to a 
variable point r of the surface, and u is the angle bap which this 
variable arc makes with a fixed geodetic ab : so that in the immediate 
neighbourhood of a, wo have w = t, and n' = = 1.

(/). The general expression (c) for the measure of curvature to.kos 
thus the very simple form (p. 692),

2Jr’Jf2"t - — n~Ut"=—;

and wo have (comp. (<f)) th® equation (p. 693),
Total Curvature of Area APa = Am—j w'dn;

tills area being bounded by two geodeties, kv and aq, which make with 
each other an angle = Am, and by an are pa of an arbitrary curve on 
the given surface, for which t, and therefore may be conceived to 
be a given function of m.

(^). If this arc pq be itself e, geodetic, and if we denote by v the 
variable angle which it makes at p with ap prolonged, so that tan v' 
= «dM:d?, it is found that d»=-M'dM; and thus the equation (V2') 
conducts (p. 693) to another very remarkable and general theorem of 
Gauss, for an arbitrary surface, which may be thus expressed.

Total Curvature of a Geodetic Triangle abc = a+b+c — w, (V2") 
= what may be called the Spheroidal Excess of that triangle, the 
area of the unit-sphere being represented by eight right angles : 
with zA’ienswns to Geodetic Polygons, and modifications for the case of 
what may on the same plan be called the Spheroidal Pefeet, when the 
tivo curvatures of tho surface are oppositely directed.

Article 414.—On Curvatures of Sections (Normal and Oblique) 
of Surfaces; and on Geodetic Curvatures,........................................ 694-698

(o). The curvatures considered in the two preceding Series hav
ing been those of the principal normal sections of a surface, the present 
Scries 414 treats briefly the more general case, whore the section is 
made by an arbitrary plane, such as the osculating plane at p to an 
arbitrary curve upon the surface.

(4). The vector of curvature (389) of any such curve or section 
being (p — (c)-i = D»’p, its normal and tangential components ace found 
to be (p. 694),

(p-o)-l=v->S —= (p-oi)-i cos’«+ (p- <r2)'' ein’ v, (W2) 

and (p —$)■*= »'"’dp’>Si'dp"'d’p; (^^2)
the former component being the Vector of Nbrutal Curvature of the 

g
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Sur/acef for the direction of the tangent to tho curve : and the latter 
heing the Vector of Geodetic Curvature of the same (or section).

(e). In the foregoing expressions, <r and ? are the vectors of the 
points 8 and x, in which the axis oi the osculating circle to the curve 
intersects respectively the norma? and tho tangent plane to the sur
face (p. 694); 8 is also tho centre of the sphere, which osculates to 
the surface in the direction dp of the tangent; at, a2 are tho vectors 
of the two centres si, Sj, of curvature of the surface, considered in Se
ries 412, which are at the same time thc centres of the two osculating 
spheres, of which the curvatures are (algebraically) the greatest and 
kast: and v is the angle at which the curve here considered crosses 
the first line of curvature.

(fi). The equation (W2) contains a theorem of Euler, under tho 
form (p. 695),

.R'i = JJr'cos®«' +Jf2'*sin*v; (W2")
it contains also Meusnier’s theorem (same page), under tho form 
(comp. 412, (/*)) that tho vector of normal curvaittre (5) of a surface, 
tor any given direction, is the projection on the normal v, of the vector 
of obligtte curvature, whatever the inclination of tho plane of the sec
tion to the tangent plane may he.

(o'). The expression (W2'), for the vector of geodetic curvature, ad
mits (p. 697) of various transformations, with corresponding expres
sions for the radius T(p — ?) of geodetic curvature, which is also the 
radius of plane curvature of the developed curve, when the developable 
circumscribed to the given surface along the given curve is unfolded 
into a plane : and when this radius is constant, so that the developed 
curve is a circle, or part of one, it is proposed (p. 698) to call the given 
curve a Didonia (as in the Lectures'), from its possession of a certain iso- 
perimetrical property, which was first considered by M. Delaunay, 
and is represented in quatemidns by the formula (p. 697),

e JS(Uv.dpJp) + JTdp = 0; 
or <r>dp = V('D'j/.d'D’dp), 

by the rules of what may be called the Calculus of Variations in Qua
ternions : c being a constant, which represents generally (p. 698) 
the radius of the developed circle, and becomes infinite iot geodetic 
lines, which are thus included as a of Didmias.

ksncisi 415.—Supplementary Remarks,................................... 698-706
(a). Simplified proof (referred to in a Note to p. xii), of the gene

ral existence of a system otthreerealandrectangular directions, which 
satisfy the vector equation Vp^p = 0, (P), when is a linear, vector, 
and self-conjugate function; and of a system of three real roots of the 
cubic equation JI/=0 (p. xii), under the same condition (pp. 698- 
700).

(5). It may happen (p. 701) that the differential eguafion,

•SvdpsO,

(Xa) 
(X'.)

(V2)
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is integrable, or represents a system of surfaces, without thc er7)««sion 
Svdp being an exact differential, as it was in 410, (b). In this case, 
there exists some scalar factor, n, such that Snrdp is the exact diffe
rential of a scalar function of p, without the assumption that this vec
tor p is itself a. function of a scalar variable, Z; and then if wo write 
(pp. 701, 702, comp. p. xxx),

dv = ^dp, d.Mv = <4dp, (Ya')
this «<w vector function <4 will be self-eoryugatc, although the function 
g> is noZ such as it was in the equation (Ui).

(c). In this manner it is found (p. 702), that the Condition* of In
tegrability of the equation (Ya) is expressed by the very simple for
mula.

CONTENTS.

Syv=0; (Yj”)
in which y is a vector function of p, not generally linear^ and deduced 
from on the plan of the Section III.Ju. 6 (p. 442), by the relation, 

0dp — ijt’ip ydp; (^2*)
being the conjugate oi but here equal to it.
(rf). Connexions (pp. 702, 703) of the iiixed Transformations in 

tho last cited Section, with the known Modular and Umbiliear Gene
rations vt a surface of the second order.

(e). The equation (p. 704),
T(p-V./3Vy«) = T(«-V.yV/3p), (Za)

in which a, 13, y aro any three vector constants, represents a central 
quadric, and appears to offer a new mode of generation^ oi such a sur
face, on which there is not room to enter, at this late stage of the 
work. ,

(/). The vector of tho centre of the quadric, represented by the 
equation fp — 2S«p = const, with /p = Sp^p, is generally k= ^-*£ 
= »»'*»{'* (?• 704): Cits® o{ paraboloids, and of cylinders.

(p). The equation (p. 706),

S?p/p2''p + Sp4>p + Syp + C=0, (Zj')

represents the general surface of the t/wW degree, at briefly the General 
Cubic Surface;' C being a constant scalar, y a constant vector, and q, 
q*, f three constant quaternions, while ^p is here again a linear, 
vector, and self-conjugate function of p. -

(/t). The General Cubic Cone, with its vertex at the origin, is thus 
represented in quaternions by the monomial equation (same page).

* It is shown, in a Note to p. 702, that this monomial equation (Y’a) bc- 
conios, when expanded, the known equation of six terms, which expresses the con
dition of integrability of the differential equation pdx + giy + nls = 0.

f In a Note to p. 649 (already^ mentioned in p. xxviii), the render will find 
references to theifcZnm, for several different generations of the ellipsoid, derived 
from quaternion forms of its equation.
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S?Pj'P2"p = 0- (Z2")
(«). Screw Surface, Screw Sections (p. 705); Shew Centre at Shew

Arch, with illustration by a diagram (Fig. 85, p. 706).

Section 8.—On a few Specimens of Physical Applications
of Quaternions, with some Concluding Remarks, 707 to the end.

Ahticie 416.—On the Statics of a Eigid Body,................... 707—709
(a). Equation of ^Equilibrium,

(Aj) 
each a is a rector of application ; ft the corresponding vector of applied 
force; y an arbitrary vector: and this one quaternion formula (A3) 
is equivalent to the system of the six usual scalar equations 
(A=0, r= 0, A= 0, z=0, o, 2v= o).

(A) When S(2^.2Vaj3) = 0, (B3), hut Sj3 = 0, (C3) 
the applied forces have an resultant = ^ft, w'hich acts along
the line whereof (A3) is then the equation,' with y for its variable 
vector.

(c) . When the condition (C3) m satisfied, the forces compound 
themselves generally into one couple, of which the rtZ!4 = 2Va/3, what
ever may he the position of the assumed origin 0 of vectors.

(d) . When 2Va/3 = 0, (D3), with or without (C3),
tho forces have no tendency to turn the body round that point 0 ; and 
when the equation (A3) holds good, as in («), for an arbitrary vector 
y, the forces do not tend to produce a rotation* round any point c, 
so that they completely balance each other, as before, and both the 
conditions (C3) and (D3) are satisfied.

(e) . In the general case, when neither (C3) nor (D3) is satisfied, if q 
be an auxiliary quaternion, such that

}2/3 = SVa/3, (E3)
then Vj is the vector perpendicular from the origin, on the central 
axis oi tho system; and if c = Sq, then cS/S represents, both in quan
tity and in direction, the axis of the central couple.

{ff If Q be another auxiliaiy quaternion, such that
QS/3 = 2a/3, (F3)

withT2;3>0, then SQ = e = central moment total force ;

* It ia easy to prove that tho moment of the forx j3, acting at tho end of tho 
vector a from o, and estimated with respect to any unit-line i from tho same ori
gin, or the energy with which the force so acting tends to cause the body to turn 
round that line i, regarded ns a fixei axis, is represented hy tho scalar, - Sta/3, or 
St''a/3; so that when the condition (D3) is satisfied, the applied forces have no 
tendency to produce rotation round any axis through the origin: which origin 
becomes an arbitrary point c, when the equation of equilibrium (A3) holds good.
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and VQ is tho vector y of a point c upon the central axis which does 
not vary with the origin o, and which there aro reasons for considering 
ns tho Central JCoint of the system, or as the general centre of applied 
forces : in fact, for tho case of parallelism, thia point c coincides with 
what is usually called tho centre of parallel forces.

(y). Conceptions of the Total UToinent ^ap, regarded as heing 
nerally a ; and of tho Total Tension, — 'SaP, considered as
a scalar to which that quaternion with its sign changed reduces itself 
for tho case of equilibrium (a), and of which, the value is in that 
case independent of the origin of vectors.

(A). Principle of Virtual Velocities, 
^SpSa=.O,

Article 417.—On tho Dynamics of a Rigid Body,
(o). General Equation of Dynamics,

SmS (Di’n — $) Jn = 0; (H3)
tho vector S representing the accelerating force, or the moving 
force, acting on a particle m of which the vector at the time t is a; 
and 5a heing any infinitesimal variation of thia last vector, geometii- 
cally compatible with the connexions between the parts of the 
system, which need not here be a rigid one.

(5). For the case of a free system, we may change each 5a to £ + Via, 
t and t being any two infinitesimal vectors, which do not change in 
passing from one particle m to another; and thus tho general equa
tion (H3) furnishes two general vector equations, namely,

2»i(Dra- 5) = 0, (I3), and SwiVa (Di’a-5) =0 ; (J3)
which contain respectively the law of the motion of the centre of 
gravity, and the law of description of areas.

(c). It a Aorfy be supposed to be rigid, and to have a fixed point 
o, then only tho equation (J3) need bo retained; and we may write, 

D<a = V<a, (K3)
(being here & finite vector, namely the Vector _fi.xis of Instantaneous 
Potation : its versor TTj denoting the direction of that axis, and its 
tensor Ti representing the angular velocity of tho body about it, at the 
time t.

(</). When the forces vanish, or balance each other, or compound 
themselves into a single force acting at the fixed point, as for tho case 
of a heavy body turning freely about its centre of gravity, then 

2wVaJ = 0, (L3); and if we write, ^t=2??iaYat, (M3) 
so that again denotes a linear, vector, and self-conjugate function, 
wo shall have the equations,
^D(i + Vt^i=0, (N3); lAn-y = 0, (O3); S«^.t=A3; (P3)
whence Sty + A2 = 0, (Qj^ and ^>Dit = Vty; (R3) 

tho vector y being what we may call the Constant of Areas, and the 
scalar Zt* being the Constant of Living Force.

xlv 
Pages.

709-713
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(e). One of Poinsot’s representations of the motiM of a body, under 
the circumstances last supposed, is thus reproduced under the form, 
that the Ellipsoid of Living Force (Ps), with its centre at the fixed 
pointed, rolls without gliding on the fixed plane (Q3), which is parallel 
to the Plane of Areas (S<y = 0) ; the variable semidiameter of contact, 
t, being the vector-axis (c) of instantaneous rotation ot the body.

(/). The JfoMirni of Inertia, with respect to any axis i through o, 
is equal to the living force (/**) divided by the sjwara (Tt’) of tho 
semidiameter of the ellipsoid (Ps), which has the direction of that axis; 
and hence may he derived, with the help of the first general construc
tion of an ellipsoid, suggested by quaternions, a simple geometrical 
representation (p. 711) of the sqztare-root of the moment of inertia 
of a body, with respect to any axis ad passing through a given point 
A, as a certain right line bd, if CD = ca, with the help of two other 
points B and c, which arc likewise fixed in tho body, but may bo 
chosen in more ways than one.

(y). A eone of the second degree,

Stv = 0, (S3), with V = — h-ifih, (T3)

is fixed in the body, but rolls in on that other eone, which is the 
locus oi the instantaneous axis t; and thus a second representation, 
proposed by Poinsot, is found for the motion of Ute body, as the rolling 
of one cone on another.

(/j). Some of Mac CuUagh’s results, respecting the motion here 
considered, are obtained with equal ease by the same quaternion 
analysis; for example, the line y, although fixed in space, describes 
in the body an easily assigned emie of the second degree (p. 712), which 
cuts the reciprocal ellipsoid,

^yF^y — h^, (Us)
in a certain sphero-conic: and the cone of normals to the last men
tioned cone (or the locus of the line 1 + h^y'f) rolls on the plane of areas 
(S«y=o)-

({). The Three (Principal') Axes of Inertia of the body, for tho 
given point 0, have the directions (p. 712) of the three rectangular and 
vector roots (comp. (P), p. xii.,.and the paragraph 415, (a), p. xlii.) 
of the equation

Vt^t= 0, (V3), because, for each, D(i = 0 ; (Xa')

and if A, jB, <7 denote the three Principal Momcn/s of inertia corre
sponding, then the Symbolical Cubic in (comp, the formula (N) in 
page xii.) may be thus written,

(q, +A) (q, + j5) (^ + C-) = 0. (W3)

0). Passage (p. 713), from moments referred to axes passing 
through a given point o, to those which correspond to respectively 
parallel axes, through any other point Q of the body. .
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Article 418.—On the motions of a System of Bodies, considered 
as free particles m, m',.. which attract each other according to tho 
law of thc Inverse Square....................................................................

(а) . Equation of motion of the system,
2»iSD,2aJa + SP= 0, (X3), ifP=2H!;«'T(a-a')-'; (¥3) 

a is the vector, at the time t, ot the mass or'particle »»; P is the j>o- 
tential (or force-function); and the infinitesimal variations ia are ai> 
bitrary.

(б) . Extension of the notation of derivatives,
SP='S.^(fiaF.Sa). (Z3)

(c). The differential equations of motion of the separate masses 
m,. . become thus,

«iD?a + DoP= 0,. •; (A4)
and the laws of tho centre of gravity, of areas, and of living force, 
aro obtained under the forms,

SjnDitt = (B4); 2«»VoDm = y;
and 2* = - jSm (D(a)» == P Jr H-,
P, y being two vector constants, and H a scalar constant

(rf). Writing,

P=j^(P+r)dZ, (El), and F=

xlvii 
Pages.
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(Cl) 
(DO

^^2Tit^F+tH, (Fl) 

F may bo called the Principal* Function, and V the Characteristic 
Function, oi the motion of the system; each depending on the final 
vectors of position, a, a', ., and on the initial vectors, no, a'o, . . ; but 
F depending a/so (explicitly) on the time, t, while F (= the Action") 
depends instead on the co»sZa«< S of living force, in addition to those 
final and initial vectors; the masses m, m’,. . being supposed to be 
known, or constant.

(e) . We are led thus to equations of the forms,.
«»D<a + DoE=0, . . (64); — wD^a + Da(j2?= 0,. . (H4);

(D4F)=-.B-, - (I4)
whereof the system (Gi) contains what may be called the Interme
diate Integrals, while the system (H4) contains the Final Integrals, 
of the differential of Motion (Aj).

(f) . In like manner we find equations of the forms, 
DoF=-»»Dia, .. (J4); D„^F=OTDoa, . . (K4); DsF=t; (L4) 
the intermediate integrals (fi) being here the result of the elimination

♦ References aro given to two Essays by tho present writer, “ On a General 
NelHaA in Dynamics," in the Philosophical Transactions for 1834 and 1886, in 
which tho^eZiow (V), and a certain ether function (S), which is here denoted by F, 
'fiGtfi called, as above, the Characteristic and Principal Functions. But the ana
lysis here used, as being founded on the Calculus of Quaternions, is altogether 
unlike the analysis which was employed in those former Essays.
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of H, between the system (J4) and the equation (Lj); and the final 
integrals, of the same system of differential equations (Aj), being now 
(theoretically) obtained, by eliminating tho same constant S’between 

' (Ki) and (L|).
(gf The functions A* and F are obliged to satisfy certain Partial 

Differential Equations in Quaternions, of which those relative to tho 
final vectors a, a',.. are the following,
(D«A')-Jj:,»-i(D„r)s=P, (M4); i2)«-i(D„r)» + P+J7 = 0; (N4)
and they are subject to certain geometrical conditions, from which 
can be deduced, in a new way, and as new verifications, tho law of mo
tion of the centre of gravity, and the law of description of areas.

(/t). General approximate expressions (p. 717) for the functions 
and F, and for their derivatives Hand t, for the case of a short mo

tion of the system.
Aktiolb 419.—On the Relative Motion of a Binary System ; and 

on the Law of the Circular Hodograph,................................................. 717-733
(a). Tho vector of one body from the other being a, and the dis

tance being r (= Ta), while the sum of the masses is M, tho differen
tial equation of the relative motion is, with the law of the inverse 
square,

D’a = ; (O4)

D being here used as a characteristic of derivation, with respect to the 
time t.

(6). As a first integral, which holds good also for any ol/ier law 
of ctMiral force, yre have

VaDrt =fi=0. constant vector; ' (Pi)
which includes the usual laws, of the constant plane (-*- /y), and 

of the constant areal velocity = JT/3

(c) . Writing r = Da = vector of relative velocity, and conceiving this 
new vector r to he drawn from that one of the two bodies which is 
here selected for the origin 0, the locus of the extremities of the vector 
T is (by earlier definitions) the Hodograph of the Relative Motion ; 
and this hodograph is proved to be, for theZaieo/’ the Inverse Square, 
a Circle.

(d) . In fact, it is shown (p. 720), that for any law of central force, 
thc radius of curvature at tho hodograph is equal to the force, multi
plied into the square of the distance, and divided hy tho doubled areal 
velocity; or by tho constant parallelogram c, under the vectors (n 
and r) of ^osiZien and velocity, or of the orbit and the Iwdograph.

(r). It follows then, conversely, that tho law of tho inverse square 
is the only law which renders the hodograph generally a circle ; so 
that the law of nature may be characterized, as the Law of the Circular 
Hodograph; from which latter law, however, it is easy to deduce 
the form of thc Orbit, as a conic section with a focus at 0.
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(/). If the semiparaineter of this orJiZ he denoted, as usual, hy 
p, and if h ho tho radius ot the hodograph, then (p. 719),

A = lfc-i = cj,-i = (Jf7>->)l. (Qi)
(y). Tho orbital exeenirioihj o is also the hodographio cxcentri- 

city, in the sense that ch is the distance of the centre ii of the hodo
graph, from tho point o which is hero treated as the centre of force.

(A). Tho orbit is' an ellipse, when the point o is interidr to tho 
hodographio circle (e < 1); it is a parabola, when o is on the cireu>n~ 
fercnce ot that circle (»= 1); and it is an hyperbola, when o is an ex
terior point (p> 1). And in all these cases, if wo write

o=p(1-«’)-i = <!A-'(1-«’)->, (Ri)
tho constant a will have its usual signification, relatively to tho 
orbit.

(t). Tho quantity jrr-’ being here called tho rotential, and de
noted by P, geometrical constructions toe this quantity P are assigned, 
with the help of the hodograph (p. 723) ; and for tho harmonic mean, 
2Jf(»’ + r')‘’> between the fio'o potwitwZs, Pand P', which answer to 
tho extremities t, t' of any proposed chord oi that circle: all which 
constructions are illustrated by a new diagram (Fig. 86).

(j ); If V ho the pole of the chord tt' ; m, m' the points in which 
tho line on cuts the circle; l the middle point, and n the pole, of the 
new chord mm', one secant from which last polo is thus the line ntt' ; 
u* tho intersection of this secant with the chord mm', or the harmonic 
cotyugate of tho point u, with respect to the same chord; and nt,t,' 
any near secant from n, while n, (on tho line on) is the pole of tho 
near chord t,t/ : then the two small arcs, t,t and t't/, of the hodo
graph, intercepted between these two secants, are proved to he ulti
mately proportional to tho two potentials, P and P’; or to the two 
ordinates tt, ’I'y’, namely tho perpendiculars let faU from t and t’, on 
what may here be called tho hodographio axis ln. Also, the harmonic 
mean between these two ordinates is obviously (by the construction) 
the lino n'n; while ni, nr', and u,t, n,T/ are four tangents to the 
hodograph, so that this cfrcle is cut orthogonally, in the two pairs of 
points, T, t' and t,, t/, by fico oZAw circles, which have the two near 
points u, for their centres (pp. 724, 726).

(A). In general, for nwy motion of a point (absolute or relative, in 
ono plane or in space, for example, in the motion of the centre of the 
moon about that of the ear th, under the perturbations produced by tho 
attractions of tho sun and planets), with a for the variable veetor (418) 
of position of tho point, tho time dt which corresponds to any vector
element dDa of the hodograph, or what may be called the time of ho- 
dographically dcscidbing that element, is the giiotient obtained hy 
dividing tho same clement of the hodograph, hy the vector of accelera
tion D*a in the orbit; because wo may write generally (p. 724),

, dDn TdDa „dZ = ™, or If dr>0.

h

xli.x
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(Z). For the law of thc invei'se square (comp. («) and (Oi tho 
measure of tho force is,

TD2a = Jfr-’ = Jf-i2’«; (Ti)
the times d<, di*, of hodographically describing tho small circular 
ares t,T: and t't/ of tho hodograph, heing found by multiplying the 
lengths (7) of those two arcs hy tho mass, and dividing each product 
by the square of the potential corresponding, are therefore inversely 
as those two potentials, P, P", or directly as the distances, r, d, in tho 
orbit: so that wo have the proportion,

d<: it'-. At + At’=r : r'•. r + r'. (Uj)
(»j). If wo suppose that the «mm, Jf, and the five points o, n, m, 

u, u, upon the chord mm' are given, or constant, hut that the ra
dius, h, oi the hodograph, on the position of thc centre h on the hodo
graphio axis LX, is altered, it is found in this way (p. 725) that 
although the two elements of time, At, At’, separately vary, got. their 

remains unchanged: from which it follows, that even if the two 
cirevdar arcs, t,t, t t/, bo «o< small, but still intercepted (>) between 
two secants from the x of the fixed thord mm', the sum (.say, £it +
At') of the <!co times is independent of the radius, h.

(n) . And hence may he deduced (p. 726), by supposing one secant 
to become a tangent, this Theorem of Hodographio Isochronism, which 
was communicated without demonstration, several years ago, to tho 
Eoyal Irish Academy,* and has since been treated as a subject of 
investigation hy several able writers:

If two circular hodographs, having a common chord, which passes 
through, or tends towards, a common centre of force, be cut perpendicu
larly by a third circle, the times of hodographically describing the inter
cepted arcs will be equal.

(o) . This common time can-easily bo expressed (p. 726), under tho 
form of tho definite integral,

. Jo (l-e'cosw)«’
being the length ottbefxed chord mm'; c'the quotient lo:lm, 

which reduces itself to -1 when o is at m', that is for the case of a pw- 
raiolic orbit; e' lying between ± 1 for an ellipse, and imtside those limits 
for an hyperbola, hut heing, in all these cases, constant; while w is a 
certain auxiliary angle, of which the sine = ur: iJI, (p. 727), or 
= «(r + r')**, if s denote the length pr' of the chord of the orbit, cor
responding to thc chord tt' of the hodograph ; and w varies from 0 to re, 
when tho whole periodic time for a closed orbit is to be computed:
with tho verification, that the integral (Vi) gives, in this last case.

Id = os usual, (Wi)

* See the Proceedings of tho 16th of March, 18-17. It is understood that the 
common centre o of force is occupied hy a common mass, JIf.
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(p)- By examining the general composition of the definite inte
gral (V4), or hy more purely geometrical considerations, which are 
illustrated by Fig. 87, it is found that, with the law of the inverse 
square, the time i of describing an are w' of the orbU (closed or un
closed) is a/««c<(o« (p. 729) of tho tJiree ratios,

a* r-¥ »•’ 
Ji’ rfV'’

and thoroforo simply a function of the chord (i, or pp') of the orbit, 
and of the sum of tho distances (r + r', or (>p’+ op') when and a aro
given : which is a form of the Theorem of Lambert,

(j). Tho same important theorem may be otherwise deduced, 
through a quite different analysis, by an employment of partial deri
vatives, and of partial differential equations in quaternions, which is 
analogous to that used in a recent investigation (418), respecting the 
motions of an attracting system of a«y number of bodies, m, ni, See.

(ff). Writing now (comp. p. xlvii) the following expression for the 
relative living force, ot for the mass (JT = m + m’'), multiplied into the 
square ot the relative velocity (TDa),

2 r=- JfDa’ = 2 (r+ S') = JZ-(2r» - «->) ; 
introducing the two new integrals (p. 729),

2i’=j‘(P+r)d<, (Zi), ,and F=j^22’di = J’+tZZ, (A5)

which have thus (comp. (E4) and (Fi)) the same forsns as before, but 
with different (although analogottsy significations, and may still be 
called tho Principal and Characteristic Piinctions of thc motion; and 
denoting by o, a! (instead of ao, a) tho initial and final vectors oppo
sition, or of the orbit, while r, r’ are the two distances, and r, r’ the 
two corresponding vectors of velocity, or of the hodograph: it is found 
that when Mi is given, J" may be treated as a function of a, a’, (, or 
of r, »•', s, t, and F as a function of a, a', a, 01 ofr, F, s, and .S'; and 
that their par<ial derivatives, in the first view of these (wo functions, 
are (p. 729),

Da^'= Da r= r, (Ba) ; Da'J’= Da' r=-T’ -, 
2a'>(D.)J’=-.ff, (Dj); and DjjF=^Dar=G 

while, in the second view of the same functions, they satisfy the ttco 
partial differential equations (p. 730),

DrF=Dr'F, (Fs), and Drr=D/r; (G^)
along with two other equations of the same kind, but of tho second 
degree, for each of the functions hero considered, which are analogous 
to those mentioned in p. xlviii.

(«)• The - equations (Fo) (65) express, that tho two distances, r 
and r', enter into each of the two functions only by their sum ; so that, 
if Jf bo still treated as given, F mag be regarded as a function of thc

(Co) 

(Eo)
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three quantities, a, and <; while T, and therefore also t by
(Es), is found in like manner to bo a function of tho three scalars, 
r -1- r', a, and o: which last result respecting the time agrees with 
(^), end furnishes a new proof of Lambert’a Theoxem.

(f). The partial differential equations (r) in F conduct, by 
merely algebraical combinations, to expressions for tho three partial 
derivatives, DrK, D/ F (=Drr), and D,F; and thus, with tho help 
of (Ej), to two new definite integrals* (p. 731), which express respec
tively the Action and the 2V»zie, in. the relative motion of a binary

. system here considered, namely, tho two foUowing : 
r=f'(-^-^yds;

)..(>•+ r + a 4a I

J-.Vr + r + s a )

(Us)

(I.)

r+r'+ a
42V

>• + »•'+ a
whereof the latter is not to bo extended, without modification, be
yond tho limits within which the radical is finite.

Article 420.—On tho determination of the Distance of a Comet,
or new Planet, from the Earth,........................................................... 733, 734

(a). The masses of earth and comet being neglected, and tho mass 
of the sun being denoted by JIf, let r and w denote thc distances of 
earth and comet from sun, and z their distance from each other, while 
a is the heliocentric vector of thc earth (Ta =r), known by tho theory 
of the sun, and p is the unit-vector, determined by observation, which 
is directed from tho earth to the comet. Then it is easily proved by 
quaternions, that we have the equation (p. 734),

SpDpPiip _ r MT 'jfX 
SpDpUa a \ ri io’ )'

with = fS + a’ - 2aSap ; (Kj)
eliminating w between these two formula?, clearing of fractions, and 
dividing by a, we are therefore conducted in this way to an algebrai
cal fQoation of the acventh der/ree, whereof o«.c root is tho sought dis
tance, a.

(It). The final equation, thus obtained, differs only by its notation, 
and by tho facility of its deduction, from that assigned for the samo 
purpose in the Mccanique Celeste; and the rule of Laplace there given, 
for determining, hy inspection of a celestial globe, which of the two

• Sefcrcnces are given to the First Essaj/, &c.^ hy tho present writer (comp, 
tho Note to p. xlvii.), in which were assigned integrals, substantially cijiiivalont 
to (Hs) and (Is), but deduced by a quite different analysis. It has recently been 
remarked to him, by his friend Professor Tait of Edinburgh, that while the area 
described, with Newton’s Law, about thc fall focus of an orbit, has long been 
known to be proportional to the time corresponding, so thc area about the empty 
foeits represents (or is proportional to) the action.
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734-736

(M»)
(Ns)

bodies (earth and comet) is tho nearer to the sun, results at sight from 
tho formula (Jj).

Article 421.—On the Development of tho Disturbing Force of 
tho Sun on tho Moon; or of ono Planet on another, which is nearer 
than itself to tho Sun,.........................................................................

(a). Let a, ir be thc geocentric vectors of moon and sun; »•(= Ta), 
and s(=T<t), their geocentric distances; JW the sum of tho masses of 
earth and moon; 5 thc mass of the sun; and D (ns in recent Series) 
thc mark of derivation with respect to tho time : then tho differential 
equation of the disturbed motion of the mocm about the earth is,

D’a = Af^a+»j, (Lj), if ^a = ^(a)=a->Ta"', 
and 1} = Vector of Disturbii^ Force — 5 (^o a));

denoting here a vector function, but «o< a linear one.
(i). If we neglect i/, tho equation (Ls) reduces itself to thc form 

D-a = Jldit>a; which contains (comp. (O4)) tho laws of undisturbed 
elliptic motion.

(c) . If we develope the disturbing vector »}, according to ascend
ing powers of tho quotient »•; s, of the distances of moon and sun from 
tho earth, we obtain an infinite series of terms, each representing a 
finite group at partial disturbing forces, which may bo thus denoted,

»l = tJl+>j2+’?3+&C. ; (O5)
)Jl = I?l,l+»/l)2) »?3=»/2,l+»Z3,»+l}2,3, &O.; (P5)

these partial forces increasing in number, but diminishing in latoiiZy, 
in tho passage from any ono group to tho following; and being con
nected with each other, within any such group, by simple numerical 
ratios and angular relations.

(d) . For example, the tico forces »ji, 1, 371,2 of iho first group 
are, rigorouslg, proportional to the numbers 1 and 3; the three forces 
’J2,1,172,2, >72,3 of the second group are as tho numbers 1, 2, 5; and 
the four forces of the third group are proportional to 5, 9, 16, 35 : 
while tho separate intensities of thc forces, in these three first 
groups, have tho expressions,

T.. T {(Is)Tg^
(e). All these jpariiaZ forces are conceived to act at the moon ; but 

their directions may he represented by the respectively parallel unit
lines XS nuii drawn from the earth, and terminating on a great
circle of the celestial sphere (supposed here to have its radius equal to 
unity), which passes through the geocentric (or apparent') places, 0 
and S, of tho sun and moon in the heavens.

(/). Denoting then tho geocentric elongation © D of moon from s«« 
(in the plane of the three bodies') by 4 0; and by ©i, ©2, and pi, Pj, 
Pa, what may be called tivo fetitious snns, and three fictitious moons, 
oi which thc corresponding elongations from ©, in the same great
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circle, arc + 10, — 20, and —0, + 80, - 80, as illustrated by Fig. 88 
(p. 735); it is found that tho directions of the two forces eff. the 
group arc represented hy the two radii ci this unil-eircle, which termi
nate in ]) and Di; those of thc </<?•(;« forces of the second group, by the 
three radii to ©,, 0, and ©2; and those of the /car forces of tho 
third group, by the radii to 3)2, P, 3)i, and P3; with facilities for, ex~ 
tending aU these results (with the requisite modifications), to tho 
fourth and subsequent groups, by the same quaternion analysis.

(ff). And it is important to observe, that no supposition is hero 
made respecting any smallness of excentricitiea or inclinations (p. 736); 
so that all the formula apply, with the necessary changes of geocen
tric to heliocentric vectors, &c.,. to the perturbations of the motion of a 
comet about the sun, produced by the attraction of a planet, which is 
(at the time) more distant than the comet from the sun.

Article 422__ On Fresnel’s Wave,............................................. 736-756
(a). If p and p be two corresponding vectors, of ray-velocity and 

wave-slowness, or briefly Jluy and in a biaxal crystal, tho velo
city of light in a vacuum being unity ; and if Sp and Sp bo any infi
nitesimal variations ot these two vectors, consistent with tho equa
tions (supposed to be as yet unknown), of the TFdve (or wave-surface"), 
aai its reciprocal, ^0 Index-Surface (or surface of wave-slowness"): we 
have then first thc fundamental Equations of Eeciproeity (comp. p. 
417),

S/4p=-l, (Es); Spbp = 0, (Ss); Sp5fi = 0, (Tc) 
which are independent of any hypothesis respecting the vibrations of 
the ether.

(V). If bp be next regarded as a displacement (or vibration), 
gential to the wave, and if de denote the elastic force resulting, there 
exists then, on Fresnel’s principles, a relation between these two small 
vectors; which relation may (with our notations) be expressed by 
either of the two following equations,

d« = ^"'dp, (Uj), or bp^tpbs’, (Vc)
the function being of that linear, vector, and self-conjugate kind, 
which has been frequently employed in these Elements.

(c). The fundamental connexion, between the functional symbol 
and tho optical constants abe of the crystal, is expressed (p. 741, 

comp, the formula (W3) in p. xlvi) by the symbolic and cubic equa
tion.

+ a-i) (_<!, + + =
of which an oxtcnsivo use is made in the present Scries.

(<?). The normal component, fi-^SitSe, of tho-elastic force Se, is ««- 
effective in Fresnel’s theory, on account of tho supposed ineompressi- 
bility of the ether; and tho tangential component, is
(in tho same theory, and with present notations) to ho equated to

(Ws)
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p'^Sp, tot thc propagation of a rectilinear vibration (p. 737); we ob
tain then thus, for such a vibration or tangential displacement, Sp, tho 
expression.

CONTENTS.

(x»)^p = (0-*-p-s)-'p-'Sp5£;

and therefore hy (Sjj tho equation,
0 = Sp-'(^->-p-s)-'p->, (Ys)

which is a Symbolical Form ai the scalar Equation of tlto Index-Sur
face, and may bo thus transformed,

l = Sp(p»-^)-'p. (Zs)
(e). The Ifiave-Surface, as being the reciprocal (a) of tho 

surface {d), is easily found (p. 738) to be represented by this other 
Symbolical Equation,

0 = Sp-'(0 - p-s)-’p-‘; (Ac)
or 1 = Sp(p’ - (Be)

(/). In such transitions, from one of these reciprocal surfaces to 
the other, it is found convenient to introduce two auxiliary vectors, 
V and <«)(= ^v), namely tho lines on and ow of Fig. 89; both drawn 
from tho common cetttre o of tho two surfaces; but v terminating (p. 
738) on the tangent plane to tho waw, and being parallel to the direc
tion of the elastic force St; whereas o> terminates (p. 739) on the tan
gent plane to the index-surface, and is parallel to the displacement Sp.

(y). Besides the relation,

(u = qtv, or «= (Cc)

connecting the two new vectors (/) with each other, they are con
nected with p and p by the equations (pp. 738, 739),

Spv = -1, (De); Spu = 0; (Ee)
Spo) = -1, (Fe); Spw = 0; (Ge)

and generally (p. 739), the following Eule of the Interchanges holds 
good: In any formula involving p, p, v, w, and or some of them, 
it is permitted to exchange p with p, v with ti, and with 0">; pro
vided that we at the same time interchange Sp with dr, but not gene
rally* Sp with dp, when these variations, or any of them occur.

(A). We have also the relations (pp. 739, 740),

— p“J = w-iVvp a: p + w-i;
- p-' = in'^'Vbip = p + (■>-';

(He) 
(Ig)

♦ This apparent exception arises (pp. '739, 740) from the eircumstance, that 
Sp and have their directions generally Jixed, in this whole investigation 
(although subject to a common reversal by +), when p and p aro given; whereas 

continues to be used, as in (a), to denote any infnitesimal vector, tangential to 
ike index-surface at the end of p.
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with others easily deduced, which may all bo illustrated by tho above
cited Fig. 89.

(i). Among such deductions, the following equations (p. 740) 
may bo mentioned,

(Vw0u)* + Sw^u = 0, (Jo); (Vts0''ii))’4-S(ij^">w=O; (Ko)
which show that the of each q{ the two Auxiliari/ Points, n and 
w, wherein tho two vectors v and u terminate (/), is a Surface of 
the Fottrth Pegree, or briefly, a Quartic Surface ; of which two toot tho 
constructions may be connected (os stated in p. 741) with those of the 
two reciprocal ellipsoids,

S)p<pp = 1, (Lc), and Sp^-’p = 1;

p denoting, for each, an arbitrary semidiameter.
(j"). It is, however, a much more interesting use of these two 

ellipsoids, of which (by (Wo), &c.) tho scalar semiaxes aro o, b, c for 
thoyfrst, and <r>, 4’*, o-* for tho soconrf, to observe that they may bo 
employed (pp. 738, 739) for the Constructions of tho irbofl and tho 
Index-Surface, respectively, by a very simple rule, which (at least fur 
the first of these two ijcciprocal surfaces (o)) was assigned by Fres
nel himself.

(Jc). In fact, on comparing the symbolical form (Ac) of the equa
tion of the Wave, with tho form (H2) in p. xxxvii, or with the equa
tion 412, XLI., in p. 683, we derive at once Fresnels Construction : 
namely, that if tho ellipsoid (abe) be cut, by an arbitrary plane 
through its centre, and if perpendiculars to that plane be erected at 
that central point, which shall have the lengths of tho semiaxes of 
tho section, then the locus of the extremities, of the perpendiculars so 
erected, will be the sought JPave-Surface.

(f). A precisely similar construction applies, to tho derivation of 
tho Index-Surface from the ellipsoid (<i"'4">r-') : and thus the two 
auxiliary surfaces, (L^) and (Mo), may be briefly called tho Oenerat- 
ing Ellipsoid, and the lieciproeal Ellipsoid.

ign). Tho cubic (Ws) in enables us easily to express (p. 741) the 
inverse function (ft + e)"’, where c is any scalar; and thus, by chang
ing e to-p-^, &c., new forms of the equation (As) of the wave arc 
obtained, whereof one is,

0 = + (p^ +0^ + 4’ + Sp^-'p — a'^b'^e'^ j (Ns)

with an analogous equation in p (comp, the rule in (p)), to represent 
tho iMrfrx-sMj/ace; so that each of these two surfaces is of Ccwfoitrih 
degree, as indeed is otherwise known.

(«).,If either Spij>~'p or p* bo treated as co»s<a»< in (Ne), tho 
degree oi that equation is depressed from the feesrth to tho second; 
and therefore tho Wave is cut, by each of tho <wo concentric guadries,

S>p^-'p = h*, (Oc), ■ p’tr’ = O, (Po)
in a (real or imnginaiy) curve of the fourth d<gree: of which twoquar-
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(Q.)

tie curves, answering to all scalar values of the constants h and r, the 
wave is the common locus.

(o). Thc Hew ellipsoid (Oo) is similar to tho ellipsoid (Mo), and 
similarly placed, while the sphere (Po) has r for radius; and every 
quartic of tho second system (ti) is a sjjAero-eoKi'e, because it is, by tho 
equation (jV) of tho wave, the intersection vi that sphere (Pe) with 
tho concentric and quadric cone,

O = Sp (^ + »^)‘*p;
or, by (Bo), with this other concentric quadric,*

-l = Sp<ii,-t + r^f^p, (Eo)
whereof thc conjugate (obtained by changing -1 to + 1 in the last 
equation) has

flS-rt is_r2, e«_r2, (So)
for tho squares of its scalar semiaxes, and is therefore confocal with 
thc generating ellipsoid (Lb).

(/>). For any point p of the wave, or at the end of any ray p, the 
tangents to tho two curves {si} have the directions of ot and piu; so 
that these two quartics cross each other at right angles, and each is a 
common orthogonal in all tho curves of the other system.

(p). But the vibration Sp is easily proved to be parallel to u; 
hence the curves of the frst system («) are Zihm of Fibration of the 
Wave: and the curves of the second system are the Orthogotsal Trcjee- 
tories\ to those Lines.

(f). In general, tho vibration Sp has (on Fresnel’s principles) the 
direction of the projection of tho ray p on the tangent plane to the 
wave ; and the elastic force Ss has in like manner the direction of the 
projection of the index-vector p, on the tangent plane to the index
surface : so that the ray is \>a.’oa perpendicular to the elastic force

Akticlb 423.—Mac Cullagh’s Theorem of the Polar Plane, . . 757-762
* * ’ » * * *
«««•««

*
«

«

»

* For real curves ot the second system (ti), thia «cio quadric (Ee) is an hy
perboloid, with o«e sheet or with /wo, according as the constant r Ecs between a 
and i, or between b and e; and, of course, the conjugate hyperboloid (p) has two 

' sheets QI one, in the same two cases respectively.
t In a different theory of light (comp, the next Series, 423), these sphero- 

eonics on the wave are themselves the lines of vibration.
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10 58 46 - 106 106 154 202 M 2,70 n
11 7 59 107 165 135 203 192 251
12 8 60 47 108 166 204 193 252 268
13 61 48 109 107 157 136 205 200 1 253 269
14 9 62 49 110 108 158 137 206 202 254 272
15 63 60 111 159 138 207 •20.3 255 271
16 10 64 61 112 109 160 139 208 204 256 275
17 65 53 113 110 161 140 209 207 257 277
18 11 66 114 111 162 142 210 208 . 258 279
19 67 64 116 163 143 211 213 259
20 12 68 65 116 164 144 212 214 260 281

. 21 69 117 112 165 213 ?» 261 283
22 13 70 57 118 166 145 214 217 "262 286
23 11 71 119 113 167 146 215 219 1 263 287
24 72 68 120 168 147 216 223 I 264 k ”
25 15 73 121 114 169 148 217 225 1 26.5 289
2G 16 74 59 122 170 149 218 227 266 290
27 17 75 123 115 171 »> 219 229' 267 291
28 18 76 60 124 116 172 150 220 232 268 292
29 19 77 61 125 173 n 221 233 269 293
30 78 126 174 151 222 234 270 ♦»
31 20 79 62 127 117 175 n 223 236 271 295
32 22 80 128 176 162 224 239 272
33 81 129

118
177 15.3 22.5 240 273 297

34 23 82 63 130 178 n 226 t, 274 298
35 24 83 *64 131 179 154 227 241 275 301
36 26 84 132 119 180 155 228 244 276
37 28 85 65 133 120 181 157 229 246 277 302
38 29 86 134 182 158 , 230 n 278
39 80 87 66 135 121 183 169 1 231 247 279 803
40 88 67 136 184 161 1 232 280 ti
41 31 89 68 137 185 162 233 248 281 n
42 32 90 138 122 186 163 1 234 250 282 305
43 33 91 69 139 187 166 , 235 251 283 308
44 92 140 123 188 167 1236 253 284
45 84 93 , 77 141 189 168 1 237 255 285 310
46 35 94 80 142 124 190 169 238 257 286
47 . 36 95 83 143 .. 1 191 '170 239 287 31’1
48 37 96 85 144 125 1 192 171 1 240 259 288 312

• Thia Table was mentioned in the Note to p. xiv. of the Contents, as one 
likely to facilitate referenee. In fact, the references in the text of the Elements 
are almost entirely to Articles (with their sub-articles), and not to pages.
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Table of Initial Pages—continued.

Art Page. Art Pago. Art Pago. Art Page. Art. Page. Art Page.

289 312 313 379 337 417 361 482 385 524 409 664
290 313 314 381 338 420 362 484 886 525 ' 410 667
291 315 383 339 421 363 485 387 527 411 674
292 314 316 384 340 422 364 487 388 529 412 679
293 315 317 391 341 423 365 491 389 631 413 689
29-1 313 318 342 427 366 495 390 535 414 694
295 321 319 343 429 367 '496 391 537 '415 ■ 698
29G 324 320 292 344 431 368 392 538 416 707
297 331 321 393 345 432 369 393 539 1 417 709
298 343 322 394 346 435 370 498 394 541 418 713
299 347 323 399 347 436 371 500 395 549 419 717
300 349 324 400 348 439 372 501 396 554 420 733
301 351 325 401 349 441 373 502 397 559 421 734
802 326 403 350 443 374 508 398 578 422 ■736
303 352 327 404 351 445 375 509 399 612 423 757
304 354 328 405 352 447 376 511 400 621 424
305 356 329 406 353 453 377 512 401 626 425
303 358 330 407 354 499 378 513 402 630 426
307 331 831 408 355 434 879 403 631 427
308 334 332 409 356 466 380 515 404 633 428
309 333 333 411 357 468 381 519 405 636 429
310 370 334 412 358 470 ' 382 520 406 638 430
311 373 335 414 359 474 383 522 407 649
312 374 836 416 860 481 384 524 i 408 653 • • • •

Table of Pages foe the Figuees.

Figure. Page. Figure. Page. Figure. Page. Figure. Page. Figure. iPago.

1 1 21 21 38 119 54 247 72 348
2 2 22 25 39 129 55 269 73 359
3 23 27 40 130 55 bis 74 397
4 24 33 41 66 75 425
5 3 25 36 41 bis 57 274 76 499
6 26 37 42 132 58 280 77 611
7 4 27 42 42 bis 141 69 288 78 517
8 5 28 50 43 144 ' 60 290 79 620
9 6 29 54 44 151 61 80 643

10 30 82 45 152 , 62 295 81 669
11 7 31 91 45 bis 71 63 324 82 673
12 8 1 32 98 46 154 63 bis 325 83 699
13 10 33 108 47 157 64 1 84 660
14 11 335m 120 47 5Js 158 65 326 85 706
15 13 34 no 48 168 66 327 86 724
16 14 35 112 49 172 67 332 87 727
17 16 865m 148 50 190 68 334 88 735
18 17 ' 36 112 51 216 69 89 740
19 20 126 52 220 70 343 90 * ,
20 n 1 37 116 53 226 71 344 91 • •

Note.—It appears by these Tables that the Author intended to have com
pleted the work by the addition of Seven Articles, and Two Figures.—Ed.

    
 



    
 



ELEMENTS OF QUATERNIONS.
BOOK I.

ON VECTORS, CONSIDERED WITHOUT REFERENCE TO ANGLES, 
OR TO ROTATIONS.

CHAPTER I.
FUNDAMENTAL PRINCIPLES RESPECTING VECTORS.

Section 1.— On the Conception of a Vector; and on Equality 
of Fectors.

Art. I.—A right line ab, considered as having not only lengthy 
but also direction, is said to be a Vector. Its initial point a 
is said to be its origin; and its final point B is said to be its 
term. A vector ab is conceived to be (or to construct) the 
difference of its two extreme points; or, more fully, to be the 
result of the subtraction of its own origin from its own term; 
and, in conformity with this conception, it is also denoted by 
the symbol b - a : a notation which will be found to be exten
sively useful, on account of the analogies which it serves 
to express between geometrical and algebraical operations. 
When the extreme points a and n are distinct, the vector ab 
or B - A is said to be an actual (or an effective) vector; but 
when (as a limit) those two points are conceived to coincide, 
the vector aa or a - a, which then results, is said to be null. 
Opposite vectors, such as AB'and ba, vector,
o? B - A and A - B, are sometimes 
called vector and revector. Succes- 
sive vectors, such as ab and Btf, or Kevector. '

B - A and c - B, are occasionally said
to be vector and provector: the line ac, or c - a, which is

B
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drawn from the origin a of the first to the term c of the second, 
being then said to be the trans
vector. At a later stage, we shall 
have to consider vector-arcs and 
vector-angles ; but at present, our 
only vectors are (as above) right A 
lines.

2. Two vectors are said to be equal to each other, or the 
equation ab = cd, or b - a = d - c, is said to hold good, when 
(and only when) the origin and terra of the one can be brought 
to coincide respectively with the corresponding points of the 
other, by transports (or by translations') xoithout rotation. It 
follows that all null vectors are equal, and may therefore be 
denoted by a common symbol, such as that used for zero; so that 
we may write, a - a = b - b = &c. = 0;

but that two actual vectors, ab and cd, are not (in the present 
full sense) equal to each other, unless they have not merely 
equal lengths, but also similar directions. If then they do not 
happen to be parts of one common line, they must be opposite 
sides of a parallelogram, 
ABDC ; the two lines ad, bc 
becoming thus the two dia
gonals of such a figure, and 
consequently bisecting each 
other, in some point e.

• Conversely, if the two equa
tions,

B

= E-B,X) — E E “ Aj

are satisfied, so that the two lines 
AD and DC are commedial, or have 
a common middle point E, then even 
if they be parts of one right lincy. 
the equation D-c = B- Ais satis-
fied. Two radiiy ac, of any 4.
one circle (ox sphere), can never be equal vectors ; because their 
directions differ.

    
 



3CHAP. I.J FUNDAMENTAL PRINCIPLES—VECTORS.

3. An equation between vectors, considered as an equidif
ference of points, admits of inversion and 
alternation; or in symbols, if

D- B = c

C D =.A-

D - c = B - A,
then

and

Two vectors, cd and ef, which are 
equal to the same third vector, ab, 
are also equal to each other; and 
these three equal vectors are, in 
general, the three parallel edges of 
a prism.

Section 2.— On Differences and Sums of Sectors taken two 
bg two.

4. In order to be able to write, as in algebra, 

(c'-a')-(b-a) = c-b, if c'-a' = c-a, 
we next definci that when a first vector ab is subtracted from 
a second vector ac which is co-initial with it, or from a third 
vector a'c' which is equal to that second vector, the remainder 
is that fourth vector BC, which is draAvn from the term b of the 
first to the term c of the second vector: so that if a vector be 
subtracted from a transvector (Art. 1), the remainder is the 
provector corresponding. It is evident that this geometrical 
subtraction of vectors answers to a decomposition of vections (or 
of motions'); and that, by such a decomposition of a null vec- 
tion into two opposite vections, we have the formula,

• 0 — (b — a) = (a — a) — (b — a) = A —B;

so that, if an actual vector ab be subtracted from a null vector 
A A, the remainder is the reoector If then we agree to 
abridge, generally, an expression of the form 0 - a to the 
shorter form, - a, we may write briefly, - ab = ba ; « and - a 
being thus symbols of opposite vectors, while a and - (- a) are.

    
 



4 [book t. 

for the same reason, symbols of one common vector: so that 
we may write, as in algebra, the identity,

-(-«) = a.
5. Aiming still at agreement with algebra, and adopting 

on that account the Jbrmula of relation between the two signs, 
+ and -,

ELEMENTS OF QUATERNIONS.

{b - a) + a = b,

in which we shall say as usual that d - a is added to a^ and that 
their sum is 5, while relatively to it they may be jointly called 
summands, yfQ shall have the two following consequences :

I. If a vector, ab or b - a, be added to its own origin a, 
the is its term b (Art. 1) ; and

II. If a provector bc be added to a vector ab, the sum is 
the transvector ac ; or in symbols,

I.. (b — a) + A = B; and II.. (c - b) + (b - a) = c - A..

In fact, the first equation is an immediate consequence of the 
general formula which, as above, connects the signs + and 
when combined with the conception (Art, 1) of a vector a^ a di/^ 
ference of two points ; and the second is a result of the same 
formula, combined with the definition of the geometrical sub
traction of one such vector from another, which was assigned 
in Art. 4, and according to which we have (as in algebra) for 
any three points,-A, B, c, the identity.

It is clear that this geometrical addition of successive vectors 
corresponds (comp. Art. 4) to a composition of successive vec- 

' tions, or motions ; and that the sm?w of
two opposite vectors (or of vector and 
revector) is a null line ; so that

BA + AB = 0, or (a - b) + (b - a) = 0.
It follows also that the sums of equal 
pairs oi successive vectors are equal;
or more fully that

ifB'-A'=B-A, and c'-b' = c-b, then c'-

    
 



5CHAP. I.] FUNDAMENTAL PRINCIPLES—VECTORS.

the two triangles, arc and a'b'c', being in general the two oppo
site faces of a prism (corap. Art. 3).

6. Again, in order to have, as in algebra,
(c'- b') + (b - a) = c - a, if c' - b'= c - b, 

we shall define that if there be two successive vectors, ab, bc, 
and if a third vector b'c' be equal to the secbnd, but not suc
cessive to the first, the sum obtained by adding the third to the 
first is that fourth vector, ac, which is drawn from the origin 
A of the first to the term c of the se
cond. It follows that the sum of any 
two co-initial sides, ab, ac, of any paral
lelogram AB DC, is the intermediate and 
co-initial diagonal ad ; or, in symbols, 

(c — a) + (b — a) = n— A, if d-c = b-a;

because we have then (by 3) c - a s= d -
7. The sum any too given vectors has thus a value which 

is independent of their order ; or, in symbols, a + 3 = P + a. 
TS equal vectors be added to, equal vectors, the smjws are equal 
vectors, even if the summands be hot given as successive 
(comp. 5) ; and if a null vector be added to an actual vector, 
the sum is that actual vector; or, in symbols, 0 + a = a. If 
then we agree to abridge generally (comp. 4) the expression 
0 + a to + a, and if a still denote a vector, then + a, and + (+ o), 
&c., are other symbols for the same vector; and we have, as 
in algebra, the identities,

- (- a) = + a, + (- a) = - (+ a) = - a, (+ a) + (-«) = 0, &C.

Section 3.— On Sums of three or more Vectors.

8. The sum of f/troe^given vectors, a, 7, is next defined 
to be that fourth vector,

S = 7 + (P + a), or briefiy,. § = 7 + 3 + 0,

which is obtained by adding the third to the sum of the first 
and second; and in like manner the sum of any number of 
vectors is formed by adding the last to the sum of all that

    
 



ELEMENTS OP QUATERNIONS.6 [book I. 

precede it: also, for any four vectors, ’a, (3, y, 8, the sum 
S + (y + 3 + “) denoted simply by 8 + y + 3 + a, without pa
rentheses, and so on for any number of summands.

9. The sum of any number of successive vectors, ab, bc, 
CD, is thus the line ad, which is 
drawn from the origin a of the first, 
to the term d of the last; and be
cause, when there are three such vec
tors, we can draw (as in Fig. 9) the 
two diagonals ac, bd of the (plane 
or gauche) quadrilateral abcd, and
may then at pleasure regard ad, either as the sum of ab, bd, 
or as the sum of ac, cd, we are allowed to establish the follow
ing general ybrninZa of association, for the case of any three 
summand lines,

(y + 3) + “ “ 7 + (3 + ®) 7 + 3 »

by combining which with the f>rmula of commutation (Art. 7), 
namely, with the equation,

o + 3 - P + o,

which had been previously established for the case of any two 
such summands^ it is easy to conclude that the Addition of 
Vectors is always both an Associative and a Commutative Ope
ration, In other words, the sum ot any number cigioen vectors 
has a uaZwe which is independent of their order, and of the 
mode of grouping them; so that if the lengths and directions of 
the summands be preserved, the length and direction of the 
sum will also remain unchanged : except that this last direction 
may be regarded as indeterminate, when the length of the sum
line happens to vanish, as in the case 
which we are about to consider.

10. When any n summand-lines, 
AB, BC, CA, or AB, BC, CD, DA, &C., 
arranged in any one order, are the n 
successive sides of a triangle abc, or of 
a quadrilateral abcd, or of any other
closed polygon, their sum is a null line, hK; and conversely, 

    
 



7CHAP. I.] FUNDAMENTAL PRINCIPLES—VECTORS.

when the sum of any given system of n vectors is thus equal 
to zeroy they may be made (zn any order^ by transports without 
rotation) the n successive szdes of a closed polygon (plane or 
gauche). Hence, if there be given any such polygon (p), sup
pose a pentagon abode, it is possible to construct another 
closed polygon (p'), such as a'b'c'd'e', with an arbitrary initial 
point a', but with the same number oisides, a'b', .. e'a', which 
neztf sides shall be equal (as vectors) to the old sides ab, .. ea, 
taken in any arbitrary order. For example, if we drawy&Mr 
successive vectors, as follows,

a'b'= CD, b'c'= AB, c'd'=EA, D'e'=BC,

and then complete the new pentagon by drawing the line e'a', 
this closing side of the second figure (p') will be equal to the 
remaining side de of the first figure (p).

11. Since a closed figure abc .. is still a closed one, when 
all its points are projected on any assumed plane, by any system 
of parallel ordinates (although the 
area of the projected figure a'b'c' ... 
may happen to vanish), it follows that 
if the sum of any number of given 
vectors a, (3, y,.. be zero, and if we 
project them all on any one plane by 
parallel lines drawn from their extre
mities, the sum of the projected vec
tors a', (3', y',.. will likewise be null; 
so that these latter vectors, like the 
former, can be so placed as to become the successive sides of a 
closed polygon, QVQn if they be not already such. (In Fig. 11, 
a"b"c" is considered as such a polygon, namely, as a triangle 
loith evanescent area; and we have the equation,

AB + BC + CA =0,
as well as

a'b' + b'c' + c'a' = 0, and ab + bc + ca = 0.)
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Section 4.—On Coefficients of Vectors.
’ J 2. The simple or single a, is also denoted by la,

or by 1.0, or by (+ 1) o; and in like manner, the double vector, 
o + o, is denoted by 2a, or 2 . a, or (+ 2) o, &c.; the rule being, 
that for any algebraical integer, m, regarded as a coefficient by 
which the vector o is multiplied, we have always,

la + ?na = (l + w)o;

the symbol 1 + tk being here interpreted as in algebra. Thus, 
Oa = 0, the zero on the one side denoting a null coefficient, and 
the zero on the other side denoting a null vector; because by 
the rule,

la + Oa = (1 + 0) a = lo = a, and .*. Oa = o — a = 0.
Again, because (1) a + (—1) a = (1 — 1) a = Oa = 0, we have 
(- l)o = 0 - a = -o = -(la); in like manner, since (I)a + (-2)a 
= (l-2)o = (- l)a = -a, w.e infer that (-2)a = -a-a = -(2a) ; 
and generally, (- w) a = - {ma), whatever whole number zn 
may be : so that we may, without danger of confusion, offjzf 
the parentheses in these last symbols, and write simply, - 1 a, 
- 2a, - ma. ,

13. It follows that whatever two whole numbers (positive or 
negative, or null) may be represented by m and n, and what- 

ever two vectors may be denoted‘by a and (3, we have always, 
as in algebra, the formula;,

n'a + ma = (n±m) a, n {ma} - (nm) a = mna,
and (compare Fig. 12),

w (P ± n) = w/3 ± »»a;

    
 



CHAP, I.] , FUNDAMENTAL PRINCIPLES---VECTORS. 9

SO that the multiplication of vectors by coefficients is a doubly 
distributive operation, at least if the multipliers be whole 
numbers; a restriction which, however, will soon be re
moved.

14. If ma = /3, the coefficient m being still whole, the vector 
/3 is said to be a multiple of a; and conversely (at least if the 
integer m be different from zero), the vector o is said to be a 
sub-multiple of j3. A multiple of a sub-multiple of a vector is 
said to be o, fraction of that vector; thus, if J3 = ma, and y = na,

n 
then y is a fraction of which is denoted as follows, 7 = — ;

also /3 is said to be multiplied by the fractional coefficient —, 

and y is said to be the product of this multiplication. It fol
lows that if X and y be any two fractions (positive or negative 
or null, whole numbers being included), and if a and /3 be any 
two vectors, then

ya ± xa = (p ±x)a, y{xa) = (px)a = yxa, x((3 ± a) = x(3±xa i 

results which include those of Art. 13, and may be extended 
to the case where x and ?/ are Micommenswraft/e coefficients, con
sidered as limits offractional ones.

15. For any actual vector a, and for any coefficient x, of 
any of the foregoing kinds, the product xa, interpreted as above, 
represents always a vector (i, which has the same direction as 
the multiplicand-line a, if x > 0, but has the opposite direction 
if a: < 0, becoming null if a: = 0. Conversely, if a and /3 be 
tioo actual vectors, with directions either similar or opposite, in 
each oi which two cases we shall say that they are parallel 
vectors, and shall write /3 || a (because both are then parallel, 
in the usual sense of the word, to one common line), we can 
always find, or conceive as fojmd, a coefficient a: 0, which shall 
satisfy the equation (3 = xa; or, as we shall also write it, 
/3 = oa:; and the j»ositive or negative number x, so found, will 
bear to + 1 the same ratio, as that which the length of the lino 
6 bears to the length of

c
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16. Hence it is natural to say that this coefficient x is the 
quotient which results, from the division of the vector (3, by the 
parallel vector a; and to write, accordingly,

a; = /3-ra, ora:=j3;a, orx = —;
a

so that we shall have, identically, as in algebra, at least if the 
divisor-line a be an actual vector, and if the dividend-line fi bo, 
parallel thereto, the equations,

(/3 : a) .rt = —a = /3,' and xa‘,a = — = x-,
a a

which will afterwards be extended^ by definition, to the case of 
non-parallel vectors. We may write also, under the same 

0
conditions, d = —, and may say that the vector a is the quotient 

of the division of the other vector /3 by the number x ; so that 
we shall have these other identities,

—. a: = (ax 6, and — = o.X ' X
Q17. The positive or negative quotient, x-~, which is thus
a

obtained by the division of one of two parallel vectors by ano
ther, including zero as a limit, may also be called a Scalar ;

' becaus^it can always be found, and in a certain sense con
structed, by the comparison of positions upon one common scale 
(or axis'); or can be put under the form,

C - A AC

“ B - A. ab’

where the three points, a, b, c, are collinear (as in the figure 
annexed). Such scalars are, there- 
fore, simply the Re a ls (or reaZ quar^ ' '
titles) oi Alyebra; but, in combina
tion with the not less real Vectors above considered, they 
form one ot the main elements oi the System, or Calculus, to

    
 



11CHAP. II.] POINTS AND LINES IN A GIVEN PLANE.

which the present work relates. In fact it will be shown, at 
a later stage, that there is an important sense in which we can 
conceive a scalar to be added to a vector; and that the «m»i 
so obtained, or the combination,

“ Scalar phis Vector"

is. a Quaternion.

CHAPTER II.

APPLICATIONS TO POINTS AND LINES IN A GIVEN PLANE.

Section 1.— On Linear Equations connecting two Co-initial 
Vectors.

18. When several vectors, oa, ob, . . are all drawn from
one common point o, that point is said to be the Origin of the 
System ; and each particular vector, such as oa, is said to be 
the vector of its oion term, A. In the present and future sec
tions we shall always suppose, if the contrary be not expressed, 
that all the vectors a, (3, . . which we may have occasion to 
consider, are thus drawn from one common origin. But if it 
be desired to change that origin o, without changing the term
points A,. .we shall only have to subtract, from each of their 
old vectors a, .. one common vector w, namely, the old vector 
oo' of the new ongin d; since the remainders, a - to, (3 - w, • - 
will be the new vectors d, P',.. of the old points For
example, we shall have

a'=o'A = A-0'=(a-0) -(o'-O) = OA- OO'= a- to.

19. If two vectors a, )3, or oa, ob, be thus drawn from a
given origin o, and if their 
directions be either similar or ' ------
opposite, so that the three 
points, o, A, B, are situated on one right line (as in the figure

a =

n
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‘ - aannexed), then (by 16,17) their quotient — is some positive or 
a

negative ^cafor, such as x; and conversely, the equation 
= Xa, interpreted with this reference to an origin, expresses 

the condition of collinearity, of the points o, a, b ; the particu
lar values, x = 0, a: = 1, corresponding to the particular posi
tions, o and A, of the variable point u, whereof the indefinite 
right line oa is the locus.

20. The linear equation, connecting the two vectors a and 
/3, acquires a more symmetric form, when we write it thus:

aa + = 0;
where a and J are two scalars, of which however only the ratio 
is important. The condition of coincidence, of the two points

A and B, answering above to x= 1, is now = 1 ; or, more’ 
symmetrically.

a + 6=0.

Accordingly, when a = -b, the linear equation becomes

6(/3-a) = O, or (3-a = 0,

since we do not suppose that both the coefficients vanish; and 
the equation (3 = a, or ob = oa, requires that thejoo/nZB should 
coincide with the point a : a case which may also be conve
niently expressed by the formula,

B = a;

coincident points being thus treated (in notation at least) as 
equal. In general, the linear equation gives,

a.OA + 6.oB = 0, and therefore a:6 = Bo:oA.

Section 2.— On Linear Equations between three co-initial 
Vectors.

»*•

21. If two (actual and co-initial) vectorsj a, (ii be not con
nected by any equation of the form ua i/3 = 
scalar coefficients a and b whatever, their can neither
be similar nor opposite to each other; they therefore determine

    
 



CHAP, II.] POINTS AND LINES IN A GIVEN PLANE. 13

a plane aob, in which the (now actual) vector, represented by 
the sum aa + b^, is situated. For if, for the sake of symmetry, 
we denote this sum by the 
symbol - cy, where c is some 
third scalar, and y = oc is 
some third vector, so that the 
three co-initial vectors, a, P, 
y.are connected by the linear 
equation,

aa + b(3 + Cy = 0;

and if we make 

then the two auxiliary points, a' and b', will be situated (by 
19) on the two indefinite right lines, oa, ob, respectively: 
and we shall have the equation,

oc = oa' + OB',
so that the figure a'ob'c is (by 6) a parallelogram, and conse
quently plane, *

22. Conversely, if c be any point in the plane aob, we can 
draw from it the ordinates, ca' and cb', to the lines oa and ob, 
and can determine the ratios of the three scalars, a, b, c, so as 
to satisfy the two equations,

a _ oa' 
c oa’

after which we shall have the recent expressions for oa', ob', 
with the relation oc = oa' + ob' as before; and shall thus be 
brought back to the linear equation aa + Z»/3 + cy = 0, which 
equation may therefore be said to express the condition of com- 
planarity oiihcfour points, o, a, b, c. And if we write it under 
the form.

b _ ob' 
c OB ’

«a + y/3 + jz-y = 0,

and consider the vectors a and )3 as given, but 7 as a variable 
vector, while a?, y, z are variable scalars, the locus oi the va
riable point c will then be the given plane, oab.
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23. It may happen that the point c is situated on the right 
line AB, which is here considered as a given one. In that

ACcase (comp. Art. 17, Fig. 13), the quotient — must be equal 

to some scalar, -suppose t', so that we shall have an equation of 
the form,

= or 7 = a+ t or (l-«)o + <^-7 = 0;

by comparing which last form 
with the linear equation of Art. 
21, we see that the condition 
of collinearity of the three 
points A, b, c, in the given 
plane oab, is expressed by the 
formula,

a + b-^c= 0.

This condition may also be thus written,
, - a - b Qit! oi1 = — + — or —4._ 

C C OA. Ol

and under this last form it expresses a geometrical relation, 
which is otherwise known to exist.

24. When we have thus the two equations,
aa. + bj3 ■+■ Cy = 0, and a -h 6 + c = 0, 

so that the three co-initial vectors a, (3, y terminate on one 
right line, and may on that account be said to be tcrmino-col- 
linear, if we eliminate, successively and separately, each of 
the three scalars a, b, c, we are conducted to these three other 
equations, expressing certain, ratios of segments t

b{i^-d) ct^= c(7-P) + a(a - P) = 0,
a{a-y') + b(J3-y) = 0’, 

or
0 = ft.AB + C. AC = C.'BC -1- a.BA = a.CA + i.CB.

Hence follows this proportion, between coefficients and Seg
ments,

a : b: c = bc ; ca : AB.
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We. might also have observed that the proposed equations 
give,

6(3 + cy
® ~ L *6 + c

whence

15

_ cy + aa aa + 6(3
c + a’ a-}^b '

AC 7 - o h 6 „
AB p - a a+ b c I

25. If we still treat « and j3 as given, but regard y and 
V- as uanaWe, the equation

xa + yPy = ---------
x + y

will express that the variable point c is situated somewhere 
on the indefinite right line AB, or that it has this line for its 
ZocMs; while it divides the finite line ab into segments, oi which 
the variable quotient is,

cb a:’
Let c' be another point on the same line, and let its vector be, 

then, in like manner, we shall have this other ratio of seg
ments,

g’g x''
If, then, we agree to employ, generally, for any group of four 
collinear points, the notation,

. , AB CD AB AD
(abcd) = -— • — “ — • “ 5BC DA BC DC -

so that this symbol.
(abcd),

may be said to denote the anharmonic function, Gt anharmonic 
quotient, or simply the anharmonic of the group, a, b, c, d : we 
shall have, in thc present case, the equation,

. „ AC ac' MX
(acbc ) = — : — “' CB c B xy
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26. When the anharmonic quotient becomes equal to neya- 
tive unity^ the group becomes (as is well known) harmonic. 
If then we have the two equations,

a:a + y/3 xa-yfi
y =--------- ) y ------------- >‘ x-¥ y X —y

the two points c and c' are harmonically conjugate to each other, 
with respect to the two given points, a and b ; and when they 
vary together, in consequence of the variation of the value of 

-, they form (in a well-known sense), on the indefinite right 

line AB, divisions in involution; the double points (ox foci) of 
this involution, namely, the points of which each is its oicn 
conjugate, being the points a and b themselves. As a verifi
cation, if we denote by p, the vector of the middle point w of 
the given interval ab, so that

A
/3-At=/z-a, or/x = |(a+^),

yfe easily find that

Y -tn-
' - p 11 + ^ y -

so that the rectangle under the distances mc, mc', of the two 
variable but conjugate points, c, c', from the centre m of the 
involution, is equal to the constant square oi half the interval 
between the two double points, a, b. More generally, if we 
write

,_lxa-^ my 
lxmy

I yxwhere the anharmonic quotient — = ~ is any constant scalar, mxy
then in another known and modern* phraseology, the points 
c and c' will form, on the indefinite line ab, two homographic 
divisions, of which a and b are still the double points. More 
generally still, if we establish the two equations.

16 ELEMENTS OF QUATERNIONS.

M

or

C B
Fig. 17.

MC MU 
MB MC'’

a;a + ?//3 <y-------------J

♦ See the Ge'ometrie SupMeure <it M. Chuslee, p. 107. (Paris, 1852.)
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Xa+yR , , Ixd+myR'y=----- and 7'=-=----------------
* x + y Ix^my

17

Z w .
— being still constant, but - variable, while a' = oa.\ Q' = os', 

and y = oc', the <wo given lines, ab and a'b', are then Jiomo- 
graphically divided, by the #200 variable points, c and c', not 
now supposed to move along one common line.

27. When the linear equation aa + b/3 + cy = 0 subsists, 
viithout the relation a d + c = 0 between its coefficients, then 
the three co-initial vectors a, p, y are still cu?njoZfl«ar, but they 
no longer terminate on one right line; their term-points a, b, c . 
being now the corners of a triangle.

In this more general case, we may propose to find the vec
tors d, y of the three points,

a'=oa-bc, b'=ob-ca,
c'= oc-ab ;

that is to say, of the points in 
which the lines drawn from the 
origin o to the three corners of 
the triangle intersect the three 
respectively opposite sides. The three collineations oaa', &c., 
give (by 19) three expressions of the forms,

d=^Xa, /3’ = p(3, y^zy,

where «, y, z are three scalars, which it is required to deter- 
.mine by means of the three other collineations, a'bc, &c., with 
the help of relations derived from the principle of Art. 23. 
Substituting therefore for a its value a: 'o', in the given linear 
equation, and equating to zero the sum of the coefficients of 
the new linear equation which results, namely,

x''aa'+ A/3 + Cy;
and eliminating similarly 7, each in its turn, from the ori
ginal equation; we find the values,

- b -c
y = —> z = —7;c + « a b

D

- a .
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whence the sought vectors are expressed in cither of the two 
following ways:

T , -aai.. , » a — 7---b + c c + a a + b'
or

II. . . a, b^ + Cy
{ _ ■ ■ 9

6 + C
Cy + aa , aa + bQ

c + a ’ a-\^b

In fact we see, by one of these expressions for a, that a' is on 
the line oa; and by the other expression for the same vector 
o', that the same point a' is on the line bc. As another veri
fication, we may observe that the last expressions for a, /3', 7', 
coincide with those which were found in Art. 24, for a, f3, y 
themselves, on the particular supposition that the three points 
A, B, c were collinear.

28. We may next propose to determine the ratios of the 
segments of the sides of the triangle abc, made by the points 
a', b', c'. For this purpose, we may write the last equations 
for a', /3', y under the form,

0= b{a -c(7- o') = c(f37)-a(^a-j3') = a(y'- a}'

and we see that they then give the required ratios, as follows : 
ba' c cb' _ a hc' _ b
k'c b' v,'a. c' c'ii a'

whence we obtain at once the known equation of six segments, 
ba' cb' ac' _ 
a'c b'a c'b ’

as the condition of concurrence of the three right lines aa', bb', 
cc', in a common point, such as o. It is easy also to infer, from 
the same ratios of segments, the following proportion of coeffi
cients and areas,

a'.b'.c- OBC : oca : oab,

in which we must, in general, attend to algebraic signs ; a tri
angle being conceived to pass {through zero) from positive to 
negative, or vice versa, as compared with any given triangle in
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a

its own plane, when (in the course of any continuous change) 
its vertex crosses its base. It may be observed that ivith this 
convention (which is, in fact, a necessary one, for the establish
ment of general formulee) we have, for any three points, the 
equation

19

ABC + BAC = 0,

exactly as we had (in Art. 5) for any tioo points, the equa
tion

AB+ BA = 0.

More fully, we have, on this plan, the formula?,

ABC - BAC = BCA = - CBA = CAB = - ACB ;

and any two complanar triangles, abc, a'b'c', bear to each other 
a positive or a negative ratio, according as the two rotations, 
which may be conceived to bc denoted by the same symbols 
ABC, a'b'c', are similarly or oppositely directed.

29. If a' and b' bisect respectively the sides bc and ca, 
then

a = 6 = c,

and c' bisects ab ; whence the known theorem follows, that 
the three bisectors of the sides of a triangle concur,' in a point 
which is often called the centre of gravity, but which we pre
fer to call the mean point of the triangle, and which is here the 
origin o. At the same time, the first expressions in Art. 27 
for d, (3', 7' become,

' o O' P ' _ .““~2’ ^="2’ ^“"2’

whence this other known theorem results, that the three bisec
tors trisect each other.

30. The linear equation between a, /3, 7 reduces itself, in 
the case last considered, to the form,

a + P 7 = 9, or OA + OB + OC = 0 ;

the three vectors a, (3, 7, or oa, ob, oc, are therefore, in this 
case, adapted (by Art. 10) to become the successive sides of a
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* 

triangle, by transports without rotation ; and accordingly, if 
we complete (as in Fig. 19) the 
parallelogram aobd, the triangle 
OAD will have the property in 
question. It follows (by 11) 
that if we project the four points 
o. A, B, c, by any system of pa
rallel ordinates, into four other .A 
points, o,, A,, Bp c^, on any as
sumed plane, the sum ei the three 
projected vectors, (3^, y,., or
o^Ap &c., will be km/Z; so that we shall have the new linear 
equation,

“z + 7/

OzA,+ OzBz+OzCz=0;
and in fact it is evident (see 
Fig. 20) that the projected 
mean point o, will be the mean 
point of the projected triangle, 
Ap Bp Cp We shall have also the equation,

(«,-«)+ (/3,-/3) + (y,-7) = 0;

or,

where
O, - a = O,A, - OA = (o^A. + - (oo^ + o,a) == i.A.^ - oo,;

hence
oo,= |(aa,+ bb,+ cc),

of the ordinate of the mean point of a triangle is the mean of 
the ordinates of the three corners.

Section 3.— On Plane Geometrical Nets.

31. Kesuming the more general case of Art. 27, in which, 
the coefficients a, ft, c are supposed to be unequal, we may next 
inquire, in what points a", b", c" do the lines b'c', c'a', a'b' 
meet respectively the sides bc, ca, ab, of the triangle; or may 
seek to assign the vectors a", /3", y" of the points of intersec
tion (comp. 27),

♦
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a" = b'c''BC, b"=c'a'’Ca, c"=a'b'-ab.

The first expressions in Art. 27 for j3’, 7', give the equa
tions,

(c + a)/3'+6/3 = 0, (a + b)y'+cy-Q-,
whence

b^-cy _ (0 + 6)7'- (c+ .
6 - c (a + 6) - (c + o) ’

but (by 25) one member is the vector of a point on bc, and 
the other of a point on b'c' ; each therefore is a value for the 
vector a" of a", and similarly for /3" and 7". We may there
fore write,

„ b(3-Cy cy-aa „ aa-b^
•--rrT’

and by comparing these expressions with the second set of 
values of a', /3', 7' in Ai-t. 27, we see (by 26) that the points 
a", b", c" are, respectively, the harmonic conjugates they 
are indeed kno^vn to be) of the points a', b', e', with respect 
to the three pairs of points, b, c; c, a ; a, b ; so that, in the 
notation of Art. 25, we have the equations,

(ba'ca") = (cb'ab") = (ac'bc") = - I.
And because the expressions for a", /3", 7" conduct to the fol
lowing linear equation between those three vectors,
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(b - c-ja’ + (c - a)^" +(a- b)y.' 0, 
with the relation

(6 - c) + (c - a) + (a - d) = 0
between its coeflScients, we arrive (by 23) at this other known 
theorem, that the three points k!', b", c" are collinear, as indi
cated by one of the dotted lines in the recent Fig. 21.

32. The line a"b'c' may represent any rectilinear transver
sal, cutting the sides of a triangle abc ; and because we have 

BA"_a"-/3_ c 
a"c y-a~ 1)

while and as before, we arrive at this other
BA c CB a

equation of six segment's, for any triangle cut by a right line 
(comp. 28),

Tik" cb' kc'
f f JAC BA CB

which again agrees with known results.
33. Eliminating /3 and y between either set of expressions 

(27) for /3' and y', with the help of the given linear equation, 
we anive at this other equation, connecting the three vectors 
a, /3', y :

o = - aa + (c + a)/3' + {a + b) y'-
Treating this on the same plan as the given equation between 
«? we find that if (as in Fig. 21) we make,

a'" = OA • b'c', b'" = OB • c'a', c'" = oc ’ a'b',
the vectors of these three new points of intersection may be ex
pressed in either of the two following ways, whereof the first 
is shorter, but the second is, for some purposes (comp. 34, 36) 
more convenient:

T tf, Q.€t1. . . a “ r-----;---- ,

or
IT /" + bp + Cy

• 2a + b^c P “
", + aa + bQ

fl"'=
26+c + a’ 2c + a + b ’

2bj3 + Cy + aa
2b+c + a ’
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And the three equations, of which the following is one,

(5 - c)a"- (25 + c + a)/3"'+ (2c + a + b)f" = 0, 

with the felations between the*ir coefficients which are evident 
on inspection, show (by 23) that we have the three additional 
collineations, a"b"'c"', b"c"'a"', 
the dotted lines in the figure, 
expressions,

+ +(c + g)/3'
“ (a + 5) + (c + a) ’

23

c"a"'b"', as’ indicated by three of 
Also, because we have the two

” (a + A) - (c + a) ’

we see (by 26) that the two points a", a'" are harmonically con
jugate with respect to b' and c'; and similarly for the two 
other pairs of points, b", b'", and c", c'", compared- mth c', a', 
and with a', b': so that, in a notation already employed (25, 
31), we may write,

♦ (b'a"'c'a") = (c'b'Vb") = (A'c'"n'c") = - 1.

34. If we begin, as above, with imy four complanarpoints, 
o. A, B, c, of which no three are collinear, we can (as in Fig. 
18), by what may be called a First Construction, derive from 
them six lines, connecting them two by two, and intersecting 
each other in three new points, a', b', c' ; and then by a Second 
Construction (represented in Fig. 21), we may connect these 
by three new lines, which will give, by their intersections with 
the former lines, six new points, a", . . c'". We might pro
ceed to connect these with each other, and with the given 
points, by sixteen new lines, or lines of a Third Construction, 
namely, the four dotted lines of Fig. 21, and twelve other 
lines, whereof three should be drawn from each of the four 
given points : and these would be found to determine eighty- 
four new points of intersection, of which some may be seen, 
although they are not marked, in the figure.

But however far these processes of linear construction may 
be continued, so as to form what has been called* a plane

* By Prof. A. F. Mobius, in page 274 of bis Barycentric Calculus (der barycpu- 
trische Calcul, Leipzig, 1827).
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geometrical net, the vectors of the points thus determined have 
all one common property: namely, that each can be represented 
by an expression of the form,

«
_ xaa + yb^ , 

xa + yb + zc ’

where thc coefficients x, y, z are some whole numbers. In fact 
we see (by 27, 31, 33) that such expressions can be assigned 
for the nine derived vectors, d, . . . 7"', which alone have been 
hitherto considered; and it is not difficult to perceive, from 
the nature of the calculations employed, that a similar result 
must hold good, for every vector subsequently deduced. But 
this and other connected results will become more completely 
evident, and their geometrical signification will be better un
derstood, after a somewhat closer consideration of anharmonic 
quotients, and the introduction of a certain system of anhar
monic co-ordinates, for points and lines, in one plane, to which 
we shall next proceed: reserving, for a subsequent •Chapter,, 
any applications of the same theory to space.

Section 4.—On Anharmonic Co-ordinates and Equations of 
Points and Lines in one Plane.

35. If we compare the last equations of Art. 33 with the 
corresponding equations of Art. 31, we see that the harmonic 
group ba'ca", on the side bc of the triangle abc in Fig. 21, 
has been simply reflected into another such group, b'a"'c'a", on 
the line b'c', by a harmonic pencil of four rays, all passing 
through the point 0; and similarly for the other groups. 
More generally, let oa, ob, oc, od, or briefly o. abcd, be 
any pencil, with the point 0 for vertex; and let the neio ray 
OD be cut, as in Fig. 22, by the three sides of the triangle 
ABC, in the three points a,, b„ c, ; let also

ybQ + zcyOAi=ai = ----fl/^-zc
so that (by 25) we shall have the anharmonic quotients,

f/ z
(ba'ca,) = -, (ca'ba,) = -;
' 2 y
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and let us seek to express the two other vectors of intersec
tion, /3i and yi, with a view to 
determining the anharmonic ra
tios of the groups on the two 
other sides. The given equation 
(27),

aa + bp + Cy = 0,

shows us at once that these two
vectors are,

(2/-z)c+ya

• oc =-v
* {z-y}b + za ’

whence .we derive (by 25) these two other anharmonics,

(cb'ab,) = -—(bc'ac,) = ^^—
y ' g

so that we have the relations,
(cb'abi) + (ca'bai) = (bc'aCi) + (ba'cai) = 1.

But in general, for any four collinear points a, b, c, d, it is 
not difficult to prove that

AB AC CD+-----BD= da; PC--------CB
whence by the definition (25) of the signification of the sym
bol (abcd), the following identity is derived,

(abcd) + (acbd)= I.
Comparing this, then, with the recently found relations, we 
have, for Fig. 22, the following anharmonic equations:

(cab'Bi) = (ca'bAi) = -;
y

(bAc'c,) =(ba'cAi)=?^;
z

and we see that (as was to. be expected from known princi- 
E
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pies) the anharmonic of the group does not change, when we 
pass from one side of the triangle, considered as a transversal 
of the pencil, to another such side, or transversal. We may 
therefore speak (as usual) of such an anharmonic of a group, 
as being at the same time the Anharmonic of a Pencil; and, 
with attention to the order of the rays, and to the definition 
(25), may denote the two last anharmonics by the two following 
reciprocal expressions:

(o.cabd) = -;
y

with other resulting values, when the order of the rays is 
changed; it being understood that

. (o. cabd) = (c'a'b'd'),
if the rays oc, oa, ob, on be cut, in the points c', a', b', d', , 
by any one right line.

36. The expression (34),

xaa + yb^ ■{■zcy 
xa+yb + zc ’

may represent the vector of any point p in the given plane, by a 
suitable choice of the coefficients x, y, x, or simply of their ra
tios. For since (by 22) the three complanar vectors pa, pb, 
PC must be connected by some linear equation, of the form

a'. PA + V. PB + c'. PC = 0,
or

a!+V + c ’

d{a -p) + -p) + c'(7 -p) = 0,
which gives

fl'o + + c'y
P=----------------

we have only to write
a’' -=-x, a

V e

and the proposed expression for p will be obtained. Hence 
it is easy to infer, on principles already explained, that if we 
write (compare the annexed Fig. 23),
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P1 = PA'BC, Pa = PB*CA, P3 = PC'AB, 

yvQ shall have, with the same coefficients the following 
expressions for the vectors opj, oPa, 
0P3, or Pl, p2. Pa, of these three points 
of intersection, Pi, Pa, P3;

ybQ + zcy zcy + xaa
pi. = —Pi - ------------ iyb+ zc , ac + xa

xaa + yb^ 
Xa + yb ’

which give at once the following anharmpnics of pencils, or of 
groups, •

(A . BOCP) = (ba'cPj) = - ;

(B . COAP) = (cb'aPj) = - ;

(c . aobp) = (ac'bPs) = -;

whereof we see that the product is unity. Any two of these 
three pencils suffice to deterrnme the position of the point p, 
when the^Tnany/e abc, and the origin o are given; and there
fore it appears that the three coefficients x, z, or any scalars 
proportional to them, of which the qiiotients thus represent the 
anharmonics oi those pencils, may be conveniently called the 
Anharmonic Co-ordinates of that point, p, with respect to 
the given triangle and origin: while the point p itself may be 
denoted by the Symbol,

r^(x,y, z).

With this notation, the thirteen points of Fig. 21 come to be 
thus symbolized:

A =(1,0,0), B =(0,1,0), c =(0,0,1), o = (l, 1,1); 
A' =(0,1,1), B'=(1,0,1), c'=(1,1,0);
A" = (0, 1,-1), b" = (-1,0,1), c"=(l,-l,0); 
a"'=(2, 1, 1), B"'= (1,2,1), c'''=(l, 1,2).
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37. If Pl and p» be any two points in the given plane,

Pl =(^i, yi, Zi)) Pa “ {x,, y^, Za),

and if i and m be any two scalar coefficients, then the following 
third point,

p = (tel -h ux„ ty, -Pvy„ tz, -t-
is collinear with the two former points, or (in other words) is 
situated on the right line PiPg. For, if we make

y=tyx-^uyi, « = tel + liZa,

aaa + •. 
aa -F.. *

x,,aa + ..
--------------» a^a + ..

a = Za, + ux,, 
and

aifla +..
/O1 = ---------- ix,a -F ..

these ueeZow of the three points PiPaV are connected by the 
linear equation,

t (x,a + ..) (Oi {XiU + . .)pa - (aa +..) p = 0;

in which (comp. 23), the sum oi the coefficients is zero. Con
versely, the point p cannot be collinear with Pi, P2,,unless its 
co-ordinates admit of being thus expressed in terms of theirs. 
It follows that if a variable point p be obliged to move along a 
given right line PiPj, or if it have such a line (injihe given 
plane) for its locus, its co-ordinates xyz must satisfy a homo
geneous equation of the first degree, with constant coefficients ; 
which, in the known notation of determinants, may be thus 
written,

0 =
a,
ai.

yaa

z

^2

>

or, more fully,
0 = a - ZiPi} + y {zxXi ~ aiZ^) g {xiy, - yiX,); 

or briefly,
0 = ZzB + Vny + nz,

where Z, »n, n are three constant scalars, whereof the quotients 
determine the position of the right line A, which is thus the 
locus of the point p. It is natural to call the equation, which

    
 



CHAP. II.] POINTS AND LINES IN A GIVEN PLANE.

thus connects the co-ordinates of the point v, the Anharmonic 
Equation of the Line A; and we shall find it convenient also 
to speak of the coefficients I, m, n, in that equation, as being 
the Anharmonic Co-ordinates of that Line: which line may 
also be denoted by the Symbol,

r*
A= [4 wi

se. For example, the three sides nc, ca, ab of the given 
triangle have thus for their

X = 0, y = 0, 2 = 0,

and- for their symbols,

[1,0,0], [0,1,0], [0,0,1].

The three additional lines oa, ob, oc, of Fig. 18, have, in like 
manner, for their equations and symbols,

2-X = 0,
[-1,0,1],

a'b'c", of Fig. 21, are

z-^-x-y = 0,

[1,-1,1],

29

[0, 1,-lJ,

The lines b'c'a", c'a'b'z/
> J

y + 2 - X = 0,
or

x-y=0, 
[l,-l,0].

x-vy -2 = 0, 

[1,1,-11;

the lines a"b'"c"', b"c"'a"', of the same figure, are in like
manner represented by the equations and symbols,

y + 2-3x = 0, 2 + x-3y=0, x + 2^-32 = 0,
[-3,1,1], [l,-3,i], [1,1,-3];

and the line a"b"c" is

[- 1,1.1],

x + y+ 2=0, or [I, 1,1].

Finally, we may remark that on the same plan, the equation 
and the symbol of what is often called the line at infinity^ Gt , 
of the locus of all the infinitely distant points in the given plane, 
are respectively,

ax + + C2 = 0, and [a, 6, c];
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because the linear function, .ax + by + cz, of the co-ordinates 
z, y, z point p in the plane, is the denominator of the ex
pression (34, 36) for the vector p of that point: so that the 
point p is at an infinite distance from the origin o, when, and 
only when, this linear function vanishes.

39. These anharmonic co-ardinates of a line, although 
above interpreted (37) with reference to the equation of that 
line, considered as connecting the co-ordinates of a variable 
point thereof, are capable of receiving an independent geome
trical interpretation. • For the three points l, m, n, in which 
the line A, or [/, m, w], or lx + my ^ nz - 0, intersects the three 
sides BC, CA, AB of the given triangle abc, or the three given 
lines a: = 0, y=0, z=0 (38), may evidently (on the plan of 
36) be thus denoted:

L = (0, ra, - jw) ; M = (- », 0, /) ;

But we had also (by 36),

A*-(0,1,-1) J b"=(-1,0,1);

whence it is easy to infer, on the principles of recent articles, 
that

N = (Wl, - /, 0).

= (ba"cl) ; = (cb"am) ; J = (ac"bn) ;

with the resulting relation,

(ba"cl) . (cb"am) . (ac"bn) = 1.
•

40. Conversely, this last equation is easily proved, with 
the help of the known and general relation between segments 
(32), applied to any two transversals, a"b"c" and lmn, of any 
triangle abc. In fact, we have thus the two equations,

ba" cb" Ac2_ J BL CM AM__
a"c B"a c"b ’ ... LC MA NB ~ ’

on dividing the former of which by the latter, the last formula 
of the last article results. We might therefore in this way 
have been led, without any consideration of a variable point P,
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to introduce three auxiliary scalars^ I, m, n, defined as having 

their quotients ~ equal respectively, as in 39, to the 772 72 IV
three anharmonics of groups,

(ba"cl), (cb"/.m), (ac''bn) ;

and then it would have been evident that these three scalars, 
Z, m, n {ar any others proportional thereto), are sufficient to 
determine the position of the right line A, or lmn, considered 
as a transversal of the given triangle abc ; so that they might 
naturally have been called, on this account, as above, the an
harmonic co-ordinates of that line. But although the anhar- 
monic co-ordinates of a point and of a line may thus be inde
pendently defined, yet the geometrical utility of such definitions 
will be found to depend mainly on their combination: or on the 
form'ula lx + my+ nz=Q oi 37, which may at pleasure be con
sidered as expressing, either that the variable point {x, y, z) is 
situated somewhere upon the given right line [I, m, n\ ; or else 
that the variable line [Z, m,«] passes, in some direction, through 
the given point {x, y, z^-

41. If Al and A, be any two right lines in the given plane,

Al = [Zi, jwi, »i], A.i = [Zj, mt, Ws],

then any third right line A in the same plane, which passes 
through the intersection Ai ’Ag, or (in other words) which con- 
curs with them (at a finite or infinite distance), may be repre
sented (comp. 37) by a symbol of the form,

'A = [ZZi +ult, tmi + MiKj, tn, + m»2],
where Z and u are scalar coeflBcients. Or, what comes to the 
same thing, if Z, m, n be the anharmonic co-ordinates of the 
line A,, then (comp, again 37), the equation

Z, m, n
50 = Z {myUi - «i»ij) + &c. = h, m„ n,

Z2,
must be satisfied; because, if {X, K, Z) be the supposed point 
common to the three lines, the three equations
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IX+ mY+nZ=(i, liX-vm^Y+niZ l„X + mtY+niZ-Q,

must co-exist. Conversely, this coexistence will be possible, 
and the three lines will have a common point (which may be 
infinitely distant), if the recent condition of concurrence be sa
tisfied. For example, because [a, b, c] has been seen (in 38) 
to be the symbol of the line at infinity (at least if we still re
tain the same significations of the scalars a, b, c as in articles 
27, &c.), it follows that

A = [Z, w,«], and A' = [Z.+ tza, m + ub, n + uc], 

are symbols of two parallel lines ; because they concur at infi
nity. In general, all problems respecting intersections of right 
lines, collineations of points, &c., in the given plane, when 
treated by this anharmonic method, conduct to easy elimina
tions between linear equations (of the scalar kind), on which 
we need not here delay: the mechanism of such calculations 
being for the most part the same as in the known method of 
trilinear co-ordinates': although (as we have seen) the geome
trical interpretations are altogether different.

Section 5.— On Plane Geometrical Nets, resumed.
42. If we now rcsame, for a moment, the consideration of 

those plane geometrical nets, which were mentioned in Art. 34; 
and agree to call those points and lines, in the givjen plane, ra
tional points and rational lines, respectively, which have their 
anharmonic co-ordinates equal (or proportional) to whole num
bers ; because then the anharmonic quotients, which were dis
cussed in the last Section, are rational; but to say that a point 
or line is irrational, or that it is irrationally related;to the 
given system oifour initial points o, a, n, c, when its anhar
monic co-ordinates are not thus all equal (or proportional) to 
integers ; it is clear that whatever four points yve may assume 
as initial, and however far the" construction of the net may be 
carried, the net-points and net-lines which result will all be ra
tional, in the sense just now defined. In fact, we begin with 
such; and the subsequent eliminations (41) can never after-
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wards conduct to any, that are of the contrary kind: the right 
line which connects two rational points being always a rational 
line; and the point of intersection-ci two rational lines being 
necessarily a rational point. The assertion made in Art. 34 
is therefore fully justified.

43. Conversely, every rational point of the given plane, 
with respect to the four assumed initial points oabc, is a point 
of the net which those four points determine. To prove this, 
it is evidently sufficient to show that every rational point 
Al = (0, y, z), on any one side bc of the given triangle abc, can 
be so constructed. Making, as in Fig. 22,

Bl = oAi • CA, and Ci = oai • ab,

we have (by 35, 36) the expressions,
Bi = (j/, 0,2Z-z), c, = (2,2-?/, 0) ;

from which it is easy to infer (by 36, 37), that
c'bj • bc = (0, y, 2 - 2/), b'ci ■ bc = (0, y - z, 2);

and thus we can reduce .the linear construction of the rational 
point (0, y, z\ in which the two whole numbers y and 2 may 
be supposed to be prime to each other, to depend on that of 
the point (0, 1, 1), which has already been constructed as a'. 
It follows that although no irrational point Q of the plane can 
be a net-point.,jct every such point can be indefinitely approached 
to, by continuing the linear construction; 
so that it can be included within a quadrila
teral interstice P1P2P3P4, or even within a tri
angular interstice P1P2P3, which interstice of 
the net can be made as small as we may de
sire. Analogous remarks apply to irrational 
lines in the plane, which can never coincide
with net-lines, but may always be indefinitely approximated to 
by such.

* 44. If P, Pl, Pg be any three collinear points of the net, so 
that the formulie.of 37 apply, and if p' be anyy&MrM net-point 
(«', y, 2') upon the same line, then writing

Xxtt + yd) + 2,c = Wi, x^a + yd) + z^c
F

p»
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we shall have two expressions of the forms,

tVipi + UV2P2 f ^'^ipi UV2P2
tVi + UV2 ’ t'Vi + UV2

in which the coefficients are rational, because the co-or
dinates ayz, Sai.2 are such, whatever the constants abc may be. 
We have therefore (by 25) the following rational expression 
for the anharmonic of this net-group:

(p pp p') = — = ('!/x2~xy2').
M {xy^-yXi} {xyi-y'xi}’

and similarly for every other group of the same kind. Hence 
every group of four collinear net-points, and consequently also 
every pencil of four concurrent net-lines, has a rational value for 
its anharmonic function ; which value depends only on the pro
cesses at linear construction employed, in arriving at that group 
or pencil, and, is quite independent of the configuration or ar- • 
rangement of the y&wr initial points: because the three initial 
constants^ a, b, c, disappear ^vQva the.expression which results. 
It was thus that, in Fig. 21, the nine pencils, which had the 
nine derived points a'. . c'" for their vertices, were all harmo
nic pencils, in whatever manner the four points o, a, b, c 
might be arranged. In general, it may be said that plane 
geometrical nets are all homographic figures ;* and conversely, 
in any two such plane figures, corresponding points may be con
sidered as either coinciding, gs at least (by 43) as indefinitely 
approaching to coincidence, with similarly constructed points 
of two plane nets: that is, with points of which (in their re-

■ spective. systems) the anharmonic co-ordinates (36) are equal 
integers.

45. Without entering heref on any general theory of trans
formation of anharmonic co-ordinates, we may already see that 
if we select any four net-points o,, a,, b,, Ci, of which no three 
are collinear, every other point p of the same net is rationally 
related (42)* to these ; because (by 44) the three new anhar-.

• Compare tho Gt’ometrie SupMettre of M. Chasles, p, 362.
f See Note A, on Anharmonic Co-ordinatet,
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monies of pencils, (a, . BiOiCip) = —, &c., are rational:, and 

therefore (comp. 36) the new co-ordinates Xr, yi, of the point 
p, as well its old co-ordinates aiyz, are equal or proportional to 
whole numbers. It follows (by 43) that every point p of the 
net can be linearly constructed, if any four such points be 
given (no three being collinear, as above); or, in other words, 
that the whole net can be reconstructed,* if any one of its qua
drilaterals (such as the interstice in Fig. 24) be known. As 
an example, we may suppose that the four points oa'b'c' in 
Fig. 21 are given, and that it is required to recover Irom them 
the three points abc, which had previously been among the 
data of the construction. For this purpose, it is only neces
sary to determine first the three auxiliary points a'", b'", c'", as 
the intersections oa' • b'c', &c. ; and next the three other auxi
liary points a", b", c", as b'c' • b'"c'", &c. : after which the for
mulas, A = b'b" • e'e", &c.,- will enable us to return, as required, 
to the points A, b, c, as intersections of known right lines.

Section 6.— On Anharmonic Equations, and Vector Expres
sions, for Curves in a given Plane.

46. When, in the expressions 34 or 36 for a variable vec
tor p.= oP, the three variable scalars (or anharmonic co-ordi
nates) X, y, z are connected by any given algebraic equation, 
such aa 

supposed to be rational and integral, and homogeneous of the 
degree, then the locus of the term p (Art. 1) of that vector 

is a plane curve of the p^^ order; because (comp. 37) it is cwt

* This theorem (45) of the possible reconstruction of a plane net, from any one 
of its quadrilaterals, and the theorem (43) respecting the possibility of indefi

nitely approaching by net-lines to the points above called irrational (42), -without 
ever reaching such points by any processes of linear. construction of the kind here 
considered, have been taken, as regards their substance (although investigated by a 
totally different analysis), from that highly original treatise of Mobius, -which was 
referred to in a former note (p. 23). Compare Note B, upon the Barycentric Calcu
lus; and tlie remarks in tho following Chapter, upon nets in space.
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in p points (distinct or coincident, and real or imaginary), by 
any given right line, Ix-^ my + nz- 0/ in the given plane.

For example, if we write

_i?aa + M’JjS + w’cy 
+ m’4 + ’

where #, v are three new variable scalars, of which we shall 
suppose that the sum is zero, then, by eliminating these be
tween the four equations,

as- y = M% z= + « + u = 0,
•WQ are conducted to the following equation of the second 
degree, = + +

so that here P'^^, and the locus of r is a conic section. In fact, 
it is the conic which touches the sides of the given triangle ab c, 
at the points above called a', b', c' ; for if -we seek its intersec
tions with the side bc, by making x = 0 (38), we obtain a 
quadratic with equal roots, namely, (g-z)’‘ = 0; which shows 
that there is contact with this side at the point (0, 1, 1), or a' 
(36): and similarly for the two other sides.

47. If the point o, in which the three right lines aa', bb', 
cc' concur, be (as in Fig. 18, &c.) interior to the triangle abc, 
the sides of that triangle are then all cut internally, by the 
points a', b', c' of contact with the conic; so that in this case 
(by 28) the ratios of the constants a, 6, c are all positive, and 
the denominator of the recent expression (46) for p cannot va- ■ 
nish, for any real values of the var 
riable scalars t, u, v', and conse
quently no szfcA values can render 
infinite that vector p. The conic is 
therefore generally in this case, as in 
Fig. 25, an inscribed ellipse ; which 
becomes however the inscribed cir
cle, when

a'‘ s &■': c'* = s - a: s - b: s -
a, b, c denoting here the lengths of 
the sides of the triangle, and s being their semi-sum.
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48. But if the point of concourse o be exterior to the tri
angle of tangents abc, so that two of its sides are cut externally^ 
then two of the three ratios of segments (28) are negative; and 
therefore one of the three constants a, b, c may be treated as 
< 0, but each of the two others as > 0. Thus if we suppose 
that

d>0, c>0, a<0, a + fo>0, a+oO,

a' will be a point on the side b itself but the points b', c', o 
will be, on the lines ac, ab, aa' prolonged, as in Fig. 26; and 
then the conic a'b'c' will be an 
ellipse (including the case of a 
circle'), or a parabola, or an hy
perbola, according as the roots oi 
the quadrate,

{a + c) <’’ + 2ctu +{b-\-(^u'^ = 0, 
obtained by equating the deno
minator (46) of the vector p to 
zero, are either, 1st, imaginary j or Ilnd, reaZ and equal or 
Illrd, reaZ and unequal: that is, according as we have

bc + ca +, ab > 0, or =0, or < 0;

or (because the product abc is here negative), according as

a'l + + O'* < 0, or = 0, or > 0.

For example, if the conic be what is often called the exscribed 
circle, the known ratios of segments give the proportion,

«•!: : c-‘ = - s: s - c: s - b;
and

-8 + s-c + s-b<0.

49. More generally, if c, be (as in Fig. 26) a point upon 
the side ab , or on that side prolonged, such that cc, is pardlel 
to the chord b'c', then

c,c': Ac'= cb' ; ab' = - a : c, and ab : Ac' = a + bzb', 

writing then the condition (48) ellipticity (pv circularity)
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under the forrnj — < yre see that the conic is an ellipse, c b ;
parabola, or hyperbola, according as c,c'< or = or > ab ; the 
arrangement being still, in other respects, that which is repre
sented in Fig. 26. Or, to express the same thing more sym
metrically, if we complete the parallelogram cabd, then ac
cording as the point d falls, 1st, beyond the.chord b'c', with 
respect to the point a; or llnd^ on that chord; or Ilird, 
within the triangle the general arrangement of the same 
Figure being retained, the curve is elliptic, or parabolic, or 
hyperbolic. In that other arrangement or configuration, which 
answers to the system of inequalities, b>0, c>0, a+ b+c<0, 
the point a' is still upon the side bc itself, but o is on the line 
a'a prolonged through a; and the inequality,

a{b + c) + bc<- lb'^+ bc + c’) < 0,

shows that the conic is necessarily an hyperbola; whereof it is 
easily seen tjjtat one branch is touched by the side bc at a', 
while the other branch is touched in b' and c', by the sides 
CA and BA prolonged through a. The curve is also hyperbo
lic, if either a + b or a + c be negative, while b and c are posi
tive as before.

60. When the quadratic (48) has its roots real and un
equal, so that the conic is an hyperbola, then the directions of 
the asymptotes Taa.j be found, by substituting those roots, 
or the values of t, u, v which correspond to them (or any 
scalars proportional thereto), in the numerator of the expres
sion (46) for p; and similarly we can find the direction of tjie 
axis of the parabola, for the case when the roots are real but 
equal: for we shall thus obtain the directions, or direction, in 
which a right line OP must be drawn from o, so as to meet the 
conic at infinity. And the same conditions as before, for dis
tinguishing the species of the conic, may be otherwise obtained 

,by combining the anharmonic equation, f-H (46), of that 
conic, with the corresponding equation aa: + 6^ + ex: = 0 (38) of 
the line at infinity; so as to inquire (on known principles of 
modern geometry) whether that line meets that curve in ttvo
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imaginary points^ Qvjouches it, or cuts it, in points which (al
though infinitely distant) are here to be considered as real.

51. In general, ify(a:, y, z) = 0 be the anharmonic equa
tion (46) of plane curve, considered as the locus a varia
ble point p; and if the differential’^ of this equation be thus 
denoted, -

0 = dy(a:, y, z) = ^da; + Fdy + Zdz;
then because, by the supposed homogeneity (46) of the func
tion/, we have the relation

Xx -^"Yy
shall have also this other but analogous relation,

xy+yy-hzy = o.
if

w' - a:: y - :«' - « = d®; d?/: dz;
that is (by the principles of Art. 37), if = y', z!) be any
point upon the tangent to the curve, drawn at the point 
p = («, y, z), and regarded as the limit of a secant. The sym
bol (ffi) di this ^anyen< at p may therefore be thus written,

[Z, r, ZJ, or [d^/ Dy/, D^/] ;
where D^, Vy, Vg are known characteristics of partial deriva
tion.

62. For example, when/has the form assigned in 46, as an- 
sweringtothe conic lately considered, we have = 2 (®-y-z),
&c.; whence the tangent at qny point (a-, y, z) of this curve 
may be denoted by the symbol,

Ix-y-z, y-z-x, z-x-y']', 
in which, as usual, the co-ordinates of the line may be replaced 
by any others proportional to them. Thus at the point a', or 
(by 36) at (0, 1,1), which is evidently (by the form of/) a 
point upon the curve, the tangent is the line [- 2, 0, 0], or 
[1, 0, 0] ; that is (by 38), the side bc of the given triangle, as

* In the theory of quaterniont, as distinguished from (although including) that 
of vectors, it will be found necessary to introduce a new definition of differentials, on 
account of the non-commutative property of quaternion-multiplication : but, for tho 
present, the usual significations of the signs d and d are sufficient.
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was otherwise found before (46). And in general it is easy to 
see that the recent symbol denotes the right line, which is (in 
a well known sense) the polar of the point (x, y, ^), with re
spect to the same given conic; or that the line [X^', P, Z'] is 
the polar of the point (af, y, because the equation

Xa! +Y!/ Zz' = 0,
which for a conic may be written as X'x + Y'y + Z'z 0, 
expresses (by 51) the condition requisite, in order that a point... 
fa-, y, z') of the curve* should belong to a tangent which passes 
through the point (a/, y\ £'}. Conversely, thepoiw# (x, y^ 
is (in the same well-known sense) the pole Qi the line [X, F, Z]; 
so that the centre of the conic, which is (by known principles) 
the,pole of the line at infinity (38), is the point which satisfies 
the conditions a'^X = Y = c-^Z; it is therefore, for the pre
sent conic, the point k = (6 + c, c + <z, a + b), oi which the 
vector OK is easily reduced, by the help of the linear equation, 
aa + + Cy = 0 (27), to the form,

a’a + + C-y ,
2 {be -vea-^^ ab)

with the verification that the denominator vanishes, by 48, 
when the conic is a parabola. In the more general case, when 
this denominator is diflFerent from zero, it can be shown that 
every chord of the curve, which is drawn through the extremity 
K of the vector k, is bisected pA, that point K: which point 
would therefore in this way be seen again to be the centre.

53. Instead of the inscribed conic (46), which has been the 
subject of recent articles, we may, as another example, consi
der that exscribed (or circumscribed) conic, which passes 
through the three eorners a, b, c of the given triangle, and 
touches there the lines aa", bb", cc" of Fig. 21. The anhar- 
monio equation of this new cgnic is easily seen to be,

yz + zx + xy = 0;

* If the curve/= 0 were of a degree higher than the aeeond, then tho two equa
tions above written would represent what are called tho first polar, and the last or 
the line-polar, of the point (x', g', s'), witli respect to the given curve.

K =
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the vector of a variable point p of the curve may therefore be 
expressed as follows,

_ f'aa + tr’AjS + W'cy
t'^a + u'^b + v‘c ’

with the condition < + m + u = 0, as "before. The vector of its 
centre k' is found to be,

2 (a^g + b‘‘^ + C'‘y')___
~ a’ + A’ + c” - 2bc - 2ca - 2ab

and it is an ellipse, a parabola, or an hyperbola, according as 
the denominator of this last expression is negative, or null, or 
positive. And because these two recent vectors, k, k, bear a 
scalar ratio to each other, it follows (by 19) that the three 
points o, K, k' are collinear; qx in other words, that the line 
of centres v.is!, oi the two conics here considered, passes through 
the point of concourse o of the three lines aa', bb', cc'. More 
generally, if l be the pole of any given right line A = [/, m, n] 
(37), with respect to the inscribed conic (46), and if l' be the 
pole of the same line A with respect to the exscribed conic of 
the present article, it can be shown that the vectors OL, ol', or 
A, A', of these two poles are of the forms,

A = k {laa + mb^ + ncy), A' = K (ZaaS- mb^ + ncy), 

where A and h' are scalars ; the three points o, l, b' are there
fore ranged on one right line.

5i. As an example of a vector-expression for a curve of an 
order higher than the second, the following may be taken:

t^oa + «’A/3 + «’cy 
~ ~ t^a-^ u^h + u’fti ’

with t + M + V = 0, as before. Making x = r, y = v?, z = w®, we 
find here by elimination of t, u, v the anAarmonfc equation,

{x + y+ z)^ - 'i'lxyz - 0;

the locus of the point p is therefore, in this example, a curve of 
the third orderor briefly a cubic curve. The mecAawMw (41)

G
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of calculations with anharmonic co-ordinates is so much the 
same as that of the known trilinear method, that it may suffice 
to remark briefly here that the sides of the given triangle abc 
are the three (real) tangents of inflexion; the points ofinflexion 
being those which are marked as a", b", c" in Fig. 21; and the 
origin of vectors o being a conjugate point* Ha^b^c, in which 
case (by 29) this' origin o becomes (as in Fig. 19) the mean 
point of the trian
gle, the chord of 
inflexion is
then the at
infinity, and the 
curve takes the 
form represented 
in Fig. 27; hav
ing three infinite 
branches, inscribed within the angles vertically opposite to 
those of the given triangle abc, of which the sides are the 
three asymptotes.

55. It would be improper to enter here into any* details of 
discussion of such cubic curves, for which the reader will na
turally turn to other works.-)- But it may be remarked, in 
passing, that because the general cubic may be represented, on 
the present plan, by combining the general expression of Art. 
34 or 36 for the vector p, with the scalar equation

s® = 27Aa:yz, where s = x-vy-vz', 

h denoting an arbitrary constant, which becomes equal to 
Unity, when the origin is (as in 54) a conjugate point; it fol
lows that if p = {x, y, z} and p' = (af, y, z) be any two points 
of the curve, and if *we make s’ = a! -i- f 4- z', yjQ shall have the 
relation.

x s ns zs ,or —. = 1:
sx sy sz

* Answering to the values t= 1, «= 0, »= Qi, where 0 is one of the imaginary 
cube-roots of unity; which values of t, u, v give = y = z, and p = 0.

t Especially the excellent Treatise on Higher Plane Curvet, by the Rev. George 
Salmon, F. T. C. D., &c. Dublin, 1852.

xyzs'^ = xy'zs^.
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in which it is not difficult to prove that

= (a", pbp'b") ; —,= (b". pcp'c") ; ;

the notation (35) of anharmonics of pencils being retained. 
We obtain, therefore thus the following Theorem :—Jfthe 
sides of any yiven plane* triangle abc cut (as in Fig. 21) hy 
any given rectilinear transversal A"B'fc", and if any two points 
V and p' in its plane he such as to satisfy the anharmonic rela
tion

(a", pbp'b") . (b", fcp'c”) . (c". pap'a") = 1,

then these two points p, p' are bn one common cubic curve, which ■ 
has the three collinear points a"^ b", d' for its three real points 
of inflexion, and has the sides BCj CA, ab of the triangle for its 
three tangents at those points j” a result which seems to offer 
a new geometrical generation for curves of the third order.

66. Whatever the order of a plane curve may be, or what
ever may be the degree p of the,function/in 46, we saw in 61 
that the tangent to the curve at any point p = {x, y, «) is the 

. right line
A=[/, IB, n], if l=Tixf m = Ti^, n=r>tf‘, 

expressions which, by the supposed homogeneity of/, give the 
relation, Z® + iny + wz = 0, and therefore enable us to establish 
the system of the two following differential equations,

Zd® + mdy + wdz: = 0, adZ + yiSan + zdw = 0.
If then, by elimination of the ratios of x, y, z, we arrive at a neio 
homogeneous equation cS the form,

0 = f(D4/

as one that is true for all values of x, y, z which render the 
function/= 0 (although it may require to be cleared of factors, 
introduced by this elimination}, shall have the equation

p(Z,ib,b) = 0,
* This Theorem may be extended, with scarcely any modification, from plane to 

•ipherical curves, ot the third order.
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as' a condition that must be satisfied by the tangent A to the 
curve, in all the positions which can be assumed by that right line. 
And, by comparing the two differential equations,

dF(Z, m, n) = 0, a:dZ + ydm + zdn = 0,
we see that we may write the proportion,
x-.y'.z = : d^f : d„f, and the p = (d;F, d,„f, d„f),
if (a;, y^ z) be, as above, the point of contact p of the variable 
line [I, m, n\, in any one of its positions, with the curve which. 
is its envelope. Hence we can pass (or return) from the tan
gential equation, f => 0, of a curve considered as the envelope of 
a right line A, to the local equation f= 0, of the same curve 
considered (as in 46) as the locus of a point p : since, if we ob
tain, by elimination of the ratios of I, m, n, an equation of the 
form

44 ELEMENTS OF QUATERNIONS.

0=/(DiF, DmF, D„f),

(cleared, if it be necessary, of foreign factors) as a conse
quence of the homogeneous equation f = 0, we have only to 
substitute for these partial derivatives^ DjF, &c., the anbar- 
monic co-ordinates y, z, to which they are proportional. 
And when the functions y and f are not only homogeneous (as 
we shall always suppose them to be), but also rational and 
integral (which it is sometimes convenient not to assume them 
as being), then, while the degree of the function f, or of the 
local equation, marks (as before) the order of the curve, the 
degree of the other homogeneous function f, or of the tangential 
equation F = 0, is easily seen to denote, in this anharmonic 
method (as, from the analogy of other and older methods, it 
might have been expected to do), the class of the curve to 
which that equation belongs; or the number of tangents (dis
tinct or coincident, and real or imaginary), which can be drawn 
to that curve, from an arbitrary point in its plane.

57. As an example (comp-.52), if we eliminate x, y, z be
tween the equations,

Z = a:-j/-a:, m = y-z-x, n = z-x-y, lx-\-my + nz<=Q, 

where I, m, n are the co-ordinates of the tangent to the inscribed
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conic of Art. 46, we are conducted to the following tangen
tial equation of that conic, or curve of the second class,

r(Z, m, n) = mn + nl-^ Im = 0;

with the verification that the sides [1, 0, 0], &c. (38), of the 
triangle jiBC are among the lines which satisfy this equation. 
Conversely, if this tangential equation were given, we might 
(by 56) derive from it expressions for the co-ordinates of con
tact X, y, z, as follows:

a; = D/P = »i + n, y = n-yl,

with the verification that the side [1, 0, 0] touches the conic, 
considered now as an envelope, in the point (0, 1, 1), or a', as 
before: and then, by eliminating I, m, n, ytQ should be brought 
back to the local equation, f= 0, of 46. In like manner, from 
the local equation f= yz + zx + xy = 0 of the exscribed conic (53), 
we can derive by differentiation the tangential co-ordinates,*

I = ^sf~ y-^Zi m = z-vx, n^^x-k^y,

and so obtain by elimination the tangential equation, namely,

f(Z, m, n) = P + m'^ + n'^- 2mn - Inl- 2lm = 0;

from which we could in turn deduce the local equation. And 
(comp. 40), the very simple formula

*
Zj! + »?2/+ nz = 0,

which we have so often had occasion to employ, as connecting 
two sets of anharmonic co-ordinates, may not only be consi
dered (as in 37) as the local equation of a given right line A, 
along which a point p moves, but also as the tangential equa
tion ff a given point, round which a right line turns', according 
as we suppose the set I, m, n, or the set x, y, z, to be given. 
Thus, while the right line or [1,1, 1], of Fig. 21 , was

* This name of “ tangential co-ordinatee" appears to have been first introduced 
hy Dr, Booth in a Tract published in 1840, to which tho author of the present Ele
ments cannot now more particularly refer: bof the system of Dr. Booth was entirely 
difierent from his own. * Seo the reference in Salmon’s Higher Plane Curves, note to 
page 16.
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represented in 38 by the equation x-\-y->rz = ^, the point o of 
the same figure, or the point (1,1, 1), may be represented by 
the analogous equation^

l-}-m-{-n = Q}
because the co-ordinates I, mt n of every linOf which passes 
through this point o, must satisfy this equation of the first de
gree, as may be seen exemplified, in the same Art. 38, by the 
lines OA, ob, oc.

58. To give an instance or two of the use of forms, which,,. 
although homogeneous^ are yet not rational and integral (56), 
we may write the local equation of the inscribed conic (46) as 
follows:

xi + yti + zi = 0;
and then (suppressing the common numerical factor |), the 
partial derivatives are

I - ari, m = yi, w = zri;
so that a form of the tangential equation for this conic is,

Z'* + TH’* + n' = 0 ;
which evidently, when cleared of fractions, agrees with the first 
form of the last Article: with the verification (48), that 
a"* + 6'* + <r* = 0 when the curve is a parabola ; that is, when 
it is touched (50) by the line at infinity (38). For the ex
scribed conic (53), we may -write the local equation thus,

ZB"* + y ‘ + 2r‘ = 0;
whence it is allowed to write also,

Z=a:"’, »i=g-\ n = z-\
and

Z4 + wii + wJ = 0;

a form of the tangential equation which, when cleared of»radi- 
cals, agrees again with 57. And it is evident that we could 
return, with equal ease, from these tangential to these local 
equations. ”

59. For the cubic curve witl\ a conjugate point (54), the 
local equation may be thus written,*

* Compare Salmon’s Higher Plane Curvet, page 172.
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a:J + + zi = 0;

we may therefore assume for its tangential co-ordinates the 
expressions,

I = a;i, in=y^, n = z'l;

and a, form of its -tangential equation is thus found to be,

. n'i = 0.

Conversely, if this tangential form were given, we might re
turn to the local equation, by making

a: = Z-i, y=m-i, z^n^i,

which would give a:i 4-yi + = 0, as before. The tangential
equation just now found becomes, when it is cleared of radi
cals.

0 = Z'” + vK^ + «■’ - 2m’' «■’ - 2n’* - 21''^ •,

or, when it is also cleared offractions.,

0 = F = jw’n’ + ~ - llni^ ~ 2mn'‘l;

of which the biquadratic form shows (by 56) that this cubic 
is a curve of the fourth class, as indeed it is known to be. 
The irflexional character (54) of the points a", b", c" upon 
this curve is here recognised by the circumstance, that when 
we', make m - w = 0, in order to find the four tangents from 
a" =(O, 1,- 1) (36), the resulting biquadratic, 0 = m‘- 4Zm’, has 
three equal roots ; so that the line [1, 0, 0], or the, side bc, 
counts as three, and is therefore a tangent of inflexion: the fourth 
tangent from a" being the line [1, 4, 4], which touches the 
cubic at the point (- 8,1-, 1).

60. In general, the two equations (56),

nOxf - loxf^ 0, riDyf- mTizf <= 0,

may be considered as expressing that the homogeneous equa
tion,

f {nx, ny, ^Ix- my) = 0,

which is obtained by eliminating z with the help of the rela
tion lxmynz = 0, from /(a:, y, z) = 0, and which we may
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denote by y) ~ 0, has two equal roots a : y, if Z, m, n be 
still the co-ordinates of a tangent to the curvey; an equality 
which obviously corresponds to the coincidence of two intersec
tions of that line with that curve. Conversely, if we seek by 
the usual methods the condition of equalityof two roots ®: y of 
the homogeneous equation of the p"" degree,

. 0 = <l>(x, y) =f{nx, ny, -lx- my},

by eliminating the ratio x: y between the two derived homo-, 
geneous equations, 0 = Dj-^, 0 = Dyip, we shall in general be 
conducted to a result of the dimension 2p(p- I) in Z, m, n, 
and of thej&m,

0 = F (Z, m, n) •,

and so, by the rejection of foreign factor introduced
by this eZZmZwafZon,* we shall obtain the tangential equation 
F=0, which will be in general of the degree p(p-1); such being 
generally the known class (56) of the curve of which the 
qrder (46) is denoted by p: with (of course) a similar mode of 
passing, reciprocally, from a tangential to a local equation.

61. As an example, when the function/has the cubic form 
assigned in 54, we are thus led to investigate the condition for 
the existence of two equal roots in the cubic equation,

Q = ^(x,y) = [(n-l}x+ (»i - Z)y)’ + 27re’a:y(Zj:+ my), 

by eliminating x : y between two derived and quadratic equa
tions ; and the result presents itself, in the first instance, aa of 
the twelfth dimension in the tangential co-ordinates Z, m, n ; 

' but it is found to be divisible by n^, and when this division is 
effected, it is reduced to the sixth degree, thus appearing to 
imply that the curve is of the sixth class, as in fact the general 
cubic is well known to be. A further reduction is however 
possible in the present case, on account of the conjugate point 
o (54), which introduces (comp. 57) the quadratic factor,

* Compare the method employed in Salmon’s Higher Plane Curves, page 98, to 
find the equation of the reciprocal of a given curve, with respect to tho imaginary 
conic, + = 0. In general, if the function f be deduced from f as above,
then F(a:yi) = 0, and /(xyz) = 0 are equations of two reciprocal curves.
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(Z + m + n/ = 0 ;
♦

and when this factor also is set aside, the tangential equation 
is found to be reduced to the biquadratic  form* already assigned 
in 59; the algebraic division, last performed, corresponding 
to the known geometric depression of a cubic curve with a 
double point, from the sixth to the fourth class. But it is time 
to close this Section on Plane Cunes ; and to proceed, as in 
the next'Chapter we propose to do, to the consideration and 
comparison of vectors of points in spacer

CHAPTER lU.

APPLICATIONS OF VECTORS TO SPACE.

Section 1.— On Linear Equations between Vectors not Com
planar.

62. When three given and actual vectors oa, ob, oc, or 
a, 7> are not contained in any common plane, and when 
the three scalars a, b, c do not all vanish, then (by 21, 22) 
the expression aa + 5/3 + cy cannot become equal to zero; it 
must therefore represent some actual vector (I), which we may, 
for the sake of symmetry, denote by the symbol - rfS ; where 
the new (actual) vector S, or on, is not contained in any one

• If we multiply that form v = 0 (59) by z’, and then change »z to - Zx - my, 
we obtain a biquadratic equation in Z: m, namely,

0 = ,/z (Z, nt) =(l- fl!)2 (Jx + nuJP + 2lm {I + ni) {lx + my) z + Pni^z^ •,

and if we then eliminate Z: m between the two derived cubica, 0 = unp, 0 = T>m'p, 
we are conducted to the following equation of the twelfth degree, 0 = (x, y, z),
where/bas the same cubic form as in 54. We are therefore thus brought back 
(comp. 59) from the tangential to the local equation of the cubic curve (54); com
plicated, however, as we see, with the factor x^y^z^, which corresponds to the sys
tem of the three real tangents of inflexion to that curve, each tangent being taken 
three times. The reason why we have not here been obliged to rqject aleo the foreign 
factor, x*2, as by the general theory (60) we might have expected to be, is that wo 
multiplied the biquadratic function f only by z\ and not by z*.

H
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of the three given and distinct planes, boc, coa, aob, unless 
some one, at least, of the three* gjven coefficients a, b, c, yo.- 
nishes; and where the new scalar, d, is either greater or less 
than zero. We shall thus have a linear eqiiationbetween four 
vectors,

aa + 5/3 + Cy + = 0 ;
which will give 

- aa -b^ -Cy

OD or S, is the internalsum,

where oa', ob', 
- aa -bQ -Cy
—j-» ——) are thea a a
vectors of the three points 
a', b', c', into which the 
point D is projected, on the 
three given lines oa, ob, oc, 
by planes drawn parallel to 
the three given planes, boc, 
&c.; so that they are the 
three co-initial edges of a 
parallelepiped, whereof the 
and co-initial diagonal (comp. 6)., Or we may project d on 
the three planes, by lines da", db", dc" parallel to the three 

given lines, and then shall have oa" = ob' + oc'= &c.,
and

g = OD = oa' + oa" = ob' + ob" = oc' + oc".

And it is evident that this construction will apply to any fifth 
point D of space, if the four points oabc be still supposed to be 
given, and not complanar: but that some at least of the three 
ratios of the four scalars a, b, c, d (which last letter is not 
here used as a mark of differentiation) will vary with the po
sition oi the point d, or with 'the value of its vector 8. For 
example, we shall have a = 0, if d be situated in the plane boc ; 
and similarly for the two other given planes through o.

63. We may inquire (comp. 23), what relation between 
these scalar coefficients must exist, in order that the point d
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may be situated in the fourth given plane abc ; or what is the 
condition of compJanarity of the four points, i^, B, c, d. Since 
the f/iree vectors 'dk, db, dc are now supposed to be complanar, 
they must (by 22) be connected by a linear equation, of the 
form

a{a - 8) + 6(/3 - 8) + c{y — 8) = 0;
I

comparing which with the recent and more general form (62), 
we see that the required condition is,

a + 6 + c + d=0.

This equation may be written (comp, again 23) as

-a ~b -c , oa' ob' oc' ,
—r+—r + -T=*lj or —+ —+ — = 1»d d d OA OB oc

and, under this last form, it expresses a known geometrical 
property of a plane abcd, referred to three co-ordinate axes 
OA, OB, oc, which are drawn from any common origin o, and 
terminate fpeya. the plane. We have also, in this case of com- 
planarity (comp. 28), the following proportion of coefficients 
and areas:

a‘.b’.cz-d = DBC : dca : dab : abg;

or, more symmetrically, with attention to signs of areas,

a:6;c:c? = BCD: - cda : dab : - abc ;

where Fig. 18 may serve for illustration, if we conceive o in 
that Figure to be replaced by d.

64. When we have thps at once the two equations,

aa + 6/3 + Cy + d8 = 0, .and fl + 6 + c + d=0,

so that theybMr co-initial vectors a, /3, 7, 8 terminate (as above) 
on one commonplane, and may therefore be said (comp. 24) to 
be termino-complanar, it is evident that the two right lines, 
DA and bc, which connect two pairs qY theJwMr complanar 
points, must intersect each other in some point a' of the plane, 
at a finite or infinite distance. And there i no difficulty in 
perceiving, on the plan of 31, that the vectors of the three
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pomts d, b', c' of intersection, which thus result, are the fol
lowing:

f 
for

52

a' = BC'DA,

B' = CA’DB,

for C'= AB'DC,

, ^6 + Cy aa + dS
a = -ir---- - =------- -  :

b + c ■ a^d
Cy + aa b^^dZ

'c + a " b + d ’
aa+b(3 Cy + </S/
a+b "" C'^-d

< for

expressions which are independent of the position the arbi
trary origin o, and which accordingly coincide lyith'the cor
responding expressions in 27j when we place that origin in the 
point D, or make 8 = 0. Indeed, these last results hold good 
(comp. 31), even when the four vectors «, y, 8, or the Jive 
points Q, A, b, c, d, are aZZ complanar. For, although t^ere 

exist linear equations between those four vectors, 
which may in general be written thus,

da + b'P + cy+d’8 = 0, d'a + b’'l3 + cy + d"^ = 0,

without the relations, a'+&c. = 0, a" + &c. = 0, between the 
coefficients, yet if we form from these another linear equation, 
of the form,

(a" + td)a + (5" + tb')^ + (c" + tc')y + {d" + <d')S = 0,

and determine by the condition,

d' + d'+d' + d" 
d + b' + c + d'

yjQ shall only have to make a = d'+td, See., and the two equa
tions written at the commencement of the present article will 
then both be satisfied; and will conduct to the expressions 
assigned above, for the three vectors of intersection: which 
vectors may thus be found, without its being necessary to em
ploy those processes of scalar^elimination, which were treated 
of in the foregoing Chapter.

Ab an Example, let the two given equations be (comp. 27, 83),
aa + bfi + cy = 0, (2a + 6 + — aa = 0 }
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' 2aa + 6(i
2 a+ i ’

and let it be required to determine the vectors of the intersections of the three pairs 
of lines BC, aa"': CA, ba'"; and ab, ca'". Forming the combination,

(2a + 6 + c')a" -*aa f (aa + 6/3 + cy) = 0,
and determining t by the condition,

(2o+6 + c)-a + <(a+6 + c) = 0,
which gives t =— 1, we have for the three sought vectors the expressions,

6/3 + cy cy + 2aa
6 + c ’ c + 2a ’

whereof the first a', by 27. Accordingly, in Fig. 21, the line aa" intersects bc in 
the point a' ; and although the two other points of intersection here considered, 
which' belong to what has been called (in 34) a Third Comtruction, are not marked 
in that Figure, yet their anharmonic symbols (86), namely, (2, 0, 1) and (2, 1, J)), 
might have been otherwise found by combining the equations y = 0 and a:= 2z for the 
two lines ca, ba'"; and by combining z = 0, x = 2y for the remaining pair of lines.

65. In the more general case, when the/owr given points 
A, c, D, are in any common plane, let k be any JiJlh given 
point 0^ space, not situated on any one of the four faces of the 
given pyramid abcd, nor on any such face prolonged; and let 
its vector ob = e. Then the your co-initial vectors, ea, eb, ec, 
ED, wher^f (by supposition) no three are complanar, and which 
do not terminate upon one plane, must be (by 62) connected 
by some equation of the form,

a.EA + i.EB + C.EC + rf.ED^ 0;
where the four scalars, a, b, c, d, and their sum, which we shall 
denote by - e, are aZZ different from zero. Hence, because 
ea = a - e, &c., we may establish the following linear equation 
between five co-initial vectors, a, /3, y, S, e, whereof no four are 
termino-complanar (64),

. aa + + cy + = 0 ;

with the relation, a + b-vc-^d-ve^H, between the scalars 
a, b, c, d, e, whereof no one now separately vanishes. Hence 
also, E = {aa 4- + cy + dS): (a + 5 + c + d), &c.

66. Under these conditions, if we write«
Di = de*abc, and od, = 8„

that is, if we denote by 8, the vector of thc point n/in which 
the right line de intersects the plane abc, we shall have
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g _ aa + 5/3 + cy dS + ee
‘ a + b-^ c d-v e'

In fact, these two expressions are equivalent, or represent one 
common vector, in virtue’ of the given equations; but the first 
shows (by 63) that this vector 8i terminates on the plane liRC, 
and the second shows (by 25) that it terminates on'thc line 
DE ; its extremity d, must therefore be, as required, thei?der- 
section of this line with that plane. We have therefore the two 
equations,

I. . . a(a-8i) + 6(3-Si) + c(y - Sj) = O ; 
II, . . d(S - 81) + e (e — 81) = 0 ;

whence (by 28 and 24) follow the two proportions,

1'. .. a: b:c = DiBC : DiCA : DjAB ; 
ir. . . d; e = EDi: DiD ;

the arrangement of the points, in the 
annexed Fig. 29, answering to the case 
where all the four coefficients a, 5, e, d 
are positive (or have one common sign}, 
and when therefore the remaining co
efficient e is negative (or has the opposite sign).

67. For the three triangles, in the first propor
tion, we may substitute any three pyramidal volumes, which 
rest upon those triangles as their bases, and which have one 
common vertex, such as d or e ; and because the collineation 
DEDi gives DDiBC - EDiBC = DEBC, &c., vfQ may write this other 
proportion,

I". . , a'.b‘.c = DEBC:deca>:dead.

Again, the same collineation gives
EDi :.DD1 = EABC : DABC J

we have therefore, by 11'., the proportion,

11". . . d: - e = EABC : dabc.
But

DEBC + DECA + DEAD + EABC = DABC,
and
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a+ 5 + c + d= -e;

we may therefore establish the following fuller formula of 
proportion, between coefficients and volumes:

IXL . , a'.l)’.c‘.di-e = debc : deca : deab : eabc : dabc ;

the ratios qY all these five pyramids to each other being consi
dered as positive, for the particular arrangement of the points 
whteh is represented in the recent figure.

68. The formula III. may however be regai’ded as per
fectly general, if we agree to say that ^.pyramidal volume changes 
sign,'or rather that it changes its algebraical character, as po
sitive or negative, in comparison with a given pyramid, and 
with a given arrangement of points, in passing through zero 
(comp. ‘28); napaely when, in the course of any continuous 
change, any one of its vertices crosses the corresponding base. 
With this convention* -vie shall have, generally,

DABC = — ADBC-= ABDC = — ABCD, DEBO=BCDE, DECA = CDEA; 

the proportion III. may therefore be expressed in the follow
ing more symmetric, but equally general form:

Iir. . . a'.b-.czd’.e = bcde : cdea; deab : eabc : abcd ;

the sum of these five pyramids being always equal to zero, 
when signs (as above) are attended to.

69. We saw (in 24) that the two equations,

aa + 5|3 + cy = 0, a + 5 + c = 0,

gave the proportion of segments,

a'.b’.C^'RC'.Ck’. AB, 

whatever might be the position of the origin o. In like man
ner we saw (in 63) that the two other equations,

•
* Among the consequencea of this convention respecting signs of volumes, which 

has already been adopted by some modern geometers, and whi<;h indeed is necessary 
(comp. 28) for the establishment of general formula:, one is that any two pyramids, 
ABCD, a'b'c’d', bear to each other a positive or a neyatiae ratio, according as the two 
rotations, BCD and b’c/d’, supposed to be seen respectively from the points a and a', 
have similar or opposite directions, as right-handed or left-handed.
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A, B, c are any three collinear points ;
A, B, c, D are four complanar points ; 
A, B, c, D, E are any five points of space ;

ELEMENTS OF QUATERNIONS.

aa + ii/S + Cy + <Z8 = 0, a + b + c

gave the proportion of areas,

a’.b'.c‘.d= BCD: - cda ; dab : - abc ;

where again the origin is arbitrary. And we have just deduced 
(in 68) a corresponding proportion of volumes, from the. two 
analogous equations (65),

aa + b^ + Cy + </S + ee = 0, a + 6 + c + + c = 0,

with an equally arbitrary origin. If then we conceive these 
segments, areas, and volumes to be replaced by the scalars to 
which they are thus proportional, we may establish the three 
general formulae :

I. OA.BC + OB.CA+OC.AB = 0 ;
II. OA.BCD - OB .cda + OC.DAB - OD.ABC = 0 ;

III. OA.BCDE+ OB.CDEA+ OC.DEAB + OD.EABG+OE.ABCD = 0 ; 

where in I., 
in IL, 
and in III., 

while o is, in each of the three formulae, an entirely arbitrary 
point. It must, however, be remembered, that the additions 
and subtractions are supposed to be performed according to the 
rules of vectors, aa stated in the First Chapter of the present 
Book; the segments, or areas, or volumes, which the equations 
indicate, being treated as coefficients of those vectors. We 
might still further abridge the notations, while retaining the 
meaning of these formulae, by omitting the symbol of the arbi
trary origin o; and by thus writing,*

r. A.BC+B.CA + C.AB = 0,

for any three<ollincar points^ with corresponding formulae II'. 
and III'., for any four complanarpoints, and for any five points 
of space.

• We should thus hare some of the notations of tlie Barycentric Calculus (^oe 
Note B), but employed here with different interpretations.
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Section 2.— On Quinary Symbols for Points and Planes in 
Space.

70. The equations of Art. 65 being still supposed to hold good, 
the vector p of any point p of space may, in indefinitely many ways, 
be expressed (comp. 36) under the form;

a:aa + w5)3+zc7 + wd8+wCG X» • « OP "P —.....  •
xa+ybJf zc-vwd+ve

in which the ratios of the differences ot the jive coefficients, xyzwv, de^ 
termine the position of the point. In fact, because the four points 
ABCD are not in any common plane, there necessarily exists (comp. 
65) a determined linear rctotion between the four vectors drawn to 
them from the point p, which may be written thus,

a/a. PA+ yj.PB+ «'c.PC+ w'd.PD = 0, 
giving the expression,

_ sdaa + y'b^ + z'e^ + w'dh 
x^a + y'b + z'c + us'd ’

in which the ratios cd the four scalars x’y'z'w', depend upon, and 
conversely determine, the position of p; writing, then,

®=te* + w, y-ty'-^v, z-tz'-{-v, w = tvjt.\-v,
where t and o are two new and arbitrary scalars, and remembering 
that cw +.. + ee = 0, and a +.. + c = 0 (65), we are conducted to the 
form for p, assigned above.

7.1. When the vector p is thus expressed, the point r may be 
denoted by the Quinary Symbol {x, y, z, w, o'); and we may write 
the equation.

IL . .

a! =

P = (x, y, z, w, v).
But we see that the same point p may o&o be denoted by this other 
symbol, oiXhQ same kind, (a/, y', z', w', o'), provided that the follow
ing proportion between differences of coeficients ^0) holds good: 

aj'-w': p'-v':z'-v':w'v: w-ti.
Under this condition, -ceo shall therefore write the following formula 
of congruence,

{x', y', z', w>, 1)1') = {x, y, z, w, v),
to express that these two quinary symbols, although not identical in 
composition, have yet the same geometrical signification, ox denote one 
common point. And we shall reserve the symbolic cgwation,

(.x', f, z', V)', »') = {x, y, z, w, v),
I
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to express that the five coefficients, a/ ... v', of the one symbol, are 
separately equal to the corresponding coefficients of the other, 

= X, . . 1/ = V.
Ti. Writing also, generally,

(te, ty, iz, tw^ tv) = t{xy y, z, w, v), 
(a/ + . v' + v) = {x',.. v') + (®»• • **)»

and abridging the particular symbol* (1, 1,1, 1,1) to (Z7), while 
(Q), (Q')i may briefly denote the quinary symbols . o'), 
lx', .. v'),.. -we may thus establish the congruence (71), 

(Q')=(Q). if (Q)=<(Q')+«(Z^);
in which t and « are arbitrary coefficients. For example,
(0,0, 0,0, 1) = (1,1, 1,1,0), and (0, 0,0,1,1) = (1,1,1,0,0); 

each symbol of the first pair denoting (65) the given point E; and 
each symbol of the second pair denoting (66) the derived point d,. 
When the coefficients are so simple as in these last expressions, we 
may occasionally omit the commas, and thus write, still more briefly, 

(00001) = (11110); (00011) = (11100).
73. If three vectors, p, p'^, p", expressed each under the first 

form (70), be termino-coUinear (24) and if are denote their denomi- 
tors, xa +.., x'a +.., a^'a +.., by »», tri, ml', they must then (23) be 
connected by a linear equation, with a nuU sum of coefficients, which 
may be written thus: .

imp + t'm'pl + t"m"p" = 0; tm-}- t'm'+t"m" + 0.
We have, therefore, the two equations of condition,

t (xaa +.. + vee) +1' (x'aa +.. + v'«e) +1" (pc/'aa +.. + v"ee) = 0; 
t (a:<i + . . +ve) + t' (x'a + .. + w'e) +1" (a/'a +.. + «"e) = 0;

where t, f, t" are three new scalars, while the five vectors a.. e, and 
the five scalars a..c, are subject only to the two equations (65); 
but these equations of condition are satisfied by supposing that 

tx + fx' + t"x" =.. = tv+<V + t"v" = -u,
where m is some new scalar, and they cannot be satisfied otherwise. 
Hence the condition of collinearity of the three points P, p', p", in 
which the three vectors p, p', p" terminate, and of which the qui
nary symbols are (Q), (Q')> may briefly be expressed by the
equation,

* Thit quinary tymbol denotes no determineit point, since it corresponds 
(by 70, 71) to the indeterminate vector p = i but it admits of useful combinatione 
with oMer quinary symbols, as above.
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t (QO +1" {Q,"}
ho that any four scalars, t, i, i', u, can ie found, which satisfy this 
last symbolic equation, then, but not in any other case, those three 
points pp'p" are ranged on orte right line. For example, the three 
ppints D, E, D„ which are denoted (72) by the quinary symbols, 
(00010), (00001), (11100), are collinear; because the sum of these 
three symbols is (17). And if we have the equation,

(Q") = t(Q) + «'(Q') + «(C7),
where t, t', u are any three scalars, then (Q") is a symbol for a point 
p", on the right line pp'. For example, the symbol (0, 0, 0, t, may 
denote any point on the line de.

74. By reasonings precisely similar it may be proved, that if 
(Q) (QO (Q") {0!"} be quinary symbols for any four points
in any common plane, so that the /o«r vectors pp'p"p"' are femino- 
complanar (64), then an equation, of the form

t (Q) +«' (Q') + i" m+1'" {Q!''} = -u{TJ},
must hold good; and conversely, that if the fourth symbol can be 
expressed as follows, -

(Q"') = t (Q) + <' (Q')+1" (Q")
with any scalar values of t, t', t", u, then the/owrtA point i'" is situ
ated tn the plane pp'p" of the other thr^. For example, the four 
points,

(10000), (01000),.. (00100), (11100),
^or A, B, c, Dj (66), are complanar; and the symbol (t, V, t", 0, 0) 
may represent any point in the plane abc.

75. When a point p is thus complanar with three given points, 
Po, P» Psj we have therefore expressions of the following forms, for 
theyZve coefficients aj,.. u of its quinary symbol, in terms of thej^- 
teen given coefficients oi their symbols, and ofyhnrnew and arbitrary 
scalars:

® = fo«o + tia:i + tsa:j, + «;... v = to^o + f i^’i + <2^2 + «.

And hence, by dimination oi these four scalars, to«•«, we are con
ducted to a linear equation of the form

t (® - v) + ni (y - p)+n (a - v) + r (w - w) 0,
which may be called the Q,uinary Equation of the Plane PoPiP»» or of 
the supposed locus of the point p; because it expresses a common 
property of all the points of that locus; and because the three ratios 
of the four new coefficients I, m, n, r, d^ermine the position of the plane
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in space. It is, however, more symmetrical, to write the quinary 
equation of a plane n as follows,

lx + my+nz + rw + sv=0,
where they^/A coefficient, s, is connected with the others by the rela
tion,

60 ELEMENTS OF QUATERNIONS.

Z + TO + n + r+« = 0;
and then we may say that [/, m, n, r, s] is (comp. 37) the (Quinary 
Symbol of the Plane II, and may write the equation, 

n=[Z, m, n, r, j].
For example, the coefficients of the symbol for a point p in the plane 
ABC may be thus expressed (comp. 74):

® = to + «, y = <i + w, ^ = tj + u, w=u, » = u;
between which the only relation, independent of the four arbitrary 
scalars k,..u, is w - u = 0; this therefore is the equation oi the plane 
ABC, and the symbol of that plane is [0, 0, 0,1, - IJ; which may 
(comp. 72) be sometimes written more briefly, without coinmas, as 
[000113. It is evident that, in any such symbol, the coefficients may 
all be multiplied by any common factor.

The symbol of the plane having been thus determined, 
we may next propose to find a symbol for thej^oinZ, p, jn which that 
plane is intersicted by a given Zins P3P4: or to determine the coefficients 
X ..V, OT at, least the ratios of their differences (70), in the quinary 
symbol of that point,

{X, y, Z,W,V) = -B = PbP,P, • P3P4. 
Combining, for this purpose, the expressions,

X - 13X3 + t» = <3W3 + t4V4 + u',
(which are included in the symbolical equation (73), 

and express the collinearity with the equations (75),
fe+..+5y=0, /+.. + s=0,

(which express the complanarity PP0P1P2,) we are conducted to the 
formula.

<3(^^3+-- • + SV3) + ti(IXi + ,. + sv4) = 0;
which , determines the ra<»o <3: and contains the solution of the 
problem. For example, if p.be a point on the line de, then (comp. 
73),

x = y = z-u', K = v = ti-\-u'-.
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but if it be also a point in the plane abc, then w-o = 0 
therefore <3 - /* = 0; hence

(Q)=#3(OOO11)+«'(11111), or (Q)x(OOOll); 
which last symbol had accordingly been found (72) to represent the 
intersection (66), D, = abc • de.

77. When the five coefficients, xyzwv, .of any given quinary 
symbol for a point p, or those of any congruent symbol (71), are 
any whole numbers (positive or negative, or zero), we shall say 
(comp. 42) that the point p is rationally related to the five given points, 
A.. E; or briefly, that it is a national Point of the System, which 
those five points determine. And in like manner, when the five 
coefficients, Imnrs, of the quinary symbol (75) of a plane n are either 
equal or proportional to integers, we shall say that the plane is a Ra
tional Plane of the same System; or that it is rationally related to the 
same five points. On the contrary, when the quinary symbol of a 
point, or of a plane, has not thus already whole coefficients, and can
not be transformed (comp. 72) so as to have them, we shall say that 
the point or plane is irrationally related to the given points; or 
briefly, that it is irrational. A right line which connects two rational 
points, or is the intersection of two rationed planes, may be called, on 
the same plan, a Rational Line; and lines which cannot in either 
of these two ways be constructed, may be said by contrast to be 
Lrational Lines. It is evident from the nature of the eliminations 
employed (comp, again'42), that a plane, which is determined as con
taining three rational points, is necessarily a rational plane; and in 
like manner, that a point, which is determined as the common inter
section of three rational planes, is always a rational point: as,is also 
every point which is obtained by the intersection of a rational line 
with a rational plane; or of two rational lines with each other (when 
they happen to be complanar).

78. Finally, when two points, or two planes, differ only by the ar
rangement (or order') of the coefficients in their quinary symbols, those 
points or planes may be said to have one common type; or briefly 
to be syntypical. For example, the Jive given points, a, .. e, are thus 
syntypical, as being represented by the quinary symbols (10000),.. 
(00001); and the ten planes, obtained by taking all the ternary 
combinations of those five points, have in like manner one common 
type. Thus, the quinary symbol of the plane abc has been seen 
(75) to be [00011]; and the analogous symbol [11000] represents 
the plane CDE, &c. Other examples will present themselves, in a
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shortly subsequent Section, on the subject of Nets in Space. But 
it seems proper to say here a few words, respecting those Anhar
monic Co-ordinates, Equations, Symbols, and Types, for Space, which 
are obtained from the theory and expressions of the present Section, 
by reducing (as we are allowed to do) the number of the coefficients, 
in each symbol or equation, from five to four.

Section 3.-,—On Anharmonic Co-ordinates in Space.
IQ. When we adopt the second form (70) for />, or suppose (as 

we may) that theJ^A coefficient in the first ioira vanishes, we get this 
other general expression (comp. 34, 36), for the vector of a poiivt in 
space:

xau + ybp + zc^ + wd3 
ov-p=---------- 7---------- J—;xa + yb-}-zc->rwd 

and may then write the symbolic equation (comp. 36, 71), 
P= (af, y, w), 

and call this last the Q,ualernary Symbol of the Point p: although 
we shall soon see cause for calling it also the Anharmonic Symbol of 
that point. Meanwhile we may remark, that the only congnient 
symbols of this last form, are those which differ merely by the 
introduction of a common factor: the three ratios of the four coeffi
cients, X ..w, being oZZ required, in order to determine the position of 
the point; whereof those four coefficients may accordingly be said 
(comp. 36) to be the Anharmonic Coordinates in Space.

80. When we thus suppose that u=0, in the quinary symbol of
the point V, we may suppress the fifth tei~m sv, in the quinary equation 
oi a plane H, lie + .. + sw = 0 and therefore may suppress also (as
here unnecessary) the^^zA coefficient, s, in the quinary symbol oi that 
plane, which is thus reduced to the quaternary form,

n = [Z, m, n, r].
This last may also be said (37, 79). to he thQ Anharmonic Symbol of 
the Plane, of which the Anharmonic Equation is

lx + my + nz + rw= 0;
the/our coefficients, Imnr, which we shall call also (comp, ag'ain 37) 
the Anharmonic Co-ordinates of that Plane H, being not connected 

themsdveshy any general relation (such as Z+. . + s = 0): since 
their t/zree ratios (comp. 79} are all in general necessary, in order to 
determine the position of the plane in space. '

81. If we suppose that the fourth coefficient, w, also vanishes, in
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the recent symbol of a point, that point p is in theplane abc; and may 
then be sufficiently represented (as in 36) by the Ternary Symbol 
{x, y, z}. And if we attend only to the points in which an arbitrary 
plane II intersects the given plane abc, we may suppress its fourth co
efficient, r, as being for such points unnecessary. In this manner, 
then, we are reconducted to the equation, lx-¥my-vm-Q, and to the 
symbol, A=[Z, m, nj, for a right line in the plane ssc,caasaA&[&dL
here as the trace, on that plane, of an at-bitrary plane II in space. If 
this plane II be given by its quinary symbol (75), we thus obtain 
the ternary symbol for its trace A, by simply suppressing the two last 
coefficients, r and s. *

82. In the more general case, when the point p is not confined 
to the plane abc, if we denote (comp. 72) its quaternary symbol by 
(Q), the lately established formulce of collineation and complanarity 
{73, 7^) will still hold good: provided that we now suppress the 
symbol (IT), or suppose its coefficient to be zero. Thus, the formula, 

• (Q) = t' (QO +1" {Cf'} + V" (Q'"),
expresses that the point p is in the plane and if the coeffi
cient t'" vanish, the equation which then remains, namely,

(Q)=<'(Q')+«"(Q").
signifies that p is thus complanar with the two given points p', p", 
and with an arbitrary third point; or, in other words, that it is on 
the right line whence (comp. 76) problems of intersections of 
Zines with planes can easily be resolved. In like manner, if we de
note briefly by [ZZ] the quaternary symbol [Z, m, n, rj for a plane 
n, the formula

[5] = t' [Z?'] +1" +1'"
expresses that the plane II passes through the intersection of the three 
planes, II', n", 11'"; and if we suppose f"' = 0, so that

[ZZ] = <'[ZZ']+Z"[ZZ"J,
the formula thus found denotes that the plane n passes through 
the point of intersection of the two planes, II', II", with any third 
plane; or (comp. 41), that this plane 11 contains the line of intersec
tion of n', n"; in which case the ZAree planes, 11, 11', II", may be 
said to be collinear. Hence it appears that either of the two expres
sions,

I. . . Z'(Q') + Z"(Q"), IL. . z'[ZZ'] + <"[Z3"],
may be used as a Symbol of a Right Line in Space : according as we 
Consider that Zine A either, 1st, as connecting two giien points, or
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Ilnd, as being the intersection of two given planes. The remarks (77) 
on ralional and irrational points, planes, and lines require no modifi
cation here; and those on types (78) adapt themselves as easily to 
quaternary as to quinary symbols.

83. From the foregoing general formula: of collineation and com- 
planarity, it follows that the point p', in which the line ab inter
sects the plane cdp through cd and any proposed point P = (xyew} 
of space, may be denoted thus:

p' = AB • CDP = (ajyOO);

for example,jB = (1111), and c' = ab‘cde = (1100). In general, if 
ABCDEF be any six points of space, the /our collinear planes (82), abc, 
ABD, ABE, ABF, are said to form a pencil through ab; and if this be 
cut by any rectilinear transversal, in four poin^, c, d', e', f , then 
(comp. 35) the anharmonic function oi this group oi points (25) is 
called also the Anharmonic of the Pencil of Planes: which may be 
thus denoted,

(ab . cdef) = (c'd'e'f').
Hence (comp, again 25, 35), by what has just been shown respect
ing o' and p', we may establish the important formula:

(CD . AEBP) = (AC'BP') = - ;

so that this ratio of coefficients, in the symbol {xyew"} for a variable 
point P (79), represents the anharmonic of a pencil of planes, of which 
the variable plane cdp is one; the other planes of this pencil 
being given. In like manner,

, (ad . BECP) = p and (bd . ceap) = ;

so that (comp. 36) the product of these three last anharmonics is 
unity. On the same plan we have also,

fBC.AEDP) = -, (CA.BEDP) = -, (ab.CEDp) = —;

so that the three ratios, ot the three first coefficients xyz to the 
fourth coefficient w, suffice to determine the three planes, bcp, cap, 
ABP, whereof the point p is the common inUrsecfton, by means of the 
anharmonics of three pencils of planes, to which the three planes re
spectively belong. And thus we see a mo</ve.(besides that of analogy 
to expressions already used ioThpoints in a given plane), for calling 
the four coefficients, xyzw, in the quaternary symbol (79) for a point in 
space, the Anharmonic Co-ordinates of that Point.

84. In general, if there be any four collinear points, p,,,. Pj, so
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that (comp. 82) their are connected by two linear equations,
such as the following,

(Qi) — ^(Qo) + m(Q2),
then the anharmonic of their group may be expressed (comp. 25,44) 
as follows:

(PoP.P2P3)=^^,;*

• I
as appears by considering the pencil (cd . P0P1P2P3), and the transversaZ 
AB (83). And in like manner, if we have (comp, again 82) the two 
other symbolic equations, connecting four collinear planes Ilo.. n„ 

[.Bl] = t [Bo] + w[Bj], [B3] = I' [Bo] + «'[7?2],
the anharmonic of their pencil (83) is expressed by the precisely 
similar formula,

(njIJUL,)-^;

as may be prqyed by supposing the pencil to be cut by the same 
transversal line ab.

85. It follows that ii fixijzw) siaA f,(a;yzw) be any two homo
geneous and linear functions of x, y, z,w, and if we determine four 
collinear planes Ilo.. Ils (82), by the four equations,

/=0, /,=/, /i = 0, f = kf,
where i is any scalar; we shall have the following value of the an
harmonic function, of the pencil of planes thus determined: 

(n.n,n,n,)=i-=^.

Hence we derive this Theorem, which is important in the application 
of the present system of co-ordinates to space:—

“TAe Quotient of any two'given homogeneous and linear Functions, 
of the anharmonic Co-ordinates (79) of a variable Point p space, may 
be expressed as the Anharmonic (non, Ils) of a Pencil of Planes; 
whereof three are given, while the fourth passes through the variable 
point P, and through a given right line A. which is common to the tArce 
former planesP

86. And in like manner may be proved this other but analogous 
Theorem:—

“ The Quotient of any two given homogeneous and linear Functions, 
of the anharmonic Co-ordinates (80) of a variable Plane Ilj may be ex
pressed as the Anharmonic (PqPiPjP.,) of a Group of Points; whereof 
three are given and collinear, and the fourth is the intersection, A • n, 
of their common and ytveit riyAt line A, with the variable plane n.”

K

    
 



66 ELEMENTS OF QUATERNIONS. fuOOK 1.

More fully, if the two given functions of Imnr be f and f„ and 
if we determine three points PuPiPa by the equations (comp. 57) 
F = 0, F, = F, Fl = 0, and denote by P3 the intersection of their com
mon line A with II, we shall have the quotient,

7 = (PoP1P2P3)-

For example, if we suppose that
B2 = (O1O1), 

b'2 = (010T),

and (da2Aa'2)=- 1, &c..

€2= (0011), 
C'2 = (OO1T),

A2 = (1OO1),
a'2 = (1001),

80 that
A2 = DA*BCE, &c.,

we find that the three ratios of Z, m, n to r, in the symbol n = [Zmnr],
may be expressed (comp. 39) under the form of anharmonics of 
groups, as follows:

Z , , , Wiz.x Wz- = (da'2Aq) ; - = (db'2Bk) ; - = (dC'jCS) ;

where o, R, s denote the intersections of the plane n with the three 
given right lines, da, db, dc. And thus we have a motive (comp. 
83) besides that of analogy to lines in a given plane (37), for calling 
(as above) the/oMr coefficients I, m, n, r, in the quaternary symbol (80) 
for a plane II, the Anharmonic Co-ordinates of that Plane in Space.

87» It may be added, that if we denote by L, m, N the points in 
which the same plane n is cut by the three given lines bc, Ca, ab, 
and retain the notations a", b", c" for those other points on the same 
three lines which were so marked before (in 31, &c.), so that we may 
now write (comp. 36) .

a" =(0110), b"=(T010), c"=(1100),
vre shall have (comp. 39,83) these three other anharmonics of groups, 
with their product equal to unity:

— = (ca"bl) ; J = (ab"cm) ; ~ = (bc"an) ;

and thesiic givenpoints, k", b", c", k'2, b'^, c'2, are all in one given plane 
[e], of which the equation and symbol are:

a: + y + a-)-w=^0; [e] = [11111].
The siaj groups oi points, of which the anharmonic functions thus 
represent the six ratios of the four anharmonic co-ordinates, Imnr, 
of a variable plane n, are therefore situated on the six edges of the 
given pyramid, ABCD; two points in each group being corners of that
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pyramid, and the two others being the intersections o( the edge with 
the two\planes, [e] and n. Finally, thepZawe [e] is (in a known 
modern sense) the plane of homology,* and the point E is the centre 
of homology, of the given pyramid abcd, and of an inscribed pyramid 
A,BiCiD„ where a, = ea'bcd, &c. ; so that d, retains its recent signi
fication (66, 76), and we may write the anharmonic symbols,

A,-(0111), Bi = (1011), c,= (1101), Di = (1110).
And if we denote by a'iB',c',d\ the harmonic conjugates to these 

last'points, with respect to the lines ea, eb, ec, ed, so that
(EAiAA'i) = .. = (eDiDD',) = - 1,

we have the corresponding symbols,
a'i=(2111), b\ = (1211), c'i = (1121) d\ = (1112).

Many other relations of position exist, between these various points, 
lines, and planes, of which some will come naturally to be noticed, 
in that theory of nds in space to which in the following Section we 
shall proceed.

Section 4.—On Geometrical Nets in Space.
88. When we have (as in 65) five given points A,, e, whereof no 

four are complanar, we can connect any two oi them by a right Zine, 
and the f^ree others by a plane, and determine the point in which 
these last intersect one another: deriving thus a system of ten lines A,, 
ten planes IIi, and ten points Pi, from the given system of Jive points 
Pu, by what may be called (comp. 34) a First Construction.- We may 
next propose to determine all the new and distinct lines, Aj, and 
planes, IIj, which connect the ten derived points P, with the five 
given points Pq, and witl^ each other; and may then inquire what 
new and distinct points Pa arise (at this stage) as intersections of lines 
with planes, or oi lines in one plane with each other: all swc/i new lines, 
planes, and points being said (comp, again 34) to belong to a Second 
Construction. And then we might proceed to a Third Construction 
of the same kind, and so on for ever : building up thus what has 
been calledf a Geometrical Net in, Space. To express this geome
trical process by guinarg symbols (71, 75, 82) oi points, planes, and 
lines, and by quinary types (78), so far at least as to the end of the 
second construction, will be found to be an useful exercise in the

«
* S«c PoQcelet's IVaile' des Propriety's Projectives (Paris, 1822). 
t By Mobius, in p. 291 of his already cited Barycentric Calculus.
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application of principles lately established: and therefore ulti
mately in that Method of Vectors, which is the subject of the 
present Book. And the quinary form will here be more convenient 
than the quaternary, because it will exhibit more clearly the geome
trical dependence of the derived points and planes on thejiue given 
points, and will thereby enable us, through a principle of symmdry, 
to reduce the numier of distinct types.

89. Of the five given points, Pq, the quinary type has been seen 
(78) to be (10000); while of the ten derived points p,, oi first con
struction, the corresponding type may be taken as (00011); in fact, 
considered as symbols, these two represent the points A and Dp The 
nine other points Pi are a'b'c'AiBiCiA2B2C2 ; and we have now (comp. 
83, 87, 86) the symbols,

a' = BC • ADE = (01100), Al = EA • BCD = (10001),
A2 = da •BCE = (10010);

also, in any symbol or equation of the present form, it is permitted 
to change A, b, c to B, c, A, provided that we at the same time write 
the third, first, and second co-efficients, in the places of the first, 
second, and third; thus, .b' = ca • bde = (10100), &c. The symbol

■ (a;y000) represents an arbitrary point on the line ab ; and the sym
bol [OOwrs], with n + r + s = 0, represents an arbitrary plane through 
that lineeach therefore may be regarded (comp. 82) as a symbola\so 
of the line ab itself, and at the same time as a type of the ten lines 
A,; while the symbol [00011], of the plane abc (75), may be taken 
(78) as a type of the ten planes rip Finally, the Jive pyramids,

BCDE, CADE, ABDE, ABCE, ABCD,

and the ten triangles, such as abc, whereof each is a common face of 
two such pyramids, may be called pyramids and triangles T„ of 
the First Construction.

90. Proceeding to a Second Construction (88), we soon find that 
the lines Aj may be arranged in two distinct groups; one group con
sisting of fifteen lines A2,1, such as the line* aa'd„ whereof each con
nects two points p„ and passes also through one point Pq, being the inter
section of two planes IIi through that point, as here of abc, ade; 
while the other group consists of thirty lines A2, i, such as b'c', each 
connecting two points Pp but not passing through any point Po, and 
being one of the thirty edges of five new pyramids R^, namely,

C'B'AaAp A'c'D^B,, b'a'CjC,, A-jBaCaD,, AiBiCiD,:

* ABiCj, AB2C1, DA Al, ea'A2, are other lines of this group.
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which pyramids 7?2 may be said (comp. 87) to be inscribed homo
logues of the five former pyramids the centres of homology for these 
five pairs of pyramids being the five given points a .. e ; and thepfanes 
of homology being five planes [a]., [e], whereof the last has been 
already mentioned (87), but which belong properly to a third con
struction (88). The planes 112, of second construction, form in like 
manner two groups; one consisting oififteen planes 112, x, such as the 
plane of the five points, whereof each passes through one
point pS and through /our points Pj, and contains too lines „ as 
here the lines AB1C2, AC1B2, besides containing ybur lines as here 
BjBj, &c.; while the other group is composed of twenty planes 112,2, 
such as AiBi'Ci, namely, the toew<y faces oi: the five recent pyramids It2, 
whereof each contains three points Pi, and <Aree lines Aj, 2, but does 
not pass through any point Pq. It is now required to express these 
geometrical conceptions'* of the forty-five lines A^-, the thirty-five planes 
IIj; and the five planes of homology of pyramids, [a] ... [e], by qui
nary spm&ofe and types, before proceeding to determine the points P2 
of second construction.

91. An arbitrary point on the right line aa'd, (90) may be re
presented by the symbol (iwwOO); and an arbitrary plane through 
that line by this other symbol, [Owznirr], where m and r are written 
(to save commas) instead of-m and - r; hence these two symbols 
may also (comp. 82) denote the line aa'd, itself, and maybe used as 
types (18)_to represent the group of lines Aj, 1. The particular sym
bol [01111], of the last form, represents that particular plane 
through the last-mentioned line, which contains also the line AB,Ca 
of the same group; and may serve as a type for the group of planes 
Ha,,. The line b'c', and the group Ao,a, may be represented by 
(stwOO) and [Zttas], if we agreef to write s = t + u, and 5 = - while 
the plane b'c'Aj, and the group 112,8, I)® denoted by [1 Hl2].
Finally, the plane [e] has for its symbol [11114]; and the four 

. other planes [a], &c., of homology of pyramids (90), have this last 
for their common type.

,92. The points Pj, of second construction (88), are more nume-

• Mobins (in his Barycentric Calcului, p, 284, &c,) has very dearly pointed 
out the existence and chief properties of the foregoing lines and planes; but besides 
that his analysis is altogether different from ours, he does not appear to have aimed 
at enumerating, or even at classifying, all the points of what has been above called 
(88) the second construction, as we propose shortly to do.

With this convention, the lino ab, and tho group A,, may be denoted by 
the plane symbol [OOtws] tiioit point-symbol being (tnOOO).
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e =(0^00);

rous than the lines aod planes 112 of that construction: yet with 
the help of types, as above, it is not difficult to classify and to 
enumerate them. It will be sufficient here to write down these 
types, which are found to be eight, and to offer some remarks re
specting them; in doing which we shall avail ourselves of the eight 
following typical points, whereof the two first have already occurred, 
and which are all situated in the plane of abc :

a" = (01TO0); a"' = (21J.OO); a" =(21100); a’ =(02100); 
a”=(02100); A™ = (121OO); a"" = (32100); A“ = (23i00);

the second and third of these having (10011) and (30011) for coa- 
gruenl symbols (71). It is easy to see that these eight types repre
sent, respectively, ten, thirty, thirty, twenty, twenty, sixty, sixty, 
and sixty distinct points, belonging to eight groups, which we shall 
mark as P2, i,.. P2> a; so that the total number of the points p^ is 290. 
If then we consent (88) to close the present inquiry, at the end of 
what we have above defined to be the Second Construction, the total 
number of the net points, Pj, P2, which are thus derived by lines 
and planes from the given points Po, is found to be exactly three 
hundred: while Hhe joint number of the net-lines, A„ Ao, and of the 
net-planes, II,, Ua, has been seen to be one hundred, so fur.

(1.) To the type Pj,! belong the ten points,
aVc", stiB'iC'i, • a'ib'ic'iu'i, 

with the quinary symbols,

a"=(01T00),.. A’2= (10010),,. A'l = (10001),.. D‘i= (00011), 
which are thc harmonic conjugates of the ton points Vi, namely, of

A'n'c', A2B2O2, AlBjClDl,

with respect to the ten lines Ai,on which those points are situated; so that wo liavo 
ten harmonic equations, (ba'ca") = _ 1, &c., as already seen (31, 86, 87). Each point 
P2,1 is the common intersection of a line Ai .with three lines thus we niaj’. esta
blish the four following formulee of concurrence (equivalent, by 89, to ten such for
mula) : •

a” =bo*bV’BiOi*B2O2; 
a'i = sa." diA2 • b'oi • c’bi ;

Each point P2,1 *3 also situated in three planes IIx; in three other planes, of the 
group 112,1; and in six planes 112,2; for example, a" is a point common to the 
twelve planes,

ABC, BOD, BCE;
b'c’Ai, BlOlAj,

A'j = DA 'DiAi • b'C2 • o'B2 ; 
d’1 = DE • Al As • B1B2 * CiCs.

ABiCsCiBs, DB'BiC’Oj, BU'b-^*C3;
B2<’2A2, bVAu, BlCiDl, BuQiDb

Eault line, Ai or A2,3, contains one point r^, i; but no lino Aj, 1 contains any. Each 
plane, lli or 112,5, contains Mree such points; and each plane 112,1 contains two.
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which are the interieetions of opposite sides of a qvadrilateral Q2 in that plane, 
whereof the diagonals intersect in a point Po: for example, the diagonals EiCo, BjCi 
of tho quadrilateral BjBaCsCi, which is (by 90) in one of the planes Ils,!, intersect* 
each other in tho point a ; while the opposite sides CiBi, BjCs intersect in a" ; and 
the two other opposite sides, biBj, C2O1 have tlie point d'i for their intersection. 
The ten poinis,vt,\ are also ranged, three bg three, on tea lines of third construction 
As, namely, on the axes of homologg,

a"b'iC'1, . . A''b'20'2, . . A'jA'eD'i, . . a"b"c'',
of ten pairs of triangles Ti, which are situated in the ten planes Hi, and of 
which the centres of homology are tho ten points Pi: for example, the dotted line 
a'’b"o’, in Fig. 21, is the axis of homology of the two triangles,,abc, a'b'c', whereof 
the latter is inscribed in the former, with the point o in that figure (replaced by si 
in Fig. 29), to represent their centre of homology. The same ten points P2,i are 
also ranged six by six, and the ten last lines As aro ranged four by four, in fice 
planes H's, namely in the planes of homology of fice pairs of pyramids, R\, It^, 
already mentioned (90): for example, the pbne [k] contains (87) the six points 
a"b"c"a'2b'2C'2, and the four right lines,

A^b'sO's, B’c'sA's, d'A’sB'z,

which latter are the intersections of the four faces,
DCB, DAC, DBA,

of the pyramid abcd, with the corresponding faces,
DlClBl, DlAlCi, DlBiAl,

ABC,

AlBxOi,
of its inscribed homologue AiBiCiDi; and are contained, berides, in the four other 
planes.

Asb'c', BscfA', CsA'b', A2B2C2:
the three triangles, abc, AibiCi, A2B2C2, for instance, being all homologous, although 
in different planes, and having the line a"b"c" for their common axis of homology. 
We may also say, that this line. a"b"c'’ is the common trace (81) of two planes 112,2, 
namely of AiBiCi and A2B2C2, on the plane abc ; and in like manner, that the point 
K" is the common trace, on that plane Hi, of two lines As, 2, namely of BiCi and bsCs : 
being also the common trace of the two lines b'xc'i and b'sc's, which belong to the 
third construction.

(2.) On the whole, these ten points, of second construction, a". . ., may be 
considered to be already well known to geometers, in connexion with the tlieory 
of transversalf lines and planes in space: but it is important here to observe, 

' with what simplicity and clearness their geometrical relations are expressed (88), 
by the quinary symbols and quinary types employed. For example, the coi- 
linearity (82) of the four planes, ABC, AiBiCi, A2B2C2, and [b], becomes evident 
from mere inspection of their four symbols.

* Compare the Note to page 68.
t Tho collioear, complanar, and harmonic relations between the ten points, 

which wo have above marked as Pn, i, and which have been considered by Mobius 
also, in connexion with his theory of nets in tpace, appear to have been first noticed 
by Carnot, in a Memoir upon transvemab.
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[OOOlIj, [11121], [11112], [11114],

which represent (75) the four quinary equations,
JO—»=0, x+y+x-2u) — 0= 0, se + y + z — u> — 2v=0, « + y + 2 + w —4»=0j 
with this additional consequence, that the ternary symbol (81) of the common trace, 
of the three latter on the former, is [111]: so that thia trace is (by 38) the line 
a"b"c" of Fig. 21, as above. And if wo briefly denote tho quinary symbols of the 
four planes, taken in the same form and order as above, by [7?o] [lii] [Us] [Uj], we 
see that they are connected by the two relations,

[Ui] = - [Uo] + [Us] ; [Us] = 2[Uo] + [«»] ; 
whence if wo denotq the planes themselves by Hj, Us, H's, Ha, we have (comp. 84) 
the following value for the anharmonic of their pencil,

(nin2n'2n3)=-2; .
a result which can be very simply verified,"for the case when abcd is a regular py
ramid, and E (comp. 29) is its mean point: the plane Ms, or [e], becoming in this 
case (comp. 38) tho plftne at infinity, while the three other planes, ABC, AiBiOi, 
A2B2C2, are parallel; the second being intermediate between the other two, but twice 
as near to the third as to the first,

(3.) We must boa little more concise in our remarks on the seven other types of 
points P2, which indeed, if not so well known,* are perhaps also, on the whole, not 
quite so interesting: although it seems that some circumstances of their arrangement 
in space may deserve to be noted here, especially as affording an additional exercise 
(88), in the present system of symbols and types. The type P2,2 represents, then, a group 
of thirty points, of which a", in Fig. 21, is an example; each heing the intersection 
of a line As,! with a line An,2, as a'" is the point in which aa' intersects b'c’ : but 
each belonging to no other line, among those which have been hitherto considered. 
But without aiming to describe here all the lines, planes, and points, of what we have 
called the third construction, we may already see that they must be expected to be 
numerous: and that the planes U's, and the lines As, of that construction, as well as 
the pyramids U2, and the triangles T^, of the second construction, above noticed, can 
only be regarded as specimens, which in a closer study of the subject, it becomes ne
cessary to mark more fully, on the present plan, as Hs, i,.. Tsii. Accordingly it is 
found that not only is each point P2,2 one of the corners of a triangle T3,1 of third 
construction (as a'" is of a"'b"'c’" in Fig. 21), the sides of which new triangle are 
lines As,2, passing each through one point P2,1 and through two points P2,2 (lik® 
the dotted line a"b"'c'" of Fig. 21) ; but also each such point P2,2 is the intersection 
of two new lines of third construction, A3,3, whereof each connects a point po with a

• It does not appear that any of these other types, or groups, of points Pa, have 
hitherto been noticed, io connexion with the net in space, except the one which we 
have ranked astheji/tA, Pa,;, and whi^ represents two points on each line A], as 
the type Pa, i has been seen to represent one point on each of those ton lines of first con
struction: but that^yiA yroup, which maybe exemplified by the intersections of the 
line DE with tho two planes AiUiCi and AjBaOj, has been indicated by Mobius *(in 
page 290 of his already cited work), although with a different notation, and 08 the re
sult of a different analysis.
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point Po, I. For example, the point a" is the common trace Ifni the plane abc) of the 
two new lines, da'i, EA'2: because, if we adopt for this point a"' the second of its two 
congruent symbols, we have (comp. 73, 82) the expressions,

A"' = (Too 11) = (d) - (A’l) = (e) - (A 2).

We may therefore establish the formula of concurrence (comp, the first sub-article) : 
a"'=aa' • b'o' • da'i ‘EA'2;

which represents a system of thirty such formulte,
’ (4.J It has been remarked that the point a"' 'may be represented, not only by the
quinary sjnnbol (21100), but also by the congruent symbol, (10011); if then we 
write.

Ao=(iiioo), B„=(nioo), Co = (,11100), 
these three new points AoBoC’o, in the plane of abc, niust be considered to be ayntypical^ 
in the quinary sense (78), with the three points a"'b"'c'", or to belong to the same 
group P2,2, although they have (comp. 88) a different ternary type. It is easy to 
see that, while the triangle a"'b"'c"' is (comp, again Fig. 21) an inscribed homo
logue Ta,] of the triangle a'b'c', which is itself (comp, sub-article 1) an inscribed 
homologue 72, i of a triangle Ti, namely of abc, with a"b"c" for their common axis 
of homology, tjie new triangle AoBoCo is on the contrary an exscribed homologue 
Tiyi, with the same axis h.3, i, of the same given triangle 2i. • But from the synty- 
pical relation, existing as above for space between the points a'" and Ao, we may 
expect to find that these two points P2,2 admit of being similarly constructed, when 
the j?we points Po are treated as entering symmetrically (or similarly), as geometri
cal elements, into the constructions. 'Ihe point Aq roust therefore be situated, not 
only on a line As,], namely, on aa', but also on a line A2,2, which is easily found to 
bo A1A2, andon two lines A3,3, each connecting a point Pq with a point P2,i ; which 
latter lines are soon seen to be bb" and cc".. We may therefore establish the formula 
of concurrence (comp, the last sub-article) :

Ao — AA* • Al Ao • BB* • CC*}
and may consider the three points Ao, Bo, Co as the traces of the three lines A1A2, 
B1B2, C1C2: while the three new lines aa", bb", cc", which coincide in position 
with the sides of the exscribed triangle AoBqCo, are the traces A3,3 of three planes 
II;, 1, such as AB1C2O2C1, which pass through the three given points A, B, c, but do 
not contain the lines As, 1 whereon the six points P2,2 in their plane IIi are situated. 
Every other plane IIj contains, in like manner, six points P2 of tho present group; 
every plane 112,1 contains eight of them; and every plane 112,2 contains three; each 
line passing through two such points, but each line A2,2 only through one. 
But besides being (as above) the intersection of two lines hi,, each point of this group 
r2,2 is common to <100 planes planes Ho,!, and two planes n2,2; while
each of these thirty points is also a common corner of two different trfnnyZes of 
tAirct construction, of the lately mentioned kinds Ts,] and Ta, 2, situated respectively 
in the two planes of first construction which contain the point itself. It may bo 
added that each of the two points P2,2, on a line As,], is the harmonic conjugate of 
one of the two points Pj, tvith respect to the point po, and to the other point Pi on 
that line ; thus we have here tho two harmonic equations,

(aa'oia'") = (auia'ao) = — 1,
by wllich the positions of tlie two points a"' and Aq miglit be determined.
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(6.) A third group, P2,3, of second construction, consists (like the preceding group) 
of thirty points, ranged two hy two on the fifteen lines As,), and six by six on tho 
ten planes Hi, but so that each is common to two such planes; each is also situated 
in too planes in two planes 112,2, and on one line As,! in which (by sub-art. 1) 
these two last planes intersect each other, and two of the five planes Hai i; each 
plane Us,! contains/bar such points, and each plane 112,2 contains three of them j 
but no point of this group is on any line Ai, or A2,2. The six points P2,3, which 
are tn t^e plane kuc, are represented (like the corresponding points of the bst 
group) hy two ternary types, namely by (211) and (311) : and may be exemplified 
by the two following points, of which these last are the ternary symbols:

A" = A a' • a''b"c" = aa' • AlBiCl • A2B2C2 5
Al”’ = aa' 'd'ia'sA 1 = aa' -B'ciCe 'C'B1B2.

The three points of the first sub-group a"' .. are collinear; but the three points Ai” ,. 
of the second sub-group are the corners of a new triangle, T3,2, which is homologous 
to the triangle abc, and to all the other triangles in its plane which have been hitherto 
considered, as well as to the two triangles AiBiCi and A2B2C2; th? line of the three 
former points being their common axis of homology; and the sides of the new trian
gle, Ai”Bi”ci”', being the traces of the three planes (comp. 90) of homology of pyra
mids, [a], [b], [c] ; as (comp, sub-art. 2) the line a‘’b”c” or a"b"c" is the com
mon trace oi the two other planes of the same group Ha, i, namely of (d} and [b]. Wo 
may also say that the point Ai” is the trace of the line A'lA'e; and because tlio lines 
b'co, c'bo are the traces of the two planes 112,2 in which that point is contained, we 
may write the formula of concurrence,

Al” = aa' • a'ia's • b'co ' c'bq.
(6.) It may be also remarked, that each of the two points P2,3,'on any line A2,1, is 

the harmonic conjugate of a point P2.2, with re.spcot to tho point Po, and to one of 
the two points Pi on that line; being also the harmonic conjugate of this lust point, 
with respect to the same point Po, and the other point P2,2: thus, on the line aa'di, 
we have the four harmonic equations, which Are not however all independent, since 
two of thorn cafl be deduced from the two others, with the help of the two analogous 
equations of thc fourth sub-article:

(aa'"a'a”) = (aa'aoA") = (aAoDiAi”) = (adia'"ai”) = - 1.
And the three pairs of derived points Pi, P2,2, P2,3, on "any such line A2,i, will 
be found (comp. 20) to compose an involution, with the given point Po on the line for 
one of its two double points (or foci): the other double point of this involution being 
a point P3 of third construction; namely, the point in which the line A2,1 meets that 
one of the five planes of homology Ils, 1, which corresponds (comp. 90) to the par
ticular point Pj as centre. Thus; in the present example, if we denote by a* the 
point in which the line aa' meets the plane [a], ofwhich (by 81, 91) tho trace on 
ABO is the line [411], and therefore is (as has been stated) the side bi”Ci” of the 
lately mentioned triangle T-i, 3, so that

A* = (122) =*aa' • Be'" • ob'" •ni”oi”,

we shall have the three harmonic equations,
(AA'A’Di) = (aa"'a’Ao) = (AA”A«Al”) = - 1 i

which express that this new point A’ is the common harmonic conjugate of the given
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point A, with respect to tho three pairs of points, a'di, a'"Ao, A-’Ai” ; and therefore 
that these three pairs form (as has been said) an involution, with a and a* for its two 
double points.

(7.) It will be found that we have now exhausted all the types of points of 
second construction, which are situated upon lines Aa, 1; there being only four 
such points on each such line'. But there are still to be considered two new groups 
of points P2 on lines Ai, and three others on lines Ao, a. Attending first to the former 
set of linos, we may observe'that each of the two new types, P2,4, P2,6, represents 
twenty points, situated two by two on the ten lines of first construction, but not on 
any line Aa ; and therefore six by six in the ten planes ITi, each point however heing 
common to three such planes: also each point P2,4 is common to three planes 112,2, 
and each point P2, 5 is situated in one such plane; while each of these last planes 
contains three points Ps,4, but only one point P2,s- If we attend only to points in the 
plimo ABO, we can represent these two new groups by the two ternary types, (021) 
and (021), which as symbols denote the two typical points,

A' = BO • o'AiAa • DiAiBi • D1A3B2 i A-" = BO ‘ c'BlBa = BO ’ c'Bo ;
we have also the concurrence,

A' = bc'c'ao'Dio" •ab'".
It may be noted that A' is the harmonic conjugate of o’, with respect to Ao and 

Bl*', which last point is on the same trace c'aq, of the plane o'aiAo; and that a'* is 
harmonically conjugate to bi’, with respect to o' and bq, on tho trace of the plane 
o'biB2, where Bi' denotes (by an analogy which will soon become more evident) the 
intersection of tliat trace with the line ca : so that we have the two equations, 

(aoc'bi-'a') = (boBi'c'a*") = — 1.
(8.) Each line Aj, contains thus two points Pa, of each of the two last new 

groups, besides the point P2,i, the point Pi, and the two points Po, which had been 
previously considered: it contains therefore eight points in all, if we still abstain (88) 
from proceeding beyond the Second Construction. And it is easy to prove that these 
eight points can, in two distinct modes, be so arranged as to form (comp, sub-art. 6) 
an involution, with tico of them for the two double points thereot Thus, if we attend 
only to points on the line bc, and represent them by ternary symbols, we may write,

a' = (011), 
Al’= (012),

a"=(011);
Ar-= (072);

B = (010), o=(001),
A'= (021), A-" = (021),

and the resulting harmonic equations
I. . . (ba'ca") = (BA'CA''-) = (BAl'CAf*) = -!,

II. .. (a'ba"c) = (aJa'a''ai') = (a'a'->a"ai''-) = -. 1,

will then suffice to^how: IsL, that lAe two points Po, on any line A.i, are double 
points of an involution, in which the points Pi, P2,1 form one pair of conjugates, 
•while the two other pairs eae at tlxo common form, P2,4, Pa,5; and Had., that i/ie 
lioopoj’nla Pl and Pj,!, on any such line tii, are the double points of a second invo
lution, obtained by pairing the two points of each of the three other groups. Also 
each of the two points Po, on a line Ai, is the harmonic conjugate of one of tlie 
two points r2,s on that line, with respect to the other point of the same group, and 
to the point fi on the same line; thus.
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(ba'Ai”A*") = (CA'a''Ai’‘) = — 1.
(9.) It temaina to consider briefly three other groups of points fj, eac/i group 

' containing Aixty points, which are situated, two by two, on the thirty lines A2,2, and 
six by six in the ten planes Hi. Confining our attention to those which Are in the 
plane abc, and denoting them by their ternary symbols, we have thus, on the line 
b'c', the three new typical points, of tho three remaining groups, p^.e, P2,7, P2,8‘- 

A™ = (121); a^' = (321); A“ = (23T)i
with which may be combined these three others, of the same three types, and on the 
same line b'c' :

Al™ = (112); Al™'= (312); A,'* = (213).
Considered as intersections of a line A2,2 with lines A3 in the same piano ITi, or with 
planes Ils (in which latter character alone they belong to the second construction), 
the three points a"', &c,, may be thus denoted:

A™ = B'c' • bb" • cb'" • aa” = b'c' • BClA2a 1C2 ;
A™‘= b'c' ‘DiB" • AB'"a'’ = b'c' •DiClAi ’ D1C2A3 J 

A'^= b'c'’A'CoBi'''Ci''B'''-BA"ni'"ni™ = b'o'’A'C1C2;
with the harmonic equation,

(CoA'CirA") = - 1,
and with analogous expressions for the three other points, Ai'"', See. The line b’c' thus 
intersects one plane TIi, 1 (or.its trace bb" on the plane abc), in the point a™ ; it 
intersects two planes 112,2 (or their common trace Dib") in A™*; and one other plane 
112,2 (or its trace a'co) in A'^ : and similarly for the other points, Ai™, &c., of the same 
three groups. Each plane 112,1 contains twelve pointsy2,s, eiy/i< points P2,7, and eight 
points P2,e; while every plane 112,2 contains six points P2,6),<toelcc points P2,7, 
and nine points P2,s- J?acA point P2,6 is contained in one plane IIi; in three 
planes 112,1; and in too planes Ha,2- Each point P2,7 is in one plane Tli, in too 
planes 112,1, and in/our planes Us,2- And each point P2,8 is situated in one plane 111, 
in too planes Ils,!, and in three planes 112,2.

(10.) The points of the three last groups are situated onlg on lines A2,2 i but, on 
each such line, two points of each of those three groups are situated; which, along 
with one point of each of the two former groups, 1’2,1 and P2,2, and with the two 
points Pl, whereby the line itself is determined, make up a system el ten points upon 
that line. For example, the line b'c' contains, besides the six points mentioned in 
the last sub-article, the /bar^^others:

b'=(101); c'=(n0); a" = (011); a'"=(211).

Of these fen points, the too last mentioned, namely the points P2,i aud P2,2Upon the 
line As, 2, are the double points (comp, sub-art. 8) of aneai incoZarion, in which the two 
points ol each at the four other groups compose tt conjugate pair, as is expressed by 
the harmonic equations,

(a"b'a"'c') = (A"A™y"Al'"') = (a"a-''"a"'A1''"’) = (a"a*^a'"a ,"')=-1.
And the analogous equations,

(b(a"c'a'") = (b'a™c'a'"") = (n'Ai''”o'Ai’"") =-1,
show that the two points iq on any line A2,2 are the double points of of another invo
lution (comp, again sub-art. 8), whereof the two points r2,1, 1'2,2 on that line form
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one conjugate pair, 'while each of the two points P2,6 is paired ■with one of the points 
P2i7 as its conjugate. In fact, the eight-rayed pencil 
coincides in position with the pencil (A.BCA'A"ArA'^ACAi’’), and may be said to be 
a pencil t* double involution ; the third and fourth, the fifth and sixth, and the se
venth and eighth rays forming one involution, ■whereof the first and second are the 
two double* rays ; while the first and second, the fifth and seventh, and the sixth 
and eighth rays compose another involntion, whereof the double rays are the third 
and fourth of the pencil.

(11.) If we proceeded to connect systematically the points Pz among themselves, 
and with the points Pi and Po, we-should find many remarkable lines and planes of 
third construction (88), besides those which have been incidentally noticed above; for 
example, wo should have a group 113,8 of twenty new planes, exemplified by the 
two following.

[Ej = [11103], [dJ= [11130], 
which have the same common trace A3, i, namely the line a"b"c", on the plane abc, 
as the two planes AiBiCj, AzBjCs, and the two planes [d], [k], of the groups Hz, 2 and 
Ha, 1, which have been considered in former sub-articles; and each of these new planes 
113,2 would be found to contain one point Po, three points P2,1, six points P2,2, and 
three points P2,3. It might be proved also that these twenty new planes are the 
twenty faces of five new pyramids R3, which are the exscribed homologues of the five 
old pyramids k, (89), with the five given points Pq forjthe corresponding centres of 
homology. But it would lead us beyond the proposed limits, to pursue this dis
cussion further: although a few additional remarks may be useful, as serving to 
establish tho completeness of the enumeration above given, of the lines, planes, and 
points of second construction.

93. In general, if there be any n given points, "whereof no four 
are situated in any common plane, the numher N of the derived 
points, which are immediately obtained from them, as intersections 
A-n of line with plane (each line being drawn'through two of the 
given points, and each plane through three others'), or the number of 
points of the form ab’CDE, is easily seen to be,

N=fln) = (”-2) (n-3) (w-4).
2.2.3

so that IV = 10, as before, when « = 6. But if we were to apply this 
formula to the case n= 15, we should find, for that case, the value,

IV=/(15)=15.14.13.11=30030;
and thus given and independent points of space would conduct, 
by what might (relatively to them) be called a First' Construction 
(comp. 88), to a system of more than thirty thousand points. Yet it 
has been lately stated (92), that from the fifteen points above called 
Po, Pl, there can be derived, in this way, only two hundred and ninety

* Compare page 172 of the Geom. Siiperieure of M. Chasles.

    
 



78 ELEMENTS OF QUATERNIONS. [book I.

points P2, as intersections of the form* A*11; and therefore fewer 
than threi hundred. That this reduction of the number of derived 
points, at the end of what has been called (88) the Second Construc
tion for the net in space, arising from the dependence of the ten points 
p, on the five points Pq, would be found to be so considerable, might 
not perhaps have been anticipated; and although the foregoing ex
amination proves that all the eight types (92) do really represent 
points P2,’it may appear possible, nt this stage, that some other type 
of such points has been omitted. A study of the manner in which 
the types of points result, from those of the lines and planes of which 
they are the intersections, would indeed decide this question; and 
it was, in fact, in that way that the eight types, or groups, P2,» ■ •P2,g, 
of points of second construction for space, were investigated, and 
found to be sutEcienf. yet it may be useful (compare the last sub
art.) to verify, as below, the completeness of the foregoing enumeration.

(1.) The fifteen points, Po, Pi, admit of 105 Unary, and of 455 ternary combina
tions; but these are far from determining so many distinct lines and planes. In fact, 
those 15 points are connected by 25 collineations, represented by tho 26 lines A,, 
Asjii which lines therefore count as 75, among the 105 binary combinations of 
points: and there remain only 80 combinations of this sort, which are constructed 
by the 30 other lines, A2,2- Again, there are 25 ternary combinations of points, 
which are represented (as above) by lines, and therefore do not determine any plane. 
Also, in each of the fen planes Hi, there are 29 (=35 —6) triangles Ti, T^, because 
each of those planes contains 7 points Po, Pi, connected by 6 relations of collinearity. 
In like manner, each of the^/feen pianos Ils, 1 contains 8 (= 10 — 2) other triangles 
T2, because it contains 6 points Po, Pi, connected by two collineations. There re
main therefore only 20 (= 455 — 25 — 290 - 120) ternary combinations of points to 
be accounted for'; and these are represented by the 20 planes 112,2. The complete
ness of the enumeration of the lines and planes of the second construction is therefore 
verified ; and it only remains to verify that the 305 points, Po, Pi, P2, above consi
dered, represent all the intersections A • II, of the 55 lines Ai, A2, with tho 45 planes 
Hl, Ha.

(2.) Each plane IIi contains three lines of each of the three groups. A], A2,1, 
Asis; each plane He,! contains two lines A2,i, and four lines Ao,2; and each plane 
112,2 contains three lines A2,2. ,Hence (or because each line Ai is contained in three 
planes Hi; each line A2,i in two planes Hi, and in two pianos 112,i; and each 
jine A2,2 in one plane Hi, in two planes Ils, 1, and in two planes 112, a), it follows that, 
without going beyond the second construction, there are 240 (= 30 + 80 + 30 + 30

* The definition (88) of thc points r2 admits, indeed, intersections A'A of com
planar lines, when they aro not already points ro or I'l; but all such intersections 
are also points of tho form A'fl ; so that no generality is lost, by confining ourselves 
to this last form, as in the present discussion we propose to do.
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+ 60 + 60) cases of coincidence of line and plane; so that the number of ca»e» of 
intersection is reduced, hereby, from 55.45 = 2475, to 2235 (= 2475 — 240).

(3.) Each point Pq represents twelve intersections of the form Aj-rii; becanse it 
is common to/our line* Ai, and to six planes 111, each plane containing toe of those 
four lines, but being intersected by the two others in that point Po; as the plane 
ABC, for example, is intersected in a by the two lines, ad and ab. Again, each 
point Po is common to three planes Ha, i, no one of which contains any of the four 
lines Al through that point; it represents therefore a system of twelve other inter
sections, of tlie form A,-112,1. Again, each point Po is common to three lines Ao.i, 
each of -which'is contained in two of the six planes IIi, but intersects the four others 
in that point Po; which therefore counts as twelve intersections, oftho form An, i-Hi. 
Finally, each of tho points Po represents three intersections. As, i • 112, i; and it re
presents no ofAsr intersection, of the form A-IT, within the limits of the present 
inquiry. Thus, each of the five given points is to be considered as representing, or 
constructing, thirty-nine (= 12 4 12 + 12 +3) intersections of line with plane; and 
there remain only 2040 (=2235 — 195) other eases of such intersection A-IT, to bo 
accounted for (in the present verification) by the 300 derived points, Pi, P2.

(4.) For this purpose, the nine columns, headed as I. to IX. in the folio-wing 
Table, contain the numbers of such intersections which bclotig respectively to the 
ntneyornia,

Ai-TTi, Ai-ITc,!, Ai-n2,2; A2,i-ni, Aoii'IIs,!, Ac,1-112,3;
Ac,2 "Hl, A2,2-n2,1, A2,2;n2,2, 

for each of the nine typical derived points, A'... A“, of the nine groups Pi, P2,1,. . 
P2,8- Column X. contains, for each point, the sum of the nine numbers, thus tabu
lated in tho preceding columns; and expresses therefore the entire number of inter
sections, which any one such point represents. Column SI-, states the number of the 
points for each type; and column XII. contains thc product of the two last numbers, or 
tho number of intersections A . n which are represented (or constructed) by the group. 
Finally, tho sum of tho numbers in each of the two last columns is written at its foot; 
and because the 300 derived points, of first and second constructions, are thus found 
to represent the 2040 intersections which were to be accounted for, tho verification is 
seen to be complete; and no new type, of points P3, remains to be discovered.

(5-) Table of Intersections A* IT.

Type. I. 11. III. ,v. V. VI. VII. vin. IX. X. XI. XII.

a' 
a" 
A’" 
1-'JC
A”' 
A’™,
A'*

1 
0 
0
0 
0
0 
0 
0
0

6 
3 
0 
0 
0 
0
0
0
0

6
6 
0 
0
3
1 
0 
0 
0

6 
0 
0
0
0
0 
0
0
0

12 
0
2
0
0
0
0
0
0

18 
0
2
2
0
0
0
0
0

18
6
1
0
0
0
0
0
0

24
3
2
0
0
0
1
0
0

24 
12

0
0
0
0
0
2
1

115
30

7
2
3
1
1
2
1

10
10
30
30
20
20 
GO
60
60

1150
300
210

60
GO
20
60

120
60

300 2040
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(C.) It is to be remembered that we have not admitted, by our definition (88), 
any points -which can only be determined by intersections of three planes Hi, 112, 
as belonging to the second construction: nor have we counted, as lines A2 of tAat 
construction, any lines which can' only be found as intersections of two such planes. 
For example, we do not regard the traces &c., of certain planes A2,i considered 
in recent sub-articles, as among the lines of second construction, although they would 
present themselves early in an enumeration of the lines A3 of the third. And any 
point in the plane abc, which can only bc determined (at the present stage) os the 
intersection of two such traces, is not regarded as a point P2. A student might find 
it however to be not useless, as an exercise, to investigate the expressions for such 

■ intersections; and for that reason it may be noted here, that the ternary types (comp.
81) of the forty-four traces of planes Hi, 112, on the plane .ano, which are found to 
compose a system of only twenty-two distinct lines in that plane, whereof nine are 
lines Aj, A2, are the seven following (comp. 38):

[100], [011],' [111], [111], [Oil], [211], [211];

which, as ternary symbols, represent the seven lines,
BC, aa', b'c', A"n''c", aa", DiA", a'co.

(7.) Again, on the same principle, and with reference to the same definition, that 
new point, say f, which may be denoted by either of the two congruent quinary 
symbols (71),

r = (43210) =(01234),

and which, os a quinary type (78), represents a neia group oi sixty points of space 
(and of no more, on account of this last congruence, whereas a quinary type, with all 
its Jive coefficients unegtiaf, represents generally a group of 120 distinct points), is 
not regarded by us as a point re; although this new point f is easily seen to be'the 
intersection of three planes of second construction, namely, of the three following, 
which all belong to- the group 112,1:

[OllTl], [iioTi], • [lITlO],
or aa'diCiB2, co'diBiAj, bb'd2c'c2. It may, however, be remarked in passing, that 
each plane .112, i contains twelve points P3 of this new group : every such point being 
common (as is evident from what has been shown) to three such planes.

94. From the foregoing discussion it appears that the five given 
points Po, and the three hundred derived points Pi, P2, are arranged in 
space, upon the fifty-five lines A,, A,, and in the forty-five planes n,,

as follows. Each line A, contains eight oi the 305 points, forming 
on it what may be called (see the sub-article (8.) to 92) a douile in
volution. Each line Ao, 1 contains points, whereof one, namely 
the given point, Pq, has been seen (in the earlier sub-art. (6.)) to be 
a double point of another involution, to which the three derived pairs 
of points, Pl, P,, on the same line belong. And each line Aj,j con
tains points, forming on it a new involution; while eight of these 
ten points, with a different order of succession, compose still another
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involution* (92, (10.)). Again, each plane. 11, contains 
points, namely three given points, four points of first, and 45 points 
of second construction. Each plane IIo,, contains forty-seven points, 
whereof one is a given point, four are points p„ and 42 are points

* These theorems respecting the relations of involution, of given and derived 
points on lines otfirst and second constructions, for a net in space, are perhaps new; 
although some of the harmonic relations, above mentioned, have been noticed under 
other forms by Mobius : to whom, indeed, as has been stated, tho conception of sucR 
a aet is due. Thus, if we consider (compare tho Note to page 72) the two intersec
tions,

Bl = DE * AiBiCi) Ea = DE *A2B2C3)

we easily find that they may be denoted by the quinary symbols.
El = (00012), E2= (00021);

they are, therefore, by Art. 92, the two points Pj, s on the line de : and consequently, 
by the theorem stated at the end of sub-art. 8, the harmonic conjugate of each, taken 
with respect to the other and to the point Di, must be one of t^ie two points D, E on 
that line. Accordingly, we soon derive, by comparison of the symbols of these five 
points, DEO1B1B2, the two following harmonic equations, which belong to the same 
type as the tuio last of that sub-art. 8 :

(diDK2Ei) = -1; (D1KE1E2) = — 1;

but these two equations have been assigned (with notations slightly different) in the 
formerly cited page 290 of the Barycentric Calculus. (Corap. again the recent Note 
to page 72.) The geometrical meaning of the last equation may be illustrated, by 
conceiving that abcd is a regular pyramid, and that B is its mean point; for then 
(comp. 92, sub-art. (2.) ), Di is the mean point of the base abc ; DiD is the altitude 
of the pyramid; and the three segments DiE, DiEi, D1E2 are, respectively, the quar
ter, the third part, and the half of that altitude: they compose therefore (as the for
mula expresses) a harmonic progression; or Di and e, are conjugate points, with 
respect to b and E2. But in order to exemplify the double involution of the same 
sub-art. (8.), it would be necessaiy to consider three other points pj, on the same line 
DE ; whereof one, above called d'i, belongs to a inown group P2,i (92, (2.)); but 
the two others are of the group P2,4, and do not seem to have been previously noticed. 
As an example of an involution on a line of third construction, it may be remarked 
that on each line of the group As, 3, or on each of the sides of any one of the ten tri
angles r3,2, in addition to one given point po, and one derived point Pj,,, there are 
two points P2,2, and two points Pe,^; and that the two first points are the double 
points of an involution, to which the two last pairs belong; thus, on the side 
AoBCo of the exscribed triangle AoBuCo, or on the trace of the plane bciAsAiCj, we 
have the two harmonic equations,

(baob"co) = (ba’*'b''ci’'’) = - 1.

Again, on the trace a'Co of the plane a'ciCj, (which latter trace is a line not passing 
through any one of the given points,) co and Bi” are the double points of an invo- 
lution, wherein a' is conjugate to cr and a“ to b’". But it would be tedious tp 
multiply such instances.

M
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p.^: of which last, 38 are situated on the six lines Aj in the plane, but 
four are intersectiotis of that plane 11^,, with four other lines of second 
construction. Finally, each plane 112,2 passes through no given 
point, but contains forty-three derived points, whereof 40 are points 
of second construction. And because the planes offirst construc
tion alone contain specimens of all the ten groups of points, Poi Fn 
Fa, I, • • 9, given or derived, and of all the three groups of lines. A,,
Aj, 1, Aj, at the close of that second construction (since the types 
P2,4, ^2,5, Al are not represented by any points or lines in any plane 
IIj,,, nor are the types Po, Aj, A,,, represented in a plane 112,2), it 
has been thought convenient to prepare the annexed diagram (Fig. 
30), which may serve to illustrate, by some selected instances, the 
arrangement of the fifty-two points Po, Pi, P2 in a plane fli, namely, in 
the plane abc ; as well as the arrangement of the nine lines A], Aj 
in that plane, and the traces of other planes upon it.

View of the Arrangement of the Principal Pointsand Lines in a Plane 
of First Construction.

In this Figure, the triangle ABC is suppposed, for simplicity, to be tho equilateral 
base of a regular pyramid abcd (comp, sub-art. (2.) to 02) ; and Di, again replaced 
by o, is supposed to be its mehn point (29). The Jirsl inscribed triangle, a'b’c', 
Hicrcforo, bisects the three sides ; and the axis of homology k"d'’o" is tho Zine at in- 
finity (38): the number 1, on the line o'n' prolonged, being designed to suggest that
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tho point a", to which that Hue tenda, is of the type Pj, i, or belongs to the^rst 
group of points of second conatruclion. A. second inscribed triangle, K“'Ti"’c‘', for 
wliicli Eig. 21 may be consulted, is only indicated by the number 2 placed at the 
middle of the side u'c’, to suggest that this bisecting point a" belongs to the second 
group of points P2. The same number 2, but with an accent, 2', is placed near the 
corner Ao of the exscribed triangle AqBuCo, to remind us that this corner also belongs 
(by a syntypical relation in space) to the group r2,2. The point a”, which is now 
infinitely distant, is indicated by the number 3, on the dotted lino at the top; while 
the same number with an accent, lower down,' marks the position of the point Ai*'. 
Finally, the ten other numbers, unaccented or accented, 4, 4', 5, 6', 6, 6’, 7, 7', 
8, 8', denote the places of the ten points. A”, zr. A”, Ai", A’“, ai’“, a™‘, Ai™" 
a“, Ai“. And the principal Aarmonfc relations, and relations of involution, above 
mentioned, may be verified by inspection of this Diagram.

95. However far the series of construction of the net in space 
may be continued, we may now regard it as evident, at least on com
parison with the analogous property (42) of thfe plane net, that every 
point, line, or plane, to which such constructions can conduct, must 
necessarily be rational or that it must be rationally related to 
the system of the five given points; because the anharmonic co-ordi
nates (79, 80) of every 'net-point, and of every net-plane, are equal or 
proportional to whole numbers. Conversely (comp. 43) every point, 
line, or plane, in space, which is thus rationally related to the system of 
points ABODE, is a point, line, or plane of the net, which those five points 
determine. Hence (comp, again 43), every irrational point, line, or 
plane (77), is indeed incapable of being rigorously constructed, by any 
processes of the kind above described; but it admits of being inde
finitely approximated to, by points, lines, or planes of the net. Every 
anharmonic ratio, whether of a group of net-points, or of a pencil of 
net-lines, or of net-planes, has a rational value (comp. 44), which de
pends only on the processes of linear construction employed, in the 
generation of that group or pencil, and is entirely independent of the 
arrangement, or configuration, of the five given points in space. Also, 
all relations of collineation, and of complanarity, are preserved, in the 
passage from one net to anolhet', by a change of the given system of 
points: so that it may be briefly said (comp, again 44) that all geo- 
metricednas in space are komographic figures. Finally, any fire.points* 
of such a net, of which no four are in one plane, are sufficient (comp.

* These general properties (95) of the space-net are in substance taken from 
Mobius, although (as has been remarked before) the analysis here employed apiwars 
to bo new: osdn also most of the theorems above given, respecting the points of scamd 
constiuction (02), nt least after wo pass beyond the prat group Pj, i of fen such points, 
which (ns already stated) have been known comparatively long.

    
 



84 ELEMENTS OF QUATERNIONS. [book I.

45) for the determination of the whole net: or for the linear construc
tion of all its points, including the five given ones.

(1.) As an Example, let the five points AiBiCiDi and b be now supposed to bo 
given ; and let it be required to derive the four points abcd, by linear constructions, 
from these new data. In other words, we are now required to exicribe a pyramid 
ABCD to a given pyramid AiB]CiDi, so that it may be homologous thereto, with the 
point E for their given centre of homology. An obvious process is (comp. 45) to in. 
scribe auotber homologous pyramid, A3B3C3D2,, so as to have As^eai'BiCiDi, &c. ; 
and then to determine the intersections of^orresponding faces, such as AiBiCi and 
A3B3C3; for these four lines of intersection will be in the common plane [k], of homology 
of the three pgramids, and will be the traces on that plane of the four sought planes, 
ABC, &c., drawn through the four given points Di, &c. If it were only required to 
construct one comer a of the exscribed pyramid, we might find the point above 
called A” as the common intersection of three planes, as follows,

a" = AiBiCi * AiDiE • A3B3C3 ;

and then should have this other formula of intersection,

A =EAl'DiA‘*.

Or the point a might be determined by the anharmonic equation,
(eaajAs) = 3,,

which for a regular pyramid is easily verified.
(2.) As 'regards the general passage from one net in space to another, let the 

symbols Pi = (sci.. vj),.. Vs= (ajj.. vj) denote angfive given points, whereof no four 
are complanar; and let a'b'c'd'e' and «' be six coefficients, of which the five ratios are 
such as to satisfy the symbolical equation (comp, 71, 72),

a'(Pi)+A'Cps) + c'(P3) + <f (Pi) + e’fPs) = - «'(tZ):

or the five ordinary equations which it includes, namely,

q'ii +.. + e'xs =.. = a'vi + .. + evs = — u'. 
Let p’ be any sixth 'point of space, of which the quinary symbol satisfies the equa
tion,

(p')=ra:a'(Pi)+y6'(P3)+ «'(P3) + t»d'(P4) + oe'(P5)+«( if) ;
then it will be found that this last point p' can be derived &om the five points Pi.. Pg 
by precisely the same constructions, as those by which the point p = (xyzwo) is de
rived from the five points ABODE., As an example, i{v'=:x + g + x+w—Sv, then 
the point {xgzwe') is derived from AiBiCiDjE, by the same constructions as (xgzuiv) 
from abcde j thus A itself may be constructed from Ai.. b, as the point p = (30001) 
is from a .. b ; which would conduct anew to the anharmonic equation of- the last 
sub-article.

(3.) It may be briefly added here, that instead of anharmonic ratios, as con
nected with a net in space, or indeed generally in relation to spatial problems; we 
are permitted (comp. 68) to substitute products (or quotients) of quotients of volumes 
of pyramids; as a specimen of which substitution, it may he remarked, that the on- 
harmonic relation. Just referred to, admits of being replaced by the following equa
tion, involving one such quotient of pyramids, but introducing no auxiliarg point.'
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BA : AiA = SbBiCiDi : AiBiClUl.

In general, if xyzw be (us in 79, 83) the anharmonic co-ordinates of a point r in 
space, we may write,

» _ PBCD EBCD
y PCDA' ecda’

with other equations of tlie same type, on which we cannot here delay.

Section 5.—On Barycentres of Systems of Points ; and on 
Simple and Compl9x Means of Vectors,

96. In general, when the sum So of any number of co-initial 
vectors,

O| — oAi, i • afff
is divided (16) by their number, m, the resulting veefor,

u, = OM = — 2a = i 2oa,
m m

is said to be the Simple Mean of those m vectors; and the point u, 
in which this mean vector terminates, and of which the position 
(comp. 18) is easily seen to be independent of the position of the 
common origin o, is said to be the Mean Point (comp. 29), of the 
system of the m points, k,,.. It is evident that we have the equa
tion,

0 = («,-/*) + . .+(a„-/t) = S(a-/<.) = 2MA;

or that the sum of the m vectors, drawn from the mean point m, <o the 
points A of the system, is equal to sero. And hence (comp. 10,11, 30), 
it follows, 1st., that these m vectors are equal to the m successive 
sides of a closed polygon; Had., that if the system and its mean 
point be projected, by any parallel ordinates, on anj' assumed plane 
Ipr lindj, the projection ts', of the mean point m, is the mean point of - 
the projected system : and Ilird., that the ordinate mm', of the mean 
point, is the mean of all the other ordinates, Aja'i, .. a„a'„. It fol
lows, also, that if n be the mean point of another system, Bj, .. b„; 
and if s be the mean point of the toted system, Ai .. b,„ of the »» + n 
= 5 points obtained by combining the two former, considered as par
tial systems; while v and <r may denote the vectors, ON and os, of 
these two last mean points: then we shall have the equations,

nv='S,p, 5£r = 2o+2p = m/t + n»<,
mla-p) = n{v-a), - m.M8=n.8N;

so that the general mean point, s, is situated on the right line mn, 
which connects the two partial mean points, m and n; and divides
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that line (internally), voto ttuo segments ms and sn, which are inversclg 
proportional to the two whole numbers, m and n.

or

oM = ai = j (3 + y + • •
OA2=a2 = j(a + 5), . . 
OA' = a' = K/J + y), . .

(I.) As an Example, let abcd he a gauche quadrilateral, and let E he its mean 
point s or more fully, let

OB = :}■ (oa + ob t- oc + od),

« = 4(“ + /3+y + ^)i
that is to say, let a = b — c = d, in the equations of Art. Co. Then, with notations 
lately used, for certain derived points Dj, ^., if we write the vector formulee,

r2 = 4(7 + ^)>
y=i(a+p')>

we shall have seven different expressions for the mean vector, t; namely, the follow
ing:

* = i(“ + 3ai) = . •= i(^+ 3^1) 
= i(“’+ “^) = -.- = i(y' + y2)-

And these conduct to the seven equations between sepmenti,
AB = 3eai, . . DE = 3edi ; 
A'e = EA2, . . c'e=EC3;

which prove (what is otherwise known) that the four right lines, here denoted by 
AAi,. . DDi, whereof each connects a comer of the pyramid abcd with the mean 
point of the opposite face, intersect and quadrisect each other, in one common 
point, E; and that the three common bisectors a'Ao, b'Bo, c'c2, of pairs of opposite 
edges, such as bo and da, intersect and bisect each other, in the same mean point: 
so that the four middle points, o', a', C2, A2, of the four successive sides ab, &c., of 
the gauche quadrilateral abcd, are situated in one common plane, which tisects also 
the common bisector, b'H2, of the <100 diagonals, Aa and bd.

(2.) In this example, the number s of the points A .. D being/our, the number 
of the derived'iines, which thus cross each other in their general mean point K is seen 
to bo seven ; and the number of the derived planes through that point is nine ; 
namely, in the notation lately used for the net in space, four lines An three lines A2,1, 
six planes IIi, and three planes 112,1. Of these ninep/nnes, tho six former may (in 
the present connexion) be called triple planes, because each contains three lines (us 
tho plane abe, for instance, contains the lines AAi, bbi, c'co), all passing through the 
mean point e; and the three latter may be said, by contrast, bo'bcnon tripleplanes, 
because each contains only two lines through that point, determined on tlm foregoing 
principles.

(3.) In general, let (s) denote the number of the lines, through the general mean 
point 8 of a total system of » given points, which is thus, in all possible ways, decom
posed into partial systems ; letfis) denote the number of the triple planes, obtained 
by grouping the given points into three such .partial systems; let (//(«} denote the 
number of non-triple planes, each determined by grouping those s points in two dif
ferent ways into two partial systems ; and let r(«) -ffs} + (•) represent the entire
number of distinct planes through the point a : so that

0(-l) = 7. /(n--*!, '/'(4) = 3, r(4) = 9.
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Then it is easy to perceive that if we introduce a new point c, each old line MN fur
nishes two neui lines, according as we group the new point with oue or otlier of the 
two old partial systems, (J/) aud (A’); and that there is, besides, one other new line, 
namely cs: we have, therefore, the eqtudion infinite differences,

<l>(s + i) = ^(s') + l-,
which, with the particular value above assigned for ^(4), or even with the simpler 
and more obvious value, ^(2) = 1, conducts to the general expression,

^(s) = 24-' -1.
(4.) Again, if (fl/) (A) (^F) be any 4firee partial sgstems, wliich jointly make 

up the old or given total system (iS) ; and if, by grouping a new point c with each 
of these in turn, we form three new partial systems, {M") (_N‘) (P'); then eocA 
old triple plane such as MNP, will furnish /Arce new triple planes,

m'np, mn'p, mnp';
while eac/t old line, kl, will give one new triple plane, Ckl : nor can any new triple 
plane be obtained in any other way. We have, therefore, this new equation in dif
ferences;
But we have seen that

■Also,

therefore,

and

/(s + l) = 3/(s) + ^(s).

^(s4-l) = 2^(s)-t-l;
if then we write, for a moment,

/(s) + ^>(s)=x(»).

we have this other equation in finite differences,

X(s + 1) = 3x0+1.

/(3)-l, = x(3) = 4:

2x0 = 3-'-l.

2/(s) = 3«->-2'-H.

(3.) Finally, it is clear that we have the relation,

3/0 +'/' 0 = 0 • 0 - 1) = (2* > -1) (2»-» -1);
because the triple planes, each treated aa three, and the non-triple planes, each treated 
ns one, must jointly represent all the binary combinations ot the lines, drawn through 
the mean point s of the whole system. Hence,

21/z («) = 2»-» + 3.2*-' - 3« - 1;

p(s) = 2»‘3+2«-»-3'->;

f(s+1)-4f(s) = 3»->-2«-',

, ’/'(* + l)-'l’J'0 = 3/(s);

which last equation in finite differences admits of an independent geometrical inter
pretation.

(6.) For instance, these general expressions give,

0(6)=15; /(5) = 25; if'(6) = 80; f(5) = 55j

so that if we assume a gauche pentagon, or a system of/re points in space, A .. e,-

and

so that

and
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and determine the mean point F of this system, there will in general be a set of Jif- 
teen lines, of the kind above considered, all passing through this sixth point f : and 
these will be arranged generally in fifty-five distinct planes, whereof twenty-five will 
be what we have called triple, the thirty others being of tho non-triple kind.

97. More generally, if a,.. a„ be, as before, a system of m given 
and co-initial vectors, and if o,,.. be any system of m given sca
lars (17), then that new co-initial vector P, or ob, which is deduced 
from these by the formula,

_ o,a +.. + a,„a,„ 2aa 2aoAp “ ■ = 'f or OB ■ ‘"“f
n, +.. + a^ ^a

ox by the equation
2a (a ~p') = Q, or 2aBA = 0,

may be said to be the Complex Mean of those m given wcZors o, of 
OA, considered as affected (or combined) with that system of given 
scalars, a, as coefficients, or as multipliers (12, 14). It may also be said 
that the derived point B, of which (comp. 96) the position is inde
pendent of that of the origin o, is the Barycentre (or centre of gravity) 
of the given system of points A,..., considered as loaded with the 
given weights a,...; and theorems of intersections of lines and planes 
arise, from the comparison of these complex means, or barycentres, of 
partial and ZoZoZ systems, which are entirely analogous to those lately 
considered (96), for simple means of vectors and of points.

(1.) As an Example, in the case of Art. 24, the point c is the'barj-centre of the 
system of the two points, a and b, with the weights a and b; while, under tho con
ditions of 27, the origin o is the barycentre of the three points a, b, c, with the three 
weights a, b, c; and if we use tho formula for p, assigned in 84 or 36, the same three 
given points a, b, c, when loaded with xa, yb, xc as weights, have the point p in 
their plane for their barycentre. Again, with the equations of 65, E is the haiycon- 
tre of the system of tho four given points. A, B, o, d, with the weights a, b, c, d^ 
and if the expression of 79 for tho vector op be adopted, then xa, yb, xc, wd are 
equal (or proportional) to the weights with which the same four points a .. d must 
be loaded, in order that the point p of space may be their barycentre. In all these 
cases, the weights are thus proportional (by 69) to certain segments, or areas, or 
volumes, of kinds which have been already considered; and what we have called the . 
anharmonie co-ordinates of a variable point p, in a plane (36), or in space (79), 
may be said, on the same plan, to be quotients of quotients of weights.

(2.) The circumstance that thoposition of a Jarycentre (97), like that of a sim
ple mean point (S6), is independent of the position of the assumed origin of vectors, 
might induce us (comp. 69) to suppress the symbol o of that arbitrary and foreign 
points and therefore to write* simply, under the lately supposed conditions,

* We should thus have seme of tho principal notations of the Bnryeentric Calcu
lus : but used mainly with a reference to vectors. • Compare the Note to page 56.
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D = -—— or bB='SaA, if 6 = 0.
2a

It is easy to prove (comp. 96), by principles already established, that the ordi
nate of the barycentre of any given system of points is the complex mean (in 
the sense above defined, and with the same system of weights), of the ordinates of 
the points of that system, with'reference to any given plane: and that the projection 
of the barycentre, on any such-plane, is the barycentre of the projected system.

(3.) Without any reference to or£nates, or to any foreign origin, Oto barycentric 
SaA

nofatton B = ■—— may be interpreted, by means of our fundamental convention 
. Sa

(Art 1) respecting the geometrical signification of the symbol b—a, considered as 
denoting the vector from A to B: together with the rules for multiplying such vec
tors by scalars (14, 17), and for taking the sunts (6, 7, 8, 9) of those (generally 
pew) vectors, which are (15) the products of such multiplications. For we have only 
to write the formula as follows,

2a(A-B) = 0,

in order to perceive that it-may be considered as signifying, that the system of the 
vectors from the barycentre n, to the system of the given points A®, As,.. when mul
tiplied respectively by the scalars (or coefficients) of the given system ai, at,.. be
comes (generally) a new system of vectois with a null sum: in such a manner that 
these last vectors, a\. bai, 02- nAs,.. can be made (10) the successive sides of a closed 
polygon, by transports without rotation.

. (4.) Thus if we meet the formol^ ""
B = J (Ai + A^,

we may indeed interpret it as an abridged form of the equation,
OB= j(OAi+ OAs);

which implies that if o be any arbitrary point, and if o' be the point which completes 
(comp. 6) the parallelogram A1OA2O', then B is the point which bisects the diagonal 
00', and therefore also the given line AiAt, which is here the other diagonal. But we 
may also regard the formula as a mere symbolical transformation of the equation, 

(A2-b)-|-(ai- b) = 0;
which (by the earliest principles of the present Book) expresses that the two vectors, 
from b to the two given points A, and A2, have a null sum; or that they are equal in 
length, but opposite in direction; which can only be, by B bisecting A1A2, as before.

(^b.) Again, the formula, Bi = ^(ai-I- As-FAs), may be interpreted as an a5h’<fy- 
ment of the equation,

ODl = J (OAl + OM + OAs), 

which expresses that the point b trisects thf diagonal oo’ of the paraZ/eZeptped 
(comp. 62), which has OAi, 0X2, 0A3 for three co-initial edges. But the same for
mula may also be considered to express, in full consistency with the foregoing inter
pretation, that the sum of the three vectors, from n to the three points Ai, A2, A3, va
nishes: which is the characteristic property (30) of the mean point of the tnaB^rZe 
A1A2A3. And similarly in more complex cases: the legitimacy oi such transforma
tions being here regarded as a consequence of the original interpretation (1) of the 
symbol B - A, and of the rules for operations on vectors, so far as as they have been 
hitherto established.

N
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Section‘6—On Anharmonic Equations, and Vector ̂ Expres
sions, of Surfaces and Curves in Space,

98. When, in the expression 79 for the vector p of a variable 
point P of space, the four variable scalars, or anharmonic co-ordi
nates, xyzw, are connected (comp. 46) by a given algebraic equation, 

/„(«, y, z, w) = 0, or briefly /= 0,
supposed to be rational and integral, and homogeneous of thep** 
dimension, then the point p has for its locus a surfdee of the p‘^ order, 
whereoff=0 may be said (comp. 56) to be the local equation. .Yot 
if we substitute instead of the co ordinates x .. w, expressions of the 
forms,

x = ixo + ux„.. w=two + uw,, 
to indicate (82) that p is collinear with two given points, Po, p,, the 
resulting algejjraic equation in t: u is of the p*’' degree.; so that (ac
cording to a received modern mode of speaking), the surface may be 
said to be cut in p points (distinct or coincident, and real or imagi
nary*), by any arbitrary right line, PoP,. And in like manner, when 
the four anharmonic co-ordinates Irnnf of a variable plane XI (80) are 
connected by an algebraical equation, of the form,

Fj(4 m, n, r) = 0, or briefly F = 0, 
where f denotes a rational and integral function, supposed to be ho
mogeneous of the 2® dimension, then this plane n has for its enve
lope (comp. 56) a surface of the if' class, with f = 0 for its tangential 
equation', because if we make

' l = tlo+ uli,... r = tro + ur„
to express (comp. 82) that the variable plane II passes through a given 
right line IIo'II,, we are conducted to an algebraical equalion of the 
f* degree, which gives q (real or imaginary) values for the ratio t:tz, 
and thereby assigns q (real or imaginary!) planes to the sur-

* It is to be observed, that no interpretation is here proposed, for tmapinaiy in
tersections ot this kind, such as those of a sphere 'with a right line, which is wholly 
external thereto. The language of Modem geometry requires that «wc/» imaginary 
intersections should be spoken of, and even that they should be enumerated: e.xactly 
as the language ot algebra requires that we should count what are called the imagi- 
nary roots rA an equation. But it ^ould be an error to confound geometrical imagi- 
naries, of this sort, with those square roots of negatives, for which it will soon he seen 
that the Calculus of Quaternions supplies, from tlie outset, a d.finite and reu/in
terpretation.

+ As regards the uninterpreted clusracter of such imaginary contacts in geometry, 
tlie preceding Note to the present Article, respecting imaginary intersections, may ho 
consulted.
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/ace, drawn through any such given but arbitrary right line. We 
may add (comp. 51, 56), that if the functions f and F be only ho- 
rnogeneous (without necessarily being rational and inicjrral), then

[Dx/,

is the anharmonic symbol (80) of the tangent plane to the surface 
/= 0, at the point (xyzw); and that

(DiF, DmF, D„F, DJ')

is in like manner, a symbol for the point of contact of the plane 
[Imnr], with its enveloped surface, f= 0; n,,,.. n,,.. being charac
teristics of partial derivation.

(1.) As an Example, the surface of the second order, which passes through the 
nine points called lately

A, o', B, a', c

has for its local equation,
which gives, by differentiation,

I = Dx/=z;

[«, - w,

0=/=Z2-ytC!

so that

Q
B

/ _ -Ab

--- TE ___ 1 a 
P

Ca

r =r>„f~-y.

is a symbol for the tangent plane, at the point (z, y, ui).
(2.^ In fact, the surface here considered is the ruled (or hyperiolic'} hyperboloid, 

on which tho gauche quadrilateral Abcd is suyerscrttcif, and which passes also 
through the point e. And if we write

p = (xyzui), Q = (zyOO), R = (OyzO), 
then Qs and rt (see the annexed Figure 31), 
namely, the lines drawn through p to intersect the 
two pairs, ab, cd, and bo, da, of opposite tides 
of that quadrilateral abcd, are the two generating 
lines, dr generatrices, through that point; so that 
their plane, qrst, is the tangent plane to the sur
face, at the point p. If, then, we denote that tan
gent’ plane by the symbol [Zranr], we have the 
equations of condition,

0 = /x + my = my + «2 = «z + rw = nof ItZ',
whence follows the proportion,

Z:>n:»!r=®-': -y'*: z-' : -ic •;

Or, because a:z=yic,

as before.
(3.) At the same time we see that

(ac'bq) = -
y

I: m:»; r =
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so that the variable generatrix qs divides (os is known) the two fixed generatrices 
AB and DC homographically* j ad, bo, and c’oo being three of its positions. Con
versely, if it were proposed to find the locus of the right line Qs, which thus divides 
homographlcally (comp. 2C) two given right lines in space, we might take ab and do 
for those tfro given lines, and ad, bc, o'ca (with the recent meanings of the letters) 
for three given positions of the variable line; and then should have, for the two va
riable but corresponding (or homorogniis') points Q, s themselves, and for any arbitrary 
point p collinear with them, anharmonic symbols of the forms,

Q = (»,«, 0,0), 8 = (0,0,tt,s), v = (st,tu,uv, m);
because, by 82, we should have, between these three symbols, a relation of the form, 

(p) = f(Q) + o(s)s'
if then we write p = (x, y, z, to), we have the anharmonic equation xz=yw, as before; 
so that the locus, whether of the line qs, or of the point r, is (as is known) a ruled 
surface of the second order.

(4.) As regards the known double generation of that surface, it may sufBce to 
observe that if we write, in like manner,

R=(0lo0), ' T=(<boc), (p) =«(r)+»(t),
we shall have again the expression,

p= (st, tu, uv, os'), giving xz r=yw,
as before: so that the same hyperboloid is also the locus of that other line rt, which 
divides the other pair of opposite sides bc, ad of the same gauche quadrilateral abcd 
homograpbically; ba, cd, and a'A2 being three of its positions; and the lines a'a2, 
c’c2 being still supposed to intersect each other in the given point s.

(5.) The symbol of an arbitrary point on the variable line Rt is (by sub-art. 2) 
of the form, <(0, y, z, 0) -t- u(x, 0,0, w), or (ux, ty, tz, uw'); while the symbol of an 
arbitrary point on the given line c'cs is (F, F, u', «'). And these two symbols repre
sent one common point (comp. Fig. 31),

p'=RT-o'o2=(y,y, *, x),
when we suppose

y t :=y, U t= I, M=-=i! w
Hence the known theorem results, that a variable generatrix, rt, of one eyttem, in- 
tereects three fixed lines, BC, AD, o'Ce, which are generatrices of the other system. 
Conversely, by the same comparison of symbols, for points on the two lines rt and 
c'c2, we should be conducted to the equation xz —yw, as the condition for their inter
section ; and thus should obtain this other known theorem, that the locus of a right 
line, which intersects three given right lines in space, is generally an hyperboloid 
with those three lines for generatrices. A similar analysis shows that QS intersects 
a'a2, in a point (comp, again Fig. 31) which may be thus denoted:

p" = Qs • a'A2 = {xyyx).**»
(6.) As another example of tho treatment of surfaces by their anharmonic and 

local equations, we may remark that the recent symbols for p' and p", combined with

* Compare p. 298 of the Geometric Superieurt,
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those of sub-art. 2 for p, Q, R, s, T; with the symbols of 83, 86 for c', a', Cj, As, k ; 
and with the equation rz = yio, give the expressions:

(p) = (<1) + (s) = Ck) + Ct);

(e) — (o') + (C2) — (a') + (Ao) ; + ®(a2) = (q) +;(s) ;

whence it follows (84) that the two points p', p”, and the sides of the quadrilateral 
ABCD, divide the four generating lines through p and e in the following anharmonic 
ratios; '

(c'Bcyp') = (<}p''sp) =^ = (ba'cr) = (AAsDT) i

(a'eAsP") = (rp'tp) = = (bo'Aq) = (CCsDs) ;

so that (as again is known) the variable generatrices, as well as the fixed ones, of the 
hyperboloid, are all divided bomograpMeally.

(7.") The tonyentfaZ equation of the present surface is easily found, by the expres
sions in sub-art. 1 for the co-ordinates Imnr of the tangent plane, to be the follow
ing:
„ 0 = F = Zn — ntr;
which may be interpreted aa expressing, that this hyperboloid is the surface of the 
second class, which touches the nine planes,

[1000], [0100], [0010], [0001], [1100], [0110], [0011], [1001], [1111]; 
or with the literal symbols lately employed (comp. 86, 87),

BCD, CDA, DAB, 'ABC, CDo", DAa", ABC's, BCA'j, and [e].* 
Or we may interpret the same tangential equation P = 0 as expressing (comp, again 
86, 87, where q, l, n are now replaced by t, r, q), that the surface is ttre envelope of 
a plane qrst, which satisfies either of the two connected conditions ot homography: 

(bc'aq) = — i = - ^ = (cCaDs); 

(oa'bb) = — ™ =—^ = (dasAt) ;

a double generation of the hyperboloid thus showing itself in a new way. And as re
gards the passage (or return), from the tangential to the local equation (comp. 56), 
we have in the present example the formulsa:

X = DjF = B ; y = DmP = — fi 2=I>mP = 
whence 

= /• w = D,P = —m;

fl:2-jW = 0,
as before.

(8.) More generally, when the surface is of the lecond order, and therefore also 
of the second class, so that the two functions / and f, when presented under rational 
and integral forms, are both homogeneous of tlie second dimension, then whether we 
derive I. .r from x.. w by the formulie,

* In tho anbiirmonic symbol of Art, 87, for the plane of homology [eJ, the co
efficient 1 occurred, through inadvertence. Jive times.
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F=D»yi

W=DrF,

n = ^nf,
or z.. to from Z .. r by the conoeroe*formnlte,

» =? D(F, y = DmF, a = d,f,
the point p = (xyzw) is, relatively to that surface, what is usually called (comp. 62) 
the pole of the plane n = [Zmnr]; and conversely, the plane II is the polar of the. 
point p; wherever in space the point P and plane n, thus related to each other, 
may be situated. And because the centre ot a surface of the second order is known 
to be (comp, again 52) the pole ot (what is called) the plane at infinity; while (comp.
88) the equation and the symbol of this last plane arc, respectively,

ax + by+cz i-dw = t), and [a, b, e, <Z],
if the four constants abed have still the same significations as in G5, 70, 79^ &c., 
with reference to the system of the five given points abode : it follows that we may 
denote this centre by the symbol,

K = (DoFo, DtFoj D^Fo, DdFo) J
where fo denotes, for abridgment, the function F(a6c<Z), and d is still a scalar con
stant. ‘

(9.) In the recent example, we have po = ae — bd; and the anharmonic symbol 
for the centre of the hyperboloid becomes thus,

K=(c, — <Z, o,-6).
Accordingly if we assume (comp, sub-arts. 3, 4),

p = (st, tu, uv, vs), - p' = (st’, — I'u, uv', = r's'),
where s, t, u, v are any four scalars, and p' is a new point, while

t' = bt-^cv, Z'=ck + <Z», u' = <Zv-|-af, «'=|as-l-6a;
if also we write, for abridgment,

e' = ac — bd, w'= ast + btu + cuv-i-dvs;
'mo shall then have the sjunbolic relations,

e' (p) 4- (p") = w' (k), e' (p) - (p^ = (p”),
it p" = (x'’y"z"w'^ be that new point, of which the co-ordinates are, 

z'' = 2e'si—CK>',
and therefore.

y" = 2e't«+<Za»', z" r^te'uv — coB’, to" = 2e'os-F 5ai',

ax" -b by" -I- ez" -i- dw" = 0.

