

Calhoun: The NPS Institutional Archive DSpace Repository

A CMOS current-mode full-adder cell for multi-valued logic VLSI

Barton, Robert James

Monterey, California. Naval Postgraduate School
http://hdl.handle.net/10945/7557

Downloaded from NPS Archive: Calhoun

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

A CMOS CURRENT-MODE FULL-ADDER CELL for	
MULTI-VALUED LOGIC VLSI	
by	
Robert J. Barton III	
September, 1995	
Thesis Advisor: Co-Advisor:	

Approved for public release; distribution is unlimited.

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704.0188
1. AGENCY USE ONLY (Lasve Blank)	2. AEPORT DATE September 1995	3. REPORT TYPE AND DATES COVEREDMaster's Thesis		
4. TITLE AND SUBTITLE A CMOS CURRENT-MODE FULL-ADDER CELL FOR MULTI- VALUED LOGIC VLSI (U)			5. FUNDING NUMBERS	
6. AUTHOR(S) Barton III, Robert James				
7. DERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000			8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING agency report number	
11. SUPPLEMENTAAY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the United States Government.				
12a. DISTRIBUTION/AVALLABIUTY STATEMENTApproved for public release; distribution is unlimited.			12b. DESTRIBUTION CODE	
13. ABSTRACT (Maxdmum 200 words) This thesis describes the design and implementation of a carry save adder cell for multi-valued logic VLSI. A four-valued system was chosen and the logic was analyzed and minimized using the HAMLET CAD tool [1]. SPICE was used to design and simulate the required behavior of the currentmode CMOS circuits. A VLSI test and evaluation integrated circuit was implemented with MAGIC and fabricated through the MOSIS service. The completed IC was tested and evaluated using a specially designed binary-to-multi-valued logic converter and decoder. Engineering modifcations to the original current-mode inverter cells used by HAMLET were made leading to significant power savings in a complete design. The fabricated device performed as predicted by SPICE simulation. Exhaustive functional testing produced correct steady-state output signals for all cases of input loadings. Finally, we show HAMLET minimization heuristics are not efficient in the design of adder cells by comparison with an alternative modulo 4 carry save adder cell in current-mode CMOS.				
14. SUBIECT TERMSVLSI, Multi-Valued Logic, Current-Mode CMOS, High-Radix Circuitry				$\begin{aligned} & \text { 15. NUMBE OF PAGES } \\ & 98 \\ & \text { T6. PRICE CODE } \end{aligned}$
17. SECURTTY CLASSIFICATION of REPORT Unclassified	18. SECURITY CLASSIFGCATION OF THIS PAGE Unclassified	$\begin{aligned} & \text { 19. SECURTY CLASSIFCATON } \\ & \text { OF ABSTRACT } \\ & \text { Unclassified } \end{aligned}$		20. LIMTATION OF ABST Unlimited
NSN 7540-01-280-5500		Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std 239-18		

Approved for public release; distribution unlimited.

A CMOS CURRENT-MODE FULL-ADDER CELL FOR MULTI-VALUED LOGIC VLSI

Robert James Barton III
Lieutenant, United States Navy
B.S., United States Naval Academy, 1985

Submitted in partial fulfillment of the requirements for the degrees of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

 andMASTER OF SCIENCE IN COMPUTER SCIENCE
from the
NAVAL POSTGRADUATE SCHOOL
September 1995

$$
\begin{aligned}
& 1 \text { hiow } \\
& \text { P24.234l } \\
& C, 2
\end{aligned}
$$

Abstract

The rapidly expanding fields of digital control and data signal processing require high performance compact arithmetic circuitry. In particular, the multiplication of large data words currently requires a network of carry-save adders to perform the addition of sets of partial products. This method suffers with scalability, particularly in the required die area and power required for carry-save adder trees. One possible solution is to take advantage of a compact design incorporating a high-radix signed number system.

This thesis describes the design and implementation of a carry save adder cell for multi-valued logic VLSI. A four-valued system was chosen and the logic was analyzed and minimized using the HAMLET CAD tool [1]. SPICE was used to design and simulate the required behavior of the current-mode CMOS circuits. A VLSI test and evaluation integrated circuit was implemented with MAGIC and fabricated through the MOSIS service. The completed IC was tested and evaluated using a specially designed binary-to-multi-valued logic converter and decoder. Engineering modifcations to the original current-mode inverter cells used by HAMLET were made leading to significant power savings in a complete design. The fabricated device performed as predicted by SPICE simulation. Exhaustive functional testing produced correct steady-state output signals for all cases of input loadings. Finally, we show HAMLET minimization heuristics are not efficient in the design of adder cells by comparison with an alternative modulo 4 carry save adder cell in current-mode CMOS.

TABLE OF CONTENTS

I. INTRODUCTION 1
A. HISTORICAL PERSPECTIVE 1
B. CURRENT WORK 3
C. MULTIPLE VALUED LOGIC ARITHMETIC 4
II. DESIGN OF MODULO 4 ADDER CELL 7
A. DESCRIPTION OF THRESHOLD DETECTORS AND CURRENT GENERATORS 7
B. HAMLET - A CAD TOOL FOR MVL DESIGN 11
C. MINIMIZATION OF LITERALS USING HAMLET HEURISTICS 15
II. IMPLEMENTATION 17
A. CURRENT-MODE CMOS LOGIC 17
B. LIMITATIONS OF THE PRESENT CAD TOOL - HAMLET 18

1. HAMLET's PLA Generator module 18
2. Power Consumption 18
3. Scalability 19
C. ENGINEERING MODIFICATIONS TO STEP-UP, STEP-DOWN, AND COLUMN GENERATOR CELLS 19
4. Transistor Sizing 19
5. Improved Logic Values and Switching Thresholds 20
6. Simulation of New Cells 21
7. Simulation of a Combined Minterm Using the New Cells 22
D. CIRCUIT LAYOUT 23
8. Basic Floor Plan 23
9. Input Current Mirror Design and Layout 24
10. VDD and Ground Rail Considerations 24
11. Simulation of Completed Chip Design 25
IV. TESTING AND EVALUATION OF MULTI-VALUED LOGIC (MOD4) CARRY SAVE ADDER 27
A. DESIGN OF MODULO FOUR TESTBENCH 27
12. Binary-to-Ideal Current Source Conversion 27
13. Current Decoding at Outputs 28
B. SUMMARY OF TEST RESULTS 29
14. Static Power Tests 29
15. Functional Testing 31
16. Transient Analysis 32
17. Results Discussion 34
V. CONCLUSIONS 35
A. HAMLET RECOMMENDATIONS 35
18. Port to an X-Windows Application 35
19. Design of Current-Mode Logic Cells 35
B. AN ALTERNATTVE DESIGN FOR A RADIX-4 ADDER CELL IN
CURRENT-MODE CMOS 36
20. A Different Approach 36
21. Simulation of Alternative Design 39
22. Conclusions of Alternative Design Method 40
C. RECOMMENDATIONS FOR FURTHER STUDY 40
23. Charged-Coupled Device (CCD) Logics 40
24. Resonant-Tunneling Diodes (RTD) Logics 40
25. Hierarchical MVL Design for Symmetric Functions. 41
26. Modulo 16 (hexadecimal) Current Mode CMOS Full Adder Cell 41
REFERENCES 43
APPENDIX 45
A. HAMLET REPORT - ORIGINAL SOP EXPRESSION 45
B. HAMLET REPORT - DEUCK \& MILER MINIMIZATION 48
C. HAMLET REPORT - SIMULATED ANNEALING MINIMIZATION 50
D. SPICE FILE - STEP UP GENERATOR 52
E. SPICE FILE - STEP DOWN GENERATOR 54
F. SPICE FILE - COLUMN OUTPUT GENERATOR 56
G. SPICE FILE - TERM 3*X(2,2)Y(3,3)C(2,2) 58
H. SPICE FILE - CURRENT MIRROR 62
I. SPICE INPUT FILE - MODULO 4 ADDER DESIGN 65
J. MAGIC LAYOUTS 68
K. SCOPE PHOTOGRAPHS - TRANSIENT ANALYSIS 77
L. TRANSIENT ANALYSIS SCOPE PLOT - MODULO 4 ADDER CELL 81
M. FABRICATION PHOTOGRAPH 82
INITIAL DISTRIBUTION LIST 83

LIST OF FIGURES

2.1 CMOS Inverter With Current Input 7
2.2 Transfer Characteristics for Current Input Single Stage and Two-Stage CMOS Inverters 9
2.3 Step Down Function Generator 9
2.4 Step Up Function Generator 10
2.5 Transfer Curves for Function Generators 10
2.6 Example of a 2 Variable 4-Valued Function $f(X)$ 11
2.7 Mapping for Carry Save Adder Sum Function in Radix 4 12
2.8 Mapping for Carry Save Adder Carry Out Function in Radix 4 14
3.1 Current Logic Levels 17
3.2 Final Layout of Design 23
3.3 Current Mirror Response 24
3.4 Current Measurements at VDD and Ground Rails 25
3.5 Complete Functional Test 26
4.1 Testbench Input Circuitry 27
4.2 Testbench Output Circuitry 28
4.3 Measured and SPICE Simulation of No Load Static Power Consumption 30
4.4 SPICE Model Propagation Delay for Sum and Carry Out 33
5.1 Current Input Complementary Pass Gate 37
5.2 Block Diagram of New Modulo 4 Adder 38
5.3 Chip Layout of Alternative Design 38
5.4 Transient Analysis of Alternate Design 39
A. 1 Step Up Generator Cell 68
A. 2 Step Down Generator Cell 69
A. 3 Column Output Generator Cell 70
A. 4 Term 3*X(2,2)Y(3,3)C(2,2) 71
A. 5 Current Mirror 72
A. 6 HAMLET Design Modulo 4 Adder 73
A. 7 Current-Input Complementary Transmission Gate 74
A. 8 Alternate Design Modulo 4 Adder 75
A. 9 Fabrication Layout Alternate Design Adder 76
A. $10 \mathrm{~T}_{f}$ Sum 3->0 77
A. $11 \mathrm{~T}_{r}$ Sum $0->3$ 77
A. $12 \mathrm{~T}_{p d f}$ Sum 3->0 78
A. $13 \mathrm{~T}_{p d r}$ Sum 0->3 78
A. $14 \mathrm{~T}_{f}$ Carry Out $1->0$ 79
A. $15 \mathrm{~T}_{r}$ Carry Out $0->1$ 79
A. $16 \mathrm{~T}_{\text {pdf }}$ Carry Out $1->0$ 80
A. $17 \mathrm{~T}_{p d r}$ Carry Out $0->1$ 80
A. 18 Sum 0->3 Power Transients 81
A. 19 Die Photo Modulo 4 Adder Cell 82

LIST OF TABLES

2.1 SOP Expression for Sum Function 13
2.2 SOP for Carry Function 15
2.3 Reduced SOP for Sum Function 16
2.4 Reduced SOP for Carry Function 16
3.1 New Logic and Threshold Current Values 20
3.2 New Step Up and Step Down Generator Output Current Design 21
3.3 Timing and Power Simulation of Cells 21
3.4 Term $3 \mathrm{X}(2,2) \mathrm{Y}(3,3) \mathrm{C}(2,2)$ 22
4.1 Component Static Power 29
4.2 Full Power Measurements 31
4.3 Functional Test for Device 1 32
4.4 Propagation Delay 33

Acknowledgement

For Pam and Baby Kay.

I. INTRODUCTION

A. HISTORICAL PERSPECTIVE

Circuits which implement binary logic can be characterized by the effect of the circuit itself on the signal or signals being processed. A restoring circuit is capable of interpreting logic signals and then generating an output which is very narrowly constrained to the given signal space. In logic function implementations in higher radix(r) systems, the signal space does not significantly increase, whereas the number of required logic levels represented within the signal space increases in \mathbf{r}. Narrower signal logic bands within the circuit present greater difficulty in maintaining functional integrity across cascaded non-restoring partitions within the circuit.[2]

In the latter half of the 1970s, a great deal of interest in ternary logic devices was prevalent. The design approach was, and in many instances remains, implementation of ternary (or higher) radix logic using binary components. For example, in a ternary system, the physical medium must have three equiprobable states and the distances between the states must be equal, or very nearly so. The use of a cyclic physical medium would allow optimal design of such a system. Alas, quantifiable cyclic phenomenon is extremely rare in the field of electronic devices. The approach then is to use the cyclic properties of binary circuits in such a way as to represent higher radices. In general, these circuits can be voltage mode or current mode. During this period various circuits were proposed using TTL(Transistor-Transistor Logic), ECL(Emitter-Coupled Logic), and CMOS.[3]

By the end of the decade Current Mode Logic (CML) was regarded as a simple, compact solution for higher radix arithmetic circuits. Several test example devices of full adder circuits were designed and implemented in current-mode CMOS, mainly in modulo 4. Greater speed performance was achievable using high-speed ECL, but the primary goal was to reduce circuit size and thus reduce cost and power requirements for arithmetic devices operating on large data words. [4]

In order to achieve greater speeds, GaAs MESFET logic was becoming an important area of research for multi-valued circuits. Circuits which are general, ie., expandable to higher radices, and able to perform at low power with good noise margin performance are highly desirable. An approach presented by Tront [5] in 1979 included using MESFETS in which the individual transistors on the device had varying pinchoff voltages, at least one at each logic level desired. The difficulty with this approach is that Vp is a property which is only controlled at fabrication, either through channel thickness or doping concentrations. Even now, fabrication facilities have difficulty keeping threshold voltage within 50% of design tolerances.

During the late 1970s and into the 1980s, a great deal of work was done on multiple valued logic theory and modeling, as well as minimization techniques, but very few physical test devices were implemented. It is the explosion of progress in fabrication technology that allows much tighter control of device intrinsic properties. In the early 1980s Charge-Coupled Device logic became of interest. CCD implementation is in the category of charge-mode circuits. These circuits have many similarities with current-mode logic design, most significantly, the basic gate required for implementation is a common storage well. The storage well acts as a kind of "logical accumulator", much in the same way current mode CMOS makes extensive use of the "wired sum" to represent various signal levels.

By the end of the 1980 s, current-mode CMOS was gaining in popularity for multivalued function implementations. First, integrated circuit process technology is the same for binary CMOS as well as current-mode CMOS. This allows for the integration of multivalued current-mode modules and binary logic circuits on the same VLSI device. Utilizing bi-directional current-mode CMOS formed the basis for the first presented CAD tool for implementing multi-valued functions in VLSI. This CAD tool was developed largely at Naval Post Graduate School, and is called HAMLET. HAMLET is a heuristics analyzer and CAD tool for multi-valued programmable logic arrays. In its current form, current mode CMOS is used exclusively for function implementation. The advantages are
simplicity of design and very inexpensive fabrication costs. In the future, it is envisioned that HAMLET will be capable of implementations in CCD logic, and possibly an implementation based upon resonant tunneling diode devices (RTDs).

