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ADVERTISEMENT.

The substance of the present volume was originally pre-

pared as part of a course of lectures for the students of mathe-

matics in Harvard College. But at the request of some of my

pupils, and especially of my friend Mr. J. D. Runkle, I have been

induced to undertake its publication. The liberality of my

publishers, the well-known firm of Little, Brown & Co., who gen-

erously gave directions to the printers, that no expense should be

spared in its typographical execution, seemed to impose upon me

an increased obligation to perform my portion of the task to

the best of my ability. I have consequently reexamined the

memoirs of the great geometers, and have striven to consoli-

date their latest researches and their most exalted forms of

thought into a consistent and uniform treatise. If I have,

hereby, succeeded in opening to the students of my country a

readier access to these choice jewels of intellect, if their bril-
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liancy is not impaired in this attempt to reset them, if in

their new constellation they illustrate each other and concen-

trate a stronger light upon the names of their discoverers, and

still more, if any gem which I may have presumed to, add, is

not wholly lustreless in the collection, I shall feel that my

work has not been in vain. The treatise is not, however,

designed to be a mere compilation. The attempt has been

made to carry back the fundamental principles of the science

to a more profound and central origin ; and thence to shorten

the path to the most fruitful forms of research. It has,

moreover, been my chief object to develop the special forms

of analysis, which are usually neglected, because they are only

applicable to particular problems, and to restore them to their

true place in the front ranks of scientific progress. The

methods which, on account of their apparent generality, have

usually attracted the almost exclusive attention of the student,

are, on the contrary, reestablished in their true position as

higher forms of speciality.

BENJAMIN PEIRCE.
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ANALYTIC MECHANICS.

CHAPTER I.

MOTION, FORCE, AND MATTEE.

§ 1. Motion is an essential element of all physical phenomena
;

and its introduction into the universe of matter was necessarily the

preliminary act of creation. The earth must have remained forever

" without form, and void ;
" and eternal darkness must have been

upon the face of the deep, if the Spirit of God had not first "moved

upon the face of the waters."

2. Motion appears to be the simplest manifestation of power,

and the idea of force seems to be primitively derived from the

conscious effort which is required to produce motion. Force may,

then, be regarded as having a spiritual origin, and when it is

imparted to the physical world, motion is its usual form of mechan-

ical exhibition.

3. Matter is purely inert. It is susceptible of receiving and

containing any amount of mechanical force which may be commu-

nicated to it, but cannot originate new force or, in any way, trans-

form the force which it has received.

1
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CHAPTER II.

MEASURE OF MOTION AND FORCE.

MEASUKE OP MOTION.

§ 4. Uniform Motion is that of a body which describes equal

spaces in equal times.

5. Velocity is the measure of motion. In the case of uniform

motion it is the distance passed over in a given time, which is

assumed as the unit of time, and, in any case, it is at each instant

the space which the body would pass over, if it preserved the same

motion during a unit of time.

6. If the space described by a body in the time t is denoted

by s, the expression for the velocity v is, in the case of uniform

motion,

s

If the differential is denoted by d and the derivative by D, the

expression for the velocity is, in any case,

ds t->

II.

MEASURE OP FORCE.

7. Experiments have shown that the exertion which is re-

quired to move any body, is proportional to the product of the
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intensity of the effort into the space through which it is exerted.

This product is, then, the proper measure of the whole amount

of force which is necessary to the production of the motion
;

long established custom has, however, limited the use of the

word force to designate the intensity of the effort, and the ivhole

amount of exertion may be denoted by the term poivcr. Hence, if

the power P is produced by the exertion of a constant force F,

acting through the space s, the expression of the force is

PF=
s

But if the force is variable in its action, the expression of its

intensity at any point is

F=~= DS
F.

ds

8. It is found by observation that the force of a moving body

is proportional to its velocity. Thus, if m is the force of a body

when it moves with the unit of velocity, its force, when it has

the velocity v, is mv.

9. Different bodies have different intensities of force when

they move with the same velocity. The mass of a body is its

force, when it moves with the unit of velocity ; thus, in in the

preceding article, denotes the mass of the body.

10. The force communicated to a freely moving body, by a

force which acts in the direction of the motion, is found to be the

product of the intensity of the acting force, multiplied by the

time of its action. Thus, if the mass m, acted upon by the con-

stant force F, for the time t, in the direction of its motion, has

its velocity increased by v, the addition to the force of the mov-

ing body is

mv= Ft.



In case the acting force is not constant, the rate at which the

force of the body increases is

mJD
t
v= F.

III.

FOKCE OF MOVING BODIES.

11. The power with ivhich a body moves is equal to the product of

one half of its mass multiplied by the square of its velocity.

For if the body, of which the mass is m, is acted upon by

the force F, until from the state of rest it reaches the velocity

v, the power P, which has been communicated to it, and which it

consequently retains, must, by (314)
* and (43 ), give the equation

D
s
P= mD

t
v.

The derivative of P relatively to t, is by (224 )

D
t
P = DS P. Dt

s= vD
s
P = mvD

t
v.

The integral of this equation is

P= imv2

,

to which no constant is to be added, because the power vanishes

with the velocity. [Note A.)

12. Hence the power of a moving body is equal to one half

of the product of its force multiplied by its velocity.

* The form of reference here given is by means of numbers, of which the leading

number refers to the page, and the secondary number, which is printed in smaller

type, refers to the place upon the page, estimated from the top of the page, in lines of

equal typographic interval. Printed marks, corresponding to these intervals, accom-

pany each copy of the work. Thus, (3i4) denotes the equation which is at the 14th

typographic interval from the top of the third page.



13. It is convenient to refer the measure of force to the

unit of muss as a standard. Thus, if F is the force exerted upon

each unit of mass, the force exerted upon the body of which the

mass is m, is mF. With the F, used in this sense, (43 ) becomes

D,v = F.

>-

CHAPTER III.

FUNDAMENTAL PRINCIPLES OF PEST AND MOTION.

TENDENCY TO MOTION.

§ 14. A system of moving bodies may be regarded mechanically as a

system of forces or poivers, which must be the exact equivalent of all the

forces or powers which, by simultaneous or successive communication to the

bodies, are united in its formation.

This results from the inertness of matter, and its incapacity to

increase, diminish, or vary in any way, the power which it contains.

15. It also follows from its inertness, that matter yields instan-

taneously to every force, and cannot resist any tendency to the

communication or abstraction of power. With a system which is

at rest, there can consequently be no tendency to the communi-

cation of power.

16. The tendency of any body or system of bodies to move

in any given way is easily ascertained. It is only necessary to sup-

pose the system moved with the proposed motion to an infinitesimal
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distance. The product of the corresponding distance, by which each

body of the system advances in the direction in which each force

acts, multiplied by the intensity of the force is, by § 7, the corre-

sponding power which the force communicates directly to the

body, and through it to the system.