That is to say, if pp’ be any chord of the hyperboloid, which passes through the fixed 
point K, and if p" be the harmonic conjugate ot that fixed point, with respect to that 
variable chord, so that (pkp'p") = — 1, then this conjugate point p" is on the infinitely 
distant plane [o6cd]: or in other words, the fixed point bisects^ all the chords pp* 
wAteZt pass through it, and is therefore (as above asserted) the centre of the surface, 

(10.) With the same meanings (65, 79) ot the constants a, b, e, d, the mean 
point (96) of the quadrilateral abcd, or of the system of its comers, may be denoted 
by the symbol,

M = (a^, 6-1., c-i, cZ-i);
if then this mean point be on the surface, so that

ae — bd = 0,
the centre K is on the plane [a, b, c, rf] ; or in other words, it is infinitely distant: so
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that the surface becomes, in this case, a ruled (or hyperbolic') paraboloid. In gene
ral (comp, sub-art. 8), if Fo = 0, the surface of the second order is a paraboloid of 
some kind, because its centre is then at infinity, in virtue of the equation

(un„ -J. 4" cDc 4" cIDij) Fo — 0 j

or because (comp. 50, 58) the plane [abedj at infinity is then one of its tangent 
planes, as satisfring its tangential eguation, f = 0.

(11.) It is evident that a curve in space may be represented by a system of two 
anharmonic and local equations ; because jt may be regarded as the intersection nf 
two surfaces. And then its order, or the number of points (real or imaginary*), in 
which it is cut by an arbitrary plane, is obviously the product of the orders of those 
two surfaces; or the product ot the degrees of their two local equutiuns, supposed to 
be rational and integral.

(12.) A curve of double curvature may also be considered as the edge of regres
sion (or arete de rebroussemeni) of a developable surface, namely of the locus of the 
tangents to the curve ; and this surface may be supposed to be circumscribed at once 
to two given surfaces, which are envelopes of variable planes (98), and are repre
sented, as such^by their tangential equations. In this view, a came of double cur
vature may itself ioo represented by a-system of two anharmonic and fonyenftaZ equa
tions ; and if the class of such a curve be defined to be the number of its osculating 
planes, which pass through an arbitrary point of space, then this class is the product 
of the classes of the two curved surfaces just now mentioned: or (what comes to the 
same tiling) it is the product of the dimensions of the two tangential equations, by 
which the curve is (on this plan) symbolized. But we cannot enter further into these 
details; the mechanism of calculation respecting which would indeed be found to be 
the same, as that employed in the known method (comp. 41) of quadriplanar co-or
dinates.

99. Instead of anharmonic co-ordinates, we may consider any 
other system of n variable scalars, .. x,„ which enter into the ex
pression of a variable vector, p‘, for example, into an expression of 
the form (comp. 96, 97),

p = xa, 4- a;_a2 4-.. = 2a:a.
And then, if those n scalars x be all functions of one independent and 
variable scalar, t, -we may regard this wcZor p as being itsdf a func
tion oi that single scalar; and may write,

But if the n scalars a:.. be functions of two independent and scalar 
variables, t and m, then p becomes a function of those tiro scalars, 
and we may write accordingly,

II. . . p = <})((, u).
In the 1st case, the ZerwJ p (comp. 1) of the variable vector p has

* Compare the Notos to page 90.
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generaUy for its locus a curve in space, which may be plane or of 
double curvature, or may even become a right line, according to the 
form of the vectatr-function tp‘, and p may be said to be the vector of 
this line, or curve. In the Ilnd case, p is the vector of a surface, plane 
or dirved, according to the form of <p (t, u); or to the manner in which 
this vector p depends on the two independent scalars that enter into 
its expression.

n..

with

(1.) As Examples (comp. 26, 63), the expressions,
t a + tji a+tft + uy

i + i + «

signify, Ist, that p is the vector of a variable point P on the right line ; or that 
- it is the vector of that line itself, considered as the locus of a point; and lind, that 

p is the vector of the plane ABO, considered in like manner as the locus of an arbitrary 
point P thereon.

(2.) The equations,
I.., p = xa + gP, II.. ; p = aa + y/J + zf,

x* + g^=l for the 1st, and x’ + y^ + zS = 1 for the Ilnd,

signify 1st, that p is the vector of an ellipse, and Ilnd, that it is the vector of an 
ellipsoid, with the origin o for their common centre, and with OA, on, or OA, on, 
OC, for conjugate semi-diameters.

(3.) The equation (comp. 46),

p = <’« + «2/3 + (f + «)’ y,
expresses that p is the oector of a cone of the second order, with o for its vertex (or 
centre), which is touched by the three planes obo, ooa, oab ; the section ot this cone, 
made by the plane abc, being an ellipse (comp. Fig. 25), which is inscribed in the 
triangle ABC ; and the middle points a', b', o', of tho sides of that triangle, being the 
points of contact of those sides with that conic.

(4.) The equation (comp. 53),
p = r'a + «->3 + »-iy, with < + «+x = 0,

expresses that p is the vector of another cone of the second order, with o still for 
vertex, but with OA, OB, oo for three of its sides (or rags). The section by the 
plane ABO is a new ellipse, circumscribed to the triangle abc, and having its tangents 
at the corners of that triangle respectively parallel to the opposite sides thereof.

(6.) The equation (comp. 54),
p = f a + + tPy; with t 4-« +1» = 0,

signifies that p is the vector of a cone of the third order, of which the vertex is still 
the origin; its section (comp. Fig. 27) by the plane abc being a cubic curve, whereof 
tlie sides of the triangle abc are afonce the asymptotes, and the three (real) tangents 
of inflexion; while tho mean point (say o') of that tnany/e is a conjugate point ot 
the curve; and therefore the right line oo', from the vertex o to that mean point, 
may be said to be a conjugate rag of the cone.

(6.) The equation (comp. 98, sub-art. (8.) ),
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staa + <u6/3 + uvcy + vsdS 
sta + tub + ucc + veil

g (
in which - and - are two variable scalars, while a, b, c, d ore still four constant u o
scalars, and a, P, y, 8 are four constant vectors, but p is still a variable vector, ex
presses that p is the vector of a ruled (or single-sheeted) hyperboloid, on wliich the 
gauche quadrilateral abcd is superscribed, and which passes through the given point 
E, whereof the vector t is assigned in G5.

(7.) If we make (comp. 98, sub-art (9.) ),

, _ s't'aa - t'u'bji + u'v'cy — v's'dS
s't'a — t’u'b 4- ue‘c — vs‘d '

where 
a' s= 6f + cv, t' = cu + (fo, «' = (fo + at, v' = as + bu,

then p' =. op' is the vector of another point p' on the same hyperboloid; and because 
it is found that the sum of tliese two last vectors is constant,

2 (ac - bd)
it follows that e is the vector of a, fixed point k, which bisects every chord pp' that 
passes through it: or in other words (comp. 62), that this point K is the centre of 
the surface.

(8.) The three vectors,

.1

1^, a+y P+6
2 ’ 2 ’

are termino-collinear (24); if then a gauche quadrilateral abcd be superscribed on 
a ruled hyperboloid, the common bisector of the two diagonals, Ac, 3O,passts through 
the centre n.

(9.)' When ac = bd,^oi when we^ave the equation,

_ sta + tuj3 + uvy H- vsd
P sf + fM + uo ’

or simply,
p ~ sta + tuj3 4- uvy 4- with «4-« = i4-v=:l,

p is then the vector of a ruled paraboloid^ of which the centre (corap. 62, and 98, sub
art. (10.) ), is infinitely distant^ but upon which the quadrilateral abcd is still supers 
scribed, Aud this surface passes through the mean point m of that quadrilateral, or 
of the system of the four given points a .. u; because, when j = / = = the
variable vector p takes the value (comp. 96, sub-art. (1.)),

>/‘ = i(« + /3 + r+ ^)- .
(10.) In general, it is easy to proVe, from the last^vector-expression for p, that 

this paraboloid is the locus of a right line, which divides similarly the two opposite 
tides AB and DC of the same gauche quadrilateral abcd ; or the other pair of oppo
site sides, BO and ad.
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Section l.i—On Differentials of Vectors.

100. The .equation (99, I.),

in which p = op is genercdly the vector of a point p of a curoe in space, 
PQ,..gives evidently, for the vector OQ of another point Q of the 
same curve, an expression of the form

/J + A/j=^(<+AZ);
go that the chordpci., regarded as being 
itself a vecZor, comes thus to be repre
sented (4) by the finite difference,

p<i=£sp = Aip (z) = (Z + Az) - (fi).
Suppose now that the other finite dif
ference, AZ, is the part oi a neto
scalar, u ; and that the chord Ap, or pq, is in like manner (comp. 
Fig. 32), the part of a new vector, a„, or pb; so that we may 
write.

nAZ = M, and nAp = n.PQ = <r„ = PB.
Then, if we trea't the two scalars, t and m, as consZanZ, but the num
ber n as variable (the form of the wecZoryhncZzon <jy, and the origin o, 
being giveti), the vector p and the point p will be fixed: but the two 
points ft and r, the two differences £st and Ap, and the muZZi^Ze vector 
ni^p, or <T„, will (in general) wary together. And if this number n 
be indefinitely increased, or made to Zen<Z to infinity, then each oi the 
two differences Az, ^p will in general tend to zero; such being the 
common limit, oi n~''u, and of <}> (Z + »"'m) — <j> (Z): so that the variable 
point o. oi the curve will tend to coincide with the fizcedpoint p. But 
although the chord p<i will thus be indefinitely shortened, its n'* mul
tiple, PR or ff„, will Zeno? (generally) to’ & finite limit,* depending on 
the supposed continuity oi the /MncZZoz^ <}>(z); namely, to a certain 
definite vector, pt, or a., or (say) t, which vector pt will evidently 
be (in general) tangehtial to thecurve; or, in other words, the variable 
point R will tend to a filced position t, on the tangent to that curve at p. 
We shall thus have a limiting equation, of the form

*** • »»T=:=PT“liin. pR = <7«, = lim. ii =»■«
t and u being, as above, Zioo given and (generally) finite scalars. And

• Compare Newton’s Principia.
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if we then agree to call the second of these two given scalars the d«f- 
ferential of the first,»and to denote it by the symbol dt, we shall de- ■ 
fine that the vector-limit, r or <r<., is the (corresponding) differential of 
the vector p, and shall denote it by the corresponding symbol, dp; so 
as to have, under the supposed conditions,

M = d<, and T = dp.
Or, eliminating the two symbols u and t, and necessarily suppos
ing that p is a point of a curve, 'vierao.y express our Definition^- of the 
Differential of a Vector p, considered as a /bnctwn tpof a Scalar t, 
by the following Genera/ Formula :

dp = d<J> (t) = lim. n U(< f —'j- <}>(t)|,

in which t and d< are ttw arbitrary and independent scalars, both ge
nerally finite; and dp is, in general, a new and finite vector, depending 
on those two scalars, according to a law expressed by the formula, 
and derived from that given law, whereby the old or former vector, p 
or (p(<), depends upon the single scalar, t.

(1.) As an example, let the given vector-function have the form,
p = ^(t)=:^t’a, where a is a given vector.

u
Then, making At = -, where « is any given scalar, and n is a variable whole number, 
we have

a„ = n&p = au^t + ~<r„ = afu-,

and finally, writing dt and dp for « and »«,

dp = "1? (0 = d ~ j = a<d«.

(2.) In general, let = af(jt'), where a ia still a given or comtantvector, and 
/(t) denotes a scalar ^/hnctton of the scalar variable, t. Then because a is a common 
factor within the brackets { } of the recent general formula (100) for dp, we may 
write,

dp = = d, a/(t) = ad/(<) j

provided that wo now define that the differential of a scalar function, /(t), is a new 
scalar function of two independent scalars, t and dt, determined hy the precisely 
similar formula: *

d/(O = U_nE»{/(/ + l‘]-/(O};

• Compare the Note to page 39.
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which can easily be proved to agree, in all its consequences, with the usual rules for 
differeniiating functions of onasvaridble.

(3.) For example, if we write df = nZi, where Zi is a neto variable scalar, namely, 
the part o[ the given and (generally) fnite differential, dt, we shall thus have 
the equation.

dz abq h
in which the first member is here considered as the actual quotient of two finite'sca
lars, d/(Z}:dZ, and not merely as a differential coefficient. We mny, however, as 
usual, consider this quotient, from the expression o( which the differential dZ disap
pears, as a derived function of the former^ariable, Z ; and may denote it, as such, by 
either of the two usual symbols,

f'(t} and Dz/(Z).
(4.) In like manner we may write, for the derivative of a vector-function,* 

the formula :
' p' = ^'(Z) = D/P = D(i!>(0=^.= ^^;

these two last forms denoting that actual and finite vector, p' or (Z), which is 
obtained, or derived, by dividing (comp. IG) the not less actual (or finite) vector, 
dp or d^ (Z), by the finite scalar, dZ. And if again we denote the »'* part ol this 
last scalar by h, -de shall thus have the equally general formula ;

1- ^>(f+ Zl)-0(Z)Dip - Diij, (Z) = hm. -i-----y;
A-o n

with the equations,

dp = D/p. df = p'dZ; d0 (<) = (<). df = ^'(t). dz,

exactly as if the vector-function, p or 0, were a scalar function, f
(fi.} The particular value, d< = 1, gives thus dp = p'; sJMiat the derived vector 

p' is (with our definitions) a particular but important case of the differential of a 
rector. In applications to mechanics, if t denote tho time, and if tho term p of 
the variable vector p be considered as a moving point, this derived vector p' rang bo 
called the Sector of Velocity ; because its length represents tho amount, and its di
rection is the direction of the velocity. And if, by setting off vectors ov = p' (comp, 
again Fig. S2')from one origin, to represent thus the velocities of a point moving in 
space according to any supposed law, expressed by the equation p = ^(f), wo con
struct a new carve vw., of which the corresponding equation may be written ns 
p' = ^’(<), then this ncio curve has been defined to he the Hodograph, f as tho oZtZ 
curve PQ.. may he called the orbit of the motion, or of tho moving point.

* In tho theory of Differentials of Functions of Quaternions, a definition of the 
differential will be proposed, which is expressed by an equation of precisely 
the same form as those above assigned, for- dy’(Z), aqd for d0 (<) ; butit will be found 
that, for quaternions, the quotient Aipiff)'. dq is not generally independent of dq ; 
and consequently that it cannot properly be called a derived function, such as ^'(7), 
of the quaternion q alone. (Compare again the Note to page 39.)

t The subject of the Hodograph will be resumed, at a subsequent stage of this 
work. In fact, it almost requires the assistance of Quaternions, to connect it, in 
what appears to bo the best moilc, with Newton’s Law of Gravitation.
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(6.) We may differentiate a vector-function twice (or oftener), and so obtain its 
successive differentials. For example, if we differeitiiate the derived vector p*, we 
obtain a result of the form,

dp' = p"df, where p"=:D(p' = DrP)
by an obvious extension of notation; and if we suppose that the second differential, 
dd< or d-f, the scalar t is zero, then the second differential of the vector p is,

d2p = ddp = d. p'dt = dp'. dt — p", dts;
where df’, as usual, denotes (d<)2i and where it is important to observe that, with 
the definitions adopted, d^p is as finite a vector as dp, or os p itself. In applications 
to motion, if t denote the time, p" may be said to bo the Vector of Acceleration.

(7.) We may also say .that, in mechanics, theJfaiVe differential ip, of the Vector 
of Position p, represents, in length and in direction, the right line (suppose pt in. 
Fig. 32) which would have been described, by a freely moving poiftt p, in the finite 
interval of time df, immediately following the time t, if at the end of this time t all 
foreign forces had ceased to act.*

(8.) Ingeometry, if p = 0(f) be the equation of a curve of double curvature, re
garded as the'edye of regression (comp. 98, (12.)) of a developable surface, then the 
equation of that surface itself, considered as the locus of the tangents to the curve, 
may be thus written (comp. 99, II.) ;

p = ^(f) + K0'(f); or simply, p = 0(f) + d^(f),
if it be remembered that «, or df, may be any arbitrary scalar.

. (9.) If any other curved surface (comp, again 99, II.) be represented by an equa
tion of the form, p = 0 (a:, y), where 0 now denotes a vector-function of two indepen
dent and scalar variables, x and y, we may then differentiate this equation, or this 
expression for p, with respect to either variable separately, and so obtain what may 
be called two partiali^but finite) differentials, d^p, dyp, and two partial derivatives, 
tixp, Dyp, whereof the former are connected with the latter, and with the two arbitrary 
(bat finite) scalars. Aw, dy, by the relations,

dxP ~ t^xP • daj J ‘ dy.
And these two differentials (or derivatives) of the vector p of the surface denote two 
tangential vectors, or at least two vectors parallel to two tangents to that surface at 
the point p: so that their plane is (or is parallel to) the tangent plane at that point.

(10.) The mechanism of all such differentiations of vector-functions is, at the 
present stage, precisely the same as in the usual processes of the Differential Calcu
lus; because the most general form of such a vector-function, which has been consi
dered in the present Book, is that of a sum of products (comp. 99) o( the form xa, 
where a is a constant vector, and ® is a variable scalar: so that we have only to 
operate on these scalar coefficients a;.., by the usual rules of the calculus, the fec- 
fors a.. being treated as constant factors (comp, sub-art. 2). But when we shall 
come to consider quotients or products of vectors, or generally those «cu)/unctions of 
Vectors which can only be expressed (in our system) by Qwatemitms, then some few 
new rules of differentiation become necessary, although deduced from tlie same (or 
nearly the same) definitions, ns those which have been established in the present 
Section.

As is well illustrated by Atwood’s machine.
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(11.) As an example of partial differentiation (comp, sub-art. 9), of a vector 
Junction (the word “ vector” being here used as an adjective') ot two scalar variables, 
let os take the equation,

p=^(»,y)= j{a^a+y’^+(®+y)’r}i
in which p (comp. 99, (3.) ) is the vector of a certain cone of the second order; or 
more precisely, the vector of one sheet of such a cone, if x and y be supposed to be 
real scalars. Here, the two partial derivatives of p are the following:

Dxp = a:a + (x + y)y i i>izP=y/3 + («+y)y;
and therefore,

2p = a:Dip+yD„p;

so that the three vectors, p, Oxp, Tiyp, if drawn (18) from one commonprigin, are con- 
stained (22) in one common plane; which implies that the tangent plane to the sur
face, at any pointfp, passes through the origin o : and thereby verifles the conical 
character of the locus of that point p, in which the uarta&Ze Oector p, or op, fermi- 
nates.

(12.) If, in the same example, we moke x = 1, y=- 1, we have the values,

P = i(« + /5). t>ep = a, Dyp=-p-,
whence it follows that the middle point, say o', of the right line ab, is one. of the 
points of the conical locus; and that (comp, again the sub-art 8 to Art. 99, and the 
recent sub-art. 9) the right lines OA and on are parallel to two of the tangents to the 
surface at that point; so that the cone in question is touched by the plane aob, along 
the side (or ray) 00*. And in like manner it may be proved, that the same cone is 
touched by the two other planes, boc and OOA, at the middle points a' and b* of the 
two other lines BO and CA; and therefore along the two other sides (or rays), oa' 
and ob' : which again agrees with former results. '

(13.) It will be found that a vector function of the sum ofiwo scalar variables, 
t and df, may generally be developed, by an extension of Tayloj's Series, under tho 
form.

(f + dO=V* (0+<1^* (0 + id’ (0+w + • •
d> d’

= (i + d + - + —+ =

it being supposed that d^t = 0, d’< = 0, &c. (comp, sub-art. 6). Thus, if ^1= Jat’, 
(as in sub-art. 1), where a is a constant vector, we have d^f = atdt, d*^t=adt’, 
d’^f = 0, &c.; and

(i + dt) = ja(f + dt)’ = jut’ + atdt + jadf’, 

rigorousli/, without any supposition that df is small.
(14.) When we thus suppose Af = df, and develope the finite difference, ^^(t) 

<=^{t + dt')—^(t'), the first term ot the development so obtained, or the term offirst 
dimension relatively to df, is hence (hg a theorem, which holds good for vector-func
tions, as well as for scalar functions) tho first differential Aifit of the function ; but 
■we do not choose to define that fttis Differential is (or means) that_^rsf term; be
cause the Formula (100), which we prefer, doos not postulate the possibility, nor even 
suppose the conception, of any such cfevefopmeaf. Many recent remarks will perhaps 
npiwar more clear, when wo shall come to connect them, at a later stage, with that 
theory of Quaternions, to which we next proceed.

    
 



BOOK II.

ON QUATERNIONS, CONSIDERED AS QUOTIENTS OF VECTORS, 
AND AS INVOLVING ANGULAR RELATIONS.

CHAPTER I.

fundamental principles respecting quotients of vectors.

Section 1.—Introductory Remarks', First Principles adopted 
from Algebra.

•
Art. 101. The only angular relations, considered in the fore* 
going Book, have been those of parallelism between vectors 
(Art. 2, &c.); and the only qiiotients, hitherto employed, have 
been of the three following kinds:

I. Scalar quotients of scalars, such as the arithmetical frac- 
wtion — in Art. 14;TO

rt
. II. Vector quotients, of vectors divided by scalars, as = a 

in Art. 16;
• III. Scalar quotients of vectors, with directions simi

lar or opposite, as — = a; in the last cited Article. But we now 
a

propose to treat of other geometric Quotients (or geometric 
Fractions, as we shall also call them), such as

— = =f q, with /3 not „ a (comp. 15);

for each of which the Divisor (or denominator}, a ox oa, and 
the Dividend (or nwTOerato?’)> P or on, shall not only both be
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Sectors, but shall also be inclined to each other at an Angle, 
distinct (in general) from zero, and from Ztuo* right angles.

102. In introducing this new conception, of a General Qiio- 
tient of Vectors, with Angular Relations in a given plane, or 
in space, it will obviously be necessary to employ some proper
ties of circles and spheres, which were not wanted for the pur
pose of the former Book. But,- on the other hand, it will be 
possible and useful to suppose a much less degree of acquaint
ance with many important theoriesf of modern geometry, than 
that of which the possession was assumed, in several of the 
foregoing Sections. Indeed it is hoped that a very moderate 
amount of geometrical, algebraical, and trigonometrical prepa
ration will be found sufficient" to render the present Book, as 
well as the early parts of the preceding one, fully and easily 
intelligible to any attentive reader.

103. It may be proper to premise a few general principles 
respecting quotients of vectors, which are indeed suggested by 
algebra, but are here adopted by definition. And 1st, it is 
evident that the supposed operation of division (whatever its 
full geometrical import mny afterwards be found to be), by 
which we here conceive ourselves to pass from a given divisor
line a, and from a given dividend-line f3, to what we have called 
(provisionally) their geometric quotient, q, may (or rather 
must) be conceived to correspond to some converse act (as yet 
not fully known) of geometrical multiplication : in.which new 
act the former quotient, q, becomes a Factor, and operates on 
the line a, so as to produce {qv generate) the line (3. We shall 
therefore write, as in algebra,

(3~q.a, or simply, /3 = qd, when /3 : a = g-;

* More generally speaking, from every even multiple of a right angle.
t Such as homology, homography, involution, and generally whatever depends 

on anharmonic ratio: although all that is needful to be known respecting such 
ratio, for the applications subsequently made,' may be learned, without reference to 
any other treatise, from the Sejinitioiis incidentally given, in Art. 25, &c. It was, 
perhaps, not strictly necetsarg to introduce any of these modern geometrical theories, 
in any part of the present work ; but it was thought that it might interest one class, 
at least, of students, to see how the}' could be combined with that fundamental con
ception of the Vector, which the First Book was designed to developo.
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even if the two lines a and /3, or oa and ob, be supposed to 
be inclined to each other, as in Fig. 33. And this very sim
ple and natural notation (comp. 16) will then allow us to treat 
as identities the two following formulae :

Jo. a
although we shdll, the present, abstain from writing flZ«o 
such formulae* as the following:

a a
where a, /3,still denote tzoo vectors, and j denotes their geo
metrical quotient: because we have not yet QNQnbeguntQ con
sider the multiplication of one vector by another, or the division 
of a quotient by a line.

104. As a Ilnd general principle, suggested by algebra, 
we shall next lay it down, that if

^=—, and aj=a, then /3' = /3;

or in words, and under a slightly varied form, that unequal 
vectors, divided by equal vectors, give unequal quotients. The 
importance of this very natural and obvious assumption will 
soon be seen in its applications.

105. As a Illvd principle, which indeed may be consi
dered to pervade the whole of mathematical language, and 
without adopting which we could not usefully speak, in any 
case, of EQUALITY as existing between any two geometrical 
quotients, we shall next assume that two such quotients can 
never be equal to the same thirds quotient, without being at the 
same time equal to each other; or in symbols, that

if q'-q, and q'-q, then q" = q'-

* It will lie seen, however, at a later stage, that these two formulas are permitted, 
and even required, in the development of the Quaternion System,

t It is scarcely necessary to add, what is indeed included in this Illid principle, 
in virtue of the identity q=^q, that if q' = q, then 7 = 9'; or in words, that we shall 
never admit that any two geometrical quotients, q and q', are equal to each other in 
one order, witlioiit at tho same time admitting that tliey are equal, in tho opposite 
order also.

p
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106. In the IVth place, as a preparation for operations 
on geometrical quotients, we shall say that any two such quo
tients, or fractions (101), which have a common divisor-line, or 
(in more familiar words) a common denominator, are added, 
subtracted, or divided, among themselves, by adding, subtract
ing, or dividing their numerators: the common denominator 
being retained, in each of the two former of these three cases. 
In symbols, we thus define (comp. 14) that, for any three (ac
tual) vectors, a, 7»

7^/3 7 + P.

a a a

? 3 7-/^, 
““ Ja a a

and

a'a (3'

aiming still at agreement with algebra.
107. Finally, as a Vth principle, designed (like the fore

going) to assimilate, so far as can be done, the present Calculus 
to Algebra, in its operations on geometrical quotients,we shall 
define that the following formula holds good ;

(1 .P 37 P-7- 
\/3 a / jS a a ’

or that if two geometrical fractions, q and q', be so related, that 
the denominator, /3, of the multiplier q (here written towards 
the left-hand) is equal to the numerator of the multiplicand q, 
then the product, <^-q or y'y, is that third fraction, whereof 
the numerator is the numerator y of the multiplier, and the 
denominator is the denominator a of the multiplicand: all such 
denominators, or divisor-lines, being still supposed (16) to be 
actual (and not null} vectors.

Section 2.—First Motive firnaming the Quotient of two Vec
tors a Quaternion.

108. Already we may see grounds for the application of 
the name. Quaternion, to such a Quotient of two Vectors as 
has been spoken of in recent articles. In the first place, such 
a quotient cannot generally Aid what we have called (17) a Sca-
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LAR; or in other words, it cann’ot generally be equal to any 
of the (so-called) reals of algebra, whether of the positive or of 
the negative kind. For let x denote any such (actual*) scalar, 
and let a denote any (actual) vector; then we have seen (15) 
that the product xa denotes another (actual) vector, say )3', 
which is either similar or opposite in direction to a, according 
as the scalar coefficient, or factor, x, is positive or negative; 
in neither case, then, can it represent any vector, such as /3, 
which is inclined to a, at any actual angle, whether acute, or 
right, or obtuse: or in other words (comp. 2), the equation 
3'= (3, or xa = I3, is impossible, under the conditions here sup
posed. But we have agi’eed (IdT 103) to write, as in algebra,

— = «; we must, therefore (by the Ilnd principle' of the fore- a
going Section, stated in Art. 104), abstain from writing aZso 
3— =x, under the same conditions; x still denoting a scalar. 

Whatever else 9. quotient of tioo inclined vectors may be found 
to be, it is thus, at least, a Non-Scalar.

109. Now, in forming the conception of the scalar itself, 
as the quotient of two parallel} vectors (17), we took into ac
count not onlj^ relative length, or ratio of the usual kind, but 
also relative direction, under the form of similarity or opposition. 
In passing from a to xa, we altered generally (15) the length of 
the line a, in the ratio of + x to 1; and we preserved or reversed 
the direction of that line, according as the scalar coefficient x 
was positive or negative. And in like ftianner, in proceeding to 
form, more definitely than we have yet done, the conception of 
the non-scalar quotient (108), y =3*« = o® of too inclined
vectors, which for simplicity may be supposed (18) to be co-

* By an actual scalar, as by an actual vector (comp. 1), we mean here one that 
is different from zero. An actual vector, multiplied by anuZZ scalar, has for product 
(15) a BttZZ vector; it is therefore unnecessary to prove that the quotient of two actual 
vectors cannot bo a null scalar, or zero.

t It is to be remembered that wo have proposed (13) to extend the use of this 
term parallel, to the case of two vectors which are (in the usual sense of the word) 
parallel to one common Zine, even when they happen to be parts of one and the same 
right lino.
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initiill, we have still to take ac’count both of the relative length, 
and of the relative direction, of the two lines compared. But 
while the former element of the complex relation here consi
dered, between these two lines or vectors, is still represented 
by a simple Ratio (of the kind commonly considered in geo
metry), or by a number^* expressing that ratio; the latter ele
ment of the same complex relation is now represented by an 
Angle, aob : and not simply (as it was before) by an alge
braical sign, + or

110. Again in estimating this angle, for the purpose of 
distinguishing one quotient of vectors from another, we must 
consider not only its magnitude (or quantity), but also its 
Plane : since otherwise, in violation of the principle stated 
in Art. 104, we should have ob'; oa = ob : oa, if ob and ob' 
were two distinct rays or sides of a cone of revolution, with o^ 
for its axis; in which case (by 2) they would necessarily be 
unequal vectors. Por a similar reason, we must attend also to 
the contrast between two opposite angles, of equal magnitudes, 
and in one common plane. In short, for the purpose of know- 
ing fully the relative direction of two co-initial lines OA, on in 
space, we ought to know not only hoiv many degree.s, or other 
parts of some angular unit, the angle * 
AOB contains;* but also (comp. Fig. 33) 
the direction of the rotation from oa to 
OB; including a knowledge of the plane, o 
in which the rotation is performed ; and 
of the hand (as right ox left, when viewed from a known side of 
the plane), towards which the rotation is directed.

111. Or, if we agree to select some one fixed hand (suppose 
the right] hand), and to call all rotations positive when they

* This number, which we shall presently call .the tensor of the Quotient, may be 
whole or fractional, or even incommensurable with unity; but it may always be 
fijuated, in calculation, to a positive scalar : although it might perhaps more pro
perly be said to be a signless number, as being derived solely from comparison of 
lengths, without any reference to directions.

f If right-handed rotation be thus considered ns positive, then the positive axis 
of the rotation aob, in Fig. 33, must be conceived to be directed downward, or below 
the plane of the paper.
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are directed towards this selected hand, but all rotations nega
tive when they are directed towards the other hand, then, for 
any given angle aob, supposed for simplicity to be less than two 
right angles, and considered as representing a rotation in a given 
plane from oa to ob, We may speak of one perpendicular oc to 
that plane aob as being the positive axis of that rotation; and 
of the opposite perpendicular O|C' to the same plane as being the 
negative axis thereof; the rotation round the positive axis being 
tfsc^positive, and vice versd. And then the rotation aob may 
be considered to be entirely known, if we know, 1st, its quantity, 
or the ratio which it bean^to a right rotation; and Ilnd, the 
direction of its positive axis, oc: but not without a knowledge 
of these two things, or of some data equivalent to them. But 
whether we consider the direction of an Axis, or the aspect of 
a Plane, we find (as indeed is well known) that the determi
nation of such a direction, or of such an aspect, depends on two

, polar co-ordinates*, or other angular elements.
112. It appears, then, from the foregoing discussion, that 

for the complete determination, of what we have called the geo
metrical Quotient of two co-initial Vectors, a System of Four 
Elements, admitting each separately of numerical expression, 
is generally required. Of these four elements, one serves (109) 
to determine the relative length of the two lines compared ; 
and the other three are in general necessary, in ordei* to deter- 
mine fully their relative direction. Again, of these three latter 
elements, one represents the mutual inclhiation, or elongation, 
bf the two lines; or the magnitude (or quantity) of the angle 
between them; while the two others serve to determine the 
direction of the axis, perpendicular to their common plane, 
round which a rotation through that angle is to be performed, 
in a sense previously selected as the positive one (or towards 
a fixed and previously selected handf for the purpose of pass
ing (in the simplest way, and therefore in the plane of the two 
lines) from the direction of the divisor-line, to the direction of

* The actual (or at least thc frequent) use otsuch co .ordinates is foreign to the spirit 
of the present System : but tho mention of them here seems likely to assist a student, 
by suggesting an appeal to results, with which his previous reading can scarcely fail 
to have rendered him familiar.
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the dividend-line. And no more than four numerical elements 
are necessary, for our present purpose; because the relative 
length of two lines is not changed, when their two lengths are 
altered proportionally, nor is their relative direction changed, 
when the angle which they form is merely turned about, in its 
own plane. On account, then, of this essential connexion of 
that complex relation (109) between two lines, which is com
pounded a relation of lengths, and of a relation of directions, 
and to which we have given (by an extension from the theory 
of scalars') the name of a geometrical quotient, with a System 
o/’Four numerical Elements, we have already a motive^ for 
saying, that “ the Quotient of two Vectors is generally a (Qua
ternion."

Section 3.—Additional Illustrations.
113. Some additional light may be thrown, on this first concep

tion of a (Quaternion, by the annexed Figure 34. In that Figure, 
th^ letters cdefg are 
designed to indicate 
corners of a prisma
tic desk, resting upon 
a horizontal table. 
The angle hcd (sup
posed to be one of 
thirty degrees) repre
sents a (left-handed) 
rotation, whereby the 
horizontal ledge CD of 
the deskis conceived 
to be elongated (or 
removed) from a given horizontal line ch, which may be imagined to 
be an edge of the table. The angle gcf (supposed here to contain 
forty degrees) represents the slope\ of the desk, or the amount of its 
inclination to the table. On the face cdef of the desk are»drawn two si
milar and similarly turned triangles, aob and a'o'b', which are supposed 
to be halves of two equilateral triangles; in such a manner that each

* Several other reasons for thus speaking will offer themselves, in tlie course of tho 
present work.

I These two angles, non and OCK, may thus be considered to correspond to longi
tude of node, and inelination of orlit, of a planet or comet in astronomy.
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rotalian, aob or a'o'b' is one of sixty degrees, and is directed towards 
one common hand (namely the right hand in the Figure): while if 
lengths alone be attended to, the side OB is to the side o’a, in one tri
angle, as the side o'b' is to’the side o'a', in the other; or as the num- 
bci' two to one.

114. Under these conditions of construction, we consider the two
. quotients, or the two geometric fractions,

OB o'b'OB: OA and ob' : oa', or — and ---- ,
OA o'a'

as being equal to.each, other; because we regard the two lines, OA and 
OB, as having the same relative length, and the same relative direction, 
as the two other lines, o'a! and o'b'. And we consider and speak of 

' each Quotient, or jPVacfZon, as a Qfiaternion; because its cowijofefe con- 
struction (or ddcrminatioii) depends, for all that is essential to its 
conception, and requisite to distinguish it from others, on a system of 
four numerical elements (comp. 112); which are, in this Example, the 
four numbers.

2, 60, 30, and 40.

115. Of these four elements (to recapitulate what has been above supposed), the 
1st, namely the number 2, expresses that the lenffth of the diridend-line, on or 
o'b', is dovble of tho length of tho divisor-line, OA. or o'a'. The Ilnd numerical 
element, namely 60, expresses here that the angle AOB or A'o'n', is one of sixty de
grees; while tho corresponding rotation, from OA to ob, or from o'a' to o'b', is to
wards a known hand (in this case the right hand, as seen by a person looking at the

' face CDEF of the desk), which hand is the same for both of these two equal angles. 
Tho Ilird element, namely 30, expresses that the horizontal ledge cd of the desk 
makes an angle of thirty degrees with a known horizontal lino cn, being removed 
from it, by that angular quantity, in a known direction (which in this case happens 
to be towards the left hand, as seen from above). *' Finally, the IVth element, 
namely 40, expresses here that the desk, has an elevation of forty degrees as before.

116. Now an alteration in cRiy one of these Four Elements, such as an altera
tion of the slope or aspect of tho desk, would make (in the view hero taken) an es
sential change in the Quaternion, which is (in the same view) the Quotient of the two 
lines compared: although (as the Figure is in part designed to suggest) no such 
change is conceived to take place, when the triangle AOB is merely turned about, in 
its own plane, without being turned over (comp. Fig. 36) j or when the sides of that 
triangle are lengthened or shortened proportionally, so as to preserve the ratio (in the 
old sense of that word), of any ono to any other of those sides. Wo may then briefly 
say, in thia mode of illustrating the notion of a Quaternion* in geometry, by refe-

* As fo the mere word, Quaternion, it signifies primarily (as is well known), like 
its Latin original, “ Quatemio,” or the Greek noun TtrpaKrvc, a Set of Four: but 
it is obviously used here, and elsewhere in thc present work, in a teehnica! sente.
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rencc to an angle on a desk, that tlie Four Elements which it involves aro the follow
ing:

Ratio, Angle, Ledge, and Slope;
although the two latter elements are in fact themselves angles also, but are not t»i- 
mediatelg obtained as such, from the simple comparison of tho two lines, of which the 
Quaternion is the Quotient.

Section 4.— On Equality of Qiiaternions; and on the Plane 
of a Quaternion.

..117. It is an immediate consequence of the foregoing con
ception ai a Quaternion, that two quaternionst or two quotients 
of vectors, supposed for simplicity to be all co-initial are 
regarded as being equal to each other, or that the equation, 

8/3 OD .OB
•y o’ OC oa’

is by us considered and defined to hold good, lohen the two tri
angles, AOB and COD, are similar and similarly turned, and in 
one common plane, as represented in the 
annexed Fig. 35: the relative length
(109) , and the relative direction
(110) , of the two lines, oa, ob, being 
then in all respects the same as the re
lative length and the relative direction 
of the tzoo other lines, oc, od.

118. Under the same conditions, we 
shall write the following formula of direct similitude,

A AOB oc COD;

reserving this other formula,
A AOB oc'aob', or A a'ob a'a'ob',

which we shall call a formula of inverse simili
tude, to denote that* the two triangles, aob and 
aob', or a'ob and a'ob', although otherwise simi
lar (and even, in this ca&efequal,* on account 
of their having a common side, oa or oa'), are

* That is to SQy, equal in absolute amount of area, but with opposite algebraic 
signs (28). Tho two quotients ob : OA, and ob' : OA, although not equal (110), will 
soon be defined to be conjugate quaternions. Under the same conditions, wo shall 
write also thc formula,

A Aon'a'coD.
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oppositely turned (comp. Fig. 36), as if one were the reflexion 
of the other in a mirror; or as if the one triangle were derived 
(or generated) from the other, by a rotation of its plane through 
two right angles. We may therefore write,

OB OD ... • I
— = —, it A AOB oc COD. 
OA oc

119. When the vectors are thus all drawn from one com
mon origin o, the plane aob of any two of them may be called 
the Plane of the Quaternion (or of the Quotient), ob : oa ; and 
of course also the plane of the inverse (or reciprocal) quater- 
nion (or of the inverse quotient), oa : on. And any two qua
ternions, which have a enmmore plane (through o), may be said 
to be Complanar* Quaternions, or complanar quotients, or 
fractions; but any two quaternions (or quotients), which have 
different planes (intersecting .therefore in a right line through 
the origin), may be said, by contrast, to be Diplanar.

120. Any two quaternions, considered as geometric frac
tions (101), can be reduced to a common denominator without 

change of the value\ of either of them, as follows. Let — and
OA

be the two given fractions, or quaternions; and if they be 

complanar (119), let oe be any lineivt their common plane; but 
if they be diplanar (see again 119), then let oe be any assumed 
part of the line of intersection of the two planes: so that, in 
each case, the line oe is situated at once in the plane aob, and 
also in the plane cod. We can then always conceive two other 
lines, OF, 06, to be determined so as to satisfy the two condi
tions of direct similitude (118),

A EOF a AOB, A EOG <x COD ;

• It ie, however, convenient to extend the use of this word, complanar, so aa to 
include the case of quaternions represented by angles in parallel planes. Indeed, as 
all vectors which have egual lengths, and similar directions, are equal (2), so the 
gnatemion, which is a quotient of two such vectors, ought not to bo considered as 
undergoing ony change, when either vector is merely changed m position, by a trans
port without rotation.

I That is to say, the new or tran^jrmerZ quaternions will be respectively equal to 
the old or yfeen ones.

Q
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and therefore also the tioo equations between quotients (117, 
118),

OG OD 
OE ” OC ’

. OE

of ob 
OE “ Oa’ 

and thus the required reduction is effected, ob being the com
mon denominator sought, while of, og are the new or reduced 
numerators. It may be added that if h be a new point in the 
plane aob, such that A hoe <x aob, we shall have also,

oe ob of
OH ” OA ~ OE ’

and therefore, by 106, 107,
on OB OG + OF OD OB OG OD OB OG,
OC“OA~ . OE ’ OC * OA of’ OC OA OH ’

whatever two geometric quotients (complanar or diplanar) may 
be represented by ob : oa and on : de.

121. If now the two triangles aob, cod are not only com
planar but directly similar (118), so that A aob oc cod, we shall 
evidently have Aeofk eog; so that we may,write of = og 
(or F = G, by 20), the two new lines of, og (or the two new 
points F, g) in this case coinciding. The general construction 
(120), for the reduction to a common denominator, gives there
fore here only one new triangle, eof, and one new quotient, 
OF: OE, to which in this case each (comp. 105) of the ttoo given 
equal and complanar quotients, ob : oa and od :oc, is equal.

122. But if these two latter symbols (or the fractional 
forms corresponding) denote two diplanar* quotients, then the 
two new numerator-lines, of and og, have different directions, • 
as being situated in two different planes, drawn through the new 
denominator-line oe, without having either the direction of that 
line itself, ov the direction opposite thereto; they are therefore 
(by 2) unequal vectors, even if they should happen to be 
equally long; whence it follows (by 104) that the two new 
quotients, and therefore also (by 105) that the two old or given 
quotients, arc unequal, as a consequence of their diplanarity,

* And therefore non-scalar (108); fora scalar, considered as a jaot/euf (17), 
has no determined plane, hut must he considered as complanar with every geometric 
quotient; since it may be represented (or constructed) by the quotient of two simi
larly or oppositely directed lines, in any proposed plans whatever.
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It results, then, from this analysis, that diplanar quotients of 
vectors, and therefore that Diplanar Quaternions (119), are 
always unequal; a new and comparatively technical process 
thus corifirming the conclusion, to which we had arrived by ■ 
general considerations, and in (what might be called) a popular 
way before, and which we had sought to illustrate (comp. Fig. 
34) by the consideration of angles on a desk: namely, that a 
Quaternion, considered as the quotient of two mutually inclined 
lines in space, involves generally a Plane, as an essential part 
(corap. 110) of its constitution, and as necessary to the com
pleteness of its conception.

123. We propose to use the mark

HI
as a Sign of Complanarity, whether of lines or of quotients ; 
thus we shall write the formula,

Y III
to express that the three vectors, a, )3, y, supposed to be (or to 
be made) co-initial (18), are situated in one plane; and the 
analogous formula.

' ill III9 III ?’ - III

to express that the tioo quaternions, denoted here by and q', 
and therefore that they&wr vectors, a, /3, y, 8, are complanar 
(119). And because we have just found (122) that diplanar 
quotients are unequal, we see that (me equation of quaternions 
includes tioo complanarities of vectors; in such a manner that we 
may write,

y 111 a, and 8I||a>/3, if ~

the equation of quotients, = —, being impossible, unless all 

the four lines from o be in one common plane. "Wq shall also 
employ the notation

Till?’
to express that the vector y is in (or parallel to) the plane of 
the quaternion q.
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124. With the same notation for complanarity^ we may 
write generally,

116 ELEMENTS OF QUATERNIONS.

a-a|l|a,/3;
a and /3 being any two vectors, and x being any scalar be
cause, if a = oa and /3 = on as before, then (by 15, 17) red = oa', 
where a' is some point on the indefinite right line through the 
points o and a : so that the plane aob contains the line dK. 
For a similar reason, we have generally the following formula 
of complanarity of quotients,

^[[[^,
Xa a

whatever <wo scalars x and y may be; a and )3 still denoting 
any two vectors.

125. It is evident (comp. Fig. 35) that
if A AOB a COD, , then A boa a boc, and A aoc ot bod ; 

whence it is easy to infer that for quaternions, as well as for 
ordinary or algebraic quotients,

if then, inversely, and alternately•
a p 0 a p

it being permitted now to establish the converse of the last for
mula of 118, or to say that

, OB ODu — = —, then A aob <x cod. OA oc
Under the same condition, by combining inversion with alter

nation, we have also this other equation, - =
y o

126. If the sides, ok, ob, of a triangle aob, or those sides 
either way prolonged, be cut (as in 
Fig. 37) by any parallel, a'b' or a"b", 
to the base ab, we have evidently the 
relations of direct similarity^W^i),

A a'ob' oc aob, a a"ob'’ oc aob ; 
whence (comp. Art. 13 and Fig. 12) y 
it follows that we may write, for qua- j 
temions as in algebra, the general b' 
equation, or identity,

    
 



CHAP. I.] AXIS AND ANGLE OF A QUATERNION. 117

xa a ’
where x is .again any scalar, and a, (3 are any tzoo vectors. It 
is easy also to see, that for any quaternion q, and any scalar x, 
we have the product (comp. 107), ,

= = = =ax-
(3 a a ar'a a x~'a ’

SO that, in the multiplication of a quaternion by a scalar (as in 
the multiplication of a vector by a scalar, 15), the order of the 
factors is indifferent.

Section 5__ On the Axis and Angle of a Quaternion; and on
the Index of a Right Quotient, or Quaternion.

127. From what has been already said (111, 112), we are 
naturally led to define that the Axis, or more fully that the 
positive axis, of any quaternion (or geometric quotdenl} ob : oa, 
is a right lineperpendicidar to the plane aob of that quaternion; 
and is such that the rotation round this axis, from the divisor
line OA, to the dividend-line ob, is positive: or (as we shall 
henceforth assume) directed towards the right-hand,* like the 
motion of the hands of a watch.

128. To render still more definite this conception of the 
axis of a quaternion, we may add, 1st, that the rotation, here 
spoken of, is supposed (112) to be the simplest possible, and 
therefore to be in the plane of the two lines (or of the quater
nion), being also generally less than a semi-revolution in that 
plane; Ilnd, that the axis shall be usually supposed„to be a 
line ox drawn from the assumed origin o; and Ilird, that the 
length of this line shall be supposed to be given, or fixed, and 
to be equal to some assumed unit of length; so that the term 
X, of this axis ox, is situated (by its construction) on a given 
spheric surface described about the origin o as centre, which 
surface we may call the surface of the unit-sphere.

129. In this manner, for every given non-scalar quotient

* Thia is, of bourse, merely conventional, and the reader may (if he pleases) sub
stitute the Ze/J-hand throughout.
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(108), or for every given quaternion q which does hot reduce 
itself (or degenerate) to a mere positive or negative number, the 
axis will be an entirely definite vector, which may be called an 
UNIT-VECTOR, OU account of its assumed length, and which we 
shall denote*, for the present, by the symbol Ax . q. Employ
ing then the usual sign of perpendicularity, J_, we may now 
write, for any two vectors «, /3, the formula;

Ax.-J. a; Ax.-±/3; or briefly, Ax.^j. 
d a a {a

130. The Angle ofa quaternion, such as ob : oa, shall 
simply be, with us, the angle aob between the tivo lines, of 
which the quaternion is the quotient; this angle being sup
posed here to be one of the usual hind (such as are considered 
by Euclid) : and therefore being acute, or right, or obtuse (but 
not of any class distinct from these), when the quaternion is a 
non-scalar (108). We shall denote this angle of a quaternion 
q, by the symbol, L q ; and thus shall have, generally, the two 
inequalities\ following:

zg'>0; Zg'<ir; 
where tt is used as a symbol for two right angles.

131. When the general quaternion, q, degenerates into a 
scalar, a;,,then the axis (like the/>7ane$) becomes entirely in
determinate in its direction ; and the angle takes, at the same 
time, either zero or two right angles for its value, according as 
the scalar positive ox negative. Denoting then, as above, any 
such scalar by x, we have :

* At a later stage, reasons will be assigned for denoting this axis, Ax. g, of a 
quaternion g, by the less arbitrari/ (or more systematic) symbol, ISVq; but for the 
present, the notation in the text may suffice.

t tn some investigations respecting complanar quaternions, and powers or roots 
ot quaternions, it is convenient to consider negative angles, and angles greater than 
two right angles: bnt these niayjjien be called amplitudes ; and the word “ An
gle,” like the word “ Ratio,” may thus be restricted, at least for the present, to its 
ordinary geometrical sense.

t Compare tlie Note to page 114. The angle, as well as thc axis, becomes in
determinate, when the quaternion reduces itself to xero ; imless we happen to know 
a law, according to which the dividend-line lends to become null, in the transition 

from — to -.a a
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Ax. a: = an indeterminate unit-vector; 
Z X = Oj if X > 0; L X = TT, if a: < 0.

132. Of «ore-sca?tzr quaternions, the most im
portant are those of which the angle is right, as in 
the annexed Figure 38; and when ,we have thus,

OB , , ffq = —, and OB I OA, or z

the quaternion q may then be said to be a Right 
Quotient ;* or sometimes, a Right Quaternion.

(1.) If then a = OA and p =»op, where o and a are tioo given (fir fixed) points, 
but P is a variable point, the equation

p tr
^a“2

expresses that the locus of this point P is the plane through o, perpendicular to the 
line OA; for it is equivalent to tho formula of perpendiculanty p a (129).

(2.) More generally, if/3 = OB, b being any third given point, the equation,

ze = z^
a a

expresses that the locus of P is one sheet of a cone of revolution, with o for vertex, 
and OA for axis, and passing through the point B; because it implies that the angles 
AOB and AOP are equal in amount, but not necessarilg in one common plane.

(3.) The equation (comp. 128, 129),

Ax. - = Ax. -,a a
expresses that the focus of the variable point P is the given plane aop; or rather the 
indefinite half-plane, which contains all the points p that are at once compfunar 
with the three given points o. A, B, and are also at the same side of the indefinite 
right line OA, as the point B.

(4.) The system of the two equations,
Ax.^ = Ax.e,

a a a a
expresses that the point p is situated, either on the Jinftc right line qa, or on that line 
prolonged through A, but not through o; so that the locus of p may in this case be 
said to be the indefinite half-line, or ray, which seta out from o in the direction of the 
vector OB or /3; and we may write p = x/S, a: > 0 (a: being understood to be a sca
lar'), instead of the equations assigned above.

* Reasons will afterwards be assigned, for equating such a quotient, or quater
nion, to a Sector; namely to the line which wili presently (133) bc called the Index 
of the Right Quotient,

    
 



120 ELEMENTS OF QUATERNIONS.

(5.) This other system of two equations,

L- = v-L-, Ax.f = -Ax.a a a
expresses that the locus'pt p is the opposite ray from o; 
or that P is situated on the prolongation of the revee- 
tor BO (1); or that p = xP, x < 0; or that

p = xp!f X > 0, if P' ='ob'=-p.
(Comp. Fig. 33, 6i«.)

(6.) Other notations, tor representing these and other geometric loci, will be found 
to be supplied, in great abundance, by the Calculus of Quaternions; but it seemed 
proper to point out these, at the present stage, as serving already to show that even 
the two symbols of the present Section, Ax. and Z, when considered as Characteris
tics of Operation on quotients of vectors, enable us to express, very simply and con
cisely, several useful geometrical conceptions,

133. If a third line, oi, be drawn in the direction of the 
axis trsi of such a right quotient (and therefore perpendicular, 
by 127, 129, to each of the txoo given rectangular lines, oa, 
ob) ; and if the length of this new line oi bear to the length 
of that axis ox (and therefore also, by 128, to the assumed 
unit of length) the same ratio, which the length of the dividend
line, OB, bears to the length of the divisor-line, oa; then, the 
line OI, thus determined, is said to be the Index of the Right 
Quotient. And it is evident, from this definition of such an 
Index, combined with our general definition (117, 118) of 
Equality between Quaternions, that two right quotients are 
equal or unequal to each other, according as their tioo index
lines (or indices') are equal or unequal vectors.

Section 6.— On the Reciprocal, Conjugate, Opposite, and Norm 
of a (Quaternion; and on Null (Quaternions.

134. The Reciprocal (or the Inverse, comp. 119) of a 
ft

quaternion, such as q = —, is that other quaternion,

, a .
’■p’

which is formed by interchanging the divisor-line and the divi
dend-line ; and in thus passing from any non-scalar quater
nion to its reciprocal, it is evident that the angle (as lately
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defined in 130) remains unchanged, but that the axis (127, 
128) is reversed in direction: so that we may ■write gene
rally,

Ax.5 = -Ax.-. P(3 a’
135. The product of ?wo reciprocal guatei'nions is always 

equal to positive unity; and each is equal to thc quotient of 
unity divided by the other; because we have, by 106, 107,

and a a p p a • a
It is therefore unnecessary to introduce any new or peculiar 
noteZzon, to express the mutual relation existing between a 
quaternion and its reciprocal; since, if one be denoted by the 
symbol q, the other (in the present System, as in Alge

bra) be denoted by the connected symbol,* 1 : q, or We 

have thus the'two general formulae (comp. 134):

z-=z<7; ' Ax.- = -Ax.o.
? q ■

136. Without yet entering on the general theory of multi
plication and division of quaternions, beyond what has been 
done in Art. 120, it may be here remarked that if any two 
quaternions q and q' be (as in 134) reciprocal to each other, so 
that q'- q - 1 (by 135), and if q" be any third quaternion, then 
(as in algebra), we have the general formula,

because if (by 120) we reduce q and to a common denomina
tor a, and denote the new numerators by (i and y, we shall have 
(by the definitions in 106, 107),

77a „ ,

137. When complanar triangles aob\ with a com-

Th© symbol for th© recxprocal of a quateruion 7, is also permitted iu the 
present Calculus; but we defer the use of it, until its legitimacy shall have been 

• established, in connexion with a general theory of powers of Quaternions.
R
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side o^, are (as in Fig. 36) inversely similar (118), so that 
the formula A aob' oc' aob holds good, then the tioo unequal 

quotients,* and are said to be Conjugate Quater

nions ; and if the first oi them be still denoted by q, then the 
second, which is thus the conjugate of that first, ov of any other 
quaternion which is equal thereto, is denoted by the new sym
bol, 'S.q : in which the letter K may be Said to be the Charac
teristic of Conjugation. Thus, with the construction’ above 
supposed (comp, again Fig. 36), we may widte,

OB ob' t^OB— -q-, — = Kfl = K—.

138. From this definition of conjugate quaternions, it follows, 
1st, that if the equation ^ = K— holdgood, then the Z/nfion'maybe 

called (118) the reflexion of the line ob (and conversely, the latter line 
the reflexion of the former'), with respect to the line oa ; Ilnd, that, under 
the same condition, the line oa (prolonged if necessary) bisects per
pendicularly the linenn', in some point a*' (as represented in Fig. 36); 
and Ilird, that any two conjugate quaternions (like any two reczprocai 
quaternions, comp. 134, 135) have equal angles, but opposite axes: 
so that we may write, generally,

- L'S.q^Lq-, 
and thereforej- (by 135), •

ZKj.Ji

Ax.Kq = -Ax.q;

Ax. Ko = Ax. i.
S’

139. The reciprocal of a scalar, x, is simply another scalar, 

-, or x'\ having the same algebraic siyw, and in all other re- 

spects related to x as in algebra. But the conjugate Ka:, of a 
scalar X, considered as a limit of a is equal to that
scalar x itself; as may berseen by supposing the two equal but 
opposite angles, aob arid aob', in Fig. 36, to tend together to

• Compare the Note to page 112.
f It will soon be seen that these two last equations (138) express, that the con

jugate and the reciprocal, of any proposed quaternion q,,have always equal versors, 
although they have in general unequal tensors.
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zero, or to two right angles. We may therefore write, gene
rally,

Kx = 0!, if X be any scalar;
and conversely*,

q = a scalar, if Kg = q;
because then (by 104) we must kave ob=ob', bb' = 0; and 
therefore each of the two (now coincident) points, B, b', must 
be situated somewhere on the indefinite right line oa.

140. In . general, by the construction represented in the 
same Figure, the sum (comp. 6) of the two numerators (or di
vidend-lines, OB and ob'), of the two conjugate fractions (or quo
tients, dr quaternions), q and Kg (137), js equal to the double 
of the line oa' ; whence (by 106), the sum of those two conju
gate quaternions themselves is,

Tjr 2oa'Kg + g = g + Kg = —;

this sum is therefore always scalar, being positive if the angle 
Z g be acute, but negative if that angle be obtuse.

141. In the intermediate case, when the angle aob is right, 
the interval oa' between the origin o and the line bb' vanishes; 
and the two lately mentioned numerators, ob, ob', become two 
opposite vectors, of which the sum is null (5). Now, in gene
ral, it is natural, and will be found useful, or rather necessary 
(for consistency -with former definitions), to admit that a null 
vector, divided by an actual vector, gives always a Null Qua
ternion as the quotient; and to denote this null quotient by 
the usual symbol for .Zero. In fact, we have (by 106) the 
equation.

a a a o-
the zero in the numerator of the Z^-hand fraction represent
ing here a null line (or a JtttZZuecfor, 1,2); but the zero on the 
rz^At-hand side of the equation denoting a null quotient (or 
quaternion). And thus we are entitled to infer that the sum.

* Somewhat later it will be seen that the equation Kg = g may also bo written 
as Vg = 0 ; anil that this last is another mode of expressing that the quaternion, g, 
degenerates into a tealar.

    
 



[book II.

+ 25 or 2 + K2, of a right-angled quaternion^ or right quo-^ 
tient (132), and of its conjugate, is always equal to zero.

142. We have, therefore, the three following formulas, 
whereof the second exhibits a continuity in the transition from 
the first to the third;

I. . . 2 + K2

124 ELEMENTS OF QUATERNIONS.

if

II, .. 2’ + = 0, if

III. . . q + Kj < 0,

IT
IT

•if
9

And because a quaternion, or geometric quotient, with an ac
tualsnad finite divisor-line (as here oa), cannot become equal to 
zero unless its dividend-line vanishes, because (by 104) the 
equation

6 0'.— = 0 = - requires the equation 6 = 0, a a.
if a be any actual and finite vector, we may infer, conversely, that 
the sum q + K2 cannot vanish, without the line oa' also vanish
ing ; that is, without the lines on, ob' becoming opposite vectors, 
and therefore the quaternion q becoming a right quotient (132). 
We are therefore entitled to establish the three following con- 
verse formulae (which indeed result from the three former) ;

IT

TT
- ^^>2'

143. When opposite vectors (1), as /3 and - j3, are both 
divided by one common (and actual) vector, a, we shall say that 
the two quotients, thus obtained are Opposite Quaternions*; 
BO that the opposite of any quaternion 25 or of any quotient 

5 a, may be denoted as follows (comp. 4) :
-/3 0-3 0 3

a a a a

r. . . if 2 + Ky > 0,

II'... if q + = 0,

III'... if 2 + 'K.q < 0,

then

then

then    
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(-2)5?=-!; -2=(-i)?;

CHAP. 1.3

while the quaternion q itself xatxy, on the same plan, be denoted 
(comp. 7) by the symbol 0 + j, or + q. The swot of any two 
opposite quaternions is zero, and their quotient is negative 
unity; so that we may write, as in algebra (comp, again 7),
(-y) + y = (+y) + (-y) = O; 

because, by 106 and 141,
-/3 I

rt a a a a a p
The reciprocals of opposite quaternions ai’e themselves oppo
site ; GT in symbols (comp. 126),

11, o -o a
— = because —5 = ^ = -75'-2 2 .-PPP

Opposite quaternions have opposite, axes, and supplementary 
angles (comp. Fig. 33, bis); so that we may establish (comp. 
132, (5.) ) the two following general formula!,

L{-q)==ir- Lq; Ax.(^) = - Ax.^'.
144. We may also now write, in fall consistency with the 

recent formul® II. and II'. of 142, the equation,

II". . . 'Kq = - q, if 2:3' = ^;
and conversely* (comp. 138),

IT"... if Ky = - q, then l Ky =Z y = -.
2

In words, the conjugate of a right quotient, or ofa right-angled 
(or right) quaternion (132), is the right quotient opposite 
thereto; and conversely, if an actual quaternion (that is, one 
which is not null) be opposite to its own conjugate, it must be 
a right quotient.

(1.) If then we meet the equation,

k5 = --, or - + K- = 0,a a a a
wo shall know that p j- a ; and therefore (if a = OA, and p = op, as before), that the

• It will be seen at a later stage, that the equation Kq = — 5, org + K} = 0, 
may be transformed to this other equation, 87 = 0 ; and that, under this last form, it 
expresses that the tcalar part of the quaternion 7 vanishet: or that this quaternion 
is a right quotient (132).
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toms of the point p is the plane through o, perpendiculal Io the line OA (as in 132, 
(1.)).

(2.) On the other hand, the equation,

K —= + —, or --k£=:0, 
a a a a

expresses (by 139) that the quotient p : a is a scalar ; and therefore (by 131) that 
its angle A (p : a) is either 0 or w so that in this case, the loctis of p is the indefi
nite right line through the two points o and A.

145. As the opposite of the opposite, or the reciprocal of tHe reci
procal, so also the conjugate of the conjugate, of any quaternion, is that 
quaternion itself; or in symbols,

-(-2) = + ?; l:(l:g) = g; KKg = g = lg;
so that, by abstracting from the subject of the operation, we may write 
briefly.

K’ = KK=1.
It is easy also to prove, that the conjugates of opposite quaternions are 
themselvqg opposite quaternions; and that the conjugates of reciprocals 
are reciprocal: or in syt^ols, that

I,.. K(-g')=i-Kg', or Kg+K(-g) = 0;
and

IL ..Ki=l:Kg, or Kg.K-=l.

(1.) The equation K(—5) = —Kg is included (comp. 143) in this more general 
formula, K(afg) = a:Kg, where a iS any tcalar; and this last equation (comp. 126) 
may he proved, by simply conceiving that tho two lines ob, ob’, in Fig. 36, aro 
multiplied by any common scalar; or that they aro both cut by any parallel to the 
line bb'.

(2.) To prove that conjugates of reci

procals are reciprocal, or that Kg. K - = 1, 

we may conceive that, as in the annexed 
Figure 36, bis, while we have stilt the 
relation of inverse similitude,

A aob'ot* AOB (118, 137),
os in the former Figure 36, a new-point c 
is determined, either on the line OA itself, 
or on that line prolonged through a, so as 
to satisfy either of the two following con
nected conditions of direct similitude :

A BOO « aob' ;
or simply, as a relation between the four points o, a, b, c, thc formula,

A not'a'AOB.

A b'oc at AOB;
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ZK- = Zgi

For then we shall have the. transformations,
gl_j^OA_^OB'_ OB _ OA 1

g OB OC OO ob' Kg’
(3.) The two quotients, ob ; OA, and ob : oo, that is to say, the quaternion g 

itself, and the conjugate of its reciprocal, or* the reciprocal of its conjugate, have 
the same angle, and the same axis ; we may therefore write, generally,I

Ax. K-=ATc.q.
•1

(4.) Since oa : ob and oa : on' have thus been proved (by sub-art. 2) to be 
a pair of conjugate quotients, we can now infer this theorem, that any two geo- 

, a a * ,metric fractions, — and which have a common numerator a, are conjugate qua- P P r
temions, if the denominator jf oi the second be the reflexion of the denominedor fS ot 
the first, with respect to that common numerator (comp. 138, I.); whereas it had 
only been previously assumed, as a definition (137), that such conjwyah’oa exists, 
under the same geometrical condition, between the two other (or inccrss) fractions,

— and — ; the three vectora o, /3, being supposed to be all co-initial (18).a a
(5.') Conversely, if we meet, in any Investigation, the formula

OA: ob' = K (oA: ob),
we shall know that the point b' is the reflexion of ’the point b, with respect to the 
line QA.: or that this line, OA, prolonged if necessary in either of two opposite" direc
tions, bisects at right angles the line bb', in some point a', as in either of the two 
Figures 36 (comp. 138, II.).’

(6.) Under the recent conditions of construction, it foUow.s from the most ele
mentary principles of geometry, that the circle, which passes through the three points 
A, B, o, is touched al B, by the right line ob ; and. that this line is, tn length, a mean 
proportional between the lines OA, oc. Let then od be such a geometric mean, and 
let it be set off from o in the common direction of the two last mentioned lines, so 
that the point D falls between A and c; also let the vectors oc, od be denoted by the 
symbols, y. S', we shall then have expressions of the forms,

5 = aa, y = a'^a,
where a is some positive scalar, o > 0; and the vector /3 of B will be connected 
(comp, sub-art. 2) with this scalar a, and with the vector a, by the firmula, 

oc' „OB a^a_ 1301 — =OB OA pa

(7.') Conversely, if we still suppose that y = a®a, this last formula expresses the in
verse similitude of triangles, A BOC oc' AOB; and it expresses nothing more: or in other

OCob’

* It will be seen afterwards, that the common value of these two equal quater

nions, K - and —, may be represented by either of tho two new symbols, Uy : Tg, 

or g: Ng ; or in words, that it is equal to the vertor divided by the tensor; and also 
to the guaternion itself divided by the norm.
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words, it is satisfied by the vector /3 of every point b, which gives that inverse simili
tude. But for this purpose it is only requisite that the length of ob should be (as 
above) a geometric mean between the lengths of OA, oo; or that the two lines, ob, 
OD (sub-art. 6), should be equally long: or finally, that b should be situated some
where on the surface of a sphere, which is described so as to pass through the point d 
(in Fig. 36, bls'), and to have tho origin o for its centre.

(8). If then we meet an equation of the form,

— P P -n- P— = KI-, ot =pa a a
in which a = OA, p = op, and a is a scalar, as before, we shall know that the locus 
of the point F is a spheric surface, with its cenire ab the point o, and with the vector 
aa tor a radius ; and also that if we determine a point o by the equation oc = a^a, 
this spheric locus of p is a common orthogonal to ail the circles apc, which can be 
described, so as to pass through the two fixed points, a and c: because every radius 
op of the sphere is a tangent, at the variable point p, to the circle apc, exactly as 
ob is to ABC in the recent Figure.

(9.) In the same Fig. 36, bis, the similar triangles show (by elementary princi
ples) that the length of bo is to that of ab in the sub-duplicate ratio of oo to OA; or 
in the simple ratio of od to OA; or as the scalar a to I. If then we meet, in any re
search, the recent equation in p (sub-art. 8), we shall know that

length of (_p — a^a') = a x length of{p — n);
while the^recent interpretation of the same equation gives this oMer relation of the 
same kind: '

length of p = a X length of a.
(10.) At a subsequent stage, it will be shown that the Calculus of Quaternions 

supplies Rules of Transformation, by which we can pass from any one to any other 
of these last equations respecting p, without (at the time) co?tstrueting any Figure, 
or (imimedicttely') appealing to Geometry: but it was thought useful to point out, 
already, how much geometrical meaning* is contained in so simple a formula, as that 
of the last sub-art. 8. -

(11.) The product of two conjugate quaternions is said to be their common 
NoRM,t and is denoted thus:

gKj = Ng.

* A student of ancient geometry may recognise, in the two equations of sub-art. 
9, a sort of translation, into the language of vectors, of a celebrated local theorem of 
Apollonius of Perga, which has been preserved through a citation made by his early 
commentator, Eutocius, and may be thus enunciated: Given any two points (aa here 
A and o) in a plane, and any ratjj of inequality (as here that of 1 to a), it is possible 
to construct a circle in the plane (as here tho circle bob'), such that the (lengths of 
the) two right lines (as here ab and cb, or AP and op), which are inflected from tho 
two given points to any common point (as b or p) of the circumference, shall be to 
each other in tho given ratio. (Auo SoOIvtihv arjitiiuv, K. t. X. Pago 11 of Halley's 
Edition of Apollonius, Oxford, mdcox.)

t This name, Nobm, and the corresponding characterislic, N, are here adopted, 
as suggestions from the Theory of Numbers; but, in thc present work, they will not
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It follows that NKj = Ng; and that the norm of a quaternion is generally a positive 
.scalar! namely, the square of the quotient of.the lengths ot the two lines, of which 
(as vectors) tho quaternion itself is the quotient (112). In fact we have, by sub-art.
6, and by the definition of a norat, the transformations:

ob’_oo OB_OC_tODY_
OA. OA ~ ob' oa " ob oa ~ OA \OA J ’ 

Ng = NS = 2K& = {^-^??^^V.
a a a \ length of a I

Aa a limit, we may say that fAe norm of a null quaternion is zero; or in symbols, 
NO = 0.

(12.) With this notation, the equation of the spheric locus (sub-art. 8), which 
has the point o for its centre, and the Vector aa for one of its radii, assumes the 
shorter form:

N^ = o2i or N-^ = l. 
a aa

Section 7.— On Radial Quotients; and on the Square of a 
Quaternion.

146. It was early seen (comp. Art. 2, and Fig. 4) that any 
two radii, ab, ac, of any one circle, sphere, are necessarily 
unequal vectors ; because their directions differ. On the other 
hand, when we are attending only to relative direction (110), 
we may suppose that all the vectors compared are not merely 
co-initial (18), but are also equally long; so that if their com
mon length be taken jar the unit, they are all radii, oa, ob, .. 
ofwhat we have called the Unit-Sphere described round
the origin as centre;'and may all be 
said to be fZnzY-FecZors (129). And 
then the quaternion, which is the 
quotient of any one such vector divi
ded by any other, or generally the o 
quotient of any two equally long vec- ■ 
tors, may be called a Radial Quotient; or sometimes sim
ply a Radial. (Compare the annexed Figure 39.)

be often wtuUei, although it may occasionally bo convenient to employ them. For 
we shall soon introduce the conception, and the characteristic, of the Tensor, Tq, of 
a quaternion, which is of greater geometrical utility than the Norm, but of which it 
will be proved that this norm is simply the square,

9K9 = N9 = (Tj)«.
Compare the Note to sub-art. 3.

s
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5 
Fig. 41.

[book II.

147. The two Unit- Scalars, namely, Positive and Nega
tive Unity, may be considered as limiting cases of radial quo
tients, corresponding to the two extreme values, 0 and ir, the 
angle aob, orZ.g'(l31). In the intermediate 

case, when aob is a right angle, or L q = 

as in Fig. 40, the resulting quotient, or qua
ternion, may be called (comp. 132) a Right 
Radial Quotient; or simply, a Right Ra
dial. The consideration of such right radials
will be found to be of great importance, in the whole theory 
and practice of Quaternions.

148. The most important general property of the quotients 
last mentioned is the following: that the Square of every Right 
Radial is equal to Negative Unity; it being understood that 
we write generally, as in algebra,

and cfill this product of two equal quaternions the square of 
each of them. For if, as in Fig. 41, we 
describe a semicircle aba', with 0 for cen- 

■ tre, and with ob for the bisecting radius, 
then the two right quotients, ob : oa,*. 
and oa':ob, are equal (comp. 117); and 
therefore their common square is (comp.
107) the product,

/ OBV OA' OB 
\OAy ~OB OA 

where oa and ob may represent any 
two equally long, but mutually rect- 
angular lines. More generally, the 
Square of every Right Quotient 
(132) is equal to a Negative Scalar; namely, to the negative of 
the square of the number, which represents the ratio of the 
lengths* of the two rectangular lines compared; or to zero

Fig. 41, bit.

* Ilvnce, by 1'15, (11.), 9’ = —Ng, if £g = ^.
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jnznns the square of the number which denotes (comp. 133) the 
length of the Index of that Right Quotient: as appears from 
Fig. 41, bis, in which ob is only an ordinate, and not (as be
fore) a radius, of the semicircle aba' ; for we have thus,

/osy oa' /length of onV
7- = •---- = - r SK srx I, if OB ± OA.

\OAy OA \length of 6a)

149. Thus every Right Radial is, in the present System, 
one .of the Square Roots of Negative Unity ; and may there
fore be said to be one of the Values of the Symbol ; which
celebrated symbol has thus a certain degree of vagueness, or at 
least of indetermination, of meaning in this theory, on account 
of which we shall not often employ it.' For although it thus 
admits of a perfectly clear and geometrically real Interpretation, 
as denoting what has been above called a Right Radial Quo
tient, yet the Plane of that Quotient is arbitrary; and therefore 
the symbol itself must be considered to have (in the present 
system) indefinitely many values ; or in other words the Equa
tion, 

has (in the Calculus of Quaternions) indefinitely many Hoats,* 
which are all Geometrical Reals: beside^ any other roots, of 
a purely symbolical character, which the same equation may be 
conceived to possess, and which may be called Geometrical 
Imaginaries.y Conversely, if q be any real quaternion, which

• It will be subsequently shown, that if x, y, z be any three scalars, of which 
the sum of the squares is unity, SO that

xS 4- 4* 2:® 5= I i

and if», j, h be any three right radials, in three mutually rectangular planes; then 
the expression,

. q = ix Vjy + kz,
denotes another right radial, which satisfies (as such, and by sj’mbolical laws to be 
assigned) the equation q® = — I j and is therefore one of the geometrically real values 
of the symbol d— 1.

t Such imaginaries will be found to offer tlwmselves, in the treatment by Qua
ternions (^01 rather by what will be called Biquaternionsy, of ideal intersections, and 
of ideal contacts, in geometry; but we confine our attention, for thc present, toyeo- 
meirieal reals alone. Compare the Notes to page 90.
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eaitisfiea the equation = - 1, it must be a right radial; for if, 
as in Fig. 42, we suppose that A aob oc boc, 
we shall have

3_/obY_oc ob oc
\OA/ OB OA ~ oa’

and this square of q cannot become equal to 
negative unity., except by oc -being = - oa, 
or = oa' in Fig. 41; that is, by the line ob 
being at right angles to the line oa, and 
being at the same time equally long, as in 
Fig. 40.

(1.) If then we meet the equation,

where a = oa, and p = op, as before, we shall know that the locut of the point P is 
the cireumfierence of a circle, with o for its centre, and with a radius which has the 
same length as the line OA; while the plane of the.circle is perpendicular to that 
given line. In other words, the locus of P is a great circle, on a sphere of which the 
centre is the origin; aqd the given point A, on the same spheric surface, is one of the 
poles of that circle.

(2.) In general, the equation 9® = — o’, where a is any (real) scalar, requires 
that the quaternion 9 (if real) should be some right guotient (132); the number a 
denoting tho length of the index (183), of that right quotient or quaternion (comp. 
Art. 148, and Fig. 41, his"). But the plane of 9 is still entirely arbitrary; and 
therefore the equation 

5® = -a2

like the equation 9’= — 1, trhich it includes, must be considered to have (in the 
present system) indefinitely many geometrically real roott.

(3.) Hence the equation,

in which we may suppose that a > 0, expresses-that the locus of the point p is a 
(new) circular circumference, with the line OA for its axis,* and with a radius ot 
which the length = a x the length of OA.

150. It may be added that the index (133), and the axis (128), 
of a right radial (147), are lhesame; and that its rectjprocaZ (134), its 
conjugate (137), and its opposite (143), are all equal to each other. Con
versely, if the reciprocal of driven quaternion q be equal to the opposite

* It being understood, that the axis 0/ a circle is a right line perpendicular to 
the plane of that circle, and passing through its centre.
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of that quaternion, then q is a right radial; because its s^tzare, q^, 
is then equal (comp. 136) to the quaternion itself, divided hy its op
posite; and therefore (by 143) to negative unity. But the conjugate 
ofeKery radial quotient is equal to the reciprocal cd that quotient; 
because if, in Fig. 36, we conceive that the dvree lines OA, ob, ob' are 
equally long, or if, in Fig. 39, we prolong the orc ba, by an equal arc 
Jis', we have the equation,

ob' oa 1K2 = —= —=-.
OA ob 2’ .

And conversely,*
if TS.q= \ or if jKgs 1,

then the quaternion g is a radial quotient.

Section 8__ On the Versor of a Quaternion, or of a Vector ;
and on some General Formula of Transformation.

151. When a quaternion q = P: a is thus a radial quotient
(146), or when the lengths of the two lines a and are equal, 
the effect of this quaternion q, considered as a Factor (103), 
in the equation qa = P, is simply the of the multipli
cand-line a, in the plane of q (119), and towards the hand de
termined by the direction of the positive axis Aji.q (129), 
through the angle denoted by Z g (130); so as to bring that 
line a (or a revolving line which had coincided therewith) into 
a new direction; namely, into that of the product-line (3. And 
with reference to this conceived operation of turning, we shall 
now say that every Radial Quotient is a Versor.

152. A Versor has thus, in general, a plane, an axis, and 
an angle ; namely, those of the Radial (146) to which it cor
responds, or is equal: the only difference between them being 
a difference in the points of view] from which they are respec
tively regarded; namely, the radial as the quotient, q, in the

•
* Hence, In the notation of norm* (145, (11.) ), if Ng = 1, then g is a radial; 

and conversely, the norm of a radial quotient is always equal to positire unity.
t In a slightly »ne^a/)^ysicaZ mode of expression it may be said, that the radial 

quotient is the result of an analysis, wherein 'two radii ot one sphere (or circle) are 
compared, as regards their relative direction ; and that the equal versor is the tntim- 
ment of a corresponding synMesis, wherein one radius is conceived to be yenerated, by 
a certain roiatton, from the other.
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11
formula, g = j3‘.a; and the as the (equaY) factor, g, in
the converse formula, (i = q.a; where it is still supposed that 
the two vectors, a and /3, are equally long.

153. A versor, like a radial (147), cannot degenerate into e. scalar, 
except by its angle acquiring one or other of the two limit-values, 0 
and tr. In the first case, it becomes positive unity; and in the second 
case, it becomes negative unUy: each of these two «rat<-sca?ars (147) 
being, here regarded as a factor (or coefficient, comp.-12), which ope
rates on a line, to preserve ov to reverse its rfzrecZz'ow. In this view, we 
may say that -1 is an Inversor; and that every Right Versor (or ver

sor with an angle = is a .SeTni-inucrsor;* because it half-inverts the 

line on which it operates, or turns it through half of two right angles 
(comp. Fig. 41). For the same reason, we are led to consider every 
right versor (like every right radial, 149, from which indeed we have 
just seen, in 152, that it difiers only as factor differs from guotienC), 
as being one of the square-roots of negative unity: or as one of the va
lues of the symbol -1.

154. In fact we may observe that the effect of a right versor, con
sidered as operating on a line (in its own plane), is to turn that line, 
towards a given handt, through a right angle. If then q be such a ver
sor, and if qa= j3, ■'fiQ shall have also (comp. Fig. 41), qP = -a-, so 
that, if a be any line in the plane of a right versor q, yio have the 
'equation.

q.qa = — o;
whence it is natural to write, under the same condition,

2” = -1, •
as in 149- On the other hand, no, versor, which is not right-angled, 
can be a value of - 1; or can satisfy the equation = -a, as Fig. 
42 may serve to illustrate. For it is included in the meaning of this 
last equation, as applied to 'the theory of versors, that a rotation 
through 2 Z. g, or through the double of the angle of q itself, is equi-

♦ Thia word, “ semi -inversor," will not be often used ; but the introduction of it 
here, in passing, seems adapted to throw light on the view taken, in the present work, 
of the tymbol V — 1, when regarded as denoting a certain important class (149) of 
Reals in Geometry. There are uses of that symbol, to denote Geometrical Imagi- 
naries (comp, again Art. 149, "and the Notes to page 90), considered as connected 
with ideal iiltersections, and with ideal contacts; but with •such uses of V — 1 we 
have, ai present, nothinff to do.
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valent to an inversion of direction; and therefore to a rotation through 
two right angles.

155. In general, if a be any vector, and if a be used as a 
temporary* symbol for the number expressing its length; so 
that a is here a positive scalar, which bears to positive unity, 
or to the scalar + 1, the same ratio as that which the length of 
the line a bears to the assumed unit of length (comp. 128); 
then the quotient a: a denotes generally (comp. 16) a new vec
tor, which has the same direction as the proposed vector a, but 
has its length equal to that assumed unit: so that it is (comp. 
146) the Unit- Vector in the direction of a. We shall denote this 
unit-vector by the symbol, Ua; and so shall write, generally,

Ua = if a = length of a;
« 

that is, more fully, if a be, as above supposed, the number 
(commensurable or incommensurable, but positive') which re- 
presents that length, with reference to some selected standard.

156. Suppose now that q = : a is (as at first) a yeneraZ
quaternion, or the gwoZient o/’any two vectors, a and p, whether 
equal or unequal in length. Such a Quaternion will no^ (gene
rally) be a Fiersor (or at least not simply such), according to the 
definition lately given ; because its effect, when operating as a 
factor (103) on a, will not in general be simply to turn that 
line (151): but will (generally) alter the length,^ as well as the 
direction. But if we reduce the two proposed vectors, a and j3, 
to the two unit-vectors Ua and U/3 (155), and form the jwotfent 
of these, we shall Z/jcm have taken account of relative direction 
alone: and the result will therefore be a wcrsor, in the sense 
lately defined (151). JVe propose to call the quotient, or the 
versor, thus obtained, versor-element, or briefly, tAe Ver
sor, of the Quaternion q; and shall find it convenient to em-

s*
* We shall soon propose a general nofah'on for representing the lengths of vectors, 

according to which the symbol Ta will denote what has been above called a ; but 
are unwilling to introduce more than one nem characteristic of operation, such as K, 
or T, or U, &c., at one time.

f By what we shall soon call call an act of tension, which will load us to the 
consideration of the tensor ot a quaternion.
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ploy the same* Characteristic, U, to denote the operation of 
taking the versor of a quaternion, as that employed above to 
denote the operation (155) of reducing a vector to the unit of 
length, without any change of its direction. On this plan, the 
symbol Uy will denote the versor of q; and the foregoing de

finitions will enable us to establish the General Formula:

a“Ua’
in which the two unit-vectors, Ua and U/3, may be called, by 
analogy, and for other reasons which will afterwards appear, 
the versors\ of the vectors, a and /3.

157. In thus passing from a given q, to its ver
sor, Uy, we have only changed (in general) the lengths of the 
two lines compared, namely, by reducing each to the assumed 
unit of length (155, 156), without making any change in their 
directions. Hence the plane (119), the a.xis (127, 12^), and 
the angle (130), of the quaternion, remain unaltered in this 
passage; so that we may establish the two following general 
formulae:

z Uy = z y; Ax. Uy = Ax. q.
More generally we may -write,

* For the moment, this doable use of the characteristic U, to assist in denoting 
both the unit-vector Ua derived from a given line a, and also the versor Uj derived 
from a quaternion q, nicy be regarded as established here by arbitrary definition: 
but as permitted, because the difference of the symbols, as here a and q, which serve 
for the present to denote vectors and quaternions, considered as the subjects of these 
tioo o/ierattons U, will prevent such double use of that characteristic from giving rise 
to any confusion. But we shall farther find that several important analogies ore by 
anticipation expressed, or at least suggested, when the proposed notation is employed. 
Thus it will be found (comp, the Note to page 1J.9), that every vector a may usefully 
be equated to that right quotient, of whic^itis (19*) the index ; and that then the 
unit-eecfor Ua may be, on tho same plan, equated to that right radial (147), which 
is (in the sense lately defined) the versor of that right quotient. We shall also find 
ourselves led to regard every unit-vector aathe axis of a quadrantal (or rightj rota
tion, in a plane perpendicular to that axis; which will supply another inducement, 
to speak of every such ■vector as a versor. On the whole, it appears that there will 
be DO inconvenience, but rather a prospective advantage, in our already reading the 
symbol Ua as “versor of ajust as we may read the analogous sy,mhol Uq, as 
“ versor of q.”

■j- Compare the Note immediately preceding.
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• 4Uj' = Ug;
the uer.9or of a quaternion depending solely'OUi but conversely 
being sufficient to det6rmine^ the relative direction (156) of the 
two lines, of which (as vectors') the quaternion itself is the quo
tient (112); or the axis and angle of the rotation, in the plane 
of those two lines, from the divisor to the dividend (128): so 
that any two quaternions, which have equal versors, must also 
have equal angles, and equal (or coincident) axes, as is ex
pressed by the last written formula. Conversely, from this 
dependence of the versor Ug on relative direction* alone, it 
follows that any two quaternions, of which the angles and the 
axes are equal, have also equal versors', or in symbols, that 

Ug'=Ug, if £.q'=Lq, and Ax.g' = Ax.g.
For example, we saw (in 138) that the conjugate and the re
ciprocal of any quaternion have thus their angles and their 
axes the same; it follows, therefore, that the versor of the 
conjugate is always equal to the versor of the reciprocal; so 
that we are permitted to establish the following general for
mula, f

UKg = ui.

158. Again, because

it follows that the versor of the reciprocal of any quaternion is, 
at the same time, the reciprocal of the,versor; so that we may 
write,

• The unit-vector Ua, which we have recently proposed (156) to call the versor 
of the vector a, depends in like manner on the direction of that vector atone; which 
exclusive reference, in each of these two cases, to Direction, may serve as an addi
tional motive for employing, as wo have lately done, one common name, Versor, 
and one common characteristic, U, to assist in describing or denoting both tho Unit- 
Vector Ua iZseZ/ and the Quotient of two such Unit- Vectors, U7 = U/3: Ua ; all 

danger of confusion being siifflcientlj- guarded against (comp, the Note to Art. 156), 
by the difference of the two symbols, a and 5, employed to denote tho veefor'and the 
quaternion, which aro respectively the subjects of the two operations U; while those 
two operations agree in this essential point, that each serves to eliminate the quan
titative element, of absolute or relative length.

I Compare thc Note to Art. 138.
T
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U- = A; or U7.U-=1.
? Uy y

Hence, by the recent result (157), we "have also, generally, 
UKy = ,j^; or, TTy.UKy-l.

Also, because the versor Uy is always a radial quotient (151, 
152), it is (by 150) the conjugate of its own reciprocal; and 
therefore at the same time (comp. 145), the reciprocal of its 
own conjugate; ao that the product of two conjugate versors^ 
or what we have called (145, (11.)) common Norm, is 
always equal to positive unity; or in symbols (comp. 150),

NUy = Uy. KUy= 1. '
For the samg reason, the conjugate of the versor of any qua
ternion is equal to the reciprocal of that versor, or (l^y what 
has just been seen) to the versor of the reciprocal of that qua
ternion; and therefore also (by 157), to the versor of the con
jugate; so that we may write generally, as a summary of re
cent results, the formula;

each of these four symbols denoting a new versor, which has 
the same plane, and the same angle, as the old or given versor 
Uy,- but has an opposite axis, or an opposite direction of rota
tions so that, with respect to that given Versor, it may na
turally be called a KEVgRsoR.

159. As regards the versor itself, whether of a vector or of 
a quaternion, the definition (155) of Ua gives,***

Ua:a = + Ua, or = - Ua, according as a: > or < 0;
because (by 15) the scalar coefficient x preserves, in the first 
case, but reverses, in the second case, the direction of the vec
tor a ; whence also, by the definition (156) of Uy, we have 
generally (comp. 126, 143), *'

Ua:y = + Uy, or = - Uy, according as x > or < 4).
The werior of a scalar,' regarded as the of a quaternion 
(131, 139), is equal to positive or negative unity (comp. 147, 
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153), according as the scalar itself is positive or negative; or 
in symbols,

Ux = + 1, ot = - 1, according as a: > or < 0;
the plane and axis of each of these two unit scalars (147), con
sidered as versors (153), being (as we have already seen) inde
terminate, The versor of a null quaternion (141) must be re
garded as wholly arbitrary^ unless we happen to know a tow,* 
according to which the quaternion tends to zero, before actually 
reaching that limit; in which latter case, the plane, the axis, 
.and the angle of the versor^ UO may aZZ become determined, as 
limits deduced from that law. The versor of a right quotient 
(132), or of a right-angled quaternion (141), is always a right 
radial (147), or a right versor (153) ; and therefore is, as such, 
one of the square roots of negative unity (149), or one of the 
values of the symbol - 1; while (by 150) the axis and the 
index of such a versor coincide ; and in like manner its recipro
cal, its conjugate, and its opposite are all equal to each other.

160. It is evident that if a proposed quaternion q be already 
a versor (151), in the sense of being a radial (146), the ope
ration of taking its versor (156) produces no change; and in 
like manner that, if a given vector a be already an tinit-vector, 
it remains the same vector, when it is divided (155) by its own 
length; that isi in this case, by the number one. For example, 
we have assumed (128, 129), that the axiso  ̂every quaternion 
is oxi unit-vector; we may therefore write, generally, in the no
tation of 155, the equation,

U (Ax. 7) = Ax . q.

A second operation U leaves thus the result of the^?’sf opera
tion IT unchanged, whether the subject of such successive ope
rations be a line, or a quaternion; we have therefore the two

• Compare the Note to Art. 131.
+ When the zero Jn this symbol, UO, is considered as denoting a null vector (2), 

tho symbol itself denotes generally, by the foregoing principles, an indeterminate 
unit-vectori although the direction of this unit-vector may, in certain questions, be
come determined, as a h’mtt resulting from a law'
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'following general formulae, differing only in the symbols of 
that subject:

UUa = Ua; UUy = Ug;
whence, by abstracting (comp. 145) from the subject of the 
operation, we may write, briefly and symbolically,

U’ = UU = U.

161. Hence, with the help of 145, 158, 159, we easily,deduce 
the following (among other) transformations of tlie versor of a qua
ternion ;

1

= U J-=UK- = U’? = UKU i = UK = (UK)’?;
lS.q q q J5q
yjq^Xixq, if ioO; =-Ua:?, if a:<0.

We may also write, generally,

the parentheses being here unnecessary, because (as will soon be more 
fully seen) the ^mhol denotes one common versor, whether we 
interpret it as denoting the square of the versor, or as the versor of 
the square, of q. The present Calculus will be found to abound in 
General Transformations of this sort; which all (or nearly all), like 
the foregoing, depend ultimately on very simple geometrical concep
tions; but which, notwithstanding (or rather, perhaps, on account 
of) this extreme simplicitg of their origin, are often useful, as dements 
of a new kind oi Symbolical Language io. Geometry; and generally, 
as instruments of expression, in all those mathematical or physical 
researches to which the Calculus of Quaternions can be applied. It 
is, however, by no means necessary that a student of the subject, 
at the present stage, should make himself familiar with all the 
recent transformations of U?; although it may be well that he 
should satisfy himself of their correctness, in doing which the fol
lowing remarks will perhaps be found to assist. *

I

(I.) To give a geomelricat illiutration, which may also serve as a proof*o( the 
recent equation,

7;Kg = (Ug)2,
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we may employ Fig. 36, bis ; in which, by 145, (2.), we have
1 fOBV

Kj OA OB OB \OD } \ OA,J
(2.) As regards the equation, U(g®) = (Uj)*, we have only to conceive that the 

three lines oa, ob, oc, of Fig. 42, are cut (as in Fig. 42, bis) in 
three new points, a', b', o', by an unit~circle (pt by a circle with 
a radius equal to the unit of length), which is described about 
their common origin o as centre, and in their, common plane; for 
then if these three lines be called a, P, y, the three new lines oa', 
ob', oo' are (by 165) the three unit-vectors denoted by the sym
bols, Un, U/3, Uy; and we have the transformations (comp. 148,

(3.) As regards other recent transformations (161), although 
we have seen (135) that it is not necessary to invent any new or 
peculiar symbol, to represent the redproeal of a quaternion, yet 
if, for the sake of present convenience, and as a merely temporary 
notation, we write

E,.!.

employing thus, for a moment, the letter E as a cJiaracteristie of reciprocation, or 
of the operation of taking the reciprocal, we shall then have thC) symbolical equations 
(comp. 146, 158):

E»=K2 = 1; EK = KE; RU = UR = KU= UK;

but we have also (by 160), U’ = U; whence it easily follows that

U = EUR=EKU=EUK = KUE = KEU = KUK 
= UEK = UKE = UKUE = UKEU = (UK)» = &c.

(4.) The equation

U =Up or simply, Up = U/3,

expresses that the locus oi the point p Is the indefinite right line, at ray (comp. 132, 
(4.)), which is drawn from o in the direction of os,* but not in the opposite direc
tion ; because it is equivalent to

U^=l; or z£=Oj or p = x/J, a:>0.

(5.) On the other hand the equation,
U£ = -U^, orUp=-U/3,

a a r f'j
expresses (comp. 132, (5.)) that the locus of p is the opposite ray from o ; or that 
it is the indefinite prolongation of the revector po; because it may be transformed to

In 132, (4.), p. 119, OA and a ought to have been ob and b.
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IJ^ = -1; or = or p=xp, a:<0.

(6.) If (I, p, y denote (as in sub-art 2) the three lines oa, ob, oc of Fig. 42 (or 
of Fig. 42, Its), so that (by 149) we have the equation - = — j , then this other 

equation, =

ex.'pceixs generally that the locut of P is the sytlem of the ftoo last loci; or that it is 
the whole indefinite right line, beth ways prolonged, through the two points o and b 
(comp. 144, (2.)).

(7.) But if it happen that the line y, or oc, like oa' in Fig. 41 (or in Fig. 41, 
his), has the direction opposite to that of a, or of oa, so that the last equation takes 
the pariicularform,

then U - must bo (by 154) a right versor ; and reciprocally, every right versor, with 

a plane containing a, will be (by 153) a value satisfying the equation. In this case, 
therefijro, the locus of the point p is (as in 182, (1.), or in 144, (1.)) the plane 
through O, perpendicular to the line OA; and the recent equation itself^ if supposed 
to be satified by a real* vector p, may be put under either of these two earlier but 
equivalent forms:

P ’T

Section 9.— On Vector-Arcs, and Vector-Angles, considered 
as Representatives of Versors of Quaternions ; and on the 
Multiplication and Division of any one such Versor by 
another.

<»
162. Since every unit-vector oa (129), drawn from the 

origin o, terminates in some point A on the surface of what we 
have called the unit-sphere (128), that term A (1) may be 
considered as a Representative Point, of which the position on 
that surface determines, and may be said to represent, the 
direction of the line oa in space; or of that line multiplied 
(12, 17) by any positive scalar. And then the QuaternlOn 
which is the quotient (112) of any two such unit-vectors, and 
which is in one view a Radial (146), and in another view a 
Versor (151)*, may be said to have the arc of a great circle, 
AB, upon the unit sphere, which connects the terms of the two

* Compare 149, (2.); also the second Note to the same Article j and the Notes 

to page 90.
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vectors, for its Representative Arc. We may also call this 
arc a Vector Arc, on account of its having a definite direc
tion (comp. Art. 1), such as is indicated (for example) by a 
curved arrow in Fig. 39; and as being thus contrasted with 
its own opposite, or with what may be called by analogy the 
Revector Arc ba (comp, again 1) : this latter arc represent
ing, on the present plan, at once the reciprocal (134), and the 
conjugate (137), of the former versor; because it represents 
the corresponding Reversor (158).

163. This mode of representation, of versors of quaternions 
by vector arcs, would obviously be very imperfect, unless 
equals were to be represented by equals. We shall therefore 
define, as it is otherwise natural to do, d;hat a vector aro, ab, 
upon the unit sphere, is equal to every other vector arc cn 
which can be derived from it, by simply causing (or conceiv
ing) it to slide* in its own great circle, without any change of 
length, or reversal of direction.. In fact, the two isosceles and 
plane triangles aob, cod, which have the origin o for their 
common vector, and rest upon the chords of these two arcs as 
bases, are thus complanar, similar, and similarly turned; so 
that (by 117, 118) we may here write,

. _ OB on
A AOB oc cod, — = — ;OA oc •

the condition of the equality of the quotients (that is, here, of 
the versors}, represented by the two,arc5, being thus satisfied. 
We shall sometimes denote this sort of equality of tioo vector 
arcs, AB and cd, by the formula,

« AB = » CD ; ■'

and then it is clear (comp. 125, and the ear
lier Art. 3) that we shall also have, by what 
may be called inversion and alternation, 
these two other formulae of arcual equality,

BA = A DC ; « AC = A BD.

(Compare the annexed Figure 35, bis.}

• Some aid to the conception may here be derived from the inspection of Fig 
34; in which two equal angles are supposed to be traced on the surface of one com-
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• 164. Conversely, unequal versors ought to be represented 
(on the present plan) by unequal vector arcs; and accordingly, 
we purpose to regard any two such arcs, as being, for the pre
sent purpose, unequal (comp. 2), even when they agree in 
quantity, or contain the same number of degrees, provided that 
they differ in direction: which may happen in either of two 
principal ways, as follows. For, 1st,* they may be opposite 
arcs of one great circle; as, for example, a vector aro ab, and 
the corresponding revector arc ba ; and so may represent (162) 
a versor, ob : oa, and the corresponding revqrsor, oa: ob, re
spectively. Or, Ilnd, the two arcs rnay*belong to different 
great circles, like ab and bc in Fig. 43 ; in which latter case, 
they represent two radial quotients 
(146) in different planes ; or (comp. 
119) two diplanar versors, ob:oa, 
and oc: ob ; but it has been shown 
generally (122), that diplanar qua
ternions are’ always unequal: we 
consider therefore, here again the 
arcs, AB and bc, themselves, to be 
(as has been said) unequal vectors.

165. In this manner, then, we may be led (comp. 122) to 
regard the conception of a plane, or of the position of a great 
circle on the unit sphere, as entering, essentially, in general,* 
into the conception of a vector-arc, considered as the representa
tive of a versor (162). But even without expressly referring' 
to versors, we may see that if, in Fig. 43, we suppose that b 
is the middle point of an arc aa' of a great circle, so that in a 
recent notation (163) we may establish the arcual equation,

r. = /'-ba', 
we ought then (comp. 105) not to write also, 

''*AB = n BC ;
mon desk. Or ths four lines OA, OB, oc, OD, of Fig. 35, may now be conceived to 
be equally long'^m to ba cut by a circle witb o for centre, as in the modification of 
that Figure, which is given in Article 163, a little lower down. •

* We say, tn general; for it will soon be seen that there is a sense in which all 
great temicircles, considered as vector arcs, may be said to be equal to each other.
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because thc two co-initial arcs^ ba' and bc, which terminate 
differently^ must be considered (comp. 2) to be, as Vector-arcs, 
unequal. On the other hand, if we should refuse to admit (as 
in 163) that any two complanar arcs, if equally long, and simi
larly (not oppositely) directed, like ab and co in the recent 
Fig. 35, bis, are equal vectors, we could not usefully speak of 
equality between vector-arcs as existing under any circum
stances. We are then thus led again to include, generally, the 
conception of a plane, or of one great circle as distinguished 
from another, as an element in the conception of a Vector-A rc. 
And hence an equation between hco such arcs must in general 
be conceived to include two relations of co-arcuality. For 
example, the equation ab = « cn, of Art. 163, includes'gene- 
rally, as apart of its signification, the assertion (comp. 123) 
that the four points a, b, c, d belong to one common great cir
cle ai the unit-sphere; or that each of the/wo points, cand D, 
is co-arcizaZ with the Zioo other points, a and b.

166. There is, however, a remarkable case of exception, in which 
fwo vector arcs may be said to be equal, although situated in diffe
rent planes; namely, when they are both great semicircles. In fact, 
upon the present plan, every great semicircle, aa', considered as a 
vector arc, represents an inversor (153); or it represents negative 
unity (oa' : oa = -a : a =—1), considered as one limit ot a versor; 
but we have seen (159) that such a versor has in general an indeter
minate plane, Accordingly, whereas the initial andfnal points, or 
(comp. 1) the origin k and the term a vector arc ab, are in ge
neral sufficient to determine the plane of that arc, considered as the 
shortest or the most direct path (comp. 112, 128) from the one point 
to the other on the sphere; in the particular case when one of the 
two given points is diametrically opposite to the other, as A' to A, 
the direction of this path becomes, on the contrary, indeterminate. 
If then we only attend to the effect produced, in the way of change 
of position of a point, by a conceived vection (or motion) upon the 
sphere, wc are permitted to say that all great semicircles are equal 
vector arcs; each serving simply, in the present view, to transport a 
point from one position to the opposite; and thereby to reverse (like 
the factor -1, of which it is here the representative) the direction of 
the radius which is drawn to that point of the unit sphere.

u
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(I.) Tho equation,
r>AA* = nBB*,

In wliich it is hero supposed that a' is opposite to A, and b’ to n, satisfies evidently 
tho general conditions of co-arcuality (165); because the four points aba'd' are all 
on one great circle. It is evident that the same arcual equation admits (as in 163) 
of inversion and alternation s so that

n a'a = n d'b, and o AB = « a'b’.
(2.) We may also say (comp. 2) that all null arcs are egual, as producing no 

effect on tho position of a point upon the sphere; and thus may write generally,
n AA = n BB = 0, 

with the alternate equation, or identity, n ab = n ab.
(3.) Every such nnZZ vector arc aa is a repreeentotioe, on tho present plan, of thc 

other unit scalar, namely positive unity, considered as anothlfr limit oia versor (158); 
and its plane is again indeterminate (159), unless some lau) he given, according to 
which the arcual vection may be conceived to beyin, irora a given point A, to an in
definitely near point b upon the sphere.

167. The principal use Vector Arcs, in the present 
theory, is to. assist in representing, anti (so to speak) in con
structing, by means of a Spherical Triangle, the Multiplica
tion and Division of any two Diplanar Versors (comp. 119, 
164). In fact, any two such versors of quaternions (156), 
considered as radial quotients (152), can easily be reduced (by 
the general process of Art. 120) to thc forms,

7 = (3 : a = OB :.OA, y'= 7 : )3= oc : on,
where A, b, c are corners of such a triangle on the unit sphere; 
and then (by 107), the former quotient multiplied by the lat
ter will give for product:

5' = 7: o = oc 1 OA.

If then (on the plan of Art. 1) any two successive arcs, as ab 
and BC in Fig. 43, be called (in relation to each other) vector 
and provector; while that third arc ac, which is drawn from 
the initial point of the first to the final point of the second, 
shall be called (on the same plan) the transvector : we may now 
say that in the multiplication of any one versor (of a quater
nion) by any other, if the multiplicand* q be represented (162) 
by a vector-arc ab, and if the multiplier q be in like manner

* Here, as in 107, and elsewhere, we write the symbol of the multiplier towards 
the left-hand, and that of the multiplicand towards the right.
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rejzrcsented by a provector-arc Be, wliich mode of representa
tion is always possible, by wbat has been already shown, then 
the product q'q, or j'y, is represented, at the same time, by 
the traiisvector-arc corresponding.

168. One of the most remarkable consequences of this cozi- 
struction vf the multiplication of versors is the following : that 
the value of the product of two diplanar versors (164) depends 
upon the order of the factors ; or that q'q and j'j’' are unequal, 
unless / be complanar (119) with q. For let aa' and cc' be 
any two arcs of great circles, in different planes, bisecting each 
other in the poin^ b, as Fig. 43 is designed to suggest; so 
that we have the two arcual equations (163),

i
" AB = " ba', and '' bc = « c'b ;

then one or other of the two following alternatives will hold 
good. Either, Ist, the two mutually bisecting arcs will both 

' be semicircles, in which case the two new arcs, ac and c'a', will 
indeed both belong to one great circle, namely to that of which 
b is a poZe, but will have opposite directions therein; because, 
in this case, a' and c' will be diametrically opposite to a and c, 
and therefore (by 166, (1.) ) the equation

AC = « a'c',
but not the equation

AC = « c'a',
will be satisfied. Or, Ilnd, the arcs aa' and cc', which are 
supposed to bisect each other in b, will not both be semicircles, 
even if one of them happen to be such; and in this case, the 
arcs AC, c'a' will belong to two distinct great circles, so that they 
will be diplanar, and therefore unequal, when considered as 
vectors. (Compare the Ist and Ilnd cases of Art. 164.) In 
each case, therefore, ac and c'a' are Unequal vector arcs; but the 
former has been seen (167) to represent the product q'q; and 
tho latter represents, in like manner, the other product, qq', of 
the same two versors taken in the opposite order, because it is 
the new transvector arc, when c'b (= bc) is treated as the new 
vector arc, and ba' (= ab) as the new pfrovector arc, as is indi
cated by the curved arrows in Fig. 43. The two products,
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1 q’g and g'y', are therefore f/temseZves as above asserted,
under the supposed condition of diplanarity.

169. On the other hand, when the two factors, q and q', 
Hxe. complanar versors, it is easy to prove, in several different 
ways, that their products, q'q and qq', are equal, as in algebra. 
Thus w'e may conceive that the arc Cc', in Fig. 43, is made to 
turn round its middle point b, until the spherical angle cba' 
vanishes; and then the two neio transvector-arcs, \c and c'a', 
will evidently become not only complanar but equal, in the 
sense of Art. 163, as being still equally long, and being now 
similarly directed. Or, in Fig. 35, bis, oi the last cited Arti
cle, we may conceive a point e, bisecting the arc bc, and there
fore also the arc ad, which is commedial .therewith (comp. 
Art. 2, and the second Figure 3 of that Article); and then, 
if we represent the one versor q by either of the two equal 
arcs, AE, ED, we may at the same time represent the other, 
versor f by either of the two other equal arcs, EC, be J so that 
the one product, qq, will be represented by the arc ac, and 
the other product, qtf, by the equal arc bd. Or, without re
ference to vector arcs, we may suppose that the X.xio factors 
are.

q = (3: a = OB : oa, g' ■= 7 : a = oc : oa,

OA, OB, oc being any three complanar and equally long right 
lines (see again Fig. 35, bis); for-thus we have only to deter
mine a fourth line, 8 or on, of the same length, and in the same 
plane, which shall satisfy the equation 8:-y = /3;o (117), and 
therefore also (by 125) the alternate equation, o : = y: a',
and it will then immediately follow* (by 107), that

paa ya

W e may therefore infer, for any two versors oi quaternions, g 
and g', thc two following reciprocal relations :

• It 18 evident that, in this last process of reasoning, we make no use of tho sup
posed equality of lengths of the four lines compared; so that we might prove, in ex
actly the same way, that qq~qq' if q' 11| ? (123), without assuming that these two 
complanar factors, or quaternions, q and j', are rersora.
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1. = if q 111 q (123);
II. .. if q'q = qq'i. then Hl q (168); 

convertibility 6ffactors (as regards their places in the product'} 
being thus at once a consequence and a proof of complanarity.

170. In the Ist case of Art. 168, the factors q and q' both 
right versors (153); and because we have seen that then their two 
products, q’q and are versors represented by equally long but op
positely directed arcs of one great circle, as in the Ist case of 164, it 
follows (<;omp. 162), that these two products are at once reciprocal 
(134), and conjugate (137), to each other; or that they are related 
as versor and reversor (158). We may therefore write, generally,

I. . . qq' = ^q'q, -and II. ..

if q and </ be any jioo right versors; because the multiplication of 
any two such versors, in two opposite orders, may always be repre
sented or constructed by a Figure such as that lately numbered 
43, in which the bisecting arcs aa' and co' are semicircles. The Ilnd 
formula may also be thus written (comp. 135, 154):

III. .. if f = - 1, and g'’ =- 1, then ^q . ?/ = + 1;
and under this form it. evidently agrees with ordinary algebra, be
cause it expresses that, under the supposed conditions,

q'q.qq'=^^^.q^-,
but it will be found that this last equation is not an identity, in the 
general theory of quaternions,

171. If the two bisecting semicircles cross each other at right 
angles, the conjugate products are represented by two quadrants, 
oppositely turned, of one great circle. It follows that if two right 
versors, in two mutually rectangular planes, be multiplied together in two 
opposite orders, the two resulting products will be two opposite right 
versors, in a third plane, rectangular to the two former; or in symbols, 
that

if g’ = - 1, /’ = -!, and Ax. q 4. Ax. q,

= - 1, 2'? = - 2?'; 

Ax. q'q 4~ Ax. q, A.x. q'q j. Ax. f.
In this case, therefore, we have what would be in algebra a paradox, 
namely tlie equation.

then

and

(*/??=-?'’-s’.
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if q and q' be «n^ two right versors, in two rectangular planes; but we 
see that this result is not more paradoxical, in appearance, than the 
equation

150 ELEMENTS OF QOATERNION8.

2'£ = -?y.
which exists, under the same conditions. And when we come to ex
amine what, in the last analysis, may be said to be the meaning of this 
last equation, we find it to be simply this: that any two quadrarAal or 
right rotations, in planes perpendicular to each other, compound them
selves into a third right rotation, as their resultant, in a plane perpendi
cular to each of them: and that this third or resultant rotation, has 
one or other of two opposite directions, according to the order in which 
the two component rotations are taken, so that one shall be successive 
to the other.

172. We propose to return, in the next Section, to the
consideration of such a System of Right Versors, as that which 
we have here briefly touched upon: but desire at present to 
remark (comp. 167) that a spherical abc may serve to
construct, by means of representative arcs (162), not only‘the 
multiplication, but also the division, of any one of two diplanar 
versors (or radial quotients) by the other. In fact, we have 
only to conceive (comp. Fig. 43) that the vector arc ab repre
sents a given divisor, say q, or : a, and that the transvectgr 
arc AC (167) represents a given dividend, suppose q", or y ; a; 
for then the provector arc bc (comp, again 167) will represent, 
on the same plan, the quotient of these two versors, namely 
f ’.q, or y: j3 (106), or the versor lately called <f', since we 
have generally, by 106, 107, 120, for quaternions, as in alge
bra, the two identities; .

173. It is however to be observed that, for reasons already as
signed, we must not employ, for diplanar versors, such an equation 
as q. {q": q) = q"; because we have found (168) that, for such ver
sors, the ordinary algebraic identity, qq' = q'q, ceases to be true. In 
fact by 169, we may now establish the two converse formulte:

I. .. 9(3":«)=2". if 2" III 2 (123);
II. - • it q (q''‘.q) = q"f then 2" HI 2-

.Accordingly, in Fig. 43, if 2» f be still represented by the 
arcs AB, BC, AC, the product q If': q}, or qq', is not represented by
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AC, but by the different arc c'a' (168), which as a vector arc has been 
seen to be aneywa? thereto: although it is true that these two last 
arcs, AC and c'a', are always equally long, and therefore subtend 
equed angles at the centre o of the unit sphere; so that we may write, 
generally, for any two versors (or indeed for any two quaternions),* 
q and q", the formula,

174. Another mode oi Reff-esenlation of Versors, or rather hco 
such new modes, although intimately connected with each other, 
may be briefly noticed here.

Ist. AVe may consider the angle aob, at the centre 0 of the unit
sphere, when conceived to have not only a definite quantity, but also 
a determined plane (110), and a given direction therein (as indicated 
by one of the curved arrows in Fig. 39, or by the arrow in Fig. 33), 
as being what may be called by analogy a Vector-Angle; and may 
say that it represents, or that it is the Representative Angle of, the 
Versor ob : oa, where oa, ob are radii of the unit-sphere.

Ilnd. Or we may replace this rectilinear angle aob at the centre, 
by the equal Spherical Angle ac'b, at what may be 
called the Positive Pole of the representative arc ab; 
so that c'a and c'b are quadrants; and the rotation, 
at this pole c', from the first of these two quadrants 
to the second (as seen from a point outside the 
sphere), has the direction which has been selected 
(111, 127) for the positive one, as indicated in the 
annexed Figure 44: and then we may consider this 
spherical angle as a new Angular Representative of the same versor q, 
or OB : OA, as before.

175. Conceive now that after employing a first spherical trian
gle ABC, to construct (as in 167) the multiplication of any one given 
versor q, by any other given versor f, 'fie form a second or polar 
triangle, of which the corners a', b', c' shall be respectively (in the 
sense just stated) tioo positive poles of the three successive sides, BC, 
CA, AB, of the former triangle; and that then we pass to a third tri
angle a'b"c', as part of the same lune b'b" with the second, by tak
ing for b" the point diametrically opposite to b’ ; so that b" shall be

• It will soon ba seen that several of the formul® of the present Section, respect
ing the multiplication and division of versors, considered as radial quotients (151), 
require little or no modification, in the passage to the corresponding operations on 
guatemions, considered as general quotients of vectors (112).
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the negative pole of the arc ca, or theposiZfi’e pole of what was lately 
called (167) the transvector-are ac: also let 
c" be, in like manner, the point opposite 
to c' on the unit sphere. Then we may not 
only write (comp. 129),
Ax. q = oc', kx. = Oi!, k-x. q'q = on", 
but shall also have the equations, 
Zg' = B"c'A', Lq'=c'i.'^", Lq'q = c!'3"i'‘, ‘ 
these three spherical angles, namely the hoo 
hose-angles at a' and a', and the external 
vertical angle at b", of the new or third 
triangle a'b"o', will therefore represent, ro- 
spectively, on the plan of 174, IL, the mul
tiplicand, q, the multiplier, ([, and the pro
duct, q'q. (Compare the annexed Figure 45.)

176. Without expressly referring to the former triangle abc, 
we can connect this last construction of multiplication of versors (175) 
with the general formula (107), as follows.

Let n and /3 be now conceived to be 
sphere at c', perpendicular respectively to 
the two arcs c'n" and c'a', and drawn to
wards the same sides of those arcs as the 
points a' and b' respectively; and let two 
other unit-tangents, equal to these, and 
denoted by the same letters, be drawn (as 
in the annexed Figure 45, lis) at the poin ts 
b" and a', so as to be normal there to the 
same arcs c'b" and c'a', and to Jail towards 
the same sides of them as before. Let also 
two other unit-tangents, equal to each b' 
other, and each denoted by 7, be drawn at 
the two last points b" and a', so as to be both perpendicular to the 
arc ifo", and to fall towards the same side of it as the point c'. Then 
(comp. 174, II.) the two quotients, § : a and 7 : y3, will be equal to the 
iwowersors, q and g', which were lately repi'esented (in Fig. 45) by the

* By an unit tangent is here meant simply an unit line (or unit oector, 129) so 
drawn as to be tangential to the unit-aphcre^ and to have its origin^ or its initial 
point (l)i on the eurface of that sphere, and not (ns we have usually supposed) at 
the centre thereof.

two unit-tangents* to the
n

Fig. 45, bis.
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tuio base angles, at </ and a', of the spherical triangle a'b"c' ; the pro~ 
duct, q'q, of these two versors, is therefore (by 107) equal to the third 
quotient, 7 : a;*and consequently it is represented, as before, by the 
exteimal vertical, angle c"b"a' of the same triangle, which is evidently 
equal in quantity to the angle of this third quotient, and has the same 
axis on", and the same direction of rotation, as the arrows in Fig. 43, 
bis, Tosxy assist to show.

177. In each of the two last Figures, the internal vertical angle 
at b" is thus equal to the Supplement, v-L fq, of the angle of the 
product; and it is important to observe that the corresponding ro
tation at the vertex 3", from the side b"a' fo the side or (as we 
may briefly express it) from the point fJ to the point c', is positive; a 
result which is easily seen to be a general one, by the reasoning of 
the foregoing Article.* We may then .infer, generally, that when 
the multiplication of any two versors is constructed by a spherical trian
gle, of which the two base angles represent (as in the two last Articles) 
the factors, while the external vertical angle represents the product, 
then the rotation round the axis (ob") of that product q'q, from the 
axis (oa') of the multiplier q', to the axis (oc') of the multiplicand q, is 
positive: whence It follows that the rotation round the axis Ax. q' 
oi the multiplier, from the axis Ax. q of the multiplicand, to the 
axis Ax. q'q of the product, is a&o positive. Or, to .express the 
same thing more fully, since the only rotations hitherto considered 
have beeuTjfawe ones (as in 128, &c.), we may say that if the two 
latter axes be projected on a plane perpendicular to the former, so as 
still to have a common origin o, then the rotation round Ax. q', 
from the projection of Ax. q to the projection of Ax. q'q, will be di
rected (with our conventions) towards the right hand.

178. We have therefore thus a new mode of geometrically 
exhibiting the inequality of the tioo products, q'q andyy', of two 
diplanar versors (168), when taken as factors in two different 
orders. For this purpose, let •

Ax.y=op, Ax.y'=oQ, Ax.y'y = OR;
and prolong to some point s the arc PR of a great circle on the 
unit sphere. Then, for the spherical triangle pqr, by prin-

* If a person be supposed to stand on the sphere at n", and to looh towards the 
arc a'c’, it would appear to him to have a right-handed direction, which is the one 
here adopted as po.sitive (127).

X

    
 



154 ELEMENTS OF QUATERNIONS. [book II. 

ciples lately established, we shall have (comp. 175) the follow- 
ins: values of the two internal base angles at p and Q, and of 
the external vertical angle at r :

RPQ = Z. J ; PQR = Z / ; SRQ i= L q<l;
and the rotation at Q, from the side QP to the side QR will be 
right-handed. Let fall an arcual perpendi
cular, RT, from the vertex r on the base pq, 
and prolong this perpendicular to r', in such 
a manner as to have

A RT = « tr' ;
also prolong pr' to some point s'. We sliall 
then have a new triangle pqr', which will, 
be a sort of reflexion (comp. 138) of the old 
one with respect to their common base PQ; 
and this new triangle will serve to construct 
the neio product, qq'. For the rotation at P 
from PQ to pr' will be right-handed, as it ought to' be ; and 
we shall have the equations,
qpb' = Z5;* r'qp = Z5''; QR's' = Zy7'; or'= Ax.yg''; 
so that the new external and spherical angle, Qr's', will repre
sent the new versor, qf, as the old angle SRQ represented the 
old versor, qq, obtained from a different order of the factors. 
And althougii, no doubt, these two angles, at r and r', are 
always equal in quantity, so that we may establish (comp. 173) 
the general formida,

yet as vector angles (174), and therefore as representatives of 
versors, they must be considered to be unequal: because they 
have different planes, namely*, the tangent planes to the sphere 
at the two vertices r and r'; or the two planes respectively 
parallel to these, which are drawn through the centre o.

179. Division of Versors (comp. 172) can be constructed by 
means of Representative Angles (174), as well as by representative arcs 
(162). Thus to divide q" by q, or rather to represent such .division 
geometrically, on a plan entirely similar to that last employed for
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multiplication, we have only to determine the two points p and n, 
in Fig. 46, by the two conditions,

op = Ax.5', OR = Ax. q",
and then to find a third point ct by the two angular equations,

RPQ = L q, ORP = ir-f q",
the rotation round p from pr towards pq being positive; after which 
we shall have,

Ax. (?" ; j) = OQ; A (q" : j) = pqr.

(1.) Instead of conceiving, in Fig. 46, that the dotted line rtr', which connects 
the vertices of the two triangles, with p<j for their common base (178), is an arc of 
a great circle, perpendicularly bisected by that base, we may imagine it to be an arc 
of a email circle, described with the point P for its positive pole (comp. 174, II.). 
And then we may say that tbepossaye (comp. 173)/rom the versor 9", or 9'9, to 
the unegual versor 9 (9" : 9), or 99', is geometrically performed by a Conical Rota
tion of the Axis Ax. 9", round the axis A.S.. q, through an angle — 2Lq, without 
any (quantitative') change of the angle L ; so that we have, as before, the general 
formula (comp, again 173),

^9(9"!9) = Z.9"-
(2.) Or if we( prefer to employ the construction of multiplication and division by 

representative arcs, which Fig. 43 was designed to illustrate, and conceive that a 
new point c" is determined in that Figure by the condition « a'c" = « o'a', we may 
then say that in the passage from the versor 9", which is represented by ac, to tho 
versor q (9": q), represented by o'a' or by a'c", the representative arc of q" is made 
to move, without change of length, sens to preserve a constant inclination* to the 
representative are AB of q, while its initial point describes the double of that arc AB, 
in passing from A to A*.

(3.) It maybe seen, by these few Examples, that if, even independently of some 
new characteristics of operation, such as K and U, new combinations of old symbols, 
such as q (q": 9), occur in the present Calculus, which are not wanted in Algebra, 
they admit for the most part of geometrical interpretations, of an easy and interest
ing kind; and in fact represent conceptions, which cannot well be dispensed with, 
and which it is useful to be able to express, with so much simplicity and conciseness. 
(Compare the remarks in Art. 161 j and the sub-articles to 132, 145.)

180. In connexion with the construction indicated by the 
two Figures 45, it may be here remarked, that if abc be any 
spherical triangle, and if a', b', c' be (as in 175) the positive 
poles of its three stzccessiue sides, bc, ca, ab, then the rotation 
(comp. 177, 179) round a' from to c', or that round b' from

* In a manner analogous to the motion of the equator on the ecliptic, by luni- 
Solar precession, in astronomy.
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c' to a', &c., Ispusiftw. The easiest way, perhaps, of seeing 
the truth of this assertion, is to conceive that if the rotation 
round a from n to c be not already positive, we make it such, 
by passing to the diametrically opposite triangle on the sphere, 
which will not change the poles h, n', c'. Assuming then that 
these poles are thus the near ones to the corresponding corners 
of the given triangle, we arrive without any difficulty at the 
conclusion stated above: which has been virtually employed 
in our construction of multiplication (and division) of versors, 
by means of Representative A ngles (175, 176); and which may 
be otherwise justified (as before), by the consideration of the 
unit-tangents of Fig. 45, Us.

(1.) Let then a, p, y be any three given unit vectors, such that the rotation 
round the first, from the second to the third, positive (in tho sense of Art. 177); 
and let a’, /3', y' be three other unit vectors, derived from these by the equations, 

a'=Ax. (y:/3), 3'=Ax.(a:y), 7’= Ax.(/3; a) ;
then the rotation round a', from (S' to 7', will be positive also; and we shall have 
the converse forronlse,

a = Ax. (7': |3'), P = Ax. (a': y'}, y = As..(j3'-. a ).
(2.) If the rotation round a from P to y were given to he neyatwe, a, P', y’ 

being stiH deduced from those three vectors by the same three equations as before, 
then the eigne of a, p, y would all require to be changed, in the three last (or reci
procal) formulas; but the rotation round a, from (S’ to 7', would etiH be positive.

(3.) Before closing.this Section, it may be briefly noticed, that it is sometimes 
convenient, from motives of analogy (comp. Art. 6), to speak of the Transvector- 
Are (167), which has been seen to represent a product of two versors, as being the 
Arcual Sum of the two successive vector-arcs, which represent (on the same plan) 
the factors; Provector being still said to be added to Vector: but the Order of such 
Addition of Diptanar Arcs being not now indifferent (168), as the corresponding 
order had been early found (in 7) to be, when the vectors to be added were right 
lines.

• (4.) We may also speak occasionally, by an extension of the same analogy, of
the External Vertical Angle of a spherical triangle, as being the Spherical Sum of 
the two Base Angles of that triangle, taken jtp a suitable order of summation (comp. 
Fig. 46); the Angle which represents (174) the Multiplier being then said to bo 
added (as a sort of Angular Provector') to that other Vector-Angle which represents 
the Multiplicand; whilst what is here called tlie sum of these two angles (and is, 
with respect to them, a species of Transvector-Angle) represents, as has been proved, 
the Product.

(6.) This conception of angular transvection becomes perhaps a little more clear, 
when (on the plan of 174, 1.) we assume tho centre o as the common vertex of three 
angles aob, boo, aoc, situated generally in three different planes. For then we may
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conceive a revolcinif radiiu to be either carried by two ruccettive angular moiiont, 
from OA to OB, and thence to oc; or to be transported immediately, by one such 
motion, from they?«Z to the third position.

(6.) Finally, as regards the construction indicated by Fig. 45, bis, in -which ton
leaf* instead of radii vteto employed, it may be -well to remark distinctly here, that 
A'n"c', in that Figure, may be any given spherical triangle, for -which the rotation 
round b" from a* to c' is positive (177); and that then, if the two factors, q and 9', 
be defined to be the two versors, oi which tho internal angles at o' and a’ are (in the 
sense of 174, II.) the representatives, the reasonings of Art. 176 will prove, without 
necessarily referring, even in thought, to any other triangle (such as abc), that the 
external angle at b" is (in the same sense) the representative of the product, q'q, as 
before.

Section 10.— On a System of Three Right Versors, in Three 
Rectangular Planes; and on the Laws of the Symbols,

181. Suppose that oi, oj, ok are any three given and co
initial but rectangular unit-lines, the rotation round the first 
from the second to the third being positive; and let of, oj', 
ok' be the three unit-vectors respectively opposite to these, so 
that

f"A

of = -oi, OJ'=-OJ,' ok'=-ok.
Let the three new symbols i, j, k denote a system (comp. 172) 
of three right versors, in three mutually rectangular planes, 
with the three given lines for .their.respective axes; so that
Ax.t = oi, Ax.j=o3, Ax. A: = OK, 

and
i = ok:oj, y = oi:oK, A=oj;oi, 

as Figure 47 may serve to illustrate. 
We shall then have these other expres
sions for the same three versors:

I = oj': ok = ok': oj' = oj : ok'; 
j= ok': oi = oi' : ok'= ok: of ; 
A = of ; oj = oj' : of = oi : oj';

while the three respectively opposite versors may be thus ex
pressed :

— t = OJ : OK = ok' : oj = oj' : ok' = ok : oj' ; 
-j = OK: OI = of : ok = or' : of = oi : ok' ;
- h = OI : oj = oj' : 01 « of ; oj' = oj : of.
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And from the comparison of these different expressions seve
ral important symbolical consequences follow, which it will be 
worth while to enunciate separately here, although some of 
them are virtually-included in the results of former Sections.

182. In the first place, since
= (oy: ok) . (ok : oj) = oj' : oj, &c., 

we deduce (comp. 148) the following equal values for thc 
squares of the new symbols:

/=-l; A’ = -l;
as might indeed have been at once inferred (154), frbra thc 
circumstance that the three radial quotients (146), denoted here 
by 1, j, k, are all right versors (181).

In the second place, since
ij = (oj: ok') . (cis' : oi) = OJ r oi, &c., 

we have the following values for the products of the same three 
symbols, or versors, when taken two by two, and in a certain 
order of succession (comp. 168, 171) ;

IL . . ij = k; jk = iki=j.
But in the third place (comp, again 171), since

j.i=(oi : ok) . (ok : oj) = oi : oj, &c.,
we have these other and contrasted formulas, for the binary 
products of the same three right versors, when taken' as fac
tors with an opposite order:

III. . hj--i', =

Hence, while the square of each of the three right versors, de
noted by these three new symbols, ijk, is equal (154) to nega
tive unity, the product of any two of them is 
equal either to the third itself, or to the oppo
site (171) of that third versor, "according as 
the multiplier precedes or follows the multipli
cand, in the cyclical succession,

if ji h, i, j, • . .
which the annexed Figure 47, bis, may give some help towards 
remembering.
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(1.) To connect such multiplications of«, j, k with tho theory of representative 
arcs (1C2), and of representative angles (174), we may regard any one of the four 
qnadrantal arcs, JK, Kj', j'k', k'j, in Fig. 47, or any one of the ioac spherical right 
angles, jik, kij', s'ik', k'ij, which those arcs 'subtend at their common pole I, as re- 
presenting the versor i; and similarly for j and with the,introduction of the point 
1' opposite to I, which is to be conceived as being at tho back of the Figure.

(2.) The squaring of f, or the equation = -1, comes thus to be geometrically 
constructed by tho doubling (comp. Arts. 148, 154, and Figs. 41, 42) of an arc, or of 
nu angle. Thus, we may conceive the quadrant s.3‘ to be added to the equal arc jK, ■ 
their sum being the great semicircle jj', which (by 166) represents an fncersor (153), 
or negative unity considered as a factor. Or we may add the right angle Tils' to the 
equal angle JIK, and SO bbtain a rotation through two right angles at the pole i, or 
at the centre o; which rbtation is equivalent (comp. 154, 174) to an inversion of 
direction, or to a passage from the radius oj, to the opposite radius oj'.

(8.) The multiplication of j by i, or the equation i/ = ft, may in like manner 
be arcually constructed, by the addition of k'j, as a provector-arc (167), to ik' as 
a vector-arc (IGi), giving ij, which is a representative of ft, as the transvector-arc, 
or arcual-sum (180, (3.)). Or the same multiplication may be angularly con
structed, with the help of the spherical triangle IJK ; in which the base-angles at I 
and J represent respectively the multiplier, i, and the multiplicand, j, the rotation 
round i from J to k being positive; while their spherical sum (180, (4.)), or the ex
ternal vertical angle at K (comp. 175, 176), represents the same product, ft, as ‘ 
before.

(4.) The contrasted multiplication of i by j, or ofj into* i, may in like manner 
be constructed, or geometrically represented, either by the addition of the arc kj, as 
a new provector, to the arc JK as a now vector, which new process gives Ji (instead 
of ij) as the new transvector ; or with the aid of the new triangle is^ (comp. Figs. 
46, 47), in which the rotation round l from J to the new vertex k' is negative, so 
that the angle at i represents now the multiplicand, and the resulting angle at the 
new pole k’ represents tho new and opposite product, ji = — ft.

/ •183. Since we have thus ji = -ij we had q'q == - qq' in 
171), we see that the laws of combination of the new symbols, 
i,j, h, are not in all respects the same as the corresponding 
laws in algebra ; since the Commutative Property of Multipli
cation, or the convertibility (169)' of the places of \\iQ factors 
without change of value of the product, does not here hold 
good; V’hich arises (168) from the circumstance, that the 
factors to be combined are here diplanar versors (181). It is 
therefore important to observe, that there is a respect in which

• A multiplicand is said to be multiplied by the multiplier; while, on tlie other 
hand, a multiplier is said to be multiplied into the multiplicand; a distinction of this 
sort between the two factors being necessary, as we have seen, for quaternions, 
although it is not needed for algebra.
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the Igws of ii ji k agree with usual and algebraic laws: namely, 
in Associative Property of Multiplication; or in the pro
perty that the new symbols always obey the associative for~ 

^ula (comp. 9),
t.tcX = IK.\,

whichever of them may be substituted for t, for k, and for A; 
in virtue of .which equality of values we may omit the point, in 
any such symbol of a ternary product (whether of equal or of 

. unequal factors), and write it simply as tgA- In particular • 
we have thus,

i.jk = i.i = = - 1; ij.k^k.k = k^=‘- I
or briefly,

ijk = -1.
We may, therefore, by 182, establish the following important 
Formttla :

= = ; (A)
to which we shall occasionally refer, as to “ Formula A,” and 
which we shall find to contain (virtually) all the laws of the 
symbols ijki and therefore to be a sufficient symbolical basis 
for the whole Calculus of Quaternions :* because it will be 
shown that every quaternion can be reduced to the duadrino- 
mial Formi

q= w + ix-i-jg-v kz,
where w, x, y, z compose a system of four scalarSi while i, j, k 
are the same three right versors as above.

(1.) A direct proof of the equation, ijk = — 1, may be derived from the definitions 
of the symbols in Art. 181. In fact, we have only to remember that those defini
tions were seen to give.

• This formula (A) was accordingly made the haxit of that Calculus in the first 
communication on the sdbject, by the present writer,’to the Royal Irish Ajodemy in 
1843 ; and the letters, t, j, It, continued to be, for some time, the only peculiar sym- 
holt ot the calculus in question. But it was gradually found to be useful to incor
porate with these a few other notations (such as K and U, &c.), for representing 

' Operations on Quaternions. It was also thought to be instructive to establish tho 
principles of that Calculus, on a more geometrical (or less exclusively symbolicaV) 
foundation than at first; which was accordingly afterwards done, in the volume en
titled : Lectures on Quaternions (Dublin, 1853) ; and is again attempted in the pre
sent work, although with many difierences in the adopted plan of exposition, and in 
the applications brought forward, or suppressed.
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i = oj'-. OK, J = OK: 01', k = of: OJ;

and to observe that, by tho general formula of multiplication (107), whatever fom 
linet may be denoted by a, j3, y, 5, we have always,

S y p _ i y S S P S y P
y P a ya a P' a yi fi a'

or briefly, as in algebra.
= £ 

y jS n a
the point being thus omitted .without danger of confusion : so that 

ijff= OJ’! oj=— 1, as before.
Similarly, we haye these two other ternary products:

jki = (ok’ : oi) (oi : os') (os': ok) = ok' ; ok = -1; 
kij = (of : oj) (oj : ok') (ok' : oi) = oi': Oi = -1.

(2.) On the other band,
kji<= (oj : oi) (oi : ok) (ok : oj) =oj ; oj = + 1; 

and in like manner.

«y = -7i 
y«=+J; 
w=-i-,‘•Jt?

ikj = + 1, and = + 1.
(3.) The equations in 182' give also these other ternary products, in which the 

law of atsokiation of factors is still obeyed:
«• y = ik = -j - = ii .j,
t .ji=i.~k = -H=j = /ti = ij. i, 

i.-l=-i = kj = y.j,
with others deducible from these, by mere cyclical permutation of the letters, on the 
plan illustrated by Fig. 47, bis.

(4.) In general, i^ the ylssociateve Late of Combination exist for any three 
symbols whatever of a yiven class, and for a given mode oi combination, aa for addi
tion of lines in Art. 9, or for multiplication of ijk in the present Article, the same lam 
exists for any four (or more) symbols of the same class, and combinations of the sama 
kind. For example, if each of the four letters t, k, X, p denote some one ot the three 
symbols i, j, k (but not necessarily the same one), we have the formula,

t. xX/t = 1 . K . Xja = (K . XjU = IK. X. /t = €kX . p = lK\p.
(6.) Hence, dwy multiple (or complex') product of the symbols y'A, in any manner 

repeated, but taken in one given order, may bo interpreted, with one definite result, 
by any mode of association, or of reduction to partial factors, which can be performed 
uiithottt commutation, or change of place of the given factors. For example, tho 
symbol ijhhji vaay be interpreted in either of the two following (among other) ways:

ij. kk. ji = ij. -ji = i.-j* .i = ii--l-, i/A. iji = - 1.1 = - 1.
I

184, The formula (a) of 183 includes obviously the three equa
tions (I.) of 182, To show that it includes also the six other 
equations, (II.), (III.), of the last cited Article, we may observe that 
it gives, with the help of the associative principle of multiplication 
(which may be suggested to the. memory by the absence of the point 
in the symbol yZ;),

Y
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tA: = ».y = tV = -y; 
ki=-k^j=-ji^ =+j.

y =- (/.H = -yX'.fc = + fc;
3i=j.jk=fk = -k-, 
kj=ij.j = if = -i-.

And then it is easy to prove, without any reference to geometry, if the 
foregoing laws of the symbols be admitted, that we have also,

jki = kij=- 1, kj i =jik = ikj = + 1,
as otherwise and geometrically shown in recent sub-articles. It may 
be added that the mere inspection of the formula (a) is sufficient to 
show that the thre^ square' roots of negative unity, denoted in it by 
i,j, k, cannot be subject to all the ordinary rules ofalgdira: because 
that formula gives, at-sight,

P j ’Zr® = (- 1 f = - 1 = - (2jW;
the non-commutative character Q83>y, of the multiplication of such roots 
among themselves, being thus put in evidence.

Section 11 — On the Tensor of a Vector, or of a Quaternion ; 
and on the Product or Quotient of any two Quaternions.
185. Having now sufficiently availed ourselves, in the two 

last Sections, of the conceptions (alluded to, so early as in the 
First Article of these Elements) of a vector-arc (162), and of 
a vector-angle (174), in illustration] of the laws of multiplica
tion and division of versors of quaternions; we propose to re
turn to that use of the word. Vector, with which alone the 
First Book, and the first eight Sections of this First Chapter 
of the Second Book, have been concerned: and shall therefore 
henceforth mean again, exclusively, by that word “ vector,” a 
Directed Right Line (as in 1). And because we have already 
considered and expressed the Direction of any such line, by

* It is evident that — i, — j, —k are also, on the same principles, values of tho 
symbol V — 1 i because they also are right versors (153); or because (- g)’ = g^. 
More generally (comp, a Note to page 131),. If a:, y, z be any three scalars which sa
tisfy the condition + y2 + z’ = 1, it 5vill be proved, at a later stage, that

(ix+Jy + kzp = - 1.
t Ono of the chief uses of such vectors, in connexion with those laws, has been 

to illustrate the non-comnutaiive property (1G8) of multiplication oj"versors, by ex
hibiting a corre.sponding property of what has been called, by aftalogy to the earlier 
operation of the same kind on linear vectors (5), the addition of arcs and angles on 
a sphere. Compare 180, (3.), (4.).
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iatroduciiig the conception and notation (155) of thc Unit
sector, Ua, which has the same direction with the line o, and 
which we have proposed (156) to call the Versor of that Fcc- 
tor, a; yfe now propose to consider and express the Length of 
the same line a, by introducing the neio'name Tensor, and the 
neio symbol,* Ta; which latter symbol we shall read, as the 
Tensor of the Vector a: and shall define it to be, or to denote, 
the Number (comp, again 155) which represents the Length of 
that Ihie a, by expressing the Ratio which that length bears 
to some assumed standard, or Unit (128).

186. To connect more closely these two’conceptions, of 
the versor and the tensor of a vector, we may remember that 
when we employed (in 155) the letter a as a temporary sym
bol for the number which thus expresses the length of the line 
a, we had the equation, Ua = a: a, as one form of the defini
tion of the unit-vector denoted by Ua. We might therefore 
have written also these two other forms of equation (comp.45, 
16),

a=a.Ua, a = a:Uo,
to express the dependence of the vector, a, and of the scalar, 
a, on each other, and on what has been called (156) the versor, 
Ua. For example, with the construction of Fig. 42, bis (comp. 
161, (2.) ), we may write the three equations,

a = OA : oa', b = on : on', c = oc : oc', 
if a, b, c be thus-the three positive scalars, which denote thc 
lengths of the three lines, oa, ob, oc; and these three scalars 
may then be considered as factors, or as coefficients (12), by 
which the three unit-vectors Ua, U/3, U-y, or oa', ob', oc' (in 
the cited Figure), are to "be re’spectively multiplied (15), in 
order to change them into the three other vectors a, (3, 7, or 
OA, OB, oc, by altering their lengths, without any change in 
their directions. But such an exclusive Operation, on the 
Length (or on the extension') of aline, may be said to be an Act. 
of Tension;^ aa an operation on direction alone maybe called 
(comp. 151) an act of version. We have then thus a motive

* Compare the Note to Art. 155.
t Compare the Note to Art. 156, in p.age 135.
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for the introduction of the name, Tensor, as applied to the 
positive number which (as above) represents the length of a 
line. And when the notation Ta (instead of a) is employed 
for such a tensor, we see that we may write generally, for any 
vector a, the equations (compare again 15,16) :

Ua = a:Ta; Ta=a:Ua; o= Ta . Ua = Ua . Ta.
For example, if o be an unit-vector, so that Ua = a (160), 
then Ta = I; and therefore, generally, whatever vector may 
be denoted by a, we have always,

TUa=l.
For the same reason, whatever quaternion may be denoted by 
q, we have always (comp, again 160) the equation,

T(Ax.y) = 1.
(1.) Hence the equation

Tp = l, 

where p = op, expresses that the locus of tho variable point p is the surface of the 
unit sphere (128).

(2.) The equation Tp = Ta expresses that the locus of p is the spheric surface 
with o for centre, which passes through the point a.

(3.) On the other hand, for the sphere through o, which has its centre at a, we 
have the equation,

T(p-a) = Taj 

which expresses that the lengths of the two lines, ap, ao, are equal.
(4.) More generally, the equation,

T(p~a) = T(/3-a), 
expresses that the locus of p is the spheric surface through b, which has its centre 
at A.

(5.) The equation of the Apollonian* Locus, 145, (8.), (9.), may he written 
under either of the two following forms:

T(p-o’a) = aT(/i-a); Tp=aTa;

from each of which we shall find ourselves able to pass to the other, at a later stage, 
by general Rules of Transformation, without appealing to geometry (comp. 145, (10.)).

(6.) The equation.
T(p + a) = T(p —a),

. expresses that the locus of p is the plane through o, perpendicular to the line oa ; 
because it expresses that if oa' = - oa., then the point P is equally distant from the 
two points A and a'. It represents therefore the same locus as the equation,

* Compare the first Note to page 128.
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or as the equation,

=^, of 132,(1.); 
a 2

? + K^=0, of 144,(1,);
a <z

or as
^D^y=-i. of ici, (^’i.y-,

ot as the simple geometrical formula, p -t- a (129). And in fact it will be found 
possible, by General Rules oi this Calculus, to transform any one of these five for
mulas into any other ol them; or into this sixth form,

= 0,
a

which expresses that the scalar part* of the jaafemion-iszero, andthereforetltat 

this quaternion is a right quotient (132).
(7.) In lika manner, the equation

T(p-/3)=T(p-a)
expresses that the locus of p is the plane which perpendicularly bisects the line ab ; 
because it expresses that p is equally distant from the two points a and n,

(8.) The tensor, Ta, being generally a positive scalar, but vanishing (as a limit) 
with a, we have,

Ta!a= + a!To, accordingas ar> or <0;
thus, in particular,

(9.) That
T(—n) = Ta; and T0a = T0 = 0.

T(/3 + o) = T^+Ta, if U3 = Ua, 
but not otherwise (a and fl being any two actual vectors), will be seen, at a later 
stage, to be a symbolical consequence from the rules of tho present Calculus : but in 
the mean time it may be geometrically proved, by conceiving that while a = oa, as 
usual, we make j3 4- a = oc, and therefore /3 = oo — oa = AO (4); for thus we shall 
see that while, «n general, the three points o, a, c are corners of a triangle, and there
fore the length of thCstWe oc is less than the s«m of the lengths of the two other 
sides OA and ac, the former length becomes, on the contrary, equal to the latter sum, 
in the particular case when the triangle vanishes, by the point a fulling on the finite 
line OO; in which case, OA and ac, or a and /3, have one common direction, as the 
equation Ua = U/3 implies.

(10.) If a and be any actual vectors, and if their versors be unequal (X5a not 
= U3)i then

T(/3 + a)<T/3+Ta;

an inequality which results at once from the consideration of the recent triangle oao ; 
but which (as it will be found) may also be symbolically proved, by rules of the 
calculus of quaternions.

• Compare thc Noto to page ’125 ; and the following Section of the present 
Chapter. '
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(11.) If Uo, thenT(3 + a)=+ (T/3-Ta), accordingoa T3> or <Ta ;
but

T(j3+a)>±(Tj3~Ta), if U/3nof=-Ua.

187. The quotient, U|3 : Ua, of the versors of the two vec
tors, a and /3, has been called (in 156) the Versor of the Qiio- 
tient, or quaternion, q = /3 J a; and has been denoted, as such, 
by the symbol, Uy. On the same plan, we propose now to 
call the quotient, T/3: Ta, of the tensors of the same two vec
tors, the Tensor^ of the Quaternion q, or /3: a, and to denote 
it by the corresponding symbol, Ty. And then, as we have 
called the letter U (in 166) the characteristic of the operation 
oi taking the versor, so we. may now speak of T as the Cha
racteristic of the (corresponding) Operation of taking the Ten
sor, whether of a Vector, a, or of a Quaternion, q. We shall 
thus have, generally,

T(/3: a) = Tp: Ta, as we had U(j3 :a) = U/3 :Ua (156); 
and may say that as the versor Uy depended solely oh, but 
conversely was sufficient to determine, the relative direction 
(157), so the tensor Ty depends on and determines the relative 
length^ (109), of the two vectors, a and of which the qua
ternion q is the quotient (112).

(1.) Hence the equation T-sl, like Tp = Ta, to which it is equivalent, ox- a
presses that the locns of p is the sphere with o for centre, which passes through tlie 
point A.

* Compare the Note to Art. 109, in page 108; and that to Art. 166, in page 
135.

f It has been shown, in Art. 112, and in the Additional Illustrations of the 
third Section of the present Chapter (113-116), that Relative Length, as well as 
relative direction, enters as an essential element into the very Conception of a Qua
ternion. Accordingly, in Art. 117, an agreement of relative lengths (as well as an 
agreement of relative directions) was made one of the conditions ofeqtialitg, between 
any two quaternions, considered as quotients of vectors: so that wo may now say,* 
that the tensors (as well as the versors) of equal quaternions are equal. Compare 
the first Note to page 137, as regards what was there called the quantitative element, 
of absolute or relative length, which was eliminated from a, or from q, by means of 
the characteristic U; whereas the nea> characteristic, T, of the present Section, 
serves on thc contrary to retain that element alone, and to eliminate what may be 
called by contrast thc qualitative element, of absolute or relative direction.
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(2.) The equation comp. 186, (6.) ),

T^ = l, 
p- a 

expresses that tho locus of p is tho plane through o, perpendicular to the line OA.
(3.) Other examples of the same sort may easily be derived from the sub-arli- 

clcs to 180, by introducing the notation (187) for tho tensor of a quotient, or qua
ternion, as additional to that for the tensor of a vector (185).

(4.) 1(J3: a) >, =, or < 1, according as T/3 >, =, or < Ta.
(5.) Tho tensor of a right quotient (132) is always equal to the tensor of its tit- 

dex (iza}.
(G.) The tensor of a radial (146) is always positive unity; thus we have, ge

nerally, by 156,

and in particular, by 181,
TUg = l;

Ti = TJ = TA = l.
(7.) Ta!g = + a;Tg, according as a: > or < 0;

thus, in particular, T(—g) = Tg, or the tensors of opposite quaternions are equal.
(8.) Ta:=+x, accordingas a:> or <0?

thus, the tensor of a scalar is that scalar taken positively.
(i).') Hence,

TTo = Ta, TTg=Tgi
so tliat, by abstracting from the subject of the operation T (comp. 146, 160), we 
may establish the symbolical equation,

T* = TT= T.
(10.) Because the tensor of a quaternion is generally a positive scalar, such a 

tensor is its own conjugate (139) ; its angle is zero (131) 5 and its versor (169) is 
positive unity; or in symbols,

KTg = Tg; ZTg = 0i UTj=l.
(11.) T(l:g) = T(a:/3) = T«:T(3 = l:Tg;

or in words, the feasor of the reciprocal ol a quaternion is equal to the reciprocal of 
the tensor,

(12.) Again, since the two lines, OB andon', in Fig. 36, are equally long, the de
finition (137) of a conjugate gives

TKg = Tgi
or in words, the tensors of conjugate quaternions are equal.

(13.) It is scarcely necessary to remark, that any two quaternions which have 
equal tensors, and equal versors, are themselves equal: or in symbols, that

q’ = q, if Tg* = T3, and Ug'=Ug.

188. Since we have, generally,
<3 T/3.U|3 T/3 U/3 U/3 T/3 .
a " Ta .U« Ta ■ Ua ' Ua ’ Ta

we may establish the two following general formulae of decom-
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position of a quaternion into two factors, of the tensor and ver- 
'sor kinds:

I. . . q= Ty.Uy; II. . . q = Ug'.Tj';
which are exactly analogous to the formulae (186) for the cor
responding decomposition of a vector, vato factors of the same, 
two kinds: namely,

r. . . a = Ta . TJa; IT. . . a = Ua . Ta.
To illustrate this last decomposition of a quaternion, q, or 
OB : OA, into factors, we may conceive that aa' and bb'' are two 
concentric and circular, but oppositely directed arcs, which 
terminate respectively on the two 
lines OB«and oa, or rather on the 
longer of those two lines itself, and 
on, the shorter of them prolonged, 
as in the annexed Figure 48; so 
that OA'has the length of oa, but 
the direction of ob, while ob', on the 
contrary, has the length of ob, but 
the direction of oa ; and that therefore we may write, by what 
has been deShed respecting versors and tensors of vectors (155, 
156, 185, 186),

oA' = Ta.U/3; 0B'=T/3.Ua.
Then, by the definitions in 156,187, of the versor and tensor 
of a quaternion,

Ug- = U (oB : oa) = oa' : oa = ob : ob' ; 
Tq = T (oB: oa) = ob' : oa = ob : oa' ;

whence, by the general formula of multiplication of quotients 
(107),

I. . q = OB ; OA = (ob ; oa') . (oa' : oa) = Ty . Uq; 
and

II. . q = OB: OA = (ob : ob') . (ob' : oa.) = U<7. Ty,
- as above.

/

189. In words, if we wish to pass from the vector a. to the vec
tor or from the line oa to the line ob, we are at liberty either, 
Ist, to iegin by turning^ from oa to oa', and then to enA by stretching,
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from oa' to ob, as Fig. 48 may serve to illustrate; or, Ilnd, to begin 
by stretching, from OA to ob', and end by turning, from ob' to ob. 
The* act of multiplicedion of a line a by a quatemion q, considered as 
a factor (103), which affects length and direction (109), may 
thus be decomposed into two distinct and partial acts, oS the kinds 
which we have called Version and Tension ; and these two acts may 
be performed, at pleasure, in diher of two orders of succession. And 
although, if we attended merdy to lengths, we might be led to say 
that the tensor oi a quaternion was a signless number,* expressive of 
a geometrical ratio of magnitudes, yet when the recent construction 
(Fig. 48) is adopted, we see, by either of the two resulting expres
sions (188) for Tg", that there is a propriety in treating this tensor 
as a positive scalar, as we have lately done, and propose systemati
cally to do. * *

190. Since TKg' = Tg, by 187, (12.), and UKg = 1: Ug, by 158, 
we may write, generally, for any quaternion and its conjugate, the 
two connected expressions:

I. ..g = Tg.Ug; II. .. Kg = Tg':Ug;
whence, by multiplication and division,

in.. . ?. K2= (Tj)»; IV. . . q-. Kg = (Ug)’.
This last formula had occurred before; and we saw (161) that in it 
the parentheses might be omitted, because (Ug)” = U(g’). In like 
manner (comp. 161, (2.) ), we have also

(Tg)»=T(2’) = Tg’, 
parentheses being again omitted; or in words, the tensor of the square 
of a quaternion is always equal to the square of the tensor: as ap
pears (among other ways) from inspection of Fig. 42, bis, in which 
the lengths of oa, ob, oc form a geometrical progression ; whence

T /T.obV
~-^OA'T.OA-VT.OAy VoaJ-

At the same time, we see again that the product qVq of two conju- 
gaie quaternions, which has been called (145, (11.) ) their common 
Norm, and denoted by the symbol Ng, represents geometrically the 
square of the quotient of the lengths oi the two lines, of. which (when 
considered ns vedors) the quaternion g is itself the quotient (112). 
We may therefore write generally,!

V. .. gKg = Tg’=Ng; VI. .. Tg= yfSq= -/(^Kg).

* Compare the Note in page 108, to Art. 109. 
t Compare the Note in page 129.

z
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(I.) We have also, by II., the following other general transformations for the 
tensor of a quaternion:

VIL..T3 = K3.U3i VHI. .. T3=U3.K3;
of which^tbe geojpetrical significations might easily be exhibited by a diagram, but 
of which the validity is sufficiently proved by what precedes.

(2.) Also (comp. 158),

— = — = K-^ = Ktr3; = — =U3.
U3 T3 T3 U3 T3

. (3.) The reciprocal of a quaternion, and the conjugate* of that reciprocal, may 
now be thus expressed:

1 _ _ KU3 _ J.. 2.. J_ .
g Tg^ N3 T3 U3 T3 T3 U3’

kI =-1 =. 
g N'3 T3’ T3 K3

(4.) Wff may also write, generally,
IX. . . K3 = T3. KIT3 = N3:3.

191. In general, let any two quaternions, 5' and/, be con
sidered as multiplicand and multiplier, and let them be re
duced (by 120) to th© forms (3 : a and y'. (3; then th6 tensor 
and versor of that third quaternion, y.a, which is (by 107) 
their product q'q, may be thus expressed :
I.. .T/y=T(7:a)=Ty:Ta=(Ty:T/3).(T/3 :Ta)=T/.Tg'; 

IL .. TJ/y=U(7: a)=Uy :Ua=(U'y :U/3).(ITj3:Uo)=U/.U3'; 
where Tj'q and are written, for simplicity, instead of

U(/.2'). Hence, in any such multiplication, the 
tensor of the product is the product of the tensor; and the ver
sor of the product is the product of the versors ; the order of 
the factors being generally retained for the latter (comp. 168, 
&c.), although it may be varied for the former, on account of 
the scalar character of a tensor. In like manner, for the divi
sion of any one quaternion q, by any other q, we have the 
analogous formulae;
III. . . T(/:y) = T/:Ty; IV. . . U(/: y) = U/; Uy; 
or in words, the tensor of the quotient of any two quater
nions is equal to the quotient of the tensors; and similarly, the 
versor qf the quotient is equal to the quotient of the versors. 
And because multiplication and division of tensors are per
formed according to the rules of algebra, or rather of arithme-

* Compare Art. 146, and the Note to page 127.
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tic (a tensor being always, by what precedes, a positive num
ber), we see that the difficulty (whatever it may be) of the 
general multiplication and division of quaternions is thus re
duced to that of the corresponding operations on'versors: for 
which latter operations geometrical constructions have been 
assigned, in the ninth Section of the present Chapter.

(1.) The two products, q'q and qq', of any two quaternions taken as factors in 
two different orders, are equal or unequal, according as those two factors are compla
nar or diplanar ; because such equality (169), or inequality (168), has been already 
proved to exist, for the case* when each tensor is unity: but we have always 
(comp. 178),

Tj'j = Tffj’, and Lqq= L qq.
12^ If Z ? = Z s' = ^, then g?' = Kq'q (170) j so that the products of two right 

quotients, or right quaternions (132), taken in opposite orders, are always conju
gate quaternions.

(3.) If i.q = Lq'=^, and Ax.g'-1-Ax. j, then q^’ = — iqt' A
tqq'^^lq'q^^, A.S.. q q-i-A.X. q, Ax.g'g J-Ax. g'(171) ;

SO that the product of two right quaternions, in two rectangular planes, is a third 
right quaternion, in a plane rectangular to both ; and is changed to its own opposite, 
when the order oi the factora is reoerserf: as we had y = i = —ji (182).

(4.) In general, if g and q' be any two diplanar quaternions, the rotation round 
Ax. q', from Ax . q to Ax. g'g, is positive (1.71').

(6.) Under the same condition, q'jq : g) is a quaternion with the same tensor, 
and same angle, os g', but with a different axis ; and this new axis, Ax. g(g': q'), 
mag be derived (179, (1.) ) from the old axis, Ax. g', by a conical rotation (in the 
positive direction) round Ax. g, through an angle = 2 Z g.

(6.) The product or quotient of two complanar quaternions is, in general, a third 
quaternion complanar with both; but if they be both scalar, or both right, then this 
product or quotient degenerates (131) into a scalar.

(7.) Whether g and g' be complanar or diplanar, we have always as in algebra 
(comp. 106, 107, 136) the two identical equations:

V. .. (g’:g).g = 9'i VI.. . (g'.g):g = g’.
(8.) Also, by 190, V., and 191, I., we have this other general formula: 

VII. . . Ng'g=Ng'.Ng;
or in words, tho norm of the product is equal to the product of the norms.

192. Let q = : a, and y' = y; /3, as before; then
1 = = 1 •(? = «) = « :7 = (a5/3) (P :7) = (1:

so that the reciprocal of the product of any two quaternions is

Compare the Notes to pages 118, 161.
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equal to the product of the reciprocals, taken in an inverted 
order: or briefly,

i. . . Rq’q = . R7',
if R be again used (as in 161, (3.)) as a (temporary) charac
teristic of reciprocation. And because we have then (by thc 
same sub-article) the symbolical equation, KU = UR, or in 
words, the conjugate of the versor of any quaternion q is equal 
(158) to the versor of the reciprocal of that quaternion; while 
the versor of a product is equal (191) to the product of the 
versors; we see that

KU?'? = UR?'? = UR?. UR?' = KU?. KU?'.
But
K? - T? . KU?, by 190, dX.; and T?'? = T?'. T? = T?.T?', 

by 191 ; we arrive then thus at the following other important 
and general formula:

II. . . K?'? = K?. K?';
or in words, the conjugate ofth^product oi any two quater
nions is equal to the product of the conjugates, taken (still) 
in an inverted order.

(1.) These two results, I., IL, may be illustrate^ for (T2 = T9’ = 1), by
the consideration of a spherical triangle ABO (comp. Fig. 43) ; in which tho sides 
AB and BC (comp. 167) may represent q and q', the arc AO then representing q'q. 
For then the new multiplier Ej = Kq (158) is represented (162) by ba, and the new 
multiplicand Ej’= Kg'by CB; whence the new product, E9.E9'=K9.Kg', is re
presented by the tnuerse arc CA, and is therefore at once the reciprocal E^'j, and the 
conjugate K/j, of the old product q’q,

(g,.) If 9 and 2* be ripAt quaternions, then Kq^-q, 'K.q'=— 2'(by 144); and 
the recent formula II. becomes, £2’2 = 9?*) as in 170.

(3.) In general, that formula II. (of 192) may be thus written:

III. . . a a —fi
where a, p, y may denote ang three vectors.

(4.) Suppose then that, ns in the annexed 
Fig. 49, wo have the two following relations of in
verse similitude of triangles (118),

A aob a! BOC, A bob oe' dob ;
and therefore (by 137) the two equations,

p-^a' 5-^3 =
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we shall have, by HI.,
y €4=K-, or Anoca'AOE;0 a

so that this third formula of inverse similitude is a consequence from the other too. 
(6.) If then (comp. 145, (6.) ) any two circles, whether in one plane or in space, 

touch one another at a point n ; and if from any point o, on the common tangent no, 
two secants OAC, OED he drawn, to these two circles ; the four points of section, 
A, 0, D, E, will be on one common circle: for such concircularity is an easy conse
quence (through equal angles, &c.), f.’om the last inverse similitude.

(Ja.) The same conclusion (respecting concircularity, &c.) may be otherwise and 
geometrically drawn, from the equality of (he too rectangles, aoo and doe, each 
being equal to the square of the tangent on; which may seiwe as an instructive 
oerf/fcatjon of the recent formula III,, and as an example of the consistency of tbe 
results, to which calculations with quaternions conduct.

(7.) It may be noticed that the construction would in general give three circles, 
although only one is drawn in the Figure; but that if the two triangles aec and 
DDE be situated in different planes, then Uiese three circles, and of course the five 
points ABODE, are situated on one common sphere.

193. An important application of the foregoing general 
theory of Multiplication and Division, is to the case of Right 
Quaternions .(132), taken in connexion with their Index- Vec
tors, or Indices (133).

Considering division first, and employing the general for
mula of 106, let p and y be each J. a; and let and y be the 
respective indices of th’e two right quotients, y = 3 and 
5’' = 7 : a. We shall thus have the two complanarities, /3' HI jS, y, 
and 7'111 /3, 7 (comp. 123), because the four lines /3, 7, (i', y 
are all perpendicular to a; and within their common plane it 
is easy to see, from definitions already given, that these four- 
lines form & proportion of vectors, in the same sense iu^hich 
«, /3, 7, 8 did so, in the fourth Section of the present Chapter: 
so that we may write the equation of quotients.

In fact, we have (by 133, 185, 187) the following relations of 
length,

= Tp : Ta, T7' = T7 : Ta, and T (7': (i’) = T(y.(i)i 
while the relation of directions, expressed by the formula,

U(7 :/3') = U(7:)3), or U7 : U)3' = U7: U/3, 
is easily established by means of the equations,
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Ax. (y : 7) = Ax . : (i) = Ua.

We jurive, then, at this general Theorem (comp, again 133): 
that “ the (Quotient of any two Right Quaternions is equal to 
the Quotient of their Indices.”*

(1.) For example (comp. 160, 159, 181), the indices of the light versors i,j, k 
are the aaiea of those three versors, namely, the lines 01, oj, ok ; and we have tho 
equal quotients,

j:i-Ol: oj' = h = O3 : Ol, &c.

(2.) In like manner, the indices of - i, —j,—k are or’, 03', ok' ; and

i: —j = oj' : or' = a = or: Oj', &c.

(3.) In general the quotient of any two right versors is equal to the quotient of 
their axes ; as the theory of representative arcs, and of their poles, may easily 
serve to illustrate.

194. As regards the multiplication of two right quaternions, 
in connexion with their indices, it may here suffice to 'observe 
that, by 106 and 107, t^eproduct y: a - (y : |3) . (3; a) is equal 
(comp. 136) to the quotient^ (7 : 3) : (a : 3); whence it is easy 
to infer that “ the Product, q'q, of any two Right Quaternions, 
is equal to the Quotient of the Index of the Multiplier, q, di
vided by the Index of the Reciprocal of the Multiplicand, q.”

It follows that the plane, whether of the product or of the 
quotient of two right quaternions, coincides with the plane of 
their indices ; and therefore also with the plane of their axes ; 
because we have, generally, by principles already established, 
the transformation.

if Lq = -, then Index of q = Tq . Ax, q.

• We have thus a new point of agreementfot of connexion, between right gua- 
temions, and their index-vectors, tending to justify the ultimate assumption (not yet 
made), of equality between the former and the latter. In fact, we shall soon jsrore 
that the index of the sum (or difference), of any two right quotients (182), is equal to 
the sum (m difference) of their indices ; and shall find it convenient subsequently to 
interpret the product Pa of any two vectors, as being the quaternion-product (194) 
of the two right quaternions, of which those two lines aro the indices (133): after 
which, the above-mentioned assumption of equality will appear natural, and be found 
to be useful. (Compare the Notes to pages 119, 136.)
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Section 12.—On the Sum or Difference of any two Quater
nions ; and on the Scalar {or Scalar Part) of a Quater
nion.
195. The Addition of any given quaternion g', considered 

as a geometrical quotient or fraction (101), to any other given 
quaternion considered also as a fraction, can always be ac
complished by the first general formula of Art. 106, when these 
two fractions haye a common denominator ; and if they be not 
already given os, having such, they can always be reduced so as 
to have one, by the process of Art. 120. And because the ad
dition bf any two lines was early seen to be a commutative ope
ration (7, 9), so that we have always 7 + /3 = (3 + 7, it follows 
(by 106) that the addition of any two quaternions is likewise a 
commutative operation, or in symbols, that

I. . . q + q = q' + q ;
so that the Sum of any tioo* Quaternions has a FaZzze, which 
is independent of their Order: and which (by what precedes) 
must be considered to be given., or at least hnotcn, or dunite, 
when the two summand quaternions are given. It is easy also 
to see that the conjugate of any Such sum is equal to the sum 
of the conjugates, or in symbols^ that

II. . . K(/ + y) = K/ + Kj.

(1.) The important formula last written becomes geometrically evident, when it 
is presented under the following form. Let oosc be any parallelogram, and let OA 
be any right line, drawn from one comer of it, but not generally in its plane. Let 
tho three other comers, n, o, d, be reflected (in the sense of 145, (5.) ) with respect 
to that line oa, into three new points, b', o', i>' j or let the three lines ob, oc, od be 
reflected (In the sense of 138) with respect to the same line oA; which thus bisects 
at right angles the three joining lines, bb', co', dd', as it docs bb' in Fig. 36. Then 
each of the Knee ob, oc, od, and therefore also the whole plane figure obdc, may be 
considered to have simply revolved round the line oa as an axis, by a conical rota
tion throngh two right angles ; and consequently the new figure ob'd’c', like that old 
one OBDC, must be a parallelogram. Thus (comp. 106, 187), we have

Od' = oc' + ob', d' = / + /3', d*: a = (y': a)+ (/3’: a);
and the recent formula II. is justi6ed.

* It will be found that this result admits of being extended to the case of three 
(or more) quaternions ; but, for the moment, we content ourselves 'with two.

    
 



176 ELEMENTS OE QUATERNIONS. [book 11.

(2.)' Simple as this last reasoning is, and unnecessary as it appears to be to draw 
any new Diagram to illustrate it, the reader’s attention may bo once more invited to 
the great siiaplicity of expression, with which many important geometrical concep
tions, respecting space of three dimensions, are stated in the present Calculus: and 
are thereby kept ready for future application, and for easy co.iibination with other 
results of the same kind. Compare the remarks already made in 132, (6.); 145, 
(10.); 161; 179,(3.); 192,(6.); and some of the shortly following eub-articlca to 
196, respecting properties of an oblique cone with circular base.

. 196. One of the most important cases of addition, is that 
of two conjugate summands, q and Kg; of which it has been 
seen (in 140) that the sum is always a scaZar. We propose 
now to denote the half of this sum by the symbol,

Sg;
thus writing generally,

I. .-. g +Kg = Kg+ g = 2Sg; 
or defining the new symbol Sg by the formula,

II. . . Sg = j (g + Kg); or briefly, IE . . S = i (1 + K). 
For reasons which will soon more fully appear, we shall also 
call this new quantity, Sg, the scalar part, or simply the Sca
lar, of the Quaternion, q; and shall therefore call the letter 
S, thus used, the Characteristic of the Operation oftahing the 
Scalar of a quaternion. (Comp.432, (6.) ; 137 ; 156 ; 187.) 
It follows that not only equal quaternions, but also conjugate 
quaternions, have equal scalars ; or in symbols,

III. . . Sg'= Sg, if'g'=g; and IV. ..SKg = Sg; 
or briefly,

IV'... SK=S.
And because we have seen that ky = + if q be a scalar (139), 
but that Kg' = -g', if q be a right quotient (144), we find that 
the scalar of a scalar (consideced as a degenerate quaternion^ 
131) is equal to that scalar itself but that the scalar of a right 
quaternion is zero. We may therefore now.write (comp. 160): 
V. . Sa: = a:, if a: be a scalar; VI. . .SSg = Sg, S’ = SS = S;

and' VII. ..Sg = O, if =

Again, because oa' in Fig. 36 is multiplied by as, when ob is 
multiplied thereby, we may write, generally,
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VIII. ■ • Sxq =‘ isSg-, if X be any scalar;
and therefore in particular (by 188),

IX. . . Sg-S(Tg.Ug) = Tg.SUg.

Also because SKg = Sg, by IV., while KUg = U -, by 158, 

we have the general equation*

X. ..SUg = SU-; or X'.. . SU^ « SUj;
■' g a (3

whence, by IX.,
xi...sj.Tj.su^i or xr-.-sf-Tfisn^j

- 1
and therefore also, by 190, (V.), since Tg.T- = 1,

Xn... Sg = Tg\si = Ng.sA; XII'... S^ = N^ S^.
g g a a

The results of 142, combined with the recent definition I. or
II., enable us to extend the recent formula VII., by writing,

XIII. . . Sg >, =, or < 0, according as Z g <, =, or > ;
and conversely,

XIV. . . z g <, =, or > according as Sg >, =, or < o<

In fact, if we compare that definition I. with the formula of 
140, and with Fig: 36, we see at once that because, in that 
Figure,

S(ob: oa) =oa'; oa,
we may write, generally,

XV. . . Sq = Tq. cos z y; or XVI. . . SUg' = cos Z q; 
equations which will be found of great importance, as serving 
to connect quaternions with trigonometry; and which show 
that

XVn. ..Lq'^Lq, if SU/'=SUg.
the angle zg being still taken (as in 130), so as not to fall 
outside the limits 0 and tt ; whence also,

2 A
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, XVin. .. if S/ = Sy, and Tg' = Ty,
the angle of a quaternion being thus given, when the scalar 
and the tensor of that quaternion are given, or known. Fi
nally because, in the same Figure 36 (corap. 15, 103), the 
line.

oa' = (oa' : oa) . oa = oa . S (ob : oa),
may be said to be the projection of ob on oa, since a' is the 
foot of the perpendicular let fall from the point b upon this 
latter line oa, we may establish this other general formula:

Q 0
XIX. . . aS — = S — . a = projection ofQ on a;

a a

a result which will be found to be of great utility, in investi
gations respecting geometrical loci, and which may be also 
written thus:

XX. . . Projection of ft on a = Ua . T/3 • SU —;a
I

with other transformations deducible from principles stated 
above. It is scarcely necessary to remark that, on account 
of the scalar character of Sy, we have, generally,,by 159, and 
187, (8.), the expressions,-

XXI. . . USy = +l; XXII. . . TSy = ± Sy; 
while, for the same reason, we have always, by 139, the equa
tion (comp. IV.),

XXIII. . . KSy = Sy; or XXIIl'. . . KS = S; 
and, by 131,

XXIV. . . z Sy = 0, or = IT, unless Z y = ;

in which last case Sy = 0, by VII., and therefore Z Sy is inde
terminate :* USy becoming at the same time indeterminate, 
by 159, but TSy vanishing, by 186, -187.

(1.) The equation,
sf = 0,

a
is now seen'to be equivalent to the formula, p -t- a ; and therefore to denote the

I

Compare the Note in page 118, to Art 131.
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same plane locus tor p, as that which is represented by^ny one of the four Other 
equations of 186, (6.); or by the equation,

= 1, of 187, (2.).

(2.) The equation,
S^=0, or sP = S?,

a a a
expresses that bp 4. oa ; or that the points b and p have tbo same projection on OA; 
or that the locus of p is the plane through b, perpendicular to the line oa.

(3.) The equation.
SU^=SU^,

a a
expresses (comp. 132, (2.) ) that p is on one sheet ot a cone of revolution, with o for 
vertex, and OA for axis, and passing through the point n.^

(4.) The oMer sheet ot the same cone is represented by this other equation,
SO^ = -SU^i

a a
and &O/A sheets jointly by the equation,

(5.) The equation,
S^ = l, or SU£ = T-,

a. p
expresses that the locus of p is the pZane through perpendicular to the line OA; 
because it expresses (comp. XIX.J that the prq/ecZ»on of op bn oa is the line oa it
self: or that the angle qap is right ; or that S ~ = 0.

a
(C.) On tho other hand the equation,

S^=l, or SU-=T^, •
P P P

expresses that the projection of on on op is op itself; or that the angle opb is right; 
or tliqt the locus of p is that spheric surface, which has the line on for a diameter'.

Hence the sgstetn of the two equations,
&?- = {,a P

represents the circle, in which the sphere (6.^, with ob for a diameter, is cut by the 
plane (5.), with OA for the perpendicular let fall on it from o.

(8.) And therefore this new equation,

S?.S^ = lj
<* P

obtained by multiplying the two last, represents the Cyclic* Cone (pr cone of the

* Historically speaking, the ofrZZjuc cone with circular base may deserve to be 
named the Apollonian Cone, from Apollonius of Perga, in whose great work on Co-
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se=,,

tecond order, bat not generally ot revolnfion'), which rests on this last circle (I.") as 
* its bate, and has the point 0 for its vertex. In fact, the equation (8.) is evidently 

satisfied, when the two equations (7.) are so; and therefore every point of tho circu
lar circumference, denoted by those two equations, must bo a point of the locus, re
presented by tho equation (8.). But the latter equation remains unchanged, at least 
essentially, when p is changed to xp, x being any scalar; the locus (8.) is, there
fore, some conical surface, with its vertex at the origin, o ; and consequently it can 
be none other than that particular cone (both ways prolonged), which rests {at 
above) on the given circular base (7.).

■ (9.) The system of the two equations,

S^.S^ = 1, 
a P

(in writing the first of which the point may be omitted,) represents a conic section : 
namely Mat section, in wTiich the cone (S.") is cut by the new plane, which has OO 
for the perpendicular let fall upon it, from the'origin of vectors o.

(10.) Conversely, every plane ellipse (or other conic section') in space, of which 
the plane does not pass through the origin, may be represented by a system at two 
equations, of this last/orm (9.) ; because the eone which rests on any such conic as 
its base, and has its vertex at any given point o, is known to be a cyclic cone.

(11.) The curve (or rather the pair of curves), in which an oblique but cyclic 
eone (8.) is cut by a concentric sphere (that is to say, a cone resting on a circular 
base by a sphere which has its centre at the vertex of that cone), has come, in mo
dem times, to be called a Spherical Conic. And any such conic may, on the fore
going plan, be represented by the system of the two equations,

S^S- = 1, Tp=l;
“ P

the length of the radius of the sphere being here, for simplicity, supposed to be the 
unit of length. But, by writing Tp — a, where a may denote any constant and posi- 

■tive scalar, we can at once remove this last restriction, if it be thought useful or con
venient to do so.

(12.) The-equation (8.) may be written, by XII. or XII’., under the form (comp. 
191, VII.);

or briefly,

niei (tuviKSv), already referred to in a Note to page 128, the properties of aacA a 
cone appear to have been first treated systematically; although tho cone of revolu
tion bad been studied by Euclid. But the designation "cyclic cone" is shorter; and 
it seems more natural, tn geometry, to speak of the above-mentioned oblique cone 
iKus, for the purpose of marking its connexion with the circle, than to call it, as is 
now usually done, a cone of the tecond order, or of the tecorid degree: although 
these phrases also have their ailvantages.
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if a'=PT3 = Ta.U/3, and /3'=oT^=T/J.Ua;
P o.

so that a' and /3' are here the lines oa' and os', of Art. 188, and Fig. 48.
(13.) Hence the cone (8.) is cut, not only by the plane (6.) in the circle (7.), 

which is on the sphere (6.), but also by the (generally) new plane, S —,= 1, in the a 
(generally) new circle, in which this new plane cuts the (generally) new sphere, 
cP'S — = 1; or in the circle which is represented by the system of the two equations, 

sf = i, S^=l.
a p

(14.) In the particular case when /? || a (15), so that the quotient /3: a is a sca~ 
lar, which must be positive and greater than unity, in order that the plane (5.) may 
(really) cut the sphere (6.), and therefore that the circle (7.) and the cone (8.) may
be real, we may write

P=a'‘a, a>l, T(fi:a) = a‘>, a' = a, P’ = Pi
and the circle (13.) coincides with the circle (7.).

(15.) In the same case, the cone is one of revolution ; every point P of its circu- . 
lar base (that is, of the circan^rence thereon being at one constant distance frotn 
the vertex o, namely at a distance = oTu. ^r, in the case supposed, the equations 
(7.) give, by XII.,

N^=s5 :S-=l:S- = o’:S^ = a8i or Tp = aTa.
a a fi p p

(Compare 145, (12.), and 186, (6.).)
(16.) Conversely, if the cone be one of revolution, the equations (7.) must con

duct to a result of the form,
o’=N - = S -: S - = S -: S-,or (comp. (2.)), S^^ = 0;

a a P‘ p p \ r \
which can only be by the line (3 — o’o vanishing, or by our having j3 = o’a, as in 
(14.) ; since otherwise we should have, by XIV., p o’a, and all the pdnts of 
the base would be situated in one plane passing through the vertex o, which (for any 
actual cone) would be absurd.

(17.) Supposing, then, that we have not p || a, siai tberelore not a'= a, pl = P, 
as in (14.), nor even o' o, P' || we see that the cone (8.) is not & cone of revolu
tion (pT what is often called a right cone); but that it is, on the contrary, an oblique 
(or scalene) cone, although still a cyclic one. And we see that SacA a cone is cut in 
two distinct series* of circular sections, by planes parallel to the two distinct (and 
mutually non-parallcl) planes, (6.) and (13.) j or to two new planes, drawn through 
the vertex o, which have been callcdf the two Cyclic Planes ol the cone, namely, the 
two following:

* These two series of sub-contrary (or antiparalleV) \>\xt circular "sections of a 
cyclic cone, appear to have been first discovered by Apollonius: see the Fifth Propo
sition of his First Book, in which he says, KaXiitrOw Si ij rotaurij ropi) vKtvavria 
(page 22 of Halley’s Edition).

f By M. Chasles.
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S^ = 0; S^ = 0i
a /3

while the Zico Z«ne« from the vertex, oA and ob, which are perpendicular totheeetwo 
planet respectively, may be said to be the two Cyclic Normals.

(18.) Of these two lines, a and P, the second has been seen to bo a diameter of 
tho sphere (6,), which may be said to be circumscribed to the cone (8.), when that 
cone is considered as having tho circle (7.) for its base i the second cyclic plane {yi.) 
is therefore the tangent plane at the vertex ol the cone, to that first circumscribed 
sphere (6.).

(19.) The sphere (13.) may in like manner be said to be circumscribed to the 
cone, if the latter be considered as resting on the new circle (13.), or as terminated by 
that circle as its new base ; and the diameter of this new sphere is the line os', or /3', 
which has by (12.) the direction of the line a, or of the JirsZ cyclic normal (17.); so 
that (comp. (18.)) the first cyclic plane is the tangent plane at the vertex, to the 
second circumscribed sphere (13.).

(20.) ..^ny other sphere through the vertex, which touches the first cyclic plane, 
and which therefore has its diameter from the vertex = b'ft', where b' is some scalar 
co-efficient, is represented by the equation.

or =P P b"
it therefore cuts the cone in a circle, of which (by (12.)) the equation of the plane is

S^,= 5', or S,-^,= l,
a ba

ed that the perpendicular from the vertex is b'a' || /3 (comp. (5.) ); qnd consequently 
this plane of section of sphere and cone is parallel to the second cyclic plane (17.).

(21.) In like manner any sphere, such as
bP

S — = 1, where b is any scalar, 
P

which touches the second cyclic plane at the vertex, intersects the cone (8.) in a cir
cle, ot which the plane has for equation,

and is therefore parallel to the first cyclic plane.
(22.) The equation of the cone (by IX., X., XVl.) may also he thus written: 

SU^.SU^zzzT?; or, cosZ^.cosr^=Tsi
a p /3 a p p'

- it expresses, therefore, that fAe product of the eosines of the inclinations, of any va
riable side (p) of an oblique cyclic cone, to two fixed lines (a and (3), namely to the 
two cyclic normals (17.), is consZunZ; or that the product of the sines of the inclina
tions, of the same variable side (or ray, p") of the eone, Zo two fixed planes, namely to 
the two cyclic planes, is thus a constant quantity.

(23.) The two great circles, in which the concentric sphere Tp = 1 is caZ by the two 
cyclic pZanrs, have been called the Zico Cyclic Ares* of the Spherical Conic (11.), in

* By M. Chasles.
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■which that sphere is cut by the cone. It follows (by (22.)) that the product of the 
tines of the (arcual') perpendiculars, let fall from any point ■£ of a given spherical ■ 
conic, on its two cyclic arcs, is constant.

(24.) These properties of cyclic cones, and of spherical conics, are not put for
ward aa new; but they are of importance enough, and have been hero deduced with 
sufficient facility, to show that we are already in possession of a Calculus, with its 
own Rules* of Transformation, whereby one enunciation of a geometrical theorem, or 
problem, or construction, can be translated into several others, of which some may 
be clearer, or simpler, or more elegant, than the one first proposed.

197. Let a, y be any .three co-initial vectors, oa, &c., 
and let od = S = 7 + ^, so that obdc is a parallelogram (6); 
then, if we write

/3 :« = $', y'.a = q's and 8: 0 = 3'" = /+$'(106), 
and suppose that b', c', d' are the feet of perpendiculars let 
fall from the points b, c, d on the line oa, we shall have, by 
196, XIX., the expressions, .

(OB' =) /3' = aSy, y = aSj', S' = aSj" = aS (/ + $). 
But also OB = CD, and therefore ob' = c'd', the similar projec
tions of equal lines being equal; hence (comp. 11) the sum of 
the projections of the lines p, y must be equal to the projec
tion’of the sum, or in symbols, *

od'=oc'+ob', = S':a=(y'Ja)+(/3':a).
Hence, generally, for ant/ two quaternions, q and /, we have 
the formula:

I. . . S (3' + 3) = S3' + S3;
or in words, the scalar of the sum is equal to the sum of the 
scalars. It is easy to extend this result to the case of any three 
(or more) quaternions, with their respective scalars; thus, if 
3" be a third arbitrary quaternion, we may write

S {3" + (3' + 3)} = S3" + S (3' + 3) = S3"+(S3' + S3); 
where, on account of the scalar character of the summands, the 
last parentheses may be omitted. AVe may therefore write, 
generally,

ll. . . SS3 = 2S3, or briefly, SS = 2S ;

where 2 is used as a sign of Summation: and may say that

Comp. 146, (10,), &c.
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the Operation of taking the Scalar of a Quaternion is a Dis
tributive Operation (conip. 13). As to the general Subtract 

' tion of any one quaternion from any other, there is no difficulty
in reducing it, by the method of Art. 120, to the second^jene- 
ral formula of 106 ; nor in proving that the Scalar of theDifpe- 
rence* is always equal to the Difference of the Scalars. In 
symbols,

III. . .S(^-q) = 3g'-Sq-,
or briefly,

IV. . . SA5 = ASg, SA = AS;
when A is used as the characteristic of the operation of taking 
a difference, by subtracting one quaternion, or one scalar, from 
another.

(1.) It has not yet been proved (comp. 195), .that the Addition of any number 
of Quaternions, q, q', q",.. is an oeeociatioe and a commutative operation (comp. 9). 
But we see, already, that the scalar of the sum of any such set of quaternions has 
a value, which is independent of their order, and of the mode of grouping them.

(2.) If the summands be all right quaternions (.132), the scalar of each separately 
vanishes, by 196, VI f.; wherefore the scalar of their sum vanishes also, and that 
sum is consequently itself, by 196, XIV., a right quaternion: a result which it is 
easy to verify. In fact, if /3 -L a and y a, then y a, because a is thep per
pendicular to the plane of j8 and y ; hence, by 106, the sum of any tujo right qua
ternions is a right quaternion, and therefore also the sum of any number of such qua
ternions.

(3.) Whatever two quaternions q and q' may be, we have always, aa in olgebra, 
the two identities (comp. 191, (7.) ):

V... (9'-5) + 5 = g'i VI... (9' + 5)-g = 3'.

198. Without yet entering on the general theory of scalars of 
products or quotients of quaternions, we may observe here that be
cause, by 196, XV., the scalar of a quaternion depends only on the 
tensor and the angle, and is indepent^nt of the axis, we are at liberty 
to write generally (comp. 173, 178, and 191, (1.), (5.) ),

I. . . &qq'^ Sq’q; II. .. S. q : g’) = Sg';
the two products, qq' and q'q, having thus always equal scalars, 
although they have been seen to have unequal axes, for the general 
case of diplanarity (168, 191). It may also be noticed, that in vir
tue of what was shown in 193, respecting the quotient, and in 194

Examples have already occurred in 196, (2.), (6.), (16.).
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respecting the product, of any two right quaternions (132), in con
nexion with their indices (133), we may now establish, for any 
such quaternions, the formula:

in. . . S (/: j) = S : Ig) = cos'L (kyi. g': Ax. g);
IV.. . Sff'g = S (/. J-) = i^ = - 'l^g'g. cosz (Ax. /: Ax. g)’,

where the new symbol Ig is used, as a temporary abridgment, to 
denote the Index of the quaternion g, supposed here (as above) to be 
a right one. With the same supposition, we have therefore also 
these other and shorter formula;:

V. . . SU(!7':3') = +cosz(Ax. y':Ax. 9);
VI... &Ug'q = - cos Z (Ax. g'; Ax. g);

which may, by 196, XVI., be interpreted as expressing that, under 
the same condition of rectangularity of g and g',

VII. . . L (?': g^^L^Ax. q'-.Ax. j);
VIII. .. Lg'g = 'n---L(Ax. g'; Ax. g).

In words, the Angle of the Quotient of hoo Right Quaternions is equal 
to the Angle of their Axes; but the Angle of the Product, of two such 
quaternions, is equal to the Supplement of the Angle of the Axes. 
There is no difficulty in proving these results otherwise, by con
structions such as that employed in Art. 193; nor in illustrating 
them by the consideration of isosceles quadrantal triangles, upon the 
surface of a sphere.

199. Another important case of the scalar of a product, is 
the case of the scalar of the square of a quaternion. On refer
ring to Art. 149, and to Fig. 42, we see that while we have 
always T(^’) = (Tg)^ as in 190, and U(y’) = U(7)’, as in 161, 
we have also,

I. . . z(j)’ = 2z$’, and ^x. (g’) = Ax. j, if

but, by the adopted definitions of Zj(130), and of Ax.j 
(127, 128),

II. . . Z (7?) = 2 (w - Z g), Ax. (y®) = - Ax. g, if Z5'>^.
A

In eacA case, however, by 196, XVI., we may write,

III. . . SU(5’) = cos z (j’) = cos2 z 7;
2 B
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or TT, anda formula wliich holds even when L q is 0, or
which gives,

IV. . . SU(}») = 2(SUy)’-l.
Hence, generally, the scalar of be put under either of
the two following forms :
V. . . S(?’) = T3’.CO3 2z q-, VI. . . S(3’) = 2(Sg)’-Tg^; 
where we see that it would not be safe to omit the parentheses^ 
without seme convention previously made, and to write simply 
Sj’, without first deciding whether this last symbol shall be 
understood to signify the scalar of the square, or the square of 
the scalar of g: these two things being generally unequal. 
The latter of them, however, occurring rather oftener than the 

' former, it appears convenient to fix on z< as that which is to 
be understood by Sg’, while the other may occasionally be 
written with a point thus, S. g’; and then, with these conven
tions respecting notation,* we may write :

VII. . . Sg’ = (Sg)’; VIII. . . S. g’ = S (g’).
But the square of the conjugate of any quaternion is easily seen 
to be the conjugate of the square ; so that we have generally 
(comp. 190, II.) the formula:

IX. . . Kg’ - K (g’) = (Kg)’ = Tg’: Ug’.

(1.) A quaternion, like a positive scalar, may be said to have in general tuio oppo
site square roots; because the squares of opposite quaternions are always equal 
(comp. (3.) ). But of these two roots the principal (or simpler') one, and that which 
we shall denote by the symbol V3, or Vg, and shall call by eminence the Square Root 
ht q, is that which has its angle acute, and not obtuse. We shall therefore write, 
generally,

X.. . Z.Vg = i Z.3: A.X. q = fix. q ■,

* As, in the Differential Calculus, it is usual to write dx’ instead of (dx)2. 
while d(i2) is sometimes written as d.o:’. But as d’ic iienotes a second differential, 
so it seems safest not to denote tho square of S3 by tlie symbol S®3, which properfy 
signifies SSg, or S9, as in 196, VI. j the second scalar (like the second tensor, 187, 
(9.), or the second versor, 160) being equal to the first. Still every calculator will 
of course use his own discretion; aud the employment of the notation S’g for (S3)’, 
ns cos is often written for (cos .t)’, may sometimes cause a saving of space.
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with the reservation that, when L q = 0, or = it, this common axis oi q and Vj be
comes (by 131, 119) an indeterminate unit-line.

(2.) nonce,
XI. ..SV3>0, if Zg<jr; ,

while this scalar of the square root of a quaternion may, by VI., be thus trans
formed :

XII. ..SV5 = Vn(T3 + S?)}; 
a formula which holds good, even at the limit L q = it.

(3.) Tho principle* (1.), that in quaternions, as in algebra, the equation,
•XIII. . . (-9)3 = 9’,

is an tdentity, may be illustrated by conceiving that, in Fig. 42, a point b' is deter
mined by the equation on' = no; for then wo shall have (comp. Fig. 33, We),

(_ 5)» = j = ^ = g», because d aob' a b'oc.

200. Another useful connexion between scalars and tensors (or 
nomw) of quaternions may be derived as follows. In any plane tri
angle AOB, we havef the relation,

(T. ab)* = (T. oa)* - 2(T.oa) . (T. ob) . cos aob + (T. ob)*;
in which the symbols T. oa, &c., denote (by 185,186) the lengths of 
the sides oa, &c. ; but if we still write q = ob : oa, we have q - 1 
= ab: oa; dividing therefore by (T. oa)*, the formula becomes (by 
196, &c.),

I.. .T(?-1)* = 1-2T?.SU2 + T2’=T2*-2S?+I;

II. . .N(?-1) = N2-23^+1.
But 9 is here a perfectly general quaternion; we may therefore 
change its sign, and write,
III.. . T (1 +3')*= 1 + 2S3-b Tj’; IV... N(1 + 3) = 1 -t- 2S3 + Ny. 
And since it is easy to prove (by 106,107) that

V...(^'+l)

whatever two quaternions q and q' may be, while

VI. . . S . Nj’ = S. q'Kq = S . 3K3',

we easily infer this other general formula,
VII.. . N (?'+?)=N/-i-2S.3K3' + N9; 

which gives, if tc be any scalar,
VIII. .. N (3 + .r) = N3 + 2a:S3 + .r*.

* Compare the first Note to page 162.
t By the Second Book of Euclid, or by plane trigonometry.

or
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(1.) We arc now prepared to effect, hy rules* of transformation, some other pas
sages from one mode of expression to another, of the kind which has been alluded to, 

J J and partly exemplified, in former sub-articles. Take, for example, the formula, 

T^=l, of 187, (2.);
p-a

or tho equivalent formula,
T(p + a) = T(p-a), of 186, (6.);

•which has been seen, on geometrical grounds, to represent a certain locus, namely tho 
plane through o, perpendicular to the line OA; and therefor the same locus as that 
which is represented by the equation,

S- = 0, of 196, (1.).a
To pass noyr {eom the former equations to the latter, by calculation, xte have only 
to denote the quotient p: a by 9, and to observe that the first or second form, os just 
now cited, becomes then,

T(5-(-1) = T(5-1); or N(9 + 1) = N (9-1);
or finally, by II. and IV.,

89 = 0,

winch gives the third form of equation, as required.

(2.) Conversely, from S = 0, we can return, by the same general fotmulm II. 

and IV., to the equation l^ = N^^-l-l^ or by I. and III. to T^ - — 1^

= Tl --1-1 \ or to T(p - o') = T(p + a), or to T^J^= 1 as above; and gene- 
V<i 1 P-a

rally,
Sg=0 gives T(9-1) = T(9+1), or T?ii=l;

3-1 
while the latter equations, in turn, involve, as has been seen, the former.

(3.) Again, if we take the Apollonian Locus, 145, (8.), (9.), and employ the/rst 
of the two forms 186, (6.) of its equation, namely,

T(p-a2a)=aT(p-a),
where a is a given positive scalar different from unity, we may write it as

T(9-a2) = nT(9-l), or as N(9-a’>) = fl’!N(.9-1);
or by VIU.,

Nj - 2a®S3 + (^7 ~ 28? -t-1) i
or, after suppressing — 2a'^Sq, transposing, and dividing by a’ — 1,

• N5 = a’; or, Np = a’Na; or, Tp = aTa;
•which last is the seconelybrni 186, (5.), and is thus deduced from the first, by calcu
lation alone, •without any immediate appeal to geometry, or the construction of any 
diagram.

» Compare 145, (10.); and several subsequent sub-articles.
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(4.) Conversely if we take the eqnation,

N- = o’, of 145, (12.),
« t

which was there seen to represent the sane locus, considered ds a spheric surface, 
with o for centre, and aa for one of its radii, and Write it as Ng = a’, we can then 
by calculation return to the form

N(g-a») = a«N(g-l), or T (g-a») = aT (g -1),
or finally,

T (p — a^a) = oT (p - a), as in 186, (5.);

this _firat form of that sub-article being thus deduced from the tecond, namely from 

Tp = oTa, or T - = a.a
' (5.) It is far from being Ute intention of the foregoing remarks, to discouraye 

attention to the geometrical interpretation ot the various forme of expression, and 
general ri/Zes of transformation, which thus offer themselves in working with qua
ternions ; on the contrary^ one main object of the present Chapter has been to es
tablish a firm geometrical basis, for all such forms and rules. But when such a. foun
dation has once been laid, it is, as we see, not necessary that we should continually 
recur to the examination of it, in building up the superstructure. That each of the 
two forms, in 186, (5.), involves the other, may be proved, as above, by calculation ; 
but it is interesting to inquire what is the meaning of this result: and in seeking to 
interpret it, we should be led anew to the theorem of the Apollonian Locus.

(6.) The result (4.) of calculation, that

■ N(g-o’) = o!>N(g-l), ifNg = a2,

may be expressed under tho form of an identity, as follows:
IX. . .N(g-Ng) = Ng,N(g-l); 

in which g may be any guatemion.
(7.) Or, by 191, VIL, because it will soon be seen that

g(,g — i)=g^ — g,n3ia algebra,
we may write it as this other identity:

X. . . N(g-Ng) = N(g»-g).

(8.) If T (g - 1) = 1, then S i = i i and conversely, tho former equation follows 

from thejatter; because each may bo put under the form (comp. 196, XII.), 
Ng=2Sg.

(9.) Hence, if T (p - a) = Ta, then S -r = 1, and reciprocally. In fact (comp. 

190, (6.) ), each of these two equations expresses that the locus of P is the sphere 
which passes through o, and has its centre at A j or which has ob » 2rt for a din- 
inetor.

(10.) By changing g to g 4 1 in (8), we find that

ifTg=l, then = 0, and reciprocally.
9+1
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(11.) Hence if Tp=T<j, then sf—-=0, and reciprocally j because (by 106) 
p + a

p+a a a }\a I
(12.) Each of these two equations (11.) expresses that the locus of pis the 

sphere through a, which has its centre at o; and their proved agreement is a recog
nition, hy quaternions, of the elementary geometrical theorem, that the angle in a 
semicircle is a right angle.

f

Section 13—On the Right Part (or Vector Part} of a Qua
ternion ; and on the Distributive Property of the Multipli
cation of Quaternions.
201. A given vector ob can always be decomposed, in one 

but in only one way, into two component vectors, of which it 
is the sum (6); and of which one, as ob' in Fig. 50, is parallel 
(16) to another given vector oa, while 
the other, as ob" in the same Figure, is 
perpendicular to that given line oa; 
namely, by letting fall the perpendicu
lar bb' on OA, and drawing ob" = b'b, so 
that ob'bb" shall be a rectangle. In 
other words, if a and be any two given,
actual, and co-initial vectors, it is always possible to deduce 
from them, in one definite way, two other co-initial vectors,

and /3", which need not however both be actual (1); and 
.which shall satisfy (comp. 6, 15, 129) the conditions,

= + 3:'±/3;
/3' vanishing, when /3 ± a; and (i" being null, when (3 || a; 
but both being (what we may call) determinate vector-func
tions of a and (3. And of these two furictions, it is (jyident 
that /3' is the orthographic projection of(i on the line a ; and 
that P" isthe corresponding projection cf(i on the plane through 
o, which is perpendicular to a.

202. Hence it is easy to infer, that there is always one, 
but only one way, of decomposing a given quaternion,

q = ; oA = p : a,

into two parts or summands (195), of which one shall be, as in
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196, a scalar, while the oilier shall be a right quotient (132). 
Of these two parts, the former has been already called (196) 
the scalar part, or simply the Scalar of the Quaternion, and 
has been denoted by the symbol Sy; so that, with reference 
to the recent Figure 50, we have

I. . . Sy = S(oB : oa) = OB': OA ; or, S (/3 : a) = |3': a.
And we now propose to call the latter paxt the Eight Part* 
of the same quaternion, and to denote it by the new symbol 

V?;
writing thus, in connexion with the same Figure,
II. . . Vy = V(ob : oa) = ob" : oa ; or, V (/3: a) = (i": «. 

The System of Notations, peculiar to the present Calculus, 
will thus have been completed; and we shall have the follow
ing general Formula of Decomposition of a Quaternion into two 
Summands (comp. 188), of the Scalar and Right kinds;

III.. . y = Sy + Vy = Vy + Sy,

or, briefly and symbolically,
IV... l = S-bV = V+S.

(I.) In connexion with the same Fig. 50, we may write also,
V (on: OA) = b'b : oa, 

because, by construction, b'b = ob".
(2.') In like manner, for Fig. 36, we have the equation,

V (ob : oa) = a'b : OA.
(3.) Under the recent conditions, 

’v(j3':a) = 0,

(4.) In genera), it is evident that 
V. ..g = 0, if Sg=0,

(5.) Jlore generally, 
VI. ..g'=g, if Sg' = Sg, 

(6.) Also VII. ..Vg = 0,
or VIII. .. V(/3:«) = 0, if fl «;
the right part of a acaiar being zero.

and

and

S(/3":n) = 0.^

Vg = 0; and reciprocally.

Vg' = Vg; with the converse, 
pr =w;

and
if Z g = 0,

* This Eight Part, Vg, will come to be also called the Vector Part, or simply 
the Vector, of the Quaternion; because it will be found possible and useful to iden
tify such part with its own Index-Vector (133). Compare the Notes to pages 119, 
136, 174.
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(7.) On the other hand,

IX. ..V7 = 7, if = 

a right quaternion being itt oum right part.

203. We had. (196, XIX.) a formula which may now be 
written thus,

0I, . . ob'= S(0B: oa) . OA, or ^' = S — -a,

to express the projection ofoB on ok, or of the vector f3 on a; 
and vie have evidently, by the definition of the hew symbol 
Vq, the analogous formula,

II. . . ob" = V (oB : oa) . OA, or /3" = V • a,

to express the projection of (3 on the plane (through o), which 
is drawn so as to be perpendicular to a; and which has been 
considered in several former Sub-articles (comp. 186, (6.), and 
196, (1.)). It follows (by 186, &c.) that

0III. . . T(3" = T^^— • a = perpendicular distance of n from oa; 

this perpendicular being here considered with reference to its 
length alone, as the characteristic T of the tensor implies. It 

0is to be observed that because the factor, V —, in the recent 
a

formula II. for the projection )3", is not a scalar, we must write 
that factor as a multiplier, and not as e, multiplicand; although 
we were at liberty, in consequence of a general convention 
(15), respecting the multiplication of vectors and scalars, to 
denote the other projection /3' under the form,

r. . ./3'-ftS2(W6,XIX.).

(1.) The efluation,
V^ = 0, a

expresses that the locus of P is the indejinite right line oti..
{i.') The equation,

or =a a a
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expresses that the locus of P is tho indefinite right lino bb", in Fig. 60, which is 
draw through tho point b, parallel to tho line oa.

(3.) The equation
S^^ = 0, or S^ = S^, oflOG, (2.),

a a a '
has been seen to express that the locus of p is the plane through b, perpendicular 
to the line OA; if then we combine it with the recent equation (2.), we shall express 
that tho point P is situated at tii^intersection of the two last mentioned loci; or that 
it coincides with the point b.

(4.) Accordingly, whether -we take tho two first or the two lost of these recent 
forms (2.), (3.), namely,

S?-^=0, or V^=V^, S5 = S-,
a ’ a ' a a' a a

wo can infer this position of the point p: in the first case by inferring, through 202,

V., that -—= 0, whence p — (3=0, by442; and in the second case by inferring, 
a

through 202, VI., that “ = “i. ®“5® (comp. 104), or as a

consequence from each system, the equality p = l3, or op = on j or finally (comp. 20) 
the coincidence, P = B.

(5.) The equation. TV^I=TV^, 
a a

expresses that the locus of the point f is the cylindric surface of revolution, which 
passes through the point b, and has the line oa for its axis; for it expresses, by III., 
that the perpendicular distances of p and n, from this latter line, are equal.

(6.) The system of the two equations,

TV^ = TV^, S^ = 0,
a a y

expresses that the locus of p is tho (generally) elliptic section of the cylinder (5.), 
made by the plane through o, which is perpendicular to the lino oc.
' (7-) employ an analogous decomposition of p, by supposing that

p=p' + p", p'||a,
the three rectilinear or plane loci, (1.), (2.), (3-), may have their equations thus 
briefly written:

p" = 0i p" = ^''i . P' = ^'-
while the combination of the two last of these gives p ~(3, as in (4.).

(8.) The equation of tho cylindric locus, (5.), takes at the same time the form, 
Tp'' = f/3";

which last equation expresses that the projection p" of the point p, on the plane through 
o perpendicular to OA, falls somewhere on the circumference of a circle, with o for 
centre, and on for radius: and this circle may ̂ accordingly be considered os the bass 
of the right cylinder, in the sub-article last cited.

204. From thc mere circumstance that Vy is-always a 
right quotient (132), whenceUVy is a right versor (153), of 

2 c
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which the plane (119), and the axis (127), coincide with those 
of 5', several general consequences easily follow. Thus we have 
generally, by principles already established, the relations:

I. . . = ; IL . . Ax. Vg' = Ax. UVg’ = Ax.

ni. . . KV? = - Vy, or KV = -V(144);
IV. . . SVy = 0, or SV = 0 (196, VII.);

V... (UVy)’ = -l (153, 159); 
and therefore,

VI. . . (Vqy - (TVy)» = - NVy,* 
because, by the general decomposition (188) of a quaternion 
rato factors, have

VII. Vy-=TVy.UVy.
We have also (comp. 196, VI.),

VIII. . . VSy = 0, or VS = 0 (202, VII.);
IX. . . VVy = Vy, or V’ = VV = V (202, IX.);

and X. ..VKy=-Vy, or VK = -V,
because conjugate quaternions have opposite right partsthe 
definitions in 137, 202, and by the construction of Fig. 36. 
For the same reason, we have this other general formula,

XI. . . Ky = Sy-Vy, or K = S-V; 
but we had

y = Sy + Vy, or 1 = S + V, by 202, III., lY.; 
hence not only, by addition,

y + Ky = 2Sy, or 1 + K = 2S, as in 196, I., 
but also, by subtraction,

XII. . . y-Ky«= 2Vy, or 1-K = 2V;
whence the Characteristic, V, of the Operation of taking the 
Right Part of a QwaferwZow (comp. 132, (6.); 137.; 156; 187 ; 
196), may be defined by either of the two following symbolical 
equations:
XIII. . . V»1 -S (202, IV.); XIV. . . V = i(I-K); 

whereof the former connects it with the characteristic S, and

* Compare the Note to page 130,
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the latter with the characteristic K; while the dependence of 
K on S and V is expressed by the recent formula XI.; and 
that of S on K by 196, IP. Again, if the line ob, in Fig. 60, 
be multiplied (15) by any scalar coefficient, the perpendicular 
bb' is evidently multiplied by the same; hence, generally,

XV. . . "Vxq = a:Vy, if x be any scalar;
and therefore, by 188, 191,
XVI. . . V?=Ty.VUy, and XVII. . . TVy = Ty.TVUy. 
But the consideration of the right-angled triangle, ob'b, in the 
same Figure, shows that •

XVIII. .. TVy = Ty. sin Lq,
because, by 202, II., we have

TVy = T(ob"; oa) = T.ob";T.oa,

T.OB" = T.oh . sin AOB;
we arrive then thus at the following general and useful for
mula, connecting quaternions with trigonometry anew;

XIX. . .TVUg^sinZy;
by combining which with the formula,

SUg = C03Zg(196, XVI.),
we arrive at the general relation:

XX. . . (SUy)’ + (TVUy)« = 1 ;
which may also (by XVII., and by 196, IX.) be written thus:

XXI. ..(Sy)’+(TVy)»-(Ty)»j
and might have been immediately deduced, without sines and 
cosines^ from the right-angled triangle, by the property of the 
square of the hypotenuse, under the form,

(T.ob')’ + (T.b'b)’ = (T.ob)’.
The same important relation may be expressed in various other 
ways; for example, we may write,

XXII. . . Ny = Ty’sa "Vq^,
where it is assumed, as an abridgment of notation (comp. 199 
VII., VIIL), that
XXIII. . . Vy’ = (Vj)’, but that XXIV. . . V. q> =
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the import of this last symbol remaining to be examined. 
And because, by the definition of a norm, and by the proper
ties of Sq and Vy,

XXV. . . NSy = SyS but XXVI. . . NVy = - Vy’, 
we may write also,

XXVII. . . Ny = N(Sy + Vy) = NSy + NVy ;
a result which is indeed inoluded in the formula 200, VIII., 
since that equation gives, generally,

XXVIII. . . N(y + x) = Ny + Nj;, if

X being, as usual, any scalar. It may be added that because 
(by 106, 143) we have, as in algebra, the identity,

XXIX.. .-(y' + y) = -y'-y,
the opposite of the sum of any two quaternions being thus equal 
to the sum of the opposites, we may (by XI.) establish this 
other general formula;

XXX. . . -Ky = Vy-Sy;
the opposite of the conjugate of any quaternion y having thus 
the same right part as that quaternion, but an opposite scalar 
part.

(1.) From the last formula it may be inferred, that
if q =-Kg’, then but 8/ = — Sj;

and therefore that
T2'=T5, and Ax. 5'= Ax. j, but Z9' = 7r—£5;

which two last relations might have been deduced from 138 and 143, without the 
introduction of the characteristics S and V. •

(2.) The equation,
(v£Y=fv^Y, or (by XXVI.), Nv2=NV^,
\ a ] \ a f a. a

like the equation of 203, (5.), expresses that the locus of p is the right cylinder, or 
cylinder of revolution, with oa for its axis, which passes through the point n.

(3.) The system of the two equations.

S- = 0,
y

like the corresponding system in 203, (6.), represents generally an elliptic section of 
the same right cylinder; but if it happen that y || a, the section then becomes cir
cular.
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(4.) The system of,tho two equations,

=ra:* —1, with so —1, s<I,

represents the circle,* in which the cylinder of revolution, with oa for axis, and with 
(1 — x’)i Ta for radius, is perpendicularly cut by a plane at a distance = + xTa from 
O ; the vector of the centre of this circular section being xa.

While the scalar s increases (algebraically) from — 1 to 0, and thence to 
+ 1, the connected scalar '/(I — x®) at first increases from 0 to 1, ond then decreases 
from 1 to 0 ; the radius of the circle (4.) at the same time enlarging from zero to a 
maximum = Ta, and then again diminishing to zero; while the position of the centre 
of the circle varies continuously, in ono constant direction, from a first limit-point a', 
if oa'= — a, to the point A, as a second limit.

(G.) The locus ol all such circles is the sphere, with aa’ for a diameter, und there
fore with o for centre; namely, the sphere which has already been represented by the 

equation Tp = Ta of 186, (2.); or by T^ = l, of 187, (1.); or by

s5^s=0, of 200, (11.);
p + a

but which now presents itself under the new form,

obtained by eliminating x between the two recent equations (4).
(7.) It is easy, however, to return from the. last form to the second, and thence 

to the first, or to the third, by rules of calculation already established, or by the ge
neral relations between the symbols used. In fact, the last equation (6.) may bo 
written, by XXII., under the form,

n£.„ 
whence

t£=1, by 190, VI.;

and therefore also Tp = Ta, by 187, and S = 0, by -200, (II.).
p+a

(8.) Conversely, the sphere through a, with o for centre, might already have 
been seen, by the first definition and property of a norm, stated in 145, (11.), to ad- 

p
mit (comp. 146, (12.) ) of being represented by the equation N - = 1; and there- 

' fore, by XXII., under the recent form (G.) ; in which if we write x to denote tho 

variable scalar S -, as in the first of the two equations (4.), we recover the second of a
those equations: and thus might be led to consider, as in (6.), the sphere in question

• By the word “ circle,” in these pages, is usually meant a cir«zm/er«ice, and 
not an area ; and in like manndr, the wortls “ Sphere,” “ cylinder,” “ cone,” &c., are 
usually hero employed to denote ewfaces, and not vclumee.
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1.

as tho locus of a variable circle, which is (as above) the intersection of a variable 
cylinder, with a variable plane perpendicular to its axis:

(rf.) The same sphere may also, by XXVII., have its equation written thus, 

N^s5+V?^ = 1; or T^s2 + V^^ = l.

(10.) If, in each variable plane represented'by the first equation (4.), we Conceive 
the radius of the circle, or that of the variable cylinder, to be multiplied by any con
stant and positive scalar'o, the centre of the circle and the axis of tho cylinder re ■ 
maining unchanged, we shall pass thus to a new system of circles, represented by this 
new system of equations,

&^-=x, {v^V=x»-
a \ aa)

(11.) The locus of these new circles will evidently be a Spheroid of Revolution; 
the centre of this new surface being the centre o, and the axis of the same surface 
being the diameter aa', of the sphere lately considered: which sphere is therefore 
either inscribed or circumscribed to the spheroid, according as the constant a > or 
< 1 i because the radii ot the new circles are in the first case greater, but in the se
cond case less, than the radii of the old circles; or because the radius of the eguato/ 
of the spheroid = ala, while the radius of the sphere = Ta.

(12.) The equations of the two co-axal cylinders of revolution, which envelope 
respectively the sphere and spheroid (or are circumscribed thereto) are:

or
NV^^l,

a NV^ = o’-,a
or

TV^ = a.a
TV^=1, 

a

(13.) The system of the two equations,

represents (comp. (3.) ) a variable ellipse, if the scalar a; be still treated as a va
riable.

(14.) The result of the elimination of x between the two last equations, namely 
this new equation.

or

or

or finally,

NS + NV t, by XXV., XXVI.;a p ‘
N^S? + V^j=l, by XXVII.;
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represents the locus of all such ellipses (13.), and will be found to be an adequate 
representation, through quaternions, of tho genertd Elupsoid (with three unequal 
.axes); that celebrated surface being here referred to its centre, as the origin o of 
vectors to its points; and the six scalar (or algebraic) constants, which enter into 

' the usual algebraic equation (by co-ordinates) of such a central ellipsoid, being here 
virtually included in the two independent vectors, a and p, which may be called its 
two rector-Constants.*

(15.) The equation (comp. (12.)),
(vsy.-l, „ SVS-I, 'Tvt.l,

represents a cylinder of revolution, circumscribed to the ellipsoid, and touching it 
along the ellipse which answers to the value x = 0, in (13.)so that the plane ot 
this ellipse of contact is represented by the equation,

S-=0;a
the normal to this plane being thus (comp. 196, (17.) ) the vector a, or oa ; while 
the axis ot the lately mentioned enveloping cylinder is p, or on.

(16.) Postponing any further discussion of the recent qitaternion equation of the 
ellipsoid (14.), It may be noted here that we have generally, by XXH., tho two fol
lowing useful transformations for the squares, of the scalar Sq, and of the right part 
Vq, of any quaternion 3:

■ XXXI.. ; S9® = T9« E 'Vqi; XXXII... VgS = Sj’ r- Tg«.
(17.) In referring briefly to these, and to the connected formula XXIL, upon 

occasion, it may be somewhat safer to write,
(S)’ = (T)s + (V)>, (V)» = (S)’-(T)’, (T)i! = (S)»-(V)>,

than S’ = T’ + V’, &c.; because these last forms of notation. S’, &c., have been 
otherwise interpreted already, in analogy to tbe known Functional Notation, ox No
tation of tho Calculus of Functions, or ot Operations (comp. 187, (9.); 196, VI.; 
and 204. IX.).

(18.) In pursuance of the same analogy, any scalar may be denoted by the gene
ral symbol.

V-'O;
because scalars are the only quaternions of which the right parts vanish.

(19.) In like mqnner, a right quaternion, generally, may be denoted by the sym
bol.

S-’O;
and since this includes (comp. 204, 1.) the right part of any quaternion, we may 
establish this general symbolic transformation of a Quaternion:

3 = V->0 + S-i0.
(20.) With this form of notation, we should have generally, at least for realf 

quaternions, the inequalities.

* It will be found, however, that other pain of vector-constants, for the central 
ellipsoid, may occasionally be used with advantage.
’ t Compare Art. 149; and the l^otes to pages 90, 184.
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(V->0)2>0; (S'0)2 <0;

so that a (geometrically real) Quaternion is generally of the form:
Sguare-root of a Positive, pins Sguare-root of a Negative.

(21.) The equations 196, XVI. and 204, XIX. give, as a new link between qua
ternions and trigonometry, the formula:

XXXIII. .. tan L g=TVUg: SUj=TV3: S3.
(22.) It may not be entirely in accordance with the theory of that Functional 

(or Operational') Notation, to which allusion has lately been made, but it will bo 
found to be convenient in practice, to write this last result under one or other of tho 
abridged forma; •

TV
XXXrV. .. tanZ5 = -5-.g; or XXXTV'. .. tan z3 = (TV: S)3;

which have the advantage of saving the repetition of the symbol of the guaternion, 
when that symbol happens to be a complex expression, and not, as here, a single let
ter, g.

(23.) The transformation 194, for the index of a right quotient, gives generally, 
by II., for any quaternion 3, the formulie:

XXXV. .. rVg = TV3. Ax. 3 J XXXVI. . . lUNg = Ax. 3;
so that we may establish generally the symbolical^ equation,

XXXVr. . . IUV = Ax.
(24.) And becanse Ax. (1: V3) =—As., 'Vg, by 136, and therefore = — Ax. by 

II., we may write also, by XXXV.,
XXXV'. . . 1(1: V3) = -Ax.3:TV3.

205. If any parallelogram obdc (comp. 197) be projected 
on the plane through o, which is perpendicular to oa, the pro
jected figure ob"d"c" (comp. 11) is still a parallelogram; so 
that

od"=oc" + ob"(6), or 8’'=y"+(3";
and therefore, by 106,

8":a-=(/:a) + ()3".:a).

Hence, by 120, 202, for any two quaternions, q and q', we have 
the general formula,

I. . . V(<7'+y) = V/+Vj;-

* Compare the Note to Art. 199. **
t At a later stage it will be found possible (comp, tho Note to page 174, &o.), 

to write, generally.
1V3 = V3, IUVg = UV3;

and then (comp, the Noto in page 118 to Art. 129) the recent equations, XXXVI., 
XXXVr., will take these shorter forms:

Ax.3 = UV3j Ax. =UV.
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with which it is easy to connect this other,
II. . . V(/-g) = V/-Vj.

Hence also, for any three quaternions, q, q', q",
{g' + ?)) = V/' + V(/ + 3) = Yq" + m + Vff); 

and similarly for any greater number of summands: so that 
we may write generally (comp. 197, II,),

HI. . . VSy = SVy, or briefly HI'. . . VS= SV; 
while the formula II. (comp. 197, IV.) may, in like manner, 
be thus written,

IV. .. VAy = AVj, or IV'.. . VA = AV;
the order of the terms added, and the mode ofgrouping them, 
in HI., being as yet supposed to remain unaltered, although 
both those restTictions will soon be removed. We conclude 
then, that the characteristic V, of the operation of tahing the 
right part (202, 204) of a quaternion, like the characteristic S 
of tahing the scalar (196, 197), and the characteristic K of 
tahing the conjugate (137,195*), is a Distributive Symbol, or 
represents a distributive operation: whereas the characteris
tics, Ax., z, N, U, T, of the operations of taking respectively 
theaaizs (128, 129), the angle{ 130), the norm (145, (11.) ), the 
uer5or(156), and the tensor (187), are not thus distributive 
symbols (comp. 186, (10.), and200, VII.); or do not operate 
upon a tohole {or sum), by operating on its parts (or sum
mands).

(1.) We may now recover the sjTubolical equation K* = 1 (146), under the form 
(comp. 190, VI.; 202, IV.; and 204. IV. VIII. IX XI.):

V. .. K’ = (S-V)’ = S»-^V-VS + V’ = S + V=1.
(2.) In like manner we can recover eacli of the expressions for S*, V’ from tlie 

other, under the Mms (comp, again 202, IV.):

VI... S’! =(1 - V)» = 1 - 2V + V8 = 1 - V = S, as in 196, VI.;
VII.. . V* = (l —S)2= 1 - 2S+S- = 1 — S = V, as in 204, IX.;

or thus (comp. 196, II'., and 204, XIVj, from the expressions for S and V in terms 
of K:

• Indeed, it has only been proved as yet (comp. 195, (I-))) that £2}= SKj, 
for thc case of two summands; bu( this result will soon be extended,

2 D
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vin.. . S2=i(1 +K)2=i(l + 2K+K2)=i(l + K) = s:
IX. . . V’ = i(l-K)’ = i(l-2K + K»J = i(l-K) = V.

(3.) Similarly,
X.. .SV = J(l + K)(l-K)-=i(l-K2') = 0, as in 204,IV.; 

and XI. . . VS = KI -1^) (1 + K) = i(l - K») = 0, as in 204, VIII.

206. As regards the addition (or subtraction) of such right 
parts, 'Vq, or generally of any two right quaternions 
(132), we may connect it with the addition (or subtraction) of 
their indices^ (133), as follows. Let obdc be again any paral
lelogram (197, 205), but let oa be now an unit-vector (129) 
perpendicular to its plane ; so that

Ta=l, L (3 : a) = Z (y: a) = Z (S: a) = -, 8 = 7 + 3*

Let ob'd'c' be another parallelogram in the ^ame plane, ob
tained by a positive rotation of the former, through a right 
angle, round oa as an axis; so that

z(3':3)=z(7':7) = z(8':8)=^;

Ax. (3': 3) = Ax. (7': 7) = Ax. (S'.: 8) = a.
Then the three right quotients, ^'.a, y : a, and 8: a, may re-’ 
present ang two right quaternions, q, q, and their sum, q + q, 
which is always (by 197, (2.) ) itself a right quaternion; and 
the indices of these three right quotients are (comp. 133,193) 
the three lines (3', 7', S', so that we may write, under the fore
going conditions of construction,

(3'=l(/3:a), 7=1(7: a). S'= 1(8: a).
But this third index is (by the second parallelogram) the sum 
of the two former indices, or in symbols, S'= 7'+ 3'5 
therefore write,

I. . . I(g' + 5) = Ig' + Iy, if Zg' = Zg'' = ^;

or in words the Index of the Sum* of any two Right Quater
nions is equal to the Sum of their Indices, Hence, generally, 
for any two quaternions, q and q', we have the formula,

II. . . IV(?' + ?) = IVg'+IV7,
* Compare the Note to page 174.
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because Ng, V/are alwmjs right quotients (202/204), and
(.2' + ?) ^3 always their sM?n (205, 1.) ; so that the index of 

the right part of the sum of any tioo quaternions is the sum of 
the indices of the right parts. In like manner, there is no diffi
culty in proving that

III. . . i(q'-q)=^lq-Iq, if z/=Zy = ^;

and generally, that
IV. . . IV(q’-q)=IVq’-IVq;

the Index of the Difference oi any two right quotients, or of 
the right parts of any two quaternions, being thus equal to the 
Difference of the Indices.* We may then reduce the addition 
or subtraction of any two such quotients, or parts, to the addi
tion or subtraction of their indices ; a right quaternion being 
always (by 133) determined, when its index is given, or 
known.

207. We see, then, that as the Multiplication of any 
two Quaternions was (in 191) reduced to (Ist) the arithmetical 
operation of multiplying their tensors, and (Ilnd) the geometri
cal operation of multiplying their versors, which latter was con
structed by a certain composition of rotations, and was repre
sented (in either of two distinct but connected ways, 167, 175) 
by sides or angles of a spherical triangle: so the Addition of 
any two Quaternions may be reduced (by 197,1., and 206, II.) 
to, Ist, the algebraical addition of their scalar parts, considered 
as two positive or negative numbers (16); and, Ilnd, the geo
metrical addition of the indices of their right parts, 'considered 
as certain vectors (1): this latter Addition of Lines loeing per
formed according to the Hide of the Parallelogram (6.).t In

• Compare again the Note to page 174.
t It does not fall within tlie plan of these Notes to allude often to the history of 

tlie subject; but it ought to be distinctly stated that this celebrated Uule, for what 
may bo called Geometricai Addition of right lines, considered as analogous to compo
sition of motions (or of forces'), had occurred to several writers, before the invention 
of the quaternions: although tho method adopted, in tho present and in a former 
work, of deducing that rule, hy algebraical analogies, from the symbol b —A (1) 
for the line ab, may possibly not have been anticipated. Tho reader may com
pare tho Notes to the Preface to the author’s Volume of Lectures on Quaternions 
(Dublin, 1863).
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like manner, as the general Division of Quaternions was seen (in 
191) to admit of being reduced to an arithmetical division of* 
tensors, and a geometrical division of versors, so vve may now 
(by 197, III., and 206, IV.) reduce, generally, the Subtrac
tion of Quaternions to (Ist) an algebraical subtraction of sca
lars, and (Ilnd) a geometrical subtraction of vectors: this last 
operation being again constructed by a parallelogram, or even 
by a plane triangle (comp. Art. 4, and Fig. 2). And because 
the sum of any given set of vectors early seen to have a 
value (9), which is independent of their order, and of the mode 
of grouping them, we may now infer that the Sum of any num
ber of given Quaternions has, in like manner, a Value (comp. 
197, (1.)), which is independent of the Order, and of the 
Grouping of the Summands: or in other words, that the general 
A ddition of Quaternions is a Commutative* and an Associative 
Operation.

(1.) The formula,
V2j=2Vj, of 205, in.,

is now seen to hold good, for any number of quaternions, independently of the arrange- 
ment of the terms in each of the two sums, and of the manner in which they may be 
associated.

(2.) We can infer anew that
K (tj' + g') = Kj' 4 Kj, as in 195, II.,

under the form of the equation or identity,

S (s' + 2) - V (s' + j) = (Sj' - yg") + (Sj - Vj).

. (3.) More generally, it may be proved, in the same way, that

K2j=2Kj, or briefly, K2 = 2K,
whatever the number of the summands may be.

208. As regards the quotient or product of the right parts, "Vq and 
Nq', of any two quaternions, let t and t' denote the tensors of those 
two parts, and let x denote the angle of their indices, or of their axes, 
or the mutual inclination of the axes, oj^ of the planes,^ of the two 
quaternions q and q' themselves, so that (by 204, XVill.),

• Compare the Note to page 175.
t Two planet, of course, make with each other, in general, two unequal and sup

plementary angles ; but we here suppose that these are mutually distinguished, by 
taking account of the aspect of each plane, aS distinguished from thc opposite aspect: 
which*Ss most easily done (111.), by considering thc axes as above.
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t = TVq = Tg-. sin Z g, t' = TVg' = Tg'. sin L
and

a; = Z (IVg': I Vg) = Z (Ax. g': Ax. g).
Then, by 193, 194, and by 204, XXXV., XXXV'.,

I. . . Vg': Vg = IVg': IVg = + (TVg': TVg). (Ax. g': Ax. q};

II. . . Vg'. Vg = IVg' • 1 " (^Vg'. TVg). (Ax. 4: As. g);

and therefore (comp. 198), with the temporary abridgments pro
posed above,
III. . . S (Vg': Vg) = <'<'* cos a;; IV. . .* SUJVg': Vg) = + cos x;
y. . . S{yq'.yq'}=-i'tcosx-, VI... Sl7’(Vg'. Vg)=-cosa:;

yil. ..L(yq'-.yq}=<i^-,- Vin. . .z(Vg'. Vg)=B--a:.
We have also generally (comp. 204, XVIII., XIX.),
IX. . . TV (Vg*: Vg) = i'r‘sin a-; X. . . TVU(Vg'; Vg) = sin a; 
XI... TV(Vg'. Vg) = <'« sina:; XII. . . TVU (Vg'. Vg) =sina; 

and in particular,
xni...y(Vq':yq}=o, and XIV...y^yq'.yq)^o,

if/III?(123);
because (comp. 191, (6.), and 204, VI.) the quotient or product of 
the right parts of two complanar quaternions (supposed here to be 
both non-scalar (108), so that t and t'(are each >0) degenerates (131) 
into a scalar, which may be thus expressed :

XV. ..yq't Vg = + t'r', and , XVI. . . Vg'.Vg=- t't, ii x=0-, 
but
XVII. . . yq'-.yq = -t'tr\ and XVIII. . . Vg'.Vg= + Z'Z if a; = >r; 
the first case being that of coincidera, and the second case that of 
opposite axes. In the more general case of diplanarity (119), if we 
denote by 5 the unit-line which is perpendicular to loth their axes, 
and therefore common to their two planes, or in which those planes 
intersect, and which is so directed that the rotation round it from 
Ax. g to Ax. g' is positive (comp. 127, 128), the recent formulae I.,
II. give easily,

XIX. . . Ax.(Vg': Vg)=+«-, XX. . . Ax. (Vg'.Vg)=-«; 
and therefore (by IX., XI., and by 204, XXXV.), the indices of the 
right parts, of the quotient and product of the right parts of any two 
diplanar quaternions, may be expressed as follows:

XXI. . . IV (Vg': Vg) = + S.t'f' sin .-r;
XXII. . . IV (Vg'. Vg) — — S.t't sin x.
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(1.) Let ABC be any triangle upon the unit-sphere (128), of which the spheri
cal angles and the comers may be denoted by the same letters A, n, c, while the sides 
shall as usual be deuoted by a, b, c; and let it be supposed that thc rotation (comp. 
1V7) round a. from o to n, and therefore that round b from A to o, Sic., is positive, 
as in Fig. 43.’ Then writing, as we have often done,

g = /3:a, and = where o = OA, &c.,
we easily obtain the the fallowing expressions for the three scalars t, t’, a, and for 
the vector S :

<=sinc; r'=sina; aT=7r —nj S = — p.
(2.) In fact we have here,

Tj=Tj' = l, Z5 = c, Lq=a-,
whence t and f' are as just stated. Also if a', b', o' be (as in 175)'the positive poles 
ct the three successive sides bc, ca, ab, of the given'triangle, and therefore the points 
A, B, c the negative poles (comp. 180, (2.) ) of the new arcs b'c', c'a’, a'b', then 

Ax. 3 = oo', Ax. g’ = oa.’ ;
but X and 8 are the angle and. the asAs ci the quotient ci these two axes, or of the 
quaternion which is represented (162) by the arc o'a' ; therefore x is, as above 
stated, the supplement oi the angle B, and S is directed to the point upon the sphere, 
which is diametrically opposite to the point B.

(3.) Hence, by III. V. VII. VIII. IX. XI., for any triangle abo on the unit
sphere, with a = OA, &c., we have the formulae:

XXIII, . . S^VV^ j = -8*““C0seccc03B; 

XXrV. . . S^V^.V^j = + sinasincco3B;

XXVII. . . TV^V^: V—^ = + sinacoscccsinB;

XXVIII... Tv( V^. V-^ = -l-Binosin csiuB.

(i.) Also, by XIX. XX. XXI. XXII., • if the rotation round b from a to c be 
still positive,

XXlX...Ax.(^vX:V^  ̂= -^j :

XXXI... IV^V^:V^^ = -/3sin a cosec c sin b ;

XXXII. . . IV^V^. V^^ = + /3«nasincsinn.

(5.) If, on the other hand, the rotation round b from a to o were negative, then 
writing for a moment o, =— a, = — /3, yi = — y, we should have a new and oppo
site triangle, AiDiCi, in which the rotation round b, from Ai to o, wohld be positive, 
but the angle at bi equal in magnitude to that at n; so that by treating (as usual) 
all the angles of a spherical triangle as positive, we should have n, = n, as well as 
c, = c, and ui = a; and therefore, for example, by XXXI.

XXX.. . Ax.^v^.v^'j = + i3;
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IV (■ V ; V— I=- flj sin ai cosec ci sin b,,
\ pt

or iv^V^; V^^s+psinacoseccsinB;

the four formula) of (4.) would therefore still subsist, provided that, for this now 
direction of rotation in the given triangle, we were to change the sign of p, in the 
tecond member of each.

(6.) Abridging, generally IV5: Sg to (IV: S)g, os TVg: Sg was abridged, in 
204, XXXIV'., to (TV: S)g, we have by (5.), and by XXIV., XXXII., this other 
general formula, for any three unit-vectors a, p, y, considered still aS terminating 
at the corners of a spherical triangle abc ;

XXXIIL .. (IV:S)^V^.V^j=±j3tanB;

the upper or the lower sign heing taken, according as the rotation round b from A to 
C, or that round p from a to y, which might perhaps be denoted by the symbol o^y, 
and which in quantity is equal to the spherical angle n, is positive or negative.

209. When the planes of any three quaternions q, q', q", consi
dered as all passing through the origin 0 (119), contain any common 
line, those three may then be said to be Collinear* Quaternions; and 
because the axis oi each is then perpendicular to that line, it follows 
that the Axes of Collinear Quaternions are Complanar: while con
versely, the complanarity of the axes insures the collinearity of the 
quaternions, because the perpendicular to Zi^ej)/a«eoftheaxeaisaline 
common to the planes of the quaternions.

(I.) Complanar quaternions are always collinear; but the converse proposition 
docs not hold good, collinear quaternions being not necessarily complanar.

(2.) Collinear quaternions, considered as fractions (101), can always be reduced 
to a common denominator (120); and conversely, if three or more quaternions can be 
so reduced, as to appear under the form of fractions with a common denominator t, 
those quaternions must be collinear: because the line t is then common to all their 
planes.

(3.) Any two quaternions are collinear with any scalar y the plane of a scalar 
being indeterminate^ (131).

(4.) Hence the scalar and right parts, Sg, Sg', Vg, Vg', of any two quaternions, 
are always collinear with each other.

(6.) The conjugates of collinear quaternions are themselves collinear.

• Quaternions of which the planes aro parallel to any common line may also be 
said to be collinear. Compare tho first Note to page 113.

f Compare the Note to page 114.
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210. Let 2, q.'s q" be any three collinear quaternions; and let a 
denote a line common to their planes. Then we may determine 
(comp. 120) three other lines P, 7, b, such that

a a' S'
and thus may conclude that (as in algebra),

I- • • (2'+ 2) 2" = 2'2"+22", 
because, by 106, 107,

\a a J b a S S 8 S a S a S
In like manner, at least under the same condition of collinearity,* it 
may be proved that

II. . ■ (q'~ 2) 2" = i'i" ~ a"-
Operating by the characteristic K upon these two equations, and 
attending to 192, II., and 195, IL, we find that •

III. .. K2".(K2'+K2) = K2".K2' + K2".K2;
IV. . . K2".(K2'-K2) = K2"-K2'-K2".K2;

where (by 209, (5.) ) the three conjugates of arbitrary coljinears, 
K2, K2'rK2", may represent any three collinear quaternions. We 
have, therefore, with the same degree of generality as before,

V. . . 2" (2' + 2) = 2"'l' + ; VI. . . 2" {q' -q} = f'q' - q"q.
If, then, 2, 2', q''> q'" be any four collinear quaternions, -viq va&y esta
blish the formula (again agreeing with algebra):

VII... (2'"+2") (2’ + 2) - +2"2'+;
and similarly for any greater number, so that we may write briefly,

VIII. .. 2/..22 =22'2,
where

and
+ 22 + • • + 2m> — 2*i+22'^” +

22'2 = 2'121 + • • 2i'2«+2'22i + • •. +
m and n being any positive whole-numbers. In words (comp. 13), 
the Slultiplication of CoUinear\ Qftateriiiona is a Doubltf Distributive 
Operation,

* It will soon be seen, however, that this condition is unnecessary.
t This distributive property of multiplication will soon bo found (compare tho last 

Note) to extend to tho more general case, in which the quaternions are not colli
near.
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. (1.) Hence, by 209, (4.), and 202, III, we have this general transformation, 
for the product of any two quaternions:

IX. .. s'j = Sg'.Sj+V9'.S2 + Sj'.Vj + V9'.V3.
(2.) Hence also, for the square of any. quaternion, we have the transformation 

(comp. 126; 199, VII; and 204, XXIII.) :
X. . . 92=S92 + 2S9.V9 + V9».

(3.) Separating'iiio scalar and right parts of this last expression, we find these 
other general fonnulm:

XI. . . 8.92 = 895 + ¥9=; • Xn. . . V.92 = 289.V9;
. whence also,, dividing bj’ T92, we have

XIII... Sn(95) = (8U9)2 + (VUg)»; ’ XIV. .. VUCg®) = 2SH9. VUg.
(4.) Bysnpposingg'=K9, in IX., and therefore 89'= 89, ¥9'=-V9, and trans

posing tho two conjugate and therefore complanar factors (comp. 191, (1.) ), we ob
tain this general transformation for a norm, or for the square of a tensor (comp. 190, 
V.; 202, HI.; and 204, XI.):

XV. . . T9« = Ng = 9K9 = (89 + Vg) (Sg - Vg) = Sg* - Vg*;

which had indeed presented itself before (in 204, XXII) but is now obtained in a 
new way, and without any employment of sines, or cosines, or even of the well-known 
theorem respecting the square of the hypotenuse.