B. CURRENT WORK

In recent years, continued improvements in VLSI fabrication processes have led to a renewed interest in current-mode CMOS high-radix arithmetic circuits. Of particular importance is the development of high speed compact multiplier circuits for the rapidly expanding fields of digital signal processing and digital control systems. In most modern high-speed arithmetic units, multiplication of long data words is performed by simultaneously generating sets of partial products and then summing them together with a network of carry save adders (CSAs) in an operation that is referred to as "row reduction." Although the network of CSAs lends itself very well to pipelining in high-speed processors, binary multipliers using the Wallace Tree [6] approach suffer from scalability problems. Scalability difficulties can be overcome by utilizing a high-radix signed number system to significantly reduce the number of transistors and the die area required for large data-word arithmetic.

Presently, current-mode CMOS logic is not a suitable solution for the generation of partial products in a large multiplier circuit. One alternative is to use binary CMOS circuits to implement a modification of Booth's algorithm[7][8]. However, the design of high-radix adders lends itself well to current-mode CMOS, primarily because of the wired sum[9] function. One of the key elements of the adder circuit is the threshold detector[10]. This particular circuit has, in the past, proved to be difficult to scale down to minimum VLSI implementation device sizes. With the vast and continuing improvements in CMOS fabrication processes, this design problem can be minimized. Of recent interest is the development of alternative low-power high-speed threshold detector circuits such as those found in CML current-mode full adders[11].

In this thesis we demonstrate the design and implementation of a radix-4, carry-save adder cell for multi-valued VLSI. The adder receives current inputs X, Y, and Carry Y_{IN}. generating the Sum and Carry Out $^{\text {outputs. The Carry }}$ IN input of the carry save adder $^{\text {a }}$ accepts all possible radix- 4 inputs ($0: 3$) so that it may be used as a three-to-two row reduction unit in the CSA adder network previously described.

The first test IC was designed and implemented using the HAMLET cad tool for multivalued logic expressions. A second test IC of the same radix and function was designed and implemented without the assistance of the CAD tool,, using a different technique which takes advantage of the symmetrical property of the addition logic. The alternative design actually uses two radices, modulo- 4 for input and output, and modulo- 12 logic within the device.

C. MULTIPLE VALUED LOGIC ARITHMETIC

As previously mentioned, high-radix multiplication does not lend itself to currentmode CMOS, and is therefore not discussed in this thesis. Before an adder can be designed in a high-radix system (greater than binary), we need a convenient way to express the logic combinations of the inputs. The expression which describes the sum function in any radix is:

$$
\begin{equation*}
\operatorname{SUM}\left\{f\left(C_{i}, X_{i} Y_{i}\right)\right\}=\mathrm{C}_{\mathrm{i}}(\mathrm{XOR}) \mathrm{X}_{\mathrm{i}}(\mathrm{XOR}) \mathrm{Y}_{\mathrm{i}} \tag{1.1}
\end{equation*}
$$

This expression generates a set of product terms of the form:

$$
\begin{equation*}
\operatorname{SUM}_{\mathrm{k}}=1^{* 3} \mathrm{C}^{31} \mathrm{X}^{31} \mathrm{Y}^{1} \tag{1.2}
\end{equation*}
$$

This notation translates as for an input at C of 3 , an input at X of 1,2 , or 3 , and an input at Y of 1, generate an output of 1 . Thus, the sum function is the summation of this set of product terms:

$$
\begin{equation*}
\operatorname{SUM}\left\{f\left(C_{i} X_{i} Y_{i}\right)\right\}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \operatorname{SUM}_{\mathrm{k}} \tag{1.3}
\end{equation*}
$$

In current mode CMOS, the distinction between levels of logic at the inputs is accomplished by a threshold detector. The output value for each term in the sum is realized
by a current generator. To accomplish the required summation of the product terms, the outputs of the current generators for each product term are physically "wired together", thus the notion of a "wired sum" in current mode CMOS multiple-valued VLSI. In the following chapter we discuss the use of the CAD tool HAMLET and develop the equations and device modules for the threshold detectors and current generators.

II. DESIGN OF MODULO 4 ADDER CELL

Described herein is the design of a radix-4 carry save adder cell utilizing the CAD tool HAMLET. The ideal threshold detectors and current generators are also derived. We show the result of HAMLET minimization heuristics on a set of product terms that fully describes the required sum and carry-out functions.

A. DESCRIPTION OF THRESHOLD DETECTORS AND CURRENT GENERATORS

At the core of the current-mode circuits required to implement an MVL expression is a CMOS inverter with a current input.

Figure 2.1: CMOS Inverter With Current Input

In Figure 2.1, The nFET device M 0 operates in saturation because $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ and $\mathrm{V}_{\mathrm{DS}}>\mathrm{V}_{\mathrm{T}}$. Ignoring the Early voltage and bulk effects which are minimal, the saturation value of the drain current is given by:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{D}}=\mathrm{K}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{t}\right)^{2} \tag{2.1}
\end{equation*}
$$

where the process-dependent constant K can be determined by:

$$
\begin{equation*}
\mathrm{K}=1 / 2\left(\mathrm{u}_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}(\mathrm{~W} / \mathrm{L})\right) \tag{2.2}
\end{equation*}
$$

Since the drain current I_{d} is the input current, then the operating point at which the nMOS device M0 becomes saturated is found by:

$$
\begin{equation*}
I_{S W}=C\left(V_{S W}-V_{t}\right)^{2}(W / L) \tag{2.3}
\end{equation*}
$$

$I_{S W}$ and $V_{S W}$ refer to the "switching" current and switching voltage respectively. When M0 is saturated, the input voltage to the CMOS inverter stage is high, both the pMOS (M1) and the $\mathrm{nMOS}(\mathrm{M} 2)$ devices are in the saturation region such that:

$$
\begin{gather*}
\mathrm{I}_{\mathrm{DSp}}=-\mathrm{I}_{\mathrm{DSn}} \tag{2.4}\\
\mathrm{I}_{\mathrm{DSp}}=\mathrm{K}_{\mathrm{p}}\left(\mathrm{~V}_{\mathrm{SW}}-\mathrm{V}_{\mathrm{DS}}-\mathrm{V}_{\mathrm{tp}}\right)^{2} \tag{2.5}\\
\mathrm{I}_{\mathrm{DSn}}=\mathrm{K}_{\mathrm{n}}\left(\mathrm{~V}_{\mathrm{SW}}-\mathrm{V}_{\mathrm{tp}}\right)^{2} \tag{2.6}
\end{gather*}
$$

Since $K_{n}=K_{p}$ on the same chip, solving equations $2.5-2.7$ for switching voltage yields:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{SW}}=\left(\mathrm{V}_{\mathrm{DS}}+\mathrm{V}_{\mathrm{tp}}+\mathrm{V}_{\mathrm{tw}}\right) / 2 \tag{2.7}
\end{equation*}
$$

As seen by equation 2.7 the switching voltage is a function of the threshold voltages of the transistors M1 and M2, which is constant through the chip. Thus, the switching voltage of these inverters are constant on the same chip. With a constant switching voltage V_{SW}, the switching current I_{SW} of equation 1.4 is strictly a function of transistor geometry (W/L). Therefore the inverter will generate a $\mathrm{V}_{\text {OUT }}$ of 0 when the designed $\mathrm{I}_{\text {SW }}$ is experienced at the drain of M0. In practice, we will use two inverter stages for a "sharper" transition at Vout.[12][10]

Figure 2.2: Transfer Characteristics for Current Input Single Stage and Two-Stage CMOS Inverters

The basic cells used to implement the current mode logic consist of the current-input CMOS inverter with the output connected to a single nMOS or pMOS transistor (figure 2.11). Since the inverter output will produce $V_{\text {OUT }} \gg$ threshold voltage of $M 3$, this circuit acts as a constant current source when the threshold current I_{SW} is detected. The step-down generator produces a constant $I_{\text {out }}$ when the input current is less than the switching current, else 0 . The step-up generator has an output current $I_{\text {out }}=0$ unless the input current is greater than I_{SW}.

Figure 2.3: Step Down Function Generator

Figure 2.4: Step Up Function Generator

Figure 2.5: Transfer Curves for Function Generators

The column output generator is actually a step down function generator in which the geometry of the nMOS transistor M3 is proportioned to produce the desired output current for its term. The output currents from various step up and step down generators are connected to the input of the column generator, which in turn generates its output value only when the input current is 0 .

B. HAMLET - A CAD TOOL FOR MVL DESIGN

To realize a logic function in multi-valued \log (MVL), a design method is required to develop the abstraction into a format on which CAD tools can perform heuristics. Unlike binary logic design, MVL of radix greater than 2 quickly becomes difficult to conceptualize. For example, while a two-input NAND gate is readily described in binary logic, there is no "symbol" to functionally describe a two-input NAND gate in a logic system of 6 variables.

The MVL CAD tool HAMLET uses a sum-of-products (SOP) expression as formatted input[. Since HAMLET will minimize the SOP expression, any valid SOP expression which completely describes the functionality of the design is sufficient. The SOP is derived from a mapping technique which resembles the familiar Karnaugh Map method.

Let $\mathrm{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of \mathbf{n} variables in a logic system of radix \mathbf{r}, where x_{i} takes on values from $\mathrm{R}=\{0,1,2, \ldots, \mathrm{r}-1\}$. The function $f(X)$ can be fully described in the following example:

Figure 2.6: Example of a 2 Variable 4-Valued Function $f(X)$
The groups in Figure 2.5 represent implicants of the function $f(X)$. The SOP representation for this particular choice of implicants in the format for HAMLET would be the following:

$$
f\left(x_{1} x_{2}\right)=1^{0} x_{1} 00 x_{2}{ }^{0}+1^{1} x_{1}{ }^{10} x_{2}{ }^{1}+1^{0} \mathrm{x}_{1}{ }^{21} \mathrm{x}_{2}^{1}+1^{0} \mathrm{x}_{1}{ }^{31} \mathrm{x}_{2}^{1}+1^{1} \mathrm{x}_{1}{ }^{22} \mathrm{x}_{2}{ }^{3}+2^{0} \mathrm{x}_{1}{ }^{02} \mathrm{x}_{2}^{2}(2.8)
$$

The single-bit adder has 3 inputs, namely, a carry in C_{i}, 1st addend X_{i}, 2nd addend Y_{i}, and 2 outputs, the sum S_{i}, and the carry out C_{o}. Recalling for the full adder:

$$
\begin{equation*}
\operatorname{SUM}\left\{f\left(C_{i} X_{i} Y_{i}\right)\right\}=\mathrm{C}_{\mathrm{i}}(\mathrm{XOR}) \mathrm{X}_{\mathrm{i}}(\mathrm{XOR}) \mathrm{Y}_{\mathrm{i}} \tag{2.9}
\end{equation*}
$$

By utilizing the mapping technique described earlier, the SUM function for the carry save adder in radix 4 can be completely described by:

Figure 2.7: Mapping for Carry Save Adder Sum Function in Radix 4

In order for the expression to be accepted into the HAMLET tool, the mappings described above must first be translated into the following SOP expression:

TABLE 2.1: SOP Expression for Sum Function

$$
\begin{aligned}
& 1 \text { *x1(1,1)*x2(0,0) *x3(0,0) +2*x1(0,0)*x2(0,0)*x3(2,2) } \\
& +2 * x 1(2,2) * x 2(0,0) * x 3(0,0) \quad+3 * x 1(1,1) * x 2(0,0) * x 3(2,2) \\
& +3 * x 1(3,3) * x 2(0,0) * x 3(0,0)+1 * x 1(3,3) * x 2(0,0) * x 3(2,2) \\
& +1 * x 1(0,0) * x 2(1,1) * x 3(0,0)+3 * x 1(0,0) * x 2(1,1) * x 3(2,2) \\
& +2 * x 1(1,1) * x 2(1,1) * x 3(0,0)+1 * x 1(2,2) * x 2(1,1) * x 3(2,2) \\
& +3 * x 1(2,2) * x 2(1,1) * \times 3(0,0)+2 * x 1(3,3) * \times 2(1,1) * x 3(2,2) \\
& +2 * x 1(0,0) * x 2(2,2) * x 3(0,0)+1 * x 1(1,1) * x 2(2,2) * x 3(2,2) \\
& +3 * x 1(1,1) * x 2(2,2) * x 3(0,0)+2 * x 1(2,2) * x 2(2,2) * x 3(2,2) \\
& +1 \text { * } x 1(3,3) * x 2(2,2) * x 3(0,0)+3 * x 1(3,3) * x 2(2,2) * x 3(2,2) \\
& +3 * x 1(0,0) * x 2(3,3) * x 3(0,0)+1 * x 1(0,0) * x 2(3,3) * x 3(2,2) \\
& +1^{*} \mathrm{x} 1(2,2) * \mathrm{x} 2(3,3) * \mathrm{x} 3(0,0)+2 * \mathrm{x} 1(1,1) * \mathrm{x} 2(3,3) * \mathrm{x} 3(2,2) \\
& +2 * x 1(3,3) * x 2(3,3) * x 3(0,0)+3 * x 1(2,2) * x 2(3,3) * x 3(2,2) \\
& +1 * x 1(0,0) * x 2(0,0) * x 3(1,1)+3 * x 1(0,0) * x 2(0,0) * x 3(3,3) \\
& +2 * x 1(1,1) * x 2(0,0) * x 3(1,1)+1 * x 1(2,2) * x 2(0,0) * x 3(3,3) \\
& +3 * x 1(2,2) * x 2(0,0) * x 3(1,1)+2 * x 1(3,3) * x 2(0,0) * x 3(3,3) \\
& +2 * x 1(0,0) * x 2(1,1) * x 3(1,1)+1 * \times 1(1,1) * x 2(1,1) * x 3(3,3) \\
& +3 * x 1(1,1) * x 2(1,1) * x 3(1,1)+2 * x 1(2,2) * x 2(1,1) * x 3(3,3) \\
& +1 * x 1(3,3) * \times 2(1,1) * x 3(1,1)+3 * x 1(3,3) * x 2(1,1) * x 3(3,3) \\
& +3 * x 1(0,0) * x 2(2,2) * x 3(1,1)+1 * x 1(0,0) * x 2(2,2) * x 3(3,3) \\
& +1^{*} \mathrm{x} 1(2,2) * \times 2(2,2) * x 3(1,1)+2 * x 1(1,1) * x 2(2,2) * x 3(3,3) \\
& +2 * x 1(3,3) * x 2(2,2) * x 3(1,1)+3 * x 1(2,2) * x 2(2,2) * x 3(3,3) \\
& +1 * \times 1(1,1) * x 2(3,3) * x 3(1,1)+2 * x 1(0,0) * x 2(3,3) * \times 3(3,3) \\
& +2 \text { * } x 1(2,2) * x 2(3,3) * x 3(1,1)+3 * x 1(1,1) * x 2(3,3) * x 3(3,3) \\
& +3 \text { * } \mathrm{x} 1(3,3) * \mathrm{x} 2(3,3) * \mathrm{x} 3(1,1)+1 * \mathrm{x} 1(3,3) * \mathrm{x} 2(3,3) * \mathrm{x} 3(3,3) \text {; }
\end{aligned}
$$