The ivhole amount of power which is thus communicated by all the

forces to the system, or rather its ratio to the infinitesimal element of the

proposed motion is evidently the measure of the tendency of the system to

this proposed motion.

It must be observed that, when a body moves in a direction

opposite to that of the action of the force, the corresponding product

is negative, and must be used with the negative sign in forming the

algebraical sum, which represents the whole amount of power com-

municated to the system.

17. By a skilful use of the principles of the preceding sec-

tion, all the elementary tendencies to motion in a system may be

determined, and, therefore, all the elements of change of motion in

the system which is actually moving, or all the conditions of equi-

librium in the system which is at rest. Thus, let

mi, m2 , m3 , &c, denote the masses of a system of bodies;

Flf F[, F", &c, the forces which act upon each unit of m±

;

F2 , F2 , F2 , &c, the forces which act upon each unit of m2 ;

&c. &c.

;

dfx , df[, df{, &c, the distances by which mx advances in the

direction of the forces Fx , F[, F'{, &c, in consequence of

any proposed motion
;

df2 , df2 , df2 , &c. ; tT/3 , &c, the corresponding distances for the

other bodies and forces of the system
;

-2"
', the sum of all quantities of the same kind, obtained by

changing the accents

;
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21} the sum of all quantities of the same kind, obtained by

changing the underwritten numbers
;

JS^j the sum of all quantities of the same kind, obtained by

all admissible combinations of both changes.

The power communicated to the system by the proposed

motion through m1: m2 , &c, is

S'miFJfi= m, {Fxdfx + F[df[+ &c.)

Z'm2F2 df2= m2 {F2 df2+ F'2df2+ &c.)

&c. &c.

;

and the whole power communicated is

= Z'm xFxdfx + 2'm2F2df2 -f &c.

This is, therefore, the complete measure of the tendency in the

system to the proposed motion, or of the change of motion which

the moving system would experience in the direction of the pro-

posed motion. But by a simple change in the values of cT/i, df[,

cT/*2 , df2 , &c, the tendency to any other proposed motion may be

measured ; and, in the same way, all the elements of the change of

motion may be definitely ascertained.

II.

EQUATIONS OP MOTION AND REST.

18. If, instead of the given forces, each body were acted upon

by a force in the direction of its motion, and of such an intensity as

to produce the exact change of velocity which it undergoes, this

new system of forces would precisely correspond to that actually

imparted to the moving bodies, and would be the exact equivalent

of the given system of forces. Let



— 8 —

vi> v2? ?,3? & c - denote the velocities of the bodies;

dsx , ds2 , ds3 , &c., the distances by which, in consequence of

the proposed arbitrary motion of the preceding section,

the bodies advance in the actual direction of this motion

;

and then from (43 )

D
t
vx , Dt Vz, Dt

vz , &c, are the intensities of the new forces

relatively to the unit of mass.

The whole power communicated by the new system of forces

with the proposed motion becomes, then,

21m1Dt v1 dsl = nhDt^h -f- m2Dt
v2 ds2 -j- &c,

and it must, therefore, be equal to the expression (713 ) of the

power communicated by the given forces. Hence,

S[mxFx 8fx= 2XmxDt
i\ dsx ,

or by transposition

Z1ml
{D

t
vl ds1—Z'F1 df1 ) = o.

When the system is at rest, this equation becomes

19. The equation (818 ) in the case of motion, or the equation

(820 ) in the case of rest, although it appears to be a single equation,

involves in fact as many equations as there are distinct elements of

motion or rest in the system of bodies. For every such element

gives a different set of values of dfl} df[, df2 , &c, ds1} ds2 , &c, which,

substituted in (818 ) or (820 ), produce a corresponding equation.

These equations, therefore, involve all the necessary conditions of

motion or rest in every mechanical problem. All that remains,

then, is to determine, by geometrical analysis, the various elements

of motion or rest, and to integrate and interpret the algebraical
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equations, into which (818 ) and (820 ) are finally decomposed. The

Mecanique Analytique of the ever-living Lagrange contains the general

forms of investigation with unequalled elegance and perspicuity.

But the special modes of analysis, which are peculiarly adapted to

the illustration and development of particular problems, have been

too much neglected, and the attention of }^outhful explorers is

earnestly invited to this unbounded field of research.

=><

CHAPTER IV.

ELEMENTS OF MOTION.

MOTION OF TRANSLATION.

§ 20. A single material point may be moved to an infinitesimal

distance in any direction, which may be defined by either of the

methods known to geometers, by the reference, for instance, to the

directions of three mutually perpendicular axes. By the known

theory of projections, [Note B,) the distance by which the point

advances in the direction of its actual motion, or in any other direc-

tion, may be fully determined from the distances which it advances

in these three directions. The three distances, moved in the direc-

tions of the axes, which are simply the projections of the proposed

motion upon the three axes, are the three independent elements of

motion which completely define the elementary motion of the single point.

2
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Thus if

dp denotes the proposed elementary motion, if

P> p P> denote the angles which this motion makes with the

three mutually perpendicular axes, called the axes of x,

y, and g, and

dx, dy, dz, the projections of dp upon the axes,

the expressions for these projections are,

dx= cos P . dp,

dy— cos*, dp,

ds= co&P .dp.

If, in general,

P denotes the angle which the directions ofp and q make

with each other, the distance by which the point

advances, in consequence of the proposed motion, in

the direction of/ is, by the theory of projections,

df= cos P,
. dp

— cos *
. dx -I- cos *

. df/ -4- cos-' . dz
x i y z

= J£\. cos* .dx :

in which

JSX denotes the sum of all the similar terms obtained by pro-

ceeding from one axis to each of the others.

21. The most important of all the elementary motions of a

system of bodies are those which, being independent of the peculiar

constitution of the system, may be common to all systems. Such
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motions must be possible, even if the bodies which compose the sys-

tem, do not change their mutual positions, but are so rigidly fixed

that the whole may be regarded as one solid body. It will be

shown that there are but two distinct classes of such motions,

namely, those of translation and those of rotation.

22. The motion of translation is that by which all the points of

a body, or system of bodies, are transported through the same dis-

tance in the same direction. The projections of an elementary

translation upon three rectangular axes are given by equations

(1010_n ), while (102i), is the expression of the distance by which the

system, or any one of its bodies, advances in any direction, such as

that of /, by reason of the proposed translation.

23. Any number of different elementary translations may be

supposed to be given at the same time to a system, and the result-

ing motion will be such an elementary translation, that its projec-

tion, estimated in any direction, will be the sum of the projections

of the elementary translations estimated in the same direction.

Two coexistent elementary translations may be combined geo-

metrically by setting off from any point two lines of the same

length with the elementary motions, and in the same direction with

them ; and if a parallelogram is described upon these two lines as

sides, the diagonal, which is drawn from the given point, will rep-

resent in distance and direction the resulting elementary transla-

tion.