(5.) Eliminating Vg*, by XV., from XI., and dividing by Tg*, we find that

XVI.. . S. 9* = 2S9* - Tg*; XVII... SU(9*) = 2 (SUg)* - 1;

agreeing with 199, VI. and IV., but obtained-here -without any use of the known 
formula fur the cosine of the double of an angle.*

(6.) Taking the scalar and right parts of the expression IX., we obtain these other 
general expressions:

XVIir. . . 8g'9 = 8g'. 8g + 8 (Vg'. Vg); 
XIX . . Vg'g = Vg'. 8g + Vg. Sg' + V(Vg'. Vg) ;

in the latter of which we may (by 126) transpose the two factors, Vg', Sg, or Vg, 
Sg'. We may also (by 206, 207) write, instead of XIX., this other formula :

XIX'. . . IVg'g = IV9'. Sg + IV9. Sg' + IV(Vg'. Vg).
(7.) If we suppose, in V11, that 9" = Kg, 9’" = Kg', and transpose (comp. (4.) ) 

the two complanar (because conjugate) factors, g' + g and K(9'+g), we obtain the 
following general expression for the norm of a sum:

(?' + ?) K (9' + 9)= g'Kg' + gKg'+g'Kg+gKg;
or briefly,

XX... N(9' + 9) = N9'+2S.9Kg' + N9, as in 200, VII; 
because

g'Kg = K.gKg', by 192, II, and (1 + Kj.gKg'ii 2S.9K9', by 196, II'.
(8.) By changing 9' to x in XX., or by forming the product ofg+a and 

Kg + X, where a is any scalar, we find that
XXI. . . N(9 + a:) = Ng + g^Sg + a?*, as in 200, VIII,; 

whonco, in particular,
XXI'... N(9 -1) = Ng - 2S9 + 1, as in 200, II.

2 E
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(9.) Changing g to fi; a, and multiplying by tho square of To, we get, for any 
two vectors, a and ft, the formula,

XXII. . . T(8 - a)’ = T/3’ - 2Tfl. Ta . SU Ta’,

in which Ta^ denotes* (Ta)2; because (by 190, and by 196, IX.),

\a ■ 1 a \ Ta I ■ a Ta-u a
(10.) In any plane triangle, ABO, with sides of which the lengths are as usual 

denoted by a, b, c, let the vertex c be taken as the origin o of vectors; then

a = CA,'/3 = CB, /3 —a = AB, Ta = Z»j Tj3 = a, T(B — ay=c, Str- = cosc;a
we recover therefore, from XXII., fundamental formula of plane trigonometry,
under the form.

XXin. .. c’ = a” - 2o6 cos c + b\
(II.) It is important to observe that we have not here been arguing in a circle; 

because although, in Art.. 200, we assumed, for the convenience of the student, a pre
vious knowledge of the last written formula, in order to arrive more rapidly at certain 
applications, yet in these recent deductions from tho distributive property VIII. of 
multiplication of (at least) collinear quaternions, we have founded nothing on the re- 

' suits of that former Article; and have made no use of any properties of oblique-an
gled triangles, or even of right-angled ones, since tho theorem of the square tho 
hypotenuse has been virtually proved anew in (4.)j nor is it necessary to the argu
ment, that any properties of trigonometric functions should be known, beyond the 
mere definition of a cosine, as a certain projecting factor, from which the formula 
196, XVI. was derived, and which justifies us in writing cosc in the lost equation 
(10.).' The geometrical Examples, in the sub-articles to 200, may therefore be read 
again, and their validity be seen anew, without any appeal to even plane trigonometry 
being now supposed.

(12.) The formula XV. gives Sg’ = Tj* + Vg’, as in 201, XXXI.; and we know 
thatVg’, as being generally the square of a right quaternion, is equal to a negative 
scalar (comp. 204, VI.), so that

XXIV . . Vg’ < 0, unless L q = 0, or = jt,

in each of which two cases Vg = 0, by 202, (C.), and therefore its square vanishes; 
hence,

XXV. . . Sg’ < Tg’, (SUg)’ < 1, 
in every other case.

• 'We are not yet at liberty to Interpret the symbol Ta’ as denoting also T(a’) ; 
because we have not yet assigned any meaning to the square of a vector, or generally 
to the product of two vectors. In the Third Book of these Elements it will bo shown, 
that such a square or product can be interpreted as being a quaternion : and then it 
will be found (comp. 190), that

T(a’) = (Ta)’ = Ta’,
•whatever vector a may be.
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(13.) It might therefore have been thus proved, without any use of the transfor
mation SUg = cos Z ? (196) XVI.), that (for any real quaternion g) we have the in
equalities,

XXVI. .. SU?<-H, SU?>-1, and Sg<-bTg, S2>-Tj, 
unless it happen that Z ? = 0, or = w; SUg being = -11, and Sg = -I Tg, in the first 
case; whereas SUg =— 1, and Sg = —Tg, in the second case.

(14.) Since TjSzxNg, and Tg.Tg' = T.gKg'= T. g'Kg = Ng.T (g': g), while 
S. gKg' = S . g'Kq = Ng . S (g': q), the formula XX. gives, by XXVI.,

XXVir. . . (Tg'+Tg)*-T(g'-lg)» = 2(T-S)gKg'=2Ng.(T-S) (q':q)>0, 
if we adopt the abridged notation,

XXVni. . . Tg -Sg= (T- S)g,
and suppose that the quotient g': g is not a positive scalar; hence,

XXIX. .. Tg'-i-Tg>T(g'-|-g), unless g' = !sg, and a:>0; 
in which excepted case, each member of this last inequality becomes =(1 -t-a:)Tg.

(15.) Writing q = l3: a, q'=y: a, and multiplying by Ta, the formula XXIX. 
becomes, .

XXX. . . T'y + T/3>T(y-l-|3), unless y = ®j3, x>0;

in which latter case, but not in any other, we have Uy = U/3 (155). We therefore 
arrive anew at the results of 186, (9.), (10.), but without its having been necessary 
to consider any triangle, as was done in those former sub-articles.

(16.) On the other hand, with a corresponding abridgment of notation, we have, 
by XXVI.,

XXXI. . . Tg +Sg= (T-l-S)g>0, unless Zg = 7r;
also, by XX., &c.,

XXXII. .. T(g' +g)* —(Tg' —Tg)*= 2(T-l-S)gKg' = 2Ng.(T-t-S) (g' :g); 
hence,

XXXIII. . . T (g' + g) > + (Tg* — Tg), unless g' = — ag, x > 0; 
where either sign may bo taken.

.(17.) And hence, on tho plan of (15.), for any two vectors y, 

XXXIV. . . T(y+j3)> + (Ty —T/3), unless Uy=- U/3, 

whichever sign be adopted; but, on the contrary,

XXXV. ..T(y-l;8)=±fTy-T,3), if Uy = -U^, 

the upper or tho lower sign being taken, accordingi as Ty > or < T/3: all which 
agrees with what was inferred, in 186, (11.), from geometrical considerations alone, 
combined with the definition of Ta. In fact, if we make /3 = OB, y = oc, and - y 
= oc', then ono’ will be in general a plane triangle, in which the length of tho side 
bo' exceeds the difference of the lengths of the two other sides; but if it happen that 
the directions of tho two lines on, oc' coincide, or in other words that the lines on, 
oo have opposite directions, then tho difference of lengths of these two lines becomes 
equtd to the length of the line no'.

(18.) With the representations of g and g', assigned in 208, (1.). by two sides of 
a spherical triangle KTsc, we have the values,

Sg = cos c, ^q' = cos a, Sg'g = S(y: n) = oos l> i
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the equation XVIII. gives therefore, by 208, XXIV., the fundamental formula of 
spherical trigonometry (comp. (10.) ), as follows:

’ XXXVI. . . cos 6 = cos a cos c + sin a sin c cos n.
(19.) To interpret, with reference to the same spherical triangle^ the connected 

equation XIX., or XIX'., let it be now supposed, as in 208, (5.), that the rotation 
round b from c to A is positive, so that b and b' are situated at tho same side of the 
arc CA, if b' be still, as in 208, (2.), the positive pole of that arc. Then writing 
a' = oa', &c., we have

IVg = y'sinc; Wq'= a'sia a; IVg'j = —/3'sin 6 ;
and IV (Vg'- Vg) = — /J sin a sin c sin b (comp. 208, (5.) ),
with die recent values (18.), for Sg and Sg'; thus tho formula XIX'..becomes, by 
transposition of the two terms last written:

XXXVII. . . sin a sin c sin b = a' sin a cos c + /3' sin J + y' sin c cos a.
(20.') Let p = OP be any unit-vector; then, dividing each term of the last equa

tion by p, and taking the .scalar of each of the four quotients, we have, by 196, XVI., 
this new equation:

XXXVIII. . . sin a sin c sin B cos fb = sin a cos c cos pa' 4- sin b cos pb'
+ sin c cos a cos pc' ;

where a, b, c are as usual the sides of the spherical triangle abc, and a', b',- o' are 
still, ns in 208, (2.), the positive poles of those sides; but p is an arbitrory point, 
upon the surface of the sphere. Also cos pa', cos pb', cos pc', are evidently the sines 
of the arcual perpendiculars, let full from that point upon those sides; being positive 
when p is, relatively to them, in the same hemispheres as the opposite corners of the 
triangle, but negative in the contrary case; so that cos aa', &c., are positive, and 
are the sines of the three altitudes of the triangle.

(21.) If we place p at B, two of these perpendiculars vanish, and the last formula 
becomes, by 208, XXVIII.,

XXXIX.. . sin 6 cosBB'=sina sin c sin B = TV^V ~

such then is the quaternion expression for the product of the sine of the side ca, mul
tiplied by the sine of the perpendicular let fall upon that side, from the opposite ver
tex B.

(22.) Placing p at A, dividing by sin a cos c, and then interchanging b and o, we 
get tills other fundamental formula of spherical trigonometry,

XL. . . cos aa'= sin c sin b = sin b sin 0;
and we see that this is incluiled in the interpretation of the quaternion 'equation 
XIX., or XIX'., aa the formula XXXVI. was seen in (18.) to be the interpretation 
of the connected equation XVIII.

(23.) By assigning other positions to p, other formiil-jo of spherical trigonometry 
may be deduced, from tho recent equation XXXVIll. Thus if we suppose r to co
incide with b'; and observe that (by the supplementary* triangle).

* No previous knowledge of spherical trigonometry, properly so called, is hero 
supposed; thc supplementary relations of two polar triangles to eacji other forming 
rather a part, and a verj’ elementary one, of spherical geometry.
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while
b'o' = W—A, c'a'=W —B, A’B’=Jr —c,

cos bb' = sin a sin 0 = sin c sin A, by XL.,

we easily deduce the formula,

XLI.. . sin a sin c sin A sin B sin c = sin B cos c cos Osin A—cos a cos A sine;

which obviously agrees, at the plane limit, with the elementary relation,
A + B + C = TT.

(24.) Again, by placing p at a', the general equation beoomes,

XLI I. , . sin a cos c=sui i cos o + sin c cos a cos b;
with the verification that, at the plane limit,

0 = 6 cos c + c cos B.

But we cannot here delay on such deductions, or verifications: although it appeared 
to be worth while to point out, that the whole of spherical Irigonometry may thus be 
darcloped, from the fundamental equation of multiplication of quaternions (107), when 
that equation' is operated on by the two characteristics S and V, and the results 
interpreted as above.

211. It may next be proved, as follows, that the distributive for
mula I. of the last Article holds good, when the three quaternions, 
?> 2"^ which enter into it, without being now necessarily colli
near, are right; in which case their reciprocals (135), and their sums 
(197, (2.) ), will be right also. Let then

/■g=Zg' = zg"=^, gg,= l;
and therefore.

Z?, = Z(2-"*+20 = J

We shall then have, by 106, 194, 206, 

(g"+g')g=I(g"+g'):Igz
= (Ig'': Ig/) + (Ig': Ig,) = 4'2 + 2'2; 

and the distributive property in question is proved.

(1.) By taking conjugates, as in 210, it is easy hence to infer, that the other dis
tributive formula, 210, V.,"holdsgood for any three right quaternions; or that

9 (?" + '/) = 92"+99', if l-i=Lq-Lq" = ^.
(2.) For any Chree quaternions, Ave have therefore the two equations:

(Vj" + Xq') . Xq = Xq". Nq + V/. Vq;
V?. (V j" + Xq’) = Vg. Vq" + Vj. Vq'.

(3.) The qnateniions q, g', g" being still arbitrary, we have thus, by 210, IX.,
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gD 1=(Sj" + Sg'). Sg + +Nq’} .Sq + Vq. (Sg" + Sq-} + ( Vg".+ Vq'). Vg
= (Sg". Sg + Vq'.Sq + Vg. Sg"+ Vg". Vg)+(Sg'. Sg+ Vg'. Sg + Vg. Sg'+Vg’. Vg)

so th^t the formula 210,1., and therefore also (by conjugates) the formula 210, V., 
is valid generally.

212. The General* Multiplication of Quaternions is there
fore (comp. 13,210) ^Doubly Distributive Operation ; so that 
we may extend, to quaternions generally, the formula (comp. 
210, VIII.),

I. . 2/. Sg=-2/g:
however many the summands of each set may be, and whe
ther they be, or be not, collinear (209), or right (211).

(1.) Hence, as an extension of 210, XX., we have now,
II. . . N2g = SNg + 2SSgKg';

where the second sign of summation refers to all possible binary combinations of the 
quaternions g, g', . .

(2.) And, OS an extension of 210, XXIX., we have the inequality,
HI. .. 2Tg>T2g,

unless all the quaternions g, g', . . bear ecalar and positive ratios to each other,’ in 
which case the two members of this inequality become equal: so that the sum of the 
tensors, of any set of quaternions, is greater than the tensor of the sum, in every 
other case.

(3.) In general, as an extension of 210, XXVII;,
IV... (STg)’ - (TSg)2 = 2S (T - S) gKg’.

(4.) The formuhe, 210, XVIH., X.IX., admit easily of analogous extensions. 
(5.) We have also (coihp. 168) the general equation,

V., . (2g)3 - 2 (g2) = 2 (gg' + g'g);
in which, by 210, IX.,

VI. .. gg'+g'g=2(Sg.Sg’+Vg.Sg'+Vg'.Sg+ S(Vg'.Vg));

because, by 208, we have generally

VII... V(Vg'.Vg) = -V(Vg.Vg');

VIII. . . Vg'g = - Vgg', if L g =“ L g' =
*

(Comp. 191, (2.), and 204, X.)

or

213. Besides the advantage which the Calculus of Quaternions 
gains, from the general establishment (212) of Distributive Prin
ciple, or Distribittive Property of Multiplication, by being, so far.

Compare tho Notes to page 208.
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assimilated to Algebra, in processes which are of continual occur
rence, this principle or property will be found to be of great im
portance, in applications of that calculus to Geometry; and especially 
in questions respecting the (real or ideal*) intersections of right 
lines with spheres, or other surfaces of the second order, including 
contacts (real or ideal), as limits of such intersections. The follow
ing Examples may serve to give some notion, how the general dis
tributive principle admits of being applied to such questions: in 
some of which however the less general principle (210), respecting 
the multiplication, of collinear quaternions (209), would be sufficient. 
And first we shall take the case of chords of a sphere, drawn from a 
given point upon its surface.’

(I.) From a point A, of a sphere with o for centre, let it be reqnired to draw a 
chord AP, which shall be parallel to a given 
line OB; or more fully, to assign the vector, 
p = OP, of the extremity of the chord so drawn, 
as a function of the two given vectors, a = OA, 
and (3 = OB; or rather of a and U/3, since it 
is evident that the length of the line cannot 
affect the result of the construction, which Fig.
51 may serve to illustrate.

(2.) Since ap || ob, or p — a || j3, we may 
begin by writing the expression,

p = a + a:/3.(15),

which may be considered (comp. 23, 99) as a form of the equation of the right line 
AP; and in which it remains to determine the scalar coefficient x, so as to satisfy the 
equation of the sphere.

Tp = Ta(186, (2.)).
In short, we are to seek to satisfy the equation,

T(a + a:j3) = Ta,

by some scalar as which shall be (in general) different from zero; and then to sub - 
stitute this scalar in the expression p=a + a:/3, in order to determine the required 

' vector p.
(8.) For this purpose, an obvious process is, after dividing both sides by T/3, to 

square, and to employ the formula 210, XXI., which had hideed occurred before, as 
200, VIII., but not then as a consequence of the distributive propertj/of multiplica
tion. In this manner we are conducted to a quadratic equation, which admits of 
division by x, and gives then,

« = _2S-;
(8’

p = a-2/3S^;

* Compare the Notes to page 90, &c.
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the problem (1.) being thus resolved, with the verification tliat /3 may be replaced 
by U;3, in the resulting expression for p.

• (4.) Aa a mere exercise of calculation, wo may vary tho last process (3.), by 
dividing the last equation (2.) by Tcq instead of TjS, and then going on as before. 
This last procedure gives,

1 = N ( l + a:S'\=l + 2a:s2+a:2N^;
\ a] a a

a: = -2S^:N^ = -2S.?(by 196, XII'.), as before.
a a p • .

(5.) In general, by 196, II'.,
1-2S = -Kj

and therefore,

hence; by (3.),
P- k“..

and finally,

P = -k|./3;

a new expression for p, in which it is not permitted generally, as it was,in (3.), to 
treat the vector /3 as the multiplier,* instead of the multiplicand.

(6.) It is now easy to see that tho second equation of (2.) is satisfied; for the 
expression (6.) for p gives (by 186, 187, &c.),

Tp.= T^.T;3 = Ta,

as was required.
(7.) To interpret the solution (3.), let o in Fig. 61 be the middle point of the 

chord AP, and let D be the foot of the perpendicular let fall from a on on; then the 
expression (3.) for p gives, by 196, XIX.,

CA=i(a-p) = /3S^ = 0D;

and accordingly, ocad is a parallelogram.
(8.) To interpret the expression (5.), which gives

-p _a op' _oa
/? ft' OB ob’ ’

•
we have only to observe (comp. 138) that the angle aop' is bisected internally, or 
the supplementary angle aop externally, by the indefinite right line ob (see again 
Fig. 51).

(9.) Conversely, the geometrical coneideratione which have thus served in (7.) 
and (8.) to interpret or to verify the two forms ef solution (3.), (5.), might have 
been employed to deduce those two forms, if we had not seen how to obtain them, 
by rule* of calculation, from the proposed conditions' of the question. (Comp. 146, 
(10.), &c.)

(10.) It Is evident, from the nature of that question, that a ought to be deduct-
t..

* Compare the Note to page 169.
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ble from and p, by exactly tho aarae processes as those which have served us to de
duce p from p and a. Accordingly, the form (3.) of p gives,

« = P + 2/3S^ = P-2/3s|i

and the form (5.) gives.

And since tho first form can be recovered from tho second, wo see that each leads us 
back to the parallelism, p - a || jS (2.).

(11.) The solution (3.) for x shows that
a! = 0, p = a, p = A, if S(o;j3) = 0, or if fi-i-a.

And the geometrical meaning of this result is obvious; namely, that a right Imo 
drawn at tho e.xtromity of a radius oa of a sphere, so as to bo perpendicular to that 
radius, does not (in strictness) intertect the sphere, but touches it: its second point 
of meeting tho surface coinciding, in this case, as a limit, with tho first.

(12.) Hence we may infer that the plane represented by tho equation,

S——?=0, or S-=l, 
a a

is tho tangent plane (comp. 196, (6.)) to the sphere here considered, at tho point a. 
(13.) Since /3 may be replaced by any vector parallel thereto, we may substitute 

for it y — <1, if y = oc be tho vector of any gicen point o upon the chord at, whether 
(as in Fig. 51) tho middle point, or not; we may therefore write, by (3.) and (5.),

p = a —2(y —a^S = - K -2—. (y _ a).(t ~ CL

214. In the Examples of the foregoing Article, there was no 
room for the occurrence of imaginary roots of an equation, or for 
ideal intersections of line and surface. To give now a case in which 
such imaginary intersections may occur, we shall proceed to con
sider the question of drawing a secant to a sphere, in a given direc
tion, from a given external point; the recent Figure 51 still serving 
us for illustration.

(1.) Suppose then that € is tho vector of any given point b, through which it is 
required to draw a chord or secant bpopij parallel t(^the same given line /3 as before. 
We have now, if i>o = oi’o.

p(i = c+a^u/3, 'l’«=Tpo = T(£ + a;o/3),
xo’ + 2xoS^+Ni-N2 = o,

.11, being a new scalar j and similarly, if pi = oPi,

2 F
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by transformations* which will easily occur to any one who has read recent articles 
with attention. And the points Po, Pi will be together real, or together imaginary, 
according as the quantity under the radical sign is positive or negative; that is, ac
cording as we have one or other of the two following inequalities,

T|> or <TVi.

(2.) The equation (comp. 203, (5.) ),

represents a cylinder of revolution, with on for its axis, and with To for tho radius 
of its base. IE e be a point of this cylindric surface, the quantity under the radical 
sign in (1.) vanishes j and the two roots a:o, xi of tho quadratic become equal. In 
this case, then, tho line through b, which is parallel to on, touches tho given sphere j 
as is otherwise evident geometrically, since the cylinder envelopes the sphere (comp. 
204, (12.) ), and the lino is one of its generatrices. If e be internal to tho cylinder, 
the intersections Po, pi are real; but if b be external to the same surface, those in
tersections are ideal, or imaginary.

(3.) In this last case, if we make, for abridgment,

,-81, .nd

a and t being thus two given and real acalara, we may write,
Xo = a-tf-l-, a:i = *-l-<V-l;

where V — 1 is the old and ordinary imaginary symbol ot Algebra, and is not in
vested here with any sort of Geometrical Interpretation.-^ We merely express thus 
theyhet of calculation, that (with these meanings of the sybebols a, P, e, « and <) 
the formula Ta = T(e -I- xp'), (1.), when treated by the rules of quaternions, conducts 
to the quadratic equation.

(x - »)* 4- f’ = 0,
which has no real root; the reason being that the right line through E is, in tho 
present case, wholly external to the sphere, and therefore doe* not really intersect it 
at all; although, for the sake of generalization of language, -me may agree to »ay, 
as usual, that the line intersects the sphere in two imaginary point*.

(4.) We must however agree, then, for contisteney of tymbolical expreation, to 
consider these two ideal points as having determinate but imaginary vectors, namely, 
the two following i

po = e + »/3-</3V-l; pi = e + a)3 + </3\/-l;
in which it is easy to prove, Ist, that tho real part e + s^ is the vector t’ of the foot 
is! of the perpendicular let fall from the centre o oirtbe line through E which is drawn 
(as above) parallel to on ; and Ilnd, that the real tensor <T3 of the coefficient of

* It does not scorn to bo nocossary, at the present stage, to supply so many refe
rences to former Articles, or Sub-artielcs, os it has hitherto been thought useful to 
give; but such may still, from time to time, bc giveu.

t Compare again the Notes to page 90, and Art. 149.

    
 



CHAP. I.] CIRCUMSCRIBED CONES. 219

V - I in tho imaginary part of each expression, represents the lengtk of a tangent 
e'e" to the sphere, drawn from that external point, or foot, s'.

(6.) In fact, if we write oe'=(' = e+aj3, we shall have

e'e = * — t’ = — s/i=pS = projection of oe on ob ;
p

which proves the Ist assertion (4.), whether the points Po, pi be real or imaginary. 
And because

we have, for the case of imaginary intersections,
tTp = V(T£'>-. To’) = T.e'e",

and tho Ilnd assertion (4.) is justified.
(6.) An expression of tho form (4.), or of the following,

p' = ^ + V-ly,
in which and y aro two real vectors, while V - 1 is the (scalar) imaginary of al
gebra, and not a symbol for ii geometrically real right versor (149, 153), may be said 
to be a Bivectoe.

(7.) In like manner, an expression of the form (3.), or a;' = « + < V — 1, where s 
and t are two real scalars, but V - 1 is still the ordinary imaginary of algebra, may 
be said by analogy to be a BwCALar. Imaginary roots of algebraic eguations are 
thus, io general, biscalars.

(8.) And if a biveetor (6.) be divided by a (real) vector, the quotient, such as
p Ry

in which 90 and 91 are real quaternionSj but V — 1 is, as before, imaginary, ViSig 
be said to be a Biquaternion. «

215. The same distributive principle (212) may be employed in 
investigations respecting circuiiiscribed cones, and the tangents (real 
or ideal), which can be drawn to a given sphere from a given point.

(1.) Instead of conceiving that o, A, n are three given points, and that of 
position of the point B aro sought, as in 214, (2. J, which shall allow the points of in
tersection Po, Pl to be real, we may suppose that o, A, B (which may be assumed to 
be collincar, without loss of generality, since a enters only by its tensor) are now the 
data of the question ; and that limits of direction of the line OB are to be assigned, 
which shall permit tho some reality: epoPi being still drawn parallel to on, aa in 
214, (1.).

(2.) Dividing the equation Ta = T(f + xjS") by Tr, and squaring, we have

* Compare thc second Note to page 181.
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N^ = fN^l + x^^=jl + 2iS^+a:’N^i

the quadratic in x may therefore be thus written,

and its roots are real and unequal, or real and equal, or imaginary, according os

TVU — < or = or > T -;e c
that is, according os

8inEOB< or= or>T.oa:T.oe,
(3.) If E be interior to the sphere, then Tt < Ta, T(a : > 1; hut TVUj can

never exceed unity (by 204, XIX., or by 210, XV., &c.'); we have, therefore, in 
this case, thejirat of the three recent alternatives, and the two roots of the quadratic 
are necestarily real and unequal, whatever the direction of /3 may bo. Accordingly 
it is evident, geometrically, that every indefinite right line, drawn through on inter
nal point, must cut the spheric surface in two distinct and real, points.

(4.) If the point E be euperfieidt, so that Te = Ta, T (a: £) = 1, then tho first 
alternative (2.) still exists, except at tho limit for which /!-*-£, and therefore 
TVU (3 : t) = 1, in which case we have the second alternative. One root of tho qua
dratic in X is now = 0, for every direction of 3 i and the other root, namely 
X — — 2S(£:3)> is likewise always real, but ranisAes for tho case when tho angle 
EOB is right. In short, we haye here the same system of chords and of tangents, 
from a point upon the surface, as in 213 ; tho only difference being, that wo now 
write E for a, or e for a.

(5.) But finally, if e be an external point, so that Te > Ta, and T(a: t) < 1, 
then TVU (3: e) may either fall short of this last tensor, or equal, or exceed it; so 
that any one of the three alternatives (2.) may come, to exist, according to tho vary- 
iiig direction of 3*

(6.) To illustrate geometrically 
tho law of passage from one such 
alternative to another, we may ob
serve that the equation.

TVU- = T-,£ t
■or

sin EOP=T. OA: T. OB,

reprewnts (when e is thus external) 
a real eone ot revolution, with its 
vertex at the centre o of the sphere; 
and according os the line oo lies tn- 
tide this cone, or on it, or outride it, 
the first or the second or the third of 
the three alternatives (2.) is to be 
adopted i or in other words, tho line 
through E, drawn parallel (as before) to oo, either cute the sphere, or touchei it, or 
does not (really) meet it at all. (Compare the annexed Fig. 62.)

Fig. 62.
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or

-2S?+1 j;

(7.) If she still on external point, the cone of tangents which can be drawn 
from it to tho sphere is real; and the equation of this enveloping or cireumicribed 
cone, with its vertex at e, may be obtained from that of the recent cone (6.), by 
simply changing p to p — £; it is, therefore, or at least one form of it is,

TVU^—-=T-; or Sin oep = T. OA : T.'oe.
£ £

(8-) In general, if g be any quaternion, and x any scalar,
Va(g + x) = V3:T(j + x);

tho recent equation (7.) may therefore be thus written:
^V(p:£).£^^a

T.p'p:T.ep=T.oa: T.oe,
if p' bo tho foot of tlio perpendicular let fall from p on oe; and in fact the first quo
tient is evidently = sin oep.

(9.) We may also write,
TV^ = T2.T^^-iy or 0 = ^S^y-N^ + N-^N? 

or 

as another form of the equation of the circumscribed cone.
(10.) If then wo make also

N- = l, or N- = N-,a € £
to oxpress that the point p is on the enveloped spherOf ns well as on tho enveloping 
cone, we find the following equation of the plane of contact, or of what is called the 
polar plane of the point B, with respect to the given sphere:

^S^-N2y = 0; or S^-n2 = 0j

while the fact that it it a plane of contact’ is exhibited by tho occurrence of the ex
ponent 2, or by its equation entering through its square.

(11.) Tho vector.
f'=6S- = £N- = OE',t t

is that of the point e' in which the polar plane (10.) of E cuts perpendicularly tho 
right line oe ; and we see that

T£.T£' = Tn’, or T.oe.T.ok'=(T.oa)«,
as was to be expected from elementary theorems, of spherical or even of plane geo
metry.

• In fact a modern geometer would say, that wo have here a case of two coinci
dent planet of intersection, merged into a single plane of contact.
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(12.) The equation (10.), of tho polar piano of e, may easily be thus trans
formed :

I si = (s£.N-=^N* or S--N- = 0; 
P \ « P / P P fi .

it continues therefore to hold good, when t and p axe interchanged. If then we take, 
as the vertex of a new etiveloping cone, any point o external to the sphere, and 
situated on the polar plane Fn'. . of the former external point e, the new plane of 
contact, or the polar plane od' . . of tho now point c, will pass through the former 
vertex E: a geometrical relation of reciprocity, or of conjugation, between the two 
points-c and e, which is indeed well-known, but which it appeared useful for our pur
pose to prove by quaternions* anew.

(13.) In general, each of the two connected equation^

se:=N“, 
p p 

which may also be thus written,

i=(se:?\. a p a j a a'
may bo said to be a form of the Equation of Conjugation between any two points p and 
p” (not those so marked in Fig. 62), of which the vectors satisfy it; because it ex
presses that those two points are, in a well-known sense, conjugate to each other, with 
respect to the given sphere, Tp=Ta.

(14.) If one of the two points, as p', be given by its vector p', while the other 
point p and vector p are variable, the equation then represents a plane locut; 
namely, what is still called the polar plane of the given point, whether that point be 
external or internal, or on the surface of the sphere.

(16.) Let p, p' be thus two conjugate points; and let it be proposed to find tho 
points 8, s’, in which the right line pp' intersects the sphere. Assuming (comp. 25) 
that

PS^=n“
p pP'

i=(se:2.Ne=^s.e.'KP,
\ op a I - - 1 = S.-K—,a a

OS = <r = a:p + yp', ai + y = l, T<r = Ta,

and attending to the equation of conjugation (13.), we have, by 210, XX., or by 
200, VII,, the following quadratic equation in y: w,

(it + y)« = Nf it^+y^’Va:’N5 + 2xy + y«N^;
' \ a a I a a

which gives,

(IC.) Hence it is evident that, if the points of intersection s, s' are to be real, ono 
of the two points p, p' must be interior, and the other must be exterior to the sphere ; 
because, of tho two norma here occurring, one must be greater and the other less than 
unity. And because the two root) of the quadratic, or the two values of y: it, differ

• In fact, it will easily be seen that the investigations in recent sub-articics are 
put forward, almost entirety, ns exercises in the Language and Calculus of Quaternions, 
and not as offering any geometrical novelty of result.
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only by their it follows (by 2G) that the right lino rp' is harmonicatt;) divided 
(as indeed it is well known to be), at the two points s, s' at which it meets the sphere: 
or that in a notation already several times employed (25, 81, &c.), we have the Aar- 
monie formula,

(rsr's')=- 1.

(17.) From a real but internal point r, we can still speak of a cone of tangents, 
as being drawn to tho sphere: but .if so, we must say that those tangents are ideal, 
or imaginary ;• and must consider them as terminating on an imaginary circle of 
contact; of which tho real but; wholly external plane is, by quaternions, as by mo
dem geometry, recognised as being (comp. (14.)) the polar plane of the supposed 
internal point.

216. Some readers may find it useful, or at least interest- 
. ing, to see here a few examples of the application of the General 
Distributive Principle (212) of multiplication to the Ellipsoid, 
of which some forms of the Quaternion Equation were lately 
assigned (in 204, (14.) ); especially as those forms have been 
found to conduct! to a Geometrical Construction, previously 
unknown, for that celebrated and important Surface: or ra
ther to several such constructions. In what follows, it will 
be supposed that any such reader has made himself already 
sufficiently familiar with the chief formulae of the preceding 
Ailicles; and therefore comparatively few references^ will bc 
given, at least upon the present subject.

(1.) To prove, first, that tho locus of the variable ellipse, 

which locus is represented by the equation.

204, (13.)

204, (14.)

tho two constant vectors a, fi being supposed to be real, and to bo inclined to each 
other at some acute or obtuse (but not right§) angle, is a surface of the second order,

• Compare again the second Note to page 90, and others formerly referred to,
t See tho Proceedings of the Royal Irish Academy, for the year 1840.
t Compare thc Note to page 218.
§ If -t- o, the system I. represents (not an ellipse but) a pair of right linee, 

real or ideal, in which tho cylinder of revolution, denoted by the second equation of 
that system, is cut hy a plane parallel to its axis, and represented by the first equa
tion.
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in the sense that it is cut by on arbitrary rectilinear transversal in two (real or ima
ginary) points, and in no more than two, let us assume two points.!., m, or tlieir 
vectors X = OL, /( =om, as given; and let us seek to determine the points p (real or 
imaginary), in which the indefinite right line lm intersects the locus II.; or rather 
tho number of such intersections, which will bo sufficient for tho present purpose.

(2.) Making then p (25), we have, for y: e, the following quadratic
y +

equation, 
nL..(,S^+.S^y-(yV^ + /V^y = (y + z).;

without proceeding to resolve which, we see already, by its mere degree, that the num
ber sought is two; and therefore that the locus U. is, os above stated, a surface of 
the second order.

(3.) Tho equation IL remains unchanged, when - p is substituted fop p; tho 
surface has therefore a centre, and this centre is at the origin o of vectors.

(4.) It has been seen that the equation of the surface may also bo thus written; 
iv...T(se+veyi;

it gives therefore, for thoReciprocal of the radius vector from the centre, tho expres
sion, 

204, (14.)

and this expression has a real value, which never vanishes,* whatever real value may 
be assigned to the versor Up, that is, whatever direction may be assigned to p ; tho 
surface is therefore closed, and finite.

(6.) Introducing two new constant and auxiliary vectors, determined by the two 
expressions,

VI. . . prct
which give (by 125) these other expressions,

VI'...y = ^^./3,

a

we have
VII...2: + Z = 2, 

a /3

vir... “ +
7

a r '

y <5 ’

and under these conditions, y is said to be tho hermonic mean between tho two for
mer vectors, a and /3; and in liCe manner, ‘5 is the harmonic moan between a and 
— P i while 2a is tho corresponding mean between y, S; and 2/3 is so, between y 
and - S.

* It is to be rcmorahcred that we have excluded in (1.) the cose where /3 a ; 
in which case it can be shown that tho equation II. represents an elliptic cylinder.
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(G.) Under the same conditions, for any arbitrary vector p, we have the trans- 
formalions,

.x...£.Ke.se.v£,
the equation IV. of the surface may therefore be thus written:

or til us, X'. . . T^f+ K^^ = 1; 

the geometrical meaning of which new forms will soon be seen,
(7.) The system of tho two planes through tho origin, which are respectively 

perpendicular to tho new vectors y and S, is represented by the equation,

XL . . S sf 
r

combining which with the equation II. we get

Xni...l = ^s|y-(^v|y=Nf; or, XIV. . . Tp = T/3.

These two diametral planes therefore cut the surface in two circular sections, with T/3 
for their common radius; and the normals y and 5, to the same two planes, may bo 
called (comp. 196, (17.)) the cyclic normals of the surface; while the planes them
selves may be called its cyclic planes.

(8.) Conversely, if we seek the intersection of the surface with the concentric 
sphere XIV., of which the radius is T/3, we are conducted to tho equation XII. of 
thc system of the two cyclic planes, and therefore to the two circular sections (7.); 
so that every radius vector of the surface, which is not drawn in one or other of these 
two planes, has a length either greater or less than the radius T/3 of the sphere.

(9.) By all these marks, it is clear that the locus II., or 204, (14.), is (as above 
asserted) on Ellipsoid; its centre being at the origin (3.), and its mean semiaxis 
being =Tj3; while U/3 has, by 204, (16.), the direction of the axis of a circum
scribed cylinder of revolution, of which cylinder the radius is T/3; and a is, by tho 
last cited sub-article, perpendicular to the plane of the ellipse of contact.

(10.) Those who are familiar with modem geometry, and who have caught the 
notations of quaternions, will easily see that this ellipsoid II., or IV., is a deforma
tion of what may be called tho mean sphere XIV., and is homoloyous thereto; the 
infinitely distant point in the direction of /3 being a centre of homology, and either 
of the two planes XI. or XII. being a plane of homology corresponding.

217. The recent form,^C. or X'., of the quaternion equa
tion of the ellipsoid, admits of being interpreted, in such a way 
ns to conduct (comp. 216) to a simple construction of that sur
face ; which we shall first investigate by calculation, and then 
illustrate hy geometry.

2 G
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(1.) Carrying on theRomtn numerals from the sub-articles to 216, and observ
ing that (by 190, &c.),

' e-KZ-Hf, and
r p 7 0 p s

the equation X. takes the form.

or
a

XVL ... —

if we make
XVn... and ,^7^

when ( and it are two new constant vectors, and t is a new constant scalar, which wo 
shall suppose to be positive, but of which the value may be chosen at pleasure.

(2.) The comparison of the forms X. and X'. shows that y and S may be inter
changed, or that they enter symmetrically into the equation of the ellipsoid, although 
they may not at first seem to do so; it is therefore allowed to assume that

XVIII. . . Ty>T5, and therefore that XVIII'. . . ToTk; 
for the supposition Ty = TiS would give, by VI.,

T03 + a) = T(i3-a), and .-. (by 186, (6.) &c.)
which latter case was excluded in 216, (1.).

(3.) We have thus.

a<

XIX. . . Ui = Uo;
t’

XX. . . Ti^—i
Td’ 

Tt’ - Tk’
XXI.. .

(4.) Lot ABC be a plane triangle, 
such that

XXU. .. CB = i,
let also

i.E = p.
Then if a sphere, which we shall call the 
diacentric tphere, be described round the 
point o as centre, with a radius = Tic, and 
therefore so as to pass through the centre 
K (here written instead of o) of the ellip
soid, and if d be the point in which the 
line AE meets this sphere again, we shall 
have, by 213, (6.), (18.),

XXIII. . . CD = -
and therefore

xxiir... i)B = t+K-
p
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so that thc equation XVI. becomes,
XXIV. . .t’ = T.AE.T.DB.

(5.) Tho point b is external to the diacen trie sphere (4.), by the assumption (2.); 
a real tangent (or rather cone of tangents) to this sphere can therefore be draw from 
that point; and if we select the length of such a tangent as the value (1.) of the sca
lar t, that is to say, if we make each member of the formula XXI. equal to unity, 
and denote by d' tho second intersection of the right line bd with the sphere, as in 
Fig. 53, we shall have (by Euclid III.) tho elementary relation,

XXV. . . <» = T.Dn.T.BD';

whence follows this Geometrical Equation of the Ellipsoid,
XXVI. .. T.ae=T.bd';

or in a somewhat more familiar notation,
XXVII.*. . AB = bd' ;

where ab denotes the length of tho line ae, and similarly for bd'.
(6.) The following very simple Rule of Construction (comp, tlie recent Fig. 53) 

results therefore/rom onr quaternion analysis;—
From a fixed point A, on the surface of a given sphere, draw any chord AD; let 

d' he the second point of intersection of the same spheric surface with the secant bd, 
drawn from a fixed external* point B; and take a radius vector ae, equal in 
length to the line bd', and in direction either coincident with, or opposite to, the chord 
AD r the locus of the point E will be an ellipsoid, with A for its centre, and with B for 
a point of its surface.

(fi.') Or thus:—
If, of a plane hut variable quadrilateral ABXxl, of which one side ab is given in 

length and in position, the two diagonals AE, BD'he equal to each other in length, and 
if their intersection D he always situated upon the surface of a given sphere, whereof 
the side ad' of the quadrilateral is a chord, then the opposite side be is a chord of 
a given ellipsoid.

218. From either of tlie two foregoing statements, of the 
Rule of Construction for the Ellipsoid to which quaternions 
have conducted, many geometrical consequences can easily be 
inferred, a few of which may be mentioned here, with their 
proofs by calculation annexed: the present Calculus being, of 
course, still employed.

(1.) That tho corner B, of what may be called the Generating Triangle ABC, is 
in fact a point of tho generated surface, with the construction 217, (6.), may bo

* It is merely to fix the conceptions, that tho point B is here supposed to be exter
nal (5.); tlie calculations and the construction would bo almost tho same, if we as
sumed o to be an internal point, or Ti <T)c, Ty <T^.

    
 



228 iiLEMENTS OF QVATERNIOSS. [book II.

proved, by conceiving the variable chord ad of the given dineentric sphere to take tho 
position Ao; where a is the second intersection of the line ab with that spheric sur
fale.

(2.) If D be conceived to approach to a (instead of o), and therefore d' to o 
(instead of a), the direction of ae (or of adJ then tends to become tangential to tho 
sphere at a, while the length of ae (or of bd') tends, by the construction, to become 
equal to the length of bg ; the surface has therefore a diametral and circular section, 
in a plane which touches the diacentric sphere nt a, and with a radius = bg.

(3.) Conceive a circular section of tho sphere through A, mode by a plane perpen 
dicular to bc ; if d move along this circle, d' will move along a parallel circle through 
o, and the length of bd', or that of ab, will again bo equal to bo ; such then is the 
radius of a second diametral and circular section of the ellipsoid, made by the lately 
mentioned plane.

(4.) The construction gives us thus two cyclic planes tlirough A; the perpendi
culars to which planes, or the two cyclic normals (216, (7.)) of tho ellipsoid, aro 
seen to have the directions of the two sides, ca, cb, of the generating triangle abc 
(1.).

(5.) Again, since the rectangle

BA. BG = BD. bd' = bd.ae = double area of triangle ABE: sin bde, 
we have the equation,

XXVIII, . . perpendicular distance of b from ab = bg . sin bde ;
tho third side, AB, of the generating triangle (1,), is therefore the axis of revolution 
of a cylinder, which envelopes the ellipsoid, and of which the radius hos the same 
length, BG, as the radius of each of the two diametral and circular sections.

(6.) For the points of contact of ellipsoid and cylinder, we have the geometrical 
relation,

XXIX.. . BDE = a right angle; or XXIX'.. . adb = a right angle;

the point d is therefore situated on a second spheric surface, which has the line ab 
for a diameter, and intersects the diacentric sphere in a circle, whereof tho plane passes 
through A, and cuts tho enveloping cylinder in an ellipse of contact (comp. 204, 
(15.), and 216, (9-)), of that cylinder with the ellipsoid.

(7.) Let AO meet the diacentric sphere again in f, and let bf meet it again in p' 
(ns in Fig. 63); the common plane of the last-mentioned circle and ellipse (6.) can 
then be easily proved to cut perpendicularly’ the plane of the generating triangle abo 
in the line ap* ; so that the line p'b is normal to this plane of contact; and there
fore also (by conjugate diameters, &c.) to the ellipsoid, at b.

(8.) These geometrical conseguences of the construction (217), to which many 
others might be added, can all be shown to be consistent with, and couSrmed by, the 
g,iatemion analysis from which that construction itself was derived. Thus, the two 
circular sections (2.) (3.) had presented themselves in 216, (7.) ; and their two cy
clic normals (4.), or the sides CA, cb of the triangle, being (by 217, (4.) ) the two 
vectors k, t, have (by 217, (1.) or (3.) ) the directions of tho two former vectors y, i ; 
which again agrees with 216, (7.).

(9.) Again, it will be found that thc assumed relations betneen the three pairs of 
constant vectors, a, (3; y, 6; and i, k, any one of which pairs is sufflcient to deter-
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mine the ellipsoid, conduct to the following expressions (of which the investigation is 
left to thc student, as an exercise);

XXX..J.

XXXI...

the letters b, k', g referring here to Fig. 63, while afiyS retain their former mean
ings (216), and aro not interpreted as vectors of the points abcd in that Figure. 
Hence the recent geometrical inferences, that AB'(or bo) is the axis of revolution of 
an enveloping cylinder (6.), and that f'b is normal to the plane of the ellipse of con
tact (7.), agree with the former conclusions (216, (9.), or 204, (16.) ), that /3 is 
such an axis, and that a is such a normal.

(10.) It is easy to prove, generally, that
q -1 _q(?-l) (Kg+1) N?-! g g + f .
g + 1" (?+lH-K?+l) N(2 + 1)’ q-X TS{q-lf

whence

• - T(r::)o»’
whatever two vectors i and k may be. But we have here,

XXXIII.. . <2 = Ti’ - Txa, by 217, (6.) ;
the recent expressions (9.) for a and /3 become, therefore,

XXXIV. .. a=+(( + x)S—; ^ = -(«-ic)S—.
t + (C l-K

Thc lust form 204, (14.), of the etpiation of thc ellipsoid, may therefore be now thus 
written:

XXXV. ..ifs-^sS— -V-^:S— V 1;
\ « + JC c-hc l-K I- K I

in which the sign of the right part may be changed. And thus we verify by calcu
lation the recent result (1.) of the construction, namely that b is a point of the sur
face ; for we see that the last equation is satisfied, when we suppose

XXXVI. . . p = ab = «-« = /3:S-^ ‘ a
a value of p which eviilentlj' satisfies also the form 216, IV.

(11.) From the form 216, II., eombiuetl with the value XXXIV. of a, it is easy 
to infer that the plane,

XXXVIt. . .8^ = 1, or XXXVir. . . S-^ = S—. 
a i-’rK i + K

which corresponds to the value s = 1 in 216, I., touches the ellipsoid at the point B, 
of .which tho vector p has been thus determined (10); the normal to the surface, at 
that point, has therefore the direction of t + k, or of n, that is, of rn, or of f'b ; so 
that the last geometrical inference (7.) is thus confirmed, by calculation with quater
nions.

219. A few other consequences of the construction (217) niny 
be here noted; especially as regards the geometrical determination
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of the three principal semiaxes of the ellipsoid, and the major and 
minor .semiaxes of any elliptic and diametral section; together with 
the assigning of a certain system of spherical conics, of which the 
surface may he considered to be the locus.

(1.) Let a, 6, c denote the lengths of the greatest, the mean, and the least semi
axes of the ellipsoid, respectively ; then if the side no of tho generating triangle cut 
the diacentric sphere in the points u and n', the former lying (as in Fig. 53) between 
tlie points B and o, we have the values,

XXXVIII. . . fl = bh'; 6 = bg; c = nH;
so that the lengths of the sides of the triangle abo may be thns expressed, in terms 
of these semiaxes,

XXXIX. . . bc = Ti=^-|^; — ocjeB = TQi-K} = — -,— ™ a — c 
ca. = 'Vk^—^-,

and we may write,

y.Tj. •. tt = Tt + Ticj o=T( —Tk. •~T(.-x)’

(2.) If, in the respective directions of the two supplementary chords ah, ah' of the 
sphere, or in the opposite directions, we set off lines al, an, with the lengths of eh', 
BH, the points L, N, thus obtained, will be respectively a major and a minor summit 
of the surface. And if we erect, at the centre a of that surface, a perpendicular am 
to the plane of the triangle, with a length = bo, the point M (which will be common 
to the two circular sottions, and will be situated on the enveloping cylinder) will be a 
mean summit thereof.

(3.) Conceive that the sphere and ellipsoid are both cut by a plane through A, on 
which the points b' and c' shall be supposed to be the projections of b and c; then o' 
will be the centre of tbe circular section of the sphere; and if the line b'c' cut this 
new circle in the points Dj, Dj, of which Dj may be supposed to be the nearer to b', 
the two supplementary chords adi, ad2 of the circle have the directions of tho major 
and minor semiaxes of the elliptic section of the ellipsoid ; while the lengths of those 
semiaxes are, respectively, ba . bo : bd,, and ba . bo ; bds ; or bd'j and bd'i, if the 
secants bdi and bD2 meet.the sphere again in Di' and Ds'.

(4.) If these two semiaxes of the section be called a, and c„ and if we still de
note by t the tangent from b to the sphere, we have thus,

XLI. . . BDi = : fl, = acfl/’; bD2 = P : c^ = occ/’ ;
but if we denote by p, and pn the inclinations of tho plane of the section to tho two 
cyclic planes of the ellipsoid, whereto ca and CB .are perpendicular, so that tho pro
jections of these two sideS of the triangle are

XLII (<J'a =CA.8inpi = J(a-c)sinpi,
, Ic'b' = CB . sin 02 = J(“ + ®)we have ' r- >
XLIII. . , BUjS - BDi'-* = b'u2» - b'di” = 4B'tf, (7a = (a’ - «’) si" Pi sin />.; 

whence follows tbe important formula,
XLIV. . . _ a,-’ = (c ’ - fl ’) sin pi sinps;
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or in words, the known and useful theorem, that “ the difference of the inverse 
squares of the semiaxes, of a plane and diametral section of an ellipsoid, varies as 
the product of the sines of the inclinations of the cutting plane, to the two planes of 
circular section,

(6.) As verifications, if the plane be that of the generating triangle abc, we 
have

. /’i=P2 = ^, and a, = a, c, = ej

but if the plane be perpendicular to cither of tbe two sides, ca, cb, then either pi or 
P2 = 0, and = a^.

(6.) If the ellipsoid be cut by ony concentric sphere, distinct from the mean 
sphere XIV., so that

XLV. . . AE = Tp = r^ b, where r is a given positive scalar;

then
XLVI. . . BD = t»r-‘ acb-', that is, ba ;

so that the loots of what may be called the guide-point D, through which, by the 
construction, the variable semidiameter ae of tbe ellipsoid (or one of its prolongations) 
passes, and which is still at a constant distance from the given external point b, is 
now again a circle of the diacentric sphere, but one of which the plane does not past 
(as it did in 218, (3.) ) through the centre a of the ellipsoid. The point E has there
fore here, for one locus, the cyclic cone which has a for vertex, and rests on the last- 
mentioned circle as its base; and since it is also on the concentric sphere XLV., it 
must been one or other of the two spherical conics, in which (comp. 196, (11.)) the 
cone and sphere last mentioned intersect

(7.) The intersection of an ellipsoid with a concentric sphere is therefore, gene
rally, a system of two such conics, varying with the value of the radius r, and be
coming, as a limit, the system of the two circular sections, for the particular value 
r = b ; and the ellipsoid itself may be considered .as the locus of ail such spherical co
nics, including those two circles.

(8.) And we see, by (fl.), that the two cyclic planes (comp. 196, (17.), &c.) of 
any one of the concentric cones, which rest on any such conic, coincide with the two 
cyclic planes of the ellipsoid: all this resulting, with the greatest ease, from the con
struction (217) to which quaternions had conducted.

(9.) With respect to the Figure 53, which was designed to illustrate that con
struction, the signification of the letters ABCDD’EFp'onn'ut has been already ex
plained. But as regards the other letters we may here add, Ist, that x' is a second 
minor summit of the surface, so that an' = na ; Ilnd, that k is a point in which tbe 
chord af', of what we may here call the diacentric circle a^p, intersects what may 
be called the principal ellipse,* or the section nblen' of the ellipsoid, made by the 
plane of the greatest and least axes, that is by the plane of tbe generating triangle 
ABC, so that the lengths of ak and bp are equal; Ilird, that the tangent, vkv', to 
this ellipse nt thia point, is parallel to the side ab of the triangle, or to tho axis of

* In the plane of what is called, by many modern geometers,- the focal hyper
bola of the ellipsoid.
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revolution of the enveloping cylinder 218, (5.), being in fact one tide (or generatrix) 
of that cylinder; IVth, that ak, ab are thus two conjugate temidiametert of the 
ellipse, and therefore tbe tangent TBT','at the point b of that ellipse, is parallel to 
the line akf', or perpendicular to the line bff'; Vtb, that this latter line is thus the 
normal (comp. 218, (7.), (11.) ) to the same elliptic section, and therefore also to tbe 
ellipsoid, at B ; Vlth, that the least distance kk* between the parallels AB, KV, being 
= the radius b of tho cylinder, is equal in length to the line bg, and also to each of 
the two semidiameters, as, as', of the ellipse, which are radii of the two circidar 
sections of the ellipsoid, in planes perpendicular to the plane of the Figure; Vllth, 
that AS touches the circle at a ; and Vlllth, that the point s' is on the chord ai of 
that circle, which is drawn at right angles to tbe side bc of the triangle.

220. The reader will easily conceive that the quaternion equa
tion of the ellipsoid admits of being put under several other forms; 
among which,' however, it may here suffice to mention one, and to 
assign its geometrical interpretation.

(1.) For any three vectors, t, k, p, we hove thc transformations,

XLVII. . .N(l + K-\=Ni + N^+2S-^
' P PI P p p p

P t p p p IK
= n( - T-+K-T2.\=N(-Ti+K-T-'\ 

Vp ‘ P kI \p k psi

whence follows tins other general transformation :

XLVIII. . . T^t + K^. p j = T ^Ub . Tt + K

(2.) If then we introduce two new auxiliary and constant vectors, i' andB*, de
fined by the equations,

XLIX. . . t'= -Ub.Ti, b' = -Ui.Tb,
which give,

L. ..T«' = T«, T(c' = Tk, T(t'— (t') = T («— k), T.'2-TK'’ = t^
we may write the equation XVI. (in 217) of the ellipsoid under the following pre
cisely similar form:

LI. .

in which »' and e* have simply taken the places of i and b.
(3.) Retaining then the centre A of the ellipsoid, construct a new diacentric 

sphere, with a new centre o', and a new generating triangle An'o', where b' is a new 
fixed external point, but the lengths of the tides are the same, by the conditions,

LII. . Ao' = —s', c'b* = +i', and therefore ab’ = «'-b';
draw any secant b'd"»'" (instead of bdd'), and set off a line ae in the direction of
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ad", or in tlie opposite direction, with a length equal to that of dd"4 the locut of 
the point K will be the same ellipsoid as before.

(4.) The only inference which we shall here*^draw from this new construction 
is, that there exists (as is known) a second envelopini/cylinder of revolution, and that 
its axis is the side ab' of the new triangle ab'c' ; but that the radius ot this second 
cylinder is equal to that of the first, namely to the mean semiaxis, b, of thc ellipsoid; 
and that the major semiaxis, a, or the line al in Fig. 5S, bisects the angle bab', 
between the two axes of revolution of these two circumscribed cylinders : the plane 
of the new ellipse of contact being geometrically determined by a process exactly 
similar to that employed in 218, (7.); and being perpendicular to tbe new vector, 
i' + k', as the old plane of contact was (by 218, (11.)) to t + «.

Section 14.—On tke Ueduction of the General Q^uaternion 
ti) a Standard Quadrinomial Form ; with a F^rst Proof of 
the Associative Principle of Multiplication of Quaternions,

■ 221. Retaining the significations (181) of the three rect
angular unit-lines or, oj, ok, as the axes^ and therefore also 
the indices (159), of three given right versors t, j, k, in three 
mutually rectangular planes, we can express the index oq of 
any other right quaternion, such as Vy, under the trinomial 
form (comp. 62),

I. . . IVy = 0Q = a:.0H-y.0J + 2.0K;
where xyz are some three scalar coeflScients, namely, thc three 
rectangular co-ordinates of the extremity Q of the index, with 
respect to the three axes oi, oj, ok. Hence we may write 
also generally, hy 206 and 126,

II. . . Vy = xi + yj + zk = ix +jy-i- kz;
and this last form, ix +jy + kz, may be said to be a Standard 
Trinomial Form, to which every right quaternion, or the right 

part Nq of any proposed quaternion q, can be (as above) re
duced. If then we denote by w the scalar part, Sy, of the same 
general quaternion y, we shall have, by 202, the following 
General Reduction of a Quaternion to a Standard (^uadri- 
NOMiAii Form (183): i

* If room shall allow, a few additional remarks may be made, on tlie relations 
of tho constant vectors i, k, &c., to the ellipsoid, and on some other constructions of 
that surface, when, in the following Book, its equation shall come to be put under the 
new form,

T(tp + pk) = K* — I*.
2 H
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III. . . q = (S^ + =) w + ix vjy^kz-,

in which the /i?Kr scalars^ wxyz, may be said to be the Four ' 
Constituents of the Quaternion, it is evident (comp. 202,
(5.), and 133), that if we write in like manner,

IV. . . y' = w' + ixl + kz^ 
where ijk denote the same three given right versors (181) as 
before, then the equation

.V.../ = g,

between these two quaternions, q andy', includes the four follow
ing scalar equations between the constituents:

VI. ..w'=w, a! = x, y-y, z! = z\
which is a new justification (comp. 112, 116) of the propriety 
of as we have done throughout the present Chapter,
the General Quotient of two Vectors (101) a Quaternion.

222. When the Standard Quadrinomial Form (221) is 
adopted, we have then not only

I. . . Sq~w, and Vq = ix.^jy + kz,
as before, but also, by 204, XI.,

II. . . Kj = (Sj - Vj =)w - ix-jy - kz.
And because the distributive property of multiplication of qua
ternions (212), combined with the lares of of the symbols ijk 
(182), or with the General and Fundamental Formulce of this 
whole Calculus (183), namely with the formula,

= ^2 = ijk = - 1,

gives the transformation,
III. . . (ix +jy + kz)"^ = - (x^ + y^^- z'^'),

we have, by 204, &c., the following new expressions:

IV. . . NVj = (TVj)’ =■*— yq^ => x"* + y"^ + z'^ 
y. . . TVj = V (a;’ + ^’‘4- z’’) ;

VI. . . UVj = (ix + jy + kz) : V (®’ + 2/’ 5
VII. . . Nj = Tj’ = Sj'^ - Vj’ = w’ + re’ + y’ + ;

VIII. . . Tj = V (W* + a:’ + »/’ + 3’) ;
IX. . . Uj = (w + Zic +jy + Az) : .j (w'^ + x'^^-y^^ z^) ;

(A)
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. SUg = to: V + 2/’ +’>
XI, . . V’U}' = (ix (w’ + a:’ + t/’ + sP};

> _ I x^ + y^ + z^
+ x^ -i- y’ + z’‘'

(1.) To prove the recent formula III., we may arrange as follows the steps of 
the multiplication (comp, again 182) :

Vj = ix +jy + hx,
Vj = ta:+jy + *s;

fa:. VJ = - a’ + hxy —Jxx;
jy-'^<i=-y^-^y^ ^^y^r
hz • +j^x-ixy,
Vqi = Vq .'Vq = - a’ - — a’.

(2.) We have, therefore,
XIII. . . (fa+jy + Aa)’ = -1, if a:’+y*+z’ = l,

a result to which we have already alluded,* in connexion with the partial indeter
minateness of signification, in the present calculus, of the symbol V — 1, when consi> 
dered as denoting a right radial (149), or a right versor (153), of which the plane 
or the axis is arbitrarg.

(3.) If q' = q'q, thfei Nj''=N3'.Nj, by 191, (8.); but if j = io+&c., 
9' = io' + &c., j"=»" + &c., then

XIV. . .

w" = win — (.r'ic -|-y y + z'z), 
x" = (w'x + x'w} + (y'2 - 
y" = (?>'y+y'“’)+ 
x" = (w'z + x'w} + (xg-g'x) ;

and conversely these four scalar equations, are jointly equivalent to, and may be 
summed up in, the quaternion formula,

XV. ,. wf' +ix" +jy" + ix''=:(u)’+ix'+jy'+hx') (la + ix+fy + hx) ; 
we ought therefore, under these conditions XIV., to have the equation,

XVI. . . «>''» + x"^+g'’^ + x"‘ = (^u>'> + x'>++ z’) (w’ + + y’ + x’) ;
which can in fact be verified by so qg,sy an algebraical calculation, that its truth 
may, bo said to be obvious upon mere inspection, at least when the terms in the four 
quadrinomial expressions to".. z'' are arrangedf as above.

* Compare the first Note to page 131; and that to page 162.
f From having somewhat otherwise arranged those terms, the anther had some 

little trouble at first, in verifying that the twenty-four double products, in the ex
pansion of U)''* + &c., destroy each other, leaving only the sixteen products of squares, 
or that XVI, follows from XIV., when he was led to anticipate that result through 
quaternions, in the year 1843. He believes, however, that the algebraic theorem 
XVI., aa distinguished from the quaternion formula XV., with which it is herecon- 
iioctcJ, had been discovered by the celebrated Evi.kr.
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223. The principal which we shall here make of the 
standard quadrinoniial form (221), is to prove by it the gene-- 
ral associative property of'multiplication of quaternions; which 
can now with great ease be done, the distributive* property 
(212) of such multiplication having been already proved. In 
fact, if we write, as in 222, (3.),

' q =w + ra: + jy + liz, 
.< q' =w' -i- ta:' -I jy' -k kz, 
f = w" -F ix' -^jy" -(■ kz",

without now assuming that the relation q" = qqa any other 
relation, exists between the three quaternions q, q, q", and 
inquire whether it be true that the associative formula,

U. . . qq .q = q .qq,
■holds good, we see, by the distributive principle, that we have 
only to try whether this last formula is valid when the three 
quaternion factors q, q', q are replaced, in. any one common 
order on both sides of the equation, and with or without repe
tition, by the three given right versors ijk; but thih has al
ready been proved, in Art. 183. We arrive then, thus, at the 
important conclusion, that the[G eneral Multiplication of Qua
ternions is an Associative Operation, as it had been previously 
seen (212) to be a Distributive one: although we had also 
found (168, 183, 191) that stick Multiplication is not (in ge
neral) Commutative: or that the two products, q'q and qq', are 
generally unequal. We may therefore omit the, point (as in 
183), and may denote each member of the equation II. by the 
symbol f'fq-

(1.) Let t) = V5, »' = ¥}', v” = '^q" 60 that », v" are any three right qua
ternions, and therefore, by 191, (2.), and 196, 204,

K«,'v = i)o', So'o = -(»'» +on’), Vo'n= i(n'o —nw').

Lot this last right quaternion be colled u„ and let Sn'o =*„ so that o'o = *, 4- ; we
shall then have the equations,

•— --- 1______________ -— -------------- -
• At a later stage, a sketch -w ill be given of at least ono proof of this a!lasociaUee 

Principle of ihiltiplication, which will not preeuppoae the distributive Principle.
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2Vo''o, = o"o, — vd'i 0 = o"s, — s,o" ;
whence, by addition,

2Vo"o, = o". o'o - v'v.v" 
= (v'V + o'o")o - o'(o"o -)- vo"} 
= 2oSo'o" — 2o'So"o;

and therefore generally, if o, o', o" be still right, as above,
III. . . V. o"Vo'o =oSv'o" —c'So''o;

a formula with which the student ought to mahe himself completely familiar, on ac
count of its exteusive utility.

(2.) With the recent notation.’,
V. v'Sv'v = Vo"», = o"s, = v"Svv';

we have therefore this other very useful formula,
IV. .. V. o"o'o = oSo'o"- »'So"n + o"Soo',

where the point in th6 first member may often for simplicity be dispensed with ; and 
in which it is still supposed that

Z. 0 = z. o' = Z o" = ^.
it

(3.) The formula III. gives (by 206),
V. . . IV, o"Vo'o = Io. So'o" — Io'. So"o;

hence this last vector, which is evidently eomplanar with the two indices Io and Io', 
is at the same time (by 208) perpendicular to the third index Io", and therefore (by 
(1.) ) complanar with the third quaternion q".

(4.) With the recent notations, the vector,
VI. . . Io, = IVo'o = IV(Vg'.Vg),

is (by 208, XXII.) a line perpendicular to both Io and Io'; or common to the planes 
of q and g’; being also such that the rotafton round it from Io'to Io is positive : 
while its length,

TIo,, or To,, or TV.o'o, or TV(Vg'. Vj),
,bears to the unit of length the same ratio, as that which the parallelogram under the 
indices. Io and Io', bears to the unit of area.

(6.) To interpret (comp. IV.) the scalar expression,
VII. .. Sv"o'v“So"o, = S.o"Vo'o,

(because So"a,=» 0), we maj’ employ the formula 208, V.; which gives the the trans
formation,

VIII... = Tv". Ti),. cos (n- - a);

where T»" denotes the length of the Zine I»", and To, represents by (4.) the area 
(positively taken) of the parallelogram under Io' and lo; while x is (by 208), the 
angle between the two indices Io", Io,. This angle will be obtnte, and therefore the 
cosine of its supplement will be positive, and eqoal to the sine of the inelination of 
the line Io'' to the plane oflv and Io', if the rotation round Io" from Io' to Io bo 
negative, that is, if the rotation round Io from Io' to Io" be positive ; but that cosine 
w ill bo equal the negative of this sine, if the direction of this rotation bo reversed. 
We have therefore tho important interpretation :

IX. . . Sr"!''o = + volume of parallelepiped under Io, Io', Io";
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the upper or the lower sign being taken, according as tbe rotation round Io, from 
I»' to I»", is positively ot negatively directed.

(&.') For example, we saw that the ternary products ijk and hji have scalar va- ’ 
lues, namely.

= -1. ■ = + 1, by 183, (1,), (2.);
and accordingly the parallelepiped of indices becomes, in this case, an unit-cube ; 
while the rotation ronnd the index of from that of J to that of k, is posftioe (181).

(7.) In general, for any three right quaternions vv'v", we have the formula,
X. . . Svu'v'' = — Sv"v'v ;

and when the three indices are complanar, so that the uoZunte mentioned in IX. va
nishes, then each of these two last scalars becomes zero ; so that we may write, as a 
new formula of Complanarity ;

XI, . . S0"»'« = 0, if Io" 111 Io’, tv (123) : 
white, on the other band, this scalar cannot vanish in any other case, if the quater
nions (or their Indices) be still supposed to be actual (1, 144); because it then re
presents an actnal volume.

(8.) Bence also we may establish the following Formula of Collinearity, for any 
three quaternions :

Xn. . .a(yq".Vq'.yqj = 0, if IVg" IIIIV9', IVg; 
that is, by 209, if the planes ot q, q', q" have any common line.

(t>.y In general, if we employ the standard trinomial form 221, II., namely, 
t) = Vg = ia!-)-jy-l-Al, o' = fa!' + &c., o"= ix" 4-&c.,

the laws (182, 183) of the symbols i,j, h pve the transformation,
Xin. . . Sv''vv = x"(z'y~y'z)-{-y"(x'z-z’xj + zl’ty'x-x’y')', 

and accordingly this is the known expression for the volume (with a suitable sign) 
of the parallelepiped, which has the three lines op, op', op" for three co-initial 
edges, if the rectangular co-ordinates* of the four corners, o, p, p', p" be 000, xyz, 
x'y'z, x"y"z".

(10.) Again, as another important consequence of the general associative pro
perty of multiplication, it may he hero observed, that although products of more than* 
two quaternions have not generally equal scalars, for all possible permutations of the 
factors, since we have just seen a case X. in which such a change of arrangement 
produces a change of sign in the result, yet cyclical permutation is permitted, under 
the tign S; or in symbols, that for any three quaternions (and tbe result is easily ex
tended to any greater number of such factors) the following formula holds good: 

XIV. . . aq''q'q = aqq"q'.
In fact, to prove this equality, we have only to write it thus, 

XIV'...S(g"g'.g) = S(?.g"g’), 
aud to remember that the scalar of the product of any two quaternions remains unal
tered (198, I.), when the order of those two factors is changed.

• Tins result may servo ns on example of the manner in which guatemione, 
although not bated on any usual doctrine of co-ordinates, may yOt be employed to 
deduce, or to recover, and often with groat case, important co-ordinate expressions.
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(11.) In like manner, by 192, II., it may be inferred that
XV... K'qq'q v K (}". q'q) = Kg'q. Kg" = Kg. Kg'. Kg”,

with a corresponding result for any greater number of factors; whence by 192,1., 
if ng and H'g denote the products of any one set of quaternions taken in two op
posite orders, we may write,

XVI. . . KHg = n'Kg; XVII. . . Rllg = n'Bg.
(12.) But if o be right, as above, then Kt, = — v, by 144; hence,

XVIII. . . Kn» = +n'B; XIX. . . StiB = + Sn'e; XX. . . Vno = + Vn’v; 
upper or lower signs being taken, according as the number of tho right factors is 
even or odd; and under the same conditions,

XXI. .. SHo = i (rf” ± n'v); XXII. . . VHb = i (Bb + n’v);
as was lately exemplified (1.), for the case where the number is two.

(18.) For the case where that number is three, the four last formula; give, 
XXIII. •. . So'Vt) = — Sbv'p" = 5 (v"v'v — vv'v"); *“
XXIV. . . V8"p'p=+Vpb'p'' = ^(0'0'0 + pp'p");

results which obviously agree with X. and IV.

224. For tbe case of Complanar Quaternions (119), the power of 
reducing each (120) to tbe form of a fraction (101) which shall have, 
at pleasure  ̂for its denominator or for its numerator, any arbitrary 
line in the given plane, furnishes some peculiar facilities for proving 
the commutative and associative properties of Addition (207), and the 
distributive and associative properties of Multiplication (212, 223); 
while, for this case of multiplication of quaternions, we have already 
seen (191, (1.) ) that the commutative property also holds good, as 
it does in algebraic multiplication. It may therefore be not irrele
vant nor useless to insert here a short Second Chapter on the subject 
of such complanars: in treating briefly of which, while assuming as 
proved tbe existence of all the foregoing properties, we shall have an 
opportunity to say something of Powers and Boots and Logarithms; 
and of the connexion of Quaternions with Plane Trigonometry, and 
with Algebraical Equations. After which, in the Third and last 
Chapter of this Second Book, we propose to resume, for a short time, 
the consideration of Diplanar Quaternions; and especially to show 
how the Associative Principle of Multiplication tan be established, 
for them, without* employing the Distributive Principle.

* Compare the Note to page 236,
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CHAPTER II.

ON COMPLANAR QUATERNIONS, OR QUOTIENTS OF VECTORS IN 
ONE PLANE; AND ON POWERS, ROOTS, AND 

LOGARITHMS OF QUATERNIONS.

Section 1.— On Complanar Proportion of Vectors; Fourth 
Proportional to Three, Third Proportional to Two, Mean 
Proportional, Square Root; General Reduction of a Qu^~ 
ternion in a given Plane, to a Standard Binomial Form.

225. The Quaternions of the present Chapter shall all be 
supposed to be complanar (119); their common plane being 
assumed to coincide with that of the given right versor i (181). 
And all the lines, or vectors, such as a, (3, y, &c., or ae, oi, 02, 
&c., to be here employed, shall be conceived to be in that 
given plane of i; so that we may write (by 123), for the pur
poses of this Chapter, the formulas of complanaritg;

226. Under these conditions, we can always (by 103, 117) 
interpret any symbol of the form (/3 '• a) y, as denoting a line 
S in the given plane; which line may-also be denoted (125) 
by the symbol (7 : a). /3, but not* (comp. 103) by either of the 
two apparently equivalent symbols, {^.yf.a, (y.p)a; *80 
that we may write,

a a
and may say that this line 8 is the Fourth Proportional to the

In fact the symbols /3. y, y. /3, or /3y, y/3,have not as yet received with,us 
any interpretation ; and even when they shall come to bo interpreted as represent
ing certain quaternions, it will be found (comp. 1C8) that tho two combinations, 

— y and —, have generally different significations.
a a
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three lines a, (3, y; or to the three lines a, 7, j3; the two 
Means, (3 and 7, of any such Complanar Proportion of Four 
Vectors, admitting thus of being interchanged, as in algebra. 
Under the same conditions we may write also (by 125),

TT y n 8 «r,“•••“■si'-sPi ■I’-p—pSi

BO that (still as in algebra) the two Extremes, a and 8, of any 
such proportion of four lines «, /3, 7, 8, may likewise change 
places among themselves : while we may also make the means 
become the extremes, if we at the same time change the ex
tremes to means. More generally,, if c, j3, 7, 8, £ . . . be any 
odd number of vectors in the given plane, we can always find 
another vector p in that plane, which shall satisfy the equa
tion,

III..; ® 7 TTTi £ 7 a ,••.gpa = p, or III... =

and when such a formula holds good, for any on& arrangement 
of the numerator-lines a, 7, e, ... and of the denominator-lines 
p, J3, S .. . it can easily be proved to hold good also for any 
other arrangement of the numerators, and any other arrange
ment of the denominators. For example, whatever four (com
planar) vectors may be denoted by jSySe, we have the trans
formations.

iir... . .

the two numerators being thus interchanged. Again,

TV' «2«I®_f2bvTV-

so that the two denominators also may change,places.
221. An interesting case oi such proportion (226) is that 

in which the means coincide; so that only three distinct lines, 
such as a, (3, yt are involved: anil that we have (comp. Art. 
149, and Fig. 42) an equation of the form,

I. . .7 = ?/3, or «=^/3.
a y

2 I
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but not’* y fc: : a, nor « = (8/3 : y. In this case, it is said that
the three lines ajiy form a Continued Proportion; of which a 
and y are now the Extremes, and /3 is the Mean: this line /3 
being also said to be of Mean Proportional between the two 
others, a and y; while y is i/ze Third Proportional to the two 
lines o and (3; and a is, at the same time, the third propor
tional to y and /3. Under the same conditions, we have

so that this mean, (3, between a and y, is also the/oMr/Zz/zra- 
portional (226) to itself, as first, and to those tioo other lines. 
We have also (comp, again 149),

whence it is natural to write,

and therefore (by 103), 

_ (a\\ 
y \7/’

although we are not here to write j3 = (>ya)i, nor /3 = (a7)4. 
But because we have always, as in algebra (comp. 199, (3.) ), 
the equation or identity, (- y)® = y”, we are equally well enti
tled to write,

the symbol denoting thus, in general, either of two opposite 
quaternions, whereof however one, namely that one of which 
the angle is acute, has been already selected in 199, (1 •), as that 
which shall be called by us tJie^Square Root of the quaternion

♦ Compare the Note to the foregoing Article,
+ We soy, a mean proportional; because we shall shortly see that the opposite 

line, — p, is in the same sense another mean; although a rule will presently be given, 
for distinguishing between them, and for selecting one, as that which may be called, 
by eminence, the mean proportional.

    
 



CHAP. Il.j CONTINUED PROPORTION,,MEAN PROPORTIONAL. 243

q, .and denoted by V?- We may therefore establish the for
mula, 

if a, (i) y form, as above, a continued proportion; the upper 
signs being taken when (as in Fig. 42) the angle aoc, between 
the extreme lines «, y, is bisected by the line on, or /3, itself’, 
but the lower signs, when that angle is bisected by the opposite 
line, - p, or when /3 bisects the vertically opposite angle (comp, 
again 199, (3.) ): but the proportion of tensors,

VIII. ...T7:T/3 = T/3:Ta, 
and thc resulting formulae,

IX. . . T/3= = Ta .Ty, T/3 = V (Ta .Ty), 
iu eacA case holding good. And when we shall speak simply 
of the 'M.ean Proportional between ttoo vectors, a and y, which 
make any acute, or right, or obtuse angle with each other, "we 
shall always henceforth understand the former of these two 
bisectors; namely, the bisector on of that angle aoc itself, and 
not that of the opposite angle: thus taking upper signs, in the 
recent formula VII.

(1.) At the limit when the angle aoc vanishes, so that Uy= Ua, then U/3— 
each of these two unit-lines; and tbe mean proportional /3 has the same common 
direettoa as each of tbe two given extremes. This comes to our agreeing to write,

X. . . VI = + 1, and generally, X', . . V(a’)=+ a,
if a be any positive scalar.

(2.) At tlie other limit, when aoo = w, or Uy =—Un, the length of the mean 
proportional (3 is still determined by IX., as tho geometric mean (in tho usual sense) 
between the lengths of the two given extremes (comp, the two Figures 41); but, 
even with the supposed restriction (225) on tho plane in which all the lines are 
situated, an ambiguity arises in this case, from the doubt toAtcA of the two opposite 
perpendiculars at o, to the line AOC, is to be taken as the direction of the mean vec
tor. To remove this ambiguity, wo shall suppose that the rotation round the axis 
of i (to which axis all the lines considered in this Chapter are, by 225, perpendicu
lar), from the first line oa to the second line on, is in this case positive; which 
supposition is equivalent to writing, for present purposes,

XI.» . . V-l = + i; and XI'. .. V(-aS) = fa, if a>0.

* It is to be carefully observed that this square root of negative unity is not, in 
any sense, fmnjiinary, nor even ambiguous, in its geometrical interpretation, but 
denotes a real and given right versor (181).
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And thus the mean proportional between two vectors (in the given plane) becomes, 
in all cases, determined; at least if their order (^as first and third) be given.

(3.) If the restriction (226) on the common plane ot the lines, were removed, yte 
might tAen, on the recent plan (227), fix definitely the direction, as well as tlie 
length, of the mean on, in every case but one: this excepted case being that in 
which, as in (2.), the twoywen extremes, o&, oc, have exactly opposite directions; so 
that the angle (aoc = w) between them tins no one definite bisector. In this case, the 
sought point B would have no one determined position, but only a locus : namely thc 
circumference of a circle, with o for centre, and with a radius equal to the geome
tric mean between oJ, oc, while its plane would be perpendicular to the given right 
line AOC. (Comp, again the Figures 41; and the remarks in 148, 149, 163, 154, 
on the square of a right radial, or versor, and on the partially indeterminate cha
racter of the square root of a negative scalar, when interpreted, on the plan of this 
Calculus, as a real in geometry.)

228. The quotient of any two complanar and right quater
nions has been seen (191, (6.) ) to be a scalar; since then we 
here suppose (225) that q ||| t, we are at liberty to write,

I. . .Sg = a!j ¥5:1 = ^; 'Vq = yi = iy',
and consequently may establish the following Reduction of a 
Quaternion in the given Plane (of t) to a Standard Binomial 
Form* (comp. 221):

IL..g=a; + «f, if g-HI»5
X and y being some ftoo scalars, which may be called the two 
constituents (comp, again 221) of this binomial. And then an 
equation between two quaternions, considered as binomials of 
this form, such as the equation,

III. . . q' = q, or III'. . . a:' + iy = x + iy, 
breaks up (by 202, (6.) ) into fwo scalar equations between 
their respective constituents, namely,

IV. . . x' = x, y' = y, 
notwithstanding the geometrical reality of the right versor, i.

(I.) On comparing the recent equations II., III., IV., with those marked os III.,
V., VI,, in 221, we see that, in. thus passing from general to complanar quaternions, 
we have merely suppreieed the eoefficiente ofj^ and Je, as being forjjur present purpose, 
auH ; and have then written x and y, instead of w and x.

* It in permitted, by 227, XL, to write thia expression ns x + y V — 1; but tho 
form X + ty is shorter, anil perliaps loss liable to any ambiguity of interpretation.
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(2.) As the word “ binomial” has other meanings in algebra, it may%e conve
nient to call tbe form II. a Couple ; and the two constituent scalars x and y, of 
which the values serve to distinguish one such couple from another, may not unna
turally be said to be the Co-ordinates of that Couple, for a reason which it may be 
useful to state.^

(3.) Conceive, then, that thc plane of Fig. 50 coincides with that of t, and that 
positive rotation round Ax.f is, in that Figure, directed towards the left-hand; 
which may be reconciled with our general convention (127), by imagining that this 
axis of i is directed from o towards the hack of the Figure; or bela/o* it, if horison- 
taL This being assumed, and perpendiculars bb', bb" being let fail (as in tbe Fi
gure) on the indefinite line oa itself, and on a normal to that line at o, which nor
mal we may call oa', and may suppose it to have a length equal to that of oa, with 
a left-handed rotation aoa', so that

V.. . OA' = ».OA, or briefly, V'. ..o'=ia, 
while /3' = ob', and /3"=ob", as in 201, and j =j3: a, as in 202; 

then, on whichever side of the indefinite right line OA tbe point b may be situated, 
a comparison of the quaternion g with the binomial form II. will give the two equa
tions.

VI... a:(=Sg) = /3':a; y(=Vg:i = |3";fa)=/3'':a'-, 

so that these two scalars, x and y, are precisely the two rectangular co-ordinates of 
the point B, referred to the two lines OA and oa', as two rectangular unit-axes, ot- 
the ordinary (or Cartesian) kind. And once every other quaternion, g’ = x' + iy', 
in the given plane, can be reduced to the form y : a, or oc: oa, where o is a point 
in that plane, which can be projected into c' and o" in the same way (comp. 197, 
205), we see that the two new scalars, or constituents, x' and y', are simply (for 
the same reason) the co-ordinates of the new point c, referred to the same pair of 
axes.

(4.) It is evident (from the principles of the foregoing Chapter), that if we thus 
express as couples (2.) any two complanar quaternions, g and g', we shall have the 
following general transformations for their sum, difference, and product:

VII... g'+g = (»'+») + «(y'±y):
VIII. . . g'.g = (x'x—y'y) + «(x'y + y'x).

Q5.') Again, for any one such couple, g, wo have (comp. 222) not only Sg = x, and 
Vg = iy, as above, but also,

IX.. .Kg=x-.y; X.. . Ng = x»+y='i XI. . . T9=V(x>+y3);

XII. . . Ug = --^i^ ; Xni. . . - = ; &c.
V(.v’+y’’) q »’+y’

(6.) Hence, for the quotient ot any two such couples, we have,

.Ko;

xni...

Compare tlie aecond Note to page 108.
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(7.) Jbe lata of the norms (191, (8.) ), or tho formula, Ng'g =Ng'. Nj, is ex
pressed hero (comp. 222, (3.)) by the well-known algebraic equation, or identity,

XV... («”+/’) (a:’-fy*) = (x'x -y'y)’ + (x'y+y’x)’;

in which xyx'y' may be any/owr scalars.

Section 2.— On Continued Proportion of Four or more Vec
tors ; TKhole Powers and Roots of Quaternions; and Roots 
of Unity.

229. The conception of continued proportion (227) may 
easily be extended from the case of three to that of four or 
more (complanar) vectors; and thus a theory may be formed 
of cubes and higher whole powers of quaternions, with a corre
spondingly extended theory of roots of quaternions, including 
roots of scalars, and in particular of unity. Thus if we sup
pose that the four vectors aj3yS form a continued proportion,

' expressed by the formulte,
1...^ = ^ = ^, whence IL . . jS = f&V, 

y p a a y p a \a J
(by an obvious extension of usual algebraic notation,) we may 
say that the quaternion S: a is the cube, or the third power, of 
13:a; and that the latter quaternion is, conversely, a cube
root (or third root) of the former; which last relation may na
turally be denoted by writing,

III. . . ^ = or Iir. . . /3 = (1^0 (comp.227,IV.,V.).

230. But it is important to observe that as the equation 
q- = Q, in which y is a sought and Q is a given quaternion, 
was found to be satisfied by two opposite quaternions q, of the 
form ± y Q (comp. 227, VII.), so the slightly less simple 
equation 5’ = Q is satisfied by three distinct and real quater
nions, if Q be actual and real; whereof each, divided by either 
of the other two, gives for quotient a real quaternion, which 
is equal to one of the cube-roots of positive unity. In fact, if 
wo conceive (comp, the annexed Fig. 64) that /3' and /3" are 
two other but equally long vectors in thc given plane, ob-
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tained from /3 by two successive and positive rotations, each . 
through the third part of a circumference, 
so that 3IV..

or 
IV'..

and therefore

we shall have

VI.
a

eo that we are equally entitled, at this stage, to write, instead 
of III. or III'., these other equations:

VII...^' = W, i3'=R«;

or

231. A (real and actual) quaternion Q may thus be said 
to have three (real, actual, and) distinct cube-roots ; of which 
however only one can have an angle less than sixty degrees ; 
while none can have an angle equal to sixty degrees, unless the 
proposed quaternion Q degenerates into a «caZar. In
every other case, one of the three cube-roots of Q, or one of the 
three values of the symbol Ql, may be considered as simpler 
than either of the other two, because it has a smaller angle 
(comp. 199, (1.) ) 5 and if we, for the present, denote this one^ 
which we shall call the Principal Cube-Root of the quaternion 
Q, by the symbol we shall thus be enabled to establish 
the formula of inequality,

VIII... if

232. At the limit, when Q degenerates, as above, into a negative 
scalar, one of its cube-roots is itself a negative scalar, and has therc-
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fore its angle = w; while each of the two other roots has its angle 
TT *=-. In case, among these two roots of which the angles are 
o

equal to each other, and are less than that of the third, we shall 
consider as simpler, and therefore as principal, the one which an
swers (comp. 227, (2.) ) to a positive rotation through sixty degrees; 
and so shall be led to write,

IX...y-l = l±p<^; and X. ..Z^-l=^;

using thus the positive sign for the radical 3, by which i is multi
plied in the expression IX. for 2^-1; with the connected for
mula.

IX'... y(-o") = 5(l +»V3), if a>0;

although it might at first have seemed more natural to adopt ns 
principal the scalar value, and to write thus,

which latter is in fact one value of the symbol, (- 1)*.

(1.) We have, however, on the present plan, as in arithmetic,

XI.. . ^1 = 1; and XI'.. . .^(a’) = o, if o>0.

(2.) 'The equations,

can be verified in calailation, by actual cubing, exactly as in algebra; the only dif
ference heing, as regards the conception of the subject, that although t satisfies tho 
equation P = — 1, it is regarded Acre as altogether recd; namely, as a real right ver
sor* (181).

233. There is no difficulty in conceiving how the same general 
principles may be extended (comp. 229) to a continued proporiion 
of n +1 complanar vectors,

I. . . a, a„ flg, . . .

* This conception differs fundamentally from one which had occurred to seve
ral able writers, before the invention of the quaternions; and according to which 
the symbols !• and V — 1 were interpreted as representing a pair of equally long and 
mutually rectangular right lines, tn a given plane. In Quaternions, no line is repre
sented by tho number. One, except as regards its length ; the reason being, mainly, 
that we require, in the present Calculus, to bo able to deal with all possible planes ; 
and that no one right line is common to all such.
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when n is a whole number greater than three; nor in interpreting, 
in connexion therewith, the equations,

11...^ .(SY; IV...a.=f^\\
a \a J a \a ) \a J

Denoting, for the moment, what we shall call the principal «** root 
oi a quaternion Q by the symbol Q, we have, on this plan (comp. 
231, VIII.),

V. ..Z.y/Q<^, if zQ<’r;

VI. . . z ("/- 1) = VII.. . V(^- 1):i>Oi

this last-condition, namely that there shall be a positive (scalar) co
efficient y of«, in the binomial {ov couple') form x-^iy (228), for the 
quaternion I/”- 1, thus serving to complete the determination of 
that principal n*’' root of negative unity; or of any oZSer negative sca
lar, since — 1 may be changed to - a, if a > 0, in each of the two last 
formula. And as to the general n** root of a quaternion, we may 
write, on the same principles,

Vlll .. Qr=l^ . yQ;
I

where the factor 1», representing the general n'* root of positive 
unity, has n different values, depending on the division of the cir
cumference of a circle into n equal parts, in the way lately illus
trated, for the case « = 3, by Figure 54; and only differing from 
ordinary algebra by the reality here attributed to «. In fact, eocA 
of these roots of unity is with us a real versor i namely the quo
tient of two radii of a circle, which make with each other an angle, 
equal to the part of some whole number of circumferences.

(1.) We propose, however, to interpret the particular symbol aa always de
noting tbe principal valve of the n*i> root of t; thus writing,

whence it will foUow that when this root is expressed under the form of a couple 
(228), the two constitnents x and y shall both be positive, and the quotient y: x 
shall have a smaller value than for any other couple x + iy (with constituents thus 
positive), of which the power equals «.

(2 ) For example, although the equation .

is satisfied by tho two values, ± (1 + f): ^2, -we shall write definitely,
2 K
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(8.) And although .the equation,

is satisfied by the three distinct and real couples, (i + V3): 2, and -1, we shall adopt 
only the one value, *

(4.) In general, we shall thus have tho expression,

- rr . . wXII. . . t" = cos— + J sin — ;2n 2n

which we shall occasionally abridge to the following:

Xir. . .i» = cis^;
2n’

1
and this root, i", thus interpreted, denotes a versor, which turn* any line on which it 
operates, through an angle equal to the «“■ part of a right angle, in the positive di
rection of rotation, round tho given axis of i.

234. If TO.and n be atty two positive whole numbers, and q 
any quaternion, tbe definition contained in the formula 233,
II., of the whole power, q", enables us to write, as in algebra, 
the two equations:

I- . . ; II. . . (y")™ = J’"";

and we propose to extend the former to the case of null and 
negative whole exponents, writing therefore,

III. . . 1 ; IV. . . q'^-”=q'^-. q^.-,
and in particular,

V. . . J'* = 1: y = - = reciprocaZ* (134) of q-

Wq shall also extend the formula II., hy writing

VI. . . (2")™ = q^, 
whether m be positive or negative; so that this last symbol, 
if TO and n be still whole numbers, whereof n raay be supposed 
to be positive, has as many distinct values as there are units in 
the denominator of its fractional exponent, when reduced to its

* Compare tho Noto to pogo 121.
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least terms; among which values of q", we shall naturally 
consider as the principal one, that which is the poxver of 
the principal n"* root (233) of q.

(I.) For example, thc symbol 5I denotes, on this plan, the st^nare of any eule- 
root otq-, it has therefore three distinct values, namely, the three values of the caie- 
root of the equate of thc same quaternion j; but among these we regard as principal, 
tho square of the principal cube-root (231) of that proposed quaternion.

(2.) Again, tbe symbol is interpreted, on tho same plan, as denoting the 
square of any fourth root of q; hut beoauso (U)’ = 1* = + 1, this square has only 
too distinct values, namely those of tho square root qi, the fractional exponent J 
being thus reduced to its least terms; and among these thc principal value is tlie 
square of the principal fourth root, which square is, at tho same time, tho principal 
square root (199, (1.), or 227) of the quaternion q.

(3.) The symbol q-i denotes, as in algebra, the reciprocal of a square-root of 7; 
while q~* denotes the reciprocal of the square, &c.

(4.) If the exponent t, in a symbol of the form j', bo still a scalar, but a surd (ot 
iucoramensurablo), we may consider this surd exponent, t, as a limit, towards which 
a variable fraction tends: and the symbol itself may then be interpreted as the corre
sponding limit of a fractional power of a quaternion, which has however (in this case) 
indefinitely many values, and can therefore be of little or no use, until a selection 
shall have been made, of one value of this surd power as principal, according to a law 
which will be best understood by the introduction of the conception of tho amplitude 
of a quaternion, to which in the next Section we shall proceed.

(6.) Meanwhile (comp. 233), (4.) ), we may already definitely interpret the sym
bol i‘ as denoting a versor, which turns any line’ in the given plane, through t right 
angles, round Ax. i, in the positive or negative direction, according as this scalar ex
ponent, t, whether rational or irrational, is itself positive or negative; and thus may 
establish the formula, ,

VII. .. «■' = cos ~ -f fsin ;

or briefly (comp. 233, XII'.), »
..- = cis-.VIII..

Section 3.— On the Amplitudes of Qxtaterniuns in a given 
Plane; and on Trigonometric Expressions fir such Quater- 
nions^ and for their Powers.

235. Using the binomial or couple firm (228) for a qua
ternion in the plane of i (225), if we introduce two new and 
real scalars, r and z, whereof the former shall be supposed to 
be positive, and which are connected with the two former sca
lars X and y by the equations;

I.. . X = r cos z, y =^r sin x, r > 0,
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we shall then evidently have the formulae (comp. 228, (5.) ) :
II. . . Ty = T (x + iy) = r;

III.. . Uy = U(a: + iy) = cos2 + isin z; 
which last expression may be conveniently abridged (comp. 
233, XII'., and 234, VIII.) to the following:

IV. . . Uy = cis z; so that V. . . y = r cis ar.
And the arcual or angular quantity, z, may be called the Am
plitude* oi the quaternion y; this name being here preferred 
by us to “ Angle" because we have already appropriated 
the latter name, and the corresponding symbol L y, to denote 
(130) an angle of the Euclidean hind, or at least one not ex
ceeding, in either direction, the limits 0 and tt ; whereas the 
amplitude, z, considered as obliged only to satisfy the equa
tions I., may have any real and scalar value. We shall denote 
this amplitude, at least for the present, by the symbol,] am.y, 
or simply, am y; and thus shall have the following formula, 
of connexion between amplitude and angle,

VI. . . (x =) am. y = 2nir

• Compare the Note to Art. 130.
t The symbol V was spoken of, in 202, as completing the system of notations 

peculiar to tbe present Calculus; and in fact, besides the three letters, i, j, h, of which 
the laws are expressed by the fundamental formula (A.') of Ait. 183, and which were 
originally (namely in the year 1843, and in the two following years) the only pecu
liar symbols of quaternions (see Note to page 160), that Calculus does not habi
tually employ, with peculiar significations, any more than thoyiee characteristics of 
operation, K, S, T, U, V, ?oi conjugate, scalar, tensor, versor, and vector (or right 
party: although perhaps the mark N for norm, which in the present work has been 
adapted from tho Theory of Numbers, will gradually come more into use than 
it has yet done, in connexion with quaternions also. Aa to the marks, Z, Ax., I, R, 
and now am. (or am,,), for angle, axis, index, reciprocal, and amplitude, they are to 
be considered as chiefly available for the present exposition ot the system, and as not 
often wanted, nor employed, in the subsequent practice thereof; and the same remark 
applies to the recent abridgment cis, for cos 4-1 sin; to some notations in the present 
Section for pouters and roots, serving to express the conception of one n'* root, &c., 
as distinguished from another; and to the characteristic P, of what we shall call in the 
next section tho ponential of a quaternion, though not requiring that notation after
wards. No apology need be made for employing the purely geometrical signs, -t., 
II, III, for perpendicularity, parallelism, and complanaritg: although the last ot 
them was perhaps first introdncod by tlie present writer, who has found it frequently 
useful.
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the upper or the lower sign being' taken, according as Ax. q 
- + Ax. i; and n being any whole number, positive or negative 
or null. We may then write also (for any quaternion q ||| i) 
thc general transformations following;

VII.. . Uq = cis am q; VIII. . . 5' = Tj. cis am

(1.) Writing g = /3: a, the amplitude am. g, or am (/3: a), is thus a scalar quan
tity, expressing (with its proper sign) the amount of rotation, round Ax. i, from tho 
line a to the line ; and admitting, in general, ot being increased or diminislied by 
any whole number of circumferences, or of entire revolutions, when only tlie direc
tions of the two lines, a and j3, in the given plane of i, wee given.

(2.) But the part/caZar quaternion, or right versor, i itself, shall be considered 
as having definitely, for ils amplitude, one right angle; so that we shall ^tablisb tbe 
particular formnla.

™ . . wIX. ..am.« = Zt = -.

(8.) When, for any other given quaternion g, the generally arWZrazy integer 
n in VI. receives any one determined value, the corresponding value of the ampli
tude may be denoted by either of the two following temporary symbols,* which we 
here treat as equivalent to each other,

am„. g, or g;

so that (with the same rule of signs as before) we may write, as a more definite for
mula than VI., the'eqnation:

X... am„.g=Z»? = 2nw+ Z g;

and may say that this last quantity is the value of the amplitude otg; while thc 
seero-value, amo g, may be called the principal amplitude (or the principal value ot 
the amplitude).

(4.) With these notations, and with the convention, anio (— I) = + jr, we may 
write.

XI.. . amog = Zog=± Z g;
XII. .. amna = amn 1 = Zn 1 = 2air, if a>0;

Xltl. . . am„(-o) = am„(-l) = Z,.(—l) = (2»i + l)ir,

if a be still a positive scalar.

and

236. From the foregoing definition of amplitude, and from 
tbe formerly established connexion of multiplication of versors 
with composition of rotations (207), it is obvious that (within 
the given plane, and with abstraction made of tensors) multi
plication and division of quaternions answer respectively to

* Compare tho recent Note, respecting the notations employed.
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(^algebraical) addition and subtraction of amplitudes: so that, 
if the symbol ain.g be Interpreted in the general (or indefinite) 
sense of the equation 235, VI., we may write:
I. . . am(/.y) = am /+ am 5; II. . . am(5''; y) = am y'-am 5'; 
implying hereby that, in each formula, one of the values of the 
first member is among the values of the second member; but 
not here specifying which value. With the same generality 
of signification, it follows evidently that, for a product any 
number of (complanar) quaternions, and for a whole potver of any 
one quaternion, we have the analogous formulse:

III. .. am 117 = Sarag; IV. . . ara.jP =7?.ara 7 ; 
where the exponent p may be any positive or negative integer, 
or zero.

(1.) It was proved, in 191, II., that for any two quaternions, the formula Ug’? 
= 117'. U5 holds good; a result which, "by the associative principle of multiplication 
(223), is easily extended to any nnnAer of quaternion factors (complanar, or dipla
nar), with an analogous result for tensors: so that we may write, generally,

V. . . Ung = nUg; VI. . . THg = IITg,
(2.) Confining ourselves to the first of these two equations, and combbiing it witli 

in., and with 235, VII., we arrive at the important formula: •

VII. . . n cis am g (= nUg = UHg = cis am ng) = cis S am g ; 
whence in particular (comp. IV.),

Vpi. . . (cis am g)p= cis(p . am g),
at least if the exponent p be still any whole number.

(3.) In these last formulas, the amplitudes om.g, am.g’, &c., may represent any 
angular quantities, 2, 2', &c.; we may therefore write them thus,

IX. . . ncis2 = ciB22; X?. . (cis2)p = ci9/)2;

including thus, under abridged forms, some known and useful theorems, respecting 
cosines and sines of sums and multiples of arcs.

(4.) For example, if the number of factors of tho form Cis 2 be two, we have 
thus,

whence
IX'. . . ci., 2’. cis 2 = cis (2* + 2) ; X'. . .’ (cis 2)’ = cis 22 ;

oos(2' + 2) = S(ciss'.ci3 2) = cos 2' cos 2-sin2' sin s j 
sin (2' + 2) = i-'V (cis z'. cis 2) = cos 2' sin z + sin x cos z ; 

cos 22 = (cos z)’ — (sin 2)’ ; sin 22 = 2 cos z sin z ;
witii similar results for more factors than two.

(6.) Without expressly introducing the conception, or at least the notation of 
amplitude, we may derive the recent forraulai IX. and X., from tbe consideration of 
tho poieer i‘ (231), as follows. That poicer 0/ i, witli a scalar exponent, t, has been
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interpreted in 234, (5.), as a symbol satisfying an equation •which may he ■written 
thus:

XI. . . t‘ = ciss, if s = |<ir;
or geometrically as a versor, which tarns a line through t right angles, where t xa&g 
bo any scalar. Nfe see then at once, from this interpretatien, that iff be either the 
same or any other scalar, the formula,

XII. . . t'i<’= or XIII,
must hold good, as in algebra. And because the number of the factors i* is easily 
seen to be arbitrary in this last formula, we may write also,

■ XIV. ..(«'>> = tP‘,
if p be any whole* number. But the two last formulas may be changed by XI., to 
the equations IX. and X., which are therefore thus again obtained; althongh the 
later forms, namely XIII. and XIV., aro perhaps somewhat simpler; having in
deed tho appearance of being mere algebraical identities, although we sgp that their 
geometrical interpretations, as given above, aro important.

(G.) In connoxion with the same interpretation XI. of the same useful symbol i‘, 
it may be noticed here that

and that theroforo.
XV. ,. =

XVI. . . C03y = S.t< = J(«' + i-‘);

XVn. .. sin ~ = i-’ V.f'=Ji-‘ (i‘ - t-t).

(7,') Hence, by raising the double of each member of XVI. to any positive whole 
power p, halving, and substituting z for Jtir, we get the equation,

XVIIJ. . . 2p-'(co3s)p= j(t‘+i-‘)P= I(ip'+iT')-*-Ip+
= co3px+pco3(p— + cos(p —4)s+ &c.,

with tho usual rulo for halving tho coefficient of cos Os, if/> be an even integer; and 
with analogous processes for obtaining tho known expansions of 2p'* (sin c)P, for any 
positive whole value, oven or odd, of p; and many other known results of tho same 
kind.

237. Ifp be still a whole number, we have thus the transforma
tion,

I. . . gP = (r cis cispz=(Tg)'’ cis (p. am g);

in which (comp. 190, 161) the two factors, of the tensor and versor • 
kinds, may be thus written:

II. . , T (g)'’ = (Tg)p = Tgp; III. . . U (gp) = (Ug)’ = UgP;
and any value ai the amplitude am.g may be taken, since all

* It will soon bo seen that there is a sense, although ono not quite so definite, in 
which this formula holds good, even when tho exponent p is fractional, or surd; 
namely, that the second member is then one of the values of the first.
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•will conduct to one common value of this whole power g’’. And if, 
for L, we substitute this slightly different formula (comp. 235, 
(3.)),.

IV... (3’)5,=Tj’’.cisfp.am„o), with » = n'>0,
n

m', n’, n being whole numbers whereof the first is supposed to be 
prime to the second, so that the exponent p is here a fraction in its 
least terms, with a positive denominator n', while the factor If is 
interpreted as a positive scalar {pt which the positive or negative 
logarithm, in any given system, is equal to p x the logarithm of Tg'), 
then the expression in the second member admits of n' distinct va
lues, answering to difierent values of n\ which are precisely tbe n' 
values (comp. 234) of the fractional power on principles already 
established: the principal value of that power corresponding to the 
value »=0.

(1.) For any value of the integer n, yrc may say that the symbol (jp),,, defined 
by tho formula IV., represents the n* value of the power gf; such values, hovrover, 
recurring periodically, vrben p is, as above, a fraction,

(p.) Abridging (1p)» to 1p,„ -wo have thus, generally, by 235, XII.,
V. . . 1P„=cis 2pnn-, if p be any fraction,

a restriction which however we shall soon remove 5 and in particular,
VL .. Rincipal value of if =1^0=1-

(3.') Thus, making successively p=j, p = J, we have
VII. .. 11„=cis nw, Ho =+1, Ih=-1, lls=+1, &c.;

VIII...l»„=cis2^, llo = l, i»3=l,&c.

• (4.) Denoting in like manner the n** value of (- 1)p by the abridged symbol 
(- 1)Pb, we have, on the same plan (comp. 236, XIII.), for any fractional* value 
ofp.

IX... (- l)Pn=ci8p(2»+ !)«•; whence (comp. 232),
X. . . (-l)lo=018^=+», (-l)li = ci8^ = -i, (-l)12=+», &c.; 

and
XI. .. (- l)»e = l)h S-1, (i- i)i3 = Ike.,

these three values of (—1)1 recurring periodically.
(5.) The formula IV. gives, generally, by V., the transformation,

XII. . . (9P)» = (9P)o cis 2p»n- = 1p«(3P)o ;
so that the n^t^ value of gr is equal to the principal value ot that power of g, multi-

• As before, this restriction is only a temporary one.
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plied by the corresponding value of the tame power of positive unity; and it may be 
remarked, that if the base a be any positive scalar, the principal p'b power, (af}et 
is simply, by our definitions, the arithmetical value of ar.

if.) Tho »'* value of the p’b power of any negative scalar, — a, is in like man
ner equal to tho arithmetical p’’* power ot the positive opposite, +o, multiplied by 
tho corresponding value of the same power of negative unity; or in symbols,

XIII. . . (- a)P„ = (_— l)Pn (<u’)o = (af)o ds/) (2» +1) w.
(I.) Tho formula IV., with its consequences V. VI. IX. XII. XIII., may bo 

extended so as to include, as a limit, the case when tbe exponent p being still scalar, 
becomes incommensurable, or surd; and although the number of values ot tbe power 
jp becomes thus unlimited (comp. 234, (4.)), yet we can still consider one of them 
ns the principal value of this (now) surd power: namely the Value,

XIV. . . (5P)o = T9P. cis(pameg), 
which answers to the principal amplitude (235, (S.) ) of the proposed quaternion q.

238. We may therefore consider the symbol,

in which the is any quaternion, while the
is any scalar, as being now fully interpreted; but no interpre
tation has been as yet assigned to this other symbol of the 
same kind, q<i\
in which both the base q, and the exponent q, are supposed 
to be (generally) quaternions, although for the purposes of this 
Chapter complanar (225). To do this, in a way which shall 
be completely consistent with the foregoing conventions and 
conclusions, or rather which shall include and reproduce them, 
for the case where the new quaternion exponent, q, degenerates 
(131) into a scalar, will be one main object of the following 
Section: which however will also contain a theory of loga
rithms of quaternions, and of‘the connexion of both logarithms 
and poioers with the properties of a certain function, which 
we shall call the ponential of a quaternion, and to consider 
which we next proceed.

Section 4.— Onthe Ponential and Logarithm of a Quater- 
ternion; and on Powers of Quaternions, loith Qiiaternions 
for their Exponents.
239. If we consider the polynomial function,

I. . . r(.7, m) =-1 +71 + 72 + .. q„„
2 L
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in which q is any quaternion, and m is any positive whole number, 
while it is supposed (for conciseness) that

TT___\
• 1.2.3..7ra^ r(»i+l)/

then it is not difficult to prove^that Aowever "hvA finite and
given, the tensor T!q va&y be, a finite number m can be assigned, for 
which thc inequality

III. . . T(P(2', jn + n)-P(5', m))<a, if a>0,
shall be satisfied, however large the (positive whole) number n noa.j 
be, and Aowever stnaU the (positive) scalar a, provided that this last 
is given. In other words, if we write (comp. 228),

IV. . . q = x\vj, 'S{q,m} = X„^i'Y„,
a finite value of the number m can always be assigned, such that the 
following inequality,

V. . . (A-„^ - X„)’ + ( - r„)’ <
shall hold good, however large the number n, and however small 
(but given and > 0) the scalar a may be. It follows evidently that 
each of the two scalar series, or succession of scalar functions, 

VI...-X„-1, T,= l+a!, a;=i+» + ''^^‘,.. A„,..
VII...ro = O, 7i=y, Ti = y+xy,.. r„,...

converges ultimately to a fixed and finite limit, whereof the one may be 
called Xoo, or simply JT, and the latter Foo,, or T, and of which each 
is a certain function of the two scalars, x and y. Writing then

VIII. . . Q, = .Vot> + iVoo =.V+ iT,
we must consider this gMatsrwfon Q (namely the limit to which the 
following serecs of quaternions,
iX...T?{q,O}=}, P(?, !) = !+?, P(j,2)=l + g- + ^,.. 'P(q,m'),... 

converges ultimately) as being in like manner a certain function, which 
we shall call the ponential function, or simply the Ponential of q, in 
consequence of its possessing certain exponential properties; and 
which may be denoted by any one of the three Symbols, 

P (?, oo), or P (2), or simply Vq.
have therefore the equation,

X. . .Ponen<?aiqf5' = Q = Pg'=l+g, + g'2+,. + ^^, 
with the signification II. of the term q„.
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(1.) In connexion with tho emvergenee of this ponential series, or with the in
equality III., it may be remarked that if we write (comp. 235) r = Tj, and r»,=Tg™, 
we shall have, by 212, (2.),

XI. . . T(P(g,ni + n)-P(g,»n))<P(r,m + n)-P(r, m);
it is sufficient tlien to prove that this lust difference, or the sum of tbe n positive 
terms, rm+i,.. rm™, can be made < a. Now if we take a number /)> 2r -1, we 
shall have r,,.i << Jrpti, &c., so that a finite number m >p > 2r- 1 can 
be assigned, such that rm < a ; and then,

XII. .. P(r, m+ n) — P(r, m) <a(2‘* +2-’ + . .'+2-”)<a;

the asserted inequality is therefore proved to exist
(2.) In general, if an ascending series with positive coefficients, such as

XIII. . . Ao + Ajg + A2g’ + &c., where Ao > o, Ai > o, &c.,

he convergent when g is changed to a positive scalar, it will d fortiori converge, 
when g is a quaternion.

and

240. Let q and be any two complanar quaternions, and let q" 
be their sum, so that

L..2" = 3' + 2, 2" 111 2'111?;
then, as in algebra, jvitb the signification 239, IL oT ?„» ond with 
corresponding significations of q'„ and q''^', have

ir. , ?m" =

where 5’0 = §''0 = 1. Hence, writing again r = T5', rm = T2'„„ and in 
like mariner r' = Tg', r"= Tq'', &o., the two differences,

III. . . P(r', m)."P — (r", in),
IV. . . P(r", 2m) -P(r', m).P(r, m),

can be expanded as sums of positive terms of the form r'^.r, (one 
sum containing |wt(?n+ 1), and the other containing m(m+ 1) such 
terms); but, by 239, HL, the sun 0^ these two positive differences 
can be made less than any given small positive scalar a, since

V. . . P(?•", 2ni)- P(r", m>)<a, if a>0,
provided that the number n is taken large enough; each difference, 
therefore, separately fends to 0, as m tends to 00; a tendency which 
must exist a. fortiori, when the tensors, r, r*, r", are replaced by the 
gnafernwns, q, q', q^'. The /iinc/ion Pg is therefore subject to the 
Exponential Laio,

VI. . . P(g'+ g) = P(2'.rg = Pg , Pg', if g'lllg.
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(1.) If we write (comp, 237, (6.)),

I VII. ..Pl = t, then "VIII. Px = (^)q = arithmetical value of t*-
where i is the known base of the natural system of logarithms, and x is any scalar.. 
We shall henceforth write simply to denote this principal (or arithmetical) value of 
the a:'* power of e, and so shall have the simplified equation,

VIII'. . . PiC = £».
(2.) Already wo have thus a motive for writing, generally,

IX. . . P3 = e«;'
but this formula is here to be considered merely as a definition of the sense in which 
we interpret this exponential tymlol, £«; namely as what we have lately called tho 
ponential function, Pj, considered as the sum of the infinite but converging seriee, 
239, X. It will however be soon seen to be included in a more general definition 
(comp. 238) of the symbol </«',

(3.) For any scalar x, we have by VIII. the transformation :

X. . . x = Wx=natural logarithm of ponential of x.

241. The exponential law (240) gives the following general de
composition of a ponential into factors,

I. . . Pg' = P(« + tjz) = Pa:.P8^;
in which we have just seen that the factor ^x is a positive scalar. 
The other factor, Piy, is easily proved to he a versor, and therefore 
to be the versor of Pq, while Px is the tensor of the same ponen
tial ; because we have in general,

II. . . Pff.P(-g-) = P0=l, and III. .. PKg = KP?, 
since IV. . . (Kg)*" = K (g”) = (say) Kg”* (comp. 199, IX.);
and therefore, in particular (comp. 150, 158),

V... l:Pty=P(-ty) = KPty, or VI. . .NPiy = l.

We may therefore write (comp. 240, IX., X.),

VII... TPg = PSg = Pa:=e'; VIII.. . a:=Sg = lTPg;
IX... UPg=PVg=P/g = 6'''=cisy(comp.235, IV.);

this last transformation being obtained from the two series,

X. . . SPty = 1&c. = cos-y;

XI.. . i-' yPip + &c. = sin y.

Hence the ponential Pq may be thus transformed:
• XII.. . Pg = P (m + iy) = e’' cis y.
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(1) If wo bad not chosen to assume as known the series for cosine and sine, nor 
to select (at first) any ono unit of angle, such as that known one on which their va
lidity depends, wo might then have proceeded as follows. Writing

XIII... Pfy=Zf-Ft0y, z(-'y) =-irfy, =
wo should have, by the exponential law (240),

XIV. . .Z(y-i-y') = S(Piy.Pfy')=^.Z/'-0y.0y’;
. .z(y-y')= fy-fy’-i-'Py-Wi

and then thdjfhnch’ona^ equation^ which results, namely,
V V xvl...z(y+y')-hZ(y-y')=2Zy-Z/. 

would show that
XVII. . .)J<='co3^^x a right anyZe j,

whatever unit ot angle may be adopted, provided that we determine the constant c 
by tbe condition,

XVIII. . . c = least positive root of the equation fy(= SPty) = 0 ; 
or nearly,

XVIH'.. . c= 1-5708, as the study of the series* would show.
(2.) A motive would thus arise for representing a right angle by this numerical 

constant, c; or for so selecting the angular unit, as to have the equation (ir still de
noting two right angles),

XIX. .. ST = 2c = least positive root of the equation fy= — 1;

giving nearly.
XIX'. . . ir = 3'14159, as usual;

for thus we should reduce XVII. to the simpler form,
XX. . .ft/ = C03y.

(3.) As to tbe function since
XXI. . . (/y)’ + (0y)’ = Piy.P(-fy) = l,

it is evident that 0y — + sin y; and it is easy to prove that the upper sign is to be 
taken. In fact, it can be shown (without supposing any previous knowledge of co
sines or sines) that 0c is positive, and therefore that

XXII. . . 0c = +1, or XXIII. . . Pic = i ;

XXIV. . . 0y = S.C*Piy = SPi(y —c)=/(y —c),

XXV... P«y=Zy-l-if(y-c).
IT

If then we replace c by -, we have
2

whence

and

* In fact, the value of tho constant c may be obtained to this degree of accuracy, 
by simple interpolation between the two approximate values of the function Z

/(1-8) = + 0-070787, Z(1 -6) = - 0029200;

an^of course there are artifices, not necessary to be mentioned here, by which a far 
more accurate value can be found.
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XXVI... ^y=cos = siny; and XXVII. ., Ply = cisy, as in IX.

i (4.) Tbe scries X. XL for cosine and sine might thus be deduced, instead of bring 
atsnmed as known : and since we have the limiting value,

XXIX . . lim. jr* siny = lim.y>«'> VPiy = l,

it follows that the unit of angle, which thus gives Piy = cis y, is (as usual) the angle 
subtended at tbe centre by the arc equal to radius s or that the number rr (or 2c) is 
to 1, as the circumference is to the diameter of a circle.

(6.) If any other angular unit had been, for any reason, chosen, then a right 
angle would of course he represented by a different number, and not hy 1'5708 nearly 
but we should still have the transformation,

XXX . . Piy = cis X a right angle 

though not the same senes as before, for cos y and siny.

242. The usual unit being retained, we see, by 241, XII., that
I. .. P. 2j«7r = 1, and II. . . P {q -1- 2m7r) = Py, 

if n be any whole number; it follows, then, that the inverse ponen
tial function, P"’J, or what we may. call the Imponeniial, of a given 
quaternion g, has indefinitely many values, which may all be repre
sented by the formula,

III. . . P„‘'g = lTg' + i am,^;

and of which each satisfies the equation,
IV... PP„-lj=g;

while the one which corresponds to n = 0 may be called the Princi
pal Imponential, It will be found that when the exponent p is aziy 
scalar, the definition already given (237, IV., XII.) for the n*’' value 
of the p** of q enables us to establish the formula,

V. ..(2-’)»=P(pP„-'ff);
and we now propose to extend this last formula, by a new definition, 
to the more general case (238), when tile exponent is a quaternion q''. 
thus writing generally, for any two complanar quaternions, q and q', 
the General Exponential Formula,

VI. . , ((rt„ = P(2'P„-’2);
the prtnctpaZ value of <p' being still conceived to correspond to n = 0, 
or to the principal amplitude oi q (comp. 235, (3.) ).
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(1.) For example,

VII.. . (e’)o=P(9Po'*s) = P5) because Po‘'e = l£ = l;

the ponential Pj, which we agreed, in 240, (2.), to denote simply by £«, is therefore 
now seen to be in fact, by our general definition, the principal value of that power,' 
or exponential.

(2.) With the same notations,

VIII, . . ew = cis y, cos y = iJ (tw + £-«!'), sin y =i (s'l' - e-'v);
these two last only differing from the nsnal imaginary expressions for cosine and sine, 
by the geometrical reality* ot the versor ».

(3.) The cosine and sine of a quaternion (in tho given plane) may now be defined 
by the equations:

IX. . . cosj = }(£*« + £■”); X- • • sing = — (£■«-£■<«);

and we may write (comp. 241, IX.),

XI. .. cis g = £•! = Piq.
(4.) With this interpretation of cis g, the exponential properties, 236, IX., X., 

continue to hold good; and we may write,

XII. .. (99')>i = P (ti'lTg). P (tg' am„ g) = (Tg)o9' cis (g' am„ g);

a formula which evidently includes the corresponding one, 237, IV., for the n* value 
of the p‘t‘ power of g, when p is scalar.

(5.) The definitions III. and VI., combined with 235, XII., give generally,

XlII. (15')„ = p. 2invq ; XIV. . . (qC),, = In?*, (gfl^o;
this last equation inclnding-the formula 237, XII.

(6.) The same definitions give,

XV. . . P„-i« = ; XVI. . . (tOo = r'h

which last equation agrees with a known interpretation of the symbol,
v-i

considered as denoting in algebra a real quantity.
(7.) The formula VI. may even be extended to the case where the exponent g' is 

a quaternion, which is not in the yiven plane of i, and therefore not complanar with 
the hose q; thus we may write,

XVII... (iOo=P(JPo-’«-) = p(--^')=-«;

but it would be foreign (225) to the plan of this Chapter to enter into any further de
tails, on the subject of the interpretation of the exponential symbol qi', for this case 
of diplanar quaternions, though we see that there would be no difficulty in treating 
it, after what has been shown respecting complanars.

* Compare 232, (2.), and the Notes to pages 243, 248,
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243. As regards the general logarithm of a quaternion q (in the
given plane), we may regard it as any quaternion which satisfies the 

' * equation,
I. . . e’' = P2' = 5;

and in this view it is simply the Imponential P’'g', of which the 
value is expressed by the formula 242, III. But the principal impo- 
nentied, which answers (as above) to n= 0, may be said to be the prin
cipal logarithm, or simply the Logarithm, of the quaternion q, and may 
be denoted by the symbol.

Iff;
so that we may write,

I. . . lg = Po"'g' = lT2 + tamog';
or still more simply,

II... Ig- = 1 (Tff. Ug-) = lTg+ lUg-,
because lTUg = ll = 0, and therefore,

III. .. lUg= i amo g.
We have thus the two general equations,

IV... Slg = lTg; V. . . V12 = lUg;
in which ITg is still the scalar and natural logarithm of the positive 
scalar Tg.

(1.) As examples (comp. 285, (2.) and (4.) ),
VI. .. 1« = jtjT; Vn.. . 1(-1) =iTr.

(2.) Tho general logarithm of g may be denoted by any ono of tho symbols, 
log.?, or logq, or (log*/),., 

this last denoting the value ; and then we shall have,

VIII. . , (logg)n=lv + 2inx.(.8.) Theformuja, \ b jjn t
IX. . ,log.q’q=}.osq' + 'logg, if g'|||7,

holds good, in the sense that every value of the first member is one ot the values of 
the second (comp. 236).

(4.) Principal value of gi'= ts'iv; and one value of log . gi’ = j'lg.
(6.) The guottenf of two general logarithms,

X. . . (log g')n, -. (log =

may be smd to bo the general logarithm of the quaternion, q', to the complanar qua
ternion base, q j and we see that its expression involves* two arbitrary and indepen
dent integer!, while its principal value may be defined to be Ig': Ig.

• As the corresponding expression in algebra, according to Graves and Ohm.
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Section 5.— On Finite* (or PolynomiaT) Equations of Alge
braic Form, involving Complanar Quaternions; and on the 
Existence ofn Real Quaternion Roots, of any such Equa
tion of the n'* Degree.

I

244. We have seen (233) that an equation of the form,
I. ..g-"-Q = O,

where w is any given positive integer, and Q is anyf given, 
real, and actual quaternion (144), has always n real, actual, 
and unequal quaternion roots, q, complanar with Q; namely, 

the w distinct and real values of the symbol Q" (233, VIII.), 
determined on a plan lately Ittid down. This result is, how
ever, included in a much more general Theorem, respecting- 
Quaternion Equations of Algebraic Form; namely, that if 
q\t 1I2, . • qnbe any n given, real, and complanar quaternions, 
then the equation,

IL . . q* + 'q\q''''^ + qzq''''^^ . .-k- qn = t^,
has always n real quaternion roots, f, q", .. q^’‘\ and no more 

' in the given plane ; of which roots it is possible however that 
some, or all may become equal, in consequence of certain 
relations existing between the n given coefficients.

245. As another statement of tho same Theorem, if we 
write,

I. . . F„q = q'^+q,q’'-'^+ ...irqn,
the coefficients q,. . qn being as before, we may say that every 
such polynomial function, Vnq, is equal to a product of n real, 
complanar, and linear (or binomial) factors, of the form q-q"', 
or that an equation of the form,

II. . . F„y = (y - q') (q - q) ..(q- q^'%
can be proved in all cases to exist: although we may not be

* By saying finite equations, we merely intend to exclude here equations with 
infinitely many terms, such as Pq= 1, which has been seen (242) to have infinitely 
many roots, represented by the expression y = 2,'»7r, where » may be any wholo 
number.

t It is true that we have supposed Q 111« (225) ; but nothing hinders us, in any 
Other case, from substituting for t the versor UV Q, and then proceeding as before.

2 M
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able, with our present methods, to assign expressions for the 
roots, q',.. in terms of the coefficients q„ ... qn-

246. Or we may say that there is always a certain system 
of n real quaternions, q', &&., |1| t, which satisfies the system of 
equations, of known algebraic form,

III .. J
S'" ~ qii

qq''+qq" + q"q"+.. = + qe,

247. Or because the difference Tnq-Tnq' 'divisible by 
y - q', as in algebra, under the supposed conditions of compla- 
narity (224), it is suflScient to say that at least one real quater
nion q' always exists (whether we can assign it or not), tohicli 
satisfies the equation,

IV. . . F„y' = 0,

with the foregoing form (245,1.) of the polynomial function f.
248. Or finally, because the theorem is evidently true for 

the case w= 1, while the case 244,1., has been considered, and 
the case y„ = 0 is satisfied by the supposition y = 0, we may, 
without essential loss of generality, reduce the enunciation to • 
the following:

Every equation of the form,

I- • • 3(g-q} {q-q"} • • (g-
in which y', y",.. and Q are any n real and given quaternions 
in the given plane, whereof at least Q and y' may be supposed 
actual (144), is satisfied by at least one real, actual, and com
planar quaternion, q.

* The corresponding form, of the algebraical equation of the degree, was pro
posed by Monrey, In his very ingenious and original little work, entitled La vraie 
theorie des Quantit6s Negatives, ei des Quantitis pretendues Imaginaires (Paris, 
1828). Suggestions also, towards the georXitrical proof ot the theorem in the text 
have been taken from the same work; in which, however, the cizree here called (in 
251} an ovoJ is not perhaps defined with sufficient precision : the inequality, here 
nnmbered as 251, XII., being not employed. It is to be observed tliat Monrey’s 
book contains no hint of tho present calculus, being confined, like tho Double Alge
bra of Prof. De Morgan (London, 1849), and like tho earlier work of Mr. Warren 
(Cambridge, 1828), to questions within the plane; whereas the very conception of tho 
Quaternion involves, as we have seen, a reference to Tridimensional Space.
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249. Supposing that the m - 1 last of tbp n-1 given quater
nions q'. vanish, but that the n-fn first of them are actual, 
where m may be any whole number from 1 to n -1, and introduc
ing a new real, known, complanar, and actual quaternion jo, which 
satisfies the condition,

II. .. Oo" = ,—T,

we may write thus the recent equation I.,

and may (by 187, 159, 235) decompose it into the two following:
IV. ..T/5'=1; and V. ..U/g=], or VI. . . am/g' = 2j97r-, 

in whieh p is some whole number (negatives and zero included).
250. To give a more geometrical form to the equation, let X be 

any given or assumed line )11 *, and let it be supposed that a, P,.. 
and p, a, or OA, on,..'. and op, os, are n -»» + 2 other lines in the 
same planes, and that <{>p is a known scalar function of p, such that

VII. ..o = j'X, P = q"\,.. p = q\ a=qo\
and

/ P\" p-a p-0 I AP BP ' .
VIII... <fcp =/!?= -) ------- ---------------- ----------- ’

the theorem to be proved may then be said to be, that whatever sys
tem of real points, o, a, b, .. and s, in a given plane, and whatever 
positive whole number m, may be assumed, or given, there is always at 
least one real point p, in the same plane, which satisfies the two condi
tions:

IX. .. Tfp = 1; X. .. am ij>p = -
251. Whatever value * |||»' we may assume for the versor (or 

unit-vector) Up, there always exists at least one value of the tensor 
T/9, which satisfies the condition IX.; because the function T^p va
nishes with Tp, and becomes infinite when Tp = oo, having varied 
continuously (although perhaps with fluctuations) in the interval. 
Attending then only to the least value (if there be more than one) 
of Tp, which thus renders T^p equal to unity, we can conceive a real, 
unambiguous, and scalar function which, shall have the two fol
lowing properties:

XI. .. T^(tyrt)= 1; XII.. . T0(a:«V'‘) < 1» if a’>0, < I. 
And in this way the equation, or system of equations,
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XIII.. . p or XIV.. . Up = t, Tp =
J may be conceived to determine a real, finite, and plane closed curve, 

which we shall call generally an Oval, and which shall have the two 
'following properties: Ist, every right line, or ray, drawn from the ori
gin o, in any arbitrary direction within the plane, meets the curve 
once, but once only; and Ilnd, no one of the n — m other given points 
a, b, .. is on the oval, because = ^13 =.. = 0.

252. This being laid down, let us conceive a point p to perform, 
one circuit ot the oval, moving in positive direction relatively to the 
given interior point 0; so that, whatever the given direction of the 
line os may be, the amplitude am(piff), if supposed to vary conti
nuously,* will have increased hy four right angles, or by 27r, in the 
course of this one positive circuit; and consequently, the amplitude 
of the left-hand factor (p: af*, of ^p, will have increased, at the same 
time, by 2mir. Then,-if the point A be also interior to the oval, so 
that the line oa must be prolonged to meet that curve, the ray ap will 
have likewise made one positive revolution, and the amplitude of the 
factor (p - a): a will have increased by 27r. But if A be an exterior 
point, so that the^/n'fe line oa intersects the curve in a poijit u, and 
therefore never meets it again if prolonged, although the prolonga
tion of the opposite line ao must meet it once in some point n, then 
while the point ¥ performs first what we may call the positive half
circuit from u .to N, and afterwards the other positive half-circuit 
from N to M again, the ray ap has only oscillated about its initial and 
final direction, namely that of the line ao, without ever attaining the 
opposite direction ; in Mwease, therefore, the amplitude am(AP: oa), 
if still supposed to vary continuously, has only fiuctuated in its value, 
and has (upon the whole) undergone no change at all. And since 
precisely similar remarks apply to the other given points, b, &c., 
it follows that the amplitude, am <S>P, of the product (VIII.) of all 
these factors, has (by 236) received a total incremeul =2(OT-f-<)7r, if 
t be the number (perhaps, zero) of given internal points, A, B,..; 
while the number m is (by 249) at least =^'[. Thus, while P per
forms (as above) one positive circuity the amplitude am has passed 
at least m times, and therefore at least once, through a value of the 
form 2pv-, and consequently the condition X. has been at least once 
satisfied. But the other condition, IX., is satisfied throughout, by the

• That is, BO as not to receive any sudden increment, or decrement, of ono or 
more whole circumferences (comp. 235, (!•)).
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supposed construction of the oval: there is therefore oi least one real 
position P, upon that curve, for which tP or fq= 1; so that,/or fZti? 
position oi that point, the equation 249, HI., and therefore also the 
equation 248, I., is satisfied. The theorem of Art. 248, and conse
quently also, by 247, the theorem of 244, with its transformations 
245 and 246, is therefore in this manner proved.

25.3. This conclusion is so important, that it may be use
ful to illustrate the general reasoning, by applying it to the 
case of a quadratic equation, of the form,
I.‘ .fq^U^-,- 1). 1; or II. . . =

yo \? / ‘ a\a J os OA.

We have now to prove (comp. 250, VIII.) that a (real) point p 
exists, which renders the fourth 
proportional (226) to the tliree 
lines OA, OP, AP equal to a S 
given line os, or ab, if this lat
ter be drawn = os; or which
satisfies the, following condition of similarity of triangles 

(118),
III. . . A AOP a PAB;

which includes the equation of rectangles,
IV. ; . op.ap = 5a.ab.

(Compare the annexed Figures, 55, and 
55, bis.) Conceive, then, that a conti
nuous curve* is described as a locus (or
as part of the locus) of p, by means of this equality IV., with 
the additional condition 
when necessary, that o 
shall be within it; in such 
a manner that when (as in s 
Fig. 56) a right line from 
o meets the general or total 
locus in several points, m.

Fig. 50.

• This curve of the fourth degree is the well-kno,vn Castinian i but when it 
breaks up, as in Fig. 60, into two separate ovals, we here retain, as the oval of thc 
proof, only the one round o, rejecliny for tho present tliat round A.
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m', n', we reject all but the point m which is nearest to o, as not 
belonging (comp. 251,XII.) to the oval here considered. Then 
while p moves upon that oval, in the positive direction rela
tively to o, from M to N, and from n to m again, so that the 
ray op performs one positive revolution, and the amplitude of 
the factor op ; os increases continuously by 27r, the ray ap 
performs in like manner one positive revolution, or (on the 
whole) does not revolve at all, and the amplitude of the factor 
AP: OA increases by 2;r or by 0, according as the point a is in
terior or exterior to the oval. In the one case, therefore, the 
amplitude am of the product increases by 4jr (as in Fig. 55, 
bis}; and in the other case, it increases by 2jr (as in Fig. 56); 
so that in each case,’ it passes at least once through a value of 
the form ^pw, whatever its initial value may have been. Hence, 
for at least one real position, p, upon the oval, we have

V. . . am <j>p = 1, and therefore VI. . . = 1;
but ' VII. . .T^p = l,
throughout, by the construction, or by the equation of the locus 
IV.; the geometrical condition tpp = 1. (II.) is therefore satisfied 
by at least one real vector p; and consequently the quadratic 
equation fq = \ (I.) is satisfied by at least one real quaternion 
root, q = p: X (250, VII.). But the recent form I. has the same 
generality as the earlier form,

VIII. . . Fjy = + q,q + y, = 0 (comp. 245),
where q, and 5’2 are any two given, real, actual, and complanar 
quaternions; thus there is always a real quaternion f in the 
given plane, which satisfies the equation,

Vlir. .. Fj/ = g'" + <71/ + q2 = 0 (comp. 247); 
subtracting, therefore, and dividing by q q', as in algebra 
(comp. 224), we obtain the following depressed or linear equa
tion q,
IX. . . q-\^q' + q,'=Q, or IX'. r. q = q"=- q'-qx (comp. 246). 
The quadratic VIII. has therefore a second real quaternion root, 
<f', related in this manner to the first; and because the qua- . 
dratic function v^q (comp, again 245) is thus decomposable 
into-tioo linear factors, or can be put under the form,
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• X. . . F2g = (y-9') (g-?"),
it cannot vanish for aity third real quaternion^ q; so that 
(comp. 244) the quadratic equation has no more than two such 
real roots.

(1.) The cw5ic equation may therefore be put under theyhrm (comp. 248),

X.. . F3g = <z’ + 7i9’ +523 + 53 = 9(?-s') (g-9") +93=0 ;
it has therefore one real root, say q', by the general proof (252), which has been 
above illustrated by the case of the quadratic equation; subtracting therefore (com
pare 247) the equation V3q' = 0, and dividing by g-q', we can depress the cubic to 
a quadratic, which will have two nov! real roots, q" and 3”'; and thus the cubic 
function may bo put under the form,

XI.. . F39 = (3 - g") (3 - q") (^q - g""),
which cannot vanish for any fourth real value of 9; the cubic equation X. has there
fore no more than three real quaternion roots (comp. 244) ; and similarly for equa
tions of higher degrees.

(2.) The existence of two real roots 9 of the quadratic I., or of two real vectors, 
p and p', which satisfy tbe equation II., might have been gtomelricallg anticipated, 
from the recently proved increase = 47r of amplitude <pp, in the course of one circuit, 
for the case of Fig. 55, bis, in consequence of which there must be two real positions, 
P and p', on the one oval of that Figure, of which eacA satisfies the condition of si
milarity III.; and for the case of Fig. 6G, from the consideration that the second (or 
lighter') oval, which in this case exists, although not employed above, is related to a 
exactly as the first (or dark) oval of the Figure is related to o; so that, to the real 
position p on tho first, there must correspond another seal position p', upon the se
cond.

(3.) Aa regards tho law of this correspondence, if the equation II. be put under 
the form, 

and if we now write
XIII. . . p^qa, we may write XIV. ..91 = —1, 93 = — a-, a,

for comparison with the form VIII.; and then the recent relation IX'. (or 246) be
tween tbe two roots will take the form of the following relation between vectors,

XV, ..p+p' = a; .or XV’. . , op' = p’ = a - p = PA;

so that the point p' completes (as in the cited Figures) the parallelogram opap', and 
the line pp' is bisected by the middle point c of oA. Accordingly, with this position 
of p', we have (comp. III.) the similarity, and (comp, II, and 226) the equation,-

XVI. . . A aop’ ot p'ab ; XVII. . . ^p'= ^(a — p) = ^p = 1.
(4.) The other relation between the two roots of tho quadratic VIII., namely 

(comp. 246),

XVIII.. . q'q" = 92, gives XIX. . . ^ p' = - <r;
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and accordingly, the line a, or os, is a fourth proportional to the three lines oA, or, 
and AP, or a, p, and - p.

(^5.) The actual solution, by calculation, of tho quadratic equation VIII. in com- 
planar quaternions, is performed exactly as in algebra ; the formula being,

XX. . • q=-\q\i:^{iq'? - qi),
in which, however, the square root is to be interpreted as a real quaternion, on prin
ciples already laid down.

(6.) Cubic and biquadratic equations, with quaternion coefficients of the kind 
considered in 244, are in like manner resolced by the known formula of algebra; 
bat we have now (ns has been proved) three real (quaternion) roots for tho former, 
and four such real roots for the latter.

254. The following is another mode of presenting the geometri
cal reasonings of the foregoing Article, without expressly intro
ducing the notation or conception of amplitude. The equation 

I of 253 being written as follows,

I. . . o = xp= - (p- o), or II. . . T<r = Txp, and III. . . U<r = Uxp, a
we may thus regarS the vector p- as a Tcnown function of the vector p, 
OT the point s aa a function of the point v; in the sense that, while o 
and A are fixed'v and s vary together: although it may (and does) hap
pen, that s may return to a former position without p having similarly 
returned. Now tbe essential property of the oval (253) may be said 
to be this: that it is the locus of the points p nearest to o, for which the 

^tensor TxP has a given^alue, say J; namely the given value of Ta, ot 
of OS, when the point s, like o and A, is given. If then we conceive 
the point p to move, as before, along the oval, and the point s also to 
move, according to the law expressed by the recent formula I., this 
latter point must move (by II.) on the circumference of a given circle 
(comp, again Fig. 56), with the given origin o for centre; and the 
theorem is, that in so moving, s will pass, at least once, through every 
position on that circle, while p performs gne circuit of the oval. And 
this may be proved by observing that (by III.) the angular motion of 
the radius os is equal to the sum of the angular motions of the two rays, 
OP and ap; but this latter sum amounts to eight right angles for the 
case of Fig. 55, 5ts„ and to four rigtd angles for the case of Fig. 66; 
the radius os, and the point s, must therefore have revolved twice in 
the first case, and once in the second case, which proves the theorem 
in question.

(1.) In tlio first of these two cases, namely when a is an interior point, each of 
three angular velocities iapoeiiive throughout, and the mean angular eelocity of
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the radiut os is double of that of each ot the two ra^« op, ap. But ia the second case, 
when A is exterior, the mean angular velocity of the ray ap ia zero; and we might 
for a moment doubt, whether the somelimes negative velocity of that ray might not, 
for parts of the circuit, exceed the always positive velocity of tho my op, and so 
cause the radius os to move backwards, tor a, while. This cannot be, however; for 
if we conceive p to describe, like p’, a circuit of the other (or lighter) ocaZ, in Fig. 56, 
the point s (if still dependent on it by the law I.) would' again traverse tho whole of 
the same circumference as before; if than it could over fluctuate in its motion, it 
would pass more than twice through some given series of real positions on that circle, 
during tho successive description of the two ovals by P; and thus, within certain 
limiting values of tbe coefficients, the quadratic equation would have more than two 
real roots: a result which has been proved to be impossible.

(2.) While a thus describes a circle round o, we may conceive the connected point 
B to describe on equal circle round a ; and in tbe case at least of Fig. 56, it is easy 
to prove geometrically, from tho constant equality (253, IV.) of tbe rectangles OP. AP 
and OA. AB, that these two circles (with t'c and t'o' as diameters), and the two ovale 
(with am and m'n' as axes), have two common tangents, parallel to the line OA, 
which connects what we may call the two given Jbei (or focal points), o and A: the 
new or third circle, which is described on this focal interval OA as diameter, passing 
through the four points of contact on the ovals, as the Figure may serve to exhibit.

(3.) To prove the same things bg quaternions, we shall find it convenient to 
change the origin (18), for the sake of symmetry, to the central point c; and thus 
to denote now cp by p, and ca by a, writing also cA=Ta = a, and representing still 
tho radius of each of the two equal circles by b. We shall then have, as thejotnf 
equation of tlie system of tho two ovals, tho following:

IV. . . T(p + a).T(p-o)=2a6;
or

V. . . T(2’-1) = 2c, if 9 = ^ and c =-.a a
But because we have generally (by 199, 204, &c.) the transformations,

VI. . . S. 9’ = 2S9» - Tj’ = Ts’ + 2Vj’ = 2NS9 - Nj = Nj - 2NV9, 
the square of tho equation V. may (by 210, (8.) ) be written under either of the two 
following forms:

VII. . . (N9 - 1)’ + 4NV9 = 4c’ ; VIII. . . (N9 + 1)» - 4NS9 = 4c» ; 
whereof the first shows that the maximum value of TV9 is c, at least if 2c < 1, as 
happens for this case of Fig. 66; and that this maximum corresponds to the value 
Tg = 1, or Tp = a: results which, when interpreted, reproduce those of the preceding 
sub-article.

(4.) When 2c > 1, it is permitted to suppose Sg = 0, NVg = Ng — 2c -1; and 
then we have only one continuous oval, as in the case of Fig. 65, bis; but if c< 1, 
though > J, there exists a certain undulation in tbe form of the curve (not represented 
in that Figure), TVg being a minimum for Sg= 0, or for p J- n, but becoming (as 
before) a maximum when Tg = 1, and vanishing when Sg’ = 2c + 1, namely at the 
two summits m, N, where the oval meets the axis.

(5.) In the intermediate case, when 2c = 1, tho Cassinian curve IV. becomes (as 
is known) a lemniscata; of which the quaternion equation may, by V., be written 
(comp. 200, (8.) ) under any one of the following forms:

2 N
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IX. . .T(9’-I)=1; or X. ..N22= 23,22; or XI. .. = 2SU . 9^ ;

or finally,
Xn. .. Tp2 = 2Ta2cos2z^; 

a 
which last, when written as

Xir, . . cp2 = 2ca’ • cos 2aop, 
agrees evidently with known results.

(6.) This corresponds to the case when

Xni. ..(t = y. XIV. ..p = p’=+^,in 253, xn.,

that quadratic equation having thus its roots equal; and in general, for all degrees, 
cases of equal roots answer to some ititeresting peculiarities of form of the ovals, on 
which we cannot here delay.

(7.) It may, however, be remarked, in passing, that if we remove the restriction 
that tbe vector p, or op, shall be in a given plane (225), drawn through tho line 
which connects the two foci, o and a, the recent equation V. will then represent tho 
surface (or surfaces') generated by the revolution ot the oval (ox ovals), or lemniscata, 
about that line oa as an axis.

255. If we look back, for a moment, on tbe formula of similaritjj^ 
253, III., we shall see that it involves not merely an equality of rect
angles, 253, IV., but %lso an equality of angles, aop and pab ; so that 
the angle oab represents (in the Figures 55) a given difference of the 
lose angles aop, pao of the triangle oap : but to construct a triangle, 
by means of such a given difference, combined with a given hose, and 
a given rectangle of sides, is a known problem of elementary geome
try. To solve it briefly, as an exercise, hy quaternions, let the given 
base be the line aa', with o for its middle point, as in the annexed 
figure 57; let baa' represent the given diffe
rence of base angles, paa' - aa'p ; and let oa . ab 
be equal to the given rectangle of sides, ap-a^. 
We shall then have the similarity and equa
tion, 

I.. . A oa'p a PAB;

whence it follows by the simplest calculations, 
that

\a J \a J \a ] a a
OX that p is a mean proportional (227) between a and p. Draw, 
therefore, a line op, which shall be in length a geomdric mean be
tween the two given lines, oa, ob, and shall also bisect their angle
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AOB; its extremity will be the required vertex, p, of the sought tri
angle aa'p: a result of the quaternion analysis, which geometrical syn
thesis* easily confirms.

(1.) Tbe equation III. is however satisfied also (comp. 227) by tho opposite sec
tor, op' = PO, or p' = — p i and because /3 = (p : a). p, we have

IV. . . *1^^= £= = or IV'
p + a a p o' p'a oa op oa’’

so that the four following triangles aro similar (the two first of them indeed being 
equaV):

V. . , A A.'of' oc aop a POB aAP'B;

OS geometry again would confirm.
(2.) Tbe angles ap'b, bpa, are therefore supplementary, their sum being equal to 

the sum of the angles in tbe triangle oap ; whence it follows that the four points a, 
p, B, p' are concircutar .’t or in other words, the quadrilateral Apbp' is inscriptible 
in a circle, which (wo may add) passes through the centre c of the circle OAB (see 
again Fig. 67), because the angle aob is double of the angle ap'b, by what has been 
already proved.

(8.) Quadratic equations in quaternions may also be employed in the solution 
of many other geometrical problems; for example, to decompose n given vector into 
two others, which shall have a given geometrical mean, &c.

Section 6_ On the n’-n Imaginai'y {or Symbolicat) Roots
of a Quaternion Equation of the n"* Degree, with Coeffi
cients of the kind considered in the foregoing Section.

256. The polynomial, function F„q (245), like the quaternions
2i, • • on which it depends, may always be reduced to the form of 

a couple (228); and thus we may establish the transformation (comp. 
239),

I. . . F„q = F„(a! + ty) = X„ G„{x, y} + iH„{x, y},
Xn and r„, or G„ and n„, being two known, real, finite, and scalar 
functions of the <tt'o sought scalars, x and y; which fuiytions, vela-

* In fact, the two triangles I. are similar, as required, because their angles at o 
and p are equal, and tho sides about them are proportional.

t Geometrically, the construction gives at once the similarity,
Aaopccpob, whence L bpa = 0PA + pao = P0A' ;

and if wo complete the parallelogram apa'p', the new similarity, 
Aoa'pkop'b, gives A ap'b = OA'r + a'i-o = aop;

thus the opposite angles-bpa, ap'b are supplementary, and tho quadrilateral apbp' is 
inscriptible. It will be shown, in a shortly'subseijuent Section, that these four 
points. A, r, b, r', form a hannonic group upon tlieir common circle.
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tively to them, ate each of the dimension, but which involve also, 
though only in the first dimension, the 2» given and rcaZ scedars, 

*37,, Di,... Xn, yn- And since the one quaternion (or couple) equation, 
FnQ = 0, is equivalent (by 228, IV.) to the system of the two scalar 
equations,
Ii. . . = r„ = 0, or III. y) =0, Hn{x,y) = Q,

•v/e see (by what has been stated in 244, and proved in 252) that 
such a system, of two equations of the dimension, can always be 
satisfied by n systems {ox pairs) of real scalars, and by not more than 
n, such as

IV... x', y'; x", y"i,.. x^”\ y''"'>;

although it may happen that two or more of these systems shall cotn- 
cide with (or become equal to) each other.

(1.) If X and y be treated as co-ordinates (comp. 228, (3.) ), the two equations 
II. or ill. represent a system of two mrnes, in the given plane; and then the theo
rem is, that these two curves intersect each other {generally*') in n real points, and 
in ao more ; although two or more of these a points may happen to coincide with 
each other.

(2.) Let A denote, ds a temporary abridgment, the old or ordinary imaginary, 
V — 1, of algebra, considered as an uninterpreted symbol, and as aof equal to any 
real versor, such Os f (comp. 181, ahd 214, (8.) ), but as following the rules of sca
lars, especially as regards the commvtalive property ot multiplication (126) ; so that

V. ..A* + l = 0, and VI. ..Ai = iA, but VII, . . h not = ±i.
(3.) Let q denote still a real quaternion, ot real couple, x + iy, and with the 

meaning just now proposed of h, let [q] denote the connected but imaginary alge
braic quantity, or ii-scalar (214, (7.) ), x + hy; so that

Vin. g =5 a: + iy, but IX. . . [g] = x + Ay ;
and let any biquaternion (214), (8.), or (as we may here call it) bi-couple, of the 

form [gQ + «[g'']i he said to be complanar with i; with the old notation (123) of 
complanarity.

(4.) Tlien, for the polynomial equation in real and complanar quaternions, 
F„q = G (244, 245), we maybe led to substitute the following connected algebraical 
equation, of the same degree, n, and invoZviny real scalars similarly ;

X. . . = [g]» + [gi] [g]"'* +.. + [g„] = 0;

* Cases of equal roots may cause points of intersectiop, which ora generally ima
ginary, to become real,’bat, coincident'/iW\oaa\i other, and with/ormer real roots; 
for instance tho hyperbola, a;* — y* = a, is intersected in tu>o real and distinct points, 
by tbe pair of right lines ay = 0, if the scalar a > or < 0; but for the case a — 0, thc 
ttoo pairs of lines, ~y'2 = 0 and xy = 0, m.ay be considered to have four coincident 
intersections at the origin.
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which, after tho reductions depending on the substitution V. of -1 for A*, receives 
the form.

XI.. . [r„g] = X„ + Ar„ = 0;
where Xn and K» are the same real and scalar junctions as in I,

(5.) But we have seen in II,, that these two real functions can be made to va
nish together, by selecting any one of n real pairs IV. of scalar values, .t and y; the 
General Algebraical Equation 'X., of the nd* Degree, has therefore n Real or Imagi
nary Roots,* of the Form at+y V — 1 j and it has no more than n such roots.

(6.) £ftmina<ion of y, between the two equations II. or III,, conducts generally 
to an algebraic equation in ta, of the degree n’; which equation has therefore alge
braic roots (5.), real or imaginary; namely, by what has been lately proved, n real 
and scalar roots, d, .. set’*), with real and scalar values y,,. yi"i (comp. FY.) of y 
to correspond; andn(n-l) other roots, 5rith the same-number of corresponding 
values of y, which may be thus denoted,

XII. . . . [«("’)] : XIII... [y('‘+«],. . [y(“’’] ;

and whWIi are either themselves imaginary {or bi-scalar, 214, (7.)), or at least cor
respond, by tho supposed elimination, to imaginary or bi-scatar values oiy, since if 

andyt"*’!, foresample, could bothbo reed, the quafemton equation F„q — i) 
would then have an (n + l)st real root, of the form, g(n+>) = + jyCn+D, contrary
to what has been proved (262).

257' On the whole, then, it results that the equation J’„g' = O in 
complanar quaternions, of the n*’' degree, with real coefficients, 
while it admits of only n real quaternion root^,

1... q', (244, &c.),
is symbolically satisfied also (comp. 214, (3.)) by n{n- 1) imaginary 
quaternion roots, or by m’ -n Jj-jMafemton5(214, (8.)), or bi-couples 
(256, (3.) ), which may be thus denoted,

and of which the first, for example, has the/ortn,
III... [jt’rt)] = [a:’"**’] + ?[y'"*”] = 

where a:/"*”, a:,/"***, and ax^four real scalars, but h is 
the imaginary of algebra (256, (2.)).

(1.) There must, for instance, ben(n — 1) imaginary n^* rools of unitytn the 
given plane of i (comp. 256, (3.)), besides the n real roots already determined (233,

* Thia celebrated Theorem of Algehra has long been known, and has been proved 
in other ways; but it seemed necessary, or at least useful, for the purpose of the pre
sent work, to prove it anew, in connexion with Quaternions; or rather to establish 
the theorem (214, 252), to which in thc present Calculus it corresponds. Compare 
tho Note to page 266.
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237) i and accordingly in the case « = 2, we have the four following sjware-roofs 
of I III *> imaginary;

IV. .. + 1, -1; +hi, -hi-.
tor, by 256, (2.), we have

V.. . (+ iii)’ = 7.’i’ = (-1) (- 1) = +1.
And the tieo imaginary roots ot the quadratic equation F^q rz 0, which generally 
exist, at least as symbols (214, (3.) ), may be obtained by multiplying the square
root in the formula 263, XX. by hi; so that in the particular case, when that radi
cal vanishes, the four roots of tbe equation become real and equal; zero having thus 
only itself tor a sjwore-roof.

(2.) Again, if we write (comp. 237, (3.) ),
„ -l+tVS , „ -1-»V3

VI. . . 9= 111=----- ------ , 9’ = lk = —2---- ,

so tliat 1, q, qt are the three real cube-roots of positive unity, in the given piano ; 
and if we write also, •

SO that 6 and 0’ are (as usual) the two ordinary (or algebraicai} imaginary cube
roots of unity ; then the nine cube-roots o/1 (|1 ] i) are tho following :

Vin. . . 1 ; q,q2-, 0, 0’ ; eq, 02, , e^q, O^q* ■,
whereof the first is a real scalar ; tho two next are real couples, or quaternions |||>; 
the two following are imaginary scalars, or biscalars i and tho four that remain are 
imaginary couples, or. bi-couples, or biquaternions.

(3.) The sixteen fourth roots of unity (||| i) are:
IX. . . + 1; +»; if* i i J i a(I i^) Cl i *) 1

the three ambiguous signs in the last expression being all independent of each other. 
(4.) Imaginary roots, of this sort, are sometimes useful, or rather necessary, in 

calculations respecting ideal intersections,* and. ideal contacts, in geometry: although 
in what remains of tlio present Volume, we shall have little or no occasion to employ 
them.

(6.) We may, however, here observe, that when the restriction (225) on the 
plane of the quaternion q is removed, the General Quaternion Equation of the n*’' 
Degree admits, by tlie foregoing principles, no fewer than nt Boots, real or imagi
nary: because, when that general equation,is reduced, by 221, to tho Standard 
Quadrinomial Form,

X. . . F„g = W„+iX„+jr„ + liZn = O, 
it breaks up (comp. 221, VI.) into a System of Four Scalar Equations, each (gene
rally) of the n"> dimension, in w, x,y,z-, uaraely,

XL ..ir„=0, Af„=O, r„=0, Z„ = 0;
and if X, y, c be eliminated between these four, the result is (generally) a scalar (or 
algebraical) e^uofton of the degree n't, relatively to tho remaining constituent, vi ■,

* Comp. Art. 21 i, and the Notes there referred to.
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which therefore has (algebraical) values, real or imaginary: and similarly for the 
three other constituents, x, y, z, of the sought quaternion q.

(G.) It may even happen, wZien no plane is given, that the number of roots (or 
solutions) of a fnite* equation in quaternions shall become infinite; as has been 
seen to be the case for the equation g’ =—1 (149, 154), even when we confine our
selves to what we have considered as real roots. If imaginary roots be admitted, 
wo may write, still more generally, besides the two liscalar values, ± b, the expres
sion,

XII. . . (— 1)1 = t> + hv, Sp= St>'= Soo'-= 0, No—Ne’ssl;
o and o' being thus any two real and right quaternions, in rectangular planes, pro
vided that the norm of the Jirst exceeds that of the second by unify.

And in like manner, besides the two real and scalar values, + 1, we have 
this general symbolical expression for a square root of positive unity, with merely 
the difference of the norms reversed:

XIII. .. 11 = 0-bhv', So=So' = Soo' = 0, No'-No=l.

Section 7.— On the Reciprocal of a Vector, and on Harmo
nic Means of Vectors; with Remarhs on the Anharmonic 
Quaternion of a Group of Four Points, and on Conditions 
of Concircularity.
258. When two vectors, a and d, are so related that

I. . . a' = - Ua: Ta, and therefore II. . . a = - Ua'; Ta, 

or that
III. . . Ta. Ta' = 1, and IV. . . Ua + Ua'= 0,

we shall say that each of these two vectors is the Reciprocal] 
oY the other ; and shall (at least for the present) denote this 
relation between them, by writing

V. . . a' = Ea, or VI. . . a = Ea';
SO that for every vector a, and every right quotient v,

VII. . . Ea = - Ua : Ta ; VIII. . . E=a =EEa = a ; 
and

IX. . . EIw = IRw (comp. 161, (3.), and 204, XXXV'.).

.259. One of the most important properties of such reci
procals is contained in the following theorem:

* Compare the Note to page 2G5.
+ Accordingly, under these conditions, we shall afterwards denote this recipro

cal of a vector a by the tymbol n’’; but wo postpone the use of thia notation, until 
wo shall be prepared to connect it with a general theory of producte and poteen of 
vectort. Compare 234, V., and the Note to page 121. And as regards the tempo
rary use of tho characteristic R, compare the second Note to page 252.
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If any tuio vectors oa, ob, have oa', ob' for their recipro
cals, then (comp. Fig. 58) the right line a'b' 
is parallel to the tangent oo, at the origin o, 
to the circle oKa; and the two triangles, 
QAS, ob'a', are inversely similar (118). Or 
in symbols,

I. . . if oa' = R.oa, and ob' = R.ob, 
then

A OAB a' ob'a'.

(1.) Of course, under the same conditions, the tangent at o to the circle OA'n' is 
parallel to the line An.

(2.) The angles bao and ob'a' or bod heing equal, the fourth proportional (22C) 
to AB, AO, and ob, or to ba, oa, and ob, has the direction of od, or the direction op
posite to that of a' b' ; and its length ia easily proved to he the reciprocal (or inverse) 
of the length of the same line a'b', because the similar triangles give;

II.. . (oa : ba), ob = (oh^: a^.^ = 1; aV,
it being remembered that

> III. . . OA. oa' = OB. ob' = 1;
we may therefore write,

IV... (oa:ba).ob = B.a'b', or y.___j3 = R(B/3-Ra),

whatever two vectore ft and p way be.
(3.) Changing a and j3 to their reciprocals, tlie last formula becomes,

VI.. . R(^ - a) = ; or VII... (oa': b'a').ob' = R.au.

(4.) The inverse similarity I. gives also, generally, the relation, 
viiL..K^«52.

a B3
(5.) Since, then, by 195, II., or 207, (2.),

IX.,. K-+l = Kt^, wehave X---------a a Kp ^(.P + o)
the lower signs agreeing with VI.

(6.) In general, the reciprocals of opposite vectors are themselves opposite; or 
in qi^mbols,

(ll) More generally,

if X be any scalar.
(8.) Taking lower signs in X., changing a toy, dividing, and taking conjugates, 

we find for ang three vectors a, P, y (^complanar or diplanar) the formula:

XUI p-f Ry R03-a)\ a
Ka —R/3 \R(/3-'y) Ra J —-y a»*co’

if a = OA, P = OB, and y = oo, as usual.

XI. .. . R(-a) = -Ra.

XII. . . Kara = a:'* Ra,
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(9.) If then wo extend, to any four points of space, the notation (25),
. AB CD

XIV.. . (abcd) = —. —,.

interpreting each of these Vso factor-quotients as a ganfernion, and defining that 
their product (in this order'), is the anharmonic quaternion function, or simply tte 
An/iomonic, of the Group of four points A, B, o, D, or of the (plane or gauche) Qua
drilateral abcd, we shall havcthe following general and useful formula oftransfor- 
mcdion:

XT..

where oa’, ob', ob' are supposed to bo reciprocals of oa, ob, oo.
(10.) With this notation XIV., we have generally, and not merely for collinear 

groups (35), the relations:
XVI. . . (abcd) + (acbd) = 1; XVII. . . (abcd). (adcb) = 1,

(11.) Lot o. A, B, c, n be any five points, and oa', .. od' the reciprocals of oa, .. 
OD J we shall then have,' by XV.,

XVIII. .’. ^=K(ocba), K(oaJ)c)5

and therefore,
XIX. . . K (a's'c/d') = (oADc) (ocba) = - (oadcba), 

if we agree to write generally, for any si® points, the formula,*
V,- , , AB CD EPXX... (adcdep) = —. — . —.

bc DE FA
(12.) If then the five' points o .. d be complanar (225), we have, by 226, and 

by XIV.,
XXI. . . K(a'b'o'd') = (abcd), or XXI'-. .. (a'b'c'd') = K (abcd) ;

■ tho anharmonic quaternion (abcd) being thus changed to its conjugate, when the 
four rays OA,.. OD aro changed to their reciprocals.

260. Another very important consequence from the defi
nition (258) of reciprocals of vectors, or from the recent theo
rem (259), may be expressed as follows:

If any three coinitial vectors, oa, ob, oc, be chords of one 
common circle, then (see again Fig. 58) their three coinitial re-

• There is a convenience in.calling, generally, this product of three quotients, 
(abcdef), the evolutionary quaternion, or simply the Evolutionary, of the Group 
of Six Points, A.. K, or (if they be not collinear) of the plane or gauche Hexagon 
Kncavs : because tho equation,

(AncA'B'c') = - 1, 
expresses cither Ist, that the three pairs of points, aa', bd', cc', form a collinear in
volution (20) of a well-known kind; or Ilnd, that those threepatrs, or the three cor
responding diagonals of tho hexagon, compose a complanar or a homospheric Involu
tion, of a new hind suggested ly qxiaternions (comp. 2G1, (H.) )■

2 0
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ciprocalsy oa', ob', oc', are termino-collinear (24): or, in other 
words, if theyoizr/Jozzifs o. A, b, c be concircular, then the three

* points a', b', c' are situated on one right line.
And conversely, if three coinitial vectors, oa', ob', oc', thus 

terminate on one right line, then their three coinitial recipro
cals, OA, OB, oc, are chords of one circle; the tangent to which 
circle, at the origin; is parallel to the right line; while the 
anharmonic function (259, (9.) ), of the inscribed quadrilateral 
OABC, reduces itself to a scalar quotient of segments of that line 
(which therefore is its own conjugate, by 139): namely,

I. .. (OABU) = b'c' : b'a' = (oo a'b'c') = (O.OABC), 
if the symbol oo be used here to denote the point at infinity on 
the right line a'b'c' ; and if, in thus employing the notation 
(35) for the anharmonic of a plane pencil, .we consider the null 
chord, oo, as having the direction* of the tangent, on.

(1.) If p =op be the variable vector of a point p upon the circle oab, the qua
ternion equation ot that circle may be thus written:

II.. . Bp = E/3 + a:(Ka -E/3), where III. . . x = (oabp),;
the coeflicient x being thus a variable tcalar (comp. 99, I.), which depends on tho 
variable position of the point P on the circumference.

(2.) Or we may write,
IV...

f+It

as another form of the equation of the same circle oab ; with which may usefully bo 
contrasted the earlier form (comp. 26), of the equation of the Zine ab,

+ uS
'’=-7+r-

(3.) Or, dividing the second member of IV. by the first, and taking conjugates, 
we have for the circle,

VI.. f£+'^=t + u-, while VII. = f +
a ft P p

tor the right line.
(4.). Or we may write, by II.,

this latter symbol, by 204, (18.), denoting any scalar.

V...

.X

Compare the remarks in the second Noto to page 139, respecting the possible 
determinateness of signification of the symbol UO, when the ttro denotes a line, 
which tanisZies according to a lavi.
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(5.) Or still more briefly,

IX... V(oABp) = 0; or IX'... (oabp) = V-i 0.

(C.) K tho/oar points o, A, B, o be still conwreuZar, and if P be any fifth poinf 
in their plane, while POi,.. PCi are the reciprocals of PO,.. PC, then by 259, XXL, 
we have tbe relation,

X. ., (ojAiBid) = K (oabc) = (oabc) = V"i0i 

tlie/jiir new points Oi.. Ci%?e therefore generally condrculcer.
(g.) If, however, the point p be again placed on the circle okjso, those fonr new 

points are (by the present Article) collinear j being tho intersections of the pencil 
. P.OABO with a parallel to the tangent at p. In this case, therefore, we have tho 

equation.
XI... (p.oabc) = (oiAiBjCi) = (oabo) ;

so that the constant anharmonic of the pencil (36) is thus seen to be equal to what 
we have defined (259, (9.) ) to be the anharmonic of the group.

(8.) And because the anharmonic of a circular group is a scalar, it is equal (by 
187, (8.) ) to its own tensor, either positively or negatively taken: we may therefore 
write, for any inscribed quadrilateral okao, the formula,

XII. , . (oabc) = + T (oabc) = + (oa . bc) : (ab . co),

= + a quotietit of rectangles of opposite sides ; the upper or the lower sign being 
taken, according as the point b' falls, or does not fall, between the points a' and c'; 
that is, according as the quadrilateral oabc is an uncrossed Or a crossed one.

f.(9.) Hence it is easy to infer that/or any circular group o. A, B, c, wo have the 
equation,

xiu... U—=4-U —; 
AB — CB

the upper sign being taken when the succession oabo is a direct one, that is, when 
tho quadrilateral <3J.nQ is uncrosserf; and tho lower sign, in the contrary case, 
namely, when the succession is (what may be called) indirect, or when the quadri
lateral is crossed: while conversely this equation XIII, is sufficient to prove, when
ever it occurs, that the anharmonic (oabc) is a negative or a positive scalar, and 
therefore by (5.) that thc group is circular (if not linear'), as above.

(10.) If A, B, c, D, E be any ^re homospheric points (or points upon the surface 
of one sphere), and if o be any sixth point of space, while oa', .. oe' are the reciprocals 
of OA,.. OB, then tlie Jive new points a'. . e' are generally homospheric (with each 
other) ; but if o happens to be m the sphere abode, then a' .. e' are complanar, 
their common plane being parallel to the tangent plane to the given sphere at a: 
with resulting anharmonic relations, on which we cannot here delay.

261. An interesting case of the foregoing theory is that 
when the generally scalar anharmonic of a circular group be
comes equal to negative unity : in which case (comp. 26), the 
group ia said to be harmonic. A few remarks upon such ctr- 
cidar and harmonic groups may here be briefly made: the stu-
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dent being left to fill up hints for himself, as what must be 
now to him an easy exercise of calculation.

*' (1.) For such a group (comp, again Fig. 68), we have thus tho equation,

I.. . (oabc) = - 1; and therefore II,. . a'b'= b'c' ;
or III. ..R/3=J(Ra + Ey);
and under this condition, we shall say (comp. 216, (5.) that tbe Vector p is the Har
monic Mean between the two vectors, a and y.

(2.) Dividing, and taking conjugates (comp. 260, (3.), and 216, (5.)), wo thus 
obtain tbe equation,

ay .y + a y + a
or

VI. . . P = ~y = ^a, if Vn. . . £ = |(y + £i);

E thus denoting here the vector oE (Fig. 58) of the middle point of the chord Ac. 
We may then say that tho /larmonic mean between any two lines is (as in algebra) 
tho JburtA proportional to their eemisum, and to themselves.

(3.) Geometrically, we have thus the similar triangles,
VIII. . . A AOB oc EOC ; VIII'. . . A AOE oc BOC ;

whence, either because the angles oba and ocA, or because the angles oac and one 
are equal, we may infer (corap. 2C0, (5.) ) that, when tho equation I. is satisfied, 
the four points o, a, b, c, if not collinear, aro concircular.

(4.) We have also the similarities,
IX. . . A OEC oc CEB, and 

or the equations,
X...^ = 2LL-‘ and

7-£ -£
in fact wo have, by VI. and VII.,

XI. .. ^-pZ=-2; XII. =

(5.) Hence the line ec, in Fig. 58, is the mean proportional (227) between tho 
lines EO and eb j or in words, the semisum (oe), the semidifference (ec), and th6 
excess (be) of the semisum over the harmonic mean (ob), form (as in algebra) a 
continued proportion (227).

(6.) Conversely, if any three coinitial vectors, i^, ec, eb, form thus a continued 
proportion, and if we take ea = ce, then tbe four points oabc will compose a circu
lar and harmonic group; for example, tho points apbp' of Fig. 67 are arranged so 
as to form such a group.* ' ».

(7.) It is easy to prove that, for the inscribed quadrilateral oabc of Fig. 58, 
the rectangles under opposite sides are each equal to half of the rectangle under the

IX'. . . A OEA ot AEB ;

X' — 2-^

* Compare the Note to 255, (2.). In that sub-article, tho text ehduld have run 
thus: of which (we may add) the centre c is on the circle oab, &c. In Fig. 58, thc 
centre of the circle oabc is concircular with the three points o, E, b.

    
 



CHAP. II.] INVOLUTION IN A PLANE, OR IN SPACE. 285

diagonah; which geometrical relation answers to either of the two anharmonic 
equations (comp. 269, (10.)) :

XIII. . . (OBAC)=+ 2; Xlir. . . (ocab) = + j.
(8.) Hence, or in other ways, it may be inferred that these diagonals, OB, ao, are 

conjugate chords of tlie circle to which they belong: in the sense that each passes 
through the pole of the other, and that thus the line DB is the second tangent from 
tho point D, in which the chord Ac prolonged intersects the tangent at o.

(9.) Under the same conditions, it ia easy to prove, dither by quaternions or by 
geometry, that we have the harmonic equations:

XIV. . . (abco) = (ncoA) = (coab) = — 1;
so that AO is the harmonic mean.between An and ao ; no is such a mean between 
BC and BA; and ca between co and cb.

(10.) In any such group, any two opposite points (or opposite comers of the qua
drilateral), as for example o and n, may be said to be harmonically conjugate to each 
other, with respect to the two other points, A and o; and we see that when these two 
points A and o are given, then to every third point o (whether in a given plane, or 
in space) there always corresponds & fourth point B, which is in this sense conju
gate to that third point: this fourth point being always complanar with the three 
points A, o, o, and being even concircular with them, unless they happen to be colli
near with each other; in which extreme (or limiting') case, the fourth point b is still 
determined, but is now collinear with the others (as in 26, &c.).

(11.) When, after thus selecting two* points, a and c, or treating them as given 
or fixed, vio determine (10.) the harmonic conjugates n, b’, n", with respect to them, 
ot any three assumed points^ o, o’, o", then the three pairs of points, Q, b ; o', b' ; 
o", b", may be said to form an /nooZu<jon,t either on the right line a.c, (in which 
case it will only be one of an already well-known kind), or in a plane through that 
lino, or even generally in space: and the two points a, o may in all these cases be 
said to be tho two Double Points (or Foci) of this Involution. But the field thus 
opened, for geometrical investigation by Quaternions, is far too extensive to be more 
than mentioned here.

(12.) We shall therefore only at present add, that the conception of the harmonic 
mean between two vectors may easily be extended to any number of such, and need 
not be limited to tbe plane: since we may define that q is thc harmonic mean of the 
n arbitrary vectors at,.. an, when it satisfies tho equation,

XV. . . Eij =’i (Rat -1-.. -1- Ea,.); or XVI. . . nEq = SRa.
n

(13.) Finally, aa regards the notation Ea, and the definition (258) of ihorecipro- 
cal of a vector, it may be observed that if we had chosen to define reciprocal vectors as 
having similar (instead of opposite) directions, we should indeed have had the posi
tive sign in the equation 258, VII.; but should have been obliged to write, instead of 
258, IX., the much less simple formula,’

EI»=- lEv.

• There is a sense in.which tho geometrical process here spoken of can be applied, 
even when tlie two fixed points, otfoci, are imaginary. Compare the Geomitrie 
Nttperieure of M. Chaslcs, page 136.

t Compare the Note to 259, (11.),
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CHAPTER III.

ON DIPLANAR QUATERNIONS, OR QUOTIENTS OF VECTORS IN 
SPACE : AND ESPECIALLY ON THE ASSOCIATIVE PRINCI

PLE OF MULTIPLICATION OF SUCH QUATERNIONS.

Section 1.—On some ^Enunciations of the Associative Pro
perty, or Principle, of Multiplication of Diplanar Quater
nions.
262. In the preceding Chapter we have confined ourselves 

almost entirely, as had been proposed (224, 225), to the con
sideration of quaternions in a given plane,(that of z) ; alluding 
only, in some instances, to possible extensions* of results so 
obtained. But we must now return to consider, as in the 
First Chapter of this Second Book, the subject of General 
Quotients of Vectors: and especially their Associative Multi

plication (223), which has hitherto been only proved in con
nexion with the Distributive Principle (212), and with the 
Laics of the Symbols i,j, k (183). And first we shall give a 
few geometrical enunciations of that associative principle, which 
shall be independent of the distributive one, and in which it 
will be sufficient to consider (comp. 191) the multiplication of 
versors; because the multiplication of tensors is evidently an 
associative operation, as corresponding simply to arithmetical 
multiplication, or to the composition of ratios in geometry.! 
We shall therefore suppose, throughout the present Chapter, 
that g, r, s are some three given but arbitrary versors, in three 
given and distinct planes;! and our object will be to throw

• As in 227, (8.); 242, (7.); 254, (7.); 257, (6.) and (7.) i 259, (8.), (9.), 
*(10.), (IL); 200, (10.); and 201. (LI.) and (12.).

t Or, moro generally, for any three pairs of magnitudes, each pair separately 
being homogeneous.

J If the factors q, r, t were complanar, we could always (by 120) put them
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some additional light, by new enunciations in this Section, 
and by new demonstrations in the next, on the veiy impor
tant, although very siiyple. Associative Formula (223, II.), 
which may be written thus :

I. . . sr. q^s.rq\
or thus, more fully,

II. . . y'y = t, if q'= sr, s’-rq, and f = 
q', s', and t being here fAree new and derived versors, in three 
new and derived planes.

263. Already we may see that this Associative Theorem 
of Multiplication, in all its forms, has an essential reference to 
a System of Six Planes, namely the planes of these six ver
sors,

IV. . . q, r, s, rq, sr, srq, or IV'. . . q, r, s, f, t-, 
on the judicious selection and arrangement of which, the clear
ness and elegance of every geometrical statement or proof of 
the theorem must very much depend : while the versor cha
racter of the factors (in the only part of the theorem for which 
proof 13 required) suggests a reference to a Sphere, namely to 
what we have called the unit-sphere (128). And the three 
following arrangements of the six planes appear to be the most 
natural and simple that can be considered: namely, Ist, the 
arrangement in which the planes all pass through the cenlri of 
the sphere; Ilnd, that in which they all touch its surface; 
and Ilird, that in which they are the six faces of an inscribed 
solid. We proceed to consider successively these three ar
rangements.

264, When tbe first arrangement (263) is adopted, it is natural 
to employ arcs of great 'circles, as representatives of the versors, on the

under the forms,
(3 y fi

’’“rt’ •'=~>« P y
and then should have (comp. 183, (1-)) the two equal ternary products,

S Jy
’’9! p a a ya

so that in thit caao (comp. 224) the associative property would bo proved without any 
difficulty.
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plan of Art. 162. Eepresenting thus the factor q by the arc ab, 
and r by the successive arc bc, we represent (167) their product rq, 

• or s', by AC; or by any equal arc (165), such as de, in Fig. 59, may 
be supposed to be. Again, representing s by ef, we shall have df 
as the representative of the ternary 
product s.rq, or ss', or t, tahen in 
one order of association. To repre
sent the other ternary product, 
sr. q, or j'j, -we may first determine 
three new points, o, h, i, by arcual 
equations (165), between gh, bc, 
and between hi, ef, so that bc, ef 
intersect in h, as the arcs representing s' and s had intersected in e; 
and then, after thus finding an arc gi which represents sr, or q', may 
determine three other points, k, l, m, by equations between kl, ab, 
and between lm, gi, so that these two new arcs, kl, lm, represent q 
and q', and that ab, gi intersect in l; for in this way we shall have 
an arc, namely km, which represents q'q aa required. And the theo
rem then is, that this last arc KU is equal to the former arc df, 'in the 
full sense of Art. 165; or that when (as under the foregoing condi
tions of construction) the five arcual equations,
I. .. O AB = O kl, o bc = '' GH, n EF = o HI, « AC = O DE, n QI = '' LM, 

exist, then this sixth equation of the same hind is satisfied also,
* II.. . « DF = '' km:

the two points, K and M, being both on the sane great circle as the two 
previously determined points, d and f; or d and m being on tho 
great circle through f and k: and the two arcs, nis and km, of that 
great circle, or the two dotted arcs, dk, fm in the Figure, being 
equally long, and similarly directed (165).

(1.) Or, after determining the nine points a .. i so as to satisfy the three middle 
equations I., we might determine the three other points, K, z, m, without any other 
arcual equations, as intersections of the three pairs of arcs ab, df ; ab, gi ; df, gi ; 
and then the -theorem would bc, that (if these three lost points be suitably distin
guished from their own opposites upon the sphere) the two extreme equations I., and 
the equation II., are satisQed.

(2.) The same geometrical theorem may also be thus enunciated ; If the first, 
third, and fifth sides (kl, dn, ed) of a spherical hexagon KLGnED be respectioely 
and arcuallg equal (165) to the first, second, and third sides (ab, bo, CA) o/ a sphe
rical Mangle iac, then the second, fourth, and sixth sides (t-O, he, dk) o/the same 
hexagon are equal to the three successive sides (tu, if, fm) of another spherical tri
angle, MIF.
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(3.) - It may also be said, that if fice successive sides (el, .. ed) of one spherical 
hexagon be respectively and arcually equal to tbe Jive successive diagonals (ab, in, 
bc, IP, ca) of another such hexagon (ajibicf), then the sixth side (de) of thefrst 
is equal to tbe sixth diagonal (fm) of the second,

(4.) Or, if we adopt the conception mentioned in 180, (3.), of an arcual sum, and 
denote such a sum by inserting -I- between the symbols of the two summands, that of 
tlie added arc being written to the left-hand, we may state the theorem, in connexion 
with the recent Fig. 69, by the formula:

III... ''»F + "llA=nBP+,ftBC, if nDA = nEC; 
where u and F may denote any two points upon tho sphere.

(6.) We may also express* the same principle, although somewhat less simply 
as follows (see again Fig. 69, and compare sub-art. (2.) ):

IV. . . if n eD+n GH+''EL= 0, then ODE + -HE + « 1,0=0.

(G.) If, for a moment, wo agree to write (comp. Art. I),

V.. . '> AB = B — A,

we may then express the recent statement IV. a little more lucidly thus:

VI. ..ifD-E+H-G-|-L-K = O, then e-d + e-h + q — l=0.
(7.) Or still more simply, if o, o', o" be supposed to denote any three dipla

nar arcs, which are to be added according to the rule (180, (3.) ) above referred to, 
the theorem may be said to be, that

VII. . .(o''+o') + „ = o" + (n'+o);

or in words, that Addition of Arcs on a Sphere is an Associatice Operation.
(8.) Conversely, if any independent demonstration be given, of the truth of any 

one of the foregoing statements, considered as expressing a theorem of spherical geo
metry,a new proof will thereby bo furnished, of tho associative property of multi
plication of quaternions.

265. In the second arrangement (263) of tbe six planes, instead 
of representing the three given versors, and their partial or total 
products, by arcs, it is natural to represent them (174, II.) by on- 
gles on the sphere. Conceive then that the' two versors, g and r, 
are represented, in Fig. 60, by the two spherical angles, eab and 
ABE; and therefore (1.75) that their product, rg' or s', is represented 

,by the external vertical angle at E, of the triangle abe. Let the

• Some of these formalaj and figures, in connexion with the associative principle, 
are taken, though for tlie most part with modifications, from tlie author’s Sixth Lec
ture on Quaternions, in which that whole subject is very fully treated. Comp, the 
Note to page 160.

t Such a demonstration, namely a deduction of the equation II. from the five 
equations I., by known properties of spherical conics, will bo briefly given in tho en
suing Section.

2 P
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second versor r be also represented by the angle fbc, and the third 
versor s by bcf; then the 
other binary product, tr or 
5', will be represented by 
the external angle at f, of 
the new triangle bcf. Again, 
to represent theyirsl'ternary 
product, t=ss' = s.rq, we have- 
only to take the external an
gle at D of-the triangle ecd, 
if o be a point determined 
by the two conditions, that the angle ecd shall be equal to bcf, 
and DEC supplemeniarp to bea. On the other hand, if we conceive 
a point o' determined by the conditions that d'af shall be equal Ioeab, 
and afd' supplementary to cfb, then the external angle at d', of the 
triangle afd', will represent the second ternary product, 5'j=5r. g', 
which (by the associative principle) must" be equal io the first. 
Conceiving then that ed is prolonged to o, and fd' to ii, the 
two spherical angles, one and ad'h, must be equal in all respects; their 
vertices d and d' coinciding', and the rotations (174, 177) which they 
represent being not only equal in amount, but also similarly directed. 
Or, to express the same thing otherwise, we may enunciate (262) the . 
Associative Principle by saying, that when the three angular equations,

I. .- , ABE = FBC, BCF = ECD, DEO = rr - BEA, 

ar6 satisfied, then these three other equations,
II. . . DAF = EAB, FDA = CDE, AFD=!r-CFB,

are satisfied also. For not only is this theorem of spherical geometry a 
consequence of the associative principle of multiplication of quaternions, 
but conversely any independent demonstration* of the theorem is, 
at the same time, a proof of the principle.

266. The third arrangement (263) of . 
the six planes may be illustrated by con
ceiving a gauche hexagon, ab'ca'bc', to be 
inscribedin a sphere, in such amanupr that 
the intersection d of the three planes, c'ab', 
b'ca', a'bc', is on the surface; and there
fore that the three small circles, denoted by 
these three last triliterul symbols, concur

* Such as we shall sketch, in the following Section, with the help of the known 
properties of tho tpherical conici. Compare the Note to the foregoing Article.

B

Fig. 61.

-A.
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in one point D; while the second intersection of the two other small 
circles, ab'c, ca'b, may be denoted by the letter n', as in the annexed 
Fig. 61. Let it be also for simplicity at first supposed, that (as in 
the Figure) the)?yc circular successions,

L.. c'ab'd, ab'cd', b'ca'u, ca'bd', a'bc'd,
are all direct; or that the Jive inscribed quadrilaterals, denoted by 
these symbols I., are all uncrossed ones. Then (by 260, (9-) ) it is 
allowed to introduce three versors, q, r, s, each having two expres
sions, as follows:

B'D „AB' ttPA'

- Ch' a'b
although (by the cited sub-article) th© last members of these three 
formulae should receive the negative sign, if the first, third, and 
fourth of the successions I. were to become indirect, or if the corre
sponding quadrilaterals were crossed ones. We have thus (by 191) 
the derived expressions,

TTF z ,-tA'b cd' d'aIII. . . 5' = rn = ir-—=U—o' = sr=U—7=U—■;
DC' BC' CB' ab'

whereof, however, the two versors in the first formula would differ 
in their signs, if the fifth succession I. were indirect; and those in 
the second formula, if the second succession were such. Hence,

IV. . .< = ««' = «.r^ = U—; q'q = sr.q = 'U^-^,i

and since, by the associative principle, these two last versors are to 
be equal, it follows that, under the supposed conditions of construc
tion, the four points, b, c', a, d', compose a circular and direct suc
cession ; or that the quadrilateral, bc'ad', is plane, inscriptible,* and 
fZHCro.wft?.

267. It is easy, by suitable changes of sign, to adapt 
the recent reasoning to the case where some or all of the suc
cessions I. are indirect; and thus to infer, from the associa
tive principle, this theorem of spherical geometry: T/’ab'ca'bc'

• Of course, since tlio four points bo'ad' are known to be homosphenc (comp. 
2C0. (10.)), the inscriptibiliti/ of tho quadrilateral in a circle would fntlow from its 
being plane, if the latter were otherwise proved: but it is here deduced from tho 
eqnalit;/ of the tiuo versors IV., on the plan of 260, (9.J.
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be a spherical hexagon, such that the three small circles c'ab', 
b'c a', a'bc' concur in one point D, then, Ist, the three other small 
circles, ab'c, ca'b, ^c'h, concur in another point, o'; and Ilnd, 
of the six circular successions, 266, I., and bc'ad', the number 
of those which are indirect is always even (including zero). 
And conversely, any independent denaonstration* of this geo
metrical theorem will be a new proof of the associative prin
ciple.

268. The same fertile principle of associative multiplication may 
be enunciated in other ways, without limiting the factors to be ver
sors, and without introducing the conception of a sphere. Thus we 
may say (comp. 264, (2.) ), that if o. abcdef (comp. 35) be any 
pencil of six rays in space, and o. a'b'c' any pencil of three rays, and 
if the three angles aob, cod, eop of the first pencil be respectively 
equal to the angles b'oc', c'oa', a'ob' of the second, then another 
pencil of three rays, o.a"b"c", can be assigned, such that the three 
other angles boc, doe, foa of theJi/sZ pencil shall be equal to the 
angles b"oc", c"oa", a"ob" of the third: equality ofanyles (with 
one vertex) being here understood (comp. 165) to include complana- 
rity, and similarity of direction of rotations.

(1.) Again (comp. 264, (4.)), we may estaOlish the following formula, in which 
tho four vectors ajiyS form a complanar proportion (226), but £ and ? are any two 
lines in space: •

ifyc a e 7
for, under this last condition, we have (comp. 125),

n . = = iy € tty£ a S £
(2.) Another enunciation of the associative principle is the following:

then 1? = ^;
ya £ ay B

for if wo determine (120) six new vectors,'qOi, and K\p, so that
■0 ^8

7*
IV. . .

0 , e Z- = whence - = ( al.. t £
' and

A _ £
K a' n y'

• An elementary proof, by ttereographic projection, will bc proposed in the fol
lowing Section.
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X_?
S'

we shall have the transformations,

= = = = or VI,litO I tlGitfOfiSS fl
(3.) Conversely, tho assertion that this last equation or proportion VI. is true, 

whenever the twelve vectors a .. are connected by the five proportions IV., is a 
form of enunciation of the associative principle; for it conducts (comp. IV. and V.) 
to tbe equation, ,

but, even with this last restriction, the three factor-quotients in^VII, joay represent 
any three quaternions.

Section 2.-^ On some Geometrical Proofs of the Associative 
Property of Multiplication of Quaternions, which are inde
pendent of the Distributive* Principle.

269. We propose, in this Section, to furnish three geome
trical Demonstrations of the Associative Principle, in con
nexion with the three Figures (59-61) which were employed 
in the last Section for its Enunciation; and with the three ar
rangements of six planes, which were described in Art. 263. 
The two first of these proofs will suppose the knowledge of a 
few properties of spherical conics (196, (11.)); but the third 
will only employ the doctrine of stereographic projection, and 
will therefore be of a more strictly elementary character. The 
Principle itself ia, however, of such great importance in this 
Calculus, that its nature and its evidence can scarcely be put 
in too many different points of view.

270. The only properties of a spherical conic, which we shall in 
this Article assume as known,f are the three following: Ist, that 
through any three given points on a given sphere, which are not on a 
great circle, a conic can be described (consisting generally of two oppo
site ovals), which shall have a given great circle for one of its two cyclic 
arcs; Ilnd, that if a transversal arc cut loth these arcs, and the conic, 
the intercepts (suitably measured) on this transversal are equal; and 
Ilird, that if the vertex of a spherical angle move along the conic, 
while its legs pass always through two fixed points thereof, those legs

* Compare 224 and 262 ; and the Note to page 236.
t The reader may consult the Translation (Dublin, I84J, pg. 46, 50, 55) by tbe 

present Dean Graves, of two Memoirs by M. Cbaslcs, on Cones of the Second De
gree, and Sphericat Conics,
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intercept a constant interval, upon each cyclic arc, separately taken. 
Admitting these three properties, we see that if, in Fig. 59, we con
ceive a spherical conic to be described, so as to pass through the 
three points b, f, h, and to have the great circle daec for one cyclic 
arc, the second and third equations I. of 264 will prove that the arc 
GLIM is the other cyclic arc for this conic; the first equation I. proves 
next that the conic passes through k; and if the arcual chord FKbe 
drawn and prolonged, the two remaining equations prove that it' 
meets the cyclic arcs in n and m; after which, the equation IL of 
the same Art. 264 immediately results, at least with the arrange
ment* adopted in the Figure.

I. .

(1.) Tbe Ist property is easily seen to correspond ta the possibility of circum
scribing a circle about a given plane triangle^ namely that of which the comers are 
the intersections of a piano parallel to the plane of the given cyclic arc, with the , 
three radii drawn to the three given points upon the sphere: but it inay be worth 
while, as an exercise, to prove here the Ilnd property tiy quaternions.

(2.) Take then the equation of a cyclic cone, 196, (8.*), which may (by 196, 
XII.) be written thus:

.S-S^ = N^i andlet II. ..S^S^’ = nC

p and p' being thus two rays (or sides') of the cone, which may also be ebnsidtred to 
be the vectors of two points r and p' of a spherical ionic, by supposing that their 
lengths are each unity. Let t and t' be tho vectors of tho two points t and t' on 
the two cj’clio arcs, in wliich the arcnal chord pp' of the conic cuts them; so that

III. ..S- = 0, 8^=0, and. IV. . . Tr = Tr’ = 1.
, a p

Tbe theorem may then be stated thus: that
V. . . if p = XT + x'r', then VI. . . p' — x'r + xr';

or that this expression VI. satisfies II., if the equations I. III. IV. V. bo satisfied. 
Now, by III. V. ‘VI., we have

vn...se=x'sr:=^s?-', s^=xs;=^s;;
rt a X a p P x' (3 

whence it follows that the first members of I. and II. are equal, and it only remains^ 
to pro\'e that their second members are equal also, or that Tp' = Tp, if Tr’ = Tr. 
Accordingly we have, by V. and VI,

VIII. . . = ^^.SZJl = S-iOrby 200, (11.), and 204, (19.);
p 4 p ®4-»r + r

and the property in question is proved.

* Modifications bf tiiat arrangement may be conceived, to which however it would 
be easy to adapt the reasoning.
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271. To prove tbe associative principle, with the help of Fig. 60, 
three other properties of a spherioal conic shall be supposed known;* 
Ist, that for every such curve two focal points exist, possessing seve
ral important relations to it, one of which is, that if these tivo foci 
and one tangent arc given, tbe conic can be constructed; Ilnd, 
that if, from any point upon the sphere, two tangents be drawn to the 
conic, and also two arcs'to the foci, then one focal arc makes with one 
tangent the same angle as the other focal arc with the other tangent; 
and Illrd, that if a spherical quadrilateral be circumscribed to such 
a conic (supposed here for simplicity to be a spherical ellipse, or tbe 
opposite ellipse being neglected), opposite sides suitend supplementary 
angles, at either of the two (interior) foci. Admitting these known 
properties, and supposing the arrangement to be as in Fig. 60, we 
may conceive a conic described,, which shall have E and F for its two 
focal points, and shall touch the arcBC; and then the two first of the 
equations I,, in 265, will prove that it touches also the arcs ab and 
CD, while the third of-those equations proves that it touches ad,'so 
that ABCD is a circumscribedf quadrilateral: after which the three 
equations IL, of the same article, are consequences of the same pro
perties of the curve.

272. Finally, to prove the same important Principle in a 
more completely elementary way, by means of the arrangement 
represented in-Fig. 61, or to prove the theorem of spherical 
geometry enunciated in Art. 267, we may assume the point d 
as the pole of a stereographic projection, in which the three 
small circles through that point shall be represented by right 
Zines, but the three others by circles, 
all being in one common plane. And 
then (interchanging accents) the 
theorem comc_p to be thus stated:

//a', b', c' he any three points 
(comp. Fig. 62) on the sides bc,- 
CA, AB of any plane triangle, or on 
those sides prolonged, then, Ist, 
the three circles.

Tlie reader may again consult pages 46 and 60 of the Translation lately cited. 
In strictness, there aro of course four foci, opposite two by two.

t Tho writer has elsewhere proposed the notation, Eir(. .) abcd, to denote tho 
relation of the focal points E, F to this circumscribed quadrilateral.
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I. . . c'ab',^a'bc', b'ca',
will meet in one point d ; and Ilnd, an even number (if any) 
of the six (linear or circular) successions,
II. . . ab'c, bc'a, ca'b, and II'. . . c'ab'd, a'bc'd, b'ca'd, 

will be direct; an even number therefore also (if any) being 
indirect' But, under this form,* the theorem can be proved 
by very elementary considerations, and still without any em
ployment of the distributive principle (224, 262).

(1.) The first part of the theorem, as thus stated, is evident from the Third Book 
of Euclid; hut to prove hoth parts together, it may be useful to proceed as follows, 
admitting the conception (235) of amplitudes, or of angles as representing rotations, 
which may have any values, positive or negative, and are to be added with attention 
to tlieir sign*.

(2.) We may thus write the three equations,
III. .. ab'c = nn-, Bc'A = n'7r, CA'B = n"5r,

to express the three collineation*, ab'c, &c. of Fig. 62 ; the integer, n, being odd or 
even, according as the point B* is on the finite line ao, or on a prolongation of that 
line; or in other words, according as the first succe*sion II. is direct or indirect; 
and similarly for the two other coefficients, »' and n".

(3.) Again, if opqr be any four points in one plane, we may cstaUish the for
mula,

IV. . . POQ+ Qon = pon + 2injr, 
with the same conception of addition of amplitudes; if then d be any point in the 
plane of the triangle abc, we may write,

V... ab'd + db'c = nn-, He'D + DC'A = n'lr, ca'v -(- da'b = »"7r; 
and therefore,

VI. . . (ab'd + dc'a) + (bc/d -P da'b) + (ca'd + db'c) = (n + n + n") tt.
(4.) Again, if any four points opqk be not merely complanar but concjrcwZor, 

we have the general .formula,
VII... opq + QRO =pir, 

thc integer p being odd or even, according as the succession opqr is direct or indite
* The Associative Principle of Multiplication was stated nearly under this/onn, 

and was illustrated by the same simple diagram, in paragraph XXII. of a commu
nication by tho present author, which was entitled Letter* on Quaternions, and has 
been printed in the First and Second Editions of the late Dr. Nichol’s Cyclopedia of 
the FhysieaX Sciences (London and Glasgow, 1857 and 1860). The same commu
nication contained other illustrations and consequences of the same principle, which it 
has not been thought necessary hero to reproduce (compare however Noto C) ; and 
others may bo found in the Sixth of the author’s already cited Lectures on Quater
nions (Dublin, 1863), from which (os already observed) some of tlie formulte and 
ggutes of this Chapter have been taken.
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rect; if then we denote by n the second intersection ot the drat and second circles I., 
whereof o' is a first intersection, we shall have

Vin.., ab'd + dc'a =pjr, bc'd + da'b =p'w,
p and p' being o(M, when the two first successions II'. aro direct, butenen in the con
trary case.

(0.) Hence, by VI., we have,
IX. . , ca'd + db'c = p"5r, where X. . . p 4p' + p"^= n 4 n'4 n";

the third succession II'. is therefore always circular, or th? third circle I. passes 
through the intersection D of tho two first; and it is direct or indirect, that is to 
say, p" is odd or eren, according as the number of even coefficients, among thojfoe 
previously considered, is itself even or odd; or • in other words, according as the 
number of indirect successions, among the_^re previously considered, is eoen (includ
ing xero), or odd.

(6.) In every case, therefore, the total number of successions of each hind is eren, 
and both parts of the theorem are proved : the importance of tiro second part of it 
(respecting the ecen parZttion, if any, of the six successions II. II'.) arising from 
the necessity of proving that we have always, as in algebra,

XI . . sr. 5 = 48. rq, and never XII. . . sr. g = —s.rj,
if q, r, s bo any three actual quaternions.

(1.) The associative principle of multiplication may also be proved, without the 
distributive principle, by certain considerations of rotations of a system, on which we 
cannot enter here.

Section 3.—On some Additional Formula.
273. Before concluding the Second Book, a few additional re

marks may be made, as regards some of the notations and transfor
mations which have already occurred, or others analogous to them. 
And first as to notation, although we have reserved for the Third 
Book the interpretation of such expressions as ^a, or a°, yet we have 
agreed, in 210, (9.), to abridge the frequently occurring symbol (Ta)* 
to Ta’; and we now propose to abridge it still further to Na, and to 
call this square of the tensor (or of the length) of a vector, a, the Norm 
of that Vector: as we had (in 190, &c.), the equation T2*= Ny, and 
called Ny the norm oi the quaternion q (in 145, (11.) ). We shall 
therefore now write generally, for any vector a, the formula,

I. . .(Ta)* = Ta* = Na.

(1.) Tho equations (comp. 186, (1.) (2.) (3.) (4.) ),
II. ..Np = l; III. ..Np = Na; IV. . . N(p-a) = Na;

V. ..N(p-«) = N(/3-a), 
represent, respectively, tho unit-sphere; tho sphere through A, ivith o for centre ; 
tlio sphere through o, witli A for centre j and tho sphere through n, with tho same 
cenfre a.

2 o
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(2.) Thc equations (comp. 186, (6.) (7.) ),
VI. . . N(p + a) = N(p-a);* VII. ,. N(p-/3)=N(p-a), 

represent, respectively, the plane through o, perpendicular to tho line OA; and the 
plane which perpendicularly biicctt tho lino AB.

274. As regards Iratis/ormalions, the few following may here be 
added, which relate partly to the quaternion forms (204, 216, &c.) 
of the Equation* of the Ellipsoid,

(1.) Changing K(«:: p) to 'Rp: R/r, by 259, VIII., in tho equation 217, XVI. 
of tbe ellipsoid, and observing thdt the three vectors p, Rp, and Rk are complanar, 
while 1: Tp = TRp by 258, that equation becomes, when divided by TRp, and when 
tho value 217, (5.) for t’ is taken, and the notation 273 is employed :

’•••’(15*

of which the first member will soon be seen to admit of being written f as T(ip + pn), 
and the second member as k’ —

(2.) If, in connexion with the earlier forms (204, 216) of the equation of tho 
same surface, wo introduce a new auxiliary vector, a or os, such that (comp. 216, 
VIII.)

n...o=(s£+vfy=p+2/33?,

the equation may, by 204, (14.), bo reduced to the following extremely simple form : 
III, ..To = T/3;

which expresses that the locus ot the new auxiliary point s is what we have called 
the mean sphere, 216, XIV.; while the line PS, or — which connects ceny twO 
correspondiny points, }? and s, on the ellipsoid and sphere, ia seen to be pdrallel to 
the fixed line fi-, which is one element of the homoloyy, mentioned in 216, (10.).

(3.) It is easy to prove that ’

IV.. . Sy = S- S^, and therefore V. . . S ^*85 = : 8 5,0 a 0 0000
if p' and o' bo the vectors of two new but corresponding points, p' and s', on the 
ellipsoid and sphere; whence it is easy to infer this other element of the homoloyy, 
that any t'eto,correspondiny chords, pp' and ss', of the two surfaces, intersect each 
other on the cyclic plane which has S for its cyclic normal (comp. 216, (7.) ) : in 
fact, they intersect in the point t of which tho vector is,

xp-Vx'p' xoi-xfa’ p' pX 9/ 9S •r it' O 0VI.. . r =

*• In the verifleation 216, (2.) of tho equation 216, (1.), considered as repre

senting a mrface of the tecond order, V and V ought to have been printed, in

stead of V - and V - ; hut thia doos not affect the reasoning.

t Compare tlie Note to page 233.
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which would have given again, oa in III.,

and this point is on tho plane Just mentioned (comp. 216, XI.), because

VII.. . sj=o.

(-1.) Quite similar results would have followed, if wo had assumed

vin.. . <7=^- S^+v|j/3=p-2/3S^

I

IX.. . T(r = T/3, but with X. . . S - = -S^ S ;
r « y

the other cyclic plane, with y instead of S toe its normal, might therofure have been 
taken (ns asserted in 216, (10.) ), as another plane of homology p( ellipsoid and 
sphere, with the same centre of homology as before: namely, the point at infinity on 
thc line p, or on the axis (204, (15.') ) of one of tho two circumscribed cylinders of 
revolution (corap. 220, (4.))-

(5.) The same ellipsoid is, in tieo other ways, homologous to the same mean ’ 
sphere, with the same two cyclic planes os planes of homology, but with a new centre 
of homology, which is tho infinitely distant point on tho axis of the second circum
scribed cylinder (or on tho line ab' of tho sub-article last cited).

(6.) Although not specially connected with the ellipsoid, the following general 
transformations may bo noted here (comp. 199, XII., and 204, XXXIV'.): 

XL..TVV«=V{J(T2-Sj)}5 xii. . • taniZ7 = (TV:S)V2=J^g'<

(7.) Tho equations 204, XVI. and XXXV., give easily,
XIII.. . UVg = UVUg; XIV. . . UlVg = Ax. g ;

or tho more symbolical forms,
xnr... uvu= uv; xiv'... uiv=ax. •,

and the identity 200, IX. becomes more evident, when we observe that
XVr. . .g-Ng = g(l-Kg).

(8.) We have also generally (comp. 200, (10.) and 218, (10.)),

xvii g + 1 ” (g 4-1) (K?-!-1) Ng + 1 + 2Sg •

(9.) 'fho formula,*
XVIir. . . U (r.g +.Kgr) = U(Sr. Sg + Vr.Nq) = r'* q -,

in which g and r may be any two quaternions, is not perhaps of any greqt importance 
in itself, but will bo found to furnish a student with several useful exercises in trans
formation.

(10.) When it was said, in 257, (1.), that zero had only itself lot a square-root, 
tho meaning was (comp. 225), that no binomial expression of the form a: + iy (228) 
could satisfy the equation,

XIX. . . 0 = qt = (® + iy)* = (a:* — y*) + 2ixy,

XV. ..TIVg = TVg;

XV'. . . TlV=TVi

F'l

* This formula was given, but in like manner without proof, in page 687 of thc 
author's Lectures on Quaternions.
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for any real or iuiaginary values of the two scalar coeiScients x and y, dilForcnt 
from zero ;* for if diquatemions (214, (8.) ) be adnutted, and if A again denote, ns 
in 256, (2.), tho imaginary of algebra, then (comp. 257, (0.) and (7.)) wo may 
write, generally, besides the real value 01 = 0, the imaginary expression,

XX. . . 01= »+ Av', if Sv=.Sb' = Svv' = No'-Nv = 0;
V and v' being thus a«y two real right quaternions, with equal norms (or with equal 
tensors'), in planes porperpendicular to each other.

(11.) For example, by 256, (2.) and by the laws (183) of y'A, we have tho trans
formations,

XXI. . . (i + hj')'> = -i- A (y +ji) = O + AO = 0;
so that the bi-quatemion i + hj is one of the imaginary values of tho symbol Oh

(12.) In general, when bi-quatemions are admitted into calculation, not only tlie 
square of one, but tbe product of too such factors may vanish, without either of them 
separately vanishiilg: a circumstance which may throw some light on the existence 
of those imaginary (or symbolical) roots of equations, which were treated of in 257.

(13.) For example, although the equation
XXII. . . 2«-1 = (9-1) (?+ l) = 0

has no real roots except + 1, and therefore cannot be verified by the substitution of 
any other real scalar, or real quaternion, for 2, yet if we substitute for q tho bi-qua- 
temionf v + hv', with tho conditions 267, XIII., this equation XXIL is verified.

(14.) It will be found, however, that when too imaginary but non-evanescent 
factors give thus a null product, the norm of each is zero; provided that we agree 
to extend to bi-quaternions the formula N2= V2® (204, XXII.) ; or to define
that tho Norm of a Biquaternion (like that of an ordinary or real qdnlemion) is 
equal to the Square of the Scalar Bart, minus the Square of the BigKt Part: each 
of these two parts being generally imaginary, and the former being what wo have 
called a Bi-scalar.

(15.) With this definition, if q and q' be any two real quaternions, and if A be, 
as above, the ordinary imaginary of algebra, we may establish the formula:

XXIII. .. N(2 4- hq) = (S2 + AS2')* - (Nq + AV2')’ i
or (comp. 200, VII., and 210, XX.),

XXIV. . . N(2 + hq') ez. Nq — Nq* + 2AS. 9K2'.
(16.) As regards the norm of the sum of any two real quaternions, or real vec

tors (273), the following transformations are occasionally useful (comp. 220, (2.) )•
XXV. . . N (2’ + q) = N (T2’. U2 + Tq. U9');

XXVI. . . N(i3+a)=N(T/3.Ua-t-Ta.Ui3);
in each of which it is permitted to change the norms to the tensors of which they are 
the squares, ot to write T for N.

* Compare the Note to page 276.
+ This inchides tho expression + Ai, of 2S7, (1.), for a tymboliealsquare-root of 

positive unity. Other such roots aro + bj, and + AA.

    
 



BOOK III.

ON QUATERNIONS, CONSIDERED AS PRODUCTS OR POWERS OP 
VECTORS; AND ON SOME APPLICATIONS OF QUATERNIONS.

CHAPTER I.

ON THE INTERPRETATION OF A PRODUCT OF VECTORS, OR 
POWER OF A VECTOR, AS A QUATERNION.

Section 1.—On a First Method of interpreting a Product of 
Tioo Vectors as a Quaternion.

Art. 275. In the First Book of these Elements we inter
preted, Ist, the difference of any two directed right lines in 
space(4); Ilnd, the sum of two or more such lines(5-9); Illrd, 
the product of one such line, multiplied by or into a positive 
or negative number (15); IVth, the quotient of such a line, 
divided by such a number (16), or by what we have called 
generally a Scalar (17); and Vth, the sum of a system of 
such lines, each affected (97) with a scalar coefficient (99), as 
being in each case (generally) a Directed Line* m Space, 
or what we have called a Vector (1).

276., In the Second Book, the fundamental principle or 
pervading conception has been, that the Quotient of two such 
Vectors is, generally,.a Quaternion (112, 116). It is how
ever to be remembered, that we have included under this ge
neral conception, which usually relates to what may be called 
an Oblique Quotient, or the quotient of two lines in space 
making either an acute or an obtuse angle with each other

•
* Tho Fourth Proportional to any three complanar lines has also boon since in

terpreted (220), as being another line in tho same plane.
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(130), the three following particular cases: Ist, the limiting 
case, when the angle becomes null, or when the two lines are 
similarly directed, in which case the quotient degenerates (131) 
into a positive scalar; Ilnd, the other limiting case, when the 
angle is equal to two right angles, or when the lines are oppo
sitely directed, and when in consequence the quotient again 
degenerates, but now into a negative scalar; and Ilird, the 
intermediate case, when the angle is right, or when the two 
lines are perpendicular (132), instead of being parallel (15), 
and when therefore their quotient becomes what we have 
called (132) a Right Quotient, or a Right Quaternion : 
which has been seen to be a case not less important than the 
two former ones.

277. But no Interpretation has been assigned, in either of 
the two foregoing Books, for a Product of two or more Vec
tors ; or for the Square, or other Power of a Vector: so that 
the Symbols,

I. . . (3d, y/Sa, . . and II. . . o®, a’, . . a’’, ... aS 
in which a, (3, y - ■ denote vectors, but t denotes a scalar, re
main as yet entirely uninterpreted; and we are therefore free 
to assign, at this stage, any meanings to these new symbols, or 
new combinations of symbols, which shall not contradict each 
other, and shall appear to be consistent with convenience and 
analogy. And to do so will be the chief object of this First 
Chapter of the Third (and last) Book of these Elements: which 
is designed to be a much shorter one than either of the fore
going.

278. As a commencement of such Interpretation we shall 
here define, that a vector a is multiplied by another vector (3, 
or that the latter vector is multiplied into*' tlie former, or 
that the product (3a is obtained, when' the multiplier-line (3 
is divided by the reciprocal Ra (258) of the multiplicand-line a; 
as W'e had proved (136) that one quaternion is multiplied into 
another, when it is divided by the reciprocal thereof. In sym
bols, we shall therefore write, as a first definition, the for
mula:

• Compare tho Notes to pages 146, 159,
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I. . . /3a = /3 : Ra; where IL . . Ra = Ua : Ta (258, VII.). 
And we proceed to consider, in the following Section, some of 
the gencrnl consequences of this definition, or interpretation, of 
a Product of tioo Vectors, as being equal to a certain Quotient, 
or Quaternion.

Section 2.— On some Consequences of the foregoing Inter
pretation.

279. The definition (278) gives the formula :

I. . . (ia = ; and similarly, ;

it gives therefore, by 259, VIII., the general relation,

II. . . /3a = Ka/3; or IT. . . o3 = K^tr.
The Products of two Vectors, taken in two opposite orders, are 
therefore Conjugate Quaternions; and the Mzdtiplication of 
Vectors, like that of Quaternions (168), is (generally) a Non- 
Commutative Operationt

(1.) It follows from II. (by 196, comp. 223, (1.) ), that

III.. . S/3a = + Sa3 = i (/?a + aP}.
(2.) It follows also (by 204, comp, again 223, (1.) ), that 

rV. . . V/3« = - Va/S = i(fia-ap).

280. Again, by the same general formula 259, VIII., we 
have the transformations,

y /3' a + a' yj,- a , ® (i
R(a + a')“ “ K/3 R/3

it follows, then, from the definition (278), that
II. . . /3 (a + a') = /3a + ;

whence also, by taking conjugates (279), we have thia other 

general equation,
III. . . (a + d) (i = a(i + d(i.

Multiplication of Vectors ia, therefore, like that of Quaternions 
(212), a Doubly Distributive Operation.

281. As we. have not yet assigned any signification for a 
ternary product of vectors, such as /y/Sa, we aro not yet pre-
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pared to pronounce, whether the Associative Principle (223) 
of Multiplication of Quaternions does or does not extend to 
Vector-Multiplication. But we can already derive several other 
consequences from the definition (278) of a binary product, /3a; 
among which, attention may be called to the Scalar character 
of a Product of two Parallel Vectors', and to the Right cha
racter of a Product of two Perpendicular Vectors, or of two 
lines at right angles with each other.

(I.) The definition (278) may be thus written,
I... (3a = -T(3.Ta.U(/3:a);

it gives, therefore,
II. ..Tj3a=T(3.Ta; III.. . vpa = -XS(P'. a') = 'Dp.'0a-, 

the tensor and rersor of the product ot two vectors being thus equal (as for quater
nions, 191) to the product of the tensors, and to tho product of the versors, re
spectively.

(2.) Writing for abridgment (comp. 208),
IV. ..a = Ta, .6 = T/3, y = Ax. (/3: a), x=:C.(p-. d),

we have thus,
V. . . ipa^ba', Vt. . , S/3a = ^aP = — ba cos a:; 

VII. . . SU/3a.= SUa/3 = — cos a;; VIII. . . L Pa = er — x;
80 that (comp. 198) the angle of the product of any two vectors is the supplement of 
the angle of the quotient.

(3.) We have next the transformations (comp, again 208),

X.. . TVU(3a = TVUa/3 = sin x; 
XI'.. . l'VaP = + yabaiux', 
Xir. . . IUVa/3 = Ax. ajS = -1- 7;

so that the rotation round the axis of a product of two vectors, from the multiplier to 
the multiplicand, is positive,

(4.) It follows also, by IX., that tho tensor of the right part of such a product. 
Pa, is equal to the parallelogram under the factors; or to the double of the area of 
the triangle OAB, whereof those two factors a,.P, or OA, ob, are two coinitial sides : 
so that if we denote hero this last-mentioned area by tho symbol

A oab.

IX. . . TV/3a = TVa/3 = ba sin x ;
XI. . . IVjSa = — yba sin x;

XII. .. IUV/3a = Ax./3a=-y;

we may write the equation,
XIII. . . TV/3a = parallelogram under a, P, = 2A OAB;

and the index, IVPa, is a rigid line perpenditular to the plane of this parallelogram, 
of which line tho length representi its area, in the sense that they hear egual ratios 
to their respective units (of length and of area).

(6.) Hence, by 279, IV.,
XIV. . . T(j3rt - a/3) = 2 X parallelogram = 4 A oab.

(6.) For any two vectors, a, P,
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XV. . . S/3a = -Na.S(j3!a); XVI. . . V/3a = -Na .V(j3: a);
or briefly,*

XVII. ../3a=-Nn.(/3:a),

with tbe signification (273) of Na, as denoting (Ta)’.
(7.) If tbe two factor-lines be perpendicular to each other, so that x is a right 

angle, then the parallelogram (4.) becomes a rectangle, and the product j3a becomes 
a right guaternion (132); so that wo may write,

XVIII. . . S/3a = Saj3 .= 0, if /3 -L a,.and reciprocally.
(8.) Under the same condition of perpendicularity,

XIX. . . Z. pa = L ap = ‘ XX. ’. . Ipa = — yha ; XXI. . . laP = + yah.
(9.) On the other hand, if the two factor-lines bo parallel, tho right part ot their 

product vanishes, or that product reduces itself to a scalar, which is negative or po- 
sitiue according as tho two vectors multiplied have simiZar or opposite directions; for 
wo may establish the formula,

XXII. . . if /3II a, then Vpa = 0, Va)3 = 0 ;
and, under the same condition of parallelism,

XXia..'..pa = aP = 3Pa = ^ap = ii-l,a, 
the upper or the Zoicer sipn being taken, according as x = 0, or = ir.

(10.) We may also write (by 279, (1.) tod (2.) ) the following/ormula of per
pendicularity, formula of parallelism:

XXIV. . . if /3 4- a, then Pa=—ap, and reciprocally
XXV. . . if p II a, then j3o = 4- aP, with the converse.

(11.) If a, P, bo any three unit-lines, considered as vectors of the corners 
A, B, o of a spherical triangle, with sides equal to three new positive scalars, a, h, c, 
then because, by XVII., /3o = — (3: a, and yP = — y.p, the sub-articles to 208 allow 
us to write.

XXVI. . . S(Vy/3.V/3a) = sin asin c COSB ; 
XXVII. . . IV(Vy/3.V/3a) = +/3siu a aincsin b;

XXVIII. . . (IV: S) (Vy/3.V/3a) = + (3 tan b ;
upper or lower signs being taken, in the two last formula), according as the rotation 
round /i from a to y, or that round B-from A to o, is positive or negative.

(12.) Tho equation 274, I., of the Ellipsoid, Taa.y now be written thus: 
XXIX.. . T (ip + pe) = T.’ - T(c2 i or XXX. . . T(tp + pg) = Nt - Nr.

282. Under the general head of a product of two parallel 
vectors, two interesting cases occur, which furnish two first 
examples of Powers of Vectors: namely, Ist, the case when

All thc consequences of the interpretation (278), of tho product /3a of two vec
tors, might bc deduced from this formula XVII.; which, however, it would not have 
liecn so natural to have assumed for a definition of that symbol, as it was to assume 
the formula 278, I.

2 R
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the two factors are equal, which gives this remarkable result, 
that the Square of a Vector is always equal to a Negative Sca
lar; and Ilnd, the case when the factors are (in the sense 
already defined, 258) reciprocal to each other, in which case 
it follows from the definition (278) that their product is equal 
to Positive Unity: so that each may, in this case, be consi
dered as equal to unity divided hy the other, or to the Power 
of that other which has Negative Unity for its Exponent.

and

(I.) When P = a, the product Pa reduces itself to what wo may call the square 
of a, and may denote by o’; and thus we may write, as a particular but important 
case of 281, XXIII., the formula (comp. 273),

I. . . aS=-a« = -(Ta)« = -Na;
so that the square of any vector a is equal to the negative of the norm (273) of that 
vector; or to tho negative of the square of the number Ta, which expresses (185) 
tile length of tbe same vector.

(2.) Moro immediately, tho definition (278) gives,
11. . . a- = aa = a ; Ea = — (Ta)* = — Na, aa before.

(3.) Hence (compare the notations'161, 190, 199, 204),
III. . . S.o* = -Na; IV. . . V.a* = 0;

V. . . T.a* = T(a*) = -t-Na = (Ta)*=Ta*;
the omission of the parentheses, or of the point, in this last symbol of a tensor,* for 
tho square of a vector, as well as for the square of a quaternion (190), being thus 
justified: and in like manner we may write,

VI. . . U.a2==U(a2) = -l = (Ua)* = Ua’;
the square of an unit-vector (129) being always equal to negative unity, and paren
theses (or points) being again omitted.

(4.) Tho equation
VII. . . p« = a’, gives VII'. . . Np = Na. or VII". . . Tp = Ta;

it represents therefore, by 186, (2.), the sphere with o for centre, which passes 
through the point a.

(S.) Tbe more general equation,
VIII. . . (p - a)s = ((3 - a)’, (comp.t 186, (4.),)

represents the sphere with A for centre, which passes through the point u.
(6.) For example, the equation,

IX. . . (p - a)» S a’, (comp. 186, (3.), )
represents the sphere with A for centre, which passes through the origin o.

* Compare the Note to page 210. 
t Compare also tho sub-articles to 278.
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(7.) Tho equations (comp.' 18C, (6.), (7.)),
X.. . (p + a)’ = (p-a)’-; XI. . . (p -/5)’= (p - a)2,

represent, respectively, tbe plane through o, perpendicular to tbe line OA; and the 
plane which perpendicularly bisects the line An.

(8.) Tho distributive principle of vector-multiplication (280), and the formula 
279, III., enable us to establish generally (comp. 210, (9.) ) the formidn,

XII. . . (/3+a)’ = /3'2±2S/3a + a>i

thc recent equations IX. and X. may therefore be thus transformed ;

IX'. . . p’ = 2Sap ; and X'. . . Sap = 0.
(9.) The equations,

XIII. . . p’+a! = 0j ■ XIV. . . p’ + l = 0,

represent the spheres with o for centre, which have a and 1 for their respective radii; 
so that this very simple formula, p’ + 1 = 0, is (comp. 186, (1.) ) a form of the Equa
tion of the Unit-Sphere (128), and is, as such, of great importance in the present 
Calculus.

(10.) The equation.

or

XV. . . p’ — 2S«p + c = 0,

may be transformed to thc following,

XVI. . . N(p — a) = - (p - a)'! = c — a’ = c + Na; 
XVI'. . . T (p - a) = V (c - a’-) = V (c + Na);

it represents therefore a (real or imaginary)'sphere, with A for centre, and with this 
last radical (if real) for radius.

(11.) This sphere is therefore necessarily real, if c be a positive scalar; or if this 
scalar constant, c, though negative, bo (algebraically) greater than a’, or than - Na; 
but it becomes imaginary, if c + Na < 0.

(12.) Tlie radical plane of tho two spheres,
XVII. . . p3 - 2Sap + c = 0, pS — 2Sa'p + c' = 0, 

has for equation,
xvni. . . 2S(a'-a)p = c'-c;

it is therefore always real, if the given vectors a, a and tho given scalars c, c' be 
such, even if one or both of the spheres themselves be imaginary.

(13.) The equation 281, XXIX., or XXX., of tho Central Ellipsoid (or of the 
ellipsoid with its centre taken for the origin ot vectors), may now be still further sim
plified,* as follows:

XIX. . . T(rp + pK)=ic’-t’. 
(14.) The definition (278) gives also,

XX. . . oRa = a: a = 1 ; or XX'. . . Ra. a = Ra : Ra = 1; 
whence it is natural to write,f

* Compare the Noto to page 233. 
t Compare tho second Noto to page 279.
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XXL ..Kf£ = l:i = a-i,
a

if wc 80 far anticipate here the general theory of powers of vectors, above alluded to 
J (277), as to use this last symbol to denote the guotient, of unity divided by the vector 

a-, so as to have identically, or for every •acztxit, the equation,
XXn. .. a.a"' = «■*.a = 1.

(15.) It follows, by 258, VII., that
XXIII. , . a-' = - Ua : Ta ; and XXIV. . . jSa = : a'l.

(16.) If we had adopted the equation XXIII. as a definition* otthe symbol a'^, 
then the formula XXIV- might have been used, as & formula of interpretation for 
the symbol /3a. ' But we proceed to consider an entirely different method^otsrviymg 
at the same (pt an egutvaZent) fnterpretation of this latter symbol: or of a Binary 
Product of Vectors, considered as equal to a Quaternion.

Section 3.—On a Second Method of arriving at the same In
terpretation, of a Binary Product of Vectors.

283. It cannot fail to have been observed by any attentive 
reader of the Second Book, how close and intimate a connexion^ 
has been found to exist, between a Right Quaternion (132), and 
its Index, or Index-Vector (133). Thus, if v and v denote (as 
in 223, (I.), &c.) any two right quaternions, and if Iv' de
note, as usual, their indices, we have already seen that

I. . . Iu' = Iw, if v' = v, and conversely (133);
il. . . I (v + v) = Iv + Io (206) ;
III. . . Iv: Iw-o': o (193) ;

to which may be added the more recent formula,
IV. . . RIo= IRo (258, IX.).

284. It could not therefore have appeared strange, if wc 
had proposed to establish this new formula of the same kind,

I. . . Io'.I« = «'.»= o'v,

-as a definition (supposing that the recent definition 278 had 
not occurred to us), whereby to interpret the product of any two 
indices of right quaternions, as b,eing equal to the product of 
those two quaternions themselves. And then, to interpret the 
product (3a, of any two given vectors, tgken in a given order.

* Compare the Note to page 305. 
+ Compare the Note to page 174.
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we should only have had to conceive (as we always may), that 
the two proposed factors, o and /3, are the indices aitwo right 
quaternions, v and and to multiply these latter, in the same 
order. For thus we should have been led to establish the for
mula,

II. ../3a = v'v, if o=Iu, and /3 = Iw'; 
or we should have this slightly more symbolical equation,

III. . . /3a = /3 .a = I'’/3.1"’a;
in which the symbols,

F’a and
are understood to denote the two right quaternions, whereof 
the two lines a an*d /3 are the indices.

(I.) To establish nowthe substantial identity of these two interpretations, 278 and 
284, of a Unary product of vectors fia, notwithstanding the difference of form oi 
the definitional equations by which they have been expressed, we have only to ob
serve that it has been found, as a theorem (194), that

IV... »'o = Io': 1(1 :») = !«': 1R» j
but the definition (258) of Ra gave us the lately cited equation, RIv = IRe; we have 
therefore, by tbe recent formula II., the equation,

V. . .■Io’.Io = Io':RI»; or VI. . . /3.a = i3: Rd, 
as in 278, 1.; a and /3 still denoting oay two vectors. The two interpretations 
therefore coincide, at least in their results, although they have been obtained by dif
ferent processes, or suggestions, and are expressed by two different formulec.

(2.) The result 279, II., respecting conjugate products of vectors, corresponds 
thus to the result 191, (2.), or to tho first formula of 223, {I").

(3.) Tho two formulas of 279, (1.) and (2.), respecting the scalar and right ' 
parts of the product /3a, answer to the two other formulas of tho same sub-article, 
223, (1.), respecting tho corresponding parts of v'v.

(4.) Tho doubly distributive property (280), of vector-multiplication, is on this 
plan seen to be included in the corresponding but more general property (212), of 
multiplication of quaternions.

(5.) By changing IVj, IVg', f,' t’, and o,-to a, jS, a, b, and y, in those formulffi 
of Art. 208 which are previous to its sub-articles, we should obtain, with the recent 
definition (pt interpretation) II. of pa, several of tbe consequences lately given (in 
sub-arts, to 281), as resulting from the former definition, 278, I. ThuS, the equa
tions,

VI., vu., VIII,, IX., X, XL, XII., XXIL, and XXIII.,
of 281, correspond to, and may (with our last definition) be deduced from, the for
mula),

V,, VI., VIII., XL, XII., XXIL, XX., XIV., and XVI., XVIIL,
of 208. (Some of tho consequences from the sub-articics to 208 have been alrc.idj- 
considered, in 281, (11.) )
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(6.) Thc geometrical properliei of the line IV/3a, deduced from the fret defni- 
iion (278) of j3a in 281, (3.) and (4.), (namely, the positive rotation round that line, 
from /3 to a; its perpendieularih/ to their plane ; and tho representation by the same 
line of the paralellogram under those two factors, regard being had to units of length 
and of area,) might also have been deduced from 223, (4.), by means of the second 
definition (284), of the same product, pa.

Section 4.—On the Symbolical Identification of a Right Qua
ternion with its own Index: and on the Construction of a 
Product of Two Rectangular Lines, by a Third Line, rect
angular to both.
285. It has been seen, then, that the recent formula 284, 

II. or UI., may replace the formula 278,1., as a second definition 
of a product of two vectors, which conducts to the same conse
quences, and therefore ultimately to the same interpretation 
of such a product, as the first. Now, in the second formula, 
we have interpreted that product, /3a, by changing the two fac
tor-lines, a and /3, to the two right quaternions, v and v, or 
r‘a and T’/S, of which they are the indices; and by then de
fining that the sought product /3a is equal to the product v'v, 
of those two right quaternions. It becomes, therefore, impor
tant to inquire, at this stage, how far such substitution, of I'a 
for a, or of v for Iw, together with the converse substitution, is 
permitted in this Calculus, consistently with principles already 
established. For it is evident that if such substitutions can 
be shown to be generally legitimate, or allowable, we shall 
thereby be enabled to enlarge greatly the existing field of inter
pretation: and to treat,-in all cases. Functions of Vectors, as 
being, at the same time. Functions of Right Quaternions.

286. We have first, by 133 (comp. 283, I.), the equality,
I. .. l''P = I ’ft, if p = a.

In the next place, by 206 (comp. 283, II.), we have the formula of 
addition or subtraction, „

II. . . I-’(/3±a) = I-'y3±I->a;
with these more general results of the same kind (comp. 207 
and 99),

III. . . I ’2rt = 2l‘'a; IV. . , I'*2a:<i «= 2a:I’’a.
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In the third place, by 193 (comp. 283, HI.), we have, For division, 
the formula,

V.. . I-‘/3:I-’o = p:a;

while the second definition (284) oi.multiplication of vectors, which has 
been proved to be consistent with the first definition (278), has given 
us the analogous equation,

VI. . . I"*y3.1'’o = ^ , a = Pa.
It would seem, then, that we might at once proceed to define, for the 
purpose of interpreting any proposed Function of Vectors as a Quater- 
temion, that the following general .iZgaa/wn exists;

VII. ..r'a = a; or VIII.. . Io = v, if o = ^;

or still more briefly and symbolically, if it be understood that the 
subject of the operation I is always a right quaternion,

IX. ..1=1.

But, before finally adopting this conclusion, there is a case (or rather 
a class of cases), which it is necessary to examine, in order to be cer
tain that no contradiction to former results can ever be thereby caused.

287. The most general form of a vector-function, or of a vector 
regarded as a function of other vectors and of scalars, which was 
considered in the First Book, was the form (99, comp. 275),

I. . . /> = 2a:a;
and we have seen that if we change, in this form, each vector a to the 
corresponding right guaternion l’’a, and then take the index of the 
new right quaternion which results, we shall thus be conducted to 
precisely the same vector p-, as that which had been otherwise ob
tained before; or in symbols, that

II. , . Sara = l2a:I"'a (comp. 286, IV.).
But another form of a vector-function has been considered in the Se
cond Book; namely, the form,

III. I (226, III.);

in which a, P, 7, S, e.,. are any odd number of complanar veedors. 
And before we accept, as general, the eg'MaZzbw VII. or VIII. or IX. 
of 286, we must inquire whether W'e are at liberty to write, under 
the same conditions of complanarity, and with the same signification 
of the vector p, the equation,
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288. To examine this, let there be at first only three given com
planar vectors, 7|l|a, in which case there will always be (by 
226) a fourth vector p, in the same plane, which will represent or 
construct the function (7:3). a; namely, the fourth proportional to 
/3, 7, a. Taking then what we may call the Inverse Index-Functions, 
OT operating on these four vectors a, 7, p by the characteristic I'*, 
we obtain four collinear and right quaternions (209), which may be 
denoted by v, v', v", v'"; and we shall have the equation,

V.. . v'"‘.v= {p‘. fi=)v'''.v'
or VI.. . V" = (t)": v'Yv, .

which proves what was required. Or, more symbolically,

I”’/’ P t 1'7

VIII. . .2 a = =

And it is so easy, to extend this reasoning to the case of any greater 
odd number of given vectors in one plane, that we may now consi
der the recent formula IV. as proved.

VII. .

289. We shall therefore adopt, as general, the symbolical 
equations VII. VIII. IX. of 286 ; and shall thus be enabled, 
in a shortly subsequent Section, to interpret ternary (and other) 
products of vectors, as well as powers and other Functions of 
Vectors, as being generally Quaternions; although they may, 
in particular cases, degenerate (131) into scalars, or may be
come right quaternions (132) : in which latter event they may, 
in virtue of'the same principle, be representedby, and equated 
to, their own indices (133), and so be treated as vectors. In 
symbols, we shall jvrite generally, for any set of vectors
7,... and any function f the equation,

!• • • y*(o» 3,7i • • •) ~ *3’ I ’Y’ •'
q being some while in the particular case when
this quaternion is right, or when

5 = u = S’’ 0 = I"’p,
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we shall write also, and usually preference (for tiiat case), 
the formula,

II. . .f{a, 7, ...) = 1/(!*’«, I-'P, I 'y,.. .) = p,
p being a vector.

290. For example, instead of saying (as in 281) that the 
Product two Rectangular Vectors is a Right Quaternion, 
with certain properties of its Index, already pointed out (284, 
(6.) ), we may now say that such a product is equal to that in
dex. And hence will follow the important consequence, that 
the Product of any Two Rectangular Lines in Space is equal 
to (or may be constructed by} a Third Line, rectangular to 
both ; the Rotation round this Product-Line, from the Multi
plier-Line to the Multiplicand-Line, being Positive: and the 
Length of the Product being equal to the Product of the 
Lengths of the Factors, or representing (with a suitable refe
rence to units) the Area of the Rectangle under them. And 
generally we may now, for all purposes of calculation and ex
pression, identify^ a Right Quaternion with its mon Index.

Section 5.— On some Simplifications of Notation, or of Ex
pression, resulting from this Identification ; and on the Con
ception of an Unit-Line as a Right Versor.-

291. An immediate consequence of the.symbolical equa
tion 286, IX., is that we may now suppress the Characteristic 
I, of the Index of a Right Quaternion, in all the formulae into 
which it has entered ; and so may simplify the Notation. Thus, 
instead of writing, ,

Ax. q = IUV7, or . Ax. = lUV, as in 204, (23.), 
or Ax.y=UlVy, Ax. = UIV, as in 274, (7.), 

we may now write simplyf,
I. . . Ax. 7=U Vy ; or II. ..Ax. = UV.

TAc Characteristic Nx,, of the Operation of tahing the Axis of 
a Quaternion (132, (6.) ), may therefore henceforth be replaced

* Compare the Notes to pages 119, 136, 174, 191, 200.
t Compare the first Noto to page 118, and the second Note to page 200.

2 6
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whenever we may think fit to dispense with it, by this combina
tion of two other characteristics, U and V, which are of greater 
and more general utility, and indeed cannot* be dispensed with,
m. practice of the present Calculus.

292. We are now enabled also to diminish, to some extent, 
the number of technical terms, which have been employed in 
the foregoing Book. Thus, whereas we defined, in 202, that 
the right quaternion Vy was the Right Part of the Quater
nion y, or of the sum ^q-i-Nq, we may now, by 290, identify 
that part with its own index-vector Wq, and so may be led to 
call it the vector part, or simply f/fc Vector,! of that Quater
nion q, without henceforth speaking of the right part: although 
the plan of exposition, adopted in the Second Book, required 
that we should do so for some time. And thus an enuncia
tion, which was put forward at an early stage of the present 
work, namely, at the end of the First Chapter of the First 
Book, or the assertion (17) that

Scalar phis Vector equals Quaternion,”

becomes entirely intelligible, and acquires a perfectly definite 
signification. For we are in this manner led to conceive a 
Number (positive or negative) as being added to a Line,X 
when it is added (according to rules already established) to 
that right quotient (132), of which the line is the Index. In 
symbols, we are thus led to establish the formula,

I. . . y = a + a, when II. . . y = a + F'a ;

* Of course, any. one who chooses may invent neiv symbols, to denote the same 
operations on guaternions, as those which are denoted in these Elements, and in the 
elsewhere cited Lectures, by the letters U and V; but, under some form, such sym
bols must be used; and it appears to have been hitherto thought expedient, by other 
writers, not hastily to innovate on notations which have been already employed in 
several published researches, and have been found to answer their purpose. As to tlie 
type used for these, and for the analogous characteristics K, S, T, that must evidently 
be a mere affair of taste and convenience: and in fact they have all been printed 
aa small italic capitals, in some examination-papers by the author.

I Compare the Note to page 191.
J On account of this possibility of conceiving a quaternion to be the sum of a 

number and a line, it was at ono time suggested by the present author, that a Qua
ternion might also be called a Grammarithm, by a combination of tlie two Greek 
words, Tfpappi) and ipi6p6e, which signify respectively a Line and a Number.
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whatever scalar, and whatever vector, may be denoted by a 
and a. And because either oi these two parts, or summands, 
Txw.y vanish separately, we are entitled to say, that both Sca
lars and Vectors, or Numbers and Lines, are included in the 
Conception of a Qiiaternion, as now enlarged or modified.

293. Again, the same symbolical identification of I» with 
V (286, VIII.) leads to the forming of a new conception of an 
Unit-Line, or Unit- Vector (129), as being also a Fersor
(1^) ; or an Operator, of which the effect is to turn a line, in 
a plane perpendicular to itself, through a positive quadrant of 
rotation: and thereby to oblige Iddo Operand-Line to take a 
wew direction, at right angles to its old direction, but without 
any change of length. And then the remarks (154) on the 
equation y» = -l, where j was a right versor in tho former 
sense (which is still-a permitted one) of its being a right ra
dial quotient (147), or the quotient of two equally long but mu
tually rectangular lines, become immediately applicable to the 
interpretation of the equation,

p’ = -1, or p’ + 1 = 0 (282, XIV.);

where p is still an unit-vector.

(1.) Thus (comp. Fig. 41), if a be any line perpendicular to meh a vector p, 
we have tbe equations,

I. . . pa = p ; II. . , pia = pl3 = c^ =— a;

fi being anotJier line perpendicular to p, which is, at the same time, at right angles 
to a, and of the same length with it; and from which a third line a‘, or — a, oppo
site to the line a, but still etpially long, is formed by a repetition ot the operation, 
denoted by (what we may here call) the characteristic p; or having that unit-vec
tor p for the operotor, or instrument employed, as a sort of handle, or axis* of ro
tation.

(2.) More generally (comp. 290), if a, y be any three lines at right angles to 
each other, and if the length of y be numerically equal to the product of the lengths 
of a and (8, then (by what precede?) the line y represents, or consfracfs, or is eqaaZ 
to, tbe product of the tioo other lines, at least if a certain order of the factors 
(comp. 279) be observed: so that we may write the equation (comp. 281, XXI.),

III. . . a^ = y, if IV. . ./3-J-o, y J-a, y-I-P, and V. , . Ta. T/3 = Ty,

* Compare the first Note to page 136.
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provided that the rotation, round a, from fi to y, ot that round y from a to p, &c., 
has the direction taken os tbe positite one,

(3.) In this more general case, we may atill conceive that tbe muliiplier-Une 
a has operated on the multiplicand-line P, so as to produce (or generate} the pro- . 
duct-line y; hut not now by an operation of oertion alone, since the tensor ot p is 
(generally) multiplied by that of a, ia order to form,, by "V,, tho tensor of the pro
duct y,

(4.) And if (comp. Fig. 41, 6i», in which a was first changed to P, and then to 
a'} vte repeat this eompownd operation, of tension and version combined (comp, 189), 
or if we multipig again by a, 'VO obtain a fourth line P', in the plane of y, but 
with a direction opposite to that of /3, and with a length generally different; n^ely 
the line,

"VI, ,. ay = aaP = a^P=P' = — a'‘P, if a = Ta.