In a similar fashion, the following mapping fully describes the carry out $\left(\mathrm{C}_{\mathrm{o}}\right)$ function:

Figure 2.8: Mapping for Carry Save Adder Carry Out Function in Radix 4

The translated SOP expression resulting from this mapping is:
TABLE 2.2: SOP for Carry Function

$$
\begin{aligned}
& 1 \text { * } \mathrm{x} 1(3,3) \text { * } \mathrm{x} 2(1,1) * \mathrm{x} 3(0,0) \quad+1 \text { * } \mathrm{x} 1(1,1) \text { * } \mathrm{x} 2(1,1) * \mathrm{x} 3(2,2) \\
& +1 * \times 1(1,1) * \times 2(3,3) * x 3(0,0)+1 * \times 1(0,3) * \times 2(2,3) * \times 3(2,2) \\
& +1 * x 1(2,3) * \times 2(2,3) * x 3(0,0)+1 * \times 1(3,3) * x 2(3,3) * x 3(2,2) \\
& +1 * x 1(3,3) * x 2(0,1) * x 3(1,1)+1^{*} \times 1(1,2) * x 2(0,1) * x 3(3,3) \\
& +1 * \times 1(2,2) * \times 2(1,1) * x 3(1,1)+1 * \times 1(0,0) * x 2(1,1) * \times 3(3,3) \\
& +1^{*} \times 1(1,1) * \times 2(2,2) * \times 3(1,1)+1^{*} \times 1(3,3) * \times 2(0,3) * \times 3(3,3) \\
& +1 * \times 1(0,1) * \times 2(3,3) * \times 3(1,1)+1 * \times 1(0,3) * \times 2(2,3) * \times 3(3,3) \\
& +1 * x 1(2,3) * x 2(2,3) * x 3(1,1)+1 * x 1(2,2) * x 2(3,3) * x 3(3,3) \text {; } \\
& +1 \text { *x1(2,3)*x2(0,1)*x3(2,2) }
\end{aligned}
$$

C. MINIMIZATION OF LITERALS USING HAMLET HEURISTICS

Once the file containing the required SOP terms was input into the HAMLET CAD tool, a report was generated which returned the original expression with matrices representing the mappings given above for the sum and carry functions. Two heuristic minimization techniques were chosen to minimize the terms required for this design. The first was the Deuck\&Miller and Proper\&Armstrong heuristics[1]. This technique resulted in a reduction from 48 to 32 terms required for the sum function, and from 17 to 15 terms required to realize the carry function. Simulated Annealing minimization was also used, and HAMLET reported the same performance. In each case, the tool verifies each minimization by producing the mappings associated with each result. Copies of all HAMLET generated reports and a copy of the input data file are included in the appendix. Table 2.3 and Table 2.4 give the reduced SOP expressions returned by HAMLET which were utilized to implement the modulo-four adder. (Appendices A-C)

The reduced SOP expression generated by HAMLET for the sum function:
TABLE 2.3: Reduced SOP for Sum Function

$1 * x 1(3,3) * x 2(0,1) * x 3(3,3)$	$+1 * x 1(3,3) * x 2(2,3) * x 3(0,0)$
+1*x1(3,3)*x2(0,2)*x3(2,2)	+3*x1(2,2)*x2(1,1)*x3(0,0)
+2*x1(0,1)*x2(0,0)*x3(2,2)	$+1^{*} \times 1(0,1) * x 2(3,3) * x 3(2,3)$
$+1 * x 1(2,3) * x 2(3,3) * x 3(0,0)$	$+2 * x 1(0,0) * x 2(3,3) * x 3(0,0)$
$+1 * x 1(1,1) * x 2(0,0) * x 3(0,2)$	$+1 * x 1(3,3) * x 2(3,3) * x 3(3,3)$
+ 2 * $\mathrm{x} 1(0,0) * \mathrm{x} 2(2,2) * \mathrm{x} 3(1,1)$	+1* $\times 1(3,3) * \times 2(1,3) * \times 3(1,1)$
+1*x1(2,3)*x2(1,2)*x3(2,2)	+3*x1(1,1)*x2(2,2)*x3(0,0)
+1*x1(1,3)*x2(3,3)*x3(1,1)	$+1 * x 1(1,1) * x 2(2,3) * x 3(2,3)$
+1*x1(2,3)*x2(0,1)*x3(3,3)	+2*x1(2,2)*x2(0,0) * x $3(0,0)$
+ 3 * x1(0,0) * $\mathrm{x} 2(1,1) * \mathrm{x} 3(2,2)$	+2*x1(1,1)*x2(1,1)*x3(0,1)
+ 3 * x1 2,2) * $\mathrm{x} 2(2,2) * x 3(3,3)$	$+3 * \times 1(0,0) * \times 2(0,0) * \times 3(3,3)$
$+1 * x 1(0,1) * x 2(2,3) * x 3(3,3)$	+3*x1(2,2)*x2(3,3)*x3(2,2)
+ 3 * x1 $(3,3) * x 2(0,0) * x 3(0,0)$	+1 * $\times 1(1,3) * \times 2(1,1) * \times 3(3,3)$
$+3 * x 1(2,2) * x 2(0,0) * x 3(1,1)$	$+1 * \times 1(0,1) * \times 2(0,1) * x 3(1,1)$
$+1 * x 1(0,0) * \times 2(2,3) * x 3(0,0)$	+1*x1(0,0)*x2(1,2)*x3(0,1)
+1*x1(2,3)*x2(2,3)*x3(1,1)	+1*x1(2,3)*x2(2,2)*x3(2,2);

The reduced SOP expression for the carry function is:
TABLE 2.4: Reduced SOP for Carry Function

$$
\begin{array}{ll}
1 * x 1(2,2) * x 2(0,1) * x 3(2,3) & +1 * x 1(2,2) * x 2(1,1) * x 3(1,1) \\
+1 * x 1(1,1) * x 2(2,2) * x 3(1,1) & +1 * x 1(0,2) * x 2(3,3) * x 3(1,2) \\
+1 * x 1(0,2) * x 2(2,2) * x 3(2,2) & +1 * x 1(3,3) * x 2(3,3) * x 3(2,2) \\
+1 * x 1(3,3) * x 2(1,3) * x 3(0,0) & +1 * x 1(1,2) * x 2(3,3) * x 3(0,0) \\
+1 * x 1(0,0) * x 2(1,3) * x 3(3,3) & +1 * x 1(1,1) * x 2(1,1) * x 3(2,2) \\
+1 * x 1(3,3) * x 2(0,3) * x 3(1,3) & +1 * x 1(1,3) * x 2(2,3) * x 3(3,3) \\
+1 * x 1(2,2) * x 2(2,2) * x 3(0,1) & +1 * x 1(2,2) * x 2(3,3) * x 3(3,3) \\
+1 * x 1(1,1) * x 2(0,1) * x 3(3,3) &
\end{array}
$$

III. IMPLEMENTATION

A. CURRENT-MODE CMOS LOGIC

To implement the MVL expression, Current-Mode CMOS was utilized. In essence, different values of current correspond to the four different logic levels. A serious drawback to this implementation is that it requires current to be constantly flowing in the circuit. The logic levels and switching points were designed as shown in figure 3.1. Currents are shown above are in $\mu \mathrm{A}$.

Figure 3.1: Current Logic Levels

To achieve these characteristics, three components are required. The step-up and stepdown generators supply the appropriate currents to the column output generator[10]. Together, these components form one minterm of the logic equation.

The column output generator outputs a current of predetermined value if there is no current flow at its input. This input is the wired-OR of the step-up and step-down generators. The predetermined value will be one of the designed logic levels. This value is set by the gate dimensions of the output transistor. Note that the column output generator is insensitive to the value of the input current when it is present, i.e. it does not produce an output if the input is not zero. There is one column output generator per minterm.

It is the job of the step-up and step-down generators to produce zero current when an output current is desired for that term. The step-down generator cuts off the output when the input rises above the desired threshold values. These threshold values correspond to the
switching points for the desired logic level and are set by the gate dimensions of the input transistor. Typically, there is a step-up and step-down generator for each input.

Figure 2.3 illustrates the use of two inverter stages between the sensing transistor of the threshold detector and the output transistor for each component. Unfortunately, both stages are required in order to produce accurate and sharp transitions at the appropriate logic current levels of input. The consequence of this design is the added propagation delay incurred across two inverters, as well as an increase in the number of transistors and the power of the device as a whole.

B. LIMITATIONS OF THE PRESENT CAD TOOL - HAMLET

During the implementation phase of the radix-4 adder, certain limiting features of HAMLET were discovered and re-engineered using the current MOSIS 2.0 micron design rules.

1. HAMLET's PLA Generator Module

A program created by $\mathrm{Ko}[10]$ in support of the HAMLET project generates a PLA in current mode CMOS when given an MVL SOP expression. The resulting PLA conforms to MOSIS design rules. When originally designed, this module could be run on ISIS graphics workstations or a VAX. Currently, there is no operating version of this tool available for use on any modern graphical workstation available at NPS. However, the individual cells can still be assembled by hand, and a custom layout vice a generated PLA was created for this device.

2. Power Consumption

In the present tool, the step-up function generator modules are designed to produce output currents in the range of 150 uA to 180 uA . Likewise, the step-down function generators produce output currents of approximately 240 uA . However, these outputs only function as input to column generators, which have a switching threshold of approximately

20uA. Thus, internally, the switching currents produced by a device implemented using these cells tend to consume more power than necessary.

3. Scalability

In order for a large number of terms to function correctly, a high degree of accuracy is required in the individual cells. Column generators must produce output currents that are very nearly the ideal logic values, or small errors will tend to compound quickly as terms are connected for the wired sum function. Also, the switching current levels of the threshold detectors in the step-up and step down generators should ideally "split" the ideal logic values for maximum effectiveness against introduced errors. As can be readily seen by figures 4.2-4.4 of [10], the original pla generator tool suffered from both inaccuracies in the output generator as well as at the inputs to the threshold detectors. For example, if the outputs from two column generators are wired together, and each is designed to produce a $\operatorname{logic} 1$, the wired sum would be approximately 110 uA , a logic 2 . However, the step-up function generator reports detection of a logic 3 input beginning at 110 uA . Thus, if this wired sum was to be used as an input to another term which included the step-up 3 function, an error would occur. Similar examples can be contrived for the step down function cells.

C. ENGINEERING MODIFICATIONS TO STEP-UP, STEP-DOWN, AND COLUMN GENERATOR CELLS

In order to improve the implementation of the MVL expression design, several engineering changes were made to the basic cells used by HAMLET and implemented in a custom layout of the final device.

1. Transistor Sizing

Using new MOSIS design rules, minimum wire width is reduced from $4 \mu \mathrm{~m}$ to $2 \mu \mathrm{~m}$ with a λ of $1.0 \mu \mathrm{~m}$. This allows more precise control of threshold detector values and column output generator current levels.

2. Improved Logic Values and Switching Thresholds

In order to reduce power requirements for this design and improve noise margin performance, the logic value thresholds and the ideal current values produced by the stepup and step-down generators were redesigned as follows:

TABLE 3.1: New Logic and Threshold Current Values

	Original HAMLET Design Values:				
Logic Values	Step Down Generator	Ideal Current	Current Generator	Step Up Generator	
$\mathbf{0}$	$0 \mu \mathrm{~A}$	$0 \mu \mathrm{~A}$	$*$	$10 \mu \mathrm{~A}$	
$\mathbf{1}$	$20 \mu \mathrm{~A}$	$50 \mu \mathrm{~A}$	$58 \mu \mathrm{~A}$	$60 \mu \mathrm{~A}$	
$\mathbf{2}$	$80 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	$110 \mu \mathrm{~A}$	
$\mathbf{3}$	$130 \mu \mathrm{~A}$	$150 \mu \mathrm{~A}$	$136 \mu \mathrm{~A}$	not defined	
$\mathbf{0}$	$0 \mu \mathrm{~A}$	$0 \mu \mathrm{~A}$	$*$	$20 \mu \mathrm{~A}$	
$\mathbf{1}$	$20 \mu \mathrm{~A}$	$40 \mu \mathrm{~A}$	$40 \mu \mathrm{~A}$	$60 \mu \mathrm{~A}$	
$\mathbf{2}$	$60 \mu \mathrm{~A}$	$80 \mu \mathrm{~A}$	$80 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	
$\mathbf{3}$	$100 \mu \mathrm{~A}$	$120 \mu \mathrm{~A}$	$120 \mu \mathrm{~A}$	$150 \mu \mathrm{~A}$	

A substantial power savings was also realized by reducing the current output from the step up and step down cells. The column output generators require much less current for switching purposes than in the original HAMLET design. Table 3.2 summarizes the redesign of the step up/down generator output current levels.

TABLE 3.2: New Step Up and Step Down Generator Output Current Design

Output Currents From Step Up/Down Generators:		
	Step Up Generator	Step Down Generator
Original Cells	$180 \mu \mathrm{~A}$	$240 \mu \mathrm{~A}$
New Cell Design	$60 \mu \mathrm{~A}$	$70 \mu \mathrm{~A}$

3. Simulation of New Cells

The individual circuits were implemented using MAGIC and then extracted to SPICE for simulation and analysis. Because of the nature of multi-valued logic, the normal definition of noise margin does not apply. For this circuit, the noise margin can be defined as the difference between the output logic level and the input switching thresholds of the next gate. The optimum noise margin can be achieved only by centering the output logic value between its associated switching thresholds. These nominal current values have been achieved within 2 uA .

The timing delays and power consumption of the various components are detailed below.

TABLE 3.3: Timing and Power Simulation of Cells

	Step Up Generator	Step Down Generator	Column Output Generator
$\mathbf{T}_{\mathbf{r}}(\mathbf{n s})$	4.19	1.43	1.23
$\mathbf{T}_{\mathbf{r}}(\mathbf{n s})$	2.04	3.12	1.51
$\mathbf{T}_{\mathbf{P L H}}(\mathbf{n s})$	11.48	4.29	2.16
$\mathbf{T}_{\mathbf{P H L}}(\mathbf{n s})$	2.74	9.61	5.69
$\mathbf{P}_{\mathbf{S T A T I C}}(\mathbf{m W})$	$1.78(\mathrm{H}) /$ 0.0 L	1.07	$0.42(\mathrm{H}) /$ $0.81(\mathrm{~L})$

TABLE 3.3: Timing and Power Simulation of Cells

	Step Up Generator	Step Down Generator	Column Output Generator
$\mathbf{P}_{\text {LH(peak })}(\mathbf{m W})$	1.78	1.34	0.87
$\mathbf{P}_{\text {HL(peak })}(\mathbf{m W})$	1.78	2.25	1.60

The power dissipation for this circuit appears to be fairly high. This is expected because the proper operation of this type of multi-valued logic circuit requires continuous current flow at different levels to achieve the desired results. Unlike conventional CMOS logic, the static power dissipation is much greater than the transistor leakage current.