In the same way the geometrical resultant of the combination

of three elementary translations may be represented by the diago-

nal of a parallelopiped described upon the lines which represent the

component translations. But this parallelopiped vanishes when the

three lines are in the same plane.
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II.

MOTION OF KOTATION.

§ 24. The motion of rotation is that by which all the points of

a body or system of bodies turn about a fixed line in the body,

which line is called the axis of rotation. If one stands with his feet

against the axes of rotation, and his body perpendicular to it, and

faces in the direction of the rotation, the positive direction of the

axis of rotation is, in this treatise, regarded as lying upon his right

hand, and its negative direction upon his left hand. It will be found

convenient to represent a rotation geometrically by a distance pro-

portional to the elementary angle of rotation, set off upon the posi-

tive direction of the axis of rotation from any point taken at pleas-

ure in the axis. If

d6 denotes the elementary angle of rotation, and r the distance

of a point of the body from the axis of rotation
;

rd& is the elementary distance through which the point moves

in consequence of the rotation.

The form in which the subject of rotation will be here pre-

sented, is not greatly modified from that which it has finally

assumed in Poinsot's admirable exposition of the " Theory of the

Motation of Bodies" as it is printed in the additions to the Connais-

sance des Temps for 1854.

25. When a body rotates about an axis, it is, in consequence of this

rotation, simultaneously rotating about any other axis which passes through

the same point, with an angle of rotation ivhich is represented by the 'pro-

jection upon this neiv axis of the line ivhich represents the original angle of

rotation.

For by the angle of rotation 6 about the axis A (fig. 1), the
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point P of the axis OB, which is at the distance

r= PM
from the axis OA, is moved through the distance r6. Although

every point of the axis OA is actually at rest, it has with respect to

P, a relative motion, which is the negative of that of P. A rota-

tion $' about the axis OB gives the point N of the axis OA, which

is in the plane drawn through P perpendicular to OB, and at the

distance

r'= PN
from the axis of OB, a motion through the distance /&' taken nega-

tively. This rotation is, then, the same with that which the actual

rotation produces about the axis OB, if

or t= tj= cosMPN
a r

= cosAOB;

that is, if &' is equal to the projection of 6 upon OB.

26. Three simultaneous elementary rotations about three axes, ivhich

pass through the same point, and are not in the same plane, are equivalent

to a single rotation about the diagonal of a parallelopiped, of ivhich the three

lines representing the rotations are the sides, and the length of the diagonal

represents the angle of elementary rotation.

For the algebraic sum of the projections of the sides of the

parallelopiped upon any line perpendicular to its diagonal is zero,

and, therefore, there is no rotation about any such line. Hence the

diagonal is stationary, that is, it is the axis of rotation. The whole

amount of rotation, being the sum of the partial rotations about the

diagonal which arise from the several rotations about the sides, is

represented by the sum of the projections of the sides upon the
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diagonal, which is, by the theory of projections, equal to the diago-

nal itself.

27. In the same way, two simultaneous rotations about the

sides of a parallelogram may be combined into a single rotation

about the diagonal. In short, simultaneous elementary rotations about

axes which cat each other may be combined in the same way as elementary

translations.

28. To investigate the distance by which a given rotation

causes any point of a body or system to advance in a given direc-

tion, as that of / ; let

d& be the elementary angle of rotation about the axis of p and

/ the perpendicular let fall from the point upon the axis

of rotation.

Let a line be drawn through the given point, parallel to the

projection of/ upon a plane, which is perpendicular to the axis of

rotation, and let

q be the perpendicular let fall upon this line from the point in

which / meets the axis of rotation ; and

~ the angle which / makes with the direction in which the

point is moved by the* elementary rotation.

The distance by which the point advances in the direction

of /is

d/=/cos %M= /cos e, sin £.<M

= qsmP.dd,

in which o should be taken positively when the point is moved

towards the positive direction of /.

29. If three rectangular axes are drawn through any point

of the axis of rotation, and if
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d6x , d&y , d6z are the projections of d& upon these axes, the dis-

tance by which the point (x, y, z) is moved in the direc-

tion of the axis of x, is

dx= yd&z— sdd
y

= (?/cos^— zcos p ) d&W Z y)

= (cos
r
cos P— cos

r
cos P) rdd

y z z y

= (cos
r
cos P — cos

r
cos p

) cosec
r

. rd$
- y z z y

'

p

= (cos
r
cos-^ — cos

r
cos^) rd&.

y z z y

X

There are similar expressions for the distances by which the

point advances in the directions of the axes of y and z, which may

be found by advancing each of the letters x, y, z, and x to the fol-

loAving letter of the series.

30. The two last members of equation (155 ) divided by r'dd

give the following theorem
;

cos
d = cos

r
cos P — cos

r
cos^,

x y z z y'

in which the direction of & is that of the perpendicular to the com-

mon plane of / and p, and it is taken upon that side of the plane

for which, a positive rotation about it, would correspond to a

motion through the acute angle from / to p.

31. If there were another system of rectangular axes, x
f

,
y',

and s, equation (1520 ) applied to them would give

cos = cos u cos — cos y cos .

x y z z y

In this equation each of the letters x, y, z, and x might be

advanced to the subsequent letter of the series, as well as each letter
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of the series x', y
r

, z', and x'. In this way eight other equations

might be found similar to equation (1528 ).

III.

COMBINED MOTIONS OF ROTATION AND TRANSLATION.

32. An elementary rotation, combined with an elementary translation

in any direction, ivhich is perpendicular to the axis of rotation, is equivalent

to an equal elementary rotation about an axis ivhich is parallel to the origi-

nal axis of rotation. The position of the new axis is determined by the con-

dition that each of its points is carried by the original elementary rotation as

far as by the elementary translation, but in an opposite direction.

For the given motions cancel each other's action upon each

point of the new axis, and leave it stationary ; while the original

axis advances with the elementary translation by the exact dis-

tance which corresponds to the elementary rotation about the new

axis. The common plane of the two axes is perpendicular to the

direction of the translation.

33. Any simultaneous elementary rotations about axes parallel to each

other are equivalent to a single rotation, equal to their sum, and about an axis

parallel to the given axes, combined with an elementary translation equal to

the motion ivhich any point of the new axis receives from their simultaneous

action.

This is a simple deduction from the preceding proposition.

34. Let there be three rectangular axes, such that the new

axis of rotation may be that of z ; let

x\ilf\) xi> Uii &C -? be the points in which the original axes cut

the plane of xy ; and let

d&u d&2 , &c, be the elementary angles of rotation about these

axes.
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The elementary rotation about the axis of z is

The elementary translations in the directions of the axes of x

and y are by (1219 )

dy =— 2± xx dd 1 .

The distances through which any point (x, y, z) is carried for-

ward in the directions of the axes, are

dx= dx —yd A = 21y1 d&1
—y 21 d&1 ,

dy = dy -\-z$& =— 21 x1 d61 -\-x21 d61 .