(6.) The operator a^, or aa, is therefore equivalent, in its effect on p, to the ne
gativescalar, - a\ or — (Ta)% or — Na, considered as a coefficient, or as a (scalar) 
multiplier (15): whence the equation,

VIL .. a2=-Na (282, L),

may be again deduced, but now with a new interpretation, which is, however, as we 
see, completely consistent, in all its consejuences, with the one first proposed (282).

Section 6.— On (he Interpretation of a Product of Three or 
. more Vectors, as a Quaternion.

294. There is now no difficulty in interpreting a ternary 
product of vectors (comp. 277, I.), or a product of more vec
tors than three, taken always in some given order •, namely, as 
tbe result (289, I.) of the substitution of the corresponding 
right quaternions in that product: which result is generally 
what we have lately called (276) an Oblique Quotient, or a 
Quaternion with either an acute or an obtuse angle (130); but 
may degenerate (131) into a scalar, or may become itself a 
right quaternion (132), and so be constructed (289, II.) by a 
new vector. It follows (comp.281), that Multiplication of Vec
tors, like that of Quaternions (223), in which indeed we now 
see that it is included, is an Associative Operation: or that 
we may write generally (comp. 223,. II.), for any three vec
tors, a, (3, y, the formula,

I. . . y(3 ■d=y. Pa,

(1.) Tho formula: 223, III. and IV., are now replaced by the following:
II. . . V.yV/3a = «Sj3y -PSya -,

in. . . Vy(3a= oSjSy —fiSya + ySn/I j
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in which Vy/Ja >s written, for simplicity, instead of Vor V. y/3a; and with 
which, os with tbe earlier equations referred to, a student of this Calculus will find 
it useful to render himself very familiar.

(2.) Another useful form of the equation II. is the following:

IV... V (Va/3. y) = aSPf ■- pSya.
(3.) The equations IX. X. XIV. of 223 enable, us now to write, for any three 

vectors, tlie formula:
V. . . SyPa=: — SaPy = SayP = — SPya = ppay = — SyaP

= ± volume of parallelepiped 'under a, P, y,
= ± 6 X volume of pyramid qabo j

upper or lower siyns being taken, according as the rotation round a from to y is 
positive or negative: or in other words, the scalar Sy Pa, of the ternary product of 
vectors yPa, being positive in the first case, but neyative in the second.

(4.) Tbe condition of complanarity of three vectors, a, P, y, is therefore ex
pressed by the equation (comp. 223, XI.):

VI. . . Sy/Sn = 0 J or VI'— SaPy — 0; &c.
(5.) If a, p, y be any three vectors, complanar or diplanar, the expression,

VII. .. 5 = aSPy — pSya,
gives VIII. .. Sy5=0, and IX... Snj35=0i
it represents therefore (comp. II. and Vf.") a fourth vector S, which is perpendicular 
to y, but complanar with a and : or in symbols,

X. .. S J. y, and XI... S 1|| o, P-
(Compare the notations 123, 129.)

(6.) For any four vectors, we have by II. and IV. the transformations,

XII. . . V (VaP . VyS') = SSapy - ySaPS;
■ XIII.V(Va/3.Vy3) = aS^yJ-j3Sayfi;

and each of these three equivalent expressions represents a, fifth vector t, which is at 
once complanar with a, P, and with y, ; or a line oc, which is in tho intersection 
of the two planes, OAB and ocd. -

(7.) Comparing them, we see that any arhitrary vector p may be expressed as 
a linear function of any three yiven diplanar vectors, a, p, y, by the formula:

XIV. . . pSaPy = aSpyp + pSyap + ySapp;
which is (bund to bo one of extensive utility. '

(8.) Another very useful formula, of the same kind, is the following: 
XV. . . pSapy =Vj3y.Sa(0 + Vya. Spp + Xap. Syp;

in the second member of Mich, the points may be omitted.
(9.) One mode of proving the correctness of this last formula XV., is to operate 

on both members of it, by the three symbols, or characteristics of operation,
XVI. ..S.a, S.p, S.y;

the common results on both sides being respectively the three scalar products,

XVII. . . Sap.Sa/3y, Sj3p.Sa/3y, Syp.Sa^y;
where again tho points may be omitted.
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(10.) We here employ the principle, that if the three vector! a, P, y he actual 
and diplanar, then no actual vector \ can satisfi/ at once the three scalar equations,

XVIir.. SoX = 0, S/3X = 0, SyX = 0 J
because it cannot 6e perpendicular at once to those three diplattar vectors.

(11.) If, then, in any investigation with quaternions, we meet a system of this 
form XVni., we can at once infer that

XIX. . . X = 0, if XX. . . SajSy >0;

while, conversely, if X be an actual vector, then a, (3, y must be complanar vectors, 
or Sa/iy = 0, os in VI'.

(12.) Hence also, under tbe same condition XX., the three scalar equations, 
XXI... SaX = Sa;(, Sj3K = SPp, Sy\ = Syp, 

give XXII... X=/t.

(13.) Operating (comp. (9.) ) on the equation XV. by the symbol, or charac
teristic, S. S, in which S is any new vector, we find a result which may be written 
thus (with or without the points):

XXIII. .. 0 = Sop. SftyS — Sj3p. Sy Jo + Syp. SSajJ - SJp. SgjJy j 

where o, jS, y, S, p may denote any jive vectors.
(14.) In drawing this last inference, we assume that the equation XV. holds 

good, even when the three vectors o, /3, y are complanar : which in fapt must be true, 
as a limit, since the equation has been proved, by (9.) and (12.), to be valid, if y be 
ever to little out of the plane of o and /3.

(15.) We have therefore this new formula:
XXJV.. . V/3ySop+VynS3p +Vo/3Syp = 0, if Sa/3y = 0!‘ 

in which p may denote any fourth vector, whether in, or out of, the common plane 
of a. ft, y-

(16.) If p bo perpendicular to that plane, the last formula is evidently true, each 
term of the first member vanishing separately, hy 281, (7.); and if we change p to 
a vector S in the plane of a, ft, y, we are conducted to tbe following equation, as an 
interpretation oi the same formula .XXIV., which expresses a known theorem of 
plane trigonometry, including several others under it;

XXV. .. sin BOO. cos aod + sin coA. cos bod + sin aob . cos cod = 0, 
for any four complanar and co-initial lines, OA,' ob, oc, od.

(17.) By passing from od to a line 'perpendicular thereto, but in their Common 
plane, we have this other known* equation :

XXVI.. . sin boc sin aod + sin COA sin bod + sin aob sin cod = 0;

which, like the former, admits of many transformations, hut is only mentioned here 
as offering itself naturally to our notice, when we seek to interpret the formula 
XXIV. obtained as above by quaternions.

(18.) Operating on that formula by S.J, and changing p to e, we have this new 
equation:

• Compare page 20 of the Oeometrie Superieure ol M. Chaska.
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XXVII. .0 = SatSpyS + SjStSyai + SyeSapS, if Sa/3y = 0 ;
which might indeed have been at once deduced from XXIII.

(19.) Tbe eqnation XIV., as well as XV., must hold good at the limit, when a, 
P, y are complanar i hence

XXVIII. ..aS/3yp + /3Syap + 7Sa/3p=0, if Sa/3y = 0.

(20.) This last formulq is evidently true, by (4.), if p be in the common plane 
of the three other vectors; and if we suppose it to be peipendicular to that plane, 

■ so that
XXIX...p||V/3y||Vya||Vh/3, 

and therefore, by 281, (9.), since S (Sj3y. p) = 0, 
XS.lS.,,.SPyp = S(yPy.py = Vpy.p,&c., 

we may divide each term by p, and so obtain this other formula, 
XXXr. .. aVPy + pVya + yXaP = 0, if SaPy = 0.

(21.) In general, the vector (292) of this last expression eanuAes by II.; the 
expression is therefore equal to its own scalar, and we may write,

XXXII... ti^Py + pVya + ■yVaj3= SSajSy, 
whatever three vectors may be denoted by a, 0, y.

(22.) For the case of complanarity, if we suppose that the three vectors are 
equally long, we have-the proportion,

. XXXIII. . . V0y; Vyo: Va0 = an boc : sin COA: sin Aon;
and the formula XXXI. becomes thus,

XXXIV... o A. sin BOC + OB. sin coA + oo. sin aob=0;
wher*OA, OB, 00 are any three radii of one circle, and tbe equation is interpreted as 
in Articles 10, 11, &c.

(23.) The equation XXIII. might have been deduced from XIV., instead of 
XV., by first operat^^ with S.d, and then interchanging S and p.

(24.) A vector p may in general be considered (221) as depenSing on three sca
lars (the co-ordinates of its term) j it cannot then be determined by fewer than three 
scalar equations ; nor can it be eliminated bctviccn fewer than four,

(25.) As an example of such determination at a .vector, let a, p, y be again any 
three given and diplanar vectors s and let tbe three given equations be,

XXXV. . . Sap = a, SPp = b, Syp = c;
in which a, b, c are supposed to denote three given scalars. Then the sought vector 
p has for its expression, by XV.,

XXXVI... p = e-i(aV0y + 5Vya + cVa0), if XSXyil. . . e = Sapy. 
(26.) As another example, let the three equations be,

XXXVIII. .. SPyp=a’, 3yap = V, SaPp = c ;
then, with the same signification of the scalar!, we have, by XIV.,

XXXIX. . . p = e-* (a'a + b*P + o*y).

As an example of elimination of a vector, let there be the four scalar 
equations.

XL. . . Sap = o, Spp = b, Syp = c, S(lp = d;
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then,'by XXIIL, we have this remliiitff equation, into which p doet not enter, "but 
only the four vectors, a . .S, and the four scalars, a..d-.

XLI. .. o. SPyS — 6 . Sy5a + e. SSa/i — d. 8aPy=0.
(28.) This last equation niay therefore be considered as the condition of concur

rence of the four planes, represented by the four scalar equations XL., in one com
mon point: for, although it has not been expressly stated before, it follows evidently 
from the definition 278 of a binary product of vectors* combined with 19G, (5.), 
that every scalar equation of the linear form (comp. 282, XVIII.),

XLII. . . Sap = a, or Spa = a,
in which a = OA, and p=sOP, as usual, represents a plane locus of the point P; the 
vector of the foot S, of the perpendicular on that plane from the origin, being

XLIIL . . os = a = aRa = aa-’ (282, XXL). '
(29.) If we conceive a pyramidal volume (G8) as having an algebraical (or sca

lar') character, so as to be capable of bearing cither a positive or a negative ratio to 
the volume of a given pyramid, with a given order of its points, we may then omit 
the ambiguous sign, in the last expression (3.) for the scalar of a ternary product of 
vectors : and so may write, generally, oabc denoting such a volume, the formula,

XLIV. . . Sa/3y = 6 . oabc,
= a positive or a nepattce scalar, according as the rotation round OA from on to oc is 
negative or posilive.

(30.) More generally, changing o to d, and oa or a to a — d, &a, we have thus 
the formula:

XLV. .. 6.DABC = S(o-5)(|3-«)(y-5) = Saj3y-S/3y« + Syia-S5a/3; 

in which it may be observed, that the expression is changed to its own opposite, or 
negative, or is multiplied by — 1, when any two ofthe four vectors, a, P, y, S, or when 
any two of the four points. A, B, c, D, change places with each other: and therefore 
is restored to its jbrmer value, by a second such binary intercl^nge.

(31.) Denoting then the netc origin ot a, P, y, i by e, w^ave first, by XLIV., 
XLV., the equation,

XLVI. . . DABC = EABC — EBCD + ECDA — EDAB ;

and may then write the result (comp. 68) under tho more symmetric form (because 
— EBCD = BECD = &c.) :

XLVII... BCDB 4 CDEA 4- deab 4 eabc 4- abcd = 0;

in which A, b, c, d, e may denote any five points of space.
(32.) And an analogous formula (69, III.) of tho First Book, for any six points 

OABCDE, namely the equation (comp. 65, 70),

XLVIII. . . OA.BCDE 4 OB.CDEA 4 OO.DEAB 4 OD.EABC + OE. ACCD = 0,

in which tbe additions are performed^ccordipg to the rules of vectors, the volumes 
being treated as scalar coefficients, is easily recovered from the foregoing principles 
and results. In fact, by XLVII., this last formula may be written os

XLIX. . , ED. EABC = EA. EBCD 4 ED. ECAD 4 EC. EABD ;

or, substituting a, P, y, 8 for ea, eb, ec, ed, as
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L. . . iSa(9y = «S/?y5 4- /3Sya5+ fSajSS;
which is only another form of XIV., and ought to familiar to the student.

■ (33.) The formula 69, II. may be deduced from XXXI., by observing that, when 
the three vectors a, j3, y are complanar, we have the proportion,

LI. . . V/3y:"Vya -.Na^tN(fiy + ya + aji) — OBC: OCA:OAB; ABC, 
ifsfyns for afjrebrotc Or scalar ratios') of areas be attended to (28, 63); and the 
formula GO, I., for the case of three collinear points A, B, C, may now be written as 
follows: I

LII... a(/3 — y) + 3(y — n) + 7(n —j3) = 2V(^y + yn + ct/3)
= 2V(fi-a)(iy-a) = 0,

if tlie three coinitial t^eciora a, /3, y bo termino-collinear (24).
(34.) The case when/bur coin:'tial vectors a, P, y, d aro termino-complanar (64)^ 

or when they terminate in fmr complanar points a, b, c, n, is expressed by equating 
to zero the second or the third member of the formula XLV.

(35 ) Finally, for ternary products of vectors in general, we have' the fonnula:
LIII. . . a’/I’y’ + (Sapyyt = (fapy)^ = (nSj3y- pSya + ySn/3)’

= a^ iPPy^ -i P^ (Sya)’+ y^ (SaP)'> - 2Spy Sya Sa/3.

295. The identity (290) of a right quaternion with its in
dex^ and the conception (293) of an unit-line as a right versor, 
allow us now to treat the three important versors, i,j, A, as 
constructed by, and even as (in our present view) identical 
with, their own axes; or with the three lines oi, oj, ok of 181 > 
considered as heing each a certain insCrument, or operator, or 
agent in a right rotation (293, (1.) ), which causes any line, in 
a plane perpendicular to itself, to turn in that plane, through 
a positive quadrant, without any change of its length. With 
this conception, or construction, the Laws of the Symbols ijk 
are still included in the Fundamental Formula of 183, namely, 

= = -1; (A)
and if we now, in conformity with the same conception, transfer 
the Standard Trinomial Form (221) from Right Quaternions 
to Vectors, so as to write generally an expression of the form,

I. . , p = ix +jy + hz, or ia +jb + he, &c.,
where xyz and aic are scalars (namely, rectangular co-ordi
nates'), we can recouer many of the foregoing results with ease: 
and can, if we think fit, connect them with co-ordinates,

(1.) As to the lams (182), included in tho Fundamental Formula A, the law 
»*=—!, &c., may be interpreted on the plan of 293, (t.), as representing the recer- 
aal which results from two tuecesaive quadrantal rotations.

2 T
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(i.) The two contrasted laws, or formula:, 

y=+*. ji=-k. (182, II. and HL) 
may now be interpreted as expressing, that although a positive rotation through a 
right angle, round the line i as an axis, brings a revolving line from the position j to 
the position i, or + h, yet, on the contrary, a positive tjuadrantal rotation round the 
line j, as a new oaur, brings a new revolving Kne from a new initial position, t, to a 
new final position, denoted by — h, or opposite* to thc old final positiofi, 4 k.

(3.) Finally, the law ijf£= — 1 (183) may be interpreted by conceiving, that we 
operate on a line a, which has at first the direction of +y, by the three lines, i,j, i, 
in succession ; which gives three new but equally long lines, P, y, in tho direc
tions of — i, + i, —j, and so conducts at last to a line — a, which has a direction op
posite to the initial one.

(4.) The foregoing laws of ijk, which are . all (as has been said) included (184) 
in the Formula A, when combined with the recent expression I. for p, give (comp. 
222, (I.)') for the square of that neefor the value:

JI... p* = (jw+>y + Ai)’ = -(i’ + y* + 2!);
this square of the line p is therefore equal to the negative of the square of its length 
Tp (185), or to tho negative of its norm Np (273), which agrees with tho former 
rcsultt 282, (1.) or (2.).

(5.) The condition of perpendicularity of thc two lines p and a, when they are 
represented hy the two trinomials I. and I'., may be expressed (281, XVIII.) by tho 
formula, •

III. . . 0 = Sap = — (ax + by + cz);
which agrees with a well-known theorem of rectangular co-ordinates.

(6.) The condition of eomplanarity of three lines, p, p', p", represented by the 
trinomial forms,

IV... p = ix +Jy + hz, p' = iif + Ito., p" = ix" + &c., 
is (by 294, VI.) expressed by the formula (comp, 223, XIII.),

V. . . 0 = Sp"p'p = x"{z’y — y'z) + j/"(®'2 - z'!v) + ^"(yse - xly); 
agreeing again with known results.

(7.) When the three lines p, p', p", or op, op', op", aro not in one plane, tho 
recent expression for Sp"p'p gives, by 294, (3.), the volume of the parallelepiped

* In the Lectures, the three rectangular unit-lines, i, j, h, were supposed (in 
order to fix the conceptions, and with a reference to northern latitudes) to bo directed, 
respectively, towards the south, the west, and the zenith ; and then the contrast oi 
the two formula, iJ=:-\-h,ji = — k, came to be illustrated by conceiving, that wo at 
one time turn a moveaile line, which is at fimt directed leestioard, round an axis 
(or handle') directed towards the aowtA, -viityz. a. right-handed (or screirfnjz) motion, 
through a right angle, which causes the line to take an upward position, as its final 
one J and that at another time we operate, in a precisely similar manner, on a lino 
directed at first southward, with an axis directed to tlie west, which obliges thia new 
line to take finally a downward (instead of, as before, an upward) direction.

f Compare also 222, IV.
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(comp. 223, (9.) ) of which they are edges ; and this volume, thus expressed, is a 
positive or a negative scalar, according as the rotation round p from p' to p" is itself 
positive or nepatioe: that is, according as it has tbe same direction as that round 
+ x from +y to +z (pt round t fromj to A), or the direction opposite thereto.

(8.) It may be noticed here (comp. 223, (13.) ), that if a, P, y be any three 
vectors, then (by 294, III. and V.) we have:

VI. . . Sa/Sy = — SyPa = } (ujSy — yjia') ;
VII. . . Va/3y = +V7(3a = 5(aj3y + y^a).

(9.) More generally (comp. 223, (12.) ), since a vector, considered as represent
ing a right quaternion (290), is always (by 144) the opposite of its own conjugate, so 
that we have the important formula, *

VIIL ., Ka=—a, and therefore IX .. KIlo = + n'o,
we may write for any number of vectors, the transformations,

X. ..sna=+sn'a=j(na+n'a),
XI. . . vna = + vn’a = l(na +n'a),

upper or lower signs being taken, according as that number is even or odd; it being 
understood that

XII. . . n'a= ... y)3a, if na = a/3y...
(10.) The relations of rectangularity,

XIII. . . Ax. t-1-Ax.y ; Ax.y-l-Ax. A; Ax. A-l-Ax. i,
which result at once from the definitions (181), may now be written mote briefly, as 
follows:

XIV. . . iJ-j; J-t-A, A-L-i;
and similarly in other cases, where the axes, or the planes, at any two right quater
nions are at n^rAi angles to each other.

(11.) But^ with the notations of the Second Book, we might also have writtten, 
by 123, 181, such formulas of eomplanaritg as the following, A:s,j |)|», to express 
(comp. 225) that the a®fs ot j yiaa a line in the plane ot i; and it might cause some 
confusion, if we wore now to abridge that formula toy ||| i. In general, it seems 
convenient that wo should not henceforth employ the sign )||, except as connecting 
either symbols of three lines, considered still as complanar; or else symbols of three 
right quaternions, considered as being collinear (209), because their indices (pt axes') 
are complanar: or finally, any two complanar quaternions (123).

(12.) On the other hand, no inconvenience will result, if we now Insert the sign of 
parallelism, between the symbols of two right quaternions which are, in the former 
sense (i23), complanar; for example, we may write, on our present plan,

XV. ..ailli, yjWj, zAjjA,
if xgz be any three scalars.

* If, in like nranner, we interpret, on our present plan, the symbols Ua, Ta, Na 
as equivalent to UI"la, TI"'a, NI’’a, we are reconducted (compare the Notes to 
page 13G) to the same significations of those symbols as before (155,185, 273) ; and 
it is evident that on the same plan we have now,

Sa = 0, Va = a.
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296. There are a few particular but remarkable cases-, of ternavg 
and other of vectors, which it may be well to mention here,
and of which some may be worth a student’s while to remember: 
especially as regards the products of successive sides of closed polygons, 
diiscribed in circles, or in spheres.

(1.) If A, B, c, D be any four concircular points, we know, by the sub-articles to 
260, that their anharmonic function (abcd), as defined in 259, (9.), is scalar; being 
also positive or negative, according to a law of arrangement of those four points, 
which has been already stated.

(2.) But, by that definition, and by tbe scalar (though negative') character of the 
square of a vector (282), we have generally, for any plane or gauche quadrilateral 
abcd, the formula:

I. .. e2(ABCD) = AB.B0.CD.da= the continued product of the four sides;
in which tbe coefficient e^ is a positive scalar,- namely the product of two negative 
or of two positive squares, as follows:

II. . . e2 = BC^. ba’ = bc’. da? > 0.
(8.) If then abcd be a plane and inscrided quadrilateral, we have, by 260, (8.), 

the formula,
III. . . AB.BC.CD.DA = a positive or negative scalar,

according as this quadrilateral in a circle is a crossed or an uncrossed one.
(4.) The product a^y of any three complanar vectors is a vector, because its 

scalar part Sa/3y canisAea, by 294, (3.) and (4.); and if tho factors be three suc
cessive sides AB, BC, CD of a quadrilateral thus inscribed in a circle, their product has 
either tbe direction of tho fourth successive side, DA, or else the opposite direction, 
or in symbols.

rV. . . AB.BC.on: DA > or < 0,

according as the quadrilateral abcd is an uncrossed or a crossed one.
(5.) By conceiving the/bartApoint o to approach, continuously and indefinitdy, 

to the first point A, ve find that the product of the 
three successive sides of any plane trianyle, ABO, la

' given hy an equation of the form:
V... AB.BC.CA= at;

AT being a tine (comp. Fig. 63) which touches the 
circumscribed circle, or (more fully) which touches 
the segmeid ABC of that circle, at the point a ; or re
presents the initial direction of motion, along the cir
cumference, from A through B to 0 : while the length 
ot this tangential product-line, AT, is equal to, or 
represents, with the usual reference to an unit ot length, the product of the lengths 
of the three sides, of the same inscribed triangle abo.

(G.) Conversely, if this theorem respecting the product of tho sides of an inseribed 
triangle be supposed to have been olherurise proved, and if it be remembered, then 
since it will give in like manner the equation,
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Fig. 64.

or

or

VL . . AO. CD, DA = AU,
if D ba any fourth point, concircular with A, B, c, Trhiio AU is, as in the annexed 
Figures 68, a tangent to the new segment ACD, we can 
recoBfr-easily the theorem (3.), respecting the product 
of the sides of an inscribed quadrilateral; and thencd 
can return to the corresponding theorem (260, (8.) ), 
respecting the anharmonic function of any such figure 
ABCD: for we shall thus have, by V. and VI., the 
equation,

VII. . . ab.bc.cd.da = (at.au) : (ca.ac), 
in which tho divisor CA. ao or N. ao, or X?, is alwags 
positive (282, (1.) )x but the dividwid at.au is neya-
tive (281, (9.)) for the case of on uncrossed quadrilateral (Fig. 63), being on the 
contrary positive for the other case of a crossed one (Fig. 63, bls').

(7.) If P be any point on the circle through a given point A, which touches at a 
given origin o a given line ox= r, as represented in Fig. 64, we shall then have by 
(5.) an equation of the form,

VIII... OA.AP.Po=a:.OT,
in which x is some scalar coefficient, which 
varies with the position of p. Making then 
OA= a, and op= p, as usual, we shall have

IX. .. a(p — a')p = — xr,
IX'. . . p'* — a'* = a:r: a’p®,

IX".. . Vrp-t = Vra-';
and any one of these may be considered as a 
form of the equation of the circle, determined by the given conditions;

(8.) Geometrically, the last formula*IX." expresses, that the line p"* — a*’, or 
Bp — Ba, or a'p'(see again Fig. 04), if OA' = a** Ra = B.oa, and op’=p"* = B.Op, 
is parallel to the given tangent r at O', which agrees with Fig. 58, and with Art. 
260.

(9.) If B be tbe point opposite to o upon tbe circle, then tbe diameter ob, or 
as being 4- r, so that r/3'* is a vector, is given by the formula,

X. .. t/)-* = Vra"*; or X'. . . I3= — r : Vra">;

in which the tangent r admits, as it ought to do, of being multiplied by any scalar, 
without the value of ji being changed. ,

(10.) As another verification, the last formula gives,

XI. .. OB = Tj3 = Ta: TVUra'* = oa :*sin Aot.
(11.) If a quadrilateral oabo be not inscriptible in a circle, then, whether it be 

plane or gauche, we can always circumscribe (as in Fig. 65) two circles, oab and one, 
about the two triangles, formed by drawing tho diagonal OB j and then, on the plan 
of (6.), we can draw two tangents ot, ov, to the two segments oab, obc, so as to repre
sent the two ternary products.
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oa.ab.bo, and ob.bo.co; 
after which we shall have the quaternary product,

XII... oa.ab.bo.co = ot.ou:ob*;
where the divitor, ob’, or bo . OB, or N. ob, is a 
positive scalar, but the dividend oT.ou, and there
fore also the quotient in the second member, or tho X 
product io thejfrsf member, is a quaternion.

(12.) The axis of this quaternion is perpen
dicular to the plane TOU of the two tangents ; and 
therefore to the plane itself of the quadrilateral 
oabc, if that be a plane figure ; but if it bc gauche, 
then thc axis is normal to the circumscribed sphere 
at the point o: being also in all cases such, that tbe rotation round it,' firom ot to 
OU, is positive.

(13.) The angle of the same quaternion is the supplement of the angle tou be
tween the two tangents above mentioned; it is therefore equal to tho angle u'ot, if 
ou' touch tbe new segment OCB, or proceed in a new and opposite direction from o 
(see again Fig. 65); it may therefore be said to be the angle between the two arcs, 
OAB and OCB, along which a point should move, in order to go from o, on the two 
circumferences, to the opposite corner b of the quadrilateral OABC, through the two 
other corners, A and C, respectively : or the angle between tho arcs ocB, oab.

(14.) These results, respecting the axis and angle oi the product of the four suc
cessive sides, of any quadrilateral oabc, or abcd, apply without any modification to 
the anharmonic quaternion (259, (9.)) of the same quadrilateral; and although, 
for the case of a quadrilateral in a circle, the axis becomes indeterminate, because 
the quaternary product and the anharmonic function degenerate together into sca
lars, or because the figure may then be conceived to be inscribed in indefinitely many 
spheres, yet the angle may still be determined by the same rule aa in the general 
case : this angle being - tt, for the inscribSl and uncrossed quadrilateral (Fig. 63); 
but = 0, for the inscribed and crossed one (Fig. 63, its).

(15.) For the gauche quadrilateral oabc, which may always be conceived to be 
inscribed in a determined sphere, we may say, by (13.), that tho angle of the qua
ternion product, Z. (oa.ab.bo. co), is equal to the angle of the lunule, bounded 
(generally) by tho two arcs of small circles OAB, oCB ; with the same construction 
for the equal angle of the anharmonic,

L (oabc), or L (oA: AB. BC : co).
(16.)- It is evident that the general principle 223, (10.), of the permissibility of 

cyclical permutation of quaternion factors'under the sign S, must hold good for 
the case when those quaternions degenerate (294) into vectors ; and it is still more 
obvious, that every permutation of factors is allowed, under the sign T: whence 
cyclical permutation is again allowed, under this other sign SU ; and consequently 
also (comp. 19G, X'VI.) under tho sign L, „

(17.) Hence generally, for any four vectors, have the three equations,
XIII. . . SaPyS = SPyStt-, XIV. . .SUaPyo==SVPySa-, 

X'V. . . L aj3yS = L jiySa ;
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Fig, 66.

and in particular, for the successive sides of any plane or gauche Quadrilateral abcd, 
■we have the four equal angles,

XVI. . . L (ab . bc . cd . da) = L (bc . cd . da . ab) = &c.;
with the corresponding equality of the angles of the four anharmonics,

XVII. . . L (abcd) = L (bcda) = Z (cdab) = L (dabc) ;
or of those of tho four reciprocal anharmonics (259, XVII.), 

XVII'. . . z (adcb) = z (badc) = L (cbad) = L 
r (18.) Interpreting now, by (13.) and (15,), these last equations, we derive from 

' them the following theorem, for the plane, or for space ;—
Let ABCD be any four points, connected by four circles, each 

passing through three oi the'points: then, not only is tho angle 
at A, between tho arcs Aisc, adc, equal to the angle at c, be
tween CDA and CDA, but also it is equal (comp. Fig. 66) to the 
angle at b, between the two other arcs BCD and bad, and to 
the angle at d, between the arcs dab, dcb.

(19.) Again, let abode be any pentagon, inscribed in a 
sphere ; and conceive that the two diagonals AC, ad are drawn. 
■We shall then have three equations, of the forms,

XVIII.. . ab.bo.ca = at; ac.cd.da = ad;
ad.de.ka=at;

where at,-ad, av are three tangents to the sphere nt a, so that their product is a 
fourth tangent at that point. But the equations XVIII. give

XIX. . . AB.nC . CD. de . BA = (AT . AD . Av) : (ac’ . AD®)
= AW = a new vector, which touches the sphere at a.

■We have therefore this Theorem, which includes several others under it:—
“ The product of the Jive successive sides, of any (^generally gauche') pentagon 

inscribed in a sphere, is equal to a tangential vector, drawn from the point at which 
the pentagon begins and ends."

(20.) Let then p be a point on the sphere which passes through o, and through 
three given points a, b, c j we shall have the equation,

XX. .. 0 = S(oA.AB.Bc.cp.ro) = Sa(/3 —a) (.y-/3) (p —y) (—p)
= a^S/lyp + ^^Syap + y^Sa/Sp — p-Sa^y.

(21.) Comparing with 294, XIV., we see that the condition (or the four co-ini
tial vectors a, P, y, p thus terminating on one spheric surface, which passes through 
their common origin o, may be thus expressed:

XXI. . . if p = xa +yj3 + 1^*®® p’ =

(22.) If then yio project (comp. 62) the variable point P into points a', b', c’ on 
the three given chords OA, OB, oc, by three planes through that point p, respectively 
parallel to tho pianos boc, coa, aob, we shall have tho equation :

XXIL . . op’ = oa.oa' + ob.ob' + oc.oc'.
(23.) That the equation XX. does in fact represent a spheric locus for the point 

p, is evident from its mere/orm (comp. 282, (10.)); and that this sphere passes
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through the four given points, o. A, I), c, may be proved by observing that tlie equa
tion is satisfied, when we change p to any one of the four vectors, 0, a, P, y.

(24.) Introducing an auxiliary vector, od or S, determined by the equation, ‘ 
XXIIL .. SSaPy = a?-'VPy + p!^'Vya + y‘'VaP,

or by the system of the three scalar equations (comp. 294, (25.) ),
XXIV. ..a2 = S5a, |32 = S5/J, y’ = S5y, 

or XXIV'. . . S5a-> = SSP'^ = S5y-> = 1,
the equation XX. of the sphere-becomes simply,

XXV. . . p2 = SSp, or XXV'. . . Sdp-* - 1;
so that D is the point of tbe sphere opposite to o, and 6 is a diameter (comp. 283, 
IX'.; and 196, (6.)).

(25.) Tbe formula XXIII., which determines this diameter, may be written in 
this other way:

XXVI... SSaPy = ya(J3-a) (y-p^y; 
or XXVr. .. 6.oabc.od = -V(oA.AB.BC.co) ;
where the symbol oabc, considered as a coefficient, is interpreted as in 294, XLIV. j 
namely, as denoting the volume of the pyramid oabc, which is here an inscribed 
one.

(26.) This result of calculation, so far as it regards the direction of tho axis of 
the quaternion oa.ab.bo. co, agrees with, and may be used to confirm, the theorem 
(12.), respecting the product of the successive sides of a gauche quadrilateral, OABC ; 
including the rule of rotation, which distinguishes that axis from its opposite.

(27.) The formula XXIII. for the diameter 5 may also be thus written: 
XXVII. .. 5. Sa->/3-‘ y-‘ = V (/3-i y* + y-‘ a-> + a-i /3-') , 

= V03-i-a->) (y-i-a-<);

and the equation XX. of the sphere may be transformed to the following:

XXVIll.. . 0 = S (/3-' - a-i) (y-i - a') (p-> - a"');' 
which expresses (by 294, (34.), comp. 260, (10.) ), that the four reciprocal vec
tors,

XXIX.. . oa'= a*= a->, OB' = pi=:p-^, oc' = y' = y‘’, or' = p'=p-t, 
are termino-complanar (64) ; tlie plane a'b'c'p', in wliicli they all terminate, being 
parallel to the tangent plane to the sphere at o : because the perpendicular let fail 
on this plane from o is

rl.

XXX. . .S'= 8->, 
as appears from tbe three scalar eqaations,

XXXI.. . Sa'S = SP'S==Sf'S = l.
(2.8.) In general, if d be the /oof </ the perpendicular from o, on file plane Kho, 

then
XXXII. . . S = SajSy : V(/3y + ya + aP) ;

because this expression satisfies, and may berdeduced from, tbe three equations, 
XXXIII. . . SaJ-i = SpS-t= Sy5-’ = 1.

As a verification, the formula shows that the length Tc, of this perpendicular, or 
altitude, OD, is equal to t he eextuple volume of the pyramid oabc, divided bg the dou
ble area of the triangular bate Auc. (Compare 281, (4,), and 294, (8.), (33.).)
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(29.) The equation XX., of the sphere oabc, might have been obtained by the 
elimination of the vector S, between the four scalar equations XXIV. and XXV., on 
the plan of 294, (27.).

(30.) And another form of equation of the same sphere, answering to the deve
lopment of XXVIII., may be obtained by the analogous elimination of tlie same vec
tor S, between the four other equations , XXIV'. and XXV'.

(31.) The product of any even number ot complanar vectors is generally a qua
ternion with an axis perpendicular to their plane ; but’ the product of the successive 
sides of a hexagon abcdef, or any other even-sided figure, inscribed tn a circle, is 
a scalar ; because by drawing diagonals AC, ad, ae from the first (pt last) point a 
of the polygon, we find as in (6.) that it differs only by a scalar coefficient, or divisor, 
from the product of an even number of tangents, ot thc first point.

(32.) On thc other hand, the product of any odd number of complanar vectors is 
always a line, in tho same plane; and in particular (comp. (19.)), the product of 
the successive sides ot a. pentagon, or heptagon, &c., inscribed in a circle, is equal to 
a tangential vector, drawn from tho first point of that tnscriJcci and odd-sided poly
gon ! because it differs only by a. scalar coefficient from the product of an odd num
ber of such tangents.

(33.) The product of any number ot lines in space is generally a quaternion 
(289); and if they he the successive sides of a hexagon, or other even-sidedpofyyon, 
inscribed in a sphere, tho axis of this quaternion (comp. (12.) ) is normal to that 
spherCf at the initial (or final) point ot the polygon.

(34.) But the product of the successive sides of a heptagon, or other odd-sided 
polygon in a sphere, is equal (comp. (19.) ) to a vector, which touches the sphere at 
the initial or final point; because it bears a scalar ratio to the product of an odd 
number of vectors, in the tangent plane at that point.

(36.) The equation XX., or its transformation XXVIII., may be called the con- 
di tioojir equation of homosphericity (comp. 260, (10.)) of the five points o, A, B, 
c, P ; and the analogous equation for the five points abode, with vectors apySs 
from any arbitrary origin o, may be written thus :

XXXIV. . . 0 = S(a-/3J (/3-y) (y-d) (3-t) (£-«);
or thus, XXXV. . . 0 = aa* + bpt + cy^ + d6* + es*,
six times the second member of this last formula being found to be equal to tbe se
cond member of the one preceding it, if

XXXVI. . . a = BCDB, 6 = CDEA, C = DEAB, d=EABC, e = ABCD,

or more fully,
XXXVII... 6a = S (y - /3) (5 - /3) (t -13) = S (y- 5t/3 + e/3y - /3y6), &c.;

so that, hy 294, XLVIll. and XLVII., wo have also (comp. 65, 70) tho equation,

XXXVIII. . . 0 = aa + b^ + cy + d5 + et,
with the relation between the coefficients,

XXXIX. . . 0 = a + 6 + c + d-l-e, 
which allows (as above) the origin of vectors to be arbitrary.

(36.) The equation or condition XXXV. may ba obtained as the result of an 
elimination (294, (27.) ), of a vector k, and of a scalar g, between five scalar equa
tions of the/orm 282, (10,), namely the five following,

2 U
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XL. . . o’—2Sica + y = 0, /3’—2Sr/? + y = 0,.. t» —2S« + jf=0j 
K being the vector of the centre K ot the tphere abcd, of which the equation maj" bo 
written as

XLI... p2-2SKp+p = 0, 

g being some scalar constant; and on wAtcA, by the condition referred to, the Jifth 
point E is situated.

(37.) By treating this fifth point, or its vector e, as arbitrarg, wo recover the 
condition or equation of concircularilg (3.'), of the four pointe A, n, o, n ; ortho 
formula,

XLII... 0 = V(a- /3) (3- y) (y-d) (d-a).
(38.) The equation of the nrcle ABO, and the equation of the ephere abcd, may 

in general be written thus :
XLIII. .. 0 = V (a -/3) (/3 - y) (y - p) (p - a) i 

XLIV. . . 0 = S(a-/3) G3-y) (y-5) ^S-p') (p-a)-, 
p being as usual the vector of a variable point P, on the one or the other locus.

(39.) The equations of the tangent to the circle ABC, and of tho tangent plane 
to the sphere Ancu, at tho point A, are respectively,

XLV. . . 0=V(a-^)(/3-y) (y-o)(p-a), 
and XLVI. . . 0 = S (a - /3) (/3 - y) (y - 3) (5 - a) (p - o).

(40.) Accordingly, whether we combine the two equations XLIII. and XLV., 
or XLIV. and XLVI., we find in each case the equation,

XLVII. .. (p — o)’= 0, giving p = a, or p = a(20);
it being supposed that the three points a, b, c aro not cpltinear, and that the four 
points. A, B, c, D are riot complanar.

(41.) If the centre of the sphere Anco be taken for the origin o, so that 
XLVIII. . . a2=/3’ = y’=52 = -r2, or XLIX. .. Ta = T/3 = Ty = T5 = r, 

the positive scalar r denoting the radius^ then after some reductions we obtain the 
transformation,

L. . . V(o-/3) (/J-y) (y-d) (5-a) = 2aSO-a) (y-a) (S-a).
(42.) Hence, generally, if k be, as in (36.), tho centre of the sphere, we have the 

equation (comp. XXVI'.), *
LI. . . V(ab.bc.cd.da) = I2ka.abcd.

(43.) We may therefore enunciate this-theorem:—
“ The vector part of the product of four successive sides, of a gauche quadrila

teral inscribed in a sphere, is equal to the diameter drawn to the initial point of the 
polygon, multiplied by the sextuple volume of the pyramid, which its four points de
termine,”

(44.) In effecting the reductiona (41.), the following peneraZ ybrniuZ® of trans
formation have been employed, which may be useful on other occasions:

LII. . . aq + qa = 2(aSg + Sja); •• LII'. . . aqa = a^Kq + 20870 ; 
where a may be any vector, and q may be any quaternion.
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Section 7.—On the Fourth Proportional to Three Diplanar 
Vectors.

. q'": q" = q''.q.

297. In general, when any four quaternions, q, (f, f, f", satisfy 
the eqtiation of quotients,

I..
or the equivalent formula,

II. . . q>" = {q>: q). q" == q'q^'q",
-vie shall say that they form a Proportion; and that the fourth, 
namely q"', is tbe Fourth Proportional to the first, second, and third 
quaternions, namely to q, q', and q", taken in this given order.

■ This definition will include (by 288) the one which was assigned in 
226, for the fourth proportional to three complanar vectors, a, p, ry, 
namely that fourth vector in the same plane, b = which has been 
already considered; and it will enable us to interpret (comp. 289) 

, the symbol
III. . . /3o'’7, when <y not (l) a, P,

as denoting not indeed a Fec/or, in this new case, but at least a Qua
ternion, which may be called (on the present general plan) the Fourth 
Proportional to these Three Diplanar Vectors, a, P, Such fourth 
proportionals possess some interesting properties, especially with re
ference to their vector parts, which it will be useful briefly to consi
der, and to illustrate by showing their connexion with spherical 
trigonometry, and generally with spherical geometry.

(1.) Let a, P, y be (as in 208, (1.), &c.) the vectors of the corners of a triangle 
ABC on the nnit-tphere, whereof the sides are a, 6, e; and let us write,

I !=coaa= SyjS-* = — S/3y, 
nt = cos 6 = Say-* = — Sya, 
» = COSC = S/3a-* = - Sop;

IV. . .

where it is understood that

V... a’ = P« = y’ = -l, or VI... Ta=Tp = Ty = l;

it being also at first supposed, for the sake of fixing the conceptions, that each of these 
three cosines, Z, m, n, is greater than zero, or that each side of tbe triangle abc is 
less than a quadrant.

(2.) Then, introducing three new vectors, S, t, K, Refined by the equations,

(5 =vpa-’y = Vya-*p = »»p + ny — la,
Vll. , . Zt =:'Vyp-'a = 'Vaj3~^y = ny +Zo - 

= 'Vay-'P = 'VPy''ar:^la ^rmfi-ny.
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we find that these three derived tectort have all ono common length, say r, because 
they have one comrgon norm ; namely,

VIII. . . = Nf = N? = P + m' + nt -ilmn v. rS;
IX. . . T5 = Te = T? = r = Vf/* + mS + - 2Zmn).

(3.) This common length, r, is less than unity; for if we write,

X. . . Sa/3')' = S/3a‘'y = c,
Vie shall have the relation,

XI. . . e’ + r’=N/3a-’y = l;

and the scalar e is different from zero, because the vectors cf, p, y aro diplanar.
(4.) Dividing tbe three lines S, £, by their length, r, we change them to their 

eertors (155, 156); and so obtain a new triangle, def, on the unit-sphere, el which 
the corners are determined by the three new unit-vectors,

XII. . , OD = U5=r->d; oE = '0£ = r->E;
. OF = V^ = r-i^.

(5.) The sides opposite to d, e, f, in this new or de
rived triangle, are bisected, as in Fig. 67, by the comers 
A, B, c of the old OT given triangle; because we have the D 
three equations,

XIII. . . e + 5 = 2ta ; ? + 5 = imp; 5 + e = 2ny.
(6.) Denoting the halves ol the new sides by o', b', ef (so that the arc Er = 2a', 

&C.), the equations XIII. show also, by IV. and IX.,' that
XIV. . . cos a = r cos a', cos 6 = r cos 6’, cos c = r cos o';

the cosines of the half-sides of the new (or bisected') triangle, DEP, are therefore pro- 
portional to the cosines of the sides of the old (or iisectinp) triangle hso.

(7.) The equations IV. give, by 279, (1.),

XV. . . 2Z = -(j3y + y/3), 2m = ~ (ya +ay), 2n = -(ap-^ pa);
we have therefore, by VII., the three following equations between quaternions,

XVI. ..«£«: 5a, pZ = sp, yS = ey;
which may also be thus written,

XVr. ..£a = a5, ZP = PS, dy = ye,
■ and express in a new way the relations of bisection (5.).

(8.) IVe have therefore the equations between vectors,
XVII. . . £ = aZa-l, Z = PSp-\ J = yty-^;

or XVII'.. . 5 = asa-i, d = pZp-\ £ = ySy-i.
(9.) Hence also, by V., or because a, P, y are unit-vectors,

XXIU. ..e = -aZa, Z = ~pSp, S = -y(y;
or XVIII'. .. 5=-a£a, S = -PZP, s = -ySy.

(10.) In general, whatever the length of.the vector a may be, the first eqnation 
XVII. expresses that the line £ is (comp. 138) thereflexion of the lineZ, with respect 
to that vector a ; because it may he put (comp. 279) under the form,

XIX. . . £a-' =a->£ = Kfa >, or XIX'. . . £o-> =K5a-i.
(11.) Another mo^e of arriving at the same interpretation of tho equation
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€ = a?a-i, is to conceive ? decomposed into two summand vectors, ?' and one pa
rallel and the other perpendicular to a, in such a manner that

XX. ..? = r + ?", nia, r-l-a;
for then wo shall have, by 281, (10.), the transformations,

XXI... £ = aS'a-i + aS"a-t = S-qo-i- $"««-' = C~i
the parallel part of $ being thus preserved, but the perpendicular part being reversed, 
by the operation n( )«■*.

(12.) Or we may return from £ = fija’’ to the form £a = a2f, that is, to the first. 
equation XVI'.; and then this equation between quaternions will show, as suggested 
in (7.), that whatever may be the length of a, we must have,

XXII. . . T£ = T2, Ax.*sa = A.x.ai:, t.ia=t.aZ-,
so that the two lines t, are equally long, and the rotation from c to a is equal to 
that from a to ?; these two rotations being similarly directed, and in one common 
plane.

(13.) We may also write the equations XVII. XVII'. under the forms,

XXIII. .. £ = &C. i XXIII'. . . ? = a-’sn, &c.
(14.) Substituting this last expression for 5 in the second equation XVII'., we 

derive thia new equation,
XXIV. .. 5 = 3a-'£ap-»; or XXIV'.. . £ = ap-iSpa*';

that is, more briefly,
XXV. . . 5 = qtq-', and XXV'. .. £ = q-^Sq, if XXVI. .. q =Pa-^.

(15.) An expression of this/brm, namely one with such a symbol as
XXVII. . . 9 ( ')q-'

for an operator, occurred before, in 179, (1.), and in 191, (6.); and was seen to in
dicate a conical rotation of the axis of the operand quaternion (of which the symbol 
is to be conceived as being written within the parentheses'), round the axis of q, 
through an angle =2 Lq, without any change of the angle, or of the tensor, of that 
operand; so that a rector must remain a vector, after any operation of this sort, as 
being still a right-angled quaternion (290) j or (comp. 223, (10.) ) because

XXVIII. . . S9P9-’ = Sa-'jp = Sp = 0.

(IG.) If then we conceive two opposite points, p' and p, to bc determined on the 
unit-sphere, by the conditions of being respectively the positive poles of the two op
posite arcs, AB and ba, so that

XXIX. .. op' = Ax. Pa-' = Ax. q, and op = p'o = Ax. ap-' = Ax. 9-*-,
we can infer from XXIV. that the line od may be derived from the line oe, Jy a co
nical rotation round the line op' as an axis, through an angle equal to the double of 
the angle AOB (if o be still the centre of the spjere).

And in like manner we can infer from XXIV’., that the lino OE admits

* It was remarked, in 291, that this characteristic A.x. can be dispensed with, 
because it admits ijf being replaced by UV; but there may still bo a convenience in 
employing it occasionally.
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Fig. 68.

T/ Q

p

C

of being derived from od, by an equal bnt opposite conical rotation, round the lino 
OP as a neiD positive axis, through an angle equal to twice the angle boa.

(18.) To illustrate these and other connected results, the annexed Figufe 68 is 
drawn; in which p represents, as above, 
the positive polo of the arc ba, and arcs are 
drawn from it to d, b, f, meeting the great 
circle through a and b in tho points r, s, t. 
(The other letters in the Figure are not, for 
the moment, required, bnt their significa
tions will soon be explained.)

(19.) This being understood, we see, 
first, that because tbe arcs ef and fo are 

. bisected (5.) at A and b, the three arcual 
perpendiculars, Es, ft, dr, let fall from B, 
F, D, on the great circle through A and b, 
are equally long; and that therefore the 
point P is the interior pole of the small cir
cle def', if s' be the point diametrically op
posite Io F: so that a conical rotation round 
this pole p, or round the axis op, would in fact bring the point o, or the line OD, Io 
the position E, or oe, which is one part of the theorem (17.).

(20.) Again, the guanlify of this conical rotation, is evidently measured by the 
arc B.S of the great circle with p for pole ; but the bisections above mentioned give 
(comp. 165) the two arcual equations,

XXX... n rb=''BT, nTA = ''As; whcnce XXXI. . . "bs = 2 dba, 
and the other part of the same theorem (17.) is proved.

(21.) Thepotnf F may be said to be the reflexion, on the sphere, of the point o, 
with respect to the point B, which Insects the interval between them; and thus wo 
may say that two successive reflexions of an arbitrary point upon a sphere (as here 
from D to F, and then from f to e), toilA respect to two given points (b and a') of a 
givengreat circle, are jointly egutuaZenl to one conical rotation, round the pole (p) ofl 
that great circle ; or to the description of an arc of a small circle, round thatpo/e, or 
parallel to that great circle: and that the angular quantity (dpe) of this rotation 
is double of that represented by the arc (ba) connecting the two given points; or is 
the double of the angle (bpa), which that given arc subtends, at the same pole (p),

(22.) There is, as we see, no difficulty in geometrically proving this theorem' of 
rotation: but it is remarkable how simply quaternions express it: namely by the 
formula.

XXXII. . . a.j3"'p/3.a’* = aj3’’.p.(3rt">,
in which <i, P, p Ta&y denote ony three vectors ; and which, as we ace by the pointe^ 
involves essentially the associative principle of multiplication.

(23.) Instead of conceiving that the ^oint D, or the 
line OD, has been reflected into the position f, or of, 
with respect to the point b, or to the line ob, with a simi
lar tuccessiee reflexion from F to n, we may conceive tliat 
a point has moved along a small semicircle, with n for 
pole, from d to F, as indicated in Fig. 69, and tlien along

I

Fig, C9.
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another small semicircle, with a for pole, from r to B; and we see that tbe result, or 
effect, oPtbese two successive and semicircular motions is equivalent to a motion along 
an arc DE of a third small circle, which is parallel (aa before) to the great eirele 
through n and A, and has a projection RS thereon, which (still as before) is double of 
the given arc BA.

(24.) And instead of thus conceiving two successive arcual motions of a point D 
upon a sphere, ot two successive conical rotations of a radius ot), considered as com
pounding themselves into one resultant motion of that point, ot rotation of that ra
dius, wo may conceive an analogous composition of two successive rotations of a 
solid body (or rigid system), round axes passing through a point o, which is fixed in 
space (and in the bodyj: and so obtain a theorem respecting such rotation, which 
easily suggests itself from what precedes, and on which we may perhaps return.

(25.) But to draw some additional consequences from the equations VII., &c., and 
from thc recent Fig. 68, especially as regards the Constructidn of the Fourth Pro
portional to three diplanar vectors, let us first remark, generally, that when we have 
(as in 62) a linear equation, of the form

aa + 6/3 + cy + dS = 0,
connecting four co-initial vectors a.. S, whereof no three are complanar, then this 
ffth vector,

t=aa + bp=-cy — dS,
is evidently complanar (22) with a, and also with y, S (comp. 294, (6.) ) ; it is 
therefore part of the indefinite line of intersection of the plane aob, cod, of these 
two pairs of vectors.

(26.) And if we divide this fifth vector t by the two (generally unequal) sca
lars,

a + b, and —e — d,
the two (generally unequal) vectors,

(aa + 4/3) : (a + 4), and (cy + dS') : (e + d),
which are obtained as the guotients of these two divisions, are (comp. 25, 64) the 
vectors of two (generally distinct) points of intersection, of lines -with planes, namely 
tho two following;

AB-OCB, and cd-oab.
(27.) When the two lines, ab and CD, happen to infereecf each other, the two 

last-mentioned points coincide ; and thus we recover, in a new way, the condition 
(63), for the eomplanarity of the/onr points o. A, b, c, or for tho termino-compla- 
naritg of the ybnr vectors a, j3, y, S; namely the equation

a + 6 + c + £l=0,

which may be compared with 294, XLV. and L,
(28.) Besuming now the recent equations VII., and introducing the new vector,

XXXin. . . X = la-»Bj8=i(e-6),
which gives,

XXXIV. . . SyX = 0, and XXXV. . . TX = V(r’ - n«) = r sin c',

we see that the two arcs ba, de, prolonged, meet in a point L (comp. Fig. 68), for 
which or* «= UX, and which is distant by a quadrant from o; a result which may be 
confirmed by elementary considerations, because (by a well-known theorem- respect-
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ing irans«er3a/hrcii)tbe common bisector ba of the two sides, de and ef, must meet 
the third side in a point b, for which

sin DL =■ sin Eb.
(29.) To prove by quaternions this last equality of sines, and to assign their 

common value, we have only to observe that by XXXIII.,
XXXVI. . . vax = V(\ = ;

in .which,
TflX = TeX — r’ sin c, and TVJe = r’sin 2c'; 

the sines in question are therefore (by 204, XIX.),
XXXVr. . . TVU3X = TV OeX = ain2c'-. r^ ainc' = cos c'. 

(30.) On similar principles, we may interpret the two vector-equations,
XXXVll...-Vp\=^lVpa, 'Va\=mNj3a,

in which
XXXVIIl. . . TX : TV/3a = r sin c': sin e = tan c': tan c,

an equivalent to the trigonometric equations,

■ XXXIX
tan AB sin Bb sin Ab'

(31.) Accordingly, if we let fall the perpendicular oq on ab (see again Fig. 68), 
so that Q bisects Rs, and if we determine two new points M, N by the arcual ’ equa
tions,

XL. . . o bM = " AB = QB, o lN = n CD,

the arcs mr, nd will be quadrants ; and because the angle at R i.s right by construc
tion (18.), M is the pole of or, and dm is a quadrant; whence d is tbe pole of mn 
and the angle lnm is right: conceiving then that tho arcs ca and cb are drawn, wo 
have three triangles, right-angled at Q and N, which show, by elementary principles, 
that the three trigonometric quotients in XXXIX. have in fact a common value, 
namely cos cq, or cos b.

(32.) To prove this last result by quatemionsi and without employing tne auxi
liary points M, N, Q, R, we have the transformations,

XLI. . . cosb = SU:^-SU

XLII. . . J = ny-X, £ = »y+A, NSe=2ny\, UV5£ = UyX,

■ 13
XLIII. . ..S^ = 74^"“ S^a-'yX-> =-Sax-> = I;'

yX (n)’

it being remembered that X y, whence

VyX = yX = -Xy, (yX)2 = - y^X* = X^, SyX-'= 0.

(33.) At the same time we see that if'P be (as before) tho positive pole of ba, 
and if k, k' be the negative and positive poles of de, while b' is the negative (as b 
is the positive) pole of cq, whereby all the letters in Fig. 68 have their significations 
determined, we may write,

XLIV. . . op= UV/3a ; OK* = yUX; OK = —yUX; Ob's=-UX;
while OL «-+-UX, as before.
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(34.) Writing also.

XLV. . . K == —yX, or X=yic, and p = (3a-*X, 
.. OK = Uk, and om = TJ(u,- 

XLVI. . . 3a-i.y = pX-‘.X»;-‘ =pK-‘;
80 that 
We have 

this fourth proportional, to the three equally long hut diplanar vectors, a, P, y, is 
therefore a versor, of which the rtpresentative arc (162) is KM, and the representa
tive angle (174) is kdm, or l'dr, or edp ; and we may write for this versor, or qua
ternion, the expression:

XLVIL . (3a"*y = cos l'dii +OD.sin l’dr.
(35.) The double ol thia representative angle is the sum olthe two base-angles ol 

the isosceles triangle DPE; and becanse the two other triangles, epf', p'po, are a/»o 
isosceles (19.), tbs lune vv' shows that this sum is what remains, when we subtract 
the vertical angle V, of the triangle def, from the sum of the supplements of the two 
base-angles d and s of that triangle; or*when we subtract the sum of the three an
gles of the same triangle)?‘om_/bar right angles. We have therefore this very simple 
expression for the Angle of the Fourth Proportional:

XLVIU... L Par^y = d'dr = it - |(d e -h f).

(36.) Or, if we introduce the area, ot the spherical excess, say 2, of the triangle 
DEF, writing thus

XLIX... 2 = D-tE +f - 7r,

we have these other expressions:

L. .. Z./3or'y = |ir-52 ; LI. . . )3a'‘y = sin|2 + r"*dcos iS; 
because

OD = UJ=r-i5, by XII.

(37.) Having thus expressed (3a"* y, we require no new appeal to the Figure, in 
order to express this other fourth proportional, ya"*(3, which is the negative of its 
conjugate, or has an opposite scalar, but an equal vector part (comp, 204, (1.), and 
295, (9.) ) : the geometrical difference being merely this, that because the rotation 
round a from /3 to y has been supposed to be negative, the rotation round a from y 
to (3 must be, on the contrary, positive.

(38.) We may thus write, nt once,

LII. . . ya"*/3 — — 'K./ia-^ y = — sin + r-'d oos .JS ;

and we have, for the angle of this new fourth proportional, to the same three vectors 
a, /3, Ti of which the second and tAird have merely changed places with each other, 
the formula:

LIII. Z.ya"*3 = R*’L = |(D + E + F) = in--h JS.

(39.) But the common vector part of these two fourth proportionals is 5, by VII.; 
we have therefore, by XL,

LIV. . . r = C0S52 ; e = + siD}2;

the upper sign being taken, when the rotation round a from (3 to y is negative, as 
above supposed.

(40.) It follows by (6.) that when the sides 2o', 24', 2c', of a spherical triangle 
2 X
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nisr, of which the area is 2, are bisected by the corners h, D, c of another spherical 
triangle, of whicli the sides* are a, b, c, then

LV. .. cosa: cosa' = cosj: cos i'=cosc:cosc'=cos|2.
(41.) It follows also, from what has been recently shown, that the angle rdk, or 

MDS, or the arc mn in Fig. 458, represents the semi-area ot the bisected triangle def ; 
whence, by the right-angled triangle u», wc can infer that the sine of this semf-arca 
is equal to the sine of a side Of the bisecting triangle abo, multiplied into the sine of 
the perpendicidar, let fall upon that side from tbe opposite corner of the latter trian
gle ; because we have

LVI. . . sin J2 = sin ms = sin lm . sin L =sin ab . sin CQ.
(42.) The same conclusion can be drawn immediately, by quaternions, from tho 

expression,
LVII.. . 8in|2 = e = Saj37 = S(V/3a.y'*) = TVj3a.SU(V/3a; y);

in which one factor is the sine of ab, 'and tjie other factor is the cosine of cp, or the 
sine of cq.

(43.) Under the same conditions, since

LVni.. „« = U(e + 2) = 4Z''(£ + ?), &c.,
•no may write also,

LIX. . . sin J2 = SU (e + 2) (? + d) (S +*.) = SStS : ilmn ;
in wbieh, by IV. and XIII.,

LX. . . 41m» = - S(d + e) (j + 0= - S(t2 + Sd + de).
(44.) Hence also, by LIV.,

LXI. . . C035S = r = (r’-rS(£S+$d + ^£)): 4Zm»;
r^rr . Sdf? SUds?
UAII. • • - ,.3_rS;£? + 4d + d£) 1 - SU£?- SUSd - sud£ ’

and under Zdis last form, vio have a general expression for the tangent of half the 
spherical opening at o, of ang triangular pgramid onuv, whatever the lengths Td, 
Tf, T$ of the edges at o mag be.

(45.) As a verification, we have i
LXIII. . . (4/»»n)s=-i(£ + ?)’(2+d)’(d + £)«

= 2(ri> - S£2) (rS - S?d) (r’- Sd£);
hut the elimination of i2 between LIX. LXI. gives,

LXIV. .. (4Zm»)« = (Sd£?)« + (r^ - r(S£? + S?d + Sdr) )«; 

we ought then to find that
LXV. . . (Sd£S)’ = r« -r* {(Se^)’ + (SSd)2+ (Sds)’} - 2Sf?SfdSd£, 

if d*= £2 = S’ = — r’; and in fact this equality results immediately from the general 
formula 294, LIII.

(46.) Under the same condition, respecting the equal lengths of d, £, we have 
also the formula,

* These tidet abc, ot the biaectinff triangle ABO, have been hitherto supposed for 
simplicity (1.) to be each lett than a guadrant, l)ut it will be found that the for
mula holds good, without ang each restriction.
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LXVr------- V(3 +1) (e + 2) (? + 5) = 25 (r*,- StS - S?5 - S5e) = 8Imn5;
whence other verifications may be derived.

(47.) If <r denote the area* 0/ the bisecting triangle jisc, the general principle 
LX 11. enables us to infer that

LXIX.. . cos

LXX. . . sin -
2

LXVII. . . tan - =-------------------------- - ---------- -------
2 1 - S/3y - Sya - Sa(3 1 + Z + to + »

sin c sin p *
1 + cos a + cos 6 + cos c'

if p denote the perpendicular cq from o on ab, so that

e = sin c sin p = sin 5 sin c sin a = &c. (comp. 210, (21.) ).
(■18.) But, by (IX.) and (XL),

LXVin. . . e’ + (1 + Z + TO.+ n)’ = 2 (1 + Z) (1 + to) (1 + a)
I a b c y

= UCO8-COS-CO3- 1 i

hence the cosine and sine of the new semi-area are,
1 -t- COS a 4 cos b A- cos c

abc’
4eos - cos - cos -

2 2 2

.0.6 sin - sin - SIU c 
: -J—2------- =SlC.

ccos -
2

(19.) ReTurning to the bisected triangle, def, the last formula gives,
• > . 1. • •etna sin0 suf ..., LXXI. . . sin 12 - ------------- -------  = siu p sin c sec c,

COSO

if p'denote the perpendicular from r on the bisecting arc ab, or FT in Fig. 68; 
but cos = cos 0 sec o', by LV.; hence

LX^I. . , tan is = sinp’tan0 = sin FT. tan AB. 
Accordingly, in Fig. 68, we have, by spherical trigonometiy,

sin FT = sin E3 = sin LB sin L = cos LN sin mn coscc-lm = tan mn cot ab.
(50.) The arc sis, which thus represents in guanlitu the semiorca of DBF, has its 

pole at the point d, and may be considered as the representative arc (162) of a certain 
new quaternion, Q, or of its cersor, of which the axis is the radius op, or U5; and 
this new quaternion may be thus expressed:

LXXIII. .. Q = Syap = -1^+ iSa^y -r'>-ieSi
its tensor and versor being, respectively,

LXXIV.. . TQ = r = cosi2 ; LXXV. . . UQ = cos 4 od.sin J2.
(SI.) An important transformation of this last versor maybe obtained as fol

lows : »
------------- --------- -—- ■ - i --------------------------- ---------- -

* The reader will observe that the more usual symbol S, for this area of A nr, 
is Ae/e employed (86.) to denote thc area of tho cxscribed triangle dkf.
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LXXVI. . . UQ = U(3y-i.a$-'.C/3-’) = (Jt-’)4 (e^-i)! (2;3-')l;

LXXVn. . . J2 = L Q= L Zya^=I (Je-*)! (f$-i)l ($3->)»;
these/totoerr of quaternions, with each=|, being interpreted as square
roots (199, (1.) ), or as equivalent to the symbols V (&■’), &c.

(52.) The conjugate (or reciprocal') versor, tJ Q ’, which has rm for its repre
sentative arc, may be deduced from U Q by simply interchanging /3 and y, or e and 
S; tbe corresponding quatet^iiou is,

LXXVni. . . 01 = KQ=SI3ay = - eJ;

SO that

and we have
LXXIX. . . UQ' = cosiS-OD.sini2 = (a?-i)l (^e-i)! {tS-'fi j 

the rotation round d, from e to f, being still supposed to be negative.
(53.) Let H be any other point upon the sphere, and let on = q; also let E' be 

the area of tbe new spherical triangle, dfh then the same reasoning shows that 
LXXX... cosiS’ + oD.sin i2’=(3$->)l (??/-')» (j/5->)1,

if the rotation round d from f to h be negative; and therefore, by multiplication of 
the two co-axaf eersors, LXXVI. and LXXX., we have by LXXV. the analogous 
formula:

LXXXI. .. cosi(S + 2') + oD.sin A(2 + 29 = (3e-i)l (t? !)! (?^-')» (»jo->)>; 
where 2 + 2' denotes the area of the spherical quadrilateral, DEFri.

(54.) It is easy to extend this result to the area ot any spherical polygon, or to 
the spherical opening (44.) of any pyramid; aud we may even conceive an exten
sion of it, as a limit, to the area of any closed curve upon the sphere, considered as 
decomposed into an indefinite number of indefinitely small triangles, uuth some com
mon vertex, such as the point D, on the spheric surface, and with indefinitely small 
ares EP, FH,.. of the curve, for their respective bases: or to the spherical opening 
of any cone, expressed thus as tbe Angle of a Quaternion, which is the limit* of the 
product of indefinitely many factors, each equal to the square-root of a quaternion, 
which differs indefinitely little from unity.

(55.) To assist the recollection of this result, it may bo stated as follows (comp. 
180, (3.) for the definition of an arcual sum)-.—

“ The Arcual Sum of the Halves of the successive Sides, of any Spherical Poly
gon, is equal to an arc of a Great Circle, which has the Initial (pr Final') Point of

* This Limit is closely analogous to a definite integral, of the ordinary kind; or 
rather, we may say that it is a Definite Integral, but one of a new kind, which could 
not easily have been introduced without Quaternions. In fact, if we did not employ 
the non~comrmttathe propertg (168) of quaternion multiplication, the Products here 
considered would evidently become each equal to unity: so that they would fur
nish no expressions for spherical or other areas, and in short, it would be useless to 
speak of them. On the contrary, when that property or principle of multiplication 
is introduced, these expressions of product-form are found, as above, to have ex- 
trcmely useful significations in spherical geometry ; and it wilFbe seen that they sug
gest and embody a remarkable theorem, respecting the resultant of rotations of a sys
tem, round any number of successive axes, all passing through otie fixed point, but in 
other respects succeeding each other with any gradual or Buddeii changes.
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the Polygon for its Pole, and represents the Semi-area of the Figure it being un
derstood that this resultant are is reversed in direction, when the half-sides are (ar- 
cually) added in an opposite order.

(66.) As regards the order thus referred to, it may be observed that in the arcual 
addition, which corresponds to the quaternion multiplication in LXXVI., we con
ceive a point to move, first, from B to r, through half the arc df ; which half-side 
of the triangle dep answers to the right-hand factor, or square-root, (^d**)*. We 
then conceive the samo point to move next from p to a, through half the arc pb, 
which answers to the factor placed immediately to the left of the former; having 
thus moved, on the whole, so far, through the resultant arc ba (as a transvee- 
tor, 180, (3.)), or through any equal arc (163), such as Mt in Fig.i68. And 
finally, wo conceive a motion through half the arc ed, or through any arc equal to 
that half, such as the arc ln in tbe same Figure, to correspond to the extreme left
hand factor m. Hvc formula; the^noZ resultant (or total transvector arc"), which 
answers to the product of the three square-roots, as arranged in the formula, being 
thus representbd by the^nuZ arc sin, which has the point Dfor its positive pole, and 
the half-area, J2, for the angle (61.) of the juatemion (or versor'} product which 
it represents.

(bl.} Now the direction of positive rotation on the sphere has been supposed to 
be that round d, from p to e ; and therefore along the perimeter, in the order dfe, 
as seen* from any point of the surface within the triangle: that is, in tbe order in 
which the successive sides dp, pe, ed have been taken, before adding (or compound
ing} their halves. And accordingly, in the conjugate (or reciprocal} formula 
LXXIX., we took the opposite order, dep, in proceeding as usual from right-hand 
to left-hand factors, whereof the former are supposed to be multiplied 6yt the latter; 
while the result was, as we saw in (52.), a new versor, in the expression for which, 
the area 2 of the triangle was simply changed to its own negative.

(58.) To give an example of the reduction of the area to zero, we have only to 
conceive that tbe three points D, E, p are co-arcual (165), or situated on one great 
circle ; or that the three lines S, t, l( are complanar. For this case, by the laws| 
of complanar quaternions, we have the formula,

LXXXli. . . (3£->)1 (eS-')! (J6-')i = 1, if Sde2 = O ;

thus cos iS = 1, and S = 0.

* In this and other cases of the sort, the spectator is imagined to stand on the 
point of the sphere, round which the rotation on the surface is conceived to be per
formed ; his body being outside the sphere. And similarly when we say, for exam
ple, that the rotation round the line, or radius, OA, from the line OB to the line OC, 
is nepadve (or left-handed), as in the recent Figures, we mean that such would ap
pear to be the direction of that rotation, to a person standing thus with his/eet on 
A, and with his body in the direction of oa prolonged; or else standing on the centre 
(or origin) o, with his head at the point A. Compare 174, II.; 177; and the Note 
to page 163.

t Compare the Notes to pages 116, 169.
J Compare the Second Chapter of the Second Book.
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(59.) Again, in (53.) let tbe point u be co-arcual with D and f, or let S6?i2 i 0; 
then, because

LXXXir. . . (^,,-')! (nS >)1 = (?^')t, if S^?r; = 0,

the product ofyoKr /acZora LXXXI. reduces itself to the product of three factors 
LXXVI. i the geometrical reason being evidently that in this case the added area 

vanishes; so that the quadrilateral OEFU has only tbe same area as the triangle 
DEF.

(60.) But this added area (53.) may even have a negative* effect, as for exam
ple when tbe new point u falls on the old side de. Accordingly, if wo write

LXXXni... <31 = («?-■)! (S.,-‘)l (.,£->)»,

and denote tbe product LXXXI. of four square-roots by Q2, we shall have tbe trans
formation,

Lxxxrv... Qj = (Jr>)l Q, (tJ-i )1, if SStq = 0 ;

which shows (comp. (16.)) that in this case the angle of the quaternary product Qz 
is that of the ternary product Qi, or the half-area of the triangle efh (= def - due), 
although the axis ot Qz is transferred from the position of the axis of Qi, by a ro
tation round the pole of the arc kd, which brings it from OE to od.

(61.) From tliis example, it may be considered to be sufficiently evident, how the 
formula LXXXI. may be applied and extended, so as to represent (comp. (64.) ) tlie 
area of any closed figure on the sphere, with any assumed point D on the surface as 
a sort of spherical origin ; even when this anxiliarypoint is not situated on the pe
rimeter, but is either external or internal thereto.

(62 ) A new quaternion Qa, with the same axis OD os the quaternion Q of (60.), 
but with a double angle, and with a tensor equal to unity, may be forpied by simply 
squaring the versor V Q', and although this sguann^i cannot be effected by removing 
the fractional exponents,-^ in the formula LXXVI., yet it can easily be accomplished 
in other ways. For example we have, by LXXIII. LXXIV., and by VII. IX. X, 
the transformations 4

LXXXV. . , Qo = U O’ = r-’ (6yo/3)’ = - 6 ’. ynjSJ. Sya^
. =-(ya/J)’ = -(e-6y = r’-e* + 2eS;

and in fact, because I = r. od, by XII., tlie trigonometric values LIV. for r and e 
enable us to write this last result under the form,

LXXXVI. . . Qo = —(ya/3)* = cos S + OD.sin 2.

(63.) To show its geometrical signification, let us conceive that abc and lmn

* In some investigations respecting areas on a sphere, it may be convenient to 
distinguish (comp. 28, 63) between tbe twp symbols def and dfe, and to consider 
them as denoting two opposite triangles, of which the snm is zero. But for the pre
sent, we are content to express this distinction, by means of tbe two conjugate qua
ternion products, (51.) and (52.).

t Compare the Note to (54.).
J Tho equation 6ya/3 = yn/36 is not valid generally s but we have here 

and in general, op = pq, p 11 Vj.
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have tho same meanings in the new Fig. 70, as Id Fig. 68; and that AiBiMi are 
tlircc now points, determined by tlie three arcual equations (163),

LXXXVII. nA0 = '>CAi, ''EC=''CJ11,
o MN = n NMi;

wliich easily conduct to this fourth equation of 
the same kind,

LXXXVir. . . o LMl = >> BlAl.
This new are LJli rqrresenta thus (comp. 167, and 
Fig. 43) the product aiy-’.y;3i-t = ya->.j8y-t 
while the old arc ml, or its equal ba (31.), represents a/3-*; whence* the arc mmi, 
which has its pole at d, and is numerically equal to the whole area 2 of i>ef (be
cause MN was seen to be equal (50.) to half that area), represents the product 
ya**/?/'’. afr\ or — (yalS)-, or Qo. The formula LXXXVI. has therefore been 
interpreted, and may be said to have been proved anew, by these simple geometri
cal considerations.

(64.) We see, at the same time, how to interpret the symbol,

LXXXVni. . . Qo=-- a 7 /3
namely as denoting a versor, o( which the aan's is directed to, or from, Uie corner d 
of a certain auxiliary spherical triangle def, whereof the sides, respectively opposite 
to D, E, F, are bisected by the given points A, B, c, according as the rotation round 
o from /3 to y is neyatiue or positive; and of which the angle represents, or is numeri
cally equal to, the area 2 of that auxiliary triangle : tjit least if we still suppose, as 
we have hitherto for simplicity done (1.), that the sides of the given triangle abc are 
each less than a quadrant.

298. The case when 'the sides of the given triangle are all greaterr 
instead of being ail less, than quadrants, 'may deserve next to be 
(although more briefly) corfeidered; the case.when they are alt 
equal to quadrants, being reserved for a short subsequent Article: 
and other cases being easily referred to these, by limits, or by passing 
from a given line to its opposite.

n < 0,
Vor that

(1.) Supposing now that
I. . . Z<0, »»<0,
r, TT , ITn...a>-, b>-,

■v!o may still retain the recent equations IV. to XI.; XIII.; and XV. to XXVI., of 
297; but we must change the sign of the radical, r, in the equations XU. and XIV., 
and also the signs of the nsrsors US, Ue, in XII., if we desire that the sides ol 
the auxiliary triangle, DEP,-may still be bisected (as in Figures 67, 68) by the cor
ners of the given triangle ABC, of which the sides a, b, c are now each greater than 
a quadrant. Thus, r being still tbe common tensor ol S, e, K, and therefore being still 
supposed to be itself > 0, we mast write now, under these new conditions I. or II,, 
the new equations,
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III. . . OD = — UJ = — ; OE= — Ut = —r‘’£J OF = -= —r’’J ;
IV.. COS a = — r COS o', co3i = —rcosi', co3c= —rcose'.

(2.) The equations IV. and VIII. of 297 still holding good, we may now write,

V... + 2r cos d cos V cos c' = cos a'* + cos t'* + cos o'^ — 1, 
according as we adopt positive values (297), or negative values (298), for the co
sines Z, m, R of tbe sides of the bisecting triangle; the value of r being still supposed 
to be positive.

(3.) It is not difficult to prove (comp. 297, LIV., LXIX.), that
VI. . . r = + cos according as Z > 0, &c., or Z < 0, &c.;

the recent formula V. may therefore be written wiamiignoutly as follows :
VU. . . 2 cos a' cos 6' cos c* cos = cos a'* + cos 6'* + cos c"’ — 1;

and the formnla 297, LV. continues to hold good,
(4.) In like manner, we may wVite, without an ambiguous sign (comp. 297, LI.), 

the following txprension for the fourth proportional /3a''y to three unit-vectors a, p, 
y, the rotation round the first from the second to the third being negative:

VIII. . . )3a-’y = sin J2 + OD.cosiS;

where tbe scalar part changes sign, when the rotation is reversed.
(5.) It is, however, to be observed, that although thia formula VIII. holds good, 

not only in the cases of tbe last article and of the present, but also in that which has 
been reserved for the next, namely when Z * 0, &c.; yet because, in the present cate 
(298) we have tho area S > w, the radius od is no longer the (positive) axis US of 
the fourth proportional /Sa-Jy; nor is |er -any longer, as in 297, L., the (posi
tive) angle of that versor. On the contrary we have now, for this axis and angle, 
the expressions:

IX. . , Ax. /3n-*y = do=-OD; X. . . Z/3a"'y = |(S-7r).

(6.) To illustrate these results by a construction, we may remark that if, in Fig. 
€7, the bisecting arcs no, ca, ab be supposed'each greater than a quadrant, and if 
we proceed to form from it a new Figure, analogous to 68, tbe perpendicular cq will 
also exceed a quadrant, and tbe poles p and x will fall between the points c and Q; 
also JI and n will fall on the arcs ixj and qn' prolonged; and although the arc XJt, 
or the angle kdm, or l'db, or edp, may still be considered, as in 297, (34.), to re
present the versor yet the corresponding roZaZion round the point u is now o^
a negative character.

(7.) And as regards the quantity of this rotation, or the magnitude of the angle 
at D, it is again, as in Fig. 68, a base-angle of one 
of three isosceles triangles, with p for their common 
vertex; but we have now, as in Fig. 71, a new ar-

• rangement, in virtue of which this angle ia to be 
found by halving what remains, when the sum of 
the supplements of tbe angles at d and a,Tn the tri
angle DEP, is subtracted from the angle at r, instead
of our subtracting (as in 297, (35.) ) the latter angle from the former sum ; it is 
therefore now, in agreement with tho recent expression X.,

XI. . . L = i(D I B + f) — TT.
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(8.) The negative of the conjugate of the formula VIII. gives, 
XII. . . ya-'p = -sin+2 + OD,cosJ2;

and by taking the negative of the square of this equation, we are conducted to the 
following:

XIII.. . ^ = -(ya->p)t = cos 2 + 00.sin 2!
a Y P

a result which had only been proved before (comp. 297, (62.), (64.) ) for the case 
, 2 < tr; and in which it is still supposed that the rotation round a from p to y is 

negative,
(9.) With the same direction of rotation, we have also tiro conjugate or recipro

cal formula.

XIV.. . = _ ((3a"'y)»= cos S -OD.sin 2.
p y

(10.) If it happened that only one side, as ab, of the given triangle abc, was 
greater, while each of the two others was less that! a quadrant, or that we had Z > 0, 
m > 0, but n < 0; and if we wished to represent the fourth proportional to a, p, y by 
means of the foregoing constructions; we should only have to introduce the point c' 
opposite to c, or to change y to y' = — y; for thus the new triangle abc' would have 
each side greater than a quadrant, and so would fall under the case of the present 
Article; after employing the construction for which, we should only have to change* 
the resulting versor to its negative.

(11.) And in like manner, if we had I and m negative, but n positive, we might 
again' substitute for c its opposite point c’, and so fall back on the construction of 
Art. 297: and similarly in other cases.

(12.) In general, if we begin with the equations 297, XII., attributing any arbi
trary (but positive) value to the common tensor, r, of the three co-initial vectors 
S, £, ?, of which the versors, or the unit-vectors U5, &c., terminate at the comers of 
a given or assumed triangle def, with sides = 2a', ib', 2c', we may then suppose 
(comp. Fig, 67) that another triangle abc, with sides denoted by a, b, c, and with 
their cosines denoted by Z, m, b, is derived from this one, by the condition of bisect
ing its sides ; and therefore by the equations (comp. 297, LVIII. j,

XV.. . OA=a = U(£ + 0> ob=/3=U(Z:+5), oc = y = U(5-(-£), 
with tho relations 297, IV. V. VI., ns before; or by these other equations (comp. 
297, XIII. XIV.),

XVI. . . £ + S = -ra cos a', -i-S = 2rj3cosb', d+£ = 2ry cosc'.

(13.) When rti* simple construction is adopted, we have at once (comp. 297, 
LX), by merely taking scalars of products of vectors, and without any reference to 
ureas (compare however 297, LXIX., and 298, VII.), the equations,

XVII. . . 4 cos a cos b' cos c' = 4 cos 4 cos c cos a' = 4 cos c cos a' cos V
= - ’■■*S(ZJ + d) (d-1- £) = &c. = 1 + cos 2a'+ cos 26' + cos 2c';

or
XVIII _ oosJ _ COSC cosa'®+ C03 A’»+cos c'® — 1

Cos a' cos 6' cose' 2 cos a'cos t'coa c' ’
which can indeed be otherwise deduced, by the known formulse of spherical trigo
nometry.

2 Y
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(14.) We see, then, that according at the sum of the squares of the cosines of 
the half-sides, of a given or assumed spherical triangle, DEF, is greater than unity, 
or equal to unity, or less than unity, the sides of the inscribed and bisecting triangle, 
ABC, are together lets than quadrants, or together equal to quadrants, or together 
greater than quadrants.

(15.) Conversely, i/the sides of a given spherical triangle ABO be thus all lest, 
or all greater tlian quadrants, a triangle dep, but only one* such triangle, can be 
exscribed to it, so as to have its sides bisected, as above: the simplest process being 
to let fall a perpendicular, such as cq in Fig. 68, from c on ab, &c.; and then to draw 
new arcs, through c, &c., perpendicular to these perpendiculars, and therefore coin
ciding in position with tbe sought sides de, &c., of dep.

(16.) The trigonometrical results ot recent sub-articles, especially as regards the 
areaf of a spherical triangle, are probably all well known, as certainly some of them 

. are; but they are here brought forward only in connexion with quaternion formula:; 
and as one of that class, which is not irrelevant to the present subject, and includes 
the formula 294, LIII., the following may be mentioned, wherein a, (3, y denote any 
three vectors, but the order of the factors is important:

XIX. . . (a^y)2 = 2a’/3y + a’(^y)’4 j3’(ay)’ +y’(a/3/— 4<iy Sa/3Sj3y.

(17.) And if, as in 297, (1.), &c., we suppose that a, fi, y are three unit-vec
tors, OA., 013, OC, and denote, as in 297, (47.), by a the area of the triangle ABC, 
the principle expressed by the recent formula XIII. may be stated under this appa
rently different, but essentially equivalent form :

__ a + /3y + aj3+y'
XX. . . -—- . 4—. -—- = cos O' + a sin <r;

i3 + y O+/3 y + a
which admits of several verifications.

(18.) We may,'for instance, transform it as follows (comp. 297, LXVII.) :

-(g4-/3) (|3+y) (y + q) _ -2e+ 2a(l +7+CT + >t) 
(/3 + y) (y + a) -t-2e+2a(l + Z + ro + n) 

a .ia
cos - -t- a sm -

A a
ssin -

2 2

XXI. .

ff 
1 , , , , , 1 -I- a tan -1 + l + m + n + ea _ 2
1 + l + m + n — ea , a1 — a tan -

I= I cos- + a sin - 1 = cos a + a sin a, as above.

* In tho next Article, we shall consider a case of indeterminateneis, or of the ex
istence of indeiinitely many exscribed triangles def ; namely, when the sides of abc 
are aU erjual to quadrants.

f Tliis opportunity may bo taken of referring to an interesting Note, to pages 
9G, 97 of Lufiy't Trigonometry (Dublin,"1852); in which an elegant construction, 
connected with the area of a spherical triangle, is acknowledged as having been men
tioned to Dr. Luby, by a since deceased and lamented friend, the Rev. William Digby 
Sadleir, F. T. C. D. A construction nearly the same, described in tlie sub-articles to 
297, was suggested to the present writer by qiiatemious, several years ago.
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(19.) This seems to be a natural place for, observing (comp, (16.) ), that if a, ji, 

y, 5 be any four vectors, the lately cited equation 294, LIII., and the square of the 
equation 294, XV., with S written in it instead of p, conduct easily to the following 
very general and symmetric formula:

, XXII. . . a’/3«y25« + (S,3ySa5)’+ (Sy«S/33)»+ (Sa)3Sy«)2
+ 2a2S/3yS/33Sy5 + 2(3’SyaSy3Sa« + 2y2Sa3Sa8Sj35 + ii^SapS^ySya

= 2SyaSa/3S(38Sy8 + 2Saj3Sj3ySy8Saf+ 2S/3ySyaSa8S/38
+ P^y^ (Sa8)’! + y-a^(SpSf-+ a^p^jSySy
+ a’82 (Spry +-p^S^ C Sy cc)‘^ + y=82 (SaP)\

(20.) If then we take any spherical quadrilateral auct), and write
XXIII. .. t = coa AD = — SUa8, m'= cos nb = - SU/38, n' = coscD = &c,, 

treating a, /3, y os the unit-vectors of the points A, b, c, and 2, m, n as the cosines 
of the arcs bc, oa, ab, as in 297, (1.), we have the equation,

XXIV. . . 1 -1- Pl't + + n’n'2 + ilm'n + imiil' + 2nl'm-\- 2lmn
= 2mBm'»'-|-.2nZn7'4 IlmVm'

+ Z’ 4 TO* + n’ + + to'* + n'* i

which can be confirmed by elementary considerations,* but is here given merely as 
an interpretation of the quaternion formula'XXII.

(21.) In squaring the lately cited equation 294, XV., we have used the two • 
following formula; of transformation (comp. 204, XXII., and 210, XVIII.), in 
which a, P, y may be any three vectors, and which are often found to be useful:
XXV... (Va/3)2 = (SajS)*- a'ip^-; XXVI... S(V|3y .■Vya') = yiSaP-S/3ySya.

299. The two cases, for which the Z/zree sides a, b, c, oi the given 
triangle abc, are all less, or all greater, than quadrants, having been 
considered in the two foregoing Articles, with a reduction, in 298, 
(10.) and (11.), of certain other cases to these, it only remains to 
consider that third principal case, for which the sides of that given 
triangle are all equal to quadrants: ■ or to inquire what is, on our 
general principles, the Fourth Proportional to Three Rectangular 
Vectors. And we shall find, not only that this fourth proportional 
is not itself a Vector, but that it does not even contain any vector 
part (292) different from zero: although, as being found to be equal 
to a Scalar, it is still included (131, 276) in the general conception 
of a Qpatemion.

(1.) In fact, if we suppose, in 297, (1.), that

I. , . Z = 0, TO = 0, » = 0, or that II. .. a = 6 = c = .^,

* A formuja equivalent to this last equation of seventeen terms, connecting the 
six cosines of the arcs which join, two by two, the corners of a spherical quadrilateral 
ABCD, is given at page 407 of Carnot’s Geometrie de Position (Paris, 1803).
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f

or III. . . S/Jy = Sya = Saj3 = 0, while IV. . . Ta = T/3 = Ty = I, 
the foriiRilaJ 297, VII. give,

V., . 5 = 0, £ = 0, ? = 0 ■;
but these are tbe i-ector parts ot the Mree pairs ot fourth proportionals to- thc <Arcc 
rectangular unit-lines, a, (3, y, taken in all possible orders; and the same evane
scence of vector parts must evidently take place, if the three given lines be only at 
right angles to each other, without being equally long.

(2.) Continuing, however, for simplicity, to suppose that they are unit lines, and 
that the rotation round a from 3 to y is negative, as before, we see that wc have now 
r=0, and e=l, in 297, (3.); and that thus the six fourth proportionals reduce 
themselves to their scalar parts, namely (here) to positive or negative unity. In 
this manner we find, under the supposed conditions, the values:

VI. . .fiar^y= y(i~'a = ay~^ji=-\-1 ; VI'. . . ya"'/3 = a/3''y = /3y’a = — I.

(3.) For example (comp. 295) we have, by the laws (182) of i,j, k, the values,

VII.. . y-'A=jA-*t=^i-’j=+ 1; Vir. . . f{j-H=i6-^j=ji-*t=—l.

In tact, the tu)o fourth proportionals, y~^k and aro respectively equal to thc
two ternary products, — ijk and — kji, and therefore to + 1 and — 1, by the laws in
cluded in the Fundamental Formula A (183).

(4.) To connect this important result with the constructions of the two last Ar
ticles, we may observe that when wo seek, on the general plan of 298, (15.). v®" 
exscribe a spherical triangle, dick, to a given tri-quadrantal (or rH-rccCan^uZar) 
triangle. Ano, as for instance to tho triangle ijk (or jik) of 181, in such a manner 
that tho sides of the new triangle shall be bisected by the corners ol the old, the 
problem is found to admit of indefinitely many solutions. Any point p may be as
sumed, in the interior of the given triangle abc ; and then, if its reflexions i), e, f 
be taken, with respect to tbe three sides a, b, c, so that (comp. Fig. 72) tlie arc* 
I’n, TE, PF are perpendicularly bisected by those 
three sides, tbe three other arcs ef, fd, de will be 
bisected by tbe points A, B, o, as required : because 
the arcs ae, ap have each the same length as ap, 
and the angles subtended at A by pe and pr aro to
gether equal to two right angles, &c.

(5.) The positions of the auxiliary points, D, e, 
F, are therefore, in the present case, indeterminate, 
or variable ; but the sum oi the angles at those three 
points’is constant, and equal to four right angles ;
because, by the six isosceles triangles on pd, pe, pf as bases, that sum of the 
three angles d, e, f is equal to the sum of the angles subtended by the sides of tbe 
given triangle abc, nt the assumed interior point P. The spherical excess of the 
triangle def is therefore equal to two right angles, and its area 2 = w ; as may be 
otherwise seen from the same Figuua 72, and might have been inferred from the for
mula 297, LV., or LVI.

(6.) The radius on, in the formula 297, XLVII., for tbe fourth proportional 
fia-'y, becomes therefore, in the present case, indeterminate ; but because the angle 
i.'iin, or J (tt — 2), in tho same equation, vanishes, the formula becomes simply

Fig. 72.    
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/3a-* y = 1, as in the recent equations VI.; .and similarly in other examples, of the 
class here considered.

(7.) The conclusion, thatfAe Fourth Froporlionat to Three Rectangular Lines 
is a Scalar, may In several other ways be deduced, from the principles of the present 
Book. For example, with tho recent suppositions, we may write,

Vni. ../3a-* = —7, 7/3-* =-a, ay-*=-P; 
VIII'. . . ya-* =4-/3, a/3-* = + y, /3y-* = + a;

the three fourth proportionals VI. are therefore equal, respectively, to — y’, — a®, 
— /3®, and consequently to + 1; while the corlesponding expressions VI', are equal 
to + /3*, + y2, + o®, and therefore to1.

(8.) Or (comp. (3.) ) we may write generally tho transformation (comp. 282,
XXI.*),

IX. . ./3a-*y = a-’./3ay, if a-’=l:a’,

in which the factor a-^ is altoays a scoZar, whatever vector a may be; while the 
vector part ot the ternary product Pay vanishes, by 294, III., when the recent con
ditions of rectangularity III. are satisfied.

(9.) Conversely, this ternary product pay, and this/burtA proportional Par^y, 
can necer reduce themselves to scalars, unless the three vectors a, P, y (supposed to 
be all actual (Art. 1) ) are perpendicular each to each.

Section 8.—On an equivalent Interpretation of the Fourth 
Proportional to Three Diplanar Vectors, deduced from the 
Principles of the Second Booh.

300. In the foregoing Section, we naturally employed the results 
of preceding Sections of the present Book, to assist ourselves in at
taching a' definite signification to the Fourth Proportional (297) 
to Three Diplanar Vectors; and thus, in order to interpret the sym
bol we availed ourselves of the interpretations previously ob
tained, in this Third Book, of a'* as a line, and of o/3, 0^7 as quater
nions. But it may be interesting, and not uninstructive, to inquire 
how the equivalent symbol,

or with 7 not ||1 a, /3,a

might have been interpreted, , on the principles of the Second Book, with
out at first assuming as known, or even seeking to discover, any in
terpretation of the three lately mentioned symbols,

II. . . «-*, ap, aPy.
It will be found that the inquiry conducts to an expression of tbe 
form.

* The formula here referred to should have been printed as Ret = 1: a = «'*.
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ni. . . (/3: a).r'{= fi + ew;
where 5 is the same vector, and e is the same scalar, as in the recent 
sub-articles to 297; while u is employed as a temporary symbol, to 
denote a certain Fourth Proportional to Three Rectangular Unit 
Lines, namely, to the three lines oq, ol', and op in Fig. 68; so 
that, with reference to the construction represented by that Figure, 
we should be led, by the principles of the Second Book, to write the 
equation:

IV... (ob: oa).oc=od.cos J2 + (ol': oQ).op.sin |S.
And when we proceed to consider what signification should be at
tached, on the principles of the same Second Book, to that particular 
fourth proportional, which is here the coefficient of sin ^2, and has 
been provisionally denoted by u, we find that although it may be 
regarded as being in one sense a Line, or at least homogeneous with a 
line, yet it must not le equaled to any Vector: being rather analogous, 
in Geometry, to the Scalar Unit of Algebra, so that it maybe naturally 
an^ conveniently denoted by the usitcd symbol 1, or + 1, or be equated 
to Positive Unity. But when we thus write u=l, the last term 
of the formula HI. or IV., of the present Article, becomes simply 
e, or sin J2; and while this term (or part) of the result comes to be 
considered as a species of Geometrical Scalar, the complete Expres
sion for the General Fourth Proportional to Three Diplanar Vectors 
takes the Form of a Geometrical G^aternion; and thus the formula 
297, XLVII., or 298, VIII., is reproduced, at least if we substitute 
in it, for the present, (^: o),7 for to avoid the necessity of 
interpreting here the recent- symbols II.

(1.) The construction of Fig. 68 being retained, but no principles peculiar to the 
Third Book being employed, we may write, with the same significations of c, p, &c., 
as before.

V. .. OB:OA=OB:OQ = cosc+(OL':OQ)8inc; 
VI... oc = OQ. cosp + OP. sinp.

(2.) Adihitting then, as is natural, for tbe purposes of the sought interpretation, 
that distributive property which has been proved (212) to hold good for the multi
plication of quaternions (as it does for multiplication in algebra); and writing for 
abridgment.

VII. . . u = (ol' : oq) . op;
we have tbe quadrinomial expression :

Vlir. . . (OB:OA).OC=OL'.sincC08p + OQ.C03CC03p
+ OP. cos o sinp + «. sin c sin p;

in which it may be observed that the sum of the squares of the four coefficients of the
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three rectangular unit-vectors, OQ, Ob', oP, 'and of their fourth proportional, «, it 
equal to unitg.

(3.) But the coefficient of tXis fourth proportional, rrhich may be regarded as a 
species oi fourth unit, is

IX. .. sincsinp = sinMN= sin = e;

we must therefore expect to find that the three other coefficients in VIII., when di
vided by cos |S, or by r, give quotients which are the cosines of the arcual distances 
of some point x upon the unit-sphere, from the three points if, Q, p ; or that a point 
X can be assigned, for which

X. .. sip c cosp = r cos b'x; cos c cosp = r cos Qx; cos e sin p — r cos px.
(4.) Accordingly it is found that these three last equations are satisfied, when we 

substitute t> for x; and therefore that wo have tbe transformation,
XI. . . Ob', sine cos/> +OQ.cosc cosp + op. coscsinp = oD. 003^2 = 5, 

whence follow the equations IV. and III.; and it only remains to study and interpret 
tbe fourth unit, u, which enters as a factor into tbe remaining part of thequadrino- 
mial expression VIII., without employing any principles except those of the Second 
Booh: and therefore without using the Interpretations 278, 284, of j3a, &c.

. 301. In general, when two sets of three vectors, a, and
connected by the relation,

T 7 nr TT
a art' a'

it is natural to write this other equation,
TTT '
III.. ;Oe a '

and to say that these two fourth proportionals (fi&l), to a, 7, and 
to a.', p', are equal to each other: whatever the full signification oi 
each oi these two last symbols III., supposed for the moment to be 
not ya fully known, may be afterwards found to be. In short, we 
may propose to make it a condition of the sought Interpretation, on 
the principles of the Second Book, of the phrase,

“ Fourth Proportional to Three Vectors,"

and of either of the two equivalent Symbols 300,1., that the recent 
Equation III. shall follow from I. or II.; just as, at the commence
ment of that Second Book, and before concluding (112) that the ge
neral Geometric Quotient^', a of any two lines in space is a Quaternion, 
we made it a condition (103) of tbe interpretation of such a quotient, 
that the equation (/5: a).a = p should be satisfied.

302. There are however two tests (comp. 287), to which the re
cent equation III. must be submitted, before its final adoption; in
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order that we may be sure of its consistency, Ist, with the previous 
interpretation (226) of a Fourth Proportional to Three Complanar 
Vectors, as a Line in their common plane; and Ilnd, with the gene
ral principle of all mathematical language (105), that things equal to 
the same thing, are to be considered as equal to each other. And it 
is found, on trial, that both these tests are borne; so that they form 
no objection to our adopting the equation 301, III., as true by defini
tion, whenever the preceding equation II., or I., is satisfied.

(1.) It may happen that the first member of that equation III. is equal to a/tne 
ns in 226 ; namely, when o, /3, y are complanar. In this case, wo have by II. 

the equation,
lV...4=-^=-L or IV'. ..^,/ = 3 = ^y;

7 y 7 a a a'
80 that d, fi', y' are also complanar (among themselves), and the line S is their 
fourth proportional likewise: and the equation III. is satisfied, both members being 
symbols for one common line, 3, which is fa general situated in the intersection of 
the two planes, afiy and a'ji’y'; although those planes may happen to coincide, 
without disturbing the truth of the equation.

(2.) Again, for tlie more general case of diplanarity of a, p, y, we may con
ceive that the equation* II. co-exists with this other of tho same form,

V. .. - — = ; which gives VI^. y y",a y a
if the definition 301 be adopted.. If then that defihition be consistent ivitli 'general 
principles of equality, we ought to find, by III. and VI., that this third equation be
tween two fourth proportionals holds good:

VII. ..^y' = C'y"; orthat VIII. . .
rt a rt y rt

when the equations II, and V. are satisfied. And accordingly, those two equations 
give, by the general principles of tbe Second Book, respecting quaternions considered 
as quotients of vectors, the transformation,

/3'y’ By P y P" . J= as required.
y y y

303. It is then permitted to interpret the equation 301, III., on 
the principles of the Second Book, as being simply a transformation 
(as it is in algebra) of the immediately preceding equation II., or I.; 
and therefore to write, generally,

-57 = 3'7', if II. . - 3(7:7') = 3’;

* In this and other coses of reference, the numeral cited is always supposed to bo 
the ono which (with tbe same number) has last occurred before, although perhaps 
it may have been in connexion with a shortly preceding Article. Compare 217, (!•)♦
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where 7, 7' are any two vectors, and 9, 9' are aj/j/ hfo quaternions^ 
which satisfy this last condition. Now, if v and v be any two rwAi 
quaternions, we have (by 193, comp. 283) the equation,

III. . . Io: Iu’= v: v' = vv~^; •
or

IV. . . v’ (Ip: Iv') = ®'-'; whence V. . . v’. Iw = v''’. Ip', 
by the principle which has just been enunciated. It follows, then, 
that “if a right Line (Ip) ie tmdtipl'ied by the Reciprocal (p‘‘) of the- 
Right C^uaiernion (y), of which it is thc Index, the Product (p-'Ip) is 
independent of the Length, and of the Direction, of the Line thus ope
rated on or, in other words, that this Product has one co-nvmon Fa- 
lue, for all possible Lines (a) in Space: which common or constant 
pa^ac may be regarded as a kind of new (geometrical Unit, and is equal 
to what we have lately denoted, in 300, III., and VII., by the tem
porary symbol a; because, in the last cited formula, the line op is 
the index of the right quotient oa; ol'. Retaining, then, for the 
moment, this symbol, u, we have, for every line a in space, considered 
as the index of a right quaternion, v, \\\e.foiir equations:

VI. . . = VII. . . a = VU-, VIII. . . P=a:M;
• IX. . . P"' = u:a‘,

in which it is understood that a =Ip, and the three Irfst are here re
garded as being merely transformations of the first, which is deduced 
and interpreted as above. And hence it is easy to infer, that for 
any given system, of three rectangular lines a, fi, 7, we have the general 
expression :

X. ... (fi:a).'i = xu, if a.i. P .1-^, rf J. a-,
where the scalar co-efficient, x, of the h«p wit, u, is determined by 
the equation,
XI.. . « = +(Tj3; Ta).T7, accordingas XII. . . U7 = +Ax. (a: 
This coefficient a: is therefore always equal, in magnitude (or’absolute 
quantity), to the fourth proportional to the lengths of the three given 
lines 0^7; but it is positively or negatively taken, according as the 
rotation round the third line y, from the second line to the first line 
a, is itself positive or negative: or in other words, according as the 
rotation round the first line, from the second to the third, is on the 
contrary negative or positive (compare 294, (3.) ).

(I.) Fn illustration of the constancy of that fourth proportional which has been, 
for tho present, denoted by u, while the system of the three rectangular uoit-Iines 

2 z
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from which it is conceived to be derived is in any manner turned about, we may ob
serve that the three equations, or proportions,

Xin. . . «: y =j3: a; y:a=a: —y; — y =
conduct immediately to this/ourtA equation of the same kind,

XIV. . . «: a = y: /3, or*. a=(y. P) .a-,
if we admit that this new quantity, or symbol, u, is to be operated on at all, or com
bined with other symbols, according to the general rules of vectors and quaternions.

(2.) It is, then, permitted to change the three letters a, P, y, by a cyclical per
mutation, to the three other letters /?, y, a (considered again as representing wntf- 
Zines), without altering tbe value ot the JburtA proportional, a; or in other words, it 
is allowed to make the system of the three rectangular lines revolve, through the third 
part of four right angles, round the interior and co-initial diagonal of the unit-cube, 
of which they are three co-initial edges.

(8.) And it is still more evident, that no such change of value will take place, if 
we merely cause the system of the tico first lines to revolve, through any angle, in 
its own plane, round the third line as an axis; since thus we shall merely substitute, 
for the factor /3: a, another factor equal thereto. But by combining these two last 
modes of rotation, we can represent any rotation whatever, round an origin supposed 
to be fixed.

(•1.) And as regards the scalar ratio of any one fourth proportional, such as
: a'. y *, to any other, of the kind here considered^ such as /3: a. y, or «, it is suffi

cient to suggest that, without any real change in the former, we are allowed to sup
pose it to be so prepared, that we shall have

XV. ..a' = a; /3' = /3; y' = !vy,
X being some scalar coefficient, and representing the. ratio required.

304. In the more general case, when the three given lines are 
not rectangular, nor unit-lines, we may on similar principles de
termine their fourth proportional, without referring to Fig. 68, as 
follows. Without any real loss of generality, we may suppose that 
the planes of a, jS and o, 7 are perpendicular to each other; since 
this comes merely to substituting, if necessary, for the quotient 
0: o, another quotient equal thereto. Having thus
I.. . Ax. ()8:a) J-Ax. (7:a), let II. . . ^ = P' + j3", 7 = 7' + 7", 

where and 7' are parallel to.a, but y3" and 7" are perpendicular 
to it, and to each other; so that, by 203,1, and II., we shall have 
tho expressions,

III. . . l3> = S-.a,a
■y'=S^.a, 

a

* In equations of tills form, the parentheses may be omitted, though for greater 
clearness they are here retained.

    
 



CHAP. I.] SPHERICAL PARALLELOGRAM. 355

and
a a

We may then deduce, by the distributive principle (300, (2.) ), the 
transformations, , 

V...^.7=f^ + ^') (7'+ 7") 
a \a a j

. B' B>' B"= — 7'd-----rf» + <y' + !— rf" = + XU ;
a a a a

where
VI.. . 8 = /3S^+7"S^=7S^+j3"S^, and VII... aa = — 7".

a. a Or Or
The latter part, xu, is what we have called (300) the (geometrically) 
scalar part, of the sought fourth proportional; while the former part 
S may (still) be called .its vector • and we see that this part is 
represented by a line, which is at once in the two planes, of r^", and 
of 7, ft"; or in two planes which may be generally constructed as fol
lows, without now assuming that the planes o/3 and 07 are rectare^u- 
lar, as in I. Let 7' be the projection of the line 7 on the plane of 
a, ji, and operate on this projection by the quotient /8: o as a multi
plier ; the plane which is drawn through the line /3: a. 7' so obtained, 
at right angles to the plane a/3, is one locus ior the sought Zine 
and the plane through 7, which is perpendicular to the plane 77.', 
is another locus for that line. And as regards the length of this line, 
or vector part 5, and the magnitude (or quantity) of the scalar part 
XU, it is easy to prove that

VIII. . • TS = fcoss, and IX. . . a: = + fsins, 
where

X. . . Z = T^:Ta.T<y, and XI. .. sin s = sine sin 7), 
if c denote the angle between the two given lines a, p, and p tho 
inclination of the third given line 7 to their plane: the sign of the 
scalar coefficient, x, being positive or negative, according as the rota
tion round a from /3 to 7 is negative or positive.

(1.) Comparing the recent construction with Fig. 68, we see that when the con
dition I. is satisfied, the four unit-lines Uy, Ua,' U/3, US take tho directions of the 
four ra^ii oc, o<j, on, od, which terminate at the four corners of what may be called 
a tri-reetanffular guadri/ateraf oqrd on the sphere.

(2.) It may ha remarked that tlie area of this guadrilateral ia exactly equal to 
AriZ/'the area £ of the triangle dbf ; which may be inferred, either from the circum-
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stance that its spherical excess (over four right angles) is constructed by thc angle 
MDN ; or from the triangles dur and eas being together equal to the triangle abf, 
BO that the area of desk is S, and therefore that of cqrd is as before.

(3.) The two sides CQ, QK of this quadrilateral, which are remote from the obtuse 
angle at n, being still called p and c, and the side cn which is opposite to c being 

• Btill denoted by c', let the side dr which is opposite to p bo now called p'; also let 
the diagonals CR, qd be denoted by d and d’; and let s denote the spherical excess 
(CDR — ^w), or tbe area ot the quadrilateral. Wo shall then have tho relations,

(cos d = cos p cos e ; cos d" = co.s p cos c';
XII. . . ? tan c'= cos p tan c ; tan p' = cos c tan p;

(cos * = cosp seep' = cos c aee c' = cosd seed”;
of which some have virtually occurred before, and all are easily proved by right-an
gled triangles, arcs being when necessary prolonged.

(4.) If we take now two points, a and b, on thc side QR, which satisfy the arcual 
eqnatjpn (comp. 297, XL., and Fig. 68),

XIII. . . o ab = nQR ;
and if wo then join ao, and let fall oh this new arc thc perpendiculars bb', dd' ; it 
is easy to prove that tho projection b'd’ of the side bd on the aro AC is equal to that 
arc, and that the angle dbb' is right: so that wo have the (wo new equations,

XIV. . . n b'd' ss o AC ; XV... dbb' = Aw;

and the neat quadrilateral bb'd'd is also tri~rectaugular.
(6.) Hence the point D mag be derived from th^ three points sac, bg ang two of 

the four following conditions: Ist, the equalitg XIII. of the arcs AB, qR; Ilnd, tho 
dbrresponding equality XIV. of the arcs AC, b'd'; Ilird, tbe tri-rectangular charac^ 
ter ot tho quadrilateral cqrd ; IVth, the corresponding character of bb'd'd.

* (6.) In other words, this derived point D is the common intersection of the four 
perpendiculars, to the four arcs ab, AC, CQ, bb’, erected at the four points R, d', c, b ; 
CQ, bb' being still the perpendiculars from c and b, on ab and ac; and R and d' 
being deduced from Q and b', by equal arcs, as above.

305. These consequences of the construction employed in 297, 
&c., are here mentioned merely in connexion with that theory of 
fourth proportionals to vectors, which they have thus served to illus
trate; but they are perhaps numerous and interesting enough, to 
justify us in suggesting the name, "Spherical Parallelogram,"* for 
the quadrilateral cabd, or baud, in Fig. 68 (or 67); and in proposing 
to say that n is the Fourth Point, which completes such a.parallelogram, 
.when the three points C, a, b, or b, a, C, are given upon the sphere, 
as first, second, and third. It must however be carefully observed, 
that the analogy to the plane is here thus far imperfect, that in the

• By tho same analogy, the quadrilateral cqrd, in Fig. 68, may be called a
Spherical licctangle.
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general case, when the three given points are not co-arcual, but on the 
contrary are corners of a spherical tnanrjle arc, then if we take c, D, b, 
or B, D, c, for the /Ziree first points of a nw spherical paralldogram, of 
the kind here considered, the new fourth point, sa.y A„ will not coin
cide with the old second point a ; although it will very nearly do so, 
if the sides of the triangle abc be small; the deviation a a, being in 
fact found to be 'small of the third order, if those sides of the given 
triangle be supposed to be small of the first order; and being always 
directed towards the foot of the perpendicular, let fall from a on no.

but

(1.) To investigate the law of this deviation, let /J, y be still any two given 
unit-vectors, on, oc, making with each other an angle equal to a, of which the co
sine is I; and let p or op be any third vector. Then, if we write,

I... p, = 0(p) = 4Np.^^y+7/3j, OQ = Up, OQl = Upi,

tbe new or derived vector, ifip or pi, or oPi, will be the common vector part of the 
two fourth propbrtionals, to p, y, and to p, y, j3, multiplied by the square of the 
length of p; andnQCQi will be what we have lately called a spherical parallelogram. 
We shall also have the transformation (compare 297, (2.)),

II. . . pi = ^p = /3S^+yS| - pS^i

and the distributive symbol of operation will be such that-'

Ilh .. ^pIII^, y, and ^’p=p, if p|||/3, y; . 
lV...^p = -lp, if pIIAx. (y:^).

(2.) This being understood, let
V. ..p = p' + p"; ^p'=p'i-, p'lll/j.yi p" II Ax-(r :;

80 that p*, or op', is the projection of p on tbe plane of ; and p", or op", is the 
part (or component) of p, which is perpendicular to that plane. Then we shall have 
an indefinite series of derived vectors^ pi, ps, ps, . . or rather two such series, suc
ceeding each other as follows:

\p3 = <j>^p = p'l - l^p"-, p4 = = p' + ly; &C.;
the two series of derived points, Pi, Ft, Ps, Pi, . . . being thus ronped, alternately, 

■ on the two perpendiculars, Pp' and PiP'i, which are let fall /rom the points v and Pi, 
on the given plane Boo; and the intervals, PPj, P1P3, P3P4, . . . forming a peomefri- 
caZ progression^ in which each is equal to the one before it, multiplied by tbe con^ 
stant factor — or by the of the cosine of tbe picen angle BOC.

(3.) If then this angle be still supposed to be distinct from 0 and w, and also 
in gtiiicral from the inteimcdiatc value ^tt, we shall have the two limiting values^

Nil. , p 1 p2nn = p'i, if n = oc;
or in words, Me derived points P2, P4, . . of ei»€n orders^ tend to the point and the 
o/An- df tilled points^ rj, . olodd orders^ tend to tho other point r'j, as limiting
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positions: these two limit points being the/eef of the two (rectilinear) perpendicu
lars, let fall (as above) from p and p' on the plane boc.

(4.) But even the first deeiation pp-, is small of the third order, if tho length Tp 
of tbe line op be considered as neither large nor small, and if the sides of the spheri
cal triangle BQO be small ot theyfrsf order. For we have by VI. the following ex
pressions for that deviation,

VIII... pps=p2-p = (l’-l)p''= —sina’.slnpo.Tp.Up”;

where pa denotes the inclination of the fine p to the plane /3y ; or the arcual perpen
dicular from the point a on the side bo, or a, ot the triangle. The. statements lately 
made (305) are therefore proved to have been correct.

(5.) And if we now resume and extend the spherical construction, and conceive 
that Di is deduced from baiO, as a, was from bdo, or d from bag ; while As may . 
be supposed to be deduced by the same rule from bdiC, and Dj from basC, &c., 
through an indefinite series of spherical parallelograms, in which tbe fourth point 
of any one is treated as the second! point of the next, while thejirst and third points 
remain constant: we see that tbe points Ai, A2, . . 'are all situated on the arcual 
perpendicular let fall from A on bo ; and that in like manner tbe points Di, o;,.. 
are all sitnated on tbat other arcual perpendicular, which is let fall from D on bo^ 
We see also that </te ultimate positions. Am and D®, coincide preciselg with 'the feet 
of those two perpendiculars: a remarkable theorem, which it would perhaps bo diffi
cult to prove, by any other method than that of tbe Quaternions, at least with calcu
lations so simple as those which have been employed above.

(6.) It may be remarked that the construction of Fig. G8 might have been other
wise suggested (corap. 223, IV.),' by tbe principles of the Second Book, if we had 
sought to assign iho fourth proportional (297) to three right quaternions; for ex
ample, to three right versors, v, o', v", whereof the unit lines a, (i, y should be sup
posed to be the axes. For tbe result would be in general a quaternion o'o*’o", with 
e for its scalar part, and with i for the index of its right part: e and S denoting 
the same scalar, and the same vector, as in tbe sub-articles to 297.

306. Quaternions may also be employed to furnish a new con
struction, which shall complete (comp. 305, (5.) ) the graphical deter
mination of the two series of derived points,

- I. . , D, A|, Dp A2, D2, &C.,

when the </iree points a, b, c are given upon the unit-sphere; and 
thus shall render visible (so to speak), with the help of anew Figure, 
the tendencies of those derived points to approach, alternately and 
indefinitely, to th§ feet, say d' and a', of the two arcual perpendiculars 
let fall from the two opposite corners, D and a, of the first spherical 
parallelogram, bacd, on its given diagonal bc; which diagonal (as we 
have seen) is common to all tbe successive parallelograms.

(I.) The given triangle abc being supposed for simplicity to have its sides abc 
Jess than quadrants, aa in 297, so that their cosines Imn are positive, let A', b', c' be
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the feet of the perpendiculars let fall on these three sides from the points A, B, C; 
also let M and n be two auxiliary points, determined by the equations,

II. . . rt BM = rt MO, rt aM= rt MN ;
so that the arcs am and bo bisect each other in m. Let fall from n a perpendicular 
nd' on BC, so that

ni. .. rt bd'= rt a'c ;
and let a", o" be two other auxiliary points, on the sides b and c, or on those sides 
prolonged, which satisfy these two other equations,

IV. . . rt b'b" = rt AC, rt e'e" = rt AB.
(2.) Then the perpendiculars to these last sides, CA and ab, erected at these last 

points, b" and o", will intersect each other in the point d, which completes (305) the 
spherical parallelogram bacd ; and the foot of the perpendicular from this point d, 
on the third side bc df the given triangle, will coincide (comp. 305, (2.) ) with the 
foot d' of the perpendicular on the same side from N; so that this last perpendicular 
hd’ is one locus of the point D.

(3.) To obtain another locus for that point, adapted to our present purpose, let 
E denote now* that new point in which the two diagonals, ad and bc, intersect each 
other; then because (comp. 297, (2.) ) we have the expression,

V. . . OD = u(m/3 + ny — la'), 
we may write (comp. 297, (25.), and (30.) ),
VI.. . OE = tl.(m(3 4- ny), whence VII. . . sm be ; sin EC = n: n> = cos ba' ; cos a'c ; 
the diagonal AD thus dividing the arc bc into segments, of which the sines Site pro
portional to the cosines ot the ad/acent sides of the given triangle, or to the cosines 
of their projections ba' and a'c on bc ; so that the greater segment ia adjacent to the 
lesser side, and tbe middle point M of bc (1.) lies between the points A.' and E.

(4.) The intersection e is therefore a known point, and the great circle through 
A and E is a second hnown locus for 
D; which point may therefore be 
found, as the intersection of the are 
AE prolonged, with the perpendicular 
so' from N (1.). And because E lies 
(3.) beyond the middle point M of no, 
with respect to the foot a' of the per
pendicular on BC from A, bnt (as it 
is easy to prove) not so far beyond 
M as the point n', or in other words 
falls between ti and x>' (when the aro C 
BC is, as above supposed, less than a 
quadrant), the prolonged arc ae cuts 
nd' between N and d'; or in other 
words, tfte perpendicular distance of 
the sought fourth point D, from the 
given diagonal BC of the parallelo
gram, is lest than the distance of the 
given tecond point A, from the same given diagonal. (Compare the annexed Fig’. 73. j

* It will be observed that M, n, E have not here the same significations as in
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(5.) Proceeding next (305) to derive a new point Ai from «, u, c, aa i> has been 
derived from b, a, c, we see that we have only to determine a new* auxiliary point 
F, by the equation,

VIII. . . ''ESI = OMPi

and then to draw dp, and prolong it till it meets aa' in the required point Ai, which 
will thus complete the tecond parallelogram, bdcAj, with nc (as before) for a given 
diagonal.

(6.) In like manner, to complete (comp. 305, (5.) ), the third parallelogram, 
BAiCDi, with the same given diagonal bc, we have only to draw tho arc aie, and 
prolong it till it cuts nd' in di ; after which we should find the point Aj of a fourth 
successive parallelogram bdiCA2, by drawing DiF, and so on (or ever,

(7.) The constant and indefinite tendency, of the derivedpoints d, Dj, . . to the 
limit-point d', and of the other (or alternate') derived points Ai, Ao, . . to the other 
limit-point a', becomes therefore evident from this new construction; the final (or 
limiting) results of which, we may express by these two equations (comp, again 
305,(5.)),

IX. . . D® = d' ; A® = a'.
(8.) But the smallness (305) of the^^rrt deviation AAi,. when the sides of the 

given triangle abc are small, becomes at tho same time evident, by means of tho 
same construction, with tho help of the formula VII.; which shows that the intervalt 
EM, or tbe equal interval MF (5.), ia small of the third order, when the sides of the 
given triangle are-supposed to be small of the first order: agreeing thus with the 
equation 305, VIU.

(9.)- The theory of such spherical parallelograms admits of some interesting ap
plications, especially in connexion with spherical conics; on which however we can
not enter here, beyond the mere enunciation of a Theorem, J of which (comp. 271) 
the proof by quaternions is easy :—

Fig. 68; and that the present letters c' and o" correspond to Q and b in that Fi
gure.

• This new point, and the intersection of the perpendiculars of thc given trian
gle, are evidently not the same in the new Figure 73, as the points denoted by the 
same letters, f and P, in the former Figure 68 ; although the four points A, n, c, D 
are conceived to bear to each other the same relations in the two Figures, and indeed 
in Fig. 67 also j bacd being, in that Figure also, what we have proposed to call a 
tpherical parallelogram. Compare the Note to (3.).

f 'Tlie formula VII. gives easily the relation,

Vn'. . . tan EM.= tan ma* tan ;

hence tho interval em is small of the third order, in the case (8.) here supposed; and 
TT

generally, if a < -, as in (1.), while 5 and c are unequal, the formula shows that this 

interval em is less than ma', or than d’m, so that e falls between m and d', ns in (4.).
J Thia 'Theorem was communicated to tbe Royal Irish Academy in June, 1846, 

as a consequence of the principles of Quaternions. See the Proceedings of that date 
(Vol. III., page 109).
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“ TjfKLJiN be any spherical quadrilateral, and i any point on the sphere ; if also 
we complete the spherical parallelograms,

X. . , KILA, LUtB, JUNC, NIKD,

and determine the poles E and P of the diagonals KM and LN of the quadrilateral! 
then these two poles are the foci* of a spherical conic, inscribed in the derived quadri
lateral ABCD, or touching its four sides.”

(10.) Hence, in a notationf elsewhere proposed, we shall have, under these con
ditions of construction, the formula:

XI. . . EF (. .) abcd ; or XI'. . . EF (. .) BCDA J &C.
(11.) Before closing this Article and Section, it seems not irrelevant to remark, 

that the projection y’ of the unit-vector y, on the plane of a and j8, is given by the 
formula,

a sin a cos B + /3 sin b cos A 
• Y =-------------- st;-------------- 5'xii.. sine

and that therefore the point p, in which (see again Fig. 73) the three arcual perpen
diculars of the triangle abc intersect, is on the vector,

XIII. . . p = atanA + |3tanB+ y tanc.
(12.) It may ho added, as regards the construction in 305, (2.), that the right 

lines.
XIV. . . ppi, PiPo, P2P3, P3P4, • • • 

however far their series may be continued, intersect the given plane BOC, alternately, 
in two points s and T, of which the vectors are,

and which thus become two fixed points in the plane, when the position of the point 
p in space is given, or assumed.

Section 9.— On a 3^hird Method of interpreting a Product or 
Function of Vectors as a Quaternion; and on the Consis
tency of the Results of the Interpretation so obtained, with 
those which have been deduct from the two preceding Me
thods of the present Book.

307. The Conception of the Fourth Proportional to Three 
Rectangular Unit-Lines, as being itself a species of Fourth Unit 
in Geometry, is eminently characteristic of the present Calcu
lus; and offers a Third Method of interpreting a Prodtict of 
two Vectors as a Quaternion: which is however found to be

* In the language of modem geometry, the conic in question may he said to 
touch eight given arcs; four real, namely the sides An, no, CD, DA ; and four ima
ginary, namely two from each of the focal paints, k and r.

f Compare the Second Note to page 295.
3 A
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consistent, in’all its results, with the two former methods (278, 
284) of the present Book; and'admits of being easily extended 
to products of three or more lines in space, and generally to 
Functions of Vectors (289). In fact we have only to conceive*

* It was in a somewhat analogous way that Dea Cartea showed, in his Geame- 
tria (Schootcn’s Edition, Amsterdam, 1659), that all producta and powera of linea, 
considered relatively to their lengtha alone, and without any reference to their direc- 
tions, could be interpreted aa linea, by the suitable introduction of a line taken for 
unity, however high the dimension of tbe product or power might be. Thus (nt 
page 3 of the cited work) tbe following remark occurs:—

“ Ubi notandum est, qu6d per a® vel i’, similcsve, communiter, non nisi lincas 
omnino simplices coticipiam, licet illas, ut nominibus in Algebra usitatis utar. Quay 
drata aut Cubes, &c. appellem.”

But it was much more difficult to accomplish the corresponding multiplication of 
directed linea in apace ; on account of the npn-exiatence of any such line, which is 
aymmetrically related to all other linea, or common to all possible planea (comp, the 
Note to page 248). The Unit of Sector-Multiplication cannot properly be itaelf a 
Sector, if the conception ot the Symmetry of Space is to bo retained, and duly com
bined with the other elements of the question. This difficulty however disappears, 
at least in theory, when we come to consider that new Unit, of a acalar kind (300), 
which has been above denoted by the temporary symbol u, and bos been obtained, 
in the foregoing Section, as a certain Fourth Proportional to "three Rectangular 
Unit-Linea, such as the three co-initial edges, AB, AC, AD of what we have called an 
Unit-Cube : for this fourth proportional, by the proposed conception of it, undergoes 
no change, when the cube abcd is in any manner moved, or turned ; and therefore 
may be considered to be symmetrically related to all directions of lines in space, or to 
all possible vections (or translations) of a point, or body. In fact, ■no conceive its de
termination, and the distinction of it (as + u) from the oyposifennitof theaameiind 
(_— «), to depend only on the usual assumption of an unit of length, combined with 
the selection of a hand (aa, for example, tho right hand), rotation towards which 
hand shall be considered to be positive and contrasted (as such) with rotation to
wards the other hand, round the same arlAtrary axis. "Sorr in whatever manner the 
supposed cube may be thrown about in space, the conceived rotation round the edge 
AB, fiom AC to AD, will have the same character, as right-handed or left-handed, nt 
the end as at the beginning of the motion. If then the fourth proportional to these 
three edges, taken in thia order, be denoted by + », or simply by + 1, at one stage of 
that arbitrary motion, it may (on the plan here considered) be denoted by the same 
symbol, at every other stage; while the opposite character of the (conceived) rota
tion, round the same edge ah, from ad to ao, leads us to regard the fourth propor
tional to AB, AD, AO as being on tbe contrary equal to — or to — 1. It is true that 
this conception of a new unit for apace, symmetrically related (as above) to all linear 
directions therein, may appear somewhat abstract and metaphysical; but renders 
who think it such can of course confine their attention to the rules of calculation, 
which have been above derived from it, and from other connected considerations; and 
whish have (it is hoped) been stated and exemplified, in this and in a former Vo
lume, with sufficient clearness and fullness.
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that each proposed vector, a, is divided by the new or fourth 
unit, u, above alluded to; and that the quotient so obtained, 
which is always (by 3Q3, VIII.) the right quaternion I ’a, 
whereof the vector a is the index, is substituted for that vec
tor : the resulting quaternion being finally, if we think it con
venient, multiplied into the same fourth unit. For in this way 
we shall merely reproduce the process of 284, or 289, although 
now as a consequence of a different train of thought, or of a dis
tinct but Consistent Interpretation: which thus conducts, by a 
new Method, to the same Rules of Calculation as before.

(1.) The equation of the unit-sphere, +1 = 0 (282, XIV.), may thus be con
ceived to be an abridgment of the following fuller equation:

I...(ey=-1;
\“ I 

the quotient p : u being considered as equal (by 803) to the right quaternion, I'>p, 
which must here be a right versor (154), because its square is negative unity.

(2.) The equation of the ellipsoid,
r^fp -i- pF) (282, XIX.),

may be supposed, in like manner, to be abridged from this other equation:

■a..T(i-e+ei5k(5Y-(iY,
\nu ««/ \tt/ \u ]

and similarly in other cases.
(8.) We might also write these equations, of the sphere and ellipsoid, under these 

other, but connected forms:

rv...T(ip + f
u \u u J u u

with intepretations which easily offer themselves, on the principles of tbe foregoing 
Section.

(4.) It is, however, to be distinctly understood, that we do not propose to adopt 
this Form of Notation, in the practice of the present Calculus ; and that we merely 
suggest it, in passing, as one which may serve to throw some additional light on the 
Conception, introduced in this Third Book, of a Product of two Vectors as a Qua
ternion.

In general, the Notation of Products, which has been employed throughout 
the greater part of the present Book and Chapter, appears to be much more conve
nient, for actual use in calculation, than any Notation of Quotients : either such aa 
has bpen just now suggested for tho sake of illustration, or such as was employed in 
the Second Book, in connexion with that First Conception of a Quaternion (112), 
to which that Book mainly related, as tho Quotient of two Vectors (or of two di
rected lines in space). The notations of the two Books are, however, intimately con
nected, and the former was judged to be an useful preparation for the latter, ev^n as
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regarded tbe guoilent-formt of many of the expressions used : while thc Characleris- 
tics of Operation, such as

S, V, T, u, K, N,

are employed according to exactly tho tame Jawt in both. In short, a reader of the 
Second Book has nothing to unlearn in the Third; although he may be supposed to 
have become prepared for the use of somewhat shorter and more convenient pro- 
cetset, than those before employed.

Section 10__ On the Interpretation of a Power of a Vector
as a Quaternion.

308. The only symbols, of the kinds mentioned in 277, 
which we have not yet interpreted, are the cube a’, and the 
general power of, of an arbitrary vector base, a, with an arbi
trary scalar exponent, t; for we have already assigned inter
pretations (282, (1.), (14.), and 299, (8.)) for the particular 
symbols a'*, a"’, which are included in this last form. And 
we shall preserve those particular interpretations if we now 
define, in full consistency with the principles of the present and 
preceding Books, that this Power c^ is generally a Quaternion, 
which may be decomposed into tioo factors, of the tensor and 
versor kinds, as follows :

I. . . a'=Ta‘.Ua‘;

Ta‘ denoting the arithmetical value of the f'* poicer of the 
sitive number Ta, which represents (as usual) the length of the 
base-line a; and Ua* denoting a versor, which causes any line 
p, perpendicular to that line a, to revolve round it as an axis, 
through t right angles, ar quadrants, and in a positive or nega
tive direction, according as the scalar exponent, t, is itself a 
positive ar negative number (comp. 234, (5.)

(1.) As regards the omission of parentheses in the formula I., wo may observe 
that the recent dejinition, or interpretation, of tho symbol a‘, enables us to write 
(comp. 237, II. III.),

11. . . T (a') = (Tn)' = Ta^J III. . . U (o') = (Ua)' = Ua‘.

(2.) Tlie axis and angle of the power a‘, considered as a quaternion, are generally 
determined by the two following formulis:

IV. . . Ax. a‘ = ± Ua; . L- af’^ inn ± }<rr ;
the accompanying each other, and tho (positive or negative or null) integer, n, 
bein^ so chosen ns to bring tho angle within the usual limits, 0 and rr.
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(3.) In general (comp. 235), we may speak of the (positive or negative) product 
iZtr, ns being the amplitude of the same power, with reference to the line a as an 
axis of rotation; and may write accordingly,

VI. . . am. a‘ = ^tir.
(4.) We may write also (comp. 234, VII. VIII.),

VII. . . Ua'=cos + Ua . sin i or briefly, VIII.. . Ua< = cas

(5.) In particular,
IX. . . Uo’»=ca8n7r = +1; IX'. . . Ua’»*>= + Ua: 

npper or lower signa being taken, according as the number n (supposed to be whole) 
is even or odd. For example, we have thus the cubes,

X. . . Ua’ = — Ua; X'.. . a’ = — aNa.
(6.) The conjugate and norm of- the power a‘ may be thus expressed (it being 

remembered that to turn a line a through — ^ttr round -ha, is equivalent to turn
ing that line through + i<jr round — a):

XI.. . Ka‘ = Ta'. Uo'' = (- a)‘; XII. . . Na' = Ta";
parentheses being unnecessary, because (by 293, VIII.) Ka = — a.

(,7-) The scalar, vector, and reciprocal of the same power are given by the for
mula ;

XIII. . . S.a' = Ta'.cosy ; XIV. . . V.a' = Ta'.Ua.sin y;

XV... 1: a' = Ta-'.Uo-' = a-'= Ka': Na' (comp. 190, (3.)).
(8.) If we decompose any vector p into parts p' and p", which are respectively 

parallel and perpendicular to a, we have the general transformation :*
XVL .. a'pa-' = a‘(p’ + p") a-‘ = p' + Ua’'. p",

= the new vector obtained by causing p to revolve conically through an angular quan
tity expressed by tzr, round the line a as an axis (comp. 297, (15.)).

(9.J Uore generally (comp. 191, (5.)), if q be any quaternion, and if
XVII. ..o'sa-'=/,

tho new quaternion q' is formed from 9 by such a conical rotation of its own axis 
isTi. q, through <w, round a, without any change of its angle Z 9, of of its tensor T9.

(10.) Treating f/A as three rectangular unit-lines (296), the symbol, or expres
sion,

XVIII.. .p = rk‘j’'kj-’k-‘, or XIX... p = rX-72’At-‘, 

XX..‘.r>0, sSO, sSl, <20, t<2,

may represent any vector ; the length or tensor ot this line p being r; its inclina
tion^ to A being st; and the angle through which the variable plane Ap maybe

in which

• Compare the shortly following sub-article (11.).
t If we conceive (compare the first Note to page 322) that the two lines i and j 

aro directed respectively towards the south and west pomts of the horizon, while tbe 
third line A is directed towards the zenith, then sir is the zenith-distance of p; and 
(jr is the azimuth o{ the same line, measured from south to west, and thence (if ne
cessary) through north and east, to south again.
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conceived to have revolved, frem tbe initial position ki, with an initial direction to
wards tbe position being tir.

(11.) In accomplishing the transformation XVI., and in passing from’the ex
pression XVIII. to the less symmetric bnt equivalent expression XIX., wo employ 
the principle that

XXI... ij-»=S-‘ 0 = - K (*7-) ;

which easily admits of extension, and may be confirmed by such transformations aa 
VII. or VIII.

(12.) It is scarcely necessary to remark, that the definition or interpretation 1., 
of tbe power a* of any vector a, gives (as in algebra) the exponential property,

XXII... a*a‘=a*+‘,

whatever scalars may be denoted by < and t; and similarly when there are more than 
two factors of this form.

(13.) As verifications of the expression XVIII., considered as representing a vec
tor, we may observe that it gives,

XXIIL .. p=-Kp; and XXIV... p’=-r».

(14.) More generally, it will be found that if «• be any scalar, we have the 
eminently simple transformation:

XXV. . . pu = (jrktj’hj-sh-ty ^ruJitjsJtuj-sk-t,
In fact, the two last expressions denote generally two equal quaternions, because 
they have, Ist, equal tensors, cach=r“; Ilnd, equal anyZes, ^cach = Z.(A“)) and 
Ilird, equal (cti coincident) axes, each formed from +A by one common system e>t 
tvio successive rotations, one through str round J, and the other through ttr round A.

309. .4wy quaternion, q, which is not simply a scaZar, may 
be brought to the form a*, by a suitable choice of the base, a, 
and ofthe carponewZ, t', which latter may moreover be supposed 
to fall between the limits 0 and 2; since for this purpose we 
have only to write,

IL ..Ta = Tjb III. . . Ua = Ax.j;

and thus the general dependence of a Quaternion, on a Scalar 
and a Vector Element, presents itself in a new way (comp. 17, 
207, 292). When the proposed quaternion is a versor, Tq = I,

• Tbe employment of thia letter «, to denote what we called, in the two preced
ing Sections, a fourth unit, &c., was stated to bc a merely temporary one. In gene
ral, we shall henceforth simply equate that scalar unit to tho number one ; and de
note it (when necessary to be denoted at all) by the usual symbol, 1, for that num- 
her.
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we have thus Ta = 1 ; or in other words, the base of the 
equivalent potver a*, is an unit-line. Conversely, every versor 
may be considered as a power of an unit-line, with a scalar ex
ponent, t, which may be supposed to be in general positive, and 
less than tioo ; so that we may write generally,

1V. . . Uy = a‘, with V. . . a = Ax. y = T'‘ 1, 
and VI. . . « > 0, ^ < 2;
although if this versor degenerate into 1 or - 1, the exponent 
t becomes 0 or 2, and the fiase « has an indeterminate or ar
bitrary direction. And from such transformations of versors 
new methods may be deduced, for treating questions of sphe
rical trigonometry, and generally of spherical geometry.

(1.) Conceive th^ P, Q, R, in Fig. 46, are replaced by a, b, c, with nnil^vec- 
tors a, p, y as usual; and let x, y, z be three scalars between 0 and 2, determined 
by the three equations,

VII. . . a:jr = 2A, yw = 2B, ztr = 2c;
where a, b, o denote the angles of the spherical triangle. The three versors, indi
cated by the three arrows in the upper part of the Figure, come then to be thus de
noted : 

VIII. ..g = a*i q' = pv, 9'? = y’-’;
so that we have the equation,

IX. . . j3!'a*= yS-=; or X. . . y-pya’’—— 1;
from which last, by easy divisions and multiplications, these two others immediately 
follow :

X’. . . aiy»/3ir=_l; X". . ./S'a*y« = -1;
the rotation round a from f3 to y being again supposed to be negative. 

(2.) In X. wo may write (by 308, VIII.),
XI. . . a‘' = casA; pi/ = cpaii-, y" = cyso;

and then thc formula becomes, for any spherical triangle, in which the order of ro
tation is as above:

XII. . . cyso. c/3sb . casA = - 1;
or (comp. IX.),

XIII... - cos 0 + y sin o = (cos b + /3 sin b) (cos a + a sin a).
(3.) Taking the scalars on both sides of this last equation, and remembering that 

S/3a= - cos e, we thus immediately derive one form of the/undanienfaZ equation of 
epherical trigonometry ; namely, the equation,

XIV. . . cos 0 +cos A cos B = COSC sin A Sinn. ,
(4.) Taking the vectors, we have this other formula:

XV. . . y sin c = a sin A cos B + sin B cos A + V/3a sin A sin b ;
wliich is easily seen to agree with 806, XII., and may also be usefully compared 
with the equation 210, XXXVII.
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(6.) The result XV. may be enunciated in the form of a Theorem, as follows:— 
“ If there be any spherical triangle ABO, and three lines be drawn from the 

centre o of the sphere, one towards the point a, with a length = sin A cos B; another 
towards the point B, with a length — sin B cos A; and the third perpendicular to the 
plane aob, and towards the same side of it as the point 0, with a length = sin c sin A 
sinB; and if, with these three lines as edges, we construct a parallelepiped: the 
intermediate diagonal from o will be directed towards C, and will have a length 
— sin c.”

(6.) Dividing both members of the same equation XV. by p, and taking scalars, 
we find that if p bo any fourth point on tho sphere, and <3 the foot of the perpendi
cular let fall from this point on the are ab, this perpendicular pq being considered as 
positive when c and p are situated at one common side of that arc (or in one common 
hemisphere, of the two into which the great circle through A and b divides tho sphe
ric surface), we have then,

XVI. -. sin c cos PC = sin A cos b cos pa + sin b cos a cos pb + sin a sin b sin c sin pq ; 
a formula which might have been derived from the equation 210, XXXVIII., by first 
cyclically changing abcABC to bcaBCA, and then passing from jhe former triangle to 
its polar, or supplementary: and from which many less general equations may be 
deduced, by assigning particular positions to p.

^7.) For example, if we conceive tbe point P to be the centre of the circumscribed 
small circle abc, and denote by JI the arcual radius of that circle, and by 8 the 
semisum of the three angles, so that 2s = A4-B+c = w + <r, ifo again denote, os in 
297, (d7.), the area* of the triangle abc, whence

XVII. . . PA = PB = PC= fi, and sin pq = sin JI sin (s - c),
the formula XVI. gives easily,

XVIII. .. 2 cot JIsin^=ainAsinBsinc;

a relation between radius and area, which agrees with known results, and from which 
we may, by 297, bXX., &c., deduce the known equation:

XIX. . , e tan Jl = 48in|sin|ain^ ;

in which we have still, as in 297, (47.), &c.,
XX. . . e = (Sa/3y =) sin a sin 6 sin c = &c.

(8.) In like manner we might have suppospd, in the corresponding general equa
tion 210, XXXVIII., that p was placed at the centre of the inscribed small circle, 
and that the arcual radius of that circle was r, the semisum of the sides being s; 
and thus should have with ease deduced this other known relation, which is a sort 
of polar reciprocal of XVIII.,

XXI. . tan r. sin f = e.
But these results are mentioned here, only to exemplify thc fertility of the formula;, 
to which the presJnt calculus conducts, and from which the theorem in (6.) was 
early seen to be a consequence.

* Compare the Note to the cited sub-article.
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(9.) We might develope the ternary product in the equation XII., as we deve
loped the binary product XIII.; compare scalar and vector parts; and operate on 
tho latter, by tho symbol S. p"'. New general theorems, or nt least new general 
Jbrmt, wonld thus arise, of which it may be sufficient in this place to have merely 
suggested the investigation.

(10.) As regards the order of rotation (1.) (2.), it is clear, from a mere inspec
tion of the formula XV., that the rotation round y from /3 to a, or that round c from 
B to A, must be positive, when that equation XV. holds good; at least if the angles

B, c, of the triangle ABC, be (as usual) treated as positive: because the rotation 
round the line Nf3a from to a is always positive (by 281, (8.) ).

(11.) If, then, for way given spherical triangle, abc, with angles still supposed 
to be positive, the rotation round C from b to a should happen to be (on the con
trary) negative, yso should be obliged to modify the formula XV.; which could be 
donei for example, so as to restore its correctness, by interchanging a with ji, and at 
tho same time a with b.

(12.) There is, however, a sense in which the formula might be considered as 
still remaining true, without any change in the mode of writing it; namely, if we Were 
to interpret the symbols A, B, c as denoting negative angles, for the cose last sup
posed (11.). Accordingly, if we take the reciprocal of the equation X., we get this 
otlier equation,

■ XXII. . . a-rjSs = - 1 ;
where x, y, z are positive, as before, and therefore the new exponents, —x,—y,—z, 
are negative, if the rotation round a from J3 to y be itself negative, as in (1.).

(13.) On tho whole, .then, if a, ji, y be any given system of three Co-initial'and 
diplanar unit-lines, OA, OB, OC, we can always assign a system of three scalars, 

l/t which shall satisfy the exponential equation N.., and shall have relations of 
the form VII. to the spherical angles A, n, c; but these three scalars, if determined 
so as to fall between thc limits + 2, will be all positive, or aZZ negative, according as 
tho rotation round a from /3 to y is negative, asiu (I.), or positive, us in (11.).

(14.) As regards the limits just mentioned, or the inequalities,
XXI [I...®<2, y<2, z<2;' x > — 2, y> — 2, x> — 2,

tliey are introduced with a view to render tho problem of iindiiig, the exponents xyx 
in the formula X. determinate ; for since we have, by 308,

XXIV. . . a‘ = j8< = 7‘=+.l, if Ta = T/)iTy = l,

we might otherwise-odd any multiple (positive or negative) of the number four, to 
the value of the exponent of any unit-line, and the value of the resulting power would 

‘ not be altered.
(15.) If we admitted exponents = + 2, we might render the problem of satisfy

ing the equation X. indeterminate in another,way ; for it would then be sufficient to 
suppose that any one of the three exponents was thus equal to + 2, or — 2, and that 
the two others ■eteto each = 0 ; or else that all three victo of the form + 2.

(16.) When it was lately said (13.), that tho exponents, x, y, z, in the formula
X., if limited as above, would have one common sign, tho case was tacitly excluded, 
for whicli those exponents, or some of them, when'multiplied each by a quadrant, 
give angles not equal to those of the spherical triangle abc, whether positively or 

3 b’
t
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negatively taken; but equal to the supplements of those angles, or to the negutivet 
oi those supplements.

(17.) In fact, it is evident (because a? = = -1), that the equation X,, or
the reciprocal equation XXII., if it be satisfied by any one syaiem of values of xgz, 
■will s/i7Z be satisfied, ■when -we divide or multiply ang two of the three exponential 
factors, by the squares ot the two am’t-oeefors, of which those factors are supposed to 
be powers: or in other words, if we subtract or add tho number two, in each of two 
exponents.

(18.) We may, for example, derive from XXII. this other equation :
XXV. . . as-r = or XXVI. . . a^-rpz-v = 7=-’ ; 

which, when tbe rotation is as supposed in (1.), so that xgz are positive, may be in
terpreted as follows.

(19.) Conceive a lune cc', with points a and b on its two bounding semicircles, 
and with a negative rotation round A from b to c; or, what comes to the same thing, 
with a positive rotation round a from b to o'. Then, on tbe plan illustrated by Fi
gures 45 and 4G, tho supplements w — a, tr — n, of the angles A and n in the triangle 
ABO, or the angles at the same points a and b in tho co-lunar triangle abc', •will 
represent two versors, a multiplier, and a multiplicand, which are precisely those 
denoted, in XXVI., by the two factors, a^'* and /S’-!/; and the product of these two 
factors, taken in this order, is that third versor, which has its axis directed to o', 
and is represented, on the same general plan (177), by the external angle of the lune, 
at that point o'; which, in qriantitg, is equal to tho external angle of the same lune 
at O, or to the angle w — O. This product ia therefore equal to that power of the

2 ‘unit-line 00', or - y, which has its exponent =■ - (w - c) = 2 - z; ■we have there- *
fore, by this construction, the equation,

XXVII. . . a2-r/3’-|/ = (-y)2-»;
which (by 308, (6.) ) agrees with the recent formula XXVI.

310. The equation,
2c 2n 2a

I... 7’3’=-i,
which results from 309, (1.), and in which a, y are the 
unit-vectors oa, ob, oc ofany three points on the unit-sphere; 
while the three scalars a, b, c, in the exponents of the three 
factors, represent generally the angular quantities of rotation, 
round those three unit-lines, or radii, a, (3, 7, from the plane 
AOC to the plane aob, fronxBOA to.Boc, and from cob to coa, 
and are positive or negative according as these rotations of 
planes are themselves positive or negative : must be regarded 
as an important formula, in the applications of the present 
Calculus. It includes, for example, the whole doctrine of 
Spherical Triangles; not merely because it conducts, as we
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have seen (309, (3.) ), to one form of the fundamental scalar 
equation of spherical trigonometry, namely to the equation,

II. . . cos c + cos A cos B = cos c Sin A sin B;

but also because it gives a vector equation (309, (4.) ), which 
serves to connect the angles, or the rotations. A, b, c, with the 
directions* of the radii, a, j3, 7, or oa, ob, oc, for any system 
of three diverging right lines from one origin. It may, there
fore, be not improper to make here a few additional remarks, 
respecting the nature, evidence and extension of the recent 
formula I.

(1.) Multiplying both members of the equation I., by the inverse exponential
20

y ”, we have the transformation (comp. 309, (1.) ) :
2B 2A 20 2(^ — 0)

ni. . . fi” a” =-y ” =y ” .
2i

(2.) Again, multiplying both members of I. intot a ”, we obtain this other for
mula:

- 2c 2b 2a 2(ff «~a)
IV. . . y” fi” =-a~” =a ” .

2i Ss
(3.) Multiplying this last equation IV. by a”, and the equation HI. into y”, 

tve derive these other forms :

* This may bo considered to be another instance of that habitual reference to 
direction, aa'distinguished from mere quantity (or magnitude), although combined 
therewith, which pervades the present Calculus, and is eminently characteristic of 
it; whereas Des Cartes, on the contrary, had aimed to reduce all problems of geo
metry to tho determination of the lengths of right lines ; ultliough (as all who use 
his co-ordinates are of course well aware) a certain reference to-direction is even in 
his theory inevitable, in connexion with the interpretation of negative roots (by him 
called inverse ot false roots) of equations. Thus in tbe first sentence of Schooten’s 
recently cited translation (1659) of the Geometry of Des Cartes, we find it said:

“ Omian Geometrite Problemata facil6 ad hujusmodi terminos reduci possunt, nt 
dcinde ad illomm constructionem, opus tantum sit lectarum quarundam longitudinem 
cognoscere.”

The very different view of geom/ftry, to which the present writer has been led, 
makes it the more proper to express here the profound admiration with which ho re
gards the cited Treatise of Dea Cartes : containing as it does the germs of so large a 
portion of all that has since been done in mathematical science, even as concerns 
imaginary roots of equations, considered as marks of geometrical impossibility,

t For the distinction between multiplying a quaternion into and by a factor, sec 
the Notes to pages 140, 159.
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2* ZC 2n 2b 2a 2c
V. . . a’’ y'’ /i” =-l; Ni. . . a” y'’~ ~ i ■,

so that cyclical permutation of the leltert, a, y, and A, b, c, t» allowed in the 
equation I.; as indeed was to be expected, from the nature of the theorem which 
that equation expresses.

(4.) From either V. or VI. we can deduce the formula:
2a 2c 2d 2(jr —d)

VII. . . a”’ y^ = -j3 = ;
by comparing which with III. and TV., we see that cyclical permutation of letters 
is permitted, in thete equations also.

(5.) Taking the reciprocal (or conjugate') of the equation I., we obtain (com
pare 309, XXII.) this other equation:

2a 2d 20

VIII. . . a ’’■/S "y ’'=—1;
2(ir —O a(li.—B) e(ir —0)

or IX. . . a "■ P y =+l;

in which cyclical permutation of letters is again allowed, and from which (or from 
HI.) we can at once derive the formula,

2a 2d 20

X. . . a~ V (3"" =-y».
(6.) The equation X. may also be thus written (corap. 309, XXVII.) :

■ ' —A) 8 (B — B) 8(<r —C) 2(B —o)

XI. ..a ” S =(-y) "■ .

(7.) And all the foregoing equations may be interpreted (comp. 309, (19.) ), and 
at the same time proved, by a reference to that general construction (177) for the 
multiplication of versors, which the Figures 45 and 46 were designed to illustrate; if 
we bear in mind that a power a‘, of an unit-line a, with a scalar exponent, t, is (by 
308, 309) a versor, which has the effect of turning a line -t- a, through t right an
gles, round a as an axis of rotation.

(8.) The principle expressed hy tbe equation I, from which all the subsequent 
equations have been deduced, may be stated in the following manner, if we adopt the 
definition proposed in an earlier part of this work (180, (4.) ), for the spherical sum 
of two angles on a spheric surface: ,

“ For any spherical triangle, the Spherical Sum of the three angles, if tahen in a 
suitable Order, is equal to Two Right Angles.”

(9.) In fact, when the rotation round a from b to o is negative, if we spherically 
add the angle b to thc angle A, the spherical sum so obtained is (by the definition 
referred to) equal to thc external angle at c, if then we add to this sum, or mtpple- 
ment of c, the angle c itself, we final or fptal sum, which is exactly equal to 
rr ; addition of spherical angles at one vertex, and therefore in one plane, being ac
complished in tho usual manner; but tho spherical summation of angles with diffe
rent vertices being performed according to those new rules, which were deduced in the 
Ninth Section of Book II., Chapter I.; and were connected (180, (6.) ) with tho 
conception of angular transvectinn, or of the composition of angular motions, in dif
ferent and successive planes.
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(10.) Without pretending to attach importance to the following notation, we may 
just propose it in passing, as one which may serve to recall and represent the con
ception here referred to. Using a plus in parentheses, as a symbol or characteristic 
of such spherical addition of angles, the formula I. may be abridged as follows:

XII. . . C(+)b(+) A= TT ;

the symbol of an added angle being written to the left of the symbol of the angle to 
which it is added (comp. 264, (4.) ); because such addition corresponds (as above) 
to a multiplication of versors, and we have agreed to .write the symbol of the multi
plier to tho left* of tho symbol of tho multiplicand, in every multiplication of qua
ternions.

311. There is, however, another view of the important equation 
310, I., according to which it is connected rather with addition of 
arcs (180, (3.) ), than with addition of angles (180, (4.) ); and may 
be interpreted, and proved anew, with the help of the supplementary 
or polar triangle, a'b'c', as follows.

(1.) The rotation round A from b to c being still supposed to be negative, let 
a', b', o' be (as in 175) the positive poles of the sides bc, ca, ab; and let a’, ji', y' 
be their unit-vectors. Then, because the rotation round a from y’ to (3' is positive 
(by 180, (2.) ), and is in quantity the supplement of the spherical angle A, the pro
duct y'j3' will be (by 281, (2.), (3.) ) a versor, of which a is the axis, and a the 
angle: writh similar results for the two other products, a'y', fi'a'.

(2.) If then we write (comp. 291),

I.. . a' = xrvpy, j3' = d V ya, y'^VNa^, 
supposing that

II. ..Ta = T/J=Ty = l, and III... Sa/Jy > 0,

we shall have (comp, again 180, (2.) ),

IV. .. a = UV//3', P = UVa'y', y = VVp'a', 
and V. .. A= Z.y'jS', n = La.'y', c^eP’a'-,
whence (by 308 or 309) we have tlie following exponential expressions for these 
three last products of unit-lines,

2b
Vl...y'li’ = a*-, a'y' = l3*-, P’a'^yu.

(3.) Multiplying these, three expressions, in an inverted order, we have, there
fore, the new product:

2c 2b Sa
vn.*^ . y"; V a V =rP'a'. a'y’. y’p' = y'ip’tla^ = - 1 i

and the equation 310, I. is in this way proved anew.
(4.) And because, instead of VI., we might have written,

* Compare the Note to page 146.
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3a f 2b » >3*

we see that the equation to be proved may be reduced to the form of the

a y
and may be interpreted as expressing, what is evident, that if a point be supposed to 
move first along the side b'o', of tho polar triangle a'b'c', from b' to o'; then along 
the successive side c'a', from o' to a' ; and finally along the remaining side a'b', 
from a' to b', it will thus have returned to the position from which it set out, or will 
on the whole have not changed place at all.

(5.) In this'view, then, we perform what wo have elsewhere called an addition of 
arcs (instead of angles as in 310); and in a notation already used (264, (4.)), we 
may express the result by the formula,

X. . . n a'b' + n o'a' + cb'c' = 0 (
each of the the two left-hand symbols denoting an arc, which is conceived to be added ■ 

' (as a successive vector-arc, 180, (3.) ), to tho arc whoso symbol immediately/oZ/ows 
it, or is written next it, but towards the right-hand.

(6.) The expressions VI. or VIII., for the exponential factors in 310, I., show 
in a new way tho necessity of attending to the order of those factors, in that formula: 
for if we should invert that order, without altering (as in 310, VIII.) the exponents, 
we may now see that we should obtain this new product:

XI. ..a’ P^ r” =
which, on account of the diplanarity of the lines a’, pi, y’, is not equal to negative 
unity, but to a certain other versors the.properties of which may be inferred from 
what was shown in 297, (64.), and in 298, (8.), but upon which we cannot here 
delay.

»r —

312. In general (comp. 221), an equation^ such as

I. . . q'=q,
between two quaternions^ includes a system of four* scalar equa
tions, such as the following;

II. . . S7' ~ Sq ; Sa/ = Saq S^q' = S(3q Sy/ = Syj ; 

where a, (3, -y may be any three actual and diplanar vectors: 
and conversely, if a, (3, y be any three such vectors, then the 
four scalar equations II. reproduce, and are sufficiently re-

♦ The propriety, which such results as tliis establish, for the use of the name, 
Quaternions, as applied to thia whole Calculus, on account of its essential connexion 
with the nvmber Four, doos not require to be again insisted on.
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placed by, the one quaternion equation I. But an equation 
between two uectors is equivalent only to a system of three sca
lar equations, such as the three last equations II.; for exam
ple, in 294, (12.), the one vector equation'^'SAl. is equivalent 
to the three scalar equations XJXI., under the immediately 
preceding condition of diplanarity XX. In like manner, an 
equation between two versors of quaternions,* such as the equa
tion

III. . . Uq'= Uq,
includes generally a system of three, but of not more than 
three, scalar equations; because the versor Uy depends gene
rally (comp. 157) on a system of three scalars, namely the two 
which determine its axis Ax. q, and the one which determines 
its angle Lq', or because the versor equation III. requires to 
be combined with the tensor equation,

IV. . . Ty' = Ty, compare 187 (13.),

in order to reproduce the quaternion equation 1. Now the re
cent equation, 310, I., is evidently of this versor-form III., if 
a, (i, 7 be still supposed to be unit-lines. If then we met that 
equation, or-if one of itsybrzn had occurred to us, without any 
knowledge of its geometrical signification, we might propose to 
resolve it, with respect to the three scalars A, B, c, treated as 
three unknown quantities. The few following remarks, on the 
problem thus proposed, may be not out of place, nor uuin- 
structive, here.

(1.) Writing for abridgment, 
V, ..cotA=<, cotB = «, cotc = », 

and VI, .. s = — cosec a cosec b cosec c,
the equation to bc resolved becomes (by 808, VII., or 309, XI f ),

VII. . . (o + y) (u + (8) (t + a) =s ; 
in W’hich the twisors on both sides are already equal, because

• An equation, Up' = Up, or UVj’ = UVj, between two versors of vectors (166), 
or between the axes oi two quaternions (291), is equivalent only to a system of tioo 
scalar equations; because the direction of an axis, or of a oector, depends on a sys
tem of two angular elements (111).
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VIII. . . 12 = + 1) («2 + 1) (Z* + 1).
(2.) Multiplying the equation VII. by t + a, and »n<o t^a, and dividing the re

sult by <* +1, we have this new equation of tho same form, but differing by cyclical 
permutation (comp. 310, (3.) ) :

IX. . . (f + a) (o + y) («+j3) = *;
and in like manner,

X. . . (u + py (.t+a) (o + y) = i.
(3.) Taking the half difference of the two last equations, and observing that (by 

279, IV., and 294, II.)
XI. . f 2 - “r/3) = /3Vay = 7Sa/3 - aS/iy,

we arrive at this new equation, of oeeforybrm:
XII. . . 0 = eVI3n + typy + ySa/3 - aSpy ;

which is equivalent only to a system of tmo scalar equations, because it gives 0 = 0, 
when (^erated on by S.p (comp. 294, (9.)).

(4.) It enables us, however, to determine the two scalars, t and o; for*ifwe ope
rate on it by S.a, we get (comp. 298, XXVI.),

XIII. . . <Sa/3y = a2S/3y — S/3oSay = S(V/3a.Vay);
and if we operate on the same equation XII. by S. y, wo get in like manner,

XIV. . . oSa/3y = y2Sa/3 - SaySy/3 = S(Vay.Vy3).
(5.) Processes quite similar give the analogous result,

XV. . . U3apy = P’Sya - SyP Spa = S (Vy/3 .VPa}:
and thus the problem is reioZverf, in the sense that expressions have been found for 
tbe three sought scalars t, u, o, or for the cotangents V. of the three sought angles 
A, B, o : whence the/ourtA scalar, s, in the quaternion equation VII., can easily bo 
deduced, as follows.

(6.) Since (by 294, ’(0.), changing 5 to a, and afterwards cyclically permuting) 
we have, for any three vectors a, P, y, the general transformations,

XVI. . . aSaPy = V(V/3a .-Vay), pSaPy = ’VQVyP .ypa), 
ySa/3y = V(ay .Vy(3),

the expressions XIII. XV. XIV. give,
(t +a')Sapy = 'VPa.Vay;

XVII. . . (« + /3) Sa)3y = Vyj3 .V/Io J
((« + y) ^“^7 = 'Vay.'VyP-,

whence, by VII.,
XVIII. . . s(Sa/3y)» = (Vy/3)2(V/3a)3 (Vqy)’;

and thus the remaining scalar, s, is also entirely determined.
(7.) And tbe equation VIII. may bo verified, by observing that tho expressions 

XVII. give,
((f + 1) (9aPy7 = (V/3a)’ (Vay)’;

XIX. . . }(«»+!) {Sapyy = (yyPf (Vpay^ ■, 
[ (v’ + 1) (Saj3y)’ = (yayyt (Vypyt

(8.) The equations XIII. XIV. W, XVI. give, by elimination of Sa/3y, these 
new expressions:
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XX. . . of = (V : S) (yi3a .Vay'); Pu-'=.(y-. S) (Vy^. yjSa');
yv-l = (y-.S}(yay.yyl3y,

by comparing wbich with the formula 281, XXVIII., after suppressing (291) the 
characteristic I, we find that the three scalars, t, «, o, are either Ist, the cotangents 
of the angles opposite to the sides a, b, e, of the spherical triangle in which the three 
given nnit-lines a, fi, y terminate, or Ilnd, the negatices of those cotangents, the 
angles themselves of that triangle being as usual supposed to be positive (309, (10.) ), 
according ns tho rotation round a from j3 to y is nepatfce ot positive: that is (294, 
(3.) ), according as Sa/3y>or<0 ; or finally, by XVIII., according as thofourth 
scalar, s, is negative or positive, because the second member of that equation XVIII. 
is always negative, as being the product of three squares of vectors (282, 292).

(9.) In tho Ist case, which is that of 309, (1.), wo see then anew, by V. and VI., 
that we are permitted to interpret the scalars A, B, c, in the exponential formula 
310, I., as equal to the angles of the spherical triangle (8.), which are usually de- • 
noted by the same letters. But wo see also, that we inay add any even multiples of 
jr to those three angles, without disturbing the exponential equation : or any one 
even, and two odd multiples of tt, in any order, so as to preserve a posttiee product 
of cosecants, because s is, for this case, negative in VI., by (8.).

(10.) In the Ilnd case, which is that of 309, (11.), we may, for similar reasons, 
interpret the scalars A, B, o, in tbe formula 310,1., as equal to the negatives of the 
angles of the triangle ; and as thus having, what VI. now requires, because * is now 
positive (8.), a negative product of cosecants, while their cotangents have the values 
required. But wo may also add, as in (9.), any multiples of it, to the scalars thus 
found for tho formula, provided that the number of the odd multiples, so added, is 
itself even (0 or 2).

(11.) The conclusions of 309, or 310, respecting the interpretation of the expo
nential formula, are therofere confirmed, and might have been anticipated, by the 
present new analysis : in conducting which it is evident that wo have been dealing 
witli real scalars, and with real vectors, only.

. (12.) If this Inst restriction were removed, and imaginary valves admitted, in 
the solution of the quaternion equation VII., we might have" begun by operating, as 
in IL, on that equation, by the four characteristics,

XXI. . . S, S. a, S. j3, and S. y;

which would have given, with the significations 297, (1,), (3.), of /, m, n, and e, 
and therefore with the following relation between those yb«r scalar data,

XXII. . . e’ = 1 n^ + 2lmn, '
a system of four scalar equations, involving the four sought scalars, s, t, «, »; from 
which it might have been required^o deduce the (real or imaginary) values of those 
four scalars, by tlie ordinary processes of algebra.

(13.) The four scalar equations, so obtained, are tho following:

P 0 = e + It + mu + nv — tuv + s ;
0 = «t + mla + ntv + - I;
ft = — e« 4 Ztu + tv 4 nuv .i-m — 2ln‘,
0 = ev + <« + IZo + " 7

3 c

XXIII...
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eliminating UD and u between the three last of which, we find, with tho help of XXII., 
tbe determinant.

l, mt, ntv^et — l
m, t, Itv + eo ~n
n, ll — e, tv-'rm — ^ln

XXIV. . . 0 = = e(i’ + I) (ev —n + Zm)j

and analogous eliminations give,
XXV. , . 0 = e(<’ + 1) (eu — m + nl), 

and XXVI. . . 0= (n-Im) + (l-P) (et-Hnin)}.
(14.) Bcjecting then the factor <’ + 1 we find, as tho on?y real solution of tho 

problem (12.), the following system of values: *■

XXVII. .. et = Z—»nB; eu=:m~nl; ev = n — lm-, 
and XXVIII. .. e’s = -(1-/2) (1-m2) (l-n«);

which correspond precisely to those otherwise found before, in (4.) (5.) (6.), and might 
therefore serve to reproduce tlte interpretation of the exponential formula (310).

(15.) But on the purely algebraic side, it is found, by a similar analysis, that 
the four equations XXIII. are satisfeS also by a system offour imaginary solutions, 
represented by tho following formulte :

XXIX. . . 1 = 0; b2+1 = 0;
Ls = <K« — Zr-^mu — n» — e = 0

which it may bo sufiicient to have mentioned in passing, since they do not appear to 
have any such geometrical interest, as to deserve to bo dwelt on here; though, os 
regards the consistency of the different processes employed, it may bo remembered 
that in passing (2.) from the equation VII. to IX., after certain preliminary multi
plications, we divided by P +1, as we were entitled to do, when seeking only for real 
solutions, because t was supposed to be a scalar.

(16.) This seems to be a natural occasion for remarking that the following gene
ral transformation exists, whatever three vectors may bo denoted by a, ft, y :

XXX. . . S(V/3y.Vya,Va/3)=- (Sn^Sy)’;.

which proves in a new way (comp, 180), that the rotation round the line 'Vjiy,from 
Vya to Va/S, is always positive'; ot is directed in the same sense (281, (3.) ), as tho 
rotation round VaJS from a to |3, &c.

(17.) In like manner we have generally,

XXXI. . . S(Vn|3.Vya.Vj3y) = + (Sa/3y)3,
and XXXn. . . S(Vy/3 .Nay.N^a} =+ (Sa/3y)2;

so that rotation round "Vyfifrom Xxty to Nfia is negative, whatever arrange
ment tho three diplanar vectors a, (3, y may have among themselves.

(18.) If then a", n", o" be the negative poles of the ZAree tuccenioe siWer, nc, OA, 
AB, of any sphericed triangle, tho rotation round A" from o." to c" is negative; which 
is entirely consistent with tho opposite result (180), respecting tho system of tho 
three positive poles a', d', c'.

(19.) A quantitative interpretation'of tho equation XXX. may also be easily as
signed : for we may infer from it (by 281, (4.), and 294, (3.) ) that if oabc be any 
pyramid, and if normals oa', OB', OO' to the three faces BOC, COA, AOB have their 
lengths numerically equal to the areas of thosefar.es (as bearing tbe same ratios to

    
 

thosefar.es
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units, &c,), tlien (with a similar reference to units) the volume of the new pyramid, 
Oa'b'c', will he three quarters of the square of the volume of the old pyramid, 
OABC.

313. But an allusion was made, in 310, to an extension of 
the exponential formula which has lately been under discus
sion ; and in fact, that formula admits of being easily extended, 
from triangles to polygons upon the sphere: for we may write, 
generally,

2A„ SA,,_| IA2 SAj

I. . . a„ ” On-l " . . . 02* Ol "■ = (- 1)",

if A, As... A„., A„ be any spherical polygon, and if the scalars 
Al, Aj,... in the exponents denote the positive or negative 
angles of that polygon, considered as the rotations a„AiA2, 
A1A2A3,.. • namely those from AiA„ to AiA2, &c. ; while n is any 
positive whole number* > 2.

Also let

(1.) One mode of proving this^extended formula is the following. Let oo = -{ 
he the unit-vector of an arbitrary point c on the spheric surface; and conceive that 
arcs of great circles are drawn from this point o to the «• successive comers of the 
polygon. We shall thus have a system of » spherical triangles, and each angle of 
the polygon will (generally) be decomposed into two (positive or negative) partial 
anyles, wliich may be tlius denoted:

II. . . CA1A2 = Al', CA2A3 = A2',.. .;
III. . . A„A1O = Al", A1A2C = A2",...;

so that, with attention to signs of angles in tho additions,

rv. . . Al = Al'4-Al", A3=A2' + A2", &C.

V. . . A2CA1 = Cl, A3CA2 = C2, &e. J
and therefore

VI. . .Ci+C3+.- + 0n = an even’ multiple of rr, 
which reduces itself to 2«- in the simple case of a polygon with no re-entrant angles, 
and with the point c in its interior.

(2.) Then, for the triangle OA1A2, of which tho angles Are Cj, a/, Aj", we have, 
by 310, III., the equation.

jAg" lAj* ICi
VII... 02 “ «i * = - y "■ i 

and in like manner, for the triangle CA2A3, wo have

• <! The formula admits of interpretation, even for the case n = 2,
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2A | ’ JAs lOs

Vm. .. as ’ Os ’ = — y t , &c.
But, when wc multiply VII. by VIII., we obtain, Vy IV., the product,

IA3" SAi’ «(C14^Cs)
IX. . . 03 as "■ aj "■ = + 1 f ;

and so proceeding, wo have at last, by VI., a product of the form,
SAj" IA„ SA3 SA,'

X. . . ai rr On . as ir ai » = (- 1)";
_2Ai" Sa,"

which reduces itself to I., when it is multiplied by a » , and info a ’ (comp. 
310, (3.) ). The theorem is therefore proved.

(3.) In words (comp. 310, (8.) ), “ the ipherieal sum of the successive angles of 
any spherical polygon, if taken in a suitable order, is equal to a multiple oftwo right 
angles, which is odd or even, according as the number of the sides (or corners) of the 
polygon fs itself odd or even”: tbe definition formerly given (180, (4.) ), of a Sphe
rical Sum of Angles, being of course retained. And the reasoning may be briefly 
stated thus. When an arbitrary point c is taken on the spherical surface, as in (1.), 
the spherical sum of the two partial angles, at the ends of any one side, is lhe supple
ment of tbe angle which that side subtends, at the point O; but the sunt of all such 
subtended angles is either/our right angles, or^ome whole multiple thereof: there
fore the sunt of their supplements can difler only by some such multiple from ntr, if 
n be tbe number of tbe sides.

(4.) Whatever that number may be, if we denote by p„ the exponential product 
in the formula I., we have for every vector p, and for every quaternion q, the equa
tions :

XI. . . PnPPn'' = p ; XII. . . Pnqpn'^ = q ; 
•wharcof the former may (by 308, (8.), bo thus interpreted:__

“ If any line OP, drawn from the centre o of a sphere, be made to revolve coni
cally round any n radii, oAi,., OAn, as n successive awes of rotation, through an
gles equal respectively to the doubles of the angles of the spherical polygon Ai. . A„, 
the line will be brought back to its initial position, by the composition of these n rota
tions”

(5.) Another way of proving the extended formula I., for any spherical polygon, 
is analogous to that which was employed in 311 for the case of a triangle on a sphere, 
and may be stated as fallows. Let a/, As', ... An' be the positive poles of the arcs 
A, A-, A2A3,... A„Ai; and let a/, as',... af bo the unit-vectors of those n poles. 
'Then tho point Ai is the positive pole of the new arc Ai'An', and the angle Ai of the 
polygon at that point is measured by the supplement of that aro j with similar re
sults for other corners of the polygon. Thus we have the system of expressions 
(comp. 811, VI.)!

sa, 2^
XIII... ai e = ai'an'j . . . a,, ’r = an’a'„-i;

so that tlie product of powers in I. is equal to the following product of n squares of 
unit-lines, and therefore to the »'* power of negative unity.
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XIV. . . . a'„-ia'n-3... a'2a'i. a’ia’n= (-1)";
and thus the extended theorem is proved anew.

(6.) This latter process may be translated into another theorem of rotation, on 
whicli it is possible tliat we may briefly return,* in the Second and last Chapter of 
this Third Book, but upon which we cannot here delay.

(7.) It may bo remarked however here (comp. 809, XII,), that the extended 
exponential formula I. may be thus written:

XV. . . CQnS A„ . Ca,|-1SA„-1 ... casS As. cais Al = (— 1)“.
(8.) For example, if abcd be any epAerical quadrilateral, ot which the anglet 

(suitably measured) are denoted by a, .. d, so that a represents tbe positive or ne
gative rotation from AD to AB, &c., while a, P, y, S are the unit vectors of its cor
ners, then

XVI. . . c5s D . cys o . ePa B. cas A = + 1.
(9.) Hence (comp. 309, XIII.), wo may write also,

XVII. . . (cos o - 7 sin o) (cos D - 5 sin d) = (cos b -(- p sin b) (cos a + a sin a) ;
and therefore, by taking scalars on both sides, and changing signs,

XVIII. . . — cos c cos o -h sin c sin D cos cd = — cos B cos A + sin B sin A cos BA;

in fact, each member of this last formula is equal (by 309, XIV.) to the cosine of 
tbe angle aeb, or ced, if the opposite sides ad, bc of the quadrilateral intersect in e.

(10.) Let p = OP be the unit vector of any fifth point, P, upon the spheric sur
face; then operating by S. p'on XVII., we obtain this other general formula,

f 0 = sin AcosBcos ap-1- sinn cos AC03BP-(-sin AsinBsin ABsinptj
' t + sin c cos D cos CP + sin D cose cos DP-f. sin c sin D sin CD sin PE;

in which the since of the eides ab, cd are treated as always positive ; but tbe since 
of the perpendiculars pq and pn, on those two sides, are regarded as positive or ne
gative, according as tlie rotations round p, from A to B and from c tOD, are negatisre 
or positive ; and hence, by assigning particular positions to p, several other but less 
general equations of spherical tetragonometry can be derived.

(11.) For example, if we place p at the intersection, say P, of the opposite sides 
AB, CD, the two last perpendiculars will vanish, and two of tiie six terms will disap
pear, from the general formula XIX.; and a similar reduction to four terms will 
occur, if we make the arbitrary point p the pole of a side, or of a diagonal.

314. The definifion of tbe power o', which was assigned in 308, 
enables us to form some useful expressions, by quaternions, for cir
cular, elliptic, and sjtiral loci, in a given plane, or in space, a few of 
which may be mentione'H here.

(1.) Lot a bo any given unit-vector oa, and p any other given line on, porpendi- 
calar to it; then, hy the definition (308), if we write.

* Compare 297, (24.).

    
 



392 ELEMENTS OF QUATERNIONS. ffiOOK 111.

I. . . OP = p = a'P, Ta = 1, SaP = 0,
the focus of the point v will be the circumference of a circle, with o for centre, and 
OB for radius, and in a plane perpendicular to OA.

(2.) If we retain the condition Ta = 1, but not tho condition Sa/3 = 0, then the 
product a'P will be in general a quaternion, and not merely a vector ; but if wo take 
its vector-part (292), we can form this new vector-expression,

II. . . op = p = 'V. a‘j3=/3cosa:-Fysina!,
where III. . . 2a: = tjr, and IV. . . y = oo = Va/3; ,
and now the focus of p is a plane ellipse, with its centre at o, and with ob and oc 
for its major and minor semiaxes: while the angular quantity, x, is what is often 
called the exeentric anomaly.

(3.) If we write, under the same conditions (2.),
V. . . OB'=/3' = V/3a: a = a-'y, and VI. . . op’ = p'=Vpa: a =aVpa, 

so that b' and p' are tho projections (203) of b and p on a plane drawn through o, at 
right angles to the unit-line oA, we have then, by II., the equation,

VII. . . p' = P' cos a:-)- y sinx = a‘pl;
so that the locus of this projected point p' is a circle, .with ob' and oc for two rectan
gular radii.

(4.) Under the same conditions, the elliptic locus (2.), of the point P itself, is the 
section of the right cylinder (compare 203, (5.) ), I

VIII. .. TVap = TVa/3 = Ty,
made by tbe plane, '

IX... 0 = Sy Pp, or IX'... p^Sap = SapSpp (comp.298, XXVI.) ; 
as a coufirmation of which last form we have, by II. and IV,,

X... Sap = Sap cos x, SPp = p^ cos x.
(5.) If we retain tbe condition Saj3 = 0 (1.), but not naio the condition Tn = 1, 

w.e may again write the eqnation I. for p ; but the locus o/p will now be a loga
rithmic spiral, with o for its pole, in the plane perpendicular to oa ; because equal 
angular motions, of the turning line OP, correspond now to equal multiplications of 
the length of that line p.

(C.) For example, when the scalar exponent f is increased by 4, so that the re
volving unit line.

■ XI. ..Up = Ua‘.U3
returns (comp. 309, XXIV.) to the direction which it had before tbe increase of f 
was made, ths length Tp of the turning line p itself, m of tho radius vector of the 
locus, is multiplied by Ta*; which constant and positive scalar is not nou> equal to 
unity.

(7.") If we reject both the.conditions (I-),
To=l, and Sn/3=0,

so that the line a, or tho 6u»e of the power a*, is now neilAer an unit-line, nor per
pendicular to p, namely to tho line on which that power operates, as a factor, we 
must again take vector parts, but we have now this new expression:

Xn. . . op = pt:x'V.a‘P = o‘(/3co3 s + y sin a,)
in which wo have written, for abridgment,
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XIII... a = Ta, y=V(Ua./3).
(8.) In this more complex case, the locus ol r is sft'W a plane curve, and may be 

said to be now an elliptic* logarithmic spiral; for if we suppress the scalar factor, 
at, we fall back on the/orm II., and have again an ellipse as the locus: but when 
we take account of that factor, we find (comp. (2.) ) that equal increments of ex- 
centric anomaly (xj, in the auxiliary ellipse so determined, correspond to equal mul
tiplications of the length (Tp),.of the vector of the new spiral.

(9.) We i)iay also project n and p, as in (3.),dnto points n' and p', on the plane 
through o perpendicular to oa, which plane still contains the extremity c of the 
auxiliary vector y ; and then, since it is easily proved that y = Ua.jS'i the equa
tion of the projected spiral becomes (with Ta > or < 1),

XIV. . . p' = a‘(fi’ cosx + y sin a:) = a'/3’;
so that we are brought back to tlio case (5.), and the projected curve is seen to be a 
logarithmic spiral, of the known and ordinary kind.

(10.) Several spirals of double curvature are easily represented, on the same ge
neral plan, by merely introducing a vector-term proportional to t, combined or not 
with a constant vector-term, in each .of the expressions above given, for the variable 
vector p. For example, tbe equation,

XV. .. p =c<a+ o'/3, with Ta=l, and Sa)3 = 0,
while c is any constant scalar different from zero, represents a helix, on the right 
circular cylinder VIII.

(11.) And if we introduce a new and variable scalar, u, as a/actorin the right
hand term, and so write,

• XVI. . . p = eta + ua’P,
we shall have an expression for a variable- vector p, considered as depending on two 
variable scalars (t and a), which thus becomes (99) the expression for a vector of a 
surface : namely of that important Screw Surface, which is tbe locus of the perpen
diculars, let fall from the various points of a given helix, on the axis of tbe cylinder 
of revolution, on'which that helix, or spiral curve, is traced.

315. Without at present pursuing farther the study of these loci 
by quaternions, it may be remarked that the definition (308) of the 
power a*, especially for tbe case when Ta= 1, combined with the 
laws (182) of i,j, Ic, and with the identification (295) of those three 
important right versors with their own indices, enables us to esta
blish the following among other transformations, which will be found 
useful on several occasions.

fl.) Let a he any unit-vector, and let t be any scalar; then,
I. . . S.a’‘ = S.a‘; II. . . S. a '-* = S . o'** = - S ■ a'-*;

• The vsttal logarithmic spiral might perhaps he called, by contrast to thit one, 
a circular logarithmic spiral. Compare the following sub-article (9.), respecting the 
projection of what is here called an elliptic logarithmic spiral.
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III. . . a‘= S. a‘ + aS . at-l ■ IV,.. a-« = S. a‘- oS. a<-i; 
V. .. (S. a')« + (S. o^-i)2 = afa-t=e 1.

(2.) Let a and t any two unit-vectors, and let f be still any scalar : then 
VL . . S.a‘ = S.i<; VII. . . V. a‘= aS. n‘-‘;

VIII. . . oV. at = a^S. a<-> = S. a^*'.
(3.) Hence, by the laws of f, y,

IX. ,. tV. i‘ =j^.jt kN.kt = 3. a‘+>.
(4.) We have also, by the same principles and laws,

X.. . iV.y< = V. kt; jN. kt = N. »<; kN. it = N.f j 
XL .. jN. it = -N.kt-, kN.jt = -N.i‘; iN.k‘ = - N.fi.

(5.) The expression 308, (10.), for an arkitrary vector p, may be put under the 
following form:

XII. . . p = rV.42«' + rA«V.t®'.
(6.) And it may be expanded as follows:

XIII. . . p = r {(i coa tic + J sin fir) sin sic + k cos sic }.
(7.") We shall return, briefly, in tho Second Chapter of this Book, on some of 

these last expressions, In connexion with differentials and derivatives of powers of 
vectors; but, for the purposes of the present Section, they may huffice.

Section 11 On Powers and Logarithms of Diplanar Qua- 
ternions; with some Additional Formulce.

316. We shall conclude the present Chapter with a short Sup
plementary Section, in which the recent definition (308) of a,power 
of a vector, with a scalar exponent, shall be extended so as to include 
the general case, of a’ Power of a Oftaiemion, with a Quaternion Ex
ponent, even when the two quaternions so combined ’are diplanar; 
and a connected definition shall be given (consistent with the less 
general one of the same kind, which was assigned in the Second 
Chapter of the Second Book), for the Logarithm of a Quaternion in 
an arbitrary Plane ;* together with a few additional Formula;, which 
could not be so conveniently introduced before.

(1.) We propose, then; to write, generally,
I... £C=l+| + ^ + j^+&C.J

5 being any guatemion, and < being the real and known base of the natural (or Na
pierian) sj'Stem of logarithms, of real and positive scalars ; so that (as usual).

* Tho quaternions considered, in the Chapter referred to, were all supposed to bo 
in the plane of tho right versor i. But see the Second Noto to page 265.
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1 1’
II. ..« = (' = ! +y + — +«tc- = 2-71828...

(Compare 240, (1.) and (2.).)
(2.) We shall also write, for any quaternion g, the following expression for what 

we shall call its principal logarithm, or simply its Logarithm
III. ..13 = ITg + Z. g.UVg ;

and thus shall have (comp. 243) the equation,
. IV. . . £1J = g.

(8.) When g is any actual quaternion (144), which does not degenerate (131) 
into a negative scalar, the formula III. assigns a definite value for the logarithm, 
Ig i which is such (comp, again 243) that

V. ..Slg = lTg; VI. . . Vlg = Z g.UVg ;
VII. . . UVlg = UVg; VIII. . . TVlg== Z g;

the scalar part of the logarithm being thus the (natural) logarithm of the tensor ; 
and tho oecfor part of the same logarithm Ig heing constructed by a line in the direc
tion of the axis Ajc. g, o{ which the length bears, to the assumed unit of length, the 
same ratio as that which the angle L. q bears, to the usual unit of angle (comp. 241, 
(2-), (4.)).

(4.) If it were merely required to satisfy the equation,
IX. ..e9’ = g,

in which g is supposed to bc a given and actual quaternion, which is not equal to 
any negative scalar (3.), wc might do thia by writing (compare again 243),

X. . . g' = (logg)„ =lg + 2nwUVg,
where n is ang whole numier, positive or negative or null; and in this view, what 
we have called the logarithm, Ig, of the quaternion g, is only what may be considered 
as the simplest solution of the exponential equation IX., and may, as such, be thus 
denoted;

XI. . . lg = (logg)„.
(5.) The excepted case (3.), where g is a negative scalar, becomes on this plan 

a case of indetermination, but nof of impossibititg since we have, for example, by 
tho definition III., the following expression for the logarithm of negative unity,

XII. ..l(-l) = 7rV-l;
which in its /brm agrees -With old and well-known results, bnt is here interpreted as 
signifying any unii-vector, of which the length hears to the unit oi length the ratio 
of tr to 1 (comp. 243, VII.).

(G.) We propose also to write, generally, for any two quaternions, q and g', eren 
if diplanar, the following expres.’iou (comp. 213, (4.) ) for what may bo called the 
principal value of the power, or simply t/ie Power, iq which the former quaternion g 
is the base, while the latter quaternion g' is the exponent:

XIII. . . gi' ce'le ;
and thus this quaternion power receives, fn general, with the help of the definitions I. 
and III., a perfectly definite signification.

(7.) When thc base, q, becomes a rector, p, it^angle becomes arig/i< argle ; thc 
definition HI. gives therefore, for this case,

3 D
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XIV...lp=lTp + ^Up;

and this is tbe quaternion which is to be raoltipled by g', in the expression,
XV. . . p9'= es'ip.

(8.) When, for tho same »ec<or-4a«e, the exponent g' becomes a sca/or, t, the 
lost formula becomes:

XVI. . . p‘ =5 £<«> = TpL if 2a: .= fir i
and because, by I., tho relation (Up)® =— 1 gives,

XVU... £»Up =z cos X + Up sin x, or briefly, XVII'.., = cpsx,
ve see that the former definition, 308,1., of the power a<, ia in this way reproduced, 
as one which is included in the more general definition XIII., of the power qi'; for 
we may write, by the last mentioned definition,

XVIII.. . (Up)‘ = £’=U<’ = cpa ~ (comp. 234, VIII.),

with the recent values XVI. and XVII., of x and t^Up.
(9.) In the present theory of diplanar quaternions, wo cannot expect to find 

tliat the sum of the logarithms of any two proposed Refers, shall ba generally equal 
to the logarithm of the product; but for the simpler and earlier case of complanar 
quaternions, that algebraic property vaay be considered to exist, with due modifica
tions for multiplicity of value*

(10.) The definition III. enables us, however, to establish generally the very 
simple formula (comp. 243, II. III.) :

XIX.. .19 = l(Tg.U9) = lTg + lU9;
in which (comp. (3.)),
XX. . . lU7=Z9.XTVg = Vly; XXI. . . TlUg = £g; XXII. . . UlU5=UVg.

(IX ) Wo have also generally, by XIII.,, for any scalar exponent^ and any 
qtuiternion base, q, the power,

XXIII. . . q‘ = etli = (Tj)'. (cos t Lq + ITVq .aiathq)-, 
or briefly,

XXIir. .. g' = Tg'. cus t Lq, if v = UVg;
in which the parentheses about Tg may be omitted; because ,

XXIV. . . T(g') = (Tg)' = Tg' (comp. 237, II.).

(12.) When the base and exponent of a power are two rectangular vectors, p and 
p', then, whatever their lengths may be, the product pTp is, by XIV., a vector; but 
£<> is always n oersor,

XXV. . . 6“ = cos To + Va sin To, if a be’any vector;
we have therefore.

• In 243,’(3.), it might have been observed, that every value of each member of 
the formula IX., there given, is one of the values of the other member; and a similar 
remark applies to tlie formulm I. and II. of 236.
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XXVI. . . T.pP'=l, if S.pp‘=0;
or in words, the power go' is a versor, under this condition of reetangularity. 

(13.) For example (comp. 242, (7.),* and the shortly following formula 
XXVIII.),

XXVIl.. . = Ji = e<V = + A;

and generally, if tho base be an unit-line, and the eagionent a line of any length, but 
perpendicular to the base, the axis of the power is a line perpendicular to both ; un
less the direction of that oaris becomes indeterminate, by the power reducing itself to a 
scalar, which in certain cases may happen.

(14.) Thus, whatever scalar c may be, we may write,
cw cXXVIII... »■'’ = jo'h = e-ic*«r = eog _ i s,n -— ;£ £

this power, then, is a versor (12.), and its axis is generally the line + k; but in tho 
case when c is any whole and even number, this versor degenerates into positive or ne
gative unity (163), and tho axis becomes indeterminate (131).

(16.) If, for any real quaternion g, we write again,
XXIX. . . UVg = u, and therefore ■ XXX. .. ug = gu, and XXXI... u’ = -1, 
the process of 239 will hold good, when we change t to w; the series, denoted in I, 
by £*, is therefore always at last convergent,^ however great (but finite) the tensor 
Tg may be; and in like manner the two following other series, derived from it, which 
represent (comp, 242, (3.) ) what we shall call, generally, by analogy to known ex
pressions, the cosine and sine of the quaternion q, are always ultimately convergent:

XXXII. .. cos q = |(£-'« + e-9) = 1 - _ &c.;

xxxni. - a..
(16.) We shall also define that the secant, cosecant, tangent, and cotangent ot 

a quaternion, supposed still to be real, aio the functions:

2 2u
XXXIV.... sec g -------------- ; cosec g = ---------- —;

„-i fj"? _ V (e*^ + e-"^)
XXXV, , , tang = !L<L-_^ cotq=-^— ;

and thus shall have the usual relations, sec q = 1: cos q, &c. 
(17.) We shall also have,

XXXVI. . . j‘^=cos? +using, i'"* = cos j-u sin g;

* In tho theory of complanar quaternions, it was found convenient to admit a 
certain multiplicity of value for a power, when the exponent was not a whole num
ber t and therefore a notation tor tho principal value of a power was employed, with 
which the conventions of tlie present Section enable us now to dispense.

t In fact, it can be proved that this final convergence exists, even when the qua
ternion is imaginary, or when it is replaced by a biquaternion (214, (8.) ) ; but we 
have no occasion here to consider any but real quaternions.
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and therefore, ns in trigunometry (comp. 315, (I-)),

XXXVII. . . (cos ?)2 + (sin = e"’. 4-“’ = t’ = I,
whatever quaternion q ta&y be.

(18.) And all the formuliB of trigonometry, tor cosinet and sine* of sums of <u)o or 
more arcs. See., will thus hold good for quaternions also, prodded that the quater
nions to be combined are in any common plane : for example,

XXXVIII. . . cos (9' +g) = co3 9'co3 3 - sin/sin 5, it g'HI?.
(19.) This condition 0/compZanan’ty is here a necessary one; because (comp. 

(9.) ) it is necessary for the establishment of the exponential relation between sums and 
powers.

(20.) Thus, we may indeed write,
XXXIX. . t«'+4 = ti'. tt, ■ if 3111 3;

but, tn general, the developments of these two expressions give the difference,

XL... £«'+ 9 - 4«' + terms of third and higher dimensions j

and XLI. . . i(33'-3’3)=V(V3.V3'),
an expression which does not vanish, when the quaternions 3 and 3' are diplanar.

(21.) A few supplementary formula:, connected with the present Chapter, may be 
appended here, as was mentioned at the commencement of this Article (316). And 
first it may be remarked, as connected with tho theory ot powers of vectors, that if 
a, P, y be any three unit-lines, OA, OB, 00, and if a denote tho area ot the spherical 
triangle abc, then the formula 298, XX. may be thus written:

XLn...^,r±-“.to = a’i
P+y a + P y + a

tbe exponent being here a scalar.
(22.) Tho immediately preceding formula, 298, XIX, gives for any three vec

tors, the relation:
XLIII. .. (XJapyy + (U/3y)’ + (Uay)« + (f!apy + 4Uay. SU«/3. SVPy = - 2 ; 

for example, if a, p, y be made equal to i,j, h, the first member of this equation be
comes, 1 — 1 -1 — 1 + 0=—2.

(23.) The following is a much more complex’ identity, involving as it does not 
only three arbitrary vectors a, P, y, but also /our arbitrary scalars, a, b, c, and r; 
but it has some geometrical applications, and a student would find it a good exercise 
in transformations, to investigate a proof of it for himself. To abridge notation, the 
three vectors a, P, y, and the three scalars a, 5, c, are considered as each composing 
a cycle, with respect to which aro formed sums 2, and products II, on a plan which 
may bo thus exemplified:

XLIV. . . SaVPy = oV/3y + fcVya + eVaP j Ila’ «= 0’6’c’.
Tliis being understood, tho formula to bo proved is the following:

XLV. . . (Sa/3y)’ + (2aV/3y)’ + r’(2V/3y)’ - r2(2a (p ~y))i'
+ 2 n (r» + Spy + 6c) = 2n (r’ + a’) + 2 Ila’

+ 2 (r’ + a’ + al} {(VjSy)’ + ibclfi + SPy} -r^^p- yf );
the sign of summation in the last line governing all that follows it.
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(24.) For example, by making tlie/bur sca?or» a, b, c, r each = 0, this formula 

gives, for any three vectors a, (3, y, the relation,

XLVI. . . q. 2nS/3y = 2noS + 2 • ;

which agrees with the very useful equation 294, LIU., because

XLVII. . . a3(V/3y)’ = [(S,3y)'’ - } = (aS^y)’- Ua’.

(25.) Let a, P, y be tho oec<or» of three points A, B, O, which are carfertor to a 
given sphere, ot which tho radius is r, and the equation is,

XLVIII. . . p2+ r>= 0 (comp. 282, XIII.);

and let a, 6, c denote tho lengths of the tangents to that sphere, which are drawn 
from those three points respectively. We shall then have the relations:

XLIX. . . a® + o® = /S’ + 5® = y’ 4 c’ = — r2;

thus r’+ a*= &o., and the second member of the formula XLV. vanishes; the
first member of that formula is therefore also equal to zero, for these significations of 
tbe letters; and thus a theorem is obtained, which is "found to be extremely useful, 
in tho investigation by quaternions of tbe system of .the eight (real or imaginary) 
small circles, lohich touch a given set of three small circles on a sphere,

(26.) We cannot enter upon that investigation here; but may remark that be
cause the vector p of the foot p, of the perpendicular op let fall the origin o on the 
right line ab, is given by the expression,

L...p = aS_ + ^S_ = ^, 

as may be proved in various ways, the condition of contact of that right line ab with 
the sphere XLVIII. is expressed by the equation,

LI. . . TV/3a = rT (a - /3); or LII. . . (V/3a)« = r’ (a - /3)’ ;
or by another easy transformation, with the help of XLIX.,

LIII. . . (r» + Sa/3)» = (r’ + a’) (r» + /S’) = o’bs.

(27.) This last equation evidently admits of decomposition into two factors, re- 
presenting two alternative conditions, namely,

LIV. . . r« + Sn/3-a5 = 0; LV. . . r« + Sa/3+ o6 = 0;
and if we still consider the tangents a and 6 (25.) asposifh-e, it is easy to prove, in 
several different ways, that the/Jrst or the second factor is to bo selected, according 
as the point p, at which the line A.rs touches the sphere, does or rfoea not fall between 
the points s. and s ; or in other words, according as tbe length of that line is equal 
to the sum, or to tho difference, of those two tangents.

(28.) In fact wo have, for the first case,
LVI. . . T(/3 — a) = b+ a, or 0 = (/3 —a)’+ (b 4 o)’a —2 (r’+ Sa/3 — ab), 

in virtue of the relations XLIX.; bnt, for tho second case,
LVII. . . T (/3 - a) =4 (b — a), or 0 = (j3 - a)’4 (b —a)5 = —2(rS +Sa/3 4ab) ; 
and it may be remarked, that we might in this way have been led to find the system 
of tbe two conditions (27.), and thence the equation LllI;, or its transformations, 
LII, and LI. ♦
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(29.) We may conceive a cone of tangents from a, circumscribing the sphere 
XLVIII., and touching it along a small circle, of which the plane, or the polar plant 
of the point i., is easily found to have for its equation,

LVIIL . . Sap-pr’ = 0 (comp. 294, (28.), and 215, (10.)); 
and in like manner the equation,

LIX. . . S/3p + r’ = 0, 
represents the polar plane of tbe point B, which plane cuts the sphere in a second 
small circle : and these two circles touch each other, when either of the two con
ditions (27.) is satisfied; such contact being external for the caseLIV., but internal 
for the case LV,

(30.) The condition of contact (26.), of the line and sphere, might have been 
otherwise found, os the condition of equality of roots in the quadratic equation 
(comp. 216, (2.)),

LX. . . 0 = (xa + y/3)’ -P (x 4- y^ r^,
OT LXI. . . 0 = x’ (r2 + a^} + ’Ixy {r^ + Sals') -1- y2(r’ + jS’) ; •
the contact being thus considered here Us a case of coincidence of intersections.

' (31.) Tho equation of conjugation (comp. 215, (13.)), which expresses that 
each of the two points A and n is in the polar plane of the other, ia (with thc preseht 
notations).

LXII. . , + Sa(3 = 0 ;
the equal but opposite roots ot LXI., which then exist if the line cuts the sphere, 
answering here to the well-known harmonic division of tho secant line ab (comp. 
215, (16.) ), which thus connects two conjugate points.

(32.) In like manner, from the quadratic equation* 216, III., we get this analo
gous equation,

Lxni...s-
a a \ P fij ’

connecting the vectors X, p of any two points l, m, which are conjugate relatively to 
the ellipsoid 216, II.; and if we place the point Lon f/ie su^ce, the equation LXIII. 
will represent the tangent plane at that point L, considered as tho locus of the coiyu- 
gate point M; whence it is easy to deduce the normal, at any point of the ellipsoid. 
But all researches respecting normals to surfaces can be better conducted, in con
nexion with the Differential Calculus of Quaternions, to which we shall next pro
ceed.

(33.) It may however be added here, as regards Powers of Quaternions with 
scalar exponents (11.), that the symbol q*rq-* represents a quaternion formed from r, 
by a conical rotation of its axis round that of q, through an angle = It L q; and that 
both members of the equation, ~

LXIV. . . (5rg*')' = 9’’'9‘’i

are symbols of one common quaternion.

* Corrected as in the first Note to page 298.
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CHAPTER II.

ON DIFFERENTIALS AND DEVELOPMENTS OF FUNCTIONS OF 

quaternions; and on some applications of quater
nions, TO- GEOMETRICAL AND PHYSICAL QUESTIONS.

Section 1__ On the Definition of Simultaneous Differentials.
317. In the foregoing Chapter of the present Book, and in

several parts of the Book preceding it, we have taken occasion 
to exhibit, as we went along, a considerable variety of Exam
ples, of the Geometrical Application of (Quaternions ; but these 
have been given, chiefly as assisting to impress on the reader 
the meanings of new notations, or of new combinations of sym
bols, when such presented themselves in turn to our notice. 
In this concluding Chapter, we desire to offer a few additional 
examples, of the same geometrical kind, but dealing, more 
freely than before, with tangents and normals to curves and 
surfaces ; and to give at least some specimensj of the applica
tion of quaternions to Physical Inquiries. But it seems ne
cessary that we should first establish here some Principles, and 
some Notations, respecting Differentials of Quaternions, and 
of their Functions, generally. ,

318. The usual definitions, oi differential coefficients, and 
of derived functions, are found to be inapplicable generally to 
the present Calculus, on account of the (generally) Hon-com- 
mutative character of quaternion-multiplication (168, 191). It 
becomes, therefore, necessary to have recourse to a new Defi
nition of Differentials, which yet ought to be so framed, as to 
be consistent with, and to include, the usual Rides of Diffe
rentiation: because scalars (131), as well as vectors (292), 
have been seen to be included, under the general Conception 
of Quaternions.

319. In seeking for such a new definition, it is natural to

    
 



392 ELEMENTS OF QUATERNIONS. [book in.

go back to the first principles of the whole subject of Diffe
rentials : and to consider how the great Inventor of Fluxions 
might be supposed to have dealt with the question, if he had 
been deprived of that powerful resource of common calculation, 
which is supplied by the commutative property of algebraic 
•multiplication ; or by the familiar equation,

considered as a general one, or as subsisting lor every pair of 
factors, X and y; while limits should still be allowed, but in- 
fnitesimals be still excluded •• and indeed the fluxions them
selves should be regarded as generally finite,* according to 
what seems to have been- the ultimate view of Newton.

320. The answer to this question, which a study of the 
Principia appears to suggest, is contained in the following 
Definition, which we believe to be a perfectly general one, as 
regards the older Calculus, and which we propose to adopt 
for Quaternions:—

“ Simultaneous Differentials (or Corresponding Fluxions) 
are Limits of Equimultiples\ of Simultaneous and Decreasing 
Differences.”

* Compare the remarks annexed to the Second Lemma of the Second Book of the 
Principia (Third Edition, London, 1726); and especially tiie following passage (page 
244):

“ Neque enim spectatur in hoc Lemmate magoitudo momentorum, sed prima 
nascentinm proportio. E'odem recidit si loco momentomm nsurpentur vel velocitates 
incrementorum ac decrementornm (qnas etiam motus, mutationes et fluxioncs quan- 
titatum nominate lioet) vel flnitm quajvis quantitates vclocitatibus hisce proportion
ales.”

f As regards the notion of multiplying such differences, or generally any quanti
ties which all diminish together, in order to render their ultimate relations more evi
dent, it may be suggested by various parts of the Principia of Sir Isaac Newton; but 
especially by the First Section of the First Book. See for example tbe Seventh Lemma 
(p. 81), under which such expressions as the following occur: “ inteiligantur semper 
AB et AD ad puncta longinqna b et d produci,”. . .. “ idcoque rectoe semper Anitas 
Ab, Ad, . , ." Tlie direction, “ad puncta longinqua produci,” is repeated in con
nexion with tho Eighth and Ninth Lemmas of tho same Book and Section; while 
under the fo»mer of those two Lemmas we meet the expression, “ triangula semper 
Anita,” applied to the magnified representations of. three triangles, which all diminish 
indefinitely together: and under the latter Lemma'the words occur, “ manente longi- 
tudine Ae," where Ae is a finite and constant line, obtained by a constantly increas- 
ibg multiplication of a constantly diminishing line AE (page 33 of the edition 
cited).
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And conversely, whenever any simultaneous differences, of 
any system of variables, all tend to vanish together, according 
to any law, or system of laws; then, if any equimultiples of 
those decreasing differences all tend together to any system of 
finite limits, those Limits are said to be Simultaneous Diffe
rentials of the related FarzaiZes of the System; and are (Zc- 
noted, as such, by prefixing the letter d, as a characteristic of 
differentiation, to the Symbol of each such variable.

321. More fully and symbolically, let
I- . . r, 5,...

denote any sy&iem, of connected variables (quaternions or others); and 
let

II. . . Ay, Ar, As,...
denote, as usual, a system of their connected (or simultaneous) diffe
rences ; in such a manner that the sums,

IIL ,. q + iisq, r+ Csr, s + As,...
shall be a «etu system of variables, satisfying the same laws of con
nexion, whatever they may be, as those which are satisfied by tbe old 
system 1. Then, in returning gradually from the new system to the 
old one, or in proceeding gradually from the old to the new, the 
simultaneous differences II. can all be made (in general) to approach 
together to zero, since it is evident that they may all vanish together. 
But if, while the differences themselves are thus supposed to decrease* 
indefinitely together, we multiply them all by some one common but 
increasing number, n, the system of their equimultiples,

IV. .. nAy, 'wAr, nAs,...
may tend to become equal to some determined system of finite limits. 
And when this happens, as in all ordinary cases it may be made to do, 
by a suitable adjustment of the increase of n to the decrease of Ay, 
&c., the limits thus obtained are said to be simultaneous differentials 
of the related variables, y, r, s; and are denoted, as such, by the sym
bols.

V, . . dy, dr, ds, ...

* A quaternion may be said to decrease, when its tensor decreases; and to de
crease indeJiniteJy, when that tensor (ends to zero.

3 B
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Section 2—Elementary Illustrations of the Definition, from 
Algebra and Geometry.

322. To leave no possible doubt, or obscurity, on the im
port of the foregoing Definition, we shall here apply it to de
termine the differential of a square, in algebra, and that of a 
rectangle, in geometry, in doing which we shall show, that 
while for such cases the old rules are reproduced, the differen
tials treated of need not be small; and that it would be a vitia
tion, and not a correction, of the results, if any additional terms 
were introduced into their expressions, for the purpose of ren
dering all the differentials equal to the corresponding diffe
rences : though some of them may be assumed to be so, 
namely, in the first Example, one, and in the second Exam
ple, two.

which gives,

(1.) In Algebra, then, let us consider the equation,
I.. .y = s2,

IT. .. y + Ay = (s 4- As)’,
and therefore, as usual,*

in. . . Ay = 2sAs + As’;

or what comes to the same thing,

IV. . .'»Ay = 2snAs + n"'(nAs)’,

where n is an arbitrary multiplier, which may be supposed, for simplicity, to be a 
positive whole number.

(2.) Conceive now that while the difference! As and Ay, remaining always con
nected with each other and with s by tbe equation III., decreate, and tend together 
to zero, the number n increases, in the transformed equation IV., and tends to infi
nity, in such a manner that the product, ot'multiple, n^, tends to some finite limit 
a; which may happen, for example, bj^ our obliging As to satisfy always the con
dition.

V. . . As = n"'a, or n As = a, 

after a previous ttUelion of some given anijinite value for a.

• We write here, as is common, Aa;’ to denote (Aa:)’; while A.a:’ would he 
written, on the same known plan, for A (a:’), or Ay. In like manner we shall write 
da:’, as usual, for (da:)’ ; and shall denote d(s’) by d.x’. Compare the notations 
Sg’. S.g’, and Vg’, V.g*, in 199 and 204. .
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(3.) Wo shall then have, with this last condition V., the following expression 
by IV., for tho equimultiple nhp, of the other dfference,

VI. .. aAy = 2x0 + a' ’o’ = 6 + n-’o*, if 6 = 2xo.

But because o, and therefore o’, is given and finite, (i.}, while the number n in
creases indehuitely, the term n-’o’, in this expression VI. fotaAy, indefinitely tends 
to zero, and its limit is rigorouslg null. Hence the two finite quantities, a and & 
(since X is supposed to be finite), are two simultaneous limits, to which, under the 
supposed conditions, the two equimultiples, BAxan4nAy,tend;* they are, therefore, 
by tbe definition (320), simultaneous differentials of x and y: and we may write ac
cordingly (321),

VII. ..dx=o, dy = fi = 2xa;
or, as usual, after elimination of a,

VIII. . . dy = d..r’= 2xdx. •

(4.) And it would not improve, but vitiate, according to the adopted definition 
(320), this usual expression for the differential of the square of a variable x in alge
bra, if we were to add to it the term dx*, in imitation of the formula III. for the 
difference ^.x^. For this would come to supposing that, for a given and finite 
value, a, oi dx, or of n^x, the term n'^a^, or n'’dx’, in the expression VI. fornAy, 
could fail to tend to zero, while the number, n, by which the square of dx is divided, 
increases without limit, or tends (as above) to infinity.

(5.) As an arithmetical example, let there be tbe given values,
l'S....x = '2, y = x’ = 4, dx = 1000j

and let it be required to compote, as a consequence of the definition (320), the arith- 
rithmetical value ot the 'simultaneous differential, dy. "Wo have now the following 
equimultiples ot simultaneous differences,

X. . . nAx = dx = 1000 ; »Ay = 4000-P lOOOOOOn"’;
but the limit ot tho n'* part ot n million (^or of any greater, but given and finite num
ber'} is exactly zero, if n increase without limit s tbe required value ot dy is, therefore, 
rigorously, in this example.

XI. . . dy = 4000.
(6.) And we see that these two simultaneous differentials, 

XII. .. dx = 1000, dy.= 4000, 
are not, in this example, even approximately equal to the two simultaneous diffe
rences,

XIU.. . Ax = da> = 1000, Ay = 1002’ - 2’ = 1004000,
which answer to the value a = 1; although, no doubt, from the very conce^ption of 
simultaneous differentials, as embodied in the definition (320), they must admit of 
having such equisubmultiples of themselves taken,

XIV. . . B"*dx and B’*dy,

* In this case, indeed, the multiple nAx has by V. a constant value, namely a; 
but it is found convenient to extend the use of the word, limit, so as to include the 
case of constants : or to say, generally, that ti constant is its own limit.
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as to be nearly equal, for larye values of the number n, to some system ot simulta
neous and decreasiny differences,

Xy. . . Ax and &y,
and more and more nearly equal to such a system, even in the way of ratio, as they 
all become smaller and smaller together, and tend together to caatsA.

(f.y For example, while the differentials themselves retain the constant values
XII.) their millionth parts are, respectively,

XVI. .. n"’dx = 0’001, and n-’dy=0’004, if n=1000000;

and tbe same value of the number n gives, by X., the equally rigorous values of two 
simultaneous differences^M follows,

XVII. .. Ax = 0’001, and Ay = 0’004001;

so that tAese values ot the decreasiny differences X'^. may already be considered to 
be nearly equal to tho two equisubmulti^les, XIV. or XVI., of the two simultaneous 
differentials, XII. And it is evident that this approximation would be improved, 
by taking higher values of the number, n, without the rigorous and constant values
XII., of dx and dy, being at all affected thereby.

(8.) It is, however, ‘evident also, that after assuming y = x®, and x = 2, as in IX., 
vie might have assumed any other finite value for the differential dx, instead of the 
value 1000; and should then have deduced a different (but still finiley value tor the 
otAer differential, dy, and not tiro formerly deduced value, 4000: but there would 
always exist, in this example, or for this form ot theyhnetton, y, and for tAis value 
of the variable, x, the rigorous relation between the two simultaneous differentials, 
dx and dy.

XVIII. .. dy = 4dx,

which is Obviously a case ot the equation VIII, and can be proved by similar rea
sonings.

323. Proceeding to the promised Example from Geometry (322), 
•we shall again see that differences and differentials are not in gene
ral to be confounded with each other, and that (he latter (like the 
former) need not be small. But we shall also see that the differentials 
{like the differences'), which enter into a statement of relation, or into 
the enunciation of a proposition, respecting quantities which vary to
gether, according to any law off laws, need not even be homogeneous 
among themselves: it being sufficient that each separately should be 
homogeneous with the variable to which it corresponds, and of which it 
is the differential, as line of line, or area of area. It will also be seen 
that the definition (320) enables us to construct the differential of a 
rectangle, as the sum of two other {finite') rectangles, without any refe
rence to units of length, or of area, and without even the thought of 
employing any numerical calculation whatever. •
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Fig. 74.

(1.) Let, then, as in the annexed Figure 74, abcd be any given rectangle, and 
let BE and do be any arbitrary but given and finite 
incrcmenta of its sides, ab and ad. Complete tho 
increased rectangle oaef, or briefly af, which will 
thus exceed tbe given rectangle ac, or ca, by the sunt 
of the three partial rectangles, ce, cp, co ; or by 
what we may call the gnomon,* cbefooc. On the 
diagonal cf take a point i, so that the line ci may 
be any arbitrarily selected submultiple of that diago
nal ; and draw through i, as in the Figure, lines bm, 
KD, parallel to the sides ad, ab ; and therefore in
tercepting, on the sides ab, ad prolonged, equisubmultiples bu, dk of tbe two given 
increments, be, do, of those two given sides.

(2.) Conceive now that, in this construction, thepoinf i approaches to c, or that 
we take a series of new points i, on the given diagonal cf, nearer and nearer to the 
given point c, by taking the line ci successively a smaller and smaller part of that 
diagonal. Then the two new linear intervals, bh, DC, and the new gnomon, cbbiedc, 
or the sum of the three new partial rectangles, ch, ci, ce, will all indefinitely de
crease, and will tend to vanish together ; remaining, however, always a system ot 
three simultaneous differences (or increments'), of tbe two given sides, ab, ad, and 
of the given area, or rectangle, AC.

(3.) But the given increments, be and do, of the two given sides, are always 
(by the construction') equimultiples of tbe two first ot the three new and decreasing 
differences ; they mag, therefore, by the definition (320), be arbitrarily tahen as two 
simultaneous differentials of the two sides, AB and AD, provided that we Men treaf, 
as the corresponding or simultaneous differential of the rectangle AC, the UmU of the 
equimultiple of the new gnomon (2.), or of the decreasing difference between tbe two 
rectangles, AO and ai, whereof the first is given.

(4.) We ore then, first, to increase this new gnomon, or the difference ot ao, ai, or 
the sum (2.) of the three partial rectangles, ch, ci, ck, in the ratio of be to bh, or 
of DO to DK; and secondly, to seek the limit of the area to increased. For Mis last 
limit will, by the definition (320), bo exactly and rigorously equal to the sought dif
ferential of the rectangle AC; if the given and finite incretnenis, be and do, he us- 
tumed (as by (3.) they may) to be the differentials of {Ae sides, ab, ad.

(5.) Now when we thus increase the two new partial rectangles, ch and ck, we 
get precisely the two old partial rectangles, cb and co 5 which, as being given and 
constant, must be considered to be Meir own limits.)- But when we increase, in the 
tame ratio, the other new partial rectangle ci, we do not recover the old partial 
rectangle cf, corresponding to it; but obtain the new rectangle Cl, or the equal 
rectangle cm, which is not constant, but diminishes indefinitely as the point I ap
proaches to c ; in such a manner that the limit of the area, of this new rectangle cn 
or CM, is rigorously null, . ,

* Tlie word, gnomon, is hero used with a slightly more extended signification, 
than in the Second Book of Euclid.

t Compare the Note to page 395.
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(6.) Jf, then, thc given increments, BE, do, be still assumed to be the differen
tials of the given sides AB, AD (an asauniption which has been seen to be permitted), 
tbe differential of the given area, or rectangle, Ac, is proved (not assumed) to be, as 
a necessary consequence of the defnition (320), exactly and rigorously equal to the 
sum of the two partial rectangles CE and co; because such is the limit (5.) of the 
multiple of the new gnomon (2.), in the construction.

(7.) And if any one were to suppose that he could improve this known value for 
the differential of a rectangle, by adding to it the rectangle cf, as a new term, or 
part, so as to make it equal to the old or ^'oen gnomon (1,), he would (the definition 
being granted) commit a geometrical error, equivalent to that of supposing that the 
two similar rectangles ci and cf, bear to each other the simple ratio, instead of bear
ing (as they do) tbe duplicate ratio, of their homologous sides.

Section 3.—On some general Consequences of the Definition. 
324. Let there be any proposed equation of the form,

I. . . Q = F(j, r, ...);
and let dg', d?-,... be any assumed (but generally finite) and 
simultaneous differentials of the variables, q, r,'... whether 
scalars, or vectors, or quaternions, on which Q is supposed to 
depend,^ by the equation I. Then the corresponding (or simul
taneous) differential of their function, Q, is equal (by the de
finition 320, compare 321) to the following limit:
II. . . dQ = lim. n[F{q-h n'^Aq, r-irn-^Ar,...) ~F{q, r, ...)); to
where w is any whole number (or other positive* scalar) which, 
as the formula expresses, is conceived to become indefinitely 
greater and greater, and so to tend to infinity. And if, in 
particular, we consider the function Q as involving only one 
variable q, so that

III. . . Q=/(?)=/?, 
then

IV. . . d Q = d^ = Inn. n[f{q + w-’d^)-fq);«■ ® •
ei, formula for the differential of a single explicit function of a 
single variable, which agrees perfectly with those given, near 
the end of the First Book, for the differentials of a vector, and 
of a scalar, considered each as a function (100) of a single sea-

* Except in some rare cases of discontinuity, not at present under our considera
tion, this scalar n may as well be conceived to teud to negative infinity.
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lar variable, t; but which is now extended, as a consequence 
of the general definition (320), to the case when the connected 
variables, q, Q, and their differentials, dj, dQ, are quaternions: 
with an analogous application, of the still more general For
mula of Differentiation II., to Functions of several (Quater
nions,

(1.) As an example of the use of tbe formula IV., let tbe function of q be its 
square, so that

V. . . Q=fq = q-‘.
Then, by the formula,

VI. . . dQ = d/9 = lim. n{(9 + »''d9)’-g3}
' na flD
= lim. (9. dy + dy. 9 + »■* d9’),o>

where dy’ signifies* the square of dy; that is,
VII. . . d.y’ =.9.dy + dy.y;

or without the pointsf between y and dy,
VII'. . . d.9’ = ydy + dy yj

an expression for the differential of the square of a quaternion, which does not in gene
ral admit of any further reduction; because y and dy are not generally commnlaiire, 
as factors in multiplication. When, however, it happens, as in algebra, that y.dy 
asdy.y, by the two quaternions y and dy being complanar, tbe expression VII. then 
evidently reproduces the usual form, 322, VIII., or becomes,

VIII. . . d.9« = 2ydy, if dy|(|9(123).
(2.) As another example, let tbe function be the reciprocal,

IX. . . O=7^ = 9-<.

X. . .f(.q + n-'Aq') -/y = (y + n->dj)-i-y-' 
= (y + dy)-!{y * (y + >»-'dy)}y-"

= —»-!(y+ »-*dy)-*.dy.y-*,

of whicli, when multiplied by n, the limit is - y-'dy. y’, we have the following ex
pression for tho dfferential of the reciprocal of a quaternion,

XI. . . d.y-* =—y-* .dy.y*;

Then, because

* Compare the Note to p.ige 394.
t The between d and 9®, in the first member of VII., is indispensable, to 

distinguish tho differential of the square from the square of the differential. But 
just as* this latter square is denoted briefly by dj’, so tho products, q. dj and dj. q, 
may be written as jdj and Aq q; the symbol, Aq, being thus treated as a whole one, 
or as if it were a single letter. Vet, for greater clearness of expression, we shall re
tain the point between q and dy, in several (though not in all) of the subsequent for- 
mnlsa, leaving it to the student to omit it, at his pleasure.
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or without tbe points* in the second member, dj being treated (as in VII'.) as a 
whole tymbol,

XI'. . . d.q-t = — q-^<iq J"*; 
an expression which does not generally admit of being any farther reduced, but be
comes, as in the ordinary calculus,

XII. . . d.g"> = —g-^dy, if dgl||g,
that is, for the case of eomplanarity, of the quaternion and its dilTerential.

325. Other Examples of Q,uatemion Differentiation will be given 
in the following Section; bnt the two foregoing may serve sufficiently 
to exhibit the nature of the operation, and to show the analogy of 
its results to those of the older Calculus, while exemplifying also 
the distinction which generally exists between them. And we shall 
here proceed to explain a notation^ which (at least in the stcdement of 
the present theory of differentials) appears to possess some advan
tages ; and will enable us to offer a still more brief symbolical defi
nition, of the differential of a function fq, than before.

(1.) We have defined (320, 324), that if be called the differential of a (qua
ternion. or other) variable^ then the limit of the multiple^

I- • • »{/(<? + «■’<!?)-/?}> 
of an indefinitely decreating difference o( the function fq, oi that (single) variable q, 
when taken relatively to an indefinite increase ot the multiplying number, n, is the 
corresponding or umultaneous differential of that function, and is denoted, as such, 
by the symbol 3fq.

(2.) But before we thus pass to the limit, relatively to n, and while that multi
plier, n, is still considered and treated ae finite, the multiple I. is evidently a /«nc- 
tion of that number, n, as well as of the two independent variables, q and d^. And 
we propose to denote (at least for the predbnt) this new function ot the three variables,

II. . . n, q, and dj,
of which theybroi depends, according to the law expressed by the formula I., on the 
form of the given function, f, by the new symbol,

in.. ./„(g, dj);
in such a manner as to write, for any two-variables, q and q', and any number, n, the 
equation.

IV. . .fn{q, 9') = n{y(s + ’«-'9')-/9}; 
which may obviously bo also written thus,

V. ,. /(g + «-i g^ ^fq + n- (g, g'),
and is here regarded as rigorously exact, in virtue of the definitions, and without 
anything whatever being neglected, as small.

* Compare tbe Note immediately preceding.
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(3.) For exdmple, it appears from the little calculation in 324, (1,), that,

VI. . .fn(,q, q') = qq'+q'g + n-^q\ i[fq = q^ ;
and from 324, (2.), that,

VII. . . f,fq, 7') = - (5 + q'q-\ if/g = q l.
(4.) And the definition of dyj may now be briefly thus expressed:

VIII. ..d/g=/.(j,dg);
or, if the sub-index be understood, we may write, still more simply,

IX. . . d/2=/(?, ds):
this last expression,/(g, dg), OTf(g, q^ denoting thus afiinction of two indepen
dent variables, q and g', of which the form is derived* or deduced (comp. (2. J ), from 
the given or proposed form of. the function/g of a single variable, q, according to a 

•fau, which it is ono of the main objects of the Differential Calculus (at least as re
gards Quaternions) to study.

326. One of the most important general properties, of the 
functions of this class f{q, y'), is that they are all distributive 
with respect to the second independent variable, q, which is in
troduced in the foregoing process of what we have called de- 
rivation,\ from some given function fq, of a single variable, qx 
a theorem which may be proved as follows, whether the two 
independent variables be, or be not, quaternions.

(1.) Let g" be any third independent variable, and let n be any number } then 
the formula 325, V. gives tho three following equations, resulting from the law of de
rivation offnQh q''i fromyj:

I- • • Z(?+»■’q"') =fq+»■'/»(.q, q");
II- --/C? + ’•■•g"+«'^q’) =f(.q+»*‘9") -i- »‘'/a(g -h .

HI. . ./(g-l-n-‘g' -i- n-'g") =fq +n-l/»(?. g' + g"); ’ •

• It was remarked, or hinted, in 318, that the usual definition of a derived func
tion, namely, that given by Lagrange in tho Calcul des Fonctions, cannot be taken 
as a foundation for a differential calculus of quaternions: although such derived 
functions of scalars present themselves occasionally in the applications of that cal
culus, as in 100, (3.) and (4.), and in some analogous but more general cases, which 
will be noticed soon. Tho present Lena of Derivation is of an entirely different 
kind, since it conducts, as we see, from a given function of one variable, to a derived 
function of two variables, which are in general independent of each other. The 
function y„(g, q’'), of the three variables, n, q, q', rang also bo called a derived func
tion, since it is deduced, by tlio fixed law IV., from tlie same given function fq, 
although it has in general a less simple form than its own limit, f,„ (^q, q ), or 

/{<!< g'}-
f Compare the Note immediately preceding.

3 F
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by comparing which we see at once that

IV.. ./n(?, «'+?")=/>•('? +«'*!?", jD+ACi?. ?')>
the form of the original function, fq, and the values ot the four variables, q, q', q", 
and n, remaining altogether arbitrarg; except that n is supposed to be a number, or 
at least a scalar, while q, q', f mag (or may not) be quaternions.

(2.') For example, if we take the particular function fq = q^, which gives tho 
form 325, VI. of the derived function/„(?, /), yre have

V. . .fn{3, +
VI. ../„(?,?'+ + (<?' + ?").?+»■'(?'+i'y!

and therefore
VII. . .f„{q, q' + f'^-fnCs, + q'i+ q'q” + fq')

=(.q+n"’ q") q'+?'(?+«■*?")+’»■'
=fn{q^n-iq", q"),

as required by the formula IV.
(3.) Admitting then that formula as proved, for all values of the number n, wo 

have only to conceive that number (or scalar) to tend to infinitg, in order to deduce 
this limiting form of the equation: -

VIII.. . /.(y, 3'+ =f,<iq, q”) f) !
or simply, "With the ahrtdr/ed notation ot 325, (4.),

IX. . .f{q, <f + f)=f{q, q')^f(.q,q")\
which contains the expression of tho functional property, above asserted to exist 

(4.) For example, by what has been already shown (comp. 325, (3.) and (4.)),
X. . . if fq = ffS, then /(?, q) = qf + fq; 

and XI... if /3=}->, then /(j, q')=~q'^q'f*;
in eacA of which instances we see that the derived function f{q, q') is di«<n'5uttve 
relativelg to q', although it is only in the first of them that it happens to bo distri- 
butive with respect to q also.

{6s) It follows at once from the formula IX. that we have generally*
xn.../(3,0)=0;

and it is not difficult to prove, as a result including this, that

XIII. . ./(?, ®!?') = ®/(3. q'), if a: be any scalar.
•(G.) As a oonBrmation of thb last result, we may observe that the defnition of 

/(?! q') be expressed by the following formula (comp. 324, IV., and 325, IX.):

XIV. . ./(3, 3^ = 1™.»{/(3 + »-1j')_/3};
n“ OD

we have therefore, if a; be any finite scalar, .and »n = ar'n,

XV. . ./(3, a!3') = ».lim.m{/(3+ m-ij')—/j} ;
m-

a transformation which gives the recent property XIII., since it ia evident thot the 
letter m may bo written instead of n, in the formula of definition XIV.

• We abstract here from some exceptional cases of discontinuity, &c.
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327. Resuming then the general expression 325, IX., or 
writing anew.

I- • . 4^ =/(?> dy), 
we see (by 326, IX.) that this derived function, dfq, of q and 
dy, is always (as in the examples 324, VII. and XI.) distribu
tive with respect to that differential dy, considered as an inde
pendent variable, whatever the form of the given function fq 
may be. We see also (by 326, XIII.), that if the differential 
dtq of the variable, q, be multiplied by any scalar, x, the diffe
rential dfq, of the function fq, comes to be multiplied, at the 
same time, by the same scalar, or that

II. . .f(fi, xAq) = xf(ff, dy), if a: be any scalar.
And in fact it is evident, from the very conception and defini- 
tim of simultaneous differentials, that every system of
such differentials must admit of being all changed together to 
any system of equimultiples, or equisubmultiples, of themselves, 
without ceasing to be simultaneous differentials: or more gene
rally, that it is permitted to multiply all the differentials^ of a 
system, by any common scalar.

(1.) It follows that the Quotient,
in. . . d/7 ; d?) : d?,

of tbe fu'o timultaneout differentiaJs, and d^, <fo» not change when the dideren- 
tial djis thus mulliptied bg ang ecaiar : and consequently that this quotient III. is 
independent of the tensor Td{^, although it is not generallg independent of the mreor 
Ud;, if g and Ag be gucdemions; except that it remains in general unchanged, when 
we merely change that versor to its own opposite (or negative),or to—Udy, because 
this comes to multiplying ig by — 1, which is a scalar.

(2.) For example, the quotient,
IV.. . d.: d} = j + ig.g.ig't = q + Udg.g.Udy>, 

in which dj"' and Udj’> denote the reciprocals of dg and Udg, is very far from being 
independent of ig, or at least of Udy; since it represents, as we see, the sunt of the 
given quaternion q, and of a certain other quaternion, which latter, in its geometrical 
interpretation (comp. 191, (5.)), may be considered as being derived from j, by a 
conical rotation oi Kx.q round Aa:.dj, through an angles H.ig : so that both the 
axis and the quantity of this rotation depend on the versor Udy, and vary with that 
versor.

(3.) In general we may, if we please, say that tho quotient III. is a Differential 
Quotient; bnt we ought not to call it a Differential Coefficient (comp. 318), be
cause ifg does not generally admit of decomposition into two factors, whereof one 
shall be the differential dj, and the other a function of q alone.
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(4.) And for'the same reason, we ought not to call that Qitotient a derived 
Function (comp, again 318), unless in so speaking we understand a Junction of Two* 
independent Fariablei, namely of q and Udy, as before.

(6.) When, however, a quaternion, q, is considered as & function of a ecalar va
riable, t, so that we have an equation of the foroq,

• Q—ft, where f denotes a scalar, 
it is then permitted (comp. 100, (3.) and (4.)) to write,

VI...a,a,

= lira. A’l { f(t + 5) -/<}
0

=/'< = D</! = D(9i

and to call thia limit, os usual, a derived function of t, because it ia (in fact) a/unc- 
tion of that acalar variable, t, alone, and is independent of the acalar differential,' 
df.

(S.) We may also write, under these circumstances, the differential equation, ■ 
Vn. . . dq= Dig.df, or VIII. . . dfq=f’t.At, 

and may cuH the derived quaternion, Dig, or ft, aa usual, a differential coefficient ia 
thia formula, because the acalar differential, df, is (in fact) multiplied by it, in tbe 
expression thus found for the quaternion differential, dg or Aft. '

(7.') But aa regards the loyic of the question (comp, again 100, (3.)), it is im
portant to remember that wc regard tliia derived function, or differential coefficient, 

ITS.. . . ft, or 'Dtft, or F)tq,
as being an actual quotient VI., obtained by dividing an actual quaternion,

'S., . . d/f, or dg,
by an actual acalar, df, of which tho value is altogether arbitrary, and may (if wq 
choose) bo supposed to bo large (comp. 822); while tho dividend quaternion X. de
pends, fir its value, on the values of the two independent scalars, t and df, and on 
the form of the function f, according to the law which is expressed by tho general 

formula 324, IV., for the differentiation of explicit functions of any single variable.

328. It is easy to conceive that similar remarks apply to 
quaternion functions of more variables than one; and that when 
the differential of swc/t a function is expressed (comp. 324, II.) 
under the form, ...

I. . . dQ = dF(g’, r, «,..) = F{q, r, s,. . d<7, dr, ds,..), 

the F is always distributive, with respect to each
separately of the differentials, dq, dr, dsj. .; heing also homo
geneous of the first dimension (comp. 327), with respect to all 
those differentials, considered as a system ; in such a manner

* Compare the Note to 325, (4.).
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that, whatever may be the form of the given quaternion func
tion, Q, or 2^, the derived* function F, cm: the third member of 
the formula I., must possess this geperalyhncZionaZ property 
(comp. 326, XIII., and 327, II.),

II. . . Flfl, a;ds . .)
= xF{q, r,s,.. Aq, Ar, ds, ..), 

where « may be any scalar: so that products, as well as 
squares, of the differentials dy, dr, &c., of q, r, &c. considered • 
as so many variables on which Q depends, are excluded from the

• expanded expression of the differential dQ of the function

(1.) For example, if the function to be differentiated be a product of two qua
ternions,

III. . . Q = FCg,r}=gr,
then it is easily found from tbe general formula 324, II., that (because the limit of 

. dy.dris null, when the number n increases without limit') the differential of the 
function is,

IV... dQ = d.gr = dF(g,r) = F'(g,r,dg, dr) = j, dr +dq.r;
with analogous results, for differentials of products of more than two quaternions.

(2.) Again, if we take this other function,
' V. . . Q = F’(7,r) = 5->r,

then, applying the same general formula 324, II., and observing that we have, for 
all values of the number (or other scalar), n, and of the four gxtaternions, q, r, g', s', 
the identical transformation (comp. 824, (2.) ),

_ VI. . . n{(</ + (r + - g 'r)
9~'r’ - (7 + «-' g')-' + n-'r'},

we find, as the required limit, when n tends to infinity, the following differential of 
the function :

VII. . . dQ=d.7->r = fLF(g,r) = J’(q,^•d5,dr) = y->.dr-7■'.d7.g-^r,• 
which is again, like tho expression IV., distributive with respect to each ot the dif

ferentials dq, dr, of the raria6/es q, r, and does «of involve the product ot those two 
differentials: although these two differential expressions; IV. and VII., are both en
tirely rigorous, and are not in any way dependent on any supposition that the ten
sors ot dq and dr are small (comp, again 322).

329. In thus differentiating a function of more variables 
than one, we are led to consider what may be called Partial 
Differentials of Functions of two or more (Quaternions; which 
may be thus denoted.

* Compare the Note last referred to.
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I.. . dgQ, diQ, d,Q,...

if Q be a function, as above, of y, r, s,... which is here sup
posed to be diflEerentiated with respect to each variable sepa
rately, as ffthe others constant. And then, if dQ de
note, as before, what may be called, by contrast, the Total 
Differential of the function Q, we shall have the General For
mula,

n. . . dQ = dgQ + dr(^-i-d,Q + ...;

or, briefly and symbolically,
III. .. d = d, + dr + d, +.. .,

if q,r,s,... denote the quaternion variables on 'which the 
quaternion function depends, of which the total diflEerential is 
to be taken; whether those variables be all independent, or be 
connected with each other, by any relation or relations.

(1.) For example (comp. 328, (1.) ),
IV.. . if Q = ip, then djQ = dg.r, and drQ = g.dr;

and the sum of these two partial differential! ot Q makes up its total differential d Q, 
as otherwise found above.

(2.) Again (comp. 328, (2.) ),
V... if Q = g**r, then djQ = —g'ldg.g-ir; drQ = g'>dr;

and d, Q + d,Q = the same d Q as that which was otherwise found before, for this form 
of the function Q.

(3.) To exemplify the possibility of a relation existing between the variables q , 
and r, let those variables be now supposed equal to each other in V.; we shall then 
have Q=l,dQ=0; and accordingly we have here d5Q = — grid3=—drQ.

(4.) Again, in IV,, let gr = c= any consfawt quaternion j we shall then again 
have 0 = dQ=d40 + drQ; and may infer that

VI. . . dr = -g‘^dg.r, if gr = c = const.;

a result which evidently agrees with, and includes, the expression 324, XI., for the
differential of a reciprocal.

(5.) A quaternion, q, may happen to bo expressed as a, function of two or more 
ecalar variables, f, u, . . . ; and then it will have, as such, by the present^Article, 
its partial differentials, dig, dug, &C. But because, by 327, VII., wo may in this 
case write.

VII. . . d(g = D(g.d(, du9 = D„7.du, . . .
where thc coefficient! are independent of the differentiale (as in tho ordinary calcu
lus), we shall have (by II.) an expression for the total differential dq, of the form, 

VIII. . . dg = djg + d„g + . . . = Dig. dl + D«g.d«4-. . . ;
and may at pleasure say, under the condition! here eupposed, that tlie derived qua
ternion!,
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IX. . . D(5, D„j, . , .
aro either the Partial Derivativet, or the Partial Differential Coefficient!, of the 
Quaternion Function,

X. . . q = F(t, u, . .
with analogous remarks for tho cate, when tlie quaternion, q, degenerates (comp. 
289) into a vector, p.

330. In general, it maybe considered as evident, from-the 
definition in 320, that the differential of a constant is zero ; 
so that if Q be changed to an?/ constant quaternion, Cf in the 
equation 324, I,, then dQ is to be replaced by 0, in the diffe
rentiated equation, 324, II. And if there be given any system 
of equations, connecting the quaternion variables, q,r,s,... 
we may treat the corresponding system of differentiated equa
tions, as holding good, for the system of simultaneous differen
tials, dg", dr, ds, ...; and may therefore, legitimately in 
theory, whenever in practice it shall be found to be possible, 
eliminate any one or more of those differentials, between the 
equations of this system.

(1.) As an example, let there be the Iwo equations,
I. . . qr = c, and II. . . s = r>,

where c denotes a constant quaternion. Then (comp. 328, (I.), and 324, (1.) ) vc 
have the two differentiated equations corresponding,

III. . . (7. dr + dj. r = 0 i IV. . , d» =.r. dr+ Or.r;
in which the points* might he omitted. The former gives,

V. . . dr = —g'-idj'.r, as in 329, VI.;

and when we substitute this value in the latter, we thereby eliminate the differen
tial dr, and obtain this new differential equation,

ViF.. ds = -rg->.dg.r-j-i.dj.r*.

(2.) The equation I. gives also the expression,

. VII. ..r=g-’e;

the equation II. gives therefore this other expression,

VIII.. . s = (g'’cy = 5** cq-^c,
by elimination before differentiation. And if, in the formula VI., we substitute the 
expressions VII. and VIII. for r and s, wo got tliis other ditfcrontial equation.

* Compare the second Note to 824, (1.).
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IX.d.(g->c)’ = —g-'cg’*.dg.g-<c-g-*.dg.g'’cg‘*cj
which might have been otherwise obtained (comp* again 824, (1.) and (2.) ), under 
tbe form,

X. . . d.(g‘'c)’ = g-ic.d (g"*c) + d(g"’c).g'*c.

331. No special nles are required, for the differentiation of 
functions of functions of quaternions; but it may be instructive 
to show, briefly, how the consideration of such differentiation 
conducts (comp. 326) to & general property of functions of the 
class f{qi q'); and how that property can be otherioise esta
blished.

(1.) Let/ and <// denote any functional operators, such that 

I... ,//g = ?i(/g);
then writing

II. . . r =fq, and III. .'.»= we have IV.. . s = tbg;
whence V. . . d» = di/zg = d^r.

That is, we may (as usual) differentiate the compound function, tteiffq were
an independent variabic, r; and tAert, in the expression so found, replace the diffe~ 
rential ifq by ite value, obtained by differentiating the simple function, fq. For this 
comes virtually to the elimination of the differential dr, or of the symbol dfq, in a 
way which we have seen to be permitted (330).