4. Simulation of a Combined Minterm Using the New Cells

The components were combined to yield a fairly typical minterm for analysis. The minterm chosen was:

$$
\begin{equation*}
3 X(2,2) Y(3,3) C(2,2) \tag{3.1}
\end{equation*}
$$

This term was implemented in MAGIC and extracted to SPICE for simulation and analysis. The results are compiled in the following table:

TABLE 3.4: Term $3 \mathbf{X}(2,2) Y(3,3) \mathbf{C}(2,2)$

$\mathrm{T}_{\mathbf{r}}(\mathrm{ns})$	4.19
$\mathrm{~T}_{\mathbf{r}}(\mathbf{n s})$	2.04
$\mathbf{T}_{\mathbf{P L H}}(\mathrm{ns})$	11.48
$\mathrm{~T}_{\mathrm{PHL}}(\mathrm{ns})$	2.74
$\mathbf{P}_{\text {STATIC }}(\mathbf{m W})$	$1.78(\mathrm{H}) / 0.0 \mathrm{~L}$
$\mathbf{P}_{\text {LH(peak })}(\mathbf{m W})$	1.78
$\mathbf{P}_{\text {HL(peak })}(\mathbf{m W})$	1.78

As expected, the rise and fall times are fairly close and reflect the contribution of the column output generator. The propagation delays are a result of the series connection of the step generators and the column output generator. In this configuration, there are a total of

4 CMOS inverter stages that a signal must propagate through prior to the generator output transistor. The power results are expected and reflect the affect of choosing a current-mode CMOS implementation. The static power dissipation is fairly significant, while the dynamic power is of much lower value. Unfortunately. these will add to the static figure during logic transitions and result in a substantial power transient. (Appendices D-G)

D. CIRCUIT LAYOUT

The circuit was laid out using MAGIC for a MOSIS 2.0 micron process, using n-well process data from Orbit fabrication facility.

1. Basic floor plan

The basic floor plan of the chip consists of 2 "towers" wired together at the output to realize the truncated sum function, a single tower for the carry out function, and a set of current mirrors to replicate the inputs that are required for each term. The cell has 3 input and 2 output pads, as well as separate power and ground inputs for the sum function towers (2), carry function, and current mirror cell, respectively. The sum output is composed of 47 minterms, while the carry is composed of 17 minterms. The final layout for this device is shown in figure 3.2.

Figure 3.2: Final Layout of Design

2. Input Current Mirror Design and Layout

Each of these terms, in general, requires all three input current signals. A current mirror was designed to provide for these input requirements. We centered the current replicator design at 80 uA because of the nonlinear nature of the current mirror circuit with a varying current reference. This results in less than a 10 uA deviation from the desired current at the other logic levels.

Figure 3.3: Current Mirror Response

3. VDD and Ground Rail Considerations

Power consumption was also a major design consideration, as discussed earlier. Care must be exercised to ensure that the circuit will not fail due to electromigration problems associated with excess current within the interconnect network. In addition, to separate power and ground rails for each tower and the current mirror unit, metal 2 was used which has a nominal rating of $1 \mathrm{~mA} / \mu \mathrm{m}$ of width. As can be observed in the power plot of Figure 3.4 , at no point does the current exceed 30 mA on any rail. These measurements were recorded during the functional test (Figure 3.5) These values are relatively high, but do not pose a threat to the circuit.

Figure 3.4: Current Measurements at VDD and Ground Rails
Finally, there are transients in the output due to the nature of the circuit. The various minterms turn "on" and "off" at different times depending on the current levels at their inputs. This results in transients while the circuit is stabilizing between input changes. Provided the transients do not exceed power ratings (as previously shown) and the output is sampled once it has stabilized, these hazards will not affect the circuit operation. The time delay for transients to subside can be included in the delay of the adder.

4. Simulation of Completed Chip Design

A series of square current waveforms were applied at each input in order to simulate all combinations possible. The SPICE model produced output showing the correct counting sequence at the output nodes for all input combinations.

Figure 3.5: Complete Functional Test

Power and transient models obtained from SPICE are included in the results chapter for comparison with measured and observed values.

IV. TESTING AND EVALUATION OF MULTI-VALUED LOGIC (MOD4) CARRY SAVE ADDER

This section summarizes the performance characteristics and functionality of the multiple-valued logic (modulo four) carry save adder designed and implemented in current mode CMOS. A total of 15 devices were returned from fabrication, 12 of which were mounted in appropriate packages. Four devices from the lot were completely tested (dev1 - dev4). In order to readily test these devices, a custom testbench was designed and constructed.

A. DESIGN OF MODULO FOUR TESTBENCH

1. Binary-to-Ideal Current Source Conversion

It is desirable to have a method for converting binary digits to current levels as required by the inputs to the full adder. Conversely, a convenient method for measuring the sum and carry out is also necessary. Each of the three inputs, X, Y, and Carry in are driven by the following circuit:

Figure 4.1: Testbench Input Circuitry

The D/A converter stage is controlled by two dip switches which select between Vref and open-circuit. The use of dip switches is dependent on the ability of the op-amp to
produce a virtual ground at the inverting terminal, and the input resistance of the op-amp being significantly greater than $\mathrm{R}(50 \mathrm{k} \Omega)$. The output of the D / A converter is connected to the Vin node of a Howland voltage-controlled current source.[23] The Howland circuit was chosen because the output current is nearly ideal over a wide range of loading. This is required because the current-sensing transistors in the threshold detectors will have a variable resistance as they switch in and out of saturation.

2. Current Decoding at Outputs

The output circuitry has three stages, a current-controlled voltage source (ICVS), a series of voltage comparators, and a digital logic LED display circuit. The output circuit is specifically designed to detect the proper switching thresholds designed into the modulo four adder. The output circuitry is shown in figure 4.2.

Figure 4.2: Testbench Output Circuitry

It should be noted that this testbench is useful for functional testing and transient analysis. For transient testing, the dip switch input is changed to a clocked voltage waveform from a function generator.

B. SUMMARY OF TEST RESULTS

1. Static Power Tests

Static power test results for no-load and full-load conditions were found to be slightly higher than those obtained from SPICE simulation of the layout. As previously mentioned, VDD and Ground inputs were provided for each of the major components of the device. This allowed static power testing of each component individually. The following table shows the power consumption of the major components of the third device in the test lot:

TABLE 4.1: Component Static Power

MVL_adder Device 3		
	Design No Load	Measured No Load
Sum (right tower)	2.93 mA	3.12 mA
Sum (left tower)	2.88 mA	3.02 mA
Carry out tower	2.95 mA	3.23 mA
Current mirror	0	0.0 mA
Pad ring	0	0.0 mA

The four test devices were measured under no load conditions (all inputs set to OuA). As VDD was ramped from 0 to 5.0 v , the power supply cuurent was recorded. The static power consumption was calculated by finding an average current for the four devices and then multiplying by a constant VDD of 5.0 v .

$$
\begin{gather*}
\mathrm{I}_{\mathrm{ave}}=\left(\mathrm{Idev}_{1}+\mathrm{Idev}_{2}+\mathrm{Idev}_{3}+\mathrm{Idev}_{4}\right) / 4 \tag{4.1}\\
\mathrm{P}_{\mathrm{ave}}=\mathrm{I}_{\mathrm{ave}} * \mathrm{VDD} \tag{4.2}
\end{gather*}
$$

The resulting average static power under no load conditions is plotted as a function of VDD in Figure 4.5.

The design power consumption model was obtained using SPICE for no-load conditions and VDD was once again ramped from 0 to 5.0 v , and the current through the power supply was obtained. The average static power under no-load conditions was calculated as previously described:

Figure 4.3: Measured and SPICE Simulation of No Load Static Power Consumption

For full load testing, all inputs were held high ($120 \mu \mathrm{~A}$ each) and VDD was set to 5.0 v . Once again, the power supply current was recorded for each test device. The measured values are shown compared with the full power simulation obtained from the SPICE model in Table 4.2

TABLE 4.2: Full Power Measurements

	MVL_adder Fab ID: N46EFF1		Spice Model (VDD set 5.0v)		
	Measured Current	Calculated Power	VDD Current	VDD Power	
Device 1	70.5 mA	352.5 mW			
Device 2	69.3 mA	346.5 mW		66 mA	330 mW
Device 3	70.2 mA	351.0 mW			
Device 4	69.3 mA	346.5 mW			

The highest current level at the outputs occurs when the sum output transitions from a $\operatorname{logic} 2$ to a logic 3 , and vice versa. The measured value was determined by using a ramped current input from 0 to $150 \mu \mathrm{~A}$ and observing the transitions at the sum terminal. A transient current spike of $195 \mu \mathrm{~A}$ was recorded. This effect was seen for transitions in both directions. This transient result correlates with the SPICE model which showed similar transients of $195 \mu \mathrm{~A}$ for these transitions(Appendix L). This result translates into a peak power rating for the device of 353.63 mW , assuming all three inputs experience a simultaneous transition from logic 2 to logic 3 .

2. Functional Testing

Steady-state functional values for output currents were within 1.5% of design, and most were found to be significantly less than 1.0%. Exhaustive functional logic testing was conducted (64 input combinations), and no deviation from predicted output values was observed in steady-state. The following table is a sample set from the input test on dev1. Shown are the design output values from the SPICE model vs. actual measured currents observed on the testbench.

TABLE 4.3: Functional Test for Device 1

	Sum Output		Carry Output	
[Xin, Yin, Cin]	design (mA)	measured	design (mA)	measured
$[\mathbf{1 , 1 , 0]}$	80	82.2	0	0
$[\mathbf{2 , 1 , 0]}$	120	119.3	0	0
$[\mathbf{1 , 3 , 0}]$	0	0	40	41.3
$[\mathbf{2 , 0 , 1}]$	120	119.7	0	0
$[\mathbf{2 , 1 , 2}]$	40	41.2	40	40.3
$[\mathbf{3 , 0 , 1}]$	0	0	40	40.9
$[\mathbf{3 , 2 , 1}]$	80	80.9	40	40.0
$[\mathbf{0 , 3 , 2}]$	40	40.3	40	40.3
$[\mathbf{3 , 3 , 2}]$	0	0	80	79.2
$[\mathbf{0 , 2 , 2}]$	0	0	40	40.2

3. Transient Analysis

A transient analysis was conducted. However, due to the very small currents being measured, accurate rise/fall times and propagation delays were difficult to obtain. The device was found to be able to maintain correct functionality at clocking rates of up to 600 Khz , at a power supply voltage of 5.0 v . In order to measure the output response of the adder, the sum and carry out nodes were connected through a 1 Kohm resistor to ground. This leads to errors due to the introduction of additional resistive loading on the overall RC delay in the circuit. The longest delay times were observed in the sum circuit. When switching between logic level 0 and $3,(0 \mu \mathrm{~A}$ and $120 \mu \mathrm{~A}$ respectively) the sum circuit was found capable of clock rates not greater than approximately 500 Khz . The measured values were determined from the scope displays as seen in appendix K .

Design delays were predicted using the extracted SPICE model of the adder. Customized pulsed current waveforms were provided to the input nodes. The output waveforms for the sum and carry out were obtained with a 1 Kohm resistive load. This was done in order to gain a quantitative result which could be compared to the measured values. Measured and simulated delays are given in Table 4.4.

TABLE 4.4: Propagation Delay

	Sum 0->3->0			Carry 0->1 >0	
	measured	SPICE		measured	SPICE
t_{r}	280 nS	60 nS		223 nS	10 nS
t_{f}	254 nS	110 nS		215 nS	10 nS
t_{dr}	135 nS	90 nS		170 nS	120 nS
t_{df}	120 nS	55 nS		73 nS	40 nS

Figure 4.4: SPICE Model Propagation Delay for Sum and Carry Out

4. Results Discussion

Steady-state functional operation conformed very closely to design and simulation. Output currents were on average within 1 percent of ideal operation for Vdd set to 5.0 v . This is important due to the fact that these devices are designed to operate in both parallel (carry save) and serial (ripple) adder configurations. Static power consumption for no load, full load, and peak power were very close to design values.

The timing measurements were difficult to obtain. The output currents were converted to voltage signals across a 1 Kohm resistor, inherently increasing propagation delays, especially rise/fall times. Measured propagation delays fell between a low of 2 and high of 20 times larger than the simulated values. In this case, the measured values are open to a certain degree of speculation for accuracy. Attempts to use smaller resistances failed to produce a voltage signal strong enough to be distinguishable from background noise. With such small measurable signals, the inherent capacitance in the testing boards and connections proved to be significant.

V. CONCLUSIONS

HAMLET was successfully utilized in the design phase of a radix-4 adder cell. Minimization heuristics correctly produced a set of sum-of-product expressions for the sum and the carry out function, which, when implemented and tested, correctly computed the desired functions.

A. HAMLET RECOMMENDATIONS

The following recommended actions are applicable to the HAMLET module mvII which generates a pla representation of a multiple-valued logic expression.

1. Port to an X-Windows Application

The original versions of mvll were platform specific, i.e., written specifically to operate only on ISIS and VAX workstations. A working version of this program is required in order to effect further upgrades. Since MAGIC is an X-Windows application, the pla generator needs to incorporate the appropriate coordinate-free libraries (.cfl files) that contain the drawing commands used in the versions of MAGIC which are currently being utilized.

2. Design of Current-Mode Logic Cells

As the MOSIS design rules change, and as more precise fabrication processes are made available for these devices to be implemented, the basic current-mode cells used by mvll (step up/down and column generators) need to be redesigned for better noise margin and propagation delay performance. Smaller resolution implementation of logic values results in less power consumption, or, the capability to design and implement higher radix devices.

B. AN ALTERNATIVE DESIGN FOR A RADIX-4 ADDER CELL IN CURRENT-MODE CMOS

As a reference for comparison purposes, a current mode CMOS radix 4 carry save adder was designed and implemented without use of the cad tool HAMLET. The goal of this custom design was to produce and implement a device which could then be compared to that which was created using HAMLET.

1. A Different Approach

In attempting to design the same radix- 4 adder on a smaller device, the fact that an adder is a symmetric function can be taken advantage of. Recall that the value of a binary symmetric function depends only on the total number of inputs which are 1 . This same principle applies to multiple-valued functions as well. In the current-mode adder, for example, both the sum and the carry functions can be determined solely on the wired sum of all inputs.

Determining the output function values based upon the wired sum of the inputs has several advantages. Foremost, the complexity of the logic implementation is greatly reduced. In the case of the adder, for example, instead of requiring the replication of all three inputs, there is now only a single input to the column generator terms. Furthermore, the terms themselves contain at most one step-up and one step-down generator, vice up to 6 required generators when using all 3 inputs in one term.