The points are, therefore, at rest for which

= dz —ydG = 21y1d$1—y21d61 ,

= Sy -j- xdd=—2t x,d6 x -f- z21d$1 .

These are, therefore, the equations of the axis of rotation, an elementary

rotation about which, equal to the sum of all the elementary rotations, is

equivalent to the combination of all the elementary rotations.

35. If the original elementary rotations are all equal, and if

there are n axes of rotation, the equations (172 ) and (17n) become

d6==nd6lt

dx=(21y1
— ny) d^,

dy= (—2j xx
-\- n x) d 6 X .

The equations (17i6 )
give for the single axis of rotation

y=—
>

•

n

36. If any of these rotations are about an axis lying in the

opposite to the assumed direction, they may be regarded as nega-

3
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tive rotations about axes having the same direction as the assumed

one, and may be combined algebraically in the preceding sums.

37. When the second member of equation (172 ) vanishes, the

resulting rotation disappears, and the given elementary rotations

are equivalent to the elementary translation defined by equa-

tions (176 ).

38. Two equal rotations about axes, which are parallel, but

have opposite directions, constitute a combination which Poinsot

has called a couple of rotations.

A couple of elementary rotations is, therefore, equal to an elementary

translation in a direction perpendicular to the common plane of the axes,

and equal to the product of the distance between the axes multiplied by the

elementary angle of rotation.

39. Any simultaneous elementary motions of rotation and translation

are equivalent to a single elementary rotation about an axis, combined ivith

an elementary translation in the direction of the axis of rotation.

For each rotation may be resolved into a translation and a

rotation about an axis passing through any assumed point. But all

the elementary rotations about axes passing through the same point

are equivalent to a single rotation about an axis passing through

the point, and all the translations are equivalent to a single transla-

tion. The single translation may be resolved into two translations,

of which one is parallel, and the other perpendicular to the single

axis of rotation. The translation, which is perpendicular to the

axis of rotation, combined with the rotation, is equivalent to a sin-

gle rotation about an axis, parallel to the single axis, and, therefore,

having the same direction with the remaining translation.

40. Every possible motion of a rigid system or body is equivalent to

a combination of the motions of translation and rotation.

This is evident, if it can be shown that, by such a combination

of motions, any three points, A, B, and C, of the system, can be car-
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ried to any positions, A, B', and C, in which it is possible for them

to be placed. For three points of a rigid system not in the same

straight line completely determine, by their position, that of the

whole system. Now, by a translation of the system, equal to that

by which A might be directly moved from A to Ar

, the point A is

actually brought to the position A. By a subsequent motion of

rotation about an axis, which is "perpendicular to each of the lines

AB and A B', the point B may be moved to Br

; and then by a

rotation about AB' the point O may be carried to C. Hence the

whole motion is accomplished by one translation and two rotations.

Every elementary motion of a rigid system must then be

equivalent to a single rotation about an axis and a translation in

the direction of the axis of rotation. This motion is perfectly rep-

resented by that of the screw, whose helix causes it to advance in

the direction of the axis about which it is turning.

41. During each instant of its motion, a rigid system rotates

about an axis, which is called the instantaneous axis of rotation. This

axis is generally varying its position in the system and in space

from one instant to another, which renders it difficult to form

a distinct conception of the nature of the corresponding motion of

the system.

42. In attempting to conceive of the motion of a rigid system,

it is expedient, at first, to neglect the translation in the direction of

the axis of rotation, and to assume that the motion is solely that

of rotation. The successive positions of the axis of rotation in the

system form by their union a surface which tarns with the system;

and its successive positions in space form another fixed surface. In

the motion now considered, the moving surface rolls on the fixed

surface without sliding, and carries the system with it.

43. If the axis of rotation does not move perpendicularly to

itself each of these surfaces is evidently a developable surface, and
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in the act of rolling the line of retrogression of the one falls upon

that of the other; so that these two lines are of the same length.

Upon the surfaces, developed into a plane, the two lines of retro-

gression will be precisely alike.

In combining with this rotation the translation in the direction

of the axis of rotation, the surface, generated bj the instantaneous

axis in the moving system, remains unchanged. But the fixed sur-

face, generated by the instantaneous axis, is changed ; it is still a

developable surface obtained from that in which the translation is

neglected, by adding to each element of the arc of the curve of

retrogression, the elementary translation in the direction of the axis

of rotation. In the actual motion, the moving surface rolls upon

the fixed surface, and glides simultaneously in the direction of the

line of contact, so as to keep the curves of retrogression constantly

in contact.

In this general case, the whole length of the arc of the fixed

curve of retrogression is equal to that of the moving curve aug-

mented by the whole amount of translation in the direction of the

axis of rotation.

When the elementary translation is equal to the elementary

arc of the moving curve of retrogression, but lies in the opposite

direction, there is a corresponding cusp in the fixed curve of retro-

gression.

A point of inflection in the curves of retrogression generally cor-

responds to a change in the direction of the rotation. A similar

combination of the translation with the rotation can be introduced

into the general case of motion.

44. When either of the surfaces of the instantaneous axis is

a cone, the curve of retrogression is reduced to a point which is the

vertex of the cone. When both of the surfaces are cones, there is no

translation in the direction of the axis.
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When either of the surfaces is a cylinder, both surfaces must

be cylinders; and the lines of retrogression, removing to an infinite

distance, cannot be used for guiding the motion of translation.

But in this case, a section may be made of one of the cylinders per-

pendicular to its axis, and in the actual motion the moving cylinder

will move so as to keep the point, in which the perimeter of this

section touches the other cylinder, upon a curve properly drawn

upon that cylinder.

45. The general motion of a rigid system may be conceived as

a translation, equal to that of any one of its points assumed at will,

combined with a rotation about an instantaneous axis of rotation

passing through the point. If the translation is neglected, the rota-

tion is effected as in § 42 by rolling a cone, of which the assumed

point is the vertex, and which carries the system with it, in its

motion, about a fixed cone, of which the same point is the vertex.

The translation may be simultaneously effected by moving the two

cones in space, with a translation equal to that which belongs to

their vertex in the actual motion of the system.

46. For all the points of the instantaneous axis in each of its

positions, the corresponding centres of greatest curvature of either

of the conical surfaces which it describes, are all upon the same

straight line passing through the vertex.

In the case of the right cone, or of the right cylinder, the axis

of revolution is the line of the centres of greatest curvature. In all

these investigations the plane may be regarded either as a cylinder

of infinite radius, or as a cone, of which the angle at the vertex is

equal to two right angles.

47. The elementary rotation of the system may be conceived

as decomposed into two elementary rotations about the lines of the

centres of greatest curvature as axes of rotation. By the rotation

about the line, which unites the centres of the fixed surface, the
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instantaneous axis receives its elementary motion in space, and is

carried to its proper position upon the fixed surface. By the rota-

tion about the line which unites the centres of the moving surface,

the system receives that additional rotation which is required to

turn the moving surface into that position in which it may have the

proper line of contact with the fixed surface. Each of these rota-

tions produces a sliding of the moving upon the fixed surface ; but

as the sliding produced by the one is just equal and opposite to that

produced by the other rotation, the two rotations cancel each

other's action in this respect, and there is no sliding in the

combined motion, but a simple rolling of one surface upon the

other.