(2.) But, by the definitions of dfq and f,fq, g'), we saw (325, VIII. IX.) that 
the differential d/g might generally be denoted’ by /.(g, dg), or briefly by y(g, dg); 
whence d^r and dtf/q may also, by an extension of the same notation, be represented 
by the analogous symbols, ^„(r, dr) and i/'„(g, dg), or simply by ^(r, dr) and 
’/'(?. d?)-

(3.) We ought, therefore, to find that

VI. • . i'., {q, dg) = ^fffq, f (g, dg)), if lAg = ^(.fq);
or briefly that

VII... <f-(g, g')= 0(/g, f(,q, q'y), if '1'9

for any two quaternions, q, q, and any two functions, f^; provided that the func
tions/„(g, g'), q>n(g, g'), q') deduced (or derived) from the functions/g,
^7, V'9) according to the law expressed by the formula 325, IV.; and that then the 
limits to which these derived functions fntg, q'), &c. tend, when the number n tends 
to infinity, are denoted by these other functional symbols, ftg, q'), &c.

(4.) To prove this oZAenoise, or to establish this general property VII., of func
tions of this class ffj/, q"), without any use of diff^entials, sve may observe that the 
general and rigorous transformation 825, V., of the formula 325, IV. by which tlie 
functions/n(g, q') are defined, gives for all values of n the equation ;

VIII, . . 9>/(g + n"'g')=^>(/g+n-i/„(g, q"))
=M + »•' f« (.q> 9')):

but also, by the same general transformation,
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IX.. . + = + 9');
lieuce generally, for all values of the number n, as well as for all values of the tico 
independent quaternions, q, 5', and for all forms of the two functions, f, tji, yee may 
write,

X- • • 4'»(9> >1) = f» {<1, 9'))> if 4'9 = 1>f<l i
an equation of which the limiting form, for n = 00, ia (with the notations used) the 
equation VII. which was to be proved.

(5.) It is scarcely worth while to verify the general formula X., by any parti
cular example: yet, merely as an exercise, it may be remarked that if we take the 
forms,

XI.. .fq = q\ <pq = q\ = q*, 
ot which the two first give, by 325, VI., the common derived form,

XII. . . (9, 9") = (9. 99 = 99' + 9'9 + 9'’.
the formula X. becomes,

XIII. . . 4'..(2, g’') = tn(.q*j qq’ + q'q+ n-'q^}
= q^(.qq ++ ”■'^'1^^ + iii+ »'*9'“) 9’+»'* (.ii + ii + i^}^;

which agrees with the value deduced immediately from the function 4*9 or q\ by the 
definition 825, IV., namely,

XIV. . . 4z„(9, 9') = »{(9 + »-’9')‘-9«} 
= n {(9« + n-i (gg' + g'g + n-‘ g'^ ))2 - (gS)^ }. ,

(G.) In general, the tAeorem, or rule, for dji^rentjatingr as in (1.) s function of 
a function, oi & quaternion or other variable, may be briefly and symbolically ex
pressed by the formula,

XV.. . d(gi/)g = d^(/g);
and if we did not otherwise know it, a proof ot its correctness would be supplied, by 
the recent proof of tho correctness of the equivalent formula VII.'

Section 4.—Examples 'of Quaternion Differentiation,

332. It will now be easy and useful to give a short collection of
Examples of Differentiation of Quaternion Functions and Equations, 
additional to and inclusive of those which have incidentally occurred 
already, in treating of the principles of the subject.

(1.) If c be any eonstant quaternion (as in 330), then
I. ..dc = 0; II. . . d(/5 + c)=d/5;

III. . . d.c/5 = cd/g; IV. . . d(/q.c) = d/j.c.
(2.) In general,
V.. . d(/g + ^g +. . ■)=d/q + d^9+ . . . i or briefly, VI. . . dS = Sd, 

if 2 bo used as a mark of summation.
(8.) Also, VII. . , d(/9.^9)=d/9.^9+/5.d^9;

and similarly for a product of more functions than two: the rule being simply, to 
differentiate each factor separately, in its own place, or without disturbing the order

3 G
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ot the factors (coiUp. 318, 319); and then to add together the partial results (comp. 
329).

(4.) In particular, if m bo any positive whole number,

VIII. . . d.g"" = g"> '(/g q’'''^dq,q . .-4 gdg,g”*'* + dg.g'"'** ;
and because we have seen (324, (2.)) that

IX. . . d.g-i = —g-i. dg. g-',

we have this analogous expression for the differential of a power of a guafemion, with 
a negative bnt whole exponent,

X. . ',&.q-^ = -q'”'A.q”‘.q-”'
= — g"* dq. q'm — q"^ dq . q''^'— . . — gl"™ dg . q"^ — q-m dg . q~t.

(f).') To differentiate a square root, we are to resolve the linear equation,*
XI. . . gl.d.gl-t-d.gl.gl = dg; or XT. . . »T'-4r'r = g’, 

if we write, for abrid^ent,
XII. ..r = gl, g'=dg, r’Ad.gl = dr.

(6.) Writing also, for this purpose,
XIII. . . s = Kr=K.gl,

whence (by 190, 19C) it wiU follow that
XIV. . . r»=Nr = Tr’ =Tg, and XV. . . r -4 » = 2Sr = 2S. gl,

tho product and sum of these two conjugate quaiernions, r and », being thus scalars , 
(140, 146), we have, by XI'.,

XVI. . . r**g'« = r:e 4-w';
whence, by addition,

XVII. . . ?' + r-'g's = (r + s)r +r'(r-)-«) = 2r'(r + i)i 
and finally,

XVIII. ..r= ‘V. or XIX. . . d. ol = + .
■ . * zia f2(r + s)’ ■ ■.••"•a-

an expression for the difierential of the square-root of a quaternion, which will be 
found to admit of many transformations, not needful to be considered here.

(7.) In the three last sub-articles, as in the three preceding them, it has been sup
posed, for the sake of generality, that q and dg are two diplanar quaternions ; but 
if in any application they happen, on "the contrary, to he complanar, the expressions 
are then simplified, and take usual, or algehraic forms, as follows;

XX. . . d .g”> = mg*""! dg; XXI. . . d. g"*" = — mg'm'ldg; 
XXII. .. d. gl = ig-1 dg, if XXIII. . . dg (] ] g (123) jand

♦*
* Although such tolutioH of a linear equation, or equation of thejjraf degree, in 

quaternions, is easily enough accomplished in the present instance, yet in general the 
■problem presents difficulties, without the consideration of which the theory of diffe
rentiation of implicit functions of quaternions would be entirely incomplete. But a 
general method, for tho solution of alt such equations, will be sketched in a subse
quent Section,
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because, when g' is complanar with 7, and therefore with ji, or with r, in the ex
pression XVIII., the numerator of that expression may be written as r’* 7' (r+ s).

(8.) More generally, it x be any scalar exponent, vie may write, as in the ordi
nary calculus, but still under the condition of complanarity XXIII.,

XXrV. . . d ,‘7' = a:y'‘*d2; or XXV. .'. jd.' 2* = xq* dx.

333. 'Yhe functions of quaternions, which have been lately diffe
rentiated, may be said to be of algebraic form ; the following are a 
few examples of differentials of what may be called, by contrast, 
transcendental functions of quaternions: the condition of complanarity 

III ?) being hot^ever here supposed to be satisfied, in order that 
the expressions may not become too complex. In fact, with this sim
plification, they will be found to assume, for the most part, the known 
and usual forms, of the ordinary differential calculus.

(1.) Admitting the definitions in 816, and supposing throughout that d2 ||| q, 
VO have the usual expressions tor the differentials of and Ig, namely,

I. . . d. e« = tsdg ; 11. . . dig = 7*’dg.
(2.) We have also, by the same system of definitions (316),'

III. . . dsing = cosgdg; IV. . . dcosg = —singdg; &c.
(3.) Also, if r and dr be complanar with g and dg, then, by 316,

IV'. . . d.g'’ = d.£’’H = g>'d.rlg = g’'0gdr + y'rdg) ;
or in the notation of partial differentials (329),

V. . . dj.g’’= rgr-'dg, and VI. . . dr.g*" = gdgdr.
(4.) In particular, if tho 6ase g be a given or constant vector, a, and if the ex

ponent r b« a variable scalar, t, then (by the value 316, XIV. of Ip) the recent for
mula IV. becomes,

VII. . . d.a‘ = ^ ITa + ^Ua ja'dt.

(5.) If then the base n be a given stnit line, ao that ITa = 6, and Ua =5 a, vo 
may write simply,

VIII. .. d.a‘=^a‘«df, if da = 0, and Ta = l.

(6.) This useful formula, for the differential of a power of a constant unit line, 
with a variable scalar exponent, may be obtained more rapidly from the equation 
808, VII., which gives,

..o- . Irr . fw ,IX . . a* = cos-—+ asm, if Ta = 1;
2 2

since it is evident that tho differential of this expression is equal to the expression 
itself multiplied by Jjradt, because a’ = — 1.

(7.) The formula VIII.*admits also of a simple geometrical interpretation, con- 
• nected with the rotation through t right angles, in a plane perpendicular to a, of
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which rotation, or version, the power of, or tbe versor Ua‘, is considered (308) to be 
tbe instrument,* ox'ttgent, or operator (comp. 293).

334. Besides algebraical and transcendental forms, there are other 
results of operation on a quaternion, g, or oil a function thereof, 

'which may be regarded as forming a new class (or kind) of func
tions, arising out of the principles and rules of the Q,uaternion Cal
culus itsdf: namely those which we have denoted in former Chapters 
by the symbols,

I. . . Ky, Sry, Vg-, Ng, Tg, Ug,
or by symbols formed through combinations of the same signs of 
operation, such as

IL . . SUg, VUg, UVg, «&c.
And it is essential that we should know how to differentiate expres
sions of these forms, which can be done in the following manner, 
with the help of the principles of the present and former Chapters, 
and without now assuming the complanarity, dg ||| g.

(1.) In general, let/"represent, for a moment, any distributive symbol, so that fur 
any two quaternions, j and we shall have the equation,

in... f(<i+2')=/3 +/2';
and therefore alsof (comp. 326, (5.)),

IV. .. f(xq) =xfq, if x be any scalar.
(2.) Then, with the notation 325, IV., we shall have

V. . .Zn(2, 2') = n{/(g + »'’2')-Z?}•
and therefore, by 325, VIII., for any such function Z2i we shall have the differential 
expression.

• VI. . . dfq=Jdq.
(3.) But S, V, K have been seen to be rfistriftKfi’ee symbols (197, 207) ; we can 

therefore infer at once that
VII. . . dKg = Kd2; VIII. . . dS2 = Sdg ; IX. . . dVy = Vd2;

or in words, that the differentials of the conjugate, the scalar, and the vector of a 
quaternion are, respectively, the conjugate, the scalar, and the vector of the differen
tial of that quaternion.

(4.) To find the differential of the norm, N2, or to deduce an expression for 
dNj, we have (by VII. and 145) the equation.

* Compare the second Noto to page 133.
t In quaternions the equation III. is not a necessary consequence of IV., al

though the latter is so of the former; for example, tho*equation IV., but nor tlie 
equation III., will bo satisfied, if wo assume fq = qcq >cq, where c and c' aro any 
two constant quaternions, which do not degenerate into scalars.

    
 



CHAP. II.] differentials of tensor and versor. 413

X. . . dNy = d. fSjj =^7. Kj + q. Kdg; 
but = K. q'^q, by 145, and 192, II.;
and (1 + K).q'Kq = 2S.q-S.q = 2S(Kg'. ?'), by 19C, II., and 198,1.; 
therefore XI. . . dNg = 2S(Kg . dg).

(6.) Or we might have deduced tliis expression XI. for dUg, more immediately, 
by t}io general formula 324, IV., from the earlier expression 200, VII., or210,XX, 
for tho norm of a sum, undef the form, 1

Xr. . . dN'g = h'm. n{N(j + n"*dg) — Ng}

= lim. {2S(Kg.d2) + n"tNd3} 
n-® «

= 2S(Kg. dg).
as before.'

(G.) The tensor, Tg, is the square-root (190) of the norm. Ng; and because Tg 
and Ng are scalars, the formula 332, XXII. may be applied; which gives, for the 
differential of the tensor of a quaternion, the expression (comp. 158),

XII. . . dTg = ^’ = S(KUg.dg) = S^ 

a result which is more easily rfmembered, under the form, 
jlTg g dg
■ Tg g’

(7.) The versor Ug is equal (by 188) to the quotient, g: Tg, of the quaternion 
g divided by its tensor Tg; hence the differential of the versor is,

XIV. . . dUg = d;^ = =V^.Ug-,
Tg \ g q jTq q

whence follows at once this formula, analogous to XIII., and like it easily remem
bered.

XIII. .

and

XV.. . ^’=v5?. 
Ug g

(8.) We might also have observed that because (by 188), we have generally 
g = Tg. Ug, therefore (by 332, (3.)) wo have also,

XVI. . . dg = dTg. Ug 4-Tg. dUg,

dg dTg dUgXVII. .. -A = —- + ;q Tig
if then we have in- any manner established the equation XIII., we can immediately 
deduce XV.; and conversely, tho former equation would follow at once from the 
latter.

(9.) It may be considered as remarkable, that we should thus have generally, or 
for any two quaternions, q and dg, the formula :*

• When the connexion of the theory of normalt to surfaces, with the differential 
calculus of quaternions, shall have been (oven briefly) explained in a subsequent 
Section, tho student will perhaps bo able to perceive, in this formula XVIII., a re
cognition, though not a very direct one, of the geometrical principle, that the radii 
of a sphere are its normals.
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XVIII. . . S (dUy : Uj) = 0 ; ‘or XVIII'. . . dU? : U7 = S-i 0; 
but this oector character of the juoltenl dUj : Ug can easily be confirmed, as fol
lows. Taking the conjugate of that quotient, we have, by VII. (comp. 192, II.; 
158 ; and 324, XL),
I XIX... K (dUg. Ug-i) = KUg-». dKUg = Ug. d (Ug-i) = - dUg. Ug' *; 
whence

XX... (1 + K) (dUg. Ug-‘) 0;
which agrees (by 196, II.) with XVIII.

(10.) The scalar charat^ of the tensor, Tg, enables us always to write, as in 
the ordinary calculus, ,

XXI. . . dlTg = dTg : Tg;
bnt lTg = Slg, by 316, V, j the recent formula XIII. may therefore by VIII. be 
thus written,
XXII... SdIg = dSlg = dTg:dg = S(dg : g);* or XXII'. . . dlg-g''dg = S'*O. 

(11.) When dg III g, this last difiTerence vanishes, by 333, II.; and the equation 
XV. takes the form,

XXIII. . . dlUg = Vdlg = dVlg.

And in fact we have generally, lUg = Vlg, by 316, XX., although the differentials 
of these two equal expressions do not separately coincide with the members of tho re
cent formula XV., when g and dg are diplanar. We may however write generally 
(com’p. XXII.),

XXIV. . . dlUg —dUg : Ug = V(dlg —dg : g) = dlg —dg : g.

335. We have now differentiated the six simple functions 334, I., 
which are formed by the operation of the six characteristics,

K, S, V, N, T, U;
and as regards the differentiation of the compound functions 334, II., 
which are formed by combinations oi those former operations, it is 
easy on the same principles to determine them, as may be seen in 
the few following examples.

whence

(1.) The axis kn. qoi& quaternion has been seen (291) to admit of being re
presented by the eomhination UVg; the differential of this axis may therefore, by 
334, IX. and XLV., be thus expressed!

I.. , d (Ax. g) = dUVg = V (Vdg: Vg). UVg;

„ d(Ax.g)_ dUVg _.^Vdg 
Ax.g UVg Vg'

The dijferential of the axis is therefore, generally, a tine perpendicular to that axis, 
or situated in the plane of the quaternion ; but it vanishes, when the plane (and 
therefore the axis') of that quaternion is constant { o» when the quaternion and its 
difierential are complanar.

l^.") Hence,
III. ..duvg=o, if IV. ..dg Illg; 

and conversely this complanarity IV. may be expressed by the equation III,
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(3.) It i9 easy to prove, on similar principles, that

V. . . dVUg = VdUg = V^V Ug^;

I
VI. . . dSUj = SdUj = S V Ugj

(4.) But in general, for any two quaternions, q and we have (comp. 223, 
(.5.) ) the transformations,

VII. . . S (Vq*. s) = S (V/. V^) = S. j'Vj ;
and when wo thus suppress the characteristic V before dj: g, and insert it before 
Ug, under the sign S in the last expression VI., we may replace the new factor VUj 
by TVU?. UVU? (188), or by TVU?. UV? (274, XIII.), or by - TVU?; UV? 
(204, V.), where the scalar factor TVU? may be .taken outside (by 196, VIII.); 
also for 9"*: Wq we may substitute 1: (Wq . g), or 1: q^^g, because UVg 11) g; 
the formula VI. may therefore be thus written,

VIII...dSUg = -S^.TVUg.

(5.) Now it may be remembered, that among the earliest connexions of quater- 
ternions with trigonometry, the following formulas occurred (196, XVI., and 204, 
XIX.),

and

IX. . . SUg = cos L g, TVUg = sin Z. g;
we had also, in 316, these expressions for the angle of a quaternion,

X. .. Zg=TVlg = TlUg;
we may therefore establish the following expression for the differential of the angle 
of a quaternion,

XI.. . d z g = dTVlg = dTlUg = S .

(6.) Tho following is another way of arriving at the same result, through tho 
differentiation of tho sine instead of the cosine of the angle, or through the calcula
tion of dTVUg, instead of dSUg. For this purpose, it is only necessary to remark 
that we have, by 834, XII. XIV., and by some’ easy transformations of the kind 
lately employed in (4.), the formula,

XII...dTVUg = sS = S^=s(v^.^^=sA.SUg; 

dividing which by SUg, and attending to IX. and X., we arrive again at the ex
pression XI., for the differential of the angle of a quaternion.

(7.) Eliminating S (dg: gUVg) between VIII. and XII., we obtain the differen
tial equation,

XIII... SUg. dSUg + TVUg. dTVUg = 0 ;

of which, on accomit of the scalar character of the differentiated variables, the inte
gral is evidently of the form,

XIV. . . (SUg)2 + (TVUg)3 = const.5

and accordingly we saw, in 204, XX., that the sura in the 6rst member of this equa
tion is constantly equal to positive unity.
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(8.) The formnlB XI. may also bc thus written,
XV. ..dZg = S(V(dg:g):UVg)i

with the verification, that when we suppose dj'|||j, os in IV., and therefore 
ljdUVj.= 0 by ni., the expression under the sign S becomes tho dilTerential of tho 
quotient, VIj: UVg, and therefore, by 31G, VI., of the angle z q itself.

336. An important application of the foregoing principles and 
rules consists in the differentiation of scalar functions of vectors, when 
those functions are defined and expressed according to the laws and 
notations of quaternions. It will he found, in fact, that such diffe
rentiations play a very extensive part, in the applications of quater- 

• nions to geometry; but, for the moment, we shall treat them here, as 
merely exercises of calculation. The following are a few exam
ples.

(1.) Let p denote, in these sub-articles, a variable vector: and let the following 
equation be proposed,

I. . . r® -t- p’ = 0, in which Vr = 0,
so that r is a (generally variable) ecalar. Differentiating, and observing that, by 
279, III., pp’ + p'p = 2Spp', if p' be any tecond vector, such as we suppose dp to be, 
we have, by 322, VIII., and 324, VII., tho equation,

II. . . rdr + Spdp = 0; or 111. . . dr = —r-'Spdr = rSp''dp.
In fact, if r be supposed positive, it is here, by 282, II., the tensor of p; so that this 
last expression III. for dr is included in the general formula, 334, XIII.

(2.) K this tensor, r, be constant, the diflerential equation II. becomes simply,
IV. ..Spdp = 0, if — p2 = const, or if dTp = 0.

(3.) Again, let the proposed equation be (comp. 282, XIX.),
V. . . r’ = T(ip +pr), with di = 0, d«: = 0, 

so that 1 and c are here two constant vectors. Then, squaring and differentiating, 
■ye have (by 334, XI., because Kip = pi, &c.),

VI. . . 2r’dr = JdN(ip-1-pic)= S(pi-i-«:p) (idp+ dp«:)
= (i2 -i- (c®) Spdp -b 2Scpidp;

VII. . , 2r-ldr = Si'dp,
if V bo an auxiliary vector, determined by the equation,

VIII, . . r*v = (i® -i- K®) p + 2VKpi; 
which admits of several transformations.

(4.) For example we may write, by 295, VII.,
IX. . . rSv = + (c®) p + Kpi -i- ipK

= t (tppc) + (c (pH-icp) J
or, by 294, III., and 282, XII.,

X. . . = (i® + c®) p + 2 (cSip - pSiic + iSftp)
= (‘ - *)’ P + 2 (iScp + KStp); Sx.

or more briefly,
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(6.) The equation V. gives (comp. 190, -V.), When squared without differentia
tion,

XI. . . = N (ip + pK) = (tp + pk) (pi + Kp)
= (? + K^yp^ + tpKp + pKpi

= (l’ + K^')p'‘ 2SlpKp 
= (t — k)* p’ + 4Sip Sirp = &c., 

by transformations of the same kind as before; wc have therefore, by the recent ex
pressions for r*v, the following remarkably simple relation behreen the two eariaUe 
vector*, p and r,

XII. . . Svp = 1; or XIP. . . Spv= 1.
(6.) When the tcalar, r, is constant, we have, by VII., the differential equa

tion,
XIII... Svdpaa 0; wheuce also XJV... Spd«' = 0, by XII.;

a relation of reciprocity thus existing, between the two vector* p and v, of which the 
geometrical tignification will soon be seen.

(7.) Meanwhile, supposing r again to vary, we see that the last expression VI. 
for 2r’dr may be otherwise obtained, by taking half the differential of either of the 
two last expanded expressions XI. for r*; it being remembered, in all these little 
calculations, tliat cyclical permutation of factor*, under the tign S, is permitted 
(223, (10.)), even iftho^ factors be quaternions, and whatever their numler may 
be: and that if they be vectors, and if their number bo odd, it is then permitted, 
under the sign N, to invert their order (295, (9.)), and so to write, for instance, 
VtpK instead of Vxpt, in the formula VIII.

(8.) As another example of a scalar function of a vector, let p denote the proxi
mity (or nearness) of a uan’ab/c point P to the origin o; so that

XV. . . p = (-p’)-l = Tp-i, or XV'. . . p-» + pi! = 0,
XVI. . . dp = Svdp, if XVII. . . v=p’p=p2np;

v being here a new auxiliary vector, distinct from the one lately considered (VIII.), 
and having (aa we see) the same versor (or the same direction') as tbe vector p it
self, but having its Sensor equal to the square of the proximity of r to o ; or equal 
to the fnuerse square of the distance, of one of those two points from the other.

337. On the other hand, we have often occasion, in the applica
tions, to consider vectors as functions of scalars, as in 99, but now 
with forms arising out of operations on quaternions, and therefore 
such as had not been considered in the First Book. And whenever 
we have thus an expression such as either of the two following, 

L..p = 0(<), or II. . . p = ^*(s, f),
for the variable vector of a curve, or of a surface (comp, again 99), s 
and t being two variable scalars, and ^(<) and ^{s, <) denoting 
functions of vector form, whereof the latter is here supposed to be en
tirely independent* of tUac former, -vio, ranf then employ (comp. 100,

Then,

* We are therefore not employing here the temporary notation of some recent 
Articles, according to which we should have had, d^j = 1^(9, dy).

3 H
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(4.) and (9.)» and the more recent sub-articles, 327, (5.), (6.), and 
329, (5.)) the notation of derivatives, total or partial; and so may 
•write, as the differentiated equations, resulting from the forms I. and
II. respectively, the following:

III... d/>=^'t.dt = p'dt=D,p,d<;
IV. . . dp = d,p + d(P = D,/>.ds + .df;

of which the geometrical significations have been already partially 
seen, in the sub-articles to 100, and will soon be more fully deve
loped.

VI. .

(1.) Thus, for the circular locut, 314, (1.), for which
V. ..p = a<j3, Ta=l, S«/3 = 0,

ve have, by 333, VIII., the following derived vector,

(2.) And for the elliptic locus, 314, (2.), for which
VII. . . p = V.a*/3, Ta = l, but not Saj3 = 0,

we have, in like manner, this other derived vector,

VIII. . , p'= Drp = V. a^i/3.

(3.) As an example of a vector-function of more scalars than one, let us resume 
the expression (308, XVIII.),

IX. . . p = rkfjsij^k-t;
in which we shall now suppose that tbe tensor r is given, so that p is the variable 
vector of a point upon a given spheric surface, of which the radius is r, and the cen
tre is at the origin; while s and f are two independent scalar variables, with respect 
to which the two partial derivatives of tbe vector p are to be determined.

(4.) The derivation relatively to < is easy; for, since ijk aro vertor-un»7s (298), 
and since we have generally, by 833, VIII.,

X.. . d. da, and therefore XI... D,. a* = a’'*’ D,s,

if Ta = 1, and if a be any scalar function of t, we may write, at once, by 279, IV.,

XII. .. Dip = (kp - Ob') - rrNkp
and wc see that

XIII. .. SpDtp = O,

a result which was to be expected, on acconnt'Of the equation,
XIV. . . p» + r2 = 0,

which follows, by 308, XXIV., from the recent expression IX. for p,
(6.) To form an expression of about the same degree of simplicity, for the other 

partial derivative of p, we may observe that Jr*’ kj-‘ is equal to its own vector part 
(its scalar vanishing) ; hence
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XV. . . D,p= nh*jh'*p‘, or XVI. . . = =
hy the transformation 808, (11.). And because the scalar of kfjh-* is zero, We have 

. thus the equation,
XVII. . .SpD,p = 0,

which is analogous to XIII., and might have been otherwise obtained, by taking tbe 
derivative of XIV. with respect to the variable scalar s.

(6.) The partial derivative D,p must be a vector ;, hence, by XV. or XVI., p 
must be perpendicular to the vector or h'*^j, orjk-**; a result which, under
the last form, is easily confirmed by the expression 815, XII. for p. In fact that 
expression gives, by 815, (3.) and (4.), and by tho recent values XII. XVI., these 
other forms for the two partial derivatives of p, which have been above considered : 

XVIII. . . Dip = irrk^t^.f-, 'SAli. ..-O,p = ;
which might have been immediately obtained, by partial derivations, from tbe ex
pression 316, XII. itsqlf, and of which both aro vcctor-ybrnis.

(7.) And hence, or immediately by derivating the expanded expression 316, 
XUI., we obtain these new forms for^the partial derivatives of p:

XX. . . Dip = irr(Jcostir — isin fir) sinsir; 
XXI. . . D,p = 7iT{(»costir+jsintir)coss7r — A sin sir}.

(8.) We may add that not only is the variable vector p perpendicular to each ol 
tlie two derived vectors, 'D,p and Dip, but also they are perpendicular to each other ; 
for we may write, by XII. and XVI.,

XXIL . . S(D,p.Dip) = — ir^S.Jfitjp'^h = ir’r^S.A’*t= 0;
and tbe same conclusion may be drawn from the exprestions XX. and XXL

(9.) k vector may be considered as a function of three independent scalar varia
bles, such as r, », f; or rather it must be so considered^ if it is to admit of being the 
vector of aa arbitrary point of space rand then it will have a total differential (329) 
of the trinomial form,

XXIII. . . dp = drp + d,p + dip = Drp. dr + D,p. d«+ Dip. d< ; 
and will thus have three* partial derivatives.

(10.) For example, when p has tbe expression IX., we have this third partial 
derivative.

XXIV. . . Drp = r-ip = Up, 
which may also be.thus more fully written (comp, again 815, XIII.),

XXV.. . D,p = hfikf’k-t - (j coa tn- +j sin tw) sin sir + k cos sir; 
and we see that the three derived vectors,

XXVI.. • Drp, ll,p. Dtp, ■-
compose here a rectangular system.

* That is to say, three of the first order; for we shall soon have occasion to con
sider successive differentials, of functions of one or more variables, and so shall he 
conducted to the consideration of orders of differentials and derivatives, higher than 
the first.
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Section 5__ On Successive Differentials, and Developments,
of Functions of Quaternions.

338; There will now be no difficulty in the successive dif
ferentiation, total or partial, qf functions of one or more qua
ternions ; and such differentiation will be found to be useful, 
as in the ordinary calculus, in connexion with developments of 

functions: besides that it is necessary for- many of those geo
metrical and physical applications of differentials of quater
nions, on which we have not entered yet. 'A few examples of 
successive differentiation may serve to show, more easily than 
any general precepts, the nature and effects of the operation; 
and we shall begin, for simplicity, with explicit functions of one 
quaternion variable.

(1.) Take then the square, q\ of a quaternion, as a function/q, which is to be 
tuiice differentiated. We saw, in 324, VII., that n first differentiation gave the 
equation,

i. . . dfq.= i.q^ = q.dq + Aq.q-,
but we are now to difterenliate aqain, in order to form the second di^rential d^fq 
of the/«ncf»oa qt, treating tbe differential of the variable q as »ri7/ equal to dy, and 
in general writing di!7= d’y, where d'-’y is a neio arbitrarg quaternion, of which the 
tensor, Td^y, need not be small (comp. 322). And thus we get, in geiteral, this 
tun’ce differentiated expression, or differential of the second order,

II. . . d^yy = d2.y2 = y.d’y + 2dy*-l-d®5.y.
(2.) The second differential of the reciprocal of a quaternion is generally (comp. 

324, XI.),
III. . . d».y-'=2(y-idy)’>y-t-y-id’y.y->.

(3.) If p be a variable vector, then (comp. 336, (1.)) we have, for the first and 
second differentials of its square, tbe expressions:

IV. . . d. p2 = 2Spdp 5 V.’.. d2. p2 = 2Spd2p + 2dp».

(4.) If/p be any other scalar function of a variable vector p, and if (comp, again 
the sub-articles to 336) its first differential be put under the form,

VI.. . d/p = 2Sfdp, when v is another variable vector,
then the second differential of the same function may be expressed as follows;

VII. . . d*/p = 2Si/d2p<+ 2Sdi>dp;
in which we have written, briefly, Sdvdp, instead of S(dv.dp).

(5.) The following very simple equation will bo found useful, in the tlieory of 
motions, performed under the influence of central forces i

VIII. . . dVpdp = Vpd-p ; because V. dp® = 0.
(6.) As an example of the second differential of a qiiaternion, considered as a
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function of a scalar variable (comp. 8S3, VIII., and 337, (I.}), the following may 
be assigned, in which a denotes a given unit line, so that = - 1, da = 0, but ac 
is a variable scalar;

IX. .. d-.a=^ = d^^a»‘id«^ = ^a’^'d’ce—j a*da:2.

(7.) The secund differential of the product of any two functions ot a quaternion 
q may be expressed as follows (comp. II.):

X. . . d* (^fq. ^g) = Atfq. fiq -t iAfq. A<t>q +fq. d»^g.

339. The second differential, d’g, of the variable quaternion q, 
enters generally (as has been seen) into the expression of the second 
differential d’/j, of the function fq, as a new and arbitrary quater
nion : but, for that very reason, it is permitted, and it is frequently 
found to be convenient, to assume that this Sdcond differential d^g is 
equal to zero: or, what comes to the same thing, that the first dif
ferential dg is constant. And when we make this new supposition,

I. . . dg = consfanf, or I'.. , d?q = 0,
the expressions fpr d’/g become of course more simple, as in the 
following examples.

(1.) With this last supposition, I. or I'., we have the following second differen
tials, of the square and the reciprocal of a quaternion:

n.. .d3.9S = 2d9»; III... d’.9-‘ = 2(9-id9)’9-> = 29-'(d9.9-i)».
(2.) Again, if we suppose that co, ci, C2 are any three coaatant quaternions, and 

take tho function, ■
IV. . .fq=ct)qciqct,

we find, under the same condition I. or I'., that its first and second differentials are, 
*

V. . . dyj = codg. cijcs + cojcjd^. cj; VI. . . A-fq =: 20i)d9. Cidj. cj;
in writing which, the points* may be omitted.

(3.) Theyirst differential, dj, remaining still entirely arfcitrary (comp. 822, (8.), 
and 825, (2.) ), so that no supposition is made that its tensor Td; is small, although 
we note suppose this differential dj to he constant (I.) we have rigoronslt/,

Vn. . . (9+d9)3= ff« + d. + ^d’. I

an equation which may he also written thus,
VIII. .. (9 + d9)« = (1 + d+ 4d»).

(4.) And in like manner we shall have, more generally, under the same condi
tion of constancy of dg, the equation,

IX. ../(9+d9) = (i + d+jd2)/9,

if the function yg be the sum oi any number of monomes, each separately of the ybrm

* Compare the second Note to page 399,
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t'V., and therefore each rational, integral, and homogeneoua of the aecondiimeruion, 
with respect to the variable quaternion, g; or of auch monomes, combined with ethers 
of the firat diraensioD, and with constant terms: that is, if ao, ba, &i, b'o, b'l, .. and 
ett, cj, C2, e'a, c'l, e'j, .. be any coTUtant guaterniona, and

X.. . /g = Oo + Siujtu + 2cogcigc2.

340. It is easy to carry on the operation of differentiating, to the 
third and higher orders; remembering only that if, in any former 
stage, we have denoted the first differentials of q, dq,.. by dg, d’g,.. 
■we then cowtenMe so to denote them, in every subsequent stage of the 
successive differentiation : and that if we find it convenient to treat 
any one differential as constant, we must then treat all its snccmwe 
differentials as vanishing. A few examples may be given, chiefly 
with a view to the extension of the recent formula 339, IX., for the 
function f{q + dq) of a sum, of any two quaternions, q and dg, to po
lynomial forms, oi dimensions higher than the second.

(1.) The third differential of a aquare is generally (comp. 338, II.),
I.. . d®. ga = g. d’g + d’g. q + 3(dg. d*g + d’g. dg).

(2.) More generally, the third differential of a product of two quaternion fune- 
tiona (comp. 338, X.) may be thus expressed;

II. . . e?{fq.<t^q) = e?fq.<^q-\-Ze?fq.d^q + Zdfq.df^q+fq.d?<tiqA
(3.) More generally still, tbe nU^ differential of a product is, as in the ordinary 

calculus,
III. , . d”(/g.^g) = d'>/g.^g + «d"’*/g.d^g + n2d»'2/g.d3^g+ .. +/g.d"^g,

1) . _n(»-l)(n-2) „
if ne------ 2—, "3=--------

the only thing peculiar to quaternions being, that we are obliged to retain (gene
rally) the order of thefactora, in each term of this expansion III.

(4.) Hence, in particular, denoting briefly the function fq by r, and changing 
^gtog.

IV.. . d".rg = d'‘r.g + nd"'*r.dg, if d’g = 0.
(5.) Hence also, under this condition that dg is constant, if c.be any other con

stant quaternion, we have the transformation,

l + d + id« + 2^gd3 + . ..+ ’

1 if d^r = 0.

V...^l + d + i<lU^gd3 + ... + g^^d»yrgc =

^1+d+id»+^d3 +...+(g+dg)c.

(6.) Bence, by 339, (4.), it is easy to infer that if we interpret the agmbol by 
the equation (comp. 316, I-),

VI. . . fl =? 1 + d + 4d« + d’+ &c.,

that is, if VC interpret this oiAer symbol t''/g, as concisely denoting the aeriea which
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is formed from/j, by operating on it with this symbolic development; and if tho 
function fq, thus operated on, be any finite polynome, involving (like the expression 
839, X.) no fractional nor negative exponents: ve may then write, as an exlensioa 
of a recent equation (339, IX.), the formula:

VII... sy3=/(9+dj), if d53= 0;
which is here a perfectly rigorous one, all the terms ot this esTmnston for st function 
cf a sum of two quaternions, j and dg, becoming separately equal to zero, as soon as 
the symbolic exponent ot d becomes greater than the dimension of the polynome.

(7.) We shall soon see that there is a sense, in which this exponential transfor- 
mation VII. may be extended, to other functioned forms which are not composed as 
above: and that thus an analogue of Taylor's Theorem can be established for Qua
ternions. Meanwhile it may bo observed that by changing dg to Ag, in tho finite 
expansion obtained as above, we may write the formula as follows:

VIII. . . tVg =/(g + Ag) = (1 + lf)fq, Ot briefly, IX. . . f>> = 1 + A;
which last symbolical equation may be operated on, or transformed, as in the usual 
calculus of differences and differentials. For instance, it being understood that we 
treat A’g as well as d^g as vanishing, we have thus (for any positive and whole ex
ponent m), the two following transformations of IX.,

X. . . A™ = (s') — I)’", and XI.. . d™ = (log (1 + A) )”•;
the results of operating, with the symbols thus rguaied, on any polynomial function 
fq, ot the kind above described, being always finite expansions, which are rigorously 
equal to each other.

341. Let Fx and ^x be any two functions of a scalar va
riable, wliich both vanish with that variable; so that they 
satisfy the two conditions,

J. . . 7?b = 0, ^0 = 0.
Then the three simtdtaneotis values,

II. . . X, Fx, cj>x,
of the variable and the tAVO functions, are at the same time 
(comp. 320, 321) three simultaneous differences, as compared 
with this other system of three simultaneous values,

III. . . 0, JI), ^0.
If, then, any equimultiples,

IV... nx, nFx, ntjix, 
of the three values II., can be made, by any suitable increase 
of the number, n, combined with a decrease of the variable, x, 
to tend together to any system of limits, those limits must (by 
the definition in 320, compare again 321) admit of being con
sidered as a system of simultaneous differentials.
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y. . . dx, dFr, d0a:,
answering to the system of initial values III.; and must be 

proportional to the ultimate values of the connected system of 
derivatives,

VI. . . 1, F'x, q>x, when x tends to zero.
We may therefore write, as expressions for those ultimate va
lues of the two last derived functions,

VII. . . FQ rs lim. nPl, A'Q = lim. nA -,

And even if these last valuer vanish, or if the tioo new condi
tions

\ if /1O = 0O = O. 
n

tfs'O 0,
are satisfied, so that x, F'x, and ^'a; are now (comp. II.) a new 
system oi simultaneous differences, we may sft’ZZ establish the 
following equation of limits of quotients, which is independent 
of these Zosf conditions VIII.,

IX. . . lim(Fj;:^a:) =lim if 2*10 = 00 fO;

it being understood that, in certain cases, these two quotients 
mtif both vanish with x ; or vaity tend together to infinity, when 
X tends, as before, to zero.

VIII. . . FQ = 0,

(1.) This theorem is so important, that it will not be useless to confirm it by a 
geometrical illustration, which may at the same time serve for a geometrical proof; 
at least for the extensive case where both the functions fx and are of scalar forms, 
and consequently may be represented, or constmefed, by the corresponding ordi
nates, XT and XZ (or ordinates answering to one common abscissa OX), of two 
ctirves OgY and OzZ, which are in one plane, and set out from (or pass through) 
one common origin 0, as in the annexed Figure 76. We shall afterwards see that 
the result, so obtained, can be extended to quaternion functions.

(2.) Suppose then, first, that the ordinates of these two curves ard proportional, 
ot that they bear to each other one fixed and constant ratio-, so that the equation,

X. . . XT : XZ =: xz,
la satisfied for every pair of abscissa, OX and Ox, however great or small the corre
sponding ordinates may be. Prolonging then (if necessary! the chord Tig of the 
yirst curve, to meet tbe axis o! abscissie in some point t, and so to determine a sub
secant tX, we see at once (by similar triangles) that tlie corresponding chord Zz of 
tbes econcl curve will meet the same axis in the same point, t; and therefore that 
it will determine ^rigorously) the same subsecant, fX.. •
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(3.) Hence, if tbe point x be conceived to approach to X, so that the secant Syt 
oi the first curv'e tends to coincide with the tangent Y'f to fAaf curve at tho point Y,

Fig. 75.

the tecant Zz( of tbe second curve must tend to 
coincide with the lino ZT, which line therefore 
must be the tangent to that second curve: or in 

, other words, corresponding subtangents coincide, 
and of course are equal, under the supposed con
dition X., of a constant proportionality of ordi
nates.

(4.) Suppose next that coiTcsponding ordi
nates only tend to bear a given or constant ratio 
to each other; or that their (now) variable ratio 
tends to a given or fixed limit, when the com
mon abscissa is indefinitely diminished, or when 
tlie point X tends to 0; and let T be still the
variable point in which the tangent to the first curve at Y meets the axis, so that the 
line TX is still the first subtangent. Then the corresponding tangent to the second 
curve at Z will not in general pass through the point T, bnt will meet the axis in 
some different point U. But the ratio of the two corresponding subtangents, TX and 
UX, which had been a ratio of equality, when the condition of proportionality X. 
was satisfied rigorously, will now at least fend tosncA a ratio; so that we shall have, 
under this new condition, of tendency to proportionality of ordinates, the limiting 
equation,

XI. . .lim(TX.:UX) = l;
whence tho equation IX. results, under the geometrical form,

XII. . . lim (tan XTY: tan XUZ) = lim (XY ; XZ).
(6.) We might also have observed that, when the proportion X. is riporoKs, cor

responding areas* (such as a;XYy and xXZz) of tho two curves aro then exactly in 
the given ratio of the ordinates ; so that this other equation, or proportion,

XIII. . . OXYyO : OXZzO = XT: XZ,
is then also rigorous. Hence if wo only suppose, os in (4.), that the ordinates tend 
to some fixed limiting ratio, the areas must tend to the same ; so that if the second 
member oi tlie equation IX. have any definite value, as a limit, the first member 
must have the same: whereas the recent proof, by subtangents, served rather to 
show that i/tho first (or deft hand).Zimif in IX. existed, then the second limit in 
that equation existed also, and was equal to the first.

(6.) If tbe/unefton Fx be a quaternion, -vte may (by 221) express it as follows, 
XIV. . . Fx= If -I iX + jr+kZ,

where If, X, F, Z are four scalar functions of x, of which each separately can be

• Compare the Fourth Lemma of the First Book of the Principia; and see espe- 
ciallj' its Corollary, in which the reasoning of the present sub-article is virtually an
ticipated.

3 1
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constructed, as the ordinate of a plane curve; and tlio recent geometrical* reasoning 
will thus apply to each of them, and therefore to their linear combination Fx: which 
giiaternion function reduces itself to a vector function of x, when IF = 0.

(7.) And if i/za: were another quaternion or vector function, we might first tub- 
stitute it for Fx, and then eliminate thc scalar function <fix; so that a limiting equa
tion of thc form IX. may thus bc proved to hold good, when both thc functions com
pared arc vectors, or quaternions, supposed still to vanish with x.

(8.) The general considerations, however, on which the equation IX. was lately 
established, appear to be more simple and direct; and it is evident that they give, 
in like manner, this other but analogous equation,.in which F"x and aro second 
derivatives, and the conditions VIII. are now supposed to be satisfied:

XV. . . lim (F'z : = lim {F‘'x : ^"x"), if F'O = 0, 0'0 = 0.

And so we might proceed, as long as successive derivatives, of higher orders, conti
nue to vanish together.

(9.) Hence, in particular, if we take this sca/ar/orm,

2.3...m’
XVI.. . 0a; = 

which evidently gives the values,
XVII. ..00 = 0, 0'0 = 0, = = 0(m)o=l,

and if we suppose that tbe function F.c is such that

XVIII. . . FO = 0, F O = 0, /"'O = 0, . . . Fbn-DO = 0, 
wliile /’(’’■Jo has any finite value, wo may then establish this limiting equation: 

XIX. . . lim (^Fx; 0®) = 7i’("*)0 ;

in which the function Fx, and the value F^m^o, are here supposed to be generally 
quaternions ; although they may happen, in particular cases, to reduce themselves 
(292) to vectors, or to scalars.

* Instead of the equation IX., it has become usual, in modern works on the Dif
ferential Calculus, to give one of tho following form (deduced from principles of La- 
grange):

0 denoting some proper fraction, or quantity between O'and 1. And a geometrical 
illustration, which is also 8 geometrieai proofs when functions Fx and <px can be 
constructed (or conceived to be constructed) as the ordinates of two plane curves, is 
sometimes derived from the axiom (or geometrical intuition')^ that the chord of any 
finite and plane arc must be parallel to ttte tangent, drawn at some point of that 
finite arc. But this parallelism no longer exists, in general, when the curve is one 
of double curvature ; and accordingly tho equation in this Note is not generally true, 
when iVie functions arc quaternions ; or even when one oi them is a quaternion, or 
a oector.
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342. It will now be easy to extend the Exponential Trans
formation 340, VII.; and to show that there is a sense in 
which that very important jPornm/u,

I- . • tfq {q d- (1^), if d=7 = 0, 
which is, in fact, a known* mode of expressing the Series or 
■Theorem of Taylorholds good for Functions ge
nerally, and not merely for those functions offinite and poly
nomialform, with positive and ncliole exponents, for which it 
was lately deduced, in 340, (6.). For let fq and f (g + d^’) 
denote any two states, or values, of which neither is of
any function of a quaternion;, and of the m first differentials,

II. . . (\fq, ([fq,.. d”*/7, in which dy = const.j 

let it be supposed that no one is infinite, and that the last oi 
them is different from zero; while all that precede it, and the 
functions fq and f{q + dg') themselves, may or may not happen 
to vanish. Let the first m terms, of the exponential develop-' 
ment oi the symbol (c"* - [}fq, be denoted briefly by q,, q2, • • 
qm ‘i and let r^ denote what may be called the remainder of the 
series, or the correction which must be conceived to be added 
to the sum of these m terms, in order to produce the exact value 
of the difference,

III. . . £ffq =f {q + £i,q) -fq =f(^ + dy) -fq ;
in such a manner that we shall have rigoronstg, by the wota- 
tions employed, the equation,

IV"... /(y + dy) =75’ -(qi-i-q2 + >. + qm + r,n, where y,„ = f t . 

f Azs term q^, being different from zero, but no one of the terms 
being infinite, by what has been above supposed. Then we 
shall prove, as a Theorem, that

* Lacroix, for instance, In page 1G8 of the First Volume of his larger Treatise 
on the Differential and Integral Calculus (Paris, 1810), presents the Theorem of 
Taylor under the form,

, d« d®« d’u d*u „ 
n — « + “ + J—2 d" Q d" 2'2 g"4 ’

where u' denotes the value which the function « receives, when the variable x re
ceives the arfcitrary incl ement dj: (I’accroissemcut quclconque dj:).
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V. . I* lim (Tr,„: = 0, if lim. Td^ = 0;

or in words, that the tensor of the remainder may be made to 
bear as small a ratio as we please, to the tensor of the last term 
retained, by diminishing the tensor, without changing the ver
sor, of the differential (or difference') dy. And this very gene
ral result, which will soon be seen to extend to functions of 
several quaternions, is in the present Calculus that analogue 
of Taylor’s theorem to which we lately alluded (in 340, (7.) ) ; 
and it may be called, for the sake of reference, “ Taylor’s 
Theorem adapted to Quaternions."

vn...

(1.) Writing
vm - J

VI. . . J’®=/(g + a:dg)-/g-iEd/g-—d2/g-. )d-"-l/g,

we shall have the following successive derivatives with respect to a?,
r F'x = d/Cg + ®dg)-d/g-

o»»n-3F'x = iHtf^q + wdg) - e?fq -
J’(’""’)a: = d”i"*/(g + icdg) - d”*' 'fq ; and finally, 

. Fimix r= + aidg);

because, by 327, VI., and 324, IV.,
VIII. .. D/(g + «dg) = lim.n{/(g + irdg+n-idg)-/(g+xdg)} =d/(g+a:(lg), 

n
and in like manner, '

IX. . . + idg) = d2y(g + a:dg), &c.;
the mark of derivation D referring to the scalar variable x, while d operates on g 
alone, and not here on x, nor on dg.

(2.) We have therefore, by VI. and VII., the values,
X... Fo=o, F'o=o, r"o = o,.. r(">-«o=o,

whence, hy 341, XIX., we have this limiting equation.

F(m)0 = ;

or

Xn...ljm(r:r:,px) = l, if =

(3.) But these two funetions, Fx and tfSt, are formed by IV. from + rm and 
f/in, by changing dgtoxdy,; and instead of thus multiplying dg by a decreasing sca
lar, X, we may diminish its tensor Tdg, without changing its versor Udg. Wo may 
therefore say that, when this is done, tho quotient (^qm + rm) : gm tends to unity, or 
this other Quotient r,.,: qm to zero, ns its limit; or in other words, tlie limiting equa
tion y. holds good.
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(4.) As an example, let the fanclion fq be the reciprocal, q-^-, then (comp. 339,
III.) its m'A differential is (for dg = const.), •

XIII. .. d'»/3 = d"'. g‘> = 2.3.. .m.g-'(-r)”', if r = dg.3'’;

and it is easy to prove, witkoict differentials, that
XIV. . . (3 + rg)-* = g->(l + r)'*=g-*{1 - r + r^ -.. + (- r)’" + (- r)»>’> (1 + r)'*}; 
wc have therefore here

XV. . . gm = g-’ (- r)'», r,„ = - q„r (1 + r)"', T(rm : qm") = Tr. T(1 + r)-l;
and this last tensor indefinitely diminishes with Tdg, the quaternion q being sup
posed to have some given value different from zero.

(6.) In general, if we establish the following equation,

XVI. . ./(? + n->dg)=/g + n-*d/g + ^ d’/g + .. + 3

as a definitional extension e( the equation 325, V,; and if we suppose that neitlier 
tlie function/g itself, nor any one of its differentials as far as d™'*/3 is infinite; thc 
result contained in the limiting equation XI. may then be expressed by the formula,

XVII. . =
which for the particular value ro = 1, if we suppress the upper index, coincides with 
the form 325, VIII. of the definition dfx, but for higher values of m contains a theo
rem : namely (when d”'fq is supposed neither to vanish, nor to become tnjinife), 
what we have called Taylor's Theorem adapted to Quaternions.

343. That very important theorem may be applied to cases, in 
which a quaternion (as. in 327, (5.)), or a vector (as in 337), is ex
pressed as tn function of a scalar; also to transcendenial  forms (333), 
whenever the diiFerentiations can be effected; and to those neiD 
forms (334), which result from the peculiar operations of the present 
Calculus itself. A few such applications may here be given.

(1.) Taking first this transcendental and quaternion function of a variable scalar,
I. . . 3 = a‘, with Ta = 1, da = 0, d< = const,,

we have, by 333, VIII., the general term,
„ d”>.a‘ a' I 7rad<\„ a'(®a)’"

2.3..nt 2.3..m\ 2 / 2.3..nt’

dividing then t’’. a‘ by a*, we obtain an infinite series, which is found to be iorrcct, 
and convergent; namely (comp. 308, (4.) ),

•fa'a'l™ n-dt . irdtHI. . . a'J‘ = H-a:a + '^+.. + -\-Z_ + ..=£»' = cos-5- + asin—-.
2 2.3.. m b

(2.) Correct and ^n£<e eaTJansions, for 8(3 + 03), V(} + d3), £(3 + d3), and 
N(g + dg), are obtained when we operate with s'* on S3, V3, Kq, and N3J for ex
ample (dg being still constant), the third and higher differentials of Ng vanish by 
334, XL, and we have
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IV. . . {'‘-N'/ = (1 + d + Jd2) Ng = Ng + 2S(Kg. dg) + Ndg = N(g + dg); 
on expression for the norm of a sum, which.agrees with 210, XX , and with 200,
VII.

(3.) To develope, on like principles, the tensor and versor of a sum, let us again 
write r for dg: g, and denote the scalar and vector parts of tliis quotient by s and v; 
so that, by 334, XIII. and XV.,

' V.... = Sr = S^2=^’; VI...o = Vr = V^^ = ^’.

<1^1
(4.) Then writing also, for abridgment, as in a known notation of factorials, 

m
VII. ..[-!] = (-!).(-2).(-3)....(-m),

we shall have, hy 342, XIII., dg being still treated ns constant, the equation,m m
VIII. . . d^Cs + v) = d-"r = [- 1]r”'‘i = [_ 1] (« + »)>nH, 

of which it is easy to separate the scalar and vector parts; for example,
IX. . . ds = -S.(s + c)’=-(s2+«>2); dD = -V.(s + o)2=-2so. 

(6.) AVe have also, by V. 'and VI.,

X. ..^’ = (s + d)^^ = ...=(s + d)-"l;

XI. .."-^’=(0 4 d) = ..=Cv +.d)». 1 i

the notation being such that wo have, for instance, by IX.j
XII. . . d) 1 = »; (» 4 d)'’ 1 = (s + d)s = s''* + ds = — j

XIII. . . (i) + d)l = v; (0 + d)’1 = (» + d)t, = a® + do =»2_ 2jo.

(6.) Tbe exponential formula 342, I., gives, therefore,
XIV. . . T(g + dg) =£‘>Tg = s’+di.Tg ;
XV. . . U(g + dg)=f<>Ug = £C+Jl.Ug;

or, dividing and substituting,

XVL .. T(l + s + o) = f«+41; XVII. . . U(I + « + o) = f’^‘'li 
s and o being here a scalar and a vector, which aro entirely independent of each 
other; bnt of which, in the applications, the terssors must not bo taken too large, in 
order that the series may conoerge.

(f.) The symbolical expressions, and XVII., for those two series, .may be 
developed by (4.) and (5.); thus, if we onl.v write down the terms which do not exceed 
the second dimension, with respect to s and v, we have by XII. and XIII. the deve
lopment.

XVIII.. , T'(l + « + ®)= 1 + » — + ...,
XIX. . . U(1 + » +1>)= 1 + e + (jo* — »p)+...;

of which accordingly the product is 1 + » + to the same order of approximation.
(8.) A/unction of a sum ol tvro quaternions cun sometimes bo developed, with

out differentials, by processes of a more algebraical character ; and when this hap
pens, wo may compare the result with the form given by Taylor's Series, as adapted 
to quaternions in 342, and so deduce the values ol tlie successive differentials of tho 
function; for example, we can infer the expression 342, XIII. for d”. q ', from the 
series 3-12, XIV., for the reciprocal of a sum.

    
 



CHAP. II.] SUCCESSIVE DIFFERENCES AND DEItlVATlVES. 431

(9.) And not only may wo verifu the recent developments, XVIII. and XIX., by 
comparing them with the more algebraical forms,

XX. ; .T(l + s + c)=(l + s+»)> (! + «-«)>,
XXI. .. U(1 + s + o) = (1 + s -t-1’)‘ (1 + « - «’)■*.

but also, if tho first of these for example (when expanded by ordinary processes, 
which aro in this case applicable) have given us, without differentials,

XXII. . . T(y + y') = (1 + « - _ ,)Ty, where » - Sy'y’, and v =

wo can then infer the values of the Jirst and second differentials o( the tensor ol a 
quaternion, as follows:

XXIII. , . dTy = S^.Ty; d^Ty =-^V^^Ty;

whereof the first agrees with 834, XII. or XIII., and the second can be deduced from 
it, under the form,

xnv...d-T,.d^3"^.T,').((ssy-s.(syy,.

(10.) In general, if we can only develope a function/(y + y') as far as the term 
or terms whijji are of the frst dimension relatively to y', we shall still obtain thus 
an. expression for thejfrst differential dfq, by merely writing dy in the place of y’. 
But wo have not chosen (comp. 100, (14.) ) to regard this property of the differen
tial of a function as the fundamental one, or to adopt it as the definition of dyy; be
cause we have not chosen to postulate theyeneraZ possibility ol such developments of 
fusictions of quaternion sums, ot which.in fact it is in many cases difficult to discover 
the laws, or even to prove the existence, except in some such way as that above ex
plained.

(11.) This opportunity may be taken to observe, that (with recent notations) we 
have, by VIII., the symbolical expression,

XXV. 1 = 1+ « +o; or XXVI. 1 = 1 + r.

344. Successive differeniials are also connected wiiXi successive dif
ferences, by laws which it is easy to investigate, and on which only 
a few words need here be said.

(1.) We can easily prove, from the definition 324, IV, of dfq, that if dy bo con
stant.

I. . . dyy = lim.»2{y(5+2n-'dy)-2/(y + n-id9’)+/y);
»>■«

with analogous expressions for diflerentials of higher orders.
(2.) Hence we may say (comp. 840, X.) that the'sKccessiw differentials,

II. . . d/y, dfq, , d’/y,.. for d’y = 0, 
are limits to which the following multiples of successive differences,

III. , , nA/y, n^A^y, n^A’/y,.. for A’y = 0, 
all simultaneously tend, when the multiple nAy is cither constantly equal to dy, or at 
least tends to become equal thereto, while tho number n increases indefinitely.

(3.) And hence we might prove, in a new way, that if the function f{q + dy)

    
 



432 ELEMENTS OF QUATERNIONS. [book III.

can be developed, in a series proceeding according to ascending and whole dimensions 
with respect to dy, the parts ot this series, whicli are of those successive dimensions, 
must follow tho law expressed by Taylor's Theorem* adapted to Quaternions 
(342).

345. It is easy to conceive that the foregoing results may be ex
tended (comp. 338), to the successive differentiations of functions of 
several quaternions; and that thus there arises, in each such case, a 
system of successive differentials, total and partial; as also a system of 
partial derivatives, of orders higher than the first, when a 
or a vector, is regarded (comp. 337) as a function of several scalars.

(1.) The general expression for the second total differential',
I...d2Q=d2F(g,r,. .), 

involves d^y, d^r,. .; but it is often convenient to suppose that all these second dif
ferentials vanish, or that the first differentials dy, dr, . . are constant; and then 
d’"Q, or d™J’(y, r, . .), becomes a rational, integral, and homogeneous function of 
the m"' dimension, of those first differentials dy, dr, .. , which ma3||(comp. 329, 
HI.) be thus denoted,

II. . . d’»Q = (d, + dr + .,)’’'Q; or briefly. III. . . d’" = (dg + dr +. 
in developing which symbolical power, the multinomial theorem ot algebra may be 
employed : because we have generally, for quaternions as in the ordinary calculus,

IV... drd^ — d^t,,. ,

(2.) For example, if we denote dy and dr by q' and r, and suppose

V. ..Q = ryr, then VI. . . djQ = ry'r; VII. . . drQ = r'yr + ryr'; 
and VIII. . . drdjQ = djdrQ = rclr + ry'r.

And in general, eacA of the two equated symbols IV. gives, by its operation on 
Jfy, r), the limit of this other function, or product (comp. 344, I.),

IX. . . nn'{/’(y + »->dy, r + n'-'dr) — FQq, r 4- n'"’dr) —/’(y + n"'dy, r) + F(q, r)}; 

in which the numbers n and n' are supposed to tend to infinity.
(3.) We may also write, for functions of several quaternions,

X. . . Q+AQ = F’(y + dy, r+dr, ..)=6^,+<'r*'-r(y, r); 
or briefly, XI. . . 1+A = 6‘’g*^r^"=e'*;
with fntetprctations and fraKj^rmoZfoas analogous to those which have occurred 
already, for functions of a single quaternion.

(4.) Finally, as an example of successive and partial derivation, if we resume 
the vector expression 308, XVIII. (comp. 815, XII. and XIII.), namely,

XII. . . g^rk‘j‘kj-’h-t,'.

* Some rcmarltB on the adaptation and proof of this Important theorem will bo 
found in tho Lecturej, pages 589, &c.
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and 
whence 
while 
so that 
order,

we

which has been seen to be capable of representing the vector of any point of space, 
we may observe that it gives, without trigonometry, by the principle mentioned in 
308, (11.), and by the sub-articles to 315, not only the form,

XIII. .. p = S as in 308, XIX.,
but also, if a be any vector unit,

XIV. . . p = = rk‘(kS. o2« + iS.a”-').A ';
whence XV. . ._p = rV.ft’»*i+rA2n7'.«’’, ^s in 815, XII.

(5.) Wo have therefore tho following new expressions (compare tho sub-articles 
to 337), for the two partial derivatives of the first order, of this variable vector p, 
taken with respect to a and t ;

XVI. . . D,p = wrh‘j’ij'‘t-‘ = —srpi'jh ‘,
with the verification, that

XVII. . . pD,p = wr’.Ay«AJ-’A =
XVIII. . . Dzp = Ttrh^ty.fi' = wrA’V'S• a®''* = r'^pTisp. S. a.^\
XIX. . . pT)(p = —rDjp.S.a’’"', and XX. . . D«p.D<p= ir^rpS.a’’’i;

XXI. . . l>rp = r-tp = h‘J'‘kj ’lt-‘, as in 337, XXV.;
have the following ternary product of these derived vectors ot the first 
*

XXII. .'. Drp.D,p.D(p= 5r2p2S.a2*-i = wr!D.S.a2'; .

tiiis scalar character of which product depends (comp. 299, (9.)) on the circum
stance, that the vectors thus multiplied compose (337, (10.) ) a rectanyular system.

(G.) It is easy then to infer, for the six partial derivatives of p, of the second 
order, taken with respect to the same three scalar variables, r, s, t, the expressions:

XXIII. . . Dr’p = 0; DrD,p = DjDrp = »'‘’D,p; D^D^p = D<Drp = r''D*p; 
XXiV. . .J),^p=-sr*pi D.D(p = D,D.p = jr2rA3'V.j»«*l; ■K*rk^‘'V.i'i>.

(7.') The three partial differentials of the first order, ot the same variable vector 
p, are tbe following;

XXV. . . d,.p = r-ipdr; d,p = D,p. dg; d,p = Dtp. dr; 
with the product.’,

XXVI. . . d,p . dtp = — rrrpdS . a^. dt; 
XXVn. . . drp . d,p . djp = Trr^dr. dS . a^’. dr.

(8.) These differential vectors, d,.p, d,p, dip, aro (in the present theory) gene
rally finite ; drp, like D,p, being a lino in the direction of p, or of tbe radius of this 
sphere round the origin, at least if dr, like r, be positive; while d,p, like D,p, is 
(comp. 100, (9.) ) a tangent to the meridian ot that spheric surface, for which r 
and t Sre constant; but d;p, like D(p, is on the contrary a tangent to the small circle 
(or paraller), on the same sphere, for which r and s are constant.

(9.) Treating only the radius r as constant, and writing p =op, if we pass from 
the point p, or (g, <), to another point <j, or (g + As, <), on tho same meridian, the 
chord PQ is represented by thejSnt'fe difference, ^,p; and in like manner, if we pass 
from P to a point R, or (s, t + ^l), on the same parallel, the new chord PR is repre
sented by the other partial and finite difference, A/p; while the point (s As, t + ^t) 
may be denoted by s.

(10.) If now the two points Q and R bo conceived to approach to p, and to come 
to be very near it, the chords pq and PR will very nearly coincide with the two cor-

3 K
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responding arcs of meridian and parallel; or with the tangents to thc same two cir
cles at P, so drawp as to have the lengths of those two arps: or finally with tho dif
ferential and faRpenfiaf vectors, djp and dfp, if we suppose (as we may, comp. 322) 
that the two arbitrary and scalar differentials, ds and df, are so assumed as to be 
constantly equal to the two differences, As and At, and consequently to diminish 
with them.

(11.) Whether the differentials ds and df be large otsmall, tlieproduct d,p.dtp, 
like the product D,p . Hip, represents rigorously a normal vector (as in XXVI. and 
XX.) ; of which the length bears to the unit of length (comp. 281) tho same ratio, aa 
that which the rectangle under the two perpendicular tangents, d,p and d,p, to the 
sphere, bears to the unit of area. Hence, with the recent suppositions (10.), wo 
may regard this product d,p . dtp as representing, with a continually and indefinitely 
increasing accuracy, even in the way of ratio, what wc may call the directed element 
of spheric surface, pqrs, considered as thus represented (or constructed) by a nor
mal at P; and the tensor of the same product, namely (by XXVI.),

XXVIII. . . T(d.p. d,p) = - wr’dS. a’«. df,
in which the negative sign is retained, because S. a^ decreases from + 1 to — 1, while 
s increases from 0 to 1, is an expression on the same plan for what we may call by con
trast the undirected element of spheric area, or that element considered with reference 
merely to quantity, and not with reference to direction.

(12.) Integrating, then, this last differential expression XXVIII., from f = 0 to 
f = 2, and from st= »o to » = »i, that is, taking the limit of the sum of all the elements 
PQRS between these bounding values, we find the following equation ;

XXIX. . . .Area of Spheric Zone = 27rr-S (a^’o — a”!) j 
whence

XXX. . . Area of Spheric Cap (s') ezinrtfl - 8.0“^) = inr^lTiy. a’y ■, 
and finally.

XXXI. .. Area of Sphere = 4wr’, as usual.
(13.) In like manner the expression XXVII., with its sign changed (on account 

of the decrease of S . a?‘, as in (11.) ), represents the element of volume; and thus, 
by integrating from r = ro to r = n, from e = 0 to e=l, and from t = 0 to t = 2, 
we obtain anew the known values:

47r
XXXII. . . Volume of Spheric Shell = (n’ — re’);

and
47rr3

XXXin. . . Volume of Sphere (r)= , as usual,
o

(14.) Thete are however only specimens of what may be called Scalar Integra
tion, although connected with quaternion forms : and it will be more characteristic 
of the present Calculus, if we apply it briefly to take the Vector Integral, or the limit 
of the vector-sum ot the directed elements (11.), of a portion of a spheric surface: 
a problem which corresponds, in hgdroetatics,^o calculating the resultant of the pres
sures on that surface, each pressure having a normal direction, and a quantity pro
portional to tbe element of area.

(16.) For this purpose, we may employ tho expression XXVI. with its sign 
changed, in order to denote an inward normal, or a pressure acting from without; 
and if wo then substitute for p its value XV., and observe that
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XXXIV. . . f’A='d< = 0, because A’=-l,
Jo

and remember that V. J-’**' =Z.'S. a’*, we easily deduce tho expressions:
XXXV. . . Sum of Virecled Elements of Elementary Zone = wr^Ad. (S. ; ■

XXXVI. . . Sum of Directed Elements of Spheric Cap (») = —7rr-A-(l — (S.a”)’) 
= irr'ik (y. aS*)’ = rr-'k (Jiipf = irk lykpP.

(16.) But tbe radius ot iiio plane and circular base, of the spheric segment cor
responding, is TVZrp, so that its area is in guantilg.= — ir(ykpf', and the common 
direction ot all its tntcard normals is that of + k ; hence if we still represent the di
rected elements by normals thus drawn inwards, ■wo have this new expression : 

XXXVII. . . Sum of Directed Elements of Circular -Base — — rrktykp'f; 
comparing which with XXXVI.^we arrive at the formula,

XXXVIII. . . Sum of Directed Elements of Spheric Segment = Zero ;
a result which may bo greatly extended, and which evidently answers to a known 
case of equilibrium in hydrostatics.

(17.) These few examples may serve to show already, that Differentials of Qua
ternions (or of rectors) may be applied to various geometrical and physical ques
tions ; and that, when so applied, it is permitted to treat them as small, if any con
venience be gained thereby, as in cases of integration there always is. But we must 
now pass to an important investigation of another kind, with which differentials will 
be found to have only a sort of indirect or suggestive connexion.

Section 6—On the Differentiation of Implicit Functions of 
Quaternions; and on the General Invo'sion of a Linear 
Function, of a Vector or a Quaternion: icith some connected 
Investigations.
346. We saw, when differentiating the square-root of a 

quaternion (332, (5.) and (6.)), that it was necessary for that 
purpose to resolve a linear equation,'* or an equation of the 
frst degree: namely the equation,

I . . rr' + r'r = y',
in which r and g' represented two given quaternions, and 
dy, while r' represented a sought quaternion, namely d?' or d. yi. 
And generally, from the linear or distributive form (327), of 
the quaternion differential

11. . .([Q=i[fq^f{q,i[q'),
of any given and explicit function fq, when considered as de
pending on the differential dy of the quaternion variable y, we 
see that the return from the former differential to the latter.

• Compare the Note to page 410,
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that is from d Q to dq, or the differentiation of the inverse or 
implicit fun^on requires for its accomplishment the So
lution of an Equation of the First Degree: or what may be 
called the Inversion of a Linear Function of a Quaternion. 
We are therefore led to consider here that general Problem; 
to which accordingly, and to investigations connected with 
which, we shall devote the present Section, dismissing how
ever now the special consideration of the Differentials above 
mentioned, or treating them only as Quaternions, sought or 
given, of which the relations to each other are to be studied.

347. Whatever the particular form of the given linear or dis
tributive function, fq, may be, we can always decompose it as follows:

I- . ./!?=/(S2 + Vg)=/Sg+/Vg = Sg./l +/V2;
taking then separately scalars and vectors, or operating with S and 
V on the proposed linear equation,

II. . .fq = r,
where r is a given quaternion, and q a sought one, we can in general 
eliminate Sg, and so reduce the problem to the solution of a linear 
and vector equation, of the form,

III. . . 9-;

where <r is a given vector, but /»(= Vg) is a sought one, and is used 
as the characteristic of a given linear and vector function of a vector, 
which function we shall throughout suppose to be a real one, or to 
involve no imaginary constants in its composition. But, to every such 
function ^p, there always corresponds what may be called a conjugate 
linear and vector function ^'p, connected with it by the following 
Equation of Conjugation,

IV.. . SX.^/J = S/J^'X;

where A and /> are any two vectors. Assuming then, as we may, that 
and V are two auxiliary vectors, so chosen as to satisfy the equa

tion.
V. . . =

and therefore also, —
VI. . . SXff = SX/tr, S/iff = O, S»’o' = 0,

where X is a third auxiliary and arbitrary vector, we may (comp. 312) 
replace tho one vector equation III. by the three scalar equations,
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VII. . . Sp^'A = Sa/sp, Spj>'p.=‘ 0, Sp^'v— 0.
And these give, by principles with which the reader is supposed to 
be already familiar,* tbe expression,

VIII. . . mp = or IX... p=^i''<T = w’^ir,
if tra be a vector-constant^ and an auxiliary linear and vector function, 
of which the value and the form are determined by the two following 
equations:

or briefly.

and
XP. ..

And thus the proposed Problem of Inversion, oi the linear and vector 
function may be considered to be, in all its generality, resolved; 
because it is always possible so to prepare the second members of the 
equations X. and XL, that they shall take the forms indicated in the 
first members of those equations.

(1.) For example, if we assume any three diplanar vectors a, o', a", and deduce 
from them three other vectors po, l^cn hy the equations,

XU. ../3oSaa'a"=Va’a'', pie^aa'a"=ya"a, /3”oSaa’a'' = Van',

then any vector p may, hy 294, XV., he expressed as follows,
XIII. . . p = jSoSap -P/3'oSa'p -1- P'’QSa"p ;

if then we write,
XIV. . . /3 = 13' = pl' = 4‘P"o,

we shall have the following General Expression, or Standard Trinomial Form, for 
a Linear and Vector Function of a Vector,

'SN. , , ^p = pSap + P'Sa'p -t- P"Sa"p;
containing, as wo see, three vector constants, P, pl, P", or nine scalar constants, 
such as

XVI. ..Safl, Sa fl, Sa"fl; Safl', Sa’fl', Sa'pi ■, SaP", Sa fl", Sa"P" ■, 
which may (and generally will) all vary, in passing from one linear and vector/unc- 
tiott ^p to another such function; hut which are all supposed to be reol, and yieen, 
for each particular form ot that function.

(2.) Passing to what wo have called the conjugate linear function 0'p, the form
XV. gives, by IV., the expression.

I

* A student might find it useful, nt tliis stage, to rend again thc Sixth Section of 
the preceding Chapter; or at least the early sub-articles to Art. 294, & familiar ac
quaintance with which is presumed in tho present Section.
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XVII.. . aSjSp + a'SP'p + a"Sjy'p ;
but

V. (aSjip + (aS/3v + a'S/3'v) = Vaa’S. p' {vSPp - pSjSv)
= Vaa'S.py.lSVpv = Vaa'S./ypV/iv;

therefore the transformation XI. succeeds, and gives,
XVIII. . . 4>p = Va'a"SP"P'p + Va'’a8pP"p + yaaSP'Pp,

aa an expression for the auxiliary function i/*; of which the conjugate vaoy be thus 
written,

XIX. . . yj/p = Vp'iy’Sa’a'p + Vp''P3aa“p + ^PP'Sa'ap;
so that i/z is changed to ip', when is changed to by interchanging each of the 
three alphas with the corresponding beta,

(3.) If we write, as in this whole investigation we propose to do,
XX. . . X'= Vpf, p' = 'Vv\, v'=N\p,

the formulse XI. and X. become,
XXI. . . ipX'= V. and XXII. . . »>SXX' = S.0'XipX',

with tbe same sort of abridgment of notation as in XI'.; and because tbe coefficient 
of Saa'a" in tliia last expression XXII. is by XVII. XVIII.,

s/3xs/3"/3'x' + s/3'xs)3/3"x'+ sp"xsp'p\'=siy’P'ps\y,^
the division by SXX', or by Sh-pv, succeeds, and wo find the expression,

XXIII. . . m=Saa'a"Si3"p‘P ;
which may also be thus written,

XXIir. . . m = SPp'P"Saaa,
so that m does not change when we pass from to on which account we may 
write also,

XXIV. .. mSXX’ = S.^Xip’X', or XXIV'.. . ntSXpi'= 8.^X0/*^)/, 

because, by (2.), we can deduce from XI. the conjugate expression,

XXV. . . ,p'X' = V.^p^v.
(4.) We ought then to find that the linear equation,

XXVI. . . <r = 0p = pSap + /3'Sa'p + p 'Sa''p,
has its solution expressed (comp. VIII.) by the formula,

XXVII. . . p8aa'a"3p!‘P'P = Va‘a"Sp"P'a + Na"a3PP"a + Naa'3p'Pa-,
and accordingly, if we operate on the expression XXVI. for a with the three sym
bols.

XXVIII... S.p"j3', S./3/3", S./3'/3,
WB obtain the three scalar equations,

XXIX. .. Sj3"/3'(r=S/3’'/3'/3Sap, &c., 
from which the equation XXVII. follows immediately, without any introduction of 
the auxiliary vectors X, p, v, although these are useful in the theory generally.

(6.) Conversely, if the equation XXViE were given, and the value of a taught, 
we might operate with the three symbols,

XXX. ..S.a, S./J, S.y,
and so obtain the three scalar equations XXIX., from wliieh tho expression XXVI. 
for a would follow.
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(6.) It will be found an useful check on formulie of this sort, to consider each beta, 
in what we have called the Standard Form (l.)of^p, as being of the first dimension ; 
for then we may say that and are a/so of the jSrst dimension, but i// and i/z' of 
the seconrf, and m ot the third; and every formula, into which these symbols enter, 
will thus be homogeneovs: a, a', a", and X, ;t, v, p, being not counted, in this mode 
of estimating dimensions, but a being treated as of tbe first dimension, when it is 
taken as representing 0p.

(7.') And although the trinomial form XV. has been seen to bo sufficiently gene
ral, yet if we choose to take the more expanded form,

XXXI. . . ij>p = 'S/iSap, which gives XXXfI. . . <j>'p= 'SaS^p, 
any number oi terms of ^p, such as pSap, ^'Sa'p, &c, being now included in tho 
sum 2, there is no difficulty in proving that tbe equations VIII. and IX. are satis
fied, when we write,

XXXIII. . . i//p = SXaaSP'pPi with XXXIV. . . ^'p = ^-Vpl^Sa'ap, 
and

XXXV. ..m = ^SadaSP‘'fi'l3 = ^S^l3'P"Sa"a:a.
(8.) The important property (2.), that the auxiliary function i/z ia changed to its 

own conjugate , when is changed to 0', may be proved without any reference to 
the form S/SShp of ^p, by means of the definitions IV. and XI., of <)>' and if/, as fol
lows. Whatever four vectors p, v, pi, and n may be, if we write

XXXVI.. . X'l = Vpivi, and XXXVII.. . if/'Xpv = V. ^p<pv, 
adopting here this last equation as a definition of the/unction ij/', we may proceed to 
prove that it is conjugate to by observing that we have the transformations, 
xxxviii... sx'ii|>'X'=s(ypivi.v.^p^v')=s.pi(y.vi.v.fp^v)

= Spiifiv. Svi^p — Spitjtp. S
= Spiji'vi. Sv^'pi — Sp^'pi. Sv<l>’vi
= S.p(V. j/V.^pi^'iii) = S(Vpv.V. ^'pi^'vij = SX'ij/X’i; 

which establish the relation in question, between if/ and if/'.
ifi.j And tlie not less important property (3.), that m remains uncAonped when 

we pass from 0 to may in like manner be proved, without reference to tbefiorm 
XV. or XXXI. of ^p, by observing that we have by XXXVII., &c. the transfor
mations,

XXXIX. . . S . ^\^p^v = S . = SX'ip^X = roSX'X = mS\pv,
because the equations III. and VIII. give,

XL. .. ifi^p =mp, whatever vector p may be;
so that the value of this scalar constant m may now be derived from the original 
linear function exactly as it was in X. or X’. from the conjugate function

348. It is found, then, that the linear and vector equation,
I. . . = tr, gives II. . . mp = i(/tT,

as its formula of solution; with the general method, above ex
plained, of deducing ?n and from We have therefore the 
two identities,
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III. . . ma = mp = 'pf^p ;
or briefly and symbolically,

IIP. . . Ml = ;
with which, by what has been shown, we may connect these 
conjugate equations,

III . . • m =

Changing then successively p and v to xp'p and i/<'v, in the 
equation of definition of the auxiliary function or in the 
formula,

347, XP.,pv = V-ip'p^fi'v,
"we get these two other equations,
IV. . . -i/iV. vi//'/i = ?KV.ju^'v; V. . . ,/zV.^'/n//'v = ?n’Vptv; 

in the former of which the points laay be omitted, while in 
each of them accented may be exchanged with unaccented 

. symbols of operation: and we see that the law of homogeneity 
(347, (6.) ) is preserved. And many other transformations of 
the same sort may be made, of which the following are a few 
examples.

(1.) Operating on V. by or by we get this new formufa,

VI.. . =
comparing which with the lately cited definition of if/, we see that we may change 
<j> to if/, if we at the same time change fo m^, and therefore also-ni to ; 0’ being 
then changed to i//', and if/' to

(2.) For example, we may thus pass from IV. and V. to the formuliB, •
VII. . . — ^Vviji’p ='Viiif/'v, and VIII. . . ^rnYfiv ;

in which we see that the lately cited law of homogeneity is still observed.
(3.) The equation VII. might have been otherwise obtained, by interchanging 

p and J/ in IV., and operating with — or with — ijz’* ; and tho formula VIII. 
may be at once deduced from the equation of definition of tp, by operating on it 
with 0. In fact, our rule of inversion, of the linear function iff, may be said to be 
contained in the formula,

IX. . . ^-iV/jj/ = >n-iV.^'/z^'»’;
where to is a scalar constant, as above.

(4.) By similar operations and substitutions,
X. . . 0SV.^'/z0'v = TO^V/ij/ = V.)^''/»<//'v;

XI. . . m0V. ^'pij/'v^m^Vpv = if/V-yf/'pif/'v ;
XII. . . =m'‘ f/'Vpv— if/^Y.\f/‘p^'v

XIII. , . V. = ipV. .= if/^Vpv ; Ac.
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(5.) But we have abo,
XIV. . . 8. = S. ^p^'X = S. p^'-X,

80 that the tecond funciions and are conjugate (compare 347, IV.); hence, by
XIII., Ips is formed from as 4* l^om <)>•, and generally it will be found, that if
n bo any whole numler, and if we change to 4>", 'we change at the same time to 

tfe to 4'", 'P' to 'I'’"} And TO to m”.
(6.) It may abo be remarked that the changes (1.) conduct to tbe equation,

XV... (S. ^X^y^w)’ = SX/xnS,. 4'X4'/*4'‘’ i
and to many other analogous fonhnise.

349. The expressions,

X'^X + + v^v, X’tpX + + V
with the significations 347, XX. of X', fi, v, and others of the 
same type, are easily proved to vanish when X, ju, v are com- 
planar, and therefore to be divisible by SXjuv, since each such 
expression involves each of the three auxiliary vectors X, fi, v 
in the Jirst degree only; the quotients such divisions being 
therefore certain constant quaternions, independent of X, fi, v, 
and depending only on the particular form of ij), or on the 
(scalar or vector, but real) constants, which enter into the 
composition of that given function. Writing, then,

I. . . q, = (X'4iX + fi'tpft. + v'^iv) : SXjuv, 
and II. . . ^2 = (X'l^X + + v'lf/vy: SX/tv,

we shall find it useful to consider separately the scalar and 
vector parts of these two quaternion constants, qx and q.i‘, 
W’hich constants are, respectively, of the first and second di
mensions, in a sense lately explained.

(1.) Since VX'0X = /tSy^X — s-SX^'/i, &c., it follows that the vector parts of ji 
and 72 change signs, whed b changed to and therefore 4' to ip'. On the other 
hand, we may change the arbitrary vectors X, n, v to X*, ft, v, if we at the same 
time change X' to VpV, or to - XSX/xv, &c., and SK/tv, or SXX', to -(SX/tv)*; di
viding then by — SX/tv, we find these new expressions,

HI. .. 71 = (X^iX' + + vijiv'j! SX/(i',
IV. . — : SXyv;

operating on which by S, we return to the scalars of the e.vpressious I. and II., with 
and 4' changed to and 4'*-

(2.) Hence the conjugate quaternion constants, K71 an^Iq-i, are obtained by 
passing to the conjugate linear functions; and thus wc inuyOpc,

3 L
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V. . . Kg, = (X'^'X 4 p'ffi'p 4 v'f'v) ; SXpv ;
VI. . . Kgj = + p'lp’p 4 v'ip't'): SKpv;

or, interchanging X with X', &c., in tho dividends,

Vn... Kgi = (fiiji'K' 4 p^'p' 4 v^'v') : SX/tv; 
VIII... ^^2= (Xvp'i*'4 p'l^'p'-^»',//'»»'): S\pv; 

where X' = V/tv, tec., as before.
(3.) Operating with V.p on Vgi, and observing that

V. pVX'^X = ^^XSX'p) ~~ X'SX^'p, &c.,
wliilo (XSX'p 4 pSp'p 4 vSv'pj = ippSKpv,
and X'SX^'p 4 p'Sp^'p 4 v'Sv^'p = 4>'pS^P^>
with similar transformations for V.pVg2, we find that

IX. . . V.pVgi = ^p-^.'p5
and X. . . V.pVg2= i/»p —4''p'

(4.) Accordingly, since

Sp (^ip - 1^'p) ^-Sp (<Pp - iip) = 0,
the vector ^p — gi'p, if it do not vanish, must be a line perpendicular to p, and there
fore of the form.

442 ELEMENTS OF QUATERNIONS.

XI. .. <j>p — ^'p = 2V7'p,
in which y ia some constant vector; so that we may ivrite,

XII. . . = ^op + "Vyp, ^'p = <l>op - Vyp,
where thc function ^up is its oten conjugate, oi is tho common self-conjugate part of 
^p and ^'p; namely the part,

XIII. . . 0op = J (,'^p 4 <I>'pj‘
And we see that, with this signification of y,

XIV.., V(X'^X 4 /*V/* + 2yS\p.v, or XIV'... Vgi = - 2y ;
while we.have, in like manner,

XV.. . V(X'.px 4 4 v't/'v) = - 2iS\pv, or XV'... - 25,
if XVI. ..,/zp-i/z'p=2V5p.
As a confirmation, the part of has by (1.) no effect on Vgi; and if we change 
<j>\ to ^yK, &c., in tlie first member of XIV., we have thus,

(XSyX'4 pSyp' 4 rSyv^— yS(XX'4/«/t' 4 vv'j = ySXpv — SySX/iv.
(5.) Since VX’4''X=-<JVX ’̂X', &c., .by 348, VII., while we may write, by (1.), 

(2.), and f4.),
XVII.. . V(X0X'4;«0/*'4»’^»'')=-2ySX/tr,
XVIII. .. V(X4<X' -l-pip + = - 2SS\pv,

or XIX. . . V(X^'X' 4 4= 4 2y3\pv,
and XX. . . V(X',pX + p'^i^’p 4 v'>f/'v) = 4 25SX/t»',
■we have this relation between the two new vector constants,

XXI... 5=-^y = —^’y=—^oy;
for , and ^0 have all the same effect, on <Afs particular vector, y.

(6.) Wo may add that the vector constant y is of tho first dimension, and that 
i is of the second di||||Wion, with respect to tho betas of the standard form ; in fact, 
4dth that form, ., of ^p, we liave the expressions.
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XXII. . . y = iV03a + fi’a' + fi-’a'),
and XXIII. . . 5 = ^y(yi3'li".ya‘a"'+ + V/ifi-.Vaay

(7.) If we denote by ij/o and mo, what and m become when is changed to ^0, 
we easily find that

XXIV. . .■,f'p = »f'op — ySyp + VJp;. XXV. . . i/'’p = ’/'op — ySyp — XSpi 
so that the telf-conjugate part ot tf/p contains a term, — ySyp, which involves the 
vector y, but only in the second degree; and in like manner,

XXVI. . . m = mo + Sy5 = wio — Sy^y i
y again entering only in an even degree, because m remains unchanged, when wc pass 
from Ip to or from y to — y.

(8.) It ia evident that we have tbe relations;
XXVII.. . mo = ^o’/'o — ^0^0 J

and that, in a sense already explained, ^0, ’{'0, and mo are of the first, second, and 
third dimensions, respectively.

350. After thus considering the vector parts of the two 
quaternion constants, q^ ^nd 52, we proceed to consider their 
scalar parts ; which will introduce txvo new scalar constants, 
m!' and m', and will lead to the employment of two new conju
gate auxiliary functions, and xp > whence also will result 
the establishment of a certain Symbolic and Cubic Equation,

I. , . 0 = m - m'^ +
which is satisfied by the Linear Symbol of Operation, <j>, and 
is of great importance in this whole Theory of Linear Func
tions.

(1.) Writing, then,
II. . . n»”=Sji, and III. ,.»»’ = S93,

we see first that neither of these two new constants changes value, when we pass from 
to 0', or from y to — y ; because, in such a passage, it has been seen that we only 

change 71 and 72 to K71 and K72. Accordingly, if wo denote by m’o and m'o what 
m' and m" become, when is changed to 0o, we easily find the expressions,

IV.. , m"=m''o; and V. .. m'=m'o- y’.

(2.) It may be noted that m", or to"o, Is of tiso first dimension, but that m' and 
m'o are of the second, with respect to the standard form of ; and accordingly, with 
that form we have,

VI. . , m” = Sa/3 + Sa'P + Sa''/3": 
and VII. . . ni:e.S(ya'a’'.VI3ri3' + ya’'a.yi3P" + 'Vaa’.yi3'i3).

(3.) It we introduce taJo new linear functions, XP “nd x'p, such that
VIII. . . xVpv = V(p^'r —

■ • x'Vpi'=and
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it 13 easily proved that these functions are conjugate to each other, and that each is 
of the^rrf dimension; in fact, with the standard form of tpp, we have the expres
sions.

X. .. . xp=V(aV/3p + a'V/3'p + a"V/3'p),
XI. . . x'p = '^(.fi^ap+fiya'p+^'’Va"p)-,

and S. XaV/3p = S.p^SVnX, &c. Also, if xo be formed from ^o, as x fro’n 
be found that

XII. . . xP = Xop-Vyp, and XIII. . . xP = XoP + Vyp;
where xo is of thc first dimension.

(4.) Since
SXxX' = S.\(p<fi’v — viji’p) = S (,p.'<t>'p + v'lfi’v),

the expression II. gives, by 349, V., the equation,
• XIV. . . m"SXX' = S. X(^ + x)*.'.

X and X' being two arbitrarg and independent vectors; which can only be, by our 
having tho junctional relation,

Xy. . . il>p + xP=-m"p-,
or briefly and symbolically,

XVI. . . X + ? = %'■
Accordingly it is evident that the relation XV. is verified, by. the form X. of xP> 
combined with tbe standard form of 0p, and with tbe expression VI. for the con
stant m".

(6.) The formula XVI. gives,
XVII. . . x^ = =

and accordingly the identity of x^ and ^x ™ay easily be otherwise proved, by 
changing p and v to ip'p and in the definition VIII. of x. and remembering that 

V.i//'ju)p'j' = jn^Vpy, = and Vpip'i/ = -^Vr^’p;
for thus we have,

XVIII. . . x^V/tj< = V(p,//'»'-i'^7‘) = ^V(F^'»'“’'07‘) = 0X^P’'> 
as required.

(6.) Since, then,

S. \^x^' = S. - v'/'p) = + v'tl/’u),
the value III. of m' gives, by 349, VI., the equation,

XIX. . . m'SXX'= S.X(i)r +
X and X’.being independent vectors; hence,

XX. . ■'Pp + 1‘xii = m'p,
or briefly,

XXI. . . = m.
And in fact, with the standard form of we have

XXII. . . ^ XP = X4>P = V(V/3’^'. VpVa'a" + .Vp^a'a + y/ip'.Vp-Vaa'');
which verifies the equation XX., when it is combined with the value VII. of m', and 
with the expression 847, XVIII. for i(/p.

(1.) Eliminating the agmbol x, between the two equations XVI. and XXI., and 
retjiembering that — wc find the symbolic expression,
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XXIII. . . m^"' = ^ = m'~ m"ij> + ;
and thus the symbolic and cubic eguation I. is proved.

(8.) And because the coefficients, m, m', m", ot that equation, have been seen to 
remain unaltered, in the passage from to’ 0’, we may write also this conjugate 
equation,

XXIV. . . 0 = m — m'f +
(9.) Multiplying symbolically the equation I. by — m-'ip, and reducing by 
= m, we eliminate tbe symbol and obt^ tbi^ cubic in tp,

XXV. . . 0 = m> — mm",// + m',//^ — ,//^;
in which may be substituted for i^.

(10.) In general, it may be remarked, that when we change to and there
fore i/< to m^, as before, we change not only m to m’, but also to’ to ram", and to" to 
to' ; while x the same time changed to or to xl', and the quaternion yi is 
changed to 32. Accordingly, we may thus pass from the relation XVI. to XXL ; 
and conversely, from the latter to the former.

(11.) And if the two new auxiliary functions, x knd x', be considered aa dejined 
by the equations VIII. and IX.-, their conjugate relation (3.) to each other may be 
proved, without any reference to the standard form ot ^>p, by reasonings similar to 
those which were employed in 347, (8.), to establish the corresponding conjugation 
of the functions and ■//'.

(12.) It may bo added that the relations between Xi x’, and to" give the 
following additional transformations, which are occasionally useful:

XXVI.. . ^’Vpv=V(/*x*' + = — '^(yxii + ifpvj;
XXVII.. . pv—y(jix'v+ v<p'p,j = —'V(yx'rt+

with others on which we cannot hero delay.

351. The cubic in may be thus ■written :

I. . . 0 = JKp — m'^p + m"<j)’‘p — <j)^p •, 
where p is an arbitrary vector. If then it happen that for some 
particular but actual vector, p, the linear function ^p vanishes, 
so that 0p = 0, ^®p = 0, 0’p = 0, &c., the constant m must be 
zero; or in symbols,

II. . . if = 0, and Tp > 0,. then m - 0.

Hence, by the expression 347, XXIII. for m, -when the 
standard form for ^p is adopted, we must have either

III. . . Saa'a" = 0, or else IV. . . S/3 "/373 = 0 ;

so that, in each case, that generally trinomial form, 347, XV., 
must admit of being reduced to a binomial. Conversely, when 
we have thus a function of the particular form.
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V. . . = (iSap + P'Sa'p,
we have then,

VI. . . ^Vda = 0;

SO that if a and a be actual and non-parallel lines, the real and 
actual vector Nad, will be a value of p, which will satisfy the 
equation ^p = 0; but no other real and actual value oi p, ex
cept p = xNadi will satisfy that equation, if (3 and j3' be actual, 
and non-parallel. In this case V., the operation reduces 
every other vector to the fixed plane of (3, /3', which plane is 
therefore the locus of <pp; and since we have also,

VII. . . <l>'p = aS(3p + a'Sp'p,

we see that the locus of the functionally conjugate vector, <p'p, 
is another fixed plane, namely that of «, d. Also, the normal 
to the latter plane is the line which is destroyed by former 
operation, namely by ; while the normal to the former plane 
is in like manner the line, which is annihilated by the latter 
operation, ip', since we have,

VIII. . . i,'N(3(3' = 0,
but not {p'p = 0, for any actual p, in any direction except that 
of Vpp', or its opposite, which may however, for the present 
purpose, be regarded as the same.*. In this case we have 
also monomial forms for V'p and i/'p, namely

IX. . . ,/-p = NadSp'(3p, and X. . . ,^'p = N^l3'Sdap; 
so that the operation xp destroys every line in the first fixed 
plane (of /3, /3'), and the conjugate operation (/('’annihilates 
every line in the second fixed plane (of «, d). On the other 
hand, the operation i/z reduces every line, which is out of the 
first plane, to the fixed direction of the normal to the second 
plane; and the operation xf/ reduces every line which is out of 
the second plane, to that other fixed direction, which is normal 
to the first plane. And thus it comes to pass, that whether we 
operate first with xp, and then with ; or first with and 
then with xj; or first with xp' and then with 0'; or first with (f'',

* Accordingly, in the present invesHgaiion, whenever we shall speak of a “yfxed direction^' oc tho direction o/a given line^'^ &c.j w’o aro always to bc understood 
ns moaning, “ or the opposite oi that direction.”
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and then with i/i'; in all these cases, we arrive at last at a null 
line, in conformity with the symbolic equations,

■ XI. . . = ijitf/<= = m = 0,

which belong to the case here considered.

(1.) Without recurring to tlie standard form of ^p, the' equation 848, N\., 
namely and the analogous equation V. i/i/iipj/=
might have enabled us to foresee that 4''p and i/ip, if they do not both constantly va
nish, must (if m = 0) have each a fixed direction; and therefore that each must be 
expressible by a monome, as above: the fixed direction of <pp being that of a line 
which is annihilated by the operation ip, and similarly for ,^'p and p'.

(2.) And because, by 847, XI. and XX'V., we have
>ltVpv='V.<i>’pp'v, and

so that the line ^'/t, if actual, is perpendicular to ^'V’/tv, and the line perpendicu
lar to j/Vpv, we see that each of the two lines, p'p and and ^p, must have (in the 
present case) a plane locus ; whence the binomial forms ol the two conjugate vector 
functions, pp and ^'p, might have been foreseen: ij/p and \(/'p being here supposed to 
be actual vectors.

(3.) The relations of rectangularity, of the two fixed lines (or directions), to the 
two fixed planes, might also have been thus deduced, through the two conjugate M- 
nomial forms, 'V. and VII., without the previous establishment of the more general 
trinomial (or siandard") form of ^p.

(4.) The existence of a plane locus for ipp, and of another for p'p, for tho case 
when TO = 0, might also have been foreseen from the equations, ■

S. = S. p’hp'pp'v = mShpv;
and the same equations might have enabled us to foresee, that the scalar constant 
TO must be zero, if for any one actual vector, such as X, either <t>\ or p’X becomes 
null.

(5.) And the redacjfct'/ity of the trinomial to the fcinoOTiaZybrm, when this last 
condition ia satisfied, might have been anticipated, without any reference to the com
position of the constant m, from the simple consideration .(comp. 294, (10.) ), that 
no actual vector p can be perpendicular, at once, to three .diplanar lines.

352. It may happen, that besides the recent reduction 
(351) of the linear function ^p to a binomial form^ when the 
relation

I. . . m = 0

exists between tbe constants of that function, in which case the 
symbolic and cubic equation 350, 1. reduces itself to the form,

II. . . + »i'^ = 0,

thus losing its absolute term, or having one root equal to zero.
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this equation may undergo a further reduction, by two of its 
roots becoming equal to each other; namely either by our 
having

in. . . jw' = 0, and IV. . . - m") = 0;

or in another way, by the existence of these other equations,

V. . . m"^ - 4m' - 0, and VI. . . = 0-
In each ot these two cases, we shall find that certain new geo
metrical relations arise, which it may be interesting briefly to 
investigate; and of which the principal is the mutual rectan- 
gularitg ottwo fixed planes, which are the loci (comp. 351) of 
certain derived, and functionally conjugate vectors: namely, in 
the case III. IV., the loci ot.<{>p and and in the case*V.
VI., the loci of C>p and <P'p, if

VII. . . = and VIII. . ,
80 that, in this last case, the symbol satisfies this new cubic,

IX. . . 0 = ;
while satisfies at the same time a cubic equatiori with the 
same coefficients (comp. 350, (8.)), namely

X . . 0 = (<!>' +|m").
(I.) We saw in 851, (1.), (2.), that when m = 0 the line ^’p has generally a. fixed 

direction, to which that of the line is perpendicular ; and that in like manner tbe 
line 4'p has then another fixed direction, to which ^'p is perpendicular. If then the 
plane loci of ^p and ^'p be at npAf angles to each other, wo must also have the 
fixed lines if/'X and i//p rectangular, or

XI. . . 0= S.'P’X'pp = SX>(<’p, 
independently of the directions of A and p; whence

XII... or XIII. . . =0, .
since p is an arbitrary vector.

(2.). Now in general, by the functional relation 350, XXI. combined with 
= m, we have the transformation,

XIV.. . ,/z’ = — ’’’X >
if then m = 0, as in I., the symbol must satisfy the depressed or quadratic equa
tion,

. . 0 = m'lp — »|/’ ;
which is accordingly a factor of tbe cu5ic equation,

XVI. . . 0 = «•.//»-4-’,
whereto the general equation 350, XXV. is reduced, by this supposition of oi va
nishing.
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(3.) If then we have not only m= 0, as in I., but oZso »n' = 0,,a9 in III., the 
condition XIII. is satisfied, by XV. j and the two planes, above referred to, are ge
nerally rectangular,

(4.) We might indeed propose to satisfy that condition XIII., by supposing that 
wo had always,

XVII. . . ,p = 0, that is, XVir. .. ipp = 0,

for every direction of p ; but in this case, tho guatemion constant would uanuA (by 
849, II.) J and therefore the constant m\ as being its scalar part (by 350, III.), 
would still be equal to zero.

(5.) The particular supposition XVII. would however alter completely tho ^eo- 
metrical character of the question ; for it would imply (comp. 351, (2.) ) that the 
directions of the lines <j>p and 0'p (when not evanescent) aiefxed, instead of those 
lines having only certain planes for their loci, as before.

(6.) On tlie side of calculation, we should thus have, for the two conjugate 
functions, 0p and 0'p, monomial expressions of the forms,

XVIII. . . ijip = PSap, q>'p = aSPp ;
whence, by 347, XVIII., and 350, VII., we should recover the equations, ipp = 0 
and m' = 0. ■

(7.) We should have also, in this particular case,
XIX. . . 0p = 0, if p X ®fid XX. .. ijt’p = 0, if p -t- p-, 

so that 0p now vanishes, if p be any line in the Jized plane perpendicular to a; and 
in like manner 0'p is a null line, if p be in that other fixed plane, which is at right 
angles to the other given line, p.

(8.) These two planes, or their normals a and (3, or the fixed directions of the 
two lines 0'p and ^p, will be rectangular (comp. (1.) ), if we have this new equa
tion,

XXL . . 0’ = 0, or XXI'. .. 0’p = 0,
for every direction of p ; and accordingly the expression XVIII. gives

^’p = Sap. il>p = 0, if /3 J- a, and reciprocally.
(9.) Without expressly introducing a and (3, tho equation 860, XXIII. shows 

that when vp = 0, and therefore also m' = 0, as in (4.), the symbol satisfies (comp. 
(2.) ) the new guadratic or depressed cguation,

XXII. ..0 = 0’-
which is accordingly a/actor of the cubic IV., but to which that cubic is not redu~ 
dble, unless i/rc have thus ip = 0, as well as >»' = 0.

(10.) The conditfon, then, of the existence and rectangularity of the two planes 
(7.), for which we have respectively 0p = 0 and 0'p = 0, without 0p generally yn- 
nishing (a case which it would be useless to consider), is that the four following 
equations should subsist:

XXIII. ..m = 0, m’=0, im" = 0, and XVII. ..ip=0;
or that the cubic IV., and its guadratic factor XXII., should reduce themselves to 
the very simple forms,

XXIV. . . 0’ = 0, and XXV. . . 0’ = Of
tho cubic in 0 having thus its three roots equal, and null, and ipp nnntsAtnp.

3 M
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(11.) We may also observe that as, when even one root of the general cubic 35.0, 
I. is zero, that is when m = 0, the vector equation

XXVI. . . ^p = 0
was seen (in 351) to be satisfied by one real direction of p, so when we have aZso 
ffl' = 0, or when tbe cubic in has two null roots, ot takes the form IV., then tho 
tieo vector equations.

XXVIl. . . q>p = O, IS 0,
are satisfied by one common direction of the real and actual line p; because we have, 
by 350, XVII. and XX., tbe general relation,

i//p = m'p-x^p.
(12.) And because, by 350, XV., we have also the relation xp = m"p - ^p, it fol

lows that when the three roots of the cubic all vanish, or when the three scalar 
equations XXIII. are satisfied, then the three vector equations,

XXVIII. .. 0p = 0, il/p = 0, xp = 0,
have a common (real and actual) vector root; or are all satisfied by one common 
direction of p,

(13.) Since m" —0 =x, the cubic TV. may be written under any one of the fol
lowing forms,

XXIX. . . O = ^2jj = ^x0 = X^’ = ^-?>X = &<:•>
in which accented may bo substituted for unaccented symbols : and its geometrical 
signification may be illustrated by a reference to certain fixed lines, and fixed planes, 
as follows.

(14.) Suppose first that m and m' both vanish, but that m" is different from zero, 
so that the cubic in 0 is reducible to the form IV., but not to the form XXIV.; and 
that the operation tp, which is here equivalent to - ^Xi nr 1° — x^, does not annihi
late every vector p, so that (comp. (4.) (h.") (G.) ") t/ip and 0'p have not the directions 
of two fixed lines, but have only (comp. (1.) and (3.) ) two fixed and rectangular 
planes, II and II', as their loci ; and let the normals to these two planes be denoted 
by X and X', so that; these two rectangular lines, X and X', aro situated respectively 
in tbe planes n' and n.

(15.) Then it is easily sliown (comp. 351) that the operation 0 destroys the lino X' 
itselfi while it reduces* every other line (that is, every line which is not of the form 
®X', with V® = 0) to the plane TI X; and that it reduces every line in that 
plane to a. fixed direction, p, in the same plane, which is thus the common direction 
of all the lines 0®p, whatever tho direction of p may be. And the symbolical equa
tion, X • 0’ = O, expresses that this fixed direction p of 0®p may also bo denoted by 
X'*0 i or that we have the equation,

XXX. . . O = xp=Zff"p-0p, if p=0’p, 
which can accordingly be otherwise proved: with similar results for the conjugate 
symbols, 0’ and x'.

• We propose to include the case where an operation ot this sort destroys a line, 
or reduces it to zero, under the case when the same operation reduces a lino to afixed 
direction, ot to Infixed plane.
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(16.) For example, we may represent the conditions of tbe present case hy tlie 
following system of equations (comp. 351, V. VII. IX. X., and 350, VI. VII. X. 
XI):

!<pp = pSap + P'Sap, ^’p = aSpp + a'SP'p, 
0 = m'= S (Vaa'.V/3'/3) = SaP Sa'p’ - SaP'Sa'p, 
m’ = Sa/3 + Sa'/3‘;

r XP = V(nV/3p + a'VP'p') = m''p - ^p,
XXXn J x'P=V(/3Vap + ^'Va'p) = »n''p-^>'p,

’ ” I -'l'P = <l>XP = X't>P = '^""'^PI^'P’ 
[ - ’^''p = ^'x'p = xt'P — 'VpP'Saa'p i 

and may then write (not here supposing X' = V/xr, &c.),
XXXni = X' = yaa’, SXV=0,

’ (p = ^(8 11 p'=^'a' II ^'a, S\p = SX'(i' = 0;
after which we easily Qnd that

YYVTV f(SV=O, <k’p||/«, 0/«=ro"/i, =
= <l>P=m"p.', x'p'=<i-

(17.) Since we have thus x'/t' = 0, where p' is a line in the fixed direction of 
^'^p, we have also the equation,

XXXV. .. 0 = Spx'/‘'= Spxp, or XP M i 
the locus ot xP therefore a plane perpendicular to the line p'; and in like manner, 
p is the normal to a plane, which is the locus of the line y’p. And the symbolical 
eqnations, = 0, • X = Oi l>® interpreted as expressing, that the operation
reduces ovory line in this new plane of xp to the^ied direction ot^‘*0, or of X'; and 
that the operation destroys every line in this plane p'j with analogous results, 
when accented are interchanged with unaccented symbols. Accordingly we see, by 
XXXII., that ipxp lias tho fixed direction of Van', or of X'; and that . ^xP — 
because ^X' = 0.

(18.) We see also, that the operation ^Xi Xt^ destroys every line in the plane 
n, to which thc operation reduces every line; and that thus the symbolical equa
tions, 0;^.0=:O, x0.0 = O, may be interpreted.

(19.) As a verification, it may be remarked that the^xed direction X', of fxP 
or xtP> ought to be that of tho line of intersection of the tvio fixed planes of ^p and 
Xp; and accordingly it is perpendicular by XXXIII. to their two normals, X and 
p': with similar remarks respecting the fixed direction X, of ^'x'p or x'<t>'pi which 
is perpendicular to X' and to p.

(20.) Lot ns next suppose, that besides m = 0, and m' = 0, we have 1/1 = 0, but 
that tn" ia still different from zero. In this case, it has been seen (6.) that the expres
sion for 0p reduces itself to the monomial form, /3Snp; and therefore that the opera
tion f destroys every line in & fixed plane (-1- a), while it reduces every other line to 
a. fixed direction (|| (3), which is not contained in that plane, because we have not 
noyf 3aP = 0.

(21.) In tAis case we have by (16.), equating a' or p' to 0, the expressions, 

XXXVI. .. t'p^^aSpp, m"=SaP^0,
[XP a'y Pp = ll»*"-<!>') Pl x'p = y-Pyap = {m”~4>'')p,

ao that the equations XVIII. are reproduced; and tho depressed cubic, or the gua- 
dratic XXII. in may bo written under the verj’ simple form.
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XXXVII... 0 = ^^ = %^.
(22.) Accordingly (comp. (5.) and (7.) ), the operation iji here reduces an arbi

trary line to the fixed direction of /3, while x destroys every line in that direction; 
and conversely, the operation x reduces an arbitrary line to the fixed plane perpen
dicular to a, and tft destroys every line in that fixed plane. But because we do not 
here suppose that m" — 0, tbe fixed direction of <pp is not contained in the fixed plane 

' of xp; end (comp. (8.) and (10.)) the directions of and 0'p are not rectangular 
to each other.

(23.) On the other hand, if we suppose that the three root! of the cubic in 0 eo- 
nieh, or that we have >n=0, m' = 0, and m" = 0, as in XXIII., bnt tliat the equa
tion tl/p = O is not satisfied for all directions of p, then the binomial forms XX-XI. 
ot^p and 0'p reappear, but with these two equations of condition between their vector 
constants, whereof only one had occurred before;

XXXVIII.. . 0 = SupSo’jS' - &afi'Sal3, 0 = Sa^ -p Sa'/3'.
(24.) We have also now the expressions,

XXXIX. . . XP = - 0Pi x'p
and the cubic in 0 becomes simply 0’ = O, as in XXIV. i but it is important to ob
serve that we have not here (comp. (9.) ) the depressed or guadratic equation gP= 0, 
since we have now on the contrary the two conjugate expressions,

XL. . . 0’p = 4'p = 'Vaa'Sj3'/3p, ^'^p = yf/'p = Vfiii'Sa'ap,
which do not generally vanish. And the equation 0’ = 0 is now interpreted, by ob
serving that 02 here reduces every line to the fixed direction of 0''O; while 0 reduces 
an arbitrary vector to tbnt fixed plane, all lines in which are destroyed by 02.

(25.) In this last case (23.), in which all the roots of the cubic in 0 are equal, 
and are null, the theorem (12.), of the existence of a common vector root ot tbe three 
equations XXVIII., may be verified by observing that we have now,

XLI. . . 0Vaa'= 0, ^Vaa'=0, xVnfi' = 0;

the third of which would not have here held good, unless we had supposed m"= 0. .
(26.) This last condition allows us to write, by (16.),

XLII. ..0p = O, —J), VpX’ = 0, 'Vp’K = 0, Spp’ = 0, 
the lines p' and p thus coinciding in direction with the normals X and X', to the 
planes n and D'; if then we write,

XLIII. ,, »< = VXX'II Vpp*, so that Spv=0, S/i'j' = O,
this new vector v will be a line in the intersection of those two rectangular planest 
which were lately seen (14.) to be the loci of the lines 0p and ifi'p, and are now 
(comp, (17.) ) the loci of xp and x’p 1 and the three lines p, p', v (or X', X, v) will 
compose a rectangular system,

(27.) Zn general, it is easy to prove that the expressions,

XLIV. . 13 = “31 + *3’1. P' = a'Pi + *'3'1,
’ Xa, = oa -p a'a', cC\ = 6a + 5'a',

in which a, P, a', p' may be any four vectors, and a, b, a', b' maybe any four sca
lars, conduct to the following transformations (in which p may be any vector') :
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XLV. . . Sai/31 + Sa'i/Ti = Safi + Sa'/i';
XLVI. .. /3iSaip+j3'iSa'ip = /3Sap +/3'Sa'p; 

XLVII. . . Vaia'i.Vj3'ij3i=Vaa'.V/3'/3;
BO that the scalar, Saj3 + Sa'/y; the oecfor, /3Sap + fi'Sa'p j and the guafernion,^ 
'Vaa'.y^'fi, remain unaUered in value, when we pass from aptoen system oifour 
vectors aPa'^', to another system of four vectors <iij3ia’j/3'i, by expressions of the 
forms XLIV.

(28.) With the help of this general principle (27.), and of the remarks in (26.), 
it may be shown, without difficulty, that in the case (23.) the vector constants of 
the binomial expression pSap + P'Sa'p for 0p may, without any real loss ot genera
lity, be supposed subject to the four following conditions,

XLVIII. . . Q = Sap=Sa:p = SPP’=SaP';
which evidently conduct to these other expressions,

XLIX.. . f 2p = pSaP'Sap, <l,3p=0i
and thus put in evidence, in a very simple manner, the general non-depression of the 
cu&te = 0, to the quadratic, = 0.

(29.) The case, or su6-case, when we have not only m = 0, m' = 0, m" = 0, but 
also 4/ = 0, and therefore = 0, as a depressed form of = 0, by the linear function 
^p reducing itself to the monomial jSSap, with the relation Sap = 0 between its con
stants, has been already considered (in (10.)); and thus the consequences of the 
supposition III., that there are (at least) tioo equal but null roots of the cubic in 
have been perhaps sufficiently discussed.

(30.) As regards the other principal case of equal roots, of the culic equation in 
namely that in which the vector constants are connected by the relation V., or by 

tbe equation of condition,
L. . . 0 = m"s - 4m' = (Saj3 + Sa'/3’)> - 4S(Vaa'.V/3'j3)

= (Sap - Sa’Py -t- dSa/ySa'/S, 
it may suffice to remark that it conducts, by VI., or by VII. and IX., to the sym-* 
bolical equation,

LI. . . 0 = if = — j
and that thns its interpretation is precisely similar to that of the analogous equation,

X^’ = 0, where x = XXIX.,
as given in (14.), and in the following sub-articles.

353. When we have ?n = 0, but wo# ni=Q, nor 
the three roots of the cubic in are all unequal, while one of 
them is still null, as before; and the two roots ai the quadratic 
and scalar equation, with real coefficients

I. . . 0 = c’ + m"c + rri.

• Wo have, in these transformations, examples of what may be called Quater
nion Invariants.
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■which is formed from the cubic by changing to - c, and then 
dividing by c, are also necessarily unequal, whether they be 
real or imaginary. 'Wq shall find that when these two scalar 
roots, Cl, C2i are real, there are then real directions, pi and 
P2, in thatJ?a;e<Zplane n which is the locus (351, 352) of the 
line tppi possessing the property that for each of them the ho
mogeneous and vector equation of the second degree,

II.. . Vp^p = o, or II P, 
is satisfied, without p vanishing; namely by our having, for the 
first of these two directions, the equation

III. . . ^pi = -Cipi, or ^ipi = 0, if ^i = ^ + Ci> 

and for the second of them the analogous equation,
IV. . . ^P2 = -C2P2, or ^2p3 = 0> if

but that no other direction of the real and actual vector p, sa
tisfies the equation V., except that third which has already 
been considered (351), as satisfying the linear and vector equa
tion.

V. . . <j>p = O, with Tp > 0.

It ■will also be shown that these hoo directions, p,, p2, are not 
only real, but rectangular, to each other and to the third 
direction p, when the linear function ipp is seZf (349,
(4.) }, or when the condition

VI. . . ip'p = pp, or VI'. . . S\pp = Spp\, 
is satisfied by the given form of p, or by the constants which 
enter into the composition of that linear symbol; but that when 
this condition of self conjugation is not satisfied, the roots of the 
quadratic I. may happen to be imaginary: and that in this 
case there exists no real direction of p, for which the vector 
equation II. of the second degree is satisfied, by actual values 
of p, except that one direction which has been seen before to 
satisfy the linear equation V7

(1.) The most obvious mode of seeking to satisfy II., otherwise than through V., 
is to assume an expression of the form, p = aj/S + x'jS', and to seek thereby to satisfy 
the equation, (^ + c) p = 0, with ^p ='/3Sap + /i'Sa'p, by satisfying separately tho two 
scalar equations,

VII. . . 0 = a:(c + Sa/3)4i®'Sa/3’, 0 = x (c +- Sa'P") + iSa’jS,
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which give, by elimination of of: «, the following quadratic in c,
VIII. .. (c + SaP) (c + Sa'P’-) = SaP'Sa'P,

which is easily seen to be only another form of I. Denoting then, as above, by c, 
and C2, the roots ot that quadratic I., supposed for the present to be real, ve have 
these two real directions toi p, in the plana II of ji, :

IX. . . pi=!j3(ci + Sa’/3’)- ji'Sa'P = ciP + 'Va'VP'p-,
X. . . p2 — P(e2 + Sa'P^ — P’Sa’0 = e2P + 'Va'^P'Pi 

which satisfy the equations HI. and IV. In fact, the expression IX. gives
0pi = ci^^+_m'j3 = -cipi, or <>ipi = 0, 

because wo may write it thus,
XI. .. pi = (m" + ci)(3—^(3=—c2j3-itj3 = -^2^=— 

and in like manner, the expression X. may be thus written,
XII. . . p2 = (.”<■" + f2)j3-<l>P=-ciP-4>P = -^iP = -1>P-m'c2-''P, 

and gives.
^p3 “ O2^P + tn^p = — ^2p, or tjt2P2 — 0.

(2.) We may also write,
XIII. . . p'i= /3'(ci + Sn/3) -/3Saj3'= ci/3'+ VaVjS/3'=- ^2p' H pi;
XIV. . . p2 = P'(.C2 + Sap)-pSaP'=C2P' + ya'Vpp' = -i>iPlp23

and shall then have the equations,

XV... ijiip'i = 0, ^2p'2=0;
but the directions of p'l and p 2 will be the same by VIII. as those of pi and ps, and 
so will furnish no new solution ot the problem just resolved.

(3.) Since we have thus,

XVI.. . ^2/3' II ^2/3II pi II ^r*0, and XVI’. . . ^iP' || ij>iP || p2 II ^2 *0,

it follows that the operation 02 reduces every lino in the fixed plane of ^p to the 
fiixed direction of^i"*0; and that, in like manner, the operation reduces eveiy line, 
in the same fixed plane of ifip, to the other fixed direction of ^2''0.

(4.) Hence we may write the symbolic equations,
XVII. , . ^1.020 “ Hi ^2* = 0,

in which the points may be omitted; and in fact we have the transformations, 

XVIII.. . 0102 = 0201 = (0 + Cl) (.t + C2) = 0’ - m"0 + m' =
SO that 0102 • 0 = 0201. 0 = 0'0 = m = 0.

(5') If we propose to form i(/i from ^i, by the same general rule (347, XI.) by 
which ip is formed from 0, we have

XIX... /iVpv = V.^'ipiji’iv = + cip) (^'v + civ),
and therefore, by the definition 350, VIII. of x,

XX. . . i/qp = 0'P + cixp + ci’p, or XXI. .. 0'1 = 0'+cix + c?: '
and in like manner.

XXII... + ax + cj’,
even if m bo different from xero, and if ci, cj be arlitrary scalars.

{G.) Accordingly, without assuming that m vanishes, if we operate on i/zip with
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^1, or symbolically multiply tho expression XXI. for by wo get tho symbolic 
product,

XXIII... = (^ + Cl) (i/* + cix + Cl®)
= + ’/') + + x) + Cl®
= m + cim' + ci^m" + ci’=mi,

where »ii is what tbe scalar m becomes, when ia changed to ^i, or is such that

XXIV. . . iniSA/iJ'= S.^’iX^’i/i^’iJ'= S.(^’X +cjA.) + ctfi) (^’r+civ);

as appears by the definitions of <//, x, m", and by the relations between
those symbols which have been established in recent Articles, or in tbe sub-articles 
appended to them.

(7.) Supposing now agiun that m = 0, and that c,, ca are the roots of thc quadra
tic I. in c, we have by XXIII.,

XXV.. . = nil = 0; and in like manner XXVI. . . ^2'f'2 = ms = 0,
if ms be formed from mi, by changing ci to C2.

(8.) Comparing XXV. with XVII., wo may be led to suspect tbe existence of an 
intimate connexion existing between i^i and ^2^, since eachvcduces an arbitrary vec
tor to the fixed direction of ^r*0, or of pi; and in fact tlicse two operations are iden
tical, because, by XXI., and by the known relations between the symbols, wc have 
the transformations,

XXVII. . . i/*! = ip + cix + Cl® = (m — m"ili + + ci (m" — ^) + ci®
” 't‘^~(.»*'+ Cl)+ C2<1> = <j>ip2 ;

and similarly, XXVIII. . . yl>i = p^ + ci<j> =
while i/z = ^1^2, as before.

(9.) We have thus the new eymMie eguation,
XXIX. . . = 0,

in which tbe three symbolic factors ipi, ^>2 may be in any manner grouped and 
transposed, so that it includes the two equations XVII. ; and in which the subject 
of operation is an arbitrary vector p. Its interpretation has been already partly 
given; but we may add, that while reduces every vector to tho fixed plane 11, 
g>i reduces every line to another fixed plane. Hi, and ^2 reduces to a third plane, 
Ils; thus ^i^si or ili2^i) while it destroys two lines pi, p2, and therefore every line in 
the plane II, reduces an arbitrary line to tho fixed direction of tbe intersection of the 
tioo planes UiITc, which intersection must thus have the direction of ^-lO; and in 
like manner, the fixed direction pi ot ^r’O, as being that to which an arbitrary vec
tor is reduced (3.) by the compound operation ^2^, or ^^2, must be that of the inter
section of tbe planes 11112; and p2i or ^**0, has the direction of tbe intersection of 
nifi ; while on tho other hand ^^2 destroys every line in Hi, and ppi every line in 
112: BO that these three planes, with their three lines of intersection, are the chief 
elements in tbe geometrical interpretation of the equation <ppip2 = 0.

(10.) The conjugate equation,
XXX. .. ^*^*10*2 — 0, •

may be interpreted in a similar way, and so conducts to the consideration of a con
jugate system ot planes and lines ; namely the planes n', fl'i, n'2, which aro the 
loci ot ^’p, 0'ip, 0'2p, while the operations ^'i^'a, ^'2^'1, and p'lp'i destroy all lines
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in these three planes respectively, and reduce arbitrary lines to the fixed directions 
of the intersections, 11'111'2, II'sIl', Il'n'i, which are also those of ^'"’0, ^'r’O, 

VO.
(11.) It is important to observe that these three last lines are the normals to the 

three first planes, IT, n', II"; and that, in like manner, the three former lines 
are perpendicular to the three latter planes. To prove this, it is sufficient to ob
serve that '

XXXI. .. Sp'0p =sSp^'p’ = 0, if 0'p'= 0, or that ^p ^'~'O ; 
and similarly, ^'p J- 0-io, &c.

(12.) Instead of eliminating tc': x between the two equations VII., we might 
have eliminated c; which would have given this other quadratic,

XXXll. . . 0=x^Sa'P + xx'(Sa'p'-SaP)-x’2SaP'-,
also, if I'l; xi and xs': xe be the two values of x': x, then

XXXIII.. . Pl J XiP + xiP", P2 II ®2j3 + XiPl,
and XXXIV. . . XiXs: (xix’e + a^'i): x'lx'a = - Sap': (SaP - Sa’plj : Sa'p; 
hence the condition of r^tangularitg of the two lines pi, pa, or 0r>O, 02->O, ia ex
pressed by the cquaU||L

XXXV. . . (i = -^aP' + Sppi(SaP-Sa'P') + P'tSaP = S.pP'y(pa + P'a)i 
and consequently it is satisfied, if the given function 0 be self-conjugate CVl.j, be
cause we have then the relation,

XXXVI. . . V/3a+V(3'a' = 0;
in fact the binomial form of gives (comp. 849, XXII.),
XXXVII. . . <ji'p — ^p = (aSpp — pSapj-i- (a'SP'p—piSa’p') = 'V.p'V(Pa+pia), 

which cannot vanish independently of p, unless tbe constants satisfy the condition 
XXXVI.

(18.) With this condition then, of self-conjugation of <j>, we have the relation of 
reotangularitg,

XXXVIII. . . Spipa— 9, or ^i”^0 -t- ^2*10 ;

at least if these directions pi and p2 be real, which they can easily be proved to be, 
as follows. The condition XXXVI. gives,

XXXIX. . . 0 = S. aaTOSa + P'a'j = a^Sa'p + Saa'(SaP' - SaP) - a'^SaP'; 
hence (a»Sa')3 - o'2Saj3')« = (Saa')» (Sa/S - Sa’iy)% 

a^aXm"* - 4m') = - Sa'^)’ + iSaP'Sa’P }
= (a’a” - (Saa')’) (a/3 - Sa'j3')’ + (atSa'p + a'^SaP')^ > 0, 

XL. .. (Sap - Sa'piy + 4Sa/3'Sa'/3 = 4m' > 0;and

so that each of the two quadratics, I. (or VIII.), and XXXII., has real and unequal 
roots; a conclusion which may also be otherwise derived, from the expressions 
(3 = aa + ba', fi' = ba + a'a',- which the condition allows us to substitute for and /3'.

(14.) The same condition XXXVI. shows that the four veclort apa'fi' are com- 
planar, or that we have the relations,

XLI. . ; SaPli' = 0, Sa'/3j3' = 0, V(Vaa'.Vj3’/3) = 0;

hence Voo', or ^*'0 is now normal to thoplane n ; and therefore Iiy (13.), wAca 
<Ac funetion ifi is self-conjugate (VI.), the three direetinns,

3 N
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XLII... p, pi, p2, or ^*'0, <t>r'O,
compote a real and rectangular system.

(15.) In the present series of subarticles (to 353), we suppose that tho three 
roots ot the cubic in 0 are nZ/ unequal, the cases of equal roots (with m = 0) having 
been discussed in a preceding series (352); bnt it may he remarked in passing, that 
when a self-conjugate function ^p is reducible to tho monomial form pSap, we must 
have the relation V/3a = 0; ond that thus the Zine /3, to iho fixed direction of which 
(comp. 352, (5.) and (6.) ) the operation 0 then reduces an arbitrary vector, is per
pendicular to the fixed plane (352, (7.)), every lino in which is destroyed by that 
operation <p.

(16.) In general, if be thus self-conjugate, it is evident that tlie three planes 
n', n'l, n 2, which are (comp. (10.) ) the loci ot <p'p, ^I’p, ij>'2p, coincide with tho 
planes n, IIi, IT2, which are the loci of ^p, ^ip, ^2p-

(n.") When 0 is not self-conjugate, so that <pp and 0'p are not generally equal, 
it has been remarked that the scalar quadratic I., and therefore also the symbolical 
cubic in 0, may have imaginary roots! and that, in this case, the vector equation II. 
of the second degree cannot bo satisfied by any real direetiqp of p, except that one 
which satisfies the linear equation V., or causes 0p itself tojj|rish, while p remains 
real and actual. As an example of such imaginary scal^^Paa roots ot I., and of 
what may be called imaginary directions, or imaginary vectors (comp. 214, (4.) ), 
which correspond to those scalars, and are themselves imaginary roots of II., wo may 
take the very simple expressions (comp. 349, XII.),

XLIII. . . 0p = Vyp, 0'p =—Vyp; «
in which y denotes some real and given vector, and which evidently do not satisfy 
the condition VI., the function 0 being here the negative of its own conjugate, so that 
its self-conjugate part 0o is zero (comp. 349, XIII.). We have thus,

XLIV. . . »no=O, m'o = O, ?»"o=0, 0o = O, i{?o = 0, xo = O, 
and consequently, by the sub-articles to 349 and 350,

XLV...m = 0, »»' = —y’, »n"=^0, i|;p = —ySyp, XP = —Vyp;

the quadratic I., and its roots ci, fs, become therefore,

XLVI. . . c«-y» = 0, ci = + \/=n.Ty, C2 = -^/^.Ty, 

where \/— 1 is the imaginary of algebra (comp. 214, (3.) ); thus by XX. or XXL, 
and XXII.) we have now

XLVII, .. t/zi<r = -ySy(r-CiVy(r-t-ci’(T = (y-ci)Vyff, t/'2<’ = (y-C3)Vy<r; 
hence 

Syi/'i<r = 0, V7i/'i(r= &c.,
and

XLVIII. . . (^+ = (■)> + fl) (y — ci)Vy<r = (y’ —ci’)V'j'(r = O,
and in like manner XLVII I'. . . — 0;
if then we take an arbitrary vector a, and derive (or rather conceive as derived) from 
it two (imaginary) vectore pi and pj by tho (imopmury) operatiom tf/t and tp2, we 
ahall have (comp. HI. and IV.) the equations,

XLIX. . . pi = >//i<T, 0ipi = O, ^pi = -cipi, 'Vpiijipi = O, 
L. . . p2 = xf/,<r, =■ 0, ^pj = — C2p2, Vp2ll)p2 = 0,and
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as ones which are at least symbolically true. We find then that the two imaginary 
directiona, pi and pa, satisfy (at least in a symbolical sense, or as far as caZcnZnlion 
is concerned) the vector equation II., or that pi and pa are Zivo imaginary vector roots 
of ypifip = 0 ; but that, because the scalar quadratic 1. has here imaginary roots, 
this vector equation II. has (os above slated) no real vector root p, except one in the 
direction ot tho ptven.and real vector y, which satisfies the linear equation V., or 
gives = 0. '

(18.) Thia particular example might have been more simply treated, by a less 
general method, as follows. We wish to satisfy the equation,

LI. . . 0 = V.pVyp = pSyp — p’y ;
which gives, when we operate on it by V. y and V.p, these others,

LII. , . 0 = Vyp.Syp, 0 = p*Vyp;
if then wo wish to avoid supposing tjip = Vyp = 0, wo must seek to satisfy the two 
scalar equations.

LIII. ..Syp = O, p’=0i
and conversely, if wo can satisfy these by any (real or imaginary) p, we shall have 
satisfied (really or symbolically) the vector equation LI. Now tbo first equation 
LIII. is satisfied, when wo assume the expression,

LIV. . . p = (c 4- y)Vyo = Vyo. (c — y),

where o ia an arbitrary vector, and c is any scalar, or symbol subject to thc laws of 
scalars; and this expression LiV. for p, with its transformation just assigned, gives

LV. . . p3 = (c* — y®) (VyO')* = 0, if c* — y* = 0 ;

tlie quadratic XLVI. is therefore reproduced, and we have the same imaginary roots, 
and imaginary directions, as before.

(19.) Geometrically, the imaginary character ot thc recent problem, of satisfying 
the equation V.pVyp = 0 by any direction of p except that of the given line y, is 
apparent from tho cireumatanco that <pp, or Vyp, is here a vectorperpent/icuZar to p, 
if both be actual lines; and that therefore the one cannot be also parallel to tho 
Other, ao long ns both aro real.*

354. In the three preceding Articles, and in the sub-arti
cles annexed, we have supposed throughout that the absolute 
term of the cubic in is wanting, or that the condition m = 0 
is satisfied; in which case we have seen (351) that it is always 
possible to satisfy the linear equation tpp = 0, by at least one 
real and actual value of p (with an arbitrary scalar coefficient) ; 
or by at least one real direction. It will be easy now to show.

* Accordingly the two imaginary directions, above found for p, are easily seen to 
bo those which in modern geometry are called the directions of linea drawn in a given 
plane (perpendicular here to the given lino y), to the circular points at infinity : of 
which supposed directiona tho imaginary character may he said to be precisely this, 
that each is (in the given plane) its own perpendicular.
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that although conversely (comp. 351, (4.)) thc function 
cannot vanish for any, actual vector p, unless we have thus 
m = 0, yet there is always at least one real direction for which 
the vector equation of the second degree,

I. . . Vp^p = 0,
which has already been considered (353) in combination with 
the condition wi = 0, is satisfied; and that if the function be 
a self-conjugate one, then this equation I. is always satisfied 
by at least three real and rectangular directions, but not gene
rally by more directions than three; although, in this case of 
self-conjugation, namely when

II. . . <A'p = <pp, or ir. . . SX^p = Sp^X,
for all values of the vectors p and X, the equation I. may hap
pen to become true, for one real direction of p, and for every 
direction perpendicular thereto: or even for all possible direc
tions, according to the particular system of constants, which 
enter into the composition of the function q>p. We shall show 
also that the scalar (or algebraic) and cubic equation,

III. . . 0 =m + m'c + ni'c^ + c’,

which is formed from the symbolic and cubic equation Z5Q, I., 
by changing to - c, enters importantly into this whole 
theory ; and that if it have one real and two imaginary roots, 
the quadratic and vector equation I. is satisfied by only one 
real direction of p; but that it may then be said (comp. 363, 
(17.) ) to be satisfied a/so by two imaginary directions, ov to 
have too imaginary and vector roots: so that this equation 
I. may be said to represent generally a system of three right 
lines, whereof one at least must be real. For the case IL, the 
scalar roots of III. will be proved to be alicays real; so that 
if Wo, Jn'o, and m"a be formed (as in sub-articles to 349 and 360) 
from the self-conjugate part tp^p of any linear and vector func
tion tpp, as w, m', and w" are formed from that function ^p it
self, then <Ae new cubic,

IV. . . 0 = Wo + w'„c I m'\c- + c’,

which thus results, can never have imaginary roots.
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(1.) If wo write,
V. . . 4>j0 = {ip + cp, ^'p = ^'p + cp, or briefly, V'. . . * = ^ + c, *' = + c, 
where e is an prbitrary scalar, and if wc denote by S?'', and M wliat»[/, <P’, and 
m become, by this change of ift to <j> + c or $, the calculations in 853, (5.), (6.), 
show that we have the expressions,

VI, ..4r = )jz + ex 4- c’. ex’+ c’,
and VII. . . 3t=m + m'c + n»"c’ + c®,
with VIII. . . M= d>’f = ’jri = = 4F'*'.

(2.) Hence it may be inferred that the functions Xi x'l and the constants m', 
m" become.

with the verifications,
XI. . . 0 + X = *' + X'=M'', *X +'i'= 4>'X'+ ^'= Af,

as wo had, by the sub-articles to 350,

^ + X = 0' + x' = ’»''. ^X + 'l' = ^'x' + 'l''=f"'-
(8.) The ncK) linear eymiol d> must satisfy the new cubic,

XII. . . 0 = Af- Af'<b + Af"*2- $3;
which accordingly can be at once derived from the old cubic 350, I., under the form,

XIII... 0 = m + m'(c - 4>) -1- »n"(c — + (c —
(4.) Now it is always possible to satisfy the condition,

XIV.. . A/=0,
by substituting for c a real root of the ecalar cubic III.; and thereby to reduce the 
nett) tymbolieal cubic XII. to the/brm,

- XV. . . 0 = *3-+ M’ib-, 
which is precisely similar to the form,

0 = -I- mV, 852, II.,
and conducts to analogous consequences, which need not hero be developed in detail, 
since they can easily bo supplied by any one who will take tho trouble to read again 
the few recent series of sub-articles.

(5.) For example, unless it happen that Sfp constantly vanishes, in which case 
Af'= 0, and 4>p (if not identically null) takes a monomial form, which is reduced to 
zero (comp. 362, (7.) ) for every direction of p in a given plane, the operation 
reduces (comp, 351) an arbitrary vector to a pt'een direction; and the operation $ 
destroys every line in that direction : so that, in every case, there is at least one real 
way of satisfying the oeefor equation ^p =■ 0, and therefore also (as above asserted) 
tho equation I., without causing p itself to vanish.

(6.) And since that equation I. may be thus written,
XVI. . . Vp<I>p = 0, or <pp II p,

wc see that it can bo satisfied without <Pp oanishiny, if this neu' scalar and quadratic 
equation.

XVII... 0= Ci yurc^M', comp. 353, I.,

    
 



462 ELEMENTS OF QUATERNIONS. [book III.

have real and unequal roots Ct, C2; for if we then write,
XVIII.. . *1 = * + Cl, 4>2= * + C2,

the line will generally have for its locus a given plane, and there will bo two real 
and distinct directions pi and pt in that plane, for one of which <t>ipi = 0, while 
$2^2= 0 for the other, so that each satisfies XVI., or I.; and these are precisely the 

fixed directions of ^ip and 'F2P, if and ^2 be farmed from by changing * to 
*1 and *2 respectively.

(7.) Cases of equal and of imaginary roots need not bc dwelt on here; but it may 
be remarked in passing, that if tho function ^p have tlie particular form {g being 
any scalar constant),

XIX...^p=pp, then XX. . . (p-0)® = O, and XXI... Af= (p + c)’; 
the cubic XIV. or III. having thus all its roots equal, and the equation I. being sa
tisfied by exery direction o( p, in this particular case. *

(8.) The general existence of a real and rectangular system ot three directions 
satisfying I., when tbe condition II. is satisfied, may be proved os in 353, (11.); 
and it is unnecessary to dwell on tbe case where, by two roots of tbe cubic becoming 
equal, all lines in a given plane, and also tho normal to that plane, arc vector roots 
of X., with the same condition II.

(9.) And because the quadratic, 0 = c- + m''c + m' (353, I.), has been proved to 
have always real roots (353, (13.) ) when <li'p = ij>p, thc analogous quadratic XVII. 
must likewise then have real roots, Ci, C2; whonco it immediately follows (comp. 
XII. and XIII.), that (under tho same condition of self-conjugation'} tho cubic III. 
has three real roots, c, c + Cj, c + Cs; and therefore that (as above stated) thc other 
cubic IN., which is formed from tho self-conjugate part qm of the general linear and 
vector function <p, and which may on that account be thus denoted,

XXII. . . Mf, = 0, has its roots always real.
(10.) If we denote in like manner by $0 the symbol ?So + c, tbe equation 

»i = mo —Sy^oy (319, XXVI., comp. 319, XXI.) becomes,
XXIII, . . ,3/"=: Mo — Syd>oy;

whence, by comparing powers of c, yco recover the relations,
= —yS, and „>"= »n"o, as in 350, (1.).

(11.) On a similar plan, tbe equation m<j>"Vpv = becomes,
XXIV. . . M^"Vpv='V.'i'p'^t', comp. 318, (1.),

in which p and v are arbitrary vectors, and c is an arbitrary scalar; or more fully, 
XXV... (m .1- m'c + m''c^ + c^") (^'-t-c)V/n/ = V.(>//p +cx/i + c’p)(4'r' +cxvl-c’p); 
whence follow these new equations,

XXVI. .. (m + m'qiyVpv =
XXVII. . . (m' + m''q>'jVpit = Y(pqiv — tnfip + xi* • Xv), 

XXVIII. . .'(m" + qt'y'fpv^Nljixv - vxp},
which can all be otherwise proved, and from the last of which (by changing 0 to </', 
Ac.) we can infer this other of tbe same kind,

XXIX. , . (nt' + <p')V/n' = V(p^X’' - ’'0XA‘)-
(12.) As an example ot the existence of a real and rectangular system of three 

directions (8.), represented jointly by an equation of tbe form I., and of a system of
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three real roots of tho scalar cubic III., when tho condition II. is satisfied, let nS 
take tho form.

XXX. . . ^p=:gp + VKpn = ip'p,
g being here any reoZ and given scalar, and X, p. any real and non-parallel given 
vectors: to wliich/orm, indeed, we shall soon find that every self-conjugate function 
i/>Qp can be brought. We have now (after some reductions),

XXXI. . . =VXp/jSX/i — VXjuSXp/i —ytXS/tp + pSXp) + ^V,
XXXII. . . xp=—(XSpp + pSXp) + 2pp, 

and XXXIII. . . wi = (p —SXp)(p’— XSp^), ja* = — X^p® — 2pSXp4-
»n"= —SXp + 8p;

where the part of i//p which is independent otg may be put under several other forms, 
such as the following,
XXXIV... V(XppSXp-XpSXpp) = XppSXp-XpSXpp

= X (pSXp + Shpp)p = lX(Xpp + p\p)p = X(\Spp + pSXp - \pp)p, &c.; 
and d', % X, M, M’, M" may bo formed from x, tn, m', m", by simply
changing p to c+p. Tho equation jW= 0 has therefore here three real and unequal 
roots, namely the three following,

XXXV. ..c = -p + SXp, c+Ci = ®p + TXp, c+C2 = -p-TXp;
and tlie corresponding forms of 'Pp are found to be,

XXXVI.. . 'Pp = VXpSXpp, 'lrip= - (XTp + pTX) S. p(\Tp + pTX), 
tpsp^- (XTp-pTX)S.p(XTp — pTX).

Thus '^p, ^'ip, and 'i'op have in fact the three fixed and rectangular directions of 
VXp, XTp + pTX, and XTp — pTX, namely of the normal to the given plane of X, 
p, and the bisectors of tho angles made by those two given lines; and these are ac
cordingly the only directions which satisfy the vector equation of the second degree, 

XXXVII. . . (Vp0p=V.pVXpp=)VpXSpp + VppSXp = O;
so that this last eguation represents (aa was expected) a system of three right lines, 
in these three respective directions,

(13.) In general, if ci, ci, ca denote the three roots (real or imaginary) of tlie 
cubic equation Ilf = 0, and if we write,

XXXVTII. . . $1 = ^ + Cl, d>2=^ + C2, <P3 = ^+C3<
the corrresponding values of will be (comp. VI.),

XXXIX. .. '1'1 = 1/'+ c,x + Cl’, 'l'2 = i/' + c2x + C2’, *3 = i/' + e3x + c3’;

also we have tho relations,

i
ci + C2 + c3 = -ro’' = -0-x, 
C2C3 + CsCi + C1C2 = + m’ = ij>x +'!'» 
ClC2C3 = -m = -f>f'>

whence it is easy to infer the expressions,
XLI. . . *1 = (C2 - €3)-' (^3 - iPj), <l>3 = (C3 - Cl)-' ('1'1 - '*'3),

*3 = (ci - Ca)-' (I'a - ■4'1);
which enable us to express theyhnctions *ip, ^ap, i>3p as binomials (comp. 351, 

■ &c.), when 'kip, '^apt 'd'sp have been expressed as monomea, and to assign the 
planes (real or imaginary), which are the loci of tlie Zfnes d>ip, *2p, d’sp.
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(14.) Accordingly, the three operations, <t, 'Pi, d>2, by which lines in the three 
lately determined directions (12.) are destroyed, or reduced to zero, and which at 
first present themselves under the forms,

XLII... = XSjap -i- /tSXp, 4>ip=+ pTXp, $3 = VXpp — pT!\p,
are found to admit of the transformations,

vTTTi * Sf'2p-*’ip '92P-^p . ■^p-'^ip
2T\p ’ *^''TXp+SXp’’ '*’’^~TXp-SXp’

where 4^, 'Fi, 'P’e have tho recent forms XXXVI., and the loci of ■Pp, *ip, ^2p com
pose a system of three rectangular planes.

(15.) In general, the relations (13.) give also (comp. 353, (8.) ),

XLIV. . . = $2$3. ■*^8 = ^s*!, *3 = *1*2,
XLV. . . ^3'4'‘8 = $3^3 = ^14’2$3= 0,

XLVI... = ^2^3 = = 0,
and
whence also,

the symbols (in anyone system of this sort) admitting of being transposed and grouped 
at pleasure; if then the roots of 71^=0 be real and unegual, there arises a system 
of three real and distinct planes, which are connected with the interpretation of the 
symbolical equation, 4>i<I>2'I>3 = 0, exatiHy as tho throe planes in 353, (9.) were con
nected with tho analogous equation, ^0i^2 = 0.

(16.) And when the cubic has two imaginary roots, it may then be said that there 
is one reed plane (such as the plane y in 353, (18.), (19.) ), containing the two 
imaginary directions which then satisfy the equation I.; and (too imaginary planes, 
which respectively contain those two directions, and intersect each other in one real 
line (such as the line y in the example cited), namely the one real vector root of ‘ 
the same equation I.

355. Some additional light may be thrown upon that vector 
equation of the second degree, by considering the system of the two 
scalar equations,

I.. . Shp<j>p = 0, and II. . . Sxp = 0,
and investigating the condition of the reality of the two* directions, 
p, and P2, by which they are generally satisfied, and for each of 
which the plane of p and ipp contains generally the given line X in
I., or is normal to the plane locus II. of p. Nfc shall find that these 
two directions are always real and rectangular (except that they may 
become indeterminate, when the linear function is its own conju
gate ; and that tAen, if x be a rapt p„ oi the vector equation,

in... 'Vpfp=(i,

* Geometrically, the equation I, represents a cone of the second order, with A 
for one side, and with tho three lines p which satisfy III, for three other sides; and 
II. represents a plane through the vertex, perpendicular to the side X. The two direc
tions sought aro thus tho two sides, in which this plane cuts the cone.
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which has been already otherwise discussed, the lines pi and pt are 
also roots of that equation; the general existence (354) of a system of 
three real and rectangular directions, which satisfy this equation III. 
when ^'p = <tip, being thus proved anew: whence also will follow a 
new proof ol the reality of the scalar roots oi tbe cubic HI = 0, for this 
case oi self-conjugation oi <!>; and therefore of the necessary reality of 
the roots of that other ceAic, = 0, which is formed (354, IV. or 
XXII.) from the self-conjugate part of the general linear and vec
tor function as 0 was formed from .

(1.) Let X, p, V be & system of three rectangular vector units, following in all 
respects the laws (182, 183), of the symbols i, j, k. Writing then,

IV. . . p = yp + ir, and therefore, Xp=yi'—z/i, ^p=g^p +zijir, 
the equation II. is satisfied, and I. becomes,

V. . . 0 = g-Sv<l>p + gztSv^v — Spjtp) — z^Sp^v ■,
the roots of which quadratic will be real and unequal, if

VI. . . (Sv^v-Sp^p)2 +4Sp0pSy^p> 0 ;

and the corresponding directions of p will be rectangular, if

VII. . . 0 = S (y ip + ziv) iytp + 2ji>) = - + zizj);
that is, if

VIII... Sv^p = Sp^v,
at least for this particular pair of vectors, p and v.

(2.) Introducing now the expression, ^p = ^op + Vyp (349, XII.), the condi
tions VI. and VIII. take the forms,

IX. . . (Si'^ov —Sp^op)’ +4S(/x^ov)’> 4(Syp»>)’, and X. ..Syp»'=0; 
which are both satisfied generally when y = 0, or ^ = ^' = ; the only exception
being, that the quadratic V. mag happen to become aa identity, by all its coefficients 
vanishing: but tho opposite inequalitg (to VI. and IX.) can never hold good, that 
is to say, the roots oi that quadratic can never be imaginarg, when is thus seZf- 
conjugate.

(8.) On the other hand, when y is actual, or ^’p not generally =^p, the condi- ” 
tion X. ot rectangularitg can only accidentally be satisfied, namely by the given or 
fixed line y happening to be in the assttmed plane et p, v; and when the too direc
tions et p are thus not rectangular, 01 when the scalar Sypv does not vanish, we 
have only to suppose that the square of this scalar becomes large enough, in order to 
render (by IX.) those directions coincident, or imaginary.

(4.) When ^'=^, or y = 0, we may take p and v for the two rectangular direc
tions of p, or may reduce the quadratic to tho very simple form yz = 0; but, for this 
purpose, we must establish tho relations,

XI. .. Sp<t>v = Sv^p = 0.

(6.) And if, at tho same time, X satisfies the equation Hi., so that ^X |{ X, wc 
shall have these other scalar equations,

3 o

    
 



466 ELEMENTS OF QUATERNIONS. [book III

whence VrX ||/t, and |1 VA;t || v,
or, Xin.. . 0 = 'V\^\='Vp^p = 'Vvij>v;
X, p, V thus forming (as above stated) a system, of three real and rectangular roots 
ot that eecZor equation III.

(6.) But in general, if III. be satisfied by even two real and distinct directions 
of p, thc scalar and cutic equation M= 0 can have no imaginary root; for if those 
two directions give two unequal but real and scalar values, e, and C2, for the gno- 
tient —^p:p, then ci and ca are two real roots ot the cubic, of which therefore 
the third root is also real; and if, on the other hand, the two directions pi and pa 
give one common real and scalar value, such as ci, for that quotient, then eftp = — cip, 
or 4>ip = (^ + ci)p = 0, for every line in the plane of pi, p2; so that <^p must be of 
the form, — cip + fSSpipap, and the cubic will have at least two equal roots, since it 
will take the form,

XIV. . . 0 = (c - cif (c - Cl + Spipa/I),
as is easily shown from principles and formula) already established.

(7.) It is then proved anew, that the equation A/= 0 has all its roots real, if 
^'p = ifp ; and therefore that thc equation Afo = 0 (as above stated) can never have 
an imaginary root.

(S.) And we sec, at the same time, how thc scalar cubic M—O might have been 
deduced from the symbolical cubic 350, I., or from the equation 351, I., as tho con
dition for the vector equation III. being satisfied by any actual p ; namely by ob
serving that if ij>p — — cp, then ^Sp = c’p, ipp =— c^p, &c., and thprefore h/p = 0, in 
which p, by supposition, is different from zero.

(9.) Finally, as regards tlie case* of indetermination, above alluded to, when 
the quadratic V. fails to assign any definite values to y: z, or any definite directions 
in the given plane to p, this case is evidently distinguished by the condition,

XV.. .
in combination with the equations XI.

356. The existence of the SyirJjolic and Cubic Equation (350), 
which is satisfied by the linear and vector symbol suggests a Theo- 
rem\ of Geometrical Deformation, which may be thus enunciated:—

* It will be found that this case corresponds to tho circular sections of a surface 
of the second order; while the less particular case in which ^'p = ^p, but not 

so that the two directions of p are determined, reed, and rectangular, 
corresponds to the axes of a non-circular section ot such a surface.

t Thia theorem waa stated, nearlyjn the same way, in page 568 of tho Lectures; 
and the problem of inversion of a linear and vector function was treated, in the few 
preceding pages (559, &o.), though with somewhat less of completeness and perhaps 
of simplicity than in the present Section, and with a slightly different notation. The 
general form of such a function wiiich waa there adopted may now bo thus ex
pressed :

= 2/3Sap -t- Vrp, r being a given quaternion ; 
the resulting value of m was found to be (page 561),
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‘‘ Ifs atty given Mode, or Law, of Linear Derivation, oi the 
hind above denoted by the symbol <P, we pass from any assumed Vec
tor p to a Series of Successively Derived Vectors, p-,, p^, pi,,,. or ^’/j,

</)^p,..; and if, iy constructing a Parallelepiped, we decompose any 
Line of this Series, such as Pi, into three partial or component lines, 
nip, ~ m'pi, m"p2, in the Directions of the three which precede it, as here 

P> Po Pi', then the Three Scalar Coefficients, m, -m', m", or the Three 
Patios which these three Components of the Fourth Line pi bear to the 
Three Preceding Lines of the Series, will depend only on the given Mode 
or Law of Derivation, and will be entirdy independent of the assumed 
Length and Direction of the Initial Vector

(1.) As an Example of such successive Derivation, let us take the /ata, 
L . . pi = (0 = -yftpy, P2 = ^^p=-'VPpiy, &c., 

which answers to the conetruction in 806, (1.), &c., when we suppose that /3 and y 
are untZ-/tnes. Treating them at first as any tioo given vectore, our general method 
conducts to the equation,

II. .. pi —mg — m’px 4. m"p2,
with the following values of the coefficients,

in. . . m = — /3®y’S/3y, m.'= — j3^y^, m"=3Py,
as may be seen, without any new calculation, by merely changing g, \, and p, 
in 354, XXXIII., to 0, /3, and - y.

(2.) Supposing next, for comparison with 306, that
IV,. . /32= y2 =_ 1, and S/3y =-1,

so that j3, y are unit lines, and I is the cosine of their inclination to each other, tbe 
values III. become, 

and the equation TI., connecting four successive lines of the seriqs, takes the form,
VI. . . p3=Zp + pi-fp2, or VII, . . p,-pr = _Z(ps-p);

m = 2Saa'a"S/3"/3'/3 + SS (rVaa'.V/3'P) + Sr2Saj3r - 2SarSj3r + SrTr’; 
and the auxiliary function which we now denote by ip was,

7n^-i<r = ,|/cr=2Vaa'Sj3'/3(r + 2V.oV(V)3<r.r)+ (VorSr-VrSor); 
where the sum of the two last terms of i//<r might have been written as arSr — rSar. 
A student might find it an useful exercise, to prove the correctness of these expres
sions by tho principles of the present Section. One way of doing so would be, to 
treat 2/3Sap and r as respectively equal to ^op + Vyp and c + e; which would 
transform m and tf/ir, as above taritten, into the following,
■^o-S(y f e) C0o + c) (7 + 0, ’J^o<r-(y+ e) 8(7 + e) <r + Vcr(0o + c) (y + t) ;
that is, into the now values which the JW and 'P'lr of the Section assume, when 4>p 
takes the new value, d’p = (^0 + c) p + V(y + e) p.
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a result which agrees with 305, (2.), since we there found that if p = op, &c., tho 
interval P1P3 was = - Z x rP2.

(3.) And as regards the inversion ot a linear and vector function (347), or tho 
return from any one line pi of such a series to the line p which precedes it, our ge
neral method gives, for the example I., by 354, (12.),

VIII. . . <Ppi = lp(J3ypi + piPy')y.
TV --..I____ + ypty-'_IX... p = i, .ip,=m i4/pi =------- Py + yp :

a result which it is easy to verify and to interpret, on principles already explained.

and
.-I

351. We are now prepared to assign some new and gene
ral Forms, to which the Linear and Vector Function (with real 
constants) of a variable vector can be brought, without assum
ing its self conjugation; one of the simplest of which forms is 
the following,

I. .. epp - "Vqop + VXp/z, with r. . . Jo = *7 + 7;
Jo being here a real and constant quaternion, and X, p two real 
and constant vectors, which can all be definitely assigned, when 
the particular form oi 0 is given: except that X and p may be 
interchanged (by 295, VII.), and that either may be multiplied • 
by any scalar, if the other be divided by the same. It will 
follow that the scalar, quadratic, and homogeneous function of 
a vector, denoted by Sptpp, can always be thus expressed;

II. . . Sptjip =gp^ + SXppp;
or thus,

IT. . . Sp^p 2SXpSisp, if y = ^-SA)u;

a general and (as above remarked) definite transformation, 
which is found to be one of great utility in the theory of Sur
faces* of the Second Order.

(1.) Attending first to the case of self-conjugate functions ^op, from which we 
can pass to the general case by merely adding the term ^yp, and supposing (in vir
tue of what precedes) that aia^as are three real and rectangular vector-units, and 
ojcjcs three reaZ scalars (tho roots of the cubic Ma = 0), such that

* In the theory of such surfaces, tlie two constant and real vectors, X and p, 
have the directions of what aro called tho cyclic normals.
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III. . . ipiai = + Cl) «1 = 0, ^aaj = (^o + 02)02 = 0,» ^303= (^0 + C3) 03 = 0,
we may write

and therefore

so that *

IV.. . p = — (aiSaip+ O2Sa2p + aaSosp),

V. .. ijiop = cioiSaip + caoaSaap + C303S03P i

(01P = (C2 - 01)02802? + (C3- Cl) 03803?,
VI. . . ?^i2p = (c3-C2)a3Sa3p + (ci-c3)aiSaip, 

({'ap = (ci — C3) aiSaip + (C2 — 03)02802?, 
the iinomfoZybrms of fi, 02, 03 being thus put in evidence.

(2.) We have thus tho general but scalar expressions:
VII. . . - p3 = (Soip)2 + (Soap)’ + (803?)’;

VIII. . . Sp0p = Sp0op= Cl (Soip)’+02(802?)“+03(803?)®
= — cip® + (ca - Cl) (Soop)’ + (03 - Cl) (803?)®
~ — C2P® — (c2 — Cl) (Snip)’ + (c3 — C2) (So3p)® 
= - C3p'‘ — (C3 — Cl) (Soi?)® — (_C3 — C2) (S02P)’ :

in which it ia in general permitted to assume that
IX.. . Cl < C2< C3, or that X. . . 03 —ci = 2e“, 03—C2 = 2e'®,

0 and c' being real scalars, and the numerical coefficients heing introduced for a mo
tive of convenience which will presently appear.

(3.) Comparing-the last but one of the expressions VIII. with II'., we see that 
we may bring S?0p to the proposed form II., by assuming,

XL .. X = coi + e'03, p = —eoi+e'03, p = SXp — C2 = —5(01+ C3), 
because SXp = e® — e'“ = C3 — A (ci + C3).

(4.) But in general (comp. 349, (4.) ) we cannot have, for all values of ?,

XII. . . Sp0p = Sp0'p, unless XIII. . . 0o?= 0'op,
that is, unless the self-conjugate parts of 0 and 0' be equal w^e can therefore infer 
from II. that 0op = pp + VXpp, because VXpp = VppX = its own conjugate; and 
thus the transformation I. is proved to be possible, and real.

(5.) Accordingly, with the values XI. of X, p, g, tlie expression,
XIV. . . 0op=pp +VXpp = p(p-SXp)-^XSpp + pSXp, 

becomes,
XV. . . 00? = —C2p + (e'a3 + eni) S(e'a3—eai)p-)-(e'a3-ea,) S(e'a3+eai)p 

= — C2? — 2e®aiSaip + 2e'“a3Sa3p;

which agrees, by X., with VI.
(6.) Conversely if p, X, and p be constants such that 0op=pp + VXpp, then 

0oVXp = p'VXp, where p' =? - SXp, as before; hence - p' must be one of the three 
roots Cl, C2, C3 of the cubic Me = 0, and the normal to the plane of X, p must have 
one of the three directions of ai, 02, 03; if then we assume, on trial, that this plane 
is that of ai, as, and write accordingly,

XVI. .. X = aai + <1'03, p = bai + b'as, q)2p — XSpp + pSXp, 
we aro, by VI., to seek for scalars aa’bb' which shall satisfy the three conditions,

XVII. . .^2a6 = ci-C2, 2a'b' = Ci~C2, a6' + ia’ = 0;
but these give

XVIII. .. = (26o-)> = (ca ~ c,) - c;),
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a =

so that if the transformation is to be a real one, we mast suppose that c; — ci and 
C3 — C2 are either 6o<A positive, as in IX., or else 6ofA negative ; or in other words, 
we must so arrange the three real roots of the cubic, that C2 may be (algebraically) 
intermediate in value between tbe other two. Adopting then tbe order IX., with 
the values X., we satisfy the conditions XVII. by supposing that

XIX. . . a' = 6' = e', o = — 6 = e;
and are thus led back from XVI. to the expressions XI., as tho onlg real ones for A, 
It, and g which render possible the transformations I. and II.; except that A and p 
may be interchanged, &c., aa before.

(!.') We see, however, that in an imaginary sense there exist two other solutions 
o( tbe problem, to transform and Spipp as above; for if we retain tbe order IX., and
equate g' in II'. to either — cj or - cs,.we may in each case conceive tbe corresponding 

' sum of two squares in VIII. as being tbe product of two imaginary but linear fac
tors : the planes of the two imaginary pairs of vectors which result being real, and 
perpendicular respectively to ai and ns.

(8.) And if tho real expression XIV. for ^op be given, and it bo required to pass 
from it to the expression V., with the order of inequality IX., tho investigation in 
854, (12.) enables us at once to establish the formula):

XX. . . ci = —y-TA/t, ct = —g+S\p, C3 = —p + TA/i;
XXI. . . m = U(AT;t - mTA), 02 = ns = U(ATp + jiTA);

in which however it is permitted to change tho sign of any ono of tho throe vector 
units. Accordingly the expressions XI. give,

TAp + SAp = 2e2 = C2 —ci, TA/x — SA/r = 2e'’= cs — C2, Shp = g-^C2-, 
TA = Tp, A-/* = 2eai, VA/i = — 2ec'a3ai = + 2ee'a2, A + /t = 2e'n3.

(9.) We have also the two identical transformations,
XXII... Shppp = f^Thp + {(Shppy^ + (SApTp + S/ipTA)2 } (fhp - SAp)-i, 

XXIII.. . SAp/ip = - piTKp - { (SAppy + (ShpTp - SppTA)’} (TAp + SAp)-1, 
which hold good for any three vectors, \, p, p, and may (among other ways) be de
duced, through the expressions XX. and XXI., from II. and VIII.

(10.) Finally, as regards the expressions VI. for 0ip, &c., if we denote the cor
responding forms of xpp by ipip, &c., we have (comp. 354, (15.) ) these other ex
pressions, which are aa usual (comp. 361, &c.) of monomial form :

= ^2^3P - (C2 - Cl) {ci - Cs) mSaip; 
'p2P = ^3<t‘ip = (cs T ^s) (<^2 ~ *^1) ri'iSnsp; 
'I'sp = = (ci - Cs) (cs - C2) asSasp;

and which verify the relations 354, XLI., and several other parts of the whole fore
going theory.

358. The genial linear anJ*wec<or function <!>p oia vector has been 
seen (347, (1.)) to contain, at least implicitly, scalar constants;
and accordingly the expression 357,1, involves that number, namely 
four in the term V^'oP, on account of the constant quaternion qo, and 
Jice in the other term VXp^, each oi the two unit-vectors, UA, and U/t, 
counting as two scalars, and the tensor TA/t as one more. But a se/f-
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conjugate linear arid vector function, or the self-conjugate part 4>oP of 
the general function i>p, involves only six scalar constants; either be
cause three disappear with the term 'V'yp ot or because the con
dition of self-conjugation, = 2^ = 0 (comp. 349, XXII. and 353, 
XXXVI.), which arises when we take for ipp the form 2j3Sap (347, 
XXXI.), is equivalent to a system of three Scalar equations, connect
ing the nine constants. And for the same reason the general quadrat- 
tic but scalar function, Sp^p, involves in like manner only six scalar 
constants. Accordingly there enter only six such constants into the 
expressions 357, II., II'., V., VIII., XIV.; c„ Cj, c^, for instance, 
being three such, and the rectangular unit system o„ co,, answer
ing to three others. The following other general transformations ot 
Sp^p and ^op, although not quite so simple as 357, II. and XIV., in
volve the same number (six') of scalar constants, and deserve to be 
briefly considered; namely the forms,

I. . . Sp^p = a(Vap)U&(S/3p)’;
II. . . 1>op =- aaVap-^-b/iSfip-,

in which o, b are two real scalars, and a, are two real unit-vec
tors. We shall merely set down the leading formulse, leaving the 
reader to supply the analysis, which at this stage he cannot find 
diificult.

357, VIII. 
357, V.,

(1.) In accomplishing the reduction of tho expressions, »

Sp^p = Cl (Srtlp)’+C2(^Sa2P)’ + C3(Sa3p)’, 
and = cioiSaip + CjasSasp + caaaSasp,

to these new forms I. and II., it is found that, if the result ia to be a real one, — a 
must bo that root of tho scalar cubic Afo= 0, tho reciprocal ot which is algebraically 
intermediate, between the reciprocals of the other two. It is therefore convenient 
here to assume this new condition, respecting the order of tho ineguaZtftes,

III. . . cr* > f2"' > Cs'*!

which will indeed coincide with the arrangement 357, IX., if the three roots ci, cj, 
C3, be all positive, but will be ineompatiUe with it in every other case.

(2.) This being laid down (or even, if we choose, the opposite order being taken), 
the (real) values of a, 6; a, fS laay be thus expressed :

IV. .. a —~ Ci, 5 = Cl — Ca + cs; 
a = a:ai+«a3, /3 = x'ai + a'na;

VI. . x’ = .
— C3"i’ Cl'* —Ca'* ’

CiT C3«
VII. . . -^==l>(a:x ■i-xt’) = -b3ali = (say)b'-.

V.
in which
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VIII. . . i'’ = cjC3-ic36 = q’a’ + c4522; IX. ■ . x’+y« = x'’+y'’= 1;
X... ixji— coaiz;-

XI. . . ciz^ + cjjS^ jjj2-)c3 = 6-iZi'2 = 6(Sa/3)®, ciC3 = — ab(SaP'f ;
XII... 6'j3 = -i/3Sa/3 = cixai + cs^os; &c-

(3.) And there result the transformations: -

XIII... = (ci — C2) mSaip + (c3 — 02) asSusP

= — C2(a:<«i +*203) Sfxai + 203)9 + + ^csos) S(2Ciai + 20303)91
01C3

XrV. . . ^op = cjoiSaip + 02028029 + 03a3Sa3p

= ciQeai +203) y^xai + za3)p + — (aicioi + 20303) 8(20101 + 20303)9;

XV.. . Sp^p = - 02(V(xai + zns) p)’ + (S(xcioi + 20303)p)’;CiC3

which last, f/" 0103 he potitive, gives this other real form,
XVI. . . Spdp = -^N{S(2CiOi + 2C303)p + (oiC3)lV(aai + 2a3)p} j 

C1C3

x'i and 2® being determined by tho expressions VI.
(4.) Those expre.s8ions allow us to change the sign of 2; a:, and thereby to deter

mine a eecondpair of real unit Knee, a' and fi', which may be substituted for o and /3 
in the forms I. and II.; tho order of inequalities III. (or the opposite order), and the 
values IV. of a and b, remaining unchanged. Wo have therefore the double trane- 
formations:

XVII. . . Sp^p = -02(Vap)’ + (01 - 02 + 03) (S/3p)’ = - C2(Na.'p)t
+ (ci — 02 + 03) (S)3'p)s;

XVIII. . . ^op = C2aVap + (ci-02+c3)/3S)3p = C2a'Va'pI-(ci-C3'l-C3)|3'S/3’p.

(5.) If either of the two connected forms I. and II. had been given, we might 
have proposed to deduce from it the values of C1C2C3, and of 010203, by the general 
method of this Section. We should thus have had the cubic,

XIX. . . i) = jro = (c + o){c’+(o-&)o-a6(Sn/3)2}i

and because the quadratic (c+ a)‘iJfo=O may be thus written,

XX. . . (c-l+o-l)’ (Sa)3)a-(c->+ 0-1) (a-lS.(a/3)2 + 6 >) +a->'(Vaj3)’ = 0, 

it gives two real values of c' + o-’, one positive and the other negative; if then wo 
arrange the reciprocals of the three roots of IUo=0 in the order HI., we' have the 
expressions,

("01 = j(6-a) +Ja6 V(o'® + 2a-'6->S.(aj3)2 + i-’) ; C3 = -o;
■ ■ V3 = J (6 - o) - lab V(o-» + 2a li-lS. QaP^ + b-^);

the signs of the radical being determined by the condition that (ci — C3) : at(Sa/3)’ 
= cr> — C3’’> 0. Accordingly these expressions for the roots agree evidently with 
tlie former results, IV. and XI., because S. (a/3)’ = 2 (Safif — 1.

(6.) Tho roots e,, C2, C3 being thus known, tho same general method gives for 
the directions of ai, 02, 03 the versors o{ tbe following expressions (or of their nega
tives) :
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f
’/'ip =ocs"’(caa + 6j3Saj3) 8(c3a + 60So3)p ;
t//2p = abVa^Sfiap;

4/3P = oci’i (cia + b^Safi) S (cia + 6/3So/3)p ;

of which the monomiaZ/omw may again be noted, and which give,

XXn'... ai = +U(c3a +6j8Sa^), a2 = +UVa/3, a3 = + U(cia + 6/3Sa,8). 

(J.') Accordingly tho ezpreessions in (2.), give (if We suppose 0301= + <12), 

XXni. . . Caa + bfiSap = (63 — ci)a:ai, Vaj3 = — xz"} 02, na + bpSap
= (ci - cs^zas : 

and as an additional verification of the consistency of the various parts of this whole 
theory, it may be observed (comp. 357, XXIV.), that

XXIV. . . - 003'‘(cja + bpSapy = (ca — ci) (ci — «3)i a5(Va^)’
= (cs - C2) (C2 — Cl), - acr'(cia + bpSaP^ = (cj - C3) (03 — C2).

(8.) As regards the second transformations, XVII. and XVIII., it is easy to 
prove that we may write,

XXV. . . (cs - Cl) a' = bpaP — oo, (cs — ci^p'^aapa- bp,
. . - (C3 - c,)’ = (bpap - oa)’ = (aapa - bP)^ ; 

so that we have the following equation,

XXVII. . . (a(Vap)ii+5(Sj3p)’) (o» + 2a5S.(a)3)’+5’)
= a (y(bpaP - aa)p)’ + b(S(aaPa - bp^pf,

which is true for any vector p, any two unit lines a, p, and any two scalars a, b.
(9.") Accordingly it is evident from (4.), that oi, 03 must be the bisectors of the 

angles made by a, o', and also of those made by P, P' i and the expressions XXV. 
may be thus written (because 5 — a = ci + C3),

XXVII I. . . (C3 - Cl) a' = (C3 + Cl) a + 2bpSaP, (ci - C3) P’= (c, + Cs^p-2aaSapi 
whence, by XXIII., wo may write,

XXIX. . . a + a' = 2sai, o _ n' = 2za3;

so that oi bisects the internal angle, and 03 the external angle, of the lines a, a'. 
(10.) At the same time we have these other expressions,

XXX. ..(ci-C3)03 + /3')=2(ci/3-aaSap), (cs-ci) (/3-j3') = 2(03/3-aoSa/3) , ' 

which can easily be reduced to (he simple forms,

XXXI, . . P + P = 2a'ai, P-P'= Zx'os, 

with the recent meanings of the coefficients s' and a'.
(11.) And although, for the sake of obtaining real transformations, vre have 

supposed (comp. III.) that
XXXII. . , (cr‘ — C3;t) (c2“' — C3”t) > 0, 

because the assumed relation a = sai + zas between tho three unit vectors aaias, 
whereof the two latter are rectangular, gives s’ + = 1, as in IX., so that each of
tho two expressions VI. involves tho other, and their comparison gives the ratio,

XXXIII. . . s’;z> = (ci-i-c2-I):(c2-1-c3-‘),
3 p
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yet we see that, without this inequality XXXIL existing, tbe foregoing transforma
tions hold good in an imaginary (or merely symbolicat} sense; so that we may My, 
in general, that the functions Sp^p and ^op can be brought to the/orms I. and II. 
in sta: distinct ways, whereof two are real, and the four others are fmoyinaty.

(12.) It may be added that the first equation XXIL admits of being replaced by 
the following,

XXXIV. . . i/'ip =—Jcr*(ci3 —uaSa/3) S(ei)3 —aaSaj3)p,
with a corresponding form for 'i'sp', and that thus, instead of XXII'., we are nt 
liberty to write the expressions,

XXXV. . . 01 = U(ci/3 — aaSa/3), as = UVa/3, as = U(csP — aaSa/3),' 
for the rectangular unit system, deduced from I. or II.

359. If we call, as we naturally may, the expressions 
I. . . 0oP = CiOiSoip + CsO^SnsP + CsOsSosp, 35*7, V 

and II. . . Sp0p = Ci(Soip)’ + c2(Sa2p)’ + c3(So3p)’, 357, VIII., 
the Transformations of the T’unctions ({top and 3p(lop,
then by another geometrical analogy, which will be seen when we 
come to speak briefly of the theory of Surfaces of the Second Order, 
we may call the expressions,

in.. . 'l>,p = gp + N\pp, 357, XIV.,
and IV. . . Sp<|)p = fl:p’ + SXp/tp, 357, II.,
the Cyclic* Transformations of the same two functions; and may 
say that the two other and more recent expressions,

V. . . 0op = - aaVap + bpS/Sp, 
and VI.. . Sp7)p = a(Vapf+b(Sppf, 
are Jbcaif Transformations of the same. We have already shown
(357) how to exchange rectangular forms with cyclic ones; and also
(358) how to pass from rectangular expressions to focal ones, and 
reciprocally: but it may be worth while to consider briefly the mu
tual relations which exist, between cyclic and focal expressions, and 
the modes of passing from either to the other.

358, II.,
.358, 1.,

(1.) To pass from IV. to VI., or from the cyclic to the focal form, we may first 
accomplish the rectangular transformation IL, with the values 857, XX., and XXI., 
of Cl, C2, cj, and of ai, as, as, the order of inequality being assumed to be

* Compare tho Note to Art. 357.
I It will bo found that the two real vectors a, a', of 358, are the two real focal lines of the reaZ or imaginary cone, which is asymptotic to the surjace of the second order, Spi(>p = const.
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VII. . . C3>C2>cj, as in 357, IX.;
and then shall have (comp. 358, XV.) the following expressions ;

VIII. .. 4Sp^p = {S.p(cil(UX-U/i) + c3»(U\ + U/i))}»
- {V. P + Up) + C3»(UX>- Up))} 2;

VIII'. .. 4Sp^p = - {S. p ((- ci)l (UX - Up) + (- cs)! (UX + Up)) }’
+ {V. p ((- c,)l (UX 4- Vp) + (- C3)l (UX - Up))} ®;

IX. . . (e3 —Cs)’Sp^p = {V.p(c3t VXp+ (—02)1 (XTp + pTX))}*
+ { S. p ((- C2)‘ VXp - C3» (XTp + pTX)) } 2;

X. . . (c2-ci)2Sp0p=-{V.p((-ci)iVXp + c2»(XTp-pTX))}’
- {S.p(- C2»VXp + (- c,)l (XTp -pTX))}>;

in which it is to be remembered that (by 357, XX.),
XI. .. ci=-p-TXp, c2 = -p + SXp, c3=-p-TXp;

and of which all are st/miolically true, or give (as in IV.) the real value gp* + SXppp 
for Sp^p, if p, X, p, p bo real. And in this symbolical sense, although they have 
been written down as four, they only connf as three distinct focal transformations, 
of a givat and real cyclic form ; because the expression VIII'. is an immediate con
sequence of VIII.; and other formula: IX'. and X'. might in like manner be at once 
derived from IX. and X.

(2.) But if we wish to confine ourselves to real focal forms, there are then four 
cases to be considered, in each of which some one of the four equations VIII. VIIT.
IX. X. is to be adopted, to the exclusion of the other three. Thus,
if XII. . . C3>c2>cj>0, and therefore cr'>C2‘*>C3"'>0,
tho/bnn VIII. is the only real one. If

XIII.. . C3 > C2 > 0 > Cl, C2’> > Cs"' > 0 > Cl"', then X. is the real form. 
If XIV. . . C3 > 0 > C2 > Cl, Cs"' > 0 > Cl"' > C2"', the only real form is IX. 
Finally if XV. . . 0 > Cs > cs > ci, 0 > ci"' > cs"' > cs"',

that is, if all the roots of the cubic Afo = 0 be negative, then VIII'. is the form to be 
adopted, under tbe same condition of reality,

(3.) When all the roots c are positive, or in the case when VIII. is the realfo~ 
cal form, the unit lines a, p in VI. may be thus expressed:

■ f “=Ksy +Hsy ’ 

(UX-Up) + i^2y(ux + Up);

with 6 = Cl — Cl + Cs as before (358, IV.).

(4.) In the same case VIII., the expressions for 4Sp^p may be written (comp. 
358, XVI.) under either of these two other real forms.'

XVII. . . 4Sp^p = N { (csi + Cl*) p .UX + (cs* — cii) Up. p } ;
XVII'. . . 4Sp0p = N {(C314- cit) UX .p + (cs' — c,l)p.Up};

so that if we write, for abridgment,
XVIII. . . 10 = i (cs* + cii) UX, <co = i (cs* - Cii) XJp,

we shall have, briefly,
XIX.. . Sp^p = N(iop + pico) = N (pie + icep).
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(5.) Or we may make
XX... I = j (ci’f + «s'i) UX, e = i («f * - whence k’ -1* = ej-J cij-I;

and shall then have the transformation,

XXI...Sp^p = N^^j^,

which may be compared with the equation 281, XXIX. of the ellipsoid, and for the 
reality of which form, or of its two vector constants, (, k, it is necessary that tho 
roots e of the cubic should all be positive aa above.

(G.) It was lately shown (in 358, (8.), &o.), how to pass from a given and real 
focal form to a second oi tbe same kind, with its nevi real unit lines a', P' ini the 
same plane as the two old or given lines, a, p; but we have not yet shown how to 
pass from a focal form to a cyclic one, although the converse passage has been re
cently discussed. Let us then now suppose that tbe form VI. is real and given, or 
that the two scalar constants a, t, and tbe two unit vectors a, p, have real and 
given values; and let ns seek to reduce this expression VI. to the earlier form IV.

(7.) Wo might, for this purpose, begin by assuming that
XXU. . . cr’ > C3-1 > 03-', as in 868, III.;

which would give the expressions 368, XXI. and XXII., for eiC2C3 and atasQs, and 
so would supply the rectangular transformation, from which we could pass, as be
fore, to the cyclic one.

(8.) But to vary a little the analysis, let ns now suppose that the given focal 
form is some one of tbe four following (comp. (1.) );

XXIIL . . Sp<t>p = (S/3op)’ - (Vaop)’; XXIII'.. . Sp^p = (Vuop)’ - (SPop^ j 
XXIV... Sp^p = (Spapy-i-(yaopyi XXIV'... Sp^ip^-fyaap^^-iSPopy-, 

in each of which ao and Po are conceived to be given and reaZ vectors, but not gene
rally unit lines: and which are in fact the four cases'included under the general 

form, aiyapf + 6(Sj3p)®, according as the scalars a and 6 are positive or negative. 
It will be sufficient to consider the two cases, XXIII. and XXIV., from which the 
two others will follow at once.

(9.) For the case XXIII, we easily derive the real cyclic transformation, 
XXV. . . Sp^ip = (S/3op)’ - (Saopp + a^p^

= S(j3o + ao) p .S(Po — Oo) P + ao^pi
=pp’ + SKppp — (,g- Sd^-p^p^ + 2SXpSpp, 

where XXVI... X =/3o + no, P = o(fio~tto)i 5= +Po’)',
and the equations 867, (9.) enable ns to pass thence to the two imaginary cyclic 
forms.

(10.) For example, if the proposed function be (comp. XIX.),
XXVII. . . Sp0p = N(iop + peo) w (S(io + ko) p)’ - (V(io - «o) p)’, 

we may write
ao = to-«o, Po^^to+uor X=2io, p=Ko, p = «o’ + ifo*;

and the required transformation is (Corap. 836, XL),
XXVIIl. . . N(iop+ pKo) = (<o’+ iro’)p’ + 2Siopicop.

(11.) To treat tho case XXIV. by our general method, wo may omit for simpli
city the subindices 0, and write simply (comp. V. and VL) the expressions,
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XXIX. . . ^p---- aVap+ ^Sj3pj and XXX. . . Sp^p = (Yap)^ + (S|3p)® ;
in which however it is to be observed that a and /3, though real vectorsyOienoi now 
unit Kne» (8.). Hence because - aVap = aSap — n’p, we easily form the expres
sions ;

XXXI. . . m = a’ (Sa^y, m = a» (a« -13^}- (Safi/, m" =
I ipp = Vaj3S/3ap — a^QaVap + ISVPp') + a*P

XXXII... J = XappSaP + a (a« - Sap,
I XP = - (“S“P + + (P^-‘*^')Pi

and therefore XXXIII. .. M=Qc-a’) (o’ + (jS’-a’)c-(SaP)i),
and XXXIV. .. 'fp—VappSaP + (/3> —a’) (cp — aSap') — e(^aSap-i-pspp) + c^p 
= (a(a» - P^ - o') + pSaP')Sap + (.aSa|3 - cP)SPp + (c» + C3>- a’) c - <Sa3)»)p.

(12.) Introducing then a real and positive scalar constant, r, such that 
XXXV. . . r« = (a» - P^^ + 4 (SajS)’ = (o’ +13’)2 + 4 (VaP)^

= o‘ + (o^)’ + (Pay + P* = a*+ 2S. (apy + P^
= a-^ (a^ + papy = p-^(fi^ + apa^ = kc.,

in which (by 1997 &c.),
S. (apy = (Sapy + (Vapy = 2 (Sapy -aipp = 2 (Vapy + a'‘P>,

tbe roots of M= 0 admit of being expressed aa follows:
XXXVI. .. Cl == -13’ + ’•’). C3 = oa, cj=i (o’ - /3’ - r*) ;

and when they are thus arranged, we have the inequalities,
XXXVII. . . Cl > 0 > C3 > C2, Cl"* > 0 > Cs"* > Cs"*.

(13.) The corresponding forma of '9p are the three monomial expresaiona,

XXXVIII. . f'PiP-'^''(.‘‘<^+PSaP')S(aC3+pSaP}p, <j/2p = 'VapSPap,
' I’f'sp = cr*(aci + pSaP) S (aci + pSap^p j

which may be variously transformed and verified, and give the three following rect
angular vector units,

XXXIX. . . Ol = U (ocs + pSapy, os = Wap, aa = U(aci+pSaPy ;
in connexion with which it is easy to prove that

/ T (ocs + 0SaP) = (- Cs)! (ci ~ csj! (ci — cs)l = r (ci — cs)! (— i^)!,
XL. . . J TVo/3 = (ci - Cs)! (cs - Cj)!;

( T (aci + pSaP) = Ci! ((b - Cs)! (ci - cs)! = r (cs - Cs)! Ci! ;
the radicals being all real, by XXXVII.

(14.) We have thus, for the given focal form XXX., the rectangular transfor
mation,

XLI... Sp^p=(Vop)»+ (sppy
_ Cl(8(acs + pSaj3)py C2(Sal3p)^ ' C3(8(aci + ffSa/3)p)’

— C3(ci-C2)r’ (ci-Cs) (cs - Cs) Ci(cs-C3)r*
or briefly,

XLII. . . Sp^p =(Vap)* + (S(3p)’= ci(S.pIJ(aC3 + (3Sa^')p)’
+ a«(S.pUVa/3)» + C3(S.pu(aci + pSaP^y;

in which the first term is positive, but tho two others are negative, and Ci, cs are 
the roots of the quadratic,

XLIII. . . 0 = cs+ (fii - a?)c-(Sapy.
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(15.) We have also the parallelisms,
XLIV... 063+pSap II f3ci—aSap, aci + pSap || /Scs—aSn/3, 

because <!i(!3=-(Saj3)’;
and may therefore write,

XLV. ..Sp^p = (Vapy + (S/3p)’ = Cl (S. pUG3ci - aSa)3))’
+ a’(S.pUVa^)- + e3(S.pU(jg(;3 — aSajS))’;

while
XLVI. . . - aSaP) ■= rcii(ci - C2)i, T(/3c3 - aSaP} =r (- ej)! (r^- ce)*,

and r = (ci — csV, with real radicals as before.
(16.) Multiplying then by r2(TVaj3)’, or by (ci - C2) (ci-ca) (cs-ca), wo ob

tain this new equation,
XLVII.. . (Cl - Cs) {(TVa/3)s ((Vnp)’ + (SPp^i) - a'i (Sa/3p)«}

= (cs—a®) (ciS/3p — 9a(3Sap)® — (ci — o®) (csSjSp - aSajS)^; 
which is only another way of expressing the same rectangular transformation as be
fore, but has the advantage of being freed from divisors.

(17.) Developing tho second member of XLVII., and dividing by ci — cs, we 
obtain this new transformation:

XLVIII. . . (TVa)3)2 Sp<l>p = - (yapyi ((Vap)’ + (SPp'^')
= a’ (SaPpy — (Sa/3)’ (Sap)® + ia^SapSapSpp + C(Sppy; 

in which we have written for abridgment,

XLIX. . . O=ciC3—a®(ci4-c3).

(18.) Tho expressions XXXVT. for ci, C3 give thus,

L. . . C=-a'-(NaP')^-,
and accordingly, when this value is substituted for C in XLVIII., that equation 
becomes an identity, or holds good for all values ot the three vectors, a, P, p-, as 
may be proved* in various ways.

(19.) Admitting this result, we see that for the mere establishment of the equa
tion XLVII., it is not necessary that Ci and 03 should be roots of the particular qua
dratic XLIII. It is sufficient, for this purpose, that they should bo roots of any qua
dratic,
LI. . . c® + ale + jB=O, with the relation LII. .. Aa® + .B+ a* + (VaP)^ = 0, 

between its coefficients. But when we combine with this the condifton of rectanyu- 
larity, as -•- ai, or

LIII. . . 0 = S.(ci/3-oSa/I) (c3P-aSaP) = A(SaP)t + Bp3 + a'»(SaP)'i, 
wo obtain thus a second relation* which gives definitely, tor the two coefficients, tho 
values,

LIV. .. pi-a\ B=- tpapyi;
and so conducts, in a new way, to the equation XLIII.

• Many such proofs, or verifications, as tho one hero alluded to, are purposely 
left, at this stage, as exercises, to the student
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(20.) In this manner, then, we might have been led to perceive thc)ruth of the 
rectangular transformation XLVII., with the quadratic equation XLIII. of which 
Cl and Cs are roots, without having previously found the cubic XXXIIL, of which 
tho quadratic is a factor, and of which the other root is C2 = a’. But if wo had not 
employed the general method of the present Section, which conducted us to form first 
that cubic equation, there would have been nothing to suggest the particular form. 
XLVII., which could thus have only been by some sort of chance arrived at.

(21.) The values of aiasas give also (comp. 367, VII.),

LV. . . - = (S. pU((3ci - aSa/3))’ + (S. pUVa/3)t + (S. pUCScs - aSa/3))’ ;
that is, by XL. and XLVI.,

LVI. . . CiC3(ci —cs) (p’(Va/3)’ —(Sa/3p)’)=C3(c3-a’) (ciSjSp — SajSSap)®
—■Cl (ci — a’) {csSPp — SaPSap) ; 

and accordingly the values XXXVI. of ci, cs enable ns to express each member of 
this last equation under the common form, — ci 03(01 - 03) (aS/3p —^Sapfi.

(22.) Comparing the recent inequalities ci>C3>c2 (XXXVII.) with the ar
rangement 357, IX., we see, by 357, (6.), that for the real cyclic transformation 
(C.) at present sought, the plane of X, p ia to be perpendicular to as (and not to 03, 
as in 367, (3.), &c.). We are therefore to eliminate (caS^p — ^a/iSapy between 
the equations XLVII. and LVI., which gives (after a few reductions) the real trans
formation ;

LVII. . . ((Sa/3)2-cij8a) ((Vap)s+ (S/3p)2) - (ci - aS) (Sap,ypi
= (ci9j3p — SapSap)t — Cl (Sa^p)’

= S. p (cij3 - aSafi + CiW a/3) S. p (ci/3 - aSa^ — cfVaP');
which is of tho kind required.

(23.) Accordingly it will be found that the following equation,

LVIII. . . ((Saj3)t-c/32) (Vap)U'(c-aS) (c(Sj3p)’-p«S(aj3)8)
= (cS)3p — SapSapy^ - c(Sa/3p)®, 

is an tde««<y, or that it holds good for all values ot the scalar c, and of the vectors 
a, /3, p; since, by addition of c(Va^)2p2 on both sides, it takes this obviously iden
tical form,

LIX. . . ((Sa/3)2 - c/32) {Sap)^ + c{c - ai) (S/Sp^ = (cS/Sp - Sa/iSapy
— e(^aSpp — fiSapf;

SO that if Cl be either root of the quadratic XLIII., or if ci(ci - nt) = (SaP)t — cijS’, 
the trans/omiaiton LVII. is at least symbolically valid; but we must take, as above, 
the positive root of that quadratic for ci, if we wish that transformation to be a real 
one, as regards the constants which it employs. And if we had happened (comp. 
(20.)) to perceive this identity LIX., and to see its transformation LVIII., we 
might have been in that way led to form tho quadratic XLIII., without having 
previously formed the cubic XXXIII.

(24.) Already, then, we see how to obtain one of the two imaginary cyclic trans
formations of theyicen focal form XXX., namely by changing ci to C3 in LVII.; 
and the other imaginary transformation is had, on principles before explained, by 
eliminating (Sn/3p)’ between XLVII. and LVI.; a process which easily conducts to 
tlie equation.
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LX. . . (Vap)® + (S^p)® + a®p® = (cj — cs)-* {c^-^cSPp - SajSSap)*
-C3-^{c^l3p~SapSapy], 

■where the second member is the sum of two squares (ci being > 0, butC3< 0), as tlie 
second expression LVII, ■would also become, if ci were replaced by C3. Accordingly, 
each member of LX. is eqnal to (Sap)® + (SPpy, if ci, C3 be the roots of any quadra
tic LI., with only tbe one condition,

LXI. . . ciC3=B=- (Sa/3)® ;
which however, when combined with the condition of rectanguiarity LIII., suffices 
to give also A = (3® — a®, as in LIV., and so to lead us back to the quadratic XLIII., 
which bad been deduced by the general method, as a factor of the eubie equation 
XXXIIL

(25.) And since the values XXXVI. of ci, C3 reduce, as above, the second mem
ber of LX. to the simple form (Sap)® + (S/3p)®, we may thus, or even without em
ploying the roots ci, C3 at all, deduce the following expression for the last imaginary 
cyclic transformation:

LXII. . . Sp^p = (Vap)’+ (Si3p)® = — a®p®-)- S(a + y/— l/3)p.S(o — v/— iP}p, 
where 1 is the imaginary of algebra (comp. 214, (6.)); while tho real scalaj^ 
rS o( XXXV. may at the same time receive the connected imaginary form,

LXIII. . . n = {a*-p^'f+HSaPf = (a Qa-y/~ipy.
(26.) Finally, as regards the passage from the given form XXX., to a aecond 

real focal form (comp. 358, (4.) ), or the transformation,
LXIV. . . (Vap)®+ (S3p)®= (Va'p)> + (S/3-p)®, 

in which a' and pf are real vectors, distinct from + a and +/3i but in the same plane 
with them, it may be sufficient (comp. 358, (8.)), to write down the formulas:

LXV. . . r®a' = -(a’ + /3a/3). r®/3'=-(/3® + a/3a),

jvith the same real value of r* as before; so that (by XXXV., &c.) we have the 
relations, '

LXVI. . . Ta' = To, Tj3' = Tp, Sa'P' = S'aP ;
LXVII /r^(.a + a’} = a{ri - a.'s ■iiPi)-2pSaP = -2{ac3 + pSaP) || oi, .

t’-®(a - = a (r® + a® - /3®) -h 2pSaP = 2 (dci + pSaP) 1| 03 i
rr2(p + ^) = ;3(r» + a® - pi) -iaSap^^i (pci - aSap) || a,, 

1.AVII1. . . •[,.2(^_^-)^p(r2-a2 + (3®)-i-2aSaj3 = -2(/3c3-aSa/3)l|a3.

(27.) We have then the identity,

LXIX. .. (V(a2 + PaP^py + (SG8® + aPa) p^
= (o‘+ 2S. (a/3)’ + p*) ((Vapy + (Spp^);

with wliich may be combined this other.of the same kind,

LXX. . . - (V(a2-)3aj3)p)2 + (S(|3® -aPa)p)»
= (a‘ - 2S. (0/3)’ -I-/3<) (-(Vop)’ + (Sj3p)®), 

which enables us to pass from tlie focal form XXIII., to a second real focal form, 
with its two new lines in tlie same plane as tho two old ones : and it may bo noted 
that we can pass from LXIX. to LXX., by changing o to ay/— 1.
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360. Besides the rectangular, cyclic, and focal transformations 
of Sp(/)p, which have been already considered, there are others, al
though perhaps of less importance: but we shall here mention only 
two of them, as specimens, whereof one may be called the Bifocal, 
and the other the Mixed Transformation.

(I.) The two lines n, a’, of 359, LX'V., being called focal lines,* an expression 
which shall introduce them both may be called on that account a bifocal transforma
tion,

(2.) Retaining then tho value 859, XXXV.'of rt, and introducing a new auxi
liary constant e, which shall satisfy the equation,

I. .. jS’— a* = r’e, and therefore II. . . 4(Saj8)’ = r*(l-e’), 
so that III. .. 4e’ (Sai3)’= (1 - e‘) - «=)’.
the first equation 859, LXV. gives,

IV. . . r^ (ea - a’) = 2l3Sal3, V. . . r^eSap So'p) = ;
and therefore, with tho form 359, XXX. of Sp^p,

VI. . . (1 - e®) Sp^p = (1 - e®) ((Vapf + (S^p)-)
= (1 - c®) (Xapf + (eSap - Sa'p)®

= (et — 1} a®p® + (Sap)’ — 2eSapSa'p + (Sa'p)’;
in which a’ = o'®, by 359, LXVI., so that a and a' may he considered to enter st/m- 
metrically into this last transformation, which is of the bifocal kind above men
tioned.

(3.) For the same reason, the expression last found for Sp0p involves again 
(comp, 358) six scalar constants; namely, e, Ta(=Tn'), and the four involved in 
tho two unit lines, Uo, Ua'.

(4.) In all tho foregoing transformations, the scalar and quadratic function Sp?)p 
has been evidently homogeneous, or has been seen to involve no terms below thc se
cond degree in'p. AVe may however also employ this apparently heterogeneous or 
mixed form,

VII. . . Sp^ip=p'(p-£)’ + 2SX(p-S)Sp(p-?) + e:

in which g', X, p have tbe same significations ns in 357, but e, e, Z arc three niia 
constants, subject to tho two conditions of homogeneity,

VIII. . .p'£ + XSp? + pSX2 = 0, 
and IX. . . p'e’ + 2SX?Sp? + e = 0,
in order that the expression VII. may admit of reduction to the form,

X.. . Sp^p =p'p’ + 2SXpSpp, as in 357, II'.
(5.) Other general homogeneous transformations of Sp^p, which are themselves 

real, although connected with imaginary^ cyclic forms (comp. Zbl, (7.) ), because

* Compare the Note to Art. 359.

t Xi + Mb ““d ± \/~ 1 P>> In:'’® he said to be two pairs of ima-
ginarif cyelie normals, of tliat real surface at tlie second order, of wliicli the equa
tion is, as before, Sp^p = coiiit. Compare the Notes to pages 4C8, 474.

3 Q
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a sum of two stjuares of linear and scalar functions is, in an imaginary sense, a 
duct of two such functions, are the two following (comp. 357, (9.)):

XI. .. Sp^p = (7p’ + SXp/zp = <7ip’+ (SXip)’+ (S/tip)®;
XII. . . Sp^p=gp^ + SXppp=gip^ - (SXap)’ - (Spsp)’

in which (comp. 357, (2.) and (8.) ),
XIII. . . gi=g-\- 'TXp = -ci, .03= g- '^Xy. = - ca,

XIV. . . Xi = VXp (TXy - SXp)-l, pi = (XTp + pTX) (TXp - SXp)-«, 
and XV. . . Xa = VXp {TXp + SXp.yi, pi = (XTp - pTiX) (fXp + SXp)i; 
so that Pl, Xi, pi, and pa, X3, pa are «aZ, if g, X, p ho such.

(6.) We have therefore the two hew mixed transformation) following :
XVI. .. Sp^p=pi(p —£))’+(SXi(p-?i))’+(Spi(p —?i))’ + ei;
XVII. . . Sp^p =g3(p- ta)’ -(SXa(p - ^a))’-(Spsffi- fs))’ + *3: 

with these two new pairs of equations, as conditions of homogeneity,
XVIII. . . pit! + XiS?,Xi +piSS,pi = 0,

XIX. . . gni^ (S2,X,)‘ + (S?,pi)» + ei = 0,
XX.. . paf3 — XaS^aXa — paS^aps = 0,

XXI. , . pata® — (SJaXa)^ — (Spa^a)® + ea = 0.

361. We saw, in the sub-articles to 336, that the diffe
rential, Afp, of a scalar function <rf a vector, may in general be 
expressed under the form,

I. . . d^ = nSvdp,
where v is a derived vector function, of the same variable vec
tor p, and n is a scalar coefficient. And we now propose to 
show, that if

and

ii' - • fp = ^Pi>P)
<j>p still denoting the linear and vector function which has been 
considered in the present Section, and of which ^op is still the 
self-conjugate part, we shall have the equation I. with the va
lues,

III, . . W = 2, V = ^opi
80 that the part (jicp may thus be deduced from by operat
ing with |dS.p, and seeking the coefficient of dp under thc 
sign S. in the result: while there exist certain general rela
tions of reciprocity (comp. 336, (6.)), between the two vectors 
p and V,. which are in this way connected, as linear functions of 
each other.

(1.) Wo have here, by the supposed linear form otipp, the differential equation 
(comp. 834, VI.),

IV. . . d^p = 0dp;

    
 



CHAP. II.] RECIPROCITY OF FORMS. 483

also S(dp.^p)= S(^p.dp), and S(p.^dp) = S(^'p.dp);
hence, by 849, XIII., we have, as asserted,

V... dSp5^p = S(^p+^'p)^P = 2S.^opdp.

(2.) As an example of the employment of this formula, in the deduction of ^op 
from ^p, lot us take tbe expression,

VI... ^p = S/3Sap, 
VII. . .fp = Sp^p = 'SSapSpp, 

VIII. . . ifp =z-s(fiSap + aS/3p)dp.

mparing this with the general formula,
IX.. . Xd/p = Srdp = S. ifiop^pt 

we find that tho form VI. of ^p has for its self-conjugate part,
X, . . v= <l)op = (PSap 4- aSjSp);

and’ in fact we saw (847, XXXII.) that this form gives, as its conjugate, the ex
pression,

which gives,

and therefore

347, XXXI.,

XI.. . ^'p = 2aS)3p.
(3.) Supposing now, for simplicity, that the function is given, or made, aelf- 

cotjugate, by taking (if necessary) the semisum of itself and its own conjugate func
tion, we may write instead of ^o, and shall thus have, simply,

XII.. . V = <l,p, XIII. ..fp = 3vp, XIV. . . d/p = 2Svdp i 
whence also (corap. 348, I. II.),

XV. . . p = ^-’v = m-')//r, and XVI. . . Svdp =Spdi/.
(4.) Writing, then,

XVII. . . Fv ^Sv^-'v = m'^Sv’f'V, 
we shall have the equations,

XVIII. . . Fv =fp, XIX. . . dFj/ = 23pdv = 2S.;
so that p may be deduced from Fv, as v was deduced from fp •, and generally, as 
above stated, there exists a perfect reciprocity of relations, between the vectors p and 
V, and also between their scalar functiotis, fp and Fv.

(b.) As regards the deduction, or derivation, of v from/p, and of p from JV, it 
may occasionally be convenient to denote it thus :

XX.. . V = I (S. dp)-id/p ; XXI. . . p = i (S. dj/J-idTr;

in fact, these last may be considered as only symbolical transformations of the ex
pressions.

XXII. .. d/p = 2S (dp-r), dFj/ = 2S(dF.p),

which follow Immediately from XIV. and XIX,
(6.) Aa an example of the passage from an expression such as fpt to an equal expreseion of tho reciprocal form Fv, let us resume the cyclic form 357, II., writing 

thus.
XXIII. . . /p = Sp^p = gp'‘ + SXppp,

and supposing tlint p, X, and p aro real. Here, by what has been already sliown (in 
sub-articles to 354 and’357), if ^p be supposed self-conjugate, as in (.3.), wo have.
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XXIV. . . V = ^p = ^p + VXpp; 
XXV. . . m = (^-SXp) -\^iJ.-') = -ciC2C3-,

XXyi. . . il)v = 'VKvfiS\iJt — 'V\nS\viJi — g(\Sftv + pSXv) + g^v ; 
and therefore

XXVn. .. mFv ■= Svipv
= S\vpvS\p + (S\vp.}^ — 2gS\vSpv + g^v*

— ~ X’/i^) v’ + X- + p" (SXv)* — 2gS\vSpv;
which last, when compared with SCO, VI., is seen to be what we have called a bifo
cal form : its focal lines a, a.' (360, (I-)) having here the directions of X, p, that is 
of what may be called the cgclic lines* ot tbe farm XXIII. Tho cyclic and bifocal 
transformations are therefore reciprocals of each other.

(7.) As another example of tliis reciprocal relation between cyclic and focal lines, 
in the passage from fp to Fv, or conversely from the latter to the former, let us now 
begin with the focal form,

XXVIII. . . fp = Sp^p = (Vap)» + (SPpff, 359, XXX.,

in which a and /3 are supposed to be given and real vectors. We have now, by 359, 
(11.),

XXIX jv^^p^-aPtap + pPPp, m = a«(Sa(3y,
— Vav/3Sa/3‘+a(a^--P‘-^)Sav,

and therefore,
XXX. . . mFv = a» CSa/3)’ Fv = St’yf^v

== SavPvSaji + (a’ - (Sav)’
= —v^(Sa/3)’d-Sav((a’ — p^^Sav + 2S«3Sj3v)
= - I'’ (Sa/3)* + SapS(a’ + /3a/3)V,

an expression which is of cgclicform; one cyclic line of Fv being the given focal 
line a o^fp', end tho other cyclic h'ne of Fv having the direction of + («’ + paP), 
and consequently (by 359, LXV.) of + a', where a is the second real and focal line 
of/p.

(8.) And to verify the equation XVIII., or to Show by an example that the ty/o 
functions fp and Fv are equal in value, although they are (generally) different in 
form, it is sufHcient to substitute in XXX. the value XXIX. of v ; whicli, after a 
few reductions, will exliibit the asserted equality.

362. It is often convenient to introduce a certain scalar and sym- 
melric function of two independent vectors, p and p', which is linear 
with respect to ettch oi them, and is deduced from the linear and 
self-conjugate vector function (ftp, of a single Noctor p, as follows:

I- • •f(p, P') =f{p’, p) = ^p'f^P = ^p(j>p'-
With this notation, we have ~

• They aro in fact (compare the Note to page 4G8) the cyclic normals^ or tbe 
uormals to tho cyclic planes^ of that surface of the second order^ which has for its 
equation/p ss const.; while they arc, os above, the focal lines of that other or reciprocal surface^ of which v is the variable vector, and the ctpiation is Fu const.
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IL . . /(p + P') e.fp + 2f{p, P') ^fp'
III... f{p, p'+p") =f{p, p'} ^f{p, p") \

IV. ../(p,p} =fpy... ifp = 2/(p,dp);
VI. . . f{xp, yp) = xyf{p, p'), if Va: = Vy = 0;

and as a verification,
VII.. ./(a;p)=a:7p,

a result which might have been obtained, without introducing this 
new function I.

(1.) It appears to be unnecessary, at this stage, to write down proofs of the fore
going consequences, II, to VI., of the definition I.; but it may be worth remarking, 
that we here depart a little, in the formula V., from a notation (325) which was 
used in some early Articles of the present Chapter, although avowedly only as a 
temporary one, and adopted merely for convenience of exposition of the principles of 
Quaternion Diflerentials.

(2.) In that provisional notation (comp. 325, IX.) we should have had, for the 
differentiation of the recent funcUonyp (361, II.), the formults,

VP =/(/>. 3p)> /(P.P') = 2Sp'^p;
the numerical coefficient being thus transferred from one of them to the other, as 
compared with the recent equations, 1. and V. But there is a convenience now in 
adopting these last equations V. and I., namely,

d/P = 2/(P. dp), /(p, p') = SpVp ;
because this function Sp'fpp, or Sp^p', occurs frequently in the applications of qua
ternions to surfaces of the second order, and not always with the coefficient 2.

(3.) Retaining then tbe recent notations, and treating dp as constant, or d^p as 
null, successive differentiation offp gives, by IV. and V., tho formulae,

VIII. . . dyp = 2/(dp) ; d’/p = 0; &c.;
so that the theorem 342, I. is here verified, under the form,

ix...«yp«(i+d-hjd»)/p
=/P + 2/(p, dp) +/dp;

or briefly, X. . . e^fp =fCp + dp),
an equation which by II. is rigorously exact (comp. 339, (4.)), without any suppo
sition whatever being made, respecting auy smallness of tho tensor, Tdp.

36.3. Linear and vector functions of vectors, such as those con
sidered in the present Section, although not gcneralhj satisfying the 
condition of self-conjugation, present themselves generally in the cZf/- 
ferentiation at non-linear but- vector functions oC vectors. In fact, if 
we denote for thc moment suck a non-linear function by or
simply by top, the general distributive property (326) of differential 
expressions allows us to write,

I. . . da'(p)= 0(dp), or briefly, 1'. . . dmp = f/)dp;

    
 



486 ELEMENTS OF QUATERNIONS. [book III.

■where 0 has all the properties hitherto employed, including that of 
not being generally self-conjugate, as has been just observed. There 
is, however, as we shall soon see, an extensive and important case, 
in which the property of self-conjugation exists, for such a function 
0; namely when the differentiated function, i»p, is itself the result v 
of the differentiation of a scalar function fp oi the variable vector p, 
although noi necessarily a function of the second dimension, such as ‘ 
has been recently considered (361); or more fully, when it is the 
coefficient of Ap, .under the sign S., in the differential (361, I.) of 
that scalar function fp, whether it be multiplied or not by any sca
lar constant (such as n, in the formula last referred to). And gene
rally (comp. 346), the inversion of the linear and vector function 0 
in I corresponds to the differentiation ot the inverse (or implicit') func
tion IO'*; in such a manner that the equation I. or P. may be writ
ten under this other form,

II..'. doj-’o- = 0'’d<r = m''‘^i(f, if <r = top.

(1.) As a very simple example of a non-linear bat vector function, let us take 
'the form,

III. . . <r = ta^p) = pap, where a is a constant vector.
This gives, if ip = p',

IV.. .^p' = j>ip = dwp = p'ap + pap’ = 2'Vpap' ■, •
V. . . SX^p' = 23\pap’ = Sp*^*X;

- VI... ^’X = iVKpa = 2^1 apX, ^'p' app’;
so that ipp’ and ^'p' aro unequal, and the linear function pp' is not self-conjugate. 

(2.) To find its self-conjugate part pop', by the method of Art. 361, we are to 
form the scalar expression,

VII...i/p' = iSpVp=p'’Sap; '

of which tho differential, taken with respect to p’, is

VIII.. . Jd/p' = S. pop’ip' = 2SapSp'dp', giving IX. . . pop' = ip'Sap ;
and accordingly this is equal to the semisum of the two expressions, IV. and VI., for’ 
pp’ and its conjugate.

(3.) On the other hand, as an example of tho self-conjugation of the linear and 
vector function,

X. .. dV = dbip = ^dp, when X'. . . d/p = 2Sj<dp = 2S.wpdp,

even if the tealar function /p be of a higher dimension than the second, let this 
last function have the form,

XI. . .fp = Sgpq'pg"p, q, q', q" being three constant quaternions.
Here XII. . . v = wp = H^tqpq'pq" q'pql'pq -I q"pqpq') ;

.. Sv = ,l,dp=pp'= iV(qp'q'pq" + q'pq"p'q) -(. iV(,q'p'q"pq -i q"pqp'q') 
•i- iV(2"p'9P2' + QPl'p'g") ;

    
 



CHAP. II.] LINEAR FUNCTION OF A QUATERNION. 487
and XIV. . . SX0p' = JS. q'pq"(,^gp' + p’jX) + &c. = Sp'^X;
so that — as asserted.

(4.) In general, if S be used as a second and tW^enefent symbol ot differentia
tion, we may write (comp. 346, IV.),

XV.., dd/s=d5/g, 
where fq may denote any function of a quaternion; in fact, each member is, by the 
principles of the present Chapter (comp. 844,1., and 345, IX.), an expression for 
the limit,* '

XVI. . . lim. nn'{f(_q + n-'dj + -/(? + B-'dy)-f{qn'^Sq) +fq}.
»»=-®»»**=•

(b.) ks another statement of the same theorem, we may remark that a first dif
ferentiation of Jq, with each symbol separately taken, gives results of tbe forms, 

XVII. . . ifq =f(.q, dj), Sfq =f(q, Sq) ;
and then tbe assertion is, that if we differentiate tbe first of these with S, and the se
cond with d, operating only on q with each, and not on dj nor on fij, we obtain 
equal results, of these other forms,

XVIII. . . Sbfq^f(.q, dj, tq) =fill, Sq, Sq) = d^/g. 
For example, if

XIX;. .fq = qeq, where c is a constant quaternion, 
the common value of these last expressions is,

XX. . . SSfq = hSfq = Sq-C.Aq H-dj.C.Jj. 
(6.) Writing then, by X.,

XXI. .. d/p = 2S(opdp, Sfp = SSupSp,
and XXII. . . Swp = <i>Sp, with dwp = ^ip, as before,
we have the general equation,

XXIII. . . S(dp.^dp) = S(dp.;&dp),
in which dp and Sp may represent oiiy tu>o vectors ; the linear and vector function, 

which is thus derived from a scalar function fp by differentiation, is therefore (as 
above asserted and exemplified) always self-conjugate.

(7.) The equation XXIII. may be thus briefly written,
XXIV. . . Sdpdv=Stfpdj-;

and it will be found to be virtually equivalent to the following system of three known 
equations, in tbe calculus of partial differential coefficients,

XXV. ..DxDy = D„D„ D„D, = D,Dy, DjD, = DxD,.

364. At the commencement of the present Section, we 
reduced (in 347) the problem of the inversion (346) of a linear 
(or distributive) quaternion Junction of a quaternion, to the

* We may also say that each of tlie two symbols XV. represents the coefficient 
of a'y', in tho development of/'(j + ad} + yJ7) according to ascending powers of x 
nnd y, when such development is possible.
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corresponding problem for vectors; and, under this reduced 
or simplified form^ have resolved it. Yet it may be interest
ing, and it will now be easy, to resume the linear and quater
nion equation^

I. ..fq = r, with II. . .f{q + /) =fq -^-fq,
and to assign a yMafei’wtow expression for the solution of that 
equation, or for the inverse quaternion fiinction,

III- • • q ^f '^r,
with the aid of notations already employed, and of results al
ready established.

(1.) The conjugate ot the linear and quaternion function/j being defined (comp. 
347, 'IV.) by the equation,

IV. . . ^pfq = 3qfp,
in which p and q are arbitrary quaternions, if we set out (comp. 347, XXXI.) with 
the form,

V. , ./j = tqs+ . = ^tqs^
ia ■which #, and t', ... are arbitrary but constant quaternions^ and which is
more than sufficiently general, we shall have <^omp. 847, XXXII.) tho 
form^

VI. . .f p = spt + a'pl' + ... = Sspt; 
whence VIL../l = SIi, and VIII. . ./“I = S»f;
it is tlien possible, for each given particular form of the linear function /7, to assign 
one scalar constant e, and two vector constants, r, (*, such that

lX...fl = e + c,
and then we shall have the general transformations (comp. 347,1.):

X... S/7 = S.7/'l=eS9-t-St'7;
XI. . . "Vfq = + N-f'fq = fSj -|- ^Vj ;

nnd XII. . ./j = (e + £)Sj + Se'j-b^Vj ;
in which Se'j = S.e'Vj, and 0Vj or "VfVq is a linear and vector function ofVq, of 
the kind already considered in this Section; being also such that, with tho form V. 
of/j, we have .

XIII. . .-^lp = SV<ps.
(2.) As regards the number ol independent and scalar constants which enter, at 

least implicitly, into the composition of the quaternion function/j, it may in various 
ways be shown to be sixteen; and accordingly, in the expression XII., tho scalar e 
is one; tho two vectors, c and t', count each as three; and tho Zinenr and vector 
function, counts as nine (comp. 347,'\1.)).

(3.) Since wo already know (347, &c.) how to invert a function of this last kind 
we may in general write,

XIV. . . r = Sr-t-Vr = Sr + where’ XV.. . p = ^-'Vr = m’'i/'Vri
■the scalar constant, m, and tlie auxiliary linear and vector function, being deduced
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from tho function 0 by methods already explained. It is required then to express q, 
or Sq and Vg, in terms of r, or of Sr and p, so as to satisfy the linear equation,

XVI... (e +1) Sg + St'g + Vg = Sr + ;
tho constants e, t, e, and the form of being given.

(4.) Assuming for this purpose the expression,
XVII. . . g = g' + p,

in which g’ is a new sought quaternion, we have the new equation,
XVIII. . . fq' =? Sr + -fp = ^(r- t’p");

whence XIX. . . g’i S(r-£'p)./“U,
and XX. . . g =p + S(r-£ p)./"il ;
in which p is (by supposition) a known vector, and S(r — e'p) is a known scalar; so 
that it only remains to determine the unknoton but constant quaternion, f~'l, or to 
resolve the particular equation,

XXI. . ./go=l, in which XXII. . . go = c+
c being n new and sought scalar constant, and y being a new and sought vector con
stant,

(5.) Taking scalar and vector parts, the quaternion equation XXI. breaks up 
into the two following (comp. X. and XI.):

XXIII. .. l = S/(c + .y) = ec + S£'y; ' XXIV. . 0 = V/(c+ y)= £C + ;

which give the required valnes of c and y, namely,
XXV... c = (e - Sc'^i-'e)-1, and XXVI.. • y = - c6-h ;

whence XXVIl. ../-•!= '*■ • 
e-S£'^"*£ ’ 

and accordingly we have, by XII., the equation,
XXVIII. . ./(l-^->£) = e-StV-'£ = V-'O.

(6.) The problem of quaternion inversion is therefore reduced anetv to that of 
vector inversion, and solved thereby; but we can now advance some steps further, 
in tho elimination of inverse operations, and in the substitution for them of direct 
ones. Thus, if we observe, that = m’l,/', ns before, and write for abridgment, 

XXIX. . . n = me —St'4'£=/(>» —4'0,
so that n is a new and Gnoien scalar constant, vie shall have, by XV. XX. XXVII. 
XXIX.,

XXX. . . mp = <liVr-, XXXI. . . n/-il=m- 
XXXII.. . mnq = nt/iVr + ^mSr — , (m —

an expression from which all inverse operations have disappeared, but which still ad. 
mils of being simplified, through a division by m, as follows.

(7.) Substituting (by XXIX.), in tho term n-^'Vr of XXXII., tho value me 
— Se'4'e for », and changing (by XXX.) 4'Vr to mp, in the terras which are not ob
viously divisible by m, such a division gives,

* XXXIII. . . nq = (^m~ ^i')Sr + etj/Vr — Se'4'Vr + <r,
where XXXIV. . . <r = — pSi'xjie + yj/tSi'p = V.£'Vp4'£.
But (by 348, VII., interchanging accents) we have the transformation, 

XXXV. . . Vp4,£ = -5i’V£0p = -^'V£Vr,
3 R.

and

    
 



490 ELEMENTS OF QUATERNIONS. [book III.

because = Vr, .by XIV. orXV.; everything fnoerie therefore apain disappears, 
with this new elimination of the auxiliary vector p, and we have this final expres
sion,

XXXVI.. . nj = nf-y = (me-St'^zt
= (m — \f/s)Sr -p eipVr — St’^/Vr — Vt'iji'VcVr,

in which each symbol of operation governs all that follows it, except where a point 
indicates the contrary, and which it appears to be impossible further to reduce, as 
the formula of solution of the linear equation I., with the form XII. of the quater
nion function, fq.

(8.) Such having been the analysis of the problem, the synthesis, by which an 
i posteriori proof of tho correctness of the resulting formula is to be given, may bo 
simplified by using tbe*scatar value XXIX. of/(7n-^{); and it is sufficient to 
show (denoting Vr by w), that for every vector oi the following equation holds good, 
with the same form XII. of/:

XXXVII. . . /(e^/zez - St'ipw) —fVttp'Ntoi = (me - S£'»jz£). (o.
(9.) Accordingly, that form of/gives, with the help of the principle employed 

in XXXV.,
XXXVIII.. {ef.p<o — e (Ss'^zaz + mw), —/S£'<|za< = — (e + e) Se'ijzto,

—fV = 'V(y'eb>. =£S£'ij/iii -
because Soup's' = Ss’ijzoi, &c.; and thus the equation XXXVI. is proved, by actually 
operating with/

(10.) As an example, if we take the particular form,
XXXIX. . . r=fq=pq + qp, 

XL. . . p = a + a = a given quaternion.in which 
we have then,

XLI. . . fl =fl = 2p, e = 2a, £ = £' = 2a, ^p = 2ap;
whence by the theory of linear and vector functions,

XLII. . . ^'p = 2ap, ipp = 4a®p, m = 8o’,
and therefore, XHIL . . ,p£ = 8a’a, »n-i)z£ = 8a®(a-a), n = 16a’(aS - a’) i
so that, dividing by 8a, the formula XXXVI. becomes,

XLIV. . . 2a(a® — a’)9 = a(o —a)Sr+o’Vr —uS.aVr — aV.oVr,
XLV. . . 2a(a + a)g = aSr + (a'+ a)Vr — Sar,

XLVI. . . ipq?ip = S.rKp-|-pVr = rSp+ ll(yp.'7r'), 
XLVII. . . 4pqSp = 2rSp + (pr-rp)=:pr + rKp;

or
or >
or
or finally,

z

XLVIII. . . 5 =/--r= Ltffl = ’Lifer,
•' 4Sp 4Sp

Accordingly,
XLIX. . . (pr -p rKp) -t- (rp + Kp. r) = 2r (p + Kp) = 4rSp.

(11.) In so simple an example as tbe last, we may with advantage avail our
selves, of special methods! for instance (comp. 846), we may use that which was 
employed in 832, (6.), to differentiate the square root of a quaternion, and which 
conducted there more rapidly to a formula (332, XIX.) agreeing with tho recent 
XLVIII.

(12.) We might also have observed, in tho same case XXXIX., that
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L. . ./>r-»p=p’7-9p’ = 2V(V(p®).Vy) = 4Sp.V(yp.Vff)=2Sp.(p3-jp); 
whence pg — gp, and therefore pg and gp, can be at once deduced, with the same re
sulting value for g, or for/->r, as before: and generally it is possible to differentiate, 
on a similar plan, the »<'> root of a guotemton.

365. We shall conclude this Section oa. Linear Junctions, 
of the kinds above considered, by proving the general exist
ence of a Symbolic and Biquadratic Equation, of the form, 

I. . . 0 = n - rif+ +f\
which is thus satisfied by the Symbol (y) of Linear and Qua
ternion Operation on a Quaternion, as the Symbolic and Cubic 
Equation,

T. . . 0 = m - m'<f> -b 7w"^’ -350, I., 
was satisfied by the symbol (^) of linear and vector operation 
on a vector; the four coefficients, n, ii', ri", \)oia^ four sca
lar constants, deduced from the function f in this extended or 
quaternion theory, as the three scalar coefficients m, m', m' 
xfove constants deduced from tj>, in the former or vector theory. 
And at the same time we shall see that there exists a System, 
of Three Auxiliary Functions, F, G, H, oi the Linear and 
Quaternion kind, analogous to the two vector functions, -ip and 
X, which have been so useful in the foregoing theory of vec
tors, and like them connected with each other, and with the 
given quaternion function f, by several simple and useful re
lations.

(1.) The formula of solution, 3G4, XXXVI., of the linear and quaternion equa
tion /g = r, being denoted briefly as follows,

II. . . ng =n/-*r= /h,
so that (comp. 348, III'.) we may write, briefly and symbolically,

III.. ./F= J7=n,
it may next be proposed to examine the changes which the scalar n and the function 
f r undergo, when fr is changed to fr + er, or / to/4- c, where c is any scalar con
stant; that is, by 364, XII., when e is changed to,e-F c, and to + c-, and 
m being at the same time changed, according to the laws of the earlier theory.

(2.) Writing, then,
IV. ../c=/+c, eo = e + c, = ^>'c = 5>' + c,

and V. . . i/zo = 4* + OX + »ic = »» + m'o + ni''c’'+
we may represent the new form of the equation 364, XXXVI. as follows:

VI. . . Mc/c 'r = FcT, oi VII. . . f,Fc = lit;
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where VIII... jF’cr = (nic —>/'et)Sr4-eci/'<,Vr —Sf'4'eVr- 
and IX . . nc=ecOTc—Ss'4'ct.

(3.) In this manner it is seen that we may write,
X... Fc=r+cG+c2/r+c3, 

and XI.. . Be = n + n'c + n’e^ + n''V + c^;
where F, G, H, are three functional symbols, such that

[jFr = (m — tf/sySr + etp'Vr — St^Vr — 'Vt'^'ViVr ;
XIL . • }ffr=(m' —xe)Sr + (ex + ’/')Vr —St'xVr—Vs'VsVr;

( Hr=(m“ - s) Sr + (e + x)Vr - Ss'r;
and n, n', n", n"' are four scalar constants, namely,

' n = em — St'4'* (“® 364, XXIX);
»'=»» + em'— Se'xs; 
n"=m' + em" — Se's j 
n'"=»B" + e.

(4.) Developing then the symbolical equation VII., with tho help of X. and XI., 
and eomparing powers of c, we obtain these new symbolical equations (comp. 350, 
XVI, XXI. XXIII.):

XIII. . . •

and finally,

XIV. . . ?G = n''-/ff=n"-n''y+/2;
17?=n'-fG = n'- n"f+ n‘_p -f> ■,

'X.'V. . . n-Ff'^ n’f— + n'f^ —f*,
which is only another way of writing the symMie and biquadratic equation I.

(5.) Other functional relations exist, between these various symbols of operation, 
which wo cannot here delay to develope: but we may remark that, as in the theory 
of linear and vector functions, these usually introduce a mixture of functions with 
their conjugates (comp. 347, XI., &c.).

(6.) This seems however to be a proper place for observing, that if wo write, as 
temporary notations, for any four quaternions, p, q, r, «, the equations,

XVI. . . [P9]=pq-qp; XVII. . . (p9r) = S.p[qr]; 
XVIII. . . [pgr] = (P9r) + [rr/] Sp + [pr] Sj + [jp] Sr;

and XIX. . . (p}r») = S.p[9r»],
so that [p9] is a vector, (pjr) and (pqrs) are scalars, and [pqr] is a quaternion, wo 
shall have, in the first place, the relations:

XX. .. [pg] = - [gp], [pp] = 0; 
XXI. . . (pgr) = - (gpr) = (grp) = &c., (ppr) = 0; 

XXII. . . [pgr] = - [gpr] = [grp] = &c., [ppr] = 0 ;
and XXIII. . . (pgrs) = - (gprs) = (.qrpsj = - (qrspj = &c., {pprs) = 0.

(7.) In the next place, if t be any fifth quaternion, the quaternion equation, 
X'SXV. . . tl<=p(<irst')-t-q(rstp^ + r(stpq} -t- s(tpqr') + t{pqrs'), 

which 4||ay also bo thus written,
XXV. . . g(pr»«)=p(gr«t) + r(pg«r) + »(prgr)+<(prig),

and which is analogous to the vector equation,
XXVI. . . 0 = aS/3yfi —/3Sy<!a + ySfo/3 — <5Sa/3y,
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or to the continually* occurring transformation (comp. 294, XIV.), 
XXVII.. . SSa/S-jf = aSSjSy + pSaSy ySapS, 

is satisfied generally, because it is satisfied for the/our distinct suppositions, 
XXVIII, . . q=p, q-r, q = s, q = t.

(8.) In the third place, we have this other general quaternion equation,
, XXIX. . . q(j)rsf) = [rsf] Spj - [sZjo] Srj + [fpr] Ssj — [prs] Sfj, 

which is analogous to this oMerf useful vector formulfl (comp. 294, XV.), 
XXX.. . 5Saj3y = VjSySaS-b VyaSjSJ-i-Va/3Syd;

because the equation XXIX. gives true results, when it is operated on by the four 
distinct symbols (comp. 812),

XXXI. . . S.JJ, S.r, S.a, S.f.

(9.) Assnming then any four quaternions, p, r, s, f, which are not connected by 
the relation,'

XXXII. . . (prs0 = 0, 

and deducing from them/our others, p', r’, s’, t', by the equations, 

XXXTTI fP'(P’’«O=/M. ’^(P’-st) = -/[s<p],
=/[<?’•], «'(pr«0 = -/[prs], 

in which/is still supposed to be a symbol of linear and quaternion operation on a 
quaternion, tho formula XXIX. allows us to write generally, as an expression for 
the function fq, which may here be denoted by q' (because r is now otherwise used):

XXXIV.. . g’ =./g =p’3pq -1- r'Srg + s’Ssg -b t’Stq;
and its sixteen scalar constants (comp. 364, (2.)) are now those which are involved 
in its/iur quaternion constants, p', r', s', t',

(10.) Operating on this last equation with the four symbols,

XXXV...s.[rVr], s.[•'*>•], s.ctyr'j, s.[?'/«■], 
we obtain the four following results:

.y r (q'r's't') = (p’r's'e') Spg; (q's't'p'') = (r’s't'p’) Srq;
' ' ' LG'^'p'’’ ) = b'^'p’’’') Ssg ; (a'p'r's') = {t'p’rs'ystq ;

and when the values thus found for the four scalars,
XXXVII. . . Spg, Srq, Ssq, Stq,

are substituted in the formula XXIX., we have the following new formula of quater
nion inversion;

XXXVIII. . . (p'r's'f) (prsf)q=^(p’j's'e') {prsf)f-iq’
= [’■«*] (q'’'’c'^') + [e<p] (.q's't'p') -b [tpr] {q't'pr') -b [prs] (q'p'r's’) ;

* The equations XXVII. and XXX., which had been proved under slightly diffe
rent forms in the sub-articles to 294, liave been in fact freely employed as trans
formations in tlie course of tho present Chapter, and aro supposed to be familiar to 
tho student. Compare the Note to p.ige 437.

t Compare the Note immediately preceding.
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which shows, in a new way, how to resolve a linear equation in quaternions, when 
put under what we may call (comp. 847, (I.)) the Standard Quadrinomial Form, 
XXXIV.

(11.) Accordingly, if we operate on the formula XXXVIII. with/ attending to 
the equations XXXIII., and dividing by (prst), we get this new equation,

XXXIX . . (j>'r's'e)fq=p\q'r's‘t'}-r'{q’slt’p') + s'(a't'p't')-e{q'p'rs’')i 
whence fq = q’, by XXV.

(12.) It has been remarked (9.), that p, r, s, t, in recent formula), may be any 
four quaternions, which do not satisfy the equation XXXII. j we may therefore as
sume.

XL. ..p=l, r=i, s=j, t = k, 
with the laws of 182, &c., for the symbols i,j, k, because those laws give here, 

XLI. ..(lt;A) = -2;

and then it will be fonnd that the equations XXXIII. give simply, 

XLIL..y=/l, / = -/«•, e’=:-fj, t'en-fk-, 
so that the standard quadrinomial form XXXiV. becomes, with this selection of

XLIII. . . fq=fl. Sg -fi. Siq -fj. Sjq —fh .Siq,
and admits of an immediate verification, because any quaternion, q, may be ex
pressed (comp. 221) by tho quadrinomial,

XLIV. . . q = Sg — tSig —jSjq — k^kq,
(13.) Conversely, if we set out with the expression,

XLV.. . g = tg4-fa!+jy + Ar, 221, III.,
which gives.

or briefly.
XLVI. . ^fq = wfl + xfi-l-yj] + zfk,
XLVII. .. e=:aui + bx + cy+dz,

tbe letters abede being here used to denote five known quaternions, while wxyz are 
four sought scalars, the problem of quaternion inversion comes to bo that of the se
parate determination (comp. 312) oCthese four scalars, so as to satisfy the one 
equation XLVII.; and it is resolved (comp. XXV.) by tlie system of the four fol
lowing formulss:

XTVTIT r«’(«6c<i)=(eW); x(abcd) = (aecd)-,
’ ‘ (y {abed) = (abed'); z(abcd[) = (abce); 

tho notations (6.) being retained.
(14.) Finally it may be shown, as follows, that the biquadratic equation I., for 

linear functions of quaternions, includes* the cubic I'., or 350, I., for vectors. Sup-

* In like manner it may be said, that the cubic equation includes a quadratic 
one, when we confine ourselves to the consideration of vectors in one plane ; for 
which case m = 0, and also tpp = 0, if p be a line in the given plane: for we have 
then = ni — =s m', or
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pose, for this purpose, that the linear and quaternion function, E, reduces itself to 
tbe lost term of the general expression 864, XII,, or becomes,

XLIX. . .y3 = ^Vj, so that L...s! = 0, t=t'=0, /l=/'l = O;

the coefficients n, n', n", n" take then, by XIII., the values,

LI. .. n = 0, n = m, n" = m’, n'" = m";
and the biquadratic I. becomes,

LII. . . 0 = (- m + m‘f- m''P +/») f.
is now a oector, by XLIX., and it mag bo any vector, p J also the operaftoa 

/is now equivalent to that denoted by when the subject of the operation is a vec
tor ; wo may therefore, in tho cose here considered, write this last equation LII. under 
the form.

LIII. . . 0 = (-m +

which agrees with 861,1., and reproduces the symlolical cubic, when the symbol of 
tho operand (p) is suppressed.

CHAPTER III.

ON SOME ADDITIONAL APPLICATIONS OF QUATERNIONS, WITH 
SOME CONCLUDING REMARKS.

Section 1.—Remarks Introductory to this Concluding 
Chapter.

366. When the Third Book of the present Elements was 
begun, it was hoped (277) that this Book might be made a 
much shorter one, than either of the two preceding. That 
purpose it was found impossible to accomplish, without injus
tice to the subject; but at least an intention was expressed 
(317), at the commencement of the Second Chapter, of render
ing that Chapter the last: while some new Examples of Geo-

wUh tbit understanding as to tbe operand. In fact, the cu6tc gives here (because 
m = 0).

(0’— + m")^p = 0;
and therefore 4. m') a = 0i
if a be already the result of an operation with on any vector p : that is if it be, as 
above supposed, a line in the given plane.
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metrical Applications, and some few Specimens of Physical 
ones, were promised.

367. Tbe promise, thus referred to, has been perhaps al
ready in part redeemed; for instance, by the investigations 
(315) respecting certain tanyents, normals, areas, volumes, and 
pressures, which have served to illustrate certain portions of 
the theory of differentials and integrals of quaternions. But it ‘ 
may be admitted, that the six preceding Sections have treated 
chiefly of that Theory of Quaternion Differentials, including 
of course its Principles and Rules; and of the connected and 
scarcely less important theory of Linear or Distributive Func
tions, of Vectors and Quaternions: Examples and Applica
tions having thus played hitherto a merely subordinate or illus
trative part, in the progress of the present Volume.

368. Such was, indeed, designed from the outset to be, 
upon the whole, the result of the present undertaking : which 
was rather to teach, than to apply, the Calculus of Quaternions. 
Yet it still app.ears to he possible, without quite exceeding 
suitable limits, and accordingly we shall now endeavour, to 
condense into a short Third Chapter some Additional Exam
ples, geometrical and physical of' the application of the princi
ples and rules of that Calculus, supposed to be already /fnotow, 

and even to have become by this time familiar* to the reader. 
And then, with a few general remarks, the work may be 
brought to its close.

Section 2.— On Tangents and Formal Planes to Curves in 
Space.

369. It was shown (100) towards the close of the First Book, 
that if the equaiion of a curve in space, whether plane or of double 
curvature, be given under the form,

I.. . /> = 0(<)=0t,
where t is a scalar variable, and 0 is a functional sign, then the de
rived vector,

IL . . D/j = D0t = (j^'t = p' = d/>: df.

* Accordingly, even r^reuces to former Articles will now be supplied more 
sparingly than before.
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represents a line which is, or is parallel to, the tangent to the curve, 
drawn at the extremity of the variable vector p. If then we sup
pose that T is a point situated upon the tangent thus drawn to a 
curve PQ, at p and that u is a point in the corresponding normal 
plane, so that the angle tpu is right, and if we denote the vectors 
OP, OT, OU by p, T, V, the equations of the tangent line and noi'mal 
plane at p may now be thus expressed:

. nL..V(T-p)p' = O; IV. .tS(v-p)p' = 0;'
the vector t being treated as the only variable in III., and in like 
manner v as the only variable in IV., when once the curve pq is 
jrwera, and the point p is sdect^.

(1.) It is permitted, however, to express these last equations under other forms: 
for example, we may replace p' by dp, and thus write, for the same tangent line and 
normal plane,

V. . . V(r — p)dp = O I VI... S(u —p)dp = 0;
where the vector differential dp may represent any line, parallel to the tangent to 
the curve at p, and is not necessarily small (compare again 100).

(2.) We may also write, as the equation of the tangent,
VII. . . T = p + xp\ where ® is a scalar variable;

and as the equation of the normal plane,
VIII. ..dpT(w-p) = 0, or Vlir. ..dT(v-p)=0, if du = 0;

because this partied differeniial of T(w - p), or of pu, is (by 334, XII,, &c.),
IX... dT(u-p) = S(U(v-p),dp).

(3.) For the lyrcular locus 314, (1.), or 337, (1.), of which the equation is,
X. . . p = a‘P, with Ta = 1, and Saj3 = 0,

the equation of the tangent is, by VII., and by the value 837, VI. of p',
XI. . . r = p +yap, where y is a new scalar variable;

the perpendicularity ot the tanyent to the radius being thus put in evidence.
(4.) For the plane but elliptic locus, 314, (2.), or 337, (2.), for which,

XII. . . p=V.a‘j3, with Ta = l, but not Sa/3 = 0,
the value 337, VIII. of p' shows that the tangent, at the extremity of any one semi
diameter p, Is parallel to the conjugate semidiameter of the curve; that is, to tlie 
one obtained by altering the excentric anomaly (314, (2.)), by a quadrant: or to 
the value of p which results, when we change f to f +1.

(6.) For the helix, 314, (10.), of which the equation is,
XIII. .. p = eta -|- a'/3, with Ta = 1, and Sa/J = 0,

c being a scalar constant, we have tbe derived vector.

XIV. ..p' = ca + ^a«(3;

XVI. . . TVa-’p's=^T/3, and

3

whence XV. .. Sa 'p'-g

XVII. . . (TV:S)a-ip'_£2^
S '20 =
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the tangent line (pO to the helix is therefore inclined to the axis (a) of the cylinder 
whereon that carve is traced, at a constant angle (a), whereof the trigonometrical 
tangent (tan o) is given by this formula XVII.; and accordingly, the numerator 
ttT/J of that formula represents the semicircmnference of the cylindric hose; while 
the denominator 2c is an expression for AaZf the interval between two successioe 
spires, measnred in a direction parallel to tbe axis. We may then write,

XVIII. . . stT/S = 2c tan a = 2c cot 6,
if a thus denote tbe constant inclination of the helix to tbe axis, while b denotes tbe 
constant and complementary inclination of that curve to the base, or to the circles 
which it crosses on tlie cylinder.