To accomplish this, the method is to use a hierarchical radix model for the realization of the function. A lower radix is experienced at the input and output nodes of the device. However, inside the device, the circuit uses a system in which the radix is determined by the wired sum of the inputs, as given by equation 5.1.

$$
\begin{equation*}
R_{A D I X} \text { HIGH }=\prod_{k=1}^{n}\left(R_{A D I X}^{\text {LOW }}-1\right) \tag{5.1}
\end{equation*}
$$

However this method requires current replication over a much greater range of values than incurred by the original radix of the inputs. To alleviate this difficulty, a current-input complementary pass gate is designed to switch the wired input signal to specific modules in the circuit. The threshold detector causes a logic signal which diverts the total current signal into completely one of two paths. In the adder design, this reduces the number of column generator terms even further. For the sum function, if the wired input sum is in the range ($0: 3$), the complementary pass gate logic diverts the summed input currents directly to the sum function output terminal, with no other switching logic required since there is no need to process any carry logic prior to the wired input sum of logic 4 .

To Sum Output (0:3) To Sum \& Carry Logics (4:9)

Figure 5.1: Current Input Complementary Pass Gate

Figure 5.2: Block Diagram of New Modulo 4 Adder
The final design contains far fewer transistors than the previous device. The die size of the adder designed with HAMLET measured $5.5 \times 3.5 \mathrm{~mm}$, compared with the die layout of the alternative design which is MOSIS standard size Tiny measuring $2.22 \times 2.25 \mathrm{~mm}$. As can be seen in figure 5.3, the tiny size die contains four complete radix 4 adders, and easily has enough room to accommodate up to 6 .

Figure 5.3: Chip Layout of Alternative Design
\qquad

2. Simulation of Alternative Design

The final layout of the new device was extracted from MAGIC into a SPICE model and simulated. The same functional test inputs were applied to the input nodes as those used for the HAMLET design. All input combinations demonstrated correct function results for the adder.

The static full power analysis illustrated the benefit of both fewer terms and lower ideal current logic values. A single adder cell on this chip consumes only 12.2 mW vice the 330 mW of the HAMLET design. Similar results were encountered for a no load test. This power savings, however, is realized at the expense of further degradation in transient performance. A transient analysis was conducted on the device layout using the SPICE model. Once again, the input functions used were the same as used for the previous design.

Figure 5.4: Transient Analysis of Alternate Design

Figure 5.4 shows rise/fall and propagation delay on the same order as the previous design. This is due to two factors. By halving the current values used to realize this function, this layout is most susceptible to RC delay of the interconnect network. The other contributing factor is that conservative metal 1 and metal 2 widths were used in order to
ensure safety during testing and operation. An inexpensive venture to begin to alleviate the propagation delay would be to simply return to the layout and re-draw the interconnect more aggressively, with emphasis on minimum width wire and routing distances.

3. Conclusions of Alternative Design Method

The new design accomplished the same function with a total of 7 column generator terms as opposed to the 47 required by the SOP expressions generated by HAMLET. In addition, each of the 7 terms in the new design has at most 2 threshold detector cells vice the 6 needed in some column generator terms of the previous device. With fewer transistors, the device itself requires much less space to layout, on the average about a single order of magnitude smaller than the first chip. The smaller design, as expected, also used about an order of magnitude less power under full load. The alternate design did not help the slow transient performance of the modulo four adder design in current-mode CMOS.

C. RECOMMENDATIONS FOR FURTHER STUDY

1. Charged-Coupled Device (CCD) Logics

A programmable logic array implementation using CCDs is an appropriate evolutionary step for the HAMLET project. CCDs have been found to be useful in the design of memory units. Hitachi has implemented a 16 valued memory. Although multiple valued logic CCD is slower than CMOS, it is much more dense. The use of MVL CCDs can increase storage capacity significantly, perhaps replacing the disk[20].

2. Resonant-Tunneling Diodes (RTD) Logics

Quantum resonant tunneling devices offer the highest speed performance for multi valued logic implementation to date. At present, RTDs exist primarily as discrete devices, hence, RTD VLSI implementation and modeling is in the future. RTDs will produce extremely simple and high speed A/D and D/A converters which are also a significant part of the MVL VLSI implementation problem.

3. Hierarchical MVL Design for Symmetric Functions

A generalized formal discussion of the use of multiple radices (at least two) in the implementation of a totally symmetric multiple valued logic function is desirable. One possible approach is to consider the shortest path problem which arises in graph theory. In a dense graph of many nodes, a guaranteed shortest path solution algorithm, whether breadth first or depth first, rapidly becomes exceedingly expensive as the graph scales. However, if a single large graph (flat topology) is carved into a network of subgraphs (hierarchical topology) the shortest path computation is greatly reduced.

This is similar to the two-radix approach of the second design. The input radix (mod 4) is immediately converted to mod 10 (upper level hierarchy). The function value is computed in base 10, and then the result is converted to mod 4 by the column output generators. An interesting result would be to compute the power and transistor budget savings using this method.

4. Modulo 16 (hexadecimal) Current Mode CMOS Full Adder Cell

Using the same basic components as in the latter mod 4 adder design described above, it is possible to construct a radix 16 full adder cell with approximately the same die area and power consumption. Such a cell is currently being investigated using as little as $10 \mu \mathrm{~A}$ for each logic level. In the near future the MOSIS design rules currently in effect will allow sub-micron design and layout. This will greatly enhance the ability to implement the required threshold detectors for such a small proposed signal space. As in the previous modulo 4 adder cell, a current-sensing complementary transmission gate passes the first 15 levels of logic signal directly to the sum terminal, without further circuit interaction. For inputs totaling 16 or more, the wired sum signal is passed to the sum and carry logic for processing.

REFERENCES

[1] J. M. Yurchak and J. T. Butler, "HAMLET - An Expression Compiler/Optimizer for the Implementation of Heuristics to Minimize Multiple Valued Programmable Logic Arrays," Proc. 20th ISMVL, pp. 144-152.
[2] K. C. Smith, Z. G. Vranesic, L. Janczewski, "Circuit Implementations of Multivalued Logic," Proc. 1971 ISMVL, 1971, pg. 133.
[3] D. Eitiemble, M. Israel, "Implementation of Ternary Circuits With Binary Integrated Circuits," Proc. 7th ISMVL, 1977, pp. 125-130.
[4] K. W. Current, D. A. Mow, "Four-Valued Threshold Logic Full Adder Circuit Implementations," Proc. 8th ISMVL, 1978 pp95-100.
[5] J. G. Tront, D. Givone, "An Implementation of Multiple-Valued Logic Gates Using MESFETs," Proc. 9th ISMVL, 1979, pp.175-177.
[6] C. S. Wallace, "A Suggestion for a Fast Multiplier," IEEE Trans. Elect Comp., Vol EC13, No. 1. Feb 1964, pp.14-17.
[7] S. Kawahito, M. Karneyama, T. Higuchi, H. Yamada, "A High-Speed Compact Multiplier Based on Multiple-Valued Bi-directional Current-Mode Circuits," Proc. 17th ISMVL, May 1987, pp.172-174.
[8] A. D. Booth, "A Signed Binary Multiplication Technique," Quart. J. Mech. Appl. Math., Vol 4, Part 2, 1951, pages 236-240.
[9] S. Kawahito, M. Karneyama, T. Higuchi, H. Yamada, "VLSI-Oriented Bi-directional Current-Mode Arithmetic Circuits Based on the Radix-4 Signed Number System," Proc. 16th ISMVL, 1986, pp. 70-77.
[10] Yong Ha Ko, "Design of Multi-Valued Programmable Logic Arrays," Master's Thesis, Naval Postgraduate School, December 1988, pp 3-7.
[11] A Kazeminejad, K. Navi, and D. Etiemble, "CML Current Mode Full Adders for 2.5 Volt Power Supply," Proc. 24th ISMVL, May 1994, pp-10-14.
[12] Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits, third edition, Saunders, Philedelphia, PA 1991, ch 3-4.
[13] Y, H. Chang and J. T. Butler, "The Design of Current Mode CMOS Multiple-Valued Circuits," Proc. 21st ISMVL, May 1991, pp. 130-138.
[14] K. W. Current, F. A. Edwards, and D. A. Freitas, "A CMOS Multiple Valued Logic Test Chip," Proc. 17 ISMVL, May 1987, pp. 16-19.
[15] K. Wayne Current, "Multiple Valued Logic: Current-Mode CMOS Circuits," Proc. 23rd ISMVL, May 1993, pp.176-181.
[16] K. W. Current, F. A. Edwards, and D. A. Freitas, "CMOS Quaternary Threshold Logic Full Adder Circuits," Proc. 15th ISMVL, May 1985, pp. 318-322.
[17] A Kazeminejad, K. Navi, and D. Etiemble, "Performance of CMOS Current Mode Full Adders," Proc. 24th ISMVL, May 1994, pp.27-34.
[18] J. T. Butler, "Multiple-valued Logic," IEEE Potentials vol. 14, April/May 1995, pg. 11.
[19] K. Lei and Z.G. Vranesic, "On the Synthesis of 4-Valued Current Mode CMOS Circuits," Proc. 21st ISMVL, May 1991, pp. 147-155.
[20] Konreid Lei and Zvonko G. Vranesic, "Towards the Realization of 4-Valued CMOS Circuits," Proc. 22nd ISMVL, May 1991, pp. 147-155.
[21] S. P. Onneweer and H. G. Kerkhoff, "Current-Mode CMOS High-Radix Circuits," Proc. 16th ISMVL, May 1986, pp. 60-69.
[22] W. S. Scott, R. N. Mayo, and G. Hamachi, "1986 VLSI Tools," Report No. UCN/ CSD 86/272, University of California, Berkeley, December 1985.
[23] William D. Stanley, Operational Amplifiers with Linear Integrated Circuits, third edition, Macmillan, New York, 1994, pp. 82-84, ch 10.
[24] Neil H. E. Weste and Kamran Eshraghian, Principles of VLSI Design, second edition, Addison Wesley, Reading, MA, 1992, ch 4-6.

APPENDIX

A. HAMLET REPORT - ORIGINAL SOP EXPRESSION

Verification of original expression 19 february 1994
\# mvlc -M mvl_full_adder
4: 3:

$$
\begin{aligned}
& +1 * x 1(1,1) * x 2(0,0) * x 3(0,0) \\
& +2 \text { *x1(2,2) * } \times 2(0,0) * x 3(0,0) \\
& +3 * x 1(3,3) * \times 2(0,0) * x 3(0,0) \\
& +1 * \times 1(0,0) * \times 2(1,1) * \times 3(0,0) \\
& +2 * x 1(1,1) * \times 2(1,1) * x 3(0,0) \\
& +3 * x 1(2,2) * \times 2(1,1) * x 3(0,0) \\
& +2 * \times 1(0,0) * \times 2(2,2) * x 3(0,0) \\
& +3 * x 1(1,1) * x 2(2,2) * x 3(0,0) \\
& +1 * x 1(3,3) * x 2(2,2) * x 3(0,0) \\
& +3 * x 1(0,0) * x 2(3,3) * x 3(0,0) \\
& +1 * x 1(2,2) * x 2(3,3) * \times 3(0,0) \\
& +2 * x 1(3.3) * x 2(3.3) * x 3(0.0) \\
& +1 \text { *x1(0,0) * } \times 2(0,0) * x 3(1,1) \\
& +2 * \times 1(1,1) * \times 2(0,0) * \times 3(1,1) \\
& +3 * x 1(2,2) * x 2(0,0) * \times 3(1,1) \\
& +2 * x 1(0,0) * \times 2(1,1) * x 3(1,1) \\
& +3 \text { * } \times 1(1,1) * \times 2(1,1) * \times 3(1,1) \\
& +1 * x 1(3,3) * \times 2(1,1) * x 3(1,1) \\
& +3 * \times 1(0,0) * \times 2(2,2) * \times 3(1,1) \\
& +1 * \times 1(2,2) * x 2(2,2) * x 3(1,1) \\
& +2 * \times 1(3,3) * \times 2(2,2) * x 3(1,1) \\
& +1 * x 1(1,1) * x 2(3,3) * x 3(1,1) \\
& +2 * \times 1(2,2) * \times 2(3,3) * \times 3(1,1) \\
& +3 \text { * } \times 1(3,3) * \times 2(3,3) * x 3(1,1) \\
& +2 * x 1(0,0) * x 2(0,0) * x 3(2,2) \\
& +3 * \times 1(1,1) * \times 2(0,0) * \times 3(2,2) \\
& +1 * \times 1(3,3) * \times 2(0,0) * x 3(2,2) \\
& +3 * \times 1(0,0) * \times 2(1,1) * \times 3(2,2) \\
& +1 * x 1(2,2) * x 2(1,1) * x 3(2,2) \\
& +2 * x 1(3,3) * x 2(1,1) * x 3(2,2) \\
& +1 * \times 1(1,1) * x 2(2,2) * x 3(2,2) \\
& +2 * x 1(2,2) * x 2(2,2) * x 3(2,2) \\
& +3 * x 1(3,3) * x 2(2,2) * x 3(2,2) \\
& +1 \text { * } x 1(0,0) * x 2(3,3) * x 3(2,2) \\
& +2 * \times 1(1,1) * \times 2(3,3) * \times 3(2,2) \\
& +3 * \times 1(2,2) * \times 2(3,3) * \times 3(2,2) \\
& +3 * \times 1(0,0) * \times 2(0,0) * \times 3(3,3) \\
& +1 * \times 1(2,2) * \times 2(0,0) * x 3(3,3) \\
& +2 * \times 1(3,3) * \times 2(0,0) * \times 3(3,3) \\
& +1 * \times 1(1,1) * \times 2(1,1) * \times 3(3,3) \\
& +2 \text { * } \times 1(2,2) * \times 2(1,1) * \times 3(3,3) \\
& +3 * \times 1(3,3) * \times 2(1,1) * \times 3(3,3)
\end{aligned}
$$

```
    +1 * x1(0,0) * x2(2,2) * x3(3,3)
    +2*xl(1,1)*x2(2,2)*x3(3,3)
    +3*x1(2,2)* x2(2,2) * x3(3,3)
    +2 * x1(0,0) * x2(3,3) * x3(3,3)
    +3 * x1(1,1) * x2(3,3) * x3(3,3)
    +1 * xl(3,3)* x2(3,3)*x3(3,3);
    0}11223
    1 2 3.0
    2 3. 0 1
    3. 0 1 2
    1 2 3.0
    2 3.001
    3.}0<ll
    0}11223
    2 3. 0 1
    3.}0<
    0}11223
    12 3.0
    3. 0}101
    0}11223
    12 3.0
    2 3.0 1
4: 3:
    +1*x1(3,3)*x2(1,1)*x3(0,0)
    +1 * x1(1,1) * x2(3,3) * x3(0,0)
    +1*x1(2,3)*x2(2,3)*x3(0,0)
    +1*x1(3,3)*x2(0,1)*x3(1,1)
    +1*x1(2,2)* x2(1,1)*x3(1,1)
    +1*x1(1,1)* x2(2,2)*x3(1,1)
    +1 * x1(0,1)* x2(3,3) * x3(1,1)
    +1 * x1(2,3) * x2(2,3) * x3(1,1)
    +1*xl(2,3)*x2(0,1)*x3(2,2)
    +1 * x1(1,1) * x2(1,1)*x3(2,2)
    +1*x1(0,3)*x2(2,3)*x3(2,2)
    +1 * x1(3,3) * x2(3,3)*x3(2,2)
    +1*x1(1,2)*x2(0,1)*x3(3.3)
    +1*x1(0,0)* x2(1,1)*x3(3,3)
    +1*x1(3,3) * x2(0,3)*x3(3,3)
    +1*x1(0,3)*x2(2,3)*x3(3,3)
    +1*x1(2,2)*x2(3,3)*x3(3,3);
    0}0000
    0
    0
    0}11111
```