48. Let

af be the acute angle which the instantaneous axis of rota-

tion makes with the line of the centres of curvature

of the fixed surface
;

am that which it makes with the line of the centres of cur-

vature of the moving surface, this angle being positive

when the two lines of the centres are on opposite

sides of the instantaneous axis, and negative, when

they are upon the same side
;

d a* the elementary angle by which the instantaneous axis

changes its direction

;

d &f the elementary angle of rotation about the line of cen-

tres of the fixed surface ; and

d 6m the elementary angle of rotation about the line of cen-

tres of the moving surface.

Since the instantaneous axis must be carried forward by the

rotation about the fixed axis, and backward by the rotation about



the moving axis just as far as its actual change of position, its ele-

mentary angle of change of direction is

d w = d 6f . sin af= d &m . sin am .

But the combination of the two rotations about these axes

gives the actual rotation about the instantaneous axis, and there-

fore,

d 6 = d 6f . cos cc/-\- d Qm . cos am

= (cotay-j-cotoj^) da>

_ sin Ov+O
ftrc

sin «y sin am

49. When the surfaces described by the instantaneous axis are

cylinders, let

(jy and Qm be the respective radii of greatest curvature of the

fixed and moving surfaces at any point of their mutual

contact ; and

dp the elementary distance which the instantaneous axis moves

in a direction perpendicular to itself.

The conditions of the motion of the instantaneous axis give the

equations

in which the upper sign corresponds to the case where the lines of

the centres of curvature are upon opposite sides of the instanta-

neous axis, and the lower sign to that in which they are upon the

same side. The rotation about the instantaneous axis is

d6 = d&f+d6m
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IV.

SPECIAL ELEMENTS OF MOTION AND EQUATIONS OF CONDITION.

50. The variation of each independent element of position of

a system gives an independent element of motion. Bnt the ele-

ments of position are various, and must be selected in each case

with special reference to the problem under discussion. It often

occurs that parts of the system are rigidly connected ; such parts

are themselves rigid systems, and subject only to motions of trans-

lation and rotation, and, therefore, none but such elements are

required for the investigation of their motions.

Points of the system are sometimes restrained to move upon

given surfaces, and, in this case, it may be expedient to introduce

elements' of position dependent upon the principal lines of curva-

ture of these surfaces, or elements, in reference to which the sur-

faces are peculiarly simple or symmetrical. Points of the system

may be compelled to preserve simple geometrical relations to each

other, which may suggest appropriate elements of position to the

skilful analyst; or he may find indications to direct his choice in

the very nature of the motion itself.

51. It is often desirable to adopt a combination of elements

of position which are not wholly independent of each other, but are

subject to certain mutual restrictions. These restrictions, when

they are expressed algebraically, are called equations of condition.

They may assume the differential form of equations between the

elementary motions ; or they may be finite equations between the

elements of position, in which case they may be reduced by differ-

entiation to equations between the elementary motions.

By means of the equations of condition, as many of the ele-

ments of motion may be determined in terms of the rest as there
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are equations of condition ; and the remaining elementary motions

may be regarded as independent of each other.

52. Instead of introducing into the equations (818 ) and (820 ) of

motion and rest the special values of dsly ds2 , &c, dfly df2 , &c, for

each particular element of motion, their general values may be

found in terms of all these elements. When the elementary

motions are wholly independent, their coefficients in these equa-

tions give, when they are equalled to zero, the same equations

which would have been obtained by the special investigations.

But when the elements are not independent, all, except the inde-

pendent elements can be eliminated by means of the values given

by the equations of condition.

The equations (81S ) and (820 ) of motion and rest, on account of

their differential form, are necessarily linear in reference to the ele-

mentary motions ; and the differential equations of condition are

likewise linear. The proposed elimination may therefore be con-

ducted by the method of multipliers. By this process each differential

equation, multiplied by an unknown quantity, is to be added to the

given equation of motion or rest. The unknown multipliers are to

be determined by the conditions that the coefficients of the elemen-

tary motions, which are to be eliminated, become equal to zero.

Since the remaining elementary motions are independent of each

other, their coefficients must also be equalled to zero. In the sum,

therefore, obtained by the addition of the equations, each of the

coefficients of the elementary motions is equal to zero. The num-

ber of unknown quantities is increased in this process by that of the

unknown multipliers ; but, because there are as many equations of

condition as there are multipliers, the whole number of equations,

including the equations of condition, in their finite form, is just

sufficient to determine the values of the multipliers and of all the

elements of position.

4
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53. Let

be one of the equations of condition in its finite form ; and let its

differential form be

dLx
= 0.

Let also,

I be the unknown multiplier by which it is to be multiplied.

The sum obtained by adding the similar products of all the equa-

tions of condition to equation (818 ) or (820 ) is

2[m1F1df1 -\-21 l1dX1= Q,

which is the equation of motion or rest, and in which the general

values of dsl7 dfx , &c, are to be substituted, and the coefficient of

each elementary motion is to be equalled to zero.

54. Each equation of condition becomes the equation of a

surface, to which any one of the points whose elements of position

occur in the equation is restricted, provided that, for the moment,

the variations of all the other elements are neglected. Since the

point is restricted to move upon the surface, it cannot move in the

direction of the normal to the surface. Let a system of three rec-

tangular axes be adopted, and let

iVbe the normal to the surface.

Its variation, arising from the variation of coordinates, which may

be regarded as the elements of position of the point, is

If the equation of the surface is (262 ), with the omission of the num-
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bers written below, which may be neglected in the general discus-

sion, its variation is

dL= ZxDxUx.

Let, then,

and the angle, made by the normal with one of the axes, is given

by the equation

X __DXLcos^—^-;

which substituted in (2629 )
gives

ZxDxL8x 8L
djsr-. M M

Hence the equation of condition with its multiplier may be writ-

ten in the form

IdL= X3IdJY= ;

and this form may be substituted in the equations (2612 ) and (26 13 )

of motion and rest.



— 28

CHAPTER V.

FORCES OF NATURE.

I.

EQUILIBRIUM, AND THE POSSIBILITY OF PERPETUAL MOTION.

§ 55. It appears, at first sight, to be inconsistent with the

assumed spiritual origin of force, that the principal forces of nature

reside in centres of action, which are not thinking beings, but parti-

cles of matter. The capacity of matter to receive force from mind

in the form of motion, contain and exhibit it as motion, and commu-

nicate it to other matter, under fixed laws, is not, however, less dim-

cult or more conceivable than the capacity to receive and contain it

in a more refined and latent form, from which it may become mani-

fest under equally fixed laws. It is only, indeed, when force is thus

separated from mind, and placed beyond the control of will, that it

can be subject to precise laws, and admit of certain and reliable

computation.