(6.) In general, the parallels p' to the tangents to a curve of double curvature, 
which are drawn from a fixed origin o, have a certain cone for their locus; and for 
the case of the helix, tho equation of this cone is given by the formula XVII., or by 
any legitimate transformation thereof, such as the following,

XIX. . . SUa-'p'=+coso = +sin6;
it is therefore, in this ease, a cone of revolution, with its semiangle = a.

(7.) As an example of the determination of a normal plane to a carve of double 
curvature, we may observe that the equation XIII. of the helix gives,

XX. . . p»= /32 — c2<2, and therefore XXI. . . Spp* = - c’t;

the equation IV. becomes therefore, for the case of this curve,

XXII. . . 0 = Sp'u + c’f, with the value XIV. of p*.

(8.) If then it be required to assign the point u in which the normal plane to the 
helix meets the axis of the cylinder, we have only to combine this,equation XXII. 
with the condition v || a, and we find, by XIII. and XIV.,

XXIII. . . OD = a = - c’fa: Sap' —eta, XXIV. .’. Sa(u — p) = 0 j

the line pu is therefore perpendicular to the axis, being in fact a normal to the cy
linder.

370. Another view oi tangents and normal planes may be proposed, 
which shall connect them in calculation with Taylor's Series adapted 
to quaternions (342), as follows.

(1.) Writing I. . . p« = po + «<<po, or briefly, I*.. . p( = p + «<p', 
tbe eoffiecient ut or u will generally be a guaternion, but its limiting valve will be 
positive unity, when t tends to zero as its limit; or in symbols,

II. .. uo = lim. u= 1.
<-o .

(2.) Admitting this, which followsjeithcr from Taylor’s Series, or (in so simple a 
case) from the mere definition ot the derived vector p', we may conceive that vector 
p' to be constructed by some given line pt, without yet supposing it to be hnoum that 
this line is tangential at p to the curve PQ, of which the variable vector is oq = pi, 
while op = po=p, so that the line pq = «fp’ is a uector cAord from p, which diminishes 
indefinitely with tho scalar variable, t, and is small, if t be small.
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IV.

(3.) Conceiving next that w = or = the vector of some new and arbitrary point 
R, we may let fall a perpendicular qm on the line PRf and so decompose the chord 
PQ into the two rectangular lines, pm and mq ; which, when divided by the same 
chord, give rigorously the two (generally) quaternion quotients,

,TT PM SBp'(e»-p) MQ_Vap'("-p)tf \ t X V • * • » JPQ up(<i,—p) , PQ upifi> — p)
the variable < thus disappearing through the division, except so far as it enters into 
u, which tends as above to 1.

(4.) Passing tlien to the limits, -we have these othir rigorous equations,

V. . . lim. yi. . mq Npy^X
PQ p(<tf —p) PQ p(w —P)

by comparing which with 3G9, III. and IV., we see that those two equations repre- . 
sent respectively, as before stated, tbe tangent and the normal plane to the proposed 
curve at p; because, if Vp'(ti) - p) = 0, the chord pq tends, by V. or VI., to' cow- 
eide, both in length and in direction, with its projection pm on the line PR; whilei 
on the other hand, if Sp'((i> — p) = 0, that projection tends to canish, even as compared 
with the chord pq ; which chord tends now to coincide with its other projection mq, 
or with the perpendicular to the line PR, erected so as to reach the point Q : whence 
PR must, in this last case, be a normal to tbe curve at p.

(6.) Wo may also investigate an equation for the normal plane, by considering it 
as the limiting position of the plane which perpendicularly bisects the chord. If R 
be supposed to be a point of this last plane, then, with the recent notations, the vec
tor 0) = OR must satisfy the condition,

VII. . , T(<u - p() = T((o - po), or VIII... (to - p - «tp')’ = (<u - p)’, 
or IX... 2Sup'(iu — p) = f(«p’)’i
in which it may be noted that up' is a vector (q^ Uie direction of the chord, pq), al
though u itself is generally a guatemion, as before: such then is tbe equation of tbe 
bisecting plane, with u> for its variable vector, and its limit is,

X. . . Sp'(w — p) = 0, as before.

(6.) The lost process may also be presented under the form,

XI.. . 0 = lim.r'>{T((a —p() —T((i» —po)} =D<T(w —pj), when

and thus the equation 369, VIII. may be obtained anew.
(7.) Geometrically, if we set off on bq a portion bs equal in 

length to RP, as in the annexed Figure 76, we shall have the 
limiting equation,

XII. . . ± SQ: PQ = (rq - Hp) : = (ultimately') - cos RPT;

which agrees with 369, IX.
(8.^ If then the point r be taken out of the normal 

plane at p, this limit of the quotient, rq — rp divided by pq, 
has a finite value, positive or negative; and if the chord pq be 
called small of the^rst order, the difference of distances of its extremities from R 
may then be said to be small of the same (6rst) order. But if R be taken tn the nor
mal plane at p (and not coincident with that point P itself'), this difference of dis-
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tances may then be baid to be email, of an order higher than thefiret; which an
swers to the euaneecence of the first differential ot the tensor, T (w — p) in XI.,' or 
T(v-p)in 369, Vlir.

u 371. A curve may occasionally be represented in quaternions, by 
an equation which is not of the form, 369, I., although it must 
always be conceived capable of reduction to that form: for instance, 
this new equation,

1. . . Vap.Vpa' = (Vaa')’, with TV’oa'>0,
is not immediately of the form p = but it is reducible to that form 
as follows,

II. . . p = ta + tr^a'.

Art equation such as I. may therefore have its differential or its deri
vative taken, with respect to the scalar variable t on which p is thus 
conceived to depend, even if the exact law of such dependence be un
known: and dp, or p', may then be changed to the tangential vector 
w — p to which it is parallel, in order to form an equation of the tan
gent, ot a condition which the vector u of a point on that sought 
line must satisfy.

(1.) To pass from I. to II., we may first operate with tho sign V, which gives, 
III. . . pSau'p = 0, or simply, III’. . . San'p = 0;

whence, t and t' being scalars, we may write,

IV. . .-p = ta +t'a', Nap = t'Naa', Vpa'= 1X00', rt' = l,

and the required reduction is effected : while the return from II. to I., or the elimi
nation ot the scalar t, is an even easier operation,

(2.) Under the form II., it is at once seen that p is the vector of a plane hyper
bola, with the origin for centre, and tho lines a, a' for asymptotes; and accordingly 
all tho properties of such a curve may be deduced from the expression II., by the 
rules of the present Calculus.

(3.) For example, since tbe derivative of that expression is,
V. . . p' = a — t-^a',

the tangent may (comp. 369, VII.) have its equation thus written:
VI. .. 0) = (< + x)a + — a:)o';

it intersects therefore the lines d, a' in the points of which thc vectors are 2ta, 2t''a’; 
so that (as is well known) the intercept, upon tho tangent, between tho asymptotes, 
is bisected at the point of contact: and the intercepted area is constant, Because 

' V(ta.t-'a') = Vaa', &C.
(4.) But wo may also operate immediately, as above remarked, on the form I.; 

and thus arrive (by substitution of o> — p for dp, &c.) at the ejuatfon of conjuga
tion,

VII. . . Vau .Vpa' + Vap .Vw«' = 2(Va«')«,
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which expresses (comp. 215, (13.), &c.) that if p = op, and w = on, as before, then 
either it is on the tangent to the curve, at the point P, or at least each of these two 
points is situated on tbe polar of the other, with respect to the same hyperbola.

(5.) Again, it is frequently convenient to consider a curve as the intersection oi 
two surfaces: and, in connexion with this conception, to represent it by a system of 
two scalar equations, not explicitly involving any scalar variable: in which case, 
6oZA equations are to be differentiated, or derivated, with reference to such a varia- 

' ble understood, and dp or p' deduced, or replaced by ai — p as before.
(6.) Thus we may substitute, for the equation I., tbe system of the two follow

ing (whereof the first had occurred as IIP.) ;
VIII. . . San'p = 0, p’Saa' — SapSa'p = (Vad')-;

and the derivated equations corresponding are,
IX. . . San'p' = 0, 2Saa'Spp'—Sap'Sa'p —SapSa'p' = 0 i

or, with the substitution of a» — p for p', &c.,
X . . Saa'fc) = 0, 2Saa'Sp(u - SatuSa'p — SapSa'w = Z(yaa’)'‘;

tho last of which might also have been deduced from VII., by operating with S.
(7.) And it may be remarked that the two equations VIII. represent respectively 

in general a plane and an hyperboloid, of which the intersection (5.) is the hyperbola 
I. or II.; or a plane and an hyperbolic cylinder, if Saa'= 0.

Section 3__ On Normals and Tangent Planes to^ Surfaces.
372. It was early shown (100, (9.)), that when a curved surface 

is represented by an equation of the form,
I. . . P = i>{x,y),

in which 0 is a functional sign, and x, y are two independent and 
scalar variables, then either the two partial differentials, or the two 
partial derivatives, of they2r«f order,

II. . . d,P, d„p, - or III. . . D,p, D„p,
represent two tangential vectors, or at least vectors parallel to two 
tangents to the surface, drawn at the extremity or term p of p; so 
that the plane of these two differential vectors, or of lines parallel 
to them, is (or is parallel to) the tangent plane at that point: and 
the principle has been since exemplified, in 100, (11.) and (12.), 
and in the sub-articles to 345, &c. It follows that any vector v, 
which is perpendicular to both of two such non-parallel differentials, 
or derivatives, must (comp. 345, (11.)) be a normal vector at p, or at 
least one having the direction of the normal to the surface at that 
point; so that each of the two vectors,

IV. . . V.d,pd,p, V. .. V. D.pD,p,
if actual, represents such a normal.
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(1.) As an additional example, let us take the case of the ruled paraboloid, on 
which a given gauche quadrilateral abcd is supericribed. The expression for tho 
vector p of a variable point r of this surface, considered as a function of two indo- • 
pendent and scalar variables, x and g, may be thus written (comp. 99, (9.)):

VI... p = xya + (l-x)y^ + (l-i(:) (1-y)y+«(1-y)d; 
where the supposition y = 1 places the point p on the line ab ; x = 0 places it on bc ; 
y = 0, on CD; and a;= 1, on da.

(2.) We have here, by partial derivations,
VIL .. D;rp=y(a-^)+(l-y) (J-y); Dyp=a:(a-3)+(1-a:) (/3-y)j 

these then represent the directions of two distinct tangents to tbe paraboloid VI., at 
what may be called the point (a:, y); whence it is easy to deduce the tangent plane 
and the normal at that point, by constructions on which we cannot here delay, ex- . 
cept to remark that if (comp. Fig. 31, Art. 98) we draw two right lines, qs and rt, 
through F, so as to cut tbe sides ab, bc, cd, da of the quadrilateral in points Q, R, 
s, T, we shall have by VI. the vectors,

Yjjj _fOQ = a:a + (l-»)/?, OB=y/3 + (l-y)y,
■ ■ ■ (O3 = a;d + (l-a:)y, OT=ya+(1-y)d,

and therefore, by VII.,
IX— Dxp = RT, D„p = sq;

BO that these two tangents ore simply the two generating lines of the surface, which 
pass through tbe proposed point p.

(3.) For example, at the point (1, 1), or a, the tangents thus found aro the sides 
BA, DA, and the tangent plane is that of tbe angle as indeed is evident from 
geometry.

(4.) Again, the equation of the screw surface (comp. 314, XVI.),
X... p = cxa+ga’‘P, with Ta = l, and Sa/3 = 0, 

gives the two tangents,

XI.. . Dip = ca + ^ya»*i/3, Dyp = a^p,
whereof the latter is perpendicular to the former, and to the axis a of tbe cylinder; 
so that the corresponding normal to the surfaco'X. at the point (x, g) is represented 
by the product.

XII.. . v = Da-p.Dyp = + ^y/3-a.

373. Whenever a variable vector /> is thus expressed or even 
conceived to be expressed, as a function of two scalar variables, x and 
y (or « and t, &o.), if we assume any three diplanar vectors, such as

Pt (or t, K, X, &c.), the tAree scal^ expressions, 3ap, S<7p
(or Sip, Skp, Sap, &c.) will then be functions of the same two scalar 
variables; and will therefore be connected with each other by some 
one scalar equation, o{ the form,

I. . . 2^(Sop, Spp, S'^p) =» 0,
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II. ../?> = C;
where (/is a scalar constant, introduced (instead of zero) for greater 
generality of expression; and F, f are used as functional but scalar 
signs. If then (corSp. 361, XIV.) we express thejfrst differential of 
this scalar function fp under the form,

III. .. d/p = 2Spdp,'
in which v is a certain derived vector, and is Acre considered as being 
(at least implicitly) a vector function (like p) of the two scalar varia
bles above mentioned, we shall have the two equations,

IV. . . Si'djp = 0, Sj'dyP=O,
or these two other and corresponding ones,

V. ..SvD,p = 0, SrD,P = 0;
from which it follows (by 372) that v has the direction of the nor
mal to the surface I. or II., at the point p in which the vector p ter
minates. Hence the equation of that normal (with to for its variable 
vector) may, under these conditions, be thus written:

VI. . . Vv(ti,-p) = 0;
and the corresponding equation of the tangent plane at the same point 
p is.

VII... S>’{w -p) = O.

(1.) For example, if we take the expression 808, XVIII., or 845, XII., namely
'Vll'I. . . p = ri‘j’Rj-‘k-‘, in which =j‘k, &&,

treating tbe scalar r as constant, but * and t as variable, we have then (comp. 345,
XIV.), the equations, a denoting any nnit-vector,

IX. . . Sip = rS. a’‘S. a’«i, Sjp = rS. a’*-’ S. Sip = rS. a2»*2;
between which s and t can bo eliminated, hy simply adding their squares, because 
(a<)’ 4- = 1, by 315, V., if Ta = 1. In this manner then we arrive at equa
tions of the forms I. and II., namely (comp. 357, VII., and 308, (10.) and (13.)),

X. .. (Sip)’ + (Syp)« + (Sip)’ - r’ = 0,
and XI... /p = p’ = - r’ = const., or XI'... Tp = r;

which last results had indeed been otherwise obtained before.
(2.) With this/oral XI. of/p, we have the differential expression of the fii'st 

order,
XII. .. d/p = 2Si'dp = 2Spdp, whence XIII. . . v = p;

and if we afiZZ conceive that p is, os above, some vector function ot two scalar varia
bles, s and t, altliongh the particular law VIII. of its dependence on tliem may now 
be supposed to be unknown (or to be forgotten), we may write also,

XIV. . . |d/p= S»'dp=Spdp = Sp(d<+d()p = SpD,p.d* +SpD,p.d<;

if then the function fp have (as above) a oaZue, ;= —r’, which is constant, or isZneZe-
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pendent of both the yariables, » and t, while Metr diiferentials are arbitrary, and aro 
independent of eacA other, -we shall thus have separately (comp. V., and 837, XIJI., 
xvn.),

XV.., SpDtp = 0, SpD(p = 0.
The radiut p ot the ephere XI. is therefore in this way seen to have the direction of 
the normal at its own extremity, because it is perpendicular to two distinct tangents, 
Dtp and Dip, at that point; which are indeed, in the present case, perpendicular to 
each other also (337, (8.)).

(3.) Instead of treating the two scalar variables, as and y, or s and f, &c., as both 
entirely arbitrary and tRdcpenrfeRt, we may conceive that one is an arbitrary (but 
scalar) Junction of the other; and then the vector v, determined by the equation
III., will be seen anew to be the normal at the extremity p of p, because it is per
pendicular to the tangent at p to an arbitrary curse upon the surface, which passes 
through that point; or (otherwise stated) because it is a line in an arbitrary normal 
plane at F, if a normal plane to a curve on a surface be called (as usual) a normal 
plane to that surface also.

(4.) For example, if we conceive that s in VIII. is thus an arbitrary function of 
t, the last expression XIV. will take the form,

XVI.. . 0 = idjp = S.p(*'D,p + Dip)di, if ds = «'di; 
whence, di being still arbitrary, we have the one scalar equation,

XVII. .’. S.p(»'D.p + D(p) = 0, or XVIII. .. p-t-e'D.p + D,p, 
and although, on account of the arbitrary coefficient s', this one equation XVII. is 
equivalent to the system of the two eqpations XV., yet it immediately signifies, as in 
XVIII., that the directed radius p, of-the sphere XI., is perpendicular to the arbi
trary tangent, s"[),p + D/p; or to the tangent to an arbitrary spherical curve through 
F, the centre o and tensor Tp (or undirected radius, r) remaining as before.

‘(5.) As regards tbe logic of the subject, it may be worth while to read again the 
proof (331), of the validity of the rule for differentiating a function of a function ; 
because this rule is virtually employed, when after thus reducing, or conceiving as 
reduced, the scalar function fp of a vector p, to another scalar function such as Ft of 
a scalar t, by treating p as equal to some vector function of this last Scalar, wo 
infer that

XIX.. . dFt = dfijit = 2S. j/d0t, if djp = 2Si'dp, as before.

(6.) And as regards the applications of the formulffi VI. and VII., or of tho equa
tions given by them for the normal and tangent plane to a surface generally, the 
difficulty is only to select, out of a multitude of examples which might be given: 
yet it may not be useless to add a few such here, the case of the sphere having of 
course been only taken to illustrate the theory, because the normal property of its 
radii was manifest, independently of any calculation. ■

(7.) Taking then the equation of the ellipsoid, under the form,
XX. . . T(tp + pic)^K’-tf, 282, XIX.,

of which the first differential may (see the sub-articles to 336) be thus wiitton,
XXI.. . 0 = S-{(» — K)’p-f-2((SKp + K.Sip)}dp = Svdp,

and introducing an auxiliary vector, on or such that
XXII. . . ON = £=-2(«-«)-’ (iScp -KcS.p),
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wo have v H p — S, and may write, as the equation of the normal at the extremity p 
of p, the following,

XXIII. ..V.«-p)(a)-p) = 0, or XXIV.., <d = p + a(S-p),
in which x is a scalar variable (comp. 3G9, VII.); making then x= 1, we see that 

-5 is the vector of the point n in which the normal intersects the plane of the two 
Axed lines (, k, supposed to be drawn from the origin, which is here the centre of 
the ellipsoid.

(8.) If we look back on the sub-articles to 216 and 217, we shall see that these 
lines (, K have the directions of the two real cyclic normals, or of the normals to tho 
two (real) cyclic planess which planes are now represented by the two equations,

XXV. . . Sip = 0, Sep = 0.
Accordingly the equation XX of the ellipsoid may be jnit (comp. 336, 357, 359) 
under tbe cyclic forms,

XXVI. .. Spjip = (»» + ic«)p’ + 2Sipicp
= (i — k)2 p* + dSipSicp = — €-)2 = const.;

hence each of tho two diametral planes XXV. cuts the surface in a circle, the com
mon radius of these two circular sections being

Ti’ — Tk>
XXVII... Tp = .^ =5,

where 5 denotes, as in 219, (1.), the length of the mean semiaxis of the ellipsoid ; 
and in fact, this value of Tp can be at once obtained from the equation XX., by 
making either tp = - pt, or pic — — icp, in virtue of XXV.

(9.) By the sub-article last cited, the greatest and least semiaxes have for their 
lengths.

XXVIII. . .a = Tt-I-Tic, « = Tt-Tic:
end the construction in 219, (2.) shows (by Fig. 53, annexed to 217, (4.)) that 
these three semiaxes a, b, e have the respective Erections of tbe lines,

XXIX. . . tT/c —kTi, Vic, iTc + cTt;
all wliich agrees with tho rectangular transformation,

_ I "^(‘P + P'cA^
I=(;;rr7)s-^ )

(S.pU(.Tc-cTt)V , (T(i-c)S.pUV.c)Y , ( S.pU(«Tc + cTi) V 
tT+Tc MV Tt»-Tc3 J Ti-Tc J’Ti + TcI ' \, TP-Tk2 j ' \ Tt-T(e

in deducing which (comp. 359, (1.)) from 357, VIII., by means of the formulas 
857, XX. and XXL, we employ the values (comp. XXVI.),

XXXI.. . g = t’ + k’, X - 2i, p, = K.
(10.) The fixed plane (7."), of the cyclic normals i and c (8.), is therefore also 

the plane of the extreme semiaxes, a and c (9.), or that which may be called per
haps the principal plane* of the ellipsoid : namely, the plane of the generating tri-

* This plane may also be said*to be the plane of the principal elliptic section 
<219, (9.)); or it may be distinguished (corap. the Note to page 231) aa the plane 
of tho focal hyperbola, of which important curve we shall soon assign the equation 
in quaternions.

3 T
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angle (218), (!•)), in that construction ot the surface (217, (6.) or (7.)) which is 
illustrated by Fig. 53, and was deduced as an interpretation of the quaternion equa
tion XX., or of the somewhat less simple form 217, XVI., with the value Tt»- Tk’ 
off!.

(11.) Let n denote the length of that portion of the normal, which is intercepted 
between the surface and tbe principal plane (10.), so that, by (7.),

XXXII. ... n = NP = T(p-e), n2=-(p-?)»,
with the value XXII. of 5. Let a = os be the vector of a point s on the surface of 
a new or auxiliary sphere, described about the point M as centre, with a radius = n, 
and therefore tangential to the ellipsoid at r; and let us inquire in what curve or 
curves, real or imaginary, does this sphere cut the ellipsoid.

(12.) The equations (comp? 371, (5.)) of the sought intersection are tbe two fol
lowing,

XXXIII. . . (<r - 5)2 + nil = 0, and XXXIV. . . T(«<r + ck) = k’ - «3; 
whereof the first e.xpresses that s is a point of the sphere, and the second that it is a 
point of tho ellipsoid; while p or op enters virtually into XXXIII., through 5 and a, 
but is here treated as a constant, the point p being now supposed to be a given one.

(13.) Wo shall remove (18) the origin to this point P of the ellipsoid, if we 
write.

XXXV. . . 17= p + o', or XXXV'. . . o' = o — p = ps;

and thus we obtain the new or transformed equations,
XXXVI. . . 0=<r'J+2S(p-?)»'. XXXVII. . . 0 =N(t<r' + o'c) + 2S>-c'i 

in which (ns in (7.), comp, also 210, XX.), •.
XXXVIII. . . V = (i - k)’P + 2 (iScp + (cSip) = (t - ic)« (p - 5), 

and XXXIX. . . N (tif + o'k) = (i - «)’ + dSic'SKo'.
(14.) Eliminating then a'^, vio obtain from the two equations XXXVI. and 

XXXVII. this other.
XL. .. Sta'. Ski/ = 0; 

which like them is of the tecond degree in o’, but breaks up, as we see, into two linear 
tmd scalar factors, xegreaecAmg two distinct planes, parallel by XXV. to the two 
diametral and cyclic planes of the ellipsoid. The sought intersection consists then 
of a pair of (real) circles, upon that given surface; namely, two circular (but not 
diametral') sections, which pass through the given point p.

(15.) Conversely, because the equations XXXVII. XXXVIII. XXXIX. XL. 
give XXXVI. and XXXIII., with the foregoing values of J and n, it follows that 
these two plane sections ot the ellipsoid at P are on one common sphere, namely 
that which has N for centre, and n for radius, as above; and thus we might have 
found, without differentials, that the line PN is the normal at P; or that this normal 
crosses the principal plane (10.), in the point determined by the formula XXII.

(16.) In general, the cyclic form of the equation of any central surface of the 
second order, namely tho form (comp. 367, if?),

XLI. . . Sp^p=y'p2 + 2SXpSpp = C= const., 
shows that the two circles (real or imaginary) in which that surface is cut by any 
two planes.

XLII. . . SXp = /, Spp = m,
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drawn parallel respectively to the two real cyclic planes, which are jointly repre
sented (comp. XL., and 216, (7.)) by tbe one equation,

XLIII. .. SXpSpp = O,

arc homospherical, being both on that one sphere of which the equation is,

XLIV... p'p’ + 2 (ZSpp + mSXp) = 2Zm + C.
(i.l.') But the centre (s&y n) of this nea> sphere, has for its vector (say 5),

I
XLV. . . ON = 5 =—g'~\lp + mX);

it is therefore situated fn the plane of the two real cyclic normals, X and p ; and if 
I and m in XLV. receive the values XLII., then this new ? is the vector of intersec
tion ot tbatpZane, with the normal to the surface at P : because it is (comp. 15.)) 
the vector of the centre of a sphere which touches (though also cutting, in the two 
circular sections) the surface at that point

(18.) We can therefore thus infer (comp, again (15.)), without the differential 
calculus, that tho line,

XLVI. . . p'(P - 5) = ff’p + XSpp + pSXp = ^p,
as having the direction of np, is the normal at p to the surface XLI.; which agrees 
with, and may be considered as confirming (if confirmation were required), the con
clusion otherwise obtained through the differential expression (361),

XLVII,. . dSp^>p = 2Spdp = 2S^pdp;
the linear function ^p being here supposed (comp. 361, (3.)) to be self-conjugate.

(19.) Hence, with the notation 362, I., the equation of the tangent plane to a 
central surface of the second order, at the same point p, may by VII. be thus 
written,

XLVIII. . ./(w, p) = C, if Sp0p = C= const.;
in which it is to be remembered, that

XLIX. . . f(<D, p) =f(,p, <>>} = Sw^ip = Sp^u),
(20.) And if we choose to interpret this equation XLVIII., which is only of the 

first degree (362) with respect to each separately of the tteo vectors, p and a>, or OP 
and OR, and involves them symmetricany, without requiring that p shall be a point 
on the surface, we may then say (comp. 215, (13.), and 316, (81.)), that the for
mula in question is an equation of conjugation, which expresses that each of the two 
points P and B, is situated in the polar plane of ^he other.

(21.) In general, if we suppose that the length and direction of a line v are so 
adjusted as to satisfy the two equations (comp. 336, XII. XIII. XIV.),

L.. . Spp = 1, Spdp = 0, and therefore also LI. .. Spdp =r 0;
then, because the equation VII. of the tangent plane to any curved surface may now 
be thus written.

LU, , . Sp (w — p"t) = 0,

it follows that p'l represents, in length and direction, the perpendicular from o on 
that tangent plane at p; so that v itself represents tho reciprocal oi that perpendi
cular, OT what may ba called (comp. 386, (8.)) the vector of proximity, of the tan
gent piano to tbe origin. And we see, by LI., that the two vectors, p and p, if 
drawn from a common origin, terminate on two surfaces which are, in a known and
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important sense (comp, the sub-arts, to 361), reciprocals* of one another: the lino 
p-J, for instance, being tbe perpendicular from o on the tangent piano to thc tecond 
surface, at the extremity of the vector v.

374. In the two preceding Articles, we have treated the symbol 
d/j as representing (rigorously) a tangent to a curve on a given surface, 
and therefore also to that surface itself; and thus the formula 
Srd/> = 0 has been considered as expressing that v has the direction of 
the noiiiial to that surface, because it perpendicular to two tangents 
(372), and therefore generally to every tangent (373), which can be 
drawn at a given point P. But without at present introducing any 
other] signification for this symbol dp, we may interpret in another 
way, and with a reference to chords rather than to curves, the diffe
rential equation.

I. . . dyp=2Srdp, 
supposed still to be a rigorous one (in virtue of our definitions of dif
ferentials, which do not require that dp should be small}', and may 
still deduce from it the normal property of the vector v, but now with 
the help of Taylor’’s Series adapted to quaternions (comp. 342, 370). 
In fact, that series gives here a differenced equation, of the form,

II. . . A/p = 2§«'Ap-b.K;
where R is a scalar remainder (comp, again 342), having the pro
perty that

III... lim. (7?:TAp)=0, if lim. TAp = 0; 
whence IV.. . lim. (A/p: TAp) = 2 lim. S^UAp, 
whatever the ultimate direiction of may be. If then we conceive that

• Compare the Noto to page 484.
f It is permitted, for example, by general principles above explained, to treat the 

differential dp as denoting a chordal vector, or to substitute it for Ap, and so to re
present the differenced equation of The surface under the form (comp. 342),

0 = A/p = (s'* - l)/p = djp + id’/jj 4- &c.;

but with thit meaning of the symbol dp, tho ejnatton d/p = 0, or Si'dp = 0, is no 
longer rigorous, and must (for rigour) be replaced by such an equation as the follow
ing.

0 = 2S»<dp -t Sdndp -1 It, il d_/p = 2St'dp, as before;

the remainder U vanishing, when the surface is only of the second order (comp. 
362, (3.)). Accordingly this last form is useful in some investigations, especially 
in those which relate to the curvatures of normal sections; but for tbe present it 
seems to be clearer to adhere to tbe recent signi6cation of dp, and therefore to treat 
it as still denoting a tangent, which may or may not bo small.
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represents a small and indefinitely decreasing chord pq of the sur
face, drawn from the extremity p of p, so that

V... (p+Ap)-y/) = 0, and lim.T2^p = 0,
the equation IV. becomes simply,

VI.. . lim. SpUAp = 0;
and thus proves, in a new way, that v is norinal to the surface ai the 
proposed point p, by proving that it is ultimately perpendicular to all 
the chords pq from that point, when those chords become indefinitely 
small, or tend indefinitely to vanish.

(1.) For example, if
VII.. ./(O = (£>’, v = p, then VIII. . . A/)’, and ZJ:TAp = -TAp5

thus, for every point of space, we have n^oroasZy, with this form of/p,
IX. . . A/p: TAp -^ ZSpVAp - TAp ;

and for every point q o/ the spheric surface, fp = const., yre have with equal riyour,
X. , . 2SpUAp = TAp, or XI.. . pQ = 2dp.cosopQ;

in fact, either of these two last formulce expresses simply, that the projection of a 
diameter of a sphere, on a conterminous chord, is equal to that chord itself, and of 
course dimtntsZies with it.

(2.) Passing then to the limit, or conceiving the point q of the surface to ap
proach indefinitely to p, we derive the limiting equations,

XII. .. lim. SptTAp = 0; XIII. . . lim. cos opq = 0;

either of which shows, in a now way, that the radii of a sphere are its normals; 
with the analogous result for other surfaces, that the vector v in I. has a norniaZ di- 
reclion, as before: iecaase its projection on a chordrQ tends indefinitely to diminish 
with that chord.

(3.) We may also interpret the differential equation I. as expressing, through
II. and III., tliat the plane 373, VII., which is drawn through the point r in a 
direction perpendicular to v, ia the tangent plane to tho surface; because the pro
jection of the chord Ap on the normal v to that plane, or the perpendicular distance,

XIV. . . - S (Ur. Ap) = jJZ. Tv-i,

of a near point <ifrom the plane thus drawn through P, is small of an order higher 
than the first (comp. 370, (8.)), if the chord pq ftseZf be considered aa small oi the 
first order.

375, This occasion may be taken (comp. 374,1. II. III.), to give 
a neiv Enunciation of Taylor's Theorem, in a form adapted io Q,uattr- 
nions, which has some advantages over tliat given (342) in the pre
ceding Chapter. We shall therefore now express that important 
Theorem as follows:—

"•If none of the m + 1 functions,
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L . .fy, d/2', ... Arfq, in which d=g' = O,
become infinite in the immediate vicinity of a given quaternion q, then the 
quotient,

II. . . G= [ffq^Aq)-fq-Afq-^^- |^^-&c.

2,3..»t) ’ 2.3..7»’ 
can he made to tend indefinitely to zero, for any ultimate value of the 
versor Udq', hy indefinitely diminishing the tensor Tdy.”

(1.) The proof of the theorem, as thus enunciated, can easily be supplied by an 
attentive reader of Articles 341, 342, and thsir sub-articles; a few hints may how
ever here be given.

(2.) We do not now suppose, as in 342, that d”’/} must be different from zero ; 
■we only assume that it is not infinite; and we add, to the expression 342, VI. for 
Fir, the term,

III. .. ------------ .

(3.) Hence eacZi of the expreasions 842, VII., for the successive derivativet 
FXf receives an ierm; the'^aa^ of them thus becoming,

IV.. . =■ d”*y‘(g + ;
80 that we have now (comp. 342, X.) the values

v...j’o=6, 7^*0, F"o=o,... r(ni-i)o=o, = a
(4.) Assuming therefore now (comp. 842, XII.) the new auxiliary function,

aw’d/?”*
VI. .. 0 = —----- , with Tdo >

which gives,
VII. ..1^0 = 0, ,J/'0 = 0, ^"0 = 0,,. ^t’»'»0 = 0, (pWO = dQ’", 

we find (by 341, (8.), (9.), comp, again 342, XII.) that
VIII. . . lim. (fx ; 4'®) = 0.

aj=O •
(5.') But these two new functions, J^x and ipr, are formed from the dividend and 

the divisor of the quotient Q in II., by changing dq to xdj j and (comp. 342, (3.)) 
instead of thus multiplying a given quaternion differential Aq, by a smaU and indefi. 
nitely decreasing scalar, x, wo may indefinitely dtminisA the tetuor, Tdg, wit/ioat 
changing the versor, Udj.

(6.) And euen ifUdg ie changed, while the differential dq ia thus made to tend 
to zero, ■we can always conceive that it tends to some limit; which limiting er ulti
mate value ot that versor Udq may then be tripled as ifit^werea constant one, with
out affecting tbe limit ot tbe quotient Q.

(T.y The theorem, as above enunciated, is therefore fully proved; and we are at 
liberty to choose, in any application, between the two forms of statement, 842 and 
376, of which one is more convenient at ono time, and the other at another.
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376. 
be thus 
(1.)):

Section 4.— On Osculating Planes, and Absolute Normals, to 
Curves of Double Curvature,

The variable vector p, of a curve in space may in general 
expressed, -with the help of Taylor’s Series (comp. 370,

»
I. , • Pt=‘p + tp' + ^i‘up'', ■with «o = 1;

P» p’t p", u being here abridged symbols for />e, p'e, p"e, and the 
product up" being a vector, although the factor u is generally a qua
ternion (comp. 370, (5.)). And the different terms of this expres
sion I. may be thus constructed (compare the annexed Figure 77) •

II. . .p = op; f/=PT; =
while ni. ..pj=oci, and f/>'+|<’«p"=PQ; 

the line TQ, or the term being thus what
may be called the deflexion of the curve pqr, at 
from its tangent ft at p, measured in a direction 
which depends on the law according to which pt 
varies with t, and on the distance oi q from p. 
The equation of the plane of the triangle ptq is 
rigorously (by II.) the following, with co for its 
variable vector,

IV.. . 0 = Supl'p'(co - p');
this plane TN. then touches the curve at p, and (generally) cuts it at 
q; so that if the point a be conceived to approach indefinitely tor, 
the resulting formula,

V... 0 = Sp"p'(m - p), or V'. .. 0 = Sp'p"{co - p), 
is the equation of the plane piq. in that limiting position, in which it 
is called the osculating plane, or is said to osculate to the curve pqr, 
nt the point P.

(I.) If the variable rector p be immediately given as ay«nc<:o» p, of a cnrfaSZe 
^calar^ s, which is itself a funclion of the former scalar variable t, yio shall then 
have (comp. 331) the expressions,

VI. . . p't = s'Dspn p''« = s"I>jp, + i'i!D,®p., with i* = D<s,
thus the rector p" may change, oven in direction, when we change tho independent 
scalar variable ; but p" will alteagt be a line, either in or parallel to the osculating 
plane; while p' will always represent a tangent, whatever scalar variable may bo 
selected.

(2.) As an example, let us take the equation 314, XV., or 3C9, XIII., of tlio
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helix. With tho independent variable t of that equation, we have (comp. 869, XIV.) 
the derived expressions,

Vn...p'=e« + J«*»1A p" = -(jya‘/3 = ^^y(c<a-p): '

p" has therefore here (comp. 369, (8.)) the direction of the normal to the cylinder; 
and consequently, tbe oteulating plane to the helix is a normal plane to the cylinder 
ot revolution, on which that curve is traced; a result well known, and which will 
soon be greatly extended.

(3.) When a curve of double curvature degeneratee into a plane curve, its oscu
lating plane becomes constant, and reciprocally. The condition of planarity of a 
curve in space may therefore be expressed by the equation.

Villi. . U Vp'p" = + a constant unit line;
or, by 335, II., and 338, VIII.,

512 gLEMENTS OP QUATERNIONS.

• ix...0 = V;^'=V^';
Vpp Vpp

or finally, X.. . Sp'p"p"'=0, or XI. . 1 p" ||| p', p".
(4.) Accordingly, for a plane curve, if X bo a given normal to its plane, we have 

the three equations,
XII. . . S\p' = 0, SXp"=0, SXp*" = 0';

which conduct, by 294, (11.), to X.
(5.) For example, if we had not otherwise kno^yn that the* equation 887, (2.) 

represented a plane ellipse^ we might have perceived that it waa the equation of eome 
plane curve, because it gives the three successive derivatives,

XIII. . . p = p" = - P"' = - ( y

which are complanar lines, the third having a direction opposite to the first.
(6.) And generally, the formula X. enables us to assign, on any curve of double 

curvature, for which p is expressed as a function of t, the points* at which it most 
resembles a plane curve, or approaches most closely to its own osculating plane.

yil. An important and characteristic property of the osculating 
plane to a curve of double curvature, is that tbe perpendiculars let 
fall on it, from points of the curve near to the point of osculation, 
are small of an order higher than the second, if their distances from 
that point be considered as small of first order.

(1.) To exhibit this by quatemiona, let us begin by considering an arbitrary 
plane,

* Namely, in a modern phraseology, the places of four-point contact with a plane. The equation, V pp" — 0, indicates in like manner the places, if any, at which 
a curve has three-point contact with a right line. ■ For. curves of double curvature, 
these are also called points of timple and double inf exion.
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I. . . SX (ru — p) = 0, with TX = 1,
drawn through a point p of the curve. Using the expression 376, I., for tho vector 

• OQ, or pt, of anotlicr point q of the same curve, we have, for the perpendicular dis
tance of <j from thc piano I., this other rigorous expression,

II. .. SX(p<-p) = <SXp' + 5<2SXup";
which represents, in general, a small quantity of the jirst order, it t be assumed to 
bo such. _

(2.) The expression II. represents however, generallg, a small quantity of the 
second order, if tbe direction of X satisfy tbe condition,

III. . . SXp' = 0;
that is, if the plane I. touch tbe curve,

(3.) And if the condition,
IV... SXp"=0, 

bo also satisfied by X, then, but not otherwise, the expression II. tends to bear an 
evanescent ratio to or is small of an order higher than the second.

(4.) But the combination of the two conations. III. and IV., conducts to the 
expression.

V. . .X = + UVp'p";

comparing which with 376, V., we see that the property above stated is one which 
belongs to the osculating plane, and to no other.

378. Another remarkable property* of the osculating plane to a 
curve is, that it is the tangent plane to the cone of parallels to tangents 
(369, (6.)), which has its vertec at the point ot osculation.

(1.) In general, if p = ^x be (comp. 369, I.) the equation of a cures in space, 
tlie equation of tho cone which has its vertex at the origin, and passes through thia 
curve, is of the form.

I. .. p=y^ix;
in which x and g are two independent and scalar variables.

(2.) We have thus the two partial derivatives,
II.. . Dxp = y^'x, Dyp = 03!;

and the tangent plane along the side (o!) has for equation,
III. .. O = S(w.0a:.0’®) ; or briefly, Ilf. . . 0 = Sw00'.

(3.) Changing then x, </>', w to t, p', p", w — p, yie see that the equation 376, 
V., of the osculating plane to the curve 376, I., is also that of the tangent plane to 
the cone of parallels, &c., as asserted.

379. Among all the normals to a curve, a,t any one point, there 
are two which deserve special attention; namely the one which is in

* The writer does not remember seeing this property in print; but of course it 
is an easy consequence from the doctrine of infinitesimals, which doctrine however it- 
hos not been thought convenient to adopt, as the basis of tho present exposition.

3 u
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the osculating plane, and is called the absolute (or principal} normal; 
and the one which is perpendicular to that plane, and which it has 
been lately proposed to name the iinormal.* It is easy to assign ex
pressions, by quaternions, for. these two norinals, as follows.

(1.) The absolute normal, as being perpendicular to p', but complanar with p' 
and p", has a direction expressed by any one of the following formulae (comp. 203, 
834) :

I. .. Vp"p'.p'-'; or II. .. d'Up'; or III. . . dUdp.
(2.) There is an extensive classf of cases, for which the following equations hold 

good:
IV. . . Tp' = const.; V. . . p’® = const.; VI. . . Sp'p"= 0;

and in all such, cases, tbe expression I. reduces itself to p", which is therefore’ then a 
representative of the absolute normal.

(3.) For example, in the case of the helix, with the equation several times be
fore employed, the conditions (2.) are satisfied; and accordingly the absolute nor
mal to that curve coincides with the normal p" to the cylinder, on which it is traced ; 
the locus of the absolute normal being hero that screw surface or Helicoid, which 
has been already partially considered (comp. 314, (11.); and 372,*(4.)).

(4.) And as regards the binormal, it may bo snlBcicnt here to remark, that be
cause it is perpendicular to tho osculating plane, it has the direction expressed by. 
ono or other of the two symbols (comp. 377, V.),

VII. . . Vp'p", or Vir. . . Vdpd’p. .
(5.) There exists, of course, a system of three rectangular planes, the osculating 

plane being one, which are connected with the system of tho three rectangular lines, 
' the tangent, the absolute normal, and the binormal, and of which any one who has 
studied the Quaternions so far can easily form the expressions.

(6.) And a construction^ for tho absolute normal may be assigned, analogous 
to and including that lately given (378) for the osculating plane, as an interpreta
tion of the expression II. or III., or of the symbol dUp'or dUdp. From any origin 
o conceive a system of unit lines (Up' or Udp) to bc drawn, in the directions ot the 
successive tangents to the given curve of double curvature; these lines will terminate

* By M. de Saint-Venant, as being perpendicular at once to two consecutive ele
ments of the curve, in the’inflnitesimal treatment of this subject. See page 261 of tlie 
very valuableTreatise on Analytic Geometry of Three Dimensions (Hodges and Smith, 
Dublin), bytheKev. George Salmon, D.D., which has been published in the present 
year (1862), but not till after tbe printing of these Elements of Quaternions (begun iu 
1860) bad been too far advanced, to allow the writer of them to profit by the study 
of it, so much as he would otherwise have sought to do.

t Namely, those in which tbe arc of the'eurve, or that arc multiplied by a scalar 
constant, is taken as-tbe independent variable.

J This construction also has not been met with by the writer in print, so far as 
he remembers; but it may easily have escaped his notlco, even iu tbe books which he 
has seen.
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on a certain spherical curve; and tlie tangent, say ss’, to tliia new curve, at the point 
8 which corresponds to the point p of the old one, will have the direction of tho ab
solute normal at that old point.

(7.) At tho same time, the plane oss' of the great circ/e, which touches the netv 
curve upon the unit spZiere, being the tangent plane to the cone of parallels (S78), 
has the direction of the osculating plane to the old curve; and the radius drawn to 
its pole is parallel to the binormal.

(8.) As an example of the auxiliary (or epZierfcaZ) c^rve, constructed as in (G.), 
we may take again the helix (369, XIII.,'&<:,) as the ptoen curve of double curva
ture, and observe that the expression 369, XIV., namely,

VIII, . . p' = ca+ gives IX. . . p's = —e’^—= const, (comp. (3.));

whence Tp’ is constant (as in IV.), and we have tho equation (comp. 369, XV. 
XIX.),

•/ jrWyj
X. . , SaUp' = —cl c’-----1 = —cos a = const.,

a being again the inclination of the helix to the axis of its cylinder; which shows 
that the neu> curve is in this case a plane one, namely a certain small circle of 
tlie unit sphere.

(9.) In general, if the given curve be conceived to be an orbit described by a 
point, which moves with a constant velocity taken for unity, tbe auxiliary or sphe
rical curve becomes what we have proposed (100, (6.)) to call the hodograph of that 
rnotion.

(10.) And if the given curve be supposed to be described with a variable velo
city, the hodograph is still some curve upon the cone of parallels to tangents.

Section 5.—On Geodetic Lines, and Families of Surfaces,
380. • Adopting as the definition of a geodetic line, on any proposed 

curved surface, the property that it is one of which tbe osculating 
plane is always a normal plane to that surface, or that the absolute 
normal to the curve is also the normal to the surface, we have two 
principal modes of expressing by quaternions this general and cltarac- 
teristicproperty. For we may either write,

I. . . S»’p'p"=O, or II... Spdpd"p = O,
to express that the normal v to the surface (comp. 373) is perpen
dicular to the binormal Npfi" or Vdpd'‘p to the curve (comp. 379i
VII. VII'.); or else, at pleasure,

ni.. . Nuiffp'y = 0, or IV.. . VvdUdp = 0, 
to express that the same normal »< has the direction of the absolute 
normal ifSp')' or dUdp (comp. 379j II. III.)j to the same geodetic 
line. And thus it becomes easy to deduce the known relations of 
such lines (or curves) to some important families of surfaces, on which
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they can be traced. Accordingly, after beginning for simplicity 
with the sphere, we shall proceed in the following sub-articles tp de
termine the geodetic lines on cylindrical and conical surfaces, with 
arbitrary bases; intending afterwards to show how the correspond
ing lines can be investigated, upon developable surfaces, and surfaces 
of revolution.

(1.) On a sphere, with centre at the origin, we have v || p, and the differential 
equation IV. admits of an immediate integration :* for it here becomes,
V.. . 0 = VpdUdp = dVpUdp, whence VI.. . VpUdp = <o, and VII,.. Swp = 0, 
u being some constant vector; the curve is therefore in this case a great circle, as 
heing wholly contained in one diametral plane.

(2.) Or we may observe that the equation,
VIII. . . Spp'p"— 0, or IX. .. Spdpd^p = 0,

obtained by changing v to p in I. or II., has generallg for a j?rsf integral (comp. 
335, (1.)), whether Tp be constant or variable,
. X.. . UVpp' = TJVpdp = 0) = const.;
it expresses therefore that p is the vector of some curve {ot line) in a plane through 
the origin ; which curve must consequently bo here a great circle, as before.

(8.) Accordingly, as a verlBcation of X., if we write
XI. . . p = ax + fy, X and y being scalar functions of t,

where f is still some independent scalar variable, and a, j} are two vector constants, 
we shall have the derivatives,

XII. . . p' = ax'+pg', p‘‘ = ax"+111 p, p';
so that tbe equation VIII. is satisfied.

(4.) For an arbitrarg cglinder, with generating lines parallel to a fixed line a, 
vtc voag write,

XIII. . . Sav = 0, XIV. . . Sadtrdp = O, XV. . . SaUdp= const.;

a geodetic on a cylinder crosses therefore tho generating lines at a constant angle, 
and consequently becomes a right line when the cylinder is unfolded into a plane : 

■ both which known properties are accordingly verified (comp. 369, (5.), and 376, 
(2.)) for the case of a cylinder of revolution, in which case tbe geodetic is a helix.

(5.) For an arbitrarg cone, with vertex at the origin, we have the equations,

XVI. . . Srp = 0, XVII. . . SpdUdp = 0, 
XVIII. . . dSpUdp = S(dp.Udp) =- Tdp ;

multiplying the last of which equations by 2SpUdp, and observing that — 2Spdp 
= —d.p\ we obtain the transformations.

* We here assume as evident, that the differential of a variable cannot be con- 
tlardly zero (comp. 835, (7.)); and we employ the principle (comp. 338, (6.)), 
that V. dp Udp = _ VTdp = 0.
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XIX. . . 0 = d { (SpUdp)’ + p’} = d. (VpUdp)’, XX. . . TVpDdp = const.; 
tlie perpendicular from the vertex, ontangent to any one geodetic upon a cone, has 
therefore a constant length; and allsucA tangents touch also a concentric sphere* 
or one which has its centre at the vertex of the cone.

(G.) Conceive then that at each point p or p' of the geodetic a tangent pt or p’t* 
is drawn, and that tbe angles otp, ot’p' are right; we shall have, by what has just 
been shown,

XXI. . . St = ot' = const = radins of concentric sphere;
and if tho cone be developed (or unfolded) into a plane, this constant or common 
length, ot tbe perpendiculars from o on tbe tan
gents, will remain unchanged, because tho length 
OP and the angle opt are unaltered by such de
velopment ; the geodetic becomes therefore some 
plane line, with the same property as before; 
and although this property would belong, not 
only to a right line, but also to a circle with o 
for centre (compare tho second part of the an
nexed Figure 78), yet we have in this result 0 
merely an effect of the foreign factor SpUdp, 
which was introduced in (5.), inorder to facili
tate the integration of the differential equation
XVIII., and which (by that very equation) cannot be constantly equal to zero. We 
are therefore to exclude thc curves in which the cone is cut by spheres concentric 
with it: and there remain, as the sought geodetic lines, only those of which tbe de
velopments are rectilinear, as in (4.).

(7.) Another mode of interpreting, and at the same time of integrating, the 
equation XVIII,, is connected with the interpretation of the symbol Tdp; which can 
be proved, on the principles of the present Calculus, to represent rigorously tbe dif
ferential ds of the arc (a) of that curve, whatever it may be, of which p is the varia
ble vector ; so that we have the general and rigorous equation,

XXII. . . Tdp — ds, if s thus denote the are :
whether that arc itself, or some other scalar, t, be taken as the independent variable; 
and whether its differential ds be smalt or large, provided that it be positive.

■ (8.) In fact if we suppose, for the sake of greater generality, that the vector p 
and the scalar a are thus both functions, pt and at, of some one independent and sca
lar variable, t, our principles direct us first to take, or to conceive as taken, a submul- 
tiple, n-'df, of the finite differential d<, considered as an assumed and arbitrary in
crement of that independent variable, t; to determine next the vector ptr,^^^ and 
the scalar st^-tet, which correspond to the point Pnn"’d< of the carue on which pt ter
minates in p«, and of which at is the arc, ^^4, measured to p* from some fixed point 
Po on the same curve; to take the differences,

• When the cone is of the eecond order, this becomes a case of a known theorem 
respecting geodetic linea on a. surface of the same second order, the tangents to any 
one ot which curves touch also a coM/ocaZ surface.
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ptwi"** — p<, and
Tvbich represent respectively the directed cho^, and the length, of the arc P(PtM,"<d6 
which arc will generally be imall, if the number n bo large, and will indejinitelg di- 
miniiA when that number tends to infinity; to multiply these two decreasing difle* 
rences, of pi and by n; and finally to seek the limits to which the products tend, 
when n thus tends to oo: such limits being, by our definitions, the values of thc two 
sought and simultaneous differentials, dp and ds, which answer to the assumed va
lues of t and dr. And because the small arc. As, and the length, TAp, of its small 
chord, in the foregoing construction, tend indefinitely to a ratio of equality, such 
must be the rigorous ratio of ds and Tdp, which are (comp. 320) the limits of their 
equimultiples,

(9.) Admitting then the exact equality XXII. of Tdp and ds, at least when the 
latter like the former is taken positively, wc have only to substitute — ds for — Tdp in 
the equation XVIII., which then becomes immediately integrable, and gives,

XXIII... s + SpUdp = s - S (p :.Udp) = const.;
where S(p tUdp) denotes the projection tp, of the vector p or op, on the tangent to 
the geodetic at p, considered as a positive scalar when p makes an acute angle 
with dp, that is,*when the distance Tp or oP from tho vertex is fnersastny; while s 
denotes, as above, the length of tho arc roe of tho same curve, measured from some 
fixed point Fo thereon, and considered as a scalar which changes sign, when the va
riable point F passes through the position Po.

(10.) But the length of tp does not change (comp. (6.)), when the cone ia deve
loped, as before; we have therefore the equations (comp, again Fig. 78),

XXIV.. ,^p— TP = const. = Po?'-t'p', XXV.. . pp' = t'p' —tp,

which must hold good both before and after the supposed development of the conical 
surface ; and it is easy to see that this can only be, by tbe geodetic on the cone be
coming a right line, as before. In fact, if ot' in the plane be supposed to intersect 
the tangent tp in a point t’, and if p' be conceived to approach to r, the second 
member of XXV. bears a limiting ratio of equality to the first member, increased or 
diminished by tt. ; which latter line, and therefore also the angle tot" between the 
perpendiculars on the two near tangents, or the angle between, those tangents them
selves, if existing, must bear an indefinitely decreasing ratio to the arc ee'; so that 
the radius of curvature of the supposed curve is infinite, or t' coincides with T, and 
the development is rectilinear as before.

(11.) The important and general equation, Tdp = ds (XXII.), conducts to many 
other consequences, and may be put under several other forms. For example, we 
may write generally,

XXVI... TD.p = 1, XXVII... (D,p)’ + 1 = 0; 
also XXVIII... (D,p)« + (D,s)a = 0, or XXIX. . . p'2 + s'« = 0, 
if p' and s' be tbe first derivatives of p and s, taken with respect to any independent 
scalar variable, such as t; whence, by continued derivation,

XXX. ■ ■ Spp''+ ss" = 0, XXXI,. . Spp "+ p 24"ss" + s's= 0, &c.
(12.) And if the arc s be itself taken as the independent variable, then (comp. 

879, (2.)) the equations XXIX., &c., become,
XXXII. . . p'’ + 1 = 0, Sp'p"s=0, Sp'p"'+p’* = 0, &c.
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381. In general, if we conceive (comp. 372, I.) that the vector p 
of a given surface is expressed as a given function of two scalar varia
bles, X and y, whereof one, suppose y, is regarded at first as an ««- 
Icnown function oi the other, so that we have again,

I. . . p = y}, but now with II.. . y =fx,
where thejhm of is Irnown, but that of/is sought; we may then 
regard p as being implicitly a function of the'single (or independent) 
scalar variable, x, and may consider the equation,

TH. . . P = <p(x,fc),
as being that of some cur^e on the given surface, to be determined by 
assigned conditions. Denoting then the unknown toted derivative 
n^(x,fx) by p', but the Icnown partial derivatives of the same first 
order by Dj:<p and d,0, with analogous notations for orders higher 
than the first, we have (comp. 376, VI.) the expressions,
IV.. p' = + y''Dy<j>, p" =D/0 + 2y’ojD/li + I- y'^D/p, &c.; 

in which y' = 'Diy =f'x, y"=T>^y=f'x, &c. Hence, writing for the 
normal v to the surface the expression,

V... V = Vcomp. 372, V., 

or this vector multiplied by any scalar, the equation 380, I. of a 
geodetic line takes this new form,

VI. . . 0 = Svp'p"=S(^V.Dx<f>D„4>-^p'p")i
Or, by a general transformation which has been often employed 
already (comp. 352, XXXI., &c.),

VII. . . O = Sp'Dy0.Sp"D,.0-Sp'D,,0.Sp"D,0;
and thus, by substituting the expressions IV. for p' and p", we ob
tain an ordinary (or scaZar) differential equation, the second order, 
in X and y, which is satisfied by all the geodetics on the given surface, 
and of which the complete integral (when found) expresses, with two 
arbitrary and scalar constants, the form of the scalar function f in II., 
or the law oi the dependence of y on x, for the geodetic cwrm in 
question.

(1.) As'an example, let us take tbe equation, 
VIII. .. p = (x, p) comp. 378, 1.,

of a cone with its vertex at the origin; which cone becomes a 4noion one, when the 
form of the vector function i/' is given, that is, when wo know a guiding curve p \px, 
through which tluj eirfee of tho cono all pass. We have hero the partial derivatives.

    
 



620 ELEMENTS OF QUATERNIONS. [book hi.

comp. 378, 11.;
and X... =yvfi^x = yi//", = 0;
tbe expressions IV. become, then,

XI. ., p' = yi/z' + y')/z, p" = ytf," + 2y'ip' + y"^ j
and since only the direction of tho normal is important, we may divide V. by — y, 
and write.

XII. .. v = Vtpil/'.
(2.) The expressions XI. and XII. give (comp. VI. and VII.) for tho ffeoJelict 

on Me eone VIU., the differential equation of tbe second order,
XIII... 0=s(ViP4-'.vp'p")=Sp"./zSp'.//' - sp"4/'Sp'i// 

= (ySi/'ip" + 2y'Sif/i// + y"4'’) + y'Stp.<P')
-

in which and are abridged symbols for and ; but this equation in 
X and y may be greatly simplified, by some permitted suppositions,

(3.) Thus, we are allowed to suppose that the guiding curve (1.) is tho intersec
tion of the cone with the concentric unit sphere, so that

XIV. . . T)//a:=l, ip’ = -l, Si//,p’=O, SH” +'J'"’= 0;
and if we further assume that the arc of this spherical curve is taken as the inde
pendent variable, x, we have then, by 380, (12.), combined with tho last equation 
XIV.

XV..; 'r’i>'x= 1, ip'2 = -1, s4/'4/'' = 0, SH"=- 'k'*=i-
(4.) With these simplifications, tbe differential eguation XIII. becomes, 

xvi.. ^^u'^-y'-,
and its complete integral is found by ordinary methods to be,

XVII. . . y = I sec (a + c),

in which h and c ate two arbitrary but scalar constants.
(5.) To interpret now this integrated and scalar equation in x and y, ot thc yeo- 

detics on an arbitrary cone, w6 may observe that, by tho suppositions (3.), y repre
sents the distance, Tp or tip, from the vertex o, and a + c represents the angle aop, 
in the developed state of cone and curve, from 6ome_^aed Zinc oa in the plane, to tho 
variable line op ; tho projection ot this new.or on that fixed line oa is therefore con
stant (being = b, by XVII.), and the developed geodetic is again found to be a right 
line, as before.

382. Let ABODE... (see the annexed Figure 79) he any. given se
ries of pointe in space. Draw the succes
sive right lines, ab, bc, cd, de, ., and pro
long them to points b', c', d', e', ... the 
lengths of these prolongations being ar- " 
bitrary; join also b'c', c'd', d'e', .,. We 
shall thus have a series of plane triangles, b'bc'; c'cd', d'de', ...all ge
nerally in different planes ; so that bcd'c'b', cde'd'c', ... are generally 
gauche pentagons, while bcde'd'c'b' is a gauche heptagon, Sio. But wo
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can conceive the first triangle b'bc' to turn round its skZcbcc', till it 
comes into the plane of the second triangle, c'cd' ; which will trans
form the first gauche pentagon into a plane one, denoted still by 
bcdVb'. We can then conceive this plaice figure to turn round its 
fiZde cdd', till it comes into the plane of the third jangle, d'de'; 
whereby the first gauche heptagon will have lecome a pane one, de
noted as- before by- bcde'd'c'b': and so we can proceed indefinitely. 
Passing then to the limit, at which the points abcde ... are conceived 
to be each indefinitdy near to the one which precedes or follows it in 
the series, we conclude as usual (comp. 98, (12.)) that the locus of 
the tangents to a curve of double curvature is a developable surface: or 
that it admits of being unfolded (like a cone or cylinder) into a plane, 
without any breach of continuity. It is now proposed to translate 
these conceptions into the language of quaternions, and to draw from 
them some of their consequences: especially as regards the determi
nation of the geodetic lines, on such a developable surface.

(1.) Let or simply t/', denote the variable vector of a point upon the curve, 
or cusp-edge, or edge of regression of the developable, to which curve the generating 
lines, of that surface are thus tangents, considered as a function of its arc, x, -mea
sured from some fixed point A upon it; so that while the equation of the surface 
will be of the form (comp. 100, (8.)),

I... p = 5^(®,y) = /x+tppgtp',
g being a second scalar variable, we shall have the relations (comp. 381, XV.),

II.. .Ti|/'x=l, S4>'^'’=0, if s=Ti^".
(2.) Hence III. . . Di0 Dy^=i/<';

IV. . . p' = (1 + y') + g'l'", p" = -b (1 + 2y') + gip'";
and V. i. r = 'Vyp'4'" = *“oitiplied by any scalar.

(3.) The difierential equation of the geodetics may therefore be thus written 
(comp. 881, XIII.),

VI... o=s(y4'''jr".Vp'p")=Sp'i|/"Sp"4/'—
in which, by (1.) and (2.),

|■Sp'r=-y^^ SpV=-»"+y^’>
• • • ISp",//"=- (1 + 2/) z’ - yzz', Sp'4/’=- (1 + y') ! 

the equation becomes therefore, after division by — z,
VIII. . . 0 = z{(l -hy')’ -h ^z)»} (1 •hy’) (yz)'-y"y2,

or simply,

IX. . . z -1- o' = 0, or IX'. . . Tdd/' -h do = 0, if X, . , tan o = ——, = y .■ l-l-y 1-t-y'
(4.) To interpret non this very simple equation IX. .or IX'., we may observe 

that z, or Tip", or Tdil/': dz, expresses tho limiting ratio, which tbe angle between 
tu'o near tangents ip' and 1^'+ Ai/'', to the cusp-edge (1.), bears to the small are Az

3 X
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of that curve which is intercepted between their points of contact; while o is, by IV., 
that other angle, at which such a variable tangent, or generating line of tho deve
lopable, crosses the geodetic on that surface; and therefore its derivative, v* or de: dx, 
represents the limiting ratio, which the change' Aa of this last angle, in passing from 
one genertting line to another, bdhrs to (be same small arc Ax of the curve which 
tihose lines

(5.) Eeferring then to Figure 79, in which, instead of two continuous curves, 
there were two gauche polygons, or at least two systems of successive right linfs, con
nected by prolongations of the lines of the first system, we see that tho recent formula 
IX. or IX'. is equivalent to this limiting equation,

XI. . . Um. = _ 1;
CCD

but these three angles remain unaltered, in the development of the surface: the bent 
line 'ado' for space becomes therefore ultimately a straight line in the plane, and si
milarly for all other portions of tho original polygon, or twisted line, b'c'd'b’ ..., of 
which b'o'd' was a part.

(6.) Returning then to curves and surfaces in space, the quaternion analysis (3.) 
is found, by this simple reasoning,* to conduct to an expression for the known and 
characteristic property of the geodeties on a developable : namely that they become 
right lines, as those on cylinders (380, (4.)), and on cones (380, (G.) and (10.), or 
381, (5.)), were lately seen to do, when the surface on which they aro thus traced 
is unfolded into a plane.

.383. This known result, respecting geodetics on developailes, may
be very simply verified, by means of a new determination of the ab- 
solute\ normal (379) to a curve in space, as follows.

(1.) The arc s of any curve being taken for the independent variable, we may 
write (comp. 370, I.), by Taylor’s Series, the following rigorous expressions,

I. . . p., = p - sp' + is’Mjp ", po = p,p, = p+ sp’ + ls^u,p'', with Uo = 1, 
for the vectors of three near points, p.„ Po, Pn on the curve, whereof the second bi
sects the arc, 2s, intercepted between the first and third.

(2.) If then we conceive’the parallelogram P.»PoP«it« to he completed, we shall 
have, for tlie two diagonals of this new figure these other rigorous expressions,

II. . . P-jP.= p,-p-.= 2sp' + is’(u,-u^)p";
III. . . PoB. = p» + P-. - 2p(i = ls\u, + u^) p” J

• In the Lectures (page 681), nearly the same analysis was employed, for geo
detics on a developable; but tbe interpretation of the result was made to depend on 
an equation which, with the recent signiScations of and v, may be thus written, as 
tbe integral of IX'., v + JTdip' = const.; where jTdi//' represents thejSniie anyle be
tween tho extreme tangents to thc finite arc or Ax, of the cusp-edge, when
that curve is developed into a plane one.

t Colled also, and perhaps more usually, 'the principal normal. •
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which give the limiting equations,

IV. . . lim. = ip'; V. . . lim. a"’PoK, = p".
«-0 «“0

(8.) But the length ot what may bo called the long diagonal, or the chotd 
of tbe double arc, is, is ultimatelg equal to that double arc; we have therefore, by
IV. , the equation,

VI,. .Tp'=l, if p'=zDip, and if » denote the orc, 

considered as the scalar variable on which the vector p depends: a result agreeing 
with what was otherwise found in 380, (12.).

(4.) At the same time, since the ultimate direction of the same long diagonal is 
evidently that of the tangent at Po, we see anew that the same first derived vector p' 
represents what may be called the unit-tangent* to the curve at that point.

(5.) And because the lengths of the two sidei F-iPo and Pop,, considered as chords 
ot the two successive and. equal arcs, s and s, are ultimately equal to them and to 
each other, it follows that tlie parallelogram (2.) is ultimately equilateral, and there
fore that its diagonals are ultimately rectangular; but these diagonals, by IV. and
V. , have ultimately the directions of p' and p" ; we find therefore anew the equation,

VII. . . Sp’p"= 0, if the arc be the independent variable,

which had been otherwise deduced before, in 380, (12.).
(6.) But under the same condition, we saw (879, (2.)) that the second derived 

vector p" has the direction of the absolute normal to the curve; such then is by V. 
the ultimate direction ot what we may call the short diagonal PoK„ constructed as 
in (2.); or, ^timately, the direction of the bisector of the (obtuse) angle PjPoPi, be
tween the two near and nearly equal chords from the point Po: while the plane of 
the parallelogram becomes ultimately the osculating plane.

(7.) All this is quite independent of the consideration of any surface, on which 
the curve may be conceived to be traced. But if we now conceive that this curve 
is formed/rom a right line n'c'n'... (corap. Fig. 79), by wrapping round a develop
able surface a plane on which tlie line had been drawn, and if the successive por
tions b'c', c'd', .. of that line be supposed to have been equal, then because the two 
right lines o'b' and c'u' originally made supplementary angles with any other line 
c'c in the plane, tbe two chords O'n' and c'd' of the curve on the developable tend to 
make supplementary angles with the generatrix c'o of that surface; on which ac
count the bisector (C.) of their angle b'c'o' tends to boperpendimdarto that generat
ing line c'c, as well as to the chord b'd', or ultimately to the tangent to the curve at 
o', when chords and arcs diminish together. The absolute normal (6.) to the curve 
thus formed is therefore perpendicular to two distinct tangents to the surface at c', 
and is consequently (comp. 372) the normal to that surface at that point; whence, 
by the definition (380), the curve is, as before, a geodetic on the developable.

(8.) As regards the a.sserted rectangularity (7.), of the bisector of the angle 
b'c'd' to the line c'c, when the angles cc'b’ and cc'd' are supposed to be supple
mentary, but not in one plane, a simple proof may ba given by conceiving tliat the

• Compare the Note to page 152.
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right line n'o' is prolonged to c", in such a manner that c'c"=c'd' ; for then these 
two equally long lines from o' make equal angles with the line c'c, so that the one may 
be formed from tlie other by a rotation round that line as-an axis; whence o"d', 
which is evidently parallel, to the bisector of b'c'd', is also perpendicular to c'c.

(9.) In quaternions, if a and p be any two vectors, and if ( be any scalar, we 
have tbe equation.

VIII. ..S.a(o'pa-<-p) = 0;
which is, by 308, (8.), an expression for the geometrical principle last stated.

384. The recent analysis (382) enables us to deduce with ease, 
by quaternions, other known and important properties of develop
able surfaces: for instance, the property that each such surface may 
be considered as the envelope of a series of planes, involving only one 
^calar and arbitrary constant {or parameter) in their common equation; 
and that each plane of this series osculates to the cusp-edge of the de- ■ 
velopalle.

(I.) The equation of the developable surface being still,
I. . . p = ^(a:,y')=.,/zx + y<p'» = 5p+yil/’, as in 382, I.,

its normal v is easily found to have as in 382, V., the direction of whether
the scalar variable a: be, or bo not, the orc of the cusp-edge, of which curve the 
equation is.

II.. . p = ,/zx.
(2.) Hence, by 373, VII., the equation of the' tangent plane takesWlie form,

III...
from which the second scalar variable y thus disappears; this common equation, of 
all tile tangent planes to tbe developable, involves therefore, as above stated, only 
one variable and scalar parameter, namely x; and the envelope of all these planes is 
the developable surface itself.

(3.) The plane III., for any given value of this parameter x, that is, for any given 
point of the cusp-edge, touches the surface along* the whole extent of the generating 
line, which is the tangent to this last curve.

(4.) And by comparing its equation III. with the formula 376, V., we see at 
once that this plane osculates to the same cusp-edge, at the point of contact of that 
curve with the same generatrix of the developable.

385. If the reciprocals of the perpendiculars, let fall from a given 
origin, on the tangent planes to a developable surface, be considered 
as being themselves vectors from that origin, they terminate on a 
curve, which is connected with the cusp-edge of the developable by 
some interesting relations of reciprocity (comp. 373, (21.)): in such 
a manner that if this new curve be made the cusp-edge of a new de
velopable, we can return from it to the former surface, and to its cusp
edge, by a similar process of construction.
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(1.) In general, if and Xn or briefly ,// and x, be two vector functions of a 
scalar variable x, such that x ntay be deduced from i/, by the three scalar -equa
tions.

I. . . Si}/x = c, = 0, Si//"x = 0,
in which Sipx is written briefly for S(i/'».Xr)) and c is any scalar constant, we have 
then this reciprocal system of three such equations,

II. ..Sx4' = c, Sx'>/' = 0, Sx"+ = 0;
an intermediate step being tbe equation,

in. ..S4/x' = Sx'^'=0-
(2.) Qence, generally,

IV. ..ifx = ^:^^^, then V.
Sipipip Sxxx

(3.) But if p be the variable vector of a curve in space, and p', p" its first and 
second derivatives with respect to any scalar variable, then, by the equation 376, V. 
of the osculating plane to the curve, we have the general expression,

VI.. .^7^, = perpendicular from origin on osculating plane; 
Vpp

so that if ip and x he considered as the vectors of two curves, each vector is c x the 
reciproced of the perpendicular, thus let fall from a common point, on the osculating 
plane to the other.

(4.) We.have therefore this Theorem:—
If, from any assumed point, o, there be drawn lines equal to. the reciprocals of 

the perpendiculars from that point, on the osculating planes to a given curve of dou
ble curvatuA, or to those perpendiculars multiplied by any given and constant sca
lar; then the locus of the extremities of the lines so drawn will be a second* curve, 
from which we can return to the first curve by a precisely similar process.

386. The theory of developable surfaces, considered as envelopes 
of planes with one scalar and variable parameter (384), may be addi
tionally illustrated by connecting it with Taylor’s Series, as follows.

(1.) Let ae denote any vector ftneiion of a scalar variable f, so tliat 
I. . . at = ao + tuta'o = a + tua', with uo = 1;

or, by another step in the expansion,
II... at=ao + Za'o-t-.5<’»ia'o=a+Za'+i<*»<i”, «o = l! 

where tt and v are generally quaternions, but uo’ and vo" are vectors.

* The two curves may be said to be polar reciprocals, with respect to the (real or 
imaginary) sphere, p’ = c; and an analogous relation ofreciproctty exists penerallp, 
when the points of one curve are tbe poles of the oscuZafiny planes of tbe other, with 
respect to any surface of the second order: correspondiny tangents beidg then reci
procal polars. Compare the theory of developables reciprocal (o curves, given in 
Salmon’s dnalytical Geometry of Three dimensions, page 89; see also Chapter XI. 
(page 224, &c.), of the same excellent work.
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(2.) Then, os the riporottt equation of tbe variable plane, the reciprocal of the 
perpendicular on which from the origin is — at, we have either,

III... — 1 = Saip = Sap + tSua'p,
or

IV. . . — 1 = Sap + tSa'p + Jt®Soa"p, 
according as we adopt the expression I., or the equally bnt not more rigorous ex
pression II., for the variable vector at.

(3.) Hence, by the form HI., the line of intersection of tbe two planes, which 
answer to the two values 0 and t ot the scalar variable, or parameter, t, is rigorously 
represented by the system of tbe two scalar equations,-

V. . . Sap +1 = 0, Sua'p = 0.
(4.) And the limiting position of this right line 'V., which answers to the con

ceived indefinite approach of the second plane to tho first, is given with equal rigour 
by the equations.

VI. ..Sap+l=0, Sa'p = 05 

whereof it is seen that the second may be formed from the first, by derivaling with 
respect to t, and treating p aa constant: although no such rule oi calculation had 
been previously laid down, ioi the comparatively geometrical process which is here 
supposed to be adopted.

(5.) The locus oi all the lines VI. is evidently some ruled surfaces to determine 
the normal v to which, at the extremity of the vector p, yfo may consider tliat vec
tor to be a function (372) of two Independent and scalar variables, whereof one is t, 
and the other may be called for the moment to; and thus we shall have tbe two 
partial derivatives,

VII. .. SaD/p = 0, SaDup = 0, giving v || a.
(6.) Hence the Zine a has the direction of the required norniaZ v; the plane 

Sap +1 = 0 ZoucAes the surface (comp. 384, (3.)) along the whole extent of the li
miting line "VI.; and the locus of all sucA lines is the envelope ot all the planes, of 
tbe system recently considered.

(7.) The line 'VI. cuts generally the plane IV., in a point which is rigorously de
termined by the three equations,

VIII. . . Sap + 1 = 0, Sa’p = 0, 
and the limiting position of this intersection is, with 
mined by this other system of equations,

IX. . . Sap + 1 = 0, Sa’p = 0,

8va"p = 0 J
equal rigour, the point deter-

So"p = 0;

in which it may be remarked (comp. (4.)), that the third is tho derivative of the 
second, if p be treated as constant.

(8.) The Zooms of all these poirds IX. is generally some curve upon tho surface 
(fi.), which is the locus ot the Zines VI., and has been seen to be the envelope (6.) of 
the planes HI. or IV.; and to find the tangent t»this curve, at thc point answering 
to a given value ot Z, or to a given line 'VI., we have by IX. the derived equations,

X. .. Sap’ = 0, Sa'p'=0, whence p'llVna'j 

comparing which with the equations VI. we see that the lines VI. touch the curve, 
which is thus their common envelope.
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(9.) We see then, in a new way, that the envelope of the planes HI., which have 

one scalar parameter (t) in their common eguaiion, and may represent any system ot 
planes subject to this condition, is a developable surface: because it is in general 
(comp. 882) tho locus of the tangents to a curve in space, although this curve may 
•duco itself to a point, as we shall shortly see.

(10.) We may add tliat if at in III. be considered as the vector of a given curve^' 
this curve is tbe locus of the poles* of the tangent planes to the developable, taken 
with respect to the unit sphere; and conversely, that the developable surface is tho 
envelope of the polar planes of the points of the same given curve, with respect to 
tho same sphere.

(11.) If then it happen that this given curve, with a; for vector, is a plane one, 
so that wo have this new condition,

XI. .. Sj3at + 1 = 0, p being any constant vector,
namely the vector of the pole of the supposed plane of the given curve, the variable 
plane III., or Spn(+ 1 = 0, of which tbe surface (5.) is the envelope, passes con-' 
stantly through this fixed pole; so that the developable becomes in this ca^ a cone, 
with 3 for the vector of its vertex: the equations IX. giving now p = fi.

(12.) The same degeneration, of a developable into a conical surface, may also 
be conceived to take place in another way, by the cusp-edge (or at least some Unite 
portion thereof) tending to become indefinitely small, while yet the direction of its 
tangents does not tend to become constant. For example, with recent notations, the 
developable which is the locus of the tangents to the helix may have its equation 
written thus:

2
XII. . . p = ^(x,y) = c(xa + —tan a.a’'Uj3) + ya (1 + tana.a*'U/?);

TT
which when the jwarter-inferaa/, c, between the spire*, tends to zero, without their 
inclination a to the oxi* a being changed, tends to become a eone of reoolution 
round that axis, with its semiangle — o.

387. So far, then, we may be said to have considered, in the pre
sent Section, and in connexion with geodetic lines, the four following 
families of surfaces (if the first of them may be so called). First, 
spherical surfaces, of which the characteristic property is expressed 
by the equation,

I. .. Viz(p - a) = 0, if a be vector of centre; 
second, cylindrical surfaces, with the property,

II. . . Sva = 0, if a be parallel to the generating lines; 
third, conical surfaces, with the property,

III. . . Sr (p — a) = 0, if a be vector of vertex ;
and fourth, developable surfaces, with the distinguishing property 
expressed by the more general equation;

* Compare the Noto to page 625.
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IV. . . Yrdv ~0, if dp have the direction of a generatrix;
V being in each tbe normal vector to the surface, so that

V... Si'dp = 0, for all tangential directions of dp;
and the fourth family including the third, which in its turn includt^ 
the second. K few additional remarks on these equations may be 
here made.

(1.) The geometrical signification of the equation 1. (as regards the radii) is ob
vious ; but on the side of calculation it may be useful to remark, that elimination of 
V between I, and V. gives, for epheret,

VI. . . S(p —a)dp = 0, or VII... T(p —a) = eonst.
(2.) Tbe equations II. and V. show that dp, and therefore Ap, may have'the 

given direction of a; for an orhilrary cylinder, then, we have the vector equation

VIII. .. p = ^(«,y) = 4>x + ya, 
where is an arbitrary vector function of x.

(3.) From VIII. we can at once infer, that
IX. . . S/3p=S/3<px, Syp = Sy4'n ’f a = Vj3y;

the acalar equation (373) of a cylindrical aurface is therefore generally of thcjirm 
(comp. 371, (6.), (7.)),

X. ..0=F(S/3p, Syp);
3 and y being two constant vectors, and the generating lines being perpendicular to 
both.

(4.) The equation III. may be thus written,

XI... SvUo=Tflr’Svp; whence XII.., SvUa = 0, if Ta = ao; 
the equation for conea includes therefore that for cylinders, as was to be expected, 
and reduces itself thereto, when 'the vertex becomes infinitely distant

(5.) The same equation III., when compared with V., shows that dp may have 
the direction of p — a, and therefore that p — a may be multiplied by any scalar; the 
vector equation of a conical surface is therefore of the-form,

. XIII. . . p a + yif/i, tpa being an arbitrary vector function.
(6.) The scalar equation of a cone may be said to be tho result of the elimination 

of a scalar variable t, between two 'equations of the forms,

XIV. . . S(p-a)x< = 0, S(p-a)x'< = 0> 
which express that tbe cone is the envelope (comp. 386, (11-)) of a variable plane, 
which passes tlirough a fixed point, and involves only one scalar parameter in its 
equation: with a new reduction to a cylinder, in a case on which we need not here 
delay.

(7.) The equation IV. implies; that for each point of the surface there is a direc- 
(ton. along which we may move, without changing the tangent plane ; and therefore 
that the surface is an envelope of planes, &c., as in 386, and consequently that it is 
developable, in the sense of Art. 382.

(8.) The vector equation of a general developable surface may bo written under 
the form.
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XV. . . p = ^(a:,y) = >/'»+yUi/»x;
the sign of a versor being here introduced, for the soke of facilitating the passage, 
at a certain limit, to a cone (comp. 386, (12.)).

(9.) And the scalar equation of tho same arbitrary developable may be repre
sented as the result of the elimination of t, between the two equations,

XVI. .. Spx< +1=0, Spx't = 0 ;
in which is an arbitrary vector function of t.

(10.) Tbe envelope of a plane with two arbitrary and scalar parameters, t and 
a, is generally a curved but undevelopable surface, which may be represented by tho 
system of the three scalar equations,

XVII. . . Spxo M + 1 = 0, SpDix = 0, SpD„x = 0: 
where—X denotes the reciprocal of tbe perpendicular from the origin on tbe tan
gent plane to the surface, at what may be colled the point (*, u).

388. It remains, on the plan lately stated (380), to consider 
briefly surfaces of revolution, and to investigate the geodetic lines, on 
this additional family of surfaces; of which the equation, analogous 
to those marked I. II. III. IV. in 387, for spheres, cylinders, cones, 
and developables, is of the form,

I. . . Sapv = 0,
if o be a given line in the direction of the axis of revolution, sup
posed for simplicity to pass through the origin; but which may also 
be represented by either of these two ether equations, not involving 
the normal v,

II. .. Tp =/(S«Z’), or III. . . TVap = F(Sap), 
where f and F are used as characteristics of two arbitrary but sca
lar functions: between which Sap may be conceived to be eliminated, 
and so a third form of the same sort obtained.

(1.) In fact, the equation I. expresses that v ||1 a, p, or that the normal to the 
* surface intersects the axis ; while II. expresses tnat the distance from a, fixed point 

upon that axis is a function ot its own projection on the same fixed line, or that the 
sections made by planes perpendicular to the axis are circles ; and the same circu
larity of these sections is otherwise expressed by III., since that equation signifies 
that the distance from the axis depends on the position of the cutting plane, and is 
constant or variable with it: while the two last forms are connected with each other 
in calculation, by means of the general relation (comp. 204, XXI.),

IV. . . (Tap)3 = (Sap)3 + (TiVapy.
(2.) The equation I. is anaZo^oos, in guaZerntona, to a partial differential equa

tion ot tho first order, and either of the two other equations, II. and III., is analogous 
to the integral of that equation, in the usual differential calculus of acaZara,

' 3 Y
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(3.) To accomplish the corresponding integration in quaternions, or to pass from 
the form I. to II., whence III. can be deduced by IT., we may observe that the 
equation I. allows us to write (because Svdp = 0),

V... v = am +yp, VI. .. iSadp + ySpdp = 0,
so that the two scalars Sap and Tp are together constant, or together variable, and 
must therefore be functions of each other.

(4.) Conversely, to eliminate the arbitrarg function from the form 11., quater
nion differentiation gives,

VII. . . O = S(Up.dp)+/'(Sap).Sadp = S.(Up + q/*Sap)dp ; 
hence VIII. . . v H Up + a/'Sap, and IX. . . v ||| a, p, as before;

so that we can return in this way to tbe equation I., iiio functional sign f disappear
ing.

(5.) We have thus the germs of a Calculus of Partial Differentials in Quater
nions,* analogous to that employed by Monge, in his researches respectingyamiVies 
of surfaces: but we cannot attempt to pursue tbe subject farther here.

(6.) But as regards the geodetic lines upon a surface of revolution, wo have only 
to Bubstitnte for v, in the recent formula I., by 380, IV., the expression dUdp, 
which gives at once the differential equation, '

X. . . 0 = SapdUdp = d.SapUdp (because S(adp.Ddp) = —SaTdp = 0) ; 
whence, by a first integration, c being a scalar constant,

XI.. . c=SapUdp = TVap.SU(Vap.dp).

(7.) The characteristic property of the sought curves is, therefore, that for each 
of them tho perpendicular distance from the axis of revolution varies inverselg as the 
cosine j- of the angle, at which the geodetic crosses a parallel, or circular section of ' 
the surface; because, if Ta = 1, the line Vap has the length of the perpendicular let 
fall from a point of tbe curve on the axis, and has tbe direction of a tangent to the 
parallel.

• The same remark was made in page 574 of the Lectures, in which also was 
given the elimination of the arbitrary function from an equation of the recent form 
III. It was also observed, iu pagc^78, that geodelict furnish a very simple example . 
of what may he called the Calculus of Variations in Quaternions; since we may 
write,

S ; d» - Tdp = j ^Tdp = -/S (Udp. 5dp)
= - J S(Udp. difp) = - AS (Udp. Jp) + J S (dUdp. 5p),

and therefore dUdp H v, or Vi/dUdp = 0, as in 380, TV., in order that the expression 
under the last integral sign may vanish for all variations Sp consistent with the 
equation of the surface: while the evantscence of the part which is outside that sign 
J supplies the equations of limits, or shows that the shortest line between two curves 
on a given surface is perpendicular to both, as usual

t Unless it happen that this cosine is constantlg zero, in which case c = 0, and 
tho geodetic is a meridian of tlie surface.
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(8.) The equation XI. may also be thus written,
XII. . . cTp' = Sapp', where p' = D/p ;

and if the independent variable t be supposed to denote the time, while the geodetic 
is conceived to be a curve described by a moving point, then while Tp' evidently re
presents the linear velocity of that point, as being = ds; d(, if s denote the are (comp, 
100, (5.), and 380, (7.), (11.)), it is easy to prove that Sapp'represents the double 
areal velocity, projected on a plane perpendicular to the axis; the one of these two 
velocities varies therefore directly as the other : and in fact, it is known from mecha
nics, that each velocity would bo constant,* if the paint were to describe the curve, 
subject only to the normal reaction ot tbe surface, and undisturbed by any other 

force.
(9.) As regards the analysis, it is to be observed that the differential equation 

X. is satisfied, not only by the geodetics on the surface of revolution, but also by the 
parallels on that surface: which fact of calculation is connected with the obvious 
geometrical property, that every normal plane to such a parallel contains the axis of 
revolution.

(10.) In fact if we draw the normal plane to any curve on the surface, at a point 
where it crosses a parallel, this plane will intersect the axis, in the point where that 
axis is met by tbe normal to tbe surface, drawn at the same point of crossing; but 
this construction fails to determine that normal, if the curve coincide with, or even 
touch a parallel, at the point where its normal plane is drawn.

Section 6.— On Osculating Circles and Spheres, to Curves 
in Space; with some connected Constructions.

389. Resuming the expression 376,1, for p<, and referring again 
to Fig. 77, we see that if a circle pqd be described, so as to touch a 
given curve pqr, or its tangent pt, at a given point p, and to cut the 
curve at a near point Q, and if pn be the projection of the chord pq 
on the diameter PD, or on the radius cv, then because we have, rigo
rously,

I. . . PQ = tp' + y^up", with M = 1 for < = 0, 
we have also

and
IL .. pn=|<’V«/>"/>':/»',

UT 2 Nup'^p'
’ ’ ‘ PC “ PD ” pq’ {p' + ^lUp"y'p'’

Conceiving then that the near point q approaches indefinitely to the 
given point p, in which case the ultimate state or limiting position of

* This remark is virtually made in page 443 of Professor De Morgan's Diffe
rential and Integral Calculus (London, 1842), which was alluded to in page 678 
of the Lectures on Quaternions.
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the circle pqd is said to be that of the osculating circle to the curve at 
that point p, we see that while the plane of this last circle is thc os
culating plane (376), the vector k oi its centre k, or of the po
sition of the point c, is rigorously expressed by the formula:

which may however be in many ways transformed, by the rules of 
the presenjj Calculus.

(1.) Thus, we may write,-as transformations of the expression IV., the follow
ing:

w P’ Tp' Tp'
• • • “ P + Xp'ff-t P 'Vp'p'-'.Vp' P iVp'y ’

or introducing differentials instead of derivatives, but leaving still the independent 
variable arJiZrary,

• • • K-p-vdpd2p“P'*'Vd*pdp-i“^ dUp''^"dUdp’’
if f bo the are oC the curve; so that the last expression gives this very simple for
mula, for the reciprocal of the radius of curvature, or for the ultimate value of 
1: CP,

VII. .(p — k)-’ =D.Up', where Up' = Udp, as before.

(2.) To interpret this result, we may employ again that auxiliary and tpherical 
curve, upon the cone of parallelt to tangents, which has already served us to ton- 
atruct, in 379, (6.) and (7.), the osculating plane, the aZisoZute normal, and the 6i- 
normal, to the given curve in space. And thus we see, that while tlie semidiameter 
FC has ultimately the direction of d Up', and therefore that of the absolute normal 
(379, II.) at p, the length of the same radius is ultimately equal to the are pq (or 
As) of the given curve, divided by the corresponding are of the auxiliary curve ; or 
that the radius of curvature, or radius of the osculating circle at p, ia equal to tho 
ultimate guotient of the arc fq, divided by the angle between the tangents, pt and 
(say) QU, to that arc pq ttse/f at p, and to its prolongation qr at Q, although these 
two tangents are generally in different planes, and have no common point, so long 
as PQ remains jintte.* because rye suppose that the given curve is in general one of 

. double curvature, altliough tho formula, and the construction, above given, aro ap
plicable to plane curves also.

(3.) For the helix, the formula IV. gives, by values already assigned for p,p',p", 
and a, tbe expression,

VIII. . . K = eta — a‘P cot’ a, whSbce IX. . . p — c = cosec* a, 
a being the inclination of tho given helix to the axis j the locus of the centre of tho 
osculating circle is therefore in this case a second helix, on tbe same cylinder, if 

a — but otherwise on a co-axal cylinder, of which tlie radius = the given radius 

T/3, multiplied by the square of the cotangent of a; and the radius of curvature 
= T(p — ic) = T/3 X cosec’ a, so that this radius always exceeds the radius of tbe cy
linder, and is cut perpendicularly (without being prolonged') by the axis.
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(4.) In general, if Tp' = const., and therefore Sp'p"= Q (comp. 879, (2.)), the 
expression IV. becomes,*

X...K = p + ^; whence, XI.. . ie=p-p'’->, if Tp’ = l,

that is, if the arc be taken as the independent variable (380, (12.)). Under this 
last condition, then, the formula VII. reduces itself to the following,

XII. . . (p — k)-‘ = p"=D,’p = ultimate reciprocal of radius of ;
so that p" (for Tp' = 1) may be called the Vector of Curvature, because its tensor 
Tp" is a numerical measure tor what is usually called Me c«rvatur«f|pt the point v, 
and its versor Up" represents the ultimate direction of tbe iemtdtameter po, of tire 
circle constructed as above.

(b.) As an example of the application (2.) of the formula IV. for k, to a plane 
curve, let us take the ellipse,

■ XIII.. . p = Va‘j3, Ta= 1, Saj3>0,

considered as an oblique section (314, (4.)) of a right cylinder. The expressions 
376, (5.) for the derivatives ofp, combined with tho expression XIII. for that vec
tor Itself, give here the relations,

2tIV.. . Vpp"= 0, Vp'p'"=0;
and therefore comp. (338, (5.)),

XV. ..Vpp'=coDst.t=j(3y, Vp'p" = const. = ^^y/3y, if y = Vaj3; 

hence for the present curve we have by IV.,

= P - = Va</3 -

(6.) To interpret this result, we may write it as follon's,

XVII. .. K = p~ --y -f-.-.-i, where XVIII. . . p, =Npp.p ‘ er
BO that pi is the conjugate semidiameter of the ellipse (comp. 369, (4.)), and Vpp'-.p' 
is the perpendicular from the centre of that curve on the tangent. We recover then, 
by this simple analysis, the known result, that the radius of curvature of an ellipse 
is equal to the square of the conjugate semidiaraeter, divided by the perpendicular.

(7.) We may also write the equation XVI. under the form,

<01®XIX..c = p——, where XX., .yppi^ By = const.;

837, (2.),

XVI. . . K

• The expressions X. XI. may also be easily deduced by limits, from tho con
struction in 383, (2.).

f It may be remarked that the quantity a, or Ti^", in the investigation (382) 
respecting geodetia on a deoelopable, represents thus tho curvature oJ"the cusp-edge, 
for any proposed value of the arc, x, oi that curve.

t These values XV. might have been obtained without integrations, but this 
seemed to be the readiest way.
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and may interpret it as expressing, that the radius of curvature is equal to the cube 
of the conjugate semidiameter, divided by the constant parallelogram under ang two 
such conjugates; or by the rectangle under the major and minor semiaxes, which 
are here the vectors (3 and y (comp. 814, (2.)).

(8.) The expression XVI. or XIX. for k is easily seen to vanish, as it ought to 
do, at the limit where the ellipse becomes a circle, by the cglinder being cut perpen
dicularly, or by tbe condition Sa/3= 0 being satisfied ; and accordingly if we write,

XXI. . . e = SUa(3 = excentridty of ellipse, or XXII. . , y’ = (1 — «2)(32, 
we easily find the expressions,

3ffiIU. . . p = (3S.a‘+yS.a<-i, pi = -/3S.o«-i +yS.a‘;

XXIV... pi» = ^2(1 _e2(S.aO2),

ao that the formula XIX. becomes,
XXV... )c = e2^(3(S. a<)3 - - y(S-o'-')’),

thus containing <2 as a factor.
(9.) And it may be remarked in passing, that the expression XVI., or its recent 

transformation XXV., for k as a function of f, may be considered as being in qua
ternions the vector equation (comp. 99, I., or 369, I.) of the evolute* of the ellipse, 
or the equation of tbe locus of centres of curvature of that plane curve; and that the 
last form gives, by elimination of f (comp.t'315, (1.), and 371, (5.)), the following 
system of two scalar equations for the same evolute,

XXVI...^S^y+= A = 

or XXVI'.. . (S(3k)^ + (Sy<c)t = (e^/, &&;
which will be found to agree with known results.

(10.) As another example of application to a plane curve, we may consider tho 
hyperbola,

1-e’

XXVII. .. p = fa + comp. 371, II.,
with a and (3 for asymptotes, and with its centre at the origin. In this case the de
rived vectors are,

XXVIII. . . p' = a - f-2(3, p" = 2f-®(3, 
whence XXIX.. . Vp"p' =
and the formula IV. becomes,

f/p')2 PT®XXX... K-p=i7i-i^,= —,ypp :p ov
where ov is the perpendicular from tbe centre o on the tangent to the curve at p, 
and PT is the portion of that tangent, intercepted between the same point p and an 
asymptote (comp. (6.) and 371, (3.)).

* That is to say, of the plane evolute; for we shall soon have occasion to consi
der briefly those evolutes of double curvature, which have been sliown by Monge to 
exist, even when tlie given curve is plane.

t In lately refcrriilg (373, fl.)) to the formula 816, V., that formula was inad
vertently printed as (a‘)’ + (0*-*)’= 1, the sign S. before each power being omitted.
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(11.) We may also interpret the denominator in XXX. as denoting the projec
tion of the semidiameter OP on the normal, or as tbe line np where N is the foot of 
tbe perpendicular from the curve on that normal line; if then k be the sought centre 
of the osculating circle, we have the geometrical equations,

XXXI. .. NP.PK=PT’, XXXIL .. L rers. = ;
whereof the last furnishes evidently an extremely simple construcfioa for tlie centre 
of curvature oi an hyperbola, which we shall soon find to admit of being extended, 
with little modification, to a spherical conic* and its cyclic arcs.

(12.) The logarithmic spiral with its pole at the origin,

XXXIII... p = a‘P, Saji =0, Ta 1, comp. 314, (6.)

may be taken as a third example of a plane curve, for the application of tbe foregoing 
formula;. A first derivation gives, by 333, VII.,

XXXIV... p' = (c + yjp = p(c - y), p'p~^ = c + y, if c=ITa, and y = Ua;

the co»»raM< quaternion quotient, p'; p, here showing that the prolonged vector op 
makes with the tangent rr a constant -angle, n, which is given by tbe formula,

XXXV. .. tan,»= (T V: S) (p' i p) = c" iTy, or cot n = — ITa;+ 
tr

and a second derivation gives next,

XXXVI.. . p" = (e + y)^p, yp''p' = (c* — p-y = p'*y.

The formula IV. becomes therefore, in this case,
XXXVII. . . ic = p + p'y-i = pcy->= —cy->p = ^—^^.a‘*'/3;

wTa
the evolute is therefore a second spiral, of tbe same kind as the first, and the radius 
of curvature kp subtends a right angle at tbe common pole. But we cannot longer 
bore delay on applications within the plane, and must resume the treatment by qua
ternions of curves of double curvature.

390. When the logic by which the expression 389, IV. was ob
tained, for the,vector k of the centre of the osculating circle, has 
once been fully understood, the process may be conveniently and safely 
abridged, as follows. Referring still to Fig. 77, we may write briefly.

• It was in fact for tlie spherical curve that the geometrical construction alluded 
to was first perceived by the writer, soon after tho invention of the quaternions, and 
as a consequence of calculation with them: but it has been thought that a sub-arti
cle or two might be devoted, as above, to the plane ease, or hyperbolic limit, which 
may serve at least ns a veriBcation.

f If r be radius vector, and G polar angle, and If we suppose for simplicity that 
a 

T/3 = 1, the ordinary polar equation of tlie spiral becomes r = aO, with a = Tan, and 
cot n = la, as nsuah
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as equations which are all ultimately true, ot true at the limit, in a 
sense which is supposed to be now distinctly seen;

I... PT = dp, tq = |d’p, PN = (part of pq J_ pt =)

by 203, &C.; whence, ultimately,
pq’ pt® dp’

II. . . « -p = PC- — = ^ - vd’pdp’

as before: this last expression, in which Vd’pdp denotes briefly 
V(d’p.dp), being rigorous, and permitting the choice of any scafar, 
to be used as the independent varialile. And then, by writing,

III. . . dp = p'dt, d’t=O, =

the factor dt® digappears, and we pass at once to the expression, 

which had been otherwise found before.

389, IV.,

(1.) When the arc ot the curve is taken for tho independent variable, then (comp. 
880, (12.), &c.) the expresssion II. reduces itself to the following,

dp2'V...K — p =—, because Sd’pdp = O!d-p

and accordingly the angle ptq in Fig. 77 ia then ultimately right (comp. 883, (5.)), 
so that we may at once write, with ihie choice of the scalar variable,

VI... (c — p = (k/<.) PC = (ult.) as above.
2tq d'^p

(2.) Suppose then that we have thus geometrically (and very eimply') deduced 
the expression V. for k — p, for this particular choice of tbe scalar variable; and lot 
ns consider how we might thence pace, in calculation, to the more general formula
II., in which that variable is left arbilrary. For this purpose, we may write, by 
principles already stated,

VII (a- VI d _tlUdp _ Vd«pdp-i.Udp
vti. ..lj> K) Tjp Tjp Tdp “ Tdp

_ Vd’pdp-> _ Vdpd^p 
dp dp®

and the required transformation is accomplisjjcd.
(3.) And generally, if * denote the arc of any curve of which p is the variable 

vector, we may establish the eymholical equatione,

(4.) For example (comp. 389, XII.), the rector of Curvature, rt'e, admits of 
being expressed generally under any one of the five Inst forms VII.
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391. Instead of determining the vector k of the centre of the os
culating circle by one vector expression, such as 389, IV., or any of 
its transformations, we may determine it by a system of three scalar 
equations, such as the following,

I. . . S(b-p)p' = 0; II. . . S(b-p)p"-/>'’ = 0;
III. . . S(a:-p)py' = 0,

of which it may be observed that tbe second is the derivatiue of the 
first, if K be treated as constant (comp. 386, (4.)); and of which the 
first expresses (369, IY-) that the sought centre is in the normal 
plane to the curve, while the third expresses (376, V.) that it is in 
the osculating plane; and the second serves to fix its position on the 
absolute normal (379), iu which those two planes intersect.

(1.) Using differentials instead of derivatives, but leaving still tho independent 
variable arbitrary, we may establish this equivalent system of three equations,

IV.. . S(b —p)dp = O; V. . . S(ic —p)d2p — dp’= 0 ; VI. .. S(b —p)dpd2p= 0; 

of which the second is the differential of the first, if k be again treated as constant.
(2.) It is also permitted (comp. 369, (2.), 376, (3.), and 380, (2.)), with the 

same supposition respecting k, to write these equations under the forms,

VII., . dT(ie-p) = 0; VIII. . . dJT(B-p) =0; IX. ., dUV(B-p)dp = 0; 

and to connect them with geometrical interpretations.
(3.) For instance, we may say that the centre of tbe osculating circle is the point, 

in which the osculating plane, III. or VI. or IX., is intersected by the axis of that 
circle; namely, by the right line which is drarvn through its centre, at right angles 
to its plane; and which is represented by the two scalar equations,

I. and IL, or IV. and V., or VII. and VIII.

(4.) And we may observe (comp, 370, (8.)), that whereas for a point b taken 
arbitrarily in the normal plans to a curve at a given point p, we can only say tn ge
neral, that if a chord PQ be called small 'of the first order, then the difference of dis
tances, RQ — BP, is small of an order higher than the first; yet, if the point R be 
taken on the axis (3.) of. the osculating circle, then this difference of distances is 
small, of an order higher than the second, in virtue of the equations VU. and VIII.

(5.) The right line I. IL, or IV. V., or VII. VIII., as being the locus of points 
which may be called poles of tho osculating circle, on all possible spheres passing 
through it, ia also colled the Polar Axis of the curve itself, corresponding to the 
given point of osculation.

(6.) And because tho equation II. is (as above remarked) tho derivative ot 1., tho 
known theorem follows (comp. 886), that the locus of all such polar axes is a tZeoe- 
lopable surface, namely that which is called tho Polar-Developable, or tho envelope 
of the normal planes to the given curve; of which surface we shall soon have oc
casion to consider briefly the cusp-edge.

3 z
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392. The following is an entirely difierent method of investigat
ing, by quaternions, not merely the radius or the centre of the oscu
lating circle to a curve in space, but the vector equation of that circle 
itself: and in a way which is applicable alike, to pZane curves, and to 
curves of double curvature.

(1.) In general, conceive that ot = r is a given tangent to a circle, nt a given 
point which is for the moment taken as the origin; and let pp’ = p' represent a va
riable tangent, drawn nt the extremity of the variable chord OP = p: also let n be 
the intersection, ot'Pp', of these two tangents. Thon the isosceles triangle oop, 
combined with the formula 324, XI. for the differential of a reciprocal, gives easily 
the equations,

I. . . p' II pr-'p; • II. . . Vrp-ip'p-i = - (Vrp-1)' = 0;
III. . . Vrp't = const. =Vra-’, as iu 296, IX.", 

if a be the vector OA of any second given point A of the circumference.
(2.) The vector equation of tbe circle pqd (389) is therefore,

IV. . . V = |v.(l + ^<«p"p'-i)-i = -V.«p''p'-'(l + ;

whence, passing to the limit (t = 0, u= 1), the analogous equation of tbe osculating 
eiccle is at once found to be,

V. . .V 2£1=:_v2;, or VI. . . v( ^y=0;
(o- p g - \o> — p dp /

with tbe verification (comp. 296, (9.)), that when we suppose,

VII. .. <u-p = 2(«:-p)4.p',

the vector k of the centre is seen to satisfy the equation,

vni.or IX.. .-^+V^=0;
K-p P le-p dp

which agrees witTi recent results (389, IV., &o.).
(3.) Instead of conceiving that a circle is described (389), so as to touch a given 

curve (Fig. 77) at p, and to cut it at one near point q, we may conceive that a circle 
cuts the curve in the given point p, and also in two near points, q and r, uncon
nected by any given law, but hofA tending together to coincidence with p: and may 
inquire what is the limiting position (if any) of the circle pqr, which thus intersects 
the curve in three near points, whereof one (p) is given.

(4.) In general, if a, (3, p be three co-initial chords, OA, on, op, of any one cir
cle, their reciprocals a"', f3'*, p’l, if still co-initial, are termino-collinear (260') •, ap
plying which principle, we are led to investigate the condition for the three co-ini
tial vectors.

X. . . (oj - p)-i, (»p' + i»5«,p")->, (<p'4 if’M,p")->, 
with «o= 1, thus ufftmafeZy terminating on one right line; or for our having ulti
mately a relation of the form,

xs.^rgt X g
. . - ■ , ■ A + e ». tt »(1) - p p + Jap p 4 5<P
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Vor XII.. =____ 5____ X__________
<o-p 1 -t isp'p''^ I -t- ifp'p'-* 

= X+y - 4 +yCpV-^ + :
in which last equation, both members are generally quaternions.

(^5.} The comparison of the scalar parts gives herd no useful information, on ac
count of the arbitrary character of the coefficients x and y; but these disappear, with 
the two other scalars, s and f, in the comparison of the vector parts, whence follows 
tbe determinate and limiting equation,

xni... 2yp’(,o>-p)-i=-Xp"p-->,
which evidently agrees with V.

(6.) It is then found, by this little quaternion calculation, as was of course to be 
expected, • that the circle (3.), through any three near points of a curve in space, 
coincides ultimately with tbe osculating circle, if the fatter be still defined (389) with 
reference to a given tangent, and a near point, which tends to coindde with the piven 

^oint of contact

393. An osculating circle to a curve of double curvature does 
not generally meet that curve again; but it intersects generally a 
plane curve, of the degree n, to which it osculates, in 2n - 3 points, 
distinct from the point p of osculation, whereof one at least must be 
realy although it may happen to coincide with that point p: and 
such a circle intersects also generally a sphericed curve of double 
curvature, and of the degree n, in n-3 other points, namely in 
those where the osculating plane to the curve meets it again. An 
example of each of these two last cases, as treated by quaternions, 
may be useful.

(1.) In general, if we dear the recent equation, 392, V. or XIII., effractions, it 
becomes, «

I... 0 = 2p'’=Vp' (w-p) + (w-pyVp'p';
in which p = op = the vector of the given point of osculation, and p', p" are its first 
and second derivatives, taken with respect to any scalar variable f, and for the par
ticular value (whether zero or not) of that variable, which answers to the particular 
point p; while w denotes generally the vector of any point upon the' circle, which 
osculates to (he given curve at that point P.

(2.) Writing then (comp. 389, (10.)),
II. . . p = ta + p’ = a - t-^p, p" = 2r3j3,

and III. . . w = OQ = xa -t-
. to express that we are seeking for the remaining intersection q of a plane hyperbola

* This conclusion is indeed so well known, and follows so obviously from the doc
trine of infinitesimals, that it is only deduced here as a vtrifieation of previous for
mula), and for the sake of praetict in the present Calculus.
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with its osculating circle at P, the equation I. becomes, after a few easy reductions, 
including a division by Vaj3, the following liqtiadratic iu x,

rV. . . 0 = (x — ty (i^a^x — ;
in which tbe cubic factor is to be set aside, as answering only to tbe point P itself. 

(3.) Substituting then, in III., the remaining value IV, of x, we find tbe cx- 
presssion.

.. , r(2fay , (2rij3n
■ • “=+-277-; ’

comparing which with 371, (3.}, we see that if tbe tangent to the hyperbola at the 
given point f intersects the asymptotes in tbe points a, b, then the tangent at tbe 
sought point q meets the same lines oa, on in points A*, b', such that

rt
VI. . . OA . oa' = OB^, ob . on' = OA3 ;

whence q Is at once found, as the bisecting point of the line a'b'.
(4.) A still more simple construction, and one more obviously agreeing with 

known results, may be derived from the following expression for the chord pq: 
VII.. . pq = 0) — p = (f-j3‘’ — f(ta^P — t~'aP^')

= (f3j3-’ - f->o-2)ap'/J II ap'-'/3; 
whence it follows (comp. 226) that if this chord pq, both ways prolonged, meets tho 
two asymptotes ob and oa in tbe points R and s, we have then the inverse similitude 
of triangles (118),

VIII. . . A RO^ oc* AOB.

(5.5 As regards the equalitg of the intercepts, rp and Q3, it can bp verified 
without specifying the second point Q on the hyperbola, or the second scalar, x, by 
observing that the formula III., combined with tlie first equation II., conducts to 
tbe expressions,

xp — ib> , , ■ ~ tp — xw , ,IX. .. OR = = (as"i -I- f-1) /J, os = —— = (x ^t)a;
which give, generally.

X. ... rp = qs = fa - x'^p.
(6.) And as regards the general reduction, of tbe determination of tho osculating 

circle to a spherical curve of double curvature, to the determination of tbe oscu
lating plane, it is sufficient to observe that when we take the centre of the sphere for 
the origin, and therefore write (comp. 381, XIVJ,

XI. .. p2 = const., Spp' = O, Spp" =p'2,
then if wo operate on the vector equation I. with the symbol V. p, and divide by 
— p'®, there results the scalar equation,

XII. .. 0 = 2Sp(w — p) + (w — py = fci’ — p2,
which expresses that the circle is entirely contained on the tame spheric* surface as 
the curve; while the other scalar equation^

XIII. . . . 0 = Sp"p'(<u — p),

obtained by operating on I. with S. p", expresses (comp. 876, V.) that the same

• This conclusion is geometrically evident, but is here drawn ns above, for tbe 
sake of practice in the quaternions.
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circle is in the osculating plane ;* so that its centre K is the foot of the perpendi
cular let fall on that plane from the origin, and we may therefore write (comp. 
385, VI.),

XIV. . . OK = K = , with the relations, XV. .. S — = S - = 1;
Vp p KK

and with the verification that the expression XIV. agrees with the general formula, 
389, IV., because 

389, IV.,

XVI... pyp"p'+p’’ = Sp"p'p, .
when tbe conditions XI. are satisfied.

(7.) And even if the given curve be not a spherical one, yet if we retain the 
general expression for k,

XVII.. •“ = P + y^.>‘

and operate on I. with S.p" and S.'p"p', wc find again the equation XIII. of the os
culating plane, combined with a new scalar equation, which may after a few reduc
tions be written thus,

XVIII. .. (w -«:)’ = (p - <c)2 i

and which represents a new sphere, whereon tbe osculating circle to the curve is a 
great circle.

394. To give now an example of a spherical curve of double cur
vature, with its osculating circle and plane for any proposed point p, 
and with a determination of the point q in which these meet the 
curve again (393), we may consider that spherical conic-, or sphero- 
conic, of which the equations are (comp. 357, II.),

I. -I- r’ = 0, II. •. gp^ + S\ppp = 0;
namely the intersection of the sphere, which has its centre at the 
origin, and its radius =?■, with a cone of the second order, which has 
the same origin for vertex, and has the given lines X and p for its 
two (real) cyclic normals. And thus we shall be led to some suffi
ciently simple spherical constructions, which include, as their plane 
limits, the analogous constructions recently assigned for the case of 
the common hyperbola.

(1.) Since SXppp = iSXpSpp — p^SXp (comp, 357, II'.), the equations I. and II. 
allow us to write, as their first derivatives, or at least as equations consistent there
with,

III.. . Spp' = 0, S\p' + SXp = 0, Spp' — Spp = 0,
because tbe independent variable is here arbitrary, so that we may conceive the first 
derived vector p' to be multiplied by any convenient scalar; in fact, it is only the

* Compare the Note immediately preceding.
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direction ot this tangential vector p' which is here important, although we must con
tinue tbe derivations consistently, and so must tvrite, as consequences of III., the 
equations,

IV... Spp" + p'’ = 0, SXp"+SXp’=0, 8pp"-Spp'=0.
(2.) Introducing then the auxiliary vectors,

V. ..>, = VXp, o~KSpp+isS\p, r = p + p', v = p—p’,
whence

VI. . . O=S)j(r = S\r = Sjuu, Spir = 2S\pSpp, Spr — iSpp, SXu = 2SXp, 
Ti=vt= p'i + p'*.

and by new derivations,
VII. , . a' = Xtip, p"', v' = p- p", S\t'=Spv' = 0, Sp/ = Spr,

SXv'=-SXv,
'ire see first that r and v are the vectors ot and on of the points in which the recti
linear tangent to the curve nt P meets the two cyclic planes, perpendicular respec
tively to X and p; and because the radius OP is seen to be the perpendicular bisector 
of the linear intercept iu between those two planes, so that

VIII... p' = PT = UP -1- OP, we have IX... uop=pot,
or X... o AP = o PB,

if tbe tangent are on the sphere, to the same conic at the same point P, meet tbe two 
cyclic arcs CA and on in the points A and n : the intercepted arc ab being thus bi
sected at its point of contact f, which is a well-known property of such a curve.

(3.) Another known property of a sphero-conic is, that for any one such curve 
tbe sum of the two spherical angles cab and ABC, and therefore also the area ot the 
spherical triangle ABC, is constant. We can only here remark, in passing, tliat 
quaternions recognise this property, under the form (comp. II.),

XI. ., cos (A + b) =— SUXppp = — p: TlXp = const.

(4.) The scalar equations III. and IV. give immediately the vector expressions, 

,_Vp(XSpp+pSXp) (p^ + p'i^Xhp
sxpp ’ ••?=<> —sx?r“ ’

XII. . .

or by (2-),
XVI...t-g

= r — / = u + u',, 
the new auxiliary vector $ being thus that of the point x, in which the osculating 
plane to the conic at p meets the line ij of intersection of the cyclic planes : so that 
we have tbe geometrical expressions,

XVII. . . p" = xp, r' = XT, — u' = xu, if £ = ox, 
and the lines* r' and v' are the traces of the-csculating plane on those two cyclic

• We may also consider the derived vectors / and t/i'or the lines xt and xu, 
as eorrapondinff tangents, at the points t and u (2.), to tbe two sections, made by 
the cyclic planes, of that developable surface which is the locus of the tangents TPU 
to tbe spherical conic in question.
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planes, or of the latter on the former; while <r and as being perpendicular respec
tively to p' and p, while each J- j/, are the traces on the plane X/i of the two cyclic 
normals, of the normal plane to the conic at the point p, and of tbe tangent 
plane to the sphere at that point: or at least these lines have the directions of those 
traces.

(5.) Already, from the expression XVI. for the portion ox of the radius oc (2.), 
or of that radius prolonged, which ia cut off by the osculating plane at P, wo can 
derive a simple construction for the position of the spherical centre, or pole, say b, 
of the small circle which osculates at that point p, to the proposed sphero-conic. 
For if we take the radius r for unity, we have the trigonometric expressions,

XVIII... sec CE cos EP = (T5 = Tr’: SUtj-'p =) sec* pb sec cp ;

or letting fall (comp. Fig, 80) tbe perpendicular cd on the normal arc pb,

XIX. . , cos DE = cos DP cos PB .COS PB COS PB = COS DB COS BE i

or finally, XX.. - DBE (or dab) =

(6.) Bnt although it is a perfectly legitimate process to mix thus spherical tri
gonometry with quaternions (since in fact the latter include the former), yet it may 
be satisfactory to deduce this last result by a mocopurely qnatemionic method, which 
can easily be done as follows. The values (4.) of p' and p’ give,

XXI... Vp’p"Si/p = pS(rp''-iTSpp”=pSp(r+p'*<r
= (r-p')S(Tr+<rSp'r = TS(rr+Vrp'(r||| r, Vrp'o,

in which p’a denotes a vector p’ (because Sp'<r = 0), and 111»/, p' (because Sijp'p'ir 
= o); this line p'o has therefore the direction of the projection of the line if on a 
plane perpendicular to p', and we are thus led to draw, through the line oc of inter
section of the cyclic planes, oplane cod perpendicular to the normal plane to tbe conic 
at p, or to let fall (as in Fig. 80) a perpendicular arc cd on the normal arc pd; after 
which the normal to the sought osculating plane, or the axis OB of tbe osculating 
circle sought, as being || Vp'p", will bo contained in the plane through the trace r, or 
ot, or on, which is perpendicular to the plane of r and g'a, or to the plane DOB; 
and therefore the spherical angle due (or dab) will be a right angle, as before.

(7.) We may also observe that if k be the centre of the osculating circle, consi
dered in its own plane, or the/oof of the perp^icular on that plane from O, then 
by XXI.,
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p'^VpaKP = p —IC = pSpa + p^a'
. XX11...ok=k=^=

Vpp pSpa+p’o-
and therefore

XXIII. .. — = !------= — -r: P<r, XXIV.. . tan ep = sin* pb cot pd,
OK K r*

which gives again the angular relation XX.; the quotient iXIlT. being thus a vec
tor, as it ought by 393, XV. to be; and the trigonometric formula XXIV. being ob
tained from its expression, by observing that'

XXV. . . Tp'r-t = pt: 6t = 8inP0T = sinPB, and (Vi S)pa = Up', cot Pt), 
because a-*-p'a, but |||p,p'a, or p'aU-a, but ll|p, a.

(8.) The rectangularity of the planes of r, k and r, p’a is also expressed by the 
equation,

XXVI.. . O = S(VKr.Vp'ar) = SKrSp'ar-r*Sp'a«;
in proving which we may employ the values,

XXVII. . . Sre-i = 1, Sp'ae-t = (- r-*p'’S:jp =) Sp’ar-i.
(9.) We may also Interpret these equations XXVII., as expressing the system of 

the two relations,
XXVIII.. . K'* — r"' r, — F"* -L p'a;

from which it follows that k*<, and therefore also that k, is a line in the plane so 
drawn through r, as to be perpendicular to the plane through r and p'a, as before.

(10.) And the two relations XXVIII. are both included in tho following ex
pression,

XXIX. .. K-i - Vi-'p'ff: Spa.
(11.) We may also easily deduce, from the foregoing spherical construction, the 

following tnponomeZnc expressions, for the aratal radius r = v.v of the osculatinp 
small circle (5.), and for the angle a = PAE = EBP which it subtends at A or at n:

c •
XXX. . . tan r = sin - tan a; XXXI. .. tan a = J (cot A + cot b) ;

A and B here denoting, as in XI., the 6ase angles of the triangle abc with o for ver
tex, and c denoting as usual the base kb, namely the portion of the arcual tangent 
(2.) to the conic, which i^ intercepted between the cyclic arcs.

(12.) The osculating plane and circle at p being thus fully and in various ways 
determined, we may next inquire (393) iti what point q do they meet the conic 
again. In symbols, denoting by u the vector of this point, we have tho three sca
lar equations, ' '

XXXII... Scb) = Skp, SXioSpo) = SXpSpp, (u®=p®, 
which are all evidently satisfied by the value ot =p, but can in general be satisfied 
also by one other vector value, which it is the object of the problem to assign.

(13. ) We satisfy the two first of these th'fee equations , XXXII., by assuming the 
expression.

XXXIII. . . ei = S + i(ar>r'-a!v'), 
in which x is any scalar; in fact we have the relations,

XXXIV. . . Sk5 = Sep, SXu' = - 2SXp, Spr' = 2S/ip, 
0 = 8X5 = Sp£ = SXr' = Spv’ = Sicr' = Sicu’,

whence XXXIII. gives, XXXV. .. SX(u = a:SXp, Spot = x-<Spp, &c.
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And because
XXXVI. ..p = ? + i(’-'-v’), 

we shall satisfy also the third equation XXXII., if we adopt for x any root of that 
new scalar equation, which is obtained by equating tbe square of tbe expression 
XXXIII. for 01, to what that square becomes when x js changed to 1.

(14.) To facilitate thafformation of this new equation, we may observe that the 
relations,

K = p-p“, r' = p' + p", v' = p'-p", Spp' = (i, Spp" = -p'\ 
which have all occurred before, give

XXXVII------- 4S<r' = 3r'» + u's, 4SSw' = r'» + 3w'’;
the resulting equation is therefore, after a few slight reductions, the following biqua
dratic tn X,

• XXXVin.. . 0 = (x -1)’ (w'»a! - t'») ;
of which the cubic factor is to be rejected (comp. 393, (2.)), as answering only to 
the point p itself.

(15.) We have then the values,
XXXIX. .. x = r'V-», and xL...oQ=<o=s+i("2_^y, 

comparing which last expression with the forraulm XVII., we see that tbe required 
point of intersection q, of the sphero-conic with its osculating circle, can be constructed 
by the following rule. On the traces (4.), of the osculating plane on the two cyclic 
planes, determine two pomts T[ and Ui, by the conditions,

XLI... xT.XTi =xu2, xu.xui = XT^; then XLII... TjQ = qui,
or in words, the right line TjUi is bisected bg the sought point q.

(IG.) But a still more simple or more graphic constructioR may be obtained, by 
investigating (comp. 393, (4.)) the direction of the chord pq. The vector value of 
this rectilinear chord is, by XXXVI. and XL.,

XLIII. . . PQ = w-p = J(v'’-r'«) (v'-t + T'-*) = 4(r'-«-v'-2) r'(7-'+t,')v' 
/n'j p'a\

“ p' = i (r' + V'-) ;
the chord PQ has therefore the direction (or its opposite) of the fourth proportional 
(226) to the three vectors, p, r', and - v, or pt, xt, and xv; if then we conceive 
this chord or its prolongations to meet the traces xr, xu in two new points Tj, Us, 
we shall have (comp. 393, VIII.) the two inversely similar triangles (118),

XLIV. . . A T2XO2 oe' CXT.
(17.) To deduce hence a spherical construction for Q, we may conceive four 

planes, through the axis okk, perpendicular respectively to the four following right 
lines iu the osculating plane .*

XLV. . . r', - v', p', u> — p, or XT, xu, pt, pq ;
which planes will cut the sphere in four great circles, whereof the four arcs,

XLVI. . . EP, Ito, EP, Ell,
are parts, if F, o, H (see again Fig. 80) be the feet of the three arcualperpendiculars 
from the pole e of the osculating circle on the twp cyclic arcs cn, ca, and on the 
arcual chord PQ.

4 A
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(18.) Thete four aro XLVI. are therefore connected by the tame angular rela
tion as the/our linea XLV.; and we have thus the very simple formula,

XLVII. . . OEH = PGP,
expressing an equality between two spherical angles at the pole e, which serves to 
determine tbe direction of the arc eh, and therefore also Repositions oi the points 
H and Q, by means of the relations,

XLVIII. . . PHE = p ■ o PH = O HQ.

(19.) If tbe arcual chord pq, both ways prolonged, or any chord of tbe conic, 
cut the cyclic arcs cb and oa in the points e and s J^Fig. 80), it is well known that 
there exists the equality of intercepts (comp. 270, (2.)),

XLIX... " BP = o QS;
and conversely this equation, combined with the formula) (II.), or with the trigono
metric expression.

L. . . tanPK = tanr= i sin —(cot A + cotB),
A

for the tangent of tbe arcual radius ot the' osculating circle, enable us to determine 
what may be called perhaps the arcual chord of osculation pq, by determining the 
spherical angle bpb, or simply p, from principles of spherical trigonometry alone, 
in a way which may serve as a verification of tbe results above deduced from quater- 
Mons,

(20.) Denoting by t tho semitrausversal bh = hs, and by »the semichord ph = hq, 
the oblique-angled triangles rpb, spa give the equations,

, c c
cot (r — ») sin - = cos p cos - + sin p cot b,

2 2
c c

cot (< + i) sin - = cos p cos - - sin p cot A;
2 * 2

while the right angled triangle pre gives,
LII. . . tan a = sin P tan r.

Equating then the values of cot 2a, deduced from LI. and LIL, we eliminate a and t, 
and obtain a quadratic in tan p, of which one root is zero, when tan r has the value 
L.; such then might in this new way be inferred to be the tangent of tbe arcual ra
dius of curvature of the conic, and the remaining root of the equation is then,

LI...

0
cos - (cot B - cot a)

LIII... tanp= — ■ I . . .... ;
cot A cot B + co3»-—tan’rA

a formula which ought to determine the inclination p, or rpb, or qpa, of tbe chord 
PQ to tbe tangent fa, but which does not appear at first sight to admit of any simple 
interpretation.*

• We might however at once see from this formula, that p = A — B at tho plane 
limit: which agrees with the known construction 393, (4.), for tho corresponding 
chord PQ in the case of the plane hyperbola.
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(21.) On the other hand, the eonttruciion (17.) (18.), to which the gualernton 
analysis led us, gives

LIV. . . lIEP=GEP-OEH = GEP-PBF = FBB-i-GEA,

and therefore, by the four right-angled triangles, pbe, bfe, age, and bpe or epa, 
conducts to thia other formula,

LV.. . cof>(co3rcotp) = cot->^coarco8^tan(B4-a)^

— cot-i^cosr cos ^tan (A-ha 

in which a is the same auxiliary angle as in XXXI,; we ought therefore to find, as 
the proposed verijication (19.), that this last equation LV. expresses virtually the same 
relation between A, b, c, and p, as tbe formula LIII., although there seems at first to 
be no connexion between themand such agreement can accordingly be proved to 
exist, by a chain of ordinary trigonometric transformations, which it may be left to 
tbe reader to investigate.

(22.) A geometrical proof ot the validity of the construction (17.) (18.) may 
be derived in the following way. The product of the sines of tbe arcual perpendi
culars, from a point of a given sphero-conic on its two cyclic arcs, is well known to 
be constant; hence also the rectangle under the distances of the same variable point 
from the two cyclic planes is constant, and the curve is therefore the intersection of 
the sphere with an hyperbolic cylinder, to which those planes are asymptotic. It 
may then be considered to be thus geometrically evident, that tbe circle which oscu
lates to the spherical curve, at any given point. P, osculates also to the hyperbola, 
which is the section of that cylinder, made by the osculating plane at this point; 
and that the point Q, of recent investigations, is the point in which this hyperbola is 
met again, by its own osculating circle at p. But the determination 893, (4.) of 
such a point of intersection, although above deduced (for practice) by quaternions, 
is a plane problem of which tbe solation was hnown ; we may then bo considered to 
have reduced, to this known and plane problem, the corresponding spherical prob
lem (12.); and thus the inverse similarity of the two plane triangles XLIV., 
although found by the quaternion analysis, may be said to be geometrically ex
plained, or accounted for: the traces XT and xu, or r and - u', of the oscnlatiDg 
plane to the conic on the two cyclic planes (4.), being evidently the asymptotes of 
the hyperbola in question.

(23.) In quaternions, the constant product of sines, &c., is expressed by this 
form of the equation II. of the cone,

LVI. . . SUXp.SU/ip = (y — SX/x): 2TXp = const.;

and the scalar equation of tbe hyperbolic cylinder, obtained by eliminating be
tween I. and II., after tbe first substitution (1.), is

LVII. . . SXpSpp = Ir* (p — SXp) = const.;
while the expression XXXIII. for <o may be considered as the vector equation of 
the hyperbola, ot which the intersection q with tbe circle, or with the sphere, is de
termined by combining that equation with the condition w’ = p* (= — r’).
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(24.) In the foregoing investigation, we have treated a sphero-conic in connexion 
with its cyclic ares (2.); but it would have been about equally easy to have treated 
the same curve, with reference to ifs_/ocaZ points: or to the/ocaZ lines of the cone, 
of which it is the intersection with a concentric sphere. (Compare what has been 
called the lifocal transformation, in 3G0, (2.)).

(25.) We can however only state generally here the result of such an application 
of quaternions, as regards the construction of tho osculating small circle to a spheri
cal conic, considered relatively to its foci: which construction^ can indeed be also 
geometrically deduced, as a certain polar reciprocal of the one given above. Two 
focal points (not mutually opposite) being called P and o, let PN be the normal arc 
at p, which is thus equally inclined, by a well-known principle, to the two vector 
arcs, FP, OP; so that if the focus o be suitably distinguished from its own opposite, 
the spherical angle fpo is bisected by the arc pn, which is here supposed to termi
nate on the given arc FG. At N erect an arc qnr, perpendicular to PN, and termi
nating in <J and R on the two vector arcs. Perpendiculars, qe, re, to these last 
ares, will meet on the normal arc PN, in the sought pole (or spherical centre') E, of 
the sought small circle, which osculates to the conic at the given point P.

(26.) The two focal and arcual chords of curvature from p, which pass through 
p and o, and terminate on the osculating circle, are evidently bisected at q and n, 
in virtue of the foregoing construction, which may therefore be thus enunciated :—

The great circle QR, which is the common bisector of the two focal and arcual 
chords of curvature from a given point P, .intersects the normal orc PN on the fined 
arc PG, connecting the two foci ; that is, on the arcual major axis of the conic.

(27.) The construction (6.) fails to determine tho position of the auxiliary point 
D in Fig. 80, for the case when the given point p is on the minor axis of the conic; 
and in fact the expressions (4.) for p' and p" become infinite, when the denominator 
S\pp is zero. But it is easy to see that the auxiliary vector o, which represents 
generally the trace of the normal plane to the curve on the plane of the two cyclic 
normals, becomes at the limit here considered the required axis of the osculating 
circle ; and accordingly, if we assume simply (comp. (1.) and (2.)),

LVIII. .. p'= Vp<r, and therefore p" = Vp'o’ +Vpo-', 
we have LIX. ..<r'=0, and Vp'p"|l<r, when SKpp = i).

(28.) In general, if we determine three points l, m, s in the plane of \p, by the 
formulas (comp, again (2.)),

LX,..OL = g, OM=g, O8 = g = l(0L + 0M), 

then L and m will be the intersections of tbe cyclic normals X, p with the tangent

• The reader can easily draw the Figure for himself. As regards tho known 
rule, lately alluded to (in 393, (4.), and 894, (22.)), for determining the chord of 
intersection of a plane conic with its osculating circle, it will be found (for instance) 
in page 194 of Hamilton's Conic Sections (in Latin, London, 1758). The two splie~ 
rical constructions, for the small circle osculating to a spherical conic, were early 
deduced and published by the present writer, as consequences of quaternion cal
culations. Compare tbe first Note to page 536.

    
 



CHAP, in.] OSCULATING CONE, OSCULATING SPHERE. 549

plane to the sphere at r, and the normal plane to the curve at tho same point will 
bisect the right line lm in tbe point s; we shall also have this proportion of sines,

LXI. . . sin LOS: sin som = SUXp: SO^ttp
= cos LOP: cos P0M=sin ppi : sin PPe, comp. (23.),

if pPi, rP2 be tho arcual perpendiculars from the point p'of the conic on the two cyclic 
arcs; and this general rule for determining the position of the line os, or a, applies 
even to tho limiting case (27.), when that variable line becomes the axis of tho oscu
lating circle, at a minor summit of tho curve. *

(29.) As an example, let us suppose that the constants g, X, p in the equation
II. are connected by the relation,

LXII. . . p = - SXp, whence LXI 11. .. S(VXp.Vpp) = 0;

the cyclic normals are therefore in this case sides of the cone, and the two planes 
which connect them with any third side are mutually rectanpw/ar; so that the <onic 
is now the locus of the vertex of a right-angled spherical triangle, of which the 
hypotenuse is given. And by applying either the formula LXI., or the construction 
(28.) which it represents, we find that tbe trigonometric tangent of the arcual radius 
of the osculating small circle to such a conic, at either end of the given hypotenuse, 
is equal to half* the tangent of that hypotenuse itself.

(30.) It ia obvious that every determination, of an osculating circle to a spherical 
curve, is at the same time tho determination of what may be (and is) called an os
culating right cone (or cone of revolution'), to the cone which rests upon that curve, 
and has its vertex at the centre ot the sphere. Applying this remark to the last ex
ample (29.), we arrive at the following theorem, which can however he otherwise 
deduced;—

/fa cone be cut in a circle by a plane perpendicular to a side, the axis of the 
right cone which osculates to it along that side passes through the centre of the sec
tion.

395. When a given curve of double curvature is not a spherical 
curve, we may propose to investigate the spheric surface which ap
proaches to it most closely, at any assigned point. An osculating 
tircle has been defined (389) to be the limit of a circle, which touches 
a given curve, or its tangent pt, at a given point p, and cuts the same 
curve at a near point Q; while the tangent pt itself had been regarded 
(100) as the limit of a rectilinear recant, or as the ultimate position 
of the small chord pq. It is natural then to define the osculating 
sphere, ns being the limit of a spheric surface,, which passes through 
the osculating circle, at a given point p of a curve, and also cuts that 
curve in a point Q, which is supposed to approach indefinitely to p, 
and ultimately to coincide with it. . Accordingly we shall find that 
this definition conducts by quaternions to formulee sufficiently sim-

* This may also be inferred by limits from tbe fomiulro (11.) ; in which r and 
a were used, provisionally, to denote a certain spherical arc and angle.
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pie; and that their geometrical interpretations are consistent with 
known results: for example, the centre of spherical curvature, or the 
centre of the osculating sphere, will thus be shown to be, as usual, the 
point in which tho polar axis (391, (5.)) touches the cusp-edge of the 
polar developable (391, (6.)). It will also be seen,that whereas in 
general, if h be a point in the normal plane (8.)) to a given
curve at p, we can only say that the difference of distances, rq - rp, 
is small of an order higher than the first, if the chord pb be small 
of first order; and whereas, even if R be on the polar axis (391, 
(4.)), we can only say generally that this difference of distances is 
small, of an order higher than the second; yet, if a be placed at the 
centre s of spherical curvature, the difference sq-sp is small, of an 
order higher than the third: so that the distance of a near point Qt^from 
the osculating sphere at the given point r, is generally small of the fourth 
order, the chord being still small of the first.

I... 0 = 2S

(1.) Operating mth S.X, where X is an arbitrary line, on the vector equation 
392, V. of the osculating circle, we obtain the scalar equation of a sphere through 
tliat circle under the form,

"-P P
which may however, by 393, (7.), be brought to this other form, better suited to 
our present purpose,

II. . . (w r = (p - k)2 + 2cSp"p’ (a, - p) ;

c being any scalar constant, while c is still the vector of the centre K of tlie circle: 
and tbe vector a of the centre s of the sphere is given by the formula,

III. . . o=K + cVp"p',

which evidently expresses that this last centre is on the polar axis.
(2.) To express now that this sphere cuts the curve in a near point Q, we are to 

substitute for <a the expression,
IV., . w = p< = p + <p' + |<*p" + It’Mfp'", with «o = 1 i 

but K has been seen (in 891) to satisfy the three equations,

V...0 = Sp'(x-p), O = Sp"(x-p)-p'’,’

reducing then, dividing by and passing to tbe limit, we find for the osculating 
sphere the condition,

VI. . . Sp"'(p-4|l5 + 3S^p" = cSp"'p''p'5

so that finally the vector a satisfies the three scalar equations,

VII. . . 0 = Sp’ (tr - p), 0 = Sp"(<r — p) - p"*, 0 = 8p"'(<r — p} ~ SSp'p",
by which it is completely determined, and of which tbe two last are seen to be the 
successive derivatives of the first, while that first is tbe equation of tbe normal plane :
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whence the centre s of this sphere is (by tbe sub-arts, to 386, comp. 391, (6-)) the 
point where the polar axis ks touches the cusp-edge of the polar developable.

(3.) Differentials may be substituted for derivatives in the equations VII., 
which may also be thus written (comp. 391, (4.)),

VIII. . . 0 = dT(p-<r), 0 = d2T(p-<r), O=d’T(p-cr), if d(T = 0;
the distance of a near point Q of the given curve from the osculating spAcre is there
fore small (as above said), of an order higher than the third, if the chord pq be small 
of tho first order.

(4.) The two first equations VII., combined with V., give also
IX...0 = Sp'(<r-K), O = Sp"(<r-«:), 0 = S(ic-p) (<r-e); 

which express that the line xs is perpendicular to the osculating plane and absolute 
normal at p, as it ought to be, because it is part of the polar axis.

(5.) Conceiving the three points p, x, s, or their vectors p, n, <r, to oroy together, 
the equations V. and VII., combined with their own derivatives, give among other 
results the following:

X. . 0 = Sk’p' = Syp' = Syp" = Sa'(<c - p) = Sa”p';
of which the geometrical interpretations are easily perceived.

(6.) Another easy combination is tbe following,
XI. .. 0 = S)c’(iT + p — 2)c),

as appears by derivating thqlast equation IX,, with attention to other relations; 
but 2k - p is the vector of the extremity; say m, of the diameter of the osculating 
circle, drawn from the given point p ; we have therefore this construction:—

On the tangent ax' to the locus of the centre of the osculating circle, let fall a 
perpendicular from the extremity m of the diameter drawn from the given point P; 
this perpendicular prolonged will intersect the polar axis, in the centre s of the oscu
lating sphere to the given curve at P.

(7.) In general, the three scalar equations VII. conduct to the vector expres- 
sion. „„ __ svp‘p''ap'p’’+p'^vp"p'

XII. . . <r-p + ;

or with differentials.
3Vdpd2pSd,od’p + dp^Vd’pdp.

XIII.. . <T-p-l- Sdpd’pd’p ’

the scalar variable being still left arbitrary.
(8.) And if, as an example, we introduce the values for the helix, 

XIV...p = cta + a'(3, p' = ca+^a‘-% p''=-^jya‘3, 

whereof tho three first occurred before, we find after some slight reductions the ex
pression, in which a denotes again tbe,constaut inclination of the curve to tbe axis of 
tbe cylinder.

XV. . . (T = p — a‘P coseo® a = eta ~ a'/i cot^ a;
but this is precisely what we found for c, in 389, VIII.; for the then, the 
two centres, k and s, of abtolule and spherical curvature, coincide.
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(9.) This known result is a consequence, and may serve as an illustration, of tho 
general construction (6.); because it is easy to infer, from what was shown in 389, 
(3.), respecting the lecitt ol the centre k of the otculating circle to the helix, as being 
another helix on a co-axal cylinder, that the tangent kk' to thie locus is perpendi
cular to the radius of curvature kp, while the same tangent (kk' or k') is alaays 
perpendicular (X.) to the tangent (pp' or p’) to the curve ; kk* is therefore here at 
right angles to the osculating plane of the given helix, or coincides with its polar 
axis; so that the perpendicular bn it from the extremity M of the diameter of cur
vature falls at the point K itself, with which consequently tho point s in the present 
case coincides, as found by calculation in (8.).

(to.) In general, if we introduce the expressions 376, VI., or the following,

XVI.. . p'=s'djP, p" = s'^Dt^p + s"D,p, p"’ = s'^ai^p + 3s's'‘D,^p + s"'i>,p, 
in which s denotes the arc ot the curve, but tho accents still indicate derivations with 
respect to an arbitrary scalar t; and if we observe (comp. 380, (12.)) that the re
lations,

XVII. . . D,p2 = -1, S.D,pD?p = 0, S.D,pD,’p‘+D?p’ =0,

in which D,p’ and denote the squares of n,p and l>,^p, and S.D,pD,’p denotes 
S(D,p.D,’p), &c., exist independently of tbe/orm of the curve; we find thats" and 
s^' disappear from thc numerator and denominator of thc expression XII. for a — p, 
and that they have s'e for a common factor: setting aside which, we have thus the 
simpler formula!, ,

V.u,pD?p D..D.pD.’p
XVIII. . . <r — p = 5-------- 5---- — = --------S.D,pD/(jD?p S.DipDj-pD.’p

And accordingly the three scalar equations VII., which determine the centre of the 
osculating sphere, may now bo written thus,

XIX. . . S(o--p)D,p = 0, S(ff-p)»?p4 1 = 0, S(<r-p)D,’p = 0.

(11.) Conversely, when we have any formula involving thus the successive deri
vatives of the vector p taken with respect to the arc, s, we can always and easily 
generalize tho expression^nni introduce an arbitrary variable t, by inverting tlie 
equations XVI. j or by writing (comp. 890, VIII.),

XX. . . D,p=:s'’'p', D,’p = »'’*(»'-'p')' = «'"®p"-»'"*s”p', &C.
(12.) It may happen (comp. 379, (2.)) that the independent variable t is only 

proportional to s, without being equal thereto; but as we have the general relation,
XXI.. . D(’‘p = «'’‘D«"p, if s'=D(j = Tp'=const.,

it is nearly or quite as easy to effect the transformations (10.) and (11.) in the case 
here supposed, or to pass from t to s and reciprocally, as if we had s'= 1.

(13.) If the vector o be treated as constant in the derivations, or if wo consider 
for a moment the centre 8 of the sphere as a-fixed point, and attend only to the va
riations of distance of a point on thc curve from it, then (remembering that T(p — b)’ 
= —(p — 0-)’) we not only easily put (comp. VIII.) the three equations XIX. under 
thc forma,

XXII. . . 0 = D.T(p-(r)=i>.sT(p-a) = D?T(p-ff), 
but also obtain by XVII. this/oarfA equation,

XXIII, . . T(p - a) u,<T(p - <r)=s: S.(<r — p)D,<p + v,^p'-
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and

XXVIII...

(14.) If then we write, for abridgment,
XXIV.. . r = T(k p) = Toa’p-i radius of osculating circle ; 

XXV. , . R = T(o - p) = radius of osculating sphere s

XXVI... 5 =
- S . V,pD,-p^D^p

we see that Mis scafar, S, nnist be constantly equal to unity, for eeery spherical 
curve ; but that for a curve which is won-spAericaZ, the distance sQ of a near point 
<j, from the centre a of the osculating sphere at P, is generally given by an expres
sion of the form,

XXVII... SQ = 22+^^^^*, with «o=I;

so that, at least for near points Q, on each side of the given point p, tbe curve lies 
without m within the sphere which osculates at that given point, according as the sca
lar, s, determined as above, is greater or less than unity.

(16.) In the case (12.), the formula XXVI. may be thus written,
S.p'^p"'p" 
S. p'p '^p'" ’

whence, by carrying tbe derivations one step farther than iu (8.), we find fur tfie
helix,

XXIX... 5=cosec’a> 1, or XXIX'. .. S—1 = cot* a>0;

and accordingly it is easy to prove that this curve lies’ wholly without its osculating 
sphere', except at the point of osculation..

(16.) In general, the scalar S-1, which vanislies (14.) for-all spherical curves, 
and which enters as a coefficient into the expression XXVII. for tbe deviation 
SQ — 5p of a near point of any other curve from its own osculating sphere, may be 
called the Coefficient of Non- Sphericity ; and if <jt be the perpendicular from that 
near point a on the tangent pt to tbe curve at tbe given point P, we have then this 
limiting equation, by which the value of that coefficient may be expressed, 

XXX...^-l = Um.3^®3^y

(17.) Besides the forms XVIII., other transformations of the expressions XII. 
XIII. for the vector a of the centre of an osculating sphere might be assigned; but 
it seems sufficient here to suggest that some useful practice may be bad, in proving 
that those expressions for a reduce themselves generally to zero, when tbe condition,

XXXf... Tp = const.
is satisfied.

(18.) It may just be remarked, that as r-i is often called (comp. 389, (4.)) the 
absolute curvature, or simply the curvature, of the curve in space which is consi
dered, so R ■ is sometimes called the spherical ^rvature of that curve : while r and 
7! are called the radii* of those two curvatures respectively.

• We shall soon have occasion to consider another scalar radius, which we pro
pose to denote by the small roman letter r, of what is not uncommonly called the 
torsion, or the second curvature, of the same curve in space.

4 B
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in which

396. When the arc («) of the curve is made the independent 
variable, the calculations (as we have seen) become considerably sim
plified, while no essential generality is lost, because the transforma
tions requisite for the introduction of an arlitraf^ scalar variable (<) 
follow a simple and uniform law (395, (11.), &c.). ” Adopting then 
the expression (comp. 395, IV.),

I. . . p, = p + ST + with tz„ = 1,

II.. . T = T' = Ii,^p, t" = D=p,
and therefore

III. ..tH 1=0, Stt' = o, Stt" + t« = 0, 
we shall proceed to deduce some other ajfeclions of the curve, besides 
its spherical cunature (395, (18 )), which do not involve the consi
deration of the fourth power of the arc (or chord). In particular, we 
shall determine expressions for that known Second Curvature (or 
torsion), which depends on the change of the osculating plane, and is 
rrteasured by the ultimcde ratio of that change, expressed as an angle, 
to the arc oi the curve itself; and shall assign the quaternion equa
tions of the known Rectifying Plane, and Rectifying Line, which are 
respectively the Rtngenl plane, and the generating line, of {.hat known 
Rectifying Developable, whereon the proposed curve is e.geodetic (382): 
so that it would become a line, by the unfolding oi this last swr- 
face into apZane. But first it may be well to express, in this new 
notation, the principal alFections or properties of the curve, which 
depend only on the three first terms of the expansion I., or on the 
three initial vectors p, t, r', or rather on the two last oi these; and 
which include, as we shall see, the rectifying plane, but not the recti
fying line: nor what has been called above the second* curvature.

(1.) Using then first, instead of I., this less expanded but still rigorous expres
sion (comp. 376, 1.),

IV, .. p, = p + ST + ls^,r, with «o = 1,

* In a Note to a very able and interesting Memoir, “ Sur let lignei courbet non 
planes” (referred to by Dr. Salmon in the’Noto to page 277 of his already cited 
Treatise, and published in Calder XXX. of the Journal de I'Ecole Polytechnique), 
M. de Saint-Venaut brings forward several objections to the use of this appellation, 
and also to the phrases torsion, flexion, &c., instead of which ho proposes to intro
duce the new name, “ cambrurebut tho expression “ second curvature" may 
serve us for the present, as being at least not unusual, and appearing to bo stifH- 
cienlly suggestive
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and with the relations II. and III., we have at once the following system of three 
rectangular lines, which are conceived to be all drawn from the given point p of the 
curve:

V. . . r = unit tangent; VI. . . 5*= vector of curvature (389, (4.); 
and ' VII... v = rr' = — r'r = r'r"* = itnormaZ (comp. 379, (4.));
r being a line drawn in the direction of a conceived motion along the curve, in v*ue 
of which the arc (f) increases ; while r' is directed towordj <Ae centre of curvature, 
or of the oscultUing circle, of which centre k tlie vector is now,

VIII. . . OK = it = p — r''> = p + r’r' = p + rUr',
if IX. . , r‘i = Tr* = curvature at P, or IX'. . . r = Tr*"! = radius of curvature ; 
and the third line v (which is normal at P.to the surface of tangents to the curve) 
has the same length (Tv = r-') as r', and is directed so that, tbe rotation round it 
from r to r' is positive.

(2.) At the same time, we have evidently a system of three rectangular vector 
units from the same point p, which may be called respectively the tangent unit, the 
normal unit, and the binormal unit, namely tbe three lines,

X. . . ITr = r, Ur'=rr', Uj< = rrr';
the normal unit being thus directed (like r') towards the centre ol curvature.

(3.) The vector-equation (comp. 392, (2.)) of the circle of curvature takes now 
the form.

_ 2r 
XI... V------ -- V ;■

to-p

with the verification that it is satisfied by the value,

XII. . . e» = ja = 2K —p = p —2/"',
in which p (comp. 395. (6.)) is the vector OM of the extremity of the diameter of 
curvature pai.

(4.) The normal plane, the rectifying plane, and the osculating plane, to tbe 
curve at the given point, form a'irectangular system of planes (comp. 379, (5.)), 
perpendicular respectively to the three lines (1.); so that their scalar equations are, in 
tbe present notation,
XIII... Sr(<u —p) = 0; XIV. . . Sr'(w-p)= 0; XV... St'(<o-p)=Oj 

by pairing which we can represent the tangent, normal, and (tnormaZ to the curve, 
^regarded as indefinite right lines: three vector equations,

XVI... Vr(o.-p) = 0j XVII. ..Vr'(a»-p)=0; XVIII.. .Vv(w-p') = 0.
(5.) In general, if the two vector equations,

XIX. .. Vi/ (<0 — p) = 0, and XIX'.. ."Vtit (ai, — pa) = Oi 

represent two right lines, ph and p.h,, which are conceived to emanate according to 
from any curve in space, the identicalformula^'*^

* It is obvious that we have thus an easy quaternion solation of the problem, to 
draw a common perpendicular to ang two right linee in space.
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shows that the eomnion perpendicular to these two emanante^ which as a vector is re
presented by either member oi thia formula XX., intertecte the two linet in the two 
pointe oi which the vectors are,
• XXI...o, = p + ,S^-^^?^^'i = +

* V>l>
(6.) In general also, the pateage of aright line from any one given position in 

space to any other may be conceived to be accomplished by a sort ot ecrew motion, with 
the common perpendicular for the axis of the screw, and with two proportional velo
cities, ot translation along, and of rotation round that axis; tbe locus of the two given 
and of all the intermediate positione of the Zine (when t/ius interpolated} being a 
Screw Surface, such as that of which the vector equation was assigned in 314, (11.), 
and was used in 372, (4.).

(7.) Again, for any Quaternion, 5, we have (by 316, XX. and XXIII.*) the two 
equations,

XXII. . . IU9 = L q.idNq, XXII'. . . VU9 = sin L q.ifVq; 
comparing which we see that

XXIII. . . VUj : lUiy = sin z. 5: z. y = (very nearly) 1,
if the angle of the quaternion be email; so that the logarithm and the vector of tbe 
eersor of a emull-angled quaternion axo very nearly equal to each other^ and we may 
write the lollowing general approximate formula for such a versor;

XXIV. . . U7 = (t'^'s =) nearly, if Z 9 bo email;
the error oi this last formula being in fact small of the third order, if tbe angfe be 
small of the first.

(8.) And thus or otherwise (comp. 334, XIII. and XV.), we may perceive that 
if the quaternion q have tbe form (comp. (5.)),

XXV.. . q = with XXVI. . . q, = tJ + sij’+ ..,
and if we write for abridgment,

* ♦>*
XXVII... 0 = V and XXVIII.,. h = S

we shall then have nearly, if e be small, the expressions,

XXIX. ., U9 = U^^2 = «'», and IxX. .. T9 = T- = 1 + »A!
t! n

or, neglecting s’,
XXXI. . . qt = (1 + sh)t*^q = + ehq,

in which last binomial, tbe Jlrst (or exponetidal) term alone influences the direction 
of tbe near emanant line (5.).

• Although the expression XXII'. for VU9 ia Iiere deduced from 316, XXIII., yet 
it miglit have been introduced at a much earlier stage of these Eltmenit s for instance, 
in connexion with the formula 204, XIX., namely TVU9 = 8in tq-
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(9.) At the same time, by supposing s to tend to 0, the formula XXL gives, as a 
limit.

XXXII.. . OH = Uo = p + ijS = p - jjS Nrti) Pij
for the vector of the point, say B, on the given emanant fh, in which that given 
line Is uMmateiy intersected by the common perpendicular (5.'), or by the ozi* of 
tbe fcreic rotation (6.); but the direction of that axis is represented by the vereor 
UG, and the angular velocity ot that rotation is represented by the tensor TO, if the 
velocity of motion (1.) along the given cures be taken as unity: vio may therefore 
say tlnrt the vector 6 itself, or the/actor which multiplies tlit arc, s, in the exponential 
term XXXI., if set off//om Me point a.determined by XXXII., is the Vector of 
Rotation of the Emanant, whatever the law (f.) of the eniancrfion may be.

(10.) Andas regards the screw translation (f.'), its linear velocity is in like 
manner represented, in length and in direction, by tbe following expression (obtained 
by limits from XX.), •

XXXIII.. . < = GS 2 (set off from a) = Vector of Translation of Emanant,
= projection of unit-tangent on screw-axis (or of r on 0).

And the indefnite right line through the point a, of which this line t is a part, may 
be called tbe Axis of Displacement of the Emanant,

(11.) It is easy in this manner' to assign what may be called the Osculating 
Screw Surface to the {generally gauche) Surface of Emanants, or indeed to any 
proposed shew surface; namely, the tcreio surface which has the given emanant 
(or other) line for one of its generatrices, and touches the skew surface in the whole 
extent of that right line.

(12.) It is however more important here to observe, tliat in the case when the 
surface of emanants is developable, the vector < of translation vanishes: and that 
conversely this vector t cannot be constantly zero, if that surface be undevelopable. 
The Condition of Developability of the Surface' of Emanants is therefore expressed 
by the equation,

XXXIV. ..1 = 0, or StG = 0, or XXXIV'. .. Sijij'r = 0; •
and accordingly this condition is satisfied (as was to be expected) when t; = r, that 
is, for the surface of tangents.

(13.) In the same case, of ij = or U t, the vector G of rotation becomes equal (by 
XXVII.and VII.) to the hinormal v, and the expression XXXII., for the vector uo 
of the foot H of the axis reduces itself to p; and thus we might be led to see (wbat 
indeed is otherwise evident), that tlie passage from a given tangent to a near one 
may be approximately made, by a rotation round the binormal, through the small 
angle, sVv =sr'^ = arc divided by radius of curvature.

(14.) Instead of emanating lines, we may consider a system of emanating planes, 
which are respectively perpendicular to those lines, and pass through the same points 
of the given curve. It may be auflicicnt here to remark, that tbe passage from one 
to another of two such near emanaut planes, represented by the equations,

XXXV. . . S»,(u - p) = 0, XXXV'.. . Si/.(u- p) = 0,

may be conceived to be made by a rotation through an angle = sTG, round the right 
Zine,
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XXXVI. .. Sij (a» - p) = 0, 8i|'((ij — p) - S))r= 0, 
XXXVr... V0((M-p) + .j->SijT= 0,■or

in which the plane XXXV. touches its developable envelope, and which is parallel 
to the recent vector 6, or to the vector of rotation (9.) of the emanant line; BO that 
If an eijual vector be set off on this new line XXXVI., it maybe said to be the Vec
tor Axis of Rotation of the Emanant Plane.

(15.) For example, if we again make r/ = T, so that the equation XXXV. repre
sents now the normal plane to the curve, we are led to combine the equation XIII. of 
that plane with its derived equation, and so to form the system of the two scalar 
equations.

XXXVII... Sr((o-p) = 0, Sr'(<o-p)-l-l = 0, 
whereof the second represents a plane parallel to tho rectifying plane XIV., and 
drawn through the centre of curvature VIII. j and which jointly represent the polar 
axis (391, (5.)), considered os on indefinite rigiit line, which is represented otherwise 
by the one vector equation,

XXXVIII. ..Vv((o-ic) = 0, or XXXVIIF.. . Vi/(a. - p) = - r.
(16.) And if, oa Mis tniZ^nite Zine, we set off a portion equal to the binormal v, 

such portion (which may conveniently be measured from the centre may be said, 
by (14.), to be the Vector Axis of Rotation of the Normal Plane; or briefly. Me 
Polar Axis, considered as representing not only the direction but also the velocity of 
that rotation, which velocity =Tj< = r’l = tho curvature (IX.) of tho given curve : 
while another portion = Vv = tho iiinormaZ unit (2.), sot off on tbe same axis from 
the same centre of curvature, may be called tho Polar Unit.

(17.) This suggests a new way ol representing tho osculating circle by a vector 
equation (comp. (3.), and 316), as follows:

XXXIX... <o,= K + £"'(p-K) = p + (e"-l)r'-'
= p + sr + («'‘'— 1 -ejz)r'-’

= p -1- er + Is^r' + (t'* — 1 — ea — v^) r'"*";

which .agrees, as we see, with the expression I. or IV., if e’ bo neglected; and of 
which, when the expansion is continued, the next term is,

XL... js3j/>r'-» = |e’ar'=-^.

(18.) The complete expansion of the exponential form XXXIX., for the variable 
vector of the osculating circle, may be briefly summed up in tho following trigono
metric (but vector') expression i

XLI... <i>, = (c+^cos^ + Ui/,8in-^^ (p— e), 

in which, XLII. . . p-K = - r^r", and Ua. (p .^k) = rvr’*' = rr; 
so that we may also write, neglecting no power ofs,

XLIII. . . <i)»=p + rr sin - + r’r' vers -;r r
and if Mie be subtracted from the full expression for the vector p„ the remainder may 
be called the deotatton of the given curve in space, Jrom its own circle if curvature ; 
which deviation, as we already see, is small of the third order, and will soon bo de-
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composed into its two principal parts, or terms, of that order, in tbe directions of the 
normal and the binormal respectively.

(19.) Meantime we may remark, that if we only neglect terms of the fourth 
order, the expansion I. gives, by 111. and IX.^ for the length of a small chord pp,, 
the formula:

XLIV. . . PP. = T(p.-p) = T(sr +js’r' + ls’r-)
= V{- (sr + Js’r'+Js’r")’}

= V{a’+.‘r'2a-i)}

. s 2r sin *—:
24r» 2r’ 

this ZenptA then ia tho same (to this degree of approximation), as that of tho chord o/ 
an equally long arc ot the osculating circle 1 and although thc chord of even a smail 
arc of a curve is always shorter than that orc ><seZf, yet we see that the difference is 
generally a small quantity of the third* order, if the arc be small of thejirsf.

397. Resuming now the expression 396,1., but suppressing here 
the coefficient «„ of which the limit is unity, and therefore writing 
simply, 

III. . .

with the relations,
II. . . t’ = - 1, Stt' = 0, Stt" = - T« = r-’, = r-^e,

if s = arc, and r* = Tt'= cMrva<Mre,| as before, or r=radius aicurva
ture (> 0), while r' = D,r; and introducing the new scalar,

* = S = v* V ~ = 5ccond| Curvature,

with p = tt' = binortnal, or the weta vector,

IV.. . r'T=TS — = V- = Vector of Second Curvature,

supposed to be set off tangentially from the given point p of the 
curve, or finally this other new scalar (> or < 0),

V. .. r = 1 = Radius of Second Curvature,

• This ought to have been expressly stated in the reasoning of 383, (6.), for 
which it was not sufficient to observe that tbe are and chord tend to bear to each other 
a ratio of equality, without showing (or nt least mentioning) that their difference 
tends to vanish, even as compared with a line which is ultimately of the same order 
MS the tquare of cither.

f Whenever this word curvature is thus used, without any qualifying adjective, 
it is always to be understood as denoting the absolute (orjirsf) curvature of the curve 
in space.

t Compare the Note to page 554.
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-which gives the expression,

VI.. . = - r"’T—r'W + r”*7T'
= - + (r'Q'UT' + (rr)’'Uj';

we proceed to deduce some of the chief affectionsofa curve in space, 
which depend on the third power of the arc or chord. In doing this, 
although everything new can be izZh’mnteZy reduced to a dependence 
on the two new scalars, r' and r, or on the one new vector or even on 
j»' = yet some auxiliary symbols will be found useful, and almost 
necessary. Retaining then the symbols v, k, a, R, as well as t, t', r, 
and therefore writing as before (comp. 396, VIII.),

VII. . .’ok = k = p - t'"’ = p 4-rUT' =p + r^t^,
VIII. ..(/>- k) ’ = r 'U(K - p) = t' = D,’p= Fec/or of Curvature,

we may now write also, by 395, XVIII.,

IX. .. 08 = a = p -5—— = K + r>-'rv = v+ r'rU«',
ot'v'

and
X... (/> - o-)"’ = R *U(<r -p')=^ = Fector of Spherical Curvature,
=projection of vector (j'} of curvature on radius (R) of osculatiny sphere; 
because we have now, by VI.,

XI... v' = ^Tr'y = yTt" = - r‘*T' - r'^r'v, 
OT XP... (Ui')' = {rv)' = - rr-'r' = - r’llv',
and XII. .. St'j'' S-ttV/ = - r"'?'* = r"*r‘\

If then we denote by p and P the linear and angular devotions, of the 
centre s of the osculating sphere above the osculating plane, we shall 
have these two new auxiliary scalars, which are positive or negative 
together, according as the linear height KS has the direction of + v 
or of - f;
XIII. . .p^^-^^eT-, 'SiIV...P=^KT3 = to.n-^^ = sin-^^^cos-'^\ 

U V r Ji ii
while XV.. . .B = T (<T - />) = 4-p’) = + r'^ r’);
the anyZc P being treated a^generally acuZe. Another important 
ZZwe, and an accompanying angle of elevation, are given by the for
mula;,

XVI.. . X = V = r->T + rr' = r-'Ur + HU./
t'

« Nv'try^ + V = Rectifying Vector (set off from given point p),
= Vector of Second Curvature plus Binormal;
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X r
XVII. .. B=L - = 1^0:^- = Elevation of Rectifying Line (>0, <n‘),

= the angle (acute or obtuse, but here regarded as positive), 
■which that known and important line (396) makes with the tangent 
to the curve; so that (by XIII., XIV.) these two auxiliary angles,* 
H and P, from which (instead of deducing them from r' and r) 
all the affections of the curve depending on s’ can be deduced, are 
connected with each other and with r' by the relation,

XVIII. ..tan P^r' tan H.
Many other combinations of the symbols offer themselves easily, by 
the rules of the present calculus; for instance, the vector <r may be 
determined by the three scalar equations (comp. 395, XIX.),

XIX. .. St(o'-/»)=0, -/,) = - 1, St"(<t-p)=0,
whence, by XVI.,

XX. . . rV' = r’V(VT'T". (<r - p)) = VX(«t - p), 
a result which also follows from the expressions,

XXL . . r" = ~ + S p'y'=(X - r-'r') r',

XXII. . . a - p = t^'T' + rpv—rUT'+pUv, 
XXIII. . . rpN\v = -rpr'^¥ = — rr''P‘,

and
because

we may therefore replace the formula I. for the vector of the curve 
by the following, which is true to the same order of approximation,!

XXIV. .. + + +

and may thus exhibit, even to the eye, the dependence of all' affec
tions connected with s’, on the two new lines^ X and <r-p, which were 
not required when s’ was neglected, but can now be determined by • 
the two scalars r and p (or r and r', or H and P as before). The 
geometrical signification ofthe scalar p is evident from what precedes, 
namely, the height (ks) of the centre of the osculating sphere above 
that of the osculating circle, divided by the linormal unit (Uv); and

* The angle S appears to have been first considered by Lancret, in connexion 
with bis theory of rectifying lines, planes, and surfaces: but the angle here called P 
was virtually included ia the earlier results of Monge.

f As regards the homogeneity of such expressions, if we treat the four vectors 
p„ p, K, and o, and the five scalars s, r, S, p, and r, as being each of the first di
mension, we are then to regard the dimensions of r, r', ic', K, and P as being each zero ; 
those of r', v, and \ as each equal to -1; and that of either r" or v' as being=— 2.

4 c
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as regards what has been called the radius r of second curvature (V.), 
we shall see that Jhis is in fact the geometrical radius of a second cir
cle, which osculates, at the extremity of the tangential vector rr, to the 
principal normal section of the developable Surface of Tangents ; and 
thereby determines an osculating oblique cone to that important sur
face, and also an osculating right cons'* thereto, of which latter cone the 
eemiangle is H, and the rectifying line X is the axis of revolution: 
being also a mde of an osculating right cylinder, on which is traced 
what is called the osculating helix. We shall assign the quaternion 
equations of these two cones, and of this cylinder, and helix; and shall 
show that although the helix has not generally complete contact of the 
thir d order with the given curve, yet it approaches more nearly to that 
curve (supposed to be of double curvature), than does the osculating 
circle. But an osculating parabola will also be assigned, namely, the 
parabola which osculates to the projection of the curve, on its own os
culating plane: and it will be shown that this parabola represents 
or constructs one of the two principal and rectangular components (396, 
(18.)), of the deviation of the curve from its osculating circle, in a 
direction which is (ultimately) tangential to the osculating sphere, while 
the hdix constructs the other component. An osculating"right cone to the 
cone of chords, drawn from a given point of the curve, will also be as
signed by quaternions: and will be shown to have in general a smaller 
acute semiangle C (or »•-<?), than the acute semiangle H (or
oi the osculating right cone (above mentioned) to the surface of tan
gents, or (as will be seen) to the cone of parallels to tangents (369, 
(6.), &c.): the relation between these two semiangles, of two osculating 

cones, being rigorously expressed by the formula,
XXV... tan C=f tan .0".

A new oblique cone of the second order will be assigned, which has con
tact of the same order with the cone of chords, as the second right cone 
((7), while the latter osculates to both oi them; and also an oscm- 
eulaling parabolic cylinder, which rests upon the osculating parabola, 
and is cut perpendicularly in that auxiliary curve by the oscidating 
plane to the given curve. And the intersection oi these two last sur
faces oi the second order (oblique cone and parabolic cylinder) will

* These two osculating cones, oblique and right, to the surface of tangents, 
appear to have been first assigned, in the Memoir already cited, by M. de Saint Ve
nant: the osculating (circular) helix, and the osculating (circular) cylinder, having 
been previously considered by M. Olivier,
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be found to consist partly of the binormal at the given point, and 
partly of a certain twisted cubic* (pr gauche curve of the third degree), 
which latter curve has complete contact of the third order with the 
given curve in space. Constructions (comp. 395, (6.)) will be assigned, 
which will connect, more closely than before, the tangent to the 
locus of centres of curvature, with other properties or affections of that 
given curve. And finally we shall prove, by a very simple quaternion 
analysis, as a consequence of the formula XI'., the known theorem,-|- 
that when the ratio of the two curvatures is constant, the curve is a 
geodetic on a cylinder.

(1.) Tbe scalar expression III., for the second curvature of a curve in space, as 
defined in 396, may ba deduced from the formula (896, (6.), &c.) of the recent 
theory of emanants, which give,

XXVI. .. e = V»<'j/-' = r-‘r, foo = p, i = r, if ,/ = v,

while tbe line of contact (396, (14.)), of the emanant plane with its envelope, coin
cides in position with the tangent to the curve; in passing, then, from the given 
point P to the near point P„ the binormal {y) and the osculating plane (4- v) have 
(nearly) reooZued together, round that tangent (r) as a common axis, through a 
small angle = r''s, and therefore with a velodtg =r'>, if this symbol have the value 
assigned by III., or by the following extended expression, in which tho scalar va
riable (f) is arbitrary (comp. 395, (11.), &c.),

XXVII. .. r-> = S = S = Second Curvature:yp p yipd-p
while the binormal has at the same time been translated (nearly), in a direction 
perpendicular to the tangent r, through the small interval is = sr, which (in the pre
sent order of approximation) represents the small chord pp,.

(2.) As an example, if we take this new form of the equation of the helix,
XXVIII... pt = 5(afooto + «“‘/3), with Ta = T/3=l, and Sa|3 = 0, 

which gives the derived vectors,
XXIX. ..pt'=6o (cot a+ £»'/3), pi'=-bt'^‘P, pt"' = apt",

and this expression for’the arc s (supposed to begin with f),
XXX. . . s=s't, where s' = Tp' = 6 cosec a = const,

we easily find (after a few reductions) the following values for the two curvatures:

* This convenient appellation (of twitted eubie) baa been proposed by Dr. Sal
mon, for a curve of the kind here considered: see pages 241, &c., of his already cited 
Treatise. The otculating twisted eubie will be considered somewhat later.

t This theorem was established, on sufficient grounds, in the cited Memoir of M. 
de Saint Venant (page 26); but it has also been otherwise deduced by M. Serret, 
in the Additions to M. Lionville’s Edition of Monge (Pans, 1850, page 561, &c.).
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XXXI. .. r-i = i > sin’ a, r > = 6- * sin a cos a;

while the common centre (395), of the osculating circle and sphere, has now for its 
vector (comp. 389, (3.)),

XXXII. . . K = IT = pt — cosec’ a = 6 cot a (at — ti^'P cot a);
b being here the radius of the cyZtnder, but a denoting still the constant inclination 
o{ the tangent (p') to the azi» (a^

(3.) The rectifying line (39G), considered merely as to its position, being tho 
Zine of contact of thc rectifying plane (396, XIV.) with its own envelope, is repre
sented by the equations,

XXXni. .. O = Sr'(<u-p) = Sr"(u-p), or XXXIIP. . . 0 = VX((u - p), 
with the signification XVI. of X; and accordingly, if we treat the rectifying planes 
as emanants, or change q to f, ve find the value 0=VT"r'"’ =X, which shows also 
that in the passage from p to Pj the rectifying plane turns (nearly) round the rectify
ing line, through a small angle = «TX, or with a velocity of rotation represented by 
the tensor,

XXXIV.. . TX = V (r-’ + r"’) = r"* cosec £"= r* sec .ff; •
so that what we have called the rectifying vector, X, coincides in fact (by the general 
theory of emanants) with the vector axis (396, (14.)) of this rotation of the rectify
ing plane ; as the cector of second curvature (r"'r) has been seen to be, in the same 
full sense (comp. (1.)), the vector axis of rotation of the osculating plane, when velo
city, direction, and position are aZZ taken into account.

(4.) When the derivative s' of the arc is only constant, without being equal to 
unity (comp. 395, (12.)), the expression XVI. may be put under this slightly more 
general form.

o'" d’p
XXXV. . . X=V ■^, = V Vettor ;

, s p asa^p
and accordingly for the helix (2.') we have thus tbe values,

XXXVI.. . X = as'"i = ab~f sin o = ar-' cosec a, UX = a;
the rectifying line is therefore, for this curve, parallel to the axis, and coincides with 
the generating line of the cylinder, as is otherwise evident from geometry. The 
value, TX = ft'* sin a, of the velocity of rotation of the rectifying plane, which is 
here the tangent plane to the cylinder, when compared with a conceived velocity of 
motion along the curve, is also easily interpreted; and the formulm XVII., XVIII. 
give, for the same helix (by XXXI.), the values,

XXXVII. . . r' = 0, H = a, P = 0.
(5.) The nomtaZ (or the radius of curvature), as being perpendicular to the 

rectifying plane, revolves with thS” same velocity, and round a parallel line ; to de
termine the position of which new line, or the point a in which it cuts the normal, 
we have only to change q to r' in the formula 396, XXXII., which then becomes,

XXXVIII. . . OH = 0)0 = P - r'S = p - X-’r'
Xr

r-’fic-p) r’p + r’ic=z n J------i----- -------------------
r-’ + r-’ r’ + r’

= p coat J/4. K sin* jBT;
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the vector of rotation (396, (9.)) of the normal is therefore a line || and = X, which 
divides (internally) the radius (r") ot curvature into the two segments,*

XSXIX. ■ • ^ = rsin^ S, fig =rcos^ Ht
namely, into segments which are proportional to the squares (r-^ and r"®) of thejjrsf 
and second curvatures.

(6.) At the same time, what we have called generally the vector of translation 
of an emanant lino becomes, for the normal (by 896, (10.), changing 0 to X), the 
line

XL. . . t = XS = UX cos jH'= — r">X">, set off from the same point h ;
A

and the indefinite right line, or axis, through that point u,

XLI... . 0 = VX((u -(Uo), or XLI'. . . Q = X\(u> -p cos^ S - ksin! S), 
along which axis the normal moves, through the small line st, while it turns round 
the same axis (as before) through the small angle sTX, may be called (comp, again 
396, (10.)) the Axis of Displacement of the Normal (or of the radius of curvature).

(7.) Aa a verification, for the helix (2.) we have thus the values,

XLII. . . ph = 6, (UO = P( — cot a, (=:acosa;

BO that the axis ot displacement (6.) coincides with the axis (a) ot the cglinder, as 
was of course to be expected.

(8.) When the given curve is not a helix, the values VI., XVI., XXXVIII., 
and XL., of r", X, wo, and t, enable ns to put the expression I. for ps under the 
form.

XLIII. . . p, = wo + «t + e*^Cp —Wo)---- —;

the curve therefore generally deviates, by this last small vector of the third order, 
namely by that part of the term is^r" which has the direction of the normal r', or of 
— r', and which depends on r',Jrom the osculating helix,

XLIV. , . Utt = (UO + SI 4- — (Uo),
and from the osculating right cglinder,

XLV... TV\((u - Wo) = sin K,
whereon that helix is traced, and of which the rectifying line (XXXIII.) is a side, 
while its aa:w of revolution (comp. (7.)) is the axis of displacement (XLI.) of the 
normal.

(9.) Another general transformation, ot the expression I. for the vector of the 
curve, is had by the substitution,

t’r" <3
XLVI. ...=< + — + —^

in which t is a new scalar variable; for thia gives the new form.

• This law of division of a radius ot curvature into segments, by the common 
perpendicular to that radius and to its consecutive, has been otherwise deduced by 
M. de Saint Venant, in the Slemoir already referred to.
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XLVII. .. pt=p + It + jt’ t'+p Jf’r'i v,

and therefore shows that the curve deviates, by this other mall vector of the third 
order,

XLVin. .. Jz’r-iv = is3r>rr', 
that is, by tbe part of tbe term ^s^r" which has the direction of the binormal v, and 
which depends on r, from what we propose to call the Otculatinp Parabola, namely 
that new anxiliary curve of which tbe equation is,

XLIX... tot = p + fr + 4t’+

or from the parabola which osculates at the given point f, to the projection ot the 
given curve on its own osculating plane.

(10.) And because the small deviation XLVIII. of the curve from tho parabola 
is also the deviation of the tame curve from this last plane, if we conceive that a 
near point of the curve is projected into three norr points Qi, Qs, Os, on the <an- 
gent, normal, and binormal respectively, we shall have the limiting equation,

SpqsL. . . lim.---------  = = Second Ourvature ;
FQi.PQs

the sign of this scalar guotient being determined by the rules of quaternions.
(11.) But we may also (comp. 396, (17.), (18.)) employ thia third general trans

formation ot I., analogous to the forms XLIII. and XLVII.,

LI.. . p,=^ + t*’(p-ic)+

with the value XI. of v'; iu which the sum ot the two first terms gives the vector of 
the point of the osculating circle, which is distant from the given point pp, by an arc 
of that circle equal to the arc a of the given curve ; and the third term,

LII. . . Js’j''r=|s’(r" + r'’r) = -'Js’r”*r'r' + |j’r’Zj', 
which represents the deviation from the same circle, measured in a direction (comp. 
IX. or X.) tangential to the osculating sphere, is (as we see) the vector sum of two 
rectangular components, which represent respectively the deviations of the curve, 
from the osculating helix (8.), and from the osculating parabola (9.).

(12.) It follows, then, that although neither helix nor parabola has in general 
complete contact of the third order with a given carve in space, since the deviation 
from each is generally a small vector of that (third) order, yet each of these two 
auxiliary curves, one on a npAt cglinder XLV., and the other on tbe osculating 
plane, approaches in general more closelg to the given curve, than does the osculating 
circle: while circle, helix, and parabola have, all three, complete contact of the se
cond* order with tbe curve, and with each other.

* It appears then that we may say that the helix and parabola have each a con
tact with the curve in space, which is intermediate between the tecond and third or- 
dert! or that the exponent ot the order of eacA contact is the^acttoRof index, 2 J. 
But it must be left to mathematicians to judge, whether this phraseology can pro
perly be adopted.
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2r’ ■ ■ ■’

(13.) As regards the geometrical signification of the new variable scalar, t, in 
the equation XLIX. of the parabola, that equation gives, 

and therefore (to the present order of approximation),
LIV.. . Are of Osculating Parabola (from uo to aij)

It r'Z>
Ju'.df = e+ — +_ = . (by XLVI.)

' = Arc of Curve in Space (from po to p,);

if then an are =s be thus set off upon the parabola, with the same initial point p, 
and tlie same initial direction, and if this parabolic arc, or its chord bit — ue, be ob
liquely projected on the initial tangent t, by drairing a diameter of the parabola 
through its final point, the oblique tangential projection so obtained will be =fr by 
XLIX.; and its length, or the ordinate to that diameter, will be the scalar t.

(14.) And as regards the direction of the diameter of tbe osculating parabola, 
drawn as we may suppose from p, if we denote for a moment by D its inclination 
to the normal + t, regarded as positive when towards the tangent + r, we have (by 
XLIX. and XVIII.) the formula,

LV. .. tan2)= — = 4 tan Pcot JT;3 ’

which is an instance of the reducibility, above mentioned, of all affections of the curve 
depending on s®, to a dependence on the two angles, H and P.

(15.) Some of these affections, besides the direction ot the rectifying line X, can 
be deduced from tlie angle H alone. As an example, we may observe that the vec
tor equation of the surface of tangents is of the form,

LVI. . . (u,, i = Pa + tp'a — pa + fr,,
in which s and i are Mo independent and scalar variables, and

LVII... r, = r + *r’+ - r",

+ terms depending on ri in p,. If then we cut this developable LVI. by the plane, 
LVIII... Sr((o - p) = — c=any given scalar constant,

which is, relatively to the surface, a normal plane at the extremity of the tangen
tial vector cr from p, while this tangent is also a generating line, we get thus a prin
cipal* normal section, of which the variable vector has for its approximate expres
sion.

LIX. .. (u, = (p + ci-) + (cs+.,)r'+(Jcs’r* + ..)v;
the terms suppressed being of higher orders than tbe terms retained, and having no 
influence on the curvature ot tho section. We find then thus, that the vector of the 
centre of the osculating circle to this normal section-of the surface of tangents to the 
given curve is, rigorously.

* Some general acquaintance with the known theory of sectione of surfaces is 
here supposed, although that subject will soon be briefly treated by quaternions.
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T -a- (cir'y , .LX. . . p + cr + -7-^=zp + c(r + rv) = fl + crX;

so that the locus of all such centres is the rectifying line XXXIIl'. And if, in parti
cular, we make c = r, or cut the developable at the extremity of the tangential vec
tor rr, the expression LX. becomes then p + rr + rUr; which expresses that the 
radius of the circle of curvature of this normal section of the surface is precisely 
what has been called the Radius (r) of Second Curvature, of the given curve in 
space. But this radius (r = r tan IT) depends only on the angle S, when the radius 
(r) of (absolute) curvature is given, or has been previously determined.

(16.) The cone of the second order, represented by the quaternion equation, 
LXI. . . 0 = 2rSr(<i) — p) S«'(td —p)+ (Vr(e» — p))’,

has its oertcar at the given point p, and rest* upon the circle last determined; it is 
then the locus of all the cirelM lately mentioned (15.), and is therefore (in a known 
sense) an osculating oiligue cone to the developable surface of tangents : its cyclic 
normals (comp. 357, &c.) being r and r + 2rp, or r and rr + 2rU»'. But, by 394, 
(30.), the osculating right cone to this cone LXI., and therefore also (in a sense 
likewise known) to the surface of tangents itself, is one which has tbe recent locus 
of centres (15.), namely the rectifying line (X), for its aa:i» of revolution, while the 
tangent (r) to the curve is one of its sides; its semiangle is therefore = S, and a form 
of the quaternion equation of this osculating right cone is the following ^omp. XLV.),

LXII. . . TVUX((u - p) = sin K.

(17.) The right cone LXII., which thus osculates to the developable surface of 
tangents LVI., along tho given tangent r, osculates also along that tangential line 
to the cone of parallels to tangents, which has its vertex at the given point P; as is 
at once seen (comp. 394, (30.)), by changing p' and p" to r' and r", in the general 
expression Np’p'' (393, (6.), or 394, (6.)), for a line in the direction of the aids of 
the osculating circle to a curve upon a sphere. And the axis of the right cone thus 
determined, namely (again) the rectifying line (X), intersects the plane of the great 
circle of the osculating sphere, which is parallel to the osculating plane, in a point 
l of which the vector is,

LXIII.. . OL = p + rpX = p + rrv + rpv.
(18.) We have thus, in general, a gauche quadrilateral, pksl, right-angled ex

cept at L, with the help of which one figure all alFections of the curve, not depending 
on s*, can be geometrically represented or constructed: although it must be observed 
that when r'= 0, which happens for the helix (XXXVII.), the osculating circle is 
then itself a great circle of the osculating sphere, aud tbe points p and L, like tho 
points K and 8, coincide,

(19.) In the general case, it may assist the conceptions to suppose lines set off, 
from the given point p, on the tangent and binormal, as follows:

LXIV. . . PT = BL = rr'r; pb = tl = K8 = rpv;
for thus we shall have a right triangular prism, with the two right-angled triangles, 
TFK and LBS, in tbe osculating plane and in the parallel plane (17.), fur two of its 
faces, while the three others are the rectangles, pksb, pblt, kblt, whereof the two 
first are situated respectively in the normal and rectifying planes.
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(20.) All scalar properties ot this auxiliary prism may be deduced, by our ge
neral methods, from the three scalars, r, r, r', or r, H, P-, and o/Z vector properties 
of tho same prism can in like manner be deduced from the three vectors t, t, t", or 
from r, v, v, which (as wo have seen) are not entirely arbitrary, but are subject to 
certain conditions. ,

(21.) As an example of such deduction (compare the annexed Figure 81), the 
equation of the diagonal plane SPL, which contains the radius 
(ZZ) of spherical curvature and the rectifying line (X), aniT 
tho equation of the trace, say ru, of that plane on tho oscu
lating plane, which trace is evidently parallel (by the con
struction) to the edges LS, te. of the prism, are in the recent 
notations (comp. XX.),

LXV. . . 0 = S-"(io - p); LXVI. . . 0 = V(r-lr)' (<0 - p); 
with the verification that rSr'r" = r'Srr"=r'’r*, by if.

(22.) In general, by 201, (22.), if a and /3 be any two 
vectors, we have the expressions,

LXVII. . . tan Z ^ = tan Z^ = —tan Z /3a=; — tan Z a^

a 'a ba
the angles of quaternions here considered being supposed as usual (comp. 130) to bo 
generally > 0, but < tr; for example, we have thus,

LXVin. . . tenK=tanZ^=(TV:S)Xr-i = (TV: S) (r *-r') = rTr'.= rr**, 

as ill XVII.; and in' like manner we have generally, by principles already ex
plained (comp. 196, XVI.),

LXIX. . . cos L ~ cos t = — cos Z Ba = - coa L aB a p
= S^-.1^=SV^=-SVaj3. 

a a a,
(23.) Appljdng these principles to investigate the inclinations of the vector r", 

which is perpendicular to the diagonal plane LXV. of the prism, to the three 
rectangular lines r, r', v, or the inclinations of that diagonal plane itself to the nor
mal, rectifying, and osculating planes, with the help of the expressions deduced from 
VI. for the three products,* rr", r’r", vr", we arrive easily at the following results:

* A student, who should be inclined to pursue this subject, might dud it useful 
to form for himself a table of all the binary products of tbe nine vectors,

r, r, t", V, r', X, a — p, tr — p, and

considered as so many quaternions, and reduced to the common quadrinomial form, 
a + br + er' + ev, in which a, b, c, e are scalars, whereof some may vanish, but 
which are generally functions of r, r, and r'.

4 D
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with the verification, that the sum of the squares of these three cosines is unity, be
cause

LXXI. . . r^Tr" = ■/(! + r-’7P) = V(1 + r*’ + r-r^) ; 
LXXr. . . rTr" = N(r<rS + TX’), Tr" = V(r-’ + Tv”).or

(24.) Or wo may write, on the same general plan, 

, t" - rTX 
tan L—. = —■,—;r r

LXXlL..tanZ- = ^;
T Tr tan L — = - V(1 + r'»);

yr
or

LXXIII... tan Z rr"= ATr“i; tan Z T’r"=rr'-'TX; tan Z pr"=- rr-> V(1 + r'i); 

and may modify the expressions, by introducing the auxiliary angles H and P, 
with which may be combined, if we think fit, the following angle of the prism,

LXXIV.. . PKT = BSL = tan-> r’.

(25.) Instead of thus comparing thc plane spi. with the three rectangular planes 
(379, (5.)) of the construction, we may inquire what is the value of the angle spl, 
which the radius (R) of spherical curvature makes with the rectifying line (X); and 
we find, on the same plan, by quaternions, the following very simple expression for 
the cosine of this angle, which may however be deduced by spherical trigonomctiy 
also,

LXXV. . . co3srb=- SUX((T - p) = = 8in Psin//;

or LXXV'. . . cos spl = cos spb cos bpl.
(26.) In general, it is easy to form, by methods already explained, the quater

nion equation of a eone which has a given vertex, and resit on a given curve in space; 
and also to determine the right cone which osculates (391, (30.)) to this general 
cone, along any given side of it

(27.') But if wo merely wish to assign the psculating right cone to the cone of 
chords from p, or to the locus of the line pp,, we may imitate a recent process: and 
may observe that if this new cone be cut by the normal plane LVIII., the vector ot 
the section has the following approximate expression, analogous to LIX., and like it 
Sufficient for our purpose,

LXXVI.. . <0,=p + cr + icsr* + |c«’r-ip

from which it may be inferred (comp. (15.), (16.)), that the axis of revolution of the 
new right eone has for equation,

LXXVII... 0 = V(r-«r + Jv) (o> - p).
This axis is therefore situated t» the rectifying plane, between the rectifying line 
(f. or r'r+ v), and the tangential vector (IN.) of tecond curvature (r'>r) : while the 
temiangle C ot the same new cone (measured like H from 4 r towards + v) has the 
value already assigned by anticipation in the formula XXV., and is therefore lest 
than the semiangle U if both be acute, bnt greater than H ifboth be obtuse; ao that, 
in tach cate, the new right cone (C) is sharper than tbe old right cone (H).

(28.) The same result may be otherwise obtained, by observing that an unit
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vector in the direction of the chord pp, has (by 390, XLIV., and 397, I.) the ap
proximate expression,
Lxxvin... x.= u(p.-p)=[i+ 2-^)

“’’+T+ 6 V + — 

whence the axis of the osculating riglit cone to the cone of chords (27.) has rigorously 
tho direction of the line V^’x" (foP ® = 0), or of the vector,

LXXIX. . . 5 = Vr'(r-r" + ir)=X-Jv = r-'r + Sj/, as before.

(29.) TAis axis 5 makes (if we neglect s’) the same angle C, with the chord 
rp,, as with the tangent t ; whereas the former axis \ makes vnequal angles with 
those two lines, within the same order (or degree) of approximation: for our methods 
conduct to the expression,

LXXX... C ^ = ^-,4r>

from which the relation between the two right cones, may easily be deduced
anew.

(30.) Neglecting only sS and employing the substitution XLVI., the expression 
XLVII. for the vector of the given curve becomes,

LXXXI... p(=p + tr+Jt’u + |t’riv, if LXXXII... u = r'+
3r

where the variable scalar t denotes, by (13.), the ordinate of the osculating para
bola, and the constant vector v has the direction, by (14.), of the diameter of that 
parabola.

(31.) In tho present order of approximation, then, tbe proposed curve in space 
may be considered to be the common intersection of tho three following surfaces of the 
second order, all passing through the given point p :

LXXXIII. . . 2(S'r'(a) — p))’“8rSi'(a, —p)Sur((o —p) ;
LXXXIV. - t 2Sr*(<o p) =3 — r2(Svr((<, —p))t;

LXXXV... 3rSi'(<o — p) = —r-Sr'(<o —p)Sup((<( — p)j

whereof the/rst represents a new osculating obligue cone, which lias a contact of the 
some (second) order with the cone of chords, as tho osculating right cone (27.); the 
second represents an osculating parabolic cglinder, which is ciR perpendicularlg in 
tho osculating parabola (9.), by the osculating plane to the curve; and the third 
represents a certain osculating hyperbolic (or ruled') paraboloid, whereof the tan
gent (r) is one of the generating tines, while the diameter (w) of the osculating pa
rabola is another^

(32.) Each of these three surfaces (81.) has in fact generally a contact of the 
third order with the given curves or has its egnation satisfied, not only (as is ob
vious on inspection) by the point p itself, bnt also when wo derivate successively 
with respect to the scalar variable t, and then substitute tho values (comp. LXXXI.), 

LXXXVI. . . to = po = p, to' = po* = r, to" = po" = V, u>"' = po"' = r*'jt;

r, r, p, r’, V, and « being treated as constants ot the equation, or ot the surface, in 
each of /Zie.te derivations.
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(33.) The cone LXXXIII., and thc cylinder LXXXIV., have a common gene
ratrix, namely the binormal* (r); and in like manner, another generating line of the 
same cone, namely the tangent (r) to the curve, has just been seen (81.) to be a 
line on the paraboloid LXXXV. : and although the cylinder and paraboloid have 
no finitely distant right line common, yet each may be said to contain tbe tine at in
finity, in the diametral plane of the cylinder, namely in tho plane of v and v, of 
which plane tlie quaternion equation is (comp. (14.)),
LXXXVII. . . 0 = Si'u((O —p), or LXXXVIF. . . 0 = S(rr'r' — 8r) (<o — p") ; 

or the line in which this diametral meets the parallel axial plane.
(34.) On the whole, then, it is clear, from the known theory of intersections of 

surfaces of the second order having a common generating line, thatf/ie given curve of 
double curvature (whatever it may be) has contact of the third order with the twisted 
cubic, f or gauche curve of the third degree, which is represented without ambiguity 
by the system of the two scalar equations,

LXXXVIII. .. y = x’, z = x\
if we write for abridgment.

{!!!=(< =) — r^Svv(li> — p),
y = 5’=)-2r2ST'(a.-p),

2 = =) — Sr^rSr (<a — p).
(35.) As another geometrical connexion between the elements of the present 

theory, it may be observed that while the osculating plane to the curve, of which 
plane the equation is,

XC. . . Sn(fe) — py = 0, as in 396, XV.,
touches the oblique cone LXXXIII., along the tangent r to the same curve, the dtame- 
tral plane LXXX VI I. touches the same cone along the binormal v, which was lately 
seen (33.) to be, as well as t, a side of that oblique cone; but these tivo sides of 
contact, T and v, arc both in the rectifying plane (396, XIV.), and the two tangent 
planes corresponding intersect in the diameter v of the parabola (9.); we have 
therefore this theorem :—

The diameter of the osculating parabola to a curve of double curvature is the 
polar of the rectifying plane, with respect to the osculating oblique cone LXXXIII.; 
that is, with respect to a certain cone of the second order, which has been above de
duced from the expression LXXXI. for the vector pt of the curve, as one naturally 
suggested thereby, jind as having a contact of the third order with the curve at P,

* The geometrical reason, for the osculating cone LXXXIII, to the cone of chords 
containing the binormal (r), is tliat if the expression LXXXI. for pi were rigorous, 
and if the variable t v/ere supposed ter increase indefinitely, tbe ultimate direction of 
the chord Wt would be perpendicular to the osculating plane. And the same binor
mal is a generating line of the parabolic cylinder also, because that cylinder passes 
through p, and all its generating lines are perpendicular to the last mentioned plane. 
It is Biifllcient however to observe, on the side of calculation, that tbe equations 
LXXXIII. and LXXXIV. are satisfied, when wo suppose w — p || v.

t Compare again page 241, already cited, of Dr. Salmon’s Treatise; also Art. 
285, in page 225 of the same work.
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and therefore also a contact of tbe second order with the cone of chords from that 
point.

(36.) Conversely, this particular eone LXXXIII. iageometrically distinguished 
from all other* cones of tbe same (second) order, which have their vertices at the 
given point p, and have each a contact of the .same second order, with tbe given 
cone oi chords from that point, or of the tZiird.order with the given curve, by the 
condition that it is touched (as above),’ along the binormal (v), by the diametral 
plane (vv) of, the osculating parabolic cylinder LXXXIV.

(37.) We have already considered, in 395, (5.), the simultaneous variations of 
the points p and k, or of the vectors p and k. With recent notations, including the 
expression p = 2k - p, we have the following among, other transformations, for the 
first derivative of the latter vector, and therefore for the tangent kk' to the locus of 
centres of curvature, of a given curve in. space:

XCI.. . kk' = D,k = K =(p-/■>)' = r + T''’r"T*-' 
= (p + r’r')' = r + r’r"+ irr'r' 
= rr'r + = rr (r +p'^rv)=rr-^(pT' rv)

rr' rr' . rr'(a-p)__ _

= cot //(Ur' tan P f Ur) = r-iJ2(Ur' sin P 4- Uv cos P) 
= w't' “ T^T*v*v ~ = r'“^i»*v'”'
= r-ip(p-a) (K-p)=r'(KTp) (p-<r)»'

= r’BU(p(p - ff) (k- p))=&c.;
if then we draw the diameter of curvature pm, and let fall 
a perpendicular kn from the centre K of the osculating cir
cle on the new radius sm of tho osculating sphere (as in the 
annexed Figure 82), this perpendicular will touchf the lo
cus of the centre K, a result which agrees with the construc
tion in 395, (6.); and we See, at the same time, that the 
length of the line kk', or the tensor Tic', may be expressed 
(comp. LXXIII.) as follows,

XCII. . . kk' = Tk' = 7ITr-> = r^Tv' = tan Z. rr".
(38.) If we project tbe tangent kk', into its two rect

angular components, kk, and kk', on the diameter of cur
vature and the polar axis, we shall have by XCI. the expressions:

\\ \
\\ \

/ \ '''■ \
/

* The cone of this system (3G.), which is touched along the binormal by the 
norma? pfa«e, and which therefore intersects the parabolic cylinder LXXXIV. in 
a neii) tioisted cubic (comp. (34.)), having also contact of the third order with tho 
curve, is easily found to have, for its quaternion equation, the following: 

2r’(Sr'((i> — p))-= 3rSr(w — p)S>/(w — p") ;
and with respect to cone (comp. (35.)), tlie po/ar of the rectifying plane is the 
(^absolute') normal to the curve.

f Geometrically, and by infinitesimals, if we conceive k' to be an infinitely near 
point of the locus of K, and therefore in tbe normal plane at p, the angle Pit's (like 
PKs) will be right, and the point k' will be on the semicircle pks ; but the radius of 
this semicircle drawn to K (comp. Fig. 82) is parallel to the line sm, to which line 
the tangent kk' is therefore perpendicular, as above.
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XCIII. . . KK, = rr’r' = r'Cr' = — = &C.;

XCIV. . . kk' = r*r'V = rr**Uv =------= &c.;a — K
these two projections then, or the vector-tangent kk' itself, would suffice to determine 
r and r', or H and P, and thereby dK the alTcctions of the curve which depend on 
s®, bnt not on s*.

(39.) We have also the similar triangles (see again Fig. 82),

XCV. . . A k,k'k oc k'kk' a kjis ;
and the vector equations,

XCVI... kk': s3i = kk,:8k=kk' : km = kk : pk
= r*r = Vector of second curvature (TV.);

whence also result the scalar expressions,
- XCVII. . . tan XSK,= tan kpk' = r'* = Second* Curvature (III.) : 

this last scalar being positive or negative, according as the rotation ksk, (or kpk') 
appears to be positive or negative, when seen from that side of tho normal plane, 
towards which the conceived motion (396, (1.)) along tho given curve, or the unit 
tangent + r, is-directed.f

(40.) Besides the seven expressions. III., XXVII., L., and XCVII., this impor
tant scalar T"l admits of many others, of which the following, numbered for reference 
as 8, 9, &c., and deduced from formidse and principles already laid down, orc ex
amples: and may serve as exercises in transformation, according to the rules of tbe 
present Calculus, while some of them may also be found useful, in future geometrical 
applications.

(41.) We have then (among others) the transformations:

XCVIII. . . Second Curvature = r* (= seven preceding expressions')
= p'V = r-’ cot .ff = TX cos = r'lr'cot P
= r2Sn'r^ = —Sp'r'"' = —r’Srr'r" = Srr'-'r"
= — r-Sur"= Sp"*r" = — Sve' = Sre'r'
= rit’ (<r -p)-i = SXr-> = (k - p)’7Xj- = - r'-iVXV
= V-r’VXv^ r’SXt-r' = SXr'p-* = SXr'-'r
= r^Si/'Xr = r’Sp'vr = Srv~^v' r^Sv'v'^r"
= r’Spv'r" = t"'*V v'X=:r^r'-*Sp'Xr' = r’r'*' SvXr"

= Sp'Xt’-i = Tr''-’SXj»'r" =

(8, 9,10. 11) 
(12, 13, 14, 15) 
(16, 17, 18, 19) 
(20, 21, 22, 23) 
(24, 25, 26, 27 
(28,29, 30, 31) 
(32, 33, 84, 35)

(36, 37, 38, 39)rr' a— p

* In illustration it maybe observed, that if d« be treated as infinitely small, and 
if the line kk' bo supposed to represent (not the derivative k, but) the differential 
vector die = (c'ds, then tlieprojections kk, and kk' become dr and rr'ids (comp. XCIII. 
and XCIV.) ; while kpk' (in Fig. 82) represents the infinitesimal angle r-*di, through 
which the osculating plane (comp. (1.)) revolves, round the tangent t to the curve 
during the change ds of tbe arc.

t This direction of + r is to be conceived (comp. Fig. 81) to be towards the bad 
■ of Fig. 82, as drawn, if the scalars r and r (and therefore also p) bo positive,
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(40, 41, 42, 43)

(44, 45, 46, 47)

(48, 40, 60)

(51, 62, 63);

(54, 55, 66).

(57),

~ rv* t VXp*=---------  ------------- = 72"* tan Z. ttt = 72'* tan Z -------rr'+pv r(a-p) r
rr'v _ rr'T' _ / ____ rrr

~ o-k"’ (<r-K)r “ r ’ a-K ” (<r - k) (p - k)
_ g rpX______ g p + rp\-K _ g

(<r - k) (P - k) "" (a — K){p-ie) ks.kp
, v X. — 0 cos L -_ g sn _ — (Sarp) _ a

~ I'K.KS rfSar)' , r
' rd COS A >-a

PKSL, in the forms 60 and 51, being points of tbe same gauche quadrilateral as in 
(18.) J and a, in 62 and 63,* denoting any constant vector: while several other 
varieties of form may be deduced from the foregoing by very simple processes, such 
as the substitution of Ur for rr, &o., which gives for instance (comp. XI'.), from the 
form 88, these others,

-(Ur)’ -(Ur)' — dUr
XCVII r. .. r-i = = —5—rr Ur rdr

We may also write, with tho significations (10.) of Qi and Q3, the following expres
sion analogous to L,,

XCVIIl"... r->= 6KP.Um.

which contains the law of the inflexion of the plane curve, into which the proposed 
curve of double curvature is projected, on its own rectifying plane: the siyn of the 
scalar, to which this last expression ultimately reduces itself, being determined by 
tho rules of quaternions.

(42.) And besides the various expressions for the positive scalar r*, which are 
immediately obtained by squaring the foregoing forms, the following are a few. 
others:

XCIX. . . Square of Second Curvature = r;* = Tf*
= TA’-r-a = r’Sr'r'A-r'’ = r’Tr’’-(1, 2, 3) 
= r’Srr’r" - rV’ = r’Tr"’ - r ’ - r-V’ = (r<Tr''»-1) (4, 6, 6)
= ll-2;4Tr'» = TI-sTk’’ = tan’ £ rr" (7, 8, 9);

while the important vector r", besides its two original forms VI., admits of the fol
lowing among other expressions (comp. XX. XXI.) :

0.. . r''=D,’p (= the two expressions VI.)
= r“’VA(o — p) = Ar* — r~^rr' = v'r — r'^r
= rVv\ = r'’r->r (a — p—r) = r'^p + r-^X (_a - pj
= ((p-K)-*)' = r'(ic'-r)r' = -r-’r- p — K a — K

(43.) As regards the general theory (396, (5.), &c.) of emanant lines (q) from 
curves, it might have been observed that if we write,

(3, 4, 5)
(6, 7, 8)

(9, 10, 11).

* This last form 53 corresponds to and contains a theorem of M. Serret, alluded 
to in the second Note to page 563.
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CI. .. ?=V^, with CII... 0 = V-, os in 396, XXVII.,

tho equation 396, XXXII. takes the simplified form,
CUI. . . PM = 0,0— p = =■ projection of vector on emanant rj;

for example, when jj = j<, then 0 = 1^’^ and ? = 0, rn = 0, oro,o = p, asin(l.); 
and w^ien = r, then 0 = v, = r^r' -t- ij, so that the projection pu again vanishes, 
os in 396, (13.).

(44.) In an extensive class of applications, the emanant lines are perpendicular 
to the given curve (^ -*- r); and since wc have, by (43.),

CIV...?=;^^'=,->0-2Sr,/=’:^'. if Sr, = O,

we may write, for this case of normal emanation, the formula, •

CV PH — ? — °f of curvature (r') on emanant line (t)') _
square of velocity (TO) q/" rotation of that emanant ' 

for example, when the emanant (ri) coincides with the absolute normal (y}, wc have 
then 0 = X, as in (3.), and the recent formula CV. becomes,

CVI. . . PH = 0,0 - p = ? = r'TX-’ = r2r' 8in> = (k - p) sin’ 
which agrees with the expression XXXVIII.

(45.) And in the corresponding case of tangential emanant planes, by making 
Sr»i = 0 in the second equation 396, XXXVI., and passing to a second derived 
equation, we find for the intercept between tho point P of the burve, and the point, 
say s, in which the line of contact of the plane with its own envelope touches tbe 
cusp-edge of that developable surface, the expression,

riTTTT - V,,,/'S,>r' -Sj)r'(or + Srj(') .
projection of rj on G

which accordingly vamshes, as it ought to do, when jj = p, that is, when the emananf 
plane St) (lo — p') = 0 coincides with the osculating plane XC.

(46.) Some additional light may be thrown on tlil^ whole theory, of tbe affections 
of a curve iu space depending on the third power of the arc, and even on those affec
tions which depend on higher powers of s, by that conception of an auxiliarg sphe
rical curve, which was employed in 379, (6.) and (7.), to supply constructions (or 
geometrical representations) for the directions, not only of the tangent (p*) to the 
given curve, to which indeed the unit-vector (r) of the nea, curve is parallel, but 
also of the absolute normal, the binormal, and the osculating plane ; while the same 
auxiliary curve served also, in 389, (2.), to furnish a measure of the curvature of 
the original curve, which is in fact the velocity* of motion in tbe new or spherical 
curve; if that id the old oi given ong_be supposed to be constant, and be taken for 
unity.

• Accordingly the vector of velocity r', of this conceived motion in tho auxiliaiy 
curve, is precisely what we have called (389, (4.), comp. 396, VI.) tho vector of cur
vature of the proposed curve in space; and its tensor (Tr'") is equal to the reciprocal 
of the radius (r) of that curvature.
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(47.) We might for instance have observed, that white the normal plane to tbe 
curve in space ia represented (in direction) by tbe tangent plane to the sphere, the 
rectifying plane (as being perpendicular to the absolute normal) is represented simi
larly by tbe normal plane to tbe spherical curve; and it ia not difficult to prove 
that the rectifying line has tho direction of that ^eio radius of tbe sphere, which is 
drawn to the point (say l) where the normal arc to the auxiliary curve touches its 
own envelope.

(48.) The point i, thus determined ia the common spherical centre (comp. 394, 
(5.)) of curvature, ot tho auxiliary curve itself, and of that reciprocal* curve on tho 
same sphere, of which the radii have the directions (comp. 379, (7.)) of the binor
mals to the original curve; the trigonometric tangent of tbo arcual radius of curva
ture of the auxiliary curve ia therefore ultimately equal to a small are of that curve, 
divided by the corresponding are of the reciprocal curve (or rather by the latter arc 
with its direction reversed, if the point L fall between thc two curves upon tbe 
sphere); and therefore to tho frst curvature (r">) of the given curve, divided by the 
second curvature (r"i) : and thus we have not only a simple geometrical interpreta
tion of tbe quaternion equation XI'., but also a geometrical proof (which may be 
said to require no calculation'), of the important but known relation XVII., which 
connects the ratio (r: r) 0/ the two curvatures, with the angle between the tan
gent (r) and the rectifying line (X), for any curve in space.

(49.) In whatever manner thia known relation (tan f/=r: r) has once been es
tablished, it is geometrically evident, that if the ratio of the two curvatures be con
stant, then, because the curve crosses the generating lines of its own' rectifying deve
lopable (396) under a constant angle (H), that developable surface must be cylin
drical ; or in other words, the proposed curve of double curvature must, in the case 
supposed, be a geodetief on o cylinder (comp. 380, (4.)). Accordingly the point I., 
in the two last sub-articles, becomes then a Jixed point upon the 'sphere, and is the 
common pole of two complementary small circles, to which the auxiliary spherical 
curve (46.), and the reciprocal curve. (48.), in the case here considered, reduce them
selves ; so that the tangent and the binormal to the curve in space make (in the

* The reciprocity here spoken of, between these two spherical curves, is of that 
known kind, in which each point of one is a pole ot the great-circle tangent, at the 
corresponaing point of the other: and accordingly, with our recent symbols, we have 
not only j/=Vrr', but also, Vw' = f’Vv'i''*=i r-*r>r || r.

t The writer has not happened to meet with the geometrical proof ot this known 
theorem, which ia attributed to M. Bertrand by Id. Liouville, in page 558 of the 
already cited Additions to Monge 5 but the deduction of it as above, from the fun
damental property (396) of the rectifying tine, is sufficiently obvious, and appears to 
have suggested the method employ ed by M. de Saint-Venant, in the part (p. 26) ofhis 
Memoir sur les lignes eourbes non planes, &r., before referred to, in which tbe result is 
enunciated. Another, and perhaps even a simpler method, suggested bg quaternions, 
ot geometrically establishing the same theorem, will be sketched in the present sub
article (49.); and in the following snb-artiele (50.), a proof by the quaternion ana
lysis will be given, wllich seems to leave nothing to be desired on the side of simpli
city of calculation.

4 E
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same case) constant angles, witli the fixed radius drawn to that point: and the curve 
itself is therefore (as before) a geodetic line, on some cylindrical surface.

(50,J By quaternions, when-the tioo curvatures have thus a constant ratio, tlie 
equations XI'. and XVI. give,

CVIII. . . (rxy = (Uv -r rr 'r)' = (rr-i)'r = 0,
or CIX. . . rX = u constant vector ;
the tangent (j) makes therefore, in this case, a constant angle (H) with a coRstaiif . 
line (fK): and the caroe is thus seen again, by this very simple analysis, to bo a 
geodetic on a cylinder. And because it is easy to prove (comp. XXXI.), that we 
have in the same case the expression,

ex.. . r sin® U = radius of curvature of base,
or of the section of tbe cylinder made by a plane perpendicular to the generating 
lines, this other known theorem results, with which we shall conclude the present se
ries of sub-articles : If'/ten both the curvatures are constant, the curve is a geodetic 
on a right circular cylinder (or cylinder of revolution') j or it is what has been called 
above, for simplicity and by eminence, a helix.*

398. When the fourth power Iff) of the arc is taken into account, 
the expansion of the vector p, involves another term, and takes the 
form (comp. 397, I.),

I. ../>, = /> + st + |s’t' f
in which

II. . . t"'=D.V, and III. . , STT"' = -3ST'T" = -3r-V';
so that the new affections of the curve, thus introduced, depend only 
on two new scalars, such as r' and r", or r' and .R', or H' and P', 
&c. We must be content to offer here a very few remarks on the 
theory of such affections, and on the manner in which it may be ex
tended by the introduction of derivatives of higher orders.

* In general, the expression XLIV. for the vector 10, ot the osculating helix, in 
which I = — r‘'X"' = r — X“>r', and p - wo = hr^r’, gives T(o', = 1; so that the devia
tion (8.) maybe considered (comp. (13.)) to be measured from the extremity of an 
arc of the helix, which is equal in length to the arc » of tlie CMrue, and is set off from 
the same initial point p, with the same initial direction; while <>>6 does not here de
note the value of o>, answering to »"So, but has a special signification assigned by 
the formula XXXVIII. It may also be noted that the conception, referred to in 
(40.), of an auxiliary spherical curve, corresponds to the ideal substitution of tho 
motion of a point with a varying velocity upon a sphere, for a motion with on uni
form velocity in space, in the investigation of the general properties of curces of duu- 
l)le curvature: and that thus it is intimately coi^nected (comp. 879, (9 )) with the 
general theory of hodographs.
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(1.) Tbe new vector r'", on wliich everything here depends, is easily reduced to 
tbe following forms,* analogous to tbe expressions 397, VI. for r”:

IV r" = r t' V
= 3r-Vr + (r(r"*)"+X’)r’+ (r-^r-'/r^v.

(2.) Thc first derivatives of the fonr vectors, v', k', X, a, token in like manner 
with respect tS the arc s of the curve, are the following :

V. ..v'= (Vrr'')' = Vrr"' + r-2X 
=-r-2r-lr+ (r-’r-i)'r'-» + (r(r-l)'’- r-s) r;

VI. . . »"=—r-'r'r+(rr" —r’r®)r' + (r2r>)'r;
VII. .. X' = fr-')’r + (r-i)’r)/, or VII'... (rX)' = (rr’O'r (comp. 397,CVIII.) j

VIII. . . a'=;(K+prv)' = (p' + rr-l)rv = Jtifp~'rv;
iu which last the scalar derivatives p’ and 72” are determined, in terms of r" and r’, 
by the equations.

IX. . . p' = fr'r)' = r''r+r'r', 
and X.. . 12'= R'^(j>p' + rr") = p' sin P+ r' cos P= (p' + cot H) sin P. 
We have also the derivatives,

.vr ’•r'-r'r r-lr'-r-'r’ ’

_ rp' - r’p _ (rr" - r'a) r + rr'r'
XII. . s?

and the relations,
XIII... Srr'r"'=Srr"'=-(r-«r’)';

XIV... Srr"r'"= S«''r"'= —r‘’r'2(p'-rrX*);
XV. . . Sr'r'r’'' = r-2SXr’'' = -r-s(rr-')'i

which may be proved in various ways, and by the two first (or the two last) of 
which, tbe derivatives if and p', and therefore also S' and P', can be separately 
calculated, as scalar functions of the four vectors r, r, r", r"', or of some three 
of them, including the neio vector r"'.

(3.) We may also deduce, ’fiom-either V. or VIII., the following vector expres
sions, ot which the geometrical signification is evident from the recent theory (396, 
397) of emanant lines and planes:

XVI. .. Vector of Rotation of Radius (R) of Spherical Curvature' 
= Vector of Rotation of Tangent Plane to Osculating Sphere

= (say) 0 = V = V J2-»r(i’-ia' + <r - p) 

= 5 ( = S +P'r -pro 

whence follows this tensor value for the common angular velocity of these two con
nected rotations, compared still with thb velocity of motion along the curve,

(1. 2, S)

(4, 5, 6);

• In these new expression.*!, on the plan of the second Note to page 561, the 
scalars Z, p', It', and tbe vector o', are to be regarded as of tbe dimension zero; 
Ji’, P', and k" of tbe dimension - 1; X’ of tho dimension — 2 j and v" and r”', aa 
being each of the dimension - 3.
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XI'II. . . Velocity of Rotation of Radius (R), or of Tangent Plane to Sphere,
= T0 = TV^ = fl-i V(1 + TZi cots P) = 71-1 V {1 + (p'+cot Jff)’ cos* P};

with the verifications, for tbe case of the helix, for which p = 0, p’ = 0, P= 0, and 
R=r, that these expressions Xlfl. and XVII. become,

XVI'... = X, and XVII’. .. = TX = r-i cosec Zf,
which agree with those found before, for the vector and velocity of rotation of the 
radius (r) of absolute curnature.

(4.) As another verification, we have fl'= 0 for every spherical curve, and the 
general expressions take then tbe forms,

XVI”. ..6 = —, and XVII"... = fl-i,
o-p

of which the interpretation is easy.
(5.) In general, tbe formula XVII. may also be thus written,
XVIIL . . fl302 +1 = - fl'» cot2 P=-p-tRfR^ = TZ’ + o'^ = a'» cos* P;

or thus, XIX. .. RT^ = + Tys cos* P) = V (1 + To'* - ;
or finally, XX. . . ^V{Ri- r'^a'^') = V(fl* -t- rSTo'*) ;
so that the small angle, sT^, between the two near'radii ol spherical curvature, R 
and fl„ is ultimately equal to the square root of the sum of the squares of the two 
small angles, in tico rectangular planes, eR'' and rsfl-*T<r', or psp, and SPS,, which 
ore subtended, respectively, ot the centre s of the osculating sphere by tho small arc 
s ot the given curve, and of t/ie given point p by the small corresponding arc sTa' 
of the locus of centres s of spherical curvature, or of the cusp-edge (395, (2.)) of the 
polar developable; exactly* as the small angle sTX, between two near radii (397, 
(5.)) of absolute curvature, r and r,, is ultimately the square root of the sum of the 
squares of the two other small angles, sr'^ and sr-*, or pkp, and kpk,, which are 
likewise situated in two rectangidar planes, and are subtended at the centre K of tbe 
osculating circle by tbe small arc a of the curve, aod at tbe given point F by the 
corresponding arc sT/c' of the locus ol the c«iZre,K (comp. 397, XXXIV., XCIV.).

(6.) The point, say v, in which the radius R ot the osculating sphere at p ap
proaches most nearly to the near radius R, from f„ is ultimately determined (comp. 
397, CV. and X.) by the formula,

Vector of Sphfrical Curvature
XXL . .TV J Square of Angular Velocity of Radius (fl)

= (p-o) I’

the vector of this point v (in its ultimate position) is therefore 
r^R'*p+p‘‘<r rSR'^p + r^r'Ser

XXII... ov - p + Z » 1

with the verification, that (by X., comp.' XVII.) the scalar/>">rfl' or R cot P to-

* It will soon be seen that these two results, and others connected with them, 
depend geometrically on one common principia, which extends to all systems of 
normal emanants (397, (44.)).
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duces itself to cot H, or fo rr>, for tlie case p = 0, p’ = 0, P = 0 (corap. (3.)): and 
that thus the expression 397, XXXVIII., for the vector o« of tlie point of nearest 
approach, of a radius (r) pf absolute curvature to a consecutive* radius of the 
same kind, is reproduced.

(7.) In general, if we introduce a new auxilidrg angle, J, determined by the 
formula,

XXIII. .. cot/=p'irR'=!2i'cotP=(p' + cotfi’) coaPen R(r-* + P'),

the expression XXII. takes the simplified form (comp, again 397, XXXVIII.),

XXIV. . . ov = p + ? = p cos’ X+a sin’ J;
and the segments, into which tbe point v divides (internally) the radius R of the 
sphere, have the values (comp. 397, XXXIX.),

XXV. . . pv=R8in’ J, '^ = Rooa^J.
(8.) A. geometrical signification may be assigned for thia new angle J, which is 

anaZopous to the known signification of the angle H (397, XVIL). In fact, the 
tcpigent plane to the osculating sphere at P touches its own developable envelope 
along a new right line, of which the scalar equations are,

XXVI. . . S(<r-p) (ti>-p) = O, S(a' —t) (<i» —p) = 0;

and because the developable locus of all such Zines can be shown to be circumscribed, 
along tbe given curve, to the locus of the osculating circle, which is at the same time 
the envelope of the osculating sphere, we shall briefly call this locus of the line 
XXVI. the Circumscribed Developable. And the inclination of the generatrix ot 
this new developable surface, to the tangent to the given curve at P, if suitably mea-^ 
sured in the tangent plane to the sphere, is precisely the angle which has been 
above denoted by J.

(9.) To render this conception more completely clear, let us suppose that a 
finite right liners is set off from the given point P, on the indefinite line XXVI., so 
as to represent, by its length and direction, tlie velocitg of the rotation of the tangent 
plane to tho osculating sphere; and so to be, in the phraseology (896, (14.)) of the 
general theory of emanants, the vector-axis of .that rotation. Wo shall then have 
the values,

XXVII. . . pj = ^(=tbe six expressions XVI.)
= R'*r(cot /+ U (<r - p)) = R‘' cosec J(r cos rU(<r - p) sin J) (7, 8);

tbe angle J being determided by the formula XXIII., and a new expression, 
T0 = R-i cosec J, being thus obtained for the velocity XVII.

(10.) Hence the new angle J, if conceived to be included (like PT) between the 
limits 0 and sr, may be considered to be measured from r to 7>, or from the unft-ton- 
gent to the curve at P, to the generating line ra ot the circumscribed developable 

in the direction from r to t(o- — p) : which Zosi tangent to the osculating sphere

* This usual expression, consecutive, is obviously borrowed here from the lan- 
guage tX infinitesimals, but is Supposed to be intezprefed, like those used ia other 
parts of the present series of Articles, by a reference to tbe conception of limits.
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makes generally, like (be tangent or rj itself, an acute angle with the positive 
binormal v, as appears from thc common tign ol the scalar coefftciente of that vec
tor, in their developed expressions.

(II.) It may also be remarked, as an additional point of analogy, and as serv
ing to verify some formula), that while the older angle H becomes right, when the 

TT
given curve is plane, io the neie angle J = —, for overj’ tpherical curve,

(12.) As another geometrical illustration ot tho properties of the angle J, and of 
some other results of recent sub-articles, which may serve to connect them, still 
more closely, with the general theory Of normal emanants from curves (397, (44.)), 
let us conceive that ab, bc, cd are three successive, right lines, perpendicular each 
to each; let us denote by a and i the angles bca and cbd, and by c the inclination 
of the lino ad to BO: and let us suppose that these two lines are intersected by their 
common perpendicular in the points G and n respectively.

(13.) Then, by completing the rectangle bcde, and letting tall the perpendicular 
BP on the hypotenuse of the right-angled triangle abb, wo obtain the projections, 
AE and FB, of the two lines ad and gh, on the plane through b perpendicular to bc ; 
and hence, by elementary reasonings, we can infer the relations :

. . tan® c = tan’ ade = tan® a + tan® 6;
Bit _ AG AF AB® 

’ ’ BC AD AB AE® 
. BH = BO sin® j.

XXVIII.

and XXIX, = sin’ AEB, 

if tan J = tan a cot 6;or XXIX'. .
nothing here being supposed to bo small. It may also bo observed, that tho two 
rectilinear angles, BCA and cbd, or a and b, represent respectively the inclinations 
of tho plane ACD to the plane BCD, and of the plane abd to thc plane abc.

(14.) Conceive next that pq aod p,q, are two near normal emanants, touching 
tbe polar developable in tbe points Q and Q„ whereof q is thus on the given polar 
axis Ks, and Q, is on the near polar axis k,q, ; and let the second cmanant be 
cut, in the points p' and q', by planes through p and Q, perpendicular to the first 
emanant pq. The line pp' will then be very nearly tangential to tho given curve at 
p; and tbe line qq' will be very nearly situated in the corresponding normal plane 
to that curve; so that these two new lines will be very nearly perpendicular to each 
other, and the gauche quadrilateral p'pqq' tyill ultimately have the properties of the 
recently considered quadrilateral abcd.

(15.) This being perceived, if we denote by e the length of the emanant line PQ, 
the small angle a is very nearly = c's; and if the small angle 6 be put under tho 
form Vs, then the new coefficient V is ultimately equal (by XXIX'.) to e'* coty : 
where J is an auxiliary angle, not generally small,' and is such that we have ulti
mately PH = PQ. sin®), if H be the point in which the given normal emanant pq 
approaches most closely to the consecutive emanant P.Q,.

(IC.) We have then the ultimate equation,
XXX. . . cot)=e6’ = pQXlim.(s-i.QrQ,)

= length of emanant line (pq)
X angular velocity of the tangential plane (p'i’q) containing it ; 

this latter plane being here conceived as turning, for a moment, round the tangent to 
the given curve at p, and the velocity of motion along lhat curve being still taken 
for unity.
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(17.) Accordingly, when we change e to r, V to r-*, and j to //, we recover in 
this way the fundamental value cot jff= rr'* (397, XVII.), for the cotangent of the 
older angle JT; and when, on the other hand, wc treat the radius of spherical curva
ture as the normal emanant, supposing Q to coincide with s, and therefore changing 
e to R, and 6' to r* + 1’’, vre recover tho last qf tho expressions XXIII. for the co
tangent of the new but analogous angle J, namely cot J= It (f* + P’"), together 
with an intetpretation, which may not have at first seemed obvious: although that 
expression itself was deducible, in tho following among other ways, from equations 
previously established,

XXXI, . . Ii-lcotJ-r-*= — - - = =
pit p p\P I sin P

(18.) As regards the angular velocity, say », of the emanant Zine pq, or the ul
timate quotient of the angle between two such near lines, divided by the small arc s 
of the given curve, we see by XXVIII. (comp. (5.)) that this small angle vs is ulti
mately equal to the square root of the sum of the squares ot the two other small an
gles, above denoted by a and b, and found to be equal, nearly, to e-'s and e'*» cot j 
respectively: we may then establish the general formula,

XXXII, . . Angular Velocity of Normal Emanant = e = e-i cosec j;
which reproduces the values, f* cosec H, and A-* cosec J, already found for the an
gular velocities of the two radii, r and R.

(19.) And if we observe that the projection of the vector of curvature, KP-', on 
the emanant pq, is easily proved lo be =QP'> = e'’.PQ, we see by XXXII. that if 
this projection be divided by th'b square of the angular velocity (u) of the line 
PQ, the quotient is the line pq . sin’/, or ph (15.) i which reproduces the general 
result, 897, CV., for all systems of normal emanants, together with a geometrical 
interpretation. *

(2O.)'As still another geometrical illustration of the properties of the new angle 
J, we may observe that in the construction (12.) and (13.) the corresponding auxi
liary angle/ was equal to abb, or to abp, and that the lino bf (= no) was perpen
dicular to both BC and AD, although not intersecting the latter. Substituting then, 
as in (14.), the quadrilateral p'pqq' for abcd, and passing to the limit, we may say 
that if a new line pj be a common perpendicular, at the given point p, to two conse
cutive* normal emanants, PQ and p'q’, the general auxiliary angle j ia simply the 
inclination p'pj, of that common 'perpendicular pj, to the tangent pp' to tbe mirve,

(21.) And if, instead of normally emanating lines pq, we consider a system of 
tangential emanant planes (as in 397, (45.)), to which those lines are perpendicular, 
wo may then (comp. 396, (14.)) considof the recent line pj as being n generating 
line of the developable surface, which is the envelope of all the planes of the system; 
the auxiliary angle,fj, is therefore generally by (20.) the inclination of this gene-

* Compard the Note to page 681.
, t In these geometrical illustratiom, the angle J has I)ecn treated, for simplicity, 

aa being both positive and acute ; although the general formulce, which involve the 
corresponding angles H and J, permit and require that we should occasionally attri
bute to them obtuse (but still positive) values: while those angles may also become 
right, in some particular casep (comp. (11.)).
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ratria to the tangent: a result which agrees with, and includes, the known and fun
damental property (397, XVII.) of the angle H, in connexion with the Sectifgthg 
Developable (396); and also tbe analogous property of the newer angle J, connected 
(8.) with what it has been above proposed to call the Circumscribed Developable,

(22.) We shall soon return briefly on the theory of that new developable surface 
(8.), and of the new locus (of tbe osculating circle, or envelope of tlie osculating 
sphere) to which it has been said to be circumscribed: but may here observe, 
that if we write for abridgment (comp. VIII. and XXIII.),

<T* RR
XXXIII. . . n = — =---- = p’ + cot 77= cot /sec P,rvp

then what has been called the coefficient of non-sphericitg (comp. 395, (14.) and 
(16.)) is easily seen to have by XIV. the values,

xxxrv. .. S-1 = 7 y/;;. -1 = - HrS v'r'" -1 
Srr ’r

- =^(p’-rrX’)-l = ^^p’ + ^ j=»rr->

= — = cot Hcot J see P=------
tv pt

whence also tbe deviation of a near point p, of the curve, from tbe osculating sphere 
at p, is ultimately (by 395, XXVII.).

YYYV SB _ .. . . SP. SP 24r3p" 24rrP " 24rrp ’

and accordingly, the square of the vector p, — g is given now (comp. I.) by the ex
pression.

0,2)

(6, 7, 8);

(p,_g)3 = (p_g)3_^{r’S(g-p)r"'-l}, 

r*S((r-p)r'"=iS= l + nrr> = &c., as above.tn which
(23.) The same auxiliary scalar n enters into the following expressions for the arc, 

and for the icalar radii of the^rsf and second curvatures, of the locus of the centre 
8 of the osculating sphere, or of the cusp-edge of the polar developable (comp.,891, 
(6.), and 395, (2.)):

XXXVI.. . +J ad* = Are of that Cusp-^ge (ot of locus of s')-,
RR, .ri, = nT=r-(p'T=‘ -y-= (Scalar) Sadias of Ourvature of same edge T

'H.'X.'SNX'.,. rt = ar = (r'r'l = (Scalar) Sadius of Second Curvature of same curve; 
these two latter being here called scalar radii, because the first as well as the second 
(comp. 397, V.) is conceived to have an algebraic sign. In fact, if we denote by ki 
the centre of the osculating circle to the cusp-edge in question, its vector is (by the 
general formula 389, IV.),

XXXVII. . . OKt = ni= g + .g-—, a -nrrT’ = p-p'TrT'-i-prv = if—rirT',fl 9 0
with tho signiflcation XXXVI'. of rt; because by XXXIII. (comp. 897, XI'.),

XXXVIII. . . a' = nrv, <r"=sn'rv + B(ri')' = n'rt, —arr’’r',
and therefore

XXXIX. . . g > = - ««, Vg'g" = n’rir.
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We may also observe that thc relation o' || v 397, IV.),

XL. . . = V — = r''r= f'ector of Second Curcature ofgiven curve ;

and tbafwe have the equation.

= —, with r > 0, but n > or < 0,XLI. . . -
PK « — P

according as tho cusp-edge turns its concavity or its convexity towards the given 
curve at P.

(24.) The radius of (first) curvature ot that cusp-edge, when regarded as a po
sitive quantity, is therefore represented by the tensor,

XLll. . . = =,Tr, = OT ^ = + -^ (> 0) :
t" dr

and as regards thc scalar radius XXXVI". of second curvature oi the same cusp
edge, its expression follows by XXXVIIf. from the general formula 397, XXVU., 
which gives here,

XLIII. . . n-' = S jA-;. = — S = n-lr-i, because XLIII'.. . S = 1; 
V<j(T nr \vv Nvv

the two scalar derivatives, n' and n", which would have introduced the derived vec
tors t" and r’, or Dj’p and Dj®p, of tlie fifth and sixth orders, thus disappearing 
from the expressions of the two curvatures oi the locus of the centre s of the osculat
ing sphere, as was to be expected from geometrical* considerations. '

(25.) For thc/leZia:, the formula XXXVI I. gives Ki = p, or Ki = p; we have then 
thus, as a verification, the known result, that the given point p of this curve is itself 
the centre of curvature Ki of that other helix (comp. 389, (3.), and 395, (8.)), which 
is in this case the common locus of the'two coincident centres, K and s. It is scarcely 
necessary to observe that for the helix we have also Z= H.

(20.) In general, tho rectifying plane of the locus of s is parallel to the rectify
ing plane of tho given curve, because tho radii of their osculating circles aro parallel; 
the rectifying lines for these two curves are tiioreforo not only parallel but equal; 
and accordingly we have here the formula,

XLIV... Xi =V-;=V- = X (by 397, XVI.),
Ti r

which will be found to agree with this other expression (comp. 397, XVII.),

XLV.. . ten Hl = ;iP-= - Uri = ±cot 77,
Iri r

the upper or lower sign being taken, according as the new ettrve is concave (as in 
Figs. 81, 82), or is convex at s (comp. (23.)), towards the old (or given) curve at 
P : and the neia angle Hi being measured in the new rectifying plane, from the new

* In fact, n represents here tho velocity of motion of the point 3 along its own 
locus, while r'* and r-' represent respectively the velocities of rotation of the tangent 
and binormal to that curve: so that nr and nr must be, as above, the radii of its 
two curvatures.

4 F
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tangent a or nrj/, to tbe new line \i, and in the direction from that new
tangent to the new binormal vi, or (comp. XL.) to a line from s whicli is equal to 
the vector of second curvature r-*r of the given curve, multiplied by a positive scalar, 
namely by T»-i, or by the coefficient n-> taken positively.

(27.) The former rectifying line \ touches tho cusp-edge of tbe rectifying deve
lopable (39G) of the given curve, in a new point b (comp. Fig. 81), of which by 
337, (45.), and by XV., the vector from the given point is, generally,

Vr'V' ■ r-’X rX UXsinfl-
XLVI. . . PB _ ;

•with the verification that this expression becomes infinite (comp. 397, (49.), (50.)), 
when the curve is a geodetic on a cylinder,

(28.) In general, the vector on of tho point of contact K, which, vector we shall 
here denote by v, may be thus expressed,
, XLVII. .. v = OR = p + tUX, if XLVIII. . 7^1

H' (rr') 
and because (rX)' = (jT')'r, by VII'., its first derivative is,

XLIX. . . v' = rX y = UX cosec FZ (I sin fl)' = UX (F + cos fl);

in which however the new derived scalar I’ involves fl", and so depends on r”: 
while the scalar coefficient I itself represents tho portion (+pii)oft/ie rectifying line, 
intercepted between the given curve, and the cusp-edge (,'21.') of the rectifying deve
lopable, and considered as positive when the direction of this intercept pb coincides 
with that of the line + X, but as negative in the contrary case.

(29.) For abridgment of discourse, the cusp-edge last considered, namely that of 
the rectifying developable, as being the locuj of a point which we have denoted by 
tbe letter n, may' be called simply “ the curve (r) while the former cusp-edge 
(23.)j or that of the polar developable, may bo called in like manner the curve 
(s)the Zoeas of the centre s. of (absolute) caruature maybe called “<Ae curve 
(k) and the given curve itself (comp, again Figs. 81, 82) may be called, on the 
same plan, “ the curve (p).”

(30.) The arc rb„ of the curve (r), is (by XILTX., comp. XXXVI.),

L. . . + j Tu'ds = Z, - Z +1 cos flds;

this arc being treated as positioc, when the direction of motion along it coincides with 
that of + X.

(31.) The expression VII. for X', combined with the former expression 397,
XVI. for X, gives easily by the general formula 389, IV.,

LI. . . Vector of Centre of Curvedttre of the Curve (b) tV
—: V + •---------7— = V +

v'
vvr.=’'.+

whence LII. . . liadius of Curvature of Curve (n) = T.^, cTdi oH
the scalar variable being here arbitrary.

(32.) We Bee, at the same time, tliat thc angular vtlocity of the rectifying line 
X, or of the tangent to this curve (r), is represented by + H'; or that the email
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angle* between two such near lines, X and X,, is nearly equal to jJ7', or to H, — H; 
while tho vector axis (VX'X"*) of rotation of the rectifying line, set off from the 
point B, has — Zf'Ur', or - H'rr', for its expression.

(33.) As regards the second curvature of the same curve (it), we may observe 
that the expression (comp. VII. and LI.),

LIII. . . X"= (r->)"r -i- (r'*)"rr + r"’(rr’i)'r' = (r-')'’r + (r'i)"ri/ -f- VAX', 
combined with the parallelism (XLIX.) of v to X, gives, by the general formula 
397, XXVII.,

LIV. , . Sadius of Second Curvature of Curve (ji)
— I <3 " V* I a V* _ *'* -“X\-^/ TX ’

with the verification, that while Z' + cos .H represents, by (30.), the velocity of mo
tion along this curve (b), TX represents, by 397, (3.), the velocity of rotation of 
its osculating plane, namely the rectifying plane at the given curve (p) : and it 
is worth observing, that although each of these two radii ol curvature, LII. and 
LIV., depends on r” through Z' (28.), yet neither of them depends on r’ (comp. 
(24.)). As another verification, it can be shown that the plane of the two Zines X 
and r' from r, namely thc plane,

LIV'. . . Sr’X(a>-p) = 0,
which is the norniaZpZanc to the rectifying developable along the rectifying line, and 
contains the absolute normal to the given curve (p), touches its own developable en
velope along the line bh, if H be the point determined by the formula 397, 
XXXVIII., or the point of nearest approach of a radius of curvature (r) of that 
given curve to its consecutive (comp. (6.); this line'BH must therefore be the recti
fying line of the curve (b) : and accordingly (comp. 397, XVII.), the trigonometric 

■ tangent of its inclination to the tangent bp to this last curve has for expression 
(abstracting from sign),

LIV". . . tan PKH = pn ; p5 = +Z-i,. sin’jfZ=+rjf'sin fi = TX"ijH''_ Radius (LIV.) of Second Curvature of Curve (n) 'Radius (LII.) q/’ l^rst Curvature of same Curve
(34.) Without even introducing t", we can assign as follows a twisted cubic 

(comp. 397, (34.)), which shall have contact of the fourth order with the given 
curve at P; or rather an indefinite variety of such cubics, or gauche curves of the 
third degree. Writing, for abridgment,

LV. . . 2 = — Sr(ft) — p), y = - Srr'(<<) - p), 2 =-Srp(<o - p),
LVI. .. ft) = p + sr + yrr'-I-2rp,so that 

the scalar equation,
LVII. .'y = 6 ^^^22 4jyr + ez’.

* A result substantially equivalent to this is deduced, by an entirely Afferent 
analysis, in tho above cited Memoir of M. do Saint-Venant, and is illustrated by 
geometrical considerations: which also lead to expressions for tho two curvatures 
(or, as he calls them, the eourbure and eambrure'), of the cusp-edge of the rectifying 
developable; and to a determination of the ratifying line of that cuip-edge.
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in which e is on arbitrary but scalar constant, represents evidently, by its form, a 
cone of the second order, witli its vertex at the given point P; and </ii« cone'ean be 
proved to have contact of the fourth order with the curce* at that point: or of the 
third order with the cone of chords from it (comp. 397, (31.), (32.)). In fact the 
coefficients will be found to Iiave been so determined, that the difference of the two 
members of this equation LVII. contains as a factor, when we change to to p„ as 
given by the formula I., or when we substitute for xyz their approximate values for 
the curve, as functions of the arc 
397, VI. for r”.

s; namely, by the expressions IV. for r"', and

x, = t —
LVIII. . .

s’ r'si

ys—---- -  — — ((r'^r')' + r'^ + r'lr-),2r Cr3 2-1'^ 7'

a’

where thc terms set down are more than suificient for the purpose of the proof. It
—

may be added that the coefficient of in y„ which is the only one at all complex 

here, may be transformed as follows:
LVIir. . . Srr'r’" = -(r-’)"-r-i\2 = r^3S'+p(r-sr>)'i

S being that scalar for which (or more immediately for its excess over unity) several 
expressions! have lately been assigned (22.), and which had occurred in an earlier 
investigation (395, (14.), &c.). - '

(35.) With tho same significations LV. of tho three scalars xyz, this other equa
tion.

or LIX. . . 2ry-(a:-^r'y)« = (l -^r-(r'>} -sr-r-'‘)y‘,
will be found to be satisfied when we substitute for x an,d y tlie values LVIII. of a:, 
and y„ and neglect or suppress s5 ; it therefore represents an elliptic (or hyperbolic) 
cylinder, which is cut perpendicularly, by the osculating plane to the given curve nt 
p, in an ellipse (or hyperbola), having contact of the fourth order with the projec
tion (comp. 397, (9.)), of that given curve upon that osculating plane: and the cy
linder itself has contact oi the same (fourth)'order witli the curve in space, at the

* In the language of infinitesimals, the cone LVII. contains five consecutive 
points of the curve, or has five-point contact therewith : but it contains only four con
secutive sides of the cone of chords from the given point, or has onXy four-side con
tact with that cone, except for one particular value of tlie constant, e, which we shall 
presently assign. It may be observed that xyz form here a. (scalar) system of three 
rectangular co-ordinates, of the usual kind, with their origin at tlie point p of tbe 
curve, and with their positive semiaxes in tho directions of tho tangent r, tho vector 
of curvature r', and the binormal v.

t It might have been observed, in addition to tho eight forms XXXIV., that 
we have also,

XXXIV’. . . S - 1 = JJr-' cot n cot H (9, 10).
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or

same given point P, so tliat we may call it (comp. 397, (.31.)) the Osculating Elliptic 
(^or Hyperbolic} Cylinder, perpendicular to the osculating plane.