$\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ & & & \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 2 & 2\end{array}$

B. HAMLET REPORT - DEUCK \& MILER MINIMIZATION

minimization of SOP expression using Deuck\&Miller
and Proper\&Armstrong heuristics.
19 february 1994
\# mvic HG E 0.01 mvl_full_adder

The resulting expression is:
4:3:
+2 * $\mathrm{x} 1(3,3) * \mathrm{x} 2(2,2) * \mathrm{x} 3(1,2)$
+3 * $\mathrm{x} 1(0,0) * x 2(2,2) * x 3(1,1)$
$+1 * \times 1(3,3) * x 2(0,2) * x 3(2,2)$
+3 * x1(0,0) * $\mathrm{x} 2(3,3) * x 3(0,0)$
+1 * $\mathrm{x} 1(2,3)$ * $\mathrm{x} 2(1,1) * \mathrm{x} 3(2,3)$
+1 * $x 1(2,2) * x 2(0,2) * x 3(3,3)$
+3 * x1(3,3) * $\mathrm{x} 2(0,0)$ * $\mathrm{x} 3(0,0)$
+1 * $\mathrm{x} 1(3,3) * \mathrm{x} 2(3,3) * \mathrm{x} 3(3,3)$
+3 * $\mathrm{x} 1(1,1) * \mathrm{x} 2(1,1) * \times 3(1,1)$
+1 * $\mathrm{x} 1(0,0) * \times 2(0,0) * x 3(1,3)$
$+3 * x 1(0,0) * \times 2(1,1) * x 3(2,2)$
$+2 * x 1(3,3) * x 2(3,3) * x 3(0,1)$
$+1 * x 1(3.3) * \times 2(1,1) * x 3(1,1)$
+1 * $x 1(0,1)$ * $\times 2(3,3) * x 3(2,3)$
+3 * $x 1(0,0) * \times 2(0,0) * x 3(3,3)$
$+2 * x 1(2,2) * x 2(0,0) * x 3(0,1)$
+1 *xl(0,0) * $\mathrm{x} 2(0,0) * \times 3(2,3)$
+1 *x1(1,3)*x2(3,3)*x3(1,1)
$+1 * x 1(0,1) * x 2(2,3) * x 3(3,3)$
+2 * $\mathrm{x} 1(0,0) * x 2(1,1) * x 3(1,2)$
$+1 * x 1(1,1) * x 2(1,3) * x 3(3,3)$
$+2 * x 1(2,2) * x 2(2,2) * x 3(2,3)$
+2 * $x 1(1,2) * x 2(0,0) * x 3(1,1)$
$+1 * \times 1(2,2) * \times 2(3,3) * \times 3(0,2)$
+2 * $x 1(0,0) * x 2(2,2) * x 3(0,1)$
$+1 * x 1(0,2) * \times 2(1,1) * x 3(0,0)$
+2 * $x 1(3,3) * x 2(0,1) * x 3(3,3)$
+1 *x1(3,3)*x2(2,2)*x3(0,0)
$+1 * \times 1(1,1) * \times 2(2,3) * \times 3(2,2)$
+1 * $x 1(1,1) * x 2(0,2) * x 3(0,0)$
+3 * $\times 1(2,2) * \times 2(1,1) * \times 3(0,0)$
$+3 * x 1(2,2) * x 2(3,3) * x 3(2,2)$
+3 * x1(1,1) * $\times 2(2,2) * \times 3(0,0)$
+3 * $x 1(1,1) * x 2(0,0) * x 3(2,2)$
+1 * $\mathrm{x} 1(2,2) * \times 2(2,2) * \times 3(1,1)$;
Case: $1 \quad$ User: 48
Heur: Gold(D\&M) Perf: 32

The resulting expression is:

4:3:

$$
\begin{aligned}
& +1 * \times 1(0,3) * \times 2(3,3) * \times 3(3,3) \\
& +1 * \times 1(2,3) * \times 2(1,3) * \times 3(1,3) \\
& +1 * \times 1(0,1) * \times 2(3,3) * \times 3(1,2) \\
& +1 * \times 1(3,3) * \times 2(2,2) * \times 3(3,3) \\
& +1 * \times 1(2,3) * \times 2(0,0) * \times 3(2,3) \\
& +1 * \times 1(3,3) * \times 2(1,3) * \times 3(0,0) \\
& +1 * \times 1(3,3) * \times 2(0,0) * \times 3(1,1) \\
& +1 * \times 1(0,1) * \times 2(2,2) * \times 3(2,3) \\
& +1 * \times 1(1,1) * \times 2(0,1) * \times 3(3,3) \\
& +1 * \times 1(0,0) * \times 2(1,1) * \times 3(3,3) \\
& +1 * \times 1(2,2) * \times 2(2,3) * \times 3(0,0) \\
& +1 * \times 1(1,1) * \times 2(1,1) * \times 3(2,2) \\
& +1 * \times 1(3,3) * \times 2(3,3) * \times 3(2,2) \\
& +1 * \times 1(1,1) * \times 2(3,3) * \times 3(0,0) \\
& +1 * \times 1(1,1) * \times 2(2,2) * \times 3(1,1)
\end{aligned}
$$

C. HAMLET REPORT - SIMULATED ANNEALING MINIMIZATION

Simulated annealing optimization 19 february 1994
\# mvlc -HSA -E - 0.01 mvl_full_adder
Case: 1 User: 48
Heur: SA Perf: 32
reulsting expressions:
4: 3:

$$
\begin{aligned}
& +1 \text { * } \mathrm{x}(3,3) * \mathrm{x} 2(0,1) * \mathrm{x} 3(3,3) \\
& +1 \text { * } \mathrm{x} 1(3,3) * \mathrm{x} 2(0,2) * \mathrm{x} 3(2,2) \\
& +2 \text { * } x 1(0,1) * x 2(0,0) * x 3(2,2) \\
& +1 \text { * } x 1(2,3) \text { * } x 2(3,3) * x 3(0,0) \\
& +1 \text { *x1(1,1) * } x 2(0,0) * x 3(0,2) \\
& +2 * x 1(0,0) * x 2(2,2) * x 3(1,1) \\
& +1 * x 1(2,3) * x 2(1,2) * x 3(2,2) \\
& +1 \text { * } \mathrm{x}(1,3) * \times 2(3,3) * \times 3(1,1) \\
& +1 * x 1(2,3) * x 2(0,1) * x 3(3,3) \\
& +3 \text { * } \mathrm{x} 1(0,0) * \mathrm{x} 2(1,1) * \mathrm{x} 3(2,2) \\
& +3 * x 1(2,2) * x 2(2,2) * x 3(3,3) \\
& +1 * x 1(0,1) * x 2(2,3) * x 3(3,3) \\
& +3 \text { *x1(3,3) * } \times 2(0,0) * x 3(0,0) \\
& +3 \text { * } x 1(2,2) * x 2(0,0) * x 3(1,1) \\
& +1 \text { * } x 1(0,0) * x 2(2,3) * x 3(0,0) \\
& +1 * x 1(2,3) * x 2(2,3) * x 3(1,1) \\
& +1 * x 1(3,3) * x 2(2,3) * \times 3(0,0) \\
& +3 \text { * } x 1(2,2) * x 2(1,1) * x 3(0,0) \\
& +1 * x 1(0,1) * x 2(3,3) * \times 3(2,3) \\
& +2 \text { * } x 1(0,0) * \times 2(3,3) * x 3(0,0) \\
& +1 \text { * } \mathrm{x} 1(3.3) * x 2(3.3) * x 3(3.3) \\
& +1 * x 1(3,3) * x 2(1,3) * x 3(1,1) \\
& +3 * x 1(1,1) * x 2(2,2) * x 3(0,0) \\
& +1 * x 1(1,1) * x 2(2,3) * x 3(2,3) \\
& +2 \text { * } \mathrm{x} 1(2,2) * x 2(0,0) * x 3(0,0) \\
& +2 \text { * } \mathrm{x} 1(1.1) * \times 2(1.1) * x 3(0,1) \\
& +3 \text { *x1(0.0) * } \times 2(0.0) \text { * } x 3(3,3) \\
& +3 * x 1(2,2) * x 2(3,3) * x 3(2,2) \\
& +1 \text { * } \mathrm{xl}(1,3) * \times 2(1,1) * x 3(3,3) \\
& +1 * x 1(0,1) * x 2(0,1) * x 3(1,1) \\
& +1 \text { *x1(0.0) * x2(1.2) *x3(0,1) } \\
& +1 * \times 1(2,3) * \times 2(2,2) * x 3(2,2) \text {; }
\end{aligned}
$$

Case: 2 User: 17

Heur: SA Perf: 15

4: 3:

$$
\begin{aligned}
& +1 * \times 1(2,2) * \times 2(0,1) * \times 3(2,3) \\
& +1 * \times 1(1,1) * \times 2(2,2) * \times 3(1,1) \\
& +1 * \times 1(0,2) * \times 2(2,2) * \times 3(2,2)
\end{aligned}
$$

```
+1* xI(3,3) * x2(1,3)* x3(0,0)
+1*x1(0,0)*x2(1,3)*x3(3,3)
+1*x1(3,3)*x2(0.3)*x3(1.3)
+1*x1(2,2)*x2(2,2)*x3(0,1)
+1** x1(1,1)* x2(0,1)* x3(3,3)
+1*x1(2,2)*x2(1,1)*x3(1,1)
+1 * x1(0,2) * x2(3,3)*x3(1,2)
+1* x1(3.3)* x2(3,3) * x3(2,2)
+1*xl(1,2)* x2(3,3) * x3(0,0)
+1*x1(1,1)* x2(1,1)*x3(2,2)
+1*x1(1,3)* x2(2,3)*x3(3,3)
+1*x1(2,2)*x2(3,3)*x3(3,3);
```


D. SPICE FILE - STEP UP GENERATOR

```
** SPICE file created for circuit step_up2.gen
** Technology: scmos
MODEL nfet NMOS LEVEL =2 PHI=0.600000 TOX=4.2100E-08 XJ=0.200000U TPG=1
+VTO}=0.8673 DELTA=4.9450E+00 LD=3.5223E-07 KP=4.6728E-05
+UO=569.7 UEXP=1.7090E-01 UCRIT =5.9350E+04 RSH=1.9090E+01
+ GAMMA =0.4655 NSUB=4.3910E+15 NFS=1.980E +11 VMAX=5.7510E+04
+ LAMBDA=3.9720E-02 CGDO=4.3332E-10 CGSO=4.3332E-10
+ CGBO=3.5977E-10 CJ=1.0096E-04 MJ=0.8119 CJSW=4.6983E-10
+ MISW=0.323107 PB=0.800000
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is -9.0180E-08
MODEL pfet PMOS LEVEL =2 PHI=0.600000 TOX=4.2100E-08 XJ=0.200000U TPG=-1
+VTO}=-0.9506 DELTA=4.5950E+00 LD=3.7200E-07 KP=1.6454E-05
+UO=200.6 UEXP=2.6690E-01 UCRIT =7.9260E+04 RSH=4.9920E+01
+GAMMA=0.6561 NSUB=8.7250E+15 NFS=3.27E+11 VMAX=9.9990E+05
+ LAMBDA=4.5950E-02 CGDO=4.5769E-10 CGSO=4.5769E-10
+CGBO=3.8123E-10 CJ=3.1469E-04 MJ=0.5687 CJSW=3.1456E-10
+ MJSW=0.275802 PB=0.800000
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is -2.2400E-07
.TRAN lus 100us
Vdd 105
VD110005
Vgnd 10500
*Input:
Vi }4210
Iin 042 PWL(Ous OuA 100us 100uA)
Vout 10700
M0 100101 101 1 pfet L=2.0U W=7.0U
Ml 100 101 102 1 pfet L=2.0U W=7.0U
M2 100 102 103 1 pfet L=2.0U W=3.0U
M3 104 104 105 0 nfet L=2.0U W=6.0U
M4 101 104 105 0nfet L=2.0U W=6.0U
M5 100103 106 1 pfet L=2.0U W=3.0U
M6 102 102 105 0 nfet L=3.0U W=6.0U
M7 103 102 105 0 nfet L=2.0U W=3.0U
M8 106 106 107 0 nfet L=18.0U W=3.0U
M9 106103 1050 nfet L=2.0U W=3.0U
C0 107 0 13F
** NODE: 107 = STEP_UP_OUT
C1 106 047F
** NODE: 106 = 8_30_45#
```

C2 105067 F
** NODE: $105=$ GND
C3 103033 F
** NODE: 103 = 8_2_21\#
C4 104021 F
** NODE: $104=$ STEPin
C5 102043 F
** NODE: $102=8 _41 _25 \#$
C6 101041 F
** NODE: $101=8$ _89_48\#
C7 100054 F
** NODE: $100=$ Vdd
** NODE: $0=\mathrm{GND}$!
** NODE: $1=$ Vdd!