56. The laws of the development of power in nature are of

two classes. In the one class, the forces depend solely upon the

relative positions of the bodies, and may be called fixed. In the

other class, the forces depend, not only upon the positions of the

bodies, but also upon their actual state of power, especially upon

the velocities and directions of their motions ; and these forces may

be called variable.

57. The most fruitful and enlarged view of the fixed forces of
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nature, and one which peculiarly corresponds to their laws of action

so far as they have been observed, is to regard them as the mani-

festations of the dynamic situation of the bodies which exhibit them.

The dynamic situation depends solely upon the masses and posi-

tions of the bodies; it is a condition of form, and its research is a

problem of pure geometry. The algebraic function which embodies

the idea of the dynamic state is called the potential. Its complete

investigation and determination involves the solution of all the

problems which can arise in regard to the power and the conditions

of force of all systems, whether they are at rest or in motion, so far

at least as the fixed forces of nature are concerned.

The amount of power of a system is not to be inferred from its

situation, although there is a certain measure of power appropriate

to that situation. It is this latter power which is expressed by the

potential of the system, and expressed as a function of all the ele-

ments of position, by which the situation is defined.

58. The power of a moving system increases or decreases with the

power ivhich belongs to its situation, and the increase or decrease of its power

is measured by that of its potential.

59. Hence, if a system moves from a state of rest, its power is

constantly equal to the excess of its potential over the initial value

of the potential ; and it can never arrive at a position in which the

potential would be less than its initial value. No system, indeed,

can move to a situation in which the potential would be diminished

more than the initial power of the system.

60. When a system is in a permanent state of rest which the

actual forces do not tend to disturb, its dynamic condition is such,

that the power of the system is not changed by a slight change of

position. Hence,

The potential of a system ivhich is in equilibrium, is generally a maxi-

mum or a minimum. The exceptional case of a condition of indiffer-



— 30 —

ence rarely occurs in nature ; but even this case may be philosophi-

cally regarded as the combination of a maximum and minimum, or

as the result of several such combinations.

61. When a moving system passes through a position of equi-

librium, or a position which is one of equilibrium in reference to

the element of position with which the system is changing its place,

the power of the system is either a maximum or a minimum, or in

a condition of indifference.

62. When a system, in a state of rest, is placed very near the

position of equilibrium, it cannot tend to move away from the posi-

tion of equilibrium, if the potential of that situation is a maximum

relatively to the element by which the system is removed from

it ; and it cannot tend to move towards the situation of equili-

brium, if the potential is a minimum for the same element. On

this account the equilibrium is stable, in reference to those elements

for which the potential is a maximum, and it is unstable in reference

to these elements, for which the potential is a minimum.

63. As when a function changes in consequence of the change

of any one of its variables, the maxima and minima succeed each

other alternately ; in the motion of a system, the positions of stable

and unstable equilibrium, relatively to the element of change of

position, succeed each other alternately. Situations of equilibrium

of indifference may be interposed without disturbing the order of

succession of the situations of stable and unstable equilibrium. If

the system returns to its initial position, it must have passed

through an even number of such situations of equilibrium, rela-

tively to the element of change of position, half of which must have

been positions of stable, and the other half positions of unstable

equilibrium. In general, these situations will not be positions of

absolute equilibrium, but only such in reference to the changing

element of motion.
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64. Fixed forces might easily be imagined different from

those of nature, and in the action of which the power of a moving

system would depend upon its previous situations as well as upon

its actual position. With such forces the increase or decrease of

power of a system would vary with the path which it pursued in

moving from one situation to another, and would be greater by one

path than by another. The change of power for each element of

any given path, would still be computed by the process of § 17,

and thence the whole change of power would be obtained by inte-

gration. If the motion of the system were reversed, and it were

carried back through the same path to its initial position, its initial

power would be restored. If, of two courses, by which a system

could move from one situation to another, it were forced to go by

that through which it would arrive, with the greater power at its

final position, and if it were then made to return to its initial posi-

tion by the other path, it would return with an increased power

;

if it were again to move through the same circuit, it would again

return with an equal additional increase of power ; and, by succes-

sive repetitions of this process, the power might be increased to any,

even to an infinite amount. Such a series of motions would receive

the technical name of a perpetual motion, by which is to be under-

stood, that of a system which would constantly return to the same

position, Avith an increase of power, unless a portion of the power

were drawn off in some way, and appropriated, if it were desired, to

some species of work. A constitution of the fixed forces, such as

that here supposed, and in which a perpetual motion would be pos-

sible, may not, perhaps, be incompatible with the unbounded power

of the Creator ; but, if it had been introduced into nature, it would

have proved destructive to human belief, in the spiritual origin of

force, and the necessity of a First Cause superior to matter, and

would have subjected the grand plans of Divine benevolence to

the will and caprice of man.
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65. A surface, for each of whose points the potential has the

same value, may be called a level surface. A level surface may be

drawn through any point in space.

Since the potential of every finite system of nature vanishes

for an infinitely distant point, all the level surfaces of nature are finite,

and, returning into themselves, include a space ivhich they wholly surround,

with the exception of those level surfaces for which the potential is zero.

66. A material point, placed upon a level surface, has no ten-

dency to move in the direction of the surface, because there is no

increase of power in such direction. The tendency of a materialpoint

to motion is, therefore, perpendicular to the level surface upon ivhich it is

placed,

67. If two level surfaces are drawn infinitely near to each

other, a material point, placed upon either of them, tends to move in the

direction, from the surface of the less potential toivards the other, ivith a

force ivhich is measured by the quotient of the difference of the potentials of

the two surfaces, divided by their distance apart.

Hence, if the surfaces are, throughout, at the same distance

apart, the disposition to motion is everywhere the same.

If the surfaces were to intersect each other, the tendency to

motion in the line of intersection would be infinite ; but, since there

is no such infinite tendency to motion in nature, each level surface of

nature must be wholly included within every other level surface, within which

any portion of it is included. For the same reason, the potential in nature

is always a continuous function.

68. Within each level surface of nature there must be a point

or points of maximum or minimum potential. A continuous

curved line, drawn perpendicularly to each of the level surfaces

which it intersects, represents a line of action or tendency to

motion, and every such trajectory must finally terminate in one of

the included points of maximum or minimum potential. Each of
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these points may then be regarded as a centre of action, towards, or

from which, all motion tends along the various trajectories, accord-

ing as the point is that of a maximum or a minimum potential.

69. If the potential has a constant value for any portion of space,

this same constant value must extend throughout all thai space, including

this portion, for which the potential and all its derivatives are finite and con-

tinuous functions. For, in order that the potential may be absolutely

constant for any finite extent, however small, all its derivatives

must vanish. But it follows, from Taylor's Theorem, that the

difference of the value of the potential for any portion of space, for

which it is continuous and finite, as well as all its derivatives, is a

linear function of its derivatives at any point of that space. The

difference of the potential, therefore, vanishes, when all the deriva-

tives vanish and the potential is constant.