(3G.) As a verification, if we suppress the second member of either LIX. or LIX'., 
we obtain, under a new form, the equation of what has been already called the Oscu
lating Parabolic Cylinder (397, LXXXIV.); and as anotlier verification, the co
efficient of y^ in that second member vanishes, as it ought to do, when the given 
curve is supposed to be a parabola : that plane curve, in fact, satisfying the differen
tial equation of the second order,

LX. . . 3rr" - r'» = 9, or LX'. . . r^ (»^)“ = 2,

if r be still the radius of curvature, considered as a function of the arc, s, while p is 
here the semiparameter.

(37.) The binormal v is, by the construction, a generating line of the cylinder 
LIX. J and although this line is not generally a side of the eone LVII., yet we can 
moile it such, by assigning the particular value zero to the arbitrary constant, e, in 
its eqnation,'orby suppressing the term, ez^. And when this is done, the cone LVII. 
will intersect thc cylinder LIX., not only in tills common si9e v (comp. 397, (33.)), 
but also in a certain twisted cubic, which will have contact of the fourth order with 
the given curve at P, as stated at the commencement of (34.).

(38.) But, as was also stated there, indejinitely many such cubics can be de
scribed, which shall have contact of the same {fourth} order, with the same curve, 
nt the same point. For we may assume any point e of space, or any vector (comp. 
LVI.),

LXI. . . OE = e = p + ar + lirr' + cry,
in which a, b, c are any three scalar constants; and then the vector equation,

LXn. . . u = p, + i(c-p'),
in which t is a neio scalar variable, will represent a cylindric surface, not generally 
of the second order, but passing through the given curve, and having the line pe for 
a generatrix. "We can then cut (generally) thia new cylinder by the osculating 
plane to the curve at p, and so obtain (generally) a new and oblique projection of 
the curve upon that plane; the x and y of which new projected curve will depend on 
the arc s of the original curve by the relations,

LXIII. . . a! = a:,7ac’% y = y,-bc-^z,‘,
with the approximate expressions LVIII. for at^y,?,. And if we then determine two 
new scalar constants, £ and C, by the condition that the substitution of these last 
expressions LXIII. for x and y shall satisfy this new equation,

LXIV. . . 2ry =a:2 + 2Bxy + Cy\
if only «’ be neglected (comp. (35.)), or by equating Mc coefficients of s’ and s*, 
in tlie result of such substitution, then, on restoring tho signllications LV. of xyx, 
and writing for abridgment,

* LXV. . . X~x — ac <z, i’ = y~bc-'x,
the equation of the second degree,

r
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LXVI. .. 2ry=X‘-i-2BXI'+ Ci^,
will represent generally an oblique osculating elliptic {ot hyperbolic) cylinder, which 
has contact of the fourth order with thc given curve at p, and contains thc assumed 
line FE. If then we determine finally the constant e in LVII., by the result of the 
substitution of abc for xyz, or by the condition,

LXVII. • ■ = 6 ( J y no + [^'^bc+ ec\

the coneLVII., and the cylinder LXVI., will have that line pe for a common side ; and 
will intersect each other, not only in that line, but also (as before) in a ticisted cubic, 
although now a neio one, which will have the required {fourth) order of contact, with 
the given curve at the given point.

(.39.) If, after the substitution (38.) in LXIV., we equate the coefiicients of the 
three powers, s’, st, s’, and then eliminate JB and G, we are conducted to an equa
tion of condition, which is found to be of the form,

LXVIII. . . n6’ +b6’c +c6c’+ ec’= ac(6g+ch) ;

in which the ratios of abc still serve to determine the direction of the generating line 
PE, while the coefficients a, b, c, e, g, h are assignable functions of r, r, r', r', r", r", 
and r"', depending on tho vector r'^ : and when this condition LXVIII.' is satisfied, 
the cylinder LXVI. has contact oi i\so fifth order with the given werve at p.

(40.) Again, if we improve the approximate expressions LVIII. for the three 
s’r*’ 

scalars a;t, y,, r», by taking account of s’, or by introducing the new term
(comp. I.) of p,, and if we substitute the expressions so improved, instead of x, y, z, 
in tho equation of tho cone LVII. and then equate to zero (comp. (34.)) the coeffi
cient of s’ in tho difierence of the two members of that equation, we obtain a definite 
expression for the constant, e, .which had been arbitrary before, but becomes now a 
given function of rrr'r'r" and r" {not involving r"'), namely the following

W/fi 21 r'2 81-" 3r'r' 21d^ 9r"\
® ~ V1 “1---- IT-------------a" + —3-----7 i 7 + I'6 \r* r’r^ r^ r^ r^c 4r’r’ r-r y

and when the constant e receives this value* the cone has contact of the fifth order 
with the curve at the given point.

(41.) Finally, if we multiply the equation LXVII. by 6g + ch, we can at once 
eliminate a by LXVIII., and so obtain a cuhic equation in 6; c, which has at least 
one real root, answering to a real system of ratios a, b, e, and therefore to a real 
direction oi tbe Zine pe in (38.)., It is therefore possible to assign at least one real 
cylinder oi the second order (39.), which shall have contact of the fifth order with 
the curve at f, and shall at the same time have one side fe common with tbe cone 
oi the second order (40.), which has contact of tho same (^fifth') order with the curve 
(or of theybnrtZi order with the cone, of chords'); and consequently it is possible in 
this way to assign, as the intersection of this cylinder with this cone, at least one real

* Compare tho first Noto to page 688.
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twisted cubic, which has contact of the fifth* order with the given curve of double 
curvature, at tbe given point thereof. And such a cubic curve may be called, by 
eminence, an Osculating^ Twisted Cubic.

(42.) Not intending to return, in these Elements, on the subject of such cubic 
curves, we may take this occasion to remark, that the very simple vector equation, J 

LXX. . . Vap = pVj3p,
represents a ettrve of this hind, if a and be any two constant and non-parallel' 
vectors. In fact, if we operate on this equation by the symbol S.X, in which X is 
an arbitrary but constant vector, the scalar equation so obtained, namely,

LXXI. .. SXop = S,\pS/3p - p’SjSX, 
represents a surface of the second order, on which the curve is wholly contained; 
making then successively X = a and X =■ /?, we get, in particular, the two equations, 

LXXII.. . S (Vap .Xpp') = 0, and LXXIII. . . (V/Jp)2 -p Sajig = 0, 
representing respectively a cone and cylinder ot that order, with the vector /J from 
the origin as a common side t and the remointny part ot the intersection ot these 
two surfaces, is precisely the curve LXX., which therefore is a twisted cubic, in the 
known sense already referred to.

(43.) Other surfaces of the same order, containing the same curve, would be 
obtained by assigning other values to X; for example (comp. 397, (31.)), we should 
get generally an hyperbolic paraboloid from the form LXXI., by taking X -L /3. 
But it may be more important here to observe, that without supposing any acquaint
ance with the theory of curved surfaces, the vector equation LXX. can be shown, by

• Accordingly, it is known (see page 242 of Dr. Salmon’s Treatise, already 
cited), that a twisted cubic can generally be described through aay six given points ! 
and also (page 248), tliat three quadric cylinders (or cylinders of the second order 
or degree) can be described, containing a given cubic curve, their edges being pa
rallel to tlie three (real or imaginary) asymptotes.

f Compare tbe first Note to page 503.
f This example was given in pages 679, &c., of the Lectures, with some con

nected transformations, the'equation having been found aa a certain condition for 
the inscription of a gauche quadrilateral, or other even-sided polygon, in a given 
spheric surface (comp, tlie sub-articles to 296): the 2n successive sides of the figure 
being obliged to pass through the same even number of given points of space. It 
was shown that the curve might be said to intersect the unit-sphere (pS = — 1) iu two 
imaginary points at infinity, and also iu two real and two imaginary points, situated 
on two real right lines, which were reciprocal polars relatively to the sphere, and 
might be called chords of solution, with respect to the proposed problem of inscrip
tion of the polygon ; and that analogous results existed for even-sided polygons in 
ellipsoids, and other surfaces of the second order; whereas the corresponding prob
lem, of the inscription of an odd-sided polygon in such a surface, conducted only to 
the assignment of a single chord of solution, as happens in tho known and analogous 
theory of polygons in conics, whether the number of sides be (in that theory) even 
or odd. But we cannot here pursue the subject, which has been treated Kt some 
length in the Lectures, and in the Appendices to them.
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quaternions, to represent a curve of the third degree, in the sense that it is cut, by 
an arbitrary plane, in three points (real or imaginary). In fact, wo may write the 
equation as follows,

LXXrV. . . V7p = -«, if LXXV.. .3=p + ^,
q being here a quaternion, oi which the oeefor part is given, but the scalar part g 
is arbitrary; and then, by resolving (comp, 347) this linear equation LXXIV., 

- wo may still further transform it as follows,
LXXVI. . . iz(p’-/3=’)p = pSfia +gV,3a-g^a,

which conducts to a cubic equation in g, when combined with thc equation,
LXXVII. . . Sep = e, 

of any proposed secant plane.
(44.) The vector equation LXX,, however, is not sufficiently general, to repre

sent an arbitrary twisted cubic, through an assumed point taken as origin ; for 
which purpose, ten scalar constants ought to be disposable, in order to allow of tho 
curve being mado to puss through five* other arbitrary points t whereas the equa
tion referred to involves only five such constants, namely the four included in Un 
and Uj3, and the one quotient of tensors T/3 ; Tn (comp. 358).

(45.) It is easy, however, to accomplish the generalization thus required, with 
the help of that theory of linear and vector functions (<fip^ of vectors, which was as
signed in tho Sixth Section of tho preceding Chapter (Arts. 347, &c.). We have 
only to write, instead of the equation LXX., this other but analogous form which 
includes it,

LXXVIII. . . Vnp + Vp^p = 0, or ■ LXXVIIl'. . . ^p + cp = n, 
and which gives, by principles and methods already explained (comp. 354, (1.)), 
the transformation,

LXXIX. . . p = (M ;+ m'c + m"c^ + o’ ’

a, ifra, and being here fixed vectors, and m, mi, ni' being_^xed scalars, but c 
being an arbitrary and variable scalar, which may receive any value, without tho 
expression LXXIX. ceasing to satisfy the equation LXXVIIL

* Compare the first Note to page 591. In general, when a curve in space is 
supposed to ba represented (comp. 371, (5.)) by two scalar equations, each new ar
bitrary point, through which it is required to pass, introduces a necessity for two new 
disposable constants, of the scalar kind ! and accordingly each new order, say tlie 
n'*, of contact with such a curve, has been seen to introduce a new vector, D«"p, or 

subject to a condition resulting from the general equation TD»p = l, or 
r2 = — 1 (comp. 880, XXVI., and 396, III.), but involving virtually two new scalar 
constants. Thus, besides the four such Constants, which enter through r and r’ into 

• the determination of the directions of the rectangular sgstein of lines, tangent, nor
mal, and binormal (comp. 379, (5.), or 396, (2.)), and of the length of tho radius 
of (yirst) curvature, r, tho three successive derivatives, r', r", r"', of radius, and 
tho radius r of second curvature, with its two first derivatives, r' and r", have been 
seen to enter, through the three other vectors, t", t"’, t*’, into the determination 
(41.) of the osculating twisted cubic.
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(46.) Tho curve LXXVIII. is therefore cut (comp. (43.)) by the plane 
LXXVn. in three points (real or imaginary), answering to and determined by tlie 
three roots of the cubic in c, which is tormed.by-substituting the expression LXXIX.

■ for p in the equation of that secant plane; and consequently it is a curve of the third 
degree, the three (real or imaginary) asymptotes to which have directions correspond
ing to the three values ofc,' obtained by equating to zero the denominator of that 
expression LXXIX., or by making if =0, in. a notation formerly.employed : so that 
they have the directions of tho three lines p, which satisfy this other vector equa
tion (comp. 354, I.),

LXXX. . .■V/3^/3 = O.
(47.) Accordingly, if /3 be such a line, and if y be any vector in the plane of a 

and )3, the curve LXXVIII. is a part ot the intersection ot the two surfaces ot the 
second order,

. . 3ap<^p=^ti, and LXXXII. . ■. Syap + Syp^p = 0, 
whereof the first is a cone, and which have tho line ft from the origin for a common 
side (comp. (42.)) : the curve is therefore found anew to bo a twisted cubic.

(48.) And as regards the number ot the scalar constants, which are to be con- 
ceivtd as entering into its vector equation LXXVIII., when we take for ^p thejorm 
Vjop -t- VXpp assigned in 357, I., in which go is an arbitrary but constant quater
nion, such as p + y, and X, p are consfant vectors, the term gp ot ^p disappears 
under the symbol of operation V.p, and the equation (45.) of the curve becomes,

LXXXIII... Vap + pV'yp-b‘VpVXpju = O;

in which the four versors, IJa, .Uy, UX, U/», introduce each two scalar constants, 
while the two tensor quotients, Ty: Tn and TXp: Ta, count as two others,; so that 
the required number of ten such constants (44.) is exactly made up, the curve being ' 
still supposed, to pass through an assumed origin, and therefore to have.one point 
given. It is scarcely worth observing,' that we can at once remove this last restric
tion, by merely adding a new constant vector'fo p, in the last equation, LXXXIII.

(49.) Although, for the determination of the osculating twisted cubic (41.), to 
a given curve of double curvature, it was necessary (comp. (40.)) to employ tho. 
vector or D,*p, or to take account of s® in the vector p,, or in the connected sca
lars XsysZ, of (34.), and therefore to improve the expressions LVIII., by cariying in 
each of them (or at least in the two latter) the approximation one step farther, yet 
there are many other problems relating to curves tn space, besides some that have been 
already considered, for which those scalar expressions LVIII. are sufficiently ap
proximate : or for which the vector expression I. suffices,

(50.) Resuming, for instance, the questions considered in (22.) and (23.), we 
may throw some additional light on the law of the deviation of a near point p, of the 
curve, from the osculating sphere at p, as follows. Eliminating n by XXXVI'. 
from XXXV., we find this new expression,

LXXXIV...

the direction of this deoialion from the sphere (TJ) depends therefore on the sign - 
of the scalar radius ri (23.) of curvature of the cusp-edge (s) of tho polar deve
lopable: and it is outward or inward (comp. 395, (14.)), according as that cusp
edge turns its concavity (comp. XLI.) or its convexity, at the centre s of the oscu-

4 G

    
 



594 ELEMENTS OF QUATERNIONS. [book III.

luting sphere, towards the point p of thc given curve, tliat is, towards the point of 
osculation.

(51.) Again, if we only take account of s’, the deviation of r,from the osculat
ing circle at p has been seen to be a vector tangential to the osculating sphere, which 
may be thus expressed (comp. 397, IX., LII.),

LXXXV...c.P. = -p'r=-L3^<

if C, be the point on the circle, which is distant from the given point p by an arc of 
that circle =s, with the same initial direction of motion, or of departure from p, re
presented by the common unit tangent t ; the quantitg ol this deviation is therefore 

expressed by the scalar : that is, by the deviation — (comp. 397, (9.), (10.)) 

from the osculating plane* at P, multiplied by the secant (r’^If) ol the inclination 
(P) of the radius (fl) of spherical curvature, to the.radius (r) of absolute curva
ture, and positive when this Zastdeviation has the direction of the binormal v,

(52.) On the other hand (comp, (5.)) the small angle, which the small arc ss, 
of the cusp-edge (s) of the polar developable subtends at the point p, is nltimately 
expressed by the scalar,

LXXXVI. . . 8PS. = (ps. - ps). fl-> <=0^ -P = (’’y XXXIII.),

this angle being treated as positive, when tho corresponding rotation j- round + r from

397, XCIX.,(10);

* Besides the nine expressions in 397, (42.) for the sgaare r’’of the second 
curvature, the following may he remarked, as containing the lain of the reffression of 
the projection of a curve ol double curvature on its mon normal plane:

r *= —>lun. —2kp pqs’
K being still the centre of the osculating circle, and qi, qs, Qs being still (as in 397, 
(10.)) the projections of a near point <i (or p,), on the tanpent, the absolute normal 
(or inward radius of curvature pk), and the binormal at P. In fact, the principal 
terms ol the three vector projections corresponding, of the small chord p<j (or pp,), 
are (comp. LVIII.):

pQi = ST;
whence, nltimately,

® = _ r’rUr' = r’. XP.
2 PQa’ „

t Considered as a rotation, thia small angle may be represented by the small 
vector, rp"'fl'fl''sr) and if the vector deviation IjS.XXV. from the osculating ctreZe 
be multiplied bg this, the quarter ol tho product is (comp. XXXV.) tho vector devia
tion (tom the osculating sphere, under the form,

s*(p— (t) fl'
24fl ■
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rs to rs, is positive: and if we multiply this scalar, by that which has just been 
assigned (51.), os an expression for tho deviation c,p, from tbe osculating circle, we 
get, by XXXV., the product,

LXXXVn... = 4 (sp. - sp).
6r’r pR Grrp '

(53.) Combining then the recent results (SO^), (51.), (52.), we arrive at the fol
lowing Theorem:'

The deviation of a near point F, of a curve In space, from the osculatinp sphere 
at the given point p, is ultimatelg equal to the guarter of the deviation of the same 
near point from the osculating circle at P, multiplied by the sine of the small an
gle which the arc ss., of the locus of centres of spherical curvature (s), or of the 
cusp-edge of the polar developable, subtends at the same point P; and this deviation 
(sp, — sp) from the sphere has an outward or an inward direction^ according as the 
same arc ss, is concave or convex towards the same given point.

(54.) Tho vector of the centre s,, of the near osculating sphere at P„ is (in the 
same order of approximation, comp. I.), '

LXXXVIII. . . os, = (T, = <r + «<t' + Js’o" + Js’o"' + ^fsta";
and although o’ —p is already a function (by 397, IX.,. &c.) of r, r', r", so that a' 
is (as in (2.) or(22.)) a function of r', r", r"', and-<r’’, o'.", a" introduce respectively 
tho new derived vectors r’, r’', or 'D,^p, D,®p, D,’p, which we are not at pre
sent employing (49.), yet we have seen, in (23.) and (24.), that some useful combi
nations of a" and a"' can be expressed without t", r'’: and the following is another 
remarkable example of the same species of reduction, involving not only a" and o'" 
but also o", but still admitting, like the former, of a simple geometrical interpreta
tion.

(55.) Remembering (comp. (22.), and 397, XV.) that
LXXXIX. . . (o-p)2 + R3 = 0, and XC. . . Sr'"(o-p) = r-sS' = r-3 + nr-iri, 

and reducing the successive derivatives of LXXXIX. with the help of the equations 
397, XIX., and of their derivatives, wo are con'ducted easily to tho following system 
of equations, into which the derived vectors r, r', &c. do not expressly enter, but 
which involve o', o", o'", o”', and R', R", R'", R” ••

XCI.. . So'(«r - p) + IJR’ = 0; XCII. . . So’o''(o - p) = 0;
XCIII. . . &o"Ca-p) + = 0 !

XCIV.. . So'"(o-p) + 3So'o" + (l?R')''=0;
RR' «

XCV. .. So’’(o-p) + 4So'o'" + 3o''2+ (^JtRl) -i

auxiliary equations being,
Xcvi. . . So-r = 0, So'r' = 0, So''r = 0, comp. 395, X.

I XCVII. . . So'"r = -So"r'=So'r"= Srr"-S(<t-p)r"'
= _r-s(S-l) = -nr-'rt.

(56.) But, if II, denote the radius of tbe near sphere, and if we still neglect s>, 
wo have,

XCVIII.. . = - (o. - p.)2 = Rf
= R^.^ IsRR'^ ."■{RR'y + {RR'y +.

and
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whence follows, hy LXXXVIIL, and by the recent equations, this very simple ex
pression, from which (comp. (24.)) everything depending on t”, t’, hat disap
peared,

XCIX;..(<r.-py+R?=^~;
and which gives (within the same order of approximation, attending to XXXV.) 
the geometrical relation, '

’ ---- rriz \ r> **** ---- ----
C. . . PS. - P.S, = T(,r. = = 2-^.= SP. - SP ;

or C'. , . s.p — sp, = s.p. - SP = R. - R.
(57.) This result might have been foreseen, from the following very sim

ple consideration. When the coefficient’ S- 1 of non-jphericitg (395, (16.)), or 
of the deviation of a curve from a sphere, is positive, so that a near point v, of the 
curve is exterior to (what we may call) tho given sphere, which osculates to that 
curve at p, by an amount which is ultimately proportional to the fourth power 
of the arc, t, of the curve, then the given point p must be, for the same rea
son, exterior to the near sphere, which osculates at the point P.; and the two devia
tions, PS, — p,s„ and sp, — sp, which have been found by calculation to be equal 
(C.), if bo neglected, must in fact bear to each other aa.ultimate ratio of equality, 
because thd two arcs, + s and — t, from p to p., and from p, hqck to P, are equally 
long, although oppositely directed; or because (+«)* = (—s)h And precisely tho 
same reasoning applies, when tfie cocflicicnt S — 1 is nepatwe, so that the Retaattons, 
equated in the formula C., are both inwards.

(58.) As regards the deviation (51.) of tho near point p, of the curve from the 
osculating circle at P, we may generalize and render more exact the expression . 
LXXXV., by considering a point c< of that circle, which is distant by a circular arc 
= t from the given point p; and of which the vector is, rigorously, by 396, (18.),

„ . t , t
Cl. . . oc. = <0. = p + rr sin - + r^r vers -:

'' ’■
or if we only neglect

Cn. . . oc. = <o. = p + r(^<-^^ + - 2^3}

(59.) In this way we shall have (comp. (34.)) the vector deviation,
cm.. . C.P. = p, - <0. = Xr + Frr' + Zrv,

with the scalar coefficients,
t ' tCVf...X=x,-rs,m-, F = y,-rvers-, Z=z.:r r,

or, neglecting and t>, and'attending to the expressions LVIII. and LVIII'.,
■ r s^ — t^ r's*

! X=s-<«-^ + —

^2—^2 s*—ns*

2r 24r2r*

^=67r+24<^""')'’

CV. . .

in which r, r, r, p, jiuj have the same significations as before.
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(60.) Assuming then for tlio circular arc t the value,

CVI... * = . +

which differs (as we see) by only a quantity of the fourth order from the .arc » of the 
curve, yfo shall have, to the same order of approximation, tbe expressions,

CVn.,.JV=0, 2 = s, = &c., asbefore,T 24)-’r
tlie deviation at F, from the circle being here measured in a direction parallel to the 
normal plane at P; and if a* be neglected (although the expressions enable ua to 
take account of it), this deviation is also parallel (as before) to the tangent r(<r — p) 
to the osculating sphere in that plane: while it is represented in quantity by Rr'^z^, 
which agrees with the result in (51.).

(Gl.) The expressions CVII. give also, without neglecting st, .
rV+pZ «s* __ __

such then is the component of the deviation from the osculating circle, which is pa
rallel to the normal PS to the sphere at P; and we see that it only differs in sign 
(because it is positive when its direction is that of the inward normal, or inward ra
dius Ps), from the expression XXXV. (comp, C.), for the outward deviation sp. — 
of the near point p„ from the same osculating sphere at the given point P.

(62.) This fatter component (61.) is smoZl, even as compared with the/ormer 
small component (60.) ; and the small quotient, ot the latter divided by the former, 
is ultimately (by LXXXVI.),

rV+pZ —nrs ,

where the imall angle srs. is positive or negative, according to the rule stated in 
(52.), and may bo replaced by its sine, or by its tangent.

(63.) Instead of cutting tho given osculating circle, as in (GO.), by a plane which 
is parallel to the given normal plane at p, wo may propose to cut that circle bg the 
near normal plane at P,, or to satisfy this new condition,

ex. . . 0 = Srt(ps-101), or CX', . . 0 = XTSrr, + KSrr'r, + ZSrvTs; 
which is easily found to give by CV. the values (» and t being still supposed to be 
small, and s‘ being still neglected):

CXI. . . t = s - and CXn... X= K = &c., Z= &c., as in CVII.; 
24r’ 6r3

so that in passing to this new near point Ci of the citcle, 'no only change X from 
zero to a small quantity of the fourth order, and make no change in the values of K 
and Z.

(Gl.) The neio deviation C(P, from the given circle ta&y be decomposed into two 
partial deviations, in the near normal plane, ot which one has the direction of the 
nnit-tangeni — pty to theetear sphere nt p,, and the other has that of the
unit-normal R,-' (^a, — p,) to the same sphere at tho snmo point (or the opposites of 
these tw'O directions); and the scalar coefficients of these two vector units, if we at
tend only to principal terms, are easily found to be.
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R
CXin...:^^= and CXIV...’’22L(f^=5=^.

R 6r5r R irtR
We may then write :

CXV. . . Revialion of near point v,from given osculaling circle, 
meamred in the near normal plane to the curve at Vf, 
. R’^ „ , X ns^ _= new c,p, = _ Ur,(<y, - p,} + — U(a, - p,} ;

in which it may bo-observed, that the second scalar coefficient is equal to three times 
the scalar deviation sPi — SP (XXXV. or C.), of the near point F, of the caroe, from 
the jieen osculating sphere (at p).

(GO.) But we may also interpret the new coefficient last mentioned, as represent
ing a. new deviatioti; namely, that of the point c< of the ^ven circle, from the near 
osculating sphere at P,, considered aa positive when that new point Ct is exterior to 
that near sphere; or as denoting the difference of distances, 8,Ct — SiPi. We have 
therefore (comp. (56.)) this new geometrical relation, of an extremely simple kind :

CXVI. . . SjCj- s,p,='3(sp, - sp) = 3(SiP - 8,Pj) ;
or CXVI'. . . SjC( = 3s,p — 2s,p^

(G~.) Supposing, then, at first, that tlie coefficient of non-sphericiiy 5— 1 is posi
tive (comp. 395,’(16.)), if we conceive a point to move backwards, upon the curve, 
from p, to P, and then forwards, upon the circle which osculates at P, to the new 
point C( (63.), we see that it will_^r<< attain (at p) a position extei-ior to the sphere 
which osculates at p^ or will have an amount, determined in (56.), of outward devi
ation, with respect to that near osculating sphere ; and that it will afterwards attain 
(at the new point ci) a deviation of the same character (namely outwards, if 5> 1),’ 
from the same near sphere, but one of which the amount will be threefold the former : 
this last relation holding also when S < 1, or when 6o<Zt deviations are inuiarrts.

(68.) It is easy also to infer from (65.), (comp. (57.)), that if we go back from 
p„ on the near circle which osculates at that near point, through an arc (!) of that 
circle, which will only, differ by a sm'all quantity of the/oarlA order (comp. (60.)) 
from the arc (») of the curve, so as to arrive at a point, which for the moment wo 
sliall simply denote by c, and in which (as well as in another point of section, not 
necessary here to be considered) the near osculating circle is cut by the given nor
mal plane at P, the vector deviation ot this neio point c of the new circle, from the 
given point p of the curve, must he, nearly;

CXVII, . . PO= _.ur(«r-p)- —U(,7-p);

the coeffleients being formed from those of the formula CXV., by first chang’mg s to 
— s, and then changing the signs of the results: while the relation CXVI. or 
CXVI'. takes now the form,

CXVIII. .. ^-sp= 8(sp,-8p),"* or CXVIII'.. . so = 3sf»-2sp.
(GO.) Accordingly if, after going from p to P» along the curve, we go forward or 

backward, through any positive or negative arf, t, of tlie circle which osculates at 
that point p,, we shall arrive at a point which we may here denote by Oj,«; and the 
vector (comp, again 390, (18.)) of this near point (more general than any of those 
hitherto considered) will be, rigorously,
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CXIX.. . (o„ / = oo„ t = p, + r,r, sin - + r^r', vers

And if we develops this new expression to the accuracy of the fourth order inclusive, 
• wc find that wo satisfy the new condition ("comp. (63.)),

r*s*
GXX. . . Sr ((I),, (— p) = 0, when GXXI.,... t= — » —

and that then the expression CXIX, agrees with CXVIL, within the order of ap
proximation here considered.

(70.) A geometrical connexion can be shown to exist, between the two equiva
lents which have been found above, one for thequadruple (LXXXVIL, comp. (53.)), 
and tho other for the triple (CXVIII.), of the deviation gp, — sP of a near point p, 
of the curve, from the sphere which osculates at the given point p; in such a manner 
that if either of tboso two expressions be regarded os hnown, tho other can be tn- 
ferred firom it.

(71.) In fact if we draw, in the normal plane, perpendiculars PD and pe to tho 
■ lines PS and ps„ and determine points d and e upon them by drawing a parallel to 

PS through the point o of (68.), letting fall also a perpendicular cf on ps„ the two 
small lines PD and DO will ultimately represent the two terms or components CXVII. 
of PC J and tho small angle dpo will ultimately be equal to three quarters of the 
small angle sps„ aud will correspond to the same direction of rotation round r, be
cause

or

CXXII... = ,
PD * Rt * o-p

CXXin. . . DPC= J3PS, = 5dPB;
so that we shall have the ultimate ratios (comp, tho IJ 
annexed frig. 83 *):

CXXIV. . . DC; DE: CE (or fp) = 3:4:1.
But the line cf is ultimately tho trace, on the given 
normal plane, of the tangent -plane at c to the near 
osculating sphere; the small line fp (or ck) represents therefore the deviation 
SjP —SjPj of the given point P from, that near sphere, or the equal deviation (57.), 
gp, - SP; its ultimate quadruple, de, represents the produci mentioned in (52.); 
and the ultimate triple, DC, of the same small line ce, is a geometrical representation 
of that other deviation sC - sp, which has been more recently considered.

(72.) When the two scalars, s and t, are supposed capable of receiving any va
lues, the poinl-c,, t in (69.) may be any point of the Locus (8.) o/ the Osculating . 
Circle to the given curve of double curvature; and if we seek the direction of the 
normal to this superficial locus, at this point, on the plan of Art. 372, writing first 
the equiftion of tho surface under the slightly simplified, but equally rigorous form.

* In Figs. 81, 82, tho little aripnenr s is to bo conceived as terminaling there, 
or aa being a preceding arc of tho curve which is tbe locus of s, if r', r, n, and there
fore also p and ri, be positive (comp, tbe second Note to page 574). In the new Fi
gure 83, the triangle pde is to be conceived as being in fact much smaller than 
PKS, though magnijied to exhibit angular and other relations.,
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with
eXXV. . . w,, „ = Pa + rsT, sin w + r,^T', vers u, 

GXXVI.. . u = r,'*< = PaK/3„<,

so that u is here a new scalar variable, representing the angle subtended at the cen
tre Ka, of tbe osculating cirdc at Pa, by the arc, t, ot that circle, we are led, after a 
few reductions, to the expression,

CXXVII. . . V(DuW<, u. DaWa, u) = r,r,"> (w„ „ — a,) vers u;
which proves, bg guatemions, what was to be expected from geometrical* conside
rations, that tbe locus of the osculating circle is also (as stated in (8.) and (22.)) 
the Envelope of the Osculating Sphere,

(73.) The normal to this locus, at any proposed point Ca, < of any one osculating 
circle, is thus the radius of the sphere to which that circle belongs, or which has the 
same point of osculation Pa with the given curve, whether the arc (s) ot that curve, 
and the arc (t) of tbe circle, be small or large. yVo must therefore consider the tan
gent plane to the locus, nt the given point p of the curve, as coinciding with the tan
gent plane to the osculating sphere at that point; and in fact, while this latter plane 
(*Lps) contains the tangent r to the curoe, prbich is at the same time a tangent to 
the locus, it contains a/so the tangent r(<r — p) to the sphere, which is by CXVII. 
another tangent to the locus, as being the tangent at P to the section ot that surface, 
which is made by the normal plane to the curve.

(74.) But when we come to examine, with the help of the same equation CXVII., 
what is the law of the deviation bo (comp. Fig. 83) of that normal section of the 
locus, considered as a new curve (c), from its own tangent PD, we find that this law 
is ultimately expressed (comp. (71.)) by the formula,

bo’ 81 n®r*r((r —p)
CXXVIII... —; = —— = const.;PDi 32 It’

hence DC varies ultimately as the power of pd, which has Refraction J for its expo
nent ; the limit ot : dc is therefore null, and the carpature of the section is infinite 
at p.

(75.) It follows that this point p is a sinjruZor/,oin< of tho curve (c), in which 
theZocHs (8.) is cut (78.), by tbe normal plane to tbe given curve at that point; but 
it is not a cusp on that section, because the tangential component fd of the vector 
chord PC is ultimately proportional to an odd power (namely to the cube, by CXVII., 
comp. (71.)) of the scalar variable, s, and therefore has its direction reversed, when 
that variable changes sign ; whereas the normal component do of the same chord ro 
is proportional to an e»en power (namely the fourth, by the same equation CXVII.) 
of the same are, s, of the given curve, and therefore retains its direction unchanged, 
when we pass from a near point p«, on one side of the given point Pf to a near point 
p., on the other side of it.

(76.) To illustrate this by a contrasted case, let o bo the point in whichtbotaa- 
gent to the given curve at Pa is cut by tbe normal plane at p ; or a point of the sec
tion, by that plane, of the developable surface of tangaits. Nto shall then have

* In the language of infinitesimals, two consecutive osculating spheres, to any 
curve in space, intersect each other in an osculating circle to that curve.

    
 



CHAP. III.] ENVELOPE OF SPHERE WITH VARYING RADIUS. 601 

the sufficiently approximate expressions,

I s® \ — s*r*
CXXIX. .. PG = p. - p - 1 * + 3^5 jr.= -g------ — — pQ2 t 2pqi,

with the signiAcations 397, (10.) of Q2 and Qs; hence the point p of tbe curve is 
(as is well known) a cusp ot the section (o) of the developable surface of tangents 
(comp. 397, (15.)), because the tangential component (—PQs) of the vector chord 
(po) has here a fixed direction, namely that of the outicard radius (kp prolonged) 
of tbe circle of curvature at P *. while it is now the normal component (— 2pQ3) 
.which changes direction, when the arc s ot the curoe changes sign. Et tbe same 
time we see* that the equation ot this last section (o) may ultimatelg be thus ex
pressed :

(-PQ2?

comparing which with the equation CXXVIII., we see that although, in each ease, 
the curvature of the section is infinite, at the point P of the carce, yet the normal 
component (or co-ordinate) varies (ultimately) as the power J of the tanffential com
ponent, for the section (o) of the Surface of Tangents : whereas the former compo
nent varies by (74.) as tho power J of the latter, for the corresponding section (c) 
of the Locus of the Osculating Circle,

fn,') It follows also that the curve (p) itself, although it is not a cusp-edge of 
the last-mentioned locus (8.), while it is such on the sur/uce of tangents, is yet a 
Singular Line upon that locus likewise; the nature and origin of which line will 
perhaps be seen more clearly, by reverting to the view (8.), (22.), (72.), accord
ing to which that Locus of a Circle is at the same time tlie Envelope of a Sphere.

(78.) In general, if we suppose that a and Ji are ang two real functions, of the 
vector and scalar kinds, of ang one real and scalar variable, t, and that o’, Jt', and 
a", E", &c. denote their successive derivatives, taken with respect to it, then a 
may bo conceived to be the variable vector efi a point a o{ a curve in space, and J? to 
be tbe variable radius ot a sphere, which has its centre at that point s, but alters ge
nerally its magnitude, at the same time that it altera its position, by the motion of 
its centre along the curve (s).
. (79-) Passing from one such sphere, with centre 8 and radius. E, considered as

and represented by the scalar equation,f
(o - p)’ -I- Ii’ = 0, LXXXIX.,

in which p is noia conceived to be the vector of a variable point P upon its surface, 
to a near sphere of the same sgstem, for which a, 8, and TJ are replaced by <rt, 8(, and 
TJi, where t is supposed to be small, vre easily infer (comp. 386, (4.)) that the equa
tion;

S<r'(<r - p) + Jf/r = 0, XCI.,
which is formed from LXXXIX. by once derivating a and S with respect to t, but

* Compare the first Note to page 594.
t This equation, anil a few others which we shall require, occurreij before in this 

series, but in a connexion so difierent, that it appears convenient to repeat them 
here.

4 H
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treating p as constant, represents tlie real plane (comp. 282, (12.)) of the (real or 
inwginary) circle, which is the ultimate intersection of the near sphere with the 
given one; the radius of this circle, which.we shall call r, being found by tho follow
ing formula,

CXXXI. . . ria’i = + o”), or CXXXl'. . . r’To'’ = (Tlo'^ - R’’),

and being therefore real when
CXXXn. . . -I- a'^ < 0, or CXXXII'. . . !!!*< T<r'«;

while the centre, any K, of the circle is always real, and its vector is,
CXXXI".. . OK = (c = <r+ JlRo'-';

and the plane XCI. of the same circle is parallel to the normal plane ot the CKPUff 
(s).

(80.) With the condition CXXXII., thc two scalar eqmtions, LXXXIX. and 
XCI., represent then jointly a real circle; and the locus of all such circles (comp. 
386, (6.)) is easily proved to be also tbe envelope of all the spheres, dt which one is 
represented by the equation LXXXIX. alone ; each such sphere touching this locus, 
in the whole extent of the corresponding circle of the system.

(81.) The plane XCI., considered as waryiny with f, has a developable surface 
for its envelope ; and the real right line, or generatrix, along which one touches the 
other, is represented (comp, again 386, (6.)) by the system of the two scalar equa
tions, XCI. and

S(r"(<r-p) + <r's + (.Rfl')* = O, XCIII.;

where p is now the ounaWc vector of the line of contact, although it has been treated 
as constant (comp. 386, (4.)), in the process by which we are here conceived to pass, 
by a second derivation, from LXXXIX. through XCI. to XCIII.

(82.) This teal right line (81.) meets generally tbe sphere, and also the circle (as 
being in its plane), in two (real or imaginary) points, say Pi, Pa; and the curut'/ineur 
locus ol all such points forms generally a species of singular line,* upon the superfi
cial locus (or envelope") recently considered (80.) ; or rather it forms in general two 
branches (real or Imaginary) of such a fine; which generally two-branched line (or 
curve) is the (real or imaginary) envelope (comp. 386, (8.)), of all the circlet of the- 
system. "

(83.) The equation.
So'<r"((r-p) = 0, XCII.,

which now represents (comp. 876, V.) the osculcding plane to the curve (s), shows

* Called by Monge an arete de rebroustement, except in the case to which we 
shall next proceed, when its two branches' coincide. The envelope (80.) of a varying 
sphere has been considered in two distinct Sections, § XXII. and § XXVI., of the 
Application de VAnalyse a la Geometrie ; but the author of that great work does 
not appear to have perceived the interpretation which will soon bo pointed out, of tho 
condition of such coincidence. Meantime it may be mentioned, in passing, that qua
ternions are found to confirm the geometrical result, that when the two branches (Pi) 
(pc) are distinct, then each is a cusp-edge of the surface ; but that when they are 
coincident, the singular line (p) in wliich they merge has then a different character.
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if

that this plane through the centre s of tbe sphere is perpendicular to the right line 
(81,), and consequently contains the perpendicular let fall from that centre on that 
line: the foot p of this last perpendicular is therefore found by combining the three 
linear and scalar equations, XCI., XCII., XCIII., and its vector is,

oo' + ER a"CXXXIII.. . op = p = tr + ^ -,Na a
..g=-o’s-E:s-EE" = 'i:a'i-(2222')'.

(84.) The condition qf contact of tbe riyAt ftns (81.) with the sphere (78.), or 
with the circle (79.\ or the condition of contact between two consecutive* circles of 
the system (80.), or finally the condition of coincidence ot the two branches (82.) 
of tliat singular line upon the surface which is touched by all those circles, is at the 
same time the condition of coexistence of the/bur scalar equations, LXXXIX., XCI., 
XCII., XCIII.; it is therefore expressed by the equation (comp. CXXXIII.),

CXXXV. . . 222 (V<r'/')« = (yo' + J222'a")2;

which may also be thus written,t
CXXXVI.. . (22So'<r" - 22'y)® = {Ri + ir'a) (222(r"2 + g’), 

or thus, CXXXVII. . , 22«(22'2 + o'*) (Vo'o")’ = {go'^ + EE'&ady;
the scalar variable t (IS.), with respect to which the derivalions are performed, re
maining still entirely arbitrary, but tbe point p, which is determined by the formula 
CXXXIII., being now situated on both the sphere and the circle: and its curoiHnear 
locus, which we may call the curve (p), being now the singular line itself, in its re-

* Compare the Note to page 681.
f In page 372 of Lionville’s Edition already cited, or in page 3*25 of the Fourth 

Edition (Paris, 1809), of the Application de VAnalyse, &c., it will be found that 
this condition is assigned by Monge, as that of the evanescence of a certain radical, 
under the form (an accidentally omitted exponent of jr"in the second part of the first 
member being here restored) ;

+ rr'rr") — A-]’ + — fttj = 0;

in winch, he writes, for abridgment,

and rjr, tt are the three rectangular co-ordinates of the centre of a moving sphere, 
considered as functions of its radius a. Accordingly, if we change to a, Wnd <r to 

+J<P + supposing also that K = a'= I, and 22"= a" = 0, whereby g is changed 
to — A^, and 22’’+ to h^, in the condition CXXXVI., that condition takes, by the 
rules of quaternions, the exact form of the equation cited iu this Note : which, for the 
sake of reference, we shall call, for the present, the Equation of hfonge, although 
it does not appear to have been either interpreted or integrated by that illustrious 
author. Indeed, if Monge had not hastened over this case of coincident branches, 
on which he sceinp to have designed to return in a subsequent Memoir (unhappily 
not written, or not published), he would scarcely have chosen such a symbol as As 
(instead of — A’), to denote a quantity which is essentially negative, whenever (as 
here) the envelope of the sphere is real.
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duced and one-branched state. And the laetform CXXXVII. shows, what was to 
be expected from geometiy, that when this condition of coincidence is satisfied,^ tlic 
earlier condition of reality CXXXII, is satisfied also: together with this other in
equality,

CXL. . . rr’ =

cxxxvni.. . < 0,
which then results from the form CXXXVI.

(85.) The equations CXXXI., CXXXIV., and tbe general formula 889, IV., 
give the expressions,

CXL...n-.C^\
where r is still the radius of the circle of contact of the sphere with its envelope, and 
ri is the radius of curvature of the locus of the centre s of the same variable sphere; 
whence it is easy to infer, that the condition CXXXV. may be reduced to the fol
lowing very simple form (comp. XXXVI'. and XLII.) ;

eXLI.. . (r'ri)’ = (J?ir)’ i or CXLI'. . - hdr=±J?dIJ,- 
the independent variable being still arbitrary.

(86.) If the are of the curve (s) be taken as that variable t, the form CXXXVI. 
of the same condition is easily reduced to the following,

CXLII... = (JJJ?')’ + with CXLIII.. . g = 1 - (.RRf;
derivating then, and dividing by 2g, -wo have this new differential equation, which is 
of linear form with respect Jo JdW, whereas the condition itself may be considered as 
a differential equation of the second degree, as well as of the second order-,*

eXLIV. . . JJjS' = ri(<zr,)'; or CXLV. . . ri’n"+r,ri’(h'-1) + «= 0, 
if eXLVI. ..u = itKc= IfDtn, and therefore CXLVI I. . . «’ = S? - r^, 
by CXXXI. or CXXXI’., because we have now,

CXLVIII.. . o'’ = -l, or Tff'=l, or d< = Td<r:
so that the new scalar variable, RR’, or u, with respect to which the linear equation 
eXLIV. or eXLV. is only of the second order, represents the perpendicular height- ’̂ 
of the centre s of the sphere, above the plane o( the circle, considered as a function 
of the arc (<) of the enros (s), and as positive when the radius R of tho sphere in
creases, for positive motion along that curve, or for an increasing value of its arc.

If the curve (s) be given, ot even if we only know the law according to 
which its radius of curvature (ri) depends on its arc (f), the coefficients of the linear 
equation CSIX. are Gnoien ; and if we succeed in integrating that equation, so as to

* We shall soon assign the complete integral oPthe differential equation in qua- 
terniont (84.), and also that of the corresponding Equation of Monge, cited in the 
preceding Note.

+ It will be found that this new Malar u, if we abstract from tign, corresponds 
precisely to the p of earlier sub-articles, although presenting itself in a different con
nexion ! for tlie tphere (78.), and the circle under the condition (84.), will
soon bo shown to be tho otculating sphere and circle to the recent curve (p), or to 
the lingular line (84.) upon the turface at present considered, that is, on tho locut 
or enoelops (80.).
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find an expression for tbe perpendicular u as a function of that are t, we shall then 
be able to express also, as functions of tho same arc, the radii R and r of the sphere 
and circle, by the formulae,

CXLIX. ..+r=izri=n(l-«0, and CL.. . R^ = 2j’«d< = «s + ri’(l-a')»; 
the third scalar constant, which the integral 2 Judt would otherwise introduce into 
tbe expression for being in this manner determined, by means of the other two, 
which arise from the integration of the equation above mentioned.

(88.) For example, it may happen that the locus of the centre s of the sphere 
has a constant curvature, or that ri const.; and then the complete integral of the 
linear equation CXLV. is at once seen to ba of tbe form, '

CLI. .. V = a sin (ri-t< + b"),
a and 6 being two arbitrarg (but scalar) constants; after which we may write, by 
(87.),

CLII.. . +r = ri.—ocos(rr'< + 6); CLIII. . . jB* = rie- 2aricos(ri->t+i)+ o’; 

so that, in this case, both the radii, r and R, of circle and sphere, are periodical 
functions of the arc of the curve (s).

(89.) In general, if that curve (s) be cornpletelg given, so that the vector o- ia a 
j5noa»«y«»ic<ion of a scalar variable, and if an expression have been found (or given) 
for the scalar R which satisfies any one of the forms of the condition (84.), we can 
then determine also the vector p, by the formula CXXXIII., as a function of tbe 
same variable; and so can assign tlie point P of the singular line (84.), which cor
responds to any given position of the centre s of the sphere. For this purpose we 
have, when the arc of the curve (s) is taken, as in (86.), for the independent varia
ble t, the formula,

CLIV. . . p = a — ua — (1 — «') a""' = n — ua' — ri’u'a”,
if Cl be the vector of the centre, any ki, of tlie osculating circle at s fo that given 
curve, so^that (comp. 389, XI.) it has the value,

CLV. . . OKI = Cl = <r - a"-’ = a + ri’a", with CLV'. . . a'’ + ri"S = 0.
If tlien we denote by p the distance ot the point p from Mis centre Kj, and attend to 
the linear equation CXLV., we see that

CLVI. .. o = ^=Tfp - ci) = V(»’ + rPu's), 
and CLVI'.. . eo'= rir/ui', with To'=l;
or more generally, CLVII. . . vv'si = rir'iu',
if CLVII'. ..a= JJB'si'-', and CLVII''. .. si = JTda,
while ■ CLVr. . . v’ = u^ + ri^u'^si'-’;

80 that Si denotes the arc of the carpe (s), when the independent variable t is again 
left arbitrary. This distance, v, is therefore constant (= a) in the case (88.), namely 
when the' radius of curvature n of that curve is itself n constant quantity.

(90.) lyhen si' = Ta'= 1, as in CXLVIII., the part <r —ua' of the first expres
sion CLIV. for p becomes = c, by CXXXI". and CXLVI.; attending then to CLV., 
we have tlie scalar quotient, '

CLVIII. . .
a- >ci

■whence generally,
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CLIX'. . . -a —

the independent variable t being again arbitrary. Accordingly, if we combine tbe 
general expression CXXXIII. for p, with the expression CXXXI". for <c, and with 
the following for ki (comp. 389, IV.),

o’’ 
CLIX. . . Cl = o + for an arbitrary scalar variable,Vo a

wc easily deduce this new form of the scalar quotient,

—= X + ({SJS'y - JtlfSa’-'a"') a'-” ;

which agrees with CLVIII'., because — o'’ and S —, = 
O Si

(91.) It has then been fully shown, how to determine the vector p as a, function 
of the scalar t, when a and Ji are fioo hnown functions ol that variable, which satisfy 
any one of the forms of the condition (84.). It must then be possible to determine 
also the derived vectors, p’, p", &c., as functions of the same variable; and accord
ingly this can be done, by derivating any three of the/bur scalar equations, LXXXIX. 
XCI. XCII. XCIII., of which that condition (84.) expresses the coexistence. Now 
if we derivate a first time the two first of these, and then reduce by the second and 
fourth, we get tbe equations,

CLX. . . Sp'(o —p) = 0, Sp'o' = 0, whence CLX*.. . p'|| Vo'(o—p); 
and although this last formula only determines the direction of l)ie tangent to the sin- ■ 
gular line at p, namely that of the common tangent at that point to two consecutive 
circles (84.), yet it enables us to infer, by the remaining equation XCII., that 

CLXI. . . p'-L o", p’ll Vo'o", and CLXI'. . . Sp'a"= 0 j 
reducing by which the derivative of XCIII., we find,

Sa"'(<r- p) + SSog" + (SR')"=0, .« XCIV.,
the scalar variable being still arbitrary. And conversely, the system* of tho four 
eguations'lj'X.'X.'Sl'S.. XCI. XCIII. XCIV. gives the three equations CLX. CLXI'., 
and so conducts to the equation XCII., and thence to the condition (84.); unless we 
suppose that p is a constant vector a, or that the variable sphere passes through a 
fixed point k, a case which we do not here consider, because in it the singular line 
(p) would reduce itself to that one point,

(92.) Derivating the two equations CLX., and reducing with the help ot 
CLXI'., we find these new equations,

CLXII.. . Sp"(<r - p) - p’’ = 0; Sp"<r' = 0; 
CLXIII. . . Sp"'(<r-p)-8Sp'p" = 0.whence

* In thc language of infinitesimals, this system of equations expresses that four 
consecutive tpheret intersect, in ono common point p. Wiien that point happena 
to be a fixed one, the condition (84.) requires that we should have tbe relation 
8o'o"(o’ — o) = 0; or geometrically, that the curve (s) should be in a plane through 
the fixed point, which is then a singular point of the envelope.
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We are led then, by elimination of the derivatives of a, to thc system of the three 
equations 395, VII.; and we conclude, that the point s it the centre, and the radius 
R is the radius, of the osculating sphere* to the singular line (p) : whence it*is easy 
to infer also, that the plane of contact (79.) of the sphere with its envelope ia the 
osculai ing plane, and that the circle of contact (80.) is the osculating circle (comp. 
(72.)), to the same curve (p), at the point where two consecutive circles touch one 
another (84.).

(93.) /n general, and even without the condition (84.), the tangent to a brancA 
(82.) of tho curvilinear envelope of the circles of the system, at any point Pi of that 
branch, has*the direction represented by the vector V<T'((r- pi), of the tangent to the 
circle at that point; hut when that condition is satisfied, so that tbe two branches 
of tlie singular line'cotncide, the point p of that line is tn the osculating plane (83.) 
to the curve (s): and <Aen the equation XCII. shows that the tangent p’, or 
Vff' (<r — p), to the line, is perpendicular to a", or parallel to Vo'a" (comp, CLXI.), 
and therefore that the singular line crosses that plane at right angles.

(94.) It follows that, with the condition (84.), the singular line (p) is an ortho
gonal trajectory to tlie system of osculating planes to the curve (s); and whereas, 
when this last curve is given, there ought to be one such trajectory for every point 
of a given osculating plane, this circumstance is analytically represented, in our re
cent calculations, by the biordinal form of the differential equation CXLV., of which 
the complete integral must be conceived (87.) to involve generally, as in the case 
(88.), two arbitrary constants.

(95.) It follows also that, with the same condition of coincidence of branches, 
the singular line (p) must have the ettrve (s) for the cusp-edge ot its polar develop
able ; or that the sphere, with s for centre, and with R for radius, must be the oscu
lating sphere to the curve (p), as otherwise found by calculation in (92.) : while the 
circle (80.) must be, as before, the osculating circle to that curve.

(96.) Accordingly, all equations, and inequalities, which have been stated in tho 
recent sub-articles (79.), &c., respecting the envelope of a moving sphere with va
riable radius, under that contlition (84.), and without any special selection of the 
Independent variable, admit of being verified, by means of the earlier formula! for 
the osculating circle and sphere to a curve (p) treated as a given one, when the arc 
(s') of that curve is taken as such a variable.

(97.) For example, we had lately the two inequalities, o'* < 0, CXXXII., 
and Rtf’^ q-p’ < 0, CXXXVIII. And accordingly the earlier sub-articles (22.), 
(23.) give, for those two combinations, the essentially negative values,

CLXrV. ..71’3 + _ p-iriR'i; CLXV. .. 7J3<t''«+ g^=- ((nrfy;

* In the language of infinitesimals (comp, the preceding Note), if every four 
consecutive spheres of a system intersect in one point of a curve, then each sphere 
passes through four consecutive points of that curve. Simple as this geometrical 
reasoning is, the writer is not aware that it has been anticipated; and indeed he is 
at present led to suppose that tliis whole tlieory, of the Locus of the Osculating 
Circle, as the Envelope of the Osculating Sphere, is new. Monge had however 
considered, but rejected (page 374 of Lionville’s Edition), the case of a system of 
circles having each a simple contact with a curve in space.
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b' = ±p’,’ ri«,'si'-> =p'rin-‘ =p'r j

in obtaining which last, the following transformations have been employed:
^CLXVI... <r"2 = -»'2-Ji2r-»; CLXVI I.

(98.) As regards tbe verification of the eguatiom, it may be sufficient to give one 
example; and we shall take for it the last general form CLVII. of the differential 
equation of condition (84.). For this purpose we may now write, by (22.) and 
(23.),

CLXVIII. . . si' = + », « = +p,

and have only to observe that

CLXIX. . . i(p’+p'’r’)'=p'r(r + p'r)', because p = r'r.

(99.) If we denote by ci, cs, cs the first members of the equations XCI., XCIII., 
XCIV., then besides the equation LXXXIX., which may be regarded as a mere de
finition of the radius jR, we have ci = 0 for the whole of the superficial locus or enve
lope (80.); but we have not also C2 = 0, except for a point on one or other of the 
two (generally distinct) iranches of the singular line (82.) upon that locus. And 
if, at any other and ordinary point, we cut the surface by a plane perpendicular to 
the circle at that point, we find, by a process of the same kind as some which have 
been already employed, expressions for the tangential and normal components of the 
vector chord, whereof the principal terms involve the scalar cj as a factor, while the 
latter varies (ultimately) as the square of the former, so that the curvature of the 
section \a finite and known, but tends to become infinite when c^ tends to zero,

(100.) If tlie condition of coincidence (84.) be not satisfied, so that the two 
branches of the singular line (82.) remain ' distinct, and that thus c»=O, but not 
C3 = 0 (comp. (91.)), for any ordinary point on one ol those two branches, then if we 
cut the surface at tliat point by a plane perpendicular to the branch, or to the circle 
which touches it there, 'we find an ultimate expression for the vector chord which 
involves the scalar cs as a factor, and of which the normal component varies .as the 
sesquiplicate power of the tangential one: so that we have here the case of a semi- 
cubical cUsp, and each branch ol the singular tine is a cusp-edge* ol the surface, 
exactly in the same known sense (comp. (76.)) os that in which a curve of double 
curvature is generally such, on the developable locus ol its tanyents.

(101.) But wlieii the condition (84.) u satisfied, so that the two branches coin
cide, and that thus (comp, again (91.)) we have at once the three equations,

* CLXX. . . Cl = 0, C2 = 0, Cs = 0,
then the terms, which were lately the principal ones (100.), disappear: and a new 
expression arises, for the vector chord of a section of the surface, made by a plane 
perpendicular to the singular line, which (when wo take t = s, as in (96.)) is found 
to admit of being identified with the formula CXVII., and of course conducts to 
precisely the same system of consequences j the tangential component now varying 
nltimately as the cube, and the normal component as tho fourth power of a small 
variable, so that the cuspidal property of tbe point P of the section no longer exists) 
although the curvature at tliat point is still infinite, as in (74.) : and tho Singular 
Line, reduced now to a single branch, to which all the circles of the system osculate.

• Compare the Note to page 602.
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(92.), (95.), is not a cttsp-edge of the iSur/acc, as bad been otherwise found before 
(77.), but a line of a different character* which may thus be regarded, with refe
rence to a more general Envelope (80.),.as the result of a Fusion (84.) of Two Cusp- 
Edges.

(102.) The condition of such/usfon (or coinddence) has been seen (84.) to be 
expressible by the differential equedion of tho second order, and second degree,

( KSo’o” - R'g'f + p’), CXXXVI.
with P = -<t'»-(RR')', CXXXIV.
and with the independent variable arbitrary. And we are now prepared to assign 
the complete general integral^ of this differential equation; namely the system of 
tho two following equations (comp. 395, (7.) and (14.)), of the vector and scalar 
kinds.

- ------------------ PT - -------------

in which p is an arbitrary vector function of ang scalar variable, (, and which ex
press, when geometrically interpreted, that a is the variable vector of the centre s, 
and that E is tho variable radius, of the oscuZafinp sphere to an arbitrary curve (y), 
of which the variable vector of a point P is p.

(103.) In fact, if we met the cited equation of condition CXXXVI., g represent
ing therein the expression CXXXIV., without any previous knowledge of its mean
ing or origin, we might first, by the rules of quaternions, and as a mere affair of 
calculation, transform it to tho equation .CXXXV.; which would evidently allow 
the assumption of the formula CXXXIII., p being treated as an -auxiliary vector, 
which satisfies (in virtue of the supposed condition) the system of the four scalar 
equations, LXXXIX., XCI.> XCII., XCIII.; whence derivating and combining, as 
in (91.) and (92.), wo are led to a new system^ of Jour scalar equations, whereof one

• Compare tho Note to page 602. Monge (in page 872 of Liouville’s Edition) has 
tlie remark, that (when a certain radical vanishes) “ les deux branches de la courbe 
touchee par tontcs les caracteristiques se confondent en une seule: et cette courbe, 
sans cesser d’etre une ligne singulifere de la surface, n’est plus nne arete de rebrous- 
sement, elle est une ligne de striction.” The propriety of this last ntyne^ “ line of 
striction," appears to the present writer questionable: although he has confirmed, as 
above, by calculations with quaternions, the result that, in the case referred to, the 
singular line is not a cusp-edge, Monge does not seem to have perceived that, in 
the same case affusion, the curved line in question is not merely touched, but oscu
lated, by all thc circles of the system.

t Compare.the first Note to page 604. Wc say here, general integral, because a 
less general one, although involving one arbitrary function (of tlio scalar kind), 
will soon be pointed out.

J Tho Eijnation of lUonge (comp, tho second Note to page 603) may bo consi
dered as the condition of coexistence of tho four following equations, in which p, tp, 
sr are supposed to be functions of n, and to be differentiated or derivated as such ;

4 I
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is again the equation LXXXIX., and may be written under the form CLXXII.; 
while the three others are those formerly numbered as 395, VII., and conduct (ex
cept in a particular case which we shall presently consider) to the vector expression 
CLXXI., which conversely is sufficient to represent them, all derivatives of ff and of 
R being thus eliminated.

(104.) The cose just now alluded to, in which tho general integral (102.) is re
placed by a less general form, is the case (91.) when the variaile sphere passes 
through a fixed point A, to which point, in tliat case, the singular line reduces itself. 
And the integral equations,* which then replace CLXXI. and CLXXII., may bo 
thus written:
CLXXIII... ir = a + Z/3 + ay, with u = F(t), and CLXXIV... 7J = T(</3+ ay);

(1) . . . (a!-^)’-l- (y-i//)2 + (z-jr)s = a2i
(2) . . . (a!-0)^' + (y-i//)i/('+ (2 — ir)7r' + a = 0;
(3) .. . (f- rr)rr"-l-l — =
(4) . . . + — =

whereof the first three have been employed .by Mongo himself, but tho fourth does 
not seem to have been perceived by him, the condition of evanescence of a radical 
having been used in its stead. And by a translation of quaternion results, above 
deduced, into the usual language of analysis, it is found that the complete and gene
ral integral, of the non-linear differential equation of the second order, which is ob
tained by the elimination of x, g, 2 between these four, is expressed by a new sgstem 
ot tom equations, tbe equation (1) being one ot them; and the three others, in which 
X, g, X are now treated as arhitrarg functions of a, and are derivated as such, being 
tbe following:

(5) ... (a-^)®’+ (y-<^')y' + (z-7r)2' = 0;
(6) ... (®-^)®"+(y-i/')y"+ (z-7r)2"+a:'» + y'»+y2=:0;
(7) . . . Cg-,/,)g"’ + Cz-n)x"'+ d;(x'x" + g'g" + s’z") = 0.

By treating a as a function of some oMer independent variable, t, the terms + a and 
+1, in (2) and (3), come to be replaced by + aa' and + aa"+ a’’; and tho slightly 
more general form, which Monge’s Equation thus assumes, has still its complete 
general integral assigned by the system (1) (5) (6) (7), if y, 2 (as well as a) be 
now regarded as arbitrary functions of the new variable t, in the place of which it is 
permitted (for instance) to take x, aud so to write = 1, *" = 0: only faio arbitrarg 
functions thus entering, in the last analysis, into the general solution, as was to be 
expected from the form of the equation.

* The particular integral corresponding, of the Equation of Monge, is expressed 
by the following system :

= a + et + lu, if/ = b +Jl + mu, sr = c +gt + nw,
(et + ZM)s + (yi + mu)’ + {gt + n«)* = a’;

abcdefglmn being nine arbitrarg constants, while t and u are two functions ot a, 
whereof one is arbitrarg, but tho other is algebraically deduced from It, by means of 
tho fourth equation. The writer is not aware that either of these integrals has been 
assigned before.
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the second scalar coefficient, u, being hero an arlitrarg function of tho first 
scalar coefBcient, or of the independent variable f, and a, ft y being tAre« arbi- 
trarg but constant vectors: so that the curve (s) is now obliged to lie in some one 
plane* through the^ied point A, but remains in other respects arbitrarg. Accord
ingly it will be found that this last integral sgstem, although Zeii general than tho 
former system (102.), and not properly included in it, satisfies the differential equa
tion CXXXVI.; whereof the two members acquire, by tho substitutions indicated, 
this common value,

CLXXV. . . (ZiS<r'y--7J'y)s = &c. = 7i^P(tB'-«)’ti"’(V|37)«.
(105.) Other problems might be proposed and resolved, with the help of formulmf 

already given, respecting the properties or affections of curves in space which depend 
on the fourth pouter (»*) of the are, or on the fourth derivative D/p or r"' of the vec
tor p,; but it is time to conclude this series of sub-articles, which has extended to a 
much greater length than was designed, by observing that, in virtue of the vector 
form 396, XI. for tho equation of a circle of curvature, the Locus (8.) of the Oscu
lating Circle may be concisely but sufficiently represented by the Eector Equation,

CLXXVI. . . V -i- V. = 0,

* Compare the Note to page 606.
t We might for example employ the formula VI. for k", iu conjunction with 

ono of the expressions 397, XCI. for k', to determine, by the general formula 389, 
IV., the vector (say 5) of the centre of curvature of the curve (k), and therefore also 
the radius of curvature of that curve, which is the locus of the centres of curvature oi 
the given curve (p), supposed to be in general one of douiZe curvature. After a few 
reductions, with the help of XII., we should thus find the equations,

' CLXXVII. ■ • V p =

CLXXVin. . . S==k + -^=:k + + ,
V— 1 I 

k' d» rdfc
iu which last the denominator is a quaternion, and the scalar variable is arbitrary ; 
whence also,

CLXXIX. .. Radius of curvature of curve (k),
or of locus of centres of osculating circles to a given curve (p) in space,

_ Mr/Zl dpy ZpV-l-»
~ yds ((r di ] J J

with the verification, that for tho case of a plane curve (p), for which therefore 
Ti , , 1 „ dP ,
— = 1, and - = 0 ='~p» ^0 have thus the olemcntai’y expression,

CLXXX. . . Radius of Curvature of Plane Evolute =■ +
r being still the radius of curvature, and s the orc, of the given curve.
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which apparently involves only one scalar variable, s, namely, the arc of the carve 
(f), tbe other scalar variable, such as t, which corresponds (69.) to the arc of the eir
ele, disappearing under the sign X; and that the surface, which was called in (8.) 
the Circumscribed Developable, is now seen to be in fact circumscribed to tliat Lo
cus, or Envelope, in a certain singular (or eminent) tense, as toucAin^ it along its 
Singular Line.

399. When we take account of the fifth power (s*) of the arc, 
the expression for />, receives a new term, and becomes (comp. 
398, L),

I. . . p, = P + ST + |s’t' + + -ilijS’T'’;
and although some of the consequences of such an expression have 
been already considered, especially as regards the general determi
nation of what has been above called the Osculating Twisted Cubic 
to a curve of double curvature, or the gauche curve of the third de
gree which has contact of the fifth order with a given curve in space, 
yet, without repeating any calculations already made, some addi
tional light may be thrown on the subject as follows.

(1.) As regards tho successive deduction of the derived vectors in the formula I., 
it may be remarked that if we write (comp. 898, LVI., LXI.),

II. . . = r(») = a„r + 6„rr' + c„rv,
we shall have, generally,

III. . . a„a = a'„-r-'b,„ 6,.,! =6'„ + r->a„-r‘’Cfl, e,.u=c'« + r-i6„, 
witli the initial values,

IV. ..ao=l, 60=0,

whence V. .. ’’
l_a3 = 3r-3r,

co=O, or IV’. ..01 = 0, 61 = r', ci = O;
62 = (r-l)', C2 = r-lr-',
63 = (r-*)" — r'® — r->r2, C3 = r (r-’^r- >)'t 

as in the expressions 397, VI. for r", and 398, IV. for r'"; the corresponding co-
elGcicnts of r" being in like manner found to be,

z«i=- 2(r-2)" + ((r-i)')«+r-2(r-« + r’);
VI. . . )6* = (r-i)'"-2(r-3)'-3(r-'ri)'ri;

(ci = r’i(r')" + 3((r->yr'>)' —»’'*r'>(r-’ + r"’) j

and being sufficient for the investigation of all affections or properties of a curve in 
space, which depend only on the_p_p6 power of tlie arc ».

(2.) For the helix the two curvatures are constant, so that all tho derivatives of 
tho two radii r and r vanish; the expressions become therefore greatly simplified, 
and a law is easily perceived, allowing us to sum the infinite series for p,, and so 
to obtain the following rigorous expressions for tbe co-ordinates* x,, y„ x, of this

• We have here, and in this whole investigation, on instance of the facility with 
which Quaternions can he combined with co-ordinates, whenever the geometrical na-

    
 



CHAP, in.] OSCULATING TWISTED CUBIC TO HELIX. 613
particular curve, instead of those which were developed generally in 398, LVIII., 
but only as far as s* inclusive:

VII... X, = 13(r’t + r"* sin t); y, = Pr'i vers <; z, = Pr-it’i (< - sin t);

where I and t are an auxiliary constant and variable, namely,
VIII.. . I = (r-» + r-’)4 = r sin JI, t = I 'j,

I being thus what was denoted in earlier formula) by TX“>, and t being the angle be
tween two axial planes; while the origin is still placed at the point P of the curve, 
and the tangent, normal, and binormal are still made the axes of xyz.

(3.) The cone of the second order, 398, (40.), which has generally a contact of 
the fifth order with a proposed curve in yjace, at a point r taken for vertex, has in 
this case of the helix the equation (comp. 398, LVII.* and LXIX.),

Accordingly it can bo shown, by elementary methods, that if wo write, for a mo
ment.

X. ../(<)= 8 - sin t) (3t + 7 sin t) — 20 vers’ t,
wc have tlie eight evanescent values,

XI. . . /O =/'0 =/"0 =/"'0 =/"0 = /'^O =/"0 ^/’“O = 0 ;

whence it is easy to infer that this eone IX. has (in the present example, although 
not generally) a contact as high as the sixth order]- with the curve, of which the 
co-ordinates have here the expressions VII.; and consequently that the cone in ques
tion must wholly contain the osculating twisted cubic to that curve.

ture of a question may render it convenient so to combine them, by offering to onr 
notice any obvious planes of reference. If it bo thought useful to pass, to a system 
connected more immediately with tho right cglinder than with the helix, wo may 
write,

i
x, = f(r'’a!, - r->a-,) = l-r~' sin t, 
y, = Pr’i - y, = Pr-l cos t, 
z, = I(r"t», + r-’x,) = PrU,

where I’r’’ =r8in’‘/iris tho radius of the cylinder, with converse formulas easily as
signed.

• In the corresponding equation 398, LXVII., the coefficient of 6ac ought to 

have been printed as , like the coefficient of Hxz in the equation LVII.

f Or in modern language, seven-point contact, in tbe sense that the cone passes, 
in this case, through seven consecutive points of tho curve. It may be remarked 
that tho gauche curve of the fourth degree, or the quartic curve, in which thia cone 
cuts tho cglinder of revolution whereon the helix is traced (cutting also in it a cer
tain other cylindei' of the second order), and which has the point r for a double point, 
crosses the helix by one of its two branches at that point, while it has seven-point 
contact with the same helix by its other branch; and that thus tho fact of calcula
tion, expressed by the formula XL, is geometrically accounted for.
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(4.) In general, to find a second locus for such a cubic curve, tho method of 
recent sub-articics (398, (38.) &c.) leads us to form tho equation (398, LXVI.) 
of a cylinder of the second order, or briefly of a quadric* cylinder, which liko 
the quadric cone (3.) shall have contact of the fifth order with the proposed 
curve in space, at the given point p; tho ratios oi abc, which determine tho 
direction of a generating line fe, being obliged for this purpose to satisfy a certain 
equation of condition (398, LXVIII.), of which the form indicates that tho locus of 
this Zine PE is generally a certain cu5ic cone, having the tangent (say rr) to tho 
curve for a nodal side : along which side it is touched, not only (like tho quadric 
cone) by the osculating plane (2 = 0) to that given curve, bnt also by a second 
plane, whereof the equation (gy + bz=0, or after reductions y—5/2 = 0) shows 
that tbe second branch of the cubic cone crosses the first, branch, or tbe quadric cone, 
or the osculating plane to the curve, at an angle of which the trigonometric cotan
gent is equal to half the differential of the radius (r) q/"second curvature, divided 
by the differential of the arc (s) ; so that this eeconcZ tangent plane to tho cone coin
cides with the rectifying plane to tho curve, when the second curvature happens to be 
constant. The tangent FT therefore counts as three of the six common sides of the 
two cones with p for vertex : and the three other common sides, for the assigning of 
which it has been shown (in 398, (41.)) how to form a cubic equation in bi 0, aro 
the parallels from that point P to the three real or imaginary asymptotes^ of the' 
twisted cubic, and aro generating lines pe of three quadric cylinders, whereof one at 
least is necessarily real, and contains, as a second locus, that sought osculating gauche 
curve of the third degree. 1

(5.) In applying this general method to the case of the helix, it is found that tlie 
cnbic cone breaks up, in this example, into a system of a new quadric cone, which 
touches i\io former quadric cone IX. along the tangent pt to the curve (the two other 
common sides of these two cones being imaginary'), and, of a plane (y = 0), namely 
the rectifying plane (comp. (4.)) of the helix, or the tangent plane to the cylinder of 
revolution on wiiich that given curve is traced: and that this last plane cuts tho 
first quadric cone in two real right lines, the tangent being again one of them, and 
tbe other having tho sought direction of a real asymptote to tho sought osculating 
twisted cubic. Without entering here into details of calculation, the resulting equa
tion of the reaZf quadric cylinder, on which that sought gauche curve is situated, 
may be at once stated to be (with the present system of co-ordinates).

* So called by Dr. Salmon, in his Treatise already cited. Con^are the first 
Note to page 591 of these Elements.

t Compare again the Note last referred to.
t As regards the two imaginary quadric cylinders, their equations can bo formed 

by tho same general method, employing as generating linos tho two imaginary com
mon sides (6.), of tbe eone IX., and of that other quadric cone above referred to, 
which is here a separable part of the general cubic locus, and has for equation, 

IX’...^y2 = 5;xz-t-^3".l-2)z^

It seems sufficient here to remark, that by taking the sum and differonco of the equa
tions of those two imaginary cylinders, two new real quadric surfaces aro obtained,
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in such a manner that tf we set aside the right line,

which is a common side of the cone IX. and of the cylinder XII., the curve, which is 
the remaining part of their complete intersection, is the twisted cubic sought. As an 
elementary verification of the fact, that this gauche curve of intersection IX. XII. 
has contact of the fifth order with the helix at the point P, it may be observed that 
if we change the co-ordinates xyz in XII. to the expressions VII., and write for 
abridgment,

XIV.. . F(f) = (3f + ^t sin f)’ - 200 vers f + 60 vers’ t,
'HO have then (comp. X. XI.) the sta: evanescent values,

XV... n) = 2?‘0 = F"0 = F"0=J^’0 = F'ii = il.
(6.) Aa another vert/icafton, which is at the same time a sufficient proof, of the 

d posteriori kind, that the gauche curve IX. XII. has in fact contact of the.^li or
der with tho helix, it can be shown that while the co-ordinates y, qnd z, of the latter 
may (by VII., writing simply x for a:,, and neglecting «’) be thus developed.

XVI... ■
^’~2r'^24rV’ ^J'’' 720r\r‘

_ a’ f 9 1 \
i^rV>^~ r’ /

the corresponding co-ordinates y and z oi tho ybrmer, that is, of the curvilinear part 
oi the intersection of the cone IX. with the cylinder XII., have (in the same order 
of approximation) developments which may be thus abridged,

YWTi (r-s-(-r2)Sa:8
XVII. . , y — y,------oi\n---- ’ z =800r

(7.) The devicdion of the helix from the gauche curve IX. XII. is therefore of 
the sixth order (with respect to x, or «), and it has an inward direction, or in other 
words, the osculating twisted cubic deviates outwardly from the helix, with respect 
to the right cylinder; the ultimate {ox initial) amount oi this deviation, or the law 
according to which it fends to vary, being represented by the formula,

, (r'S + r"®)’ s*

which also contain the osculating twisted cubic, and intersect each other in tliat 
gauche curve : namely two hyperbolic paraboloids, which have a common side at in
finity, and of which tlie equations can bo otherwise deduced (by way of verifica
tion), without imaginaries, through easy algebraical combinations of the two real 
equations IX. anil XII.
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where t denotes as in (2.) the angle, which a plane drawn through a near point r,, 
and through the axis of tho right cylinder,*

XVIII. ..2ry=^a:-^2y+ ^1 + ^^’.,

whereon the helix is traced, makes with the plane drawn through the same axis of 
revolution, or through the right line,

XIX. .. 2 = ^2, j=r>(Htr>)-' = Pr',

and through the given point f ; while y, is Still the (inward) distance of the same 
near point f„ from tbe tangent plane to the same cylinder at the same given point f.

(8.) If we cut the cone IX., and the cylinder XIL, by any plane,
XX. ..2ry=w{2+(^lS-1^^2},

drawn through their common side XIII., we obtain two other sides, one for each of 
these two quadric surfaces; and these two new right lines, in this plane XX., inter
sect each other in a a new point,f of which the co-ordinates xyz are given, as func
tions of the new variable u>, hy the three fractional expressions,X

XXI....= , 2ry = _^, 6rrz = -^i

■'‘20 ^■*’20 P 1 ^^20 12

while the twisted cubic, which osenZates (os above) to the helix at f, is the locus of 
all the points of intersection thus determined. Accordingly, if we develop xyz by 
XXL, in ascending powers of w, neglecting (or x^), we are conducted, by elimi
nation of u>, to expressions for y and 2 in terms of x, which agree with those found 
in (6.), and thereby establish in a new way the existence of the required contact ot 
tho fifth order, between the two curves of double curvature.

* With the co-ordinates VII'. of a recent Note (to page 612), the equation of 
this cylinder would be, '

XVIII'. ..x’' + y2=I<r-«.

t The plane XX., as containing tho line XIII., is parallel to an asymptote, 
and therefore meets the cubic at infinity; it also passes through the given point f : 
and therefore it can only cut the twisted cubic in one other point, of which the posi
tion is expressed by the equations XXI.

t Quaternions suggest such fractional expressions, through the formula 398, 
LXXIX. for the vector (fi fc)"* but it is proper to state that expressions of 
fractional form, for the co-ordinates of a curve in space of the third order (or degree) 
were given by Mobius, who appears to have been the first to discover the existence 
of such gauche curves, and who published several of their principal properties iu Iiis 
Barycentric Calculus (der barycentrische Calcul, Leipzig, 1827). Compare tlie 
Notes to pages 23 and 35, and Note B at the end of these Elements.

    
 



CHAP. III.] REAL AND IMAGINARY ASYMPTOTES. 617
(9.) The real asymptote to the cubic curve is found by supposing the auxiliary 

variable to to tend to infinity in the expressions XXI,; it is therefore the right line 
(comp. XX.),

XXII. . .
lOZ’ Z 3 r 7 r \^=3-7’ ^+^ror--ro;?=®’

namely the second side in which the elliptic cylinder XII. is cut by a normal plane 
through the side XIII.; and by comparing the value of its y with the equation 
XIX., we see that the least distance between the real asymptote to the osculating 
twisted cubic, and the axis of revolution of the cylinder on which tbe helix is traced, 
is equal to seven-thirds of the radius of that right cglinder,

Oo.) As regards the two imaginary asymptotes, they correspond to the two ima- 
ginaiy values of w, which cause the common denominator of the ez^ressionsXXI. to 
vanish ; but it may be sufficient here to observe, that because those expressions give, 
generally.

Z6r IrX 
XXIII. ..«+ ---h =\6r 5r /

the two imaginary lines in question are to be considered as being contained in two 
imaginary planet, which are both parallel to the real plane* through p.

namely to a certain common normal plane to the two real cylinders XII. and XVIII., 
or to the elliptic and riyht cylinders already mentioned.

(11.) In general, instead of seeking to determine, as above, a cylinder of the 
second order, which shall have^contacf of the fifth order with any gioen curve of 
double curvature, at a given point p,'we may propose to find a second cone of the 
Same (second) order, which shall have such contact with that curve at that point, 
its vertex being at some other point of space (a6c). Writing (comp. 398, LXVI.) 
the equation of such a cone under the form,

XXV. . . 2r(cy — bz) (c — z) = (ex — az)’ + 2B(cx — az) (cy — bz") + C(cy — bzy ; 
substituting for xyz tho co-ordinates atsy.z, of tho curve, under tho forms (comp. 
398, LVIII.),

f ass* ars®
~ ’24 120’

rV , 63’* ,
- 2r 6r’ 'n' 120’

_ i’ C3S*
~ 24 120’

in which the coefficients 036303 and aibiC^ have the values assigned in (1.); develop, 
ing according to powers of s, neglecting «®, and comparing coefficients of s’, **, ;
we find first tlie expressions.

XXVI. +

* Tbe n^A< line at infinity, in this plane XXIV., is the common side t>{ the 
<100 Aypcrfto/tc parahoZoirfs mentioned in the third Note to page 614, as each con
taining the whole twisted cubic.

4 K
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XXV.L.. c-i

which are thc same {or cone as for cylinder: and then are led to the new equation of 
condition,

r I b \ a 2 I b 2 2a \
XXVIII.. .- 5i--ei) = «3~-C3+ +S 63--C3------- 5-16\ e / c^crr \ c r^ cr^r j

which differs from the corresponding equation for the determination of a cglinder 
having the same (fifth) order of contact with the curve, but only by the one term
2 •— in the second member, which term vanishes when the co-ordinate c of the vertex err

is infinite.
(12.) Eliminating B and C, and substituting for 036303 and ajiici their values 

V. and VI,, we find that the condition XXVIII. may be thus expressed (comp. 
398, LXVIII.):

XXIX. .. oc^i - c'j - rc2 = a58 + bfc'^c + cb<^ 4. ec»;

in which we have written, for abridgment,

r 4 r , r rr'
a=—b =--------- ;9r 8 r 2’

0 = i (6r"r- 3rr" -7 2r-ir'«r - Sr'd Grr'r's - ISrh + 12rr-’);

e = i (9r"'r!> — 9r‘*r'r"r2 + 4r'>/®r2 + SGf^r'r’ + 18r' — 27rr‘'r').
90

XXX. ..

The locus of the vertex o{ the sought quadric cone is therefore that cubic sur
face, or surface of the third order, which is represented by the equation XXIX. in 
abc; this surface, then, is a second locus (corap. (4.)) for the osculating twisted cu
bic, whatever the given curve in space may be: a first locus for that cubic curve 
being still the quadric cone (comp. (3.)), of which the equation in abc is (by 398, 
LXVII.* and LXIX.),'

3r'r'_27^ 9r"'\
5 (r* r’r’ r* H r’r dr’r’ r’r j*' ’

and which has contact of the^zA order with the curve, while its vertex is at the 
given point V of osculation.

*
* After making the correction indicated in a former Note (to page 613), so as to 

bring the cited equation into agreement with the earlier formula 898, LVII. The 
quadric cone XXXI. may be said to have Jive-side contact with the cone of chords 
of the given curve (compare the first Note to page 588).
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(13.) Instead of thus introducing, as data, the derivatives of the two radii of 

curvature, r and r, taken with respect to the arc, s, it may be more convenient in 
many applications to treat the two co-ordinates y and z of the curve as functions of 
tbe third co-ordinate x, assumed as the independent variable: and so to write 
(comp. (6.)) these new developments,

TWIT , y'"®’, y"®*; z^xt
2r 6 24 120’ Grr 24 120 ’

and then the equation of the quadric cone XXXI. will be found to become (in xyz),

XXXIII. . .'y® = " a;z 4 2yy2-|- Az’,

with the coefficients,
XXXIV. . .y = rr^y'’'-|r2"'j, * = | rr’^y" - rz’^3

XXXVI. . .0 =

10

- r’r’- ^y'"’ + | izv^y’" - r’z"'’ ;

while the cubic surface XXIX. will also come to be represented by an equation of 
the same form as before, namely (in ajyz) by the following,

XXXV.. . xz (y 4 liz) — rz’ = ay’ 4- by’z 4- cyz’ 4 ez’,

in which the coefficients are,

** 41* A
a = - - (as before) ; b = — - r^"' 4 -5- z"; h = — rry'" 4 jrr’z'’ ;

V r . o 2
4- r^ry'"^ — jr^ry" 4- •j^r’r’z’;

4
0 = - - rh’y"'a 4- iir’r’y"'y'^ — T%r’r’y''.

(14.) Whichever set of expressions for the coefficients vro may adopt, some ge
neral consequences maybe drawn from the racrc forms of the equations, XXXl. 
and XXIX., or XXXIII. and XXXV., of the quadric cone and cubic surface, con
sidered as two loci (12.) of the osculating twisted cubic to a given curve of double 
curvature. Thus, if we eliminate ac (comp. 398, (41.)) from XXIX. by XXXI., 
or xz by XXXIII. from XXXV., we get an equation between 5, c, or between y, z, 
which rises no higher than the third degree, and is of the/arm,

XXXVII. . . 2rz’ = ay’ 4 b,y’z 4 cj<z’4 e,z’,

with the same value of a as before; such then is the equation of the projection of 
the twisted cubic, on the normal plane to the curve; and we see that, aa was to he 
expected, tho plane cubic thus obtained has a cusp nt the given point P, which 
(when wo neglect s^ ora’) coincides with tho corresponding cusp* oftlie projec
tion of tho given curve of double curvature itself, on the same normal plane.

(15.) The equation XXXVII. may also be considered as representing a cubic 
^cylinder, which is a third locus of the twisted cubic ; and on which the tangent pt

* Compare the first formula of the first Note to page 504.
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to the curve is a cusp-edge, in such a manner that an arbitrary plane through this 
line, suppose the plane

XXXVIII. .. Srz = vy,
where v is any assumed constant, cuts the cylinder tn that line twice, and a third 
time in a real and parallel right line, which intersects tbe quadric eone in a point at 
infinity (because the tangent pt is a side of that cone), and in another real point, 
which is on the twisted cubic, and may bemade to be any point of that sought curve, 
by a suitable value of »: in fact, the plane XXXVIII. touches both curves at P, and 
therefore intersects the cubic curve in one other real point And thus may fractional 
expressions (comp. (8.)) for the co-ordinates of tbe osculating cubic be found gene
rally, which we shall not here delay to write down.

(16.) Without introducing the cubic cylinder XXXVII., it is easy to see that 
any plane, such as XXXVIII., which is tangential to the given curve at P, 
cuts the cubic surface XXXV. in a section which may be said to consist of the 
tangent twice taken, and of a certain other right line, which varies with the 
direction of this secant plane, so that the locus XXXV. or XXIX. is a Ruled 
Cubic Surface, with the given tangent pt for a singular* line, winch is in
tersected by all the other right lines on that surface, determined as above: and if we 
set aside this line, the remaining part of the complete intersection of that cubic sur
face with the quadric cone XXXIII. or XXXI. is the twisted cubic sought. We 
may then consider ourselves to have completely and generally determined, the Oscu- 
culating Twisted Cubic to a curve of double curvature, without requiring (as in 398, 
(41.)), the solution of any cubic or other equation, f

(17.) As illustrations and verifications, it may be added that the general ruled 
cubic surface, and cubic cylinder, lately considered, take for the case of the helix 
(2.), the particular forms,!

* If the cubic turface be cut by. A plane perpendicular to the tangent ft, at any 
point T distinct from the point f itself, .the section is a plane cubic, which has t for 

” a double point; and this point counts for three of the six common points, or points of 
j»tersec/io«, of the plane cubic just mentioned with the plane conic in which the 
quadric cone is cut by the same secant plane, because one branch, or one tangent, 
of the plane cubic at t touches the plane conic at that point, in the osculating plane 
to the given curve at p, while the other branch, dr the other tangent, cuts that plane 
conic there.

t It may be remarked tliat, by equating the second member of XXXVII. to 
zero, and changing y, z to b, c, we obtain generally the cubic equation, referred to 
in 398, (41.); and that by suppressing the term — re’ in XXIX., or tbe term — rz* 
in XXXV., we pass, in like manner generally, from tho cubic surface of recent sub
articles, to the earlier cubic cone (4.),

rw *
t By suppressing the terra — rz^, dividing by and transposing, we pass for the 

case of the helix from the equation XXXIX. of the cubic locus, to the equation IX'. 
in the last Note to page 614; namely to the equation of that quadric cone which forms 
(in this example) a separable part of the general cubic cone, the other part being here 
the tangent plane (y = 0) to the right cylinder.
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and 

and that accordingly these two last equations are satisfied, independently of to, when 
the fractional expressions XXI. are substituted for xyz.

400. The general theory* of evolutes of curves in space may be 
briefly treated by quaternions, as follows: a second curve (in spacej 
or in one plane) being defined to bear to a first curve the relation of 
evolute to involute, when the first cuts the tangents to the second at right 
angles.

(1.) Let p and a be corresponding vectors, op and os, of involute and evolute, 
and let p', a', p", a" denote their first and second derivatives, taken with respect to 
a scalar variable t, on which they are both conceived to depend. Then the two fun
damental equations, which express the relation between the two curves, as above 
defined, are the following:

I... S(<r-p)p’ = O; n.. . V((r-p)xr'=0;
which express, respectively, that the point s is tn the normal plane to the involute 
at P, and that the latter .point is on the tangent to the evolute at s: so that the locue 
of P (the involute) is a rectangular trajectory to all such tangents to the locus of s 
(the evolute).

(2.) Eliminating a — p between the two preceding equations, and taking their 
dcrivaslves, we find,
III. Sp'<T' = 0, IV. . . S(<r-p)p"-p-> = 0, V. . . V((r-p)<r"-Vp'<r' = 0; 

whence also, , VI. . . Sp'a'(r"= 0. '
(3.) Interpreting these results, wo seo/rst, by IV. combined with I. (corap. 391, 

(6.)), that the point a of the evolute is on the polar axis of the involute at p, and 
therefore that the evolute 'itself ia some curve on the polar developable oi tho invo
lute ; and second, by VI. (comp. 380, I.), that this curve is a geodetic line on that 
polar surface, because the osculating plane to the evolute at s contains the tangent 
to the involute at P, and therefore also the (parallel) normal to the locus of evolutes.

(4.) The locus of centres of curvature (395, (6.)) of a curve in space is not ge- • 
nerally an evolute oi that curve, because the tangents'^ 'sis! to that locus do not gene
rally intersect the curve at all; but a given plane involute has always the locus just

* Invented by Monge.
f It might have been remarked, in connexion with a recent series of sub-arti- 

ticles (397), that this tangent kk' or k' is inclined to the rectifying line X, at an an
gle of which the cosine is,

— SU(c'X= + fr'TX*’ = + sin H cos P;
tipper or lower signs being taken, according as the second curvature f' is positive 
or negative, because S/r'X = -r‘'.
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mentioned for one oi its evolutes; and has, besides, indefinitely many others,* which 
are all geodetics on the cylinder which rests perpendicularly on that one plane evolute 
as its base.

(fi.) An easy combination of the foregoing equations gives,
VII. .. (T(«r-p))' = -S(U(<r-p).(o'-p')) = +Sff'U/r' = + To', 

or with differentials, VIII. . . dT(o — p)= j;Tdo;
whence by an immediate integration (comp.-380, XXII. and 397, LIV.),

IX. . . AT(o— p) = ±yTdo=+ arc of the evolute :
this arc then, betioeen two points such as s and Si of the latter curve, is equal to the 
difference between the lengths of the two lines, PS and PjSi, intercepted between the 
two curves themselves.

(6.) Another quaternion combination of the same equations gives, after a few 
steps of reduction, the differential formula (comp. 335, VI.),

.B- , o —p dTp „ oX.. . dcosops=-dSU —£-= ——5—..S-;
P T^(.<^-P) P

if then the involute be a curve on a given sphere, with its centre at the origin o, so 
that the evolute is a geodetic on a concentric cone, this differential X. vanishes, and 
we have the integrated equation,

XI.’.. cos OPS=const., or simply, XI'. . . ops = const.;
the tangents va to the evolute being thus inclined (in the case here considered) at tt 
constant angle,to the radii ov ot tbe sphere.

(fi.) In general, if we denote by 22 the interval ps between two corresponding 
points of involute and evolute, we shall have the equation,

XII. .. (O’-p)2+22^=0, or Xir. . . T(<r-p) = 22;
and the formula VII. may be replaced by the following,

XIII. . . 22'2 + a'2 = 0, or XIII'. . . D,22=+ TDpr,
in which the independent variable t is still left arbitrary.

(8.) But if Tire take for that variable the are aoSt bi the evolute, measured from 
'some fixed point of that curve, we may, then write,

XIV. .. f=JTd(r, XV.. . d22z = + d<. XVI. . . D(22e=+1;

* Compare the first Note to page 534; from tho formula of which page it note 
appears, that if the involute be an ellipse, with = ob and y = oc for its major and 
minor semiaxes, and therefore with the scalar equations,

(S/3-'p)’ + (Sr’pP = ir Si3yP = 0,
the evolutes are gcodctics on tlie cylinder oi which the corresponding equation is,

• (9/3n)»+(S7<r)» = 038-72)5.

f This property of the evolutes of a spherical curve -da’i deduced by Professor 
De Morgan, in a Paper On the Connexion of Involute and Evolute in Space (Cam
bridge and Dublin Mathematical Journal for November, 1851); in which also a 
definition oi involute and evolute was proposed, substantially tho same as that above 
adopted.
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whence
XVII.. , Di (TJi + t) = 0, and XVIII.. . Ht +1 = const. = So,

tbe integral IX. being thus under a new form reproduced.
(9.) In this last mode of obtaining the result,

XIX. . . A ps = jSi — J?o = +1 = ± arc SoSt of evolute,
no use is made of infinitesimals,* or even of small differentials. Vic only infer, as 
in XVIII. (comp. 380, (9.)), that the quantity St +1 is constant,f because its deriva- 
tive is auZZ: it having been previously proved (380, (8.)), as a consequence of our 
definition of differentials (320, 324) that if s be the arc and p the vector of any 
curve, then the equation ds = Tdp (380, XXII.) is rigorously satisfied, whatever 
the independent variable t may be, and whether the two connected and simultaneous 
differentials be small or large.

(10.) But when we employ the notation of integrals, and introduce, as above, 
the symbol JTds, we are then led to interpret that symbol as denoting the ZfmZr of a 
sum (com'p. 346, (12.)); or to write, generally,

XX. . . J Tdp = lim. STAp, if lim. Ap = 0,
with analogous formulie for other cases of integration in quaternions. GeometrL 
cally, the equation,

XXI. .. J Tdp = As, or XXI'. . . j Tdtr = A t,
if 3 and Z denote arcs of curves of which p and <t are vectors, comes thus to be in
terpreted as an expression of the well-known principle, that the perimeter of any 
curve (or of any part thereof) is the limit of the perimeter of an tnsertfted polygon 
(or of the corresponding portion of that polygon), when the number ot the .sides is 
indefinitely increased, and when their lengths are diminished indefinitely.

(11.) The equations I. and XII. give,
XXII. . . So* (o - p) + dZIZ* = 0,

tbe independent variable f being again arbitrary; but these equations XII. and 
XXII. coincide with the formula) 898, LXXXIX. and XCI.; we may then, by 
398, (73.) and (80.), consider the locus of the point p as the envelope of a variable 
sphere, namely of the sphere which has s for centre and S for radius, and is repre
sented by the recent equation XII., ifp=op be the vector of a variable point 
thereon.

(12.) But whereas sacA an envelope has been aeon to\>o generally a surface, which 
is real or imaginary (398. (79.)) according as jS*^ + o's < or > 0, we have here by 
XIII. the intermediate or ZimiZinp ease (comp. 398, CXXXI.), for which the circles

* In general, it may have been observed that we have hitherto abstained, at 
least in the text of this whole Chapter of Applications, from making any use of 
injinitesimals, although they have been often referred to in these Notes, and employed 
therein to assist the geometrical investigation or enunciation of results. But as 
regards the mechanism of calculation, it is at least as easy to use injinitesimals in 
guaternions as in any other system: as will perhaps be shown by a few examples, 
farther on.

t Compare the Note to page 516.
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of the system become points, and the surface itself degenerates into a curve, which is 
1 here the involute (p)above considered. The involute! of a given curve (s) are there

fore included, as aZimiV, in that general iyetem of envelope! which was considered io 
the lately cited subarticles, and iu others immediately following.

(13.) The equation of condition, 398, CXXXVI., is in this case satisfied by 
XIII., both members vanishing; but we cannot now put it under the form 398, 
CXLI., because in tbe passage to that form, in 398, (85.), there was tacitly efifected 
a division by r^, which is not now allowed, the radius r of the circle on the envelope 
being in tbe present case equal to zero. For a similar reason, we cannot now divide 
by g, as was done in 398, (86.); and because, in virtue of IL, the two equations 
398, CLX. reduce themselves to one, they no longer conduct to the formulse 398, 
CLX'. CLXI. CLXI'. CLXIII. XCIV.; nor to the second equation 398, CLXII.

(14.) The general geometrical relations of tlie curves (p) and (s), which were 
investigated in the sub-articles to 398 for the case when 4he condition* above re
ferred to is satisfied, are therefore only very partially applicable to a system of invo
lute and evolute in space: at least if we still consider the former curve (the involute) 
as being a rectangular trajectory to tho tangents to the latter (the evolute), instead 
of being, like the curve (p) previously considered, a rectangular trajectory (398, (94.)) 
to the osculating planes^ of the curve (s).

♦ If, without thinking of evolutes, wo merely suppose that the condition 398, 
CXXXVI. is satisfied, as lately in (13.), by our having the relation 71'2 4- 0,
it will be found (comp, the symbolical expression 274, XX. for 01, and thc imagi
nary solution in 353, (18.) of the system Syp = 0, p2= 0), that the envelope of the 
!phere-{a — pf + TP = 0, or the locus of the (null) circles in which such spheres aro 
(conceived to be) cut by the (tangent) planes. So* (<r — p) + TZTJ'= 0, may be said to 
be generally the system of all those imaginary points, of which the vectors (or the 
bivectors, comp. 214, (6.)) are assigned by the formula,

p = a—JiE’-ia' + (Ua'- l)Va'p ;
where /x is an arbitrary vector, and — 1 is the old imaginary ot algebra. By 
making /t=0 we reduce this expression for p to the real vector form,

p = a~:RR’-^a’ = aj-]ilfa’-\
= the K of 398, CXXXI."; and thus the curve (p), which is here the locus of the 
centres of the null circles of contact, and coincides with the involute in the present 
series of sub-articles, may still be called a Singular Line upon the Envelope of the 
Sphere (with One Variable Parameter'), as being in the present case the only real part 
of that elsewhere imaginary surface. —

f The curve to the osculating planes of which another curve is thus an or
thogonal trajectory, and which is therefore (398, (95.)) the cusp-edge of the polar 
developable of the latter curve, was called by Lancret its evolute bg the plane (de- 
veloppee par le plan) j whereas tbe curve (a) of the present series (400) of sub-ar
ticles, to whose tangmts the corresponding curve (p) is an orthogonal trajectoiy, has 
been called by way of distinction the evolute by the thread (daveloppee par le fil) of 
this last curve. It would be improper to delay here on subjects so well known to 
geometers; but the student may be invited to read again, in connexion with them, 
the sub-articles (88.) and (89.) to Art, 398.
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(15.) If the arc of the evolute be again taken for the independent variable t, and 
if the positive direction of motion along that arc be always towards tbe involute, we 
may write,

XXIII. .. p = a + Ra', E’ = -l, <r'2i= - 1, &c.;
whence

XXIV. . . p'= I?(r'', p“—Ro"'— a", "Vp'p'= lP'Va'"a"i
if then k = ok be the vector of the centre k of the circle which osculates to the invo
lute at p, the general formula 389, IV. gives, after a few reductions,* the expression 
(comp. 397, XVI, XXXIV., and XCVIII. (15)),

RSa'a'"o" J?S<r'<r"-i(r"'=2 cr —

= a — Tfrr'Xi-' = a + UXi. ii cos fii,
if ri, JTi, and Xi be what r, H, and X in 397 become, when we pass from, the curve 
(p) to the curve (s), with the present relations between those two curves; this cen
tre of curvature K is therefore the foot of the perpendicular let fall/rom the point P 
of the involute, on 'the rectifying line Xi of the evolute; as indeed is evident from 
geometrical considerations, because by (3.) this rectifying line of the curve (8)is the 
polar axis of the curve (p).

(16.) If we conceive (comp. 389, (2.)) an auxiliary spherical curve to be de
scribed, of which the variable unit-vector shall be,

XXVI.. . OT = T = y = U (p - ff) = ii * (p - <r), 
and suppose that v is the vector ou of the centre of curvature of this neui curve, at 
the point t which corresponds to the point s of the evolute, we shall then have by 
XXV. the expression,

XXVII. . . TIT = u - r = r'S ya K — p __
VyV'~ -rK;i.s;

we have therefore this theorem, that the taward radius of curvature of the hodograplt 
of the evolute (conceived to be an orbit described, as in 379, (9.), with a constant 
velocity taken for unity} is equal to the inward radius of curvature of the involute, 
divided by the interval JI between the two curves (p) and (s): and that these two 
radii of curvature, tu and pk, have one common direction, at least if the direction 
of motion on the evolute be supposed, as in (15.), to be towards the involute.

(17.) The following is perhaps a simpler enunciation of the theoremf just sta
ted :—Ifp, Pl, P2,.. and s. Si, Sj, .. be corresponding points of involute and evo-

* Especially by observing that NaNa"'a" = -o"’, because So'ir" = 0, and So-'o”' 
= — o”®.

f Some additional light may be thrown on this theorem, by comparing it with 
tho construction in 897, (d8.) ; and by observing that the equations 397, XVI. 
XXXIV, give generally, in the notations of the Article referred to, for the vector of 
the centre of curvature of the hodograph of any curve^ the transformations,

T + — i r + ^ = - r’>X'J = UX, cos /f.
Vr'r'* X

4 L
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lute, and if we draw lines STi || SiPi, ST2II .S2P2,. • with a common length = sp, the 
spherical curve ptiT2 .. will then have contact of the second order with the curve 
PPiPs •., that is with tbe involute at p.

401. The fundamental formula 389, IV., for the vector of the 
centre of the osculating circle to a curve in space, namely the for
mula,

T TT

which has been so extensively employed throughout the present 
Section, has hitherto been established and used in connexion with 
derivatives and differentials of vectors, rather than with' differences, 
great or small. We may however establish, in another way, an es
sentially equivalent formula, into which differences enter by their 
limits (or rather by their limiting relations'), namely, the following,

Ap® A®p

III. . . xsp + lim. , if lim.Ap=0, and lim. — =0,VAVAp ^p
the denominator N^^p^p being understood to signify the same thing 
as V(A’p.Ap); and then ra&g, if we think fit, interpret the differen~ 
tialexpression'll, as if dp and B?p in it denoted infinitesimals,* oi the 

and second orders: with similar interpretations in other but 
analogous investigations.

(1.) If in the second expression'316, L., for the perpendicular from o on the lino 
AB, vre change a and fi to their reciprocals (corap. Figs. 68, 64) and then take the 
reciprocal of the result, w.e obtain this new expression,

aCB-a^B oa.ab.ob

in the denominator of which, ob may be replaced by ab, or by ao + ab, for the 
diameter OD of the circle oab ; so that if o be the centre of this circle, its vector 
y =2 00 = jOD = Jd = &e. Supposing then that P, q, r are ang three points of ang 
givm curve in space, while o is as usual an arlitrarg origin, and writing

V. . . op = p, oq = p + Ap, OB = p + 2Sp + 6.^p, 
and therefore *'

VI. . . PQ = Ap, QR = Ap + AV, iPK = Ap + iik^p,
the centre c of the circle pqr has the following rigorous expression tor its vector;

VII. . . OC^y = p+
V (A’p. Ap)

• Compare 345, (17.), and the first Note to page 628.
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<
whence passing to the limit, we obtain successively the expressions III. and II. for 
tlie vector it of the centre of curvature to the curve pqr at P; the two other points, 
Q and R, being both supposed to approach indefinitely to the given point P, accord
ing to any law {comp. 392, (6.)), which allows the two successive vector chords, pq 
and QR, to bear to each other an ultimate ratio of equality.

(2.) Instead of thus first forming a rigorous expression, such as VII., involving 
tho differences Ap and A^p ; then simplifying the formula so found, by the rejection 
of terms, which become indefinitely small, with respect to the terms retained; and 
finally changing differences to differentials (comp. 314, (2.)j, namely Aptodp, and 
A^p to d>p, in the homogeneous expression which results, and of which the limit is to 
be taken; we may abridge the calculation, by at once writing the differential sym
bols, in place of differences, an'd at once suppressing any terms, of which we foresee 
tliat they must disappear from the final result. Thus, in the recent example, when 
wo have perceived, by quaternions, that if k be the centre of the circle PQR, the ’ 
equation

Vt(QR-rQ)PQ}
is riyorona, we may at once change eacA of the three factors of the numerator to dp, 
while the factor qr —pq in tbe denominator is to be changed to d’p ; and thus the 
differential expression II., for the inward vector-radius of curvature K — p, is at 
once obtained.

■ (3.) It is scarcely^ecessaiy to observe, that this expression for that radius, as a 
vector, agrees with and includes the known expressions for tbe same radius of curva
ture of a curve in space, considered as a (positive) scalar, which has been denoted in 
tlie present Section by the italic letter r (because the more usual symbol p would 
have here caused confusion). Thus, while the formula II. gives immediately (be
cause Tdp = da) the equation,

IX. . . r-ida’ = TVdpd-p,
it gives also (because dp’ = - ds’, aud Sdpd’p = - dad’s) the transformed equation, 

X. . . r->da2 = V(Td’p3-d’a’);
and it conducts (by 389, VI.) to this still simpler formula (comp, the equation r't 
= Tr', 396, IX.),

XI... r->ds = TdUdp.
(1.) Accordingly, if we employ the standard trinomial form (295,1.) for a vector, 

XII. .. p = ix+jy + hz,
which gives, by the laws of the symbols ijk (182, 183),

■ dp = idx +/dy + Adz, ds = Tdp = V (da:’ + dy’ + dz’),
d’p — id’a; ■i-ji'^y + Ad’z, Td’p = V (d’a:’ + d’y’ 4- d’z’), 
Vdpd’p = i (Ayd^z - dzd’y) + j(AzA^x — daid’z) + k (da:d*y - dyd’x), 

.da:, .dy -dz ..tj . ..tiz= dUdp=td- + ..,

the recent equations IX. X. XI. take these knomi forms;
IX'. .. r‘>ds’= V((dyd’2 — dzd’y)’ +..) ; 
X'. . . r-ids’ = V(d’a;’ + d’y« -t d’z’ - d’s’);

xni...,    
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(6.) The formula IV., which lately served us to determine a diameter of a circle 
through three given points, may be more symmetrically written as follows. If ad 
be a diameter of the circle abc, then

XrV.. . ad.V(ab.bc) = ab.bc.ca;
an equation* in which V(ab.bc) may be changed to V(ab.ac), &c., and in which 
it may be remarked that each member is an expression (comp. 296, V.) tor a vector 
AT, which touches at A the segment abc : while its length is at once a representa
tion of the product of the lengths of the sides of the triangle abo, and also of the 
double area of that triangle (comp. 281, XIII.), multiplied by the diameter of the 
circumscribed circle.

(6.) In general, if pqns be any four concircular points, they satisfy (by 260, 
IX., comp. 296, (3.)) the condition of concircularity,

xv.;.v(2.2!koi
\8Q RP I

which may be thira transformed :t t
XVI... v( + «-^Vv( A.pq.

\PS VR I \PS PR /
Writing then (comp. VI., and the remarks in (2.)),

XVII.. . PS = 0) - p, pq = dp, PR = 2dp + d’p, qp + qn = d’p, 
the second member ia seen to be, on the present plan, an infinitesimal of the second 
order, which is therefore to be suppressed, becaOse the first member ia only of the 
first order : and thus we obtain at once the following vector equation of the osculat
ing circle to the curve pqR nt r.

• A student might find it useful practice to verify, that if we write in like man
ner,

XIV'.. . be.V(bo.oa)=bc.ca.ab,
80 that BE is a second diameter, then ab = ed, or abdb is a parallelogram. He may 
employ the principles, that a^y = y^a, if Sa/3y = 0, and that /3y - y/3 = 2V/3y; in 
virtue of which, after subtracting XIV'. from XIV., and dividing by V(nc.OA), or 
by its equal V(ab,bc), the equation ad-be = 2ab is obtained, and proves the re
lation mentioned. It is easy also to prove that

XIV". . . bd.V(bc.ca)^ AB.S(no.cA), 
and therefore that abde is a rectangle.

t Without having recourse to this transfiirmatinn XVI., we might treat tho 
condition XV. by infinitesirnals, as follows :

qs Qs w — p — dp ' ■ ~
2qb _ j QP-i- QR _ d=p__
PB PR 2dp + d’p

)
h) — p

2dp

equating then to zero the vector part of the product of these two expressions, and 
suppressing the infinitesimal of the second order, the equation XVIII. of the osculat
ing circle is obtained anew.

XVII'. . .
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XVIII. . . V ( V 0 ;
\(o-p 2dp/ ’

which agrees with the equation 392, VI., although deduced in a quite diScrent man
ner, and conducts anew to the expression II. for b— p, under the form,

XIX. . . -^-t-V^, as in 392, VIII.
B-p dp

(7.) Again, if OD = 5 be the diameter from the origin, of any sphere through that 
point o, which passes also through any three other given points A, B, c, with oa = a, 
&c., we have by 296, XXVI. the’ formula,

XX. .. SSapf = ya(p-a'){y-p-)y,
writing then (comp. XVII.),

XXL .. a = dp, /3 — a = dp + d-p, y — /3 = dp + 2d’p -p d’p, 
and XXII. •» . 5 = 2ps = 2 (a — p),
where tr is (as in 395, &c.) tho vector os (from an arbitrarg origin o) of the centre 
8 of the osculating sphere to a curve of double curvature at p, wo have by infinitesi
mals, suppressing terms which are of the seventh and higher orders, because the first 
member is only of the sixth order,'and reducing* by the rules of quaternions, 
XXIII... (<r - p)Sdpd2pd’p = j Vdp (dp + (dp -P M’p -p d’p) (3dp + Sd’p + d’p)

= SVdpd’pSdpd’p -p dp’Vd’pdp;

which agrees precisely with the formula 395, XIII., although obtained by a process 
so different.

(8.) Finally as regards the osculating plane, and the second curvature, of a curve 
in space, infinitesimals give at once for that plane the equation,

XXIV.. . S (to — p) dpd’p = 0, agreeing with 376, V.;
and if three conaebufive elements of the curve be represented (comp. XXI.) by the 
differential expressions,

XXV. . . PQ = dp, QB = dp -p d’p, RS = dp + 2d’p + d’p,
the second curvature r"*, defined as in 396, is easily seen to be connected as follows 
with the angle of a certain auxiliary gualernion q, which differs infinitely little 
from unity '•

* Of the eighteen terms which would follow the sign of operation JV, if the se
cond member of XXIII. were fully developed, one is of the/onrZA order, but is a 
acalar ; three aro of the fifth order, but hove a acalar aum ; nine are of orders higher 
thou the sixth; and two terms of the sixth order are scalars, so that there remain 
only three terms of that order'to be considered. In this manlier it is found that the 
second member in question reduces itself to the sum of the two vector parts,

f V. (dpd^p)* — SVdpd’p i Sdpd’p,

and ^dp’V(dpd®p + 3d®pdp) = dp’Vd’pdp ;

and thus the third member of XXIII. is obtained.
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■CIO have then the egression,

XXVIII. . Second Curvature = r"’ = — = S ,dp NapA-p
which agrees with the formula 397, XXVII., and has been illustrated, in tho sub- 
arlicles to 397 and 398, by numerous geometrical applications.

(9.) On the whole, then, it appears that although the logic of derived vectors, 
and of differentials of vectors considered as finite lines, proportional to such deriva
tives, is perhaps a little clearer than that of infinitesimals, because it shows more 
evidently (especially when combined with Taylor's Series adapted to Quaternions, 
342, 875) that nothing is neglected, yet it is perfectly possible to combine* quater
nions, in practice, with methods founded on the more usual notion ot Differentials, 
as infinitely small differences: and that when this combination is judiciously made, 
abridgments of calculation arise, without any ultimate error.

Section 7.— On, Surfaces of the'Second Order ; and on Cur
vatures of Surfaces.

402. As early as in ‘the First Book of these Elements, some spe
cimens were given of the treatment or expression of Surfaces of the 
Second Order by Vectors ; or by Anharmonic Equations which were 
derived from the theory of vectors, without any introduction, at that 
stage, of Q,ucUernions properly so called. Thru it was shown, in the 
sub-articles to 98, that a very simple anharmonic equation {xz = yw) 
might represent either a ruled paraboloid, or a ruled hyperboloid, ao 
cording as a certain condition {ac = bd) was or was not satisfied, by 
the constants of the surface. Again, in the sub-articles to 99, two 
examples were given, of vector expressions for cones of the second or- 
'der (and one such expression for a cone of the third order, with a 
conjugate ray (99, (5*))» while an expression of the same sort, 
namely,

1.. ./» = a;a+yj3 + X7, with az’-j-j/’= 1,

was assigned (99, (2.)) as representing generally an ellipsoid,] with 
Pi 'it or OA, OB, oc, for three conjugate semidiameters. And finally,

• Compare the first Note to page G23. It will however be of course necessary, 
in any future applications of quaternions, to specify in which of these two senses, as a 
finite differential, or as an infinitesimal, such a symbol as dp is employed.

f In like manner the expression,
II.. . p=a:«+y/3+2y, with -z^ = 1, or =- 1,

represents a general hyperboloid, oione sheet, or of two, with <i/3y for conjugate semi
diameters : while, with the scalar equation x’ + yS — z- = 0, the same vector expres
sion represents their common asymptotic cone (not generally of revolution).
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in the sub-articles (11,) and (12.) to Art. 100, an instance was fur
nished of the determination of a tangential plane to a cone, by means 
of partial derived vectors.

403. In the Second Book, a much greater range of expression 
was attained, in consequence of the introduction of the peculiar sgm- 
iols, ox characteristics of operation, which belong to the present Cal
culus; but still with that limitation which was caused, by the con
ception and notation of a Q,uat 'ernion being confined, in that Book, to 
Quotients of Vectors (112, 116, comp. 307, (5-)), without yet admit- • 
ting Products or Powers of Directed Lines in Space : although ver- 
sorSf tensors, and even norms* oi such vectors YieTo already intro
duced (156, 185, 273).

(1.) The Sp/(ere,f for in.stance, which has its centre at tho origin, and has the 
nector OA, or a, with a length Ta = a, tor one of its radii, admitted of being repre
sented, not only (comp. 402,1.) by the vector expression,

I.p = a:a + y/3 + zy, a;3-l-y® + z®= 1,'

r. ..Ta=T/3 = Ty-=a, and I". .. S^ = S^ = S ^ = 0,
a a p

but also by any one of the following equations, in which it is permitted to change a 
to — a:

n...“ = KP;
P «

V. . . Tp = a;

with

in... ^K^=l;a a
VI.:. T:p = 1a-,

IV. ..N^=li 
a

VII.. .T-=l ;a
VIII. ..S^=0;

p + a ’

xni...Nfs^-1-v^Vij
\ a aj

or by the system of equations,
XV... 8^ = !!!, ^v£y = ®3-l(<0), 

representing a system of circles, with the spheric surface for their locus.

IX,..N5 = N-i
e e X...Np = Na;

145, (8.), (12.)

186,(2.), 
187,(1.) 

200, (11.), 
215, (10.),

273, (1.)

XII... NS + NV = 1; 204, (6.), XXV., XXVI. 
a a

XIV...T^S^ + V^yii. 204, (9.)

201, (4.)

* The notation Na, for (Ta)®, although not formally introduced before Art, 273, 
had been used by anticipation in 200, (3.), page' 188,

f That is to say, the spheric surface through A, with o for centre. Compare 
the Note to page 197.

    
 



632 ELEMENTS OF QUATERNIONS. [book nr.

(2.) Other forms of equation, for the same spheric surface, may on the same 
principles be assigned; for example we may write,

XVr...f = K“;
a p

XIX...zPS^ = ^;
p + a 2

or (comp. 186, (5.), and 200,

XXII.. .

1;

XVII. ..N- = l: XVIII. . . T- = l 
PP

XX. 2a. ..S-=^=l; p+a XXI. . .S-^ = 
p + a

(3.)),

T(p- ca)=T(cp - a), e^^l;

under which last form, the sphere may be considered to be generated by the revolu
tion of the circle, which has been already spoken of ns the Appllonian* Locus.

(3.) And from ang one to ang other,- of all these various forms, it is possible) 
and easy to phss, by general Rules of Transformation,-^ which were established in 
the Second Book : while each of them is capable of receiving, on the principles of 
the same Book, a Geometrical Interpretation.

(4.) But we could not, on the principles of the Second Book alone, advance to 
such subsequent equations of the same sphere, as

XXIII.. . p2 = a», or XXIV. . . p2 + = 0, 282, VII. XIII,
whereof the latter includes (282, (9.)) the Important equation p® +1 = 0, or p’ = — 1, 
of what wo have called the Unit-Sphere (128); nor to such an exponential expres
sion for the variable vector p of the same spheric surface, as

XXV. . . p = ahfj’kj-’i-t, , ' 308, XVIII.
in which j and h belong to -the fundamental s^tem ijk of three rectangular unit
lines (295), connected by the fundamental Formula A of Art. 183, namely,

= ijk =- 1, (A)
while a and t are two arbitrarg and scalar variables, with simple geometrical^, signi- 
Jications: because we were not then prepared to introduce any symbol, such as p\ 
or k‘, which should represent a square or other jooioer of a vector.^ And similar re-

* Compare the first Note to page 128.
t This richness of transformation, of quaternion expressions or equations, has 

been noticed, by some friendly critics, as a characteristic of the present Calculus. In 
the preceding parts of this work, the reader may compare pages 128, 1'40,183, 673, 
574, 675; in the two last of which, the variety of the expressions for the second 
curvature (r ') of a curve in space may be considered worthy of remark. On tho 
other hand, it may be thought remarkable that,jn this Calculus, a single expression, 
such as that given by the first formula (389, IV.) of page 632, adapts itself with 
equal ease to the determination of the vector (k) of the centre of the osculating 
circle, to a plane curve, and to a curve of double curvature, as has been sufficiently 
exemplified in the foregoing Section.

J Compare the second Note to page 365.
§ It is true that the formula A was established in the course of the Second Book 

(page 160); but it is to be remembered that the symbols ijk were there treated as de
noting a system of three right versors, in three mutually rectangular planes (181) :
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marks apply to the representation, by quaternions, of other surfaces of the second 
order.

404. A brief review, or recapitulation, of some of the chief ex
pressions connected with the Ellipsoid, for example, which have been 
already established in these Elements, with references to a few others, 
may not be useless here.

(1.) Besides the vector expression p = xa+yj3 +zy, with the scalar relation 
z- + y’ + 2’= 1, and with arbitrary vector values of the constants a, fi, y, which 
was lately cited (402) from the First Book, or tbe equations 403, I., without 
the conditions 403, I'., II'. which are peculiar to the sphere, there were given in 
the Second Book (204, (13.), (14.)) equations which differed from those lately num

bered as 403, XI. XII. XIII.. XIV. XV., only by the substitution of V for V - ;ff a
for instance, there was the equation,

analogous to 403, XI., and representing generally* an ellipsoid, regarded as the 
locus of a certain system of ellipses, which were thus substituted for the eirelesf 
(403, XV.) of the sphere, by a species of geometrical deformation, which'led to the 
establishment of certain homologies (developed in the sub-articles to 274).

204, (14.)

although it has since been found possible and useful, in this Third Book, to identify 
those right versore with their own indices or axes (295), and so to treat them as a 
system of three rectangular tines, as above.

* In tjie case of parallelism of the two vector constants (31| a), the equation I. 
represents generally a Sph^-oid of revolution, with its axis in tho direction of a; 
while in the contrary case of perpendicularity (/3 a), the same equation I. repre
sents an elliptic Cylinder, with its generating lines in the direction of /3. Compare 
204, (10.), (11.), and the-Note to page 224.

f Tho equation L might also have been thus written, on the principles of the Se
cond Book, 

whence it would have followed'at once (corap. 216, (7.)), that the ellipsoid I. is 
cut in two circles, with a common radius = T/3, by the two diametral planes,

I". . . S.^ + S^=0, S- —S^ = 0.
• a (3 a /3

In fact, this equation I', is what was called in 359 a cyclic form, while I. Itself fa 
wfiat was there called a focal form, of the equation of the surface; the lines a"’ i 
being, by the Third Book, the two (real) cyclic normals, while /3 is one of the two 
(real)/ocaZ lines of the (imaginary) asymptotic cone. Compare the Note to page 
474.

4 M
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(2.) Employing still only quotients of vectors, but introducing two other pairs 
oi vector-constants, y, S and (, c, instead of the pair a, fi in the equation I., which 
were however connected with that pair and with each other by certain assigned re
lations, that equation was transformed snccessively to 

n...T{P-+Ke^ = i, 

and to a form which may be written thus (corap. 217, (5.)),

. III. ,.T^i + K^.P^Tp = Ti’-Tk3.

216, X.

217, XVI.

and this last form was interpreted, so as to lead to a Rule of Construction* (217, 
(fr.), (7.)), which was illustrated by a Diagram (Fig. 63), and from which many 
geometricalproperties of that surface were deduced (218, 219) in a very simple 
manner, and were confirmed by calculation with quaternions : the equation and con
struction being also modified afterwards, by the introduction (220) of a new pair of 
vector-constants, i’ and which were shown to admit of being substituted for t 
and K, in the recent form 111.

• (3.) And although the Equation of Conjugation, 
iv...s-s^-sfv^.v'^Vi.

« « k jS ’ 316, LXIII.
I

which connects the vectors X, ft of any two points l, m, whereof one is on the polar 
plane of the other, with respect to the ellipsoid I., was not assigned till near tbe end 
of the First Chapter of the present Book, yet<t was there deduced by principles and 
processes of the Second Book alone : which thus were adequate, although not in 
the moat practically convenient way, to the treatment of questions respecting tangent 
planes and normals to an ellipsoid, and similarly for other surfaces-]: of the same 
second order.

* This Construction of the Ellipsoid, by means of ti^enerating Triangle and a 
Diacentric Sphere (page 227), is believed to have been new, when it was deduced 
by the writer in 1846, and was in -that year stated to the Royal Irish Academy 
(see its Proceedings, vol. iii. pp. 288, 289), as a result of the 'Method of Quater
nions, which had been previously communicated by him to that Academy (in the 
year 1843).

f The following are a few other references, on this subject, to the Second Book. 
Expressions for a Right Cone (or for a single.^AeeZ of such a cone) have been given

in pages 119, 179, 220, 221. In page 179 the equation S - S - = 1, has been as- 
a p . <

signed, with a transformation in page 180, to represent generally a Cyclic Cone, or 
a cone of tbe second order, with its vertex at tbe origin; and to exhibit its cyclic 
planes, and subcontrary sections (pp. 181, 182). Right Cylinders have occurred in 
pages 193, 196, 197, 198, 199, 218. A case of on Elliftie Cylinder has been 
already mentioned (the case when f3 -t- « in I.); and a transformation of the equa
tion III. of the Ellipsoid, by means of reciprocals and norms of vectors, was assigned 
in page 298. And several expressions (corap. 403), for a Sphere of which the ori-
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(4.) But in thia Third Book we have been able to write the equation III. under 
the simpler form,*

V.. . T (tp + pit) = ic3 - li, 282, XXIX.
which has again admitted of numerous transformations; for instance, of all those 
which are obtained by equating (k’ — i’)* to any one of the expressions 336, (6.), 
for the square o£lhis last tensor in V., or for the norm of the quaternion cp + pic; 
cyclic f)rmsf of equation thus arising,, which are easily converted into focal forms 
(359); while a rectangular transformation (373, XXX.) has subsequently been 
assigned, whereby the lengths (abc'), and also the cUreetions, of the three semiaxes of 
the surface, are expressed in terms of the two vector-constants, t, k : tbe results thus 
obtained by calculation being found to agree with those previously deduced, from the 
geometrical construction (2.) in the Second Book.

(5.) The equation V. has also been differentiated (336), and a normal vector 
v = <})p has thus been deduced, such that, for the ellipsoid in question,

VI, . . Svdp = 0, , and VII. .. Svp = 1;
a process which has since been extended (361), and appears to furnish one of the 
best general methods of treating surfaces'll of the second order by quaternions : espe
cially when combined with that theory of linear and vector functions (^p) of vec
tors, which was developed in the Sixth Section§ of the Second Chapter of the pre
sent Book.

ffin was.not the centre, occurred in gages 164, 179, 189, and perhaps elsewhere, 
without any employment of producls of vector).

* Mentioned by anticipation in the Note to page 233.
t Compare tlie second Note to page 633. The vectors ( and k are here the 

cyclic normals, and i — k ia one of the focal lines ; the other being the line »' — k of 
page 232.

J The following are a few additional references to preceding parts of this Third 
Book, which has extended to a much greater length, than was designed (page 302). 
In the First Chapter, the Tender may consult pages 305, 306, 307, for some other 
forms of equation of the ellipsoid and the sphere. In the Second Chapter, pages 
416, 417 contain some useful practice, above alluded to, in the differentiation and 
transformation of the equation r* = T (ip + pie). As regards the Sixth Section of 
that Chapter, which we are about to use (405), as one supposed to be familiar to the 
reader, it may be sufficient here-to mention Arts. 357-362, and the Notes (or some 
of them) to pages 464, 466, 468, 474, 481, 484. In this Third Chapter, the sub
articles (7.)-(21.) to 373 (pages 504,” &c.) might be re-perused; and perhaps tho 
investigations respecting cones and sphero-conics, in 394 and its sub-articles (pages 
641, &o.^ including remarks on an hyperbolic cylinder, and its asymptotic planes 
(in page 647). Finally, in p few longer and. later series of sub-articles, to Arts. 
397, &c., a certain degree of familiarity with some of the chief properties of sur
faces of the second order has been assumed; as in pages 671,688, 691, and generally 
in the recent investigations tespecting tbe osculating twisted cubic (pages 591, 620, 
&C.), to a helix, or other curve in space,

§ It appears that this Section may be conveniently referred to, as III, ii. 6; and 
similarly in other cases.
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405. Dismissing then, at least for the present, the special consi
deration of the ellipsoid, but still confining ourselves, for the mo
ment, to Central Surfaces of the Second Order, and using freely the 
principles of this Third Book, but especially those of the Section 
(III. ii. 6) last referred to, we may denote any such central and non- 
conical surface by the scalar equation (comp. 361),

I. ..fp = 3p<pp = li
the asymptotic cone (real or imaginary) being represented by the 
connected equation,

II. . .//> = Sp0/) = O;
and the equation of conjugation, between the vectors p, p' of any two 
points P, p', which are conjugate relatively to this surface I. (comp. 
362, and 404, (3.), see also 373, (20»)), being,

III. . .f{p, p'j =f{p', p) = Sp^p' = 3p'^p 1;
while the differential equation of the surface is of the form (361),

IV, . . 0 = d//) = 2Sad/>, with V. ..r' = ^p;
this U€cZ<w-/izncZ«o» 0/j, which represents the nomal v to the surface^ 
being at once linear and self-conjugate (361, (3.)); and the surface 

■ itself \)evaQ the Zoews of all the/iojnZs p which are conjugate to them
selves, so that its equation I. may be thus written,

I'- • • f{.P,because /(/j,p) =fp, by 362, IV.

(1.) Such being tho form of ^p, it has been seen that there are always three real 
and rectangular unit-lines, at, ai, a}, and three real scalars, cj, C2, cj, such as to 
satisfy (comp. 357, III.} the three vector equations,

VI. . . ^ai = —ojai, — ^a3=~csU3;-
whence also these three scalar equations are satisfied,

Vn./ax = cj, fa2-Ci, /as =03;
and therefore (comp. 362, VII.),

VIII. . ./(or»ai)=/(c2-ia2)=/(c3 »03) = l.
(2.) It follows then that the three (real or imaginary) rectangular lines, 

IX. . . j3i =i= Cflai, p2=Ceia2, I33 = cs'ia3, 
are the three (real or imaginary) vector semiaxes o( the surface I.; and that tho thret 
(positive or negative) sca/ars, ci, C2, C3, namely tho three roots of tho scaZa^and cubic 
equation* AI—Q (comp. 357, (I-)), are the (always real) inverse squares al the three 
(real or imaginary) scalar semiaxes, of the same central surface of the second order.

* It is unnecessary here to write 57o = 0, as in page 4G2, &c., because the func
tion is here supposed to bo self-conjugate; its constants being also reaZ.
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(3.) For the reality of that surface I., it is necessary and sufficient that one at 

least of the three scalars ci, cs, cs should ie positives if aZ/be such, the surface is an 
ellipsoid ; if too, but not the third, it is a single-sheeted hyperboloid ; and if only 
one, it is a double-sheeted hyperboloid.- those scalars being here supposed to be 
eacb^nZte, and different from zero.

(4.) We have already seen (357, (2.)) how to obtain the rectangular transfor
mation,

X. . .fp = ci{3a\p)'‘ + cs(Sa2p)2 + 03(803^)’,

which may now, by IX., be thus written,

XI. .. /p = (Sj3i-ip)’ + (&l32-'py + (S^3-W’;

but it is to be remembered that, by (2.) and (3.),'one or even too of these three vec
tors may become imaginary, without the surface ceasing to be real.

(f.) We had also the cyclic transformation (357, II. II/),

XII. . .fp = gp^ + S\ppp =p^(ff— SXp) + iSXpSpp,
in which the scalar p and the vector X, p are reaZ, and tbe latter have the directions 
of the two (real) cyclic normals; • in fact it is obvious on inspection, that the surface 
is cut in circles, by planes perpendicular to these too last lines,

(6.) It has been proved that the four real scalars, ciC2CaS',-and thejJoc real vec
tors, aioza^p, aro connected by the relations! (357, XX. and XXI.),

cs^-p+SX/i, C3 = -p + TXp; 
a»=U (XTp + pTX);

at least if the three roots C1C2C3 of the cubic Af = 0 be arranged in algebraically as
cending order (ZbT, IX.), so that ci < C2 < C3-

(7.) It may happen (comp. (?.)), that one o( these three roots vanishes ; and in 
that case (comp. (2.)), one of the three semiaxes becomes injinite, and the surface I. 
becomes a cylinder.

(8.) Thus, in particular, if c, = 0, or g = — 'VXp, so that the two other roots are 
both positive, the equation takes (by XII., comp. 857, XXII.) a form which may 
be thus written,

XV. .. (SXpp)2 + (SXpTp + SppTXy = TXp - SXp > 0; .

and it represents an elliptic cylinder.
(9.) Again, if C2 = 0, or g = SXp, the equation becomes,

XVI. . . 2SXpSpp = 1,

and represents an hyperbolic cylinder s the root c, being in tliis.case negative, while 
the remaining root ca is positive.
r

XIII. .. ci =—p—TXp,
XIV. . .tn=D(XTp-pTX)r a3 = UVXp,

. * Compare the Note to page 4G8; see also the proof by quaternions, in 373, (IC.),
&c., of the known theorem, that any two subcontrary circular sections are homosphe- 
rical, with the eguation (373, XLIV.) of their common sphere, which is found to have 
its centre in tlie diametral plane of the too cyclic normals h, p.

t These relations and a few others mentioned are so useful that, although they 
occurred in an earlier part of the work, it seems convenient to restate them here.
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(10.) But if we suppose that C3 = 0, or g='ihp, so that ci and cj axeboth nega
tive, the equation may (by 357, XXIII.) be reduced to the form,

XVII. , . (ffhpp'p + (SXpT/t-S/ipTX)2 = -T\p~S\p<0-, 
it represents therefore, in Mm case, nothing real, although it may be said to be, in the 
same case, the equation of an- imaginary* elliptic cylinder.

(11.) It is scarcely worth while to remark, that we have here supposed each of 
the two vectors \ and p to be not only real but actual (ffrt. 1); for if either of them 
were to vanfsA, the equation of the surface would take by XII. the form,

XVIII... p2=p-i, or XVIII'... Tp = (-p)-l,
and would represent a real or imaginary sphere, according as the scalar constant g 
was nepatioe or positive : X and p have also distinct directions, except in the case 
of surfaces of revolution.

(12.) In general, it results from the relations (6.), that the plane of the two (real) 
cyclic normals, \, p, is perpendicular to the (real) direction of that (real or imagi
nary) semiaoas, of which, when considered as a scalar (2.), the inverse square c^ is 
algebraically intermediate between the inverse squares ci, cs of the other two : or that 
tbe two diametral and cyclic planes (SXp = 0, S/ip = 0) intersect in that real Uni 
tffhpj which has the direction of the real unit-vector 02 (1.), corresponding to the 
mean root C2 of the cubic equation Jf=0: all which agrees with known results, re
specting the circular sections of the (real) ellipsoid, and of the two hyperboloids.

406. Some additional light may be thro'wn on the theory of the 
central surface 405, I., by the consideration of its asymptotic cone 
405, II.; of which cone, by 405, XII., the equation may be thus 
written,

I.. • fp +. SXppp = p^(g- S\fi) + 2SX/)S/tp = 0;
and which is real ot imaginary, according as we have the iiiequa- 

. .lity,
II. .. or III. . .

that is, by 405, (6.), according as the product CjCj of the extreme 
roots of the cubic 0 is negative or positive; 'or finally, according 
as.the surface fp-\ is a (real) hyperboloid, or an ellipsoid (real or 
imaginaryl).

* In the Section (III. ii. 6) above referred to, many symbolical results have been 
established, respecting imaginary cyclic normals, or focal lines, &o., on which it is 
unnecessary to return. But it may be remarked that as, when the scalar function 
fp admits of changing sign, for a change of direction of the real vector g, so as to be 
positive for some such directions, and negative for others, althoughy(—p)=y(+p), 
the two equations, /J) = + 1, /p = — 1, represent then two real and conjugate hyperho- 
loids, of different species: so, when the function fp is either' essentially positive, or 
else essentially negative, for real values of p, the equations/p = I andyp = — 1 
then be said to repreiiont fioo conjugate ellipsoids, one real, and the other imaginary, 

* t Compare the Note immediately preceding; also the second Note to page 474.
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(1.) As regards tho asserted reality of tlie cone I., when the condition II. is sa
tisfied, it may suffice to observe that if we cut the cone by the plane,

IV... SX(p-p)=-p,
the section is a circle of the real and diacentric sphere,

V. . . p’ = 2Spp,■ or V'. . .
and a real circle, because it is on tbe real cylinder of revolution,

■ VI... TV(p - p)UX = (Tp« -p2TX-2)l,
so that its radius is equal to this last real radical.

(2.) For example, the cone
VII... S^S^ = 1. or Vir. .. 2(SapS/3p-a2p’) = 0,

a p
which under the form VII. occurred as early as .196, (8.), and for which X = a, 
p = P, g = Sttj3 - 2a®, and therefore TXp +p > 0, the condition II. reduces itself to 
TXp—p> 0; or after division by 2Ta®, &c., to the form (comp. 199, XII.),

VIII. . . J(T-i S)^> 1, or Vlir. . . S 1;

and accordingly, when either of these two last inequalities exists, it will be found 

thaUthe sphere S — = 1 is cut by the plane S - =1 in a reaZ circle, the base of a real 
Pcone VII.

(3.) As an example of the variety of processes by which problems in this Calcu
lus may be treated, we Vnight propose to determine, by the general formula 389, IV., 
the vector k of the centre of the osculating circle to the curve TV. V., considered 
merely as an intersection o{ two surfaces. The first derivatives of the equations 
would allow us to assume p’= VX(p-p), and therefore p"=Xp’; whence, by the 
formula, we have

the section is therefore a circle, because its centre of curvature is constant; and its 
radius is.

X.. . r = T (p - k) = T (p - /t + f\->) = (T/1» -
=. thc radius of the cylinder VI.

(4.) When the opposite inequality III. exists, the radius X., the cylinder VI,, 
the circZe IV. V., and the cone I., become all four imaginary ; the p/ane IV, being, 
then wholly external to the sphere V., as happens, for instance, with the plane and 
sphere in (2.), when the condition VIII. or VIII’. is reversed.

(5.) In tire intermediate, ease, when
XI. . . = X®p’, or Xr. ..p=q:TXp,

the radius r in X. vanishes ; tho right cylinder VI. reduces itself to its axis : and 
the circle IV, V. becomes a point, in which the sphere is touched by the plane. In 
this case, then, the cone I. is reduced to a single (real*) right line, which hhs

* It may however be said, that in this case the cone consists of a pair of imagi
nary planes, which interaeet in a real right line. •
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(compare the equations'of the elliptic cylinder), 405, XV. XVII.) the direction of 
XT/t — /iTX, if g=~TX/i, but the perpendicular direction of XT/i + /tTX, if J’s 
+ TX/r.

(6.) In general (comp. 405, X.), the equation of tbe cone I. admits of the rect
angular transformation,

XII. . . fp = Ci(Saip)’ + C2(Sa2p)* + C3(Sa3p)* = 0 ;
and the two »u5-cajei last considered (5.) correspond respectively (by 405, (C.)) to 
the evanescence of the roots ci, C3 of the cubic df = 0, with the resulting directions at, 
03 of the only real side of the cone. An analogous but intermediate case (comp. 405, 
(9.)) is that when C2=0, or =SX;t; in which case, the eone I. reduces itself to the 
pair of (real) planes,

XIII.. . SXp. Spp= 0,

namely to the asymptotic planes of the hyperbolic cylinder 405, XVI., or to those 
which are usually the two cyclic* planes of the cone.

(7.) The case (comp. 394, (29.)),
XIV. . . p = —SX/i, or XIV*. . . Cl — C2 + c3 = 0,

for which the equation I. of the cone becomes,
XV.. . 0 =fp = 2(SXpSpp - ptSXp} = 2S(VXp .'Vpp'),

may deserve a moment’s attention. In this case, the ttoo planes, of \p and pp, , 
which connect the two cyclic normals X and p with an arbitrary side p o? the cone, 
are always rectangular to each other; and these two normals to the cyclic planes 
are at the same time sides ot the cone, which thus is cut in circles, by planes perpen
dicular to those two sides. And because the equation of tbe cone may (in tbe same 
case) be thus written,

XVI. . . TV(X + p) p = TV(X - p) p,
, while the lengths of X and p may vary, if their product T!\p be left unchanged, so 
that X + p and X - p may represent any two lines from the vertex, in the plane of 
the two cyclic normals, and harmonically conjugate with respect to them, it follows 
that, for this cone XV., the sines of the inclinations of an arbitrary side p, to these 
two new lines, have a constant ratio to each other.

(8.) In general, the sefeond form I. of/p shows (comp. 394, (23.)), that the con
stant product of the sines of the inclinations, of a side p of the cone to the two cyclic 
planes, has for expression, 

while the first form I. of the same function fp reproduces the condition of reality II., 
by showing thatp: TXp is (for a real conej the cosine ot a reoZ angle, namely, that 
of the quaternion product Xppp, since it gives the relation,

XVIII. . . = SUXppp = cos z. \ppp = cos Z.
lA/i A

* The cones and surfaces which have a common centre, and common values of 
^he vectors X and fi, but different values of the scalar g, may thus be saiil, in a 
known pliraseology, to be biconeyclic.
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(9.) We may also observe that in the case of reality II.*, with exclusion of the 
sub-case (6.), if as have the direction of tbe internal axis of the cone, so that

XIX. ..ci<0, C3<0, C3>0, or XIX'. . . g>S\it, jkTX/*,
tho tioo sides (of one sheet) in the plane of have the directions,

XX. . . pi = C3‘4n3-i-(-ci)riai, ps = cs’ius — (-cO'lui;

if then their mutual incZinaZion, or the angle-of the cone in the plane of the cyclic 
normals, be denoted by 2b, we have the values.

XXI.. . ton« b = —, XXI'. .. cos 2b = ‘ ;
-Cl -ci-bcs TXp

tbe angle' of the quaternion Xppp is therefore (by XVIII.), equal to this angle 2b, 
namely to tbe arcual minor axis of the sphero-conic, in which the cone is cut by the 
concentric unit-sphere.

(10.) The same condition of reality II. may be obtained in a quite different way, 
as that of the reality of the reciprocal cone, which is tho locus of the normal osetor,

XXII.. . v—ipp—gp + 'V\pp.
Inverting this linear function tji, by the method of the Section HI. ii. 6, we find first 
tbe expression (comp. 354, (12.), and 3G1, (6.)*),

XXIII... mp=tpp = /i^XSXv + V—g (XSpv -b pSXv) 4- (p* — X'p^) v,
in which XXIV. .. m=(p - SXp) (p» - X’p’) = - cicscs';

and next the reciprocal equation (comp. 361, XXVII.),

XXV. . . 0 = Si',/(v = pS(SX)/)s-(-X®(Spj/)s — 2pSXj/Spv +(p® — X®p®)i'*, 

which may be put under the form,

the guoZienf p: TXp thuS presenting itself anew as a cosine, namely as that of the 
supplement of the sum of the inclinations of the normal v (to the cone I.), to the twa 
cyclic normals X, p (of that cone); or as the cosinef of w - a — b, if a and b denote 
(comp. Fig. 80) the two spherical angles, which the tangent arc to the sphero-conic 

makes with the two cyclic arcs: so that by comparison of XXI'. and XXVI. 
we have the relation,

XXVII. . . A + B = r 7-b Z- = 7r-2b.
X .p

(il.) Comparing tho expression XXI'. for cos 2b, with the last expression

• In the expression SCI, XXVI. for ^pv, tho second terra ought to have been 
printed as — VX/rSXr/i; or else the sign should have been changed.

f This relation was mentioned by anticipation in 394, (3.); and the relation in 
xxvn. may easily be verified, by conceiving the point of contact p in Fig. 80 
(page 643) to tend towards a minor summit of the conic, or the tangent arc apb to 
tend to pass through the two points c, c', in which the cyclic arcs intersect.

4 N
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XVIII. fo’r g: TXfi, we derive the following consfruction for a tp/iero-conic, which 
may easily be verified by geometry :*

Having assumed two points (l, m) on a sphere, and having described a small 
circle round one of them (say i,), bisect the arcs (mq) which are drawn io its circum
ference from the other point s the locus of the bisecting points (p) will be a sphero- 
conic, with the two fixed points for its two cyclic poles (or for thc poles of its cyclic 
arcs), and with an arcual minor axis (2b) equal to the arcual radius of the small 
circle.

(12.) As regards the arcual major axis (say 2a) of the same sphero-conic, it is 
(with the conditions XIX.) the angle between the two sides (comp. XX.),

XXVIII. . . P3 =; cs'lcis-l- (— c^'iaz, pl = 03-103 — (— C2)‘lo2 ; 
whence (corap. XXL),

XXIX. . . tan®a = or XXIX'. .. cos2a = = (say)e.-cf -C2+C3
and therefore, a few easy reductions heing made,

from which we can at once infer, that if a focus of tbe conic be determined, by draw
ing from a minor summit to the major axis an arc equal to the major semiaxis a, 
the minor axis subtends at this focus (or at the other) a spherical angle equal to the 
angle between the two cyclic arcs.

(13.) For the two real unifocal transformations of the equation of tho cone, or 
the forms,
XXXI. . . a(Vap)® + 6(S/3p)’= 0, and XXXI'. . . «(Va'p)2 + 6(Sj3'p)2 = 0, 

with one common set of real values of the scalar coefficients, a and b, hut with two 
real focal unit lines a, a', and two real directive normals P, P' corresponding, it 
may be sufficient here to refer to the sub-articles to 368; except that it should be 
noticed, that if the cone be real, and if the line 03 have the direction of its internal 
axis, so that tbe inequalities XIX. are satisfied, and therefore also (by 405, (6.)),

'XXXII, • • 03-1 > 0 > Cl"’ > C3"i,
instead of the inequalities 358, III., or 369, XXXVII., we are now to change, in 
the earlier formulse referred to, the symbols ciacsaiazai to csciCzusoias, so that we 
have now the values,

XXXIII. .. a = -Cl, 6 = c3-c,+ c2, if Tj3 = T(3'=l.
(14.) And as regards the interpretation oi the unt/bcaZybrm XXXI,, with these 

last values, it is evidently contained in this oHier equation,

XXXIV. . . sin Z P . sec Za p — opp \ - Cl
the of the inclinations ai an arbitrary side (ji') the eoncj to & focal line (o').

y = const.;

* In fact, the bisecting radii op are parallel to the supplementary chords m'q, if 
jim' be a diameter of the sphere j and the locus of all such chords is a cyclic cone, 
resting on the small circle as its base.
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and to the corresponding director plane (-*- j3), thus bearing to each other (as is 
well known) a constant ratio, which remains unchanged when we pass to the other 
(real) focal line (o'), and at tbe same time to the other (real) director plane (/?') ; 
and the focal plane of these tioo Zines (a, a") being perpendicular to Mat one of the 
three axes, which corresponds to the roof (here ci, by XXXII.) of the cubic, of 
which the reciprocal is algebraically intermediate between tlie reciprocals of the other 
two.

(16.) It is, however, more symmetric to employ the bifocoZ transformation 
(comp. 360, VI.*),

XXXV. .'. 0 = (Sap)» - 2eSopSo'p + {Sa'pf + (1 - e’)p’ ;
in which the scalar constant e has the value (comp. XXIX'.),

XXXVI. . . e = cos2a;
and a, a' are tbe tioof real and focal unit Zines, recently considered (13.).

(16.) Tho equation XXXV., for the cose of a real cone, maybe thus written 
(comp. XXVI. XXXVI.),

• XXXVII. .. L ^ = cos-ie=e2a;a a
the sumt of tbe ineZinations of the side p to the two focal lines a, a' being thus con
stant, and equal (as is well known) to tbe major axis of the spherical conic: and 
although, when e> 1, the cone becomes imaginary, yet it Is then asymptotic to a 
reoZ ellipsoid, as we shall shortly see.

407. The 'bifocal form (406, XXXV.) of the equation of a cone 
suggest the corresponding form,

1. ..C^Cfp = (So/.)’ - 2eSo/.Sa'/, + (Sa'pf + (1 - e’) p\
in which a and a' are given and generally non-parallel unit-lines, 
while e and C are scalar constants, as capable of representing gene
rally (comp. 360, (2.), (3.)) a central but non-conical surface (Jp =■ 1) 
of the second order. And we shall find that if, in passing from one 
such surface to another, "ViQ suppose a and a' to remain
but e and (7 to var^ together, so as to be always connected by the 

* relation.
II.. . C=(e’-l)(e + Saa')Z’,

in which I is some real, positive, and given scalar, then all the sur-

* It is to be remembered that, in. the formula here cited, the symbols a, a' did 
not denote unit-vectors.

t When these two vectors a, a' remain constant, but tho scalar e changes, there 
arises a system of biconfocal cones : or, by their intersections with a concentric 
sphere, a system of biconfocal sphero-conics. Compare tho Note to page 610.

J Or tho difference, according to the choice between two opposite directions, for 
one of the two focal lines. The angular transformation XXXVII. may be accom
plished, by resolving the equation XXXV. as a guadratic in e, and then interpreting 
the result.
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fices L so deduced, or in other words the surfaces represented by 
the common equation,

TTT i2_By _(Sa/’)*-2eSa/>Sa> + (Sa»« + (l-e’)p’'
in. . . I =pfp-- — , 77-,- Q-;. /X---------------- ,(e“- 1) (e + Saa')

with e for the only varioihle parameter, compose a Confocal System.

(1.) The scalar form III. olfp gives the connected rector form,
TTT 79.. _ K..__ «S (a - ea'-) p -b a'S (a - ea) p + (1 - e2)p ,IV, ..Pn- HP------------ ,

which may also be thus written, with the value II. of C,
V. . . Cv= Cjip = (a — ea') Sap + (yz' — ea) Sa'p + (1 — e*) p^ 

so that the function 0 is self-conjugate, as it ought to be. ■
(2.) And because we have thus,

VI.. . (e2 - 1) Ha = a’ - ea, -1) Z^^a' = a - ea',
if wo write, for abridgment,

VII. . . a2 = (e+l)I>, 62 = (e+Saa')Z’, c3=(e-l)/»,
we shall have the values.

(^*.(a + a’) = - a-2(a + a^, 
VIII. . . t0Vaa' = — b-^aa.',

(^(a-a9 = -c-»(a-a');

comparing which with 405, (1.), '(2.), we sec that the three (real or imaginary) 
lines,

IX. . . aU(a + a'),. dUVffo', cU(a - a’j,
of any one of which the direction may be reversed, are the three vector eemiaxes of 
the ««yace_^ = l; and therefore, by VII., that the system III. is one of confocals, 
as asserted.

(3.) The rectangular transformations, scalar and vector, are now (comp. 406, 
X., and 357, V. VIII.):

tt „ (SpU(a+ «'))» , (SpTJVaa')» , (SpU(«-a'))’:s... . I? = ----- ^3-^   + --I'g;.,, +----- -- ------- ;

e+ 1

e +1 ' ' e + Sao' ‘ e — I

XI P»> = I«<4 + + I PVaa'.SpUVaa'
+1 c + Satct*

, U(a —a')*SpU(a-a')+ ----------- -

which can both be estabh'shed, by the rules of the present Calculus, in several other 
ways, and from the first of which it follows that (as is well known) through any pro
posed point p of space there can in general be' drawn three confocal surfaces, of a 
given system III.; one an ellipsoid, for which e> 1, and therefore a’>6s>c*> 0; 
another a single-sheeted hyperboloid, for which e < 1, e > - Saa', a’ > 6’ > 0 > c’; 
and the third a double-sheeted hyperboloid, for which e<-Saa', e>— 1, a’>0 
>b^>c^.
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(4.) From the other rectangular transformation XI. it follows, that if we denote 
by VI = ^ip what the normal vector t> = ^p becomes, when p remains the same, but 
e is changed to a second root ei of the equation III. or X. of the surficce, considered 
as a cubic in e, then

XII. .. —---- = pA^v^^liAlV=^pAl^p=Plt^^iPi
• ei — e

but XIII. . . Spvi = Spv=fip =fp = 1,
/rp being formed from/p, by the substitution of ei for e; tberefbre,

XIV.. . 0 = Sp^»'i—Sui^p = St'ij',
and tho kifown theorem results, that eoit/ocaZ surfaces cut each other orthogonally.* 

(5.) It follows, from V. and VI., that the inverse function ^’'p can be expressed 
as follows:

= Z»(aSo'p + a'Sap) — b^p j
or that p may be deduced from v by the formula,

• XVI. . . p = = P (aSa'v + n'Sav) — b^v,
which can easily be otherwise established. Hence (comp. 361, (4.)), the equation 
of the surface reciprocal to the surface I. or HI., or of that neui surface which has v 
(instead of-p) for its variable vector, is

XVII. .. 1 = JV = = 2PSai/Sa'v - ■,
fixed focal lines a, a' of tbe confocal system III., or of the corresponding system 

of file asymptotic cones, becoming thus (in agreement with known results) thejSjied 
cyclic normals (pt cyclic lines, comp. 361, (6.)) of the reciprocal system XVII.

(6.) In thus deducing the equation XVII. from III., no use has been made of 
the rectangular transformations X.'XI., of the functions fp and 0p. inthout tho 
transformations last referred to, we could therefore have inferred; by a slight modifi
cation of the form XVII., that tho reciprocal surface (I^j/=.l) with v [or its vari
able vector, which has the same rectangular system of directions tor its three serai
axes as tlie original surface (,fp = l'), but with inverse squares (the roots of t7s 
cubic) equal to the direct squares of the original semiaxes, has for equation (comp. 
405, XIL),

XVIII. . . 1 = Fv = P (Sava'v — ev^) = Shvpv + gi^, 
if XIX. ..X = Za, = g- — eP = -e1\p-,
the values VII. of a’, 5’, c’ being thus deduced anew, but by a process quite diffe
rent from that employed in (2.), under the forms (comp. 405, XIII.),

XX. . . o2 = C3 = -p + TAp; 62 = C2 = -p+SXp ; o’= ci =-p-TAp; 
while the directions IX. of the corresponding semiaxes may be deduced as those of 
usi U2i Ol, from the formulm 405, XIV.

(7.) If the symbol u (v), or simply dll', be used to denote a new linear and self- 
conj ugute vector function of v, defined by tlie equation,

XXI. . . lav = pSpv — P (aSa'r + a'Sar),

* We shall soon see that the same formula XII., by expressing that v, vi, and 
vi OT ipiv are compZonar, contains this oMer part o! tho known theorem referred to,' 

that the intersection is a Wne of curvature, on each oi the two confocals.

    
 



646 ELEMENTS OF QUATERNIONS. [book hi.

with p here treated as a vector constant, then (because Sp»’= 1) the equation XVI. 
tnay be thus written (comp. 354, &c.),

XXII.. . ((u + 65)v=0;
thc three reelanffttlar directiona, o( the three normals v, Vi, V2 to the three confo
cals through p, are therefore' those which satisfy (comp, again 354) the vector qua
dratic equation,

XXIII. . . Vva»p = 0i
and they are the directions of the axes of this new surface oC the second order (comp. 
357, &c.),

XXIV. .. Svwp = (Spy)’ - iPSavSa'v <=1,
in which p is still treated as a constant vector, but v as a variable one.

(8.) The inverse squares ot the scalar semiaxes of this neio surface (Spw»'= 1), 
are the direct squares 5^, l>i\ ot what may bo called the mean semiaxes of tho 
three confocals; these latter squares must therefore be.tbe roofs of this new cubic, 

XXV. . . 0=>n + m'6’ + ni''(5’)’+
in which tlie coefficients nt, nt', nt", deduced here from the new function <o, as they 
were deduced from 0 in the Section III. ii. 6, have the values,

lm =l^(^aa.'py‘ •,
XXVI. . . ) m' = Z< (Vaa’)2 + 2PS (Vap .Xa’p) ;

(»«"= p^ — 212Saa'.

' Accordingly, if we observe that (because Ta = Ta'= 1) w6 have among others tho 
transformation,

XXVn. . . (Saa'p)2 = p^ (Vaalf - (Sap)’ - 2Saa'S«pSo'p - (So'p)”,

wo can express this last cubic equation XXV., with these values XXVI. of its co
efficients, under the form,

XXVIII. . . 0 = (6Hp2) {(6’-/2Saa7-Z‘} '
+ 2P(5s-Z2Saa')SapSa'p -Zt((Sap)’ + (Sa'p)’’);

which, when we change 6’ by VII. to its value Z’(s-l-Saa’), and divide by Z'*, be
comes the cubic in e, or the equation HI. under tlie form,

XXIX. .. 0 = (e2-l) {Z«(e + 8aa') + p2} +2eSapSa'p-(Sap)’-(Sa’p)’'.

(9.) As an additional test of the consistency of this whole theory and method, 
the directions of the three axes of the new surface "S-S-W., or those of the three 
normals (7.) to the confocals, or the three vector roots (354) of the equation 
XXIII., ought to admit of being assigned by three expressions of the forms,

!nv =if,(r +5^(7 +5*<r, 
mvi = jzai + b

nine = + bx‘x<’i + ^2^’3 iA
in whidi 6’, bi*, b^ are the three scalar roots ot the cubic XXV. or XXVIII., while 
a, ai, <72 are three arbitrary vectors; n, »i, n^ are three scalar coefficients, which 
can be determined by the conditions Spt'= Sppi = Spv2= 1 (comp. XIII.); and ift, 
X are two new auxiliary linear and vector functions, to be deduced here from the 
function w, in the same manner as they were deduced from in the Section lately 
referred to.
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(10.) Accordingly, hy tho method of that Section, taking for convenience the 

given* vector p (instead of the arbitrary vectors tr, <ri, as) as the subject of the ope
rations tp and X, we find the expressions,

XXXI. . . ilrp = l*Vaa'Saap, xP = i’(“Sa'p + a'Snp —2pSa«’); 
whence, after a few reductions, with elimination of n by the relation Spv = 1, and by 
the cubic in 5-, the first equation XXX. becomes:

XXXII. . . 0 = (52j/ + p) - IsSaa')’ - B}
+ P(6’ PSaa') {aSa'p + a Sap) - P (aSap + a'Sa'p)f 

which is in fact a form o{ the relation between v and p, for any one of the confocals, 
as appear? (for instance) by again changing 6* to 1’ (e + San'), and comparing with 
the equation IV.

(11.) Another and a more interesting auxiliary surface, of which the axes have 
still the directions of the normals v, is found by inverting the new linear function <u, 
or by forming from XXII. the tnperse etptation,

XXXni. . . («.-' + 6-2> = 0;
in which,

XXXIV. . . <>»-ij/.(Saa'p)’= Vaa'Saa'i' +Z'2(V(jpSa'pp-l-Va'pSapr);
and from which it follows that tho normals v to the confocals tbrongh f have the 
directions of the axes of this new cone,

XXXV... Svtc"'v= 0, or XXXVI... 0 = Z^(Saa')')’+2SnpvSa'p»', 
with p treated as a constant, as before.

(12.) Tho vertex of this auxiliary cone being placed at the given point p, of in
tersection of the three confocals, we may inquire in what-curve is the cone cut, by 
the plane oi the given focal lines, a, a', drawn through the common centre o of all 
the surfaces III. Denoting by o’ = /a + t'a! the vector of a pdint s of this sought 
section, and witting

XXXVII. . . V = a — p_ = ta + t'a' — p,
the equation XXXVI. gives the relation,

p at—c»XXXVIII. = -2^ = const, i

the section is therefore an hyperbola, which is independent of the point p, and has 
the focal lines of the system for its asymptotes. And because its vector equation may 
be thus written (corap. 371, II.),

XXXIX.. . a = ta + il^t-^a,
or what may be called its gnaternfon equation as follows (comp. 371, I.),

XL. . . 2Vao.Vffti' = Z2(Vaa )S
it satisfies the two scalar equations,
, XLI. . . m = 0, m’ = 0,

■with the significations XXVI. qf m and m'; it is tlierefore timt important curve, 
which is known by the name of tho Focal Hyperbola .-f namely the limit to which

* The general expressions for \(/a and x<f include terms, which vanish when 
<T = p.

t Compare the Notes to pages 231, 505.
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the section ot the confocal surface by tho plane of its extreme* axes tends, when tho 
mean axis (26) tends to vanish. We are then led thus to tho known theorem, that 
if with any assumed point p )br dertex, and with the focal hyperbola^ for base, a 
cone be constructed, the axes of this focal cone have the directions of the normals 
to the confocals through v.

(18.) As regards the Focal Ellipse, its two scalar equations may be deduced 
from the rectangular form X., by equating to zero both tho numerator and the de
nominator of its last term; they are therefore,

XLII...S(a-«')p = 0, 2P = (SpU(a + «0)» + ^5^^yi

tbe curve being thus given as a perpendicular section of an elliptic cylinder, with 
ZV2 and fV(l + Saa'), or (a® —c®)i and (6’ —c-)l, for the semiaxes of its base, 
or of tbe ellipse itself.

(14.) The same curve may also be represented by tho equations,
XLIII. . .Sap = Sa’p, TVap = (6^ - c”)!,

or XLIII'. .. Sap = Sap, TV«'p = (6«-c2)l;
which express that it is the common intersection ot its own plane (-*- a — o') with <u»o 
right cylinders,^ which have the two focal lines a, a' of the system for their axes of 
revolution, and have equal radii, denoted each by the radical last written.

(15.) In general, the unifocal form (comp. 406, (13.)) of the equation III., 
namely, '

XLIV. . . 0 = (1 - e2) (.(Vapy -1- 62)‘+ (S(a' - eo) p^,
iu wliich a and a' may be interchanged, shows that the two equal right cylinders, 

XLV. . . (Vap)2 + 52 = 0, XLV'. . . (Va'p)’ + 62 = 0,
or XLVI. . . TVap = b, XLYl'. . . TVa'p = b,
which are real if their common radius b be such, that is, if the confocal (e) bo either ' 
an ellipsoid (supposed to be real), or else a single-sheeted hyperbftoid, and which 
have the focal lines a, a’ of the system for their axes of revolution, eB»cZqpe§ that 
confocal surface; tho planes of the two ellipses of contact (which again are real 

■curves, if 6 be real) being given by the equations,

XLVII... S(a'-ea)p 0, XLVII'. .. S(a -ea)p = 0;

so that they pass through the centre o of the surface (or of the system), and are tho 
(real) director planes (comp. 406, (14.)) of the asymptotic eone (real or imaginary), 
to the particular confocal (e).

• Namely, those two of which tho squares algebraically include between them 
that of tho third; this latter being, for the same reason, considered here as the mean. 

, t Wo shall soon see that quaternions give, with equal case, a more general kno'yi 
theorem, in which this is included as a limit.

J The reader may consult page 613 of tho Lectures, for tho case of this theorem 
which answers to a given ellipsoirl. The focal ellipse may also be represented gene
rally by the expression (comp, page 382 of these JS/ements),

p = (flS _ c2)i V. a'U (a + a');
*or by the same expression, with a and a' interchanged.

§ Compare pages 199, 228, 233, 299.
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(16.) Whether the mean semiaxis (6) be real or imaginary, the surface III. 
(supposed to be itself real) is always, by the form XLIV. of its equation, the locus 
of a system of real ellipses (comp. 404, (I-)), in planes parallel to the director plane 
XLVII., which have their centres on the focal line a, and are orthogonally projected 
into circles on a plane perpendicular to that line.

(17.) The same surface is also the locus of a second system of such ellipses, re
lated similarly to the second focal line a’, and to the second director plane XLVII'.; 
and it appears that these two systems of elliptic sections of a surface of the second 
order, which from some points of view are nearly as interesting as the circular sec
tions, may conveniently be called its Centro-Focal Ellipses.

(18.) For example, when the/rjf quaternion form (204, (14.), or 404, I.) of 
tbe equation of the ellipsoid is employed, one system of such ellipses coincides with 
the system (204, (13.)) of which, in the first generation* of the surface, the ellipsoid

* Besides that first generation (I) of the Ellipsoid, which was a double one, in 
the sense that a second system (17.) of generating ellipses might be employed, and 
which served to connect the surface with a concentric sphere, by certain relations of 
homology (274); and the second double generation or construction (II), by means 
of either of two diacentric spheres (217, (4.), (6.), (7.), and 220, (3.)), which was 
illustrated by Fig. 53 (page 226): several other generations of the same important 
surface were deduced from quaternions in the Lectures, to which it is only possible 
here to refer, k reader, then, who happens to have a copy of that earlier work, may 
consult page 499 for aye«eratiorf(III)of a system of two reciprocal ellipsoids, with 
a common mean axis (26), by means of a moving sphere, ot which the radius (= 6) 
is given, but of which the centre has the original ellipsoid for its locus ; while the 
corresponding point on the reciprocal surface, and also the normals at the two points, 
are easily deduced from the'construction. In page 602, he will find another and per
haps a simpler generation (IV), of thesame pair of reciprocal ellipsoids, by means of 
quadrilaterals inscribed in a fixed sphere (the common mean sphere, comp. 216, 
(10.)) i the directions of the four sides of such a quadrilateral being given, and one 
pair ot opposite sides intersecting in a point of one surface, while tbe other pair have 
for their intersection the corresponding point of the other (or reciprocal) ellipsoid. 
In the page last cited, and in the following page, there is given a new double genera
tion (V) of any one ellipsoid; its circular sections (pt either system) being con
structed as intersections of two equal spheres (or spheric surfaces), of which the line 
of centres retains a fixed direction, while the spheres slide within two equal and 
right cylinders, whose axes intersect each other (in the centre of the generated sur
face), and of which the common radius is the mean semiaxis (5). Finally, in page 699 
of the same volume, there will be found a new generation (VI) of tho original ellip
soid (abc), analogous to tho generation (IV) by thejfaerf (mean) sphere, bnt with 
new directions of the sides of the quadrilaterals, which are also (in this last genera
tion) inscribed in the circles ot a certain mean ellipsoid (or prolate spheroid) of 
revolution, which has the mean axis (2b) for i7s mq/or axis, and has two medial 
foci on that axis, whose common distance from the centre is represented by the ex
pression.

V(a«-6^)V(6»-c^)
V(a»-6’ + c'!) ’

4 o
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naa treated as the Zoeas ; and on anuZopous generation of the ttoo hyperboloids, by 
^geometrical deformation ot two' corresponding surfaces of rreoZuZion, with certain 
resulting homologies (comp, sub-arts, to 274), through substitution of (eentro-focat) 
ellipses for circles, conducts to equations of those hyperboloids of tbe same unifocal 
form ; namely, if a and P have significations analogous to those in tbe cited equa
tion of the ellipsoid (so that j3 and not a is here a focal Zine),

the upper or the lower sign being taken, according as the surface consists of one 
sheet or ot two.

(19.) It may also be remarked that as, by changing p to a in the corresponding 
equation of tbe ellipsoid, we could return (comp. 404, (1.)) to a form (403, XI.) of 
tbe equation of tbe sphere, so tbe same change in XLVIII. conducts to equations 
of the equilateral hyperboloids of revolution, of one sheet and of two, under the very 
simple forms* (comp. 210. XL),

XLIX. ..S^^y = -1, and L.

LI.

in which it seems unnecessary to insert points after tbe signs S, and of whiefa the 
geometrical interpretations become obvious when then they are written thus (comp. 
199, V.),

. . T? = VBec2(^ - L^\ LIL . . T2 = V8ec2£^;a \2 a) a a
where T - = op: oa. while £ - is the inclination AOP of the semidiameler op to the a a
axis ot revolution oA, and — — Z - is the inclination of the same semidiameter to a 

2 a
plane perpendicular to that axis.

(20.) The real cyclic forms of the equation of tbe surface III. might be deduced 
from the unifocal form XLIV., by the general method of tbe subarticles to 359; but 
since we have ready the rectangular form X., it is simpler to obtain them from that 
form, with the help of the identity,

LIII.., - p’ = (SpU (a +«'))» + (SpUVaa> + (SpU (a - «'))»,
by eliminating tbejirst of these three terms for the case of a single-sheeted hyperbo-

the common tangent planes, to this mean (or medial) ellipsoid, and to the given for 
generated) ellipsoid (abc), which ore parallel to their common aais (2b), being pa- 
Tallel also to the two umbiliear diameters ot tbe latter surface.

* The same forms, but with a for p, and for a, may be deduced from XLVIII. 
on the plan of 274, (2.), (4.), by assuming an auxiliary vector <r such that 

gS = £S and ; the homologies,'above alluded to, between the generalpa p p
hyperboloid oi either species, and the equilateral hyperboloid qf revolution ot the 
same species, adnutting also thus of being easily exhibited.
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LVI..

loid (for which 6'’ > a-» > 0 > c-s); the second for an ellipsoid (c-> > b''* > a-'^’ > 0); 
and the third for a double-sheeted hyperboloid {ar^ > 0 > c'S > b-^).

(21.) Whatever the species of the surface III. maybe, we can always derive from 
the unifocal form XLIV. of its equation what may be called an Esponential Trans
formation ! namely the vector expression,

LIV.. . p=xa + y'Va‘p, with LV. . . aya + yyUVoa’= 1;

the scalar exponent, t, remaining arbitrary, bnt the two scalar coefficients, x and y, 
being connected by this last equation of tbe second degree : provided that the new 
constant vector fS be derived from a, a', and e, by the formula,

„ (o'-ea)JJVaa' 
e + Sao' ’

which gives after a few reductions (comp, the expression 315, III. for a*, when 
Ta = l),-

LVII. . . Va/3 = UVaa', SQa'-eayp^O, Saa'jS =t= 0 ;
LVIII. . . Natl3 = p3.a*^ UVaa'.S.a‘->; LIX. . . V.aVo'j3 = a‘UVaa' = T-il j 

LX. . . S(a' —ea)p=«(e + Saa9, Tap=ya’VIVaa'
while LXI.. . /a = ar^b^e-^ and LXII. /UVda’ = b-K

(22.) If we treat the exponent, t, as the only variable in the expresrion LIV. 
' for p, then (comp. 314, (2.)) that exponential expression represents what we have 
called (17.) a centro-focal ellipse; the distance of its centre (or of its plane) from the 
centre of the surface, measured along the focal line a, being represented by the co
efficient x; and tbe radius of the right cylinder, of which the ellipse is a section, or 
the radius of the circle (16.) into which that ellipse ia projected, on a plane a, 
being represented by tbe other coefficient, y: while |tn- is the excentric anomaly.

(23.) If, on the contrary, we treat the exponent t as given, bnt the coefficients 
X and y os oaryiny together, so as to satisfy the equation LV. of the second degree, 
the expression LIV. then represents a different section of the surface III., made by 
a plane through the line a, which makes with the focal plane (pt a, o') an angle 

= ; 'this Jatter section (like the former) being always real, if the surface itself£
be such: but being an ellipse for an ellipsoid, and an hyperbola for either hyperbo
loid, because

LXIII.. ./a./DVaa’=o'«c-» by LXI. and LXII.
Wk(24.) And it is scarcely necessary to remark, that by interchanging a and a* we 

obtain a Second Exponential Transformation, connected with the second system (17.) 
of centro-focal ellipses, as thejirat exponential transformation LIV. is.connected with 
theySrst system (16.).

(25.) The asymptotic conefp = 0 has likewise its two systems ot centro-focal 
ellipses, and its equation admits in like manner of two exponential transformations, 
of the form LIV. j the only difference being, that the equation LV. is replaced by 
the following.

LXIV. . . gifa + y»/nVaa'= 0,

in which, for a real cone, the coefficients of a® and y* have opposite gtynj by (23.).
(26.) Finally, as regards the confocal relation ot the surfaces III., which may 

represent any confocal system of surfaces of the second order, it may be perceived
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from (4.) that an essential character of such a relation is expressed by the equa
tion,

LXV. ... ;

which may perhaps be called, on that account, the Eguation of Confocals.
(27.) It is understood that the two confocal surfaces here considered, are repre

presented by the two scalar equations,
LXVI. . . . Sp<t>p = 1, Spj>^p=l, or LXVI', , ./p = 1, y,p = l;

and that the two linear and vector functions, v and v,, of an arbitrary vector p, 
which represent normals to the tyro concentric and similar and similarly posited sur
faces,

LXVII,. .fp— const,, /,p = const., 
passing through any proposed point p, are expressed as follows,

LXVIII... v = ^p, v,=^,p.
(28.) It is understood also, that the two surfaces LXVI. or LXVI'. are not only 

concentric, as their equations show, but also coaxal, so far as the directions of their 
CKce* are concerned: or that the two vector quadratics (comp. 364),

LXIX. . . "Vpipp = 0, and LXX. . . Vp^,p = 0,
are satisfied by one common system ol three rectangular unit lines. And with these 
understandings, it will be found that the equation LXV., which has been called 
above the Equation of Confocals, is not only necessary but sufficient, for the estab
lishment of the relation required.

(29.) It is worth while however to observe, before closing the present series of 
subarticles, that the equations XII., and those formed from them by introducing 
Ci and V2, give the following among other relations :

LXXI. . . fUu, = (62 - 6i’)-J = -/iUp i /lUrj = (6,» - hja)-! = -f.Cvx -, &c.; 
and LXXII. . . flyi, vi) =fi (y2, v) =f2 (y, Pi) = 0;
and therefore,

LXXIII. . ./,{(62»-6ia)»U»-2 + (6i»-62)lU>/} = 0;
whence it is easy to see that the two vectors under the functional signal in this last 
expression have the directions of the generating lines of the single-sheeted hyperbo
loid (ei) through p, if we suppose that 62’ > 6i2 > 0 > 6’, so that the confocal (ca) is 
here an ellipsoid, and (e) a double-sheeted hyperboloid.

’ (30.) But if a be taken to denote the variable vector of the auxiliary surface 
XXIV,, the eqIRtion of that surface may by (7.) and (8.) be brought to the follow
ing rectangular form, with the meaning XXI. of u,

LXXIV. . . 1 = S<ra«r = (Sp(r)’ - 2Z’Sa<rSa'<r= 6»(S<tUv)»
+ 6i2(S<rU»'i)>+632(S(tU»'2)*! 

hence, with the inequalities (29.), its cyclic normals, or those of its asymptotic cone 
Sobjcr = 0, or the focal lines of the reciprocal cone Sow'lff = 0, that is of the cone 
XXXVI., or finally the focal lines of the focal* cone (12.), which rests on the focal 
hyperbola, have the directions of the lines LXXIII.; those focal lines are therefore

* A raqre general known theorem, including this, will soon bo proved by quater
nions.
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(by what has just been seen) the generating lines of the hyperboloid («i), which 
passes through the given point p.

(31.) And for an arbitrarg a we have tho transformation,
LXXV. . . Z-’(Sp£r)»-Sa<Ta’(r=e(S(rUj»)« + ei(S<TUvi)* + e.i(SirU>'2)».

408. The general ei/uation* of conjugation,
405, in. 

connecting the vectors p, p' of any two\potn<d p, p' which are con
jugate with respect to the central but noveconicd surface fp = 1, ra&f 
be called for that reason the Equation of Conjugate Poiids; while 
the analogous equation,

n. ../(/», p') = 0,
which replaces the former for the case of the asymptotic cone fp = Q, 
may be called by contrast the Equation of Conjugate Directions ; in 
fact, it is satisfied by any two conjugate semidiameters, as may be at 
once inferred from the differential equation f(p, dp) = 0 of the surface 
fp = const, (comp. 362). Each of these two formulse admits of nu
merous applications, among which we shall here consider the 
deduction,/and some of the transformations, of the Equation of a 
Circumscribed Cone,

III. .; (/(p, p')-\f=(//,-!) (fp'- 1);
which may also be considered as the Condition of Contact, of the 
line t'b' with the surface fp=\.

(1.) In thia last view, the equation III. may be at once deduced, as the condi-- 
tion ol egttal roots in the scalar and quadratic equation (comp. 216, (2.), and 316, 
(30.)),
, IV.. . 0 =/(a:p + «•/) - (X + siy,
or V. . . 0 = xi(fp -1) + x'i(fp -1) i
which gives in general the two vectors of intersection, as the two values of the ex* 

. xp + x'p’
pression -!-------

x + x'
(2.') If we treat the point p* as piren, and denote the two recants drawn from it 

in any given direction r by <r*r and then <i and t-i are the roots of this other 
quadratic, f(p' + r'r) = 1, or

VI.. . 0 =^f<tp' + T')-ts = ts(fp’ - 1) 4- 2r/(p', t} +fr;
denoting then by <o~ir the harmonic mean of these two secants, so that 2/o = fi + fri 
and writing p = p' + to'*r, we have

VII... <0 (1 -fp') =f(p', r), Xp, p') = 1;

* For the notation used, Art. 362 may be again referred to.
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we are then led in this way to the formula I., as the Equation of the Polar Plane 
of tbe point 5*, if that plane be here supposed to be defined by its well-known har- 

' monic property (comp. 215, (16.), and 31'6, (31.), (32.)).
(3.) At the same time we obtain this other form of the condition of contact HI., 

as that of equal roots in VI.,

vni.../(p',r)»=A.(/p'-i).
the first member being an abridgment of (/(p*, r))*: and because this last equation 
VIII. is homogeneous with respect to r, it represents a cone, namely tbe Cone of Tan
gents (r) to the given surface/^ = 1, from the given point p*. Accordingly it is easy 
to prove that the equation III. may be thus written,

IX, ../(p', p-p')^ =f(p-p>).(J-p'-1),

under which last form it is seen to be homogeneous with respect to p — p'.
(4.) Without expressly introducing r, the transformation IX. shows that the 

equation III. represents some cone, with the given point p' for its vertex; and be
cause the intersection of this cone with the given surface is expressed by the ejaore 
of the equation I. of the polar plane of that point, tbe cone must be (as above stated) 
eircumscrihed to tbe surface/p = 1, touching it along the curve (real or imaginary) 
in which that surface is cut by that plane I.

(5.) Another important transformation, or set of transformations, of the equation 
in. may be obtained as follows. In general, for any two vectors p and p', if tbe 
scalar constant m, the vector function </>, and the scalar function F, be derived from 
the linear and vector function which is here self-conjugate (405), by t'lie method 
of the Section III. ii. 6, we have successively,

X. ../(p, pO*-fp-fp'=Sp<},p .Sp’tp-Spq,p.Sp'q>p'=s(ypp'.sr<i>pq>p') 
=:S.pp’^ypp'= mS-pp'iji'^^pp'= mFVpp'•, 

and thus the equation III. of the circumscribed cone becomes,
XI.. . j»J'Vpp'+f(fi - p') = 0, or XII. . . mF^rp' ■ifr 0, 

if r=p—p' be a tangent from p'. Or because ^t{/ = m, and >n = — C1C2C3=—a'-b-tc'^, 
by 406, XXIV., we may write (with r = p — p') either

XIII.. . 0 = Sr^'*r + Sw^'*u, if w=Vrp' = Vpp',
or XIV... FVpp' = a'iVetf^p - p'),'
as the condition of contact of the line pp' with the surface fp = 1.

(6.) A geometrical interpretation, of this last form XIV. of that condition, can 
easily be assigned as follows. Supposing at first for simplicity that the surface is an 
ellipsoid, let p be the point of contact, so that fp = l,f(^p, r) = 0; and let the tangent 
pp' be taken equal to the parallel semidiameter ot, so that/r =f(jp — p'j = 1. Then, 
with tho signification XIII. of v, tho equation XIV. becomes,

XV. . . Vrv = Tw.\n?Uu = ci6c;
in which the factor Tv represents the area of the parallelogram under the conjugate 
semidiameters op, ot of the given surface/p = 1; while.the other factor Vf^'Uw re
presents the reciprocal of tbe semidiameter of the reciprocal surface Fv — 1, which is 
perpendicular to their plane pot ; or the perpendicular distance between that plane, 
and a parallel plane which touches the given ellipsoid : so that their product VFv is 
equal, by elementary principles, to the product of the three semiaxes, as stated in the 
formula XV. And the result may easily be extended by squaring, to other central 
surfaces.
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(7.) It may be remarked in passing, that if p, <r, r be any three conjiiyate jemt- 
diametert ot any central surface/p = 1, so that

XVI... /p =/(r =/> = 1, and XVII. . . /(p, <r) =f(^ir, r) P) = Ot 
and if xp 4- y<T +'Zr be any other semidiameter of the same surface, we have then the 
scalar equation,

XVIII.. ./(xp + y(r + zr)=x^+ y’+z>= 1;
a relation between the coefficients, x, y, z, which has been already noticed for the 
ellipsoid in 99, (2.), and in 402, I., and is indeed deducible for that surface, from 
principles of real scalars and real vectors alone: but in extending which to the hy
perboloids, one at least of those three coefficients becomes imaginary, as well as one 
at least of the three vectors p, a, r.

(9.') Under tjie same conditions XVI. XVIL, we have also,
XIX. . . Vpo = + abejiT = + (- ;

XX. . . r = ± (- ni)i^">Vp<r = + (— my-iV^p^a; 
XXI. . , Spar = + abc = + (- in)"*;

together with this very simple relation,
XXII. . . SpoT.S0p0<r^ = —1.

(9.) Under tho same conditions, if xp + ya + zr and a'p 4 y'a 4- z'r have only 
conjugate directions, that is, if they have the directions ot any two conjugate semi
diameters, the six scalar coefficients must satisfy (comp. II.) the equation,

XXIII. .. xx' 4 yy' + zz ■= 0.

(10.) The equation VIII., with p for p', may be written under the form,
XXIV.. . 0 = Sot = Sroir, if XXV.. . o = &»r = ^pSp0r 4 ^r(l—yp),

= a neu) linear "and vector function, which represents a normal to the cone of tan
gents from P, to the surface fp = 1. Inverting this last function, we find

XXVI. .. T=a.-«o=^:i5.Z^.

the equation in a ot tho redprocdl cone, or of tbe cone of normals to the circum
scribed cone from P, is therefore,

XXVII. . . S(Tto"’(r = 0, or XXVIII.. . Fa = (Spaf, or finally 
XXVIII'. . .r(<r;Sp<r) = r;

a remarkably simple form, which admits also of a simple interpretation. In fact, 
the line a: Spa is the reciprocal of . the perpendicular, from the centre o, on a ian- 

' gent plane to the cone, which is also a tangent plane to the surface ; it is therefore one 
of the values of the vector v (comp. (6.), and 373, (21.)), and consequently it is a 
semidiameter of the reciprocal surface Fv= 1.

(11.) As an application of the equation XXVIII., let the surface be tho confo
cal (e), represented by the equation 407, III. or X., of which the reciprocal is re
presented by 407, XVII. or XVIII. Substituting for Fa its value thus deduced, 
the equation of the reciprocal cone (10.), with a for a side, becomes,*
XXIX.. . 2/2SaoSa'<r - (Spaf = 6a<r’, or XXIX'. . . Saoa'a -1"® (Spa)^ = ea^ ; 
if then the vertex r be Jized, but the confocal vary, by a change of e, or of 6’ which

* It may be observed that, when b — 0, this equation XXIX. represents the 
asymptotic cone to the auxiliary surface 407, XXIV.; and at the same time the re
ciprocal of that/ocaZ cone, 407, XXXVI., which rests on the focal hyperbola.
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varies with it, the cone XXIX. will aJto vary, but will belong to a biconcyelic tyt- 
tem ; whence it follows that the (direct or) circumscribed conei from a yiven point are 

•all biconfocal: and also, by 407, (30.), that their common focal linet are the gene
rating lines of the con/oca? hyperboloid* of one sheet, which passes through their 
common vertex.

(12.) Changing e to e, in XXIX'., and using the transformation 407, LXXV., 
with tho identity (comp. 407, LIII.),

- <r* = (8(tU»’)2 + (SoUvi) + (S(rUj.2)’,
we find that if o be a normal to the cone of tangent! from p to («,), it satisfies the 
equation,

XXX. . . 0 = (e - ej (S<rUj/)» + (ei - e.) (S<rUvi)« + (es - o.) (SoUnj)* ;

and therefore that if r be a lat^ent firom the same point p, to the same confocal (ej, 
it satisfies this other condition,

XXXI. . . 0=<e-e,)-' (SrUj-)» + (ei-eJ-J (SrUi.i)’ + (e3-e,)-> (SrUvz)’, 
which thus is a form of the equation of the circumscribed cone to (oJ, with its ver
tex at a. given point p: the confocal character (11.) of all such cones being hereby 
exhibited anew.

(13.) It follows also from XXXI., that the axes of every cone thus circumscribed 
have the directions of the normals v, vi, 1'2 to the three confocals through p ; and 
tliis known theoremf may be otherwise deduced, from the Equation of Confocals 
(407, LXV.), by our general method, as follows. That equation gives

(because ^(v,= ^,>'), and therefore,
XXXII. .. (v,— v')8vv, = ^,v(ffi- I), V»>v,Srv,+Vv^,v(l —/;p) = 0; 

changing then V to S, and v to r, vie see that v, vi, V2, as being the roots (354) of 
this last vector quadratic XXXII., have the directions of the axes of the cone, with 
r lor side.

XXXIII. . .f(p, rr+f,r.(l-fy)=Oi
that is, by VIII., the directions of the axes of the cone of tangents, from p to (e^

(14.) As an application of the formula XIV., with the abridged symbols r and v 
■of (5.) for p - p' and Vpp', the condition of contact ot the line Ye’ with the con/b- 
cal (e) becomes, by the expressions 407, III., XVIII., and VII. for the functions 
f, F, and the squares o’, 6*, c’, the following quadratic in e:

XXXIV. . . (Sar)* - 2eSarSa’r f (Sa'r)« + (1 - e*) Ti=f^ (Sava'v - ev^) ; 
there are therefore in general (aa is known) two confocals, say (e) and (e,), of a given 
system, which touch a given right line ; and their parameters,^ e and are the two 
roots ot the last equation : for instance, their sum is given by the formula,

XXXV. ..'(e4- e,)r* = l-^a — 2SarSa'r.

* This theorem (which includes that of 407, (30.)) is cited from Jacobi, and is 
proved, in page 143 of Dr. Salmon’s Treatise, referred to in several former Notes.

t Compare the second Note to page 648.
t This name ot parameter ia here given, as in 407, to the arbitrary constant

* a> _ c2’ °f which the value distinguishes 'one confocal (e) of a system from another.
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(15.) Conceive then that p is a given semidiameter of a pfoen eon/ocnf (e), and 
that dp is a tangent, given in direction, at its extremity; the equation XXXIV. will 
then of course be satisfied,* if we change r to dp, and v to Vpdp, retaining the given 
value of e; but it will also be satisfied, for the same p and dp for for the same r and 
n), when we change e to this nem parameter,

XXXVL .. e, = -e + 2SaUdp.Sa’Udp-f-’(VpUdp)«;
that is to say, the nem confocal (e^, with a parameter determined by this last for
mula, will touch the given tangent to the given confocal (e)..

(16.) If we at once make Z»= 0 in the equation 407, III. of a Confocal System 
of Central Surfaces, leaving the parameter e finite, -wo fall back on the system 406, 
XXXV.. of Biconfocal Cones: but if we conceive that P only tends to zero, and 
that e at the same time tends to positive infinity, in such a manner that their pro
duct tends to & finite limit, r’, or that

XXXVII... lim. 1 = 0, lim.e = oo,- lim.eP — rS,
then the equation of the surface (e) tends to this limiting firm,

' XXXVIII. . . p2 + r’= 0, or XXXVIII'. . . Tp = r;
a system of biconfocal cones is therefore to be combined with a system of concentric 
spheres, in order to make up a complete confocal system.

(17.) Accordingly, any given right line pp' is in general touched by only one 
cone of the system just referred to, namely by that particular cone (e), for which 
(comp. XXXIV.) we have the value,

XXXIX... e = Saua'u-', or XXXIX'. . . e + Saa’ = 2Sai)Sa'u-i,

with u = ypp', as before, so that v is perpendicular to the given plane opp', which 
contains the vertex and the /f»e; in fact, the reciprocals of the biconfocal cones 
406, XXXV., when a, a' are treated as given unit lines, but e as a variable para
meter, compose the biconcyclicf system (comp. 407, XVIII.),

XL. . . Sapa'p =ep3.
But, besides the tangent cone thus found, there is a tangent sphere with the same 
centre O; of which, by passing to the limits XXXVII., the radius r may be found 
from the same formula XXXIVj to be,

XLI...r = T-=T^;
r p-p

and such is in fact an expression (comp. 316, L.) for the length of the perpendicular 
from the origin on the given line pp'.

(18.) In general, the equation XXXIV. is a form of the equation of the cone, 
with p for its variable vector, which has a given vertex p', and is circumscribed to a 
given confocal («)., Accordingly, by making e=-Saa in that formula, we are

* In fact it follows easily from the'transformations (5.), that 
/p./dp-a-2fr-2c-»/’Vpdp=/(p, dp)2.

f The lifocal form the equation of this reciprocal system of cones XL. was 
given in 406, XXV., but with other constants (K, p, ff), connected with the cyclic 
firm (406,1.) of the equation of the given system.

4«p
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led (after a few redactions, comp. 407, XXVII.) to an equation which may be thus 
(Written,

XLII. . . 0=P(Saa'r)’+2Snp'rSa'p'r,

with the variable side r = p — p\ as before; and which differs only by tho substitution 
of p* and T for p and v, from the equation 407, XXXVI. for that frcal cone, which 
rests on the focal hyperbola. The other (real) focal cone which has tbe same arbi
trary vertex p', but rests on the focal ellipse, has for equation,

XLIII. . .'Z2(S(a-a')r)2 = Saoa'u-p2,

as is found by changing e to 1 in the same formula XXXIV.
(19.) It is however simpler, or at least it gives more symmetric results, to change e, in XXXI. to — Saa' for the focal hyperbola, and to 4-1 for the focal ellipse, in 

order to obtain the two real focal cones with p for vertex, which rest on those two 
curves; while that third and wholly imaginary focal cone, which has the same ver
tex, but rests on the known imaginary focal curve, in tbe plane of 6 and c, is found 
by changing e, to — 1. This imaginary focal cone, and the two real ones which rest 
as above on the hyperbola and ellipse respectively, may thus be represented by the 
three equations,

XLIV... 0 = c-2(SrUr)- + 0i-2(SrUpj)’ + «j-2(SrUpj)2; 
XLV... 0 = 6'-2(SrUp)3 + 6i-s(StUpi)2 + 62-2(SrUp2)2; 

XLVI... 0 = c-2 (SrUr)« + cr’ (SrUj/,)’ + (SrUps)*;
r being in each case a side of the cone, and v, Pi, P2 having the same sighifications 
as before. *

(20.) On the other band, if we place the vertex ot a circumscribed cone at a point 
p of a focal curve, real or imaginary, the enveloped surface bebig the confocal (e,), 
we find first, by XXX., for tbe reciprocal cones, or cones of normals a, with the 
same order of succession as in (19.), the three equations,

XLVn...fl2(SUp<r)2 = o,2; 
XLVIII... 62 (SUp<r)’= 5,2;

XLIX... c2 (SUp<r)2 = c,2 ;

’ and next, for the circumscribed cones themselves, or cones of tangents r, the con
nected equations;

L... o2(VUrr)«+«/ = 0;
- LI. ..i2(VU;r)2 +6,2 = 0; 

LII. . . c2(VUvr)2 + c/ = 0;
all which have the forms of equations of cones of revolution, but on the geometri
cal meaninffs of the three last of which it may be worth while to say a few words.

(21.) The cone L. has an imaginartf vertex, and is always iZseff imaginaiy; but 
the two other cones, LI. and LII., have eacAf-a real vertex p, with 6* > 0 for the 
first, and c’ < 0 for the second; 6 being the mean semiaxis of tlid ellipsoid, which 
passes through a given point of the focal hyperbola, and being tlie negative and 
algebraically least square of a scalar seniiajtis of tlio double-sheeted hyperboloid, 
which passes through a given point of the focal ellipse: while, in each case, v 
has the direction of the normal to tbe surface, which is also tbe tangent to tbe curve 
at that point, and is at tbe same time the axis of revolution of the cone.

The ssraia»p/es of the two last cones, LI. and LII., have for'their respec
tive sines tbe two quotients,
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- mi. .. J,: 6, and LIV.. . (- c/)»: (- c*)l;
each oi those Zioo cones is therefore reaf, if circumscribed to a single-sheeted hyper
boloid, because, for such an enveloped surface («,), b^ is real, and less than the b ot 
any confocal ellipsoid, while c, is imaginary, and its square is algebraically greater 
(or nearer to zero) than the square of the imaginary semiaxis c of every double
sheeted hyperboloid, of the same confocal system; but the cone LI. is imaginary, if 
the enorZoped surface (e^ be either an hyperboloid of two sheets (6, imaginary), or 
nn exterior ellipsoid (b,> b') j and the other cone LII. ia imaginary, if the surface 
(e^) be either any ellipsoid (c, real), or else an exterior and douiZe-sheeted hyperbo
loid ^(1^2 < o2, c/ < c®, -c^^>—c®). Accordingly it is known that the focal hyper
bola, which is the locus of the vertex of the cone LI., lies entirely inside every double- 
sheeted hyperboloid of tho system; while the focal ellipse, which is in like manner 
the ZocMs of the vertex of the cone LIL, is interior to every ellipsoid; and real tan
gents to a sZnpZe-sheeted hyperboloid can be drawn, from every real point of apace.

(23.) The twelve points (whereof only four at most can be real), in which a 
surface (e) or (a6c) is cut by the three focal curves, are called the Umbilics of,that 
surface; tho vectors, say w, w,, of three such umbilics, in the respective planes 
of ca, ab, bc, are:

LV...(tf =|(a + a’) + |(a-a');

a(<z + a') y/ — ll>Vaa'

TTTTT c(a-a') •^-IbXaa.’LVII.. . w, = -/ -— ------—-——:
1 + Saa' 1 + Saa

and the others can be formed from these, by changing the signs of the terms,, or of 
some of them- The four real umbilics of an ellipsoid are given by the formula LV., 
and those of a double-sheeted hyperboloid by LVI., with the changes of sign just 
mentioned.

(24.) In transforming expressions of this sort, it is useful to observe that the ex
pressions for the squares of the semiaxes,

oS = Z®(e + l), 5’- = Z2(« + Saa'), c®=Z®(e-l), 407, VII.

combined with Ta = Ta'= 1, give not only a’— c® = 2Z®, bnt also,

TTTiTT + 11-Saa' , ,a' fa®-6®\}LVIII. .;T—^ ^a®-®®)’

^a-a' fl + Saa,' . a' Ib^-c"^^

and LX. . . TVaa = V(1 - (Sna')2) = sin Z. - = Z"® ~ 6’)* (h'‘ - 0)1,a
with the verification, that bccayse

LXI. . . (a - a’) (a + o’) = SVaa’, 
therefore LXI'. . . T.(a — a’).T(a + a') = 2TVaa'.
We have also the relations,

LXII. . . T(o + a’)-® + T(a- a)-2 = (TVaa')-* ;
LXIII. .. T(rt + - T(a - «')-> = (TVaa')-2;

with others easily deduced.
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Fig. 84.

(25.) Tho expression LV. conducts to the foUowing among other consequences, 
I which all admit of elementary verifications,* and may be illustrated by the annexed 
Fig. 84. Let u, n' be the two real points 
in which an ellipsoid (abc') is cut by one 
branch of tbe focal hyperbola, with u for 
summit, and with r for its interior focus; 
the adjacent major summit of the surface 
being e, and R, ii' being (as in the Figure) 
tbe adjacent points of intersection of tbe 
same surface with the focal lines a, a', that 
is, with the asymptotes to the hyperbola. 
Let also v, t be the points in which the 
same asymptotes a, a' meet the tangent to 
the hyperbola at u, or the normal to the 
ellipsoid at that real nmbUic, of which we may suppose that the vector ou is the o, 
of the formula LV.; and let s be the foot o'f the perpendicular on this normal to the 
surface, or tangent tv to the curve, let fall from tho centre o. Then, besides the 
obvious values,

LXIV.. . OB=a, OF = (o’ - c2)i, 6u = (efi - 6’)i,
and the obvious relations, that the intercept tv is bisected at u, and that the point 
F is at once a summit of the focal ellipse, and a focus of that other ellipse in which 
the surface is cut by the plane (ac) of the figure, we shall have these vector expres
sions (comp. 371, (3.), and 407, VIII. LXI.) :

LXV. . . ov = (a + c)a, OT = (a — c)a', TV = a(a — a') + c(a + a')j
LXVI.. . su-> = ^(o = ---(a + a')-—(a-‘^a), su = - ae; tu;' il

LXVn. . . OR = = ab-^ca, ov:,' = = ab~*ca';
V/a 'jfa

whence follow by (24.) these other values,
’ • LXVin. .. ov = a+c, 6T = a-c, tv = 26;

LXIX... Tu = Uv = 6, su = 6b=Ob' = ^^'®’
LXX... 6u = To, = (a’ — 6® + c’)l;

LXXI.. . os = (o’ - 6’ + c’ - a2i-2c3)S = 6;i(o’ -
(26.) It follows that the lengths of the sides ov, ot, tv of the umbiliear triangle 

TOV are equal to the sum and difference (o + c) of the extreme semiaxes, and to the 
mean axis (^b) of the ellipsoid; while the area of that triangle =o3.'fx? = (o’ — 6^)1 
Qfi — c2)i = the rectangle under the two semiaxes ot the hyperbola, if both be treated 
as real. The length (T^w)-*, or su, of the pi5i)e»t/ic«for from tho centre o, on tho 
tangent plane at an umbilie u, is a6'>c; and the sphere concentric with the ellipsoid, 
which touches the four umbiliear tangent planes, passes through the points n, r* of 
intersection oi that ellipsoid with the focal lines a, a', that is, as before, with the

* Some such verifications were given in the Lectures, pages 691, 692, in con- 
' nexion with Fig. 102 of that former volume, which answered in several respects 
to the present Fig. 84.
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asymptotes to the hyperbola; or, by (21.)(22.), with the axes of the two circum
scribed right cylinders.* And finally the length, say «, of the u»i5<7icar serntdia- 
meter ov, is given by the formula,

LXXn...«2 = aS-6s+cS; ’
all which agrees (25.) with known results.

(27.) An umbilie of a surface of the second order may be otherwise defined 
(comp. (23.)), as a real or imaginary point at which the tangent plane is parallel to 
a cyclic plane; and accordingly it is easy to prove (comp. 407, (20.)) that the um- 
bilicar normal ijna in LXVI. has the direction of a cyclic normal. To employ this 
known property in verification of the recent expressions (25.), (26.), for the lengths 
of OD and SD, it is only necessary to observe that the common radius ot the diame
tral and circular sections of the ellipsoid is the mean semiaxis b (comp. 216, (7.) 
(9.), &c.); and that, by a slight extension of the analysis in (7.), (8.), (9.), it can be 
shown tliat if p, o, r and p', o', r' be any two systems of three conjugate semidiame
ters of any central surface, fp = 1, then
LXXIII. .. p'» + <r'2 + r'2 = p’ + <r® + r’, and LXXIV. .. (Sp'<T’r’)s = (Spur)’.

(28.) A less elementary verification of the value LXXII. of but one which is 
useful for other purposes, may be obtained from either the cubic in J’, or that in e, 
assigned in 407, (8.). For if bi?, b^, b j^ be the roots of the former cubic, and co, 
«i, ej the roots of the latter, inspection of those equations shows at once thal we 
have generally, .

LXXV. .. -p’=6o’ + J?+52«-2f2Saa'=I2(eo + ei + e2 + SaaOi 
or LXXVI.. . OP 2 = Tp® = + C2®= 5o® + ci® + a^ = &c.,
where the semiaxes «0) bi, Ci belong to the three confocals through any proposed 
point p. Making then, •

LXXVII. . . Po® = 51® ss 0, C2® = c® — b^,
we recover^ho expression assigned above, for the square of the length u of an wm- 
bilicar semidiameter ot an ellipsoid.

For any central surface, the piinciple (27.) shows that if A, p be, as in 
405, (5.), &c., the tioo real cyclic normals, and if pbe tbe real scaiar associated wit^^ 
them as before, then the vectors of the/our real umbilics (if such exist) must admit of 
being thus expressed:

LXXVIII... + •• VrX = ± abc (gVK + f*TX) ;
LXXIX. . . ± =± flic (pUp + XTp);

and thus we see anew, that an hyperboloid with one sheet has (as is well known) no

, * Compare 218, (5.)» ®nd 220, (4.); in which the points b, b’ (comp, also 
Fig. 53, page 226) may now bo conceived to coincide with the points r, «* of the 
now Figure 84. It ia obvious that the theory of circumscribed cylinders is included 
in that of circumscribed cones; so tliat the cylinder circumscribed to the confocal (e), 
with its generating line.? parallel to a given (real or imaginary) semidiameter y of 
that surface (/y = 1), may be represented (comp. III. XIV.) by the equation,

nr... /(p, y)’ =/p -1; or XIV'... rvyp = ;
with interpretations easily deduced, from jwciples already established.
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LXXX. . .

real umbilie, because for that surface the product aic of the semiaxes is imaginary ; 
or because it has no real tangent plane parallel to either of its two real planes of 

' circular section.
(30.) Of whatever species the surface may be, tbe three umbiliear vectors (23.), 

of which only one at most can be real, with tho particular signs there given, but 
which have the forms ot lines in the three principal planes, must be conceived, in 
virtue of their'expressions LV. LVI. LVII., to terminate on an imaginary right 
line, of which the vector equation* is,

P a + a' ~ Naa’ a-a' ’
el being a scalar variable, which receives the three values, — Saa', +1, and — 1, when 
p comes to coincide with co, o>,, and u,, respectively. And such an imaginary right 
line, which is easily proved to satisfy, tor all values of the variable e', both the rect
angular and the bifocal forms ot the equation of the surface (s'), or to be (in an 
imaginary sense) wholly contained upon that surface, may be called an Vmbilicar 
Generatrix.

(31.) There are in general eight such generatrices of ang central surface of tho 
second order, whereof each connects three umbilics, in the three principal planes, 
two passing through each of*tbe twelve umbiliear points (23.); and because e'^ dis- 
appeSts from the square ot the expression LXXX. for p, which square reduces itself 
to the following,

LXXXI. . . pt=-P(2e' + e + Saa’) =-b^- 2Pe',

they may be said to be the eight generating lines through the four imaginary points, 
in which the surface meets the circle at infinity.

(32.) In general, from the cubics in e and in 6*, or from either of them, it may 
be without difficulty infwred (comp. (28.)), that the eight intersections (real or ima
ginary) of any three confocals (eo) («1) (es) have their vectors p rcpreselfled by the 
formula:

+000102 ^/'—Ib^fiibi cocicaLXXXII. .. p =

comparing which with the vector expression LXXX., we see that the three confo
cals, through the point determined by that former expression, for any given value of 
e’, are (e), («'), and (e') again ; and therefore that two of the three confocal surfaces 
through o»y .point of an ttmht’Zicar penerotria: (30.) coincide; a result which gives 
in a new way (comp.LXXV.) the expression LXXXI. for p^.

(33.) The locus of all eucA generatrices, for all the confocals (e) of the system, 
is a certain ruled surface, of which the doubly variable vector raay be thus expressed, 
as a function of tbe two scalar variables, e and'?:

LXXXIIL., -L — Naa
_ ;(e-i)>(c'-l)

a + a'

a —a'
and becausa we have thus, for any one set oi signs, the differential relation,

LXXXIV. . . DcPe,« =
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LXXXV...

it follows that this ruled locus is a Developable Surface: its edge of regression being 
that wliolly imaginary curve, of which the vector is pe,,, and which is therefore by 
(32.) the locus of all the imaginary points, through each of which pass three coinci
dent confocals.

(34.) The only real part of this imaginary developable consists of the two real 
focal curves, which are double tines upon it, as are also the imaginary focal, and the 
circle at infinity (31.); and the scalar eguatiijn of the same imaginary surface, ob
tained by elimination of the two arbitrary scalars e and e, is found to be oMbe 
eighth degree, namely the following:

■ 0 = 2m®x® + 2 2m (m - n) x^y^ -I- 2 (pS - 6m») x'y*
-h 22 (3m® — np)x^y‘!z3 22m*(n — p)xS -p 22m(mp - 3»®) :^y- 
-i-2(m-n) (n-p} (p -m)a:2y2z2+ - Gnp^x*
+ 22>nR(mn — 3p®)®’y® +22:mSnp(p - n)a:® -J- nthi’p'i;

in which we have written, for abridgment,
LXXXVI. . . X = - SpU(a -I- a'), y = - SpU Vaa', z = - SpU(a - oT), 

and LXXXVII. . . m = 6® - c®, n = c»-a\ p = a.^- 6®,
so that LXXXVIII. . . m-I-n-(-p = 0 ;

while each sign 2 indicates a sum of three or of six terms, obtained by cyclical or 
binary* interchanges.

(35.) From the manner in which the equation ot this imaginary surface (33.) or 
(34.) has been deduced, we easily see by (32.) that it has the double property: 
I.st of being (comp. (20.)) the locus of the vertices of all the (real or imaginary) 
right cones, which can be circumscribed to the confocals of the system; and Il.nd of 
being at the same time the common envelope of all those confocals: which envelope 
accordingly is known to be a developable^ surface.

(36.) The eight imaginary lines (31.) will come to be mentioned again, in con
nexion with the lines of curvature of a surface of the second order; and before closing 
the present series of subarticles, it may bo remarked that tbe equation in (15.), for the 
determination of the second confocal (e^) which touches a given tangent, dp or pp', to 
a given surface (e) of the same system, will soon appear under a new form, in con
nexion with that theory of geodetic lines, on surfaces of the second order, to which 
we next proceed.

• When xyz and a6c are cyclically changed to yzx and 6ca, then map are 
similarly changed to npm •, but when, for instance, retaining x and a unchanged, we 
make only binary into/tebangeg of y, z, and of J, c, we then change m, n, and p, to 
- »i, — p, and — n respectively.

t This theorem is given, for instance, in page 167 of the several times already 
cited Treatise by Dr. Salmon, who also mentions the double lines &c. upon tho sur
face ; but the present writer does not yet know whether tlie theory above given, of 
the eight umbiliear generatrices, has been anticipated: tho locus (33.) of which ima
ginary right lines fSO,) is here represented by the vector,eijuation LXXXIII., from 
which the scalar equation LXXXV, has been above deduced (34.), and ought to be 
found to agree (notation excepted) with the known co-ordinate equation of the 
developable envelope (35.) of a confocal system.
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409. A general theory of geodetic lines, as treated by quater
nions, was given in the Fifth Section (III. iii. 5) of the present 
'chapter; and was illustrated by applications to several different 
families of surfaces. We can only here spare room for applying the 
same theory to the deduction, in a new way, of a few known but 
principal properties of geodetics on central surfaces of the second or- 
dejttf the differential equation employed being one of those formerly 
used, namely (comp. 380, IV.),

I. .. Vvd’p = 0, if II.. . Tdp = const.;

that is, if the arc of the geodetic be made the independent variable.

(1.) In general, for any surface, of which v is a normal vector,- so that the fret 
differential equation of the surface is Svdp = 0, the tecond differential equation 
dSvdp= 0 gives, by I., for a geodetic on that surface, the expression,

III. .. d^p = — v* Sdvdp.

(2.) Again, the surface fp = const, being still quite general, if we write (comp. 
3C3, X'., 378, III., &c.),

IV... d/p = 2Svdp = 2S^pdp, we shall have "V. .. d/dp = 2S(^dp.fi’p) ; 
and therefore, by III., for a geodetic,

VI... A+2S^=O.
Sdpd^p ^p

(3.} For a central surface of the second order, i>p isa, linear function, and we 
may write (comp. 361, IV.),

VII... <j>dp = d^p = dv, Sdpd^p = Sdp^dp =/dp;

the general differential equation VI. becomes therefore here,

VIII...^ + 28^ = 0;
/dp V

atd gives, by a first integration, with the condition IL,

IX... v’/dp = Adp®, or IX'.. . TvyUdp = A = const.;
X... =h, or X'.. . P. D = A"! = const.;

P — Tlv't — perpendicular from centre on tangent plane, 
D = (/Udp)-I = semidiameter parallel to tangent;

or

where
and
these two last quantities being treated as scalars, whereof tbe latter may be real or 
imaginary,^ together with the last scalar constant A’i.

* For the case of the ellipsoid, for which the product P. J) is necessarily real, the 
foregoing deduction, by quaternions, of Joachimstal’s celebrated first integral, 
P.D~ const., waa given (in substance) in page 580 of the Lectures.
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(4.) Tlie following is a quite different way of accomplishing a first integration, 
which conducts to another known result of not less interest, although rather of a 
graphic Than of a metric kind. Operating-on the equation 407, XVI. by S.dp, and 
remembering that Spv = 1, and Svdp = 0, wc obtain the differential equation,

XI. . . SpvSpdp =P(Sa'>'Sadp + SavSa'dp);
that is, by I. and II.,

XII. . . Spdp. Spd^p — p’Sdpd-p = Z’d(Sadp. Sa'dp), 
in which, the first member, like the second, is an exact differential, because

XIII. . . S(Vpdp.Vpd«p) = Jd(Vpdp)’ ; 
hence, for the geodetic,

XIV. . . I-’(Vpdp)s_2SodpSa’dp=A'dp‘,
or XV. . . 2SaUdp. Sa'Udp - Z’’ (VpUdp)»=A-,
h' being a new scalar constant.

(5.) Comparing this last equation witli thc formula 408, XXXVI., we find that 
the new constant A' is the turn, e + e^, of what have been above called the parame
ters,* of the given surface (e) on which the geodetic is traced, and of the confocal (e^ 
which touches a given tangent to that curve : whence follows the knownf theorem, 
that </ic tangents to a geodetic, on any central surface of the second order, all touch 
one common confocal.^'

(6.) The new constant e,(=Z»'-e) may, by 407, LXXV. and 408, LXXV., 
(with e for co), be thus transformed:

XVI. ., e, = ei(TVUvidp)’ + e2(TVU»'2dp)a.
= ei(SU»'2dp)* + e2(SDi'idp)’ = const.;

where ei, es are the parameters of the two confocals through the point P of the geo
detic 00 (e), and v,, 1/2 are as before the normals at that point, to those two surfaces 
(^1)1 (^3)-

(7.) In fact, the two equations last cited give tbe general transformation,

XVII. . , Z'3(Vp<T)’ —SSaffSa’ir
= e(V<rUv)’ + ei(V<rUvi)3 + e2(V<TU3'2)’;

a being an arbitrary vector, which may for instance be replaced by dp. Equating 
then this last expression to‘(e+ e,)<r’, or to e(V<TU»')*-e,T(T3, since Sv<r = 0, we 
obtain the first and therefore also the second transformation XVI., because the three 
normals vvivt compose a rectangular system (comp. 407, (4.), &c.).

(8.) It is, however, simpler to deduce the second expression XVI. from the equa
tion 408, XXXI. of the cone of tangents from p to («,), by changing r to Udp ; and 
then if we write

XVIII. . . 01 = Z
Vl

* Compare the last Note to page 656.
t Discovered by M. Chasles.
t This touched confocal becomes a tphere^ when the given confocal is a cone. 

Compare 380, (5.), and 408, (16.), (17.); also the Note to page 617.
4 Q
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so that fl denotes the angle at which the geodetic crosses the normal vi to (ei), 
considered as a tangent to tho given surface (e), the first integral XVI. takes the 
form,*

or
XIX. . . •= ei sin* pi + cj cos* Oj,

XX. . . — sin’ «i + cos- bi, &c. ;
in which the constant is the primary semiaxis of the touched confocal (5.).

(9.) Without supposing that Tdp,is constant, we may investigate as follows the 
differential of tbe real scalar A in IX, or X., or of thc product P'*. 2)'*, for tint/ curve 
on a central surface of the second order. Leaving atjirst the surface arbitrary, as in 
(1.) and (2.), and resolving d*p in the three rectangular directions of v, dp, and vdp, 
we get the general expression,

XXI. . . d*p = — y‘*Sdrdp + dp'iSdpd’p + (vdpyiSvdpd’p ;
of which, under the conditions I. and II., the two last terms vanish, as in III. 
Without assuming those conditions, if we now introduce the relations VII. which 
belong to a central surface of the second order, we have by V. and IX. the expres
sion, f

XXII. . . Jd/i. dp* = »'*Sd»'d*p + SvdvSdrdp — ASdpd’p = Si’dvdp-1. Svdpd’p, 
or XXIII, . . dA = d.v*Sdpdp-i=d.P-*2)-2=2S>/drdp->Svdp-id*p;

or finally, XXIV. . . dA.dp< = 2Srdi'dp.Si/dpd*p,

the scalar variable rvith respect to which tbe differentiations are performed being here 
entirely arbitrary.

(10.) For a geodetic line on any surface, referred thus to any scalar variable, 
we have by 380, II. the dilfurential equation,

XXV.. . Srdpd’p = 0 ;
and therefore by XXIV., for such a line on a central surface of the second order, we 
have again, as in (3.),

XXVI. ..dA = O, or XXVP.. . h = const., 
with k = as in X.

(11.) But we now see, by XXIV., that for such a surface the condition XXVI. 
IS satisfied, not only by this differential equation of the second order XXV. but also 
by this other differential equation,

XXVII.. . Spdi/dprzO;

the product P-^D-^ (or PP itself) is therefore constant, not only as in (3.) for every

* Under thia form XX., the integral is easily seen to coincide with that of M. 
Liouville, “*

cos* i + V* sin* i = = const.,

cited in page 290 of Dr. Salmon’s Treatise.
f In deducing this expression, it is to be remembered that 

dSdrdp = d/dp = 2Sdj'd*p;

in fact, the linear and self-conjugate form of v = ^p gives, 
Sdpd»r =/(<’/>. diip) = Sd>-d’p.

    
 



CHAP. III.] LINES OF CURVATURE. 667

geodetic on the surface, but also for even/ curve of another set,* represented by this 
last equation XXVII., which is only of the first order, and the geometrical meaning 
of which we next propose to consider.

410. In general, if v and v + have the directions of the nor
mals to an^ surface, at the extremities of the vectors p and /> + A/>, 
the condition (f intersection, {ot parallelism) of these two normals 
is, rigorously,

I. . . SpArAp = 0;

the differential equation] of what are called the Lines of Curvature, 
on an arbitrary surface, is therefore (comp. 409, XXVII.),

II. . . Sndvdp = 0;
from which we are now to deduce a few general consequences, toge
ther with some that are peculiar to surfaces of the second order.

(1.) The differential equation of the surface being, as usual,

III. . . Svdp = 0,

the normal vector v is generally some function of p, although not generally linear, 
because the surface is as yet arbitrary : its differential dr is therefore generally some 
function of p and dp, which is linear relatively to ^he latter. And if, attending only 
to the dependence of dv on dp, we write

IV. . . dv= 0dp,

it results from what has been already proved (363), that this linear and vector func
tion th ia at the same lime eelf-conjugate.

(2.) Denoting then by r a tangent^. Pr to a line of curvature, drawn at the 
given extremity p of p, we see that the vector r must satisfy the two following sca
lar equations, in which v is supposed to be given.

* Namely, the lines of curvature, as is known, and as will presently be proved 
by quaternions.

• t In this equation II., dp and dp are two simultaneous differentials, which may 
(according to the theory of the present Chapter, and of the' oue preceding it) be at 
pleasure regarded, either as two finite right lines, whereof dp is (rigorously) tangen
tial to the surface, and to the line of curvature; or else as two infinitely small vec
tors, dp being, on this latter plan, an infinitesimal chord (Compare pages 99, 
892, 497, G26, and the first Notes to pages 623, 630.) The treatment of the equa
tions is tbe same, in these two views, whereof oue may appear clearer to some readers, 
and the other view to others.

J This symbol r is used here partly for abridgment, and partly that the reader 
may not be obliged to interpret dp as denoting a finite tangent, although the princi
ples of this work allow him ao to interpret it.
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V. Svr=0, and VI. . . Svr^r=0 ;

this tangent r admits therefore (355) ot,two real and rectangular directinnt, bnt «o< 
in general of more: opposite directions being not here counted as distinct. Hence, as 
is indeed well known, through each point of any surface there pass generally two lines 
of curvature : and these two curves intersect each other at right angles.

(3.) A construction for the two rectangular directions of r can easily be ns.signed 
as follows. Assuming, as we may, that thc length of thc tangent r varies with its 
direction, according to the law,

VII. . . Sr^r= 1,
which gives

VIII. . . S(^r.dr) = 0, or briefly VIII'. . . S^rdr = 0, 
by the properties above mentioned of ; and remembering that v is treated as a con
stant in V., so that we may write,

IX. . . Srdr = 0, and therefore (by VI.), X. . . Srdr= 0 ;

we see that, under the conditions of tho question, the above mentioned length Tr, of 
this tangential vector r, is a maximum or minimum: and therefore that the two 
directions sought are those of the two axes of the plane conic V. VII., which has its 
centre at the given point P of the surface, and is in the tangent plane at that point.

(4.) This plane conic V. VII. may bo called the Index Curve, for tho given sur
face at the given point p; in fact it is easily proved to coincide, if we abstract from 
mere dimenaions, with the known indicatrix (la courbe indicatiicc) of Dupin,* who 
first pointed out the coincidence (3.) of tho directions of its axes, with tliose of the 
lines of curvature ; and also cstAlishcd a more general relation of conjugation be
tween two tangents to a surface at one point, which exists when they have the direc
tions of any two conjugate semidiameters of that curve : so that the lines of curvature 
are distinguished by this characteristic property, that the tangent to each is per
pendicular to its conjugate.

(5.) In our notations, this relation of conjugation between two tangents r, r’, 
which satisfy as sucli the equations,

V. . . Sj/r= 0, and
is expressed by the formula,

XI.. , Sr^r' = 0, or
we have therefore the parallelisms,!

XII. . , r II Vr^lr', Xir. . . /11 Vv^lr ;
so that the equation VI. may be written under the very simple form,

XIII. . . Srr'= 0, 
which gives at once the rectangularity lately mCfitioiicd.

V'. . . SFr' = 0,

XI'... Sr'^r = 0;
I

* Developpements de Geometric (Paris, 1813), pages 48, 145, &e. 
t The conjugate character ot tliese two parallelisms, or the relation,

V. II r, if Srr = 0,

may easily be deduced from the self-conjugate property of with the help of the 
formula 348, VII., in page 440.
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(6.) The parallelism XII'. may be otherwise expressed by saying (comp. (4.)) 
that

XIV. . . dp and Vj-dv
have the directions of conjugate tangents; or that the two vectors,

XV. . . Ap and VrAv,'
have ultimately such directions, when TAp diminishes indefinitely. But whatever 
may be tliis length ot the chord the vector VvAv has the direction of the line 
of intersection ot the two tangent planes to the surface, drawn at its two extremi
ties : another theorem of Dupin* is therefore reproduced, namely, that if a develop
able be circumscribed to any surface, along any proposed curve thereon, the generat
ing lines of this developable are everywhere conjugate, as tangents to the surface, to 
the corresponding tangents to the curve, with the recent definition (4.) of such con
jugation.

(7.) The following is a very simple mode of proving by quaternions, that if a 
tangent r satisfies the equation VI., then the rectangular tangent, •

XVI. . . r'= VT,
satisfies tlie same equation. For this purpose we have only to observe, that the self
conjugate property of 0 gives, by VI. and XVI.,

XVII.. . O = Sr'^r = Sr0r'=J'-«Svr'^ir’.
(8.) Another way of exhibiting, by quaternions, the mutual rectangularity of 

the lines of curvature, is by employing (comp. 357, I.) the self-conjugate/orm,

XVIII. ..^r=pr + VXrp;

in which the vectors X, p, and the scalar g, depend only on the surface and the point, 
and are independent of the direction of the tangent. The equation VI. then be
comes by V., 

XIX. . . 0 = Si<rXr^ = S»/rXS/ir + Si'r/«SXr; 
assuming then the expression,

XX. . . r = a:V»<X+yVrju,
we easily find that

XXL . .y-(Vv;i)2 = a!5(VvA)^ or XXI'.. . yTV»-/x=± atTVvA; 

the two directions of t are therefore those of the two lines,

XXII. ..UVrA+DVv/*,

which are evidently perpendicularf to each other.
I

* Dupin proved first (^Dir. de Gcomelrie, pp. 43, 44, &c.), that two such tangents 
as are described in the text have a relation of reciprocity to each other, on which 
account ho called them "tangentes conjvguees and afterwards he gave a sort of 
image, or constraetion, of this relation and of others connected with it, by means of 
the curve which he named “ V indicatrice" (in his already cited page 48, &c.).

+ This mode, hovrever, of determining generally the directions of the lines of 
curvature, gives only an illusory result, when the normal v has the direction of 
either A or p, which happens at an umbtiic of the surface. Compare 408, (27.), (29.), 
and the first Note to page 466.
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(9.) An interpretation, of some interest, may be given to this last expression 
XXII., by the introduction of a certain auxiliary surface of the second order, which 
may be called the Index Surface, because the index curve (1.) is the diametral sec
tion of this new surface, made by the tangent plane to the given one. With the re
cent signification of <j>, this index surface is represented by thc equation VII., if r 
be now supposed (comp. (2.)) to represent a line pt drawn in any direction from 
the given point p, and therefore not now obliged to satisfy the condition V. of tan
gency. Or if, for greater clearness, we denote ffy p + p' tho vector from the origin 
O to a point of the index surface, the equation to be satisfied is, by the form XVIII. 
of (comp. 357, II.),

XXIII. . . 1 = Sp'^p' = gp’^ + SXp'pp';
the centre of this auxiliary surface being thus at p, and its two (real) cyclic normals 
being the lines X and p: so that VrX and Vp/t have tho directions of the traces of 
its two cyclic planes, on that diametral plane (Spp'= 0) wliich touches the given 
iurfaee. We have therefore, by XXII., this general theorem, that the bisectors of. 
the angle formed by these two traces are the tangents to the two lines of curvature, 
whatever the form of the given surface may be.

(10.) Supposing now that the given surface is itself one of the second order, and 
that its centre is at the origin o, so that it may be represented (comp. 406, XII.) 
by the equation.

XXIV. . . l = Sp^p = gp^+ SXppp,
with conttant values of A, p, and p, wliich will reproduce WiVA those values the'form 
XVni. of wesee that the intlex surface (9.) becomes in this case simply that 
given one, with its centre transported from o to p; and therefore with a tangent 
plane at the origin, which is parallel to the given tangent plane. And thus the 
traces (9.), of the cyclic planes on the diametral plane of the index surface, become 
here the tangents to the circular sections of the given surface. We recover then, 
as a case of the general theorem in (9.), this known but less general thenrein : that 

' the angles formed by the two circular sections, at any point of a surface of the se
cond order, are bisected by the lines of curvature, which pass through tlio same 
point.

(11.) And because the tangents to these latter lines coincide generally, by (3.) 
(4.) (9.), with the axes of the diametral section of the index surface, made by tho 
tangent plane to thc given surface, they are parallel, in the case (10.), as indeed is 
well known, to the axes of the parallel section of a given surface of the second 
order,

(12.) And if we now look back to the Equation of Confocals in 407, (20.), and 
to the earlier formulae of 407, (4.), we shall sec that because the vector n, in the 
last cited sub-article, represents a tangent to the givjyi,surface Sp<pp = 1, complanar* 
with the normal,V and the derived vector ^vi, so that it satisfies (comp. 407, XII. 
XIV., and the recent formulas V. VI.) the tsvo scalar equations,

XXV. , . Srpi = 0, and XXVI. . . = 0,
which are likewise satisfied (comp. (7.)) when we change j/i to tbe rectangular tan-

Compare the Note to page C45.
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gent jm, it follows that these two vectors, vi and v^, which are the normals to the 
two confocals to (e) through P, are also the tangents to the two lines of curvature on 
that given surface of the second order at that point: whence follows this other theo
rem* of Dupin, that the curve of orthogonal intersection (407, (4.)), of two confocal 
surfaces, is a line of curvature on each.

(13.) And by combining this known theorem, with what was lately shown re
specting the umbiliear generatrices (in 408, (30.), (32.), comp, also (35.), (36.)), 
wo may see th.it while, on tlie one hand, tho Zines of curvature on a central surface 
of the second order have no real envelope, yet on the other hand, in an imaginary 
sense, they have for their common envelope f the system of the eight imaginary right 
lines (408, (31.)), which connect the twelve (real or imaginary) umbilics of the sur
face, three by three, and are at once generating lines of the surface itself, and also of 
the known developable envelope of the confocal system.

(14.) It may be added, ns another curious property of these eight imaginary 
right lines, that each is, iu an imaginary sense, itself a line of curvature upon the 
Surfiiipe: or rather, each represents two coincident lines of that kind. In fact, if we 
denote the variable vector 408, LXXX. of such a generatrix by the expression,

XXVII. .. p = e’a + a’,
in which e' is a variable scalar, but tr, o’ are two given or constant but imaginary 
vectors, such that

XXVIII... at=0, • Saa'=- Z^, a't = - 6»,

XXIX. . ./(r=S(r0<r= 0, /(<r, o') = Str'^a = 0, /<j’ = l, 

we have the imaginary normal v, with (for the case of a real umbilie) & reoZ tensor,

XXX. . . v = e'6€r + Acr* -1- <r, XXXI. . . Tjz=s+ ;-----‘J“ aoc

and

* Dev. de Geometric, page 271, &c.
j* The writer is not aware that this theorem, to which he was conducted by qua

ternions, has been enunciated before; bnt it has evidently an intimate connexion 
with a result of Professor Michael Roberts, cited in page 290 of Dr. Salmon’s Trea
tise, respecting the imaginary geodetic tangents to a line of curvature, drawn from an 
umbiliear point, which are analogous to the imaginary tangents to a plane conic, 
drawn from a. focus of that curve. An illustration, which is almost a visible repre
sentation, of the theorem (13.) is supplied by Plate II. to Lionville’s Monge (and by 
tho corresponding plate in an earlier edition), in which the prolonged and dotted 
parts of certain ellipses, answering to the real projections of imaginary portions of 
the lines of curvature of the ellipsoid, are seen to touch a sj'Stem of four real right 
lines, namely tho projections (on the same plane of the greatest and least axes), of 
the four real umbiliear tangent planes, and therefore also of what have been above 
called (408, (30.), (31.)) the eight (imaginary') umbiliear generatrices of the surface. 
Accordingly Monge observes (page 150 of Liouville’s edition), that “toutes les 
ellipses, projections des lignes de courburc, seront insorites dans ce parallelogramme 
dont chaenne d’elles touchera les quatre coteswith a similar remark in his expla
nation of the corresponding Figure (page 160).
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and we find, after reductions, the imaginary expression,
XXXII. . . j/(r = 4-V-1 (tTj/, whence XXXIII. .. Si^cr = 0, 3va^a = 0.

• Tilled differential equations V. VI. of a line of curvature are therefore symbolically 
satisfied, when we substitute, for the tangential vector r, either the imaginary line 
<r itself, or the apparently perpendicular but in an imaginary’ sense coincident* vec
tor VO-, and the recent assertions are justified.

(15.) As regards the real lines of curvature, on a central surface of the second 
order, we see by comparing tho general difierential equation II. with tljp expres
sion 409, XXIII. for the differential of h, or of P-’D-’, that this latter product, or 
the product P.D itself! is constant-^ for a line of curvature, as well as for a geo
detic line, on such a surface, os indeed it is well known to bc: although this last 
constant (P. 2)) nifiy become imaginary, for the case of a single-sheeled^ hyperbo
loid, and must be such for a line of curvature on an hyperboloid of two sheets.

(16.) And as regards the general theory of the index surface (9.), it is to be ob
served that this auxiliary surface depends primarily on the scalar function f, in the 
equation fp = 1, or generally fp = const, of the given surface ; and that it is no* en
tirely determined by means of that surface alone. For if we write, for instance,

XXXIV. . . f/p = fl, with ifp — 2Si'dp as before,
we shall have, as the new first differential equation of the same given surface, instead . 
of III.,

XXXV. . . 0 = df/p = 2Sni/dp, with XXXVI. . . n = f'/p;
I

and if we then write, by analogy to IV.,
XXXVII. . . d.nj> = <idp = n0dp + nVSvdp, with XXXVIII. . . n' = 2f"/p, 

the new index surface, constructed on the plan (9.), will have for its equation, 
^analogous to XXIII., the following;

XXXIX. . . Sp'<ip' = nSp'^p'+ «'(Si/p')’^ const

• As regards tbe paradox, of the imaginary vector a being thus apparently per- 
pendicuiar to itself, a similar one had occurred before, in the investigation 353, (17.), 
(18.), (19.) ; and it is explained, on the principles of modern geometry, by observ
ing that this imaginary vector is directed to the circle at infinity. Compare 408, 
(31.), and the Note to page 459.

+ Compare the first Note to page 667.
X Although the writer has been content to employ, in the present work, some of 

these usual but rather long appellations, he feels the elegance of Dupin’s phraseology, 
adopted also by Mobius, and by some other authors, according to which the two cen
tral hyperboloids are distinguished, as elliptic (for the case of two sheets), and hy
perbolic (for the case of one). The phrase “ quadritf’ for the general surface of the 
tecond order (or second degree'), employed by Dr. Salmon and Mr. Caj’ley, is also 
very convenient. It may be here remarked, that Dupin was perfectly aware of, or 
rather appears to have first discovered, the existence of what have since his time come 
to be called the focal conics; which important curves were considered by him, as 
being at once limits of confocal surfaces, and also loci of umbilics. Comp. Dev. de 
^Geometric, pages 270, 277, 278, 279 ; see also page 390 of the Jperfu Hislorique, 
tic., by M. Cbasles (Brussels, 1837).
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(17.) But' if we take this last constant = n, the two index turfacet, XXIII. and 
XXXIX., will have a common diametral tection, made by the ffiven tanyent plane, 
namely the index atroe (4.); and they will tonch each other, in tbe wAoZeextent of 
thflt curve. And it will be found that the construction (9.), for the directions o{ the 
lines of curvature, applies equally well to the one as to the other, oi these tioo anxi- 
liary surfaces: in fact, it is evident that the differential equation II., namely 
Srdvdp = 0, receives no real alteration, when v is multiplied by any scalar, n, eyen 
if that scalar should be variable.

(18.) And instead of supposing that the variable vector p is thus obliged, as in 
373, to satisfy a given scalar equation, of the form*

fp = const.,

If p = it: +jy + hz, and w =fp = F (a, y, z), and if we write, 
do = pda + qdy + rdc, dp = p'da + r"dy + 5"dr,

+ 9”^® +p''^y> 
we may then write also, on tbe present plan, which gives dfp = 2S>idp, 

dp = Ida +7dy 4 Ada, v = —i(ip +jq + hr),
d V = — J (tdp 4 j'dg + Adr), Sdpdv = (dadp + dydg + dadr);

and the index surface, constructed as in (9.), and with p' changed to Ap = iA» + y Ay 
4 h^z, will tbns have the equation,

(a)... Jp’As*4-1?'Ay®4 ir'Az® ■\‘p''^y^z 4 q’^zisx + r''Aa:Ay = 1, 

or more generally=const; so that it may be made in this way to depend upon, and 
be entirely determined by, the six partial differential coefficients of the second order, • 
p'. .p".., of the function o or/p, taken with respect to the lAree rectangular co* 
ordinates, xyz. And by comparing this equation (a) with the following equation 

. of the same auxiliary surface, which results more directly from the principles em
ployed in tho text (comp. XVIII. XXIII.),

(b). . . SAp^Ap =pAp*4S,\AppAp= 1,
wo can easily deduce expressions for those six partial coeffUcients, in terms of y, X, p. 
Thus, for example,

= Jp' = - y 4 SXfpi = SXp -y 4- 2SiXSfp; 
but StXStp4SjXSjp4SAXSAp=-SXpi therefore,

(c). ■ • 3 4 Dp®” 4 Dj®»)=SXp — 3y = Cl 4 cj 4 Cs = - m",
if Cl, C2, C3 be the roots and m" a coefiScient of a certain cubic (354, III.), deduced 
from the linear and vector function dv = ^dp, on a plan already explained. If 
then the function » satisfy, as in several physical questions, the partial dfferential 
equation.

(d). . . Dx’e + = 0,
the ram of these three roote, cj, c., 03, will eanisA.* and consequently, the asympto~ 
tic eone to the lurfex-SKiyoce, found by changing 1 to 0 in the second member of (a), 
is real, and has (comp. 406, XXL, XXIX.) tbe property that

(e)... cot* a + cot* b = 1,
if a, b denote its two extreme semiangics. An entirely dififerent method of trans-

4 B
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we may suppose, as in 372, that p is a given .vector function of two scalar varia- 
lles, X and y, between which there will then arise, by the same fundamental formula 
II., a differential equation of the first order and second degree, to be integrated 
(when possible) by known methods. For example, if we write,

XL. . . p = ix + jy -|- kz, dz =pHx + gdy,
we shall satisfy the equation III. by assuming (with a constant factor understood), 

XLI. . , v = ip +jq — k, whence XLII. .. dv = tdp +7dg;
and thus the general equation IL, for the lines of curvature on an arbitrary surface, 
receives (by the laws of ijk'} the form,

XLIII. . . dp(dy + gdz) = dg(d® + pd2);

which last form has accordingly been assigned, and in several important questions 
employed, by Monge* : bnt which is now seen to be included in the still more con
cise (and more easily deduced and interpreted) quaternion equation,

Svdvdp = 0.

411. For a central surface of the second order, we have as usual 
V = Ai> = and therefore (by 347, 348, and by the self-con
jugate form of ^),

I. . . V»/Ai' = V0/)0A/> = ^V/jAp = jn0’'V/>Ap;
the general condition' of intersection 410,1, of two normals, at the 
extremities of afnite chord £^p, and the general differential equation 
410, II. of the lines of curvature, may therefore for smcA a surface 
receive these new and special forms :

forming, by quaternions, the well known equation (d), occurred early to the present 
writer, and will be briefly mentioned somewhat farther on. In the mean time it 
may be remarked, that because m" = 0 by (c), when the equation (d) is satisfied, we 
have then, by the general theory III. ii. 6 ef linear and vector functions, and espe*- 
cially by the snbarticles to 350, remembering that is here self-conjugate, tbe for- 
mulse,

(f).. . dr + xdjD = 0, and (g).. . ij/a - ^’(7 = m'o’,
X, 4' being auxiliary functions, and m’ another coefficient of the cubic, while a is an 
arbitrary vector. For the same reason* and under the same condition (d), the 
function itself has the properties expressed by tbe equations,

(h)... ^V«K = ic^» — and (i). . . = —
in which the two vectors t, k are ar&iVrary, and m' is tbe same scalar coefficient as 
before.