E. SPICE FILE - STEP DOWN GENERATOR

```
** SPICE file created for circuit step_downl.gen
** Technology: scmos
MODEL nfet NMOS LEVEI =2 PHI=0.600000 TOX =4.2100E-08 XJ=0.200000U TPG=1
+VTO}=0.8673 DELTA =4.9450E+00 LD =3.5223E-07 KP=4.6728E-05
+ UO=569.7 UEXP=1.7090E-01 UCRIT=5.9350E+04 RSH=1.9090E+01
+ GAMMA}=0.4655 NSUB=4.3910E+15 NFS=1.980E+11 VMAX=5.7510E+04
+ LAMBDA=3.9720E-02 CGDO=4.3332E-10 CGSO=4.3332E-10
+CGBO}=3.5977\textrm{E}-10\textrm{CJ}=1.0096\textrm{E}-04 MJ=0.8119 CJSW=4.6983E-1
+MJSW=0.323107 PB=0.800000
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is -9.0180E-08
MODEL pfet PMOS LEVEL }=2 PHI=0.600000 TOX=4.2100E-08 XJ=0.200000U TPG=-1
+ VTO =-0.9506 DELTA =4.5950E+00 LD=3.7200E-07 KP=1.6454E-05
+ UO=200.6 UEXP=2.6690E-01 UCRIT=7.9260E+04 RSH=4.9920E+01
+ GAMMA=0.6561 NSUB=8.7250E+15 NFS=3.27E+11 VMAX=9.9990E+05
+ LAMBDA =4.5950E-02 CGDO=4.5769E-10 CGSO=4.5769E-10
+ CGBO}=3.8123E-10 CJ=3.1469E-04 MJ=0.5687 CJSW=3.1456E-10
+MJSW=0.275802 PB=0.800000
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is -2.2400E-07
```

.TRAN Ius 100us

Vdd 105
VD1 10005
Vgnd 10500
*Input:
Vi 42104
lin $042 \mathrm{PWL}(0 \mathrm{us} 0 \mathrm{uA} 100 \mathrm{us} 100 \mathrm{uA}$)

Vout 10700
** NODE: 2 = Error
M0 1001011011 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=7.0 \mathrm{U}$
M1 1001011021 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=7.0 \mathrm{U}$
M2 1001021031 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M3 1041041050 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=6.0 \mathrm{U}$
M4 1011041050 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=6.0 \mathrm{U}$
M5 1001031061 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M6 1021021050 nfet $\mathrm{L}=8.0 \mathrm{U} \mathrm{W}=7.0 \mathrm{U}$
M7 1031021050 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M8 1001061071 pfet $\mathrm{L}=9.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M9 1061031050 nfet $L=2.0 \mathrm{U} \quad \mathrm{W}=3.0 \mathrm{U}$
C0 107011 F
** NODE: 107 = STEP_DOWNout
Cl 106030 F
** NODE: $106=8$ 30_45 ${ }^{\text {* }}$
C2 105068 F
** NODE: $105=$ GND
C3 103033 F
** NODE: $103=8$ 2_21華
C4 104021 F
** NODE: 104 = STEPin
C5 102044 F
** NODE: $102=8 _41 _31$ \#
C6 101041 F
** NODE: 101 = 8_89_48"
C7 100063 F
** NODE: $100=$ Vdd
** NODE: $0=$ GND!
** NODE: $1=$ Vdd!

F. SPICE FILE - COLUMN OUTPUT GENERATOR

** SPICE file created for circuit column_gen l
** Technology: scmos
.MODEL nfet NMOS LEVEI $=2$ PHI $=0.600000$ TOX $=4.2100 \mathrm{E}-08 \mathrm{XJ}=0.200000 \mathrm{U}$ TPG $=1$
$+\mathrm{VTO}=0.8673$ DELTA $=4.9450 \mathrm{E}+00 \mathrm{LD}=3.5223 \mathrm{E}-07 \mathrm{KP}=4.6728 \mathrm{E}-05$
$+\mathrm{UO}=569.7$ UEXP $=1.7090 \mathrm{E}-01$ UCRIT $=5.9350 \mathrm{E}+04 \mathrm{RSH}=1.9090 \mathrm{E}+01$

+ GAMMA $=0.4655$ NSUB $=4.3910 \mathrm{E}+15 \mathrm{NFS}=1.980 \mathrm{E}+11 \mathrm{VMAX}=5.7510 \mathrm{E}+04$
+ LAMBDA $=3.9720 \mathrm{E}-02 \mathrm{CGDO}=4.3332 \mathrm{E}-10 \mathrm{CGSO}=4.3332 \mathrm{E}-10$
$+\mathrm{CGBO}=3.5977 \mathrm{E}-10 \mathrm{CJ}=1.0096 \mathrm{E}-04 \mathrm{MJ}=0.8119 \mathrm{CJSW}=4.6983 \mathrm{E}-10$
+ MJSW $=0.323107 \mathrm{~PB}=0.800000$
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is -9.0180E-08
.MODEL pfet PMOS LEVEL $=2$ PHI $=0.600000$ TOX $=4.2100 \mathrm{E}-08 \mathrm{XJ}=0.200000 \mathrm{U}$ TPG $=-1$
$+\mathrm{VTO}=-0.9506$ DELTA $=4.5950 \mathrm{E}+00 \mathrm{LD}=3.7200 \mathrm{E}-07 \mathrm{KP}=1.6454 \mathrm{E}-05$
$+\mathrm{UO}=200.6$ UEXP $=2.6690 \mathrm{E}-01$ UCRIT $=7.9260 \mathrm{E}+04 \mathrm{RSH}=4.9920 \mathrm{E}+01$
+ GAMMA $=0.6561$ NSUB $=8.7250 \mathrm{E}+15 \mathrm{NFS}=3.27 \mathrm{E}+11 \mathrm{VMAX}=9.9990 \mathrm{E}+05$
+ LAMBDA $=4.5950 \mathrm{E}-02 \mathrm{CGDO}=4.5769 \mathrm{E}-10 \mathrm{CGSO}=4.5769 \mathrm{E}-10$
+ CGBO $=3.8123 \mathrm{E}-10 \mathrm{CJ}=3.1469 \mathrm{E}-04 \mathrm{MJ}=0.5687 \mathrm{CJSW}=3.1456 \mathrm{E}-10$
+ MJSW $=0.275802$ PB $=0.800000$
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is $-2.2400 \mathrm{E}-07$
.TRAN Ius 100us
Vdd 105
VD1 10005
Vgnd 10500
*Inputs:
Vi 42104
iin 042 PWL(Ous OuA 100us 100 uA)
Vout 10700
M0 1001011011 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=7.0 \mathrm{U}$
M1 1001011021 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=7.0 \mathrm{U}$
M2 1001021031 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M3 1041041050 nfet $L=2.0 \mathrm{U} W=6.0 \mathrm{U}$
M4 1011041050 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=6.0 \mathrm{U}$
M5 1001031061 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M6 1021021050 nfet $L=6.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M7 $1031021050 \operatorname{nfet} L=2.0 \mathrm{U} W=3.0 \mathrm{U}$
M8 1001061071 pfet L=7.0U W=3.0U
M9 1061031050 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M10 1071071051 pfet $\mathrm{L}=2.0 \mathrm{U} \quad \mathrm{W}=3.0 \mathrm{U}$
C0 107015 F
** NODE: $107=$ COLUMN_GENout
Cl 106030 F
** NODE: $106=8 _30 _45$ \#
C.2 105075 F
** NODE: 105 = GND
C3 103033 F
** NODE: $103=8 _2$ 21井
C4 104021 F
** NODE: $104=$ COL_GENin
CS 102043 F
** NODE: 102 = 8_45_23\#
C6 101 041F
** NODE: $101=8 _89$ _48\#
C7 100067 F
** NODE: $100=\mathrm{Vdd}$
** NODE: 1 = Vdd!
** NODE: $0=$ GND!

G. SPICE FILE - TERM $3 * \mathbf{X}(2,2) \mathrm{Y}(3,3) \mathrm{C}(2,2)$

** SPICE file created for circuit term_3X2_2Y3_3C2_2
** Technology: scmos
MODEL nfet NMOS LEVEL $=2$ PHI $=0.600000$ TOX $=4.2100 \mathrm{E}-08 \mathrm{XJ}=0.200000 \mathrm{U}$ TPG $=1$
$+\mathrm{VTO}=0.8673$ DELTA $=4.9450 \mathrm{E}+00 \mathrm{LD}=3.5223 \mathrm{E}-07 \mathrm{KP}=4.6728 \mathrm{E}-05$
$+\mathrm{UO}=569.7 \mathrm{UEXP}=1.7090 \mathrm{E}-01 \mathrm{UCRIT}=5.9350 \mathrm{E}+04 \mathrm{RSH}=1.9090 \mathrm{E}+01$

+ GAMMA=0.4655 NSUB=4.3910E+15 NFS=1.980E+11 VMAX=5.7510E+04
+ LAMBDA $=3.9720 \mathrm{E}-02$ CGDO $=4.3332 \mathrm{E}-10 \mathrm{CGSO}=4.3332 \mathrm{E}-10$
$+\mathrm{CGBO}=3.5977 \mathrm{E}-10 \mathrm{CJ}=1.0096 \mathrm{E}-04 \mathrm{MJ}=0.8119 \mathrm{CJSW}=4.6983 \mathrm{E}-10$
+ MJSW $=0.323107 \mathrm{~PB}=0.800000$
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is -9.0180E-08

MODEL pfet PMOS LEVEL $=2$ PHI $=0.600000$ TOX $=4.2100 \mathrm{E}-08 \mathrm{XJ}=0.200000 \mathrm{U}$ TPG $=-1$
$+\mathrm{VTO}=-0.9506$ DELTA $=4.5950 \mathrm{E}+00 \mathrm{LD}=3.7200 \mathrm{E}-07 \mathrm{KP}=1.6454 \mathrm{E}-05$
$+\mathrm{UO}=200.6 \mathrm{UEXP}=2.6690 \mathrm{E}-01 \mathrm{UCRIT}=7.9260 \mathrm{E}+04 \mathrm{RSH}=4.9920 \mathrm{E}+01$

+ GAMMA $=0.6561$ NSUB $=8.7250 \mathrm{E}+15 \mathrm{NFS}=3.27 \mathrm{E}+11 \mathrm{VMAX}=9.999 \mathrm{E}+05$
+ LAMBDA $=4.5950 \mathrm{E}-02 \mathrm{CGDO}=4.5769 \mathrm{E}-10 \mathrm{CGSO}=4.5769 \mathrm{E}-10$
$+\mathrm{CGBO}=3.8123 \mathrm{E}-10 \mathrm{CJ}=3.1469 \mathrm{E}-04 \mathrm{MJ}=0.5687 \mathrm{CJSW}=3.1456 \mathrm{E}-10$
+ MJSW $=0.275802 \mathrm{~PB}=0.800000$
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is -2.2400E-07

TRAN lus 100us
Vdd 105
VD1 10005
Vgnd 10500

* Inputs:

Vix 40109
Iinx 040 PWL(Ous 0uA 100us 100wA)
Viy 41114
Iiny 041 PWL(Ous 0uA 100us 100 mA)
Vic 42122
linc 042 PWL(0us 0 uA 100 us 100 uA)

* Column Generator Output Node for this term:

Vout 12800
M0 1001011021 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=7.0 \mathrm{U}$
M1 1001021031 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M2 1001031041 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M3 1021021050 nfet $\mathrm{L}=3.0 \mathrm{U} \mathrm{W}=6.0 \mathrm{U}$
M4 1031021050 nfet L=2.0U W=3.0U
M5 1001041061 pfet $\mathrm{L}=9.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M6 1041031050 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M7 1001011011 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=7.0 \mathrm{U}$
M8 1001011071 pfet $L=2.0 \mathrm{U} W=7.0 \mathrm{U}$

M9 1001071081 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M10 1091091050 nfet L=2.0U W=6.0U
M11 1011091050 nfet $L=2.0 \mathrm{U}$ W=6.0U
M12 1001081101 pfet $\mathrm{L}=2.0 \mathrm{U}$ W=3.0U
M13 1071071050 nfet $L=3.0 \mathrm{U}$ W=9.0U
M14 1081071050 nfet L=2.0U W=3.0U
M15 1101101060 nfet $\mathrm{L}=18.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M16 1101081050 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M17 1001111111 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=7.0 \mathrm{U}$
M18 1001111121 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=7.0 \mathrm{U}$
M19 1001121131 pfet $\mathrm{L}=2.0 \mathrm{U}$ W=3.0U
M20 1141141050 nfet $\mathrm{L}=2.0 \mathrm{U}$ W $=6.0 \mathrm{U}$
M21 1111141050 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=6.0 \mathrm{U}$
M22 1001131151 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M23 1121121050 nfet $\mathrm{L}=3.0 \mathrm{U}$ W=9.0U
M24 1131121050 nfet $\mathrm{L}=2.0 \mathrm{U}$ W=3.0U
M25 1001151061 pfet $\mathrm{L}=9.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M26 1151131050 nfet $\mathrm{L}=2.0 \mathrm{U}$ W=3.0U
M27 1001161171 pfet $\mathrm{L}=2.0 \mathrm{U}$ W=7.0U
M28 1001171181 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M29 1001181191 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M30 1171171050 nfet $L=3.0 \mathrm{U}$ W=6.0U
M31 1181171050 nfet $\mathrm{L}=2.0 \mathrm{U}$ W=3.0U
M32 1001191061 pfet $\mathrm{L}=9.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M33 1191181050 nfet L=2.0U W=3.0U
M34 1001161161 pfet $\mathrm{L}=2.0 \mathrm{U}$ W=7.0U
M35 1001161201 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=7.0 \mathrm{U}$
M36 1001201211 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M37 1221221050 nfet $\mathrm{L}=2.0 \mathrm{U}$ W=6.0U
M38 1161221050 nfet $L=2.0 \mathrm{U}$ W $=6.0 \mathrm{U}$
M39 1001211231 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M40 1201201050 nfet $\mathrm{L}=3.0 \mathrm{U} W=9.0 \mathrm{U}$
M41 1211201050 nfet L=2.0U W=3.0U
M42 1231231060 nfet $\mathrm{L}=18$.0U $\mathrm{W}=3.0 \mathrm{U}$
M43 1001241241 pfet $\mathrm{L}=2.0 \mathrm{U}$ W=7.0U
M44 1001241251 pfet $\mathrm{L}=2.0 \mathrm{U}$ W $=7.0 \mathrm{U}$
M45 1231211050 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M46 1001251261 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M47 1061061050 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=6.0 \mathrm{U}$
M48 1241061050 nfet $\mathrm{L}=2.0 \mathrm{U}$ W $=6.0 \mathrm{U}$
M49 1001261271 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M50 1251251050 nfet $\mathrm{L}=6.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M51 1261251050 nfet $\mathrm{L}=2.0 \mathrm{U}$ W=3.0U
M52 1001271281 pfet L=6.0U W=7.0U
M53 1271261050 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=3.0 \mathrm{U}$
M54 1281281051 pfet $\mathrm{L}=2.0 \mathrm{U}$ W $=3.0 \mathrm{U}$
C0 128023 F
** NODE: $128=$ COLUMN_GENout
C1 127029 F

[^0]C27 101050 F
** NODE: $101=8$ _16_5\#
C28 1000359 F
** NODE: $100=\mathrm{Vdd}$
** NODE: $1=$ Vdd!
** NODE: $0=$ GND!