The portion of space, for which the derivatives are originally

assumed to be constant, must be a solid, having the three dimen-

sions of extension, in order that this theorem be applicable.

70. Throughout any such portion of space, in which the

potential is constant, there can be no tendency to motion in any

direction. In such extent, therefore, there can be no mass of

matter, for it is contrary to experience that there should be matter

where there are no dynamical phenomena.

71. In all the observed laws of material action, the potential,

which belongs to the action of each particle of matter, is finite and

continuous, as well as all its derivatives, for the whole extent of space

exterior to the particle. Hence, the potential and its derivatives,

for every system of nature, are finite and continuous functions

throughout any portion of space which contains no material mass.

72. Hence, it follows, that for every finite system of nature, any

portion of space, in which the potential is constant, must be finite, and

hounded on all sides by material masses. This portion of space cannot

5
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extend to infinity, because, if it were to have such an extent, the

finite mass, which would be its inner limit, would exhibit no

external indication of force ; whereas, it is obvious that no matter

can ever have been observed, except by such a manifestation of its

existence.

73. There are forces in nature which are temjiorarily fixed, and

for which the potential may vanish throughout all space exterior to

the limit in which the centres of action are contained.

74. The difference between the values of the potential for any

two points may be computed by supposing a unit of mass to move

from one point to the other upon any line taken at pleasure, and

determining the change of power which it receives from this

motion. The change of the potential may be computed for each

force separately, and, in making the partial computations, it is

sufficient to suppose the unit of mass to move from the level

surface of one point to that of the other, and one of the perpen-

dicular trajectories may be taken for the path of this motion.

75. If, in any system,

F, F', &c, are the forces

;

/,/', &c, the directions in which they act ; and

12 is the value of the potential

;

the general expression of the potential for any point of the

system is

a = 2'fFdfi

in which the limits of integration extend from the values of/,/', &c,

which correspond to the position of the point, to infinity. The

expression for the tendency to motion in any direction, as that of

p, is

DpQ= Dp 2'fFdf.
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II.

COMPOSITION AND RESOLUTION OF FORCES.

76. No phenomenon is observed, in which a single force acts

freely by itself. In all cases, various forces are combined ; and it

is important, therefore, to ascertain what are the dynamical results

of such combinations.

77. A single force acts, at each point, perpendicularly to its

level surface, with an intensity which is measured by the derivative

of the potential, taken with reference to the element of direction of

the force. The intensity of its action, in any other direction, is

measured by the derivative, with reference to the element of that

direction. If another level surface is drawn infinitely near the one

which passes through the point, the action in any direction is

inversely proportional to the length, intercepted by the surfaces,

upon a straight line drawn in the given direction. But the surfaces

may, for this purpose, be considered as reduced to their parallel

tangent planes at the given point ; and the length, intercepted

between two parallel planes, upon a straight line, is proportional to

the secant of the angle which the line makes with the perpen-

dicular to the plane. Hence, the action of a force in the direction

of any line, is proportional to the cosine of the angle which it

makes with the direction of the force.

If, then, upon a straight line drawn in the direction of a force,

a length is taken to represent the intensity of the force, the action

in any direction is represented by the projection of this length

upon that direction, or by using the word force for the representa-

tive of the force, the proposition becomes, that the action of a force in

any direction is the projection of the force upon that direction.

78. When several forces act upon a point, their total action in
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any direction is the algebraic sum of their projections upon that

direction.

79. When three forces, ivhich are not in the same plane, act upon a

point, their combined action is equivalent to that of a single force, tvhich is

represented in magnitude and direction by the diagonal of the parallelopiped

constructed upon the three forces.

For the algebraic sum of the projections of the forces upon any

direction perpendicular to the diagonal, is zero, while that of the

projections upon the diagonal is the diagonal itself.

80. All the forces tvhich act upon a point, are equivalent to a single

force, which is called their resultant. For a single point can only tend

to move, with a certain intensity, in some one direction, however

various may be the forces which act upon it ; and any such

tendency to motion can be produced by one force acting upon

the point.

The actions of all the forces in three directions which are

perpendicular to each other, can be found by § 78 ; and these three

partial forces can then be combined by § 79 into one force which

will be the resultant. But the following method of finding the

resultant illustrates the use which may be made of the level

surfaces.

81. In considering the action of a force upon a fixed point in

space, the variable character of the force for other points of space

may be neglected, and its level surfaces may be regarded as parallel

planes perpendicular to the direction of the force. Thus, it may be

assumed that

Ff is the potential of the force F, which acts in the direction

of/; for

Df {Ff) = F, is the intensity of the force ; and

Ff =. a constant, or

f= a constant,
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is the equation of a plane perpendicular to /. Hence, the potential

of all the forces which act upon the point, is

If then

P
q
is the resulting force resolved in the direction of q ; if

p is the direction of the resultant, and

P is the resultant

;

the value of either of these forces is represented by the formula

P
q
= D

q
a = 2'FDJ= 2'Fcoaf.

But, by putting

j?=jsmpmny=2mpi,

the condition that p is perpendicular to the level surface, for which

the potential is constant, gives

COS^ =z—f— =x L
Px

L'

the value of the resultant is

P= Dp
£2=2x&&!>, ,

Ju

= 2XDX £2 cos?-.=ZX

-* X

1
_ Zx PI &

L L

= L= sl(2xP\;)•

82. By an elementary motion of translation, each point of a

system is carried to the same distance in the same direction ; the

potential of the system is changed, therefore, precisely as if all its

points were united in one, and all the forces applied at this point.

The tendency of a system to any motion of translation, is, then, the same as
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that ivliich would arise from the action of a single force, equal to the

resultant of all the forces, supposed to be applied at the same point.

83. The moment of a force, ivith reference to a point, is the product

of the force multiplied by its distance from the point. The moment

of a force, ivith reference to a line, is the product of the projection of

the force upon a plane perpendicular to the line multiplied by the

distance of the force from the line.

The moment of a force, with reference to a line, may be

represented geometrically by a corresponding length taken upon

the line, and the name of the moment may be given to its geomet-

rical representative.

The moment of a force, •with reference to a point, is the same

with the moment, with reference to the line, which is drawn

through the point perpendicular to the common plane of the point

and the force.

84. The moment of a force, ivith reference to a line passing through a

point, is equal to the projection upon the line of the moment, with reference to

the point. For the moment, with reference to the point, is equal to

double the area of the triangle, of which the base is the force, and

the altitude is the distance of the force from the point ; and the

moment, with reference to the line, is equal to double the area of

the triangle, of which the base is the projection of the force upon

the plane perpendicular to the line, and the altitude is the distance

of this projection from the line. But the latter of these triangles is

the projection of the former upon the plane, and its area is equal to

the product of the area of the former triangle, multiplied by the

cosine of the angle of the planes of the two triangles. But the

lines upon which the moments are represented, being respectively

perpendicular to these planes, have the same mutual inclination.