* See the enunciation of the formula here numbered as XLIII., in page 133 of 
Liouville’a Monge: compare also the applications of it, in pages 274, 303, 305, 357. 
(Tbe corresponding pages of the Fourth Edition are, 115, 240, 265, 267, 812.) 
The quaternion equation, Srdvdp = 0, was published by the present writer, in a 
communication to the Philosophical Magazine, for the month of October, 1847 
(page 289). See also the Supplement to the same Volume xxxi. (Third Series); 
and tbe Proceedings of the Royal Irish Academy for July, 1846.
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II. . . SAp0''VpA/> = 0, or II'. . . = 0;
III. .. Sd/»0*'V/jdp = 0, or IIP. .. Spdp0“*d/>=O;

which admit of geometrical interpretations, and conduct to some 
new theorems, especially when they are transformed as follows:

IV. .. SXAp. + S/tA/j. SpA/)0'*X = 0,
V. .. SXd/j.S/)d/)0'’,«, + S/id/>.Spdp0'’X=O,

th
X and yw. being (as in 405, (5.), &c.) the two real cyclic normals ot 
the surface: while the same equations may also be written under 
the still more simple forms,

VI. . . SuAp. Sa'p^p + Sa'Ap. Sap^p = 0, 
' VII, ., Sadp,So'pdp + So'd/).So/>d/> = 0,

a, a' being, as in several recent investigations, the two real focal 
unit lines, which are common to a whole confocal system.

(1.) The vector 0’‘VpAp in II. has by I. the direction ofVvAv, whence, by 
410, (6.), the interpretation of the recent equation II., or (for the present purpose) 
of the more general equation 410, I., is that the chord pp' is perpendicular toils 
own polar, if the normals at its extremities intersect. Accordingly, if their point of 
intersection be called n, the polar of FP' is perpendicular at once to pn and p'n, and 
therefore to pp’ itself.

(2.) The equation II'. may be interpreted as expressing, that when the normals 
at P and p' thus intersect in a point N, there exists a point p"in the diametral plane 
OPP', at which the normal p''n" is parallel to the chord PP': a result which may bo 
otherwise deduced, from elementary principles of the geometry of surfaces of the 
second order.

(3.) It is unnecessary to dwell on the converse propositions, that when either of 
these conditions is satisfied, there is intersection (or parallelism) of the two normals 
at P and p' : or on the corresponding but limiting results, expressed by the equations 
III. and III’.

(4.) In order, however, to make any use in calculation of these new forms II., III., 
we must select some suitable expression for the self-conjugate function <fi, and deduce 
a corresponding expression for the inverse function The form,*

'vni. ,. ^ip=yp + VXp/«,
which has already several times occurred, has also been more than once inverted ; 
but the following new inversef form,

* The vector form VIII. occurred, for instance, in pages 463, 469, 474, 484, 
641, 669 ; and the connected scalar form,

f? =9?* + SXp^p,
has likewise been frequently employed.

t Inverse forms, for ot have occurred in pages 463, 484, 641 (the

357, II.

    
 



676 ELEMENTS OF QUATERNIONS. [boor III.

IX .. (p —SX/t).^'*p = p —XSp^*'/*-pSp^'iX,
has an advantage, for oor present purpose, over those assigned before. In fact, this 
ford IX. gives at once the equation,

X. .. (p—SXp).^"*VpAp = Vpdp —XSpAp^**/t — pSpAp^'iX}

and so conducts immediately from II. to IV., or from III. to V. as a limit.
(5.) The equation IV. expresses generally, that the chord ^p, or pp', is a tide of 

a certain cone ot the second order, which has its vertex at tbe point P of the given 
surface, and passes through all-the points p' for which the normals to that surface in. 
terseet tbe given normal atP; and tbe equation V. expresses generally, that tbe Iwo 
tides ot this last cone, in which it is cut by tbe piren tangent plane at tbe same point 
p, are the tangents to the lines of curvature.

(G.) But if the surface be an ellipsoid, or a doubZe-sheeted hyperboloid, then 
(comp. 408, (29.)) the always real vectors,* ijr^h and have the directions of 
semidiameters drawn to two of the four real umiilics ; supposing then that p is such 
& semidiameter,' and that it has the direction of + ^"‘X, the second term of the first 
member of the equation IV. vanishes, and the cone IV. breaks up into a pair of 
planes, of which tbe equations in p' are,

XI... SX (p' - p) = 0, and XII. . . Sp'^-’X^-'/r = 0 ;
whereof the former represents the toi^cnt plane at the umbilie p, and the latter re
presents the plane of the four real umbilics.

(f.'l It follows, then, that the normal at the real umbilie P is not intersected by 
any real normal to the surface, except those which are drawn at points v' of that 
principal section, on which all the real umbilics are situated; but that the same real 
umbiliear normal PH is, in an imaginary sense, intersected by all the imaginary nor
mals, which are drawn from the imaginary points P’ of either of the two imaginary 
generatrices through P.

(8.) In fact, the locus of the point ,p'i under tlie condition of intersection of its 
normal p'n' with a given normal pn, is generally a quartic curve, namely the inter
section of the given surface with the cane IV.; but when this cone breahs up, as in 
(6.), into two planes, whereof one is normal, and the other tangential to the surface, 
tbe general quartic is likewise decomposed, and becomes a system of a real conic, 
namely the principal section (7.), and a pair of imaginary rigid lines, namely the 
two umbiliear generatrices at P.

(9.) We see, at tbe same time, in a new way (comp. 410, (14.)), that each such 
generatrix is (in an imaginary sense) a tine of curvature: because the (imaginary) 
normals io the surface, at all the points of that generatrix, aro situated by (7.) in 
oue common (imaginary) normal plane. ,

(10.) Hence through a real umbilie, on a surface of the second order, there pass 

correction in a Noto to which last page should be attended to). In comparing theso 
with the form IX., it will easily be seen (comp, page CGI) that

_ pX-X^p _ gp-p.^\

* Compare the Note immcdialely preceding.

    
 



CHAP. III.] THREE LINES THROUGH AN UMBILIC. 677

three lines of curvature; whereof one is a real conic (8.), and the two others are 
imaginary right lines, namely, tlie umbiliear generatrices as before.

(11.) It-wo prefer differentials to differences, and therefore use the eqnatioe V. 
•of tlie lines of curvature, we find tliat this equation tpkes the form 0 = 0, if the' 
point p be an umbilie; and that if tho normal at that point be parallel to X, the 
differential of the equation V. breaks up into two factors, namely,

XIII. . . SXdJp = 0, and XIV. . . Sdp^.-'X0-’ft = 0;
whereof the former gives two imaginary directions, and the latter gives one real di
rection, coinciding precisely with the three directions (10.).

(12.)- And if p, instead of being the vector of an umbilie, be only the vector of a 
point on a generatrix corresponding, we shall still satisfy the differential equation 
V., by supposing that dp belongs to the same imaginary right line; because we 
shall then have, as at the umbilie itself,

XV. . . SXdp = 0, Spdpf-'X = 0.
An umbiliear generatrix is therefore proved anew (comp. (9.)) to be, in its whole 
extent, a line of curvature.

(13.) The recent reasonings and calculations apply (6.), not only to an ellipsoid, 
bnt also to a double-sheeted hyperboloid, four umbilics for each of these two sur
faces being real. But if for a moment we now consider specially the case of an ellip- 

a — <5soid, and if we denote for abridgment the real quotient------by h, we may thena 4- c
substitute in IV. and V. for X, y, ^"'X, the expressions,

, 2^UX . , UToy
XVI. . . a—ha =------- J ha ;

o-bc a-i-c
YVIT 1 1 • , -2ft^-IUpXVII. . .a +ha - ----f!---- - ; - ha - a'=-------- ;

ac(<i-(-c) ttc(a-i-c)
and then, after division by h^ — 1, there remain only the two vector constants a a', 
the equation IV. reducing itself to VI., and V. to VII.

(14.) Thc simplified equations thus obtained are not however peculiar to ellip
soids, but extend to a whole confocal system. To prove this, we have only to com
bine the equations II. and III. with the inverse form,

XVIII.. . l'^<l)''p = aSa'p + a'Sap — p(e-)-Saa'),

which follows from 407, XV., and gives at once the equations VI. and VII., what
ever the species of the surface may be.

(15.) The differential equation VII. must then be satisfied by the three rectan
gular directions of dp, or of a tangent to a line of curvature, which answer to the 
orthogonal intersections (410, (12.)) of the three confocals through a given point p ; 
it ought therefore, as a verification, to be satisfied a/so, when we substitute v for dp, 
V being a normal to a confocal through that point: that is, we ought to have tho 
equation.

XIX. . . SavSa'pi'+ Sa'rSap»/ = 0.
And accordingly this is at once 4|btained from 407, XVI., by operating with S.-pv, 
so that tbe three normals v are all sides of this cone XIX., or of the cotie VII, with 
dp for a side, with which tlie cone V. is found to coincide (13.).

(16.) And because this last equation XIX., like VI. and VIL, involves only the 
two fatal lines a, a' as its constants, we may infer from it this theorem ; '• If inde-
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finitely many surfaces of the second order have only their asymptotic cones hicpnfo- 
cal,* and pass through a given point, their normals at that point have a cone of the 
second order for their locus which latter cone is also the locus of the tangents, at 
tliC same point, to all the lit^s of curvature which pass through it, when different 
values are successively assigned to the scalar constant efi— c* (or 2P) : that is, when 
tlie asymptotes a, a' to the focal hyperhola remain unchanged in position, but the 
semiaxes (a* — b^)i, (l>‘^ — e’)! of that curve (hero treated as both real) vary together.

(17.) The equation VI. of the cone of chords (5.) introduces the fixed focal 
lines a, a.' by their directions only. But if we suppose that the lengths of those 
two lines are equal, without being here obliged to assume that each of tho?e lengths 
is unity, we shall then have (comp. 407, (2.), (3.)), the following rectangular sys
tem of unit lines, in the directions of the axes of the system,

XX. .. U (a + a), VSTaa', U (a - a"),
which obey in all respects the laws of ijh, and may often be conveniently denoted by 
those symbols, in investigations such as the present. And then, by decomposing the 
semidiameter p, and tbe chord Ap, in these three directions XX., we easily find the 
following rectangular transformation^; of the foregoing equation VI.,

I - S (g + n')-ip S(g-a*)-^p S.(Vaa')-'P.
’’ 'S(a + a')Ap S(a — a’')Ap S.Uaa'Ap ’

in which it is permitted to change Ap to dp, in order to obtairt a new form of the 
differential equation of the linea of curvature; or else at pleasure to v, and so to 
find, in a new way, a condition satisfied by Ijie three normals, to tbe three confocals 
through p.

(18.) Tbe cone, VI. or XXI., is generally the locus of a system of three rectan
gular lines ; each plane through the vertex, which is perpendicular to any real side, 
cutting it in a real pair of mutually rectangular sides ; while, for the same reason, 
the section of the same cone, by any plane which does not pass through its vertex P, 
but cuts any side perpendicularly, is generally an equilateral hyperbola.

(19.) If, however, the point v be situated in any one of the three principal 
planes, perpendicular to the three lines XX., then the cone XXL (as its equation 
shows) breaks up (comp. (6.)) into a pair of planes, of which one is that principal

* That is, if the surfaces (supposed to have a common centre) be cut by the 
plane at infinity in biconfocal conics, real or imaginary.

f The corresponding form, in rectangular co-ordinates, of the condition of in
tersection, of normals at two points (xy:) and (x'y'z'), to the surface,

«2 z2 •»
^+62 + ;;=^-

is the equation (probably a known one, although ^e writer has not happened to 
meet with it),

(62_c2)a:' (c’—«2)y' («’ —62)y

x-x' y'-.H' z-z ~ '
in which it ia evident that xyz and x’y’z' may be interchanged.
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plane itself, while the other is perpendicular thereto. And while thc /ormer plane 
cuts the surface in a principal section, which is always a line of curvature through 
1», the latter plane usually cuts the surface in another conic, which crosses thfc for
mer section at right angles, and gives the direction of the second line of curvature.

(20.) But if wo further suppose, as in (6.), that the point r is an umbilie, then 
(as has been seen) the second plane is a tangent plane ; and tbe second conic (19.) 
is itself decomposed, into a pair of imaginary right lines: namely, as before, the two 
umbiliear generatrices through the point, which have been shown to be, in an ima
ginary sense, both lines of curvature themselves, and also a portion of the envelope 
of all the others.

(21.) We shall only here add, as another transformation of the general equation
VI. of tho cone of chords, which does not even assume Trt= To', the following;

XXII. . . S(ix + a')Ap.S(a + a')pAp=S(a-a')Ap.S(o —o^pAp; 
where the directions of the two new lines, a + a' and a — o', are only obliged to be 
harmonically conjugate with respect to the directions of theyfaed focal lines ot the 
system: or in other words, are those of any two conjugate semidiameters ot the focal 
hyperbola.

412. The subject of Lines of Curvature receives of course an 
additional illustration, when it is combined with the known concep
tion of the corresponding Centres of Curvature. Without yet en
tering on the general theory of the curvatures of sections of ah arbi
trary surface, we may at least consider here the curvatures of those 
nomal sections, which touch at any given point the lines of curva
ture. Denoting then by a the vector of the centre s of curvature of 
such a section, and by R the radius ps, considered as a scalar which 
is positive when it has the direction of + v, it is easy to see that 
we have the two fundamental eqtiations ;

I. ,. <r=p+ ^Up; II... ^■'dpfdU'i' = 0;
whence follows this new form of the general differential equation 
410, Ii. of the lines of curvature,

III. . . VdpdUi' = 0;
with several other combinations or transformations, among which 
the following may be noticed here:

Tp _ dp „. —+ S;5- = 0.R apIV. .

(1.) The equation I. requires no proof; and from it tho equation II. is obtained 
hy merely differentiating* as if <r*ftnd R were constant: after which the formula III. 
follows at once, and IV. is easily deduced.

* To students who are accustomed to tn^nitesimals, the easiest way is here to
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and

(2.) To obtain from this last equation a more developed expression for S, we 
may assume for dr, considered as a linear and self-conjugate function of dp (410, 
(1.)), tbe general form (comp. 410, XVIII.),

V. .. iv = pdp + VXdpp, 
in which y, X, p are independent of dp; and then, while the tanyent dp has (by 410, 
XXII.) one or other of the two directions,

VI. ..dp II UVvX + UVvp, 
the curvature R''^ receives one or other of the two values corresponding,

VII.. . fl-i = -Tjri(y + SXU)/.SpU». + TVXUv.TVpUj/).

•(3.) One mode of arriving at this last transformation, or of showing that if 
(comp, again 410, XXII.) we assume,

VIII. .. r= (or II)UVXv ± UVpv, 
then IX... SXrpr-> = SXUv.SpUv + TVXUv.TV/tUv,
or X. .. 2SXr.Spr-‘ =S(VXUp.VpUj/) ±TVXUv.TVpUv,
or finally, XI. .. 2SUXr. SUpr'* = S(VUXv.VUp>') ±TVUXp.TVUpr, 

is to introduce the auxiliary quaternion,-
XII. .. q = "VCKv.XVnv ;

and to prove that, with the value (or direction) VIII. of r, we have thus the equa
tion (in which Vg’, as usual, represents tho square of Vg),

XIII. . . 2SUXr.SUpr-i=Sg±Tg= + ly

(4.) And this may be done, by simply observing that we have thus (with the 
value VIll.) the expressions,

YTV r. TT -SUXpv
XIV...SrUX--^_, =

VW C<-TT\ C- TT T(SUXpt')’ ±Vg’XX. . . SrUX.SrU;, =

XVI... Vg=-Uj>.snxpj/i

XVII. .. t’ = - 2 + 2SUg = + 
T?

(5.) Admitting then the expression VII., for the curvature S’', we easily see 
that it may be thus transformed :

XVIII. . . 7f-’=-Tv-> ^p+TXp.cos^Z^ + Z^^y

and that the difference of the two (principal) curactwrea,. of normal sections oi an 
arbitrary surface, answering generally to the two (rectangular) directions of the 

because

T

conceive the differentials to be such. Cut it has already been abundantly shown, that 
this eieio of the latter is by no means necessary, in the treatment of them by quater
nions. (Compare the second Note to page 667.)
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lines of curvature through the particular point considered, vanttAes when tbe normal 
V has the direction of either of the two cyclic normals, X, p, of the index surface 
(410, (9.)); that is, when the index curve (410, (4.)}, considered as a section of 
that index surface, is a circle: or finally, when the point in question is, in a received 
sense, an umbilie* of the given surface.

(6.) That surface, although considered to be a given one, has hitherto (in these 
last sub-articles) been treated os quite general. But if wo now suppose it to bo a 
central surface of the second order, and to be represented by the equation,

XIX. .. /p=ypS + SXpfip = 1,

which has already several times occurred, we see at once, from tbe formula VII. ot 
XVIII. (comp. 410, (10.)), that the difference of curvatures, of the two principal 
normal sections of any such surface, varies proportionally to the perpendicular (Tv** 
or P) from the centre on the tangent plane, multiplied by the product of the sines of 
the inclinations of that plane, to the two cyclic planes of tbe surface.

(7.) In general (comp. 409, (3.)), it is easy to see that

XX. . . S ~ = Sr-iAr = - 2>-»,dp
if Z> denote the (scalar) semidianieter of the index surface, in the direction of dp or 
of T; but for the two directions of the lines of curvature, these semidiameters become 
(410, (3.), (4.)) the semiaxes otthe index curve. Denoting then by ai and 82 these 
last semiaxes, the too principal radii of curvature of any surface come by IV. to 
be thus expressed:

XXI. .. = ai’Tr ; Hi = aj’Tv.
And if the suriace be a central one, of the second order, then ai, as are the semiaxes 
of the diametral section, parallel to the tangent plane ; while Ty is (comp, agun 409, 
(3.)) the reciprocal P-t of the perpendicular, let fall on that plane from the centre. 
Accordingly (comp. (6.), and 219, (4.)), it is known that the difference of the in
verse squares ot those semiaxes varies proportionally to the/jrodKc* of the «in«s of 
the inclinations, ot tbe plane of (he section to the two cyclic planes.

(8.) And as regards the squares themselves, it follows from 407, LXXI., that 
■they may be thus expressed, in terms of tbeprincipal semiaxes of the confocal sur
faces, and in agreement with known results:

XXII,.. ai«=a’-fliJ; aj’ = a’-a^;
being thus bath positive for the case of an ellipsoid; both negative, for that of a 
double-sheeted hyperboloid; and one positive, but the other negative, for the case of 
an hyperboloid of one sheet (comp. 410, (16.)).

(9.) In all these cases, the normal -I v is drawn towards the same side ot the 
tonyent plane, OS that on which the centre o of the surface is situated (because 
Syp = 1); hence (by I. and XXI.) both the radii of curvature JJi, Hi are drawn 
in this direction, or towards tAie side, for the ellipsoid ; but one such radius for the 
einyZe-sheeted hyperboloid, and both radii for the hyperboloid of two sheets, are di
rected towards the opposite side, as indeed is evident from tho forms of these surfaces.

* Compare the second Note to page 669.
4 s
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(10.) The following is another method of deducing generally the two principal 
curvatures of a surface, from the self-conjugate function,

XXIII. .. dj/ = 0dp, 410, IV,
w^ich affords some good practice in the processes of the present Calculus. Writing, 

for abridgment.
XXIV. . .r = —=P-iTv=-S^ = -Sr-’0r,

a — p dp
where r is still a tangent to a line of curvature, the equation II. is easily brought to 
the form.

XXV. . . — TT = y’iV»'0r = ^r — v'Sr^i'= dr,
where denotes a neio linear, and vector function, which however is not in general 
telf-conjugate, because we have not generally || v. Treating then this new func
tion on the plan of the Section IIL ii. 6, we derive from it a new cubic equation, of 
the form,

XXVI. . . 0 = M + M'r + 1^"^- 4-
and with the coefficients,

XXVII. ..Jr=0, Jlf' = Sj/->i;/J^, =
tp being a certain auxiliary function (= and m" being the coefficient* analo
gous to M", in the cubic derived from the function itielf. The root r = 0 is foreign 
to the present inquiry; but the two curvatures, Ri^, are the two roots ot tho 
following quadratic in S’’, obtained from the equation XXVI. by the rejection of 
that foreign root:

XXVIII. . . 0 = (fi-lTry + M"JJ-iTr + AF.
(11.) As a first application of this general equation XXVIII., let ^r have again, 

ns in V., the form yr + V\r)j; we shall then have the values,
XXIX. . . iir=2(<7+SXUv.S/jUr),

and XXX. . . J/' = 0 + SXUy. S/iUv)” - (VXUp)’ (V/iUv)’,
= a great variety of transformed expressions; and the two resulting curvatures agree 
with those assigned by VII.

(12.) As a second application, let tho surface be central of tho second order, with 
abc for its scalar semiaafes (real or imaginary) ; then the symbolical cubic (350) in 

becomes,
XXXI. . . 0 = 0®- + Jn'0 — m = (0 + O’’) (0 + 5’®) (0 + c-2);

and the coefiicients of the quadratic XXVIII. in JJ'* take the values, in which N 
denotes the semidiameter of the surface in the direction of the normal:

XXXII. . . Tti’i + J?2- ‘ = - A/"Tj/-’ = - (m" +/Ur) P= (a-2 + b'^ + tr^-N^)Pi

* Compare the Note to page 673, continuedrin page 674. The reason of tho 
evanescence of the coefficient AI, or of the occurrence of a null root of the cubic, is 
tliat we have here = 0, stt that the symbol $-i0 may represent an actual vec
tor (comp. 3S1). Geometrically, this corresponds , to the circumstance that when we 
pass, along a semidiamoter prolonged, from a surface of the second order to another 
surface of the same kind, concentric, similar, and similarly placed, the direction of 
the normal does not change.
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XXXIII. . . flrifl3-> = ArTv->=-CTr-* = a-’6-’c-«JWi

both of which agree with known results', and admit of elementary verifications.* 
(13.) /n general, if we observe that m" - 0 = ^ (350, XVI.), we shall see that 

the quadratic XXVIII. in r (or iu may be thus written:

XXXIV. . . 0 = Sv'^(^v + rxv -t- yjsv) ;
or thus more briefly (comp. 398, LXXIX.),

XXXV. . . 0 = Sv*(^ + r)"' V.
(14.) Accordingly, the formula XXV. gives tlio expression,

XXXVI. . . »'^r = + r)'>v.Srp»';
from which, under the condition Spr=0, the equation XXXV. follows at once. 

(15.) We have therefore generally, for the product of the two principal' curva
tures of sections of any surface at any point, the expression:

XXXVII. ,. =nr2Tj/-«=-v-'Sm/-v=-S i ;
S' V

which contains an important theorem of Gauss, whereto we shall presently proceed. 
(16.) Meanwhile we may remark that tbe recent analysis shows, that the squares 

ai*, 0'2’ (7.) of the semiaxes of the index-curve are generally the roots of the follow- 
iug equation.

XXXVIII.. . 0 = SvQj, + a-=)-‘i/,
when developed as a quadratic in a’.

(17.) And that the same quadratic assigns the squares of the semiaxes of a dia
metral section, made by a plane -1- v, of the central surface of the second order which 
has Spfp = 1 for its equation.

(18.) Accordingly, "Vpijip has the direction of a tangent to this surface, which is 
perpendicular to p at its extremity; and therefore tho vector,

XXXIX. . . <r = p-tVpipp =z^p — p"i = (0 — p-i'j
ia perpendicular to the plane of the diametral section, wliich has the semidiameter p 
for a semiaxis: ao that it is perpendicular also to p itself. The equation,

XL, . . S(r(0 — p“^)"i O'= 0, 
assigns therefore the values of tho squares (— p’) of the scalar semiaxes of the cen
tral section -L a; which agrees with the formula XXXVIII.

(19.) If then a surface be derived from a given central surface of the second or
der,ns the locus of the extremities of normals (erected at the centre) to the diame-. 
tral sections of the given surface, each such normal (when real) having the length of 
one of the semiaxes oi that section, the equation of this new surface^ (or locus) will 
admit of being written thus :

XLI. .. Sp(^,-p-«)->p = 0.

* As an easy verification by quaternions of tlfe expression XXXII,, it may be 
remarked (comp. 408, (27.)), that if a, P, y be any three rectangular unit lines, 
llien

/a +y?3 ^fy = const. = cj + C2 + ca = o-’ + i’S + c-o.
f When the given surface is an ellipsoid, this da-ived surface XLI. is therefore 

tlie celebrated fl'ave Surface of Fresnel, which will be briefly mentioned somewhat 
farther on.
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(20.) The first of the values XXIV., for the auxiliary scalar r, gives the expres
sion (if v = ^p, os it is for a central surface of the second order),

XLII. . . ff = p+r->u=(l+r''^)p = r-l(0 + r)p;

whence, by inversion, and operation -with
XLIII. .. p = r(^+r)"tff; XLIV. . . v=r(0 + r)”l^ff;

and therefore, because Spv= 1,
XLV. . . r'2 = S ((0+ »•)-< ff. (^ + r)’*0ff) = S.ff(^ + r)‘’^ff.

(21.) Tbe following is a quite different way of arriving at this result, which is also 
useful for other purposes. Considering a as tho vector os of a point s on the Surface 
of Centres, that is, on the locus of all the centres of curvature of principal normal sec
tions, the vector (say v) of the Reciprocal Surface is connected with a (comp. 373, 
(21.)) by the equations of reciprocity *
XLVI. . . SffU = Suff = 1; XLVII. . . Sudff = 0 ; XLVIII. . . Sffdu = 0; 

which are all satisfied by the vector expression,

XLIX. . . V = Spr
where r is, as before, a tangent to the line of curvature: so that, if <0 denote the va
riable vector of the normal plane to this last curve, tbe equation of that plane (comp. 
369, IV.) may be thus written,

L. . . Sv(fc) — p) = 0. ,
This normal plane, to the line of curvature at P, is therefore at the same time the 
tangent plane to the surface of centres at 8, as indeed it is known to be, from simple 
geometrical considerations, independently of the form of the given surface, which re
mains here entirely arbitrary.

(22.) The expression XLIX. for u gives generally the relation,
LI. . . Spu= 1;

giving also, by 410, V. and VI., these two other equations,

* It is understood tliat do and du, in the differential equations XLVII., 
XLVIII., are in general only obliged to have directions tangential to tbe surface 
of centres, and to its reciprocal, at corresponding points: so that tbe equations 
might be in some respects more clearly written thus, Su5<r = 0, 3aSv= 0, the mark 
d being reserved to indicate changes which arise from motion along a given line of 
curvature, while S should have a more general siguificatiou. Accordingly if, in par
ticular, we write Sp = vip, for a variation answering to motion along tbe other line, 
and denote the two radii of curvature for the two jjireclions dp and Sp by Ri and 
S2, we shall have by II., TJr’dp f dUi' = 0, + 5Uu= 0, aud therefore by I.,

d<T= d/Ji.Uu, iff = 5p + = (1 —/Ji7?a”')»'dp+ilfi.Uv;
so that we have both Sdpdff = 0, and Sdpiff = 0, and therefore the tangent dp or r 
to the given line of curvature has the direction of the normal v to the corresponding 
eheel o( the surface of centres, as is otherwise visible from geometry. And when 
we have thus found an equation of the form tv=r, operation with S.ff gives hv 
XLVI. the value t - .Spr, as in XLIX., because a - p II v -i- r, '
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LU. . . S»'u = 0, and LIII. . - &vv^v— 0,

which are still independent of the form of the given surface.
(23.) But if that surface be a central quadric,* tlien the equation LI. may be 

thus written,

V =
LIV. . . 1 = = Svifr^v;

combining which with LII. and LIII., we derive the expressions:

LV. . . v= LVI. . . p = =v*—fv.Fo v^—fv.Fo
wherein fu = Su^u, and Fu= Su^*’w, as usual.

(24.) Operating with S.r on this last expression for p, and attending to LII. 
and LIV., we find the following quaternion forms of the Equation of the ^ciprocal 
of the Surface of Centres:

LVII. . . 1 = (Srp =) ■■ ~: or LVIII... u» = (Fu- 1 }fu ■,

LIX. .. l = (ru-l)/i; or LX. . . jPo--i; = 1; &c.,
" /i

u
whereof tho second, when translated into co-ordinates, is found to agree perfectly 
with a known! equation of the same reciprocal surface.

(26.) Differentiating the form LX., and observing that

I IV w*
LXI.. . j =—I fi.ui=4Su®du, d/w=2S^udu, dfu = 2S^->«du, 

we find, by comparison with XLVI. and XLVIII., the expression:

LXlI...u = ^-v-^+^: or LXIII. . i
/«' C/f? fUv^ (jwy

or finally by XLIX., with the recent signification XXIV. of r,
LXIV. . . (T = r-’(^ + r)2^-iv, -because LXV. . . r =fXJr =fVv: 

and, for the same reason, the equation LX. of the reciprocal surface may be thus 
briefly written,

LXVI.. . Fu -p r-iu3 = 1, while LXVI’... /u -p ryS = 0.

(26.) Inverting the last form for <r, and using again the relation XLVI., we first 
find for V the expression,

LXVII. .. u=r2(^i + r)-«^i(r;

and then are conducted anew to the equation XLV., or to the following, .
LXVIII. . . 1 =S.<r(l -Pr-’^i)-«^iiT.

* Compare the last note to page 672; see also the use made of this known name 
“ quadric,” for a surface of the second order (or degree), in tlie sub-articles to 899 
(pages 614, &c.).

f The equation alluded to, whith is one of the fourth degree, appears to have been 
first assigned by Dr. Booth, in a Tract on Tangential Co-ordinates (1840), cited in 
page 163 of Dr. Salmon’s Treatise. See also the Abstract of a Paper by Dr. Booth, 
in the Proceedings of the Royal Society for April, 1858.
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(27.) This last equation may also be thus written,
LXIX... 1 = S.<r(H-

but by combining XLIII. LI. LXVII. we have,
LXX. . . l = (Spu=)S.(r(l+»--'0)-’^<r;

hence LXXI. . . 0 = S.(t(1
a result which may be otherwise and more directly deduced, under the form Svu = O 
(LIL), from the expressions XLIV. LXVII. for v and u.

(28.) If wo write,
LXXn. . ._r = Udp, r' = U(vdp), and therefore LXXIII. . . tt'=^ Uv, 

r and r' being thus untManpenls to the lines of curvature, the equation III. gives, 
generally,

LXXIV. . . 0 = Vr J(rr') = - dr' + rSr'dr, whence LXXIV'. .. dr’ fl r;
of wlych general parallelism of dr'to r, the geometrical reason is (comp, again III.) 
that, a Zine of curvature on an arbitrary surface is, at the same time, a line of cur
vature on the developable normal surface which rests upon that line, and to wliich 
the vectors r' or vdp are normals.

(29.) The same substitution LXXIII. for Vv gives by IL, if we denote by s tbe 
arc o( a line of curvature, measured from any fixed point thereof, so that (by 380, 
(7.), &c.).

LXXV.. . Tdp = ds, dp-= rds, D,p = r,

the following general expression for the curvature of tho given surface, in thc direc
tion T of the given line, which by LXXIV'. is also that of dr':

LXXVI. . . 7Z-> = S.rD,(rr') = -S.rr'D,r = S(Ui/-'.D,’p);

but D?p is (by 389, (4.)) what we have called the vector of curvature of the line of 
cun'ature, considered as a curve in space, and is the corresponding vector of
curvature of the normal section of the given surface, which has the same tangent r at 
the given point: hence the latter vector of curvature is (generally) the projection of 
the former, on the normal v to the given surface.

(30.) In like manner, if we denote for a moment by fZ/* the curvature of the de
velopable normal surface (28.), for the same direction r, the general formula II. 
gives,’ by LXXIV.,

LXXVII... = rD,/ = - Sr'D.r = S. r'-'D?p;

tile occZor R^'^f ot this new curvature is therefore the projection on the new normal 
f, ot the oecZor of curvature D,2p of the given line of curvature. But we shall soon 
see that these two last results are included in one more general,* respecting all plane 
sections of an arbitrary surface.

(31.) The general parallelism LXXIV'. conducts easily, for the case of a central 
quadric, to a known and important theorem, which may be thus investigated. Writ
ing, fur such a surface,

LXXVIII. . . r =fr, r'^fr',

* Namely in Meusnier’s Theorem, which can be proved generally by quaternions 
with about the same ease as thc two foregoing eases of it.
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so that r retains here its recent signification LXV., and r' is the analogous scalar for 
the other direction of curvature, we have by LXXIV. the difiereutiai,

LXXIX. . . dr’=2S^r'dr' = 2Sr^r'Sr'dr = 0,
because Sr0r'= 0, by 410, XI.

(32.) We have then the relation,
LXXX. . .fXJ (vdp) =fT = r’ = const.;

that is to say, the square (r'->) of the scalar semidiameter (ZX) of the surface, which 
is parallel to the second tangent (r'), is constant for any one line of turcature (r) ; 
and accordingly (corap. XXIL, and the expression 407, LXXI. for/Uvi), the value 
of this square is,

LXXXI.. . (/Uydp)-i = r'-i = aS - a'« = b^- = c^- c\
if a^, b', c' be the scalar seraiaxes of tho confocal, which cuts the given quadric (a6c) 
along the line of curvature, whereof the variable tangent is r.

(33.) This constancy of/Uvtlp may be proved in other ways ; for instance, the 
general equation Srdrdp = 0 gives, for a line of curvature on an arbitrary surface,

di>
LXXXII. . . dj'= vS>z-*di< +dpS —; LXXXIII. . . Vdvdp= ydpSj/'Mr; 

and LXXXIV. .. S.dp^(vdp) = 0, because dj' = ^dp;

while for a central quadric {fp = 1, ^p = v) it is easy to show that we have also,

LXXXV.. . (vdp) = Vpdp/(nUdp);

hence, for such a surface, if we suppose for simplicity that ds or Tdp is constant, 
which givcs.Vi'd’p || dp, we have,

LXXXVI. . . d/(vdp) = 2S(0(vdp).d(vdp)) = 2Sj'’*dv./(i>dp), 

a differential equation of the second order, ot which afrst integral is evidently,

LXXXVir. . . /(vdp) = Ct-’dp’, or LXXXVII'. . . fV{vdp) = C = coast.
(34.) But we see that the lines of currature on a central quadric are thus «»- 

eluded in a more general system, of curves on the same surface, represented by the 
differential equation LXXXVI., of which the complete integral would involve two 
constants ; and which expresses that the seniidiameters parallel to those tangents to 
the surface, which cross aay one such curve at right angles, have a common square, 
and therefore (if real) a common length, so that (in this case) they terminate on a 
sphero-conic.*

(35.) Admitting however, as a case ot this property, the constancy LXXX. of 
the scalar lately called r’, namely the second root ot the quadratic XXXIV. or 
XXXV., of which the coeflScients and the first root r vary, in passing from one point 
to another of what we may call for the moment a line of first curvature, we liave only 
to conceive r and v to be accented in the equations LXVI. LXVI'., in order to per
ceive this theorem, which perhaps is new :

* Compare the sub-articles (C.) (7.) (8.) to 219, in page 231.
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The Curve* on the Jteciprncal (24.) of the Surface of Centres ot curvature of & 
central quadric, which answers to the second curvature of that given surface for all 
the points of a given line otfirst curvature, or which is itself ia a known sense the, 
reciprocal (with respect to the given centre) of the developable normal surface (28.) 
which rests upon that line, is the intersection ottwo quadrics ; whereof one (LXVV.) 
is a cone, concgclic with the given surface (_fp = 1); while the other (LXVI.) is a 
surface concgclic with the reciprocal of that given quadric (Jr = 1).

(36.) Again, the scalar Equation of the Surface of Centres (21.) may be said 
to be the result of the 'elimination of r-t between the equations LXVIII. and LXXI., 
whereof the latter is the derivative^ of the former with respect to that scalar; wo 
have therefore this theorem:

An Auxiliarg Quadric (LXVIII. or XLV.) touches the Second Sheet of the 
Surface of Centres of a given quadric, along a Quartic Curve, which is the locus of 
the centres of Second Curvature for all the poin Is of a Line of First Curvature (35.); 
and (for the same reason) the same auxiliary quadric is circumscribed, along the 
same quartic, by tbe Developable Normal Surface (28.), which rests on that first 
line: with permission, of course,' to interchange the words first and second, in this 
enunciation.

(37.) Wlien the arbitrary constant r is thus allowed to take successively all va
lues, corresponding to both sgstems of lines of curvature, the Surface of Centres is 
therefore at once the Envelope^ of the Auxiliarg Quadric LXVIII., and the Locus 
of the Quartic Curve (36.), in which one or other of its two sheets is touched, by that 
auxiliary quadric in ono of its successive states, and also by ono of thc developable 
surfaces of normals to the given surface. *

(38.) To obtain the vector equation of that envelope or locus, we may proceed

* The variable vector of this, curve is easily, seen (comp. XLIX.) to be,

, r' VT
Sr'p Srrp ’

and the reciprocal surface (21.) or (24.) is by (25.) the locus of this quartic (35.), 
t The analogous relation, between the co-ordinate forms of tho equations, was 

perhaps thought too obvious to be mentioned, in page 161 of Dr. Salmon’s Treatise; 
or possibly it may have escaped notice, since the quartic curve (36.) is only mentioned 
there as an intersection of two quadrics, which is on the surface of centres, and 
answers to points of a line of curvature upon the given surface. But aa regards 
the possible novelty, even in part, of any such geometrical deductions as those given 
in the text from the quaternion analysis employed, the writer wishes to be under
stood as expressing himself with the utmost diffidence, and as most willing to be 

. corrected, if necessary. The power of derivating (or-differentiating) any symbolical 
expression of the form LXVIII., or of any analogous form, with respect to any sca
lar which it involves explicitly, as if the expression were algebraical, is an important 
but an easy consequence from the principles of the Section III. ii. 6, which has been 
so often referred to.

J Compare the Note immediately preceding.
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as follows, using a new expression for <r, in terms of v or of p, which may then be 
transformed into a function of two independent and scalar variables. Denoting 
(comp. (32.)) by ai, bi, c, the semiaxes of tlie confocal which cuts the given sur
face in the given line of curvature, and by as, 62, C3 those of the other confocal, so 
that the normals vi, V2 to these two confocals have the directions of the tangents r', 
r lately considered, wc have not only the expressions LXXXI. for r'-i, with a'b'c* 
changed to ai, bi, C|, but also the analogous expressions (comp. 407, LXXI.), 

LXXXVI II. . . = rt® — rt2® = b® — bs® = c® — C2®.
Wo have therefore by XLIL, combined with 407, XVI., this very simple expression 
for a ;

LXXXIX.. . <T= (d"' 4 j-*)v = ;

containing, in the present notation, and as a result of the present analysis, a known 
and interesting theorem,* on which however we cannot here delay.

(39.) It follows from this last value of <r, combined with the expression 408, 
LXXXII. for p, that we may write,

XC..-. rt = Z-®( ^-2^' -4
a 4- a Vaa a — a)

as the sought Vector Equation of the Surface of Centres of curvature of a given 
quadric (abc) ; ambiguous signs being virtually included in these three terms, be
cause in the subsequent elimiiiationsf the semiaxes enter only by their squares: 
while I, a, a' are constants, as in 407, &c., for the whole confocal system, and abc 
are also constant here, but a® - rti® and rt® — fla’, or r''* and r-i (38.), are variable, 
and may be considered to be the two independent scalars ofwhich <r is a vector func
tion.

413. Some brief remarks may here be made, on the connexion 
of tlie general formula,

I. . . Si'-‘(0-hr)-> = O, 412, XXXV.

in which r =R'^fv (412, XXIV.), and which when developed by the 
rules of the Section III. ii. 6 takes (comp. 398, LXXIX.) the form 
of the quadratic,

* Namely Dr. Salmon’s theorem (page ICl of his Treatise), that the centres of 
curvature of a given quadric at a given point are the poles of the. tangent plane, 
with respect to the two confocals. The connected theorem (page 136), respecting 
the rectilinear locus of the poles of a given plane, with respect to the surfaces of a 
confocal system, is at once deducible from the quaternion expression 407, XVI. for 

although the theorem did not happen to be known to the present writer, or at 
least remembered by him, when he investigated that formula of inversion for other 

-applications, of which some have been already given.
t Tlie corresponding elimination in co-ordinates was first effected by Dr. Salmon, 

who thus determined the equation of the surface of centres of curvature of a quadric 
to be oue of the twelfth degree. (Compare pages 161, 162 of his already cited Trea
tise.)

4t
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IL . . r’-i-rSp^’x"+ Sp‘’Vrp = 0, 412,.XXXIV. 

with Gauss’s* theory of the Jleasure of Curvature of a Surface; and 
especially with his fundamental result, that this measure is equal to 
the product of the two principal curvatures of sections of that surface: 
a relation which, in our notations, may be thus expressed,

III. . . V.dU./SUp = Pf'.Ra-'Vd/>2p.

(1.) As regards the deduction, by quaternions, of tbe equation HI., in which d 
and S may be regarded as twof distinct symbols of differentiation, performed with re
spect to two independent scalar variables, we may observe that, by principles and 
rules already established,

IV. .. dUr=V-.Up, ^Up = V —.Up = -Hp.V—;
, V V ~ V

and that therefore the first member of 111. may be thus transformed:

V. . . V.dUj/dUj/=V^V^^.V^^ = -v-iSr-'dr3v.

(2.) Again, since we have djz=^dp (410, IV., &c.), and in like manner Sv = 
^Sp, the relations Svdp = 0, SvSp = 0, and the self-conjugate property of allow 
us to write,

VI.. . yivSv = <pVdp5p, and VII. .. Vdp3p = v’Svdpffp ;
whence follows at once by V. the formula HI., if we remember the general expres
sion, deduced from thc quadratic II.,

VIII. ,. 7Zi-17?3-i = - v-!riri=-S - O' -. 412, XXXVII.
p p

(3.) If then we suppose that p, Pi, P2 are any three near pointa on an arbi
trarg aurface, and that it, 9j, . E2 arc three near and correaponding pointa on the 
unit aphere, determined by tbe condition of parallelism of the radii on, ORi, 0R2 to 
the normala pn, PiNi, P2N2, the two email triangles thus formed will bear to each 
other the ultimate ratio,

TV V „ -IT, II A.. . lira. - --------------=Ei
• APPiPa 

a result which justifies (although by an entirely new analysis) the adoption by Gauss

* The reader is referred to the Additions to Liijuville’s Monge (pages 605, &c.), 
in which the beautiful Memoir by Gauss, entitled : Disquiaitionea generalea circa 
auperjicies ctirvaa, is with great good taste reprinted in the Latin, from the Cotnmen- 
tationes recenliores of the Royal Society of Gottingen. Ho is also supposed to look 
back, if necessary, to the Section HI. ii. 6 of these Elementa (pages 435, &c.), and 
especially to the deduction in page 437 of ip from remembering that the latter 
function (and therefore also the former) is here self-conjugate.

t Compare page 487, and the Note to page 684.
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of this product* of curvatures of sections, as the measure of the curvature of the 
surface, with his signification of the phrase.

(4.) As another form of this important product or measure, if we conceive tliat 
thc vector p of tho surface is expressed as a function (872) of two independent sca
lars, t and «, and if we write for abridgment,

X. . .P(p = p', D„p = p„ D,2p=p", D/D„p = p,', D.,»p=p,rt 

which will allow us (comp. 372, V.) to assume for the normal vector v the expres
sion.

XI. . . p = Vp'p„

it is easy to provet that we have generally,
XII. . . - ( S^V;

V V \ V I

which takes as a verification the well-known form,
— 8^xm. . . I71-'A3-‘=------ ;---- 5;-,

(l+p’+s’’)-
wben we write (comp. 410, (18.)),

XIV.'. . p = t.T+>y+*?, p' = 'Dip = i + lipi p^ = 'Dyp=j + iq •, 
■XV. . .v = 'Vp'p,= k-ip-jq, p"=kr, p,' = is, p,=kt.

(5.) In general, the equation XII. may be thus transformed,

XVI... »-iflr'i?2-'^s(Vpp".Vpp„)-(Vpp;)’ + »/’-(Sp"p„-p;2)j 
also XVII... Tdp® — edf®-t- 2/'dfdu +pdu®,
if XVIII... e=-p'2, f= — Sp'p„' g=-p,\ whence XIX. . . p® - ep 

and if we still denote, as in X., derivations relatively to t and « by upper and lower 
accents, we may substitute in the quadruple of the equation XVI. the values,

XX. . . 2Vpp’'= (e, —2/')p'+e'p,, 2Vpp/ = -p'p'+e,p,, iVvp„= — gfi 
+ (2f.-ff')p., 

and XXI. . . 2 (Sp''p„ — pi*} =■ e„ — ;
hence Me measure of curvature is an explicit function of the ten scalars,

XXII...e,/,pi e,f,g-, e,,f„g,-, and e„-2/'+p":

and therefore, ns was otherwise proved by Gauss, this measure depends onlyX on the

* If it be supposed to be in any manner known that a limit such as IX. exists, 
or that the quotient of the two vector areas in III. is a scalar independent of the di
rections of ppi, rpj, or of dp, Sp, we have only to assume that these are the direc
tions of the lines of curvature, in order to obtain at once, by 412, II., the product 

as the value of this quotient or limit.
+ The quadratic in A ' may be formed by operating on 412, II. with S.p' and 

S.p,, and then eliminating dt: du.
J The proof by quaternions, above given, of this exclusive dependence, is per

haps as simple as the subject will allow, and is somewhat shorter than the correspond
ing proof in the Lectures: in page 605 of which is given however the equation,
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expression (XVII.) of the square of a linear element, io terms of two independent 
scalars (t, «); and of their differentials (df, da).

(G.) Hence follow also these two other theorems* of Gauss:—
J If a «ar/hce be considered as an infinitely thin solid, and supposed to be flexible 

but inextensible, then every deformation of it, os such, will leave unaltered, Ist, tho 
Measure of Curvature at ang Point, and Ilnd, the Total Curvature of ang Area; 
that is, tbe area of the corresponding portion of the unit sphere, determined os in (3.) 
by radii parallel to normals.

(7.) Supposing now that t and a are geodetic co-ordinates, whereof the former re
presents the length oi a geodetic ap from & fixed point A of tbe surface, and the latter 
represents the angle bap which this variable geodetic mokes at A with a fixed geo
detic AB, it is easy to see that the general expression XVII. takes the shorter form,

XXIII,.. Tdp« = df» + n«d«s, in which XXIV.; . n = Tp,=Tp; 
so that we have now the values,

XXV. . . e = 1, /= 0, g = n\ g'= 2nn', f = 2nn'' + 2n”,

and the derivatives of e and/all vanish. And thus the general expression XII. for 
the measure of curvature reduces itself by (5.) to tho very simple form,

XXVI. . . = - B-in" = - »-iD?n;

in which n is generally a function of both t and «, although here twice derivated 
with respect to the former only.

(8.) The point p being denoted by the symbol (f, «), and any other point p' of 
the surface by (f + Af, u + Au), we may consider the two connected points Pi,“p2, of 
which the corresponding symbols are (f + At, u)‘ and (f, u + Au); and then tho 
quadrilateral pPiP'Ps, bounded by two portions PPi, P2P' of geodetic lines from A, 
and (as we may suppose) by two arcs PP2, Pip' of geodetic circles round tho same 
fixed point, will have its area ultimately =nAfAu (by XXIII.), and therefore (by 
XXVI., comp. (3,), (6.)) its total curvature ultimately = —»"Af Au, or=—A(»’.Au, 
when At and Au diminish together, by an approach of p' to p.

(9.) Again, in the immediate neighbourhood of a, we have n = t, n' = 1; chang
ing then - £itn' to - d/n, and integrating with respect to t from f = 0, we obtain 
1 —n' as the coefBcient of A« in the result, and are thus conducted to the expres- 

- sion:
XXVII. , . Total Curvature of Triangle APp'= (1 - n') ^u, nltimately,

' if AP, ap' be any two geodetic lines, 'making with each other a small angle = Au, 
and if pp' be any small arc (geodetic or not) on the. same surface.

4(f9-pyXr'Sf* = e {g'-+ g,e^
■ +f{<^g.-e.g'-^e,f-'2srf + i^ff.}

+ 9 - 2eZ + >’9') -^<i^9-P) (.e,. - 2/; + /'),

which may now be deduced at sight from XVI., by the substitutions XIX. XX. 
XXL, and differs only in notation from the equation of Gauss (Liouville’s Monge, 
page 523, or Salmon, page 309).

* See page 524 of Liouville’s Monge.
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(10.) Conceive then that pq is a finite arc of any curve upon the surface, for 
which therefore t, and consequently n', may be conceived to be a function of u ; we 
shall have this other expression of the same kind,

XXVIII. . . Total Curvature of Area apq=J(1 — »')d« = d«— Ja'd«;
the area here considered being bounded by the two yeotletie lines aq, which 
make with each other the finite angle Au, and by tbe arc pq of the arbitrary curve.

(’ll.) If this curve be itself a geodetic, and if we treat its co-ordinates t, u, and 
its vector p, as functions of its arc, s, then the second difierential of p, namely,

XXIX. . . d*p = p'AU + p^d’u + p"dt* 4- 2p/drd« + p, du*,

must be normal to the surface at p, and consequently perpendicular to p' and p^. 
Operating* therefore with S.p', and attending to the relations XVIII. and XXV., 
which give

XXX. .. p'2 = - 1, Sp'p, = Sp'p" = Sp'p\ = 0, Sp'p„ = - SpX = nn', 
we obtain the differential equation,

XXXI. . . d*f = n)»'dtt*, or XXXII. .. do = -n'du,

if we observe that we may write,
XXXIII. . . df = cosods, ndu = sin vds, because XXXIV. - . df*.+ n’du* = ds* ; 
o being here the variable angle, which the geodetic pq makes at p with ap pro
longed.

(12.) Substituting then for — n'du, in XXVIII., its value do given by XXXII,, 
the integration becomes possible, and the result is Au + Av; where Au is still the 
angle at A, and tt + Ao = (tt - o) + (o + Ao) is the sura of the angles at P and q, iff 
the geodetic triangle APQ.

(13.) Writing then n and o instead of p and Q, we thus arrive at another most 
remarkable Theorem f of Gquss, which may be expressed by the formula :

XXXV. . . Total Curvature of a Geodetic Triangle Acc = a + b+ c - jr,
= what may be called the Spheroidal Excess ; A, B, o, in the second member, being 

used to denote the three angles of the triangle: and the total surface of the unit 
sphere (= 4ff) being represented by 720’, when the part corresponding to the geodetic 
triangle is thus represented by tho angular excess, A + b + c -180’.

(14.) And it is easy to perceive, on the one hand, how this theorem admits of 
being extended, as it was by Gauss, to all geodetic polygons: and on the other hand, 
how it may require to be modified, as it was by the same eminent geometer, so as to 
give what would on the same plan be called a spheroidal defect, when the measure 
of curvature is negative, as it is for surfaces (or parts of surfaces) of which the prin
cipal sections have their curvatures oppositely directed.

* To operate with S.p, would give a result not quite so simple, but reducible to 
the form XXXI., with the help of d*» = 0.

t The enunciation of this theorem, respecting which its illnstrious discoverer 
justly says, “ Hoc theorema, -quod, ni fallimnr, ad elegantissima in theoria superficie- 
rum curvanim referendum esse videtur,"..; is given in page 533 of the Additions to
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414. The only sections of a surface, of which the curvatures 
have been above determined, are the two principal normal sections at 
any proposed point; but the general expressions of III. iii. 6 may 
be Applied to find the curvature of any plane section, normal or ob
lique, and therefore also of any curve on a given surface, when only 
its osculating plane is known. Denoting (as in 389, &c.) by p and k 
the vectors of the given point p, and of the centre K of the osculating 
circle at that point, and by s the arc of the curve, we have generally 
(by 389, XII. and VI.),

1I. . . Vector of Curvature of Curve =• kp"’ = (/>-«■)’’ = D/p = — V —; 
dp dp

the independent variable in the last expression being arbitrary. And 
if we denote by <r and f the vectors of the points s and x, in which 
the axis of the osculating circle meets respective!}’ the normal and 
the tangent plane to the given surface, we shall have also, by the 
right-angled triangles, the general decomposition, kp"'= sp*’+ xp"* 
(as vectors), or

II. . . D?p = (p - <)-• = (P - <r) + (p - e)-’
where the two components admit of being transformed as follows:<

III. . . Nol'mal Component of Vector of. Curvature of Curve {or 
di^Section') = (p - <7)*' = j'*’S — = {p — 4. (p _ o-j)*’ sin- y

- Vector of Normal Curvature of Surface for the direction of 
the given tangent;

ui, being the vectors of the centres s,, Sj (comp. 412)^ of the tiuo 
principal curvatures, and v being the angle at which the curve (or 
its tangent dp) crosses the first line of curvature (or its tangent t,), 
while ff is the vector of the centre 8 of the sphere which is said to 
osculate to the surface, in the given direction (of dp); and

IV. . , Tangential Component of Vector of Curvature
— {p~ 0 ’ ~ »'''dp*’Si'dp*’d’p

= Vector of Geodetic Cwvature of Curve {or Section);

this latter vector being here so called, because in fact its tensor re-

Liouville’s Monge. A proof by quaternions was published in the Lectures (pages 
606-609, see also the few preceding pages), but. the writer conceives that the one 
given above will be found to be not only shorter, but more clear.
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presents what is known by the name of the geodetic* curvature of a 
curve upon a surface: the independent variable being still arbi
trary.

(1.) As regards the decomposition II., if a, be any two rectangular vectors 
OA, OB, and if y = oc = tlie perpendicular from o on ab, then (comp. 316, L., and 
408, XLI.),

V. . ° - = a'l +

To prove the first transformation III., we have, by I. and II., observing 
that dSvdp ?= 0,

VI '' -- S - S V zz ~ - S
' IT p~K dp dp dp® dp® dp

(3.) Hence, by 415, (7')> denote the vector III. of normal curvature by 
7f'*Dj', we have the general expressions (comp. 412, I. XXI.),

VII.. . 0-= p + /?Ur, = Z)2.Ty, with VIII. . . Tv = P-i,

for the case of a central quadric ; D being generally the semidiameter of the index 
surface (410, (9.), &c.), or for a quadric the semidiameter of that surface ttjeZf, 
which has the direction of the tangent (or of dp)": and P being, for the latter sur
face, the perpendicular from the centre on the tangent plane, as in some earlier for
mula!.

(4.) To deduce the second transformation HI., which contains a theorem of 
Euler, let r, ri, r2 denote unit tangents to the section and the two lines of curvature, 
so that

IX. . . r = Ti cos e rj sin », and t® = n® = r2® — — 1;
we may then write generally (comp. 412, IV.),

1/ dv
X. .. 72‘'Tv =------ --  — S— = — Sr-'^r = Sr^r,a — p dp ’

and shall have the values (comp. 410, XL),

XL .. Sri^Tl = jKr’Tv, Sr2^r2 = 7?2~'Ti’, Sri^rg=Sr2^ri = 0; 
whence XII. .. jB"’. = Bi’i cos®» + Tfs”' sin® v,

and the required transformation is accomplished.
(6.) The theorem of Meusnier may be considered to be a result of the elimination 

(2.) of d®p from the expressions for the normal component III. of what we may call 
the Pector D,®p of Oblique Curvature ; and it may be expressed by the equation,

XIII. . . S = 1, or Xlir. . . S — = 0, which gives XIII"... i’KS =p — K p —K
if it be now understood that the point s, of which a is the vector, is the centre oi the

* The name, “ cottrbure geodtsique," was introduced by M.- Liouville, and has 
been adopted by several other mathematical writers. Compare pages 568, 675, &c, 
of his Addition» to Monge.
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circle which osculates to the normal section ; or of tho sphere which osculates in 
the same direclion to thc surface, as will be more clearly seen by what follows.

(6.) In general, if p + Ap be the vector of any second point p' of the given sur
face the equation

XIV. . . S------ = S —, with hi for a variable vector,u — p Ap
represents rigorously the sphere which touches the surface at the given point P, and 
passes through the second point p'; conceiving then that the latter point approaches 
to the former, and observing that the development* by Taylor’s Series of tho equa
tion fp = const, gives (if dyp= 2Srdp, and dv = 0dp),

XV. . . 0 = Ap'^AZp = 2S----- 1 S + terras which vanish generally with Ap,
Ap Ap-

even if they bo not always null, we are conducted in a new way, by thc known con
ception of the Osculating Sphere for a given direction to a surface, to tho same cen
tre s, and radius li, as before: the equation of this sphere bqing,

XVI. . . S ir. = (lim. s ^ = -lira. S = V S
(o —p \ Ap I op

(f.y Conversely, if we assume a radius E, such that is algebraically ««/cr- 
mediate between and the tangent sphere.

Tv 2U3/
XVII. .. S or XVII'. . . S = R-\u) — p li <a— p

will cut the surface in ttoo directions of osculation, assigned by thc formula Xll.; 
but if Ti"* be outside those Zimtts, there will be only contact, and not any (real) in
tersection, at least in the vicinity of p.

(8.) If p' be again, as io (6.), any second point of the surface, and if we denote 
for a moment by (n) and (2) the normal plane pnp' and the normal section cor- 
responding, we may suppose that n is the point in which the normals to the plane 
curve (S) at P and p' intersect; and if we then erect a perpendicular at n to the 
plane (II), it will be crossed by .every perpendicular at p' to the tangent p't to the 
section, and therefore in particular by the normal at p’ to the surface, in a point 
which we may call n' ; so that the line p'n is the projection, on the plane pp'n, of 
this second normal v's' to the surface. Conceiving then the plane (II) to be fixed, 
but the point p* to approach indefinitely to P, we see that the centre s of curvature 
ol the normal section (2), which is also by (6.) the centre of the osculating sphere 
to tbe surface for the same direction, is the limiting position of the point N, iu which

* Compare Art. 374, and the Second Note to page' 508. Thc occasional use, 
there mentioned, of the differential symbol dp as signifying a finite and chordal vec
tor, in the development of/(p + dp), has appeared obscure, in the Lecturet, to some 
friends of the writer; and he has therefore aimed, for the sake of clearness, in atJeast 
the text of these Elements, and especially in the geometrical applications, to confine 
that symbol to itsjfrsf signification (100, 369, 373, &c.), as denoting a tangential 
vector (finite or infinitely small, and to a curve or surface) : p itself being generally 
regarded as a vector function, and not as an independent variable (comp. 362, (3.)).
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the given normal at P is intersected by the projection* of the near normal p’n', on 
the given normal plane,

(9.) The two components III. and IV. are included in the binomial expression,
XVIII. . . Vector of Oblique Curvature (or of Curvature of Oblique 8001100}

— {p — ic)'* = v'Sdvdp't + vidp->Spdp'>d2p,
which is obtained by substituting in I. the general equivalent 409, XXI. for dip, 
and in which (as before) the independent variable is arbitrary; and the tangential 
component IV. may be otherwise found by observing that, by I. and II.,

XIX. .. = S— = S^ = -Spdp-'d«p,
p-5 p-ic dp

and that — (pdp)-'= i»"’dp"t, because Spdp=0.

(10.) Another way of deducing tho same component IV., is to resolve the follow- 
wg system of three scalar equations, which by tbe geometrical definition of tho point 
X the vector 5 must satisfy:

XX...S(5-p)p = 0j S(5-p)dp = 0: S(5-p)d’p = dpJ;
and which give.

XXI r n -_T• P Svdpd5p Srdp-kl’ip’

or (p — S)-t = &c., as before. We have also the transformations,

XXIL .. Vector of Geodetic Curvature = (p — $)'*

= S(j'Udp.dUdp) = — j>dp S = &c.

(11.) The definition of the point x shows also easily, that if a developable sur
face (d) be circumscribed to a given surface (s), along a given curve (c), and if, in 
the unfolding of the former surface, the point X be carried with the tangent plane, 
originally drawn to the latter surface at p, it will become the centre of curvature, at 
the new point (p), to the new or plane curve (o') obtained by this development: so 
that the radius (px) of geodetic curvature is equal, as indeed it is knownf to be, to 
the radius of plane curvature of the developed curve,

(12.) This plane curve (o') is therefore a circle^ (or part of one) if the condi
tion.

XXIII... fx = T - p) = const,

* The reader may compare the calculations and constructions, in pages 600, 601 
of the Lectures, Iu the language of infinitesimals, an infinitely near normal v'lt' 
intersects the axis of the osculating circle, to tho given normal section.

t Compare page 576 of the Additions to Liouville’s Monge.
J The cj<r»e» on any given surface, which thus become circles by development, 

have also the isoperimetrical property expressed in quaternions (comp, the first Note 
to page 630) by the formula, ,

XXVI... 5J'S(U>'.dp5p) + c5jTdp = 0, 
which conducts to the differential equation,

XXVII. , , c’ldp = V.UvdUdp (comp. 380, IV.),
4 U

    
 



698 ELEMENTS OF QUATERNIONS. [book III.

be satisfied; but it degenerates into a right line, if this radius of geodetic curvature 
be inf nite, that is, if

XXIV. ..T(p-<)-' = 0, ot XXX.. .Svdp&^p = 0,
or finally (by 380, II., comp. 409, XXV.), if the original curve (c) be a geodetic line 
on the given surface (s), and therefore also on the developable (d) : which agrees 
with the fundamental property (382, 383) of geodetics on a developable surface.

(13.) Accordingly it may be here observed that the general formula IV., com
bined with the notations and calculations of 882, conducts to tlie expression 

jrdx + dw(z + o') Tp'-’, or —T—, for the geodetic curvature of any curve on a developable 05
surface, whereof tbe element ds crosses a generating line at the variable angle v, while 

’ ida: is the angle between two such consecutive lines: a result easily confirmed by geo
metrical considerations, and agreeing with the difierential equation z 4-ti'=:0 (382, 
IX.) of geodetics on a developable.

»
415. We shall conclude the present Section with a few supple

mentary remarks, including a new and simplified proof of an im
portant theorem (354), which we have had frequent occasion to 
employ for purposes of geometry, and which presents itself often 
in physical applications of quaternions also; namely, that if the linear 
and vector function 0 be self-conjugate, then the Vector (Quadratic,

I. . . Vptjyp = 0, 354, I.
represents generally a System of Three Heal and Rectangular Direc
tions; and that these (comp. 405, (1.), (2.), &c.) are the directions 
of the Axes of the Central Surfaces of the Second Order, which are 
represented by the scalar equation,

II. . . Sptjip = const.;
or more generally,
III... Sp^p = Cp^+ C', where (7 and C' are any two scalar constants.

(1.) It is an easy consequence of the theory (350) of the symbolic and cubic 
equation in that if e be a root of the derived algebraical cubic M—H (354), and 
if we write d> = + c (as in that Article), tbcneia linear and vector function 4>(O must 
be reducible to the binomial form (351), 

and in which the scalar constant c can be shown to to ye the value,
XXVIII. • . c = (? - p) U.rdp = ± T (£ — p) = Radius of Geodetic Curvature, 

ea radius of developed circle; and each such curve includes, by XXVI., on the given 
surface, a maximum area with a given perimeter : on which account, and in allusion, 
to a well-known classical story, the writer ventured to propose, in page 582 of the 
Lectures, the name “ Didonia” for a curve of this kind, while acknowledging that 
the curves themselves had been discovered and discussed by M. Delaunay.
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IV... *p = ^p + cp = /3Sop + /3'Sa'p, with V. .. Xfia + V/3'a' = 0, 
as tho condition (353, XXXVI.) of self-conjugation. With this condition we may 
thon write,

VI. . . /3 = 4a + Ba', j3' = 21'a'+jffo;
and it is easy to see that no essential generality is lost, by supposing that a and o' 
are two rectangular vector units, which may bo turned about in their own plane, if 
13 and (3' be suitably modified: so that we may assume,

VII. ..a« = «” = -!, Saa' = 0; whence VIII. . . 4&a = -/3, <^a'==-p', 
and IX. .. V/3'a' = Baa’ = - Vpa, XPa’ = Aaa’, V0'a = - A'aa’-

(2.) Tho equation I., under the form,
X. . . Vp$p = 0, is satisfied by XI.. . d>p = 0, or XII. .. Vaa’p= 0 ;

and it cannot be satisfied otherwise, unless we suppose,
XIII. . . p = xa + xa', and XIV. ..'V(xP + x'P'') (xa + x’a’) = 0j 

that is, by IX., 
XV. . . J5(a:'’-a:2) 4. _4')a:®'=0:

while conversely the expression XIII. will satisfy I., under this condition XV. But 
this quadratic in x':x, of which the coeflicients JS and J —4' do not generally •va
nish, has necessarily <«>o real roots, with a product = - 1; hence there always ex
ists, as asserted, a system of three real and rectangular directions, such as the fol
lowing.

XVI. . . xa + .T’a', x'a~xa', and aa’(orVaa’),

which satisfy tho equation I.; and this system ia generally definite: which proves 
the first part oi the Theorem.

(3.) Tho lines a, a' may be made by (1.) to turn in their own plane, till they 
coincide with the two first directions XVI.; which will give,

XVII. ..S = 0, j3 = ^la, /3' = ^'a',
and Uicrcfore,

XVIII. . . ^g = — cp + 4aSap + .4'a'Sa'p
= (0 + .4) aSap + (c + A') a'Sa'p + caa'Saa'p;

and thus the scalar equation II. will take the fdrm,

XIX.. , Sp^lp = (c + ^) (Sap)2 + (c +A') (Sa'p)« + c(Saa'p)a= const., 

which represents generally a central surface of the second order, with its <Aree 
axes in the three directions a, a’, aa’ ot p ; and does not cease to represent such a 
surface, and with such axes, when for Sp^p we substitute, as in III., this new ex
pression :

XX. .. Sp^p — Cp* = Sp^p + C (j&ap'fi + (Sa'p)^ t- (Saa'p)^) = C'= const.; 

the second surface being in fact concyclic (or having the same cyclic planes) with the 
first, and the new term, — Cp, in ipp, disappearing under the sign V.p : so that the 
second part oi the Theorem is proved anew,

(4.) It would bo useless to dwell here on the coses, in which the surfaces XIX., 
XX. come’to bo ot revolution, or even to be spheres, and when consequently the 
directions of their axes, or of p in I., become partially or oven wholly indeterminate. 
But ns an example of the reduction of an equation in quaternions to the form I.i
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without its at first presenting itself under that form, we may take the very simple 
equation.

XXI. .. pipK = tpxp, with K not || (, 
which may be reduced (comp. 354, (12.)) to

' XXII. ..V.pVtp«: = 0;
and which is accordingly satisfied (comp. 373, XXIX.) by the i/tree rectanguJar di
rections,

282, XIX.

XXIU. . . U< - U«r, V,K, Ui f Uk,
of the axes (^abc^ of tbe ellipsoid,

XXIV.. .T(tp + pB) = (c«-.’,
which is one of the surfaces of the concgclic sgstem (comp. III.),

XXV... Sipicp = Cp^ + C,
as appears from the transformations 336, XI., &c.

(6.) In applying the theorem thus recently proved anew, wo have on several 
occasions used the expression,

XXVI... dj/ = ^dp, 410,1V.
in which v is a vector normal to a surface whereof p is tho variable vector, and the 
function tp is treated as self-conjugate (363).

(6.) It is, however, important to remark that, in order to justify the assertion 
of this last property, the following expression of integral form,

XXVII. .. JS»-dp,
must admit of being equated to some scalar function of p, such as J/p + const., 
without its being assumed that p itself is a function, of any determinate form, of a 
scalar variable, t. The self-conjugation of tho linear and vector function tp in 
XXVI., is the condition of the existence of the integral XXVII., considered as re
presenting such a scalar function (comp, again 363).

(7.) There are indeed several investigations, in which it is sufficient to regard 
V as denoting some normal vector, of which only the direction is important, and 
which may therefore be multiplied by an arbitrarg scalar coefficient, constant or 
variable, without any change in the results (comp, the calculations respecting geode
tic lines, in the Section III. iii. 5, and many others which have already occurred).

(8.) And there have been other general investigations, such as those regarding 
the lines of curvature on an arbitrary surface, in which dv was treated as a self
conjugate function of dp, while yet (comp. 410, (17.)) the fundamental differential 
equation Svdvdp = 0 was not affected by any such multiplication of v by n.

(9.) But there are questions in which a factor of this sort may be introduced, 
with advantage fur some purposes, while yet it is inconsistent with the self-conjuga
tion above mentioned, unless the multiplier n be such as to render the new expres
sion Snvdp (comp. XXVII.) an exact differential of«ome scalar function of p.

(10 ) For example, in the theory of Reciprocal Surfaces (comp. 412, (21.)), it 
is convenient to employ the system of tho three connected equations,

XXVIII... Svp=l, Svdp = 0, Spdj/ = 0; 373, L. LI.

bnt when the length of v is determined so as to satisfy the first of these equations, 
j/'l being then the vector perpendicular from the origin on the tangent plane to the
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given but arlitrnry turface of which p is the vector, while p'* is the corresponding 
perpendicular for the reciprocal surface with v for vector, the differential dv loses 
generally ilt self-conjugate character, as a linear and vector function of dp: although 
it retains that character if the scalar function fp be homogeneous, in tbe equation 
fp = const, of the original surface, as it is for the case of a central quadric,* for 
which V = tpp, dv = ^dp, &c., ns in former Articles.

(11.) In fact, the introduction of the first equation XXVIII. is equivalent to the 
multiplication of v by the factor n = (Srp)->; and if we write (comp. 410, (16.)),

XXIX... Afp = 2Svdp, dr = ^dp, da = Sodp, 
we shall have this new pair of conjugate linear and vector functions,

XXX. . . d.ni' = 6dp=n^dp 4-i'S(Tdp, XXXI.. . i'dp=n^dp+ eSrdp; 
and these will not be equal generally, because we shall not in general have o || v. 
But this last parallelism exists in tbe ease of homogeneity (10.), because we have 
then tbe relations,

XXXII.. . 2S»'p=r/p, d.n'* =dSvp = rSj'dp,
if r be the number which represents the dimension otfp (supposed to be whole").

(12.) On the other hand it may happen, that the differential equation Svdp = 0 
represents a surface, or rather a set of surfaces, without tlie expression Svdp being 
an exact differential, as in (6.); and then there necessarily exists a scalar/actor, 
or multiplier, ji, which renders it such a ditTerential.

(13.) For example the differential equation,
XXXIII. .. Sypdp = Svdp= 0, with XXXIV... v=Vyp, dv=Vydp = ^dp, 
represents an arbitrary plane (or a set of planes), drawn through a givm line y; 
but the expression Sypdp itself is not an exact differential, and the integral XXVII. 
represents no scalar function of p, with the present form of v, of which the differen
tial dv is accordingly a linear function jjdp, which is not conjugate to itself, but to 
Us opposite (comp. 849, (4.)), so that wo have here ^'dp = —^dp.

(14.) But if we multiply v by the factor,
XXXV. . . n = v® =(yip)~^t which gives XXXVI. .. dn = S<rdp, o = 2n^yVyp, 
and therefore Syo — 0, Spo = - 2«, then the new normal vector nv, or v’, is found 
to have the self-eonjttgaie differential,

XXXVII... d.nr = d.V-' = - v-^Vydp.=(idp = 6’dp;
and accordingly the new ejcpresston,

dpXXXVIII.. . Sn»<dp = Sn-'dp = S with y constant,

is easily seen to be an exact differential, namely (if Ty = 1), that of the angle which 
the plane of y and p makes with a jixed plane through y : so that, when is thus

* It was for this reason that the symbol Tv was not interpreted generally as 
denoting the reciprocal, P"', of the length of the perpendicular from the origin on the 
tangent plane, in the formulas of 410, 412, 414: although, in several of those for
mulae, as in an equation of 409, (3.), that symbol wae so interpreted, for the case of 
a central surface of the second order. •
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XXXIX. . .

changed to nv, the integral in XXVII. acquires a geometrical signification, which is 
often useful in physical applications, since it then represents tho change of this angle, 
in passing from one position of p to another; or the angle through which the variable 
plane of yp has revolved.

(15.) In fact, tbe general formula 336, XV. for the differential of the angle of 
a quaternion £pves, if we write

Vyp9 = 7 = 00081., po = const., Ty = l,*ypo
the two connected expressions ••

XL...dZg = ±S,^; XLI. . . J S =± A Z (Vyp: Vypo);

which contain the above-stated result, and can easily be otherwise established.
(16.) In general, if the linear and vector function di/ = ^dp be not self-conju

gate, and if tbe function d.ni> = <idp be formed from it as in (11.), it results from 
that sub-article, and from 349, (4.), that we may write,

XLII. .. (^1 - ?i')dp = 2Vydp, (fi - <i')dp = 2Vy,dp,
with the relation.

XLIII. . . 2y, = 2»7 + Vi/<r;

where y, y, are independent of dp, although they may depend on p itself. If then 
the new linear function ddp is to be seJf-conjngate, so that y,= 0, v/e must have

XLIV. . . 2ny + Xva = 0, and therefore XLV. . . Sy v = 0 ;
which latter very simple equation, not involving either n or <r, is thus a form, in 
quaternions, of the Condition of Integrability* of the differential equation&vip=.<i, 
if the vector y be deduced from v as above.

(17.) The Bifocal Transformation of Spil>p, in 360, (2.), has been sufliciently 
considered in the present Section (III. iii. 7); but it may be useful to remark here, 
that the Three Mixed Transformations of the same scalar function fp, in tho same 
series of sub-articles, include virtually the whole known theory of the Modular and 
Umbiliear Generations of Surfaces of the Second Order.

(18.) Thus, in the formulse of 360, (4.), if we make e = 1, t is the vector of an 
Umbiliear Focus of the surface Tp = 1, and $ is the vector of a point on the Umbili- 
car jOirectna: corresponding; tiii umbiliearfocal conic and dirigent cylin
der (real or imaginarj’-) can be deduced, as the loci of thia point and /t«e.

(19;) Again, by making ei and cs each = 1, in the formulae of 360, (6.), wo ob
tain Two Modular Transformations of the equation of the same surface; ti, csijeing

v =
* If the proposed equation be 

Svdp —pdx + gdg + rd« = 0, so that v = - (ip +jq + hr), 
we easily find that 27 = if* + j Q + hR, where

f’=Dx7-b„r, Q=Dxr-Djp, fJ=Dyp-Dx7: 

the condition of integrability XLV, becomes therefore here, 
pP+jO-i rJB = O, which agrees with known results.

    
 



CHAP. III.] MODULAR AND UMBILICAR GENERATIONS. 703

vectors of Modular Foci, in two distinct planes, and ?i, ?3 being vectors of points 
upon tho Modular Directrices corresponding: whence the modular focal conies, and 
dirigent cylinders (real or imaginary), are found by easy eliminations.

(20.) Thus, by assuming that cither
XLVI... SX (p - ?,) = 0, SX(p - Ss) = 0,

or XLVII. . . Sp (p - ?,) = 0, Sp (p - ?3) = 0,
tho equations 360, XVI., XVII. may be brought to the forms,

XLVIII. . . (p - £1)2 = mi* (p - ?,)’, XLIX... (p - £3)» = ms’ (p - ?3)»,
with tho values,

L.. . mi’ = 1 — —, and LI. .. m3" = 1 - - ;Cl Cs
in which ci, ca, C3 are the three roots of a certain cm5£c (M=O), or the tnoerse 
sguares ot the throe scalar se»itaa;cs (real or Imaginary) of the surface, arranged in 
algebraically ascending order (357, IX., XX.; 405, (6.), &c.): and mi, m3 are the 
two (real or imaginary) Moduli, or represent the modular ratios, in the two modes 
of Modular Generation* corresponding.

(21.) It is obvious that an equation of the form,
LII. .. T^p= C = const.,

represents a central guadric, if be any h'nearf and vector function of p, of the

* Mac Cullagh’s rule of modular generation, which includes both those modes, 
was expressed in page 437 of tho Lectures by an equation of tlie form,

T(p-a)=TV.yV/3p;
in which the.origin is oh a directrix, /3 is the vector of another point of that right 
line, a is tho vector of the corresponding focus, y is perpendicular to a directive 
(tliat is, generally, to a cyclic) plane, p is the vector of any point r of the surface, 
and + S/3y is the constant modular ratio, of the distance ap of p from the focus, to 
the distance of the same point p from the directrix on, measured parallel to the di
rective plane. The new forms (360), above .referred to, are however much better 
adapted to the working out of the various consequences of the construction; but it 
cannot be necessary, at this stage, to enter into any details of the quaternion trans
formations : still less need we here pause to give references on a subject so interest
ing, but by this time so well known to geometers, as that of the modular and um- 
bilicar generations of surfaces of the second order. But it may just be noted, in order 
to fn^Iitate the applications of the formulas L. and LI., that if we write, as usual, 
for all tho central quadrics, a’ > 6’ > c’, whether Z>’ and c* be positive or negative, 
then the roots cj, cj, cs coincide, for the ellipsoid, with a'S, 6'S, c-s; for the single- 
sheeted hyperboloid, with c-’, a"*, b•*; and for tho double-sheeted hyperboloid with 
6'*, 0'2, a'’, (comp, page 651).

t In page 664 the notation,
dp = 23pdp = 2S^pdp, 409, IV.

was employed for an arbitrary surface: but with the understanding that this func
tion <j>p (comp. 363) was generally non-linear. It may be better, however, as a
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kind considered in the Section III. it 6, whether self-conjugate or not; but it re
quires a little more attention to perceive, that an equation of this other form,

LIU. .. T (p - V. j3Vya) = T(a - V. yV/Jp),

represents such a surface, whatever the three vector constants a, p, y may be. The 
discussion of this lost form would present some circumstances of interest, and might 
be considered to supply a new mode of generation, on which however we cannot 
enter here.

(22.) The surfaces of the second order, considered hitherto in the present Section, 
have all had tbe origin for centre. But if, retaining the significations of f, and 
we compare the two equations,

LIV.. . /(p - k) = C, and LV. ..fp- 2S£p = C',

we shall see (by 862, &c.) that tbe constants are connected by the two relations,

L'Vl.. . e = ^K, C'=C—fK=C—3tK=C — Ff,
so that tbe equation,

LVII... yjb - 2S£P =f(p - - Fe,
is an identity.

(23.) If then we meet an equation of tho form LV., in which (as has been usual) 
we have still fp = Sp^p = a scalar and homogeneous function of p, of the second 
dimension, we shall know that it represents generally a surface of that order, with 
the expression (comp. 347, IX., &c.),

LVIII.-. . K = ^•*£ = = Vector of Centre.
(24.) It may happen, however, that the two relations, 

LIX, ..»t=0, Ti/z£>0, 
exist together; and then the ccnZre may be saitl to be at an infinite distance, but in a 
definite direction: and the surface becomes a Paraboloid, elliptic or hyperbolic, accord
ing to conditions which are easy consequences from what has been already shown.-

(25.) On the other hand it may happen that the two equations,

LX.. . m =x 0, >pt = O,
are satisfied together; and then the vector ic of the centre acquires, by LVIII., an 
indeterminate value, and the surface becomes a Cylinder, as has been already suffi
ciently exemplified.

(26.) It would be tedious to dwell here on such details; but it may be worth 

general rule, to avoid writing v = i>p, except for central quadrics; and to confine 
ourselves to tlie notation dj>= ^dp, as in some recent and several earlier sub-articles, 
when we wish,'for the sake ot association with otlMr investigations and results, to 
treat the function as linear (pt distributive') ; because we shall thus bo nt liberty 
to treat the surface as general^ notwithstanding this property of As regards 
the methods of generating a quadric, it may be worth while to look back at the Note 
to page 619, respecting the Six Generations of the Ellipsoid, which were given by 
the writer in tlie Lectures, with suggestions of a few others, as interpretations of 
quaternion equations.
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while to observe, that the general equation of a Surface of the Third Degree may 
be thus written:

LXI. .. 3gpg’pg"p + Sp(fp + Syp + C = 0 ;

C and y being any scalar and vector constants; any linear, vector, and self-con
jugate function; and g, g, g” any three constant quaternions: while p is, as nsnal, 
tho variable vector of the surface.

(27.) In fact, besides the one scalar constant, C, three are included in the vector 
y, and six others in tbe function (comp. 368); and of the ten which remain to be 
introduced, for the expression of a scalar and homogeneous function of p, of the third 
degree, the three versors Ug, Ug', Ug'' supply nine (comp. 312), and thc tensor 
T • 99 ?” *8 the tenth.

(28.) And for the same reason the monomial egjiafion,
LXII. . . Sgpg'pq"p = 0,

with the same significations of g, g', g", represents the general Cone of the Third 
Degree, or Cubic Cone, which has its vertex at the origin of vectors.

(29.) If then we combine this last equation with that of a secant plane, such as 
Sep +1 = 0, wo shall get a quaternion expression for a Plane Cubic, or plane curve 
of the third degree: and if we combine it with the equation p® +1 = 0 of the unit
sphere, we shall obtain a corresponding expression for a Spherical Cubic,* or for a 
curve upon a spheric surface, which is cut by an arbitrary great circle in three pairs 
of opposite points, real or imaginary,

(30.) Finally, as an example of sections of surfaces, represented by transcen
dental equations, let us consider the Screw Surface, or JIelicoid,-[ of which the vec
tor equation may be thus written (comp, the sub-arts, to 314)!

LXIII. . . p = c (a: + o) a + ya«y, 'with Ta = 1, ysfATa/J, and y>0; 
a being the unit axis, while /3, y are two otiier constant vectors, a, c two scalar 
constants, and x, g two variable scalars.

(31.) Cutting this surfoce by the plane of /3y, or supposing that

LXIIT. . . 0 = Syj3p = ^''‘Sap - SafiSpp, and writing LXV.. . c = bSajS, 
wo easily find that the scalar and vector equations of what we may call the Screw 
Section may be thus written;

LXVI... 6(it:+«)=yS.a«-'; LXVII. ,. p=y(yS.a*-/3S.a«-i).

(32.) Derivating these with respect to x, and eliminating j} and y’, we arrive 
at tho equation,

LXVIII. . . p = (a: + a) p' + zy, if LXIX. . . 25z = wy’;

* Compare the Note to page 43 { see also the theorem in that page, which con
tains [lei haps a new mode of generation of cubic curves in a given plane : or, by 
an easy modification, of the corresponding curves upon a sphere.

t Already mentioned in pages 383, 502, 514, 667. The condition y>0 an
swers to the supposition that, in the generation of the surface, the perpendiculars 
from a given helix on the axis of the cylinder are not prolonged beyond that axis.

4 X
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but zy in LXVIII. is the vector of the point, say o, in which the tangent to the tec- 
tion at the point (x, y), or r, intersects, the given line y, namely the lino in the plane 
of that section which is perpendicuJar to the axis az we see then, by LXIX., that 
this point of intersection depends only on the constant, i, and on the variable, g, 
being independent of the constant, a, and of the variable, x.

(33.) To interpret this result of calculation, which might have been otherwise 
found with the help of tbe expression 372, XII. (with changed to y) for the nor
mal V to a screw-surface, wo may observe, first, that thc equation LXVII., which 
may be written as follows,

LXX. . . p=yV.a»*'/3, and gives LXXI. .. TVap = yTy, 

would represent an ellipse, if the coetficient y were treated as constant; namely,, the 
section of tlie’ight cylinder LXKI. by the plane LXIV.; the ecctor semiaxes (ma
jor and minor) of this ellipse being yj8 and yy (comp. 314, (2.)).

(34.) By assigning a new value to thc constant a, 'no pa.ss to a new screw sztr- 
face (30.), which differs only in position from the former, and may be conceived to 
be formed from it by sliding along the axis a; while the value of x, corresponding 
to a. given y, will vary by LXVI., and thus we shall have a new screw section (31.), 
which will cross the ellipse (33.) in a neto point ct: but the tangent to the section at 
this point will intersect by (32.) the minor axis of the ellipse in the same point o as 
before.

(35.) We shall thus have a Figure* such as the following (Fig. 85) j ia which 
if K be a focus of the ellipse no, and o (ns 
above) the point of convergence of the tan- 
gents to the screw sections at thc points F, Q, 
&c., of that ellipse, it is easy to prove, by 
pursuing the same analysis a little farther, 
Ist, that the angle (y), subtended at this 
focus F by the minor semiaxis oc, which is 
also a radius (r) of the cylinder LXXI., is 
equal to the inclination of the axis (a) of 
that cylinder to the plane of the ellipse, as may indeed be inferred from elementary 
principles; and Ilnd, what is less obvious, that thc other angle (h), subtended at tho 
same focus (p) by the interval oo, or by what may be called (with reference to the 
present construction, in which it is supposed that 5 < 0, or that the angles made by 
Dip and /3 with a are either both acute, or both obtuse) the Depression (s) of the Skew 
Centre (o), is equal to the inclination of tho same axis (a) to the helix on the same 
cylinder, which is obtained (comp. 314, (10.)) by treating yas constant, in the 
equation LXI 11, of tbe Screw Surface.

Fig. 85.

* Those who are acquainted, even slightly, with tlie theory of Oblique Arches (or 
skew bridges), will at once see that this Figure 85 may lie taken as representing rudely 
such an arch: and it will be found that tlie construction above deduced agrees with 
the celebrated Rule of the Focal Excentricity, discovered practically by the late Mr. 
Buck. This application of Quaternions was alluded to, in page 620 of tlie Lee- 
iuregs
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Section 8.—On a few Specimens of Physical Application of 
Quaternions, loith some Conchiding Remarks.

416. It remains to give, .according to promise (368), before con
cluding this work, some examples* of physical applications of the 
present Calculus: and as a first specimen, we shall take the Statics 
of a Rigid Body.

(1.) Let «i,.. «n be n Vectors of Application, and let Pi,.. p,, be n correspond
ing’Sectors of Force, in thc sense that n forces are applied at the points Ai,.. a„ of 
ayree but rigid system,, and are represented as usual by so many right lines from 
those points, to which lines the vectors obj, .. ob» are cjuaZ, though drawn from a 
common origin; and let y(=oo) be the vector of an arbitrary point c of space. 
Then the Equation-f- of Equilibrium of tho system or body, under the action of these 
a applied forces, may be thus written:

I. . . 2V(a-y)(3=0: or thus, I'. . . Vy2j8 = 2V(z/3.
(2.) The supposed arJitrarincss (1.) of y enables us to break up the formula I. 

or r., into the two vector equations:

II. ..2/3 = 0; III. . . 2Va/3 = 0;

of each oi which it is easy to assign, aa follows, the physical signification.
(3.) The equation II. expresses that if tiie forces, which are applied at the points 

Al., of tho body, were all transported to the origin o, their statical resultant, or 
vector sum, would be. zero.

(4.) The equation HI. expresses that tho residtnnt of all tho couples, produced 
in the usual way by such a transference- of the applied forces to the assumed origin, 
is null.

(5.) And the equation 1., which as above includes both II. and HI., expresses 
that if all the given forces be transported to any common point c, the couples hence 
arising will balance each other; which is a sufficient condition of equilibrium of the 
system.

(C.) When we have only the relation,
IV... S(2/3.2Va/3) = 0,

without. 2/3 vanishing, the applied forces have then an Unique Resultant = 2/3, 
acting along the line of which I. or 1*. is the equation, with y for its variable vec
tor.

* The reader may compare the remarks on hydrostatic pressure, iu pages 434, 
435.

f We say here, '‘equationbecause the single quaternion formula, I. or I*., 
contains virtually the site usual scalar equations, or conditions, of the equilibrium at 
present considered.
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(7.) And the physical interpretation ot this condition IV. is, that when thc 
forces are transported to O, as in (3.) and (4.) the resultant force is in the plane of 
the resultant couple.

(8.) When tbe equation IL, but not III., is satisfied, the applied forces compound 
themselves into One Couple, of which the Axis — IVafi, whatever may be the posi
tion of the origin.

(9.) When neither II. nor III. is satisfied, we may still propose so to place the 
auxiliary point c, that when the given forces are transferred to it, as in (5.), the 
resultant force S/3 may have the direction of thc axis 2V(a —y)/? of the resuftant 
couple, or else the opposite oi that direction; so that, in each case, tbe condition,*

V,.. ,,

'shall be satisfied by a suitable limitation of the auxiliary vector 7.
(10.) This last equation V, represents therefore the Central Axis ot the given 

system of applied forces, with y for tbe variable vector of that right line: or the axis 
of the screm-motion which those forces tend to produce, when they are not in balance, 
as in (1.), and neither tend to produce translation alone, as in (6.), nor rotation 
alone, as in (8.).

(11.) In general, if 9 be an auxiliary quaternion, such that
VI. . . 92/J = 2Va/3,

its vector part, V9, is equal by (V.) to the Vector-Perpendicular, let fall from the 
origin on the central axis : while its scalar part, Sg, is easily proved to be the quo
tient, ol what may be called thc Central Moment, divided by the Total Forie: ao 
that Vg = 0 when the central axis passes through the origin, and Sg = 0 when there 
exists an unique resultant.

(12.) When the total force S/3 does not vanish, let Q be a new auxiliary qua
ternion, such that

VII...Q = ^ = g+^,
1.(3 ^1(3'

with VIII.. . c = SQ = Sg, and IX... 7 = oc = VQ,
for its scalar and vector parts; then c2^ represents, both in quantity and in direction, 
the Axis of the Central Couple (9.), and 7 is the vector of a point c which is on the 
central axis (10.), considered as a right line having situation in space; while thc 
position of this point on this line depends only on the given system of applied forces, 
and does not vaiy with the assumed origin o.

(13.) Under the same conditions, we have the transformations,
X.. . 2ai3=(o + 7)2/3; XI. . . T2a/3=(c»-72)iTS/3;

XII. . . 2Va/3 = c2/3 + ■Vyll3; XIII... (2Va(8)» = c^(,SI3y + ;

* The equation V. may also be obtained from the condition, 
V'. . . T2V (ct — 7)j8 = a minimum, 

when 7 is treated as the only variable vector ; which answers to a known properly 
of the Central Moment.
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whereof XII. contains the known law, according to which the oxw of tlie couple (4.), 
obtained by transferring all the forces to an assumed point o, varies generally in 
quantity and iu direction with the position of that point: while XIII. expresses the 
known corollary from that law, in virtue ot which the quantity alone, or the energy 

of the couple here considered, is the same for all the points o'of any ono 
right cylinder, which has the central axis of the system for its axis of revolution.

(14.) If we agree to call the quaternion product pa. aa’ the quaternion moment, 
or simply the Moment, of the applied force aa' at A, with respect to the Point F, tbe 
quaternion sum EaP in X. may then be said to be the Total Moment of the given 
system of forces, with respect to the assumed origin o; and the formula XI. ex
presses that the tensor ot this sum, or what may be called the quantity of this total 
moment, is corsstant for all points o which are situated on any one spheric surface, 
with the point c determined in (12.) for its centre: being also a minimum when o is 
placed at that point c itself, and being then equal to what has been already called 
thc central moment, or the energy of the central couple.

(16.) For these and other reasons, it appears not improper to call generally the 
point c, above determined, the Central Point, or simply the Centre, of the given 
system of applied forces, when the total force does not vanish; and accordingly in 
tbe particular hut important cose, when all those forces are parallel, without their 
sum being zero, so that we may write,

' XIV.. .j3i = 6i|3,.. p„ = b„p, t2l3>Q,
the scalar c in (12.) vanishes, and the vector y becomes (comp. Art. 97 on bary- « 
centres'),

■ 6i«i+.. *6,10,1 25aXV. , , 00 = y = —--------------- = -=T-;61 + .. + 6,1 26 
so that tho point c, thus determined, is independent of the'common direction j3, and 
coincides with what is usually called tho Centre of Parallel Forces.

(16.) The conditions of equilibrium (I.), which have been already expressed by 
thc formula I., may also be included in this other quatei-nion equation,

XVI. .. Total Moment = 2a/3 = a scalar constant,
of which the eaZiie is independent of the origin; and which, with its sign changed 
represents what may perhaps be called the Total Tension of the system.

(17.) Any infinitely small change, in the positron of a rigid body, is equivalent to 
the alteration of each of its vectors a to another of the form,

XVII. . . a + Sa = a + £ + Vt«,
« and « being ta-o arbitraty but infinitesimal vectors, which do not vary in the pas
sage from one point A of the body to another; and thus’the conditions of equilibrium 
(1.) may be expressed by this other formula,

XVIII. .. 2S/3o'a=0, 
which contains, for the case here considered, tho Frinciple of Virtual Velocities, and 
admits of being extended easily to other cases of Statics.

417. The general Equation of Dynamics may be thus written,
I.. . 2mS(D;«-?)^rt = 0,
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with significations of the symbols which will soon be stated; but as 
we only propose (41G) to give here some specimeiis of physical appli
cation, we shall aim chiefly, in the following sub-articles, at the de
duction of a few formulas and theorems, respecting Axes and Mo
ments of Inertia^ and subjects therewith connected.

(1.) In the formula I., a is the vector of position, at the time t, of an clement 
m of the system; oa is any variation of tliat vector, geometrically compatible with 
the mutual connexions between tlie parts of that system; the vector represents 
a moving force, or 5 an accelerating force, which acts on the element m of mass; D 
and S are marks, as usual, of derivating and taking the scalar; and thc summation 
denoted by S extends to all the elements, and is generally equivalent to a triple in
tegration, or to an addition of triple integrals in space. And the formula is ob
tained (corap. 416, (17.)), b5'- a combination of D'Alembert's principle with tho prin
ciple of virtual velocities, which is analogous to that employed in the Jfe'caniijue 
Anabjtique by Lagrange.

(2.) For the case of a free but rigid body, we may substitute for Sa the expres
sion £-(-Vta, assigned by 416, XVII.; and then, on account of the arbitrariness 
of the two infiuitesimal vectors t and i, the formula I. breaks up into the two follow
ing,

II. . . 2TO(D,i>a-5) = 0; III. . . 2mVa(D,2a - g) = 0 ;

which correspond to the two statical equations 416, II. and III., and contain re
spectively the law of motion of the centre of gravity, and the law of description of 
areas.

(3.) If the body have a. fixed point, which wo may take for the origin o, we 
eliminate the reaction at that point, by attending only to the equation III,;’and 
may then express the connexions between the elements n by tho formula,

IV.. . D<a = Via, whence V.. . Dpa = iVia — VaDu ;
«

I being the Vector-Axis of instantaneous Potation of the body, in the sense that its 
versor Ui represents the direction of the axis, and that its tensor Tt represents tho 
angular velocity, of such rotation at the time t.

(4.) By V., the equation III. becomes,

VI. . . S»)aVaDji= Sm(ViaSia- Va?);

and other easy combinations give the laws of areas and living force, under the forms,

VII. .. SmoDia - S>«V J a?dt=y ~ a constant vector;
VIII. . . J2m(D<a)2 — SwSjiaSdt = c = a constant scalar.

(5.) When the applied forces vanish, or balance each other, or more generally 
when they compound themselves into a single force acting at thc bxed point, so that 
in each case tho condition

IX. . . 2mVa?=0

is satisfied, the equations (4.) are simplified; and if we introduce a linear,'vcctor, 
and self-conjugate function such that

iC. . , <l>i= 2maVai = - XmaSai,
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and write /t* for — 2c, they take the forms,
XI. . .'^D(t + Vt^€ = 0i XII. , . ^i + y = 0; XIII. . . Si^t = h--,

7 and h being two real constants, of the vector and scalar kinds, connected with each 
other and with t by tho relation,

XIV. . . Sty + 5’ = 0; also XV. ^D(«=: V»y.
11 may bc added that y is now the vector sum of the doubled areal velocities cf all thc 
elements of the body, multiplied each by the mass m of that element, and each re
presented by a right line aDta perpendicular to the plane of the area described 
round the fixed point o in the time d< j and that h^ is the living force, or vis viva ot 
thc body, namely the positive sum of all the products obtained by multiplying each 
clement w by the square of its linear velocity, regarded as a scalar (TDz«).

(6.) When t is regarded as a variable vector, the equation XIII. represents an 
ellipsoid, which is fixed iu the body, but moveable with it; and the equation XIV. 
represents a tangent plane to this ellipsoid, which plane is fixed in space, but changes 

' in general its position relatively to tho body. And thus the motion of that body may 
generally be conceived, as was shown by Poinsot, to be performed by the rolling 
(without gliding') of an ellipsoid upon a plane ; the former carrying the body with it, 
while its centre o remains fixed : and the semi diameter (t) of contact being the vec- ■ 
tor-axis (3.) of instantaneous rotation,

(7.) Tho ellipsoid XIII. may be called, perhaps, the Ellipsoid of Living Force, 
on account of the signification (5.) ofthe constant Ifi in its equation ; and the fixed 
plane XIV., on which it rolls, is parallel to ■what may be called the Plane of 
Areas (Sty = 0): no use whatever having hitherto been made, in this investigation, 
of any axes or moments of inertia. But if we here admit the usual definition of such 
a moment, we may say that the Moment of Inertia of the body, with respect to any 
axis I through the fixed point, is equal to the living force divided by the square* 
ofthe semidiameter Tt of the ellipsoid XIII.; because this moment is,

XVI. . . 2»»(TVaUt)==t-22m(Vta)*=-St->jit = /»“Tt-s.
(8.) The equations XII. and XIII. give,

XVII. . . 0 = y®Si^t — hf(<pt)^ = Sir, if XVIII. . . r = y’^t — ;

and this equation XVII. represents a cone of the second degree, fixed in the body 
(comp. (6.)), but moveable with it, of which the axis t is always a side, and to which 
tho normal, at any point of that side, has the direction of the line v. But it follows

* Hence it may easily be inferred, with the help of the general construction of an 
ellipsoid (217, (6.)), illustrated by Figure 53 in page 226, that for any solid body, 
and any given point A thereof, there can always be found (indeed in more ways than 
ono) two other points, n and o, wliich are likcwise^x’efZ in the body, and are such that 
the square-root of the moment of inertia, round any axis AD, is geometrically con
structed by the line BD, if the point d be determined on the axis, by the condition that 
A and D shall be equally distant from o. This theorem, with some others here re
produced, was given in the Abstract of a Paper read before the Royal Irish Academy 
on the 10111 of January, 1848, and was published in the Proceedings of that date.
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from XL, or from XII. XV., and from the properties of the function that D<t is 
perpendicular to both and and therefore also by XVIII. to v; the cone XVII. 
is therefore touched, along the side (, by that other cone, which is the locus in space 
of the instantaneous axis of rotation. We are then led, by this simple quaternion 
analysis, to a second representation of the motion of the body, which also was pro
posed by Poinsot; namely, as the rolling of one cone on another.

(9.) To treat briefly by guaternions some of lilac Cullagh’s results on this sub
ject, it may be noted that the line y, though fixed in space, describes in the body a 
cone of the second degree, of which tbe equation is, by what precedes,

XIX. . . p’Sy^-ly+Aiy» = O, if XX. ..^? = Ty, or XXL .. y» -Vg^ = 0 ;

while, if we write y = oc, the point o is indeed fixed in space, but describes a 
sphero-conic in the body, which is part of the common intersection of the cone 
XIX., the sphere XXL, and the reciprocal ellipsoid (comp. XIII.),

XXII. . . Sy^'iy = h\
(10.) Also, the normal to the new cone (9.), at any point of the side y, has the 

direction of p’^'*y + Ifiy, or of « + Zj®y* (comp. XIV.); and if a line in this direc
tion be drawn through tlie fixed point o, it will be the side of contact of the plane 
of areas (7.), with the cone of normals at O to tho cone XIX.; which last (or reci
procal") cone rolls on that plane of areas.

(11.) As regards the Axes of Inertia, it may be sufficient here to observe that 
if the body revolve round a permanent axis, and with a constant velocity, the vec
tor axis I is constant; and must therefore satisfy the equation,

XXIII.. . "Vtijn = 0, because XXIV. . . Da = 0 ;

it has therefore in general (comp. 415) one or other of Three Real and Rectangular 
Directions, determined by the condition XXIII.: namely, those of the Axes of 
Figure of either ofthe two Reciprocal Ellipsoids, XIII. XXII.

(12.) And the Three Principal Moments, say^l, B, C, corresponding to those 
three principal axes, are by XVI. the three scalar values of — ; so that the
symbolical cubic (360) in may be thus written,

XXV. . . (^ + A) (^ + B} (^ + C) = 0.

(13.) Forming then this symbolical cubic by the general method of the Section 
in. ii. 6, we find that the three moments A, B, C, are the three roots (always real, 
by this analysis) of the algebraic and cubic equation,

XXVI. . . .43 - 2»M2 + (ni + n'^) A - (n«n'3 - »"«) = 0;
in which, n^, n'^, n''^ are three positive scalars, namely,

XXVII. .. «2 = -SwaS; n'^ = -'Zmm'(Naa^ ■, Smn»'»»"(Saa'a")«;

and the combination n’n’’—»"2 is another positive scalar, of which the value may 
be thus expressed,

XXVIII.. . ABC--»"« = SwWa®(Vaa)^
+ ‘I'Simm'm.'' (Taa"£a’a"Ta"a + Saa'Sa’a"Sa''a),

if a, a', a.", &.e. be the vectors of the mass-elements m, m', m", iic.
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(14.) And because the equation XXV. gives this other symbolical result,

XXIX. . . - JJ5Q-' = (4 + B + C) + B C + CA + AB,
it follows that XXX... ^*'0 = 0;

and therefore, by XV., &c., that if a body, with a fixed point, &c., legin to revolve 
round ono of its three principal axes of inertia, it will continue to revolve round that 
axis, with an unchanged velocUg of rotation.

(15.) It has hitherto been supposed, that all tbe moments of inertia are referred 
to axes passing through one point o of the body ; but it is easy to remove this re
striction. For example, if we denote the moment XVI. by Zo, and if be the cor
responding moment for an &s.is parallel to i, but drawn through a new point Q, of 
which the vector is w, then

XXXI... Z^ = t-S2»i(V((a-(u))’
= Ji) + 22»n.S(w€'*ViK) + p’Sm,

if XXXII.. . K'Zm :2ma, and XXXIII. .. /> = TVwUi,
so that ic is tho vector of the centre of inertia (or of gravity) of the body, and p is 
the distance between the two parallel axes.

(16.) If then we suppose that the condition
XXXIV. .. ViK = 0 '

is satisfied, Uiat is, if the axis i pass through the centre of inertia, we shall have the 
very simple relation,

XXXV... =
which agrees with known results.

418. As a third specimen of physical applications of quaternions, 
we propose to consider briefly the motions of a System of Bodies, 
m, m', nV,..«regarded as free material points, of which the variable 
vectors are o, o', a",.;. and which are supposed to attract each other 
according to the law of the inverse square: the fundamental for
mula employed being the following,

I. . . StnSD’rt^a + = 0, if II.., P = 2 —y----- —:
1 (a- a)

P thus denoting the Potential (pi force-function} oi the system, and 
tho variations fa, fa',... being infinitesimal, but otherwise arbi
trary.

w

(1.) To deduce the formula 1., with the signification II, of P, from the general 
equation 417,1, of dynamics, we have first, for the case of two bodies, the following 
expressions for the accelerating forces,

= » r=T(«-«')5
(«-n)r (a-a)r '

4 Y

in..
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whence fellows flic transformation,*
... -mm ^S(a-a} ..mmIV. . . —S(m^oa-i-m^ca)=-----  S —------ ■r‘=^----i>• a —a r

a reSult easily cstonded, as above. If tbe law ai attraction were supposed different, 
there would be no difficult}' in modifying the expression for tbe potential accordingly. 

(2.) In general, when a scalar,/ (as here F), is a function ai one or more esc. 
tors, a, a',. .• its variation (ordifferential) can be expressed as a linear and scalar 

function of their variations (or diflercutials), of the form S/35a + S/i'Sa' +.. (or 
2S/3da); in which /?, ^'... are certain nero and finite vectors, and are tliem- 

y selves generally/wnettons of a, a',..., derived from the given scalar function/. And 
wo shall find it convenient to extend the Notation-^ of Derivatives, so as to denote 
these derived vectors P', &c., by thc sgnfiols, D„f, Darf, &o. In this manner we 
shall be able to write,

m

V. . . oP=2S(D«P.5a);
and the differential equations of motion of tho bodies m, m'-, m",.. will take by 
I. the forms :

VI. , . mD/’a + i)„P= 0, 7B'Dro'+ Uo'I’= Oi i 
or more fully,

VII. . . Dfa = ----- -21-------r, .+ f-----^21------- +..; &c.
(a—a)T(a-a) (a — a )T(a — a '

(3.) The laws ofthe centre of gravity, of areas, and of living force, result imme
diately from these equations, under the forms,

VIII. . . 27»Dia = 13; IX. . . SmVaDia = y ;
and X.. . 2’= (D,a)2 = P H ■,
in which /3, y are constant vectors, JH is a constant scalar, and 27’13 the living 
force of the system (comp. 417, (5.)).

(4.) One mode" (comp. 417, (2.)) of deducing the three equations, of which these 
are tbe first integrals, is the following. To obtain VIII., change every variation 
Sa in I. to one common but arbitrary infinitesimal vector, e. For IX., change Sa 
to Vta, Sa' to Via', &c.; < being anoZAer arbitrary and infinitesimal vector. Finally, 
to arrive at X., change variations to differentials (fa to.do, &c.), and integrate 

' once, as for the two former equations, with respect to the time t. ,
(6.) The formula I. admits of being integrated bg parts, without any restric

tion on the variations Sa, by means of tlie general transformation,

XI. . ..S(Dt2a.^«) = DzS(Dia.^a)-|5.(Pia)«,

combined with the introduction of the following definite integral (comp. X.),

XII... P=j’'(P+ 7’)d<.

• It may not be useless here to compare the expression in page 417, for the dif
ferential of a proximity-

t In this extended notation, such a formula as d/p = 2Srdp would give,

»' = lDp/p.
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(0.) In fact, if we denote by ao, a'o, •. the initial values oi the vectors a, a', • . 
or their values when < = 0, and by Don, Doo',.. thc corresponding values of Dio, 
Dta',.., wo shall tlins have, as a first integral of the equation I., tho formula, 

XIII. . . 2»nS (0(0. Sa — Don. Sao) + SF= (T;
iiijwhich no variation St is assigned to t, and which conducts to important conse
quences.

(7.) To draw from it some of these, we may observe that if the masses ni, m',.. 
he treated as constant and known, the complete integrals of the equations VI. or 
VII. must bo conceived to give what may be called tbe Jinal vectors of position a, 
a',.. and of velocity Dja, Dja',.. in terms of the initial vectors ao, a'o,. • Don, 
Duo',.. and of tho time, t: whence, conversely, we may conceive the initial vectors 
of velocity to be expressible as functions of the initial and final vectors of position, and 
of the time. In this way, then, we are led to consider P, T, and F as being scalar 
functions (whether we are or are not prepared to express them as such), of a, o',.. 
Oe, 0'0,.. and t; and thus, by (2.), the recent formula XIII. breaks up into tho two 
following systems of equations: '

XIV. . . raD,a + DaF= 0, m'D,o' + D„'F= 0, &c. ; 
and XV. . . - niDoo + Da(,-P’= 0, — m'Doo' + = 0, &c. ;
whereof the former may bo said to bo intermediate integrals, and the latter to be 
final integrals, of the differential equations of motion of the system,, which are in
cluded in the formula I. .

(8.) In fact, the equations XIV. dp not involve the final vectors of acceleration 
Tti^a,.. as the differential equations VI. or VII. had done; and the equations XV. 
express, at least theoretically, the dependence of the final vectors oi position o,.. on 
thc time, t, and on tlie initial vectors of position oo,.. and of velocity Dea,.. as by 
(7.) the complete integrals ought to do. And on account of these and other impor
tant properties, the function here denoted by F may be called the Principal* Func
tion of Motion of the System.

(9.) If the initial vectors ao, • • and Don,. . be given, that is, if we consider the 
actual progress iu space of the mutually attracting system of masses m,.. from ono 
set of positions to another, then the function Fdepends upon the time alone; and 
by its definition XII., its rate or velocity of increase, or its total derivative with re
spect to t, is thus expressed,

 XVI. . . I),F= P4 T.
(10.) Bnt we may inquire what is the partial derivatice, say (B/F), of thc 

saino definite integral 
of position a,.. ao,.
l ilted with respect 0 
wliereas in fact tlios 
lions oi the system.

* Tills function 
a General Jletliod in 
don), for the years 
trillions, were then 
and the notation S,

on of tho final and initial vectors 
cplicitly, and is now to be den
ial vectors a,.. were constant : 
the course of any actual ma

ny 3 by Die pre.sent writer, “On 
lilosnp/iicnl Transactions (Lon- 
ursc coordinates, and not qna- 
g been discovered until 1813 : 
n used instead- of f.
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(11.) For this purpose, it is suflicient to observe that the pari of the total deri- ' 
raltve DjFJ which arises from tho last mentioned changes of a,., is (by XIV. 
and X.),

XVII. .. 2S(DaF.D/a) = 27’;
aid therefore (by XVI. and X.), that the remaining part must be,

XVIII... (D<F) = P- 7’=-K-
(12.) The complete variation of the function Fis therefore (comp. XIII.), when 

t as well as a,.. and ao,.. is treated as varying,
"SI'S.. . . 5F= —£3/—2jnSD|o5a + 2znSDoa3ao.

(13.) And hence, with tbe help of tbe equations X. XIV. XV., it is easy to infer 
that the principal function /’must satisfy the two following Partial Differential 
Equations in Quaternions:

XX . . (D,r)-iSm-i(D„F)’2='P;
XXI. . . (D^F) - 4Sm-i (D„„F)3 =

in which Pq denotes the initial value of the potential P.
(14.) If we write

XXII.., r= 1'2711/,

so that V represents what is called the 21c/io», or the accumulated living force, of 
the system during the tjme /, then by X. and XII, the two definite Integrals F and 
V are connected by the very simple relation,

XXIII. .. F=r + <Z7j .
whence by XIX. tho complete variation of F, considered as a function of the final 
and initial vectors of position, and of the constant H of living force, which docs not 
explicitly involve the time, may be thus expressed,

XXIV. ,. 3F = /5fi'-SwSD<a5a-l-2niSDoa5oo.
(15.) The partial derivatives of this new function F, which is for some purposes 

more useful than F, and may be called, by way of distinction from it, tho Charac
teristic^ Function ot the motion of the system, aro therefore,

XXV. . . Du r = - niD/a, &c.;
XXVI.

and

itioncd ill tlio pro- 
been perceived liy 
call the Principal

nations of motion, 
ewhat less simply, 
0 XXV. XXVII.; 
expressed by XV., 
n tho recent cqna-

(IG.) The intermediate inte 
which were before expressed by tl 
bc regarded as the result of tho eli 
and the final integrals of those c 
aro now to bc obtained by eliinin 
lions XXVI. XXVII.

* The Action, T, was in fa 
ceding Noto. Thc properties 
' ‘le writer, before those of tl 

nction, as above.i
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(17.) The Characteristic Function, F, is obliged (comp. (13.)) to satisfy the two 
following partial differential equations,

XXVIII... i2m-i (Do r)= + P+JI= 0; 
XXIX. . . 42m-i(D„„r)2 + P„+ «■= 0 ;

it vanishes, like F, when t = 0, at which epoch a^ng, a' = a'(),,&c.; eack q( these 
two functions, F and F, depends symmetrically on the initial and final vectors of po
sition ; and each docs so, only by depending ou the mutual configuration of all those 
initial and final positions. ' - . .

(18.) It follows (corap. (4.), see also 416, (17.), and 417, (2.)), that the func
tion F must satisfy the two conditions,

XXX,. . 2 (D„P+ D„„P) = 0; XXXI. .. 2V (aDoF + aoD„„P) = 0; 
which accordingly are forms, by XIV. XV., of the equations VIII. and IX., and 
therefore are expressions for the law of motion of the centre of gravity, and the law of 
description of areas. And, in like manner, the function F is obliged to satisfy these 
two analogous conditions,
XXXII. . . 2 (D„ F + F) = 0; XXXIII.. . 2V (aD„ F + ngD,,, F) = 0;

which accordingly, by XXV. XXVI., are new forms of the same equations VIII. IX., 
and consequently are new expressions of the same two laws.

(19.) AU the foregoing conditions are satisfied when t is small, that is, when the 
time of motion of tho system is short, by the following approximate expressions for the 
functions Fand F, with the respectively derived and mutually connected expressions 
for H and t:

XXXV. . . + Po + ;
XXXVI. . , *7 = - (D<F; = - i (P+ r,) + ;

XXXVII. . . t = D2,r=j(P+To+2.H) »;

n which s denotes a real and positive scalar, snch that
XXXVIII. . . s2 =-2)n(a-aop, or XXXIX. . . s = V2mT(a-«oj’.

419. As a fourth specimen^ we shall take the case of a free point 
or particle, attracted to a fixed centre* o, from which its variable 
vector is a, with an accelerating force = if r=Ta = the distance

* When tii'o free iiiatses, m and m', with variable vectors a and a', attract each 
other according to the law of thc inverse square, tho differential equation of the rela
tive motion of m about»»' ia, by 418, VII.,

I’. .. D’(a - a'} = {m + m') (a — if r«= T(a - a");
and this equation I', reduces itself to I., when we write a for n - a, and JI for 
m d- III',
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of the point from the centre, while J/is the attracting mass; the 
dirterential equation of the motion being,

1. . . D-a = J/a-'r-',
if D (abridged from D,) be the sign of derivation, with respect to 
the time (.

(1.) Operating on I. with V.a, and integrating, we obtain immediately tbe 
equation (comp. 338, (5.)),

If. . . VaDa = 13 = const. ;

which expresses at once that tbe orbit is plane, and also that the area described in 
it is proportional to tlie time; Vj3 being the fixed imit-normal to the plane, round 
which the point, in its angular motion, revolves positively ; and T;3 representing in 
quantity the double areal velocity, which is often denoted by c.

(2.) And it is important to remark, that these conclusions (1.) would have been 
obtained by th? same analysis, if r-i in I. had been replaced by any other scalar 
function, f (r), of the distance ; that is, for any other lain of central force, instead of 
the law of tbe inverse square.

(3.) In general, s'lo have the transformation,
HI. .. a-'Ta-i = dUa:Vada,

because, by 334, XV., &c., we have,
IV. . . dUa = V(da.a'').Ua = (i"’Ua.Vadrt = .V«da;

the equation I. may therefore by, II. bo transformed as follows,

V. . . D’u = yDUa, if VI. . . y = - vIZ/J'i;

and thus it gives, by an immediate integration,

VII. . . Dn = y (Ua - f), or Vlfi .. Da= (s - Ua) y,

f being a new constant vector, but ono situated i» the plane ofthe orbit, to which 
plane /3 and y are perpendicular.

(4.) But a. Da, D’’a are here (comp. 100, (5.) (6.) (7.)) the vectors ofposition, 
velocity, and acceleration ot the moving point; and it has been defined (100, (5.)) 
that if, for any motion of a point, the vectors of velocity be set off from any common 
origin, the carpe on which they terminate is tho Hodograph* of that motion.

(5.) Hence a and Da, if the latter like the former be drawn from the fixed point 
o, are the vectors of corresponding points ot orbit and hodograph ; and because the 
formula VII. gives,

VIII. . . Sy Da = 0, and IX. . . (Da + ye)’ = y’,

it follows that the hodograph is, in the present question, a Circle, in the plane of the

* Compare Fig. 32, p. 98; see also pages 100, 515, 678, from the two latter 
of wliich it may be perceived, tliat the conception of the hodograph admits of some 
purely geometrical applications.
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orbit, with - ys (or + £y) for the vector of its centre, and with Ty = JIT/S"' for its 
radius, which radius wc shall also denote by h.

■ (6.) Tlio £au> of the Circular* Hodograph is therefore a mathematical conse
quence of the Law of the Inverse Square; and conversely it will soon bo proved, that 
no other law of central force would allow generally the hodograph to be a circle.

(7.) For the law of nature, the Itadius (ft) of the Hodograph Js equal, by (1.) and 
(5.), to the quotient ofthe attracting mass (Sf), divided by the double areal velocity 
(Iji or c) in tho orbit; and if we write

X. .. e =Tf,

this positive scalar e may be called the Excentricity of the hodograph, regarded as a 
circle excentrically situated, with respect to the fixed centre of force, o.

(8.) Thus, if e < 1, the fixed point o istnferior to tbehodographic circle; if e = 1, 
the point o is on the circumference ; and if e> 1, the centre o of force is then exte
rior to the hodograph, being however, in all these cases, situated in its plane.

(9.) The equation VII. gives,
XI. . . £ — Ua=— ■j'-*Da = Da;y’;

operating then on this with S. a, and writing for abridgment,
XII.. .p=/3y-' = ftI-'T^« = ci!JZ-', and XIII... SUa£ = cosv,

so that p is a constant and positive scalar, while ».is the inclination of a to - e, we 
find,

p
I + e cos V ’

the orbit is therefore a plane conic, with the centre of force o for a focus, having e 
for its excentricity, and p for its semiparameter.

(10.) And we see, by XII., that if this semiparameter p be multiplied by tlie 
attracting mass M, tho product is the "square of the double areal velocity c; so 
that this constant c may be denoted by (^IfpP, which agrees with known results.

(11.) If, on the other hand, we dicide tho mass (217) by tho semipnrameter (p'), 
the quotient is by XII. the square of the radius or A) of the hodograph.

(12.) And if we multiply the same semiparameter p by this radius J/T/3"’ of 
the ‘hodograph, the product is then, by the same formula XII., the constant T/3 or 
c ol double areal velocity in the orbit, so that h = Jlfc"^ = cp'i.

(13.) If we had operated with V. a on VII'., we should have found,

XVI. . ./3 = V.rt(£-Ua)y = (Sa£ + r)y;

which would have conducted to the same equations XIV. XV. as before.

XIV... r + Sa£=p ; or XV. .. r =

• This law of the circular hodograph was deduced geometrically, in a paper road 
before the Royal-Irish Academy, by tho present author, on tho 14th of December, 
1846; but it was virtually contained in a quaternion formula, equivalent to the re
cent equation VII., which had formed part of an earlier communication, in July, 1845. 
(See the Proceedings for those dates; and especially pages 345, 347, and xxxix., 
xlix., of Vol. III.)

1
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but

and

if we write'

(14.) If we operate on VII. with S. a, we find this other equation,
XVII... -rDr= SaDa = yVnr;

XVIII. ..-yi = lfi= — (hy VI. and XII., comp. (11.)), 
P

XIX____ (Vof )2 = e^r^-(p- r)8 = p (ir -p - r^a-l),

hence squaring XVII., and dividing by r®, we obtain the equation,

(15.) It is obvious that this last equation, XXL, connects the distance,'r, with 
the time, t, as the formula XV. connects the same distance r with the true anomaly, 
V; that is, with the angular elongation in the orbit, from the position of least dis
tance. But it would be improper hero to delay on any of the elementary conse
quences of these two known equations : although it seemed useful to show, as above, 
how the equations themselves might easily be deduced by quaternions, and be con
nected with tho theory of the hodograph.

(16.) The equation II. may be interpreted as expressing, that tfie parallelogram 
(comp. Fig. 32) under the vectors a aod Da ot position and velocity, or under any 
two corresponding vectors (5.) of the orbit and hodograph, has a constant plane and 
area, represented by tho constant vector /3, which x&perpendictdar (1.) to that plane. 
But it is to be observed that, by (2.), these constancies, and this representation, aro 
not peculiar to the law of the inverse square, but exist for all other laws of central 
force.

(yi.') In general, if any scalar function R (instead of Mr^') represent the acce
lerating force of attraction, at the distance r from the fixed centre o, the differential 
equation of motion will be (instead of I.),

XXII. . . D®a = Rra~^ — — RDa;
and if we still write V<iD« = /3, as in II,, the formula IV. will give,

XXIII.. . D3a = - DR. Ua - Rr-^BVa, and XXIV. . . V = r'^S ■, 
in which . (3 = cVp, if c = Tp, as before.

* (18.) Applying then the general formula 414,1., we have, for any law''* of force,
the expressions,

1 1)3^ 0
XXV.. . Vector of Curvature of Hodograph = CaP ;

XXVI. , . Radius (5) of Curvature of Hodograph — Rrfc''^
Force y Square of Dista'nee

~ Rouble Areal Velocity in Orbit'

• Tho general value XXVL, of the radius of curvature of the hodograph, was 
geometricuUg deduced in the Paper of 1846, referred to in a recent Note,
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of which the lust not only conducts, in .a new way, for the law of nature, to the con
stant value (7.), h = hlc't, but also proves, as stated in (C.), that for ang other law 
of central force the hodograph cannot be a circle, unless indeed tbe oibit happens to 
bo such, and to have moreover the centre of force at its centre.

(19.) Contining ourselves however at present to tho law of the inverse square,
■ and writing for abridgment (comp. (5.)),

XXVII. . . (c = on = ty = Vector of Centre n of Hodograph,
which gives, by (5.) and (7.),

XXVIII.. . Tic = eh,
tho origin o of vectors being still the centre oi force, we see by the properties of thc 
circle, that the product of any two opposite velocities in the orbit is constant; and 
that this constant product* may bo expressed as follows,

XXIX. . . (e -1) AUk. (e + 1) AUk = {1 - e‘'-) = AJa-i,
by XVIII. and XX.

(20.) The expression XXIX. may be otherwise written as k* - y^; and if u be 
the vector of any point u external to tho circle, but in its plane, and u the length 
of a tangent UT from that point, wo have the analogous formula,

XXX. . . «» = y2 - (u - (c)2 = T (u - ic)» - h\
(21.) Let r and t' bc the vectors ot, ot’ of the two points of contact of tan

gents thus drawn to the hodograph, from an external point u in its plane; then 
each must satisfy the system of tho three following scalar equations,

XXXI.. . Syr = 0; XXXII... (r - «)« = y’; XXXIII. . . S (r— c) (v - k) = y« ; 
whereof tho first alone represents the plane; the two first jointly represent (comp, 
(o.)) the circle ; and the third expresses tire condition of conjugation of the points 
T and u, and may bo regarded as tho scalar eguation of the polar of the latter point. 
It is understood that Syu = 0, as well as SyK= 0, &c., because y.is perpendicular 
(3.) to the plane. .

(22.) Solving this system of equations (21.), we find the two expressions, 
XXXIV. . . r = k+ y (y + «) (v-k)'*; XXXIV'. . . r'= b + y (y —») (u - k)"* ; 
in which the scalar « has the same value as in (20.). As a verification, these ex
pressions give, by what precedes.

* In strictness, it is only for a closed orbit, that is, for the case (8.) of the centre 
of force being interior to the hodograph (e < 1), that two velocities can bo opposite ; 
their vectors having’ then, by the fundamental rules of quaternions, a scalar and posi
tive product, which is here found to be = by XXIX., in consistency with the 
known tlieory of elliptic motion. The result however admits of an interpretation, in 
other cases also. It is obvious that when the centre o of force is exterior to tho hodo
graph, tho polar of that point divides tlie circle into two parts, whereof one is con
cave, and the other convex, towards o; and there is no difficulty in seeing, that the 
former part corresponds to the branch of an hyperbolic orbit, which can be described 
under the influence of an attracting force : while the latter part answers to that 
other branch of the same complete hyperbola, whereof the description would require 
the force to bo repulsive.

4 z
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XXXV.. . S(r —<r)(r —v) = 0; XXXV'.. . SCt'-k) (r’-v)=0;
and - XXXVI... (r - v)«= (t'-vy = -
In fact it is found that
XXXVII. .. r - u = tt (u + y) (u - «)->; XXXVIII.. . T(« + y) = T(v - r) ; 
and XXXIX • • {r- v") (r - k) = uy ;
u 4- y heing here a quaternion.

(23.) If u' be the vector ou' of any point u', on the polar oi the point v with 
respect to tbe circle, then changing r to o', and «to z, in XXXIV., we find this vector 

form (comp. (21.)) of tho equation of that polar,
. XL. , . n' = (e + y (y+ 2) (u-r)-',

or, by an easy transformation,
XLI. . . (A® + M®) o'= h^v + u^K + 2y (k — o),

in which z is an arbitrary scalar.
(24.) If then we suppose that u' is tho intersection ot the chord it' with tho 

right line on, the condition
ti® V(cuXLII. . . Vo'o = 0 will give XLIII. . . zy = ——-— ;‘ — Sko

but XLIV.*, . Vko . (k — o)= kS (ku - o’’) + oS (co - ic®) ;
the coeflScient then of k, in the expanded expression for o', disappears as it ought to 
do: and we find, after a few redactions,

XLV. . . o'= oI 1 + 'j =
\ o’ — Sko I V — o-'Sko

a result which might have been otherwise obtained, by eliminating a new scalar y 
between the two equations,

XLVI. .. «'=yo, S (yo -k^^v- k") =
(25.) Introducing then two auxiliary vectors, A, /x, such that 

XLVII. . . A = u‘’Sicu, or Sko = oX = Xo,
and therefore XLVII'. .. X-k = o-iVko, SkX = X®, (X-ic)’ = k’-X”,

.and XLVIII... whence /«||X, (/t-K)5=y’,

we have the very simple relation,
XLIX... (w - X) (o' - X) = (/t - X)S or L... lu . lu' = lm®, 

if X = OL, and /< = osl Accordingly, the point l is the foot of tbe perpendicular let 
fall from the centre u on the right line ou, while m is one of the two points m, m' of 
intersection of that line with the circle; so that the equation L. expresses, that the 
points U, u' are harmonically conjugate, with respect to thc chord mm', of which l is 
the middle point, as is otherwise evident from geometry.

(26.) The vector a of the orbit (or of po«f<jon)7which corresponds to the vector 
r (= Da) of the hodograph (ot of velocity'), and of which the length is Ta = r= the 
dittance, may bo deduced from r by tbe equations,

LI. . . a=r(K —r)y'*, and LII. .. Vro = —j3= Afy->;
whence follow the expressions,

LIII. , . Potential = 3fr'* = (say) P= Sr((c - r) = Sv (k — r);
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tlie second expression for P being deduced from the first, by means of tho relation 
XXXV. ' -

(27.) Thofirst expression LIII. for P shows that the potential is equal, Ist, to 
the rectangle under the radius of the hodograph, and the perpendicular from tho 
centre o of force, on tbe tangent at t to that circle; and Ilnd, to the sguare of the 

' tangent from the same point T of the hodograph, to what may be called the Circle of 
Pxcentricitg, namely to that new circle which'has ou for a diameter. And the first 
of these values of tho potential may be otherwise deduced from thc equality (7.) of the 
mass M, to the product he of the radius h of the hodograph, multiplied by the constant 
c of double areal velocity, or by the constant parallelogram (16.) under any two cor
responding vectors.

(28.) The second expression LIII. for the potential P, corresponding to the 
point T of the hodograph, may (by XXXIV., &c.) be thus transformed, with the 
help of a few reductions of tlie same kind as those recently employed:

T TIT „ Af *’^3 + KyV3 . VLIV...P=--= , If LV...3 = u(.r-u),

g being thus an anxiliaiy quaternion; and in like manner, for the other point t’ 
lately considered, we have tbe analogous value,

LVI P’- — = .
whence

and therefore,

LIX. . .

and finally,
LX.. .

Lvin...4-=r-.£§±^"2?.
M t; S3® + tt2„2

Sg-uy-Wg
M 83’4- u'-v"^ ’

2Jt/ 2rj>’ „
r-]7? - J47p'= = v(X -v') = ou.u'£,.

(29.) In fact, the same second expression LIII. shows, that if v and v’ be the 
feet of perpendiculars from t and t? on hl, then the potentials are,

I^^LXI... r= on. TV, and P'=ou. t'v' ;
and it is easy to prove, geometrically, that the segment n't is the harmonic mean be
tween what may be called the ordinates, w, t'w', to the hodographic axis hl.

(30.) If we suppose the point u to take any new but near position v, in the plane, 
tbe polar chord tt*, and (in general) the length u of the tangent ut, will change; and 
wc shall have tbe differential relations:

LXII. . .,dr = (r-u)">S(r— K)dw; 
LXII'. . . dr' = (t’ - u)'iS (r' - k) do;

and LXIIL . . da = «-'S («:-«)du.
(31.) Conceiving next that u moves along the line ou, or lu, so that we may 

write.

We shall have,
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LXV. . . du = (ji - X) ix = t) (x - e')' '"’ith x > 1 > ?,

if D be on lm prolonged, and if o bc on the concave side of the arc tjit' ; and thus, 
by LIU., tbe differential expressions (30.) become,

i LXVI. . . dr = (v-r)-iP(z-e')-'dx; 
and

so tliat

dr’ = {v- t’)->P(x- e')-'d2:; 
LXVII. . . du = tt->Sg.(x - e')-*dx, with S7 = ti(X — u);

LXVIII. . . Tdr= Tdr'= , if ili'> 0.u(x-e) u(x-e)
SuCli then are the lenglke ot the two elementary arcs Tr, and t't/ of the hodograph, 
intercepted between two near secants NTT' and nt,t,' draw from the pole x of the 
chord m.m', and having u and v, for their own poles; and we see that these arcs aro 
proportional to tlie potentials, P and P', or by LXI. to tlie ordinates, tv, t'v', or 
finally to tlie lines nt, nt' : and accordingly we have tbe inverse similarity (comp. 
118), of the two small triangles with n for vertex,

LXIX. . . A NTT, oc'nt/t',
aa appears on inspection of the annexed Figaro 86.

(32.) For any motion of a point, however complex, tbe element df of lime wliich 
Lorresponds to a given element dDa of tbe hodograph, is found by dividing tbe latter 
element by tbe vector V~a of accelerating force ; if then we denote by df and df' the 
times corresponding to tbe elements dr and dr' (31.), we have the expressions,

, Mix rda:
LXX. . . df = M. P-\ Tdr = - -----= ---- ------- r,- e) «(« — «)

LXX'. . . it'^M. P'-3.Tdr' « Ju(x-e) tt(x-e)
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because, for tbe motion hero considered, tho measure or quantity of tlie force is, by I. 
and LIII.,

LXXI.. . TD2n =

(33.) Tho limes of hndograplncally describing the Zmjo small circular arcs, t,t 
and t't/, are therefore inversely proportional to the potentials, or directly propor
tional to the distances in tbe orbit; and their sunt is,

M\u-hix (r+r')da:LXXII... dt + dt'= I -p + -^ ----- . = ;\ J* P ]x — e « (x - e )
that is, by LX. and LXIV., 

LXXIII... dt-f dt' = -■ if LXXIV. . 0=T(u-\) = fM.u^x-eyg^ ,
(34.) We have also the relations,

LXXV. . . « = (x’ - 1)1 g, and LXXVI.. . = (1 - e'“) <z’ ;

so that tbe sura of the two small times may be thus expressed,
, . . 2(«( 1 - e'2))J (1 - e'x-i)-» dx

LXXVII..; dt + df = -X-i------ if.. S---------- ------Mi a(x2-l)l ’ 
or finally,

[ u^(l — e^^)®\4 du?, LXXVIII.. . dt + df = 2 ■ W. y—.----- -,\ Ai I (l-e coswf
if LXXIX. . . ®=seca?, or w = /.mlw in Fig. 86,
in which Figure u'w is an ordinate of a semicircle, with the chord mm' of the hodo
graph for its diameter. <

(35.) The two near secants (31.), from the pole N of that chord, have been here 
supposed to cut the half chord jlm itself, as in the cited Figure 86 j but if they were 
to cut tho other half chord wi', it is easy to prove that the formula) LXXVIII. 
LXXIX. would still hold good, tho only dificrence being that the angle w, or Bwr, 
would be now obtuse, and its secant x< — 1.

(36.) A circle, with u for centre, and « for radius, cuts the hodograph orthogo
nally iu the points T and t'; and in like manner a near circle, with w, for centre, 
and u 4 du for radius, is another orthogonal, ciftting the same hodograph in thc near 
points T and t/ (31.). And by conceiving a series of such orthogouals, and observ
ing that tho differential expression LXXVIII. depends onlj’ on the four scalars, 
Sl~^a\ e‘, w, and du?, which aro all known when the mass Ai and thejJee points o,
I., M, u, are given, so that they do not change when we retain that mass and those 
points, but alter the radius h of the hodograph, or the perpendicular hl let fall from 
its centre it on the fixed chord sisi', we See that the sum of the times (comp. (33.), 
of hodographically describing any two circular arcs, such as it and t't/, even if 
they be not small, but intercepted between any two secants from tho pole N of the 
fixed chord, is independent ofthe radius (A), or of the height iiL of tho centre n of 
the hodograph.

(37.) If then two circular hodographs, such as the two in Fig. 86, having a com
mon chord mm', which passes through, or tends towards, a common centre of force o, 
with a common mass AI there situated, he cut by any two common orthogonals, the 
sum of the two times of hodographically describing (33.) the two intercepted arcs 
(small or large) will be thc same (or those tu'o hodographs.
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dio

(38.) And as a case of this general result, wc iiave the following Theorem* of 
Hodographic Isochronism (or Synchronism'):

“ Jf two circular hodographs^ having a common chord, which passes through, or 
tends towards, a common centre offorce, be cut perpendicularly by a third circle, 
the times of hodographically describing the intercepted arcs will be equal.”

For example, in Fig. 86, we have the equation,
LXXX. . . Time of tut = time of wiiw'.

(39.) The time of thus describing the arc tjit' (Fig. 86), if this arebe through
out concavetf towards o (so that a:>l>c', as in LXV.), is expressed (comp. 
LXXVIIL) by the definite integral,

LXXXI. . . Time ofTsvT = 2 ( V f” - -----,------ - ;
\ AI / Jo (1-e costo)s

and the time of describing tbe remainder oi the hodographic circle, if <Zii« remaining 
arc t'ji't be throughout concave towards tho centre o of force, is expressed by this 
other integral,

LXXXII. .. Time o/t'm’t= 2 ( ;------
. V Af ) J„(l-e’cosw)‘>

(40.) Hence, for the cose of a closed orbit (e'® <1, e< 1, a> 0), if n denote tho 
mean angular velocity, we have the formula,

2jr / a® M frr dwLXXXIII. . . Periodic Tsme = — = 2 — f (1 -e's)^ ------ ;------ r-n \Af ) ■ ' Jo (I - e coa w)^

dto

or LXXXIV. .. M=a^n^, as usual.

The same result, for the same case of elliptic motion, tpay be more rapidly obtained, 
by conceiving the chord mm' through o to be perpendicular to oh ; for, in this posi
tion of that chord, its middle point n coincides with o, and e' =• 0 by LXIV.

(41.) In general, by LXXVI., we are at liberty to make the substitution,

LXXXV. , . f with g = half chord of the hodograph ;
\ M I

supposing then that e'=-1, or placing o at the extremity m' of the chord, we have 
by LXXXI.,

2A/f*‘’ dm
LXXXVI... Parabolic time of tmt'=I —---------- ;

P’ Jo (^ + “’)

for, when the centre of force is thus situated on the circumference of the hodographic 
circle, we have by (8.) tho excentricity e = 1, and the orbit becomes by XV. a para-

* This Theorem, in which it is understood that the common centre of force (o) 
is occupied by a common matt (,M), voa communicated to the Royal Irish Aca- 
dem}' on the 16th of March, 1847. (Seethe Pioceeclinga of that date, Vol. III., page 
417.) It has since been treated as a subject of investigation by several able writers, 
to whom the author cannot hope to do justice on this subject, within tbe very short 
fpace which now remains at his disposal.

t Compare the Note to page 721.
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1)ola. For hyperbolic motion 1, e> 1, a<0), the formula LXXXI. (with or 
Avithout the substitution LXXXV.) is to be employed if e' < — 1, that is, if O be on 
mi'prolonged; and tlie formula LXXXII., if e'>l, e'<8ecw, tliat b:, if o bo si
tuated between m and u.

(42.) For any laio of central force, if-p, p' be the points of the orbit which corre- 
* spend to the points t, t' of the hodograph, and if Q be the point of meeting of the 

tangents to the orbit at p, p', as in tho annexed Figure 87, while the tangents to tho 
hodograph at t, t' meet as before in u, we shall have the parallelisms.

t

■ writing then, 

LXXXVm. , . op= a, op' = <i’, OT = D« = r, OT’ = D«' = r', ou = n, 0<3 = ti>, 

most of which'notations have occurred before, we have the equations,
LXXXIX. . . 0 = Vn (r — n) = Va'(w — r') = Vr (<t> — a) = Vr' (a' — u>) ; 

fS-C. . . Vav = NaT = fi = 'Va'r ='Va.'n, a'—a||v, pp’||ou, 
XCI. .. Vrai —VTa = —j3 = Vr'a’ = Vr'«»', r —r'Hw, t’t||oq.

thus 
and

Geometrically, the’constant parallelogram (16.) under op, ot, or under op', ot', is 
equal, by LXXXVIL, to each ofthe four following parallelograms: I. under op, ou ; 
11. under op’, on; III. under oq, ot ; and IV. underoq,ot'; whence pp'Hou, and 
t't||oq, as before. •

(43.) The paratieKsin XC. may be otherwise deduced for the law of the incerse 
square, with recent notations, from the quaternion formulas,

a'-a u v-v’ . ,. . vziTT. '---- r = .------  , in which, XCII. . . w = r, r + r A— Utt---------------------------------------------- T + r
and- which may bo obtained in various ways; whence it may also be inferred, that 
if « denote the length of the chord pp' ofthe orbit, then (comp. Fig. 86),

« u ■ _  __
XCIII. ..------ , = = u r: ui, = &c. = sin w:r + r 1 (A - u)

w being the same auxiliary angle as in (34.), &c.

V —
XCII.
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(44.) It is easy to prove that 

whence
XCV...T^^ = 4'=^, and XCVI. . . P'-i(r'-X) v = K.P->(r~\) y.

the lines LT, lt* are therefore in length proportional to tho potentials, P, P'; and 
their effreettons'are equally inclined to that of OV, but at opposite sides of it, so that 
tho line tu bisects the angle tlt'. Accordingly (see Fig. 8G), the three points t, l, t' 
are on the circle (not drawn in tlie Figure) which has ii u for diameter; so that the 
angles ult', tlu are equal to each other, as being respectively equal to tho angles 
dtt', Tfu, which tbe chord tt' of the hodograph makes with the tangents at its ex
tremities : the triangles tlv, t'lv' are therefore similar, and >8 to Lt' as tv to 
t'v', that is, by LXI., as P to P', or as r' to r.

(45.') Again, calculation with quaternions gives,

XCVII.. . = (v-n)(v- X) (v - k)-.v -r V '
whence

V*—-T v'—'T* T VXCVni...T,,— = T-----, = T;— =UT:uL = sinw;X - r X -r X-u

such then is the common ratio, ol tho segments tu', u't' of the base tv' oi the tri
angle tlt', to the adjacent sides Cf, Er', which aro to eac/< other as r to r (4-1.) ; 
and because this ratio is also that of » to r + r', by (43.), we have the proportion, 

XCIX.. . of: op' ; PP'= r: r': » = izf'! Cf : Tt', >
and the formula of inverse similarity (118),

C.. . Alt't a'opp'.

Accordingly (comp, the two last Figures)j the base angles opp', op'? of the second 
triangle are respectivelyequal, by the parallelisms (42.), to the angles tul, t'ul, 
and therefore, by the circle (44.), to the base angles tt'l, t'tl, of the first triangle : 
but the two rotations, round o from p to p', and round l from t' to t, are oppo
sitely directed.

(46.) The investigations of the three last subarticles have not assumed any know
ledge of the form of the orbit (as elliptic, &c.), but only tbe law oi attraction &o- 
cording to the inverse square, or by (6.) the Law of the Circular Hodograph. -And 

'the same general principle^ give not only the expression LXXVI. for the constant 
Afa-i, but also (by LX. LXIV. LXXIV. LXXIX.) this other expression, 

2Jir r + r* 1 — c**CI... ----- ^. = (l-e'cosia)o2; whence CII...-— =----- ;------ ,r + r' ’ 2rt 1-e cos w
which last may be considered as a quadratic in e', assigning two values (real or 
imaginary) for that scalar, when the first member of'ClI. and the angle w are given ; 
the sine of this latter angle being already expressed by XCIII.

(47.) Abstracting, then, from any ambiguity* oi solution, wo see, by the definite

* That there ought to be some such ambiguity is evident from the considcratior, 
that when a focus o, and two points r, ,p’ of an elliptic orbit ate given, it is still
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I

integrals in (39.), that the time of describing an arc pp' of an orbit, with the law 
of the inverse square, is a function (comp. (36.)) of the three ratios,

bl a r + r
, wliich is a form o/’ Lambert's Theorem, hut presents itself Aere as deduced from the 
recently stated Tlworem of Hodographic Isochronism (38.), without the employment 
of any property of conic sections.

(48.) The differential equation I. of the present relative motion may be thus 
written (comp. 418, I., and generally the preceding Series 418) :

CIV... S.D’(iC(iTeP = O, whence CV. ..r=P+K,
as in 418, X., if we now write,

- 21/
CVI. . . - |Da2 = - ir2, and CVII. ..//=— i

in fact (by LIII., comp. (20.) (21.)),
itf

CVIII. . . -2ff=2(P-T) = 2P+ = - yi=—.0)
(49.) Integrating CIV. by parts, &c., and writing (as in 418, XII. XXII.), 

CIX. . . P= pJr+ P)df, and ex. . . r= p2 Pdf,

80 that P may again be called the Principal punefion and V the Characteristic 
Function ot the motion, we have the variations, *

CXI. . . SF= SrSa-&T'Sa' - HSt ■, CXII. .. SrSa- Sr'^a' + tSH-, 
in which <r, a' (instead of ao, o') denote now what may be called the initial and 
final vectors (op, op') of the orbit; whence follow tbe partial derivatives, 

CXni. . . D„P=DaP=T ; CXlir. . . Da'P=D„/P=-r’;
CXIV. . . (D«P) =-//j and CXV. . . DuV-t -,

F being here a scalar function of#, o', t, while Pis a scalar function of a, a', If, 
if 21/ be treated as given.

(50.) The twa eeefors a, it' can enter into these two scalar fanetions, only 
through their dependent scalars r, r', s (comp. 418, (17.)); but

CXVI.. . 5r = -r-'Sa5u, 5r'=-r'-iSa'5«', ^s=-5-iS(a'-a) (5«'-5a); 
confining ourselves then, for the moment, to the function V, and observing that we 
have by CXII. the formula,

CXVII.. . S QrSa - r'Sa') = D, F. Sr + D,. F. Sr' + D, F.
in which the variations 5o, Sa' are arbitrary, we find the expressions,

CXVIII. . . r=-a»-iD,.F + (a'-o)s-'D,F;
CXVIII'. . . t' = + a'r'-'D/ r+ (o'- a)s-iD,F;

permitted to conceive the motion to be performed along either of the too elliptic ares, 
i’p',’p'p, which together make up the whole periphery. But into details of this kind 
we cannot enter here.

5 A
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AThich give these others,
' CXIX. ., Dr F= rN{a' - a) r: Vaa’;

CXIX'. . . D/ F= r'V(a -r': '^aa';
CXS....T).V=sl3-.Vaa,

NaT = Na'T' =
and '
because

(51.) ^ut, by XCir.,
CXXI. . . rr+r'r' = (r + r')u'|| u||a'—a,

the chord tt" of the hodograph, in Figures 86, 87, being divided at u' into segments 
to', oV, which are inversely as the distances r, r', ot as tho lines or, op' in the 
orbit; we have therefore the partial differential equation,

eXXn. .. Dr F= D/F, and similarly, CXXIII. ., DrF= D^F;I
io that eacZi of the two functions, F and F, depends on the distance! r, r, only by 
depending on their sum, r + r'.

(_52.) Hence, if for greater generality we now treat JT as variable, the Principal 
Function F, and therefore by CXIV. its partial derivative H=- (D<F), are func
tions of tbe four scalars,

CXXIV. . . r + r', s, t, and Jf.
(53.) And in like manner, the Characteristic Function (or Action-Function^ F, 

and its partial derivative (by CXV.) the Time, t = DnV, may be considered ns 
functions of this other system.oi four scalars (comp. (47.)),

eXXV. . . r + r', s, //, and Df;
no knowledge whatever being here assumed, of the form or properties of thd orbit, 
but only of tbe law of attraction.

(54.) But this dependence of the time, t, on the four scalars CXXV., is a new 
form of Lambert's Theorem (47.); which celebrated theorem is thus obtained in a 
new way, by the foregoing quaternion analysis, ■

(bo,'). Squaring the equations CXVIII. CXVIII'., attending to tho relation 
CXXII., and changing signs, we get these new partial differential equations,

eXXVI... 2P+ 2H = (DrF)H (D,F)« + T)rF. D,F;rs

CXXVI'.. .2P' + 2H'=(DrF)2+(D.F)2+-----

because CXXVII. ,, a«=-r«, a'n^-r'o, (a'-«)a = ^s’.
Hence, by merely algebraical combinations (because P=Af>-', and P'=jUr'->), we 
find:

M
CXXVIII. . . i ((D, F)2 + (D. ry) ;

Ar,., Ar
CXXIX. . . DrF.D.F=;;^^ -

itM 4 1\exxx.. . (DrF+D.F)2 = 2H+ = - - );

4Af 14- 1\eXXX'... (D.F- D.F)^ = " a }
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(56 ) But. by CXII. CXVII. CXXII., we have the variation,

CXXXI... S r- tSIIrz J (Dr F+ D. F) 3 (r + r'+ s) +1 (D, F- D. F) (r + r' - a) ; 

and tho function F vanishes with <, and therefore with s, at least at the commence
ment of the motion; whence it is easy to infer the expressions,

Jf , , p f .V
----- :----+ -z- I d sr + r + 8 2 /CXXXII... r.~

CXXXIII.jC (_!U I ?V ‘ a. -» r (-i’l- - if ‘a..
+ ^1 )-,\r + r + s a]

As a verification,t when t and s are small, and therefore r’ nearly=r, wo have 
thus the approximate values,

CXXXIV. .. r=(2/’+2H)l« = (22’)»s = 22’<; 
CXXXV. .. t = (2P+ = (2 T)-is;

in which 8 may be considered to be a small arc ol the orbit, and (2 T)! the velocity 
with which that arc is described.

(57.) Some not inelegant constructions, deduced from the theory of the hodo
graph, might be assigned for tho case of a closed orbit, to represent the excentric and 
mean anomalies ; bnt whether the orbit be closed or not, the arc tmt* of the hodo
graphic circle, in Fig. 86, represents the arc of true anomaly described : for it sub
tends at the hodographic centre ii an angle tut', which is equal to the angular mo
tion pop' in the orbit

• (58.) We may add that, whatever the special form of the orbit may be, the equa
tions CXVIII. CXVIII'. give, by CXXII.,

CXXXVI. ..T'-r = (Ua + Un) DrF;
from which it follows that the chord tt’ of the hodograph is parallel to the bisector 
of the angle -eoF in the orbit: and therefore, by XCI., that this angle is bisected by 
oq in Fig. 87, so that the segments pb, rp’, in that Figure, of the chord pp' q/"the 
orbit, are inversely proportional to tho segments tu', v't* of the chord ft’ of the ho
dograph.

(59.) We arrive then thus, in a new way, and ns a new verification, at this 
known theorem: that if two tangents (qp, Qp') to a conic section be drawn from

* Expressions by definite integrals equivalent to these, for the action and time
■ in tho relative motion of a binary system, were deduced by tlie present writer, but by 

an entirely different analysis, in the First Essay, &c., already cited, and will be 
found in tho Phil. Trans, for 1831, Part II., pages 285, 286. It is supposed that 
the radical in CXXXIII. does not become infinite within'the extent of the integra
tion ; if it did so become, transformations would be required, on which we cannot 
enter here.

t An analogous verification may be applied to the definite integral LXXXI.; in 
which however it is to bo observed that both r+r and s vary, along with the va
riable w: whereas, in the recent integrals CXXXII. CXXXIII., r + r' is treated as 
constant.
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any common point (q), they subtend equal angles at a focus (o), whatever the spe
cial form of the conic may be.

(60.) And although, in several of the preceding sub-articles, geometrical con
structions have been used, only to illustrate (and so to confirm, if confirmation rycre 
needed) results derived through calculation with quaternions ; yet the eminently 
suggestive nature of the present Calculus enables us, in this os in many other ques
tions, to dispense with its own processes, when once they have indicated a definite 
train of geometrical investigation, to serve as their substitute.

(61.) Thus, after having in any manner been led to perceive that, for the motion 
above considered, the hodograph is a circle* (5.), of which tbe radius liT is equal 
(7.) to the attracting mass JIf, divided by tho constant parallelogram (16.) under 
the vectors OP, ot of position and velocity, in the recent Figures 86 and 87, which 
parallelogram is equal to the rectangle under the distance op in the orbit, and the 
perpendicular oz let fall from the centre o of force on the tangent UT.to the hodo
graph, we see geometrically that the potential P, or the mass divided by the dis
tance, for the point P of the orbit corresponding to the point t of tho hodograph, is 
equal (as in (27.)) to the rectangle under ht and oz, and therefore, by the similar 
triangles iiTV, uoz, to the rectangle under on and tv (ns in (29.)).

(62.) In like manner, tlie three potentials corresponding fo the second point t' of 
the first hodograph, and to the points w and w’ of the second hodograph, in Fig. 86, 
are respectively equal to the rectangles under the same line ou, and the three other 
perpendiculars t'v', wx, w'x', on what we have called (29.) the hodographic axis, 
IIL; so that, for these two pairs of points, in which the two circular hodographs, with 
a common chord mm', are cut by a common orthogonal with u for centre, the four 
potentials are directly proportional to the/)«r hodographic ordinates (29.).

(63.) And because the force (Jfr’2) is equal to the square of the potential 
(Jl/r-')i divided by the mass (Jf), the four forces are directly as the squares of tho 
four ordinates corresponding; each force, when divided by tbe square of the corre
sponding hodographic ordinate, giving the constant or common quotient,

CXXXVII.. . ou«: M.
(64.) It has been already’ seen (31.) to be a geometrical consequence of the two 

pairs of similar triangles, ntt, nt)t', and ktv, nt'v', that the two small arcs of the 
first hodograph, near T dnd t', intercepted between two near secants from the pole n 
of the fixed chord Msi', or between two near orthogonal circles, with u aud U, for 
centres, are proportional.to the two ordinates, tv, t'v',

(65.) Accordingly, if we draw, as in Fig.- 86, the near radius (represented by a

* This follows, among other ways, from the general value XXVI. for the raditis 
of eurvuture of the hodograph, with any law ot central force; which value was peo- 
melricalty Jednced, os Stated in the Noto to pago*V20, compare tho Note to page 
719, hy thcprcsent writer, in a Paper read before the Royal Irish Academy in 1810, 
and published in their Proceedings. In fact, that general expression for the radius 
of hodographic ciuTature may be obtained with great facility’, by dividing the cle
ment fit ot the hodograph (in which/denotes the force), by the corresponding 
element er *dt of angular motion in the orbit.
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dotted line from h) of the first hodograph, and also tho small perpendicular uv, 
erected at the.centre u of the first orthogonal to tho tangent UT, and terminated in 
v by the tangent from the near centre u,, the two new pairs of similar triangles, tut,, 
uxy, and tuv, uu,y, give the proportion,

CXXXVI n. . . TT,; TV = uu,: UT !
which not merely confirms what has just been stated (C4.), for the case of the prst 
hodograph, but proves that the four small arcs, of the tioo circular hodographs in 
Fig. 86, intercepted between the two near orthogonals, are directly proportional to tho 
four ordinates already mentioned.

(66.) But the time of describing any small hodographic arc is the quotient (32.) 
• of that arc divided by the force; and therefore, by (63.), (65.), ihs four small times 
are inversely proportional to thcybizr ordinates. And .the harmonic mean u'b be
tween the tioo ordinates tv, t'v' of thejfrsi hodograph, does not vary when wo pass 
to the second, or to ang other hodograph, with the same fixed chord »im’, and the 
same orthogonal circles; if follows then, geometrically, that theeum (33.) ofthe 
two small limes is the same, in any one hodograph as in any other, under the condi
tions above supposed: and that tliis sum is equal fo the expression,

2d/.'u(7' 2A/.uu'.ulCXXXIX. . . 
OU'^.UT.U'L OU’.LM*. UT

which agrees with the formula LXXIII.
(67.) On tho whole, then, it is found that the Theorem of Hodographic Isochro

nism (38.) admits of being geometrically* proved, although by processes suggested 
(60.) by quaternions: and sufficient hints have been already given, in connexion 
with Figure 87, as regards the geometrical passage from that theorem to the well- 

. ■known Theorem of Lambert, without necessarily employing any property of conic 
sections. , *

420. As & fifth specimen, we shall deduce by quaternions an equa
tion, which is adapted to assist in the determination of the distance 
of a comet, or new planet, from the earth.

(1.) Let HI be the mass of the sun, or (somewhat more exactly) the sum of the 
masses of sun and earth; and let a and lo be the heliocentric vectors of earth and 
comet. Write also,

I.'. .Ta = r, Tw = !(,’, T(<i>-a) = z, U(to—.
so that r and w are the distances, of earth and comet from the sun, while z is their 
distance from each other, and p is die unit-vector, directed from earth to comet, 
'then (comp. 419, I.),•

* It appears from an unprinted memorandum, to have been nearly thus that the 
• author orally deduced the theorem, in his communication of March, 1847, to the 

Royal Irish Academy; although, as usually happens in cases of invention, his own 
previous processes of investigation had involved principles and methods, of a .much 
less simple character.
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and 
with

II. . . D-a =— Mr-^a, Dtoi = —
III. . . D^.zp = D5(o) — M^r-^— a — Mzw^p,

IV. . . wt= — (a + zpy = rt + z^ — 2zSup-
(2.) The vector a, trith its tensor r, and the mass JU, are given by the theory of 

the earth (or sun); and p, 'Dp, D^p are deduced from three (or more) near obser
vations of the comet; operating then on III. with S.pDp, we arrive at the formula,

SpD^^p _r/M _ My 
SpDpUa j ’

which becomes by IV., when cleared of fractions and radicals, aud divided by z, an 
algebraical equation of tho seventh degree, whereof one root is the sought distance* z, 
of tbe comet (or planet) from the earth.

421. As a sixth specimen, we shall indicate a method, suggested 
by quaternions, of developing and geometrically decomposing thc 
disturbing force of the sun on the moon, or of a relatively superior 
on a relatively inferior planet.

(1.) Let a, a be the geocentric vectors of moon and sun; r, s their geocentric 
distances (r = Ta, t = Ta); M the sum of the masses of earth and moon ; and S tlie 
mass of the sun; then the differential equation of motion of the moon about the 
earth may be thus written (comp. 418, 419), *

I. . . D^a = JU. ^a + 5'. (0a — 0 (a — a)),
if D be still the mark of derivation relatively to the,time, and

II. . . 0a = 0(n) = a'>Ta“*;
so that 0a is here a vector-function of a; but not a linear one.

(2.) If we confine ourselves to the term in the second member of I., wo 
fall back on the equation 419, L, and so are conducted anew to thc laws of Undisturbed 
relative elliptic motion.

(3.) If we denote the remainder of that second member by rj, then t) may bo 
called tbe Sector of Disturbing Force ; and we propose now to develops this vector, 
according to descending powers of T (a : a), or according to ascending powers of 
the quotient r:s, of the distances of moon and sun from the earth.

(4.) The expression for that vector may be thus transformed:

III. . {Sector of Disturbing Force = = D^a — Mijia
= &-'a-> {1 - (1 - na-')-i T(1 - aa'’)-!}
= iSs-’a"' {1 - (1 — aa'*)’^ (1 — a'>a)‘l} ,

= 5»-'a-i 1 - 1 + aa-‘ + (aa->)2 + 1^ ia'ia +(a-ia)2 +.. ;

+

* Compare the equation in the Mecanique Celeste (Tom. I., p. 241, new edi
tion, Paris, 1843). Laplace’s rule for determining, by inspection of a globe, which 
of the two bodies is the nearer to the sun, results at once from the formula V.
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that is, • IV. . .1, = I/l + »J2 + ’13 + &c., 

if V. ..i;i=-Ss ><T-> + 5a<r'*)=—(a + 3<ra(r') =

3SrS
VI... >}2= — (<100-'+2<t+5(ra(’a"’(r') = ’l!!>i + ’12)2+>12)3; &c.

the general term* of this development being easily assigned.
(5.) Wo have thus a. first group of two component and disturbing forces, which 

are of tho same order as ; a second group of three such forces, of the same order 
Sr’ ■

as —; a third group oifour forces, and so on.

(6.) The/rs< component of the first group has the following tensor and versor.

VII... T,n,i=

Ur/bi =Ua;
it is therefore a purely ablati- 
tious force MN, acting along tho 
moon’s geocentric vector em pro
longed, as in the annexed Fi
gure 88.

(7.) Tlie second component 
mn', of thc same first group, has an exactly triple intensity, m5' = 3SiN; and its di- 
rectjpn is such that the angle NJEs', between these two forces of the first group, is 
bisected by a line ms' from the moon, which is parallel to the sun's geocentric vector 
ES.

(8.) If then we conceive a line EM'-frora the earth, having the saino direction as 
the last force mn', this new line will meet the heavens in what may be called for the 
moment a fictitious moon Di, such that the arc Dpi of a great circle, connecting it 
with the true moon D in the heavens, shall be bisected by the sun 0, as represented 
in Fig. 88.

(9.) Proceedingto the second grgup (5,), we have by VI. for the first co/mponent 
of this group,

■ .a line from the earth, parallel to this new force, meets therefore the heavens in what 
may he called a first ficlitious svn, Q i, such that the arc of a great circle, ©O i, con
necting it with the true sun, is bisected by the moon J), as in the same Fig. 88.

• Such a general term was in fact assigned and interpreted in a communication 
of Juno 14, 1847, to the Royal Irish Academy (^Proceedings, Vol. HR, p. 614) ; 
and in the lectures, page 616. The (development may-also be obtained, although 
less easily, by Taylor’s Series adapted to quaternions. Compare pp. 427,428, 430, 
431 of tlie present work; and see page 332, i^c., for the interpretation of such sym
bols as (r«<r’, nea*’,
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(10.) The second component force, of the same second group, has an intensify ex
actly double that of the first (T>j2i2 = 2T»/2, i); and in direction it is parallel to tho 
sun’s geocentric vector ES, so that a line drawn in its direction from the earth would 
meet the heavens in the place of the sun ©.

(11.) Tbe third component of the present group has an intensity which is pre
cisely fice-fold that ofthefirst component (Tq2,3= 5Tj}2,i); and a line drawn in its 
direction from the eart^ meets the heavens in a second fictitious sun ©2, such that 
the arc ©i ©_>, connecting these two fictitious suns, is bisected by the true sun ©.

(12.) There is no difficulty in extending this analysis, and this interpreUtion, to 
subsequent groups of component disturbing forces, which forces increase in number, 
and diminish in intensity, in passing from anyone group to tho next; their intensi
fies, for each separate group, bearing numerical ratios to each other, and their direc
tions being connected by simple angular relations.

(13.) For example, the third group consists (5.) of four small forces, 1/3,1.. j/3,1, 
S’r’of which tlie intensities aro represented bv ---- , multiplied respectively by the fourIGs^ -

whole numbers, 5, 9, 15, and 35 ; and which have directions respectively parallel to 
lines drawn from the earth, towards a second fictitious moon Jo, the true moon, tho 
first fictitious moon })i (8.), and a third fictitious moon Da; these three fictitious 
moons, like the two fictitious suns lately considered, being all situated in the momen
tary plane of the three bodies E, si, 8 ; and the three celestial arcs, Jell, JSti DiDs, 
being each equal to double the arc X0 of apparent elongation qt sun from moon 
in the heavens, os indicated in the above cited Fig. 88.

(14.) An exactly similar method may be employed to dovclope or dccomposiotbo 
disturbing force of one planet on another, which is nearer than it to the sun; and it 
is important to observe that no supposition is here made, r.'specting any smallness 
of excentricities or inclinations.

422. As a seventh specimen of the physical application of quater
nions, tve shall investigate briefly the construction and some of the 
properties of Fresnel’s Wave Surface, as deductions from his princi
ples or hypotheses* respecting light.

(1.) Let p be a Vector of Pay-Velodty, and p the corresponding Vector of 
fVave-Slowness (or Index- Vector), for propagation of light from an origin 0, within 

a biaxal crystal; so that
I. . . S/ijO = — 1; • II.. . SpSp = 0 ; and therefore III. . . SpSp = O,

* Tho present writer desires to be understood as not expressing any opinion of 
Ids own, respecting these or any rival hypotheses. the next Series (423), as an 
eighth specimen of application, he proposes to deduce, from a quite different set of 
physical principles respecting light, expressed however still in tho language of tho 
present Calculus, Mac Cullagh’s Theorem of the Polar Plane ; intending then, as a 
ninth and final specimen, to give briefly a quaternion transformation of a celebrated 
equation in partial differential coefficients, of the first order and second degree, which 
occurs in thc theory of heat, and in that of the attraction of spheroids.
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if Sg and Sp be any infinitesimal variations of the vectors p and p, consistent with 
tho scalar equations (supposed to bo as yet unknown), of tbe ff'ave-Surface and its 
Reciprocal (with respect to tho uuit-sphere round o), namely the Surface of If'ave- 
Slowness, or (as it has been otherwise called) the index*-Surface : tlie velocity of 
light in a vacuum being here represented by unity.

(2.) The variation Sp being next conceived to represent a small displacement, 
tangential to the wave, of a particle of ether in the crystal, it was supposed by Fres
nel that such a displacement Sp gave rise to on elastic force, say St, not generally in 
a direction exactly- opposite to that displacement, but still a function thereof, which 
function is of the kind called by u.s (in the Sections HI. ii. 6, and HI. iii. 7) linear, 
vector, and self-conjugate ; and which there will bo a convenience (on account of its 
connexion with certain optical constants, a, b, c) iu denoting here by (instead 
of ipSpy : so that we shall have the two converse formulte,

IV. . . SpeeifiSf, V.. . Sf — ^'^Sp.
(3.) The ether being treated as incompressible, in the theory here considered, so 

that the normal component p'^SpSe of the elastic force may- be neglected, or rather 
suppressed, there remains only the tangential component,

VI. • • p'^^pSt^St —p'^SpSe,
as regulating the motion, tangential to the wave, of a disturbed and vibratingpar- 

. tide.
(4.) Iftlienit be admitted that, for the propagation of a rectilinear vibration, 

tangential to a wave of which the velocity is T/i't, the tangential force (3.) must be 
exactly opposite in direction to the displacement Sp, and equal in quantity to that 
displacement multiplied by the square {T/*"^) of the wave-velociig, we have, by V. 
and VI., the equation,

VII. . . g,-iSp-p-^SpSt =p-tSp, or VIII. . . Sp = {^-r-p-»)-^p-'SpSt; 
combining which with II., we obtain at once this Symbolical Form of the acalar 
equation of the Index Surface,

IX. . . 0 = S/*'* (^■* — /i'’)->^‘i;
or by an easy transformation,

X. . . p-*yip-i ■,
XI... 1 = S/t (/t« - ;or finally,

* This brief and expressive name Was proposed by the late Prof. Mac Cullagh 
(Trans. R. I. A., Vol. XVIII., Part I., page 38), for that reciprocal of the wave-sur
face which tho present writer had previously called tho Surface of Components of 
frave-Slowness, and had employed for various purposes; for instance, to pass from 
the conical cusps to the circular ridges of the H are, and so to establish a geometri
cal connexion between tho theories of the' two conical refractionn, internal and raiter- 
naZ, to which his own methods had conducted him (Trans. R. I. A., Vol. XVII, 
Part I., pages 125-144). He afterwards found that tho same Surface had been 
otherwise employed by M. Cauchy {Exercises de Mathematiques, 1830 p. 30), who 
did not seem however to have perceived its reciprocal relation to the Wave.

5 B
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wliile the direction of the vibration Sp, tor any given tangent plane to the wave, is 
determined generally by the fortniila VIII.

(5.) That formula for the displacement, combined with tbe expression V. for tho 
elastic force resnlting, gives

XII... Sp = — ^t'SpSf, and XIII.. . Se = — vSpSc,
if XIV. . . = or XV. . . v= —
V being thus an anxiCary vector; and because the equation XI. of the index surface 
gives,

XVI. . . Spv = — 1, while XVII. . . VuJ£ = 0, by XIII., 
it follows that the vector v, if drawn like p and p from o, terminates on the tangent 
plane to the wane, and is parallel to the direction of the elastic force.

(6.) The equations XIV. XVI. give,
XVIII... Sv^v= 1, whence XIX... v'^SpSp — S.pSv=- SvSp, 

because JS/iu = 0, by XVI., and JSu^u = 2S(^w.Jw), by the self-conjugate pro
perty of ; comparing then XIX. with III., we see that + p (as being -1- every Sp) 
has the direction of p + v'l, and therefore, by I. and XVI., that we may write,

XX. . . p"'= ——«■’; XXI.. . p"^ = /i* - u'®; XXlI...Spu = 0; 
which last equation shows, by (5.), that tlie rcy ia perpendicular (on Fresnel’s prin
ciples) to the elastic force Ss, produced by the displacement Sp,

' (7.) The equations XX. and XXI. show by XIV. that
XXIIL . . (p"2 —^)u = p-’, whence XXIV. ,. v = (p-® - ^)'* p"*; 

we have therefore, by XXII., the following Symholical Form (comp. (4.)) of the 
Equation of the Wave Surface,

XXV. ..O=Sp-'(^-p-’)-lp-l;
or, by transformations analogous to X. and XI.,

XXVI... 1 = Sp^ (<l>-p-^)-i p-'; XXVII... 1 = Sp (p^ - p ;
and we'see that we can return from each equation of the wave, to the corresponding 
equation of the index aurfaee, by merely changing p to p, and to : but this 
result will soon be seen to be included in one more general, which may be called tlie 
Rule ofthe Interchanges.

(8.) The equation XXV. may also he thus written,
XXVIII... Sp - p-s)->p = 0 ;

but under this last form it coincides with the equation 412, XLI.; hence, by 412, 
(19.), the IFave Surface may be derived from the auxiliary or Generating Ellipsoid,

XXIX. . . Sp^p = 1,
by the following Construction, which was in fact assigned by Fresnel* himself, bnt 
as the result of far more complex calculations:— Cut the ellipsoid {abc) by an arbi
trary plane through its centre, and at that centre enset perpendiculars to that plane, 
which shall have the lengths of the semiaxes ofthe section ;■ the locus ofthe extremi
ties ofthe perpendiculars so erected will be the sought wave surface.

* See Sir John F. W. Herschel’s Treatise on Light, in the Encyclopedia Me- 
tropolitana, page 545, Art. 1017.
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(9.) And wo see, by IX., that the Index Surface may be derived, by an exactly 
similar construction, from that Reciprocal Ellipsoid, of which the equation is, on 
the same pion,

— Dpfp

XXX... Sp^'*p = 1.
(10.) If the scalar equations, XXVII. and XI., of the wave and index surface, be 

;denoted by the abridged forms,
XXXI.. . fp = 1, and XXXII.. . Fp = 1,

then tho relations I. II. III. enable us to infer tbe expressions (comp, the notation in 
418, (2.)),

XXXIII.. . p = ; XXXIV. .. p = ;
SpDpfp SpDpFp’

in which (comp. 412, (36.), and the Note to that sub-article),

XXXV. .. JDpfp = (p2—pSp(ps—^■*)-*p=:—w— oj*p, 
and XXXVI. . . ^Dp,Fp = (p2 - ii^^p — p^p (p^ - = — u — v-p ;
V being the same auxiliary vector XV. as before, and-.w being a new auxiliary vec
tor, such that (by XXIV. XXVII. and IX. XV.),

XXXVII.. . <a = (^-1 - p2)->p = V i XXXVIII. . . Spu = - 1 i 
XXXIX. . . Spoi = 0; >

whence also la || 5p by XII., so that (comp. (8.)) if w be drawn (like p, p, and v) 
from the point o, t/iw new vector terminates on the tangent plane to the index sur

face, and is parallel to the displacement on the wave; also Sp :Se = ti); v.
(II.) Hence, by XXXIII. XXXV. XXXVIII.,

<0 + la^p &>■* + p
" xli...-p-i=p+w-*;

and similarly, by XXXIV. XXXVI. and XVI., 
tl + v'^p -tr p ,

■ ~~ ' or - p-i =p + v‘, as in XX. j

so that, with the help of the expressionsXV. and XXXVII. for w and to, the ray-vec
tor p and the t«dea;-«ector p ma expressed &s functions of each other: which func
tions are generally definite, although we shall soon see cases, in which one or other 
becomes partially indetenninate.

(12.) It is easy now to enunciate the rule ofthe interchanges, alluded to in (7.), 
as follows;—/» any formula involving the vectors p, p, v, <i>, and theyKnctionaZ 
symbol ij>, or some of them, it is permitted to exchange p with p, v with w, and 
with ; provided tliat we at the same time interchange Sp with (but not* gene
rally with Sp'), when either ^p or Se occurs.

XL. .

XLII..

* It is true tliat, in passing from II. to III. (instead of passing to XLIII.), wo 
may be said to have exchanged not only p with p, but aho Pp with Sp, But tww- 
ally, in the present investigation, Sp represents a small displaeemtnt (2.), which 
is conceived to have a dejinite direction, tangential to the wave; whereas Sp
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For example, we pass thus from XX. to XLI., and conversely from the latter 
to thc former; from II. we pass by the same rule, to the formula,

XLIII. . . &pSe = 0, which agrees by XVII. with XXII.;
and, as other verifications, the following equations may be noticed,
XtilV.. . fp = pVpSe i XLV... i£=pVpJp; XLVI. .. SpSt^SpSp.

(13.) The relations between tho vectors may be illustrated by the annexed Fi
gure 89; in which,

XLVII. . . op = p, OQ = p, 
on = V, ow = ta, 

and XLVIII... op'=-p-', 
oq'=-/!-*, ou'=-«■’, ow'=- 
in fact it is evident dn-inspection, 
that

XLIX. .. OP. op’ = OQ. otf
= ou. ou' = ow. ow’;

and the common value of these four scalar products is here taken as negative unify. 
(14.) As examples of such illustration, the equation XX. becomes p'o = qu'; 

XLI. becomes, oq' = w'p; XXIII. may be written as ta + p'> = p'^v, or as 
p'w ; on = p'o: OP; &c. And because the lines pq'u and qp'w are sections ef the 
tangent planes, to thc wave at the extremity p of the ray, and to the index surface 
at the extremity q of the index vector, mode by the plane of those two vectors p and 
ft, while op and Si (as being parallel to ta and v) have the directions of pq' and Qp'; 
we see that the displacement (or vibration) has generally, in Fresnel's theorj-,’ the 
direction of the projection of the ray on the tangent plane to the wave; and tliat the 
elastic force resulting has the direction ofthe projection of the index vector on the 
tangent plane to the index surface: results which might however have been other
wise deduced, from the formula> alone.

(15.) It may be added, as regards the reciprocal deduction of the two vectors p 
and p from each other, that (by XLI. XXXVIII., and XX. XVI.) we have the 
expressions,

L.. . - p-i = (o-*V<op, and LI.. . — p-i = w’lVv/t;

which, answer in Fig. 89 to the relations, that oq' is thc part (or component) of op, 
perpendicular to ow ; and that op' is, in like manner, the part of OQ -L- ou.

(16.) We have also the expressions,
LII.. . — p’t = ta-Wtod, and • LIII. . . — p'* = V*Vv(o,

which may be similarly interpreted; and which conduct to the relations,
LIV. . . — (Xvta')^ = v^p~^= ta^p~^ — Svta.

Hence, the Locus of each of the two Auxiliary Points u and w, in Fig. 89, is a Sur
face ofthe Fourth Degree ; the scalar equations of these two loci being,

LV. . . (Vv^vf + Sv^v = 0, and LVI. . . (Vw^’*a»)® + = 0 ;

continues, ,19 in (1<) to represent avy infinitesimal tangent to the index surface, 
while $e still denotes the elastic farce (2.), resulting from the displacement fp.
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from which it would be easy to deduce eonstruclions for those surfaces, with the help 
of tho two reciprocal ellipsoids, XXIX. and XXX.

(17.) Tho equations XII. XXII., combined with the self-conjugatc property of 
give

LVII.. . 0=S(i^-'p.dp), or LVni. .. O = SSp^.-'p;
> hence (between suitable limits of the constant), every ellipsoid of the form, 

LIX. . . Sp^'’p = h* = const.,
which is thus concentric and coaxal with the reciprocal ellipsoid XXX., being also 
similar to it, and similarly placed, contains upon its surface what may be called a 
Line of Tibration* on the ITave ; the intersection of this new ellipsoid LIX. with 
the ware surface being generally such, that the tangent at each point of that line (or 
curve) has the direction oi Fresnel’s vibration.

(18.) The fundamental connexion (2.) of tho/uncri'on with the optical con
stants, a, b, c, of the crystal, is expressed by the symbolical cubic (comp. 350, I., 
and 417, XXV.),

LX. ..(</> + a-i) + b:^} + c-») = 0;
from which it is easy to infer, by methods already explained, that if e be any scalar, 
and if we write,

LXI. . . B=(e-a-2) {e-c'*'),
wo have then this formula of inversion,

LXII. . . r(^ + e)-i = e’-e(fli + (i-2+6-a + c-»)-o-’6-Sc-2^-i.

(19.) ^hanging then e to - p'®, the equation XXVIII. of the wave becomes, 
LXIII... 0 = p"* + a"* + 5"* + c"® + Sp*'0p — a'^b'^c'^Sp^'ipi 

tho ITave is therefore (as is otherwise known) a Surface of the Fourth Degree: and 
(as is likewise well known), the Index Surface is of the same degree, its equation 
(found by changing p, 0, a, b, c to p, «-■, 6-i, c-i) being, on the same plan, 

LXIV. . . Q = p -I b"^ + cS .p ^~*p — a'^b^c^Sp^p.
(20.) These equations may be variously transformed, with the help of the cubic 

LX. in which gives the analogous cubic in
LXV. . . (^.->+ a^) (((.-I + 62) (^'1 + c2) = 0 ; ’

for instance, another form of the equation of the wave is,
■ LXV I. . . 0 = Sp^i-2p + (p3 + a2 + 62 + c'>) Sp^-ip - a-^b^c^; 

in which it may be remarked that Sp^'2p = (^->p)2 < 0, whereas Sp^"*p > 0.
(21.) Substituting then, for Sp^-’p in LXIil., its value 6‘ from (17.), we.find 

that this second variable ellipsoid, with h for an arbitrary’ constant or parameter, 
LXVII. . . 0 = (^.-ip)* + h* + a® + 62 p c®) - a’^b'^c^,

contains upon its surface the same line of vibration as the first variable ellipsoid 
LIX., which involves the same arbitrary constant h-, and therefore that the line in

* Such lines of vibration were discussed by the present writer, but by means of 
a quite'different analysis, in his Memoir of 1832 {Third Supplement on Systems of 
Rays'}, which was published in the following year, iu the Transactions of the Royal 
Irish Academy'. See reference in the Noto to page 737.
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question is a quartic curve, or Curve of He Fourth Degree, as being tho intersection 
of these two variable but connected ellipsoids: and that the wave itself is the locus 
ol all such quartic curves.

(22.) The Generating Ellipsoid (Spipp = J) has o, b, c for its semiaxes (a > 6 > c 
> 0) i and for any vector p, in tho plane of 6c, we have the symbolical quadratic 
(comp. 353, (9.)),

LXVnr. . . (^ + 6-’) (^ + c-*) = 0, or LXIX. . .-6-2c-20-i = ,|> + 5-»+c-2;
making then this last substitution for +5-* + c-* in LXIII., we find, for the sec
tion ot the wave by this priucipal plane of tbe ellipsoid XXIX., an equation which 
breaks up into the two factors,

IXX. .. p-i + a-« = 0, and LXXI... 1 - h-’c-’Sp^ ip - 0 j

whereof the jJrsf represents (the plane being understood) a circle, with radius —a, 
which we may call briefly the circle (a); while the second represents (with the same 
understanding) an ellipse, which may by analogy be called here the ellipse (a) : its 
two semiaxes having tbe lengths of e and 6, but in the directions of 6 and c, for 
which directions +6-*= 0 and 0 + c-’ = 0, rcspectivelyj so that Mis ellipse (a) is 
merely the elliptic section {be') of the ellipsoid {abc'), turned through a right angle 
in its own plane, as by the construction (8.) it evidently ought to be. And an ex
actly similar analysis shows, what indeed is otherwise known, that the plane of ca 
cuts tbe wave in tbe system of a circle (6), and an ellipse (6); and that tbe plane 
of ab cuts the same wave surface, in a, circle (c), and an ellipse (c).

(23.) The circle (a) is entirely exterior to the ellipse (a) ; and the circle (c) is 
wholly interior to the ellipse (c); but the circle (6) cuts the ellipse (f^, in four 
real pointa, which are therefore (in a sense to be soon more fully examined) cusps 
(or nodal pointa) on the wave surface, or briefly fFave-Cusps: and tho vectors p, 
Btty + Po and + Pl, which are drawn from the centre o to these/oar cusps, may be 
called Lines of Single Rag- Felocitg, or briefly Cusp-Rags, i

(24.) It is clear, from the construction (8.), that these lines or rays must have 
the directions of the cyclic normals of the ellipsoid {abc) ; which suggests our using 
here the cyclic forms,

LXXn.. . <I>p=gp-i- VXpX', and LXXIII... SpjSp = gp'^ + SXpX'p = 1, 
for the function 0, and the generating ellipsoid (8.); X' being written, to avoid con
fusion, instead of the p of 357, &c., to represent the second cyclic normal.

(25.) Changing then p to X', v to p, and y to g-p-^, in the expression 861, 
XXVIL for Fv or ; equating the result to zero, and resolving the equation so
obtained, as a quadratic in y; we find this new form of the j^yuafton XXVIII. of the 
lyave.

LXXIV. . . yp2 = 1 + SXpSX'p ± TVXpTVX'p j
the upper sign belonging to one sheet, and tbe lower sign to tbe other sheet, of that 
wave surface. The new equation may also be thus written, as an expression for tho 
inverse square of the ray-velocity Tp, or of the radius-vector, say r, ol the wave,

LXXV... r* = Tp-*=eo3 4 T £

because, by 406, (2.), (6.), Stc., '
LXXVI.. .a-s=-y-TXX', 5~2 = -y+.SXX', c2 = -y+TXX'i
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and we have the verification, for a cusp-ray (23.), that 
LXXVII... r*=6’’, or r=Tp=±6, if pHXorX'.

(26.) If we write (comp. XXXI.), 
LXXVIII. .. fp =— P'S(1 + Sp^p) + a'56-’c'*Sp^'*p,

, tho equation LXIII. of tho wave takes the form, 
LXXIX. . . fp = a*® + 6-2 + C-’ = const.;

.and we have tho partial derivative (comp. XXXV.), 
LXXX. . . JDpfp = p'’(l+ Sp^p)-p-®^p+a‘®h‘®c’’0’'p

= p-® (I - V p^p) + a*’6-®c-s^-*p i 
which gives hy XXXIII. the expression,

p"’ (Vp0p — 1) — a~^b-^c;*ij>~^
>LXXXI. . . p - p-2^„-2J-3c-8Sp^-lp

and therefore a. generally definite value (comp. (11-)) for the index vector p, when 
the ray p is given.

(27.) If the ray be tn the plane ot ae, then (comp. LXIX.), 
LXXXir. . . ^p + (tr* + c'’) p + a"’<r2^"’p = 0, 

whcnco LXXXIII. . . Vp^p = —a'^c’^Vp^'ip = a"*c'^2(Sp^ ’p — p^"*p)5 
and therefore by LXXXI.,

T VXXIV ~ ~LiAAAiv. . • I‘-6-2(Sp^-ip_a2c2) + (p-2 + 6-»)aM’

an expression which gives, definitely,
..p = -p-\ if LXXXVI.. . p-« + b-t = 0, 

but not LXXXVII. . • Sp(fi~^p ~ a^ct,
that is (comp. (22.)), if the ray terminate on the circle (b), at any point which is 
not also on the ellipse (6); and with equal definiteness,
LXXXVIII. . . p =-artc-^^-'p, if LXXXVII. but not l.XXXyiI. hold good, 

that is, if tlie ray terminate on the ellipse- (6), (it any point which is not also on tho 
circle,

(ii,") The normal then to the waoe, in each of the two cases last mentioned, co-
• ineides with the normal to the section, made by the plane of ac; and if we abstract 

for a moment from the cusps (23.), we see that the wave is touched, along the circle 
(ft), by the concentric sphere LXXXVI. with radius = b, which we may call the 
sphere ; and along the ellipse (6) by tho concentric ellipsoid LXXXVII. which 
may on the same plan be called the ellipsoid (6).

(29.) An exactly similar analysis shows that the wave is touched along the cir
cles («) and (c), by two other concentric spheres, with radii a and c, which may bo 
briefly called the spheres (o') and (c) ■, and along the ellipses (a) and (c) by two other 
concentric and similar ellipsoids, which may by analogy bo called the ellipsoids (a) 
and (c). And by comparing the equation LXXXVII. of the ellipsoid (ft) with the 
form LIX., we see that the three elliptic sections (a) (6) (c) ofthe wave, made by 
the three principal planes of the generating ellipsoid (fibs'), are lines of vibration 
(n.')', the constant /? receiving the. three values, ft’c’, c^a®, a^b^, for these three 
ellipses respectively.
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(30.) But at a cusp the two equations LXXXVI. and LXXXVII. coexist, and 
the expression LXXXIV. for p takes thc indeterminate form ; in fact, there is in 
this case no reason for preferring either to the other of the two values, within the 
plane of <rc,

LXXXIX. . . /I = - po-i, XC...p = po, if XCI.. . //o = - ;
in which po is the cusp-ray and t,\io first value of p corresponds to the circle,
but tbe second to tbe ellipse (6).

(31.) The indeterminarion of p, at a wave-citsp, is however even greater than 
this. For, if we observe that the equations LXXIX. and LXXX. give, for this case, 
by LXXXIII. LXXXVI. LXXXVII.,

XCII. .. fpo=<r* + i"*+C-®, and XCIII... Dpfp = 0, for p — po,
we shall see that if p be changed to pof p' in tbe expression LXXVIII. for fp, and 
only terms whicli are ofthe second dimension in p' retained, the result equated to zero 
will represent a cone of tangents p , or a ranpenl Cone to the IVave at the Cusp : 
which cone is of the second degree, and every- normal p to which, if limited by the con
dition I., is here to be considered as.one value ofthe vector p, corresponding to tho 
value Po of p.

(32.) And it is evident, by the law (12.) of transition from the wave to the in
dex surface, that if + vg, +vi be the lines of Single Normal Slowness, or tho four 
values of p which are analogous* to tho four cusp-rays 4 po, 4 pi (23.), then, at tho 
end of each such new line, there must be a Conical Cusp on the Index Surface, ana
logous to the Conical Cusp (31.) on the Wave, which is in like manner one ofyhur 
such cusps.

(33.) In forming and applying the equation above indicated (31.), ofthe tan
gent cone to the wave at a cusp, the following transformations are useful:

XerV.. . -Cp + p')-2 = - p-2(l + p-'p')-' (1 + p'p-‘)-i 
r=-p-^ + 2p-i^p'p-i + p-^p'^ - 4p-o(Spp')2 + &c.,

the terms not written being of the third and higher dimensions in p', and p, p' being 
any two vectors such that Tp'<Tp (comp. 421, (4.)); also, without neglecting any 
terms, thc self-conjugate property of gives (comp. 3G2),.

XCV.,. S(p + p') (^(p + p') = Sp^p + 2Sp'<lip + Sp'4>p',
with an analogous transformation for the corresponding expression iu ; while tho 
cubic LX. in or LXV. in gives for an arbitrary p,

XCVI. . . ^(^ + a"^) 4 e-^)p=: — b - (^ + a**) (^ + c‘’)p,
XCVII. . . ^'*(^ +e'^) (^ + c-2)p = —6’(^4a'’) (04c‘’)p;

and therefore, among other transformations of the same kind, •
XCVIII. .. (^> 4o-’)2 (^>4 c-2)»p = (a-» - b-‘‘') (c-a^- 6-«) 4 a ’) 4 6-’)p.

* This word “ analogous” is here more proper than “ coiTcsponding”; in fact, 
the evgpt on each of the two surfaces will soon be seen to correspond to circles on 

he other, in virtue of the law of reciprocity.
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Wo have also for a cusp, the values,
XCIX.. . ^po = po ~ (a** + po i XCIX*... l + Spo^po=(a’^ + c'5)6*

C.. . p(i^ = a’*c-iS(>i,/j>-^pQ = a-^^c-^~(a-^ + c-2).
(3*i.) In this way the equation of the tangent cone is easily found to take thc 

form,
CI... 0 =6’Sp'(4. + «-») (j>+ c-^yp'-i^p'poSp'po

and to give, by operating with Dp'(comp. (10.) (26.)’(31.)),
CII. .. a/» = 6<(^+ art) (^^^c-t)p'— 2puSp'po— ^po^p'pot

tho scalar coefficient st being determined, for each direction of the tangent p’ to thc 
wave at the cusp, by tho condition I., which here becomes (31.),

CIII... Sppo=Spopo=-li
also, by CII., &c., we have after some slight reductions,

CIV.. . iSppo= 2(62Sp'po + Sp'po) ; 
CV. . . xSju/io = 2(Sp'/io—po’Sp'po);

CVI. . . = 4(J’/io^ + 1) Sp'poSp'po+ ^(po^P’ftO'^PoSp'po^t
= — 4d® (Sp'po)’ + 4 (Jt-jlfr 1) Sp'poSp'po + ipo^ (Sp po)’;

but this last expression is equal, by CIV. CV., to — .-r’SppoSppo! the equation of 
tho cone o/perpendiculars, let fall from the wave-centre O on tho tangent planet at 
the cusp, takes then this very simple forpi,'

CVII. . .

so that this cone at the second degree has the two vectors po and po ht once for sides 
and cyclic normals (comp. 406, (7.)); and it is cut, by the plane CIII., in a circle, 
oi which tho diameter is,

CVin. . . T (po + po-’) (Tpo^ - 6-*)‘ = b (b-t - a-’)l (c’’ - 6 3)1; 
and therefore subtends, at tho centre o, and in the plane of ac, tho any/e,

CIX, . . Z = tan-t. bt (b-* - a-s)! (c-» - 6-3)1.

(35.) And by combining the equations CIII. CVII., we see that this circle (84.) 
is a small circle o^ the sphere,

ex.,. p3 ss Sppo, or ex«.. Sp-ipo — 1

which passes through the wave-centre, and has tho vector po for a diameter, passing 
also through the extremity of the vector - po*’.

(30.) This circle is, by III., a curve of contact of the plane CIII. with tho sur
face of which p is the vector, because every vector p of the curve corresponds, by 
(31.), to the one vector po of the wave; it is therefore one of Four Circular Ridges on 
the Index Surface, the three others having equal diameters, and corresponding to 
the three remaining cusp-rays, — po, pi, — pi (23.); and there are, in like manner, 
Four Circular Ridges on the Wave, along which it is touched by the four planes,

CXI.. . SpPo=—1, Spi'o = + 1, Spvi=-1, Sp»'i = +1,
± Vo, ± Pl being the four lines introduced, in (32.); also tho common length of the 
diamefers, of these four circles on the wave, is (comp. CVIII.),

CXII.. . T(tro + Po’O = (Too” -= i*’ («’- &’)» (J’ - c’)l, 
where CXIII,.. oo = - CXIV.., Tpq=ft i, and CXV... Spo^o=-1;

5 c

1
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finally, — Vq"* and Oq are the two values* of p, in the plane of oc, for tho first of tho 
four new circles: and the angle between those two vectors, or the angle which thc 
diameter of the circle, iu thc same plane, subtends at the wave-centre, is (comp. 
CIX),

CXVI. . , L — = tan-’. b'^ - 6«)1 (i’ - c«)5.
’'o

{ST.") In the recent calculations (33.) (34.), the circle of contact (36.) on the 
index surface was deduced from the tangent cone at a wave-cusp, as a section of a 

■ certain cone of normals CVII. to that tangent cone CI., made by the plane CIII.; 
but tbe following is a simpler, and perhaps more elegant method, of deducing and 
representing tbe same drcZe by means of its rector equation (comp. 392, IX. &c.), and 
without assuming ang previous hnowledge of the character, or even the existence, of 
that conical wave-cusp.

(38.) In general, by eliminating the auxiliary vector v between XX. and XXIII., 
we arrive at tbe following equation,

CXVII. .. (^ -p-?^(;fc+ p-')-’ = p-’ ;
which bolds good for everg pair of corresponding vectors p and p, of the wave and 
index surface. And in general, this relation is suffident, to determine the index
vector p, when the ray-vector p is given: because (q> + e)’iO is generally = 0.

(39.) But when e is a root of the equatioA jB=0,,with the signification LXI. of 
E, then, by thc formula of inversion LXII., the symbol (^ + e)"*0 takes tho indetermi
nate form J; and therefore, for. everg point of each of the <Aree drcles (a) (6) (c) of 
the wave, the formula CXVII. fails to determine p: although it is owZy at a cusp 
(23.), that tho vaZae of p becomes in fact incZetcrminate (comp. (27.) (28.) (29.) 
(30.) (31.)).

(40.) At such a cusp (p = po), the equation CXVII. takes the symbolical form,

CXVIII. . . (p + Po-')-’ = (^ + 6-^)“'po”' = (pa + Po"')-' + (0 + b‘^)-t 0;

Po retaining its recent signification XCI., and the symbol (0 +6'*)-«0 denoting any 
vector ot the form gP, it bo thc mean vector semiaxis ot tho generating ellipsoid 
XXIX., so that

cxix... s/3^j3=1, (^ + 6-») (8=0, = b.

(41.) Writing then for abridgment (comp. XX.),

CXX... Vf,= ~ (p^ + po*’)"')

the Vector Equation ot the Index Eidge (36.) is obtained under tho sufficiently 
simple form,

CXXI. . . Vi3(/* + Po-')-' + V^t/o = 0 ;
and this equation does in fact represent a Circle (comp. 296, (7.)), which is easily

• It is not difficult to show that these ore the vectors of two points, in which the 
circle and ellipse (b), wherein the wave is cut by the plane of ac, are touched by a 
common tangent.
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proved to bc thc tame as the circular section (31.), of the cone CVII. hy thc plane 
cm.; its diameter CVIII. being thus found anew under tlie form,

CXXII.. . T«o-i=iTVXX’ = 6(6-s-a-2)i (c-»-6-s)l,

with the significations (2-1.) (25.) of X, X’; in fact we have now the expressions,
CXXIII. . . po= 5UX, vo=po-'(VXX')-',

witli the verification, that

eXXIV. . . (?. + 5-s)Uo = XSX'uo+X’SXwo = 6-'UX = -Po‘'-
(42.) And by a precisely similar analysis, wo have first the new general rela-. 

tion (comp. CXVII.), for any two corresponding vectors, p and y,

eXXV.. . (?!-•-,<-’) (p + /i->)-« =K’ i

and then in particular (comp. CXVIII.), for p = vq,

eXXVI. . . (p + v„-')-> = (ji-> +5’)-’vo-> = (<ro + »'o-‘)'‘+ (^-‘ + i’)->0;
so that finally, if we write for abridgment (comp. XLI. CXX.),

CXXVn. . . too = - (<ro + vo'O'*.
tho 1 ’ector JSguation of a Ifave-Ridge is found (comp. CXXI.) to he,

cxxvni. K. + Vo*’)-’ + V/3(Oo = 0,

j3 being still (as in CXIX.) the mean' vector semiaxis ot the generating ellipsoid 
{Sp^p = 1): and the diameter CXII., of this circle o/co«facf of the tcaee with the 
first plane CXI., is thus found anew (comp. CXXII.), without ang reference to cusps 
(37.), as the value of Two"’.

(43.) Several of tho foregoing results may he illustrated, hy a new use of tlie 
last diagram (13.). Thus if we suppose, in that Pig. 89, that we have the values,
CXXIX. . . op = po, OQ=yo, ou = V0, whence CXXX. .. op'= — &c.,

then the index-ridge (36.), corresponding to the wave-cusp p (23.), will be tho cir
cle which has p’q for diameter, in a plane perpendicular to the plane of the Figure, 
which is here the plane of ac; the cone of normals p (34.), to the tangent cone to the 
wave at p, has the wace-centre 0 for its vertex, and rests on the last-mentioned circle, 
having also for a subcontrary section that second circle which has pq’ for diameter, 
and has its plane in like manner at right angles to the plane of poq ; also if r and s 
be any two points on tho second and first circles, such tliat ons is a right line, namely 
a side n of the cone here considered, then the chord pr of tho second circle is per
pendicular to this last line, and has the direction ot the vibration Sp, which answers 
here to the two vectors p (= pf) and p : because (comp. (14.)) this chord is perpen
dicular to p, but complanar with p and p.

(44.) Again, to illustrate the theory of the wave-ridge (36.), which'corresponds to 
a cusp (32.) on tho index-surface, we may suppose that Mis cusp is at the point Q 
in Fig. 89, writing now (instead of CXXIX. CXXX.),

CXXXI. . . OQ = Vq, op = (To, oi?= Wfl, oq' = - Pq-', &c. ;

for then the ridye (or circle of contact') on the wave will coincide with the second circle 
(43.), and the cone of rags p from o, which rests upon <Ais circle, will have the/rst 
circle (43.) for a sub-contrary section : also thc vibration, at any point R of tho wave-
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ridge, will have the direction of the chord rq', for reasons of tho same hind os be
fore.

(45.) Let K and k' denote the bisecting points of the lines pq’ and qp', in tho 
same Fig. 89 ; then k' is the centre of the index ridge, in the case (43.); while, in 
the case (44.), k is the centre of the wave-ridge.

(4C.) In the first ot these two cases, the point k is not tlie centre ot ang ridge, 
on either viaxo or index-surface; but it is tbe centre of a certain suicontrarg and 
circular section (43.), ofthe cone with o for vertex which rests upon an index-ridge; 
and each of its chords rn lias thc direction (43.) of a vibration Spo, at the toaoe-cusp 
p corresponding: so that this cutp-vibration revolves, in the plane ot the circle last 
mentioned, with exactly half the angular velocity ot the revolving radius KR.

(47.) And every one of those cusp-vibrations Spo, which (as we have seen) aro 
all situated in one plane, namely in the tangent plane at the cusp p to the ellipsoid 
(5) of (28.), has (as by (14.) it ought to have) the direction of the projection ofthe 
cusp-rag po, on some tangent plane to the tangent cone to the wave, at that point i’: 
to the determination of which last cone, by some new methods, wo purpose shortly 
to return.

(48.) In the second ot the two cases (46.), namely in the case (44.), pq' is a 
diameter of a wave-ridge, with k for the centre ot that circle, and with a plane (per
pendicular to that of tlie Figure) which touches tho wave at everg point of the some 
circular ridge; 'and the vibration, at any such point B, has been seen to have tho 
direction of the chord rq', which is in fact the projection (14.) of thc ray or upon 
the tangent plane at R to the wave.

(49.) And we see that, in passing from one point to another of this wave-ridge, 
the vibration v-f revolves (comp. (4G.)) round the fixed point q' of that circle, 
namely round tho foot of tlie perpendicular from O on thc ridyc-p/ane, with (again) 
half the angidar velocity ot the revolving radius KR.

(50.) These latvs ot the two sets of vibrations, at a cusp and at a ridge upon the 
wave, aie Intimately connected with the two conical polarizations, which accompany 
the two conical refractions,* external and internal, in a biaxal crystal; because, on 
the one hand, the theoretical deduction of those two refractions is associated with, 
and was in fact accomplished by, the consideration of those cusps and ridges; while, 
on the other hand, in the theory of Fresnel, the vibration is always perpendicular

* The writer’s anticipation, from theory', of the two Conical Refraclions, was 
announced at a general meeting of the Royal Irish Academy, on the 22nd of Octo
ber, 1832, in the course of a final reading of that Third Supplement on Systems of 
Rays, which has been cited in a former Note (p. 737). The very elegant experi
ments, by which his friend, the Rev. Humphrey Lloyd, succeeded shortly afterwards 
in exhibiting the expected results, are detailed in a Fhper On the Phenomena pre
sented by Light, in its passage along the Axes of Biaxal Crystals, which was read 
before the same Academy on the 28th of January', 1833, and is published in thc 
same First Part of Volume XVII. of their Transactions. Dr. Lloyd h .s also given 
an account of the same phenomena, in a separate work since published, under tho 
title of an Elementary Treatise on the ITave Theory of Light (London, Longman 
and Co., 1857, Chapter XL).
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to thc plane of polarization. But into the details of such investigations, wc cannot 
enter here.

(51.) It is not difficult to show, by decomposing p' into two other vectors, p/ 
and P3', perpendicular and parallel to the plane of ae, that we have the general trans
formation, for ang vector p',

CXXXII... 5iSp'(<n-fl-2) (i/i+c-s)p'=(SpoPop')’;
tho equation CI. of the tangent cone at . a. wave-cnsp may therefore bc thus more 
briefly written,

CXXXIII. . . (Spopop')’ =4Spop'Spop'i
and under this form, the cone in question is casilj' proved to bc the locus of the nor- 
mals from tho cusp, la tliat other cone CVII., which'has p for a side, and the wave
centre o for its vertex : while the same cone CVII. is now seen, more easily than in 
(31.), to be reciprocally the locus of the perpendiculars from o ou the tangent planes 
to the wave at the cusp, in virtue of the new equation CXXXIII., of the tangent 
cone at that point,

(52.) Another form of tho equation of tlie cusp-cone may be obtained as fol
lows. Tho equation LXXIV. of thc wave may be thus modified (comp. LXXVI.), 
by tho introduction of the two.non-opposite cusp-rays, po = 5UX (CXXIII.), and 
pi = 5UA':

CXXXIV... 2a5J’c3 + (aS + «») J»pS f («« - c«) Spop. Spip
= +(o«-c2)TVpop.TVp,p;

where it will be found that the first member vanishes, as well as the second, at tho 
cusp for wliich p = po.

(53.) Changing then p to po + p', and retaining only terms otfirst dimension in 
p' (comp. (31.)), we find an equation ot unifocal form (comp. 359, &c.),

CXXXV. . . Sfiop' = + TVaop', or CXXXV'.. . (VnoP')® + (S/SoP')* = 0 i 
with the two constant vectors,

CXXXVI... ao = (5-« - »-«)> (c-2 - 5-a)! ; CXXXVI'. ..I3o=po- Po'' i
and this equation CXXXV. or CXXXV’. represents the tangent cone, with p' for 
side, SPop' being positive for one sheet, but negative for the other.

(64.) As regards the calculations which conduct to tho recent expressions for 
ao, Po, it may bo sufficient here to observe that those expressions are found to give 
the equations, .

CXXXVII.. . 2a’6’c’ao = («’ - «’) PoTVpopi;
CXXXVir. . . ia^bteipo = 2 («« + c’) b^po + («’-•«’) (P«SpoPi - b^pi) ;

and that, in deducing these, we employ tbe values,
52SXX' .... 6»TVXX';CXXXVIIT. .. Spop,= TVpopi = -,j^-;

together with the formula XCIX., and tho following,

CXXXIX.. . ^ (po- pi) = - (Po - Pi)! (Po + pi) = -CPo + Pl)'
(55.) It is not difficult to siiow that the equationCXXXV. or CXXXV'., ofthe 

tangent cone nt a cusp, can bo transfonned into the equation CXXXIII.; but it
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may be more interesting to assign here a geometrical interpretation, or conslructioti, 
of the ttni/ocal form last found (53.).

(56.) Retaining then, for a moment, the use made in (48.) of Fig. 89, ns serv
ing to illustrate the case of a wave-cusp at p, with thc signification (45.) of thc new 
point k' as bisecting the line p'q, or as being the centre of the index-ridge; and 
conceiving a parallel eone, with o instead of p for vertex, and with a variable side 
ot = p'; then the eusp-ray op (= p„ || «o) is a focal line ot the new cone, and tho 
line ok' (= i (Po “ Po'*) = iPo) t**® directive normal, or tho normal to the director 
plane corresponding; and the formula CXXXV. is found to conduct to the follow
ing.

CXL. . . cos k'ot = sin pok' sin pot,
which may be called a Geometrical Equation ofthe Cusp-Cone: or (more im
mediately) of that Parallel Cone, which has (as above) its vertex removed to tho 
wave-centre o.

(57.) Verifications of CXL. may he obtained, by supposing thc side OT to be 
one of tho two right lines, pi', pi, in which tbe cone is cut by the plane ottho figure 
(or of ac); that is, by assuming either

eXLI.. . OT = pi' = po + po'’||oa, ot CXLI'.. . OT = p2'=po-Ppo-il|owj 
and it is easy to show, not only that these two sides, ou, ow, make (as in Fig. 89) 
an oltuse angle with each other, but also that they belong to one common sheet, of 
the cone here considered, because each makes an acute angle with the directive nor
mal o>k'.

(58.) Another way of arriving at this result, is to observe that the equation 
CXXXIII. takes easily the rectangular form,

CXLII. .. (Sp'(Upo + Upo))*'=(Sp'(t^Po-Upo))’4 TpoPoCSp'UpoPo)*; 
the internal axis of the cusp-cone has therefore the direction of'Upa -1- Upa, that is, 
of the internal bisector ot the angle poq, while tho external bisector of the same 
angle is one of the two external axes, and the third axis is perpendicular to the plane 
efPo. Poi but Sp'(Upo+Upo)<0, whether p'= pi', OT=pii and therefore these 
two sides, pi and pe', belong (as above) to one sheet, because coc/i is inclined at an 
acute angle to the internal axis Upo+Upo.

(59.) It is easy to see that the second focal line of the parallel eone (66.) la po, 
ot OQ; and that the second directive normal corresponding is the line ok (45.), in 
the same Fig. 89 ; whence may be derived (comp. CXL.) this second geometrical: 
equation ot the cone at o,

CXLIII. .. cos KOT=sin KOQ sin QOT; with koq=pok'.
(GO.) And finally, as a bifocal but still geometrical form of the equation of the 

cusp-cone, with its vertex thus transferred to o, we may write,
eXLIV, .. L POT + ZQOT = const. wou.

(Cl.) legitimate form of any one of the four functions, ^p, 
Spiji^p, when treated by rules cf the present Calculus which have been already 
stated and exemplified, not only conducts to thc connected forms of the three other 
functions of the group, but also gives tho corresponding forms of equation, of thc 
If 'dve and the IndeX’Surface,
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(62.) For instance, with the signifiontions (32.) of vo and vi, tlie scalar func
tion wliich is = 1 in tho equation XXX. of tlie Jteciprocal Ellipsoid (9.),
may bc expressed by thc following cyclic form, with I'o, vi for the cyclic normals ot 
that ellipsoid,

CXLV. . , Spji-^p = - 6’p® + (a- — c®)65SvopSrip;

, reciprocating which (comp. 361), we are led to a bifocal form ot the function 
Sp^p, which function was made = 1 in the equation XXIX. of the Generating Ellip
soid (8.), and is now expressed by this other equation (comp. 360, 407),

• • (7r^,CSp«ip + 6-V) = CSrop)’ + (Sv,p)2-2 ^-5^^-SropS,z.p;

t'a, vi being here the two (real) focal lines of the same ellipsoid (8.), or of its (ima
ginary) asymptotic cone.

(63.) Substituting then these forms (62.), of Sp^p and Sp^‘’p, in the equation 
LXIIL, wo find (after a few reductions) this new form of the Equation of the 
lydve:

CXLVII. .. (2p^ - c*) SrepSmp + o’ + c’)’ = (o’ - c’)’ {1 - (Sr„p)2}
{l-(Snp)’};

whence it follows at once, that each of the four planes CXI. touches the wave, along 
the circle tn which it cuts the quadric, with vo, vi for cj’clic normals, which is found 
by equating to zero the expression squared in the first member of CXLVII. For 
example, thejdrst plane CXI. touches the wave along that eirele, or wave-ridge, 
of which on this plan the equations arc,

CXLVIII... Svop + 1 = 0, 2p» + (o’ - c‘>'') Svip - («’ + c^) Svop = 0; 
and because

eXLIX. . . ^(i/o +vi) = —o-2(ro + vi), 0 (,Va — ri}=-c-^(yQ - vi), 
and therefore, with the value CXIII. of oo,

CL. . . Oo = ~ o’c’^vo = i ((o’ + c’) j/fl - (o’ — c’)i'j),
tbe second equation CXLVIII. represents (comp. CX.) the diacentric sphere,

CLI... p’ = Strop) or CLP... Strop”’ = !>
which passes through the wave-centre o, and of which the ridge here considered is a 
section. The diameter ot that ridge may thus he shown again to have the value 
CXII.; and it may be observed that the circle is a section also of tbe cone,

CLII... SvopSooP = - or CLIP... SvopSooP"* = — 1.
(64.) It was shown in (17.) that the vibration Sp, at any point ot the wave

surface, or at the end of any ray p, is perpendicular to q>-^p, as well as to p by II.; 
and is therefore tangential to the variable ellipsoid LIX., as well as to the loave itself. 
Hence it is easy to infer, that this vibration must have generally tbe direction of the 
auxiliary vector oi, because not only Spa» = 0, by XXXIX., but also Sa<{i'’p 
= Sp^-'o) = Spy = 0, by XXII. and XXXVII. Indeed, this parallelism of Sp to w 
results at once by XXXVII. from XII-

(65.) If then we denote by S'p an infinitesimal vector, such as pSp, which is tan
gential to the wave, but perpendicular to the uilration Sp, the parallelism Sp || w 
will give.
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CLIII. . . S'fi = flip II J- p, because CLIII'. . . Sp;i(u = 0;

whence CLIV.. . Sp3p = 0, 5'Tp=:0, or CLV... Tp = r= const.,

for this new direction S'p ot motion upon tbe wave.
(C6.) And thus (or otherwise) it may be shown, that tho Orthogonal Trajecto- 

riet to the Lines of Vibration (17.) are the curves in which the JVava is c«f by 
Concentric Spheres, such as CLV.; that is, by the spheres p’ + r’ = 0, in which the 
radius r is cozjstant for any one, but caries in pasang from ono to another.

(67.) The spherical curves (r), which aro thus orthogonal to what we have 
called the lines (/i) of vibration, are spAero-contes on thc wave; either because each 
such curve (r) is, hy XXVIII., sitnated on a concentric and quadric cone, namely, 

CLVI. . . 0 = Sp(^ + r-2)-'p;

or because, by XXVII., it is on this other concentric quadric,
CLVII.. . - 1 = Sp(^-> +r2)-ip.

(08.) It is easy to prove (comp. LXXV.)) that, for any real point of tho wave, 
r’ cannot be less than c’, nor greater than a®; and thal^ the squares of the scalar 
semia.xes ofthe now quadric CLVII. are, in algebraically ascending order, r’ - a’, 
r’ — b-, r^ ~c^; so that this surface is generally an hgperboloid, with one sheet or 
with two, according as r > or < A.

(69.) And wc see, at the same time, that the eonftgale hgperboloid,
CLVIII.. . + 1 = Sp (^-’ + r2)-i p,

which has two sheets or one, in the same two cases, r > b, r < b, and has (in descend
ing order) tho values,

CLIX. . . a’ - r% b<! - r-^, ci - r«,

■ for the squares of its scalar semiaxes, is confocal with the generating ellipsoid 
XXIX.; 80 that the quadric CLVII. itself is the conjugate of such a confocal,

(70). To form a distinct conception (comp. (67.)) of the course of a curve (r) 
upon tho wave, it may be convenient to distinguish the Jive following cases :

CLX. . . (n).. r = 0 ; . .r<a, >b‘, (y).. r = 6; (J)..r <b, >o; (r).. r = c.
(71.) In each of the three cases (a) (y) (t), the conic (rj becomes a circle, in 

one or other of thc three principal planes: namely the circle («), for the case (a); 
(b) for (y); and (c) for (e).

(72.) In thc case ((3), tho curre (r) is one of double curvature, and consists of 
two closed ovals, opposite to each other on the wave, and separated by the plane (o), 
which plane is «oZ (really) met, in any point, by the complete sphero-conic (rj; and 
.cac/4 separate oval crosses the plane (bj perpendicularlg, in two (real) points ol tho 

• ellipse (bj, which are external to the circle (bj : while the same o»aZ crosses also tho 
plane (cj at r/yZd angles, in some two real points of the ellipse (c).

(73.) Finally, in the remaining case (5), the ovals«are separated by the piano 
(cj, and each crosses the plane (bj at right angles, in two points of tho ellipse (b), 
which aro interior to tho circle (bj ; crossing also perpendicularly the plane (o), in 
two points of the ellipse (a).

(74.) Analogous remarks apply to the lines of vibration (hj-, which are either 
the ellipses (a) (bj (cj, or else orthogonals to the circles (a) (6) (c), and generally 
to the sphero-eonics (rj, as appears easily from foregoing results.
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(75.) It in.iy be here observed, tliat tvhen tve only know the direction (Vji), 
but not thc Iciigili of an inder-vcctor /i, 80 that tve have two parallel tatiffcnt 
planes to the ware, atone common sitle o[ the centre, the directions of the uibrulion., 

‘I'ff’-'' generally for these two planes, according to a lata which it is easy to as
sign as follows.

(7C.) Thc second values of p and Sp being denoted by p, and fp„ we have, hy 
the equation IX. of tho index-surface, these two other equations: ‘

CLXI. . . 0 = Sp(^>->-;*-’)-ip; CLXI'. . . 0 = Sp (^ i - p,-=)-‘p ;

of which tho diflercuce gives, suppressing thc factor p/s —p ’,

CLXII. .'.Or-. Sp -p-^y^p ;
or CLXir. . . 0= S— p'^)‘* p (^1"'—/t/’)'*p,

because —p/^)"', as a functional operator, is self-conjugate, so that p may be 
transferred from one side of it to the other; just as, if be such a self-conju
gate function of p, then v'‘ — Si'ipp = Sp^o = Spi/i-p, &c.

(71-) But, by VIII., wo have the parallelisms,

CLXIII...5p II («>-'-p-2)->p; CL

iienco, by CLXII'., wo have thc very simple reh Bit I

CLXIV. . .SSp Cl ,
I 

that ia, the two vibrations, in the tivo parallel pl^ s, u< ii'Im j i i,
(78.) The following quite different inethoil 

only proving anew this haown relation of rectan 
ternion e.vpressto:is for the tioo directions separa 
of leading easily to vhat appe.ars to he a new am 
simpler in some respects than tlie Anntcn one, ii li

(79.) By thelir.st principles of Kresners tlicorVf 
on any one tangent plane to the wave, is situafedlH lit tm 
which contains the direction (cf) of the elastic hftH t i 
Equation of Complanarity, L

CLX'V. . . Sp ^p df h’ ft

(80.) IVe have then, by II. and V., tho system iff t w luu «i|

CLXYI... SpSp== 0, Sp.V'i V,

comparing which with the equations of the same fifth,

S)'r = 0, Si'r54r=Bb

we derive at,once the following Construction, ta/iicA wuttul 
orem:— f

“ At either of the two points Q of the Ilecipror 
plane at which is parallel to that at the ginen poin 
the Lines of Cnroature on the Ellipsoid arc paral t th 

. libration on the ll'avenamely, to one at that g 
at the other point p', on the same side of the centre 
parallel to each of the tvvo others above mentioned.

5 D 1

I ’‘»«l
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(81.) Thus for «ae/i ofthe two points p, p' the lino of vibration is parallel to 
one ol tlie lines of enreature at Q; and it is evident, from what precedes, that the 
other of these l.'i'l lines has the direction of the corresponding Orthogonal (GC.) at 
p or p': nor is there any danger of confusion.

(SS.) As regards quaternion expressions, for the two vibrations on a i/iorn wave
front, the sub-article, 410, (8.), with notations suitably modified, shows by its for
mula? XIX. XXII. that we have here the equation^

CLXVII. . . 0 = SpSp t’obp VI
= Sp op Vo Si'i op + Sp op vi .Si’Q tp,

and CXVin. . . op || UVpi't, + O'Vpvi,
if Po, Pl be, as in earlier formula? of the present Series 422, the cyclic normals of the 
reciprocal ellipsoid, which are often called the Optic .‘Lees of the Crystal.

(8.3.) And hence may be deduced' the hnown construction, namely, that “ for 
any given direction of wave-front, the two planes of polarization', perpendicular 
respectively to the two vibrations in Fresnel’s theory, bisect tho two snpplcmentary 
and diedral anole.e, which thc two optic axes subtend at the normal to tho front 

internally and externally, the angle be-
* - - . I1

t* I

I b I

U 1

« ra to remark, that if p and p, bo any two in- 
the same c/irection, but not the same length, the 
ih the two converse relations:

; CLXIX'. . . aicTp = CSp,'l>p,) i.
Ip, p to a’2, b'^, c-^, p, or by treating tlie 
p ofthe JKavc, as WO have just treated the 
Surface, in the same sub-article (19.), we see 
trial rays (Up, = Up), then,

Jfi-*p) i, or, aftcTp,-! = (Sp^'lp)!;

<”■> a5cTp-> = (Sp,^-ip,)l.

♦jiinetrical consequence may bo deduced from 
• fh the equation LIX. of that variable ellipsoid, 
I' 'ineof vibration (/i). For if we introduce this 

lit lead of Tp, to denote the length ot tho second 
II take this simple form,

: , . . r^ = abch-t,
• , imil^ th together constant, or together variable ; and

< h t.i^ on the other Sheet, and conversely the latter
in one Sheet of the ff'ace is projected into an

11
/!•//« •

/.wr/
Tm tf a »j ’ <f| 
/ Il <1 jt H / i

'•< I, (1 10VI ifiiik-ed, ia represented Vy the equation CLVI.,
• I'l if» »i I ■ being a surfaceOfthe seconrfdegree, it ought

I 11 I 11 il,<l| /iiwri/i, in some cucae of the eighth degree; or in 
**’■■1 hit ili  ̂rroduct oi their dimensions equal to eight.

H'ave so thatwe of these two curves would 
to an eye placed at the irave- Centre o.
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Accordingly we now see tliat tbe complete intersection, of tbe cone CLVI. with Ibe 
ware, consists of Zioo curves, each of the fourth degree S one of these being, as in 
(fi7.), a complete sphero-conic fr), and the ot/ier a complete line of vibration (A): 
a now geometrical connexion being thus cstablislied between these two guartie 
curves.

(88.) As additional verifications, we may regard the three principal planes, as 
limits of the cutting cones; for tlieii, in the plane (a) for instaned, tlie circle (o') and 
the ellipse (a), which are (in a sense) projections of each other, and of which tho 
latter has been seen to be a Zine of vibration, are represented respectively by the two 
equations,

CLXXII. . . r = a, and CLXXII'. . . 5c = /i3,

in agreement with CLXXI.; and similarly for the two other planes.
(89.) It was an early result of tbe quaternions, that an ellipsoid withits centre 

nt tho origin might be adequately represented by the equation (comp. 281, XXIX., 
or 282, XIX.),

CLXXIII. . rT(ip + pk) = «:*-1’, if Tt>Tic;

or, without any restriction on the two vector constants, t, k, by this other equa
tion,*

CLXXIII'. . . T(ip + pic)2=(K3-,2)S.

(90.) Comparing this with Sp^ip= 1, as the equation XXIX. ofthe Generating 
Ellipsoid, we see that we are to satisfy, independently of p, or as an identity, the re
lation (comp. 336):

CLXXIV... (k* - I*)’* Sp^p = (tp T pK) (pt + up
= (t’ 4 K-) p + 2StpKp;

which is done by assuming (corap. again 336) this cyclic form for tjt,
CLXXV. . . (it* = <t,p (fs .p »;2) p q. •iVugt 

= (t — K)3p -I- 2tSKp 4 2KStp i

or as in (24.) comp. 359, III. IV.,

^p=pp4VXpX', Sp^p =pp-4SXpX'p = 1; LXXII. LXXIII.

* This equation, CLXXIH'. or CLXXII., which had been assigned by the 
author as a form of the equation of an ellipsoid, has been selected by his frienij 
Professor Peter Guthrie Tait, now of Edinburgh, as the basis of an admirable 
Paper, entitled: “ Qiit^tcrnion Investigations connected with Fresnel’s Wave-Sur
face,” which appeared in the May number for 1865, of thc Quarterly Journal of 
Pare and .dpplied Ufathematics; and which the present writer can strongly rc- 
coinmcnd to tho careful perusal of all quaternion students. Indeed, Professor Tait, 
who has already published tracts on otlter applications of Quaternions, mathematical 
and physical, including some on Electro-Dynamics, appears to tho writer eminently 
fitted to carry on, happily and usefully, this new branch of mathematical science: 
and likely to become in it, if the expression may be allowed, one of the chief succes
sors to its inventor.
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with expressions for the constants g, X, X', which give, hy LXXVI., the following 
values for the scalar semiaxes,* 

n 9 C" * P
CLXXVL .. a = T« 4-Tx; b= ; c = Tt-Tv;

T(t-A:)
whence conversely,

CLXXVIL . . Tt=^^ Ts = ^.^; T (. - k) = ; &c.

(9L) Knowing thus tho form CLXXy. of tho function <j>, which answers in tho 
present case to tlio given equation CLXXIII. of the generating ellipsoid, there 
would tie no dilHculty in carrying on tho calculations, so as to reproduce, in connexion 
with the iu!o constants i, k, all tho preceding theorems and foriniilto of the present 
Serios, respecting thef Wave and the Index-Surface. But it may he more useful to 
show briefly, before we conclude the Series, how we can pass from Quaternions to 
Cartaian Co-ordinates, in any question oy formula, of the kind lately considered.

(92.) The three italic letters, ijk, conceived to be connected by the four funda
mental relations.

ii (A), 183,

wero oripina/Zy the only peculiar symbols of tho present Calculus; and although 
they are not now -o much used, as in the early practice of quaternions, because cer
tain general signs of operation, such aS S, V, T, U, K, have since been introduced, 
yet they (the symbols ijk) may be supposed to be still familial’ to a student, ns links 
between gualernions and co-ordinates.

(93.) Wo shall therefore merely write down hero some leading expressions, of 
which the meaning and utility scorn likely to be at once perceived, especially after 
the Calculations above performed in this Series.
, (94.) The vector semiaxes of the generating ellipsoid being called a, f3, y (comp.
(40.) (42.)), we may write,

CLXXVIII. . .a = ia, P =jb, y = he ;
CLXXIX.. . = a"'Sa"'p + /3'’S/3“'p + y'Sy’p = Sa’'Sa"’p = - Sia-^x;

CLXXX. ,. Sp<l,p = 2 (Sa->p)2 ; CLXXXI. . . Sp^i-'p = ;
CLXXXII. . . (04- e)p='Sa (a'^4- e) S«->p ;

* Tho reader, at this stage, might perhaps usefully turn back to that Construc
tion ofthe Ellipsoid, illustrated by Fig. 53 (p. 22C), with the Remarks thereon, 
which were given in the few last Series of the Section IL i. 13, pages 223-233. It 
will be seen there that tho three vectors, t, k, i — k, of which the lengths are ex
pressed by CLXXVIL, are the three sides, cn, oa, ab, of what may bo called the 
Generating Triangle ABO in the Figure; and that tho deduction CLXXVL, of tbe 
three semiaxes, abc, from the two vector constants, i, k, with many connected 
results, can be very simply exhibited by Geometry. The whole subject, of tho equa
tion T(ip + pc) =K- —I® of the ellipsoid, was very fully treated in tho Lectures : 
and the calculations may be made more general, by the transformations assigned in 
the long but important Section III. ii. 6 of the present Elements, so that it seems 
unnecessary to dwell more on it in this place.
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CLXXXni. .. (0.+ e)"'p= Xn(rt'® + c)"' Sa'ip;
CLXXXIV. . . if r-'=Tp^ = Xyt, then u = r'2(^ + r-5)-lp

rS—

CLXXXV. . . for Wave, Q = Spu = S = -?’”?■ + .r~ — a~ T' — a'i — b'^ r^ — c^'
orCLXXXVI. . . 1 = —Spot = —Sp^u z= - Sviftp "

_ V r- — a~ . r- — flS ,.3 _ ’

and the Index-Surface may bo treated similarly, or obtained from the Wave by 
changing abc to their reciprocals.

r-J-bt

423. As an piglilh specimen of physical application we shall in
vestigate, by quaternions, MacCullagh’s Theorem of the Polar Plane,’* 
and some things therewith connected, for an important case of inci
dence of polarized light on a biaxal crystal: namely, for what was 
called by him the case of utiiradial vibrations.

(1.) Let homogeneous light in air (or in a vacuum), with a velocityf taken for 
unity, fall on a plane face of a doubly refracting crystal, with such a polarization 
that only one refracted ray shall result; let p, p', p" denote the vectors of roy-veto- 
city of the incident, refracted, and reflected lights respeatively, p having the direc
tion of tho incident ray, prolonged wifWn the crystal, blit p" that of the reflected 
ray outside ; and let /i' bc the vector of wave-slowness, or the index-vector (comp. 
42'2, (1.)), for the refracted light : tliese four vectors being all drawn from a given 
point of incidence o, and p, like p', being witkin the crystal.

(2.) Then, by oZ/J wave theories ofliykt, translated into the present notation, 
wo have the equations,

I. . . p’ = Sp'p' = p"^ = — 1;
n. . . p'' = - I'pv-t, with ir. . . v = p'- p,

where r is a norniaZ to the face ; whence also,

III... p"=ps - 2ps -A;
h ~ p p-P

IV. . , p" + p = 2«, if IT.. . t = v-'Vp'p=-v-tVi>p-,
V.., p''-p = —2j’Spj'"* =-2v“’Spv;and

• Seo pp. 39, 40 of tho Paper by that great mathematical and physical philo- 
aophoi', “ On the /.aws nf Crystailine Hejlcxim and Refraction," already referred 
to in thc Note to page 737 (Trans. K. I. A., Vol. XVIII., Part I.).

t Of course, by a suitable choice of the waits of time and space, tho vclontirs and 
sfoiPnessses, hero spoken of, may bo represented by Knes as short ns may be thought 
convenient. ’

J These equations may be deduced, for example, from the principles of Iluy- 
ghens, as stated in his Tractatns de Lwnine (Opera rcliqua, Amst., 1728).
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so that the three vectors, p, p', p’’, terminate on one right line, which is perpendi
cular to the face ofthe crystal; and the bisector of the angle between the^rst and 
third of them, or between thc incident and reflected rays, is the intersection t of the 
plane of incidence with the same plane face.

(3.5 Let r, t', r" be the vectors of vibration for the three rays p, p', p", con
ceived to be d rawn from their respective extremities ; then, by all* theories of tan
gential vibration, wo have tho equations,

VI. ..Spr = 0; VII. . . S/t'=0; VIII. . . SpV'= 0 ;
to which Mac CuIIagh adds the supposition (a), that the vibration in the crystaX is 
perpendicular to the refracted ray: or, with the present symbols, that

IX. . . Sp'r' = 0 ; whence X. . . r || "Vp'p',
the direction of the refracted vibration f being thus in general determined, when 
those of the vectors p' and p’ are given.

(4.) To deduce from r' the two- other vibrations, r and r", Mae Cullagh as
sumes, (i), the Principle of Equivalent Vibrations, expressed here by the formula,

XI. . . r— r'-hr" = 0,
in virtue of which thc <Aree vibrations ■are paraZ/eZ to ono common plane, and tbe re
fracted vibration is the vector sum (or resultant') oi the other two ; (c), the Principle 
of the Vis riva, by wliich the reflected and refracted lights are together equal to the 
incident light, which is conceived to have caused them; and (fl), the Principle of 
Constant Density of the Etiter, whereby the masses of ether, disturbed by the three 
lights, are simply proportional to their volumes: tho two last hypothosesf being 
here jointly expressed by the equation,

XII, . . Sr (pr2 _ p'r'2 + p'fl'2) = q,

(5.) Eliminating p" and t" from XII. by V. and XI., r’ goes off; and we find, 
with the help of I. and II'., the following linear equation in r,

XIII. . . 2S-,= 1 + ^ = .?£^', if XIII'. . . r' = p'-p';
T Sup apv

a second such equation is obtained by eliminating p" and r" by III. and XI. from 
VIII., and attending to I. VI. VII., namely,

XIV. .. 2SprSp'r=(p2-p'2)Spr'=-Sju'r'Spr';

and a third linear equation in r is given immediately by VI.

* The equations VI. VII. VIII. hold good, for instance, on Fresnel’s principles; 
but Fresnel’s tangential vibration in tho crystal has a direction perpendicular to that 
adopted by Mac Cullagb.

f In the concluding Note (p. 74) to this Paper, Professor Mac Cullagli refers to 
an elaborate Memoir by Professor Neumann, published in 1837 (in tho Berlin Trans
actions for 1835), as containing precisely the same system of hypothetical principles 
respecting Light. But there was evidently a complete mutual independence, in the 
researches of those two eminent men. Some remarks on this subject will be found 
in the Proceedings of the R. I. A., Vol. I., pp. 232, 874, and Vol, II., p. 90.
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(G.) Solving then for r, hy tlie rules of thc present Calculus, this system of the 
three linear and scalar equations VI. XIII. XIV., we find for the iucidnit vibration 
the following vector expression,*

XV. . . r = ; or XV'. . . 2rSpj/ = rSov' - v'Spr';2iipv r- r r ,
and ncc rdingly it may be verified by mere inspection, with the help of VII. and IX., 
that this vector value of r satisfies the three scalar equations (5.). And when the 
incident vibration has been thus deduced from the refracted vibration r', the reflected 
vibration r" ia at once given by the formula XI., or by the expression,

XVI. ..r'=r'~r;
(7.) The relation XV'. gives at once the equation of complanaritg,

XVII. . . 3v'tt' = 0, or the formula XVIII. .. p" — p' ||! r, r';
if then a plane be anywhere so drawn, as to be parallel (4.) to the three vibrations 
T, T, t", it will be parallel also to thc line p' —p', which connects two correspond
ing points, on the wave and inrftx SKrfiice in the crystal: but this is ono form of 
enunciation of Professor Mac Cullagh’s TV/eorem ofthe Polar Plane, which theorem 
is thus deduced with great siinplieity by quaternions, from the principles above sup
posed.

(8.") For example, if we suppose that op and oq, in Fig. 89, represent the rc- 
fracted ray p', and thc index vector p' corresponding, and if we draw through tho 
line PQ a plane perpendicular to the plane of the Figure, then tho plane so drawn 
will contain (on the principles here considered) the refracted vibration t‘, and will 
ho parallel to both the incident vibration T and the reflected vibration r"; whence 
the directions of tho two latter vibrations may be in general determined, as being 
also perpendicular respectively to tire incident and reflecledrags, p and p" ; and then 
tho relative intensities (Tr’, Tr ’, Tr"’) of tho three lights may bo d diiced from tbe 
relative amplitudes (Tr, Tr', Tr") of thc three vibrations, tvhich may them ’eivcs be 
found from the three compjanar directions, by a simple resolution of one line r’ into 
two others, of which it is the vector sum, as if tho vibrations were forces.

(9.) The equations IF. IV'. V. and XIII'. enable us to express the four vectors, 
ju’(=p + v), .((=p - n'lSpp). p''(=p-2p-'Spp), and p' (= p + r-r'), iu terms 
of the three vectors p, r, v’, which are connected with each other by thc rehation,

XIX. . , I (=p-p-’Spp), p"(=p-2p-'Srp), and p'(=p + p-p'), 
XIX. . . v’ + 2Spp=Sp'(p +p), because XIX'. .. Spp'=S(p'-»')p,

* Tlie expressions XV. XVI.'cnable us to determine, not only the directions Ur, 
Ur" of thc iitciilcnl and reflected vibrations, but also their amplitudes Tr, Tr", or 
the intensities Tr’, Tr"^ of the incident nud reflected lights, for any given or assumed 
amplitude Tr’ of tho refracted vibration, or intensity Tr'^ of the refracted light, 
after having determined the direction Ur' of the refracted vibration by means of the 
formula X,
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as in XIII., or because p’’- p’= Sp'r') by I. and XIII'.; and with which / is 
connected (VII. and IX.), by the two equations,

‘ XX. . . S(p+v)r’ = 0, and XXI. . . Si/r'= 0 ;
while r and r" are connected with tbe same three vectors, and with r', by tho rela
tions VI. Virl. XI. XIII,, which conduct, by elimination of r", to the foUowiug 
system (corap. (5.)) of three linear and scalar equations in r,

XXII. ..Spr = 0; 2Sj/pSrr = S»-'O4 J')SFr'; 2S»/pSr’-ir = Sr'p ;

and therefore to tho vector expression,

2-Svp = Vpi''/, as in XV.

(10.) By these or other transfomations, there is no difDculty in deducing this 
new equation, in which ai hiay be any vector,

XXIII. . . VrV {(p - <o) r - (p' - <o) r' + (p" - to) n" } r' = 0 ;

and conversely, when w is thus treated as arbitrary, tlte formula XXIII., with the 
relations (9.) between the vectors p, p', p", v, v', p, but without any restriction (ex
cept itself) on r, r’, r", is sufficient to give tho two vector equations,

XI. . . r-T'+t" = 0, and XXIV. ., pr-p'r' +p"r" = xr-'+y, 

in which

XXV. . . = (pr —p'r'4 p"r") = Suv't', and XXI... y = S (pr — p’r'r + p"r");
and which conduct to the two scalar equations (among others),

XXVII. . . Sk (pr - p'r‘ + p"t'') == 0, if XXVU'. . . Skp = Q, 
and XXVIII. .. Sj’P (Spr — Sp"r'’) = Srp'Sp'r';

so that if we now suppose tho equations VI. VIII. IX, to bepmert, the equation
VII. will follow, by XXVIII.; while, as a case of XXVII., and with the significa
tion IV. or IV'. of I, W'e have the equation,

XXIX. . . Si (or - p'r' + p"r") = 0. '

(11.) And thus (or otherwise) it may be shown, that the three scalar equations 
VI. VIII. IX., combined with the one vector formula XXIII., which (on account of 
thc arbitrary to) is ctiuivalent to five scalar equations, are sufiicientto give the sume 
direction of f, and the same dependeucies of r and r" thereon, as those expressed by 
tlie equations X. XV. XVI.; and therefore (among other consequences), to the for- 
niultc XII. and XVlI. '

(12.) Bnt the equations VI. VIII. IX. contain what may be called the Princi
ple of Itectnngutar Vibrations (or ol vibrations rectangular to rays)', and thc for
mula XXIII. is easily interpreted (llC.), as expro.s.siiig what may bc tcrnic.l the 
Principle of the Pcsidtaat Couple : namely thc thi.'Orcni, that if the three nibrafioiis 
(or displacements), t, t', t", be regarded as three forces,'nr, it'r', acting at the 
ends of the three rays, p, p‘, p'', or on, on', on" (drawn in the dircction.s (1.) from 
the point of incidence o), then this other system of three forcts, I’.T, — r't', n"T" (con
ceived as applied to a solid body), (s equivalent tn a single couple, of which thc plane 
is parallel (or thc axis perpendicular) to the face of the crystal.
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