H. SPICE FILE - CURRENT MIRROR

```
** SPICE file created for circuit mirror
** Technology: scmos
**
.MODEL nfet NMOS LEVEL=2 PHI=0.600000 TOX=4.2100E-08 XJ=0.200000U TPG=1
+VTO}=0.8673 DELTA=4.9450E+00 LD=3.5223E-07 KP=4.6728E-05
+ UO=569.7 UEXP=1.7090E-01 UCRIT =5.9350E+04 RSH=1.9090E+01
+GAMMA=0.4655 NSUB=4.3910E+15 NFS=1.980E+11 VMAX=5.7510E+04
+ LAMBDA=3.9720E-02 CGDO=4.3332E-10 CGSO=4.3332E-10
+CGBO=3.5977E-10 CJ=1.0096E-04 MJ=0.8119 CJSW=4.6983E-10
+MJSW=0.323107 PB=0.800000
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is -9.0180E-08
MODEL pfet PMOS LEVEL =2 PHI=0.600000 TOX=4.2100E-08 XJ=0.200000U TPG=-1
+VTO=-0.9506 DELTA=4.5950E+00 LD=3.7200E-07 KP=1.6454E-05
+UO=200.6 UEXP=2.6690E-01 UCRIT=7.9260E+04 RSH=4.9920E+01
+ GAMMA =0.6561 NSUB }=8.7250\textrm{E}+15\textrm{NFS}=3.27\textrm{E}+11\textrm{VMAX}=9.9990\textrm{E}+0
+ LAMBDA=4.5950E-02 CGDO=4.5769E-10 CGSO=4.5769E-10
+ CGBO=3.8123E-10 CJ=3.1469E-04 MJ=0.5687 CJSW=3.1456E-10
+ MJSW=0.275802 PB=0.800000
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is -2.2400E-07
```

.TRAN lus 150us
Vdd 105
VD1 10005
*dumb:
Vi 421160
Iin 042 PWL (0uA Ous 150 uA 150 uS)

```
** NODE: 0 = GND
** NODE: 1 = Vdd
** NODE: 2 = Error
M0 100 101 102 1 pfet L=2.0U W=7.0U
M1 100 101 103 1 pfet L=2.0U W=7.0U
M2 100104 104 1 pfet L=2.0U W=7.0U
M3 100105105 1 pfet L=2.0U W=7.0U
M4 100106106 1 pfet }\textrm{L}=2.0\textrm{U W}=7.0\textrm{U
M5 107 10700 nfet L=2.0U W=6.0U
M6 104 10700 nfet L=2.0U W=6.0U
M7 100 101 109 1 pfet L=2.0U W=7.0U
M8 11011000 nfet L=2.0U W=6.0U
M9 105 11000 nfet L=2.0U W=6.0U
M10 11111100 nfet L=2.0U W=6.0U
```

M11 10611100 nfet $L=2.0 \mathrm{U} \mathrm{W}=6.0 \mathrm{U}$
M12 1001121121 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=7.0 \mathrm{U}$
M13 1001011011 pfet $\mathrm{L}=2.0 \mathrm{U}$ W=7.0U
M14 1001011131 pfet $\mathrm{L}=2.0 \mathrm{U}$ W=7.0U
M15 1001141141 pfet $\mathrm{L}=2.0 \mathrm{U}$ W=7.0U
M16 11511500 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=6.0 \mathrm{U}$
M17 11211500 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=6.0 \mathrm{U}$
M18 11611600 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=6.0 \mathrm{U}$
M19 10111600 nfet $\mathrm{L}=2.0 \mathrm{U}$ W $=6.0 \mathrm{U}$
M20 11711700 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=6.0 \mathrm{U}$
M21 11411700 nfet $L=2.0 \mathrm{U} \mathrm{W}=6.0 \mathrm{U}$
M22 $1001011181 \mathrm{pfet} \mathrm{L}=3.0 \mathrm{U}$ W=12.0U
M23 1001011191 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=7.0 \mathrm{U}$
M24 1001201201 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=7.0 \mathrm{U}$
M25 1001211211 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=7.0 \mathrm{U}$
M26 1001221221 pfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=7.0 \mathrm{U}$
M27 12312300 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=6.0 \mathrm{U}$
M28 12012300 nfet $\mathrm{L}=2.0 \mathrm{U}$ W $=6.0 \mathrm{U}$
M29 12412400 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=6.0 \mathrm{U}$
M30 12112400 nfet $\mathrm{L}=2.0 \mathrm{U}$ W $=6.0 \mathrm{U}$
M31 $1001011251 \mathrm{pfet} \mathrm{L}=2.0 \mathrm{U} \mathrm{W}=7.0 \mathrm{U}$
M32 12612600 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=6.0 \mathrm{U}$
M33 12212600 nfet $\mathrm{L}=2.0 \mathrm{U} \mathrm{W}=6.0 \mathrm{U}$
M34 1001011271 pfet $\mathrm{L}=2.0 \mathrm{U}$ W=7.0U
v8 1271230
v7 1251070
v61191240
v5 1181260
v4 1131150
v3 1091170
v2 1031110
v1 1021100
CO 127 016F
** NODE: $127=$ out 8
Cl 1000256 F
** NODE: $100=\mathrm{Vdd}$
C200259F
** NODE: $0=$ GND
C3 1250 16F
** NODE: $125=$ out 7
C4 126021 F
** NODE: $126=\operatorname{in5}$
CS 124021 F
** NODE: 124 = in6
C6 122039 F
** NODE: 122 = 8_142_169\#
C7 123021 F
** NODE: $123=$ in 8

```
C8 121 039F
** NODE; 121 = 8_304_143#
C9 1200 39F
** NODE: 120=8_231_133#
C10 119 0 16F
** NODE: 119 = out6
C11 1180 16F
** NODE: 118= out5
C12 1170 21F
** NODE: 117 = in3
C13 115 0 21F
** NODE: 115 = in4
C14 114039F
** NODE: 114 = 8_152_23#
C15 1160 21F
** NODE: 116 = STEPin
C16 1130 16F
** NODE: 113 = out4
C17 1120 39F
** NODE: 112 = 8_302_16#
C18 109 0 16F
** NODE: 109 = out3
C19 1110 21F
** NODE: 111 = in2
C20 1100 21F
** NODE: 110 = inl
C21 1070 21F
** NODE: 107 = in7
C22 1060 39F
** NODE: 106=8_306_138#
C23 105 0 39F
** NODE: 105 = 8_166_138#
C24 104 0 39F
** NODE: 104 = 8_207_144#
C25 103 0 16F
** NODE: 103 = out2
C26 1020 16F
** NODE: 102 = outl
C27 1010 113F
** NODE: 101 = 8_89_48#
** NODE: 1 = Vdd!
** NODE: 0 = GND!
```


I. SPICE INPUT FILE - MODULO 4 ADDER DESIGN

```
** SPICE file created for circuit Modulo Four Adder Cell
** Technology: scmos
**
**
*******************************************************************
**
**INPUT HEADER FILE FOR SPICE MODEL
**
**ALL REFERENCED TESTS ON THE MOD 4 ADDER DESIGN
**UTILIZED THIS SPICE HEADER FILE TO GENERATE THE
**DESIRED INPUT WAVEFORMS AND OTHER VARIOUS SIGNALS
**
```



```
**
**MODEL PARAMETERS PROVIDED BY ORBIT FOR
**A TYPICAL N-WELL PROCESS
**
**必********************************************************
.MODEL nfet NMOS LEVEL }=2\mathrm{ PHI=0.600000 TOX=4.2100E-08 XJ=0.200000U TPG=1
+VIO}=0.8673 DELTA=4.9450E+00 LD=3.5223E-07 KP=4.6728E-05
+ UO=569.7 UEXP=1.7090E-01 UCRIT=5.9350E+04 RSH=1.9090E+01
+GAMMA=0.4655 NSUB=4.3910E+15 NFS=1.980E+11 VMAX=5.7510E+04
+ LAMBDA=3.9720E-02 CGDO=4.3332E-10 CGSO=4.3332E-10
+ CGBO=3.5977E-10 CJ=1.0096E-04 MJ=0.8119 CJSW=4.6983E-10
+ MJSW=0.323107 PB=0.800000
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is -9.0180E-08
.MODEL pfet PMOS LEVEL }=2 PHI=0.600000 TOX=4.2100E-08 XJ=0.200000U TPG=-1
+ VTO=-0.9506 DELTA=4.5950E+00 LD=3.7200E-07 KP=1.6454E-05
+UO=200.6 UEXP=2.6690E-01 UCRIT=7.9260E+04 RSH=4.9920E +01
+GAMMA=0.6561 NSUB=8.7250E+15 NFS=3.27E+11 VMAX=9.9990E+05
+ LAMBDA=4.5950E-02 CGDO=4.5769E-10 CGSO=4.5769E-10
+CGBO=3.8123E-10 CJ=3.1469E-04 MJ=0.5687 CJSW=3.1456E-10
+ MJSW=0.275802 PB=0.800000
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is -2.2400E-07
.TRAN .1ns 1000ns
*.TRAN lus 200us
```

Vdd 105

```
*Power and ground to the chip:
*
*connect VDD to PLA:
Vvdd_plal 1 1120
Vvdd_pla2 1 }100
Vvdd_pla318640
Vvdd_pla4 1 2960
*connect GND to PLA:
Vgnd_plal 0 1190
Vgnd_pla2 0 1050
Vgnd_pla3 0 8570
**Note: PLA_GND4 is connected to PLA_GND1
*connect VDD to PAD ring:
Vvdd_pads 1 }1389
*connect GND to PAD ring:
Vgnd_pads 0 13930
***准米*****************************************
*These dummy sources are required in
*order to generate and measure input
*currents and power:
Vxin 425190
Vyin 438720
Vcin 4411020
*outputs
Vsum 155 30000
Rload_sum 3000 0 1K
Vcy 85840000
Rload_cy 4000 0 1K
************************************************
*
*FUNCTIONAL TESTING
*
*These 3200us pulse trains generate all
*possible combinations of inputs:
*
*IX1 042 PULSE(0uA 40uA 50us 1us lus 50us 200us)
*IX2 042 PULSE(0uA 80uA 100us lus lus 50us 200us)
*IX3 042 PULSE(0uA 120uA 150us 1us lus 50us 200us)
*TY1 043 PULSE(0uA 40uA 200us lus lus 200us 800us)
*TY2 043 PULSE(0uA 80uA 400us lus lus 200us 800us)
*IY3 043 PULSE(0uA 120nA 600us lus lus 200us 800us)
```

```
*IC1 044 PULSE(0uA 40uA 800us 1us lus 800us 3200us)
*IC2 044 PULSE(OuA 80uA 1600us lus lus 800us 3200us)
*IC3 044 PULSE(OuA 120uA 2400us lus lus 800us 3200us)
*************************************************************
*
*STATIC POWER TESTING
*
*no load - all inputs at logic 0:
*Vdd }10\mathrm{ PWL(0 OuA 200us 5)
*Ixin 0420uA
*Tyin 043 0nA
*Icin 044 OuA
*full load - all inputs at logic 3:
*Vdd 105
*Ixin 042 120uA
*Iyin 043 120uA
*Icin 044 120nA
*************************************************
*
*TRANSIENT ANALYSIS
*
*sum output from 0 to logic 3:
*Ixin 042 PULSE(0nA 120uA 50ns .1ns .Ins 500ns 1000ns)
*Iyin 043 0uA
*Icin 044 0uA
*
*carry out from 0 to logic 1:
Ixin 042 PULSE(0uA 80nA 50ns .1ns .1ns 500ns 1000ns)
Iyin 043 PULSE(0nA 80nA 50ns .1ns .1ns 500ns 1000ns)
Icin 0440nA
END
```

-

\bullet
t

J. MAGIC LAYOUTS

Figure A.I: Step Up Generator Cell

Figure A.2: Step Down Generator Cell

Figure A.3: Column Output Generator Cell

Figure A.4: Term $3 * \mathrm{X}(2,2) \mathrm{Y}(3,3) \mathrm{C}(2,2)$

Figure A.5: Current Mirror
\qquad

 (l)

Figure A.6: HAMLET Design Modulo 4 Adder

Figure A.7: Current-Input Complementary Transmission Gate
\qquad
 （2）

Figure A.8: Alternate Design Modulo 4 Adder

Figure A.9: Fabrication Layout Alternate Design Adder

K. SCOPE PHOTOGRAPHS - TRANSIENT ANALYSIS

Figure A.10: T_{f} Sum 3->0

Figure A.11: T_{r} Sum 0->3

Figure A.12: $\mathrm{T}_{\mathrm{pdf}}$ Sum 3->0

Figure A.13: $\mathrm{T}_{\mathrm{pdr}}$ Sum 0->3

Figure A.14: T_{f} Carry Out $1->0$

Figure A.15: T_{r} Carry Out $0->1$

Figure A.16: $\mathrm{T}_{\text {pdf }}$ Carry Out $1->0$

Figure A.17: $\mathrm{T}_{\mathrm{pdr}}$ Carry Out $0->1$
L. TRANSIENT ANALYSIS SCOPE PLOT - MODULO 4 ADDER CELL

Figure A.18: Sum 0->3 Power Transients

M. FABRICATION PHOTOGRAPH

Figure A. 19: Die Photo Modulo 4 Adder Cell

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145
2. Dudley Knox Library, Code 013 2
Naval Postgraduate School
Monterey, CA 93943-5101
3. Chairman, Code EC 1
Department of Electrical and Computer Engineering Naval Postgraduate School
Monterey, CA 93943-5121
4. Prof. D. Fouts, , Code EC/Fs 1
Department of Electrical and Computer Engineering Naval Postgraduate School
Monterey, CA 93943-5121
5. Prof.J. T. Butler, Code EC/Bu 1
Department of Electrical and Computer Engineering Naval Postgraduate School
Monterey, CA 93943-5121
6. Cdr. Robert J. Voigt, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121
7. Lt. Col. Khaled A. Shehata 1
SGC \#1837
Naval Postgraduate School
Monterey, CA 93943-5121
8. Lt. Robert J. Barton III, Code EC 2
Department of Electrical and Computer Engineering Naval Postgraduate School
Monterey, CA 93943-5121
9. Cdr. John M. Yurchak 1
VAW-116
FPO, AP 96601

[^0]: ** NODE: $127=8 _338 _509$ \#
 C2 126033 F
 ** NODE: $126=8 _310 _485$ \#
 C3 125043 F
 ** NODE: $125=8 _264 _487$ \#
 C4 124041 F
 ** NODE: $124=8 _220 _417$ \#
 C5 123047 F
 ** NODE: 123 = 8_134_449\#
 C6 121033 F
 ** NODE: $121=8 _106 _425 \#$
 C7 122021 F
 ** NODE: $122=\mathrm{Cin}$
 C8 120048 F
 ** NODE: $120=8 _58 _431 \#$
 C9 119030 F
 ** NODE: 119 = 8_134_331\#
 C10 118033 F
 ** NODE: $118=8$ _106_307\#
 C11 117043 F
 ** NODE: $117=8 _66 _313$ \#
 C12 116050 F
 ** NODE: $116=8$ _16_357\#
 C13 115030 F
 ** NODE: $115=8 _134 _215$ \#
 C14 113033 F
 ** NODE: 113 = 8_106_191\#
 C15 1140 21F
 ** NODE: $114=$ Yin
 C16 112048 F
 ** NODE: $112=8 _60 _195$ \#
 C17 111041F
 ** NODE: 111 = 8_16_123\#
 C18 110047 F
 ** NODE: $110=8 _134 _97 \#$
 C19 1080 33F
 ** NODE: $108=8$ _106_73\#
 C20 109021 F
 ** NODE: $109=\mathrm{Xin}$
 C21 107048 F
 ** NODE: $107=8 _58 _79 \#$
 C22 1060 107F
 ** NODE: $106=$ COL_GENin
 C23 1050392F
 ** NODE: $105=$ GND
 C24 104030 F
 ** NODE: $104=8 _134 _22$ \#
 C25 103033 F
 ** NODE: $103=8$ _106_46\#
 C26 102043F
 ** NODE: $102=8 _66 _40 \#$