The moment, with reference to the line, is, therefore, equal to the

product of the moment, with reference to the point, multiplied by
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the cosine of the mutual angle of the moments ; that is, it is equal

to the projection upon the line of the moment, with reference to

the point.

85. Hence it follows that the moments of forces, with refer-

ence to points, may be combined by the same processes in which

the forces themselves are combined, and that all the moments, with

reference to a point, may he combined into one resultant moment.

86. The tendency of the force F, of which the potential is

Ff, to produce an elementary rotation, d&, about a line p, is

But if

(142G )
gives

D (Ff) = FD
d f.

o is the distance ofF from p,

B f=QsmP;

the projection of F upon the plane perpendicular to^;, being

Fsm?

the tendency to rotation aboutp becomes

oJ^sin^= the moment ofF with reference to p ;

that is, the moment of a force, with reference to a line, is the measure of its

tendency to produce rotation about that line.

87. The direction of the positive moment must be assumed to

be the same with that of the axis, about which the tendency to

rotation of the force is positive.

88. The residtant moment of all the forces of a system, tvith reference

to a point, is the measure of their tendency to produce rotation about that

point. Hence, the one force, of which the moment is equal to the

resultant moment, has the same tendency to produce rotation.
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89. The resultant moment of all the forces which act upon a

point, with reference to any line or to any other point, is the same

with the moment of their resultant. For the point upon which the

forces act tends to move in the direction of their resultant, with a

force equal to its intensity, and its moment is, therefore, the

measure of the tendency to motion.

90. The moment of a force, with reference to a line p
r
, is

equal to its moment, with reference to a parallel line p, increased

by the moment of an equal and parallel force, acting at any point

of the line p. For the distance of the original force from the line

p
r

, is equal to its distance from the line p, increased by the distance

froniji/ of the parallel force passing through p.

91. Hence the resultant moment of any forces, with reference to a line

p', is equal to their resultant moment, ivith reference to a parallel line p,

increased by the moment, with reference to p
'
, of equal and parallel forces

acting at any point of the line p.

92. The resultant moment of any forces, with reference to a point '

,

is equal to their resultant, with reference to a point 0, increased by the

moment, with reference to ', of equal and parallel forces acting at 0. For

this proposition is true for each pair of the parallel axes of two

parallel systems of three rectangular axes, of which the points

and 0' are the respective origins.

93. A couple of forces is a system of two parallel and equal

forces which act in different lines.

94. The moment of a couple of forces has, for every point of space,

the same value, which is equal to the moment of one of themfor any point of

the other. For two forces, equal and parallel to them, applied at any

point, destroy each other's action, and their resultant vanishes.

95. The tendency of a couple of forces to produce rotation

about a point, is the same as that of any system of forces, when its

moment is equal to the resultant moment of the system, with
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reference to the point. But the couple has no tendency to

produce a translation ; whereas the resultant of a system of equal

and parallel forces, acting at the point, has all the tendency of the

system to produce translation, but none to produce rotation about

the point. Hence, the three forces, of which one is the resultant of the

equal and parallel forces acting at a point, and the other tivo constitute a

couple, of which the moment is the same with the resultant moment, with

reference to the point, fully represent any system of forces in their tendency

to produce rotation and translation.

96. Since the position of the couple of forces is quite arbi-

trary, one of the pair may be taken to act at the same point with

the resultant of all the forces; and, by combining it with the

resultant, the system of three forces may be reduced to two.

97. A point can always be found in space, for which the

moment of a given force has any assumed magnitude, and any

direction which is perpendicular to the force. Because the distance

of the point from the force, which is one of the factors of the

moment, may vary from zero to infinity, and its direction from the

force may be that of any perpendicular to the force.

Hence, if the resultant moment, with reference to a point 0,

of any system of forces, is decomposed into two moments, of which

one has the same direction with the force, and the other is per-

pendicular to it, another point 0' can be found, for which the

moment of the resultant, acting at 0, is, in amount and direction,

the negative of that component of the resultant moment for 0,

which is perpendicular to the resultant. For the point 0', there-

fore, the resultant moment, coincides in direction with the result-

ant itself; and of the three corresponding forces which represent

the tendency of the system to produce rotation and translation, the

plane of the couple is perpendicular to the direction of the result-

ant.

6
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98. If all the forces lie in the same plane, for any point of the

plane the moment of each of the forces is perpendicular to the

plane, and, therefore, the resultant moment is perpendicular to the

plane. But the resultant of the parallel and equal forces acting at

the point must, if it does not vanish, lie in the same plane, and be

perpendicular to the resultant moment. If, then, the resultant does

not vanish, a point of the plane can be found for which the result-

ant moment vanishes.

99. If all the forces are parallel, the moment of each of them,

for any point, lies in the plane which is drawn through the point

perpendicular to the forces. But the resultant of the parallel and

equal forces, acting at the point, has the same common direction

with them, and is, therefore, perpendicular to the resultant moment.

If, then, the resultant does not vanish, a point can be found for

which the resultant moment vanishes.

Hence, if all the forces of a system lie in the same plane, or if they are

all parallel to each other, their tendency to produce translation or rotation is

equivalent, either to that of a single force, or to that of a couple offorces.

100. If of any system offerees, and for a point

Mis the resultant moment,

R the resultant of equal and parallel forces acting at 0,

Mp and Rp the projections of M and R upon the direction

ofp,

and if the same letters accented denote the same quantities for the

point 0', and if -

x, y, and z are the rectangular coordinates of 0' with reference

to 0,

the value of the moment of the forces for either of the axes

passing through 0' is,

M,

x ^=Mx
— zR

y
-\-yRz .
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But if the direction of the axis of z is assumed to be the same with

that of B, these moments become

M'x=Mx +yR,
My =My

— wR,

The coordinates of the points, for which the resultant moment has

the same direction with the resultant, are

MX __ My

101. The number of forces which is required to produce any

of the special effects of a given system of forces, is usually much

less than the whole number of those which actually concur in

their production. The mode of analysis, by which the requisite

forces may be ascertained, is, in most cases, quite as simple as that

by which the effects of rotation and translation have been investi-

gated.

III.

GRAVITATION, AND THE FORCE OF STATICAL ELECTRICITY.

102. Gravitation is, among all the forces of nature, conspicuous

for its universality, and the grandeur of the scale upon which it is

exhibited.

Each farticle of matter is an elementary centre of action for theforce

of gravitation, and all the level surfaces for each particle are spherical

surfaces, of ivhich the particle is the centre. The value of the potential for

any particle, is inversely proportional to the distance from the particle, and

for different particles it is proportional to the mass of the particle.

103. Another force which seems to be equally universal with

gravitation, and of which gravitation has been, perhaps justly,
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regarded as a residual force, and which is subject to the same law,

in respect to distance from each elementary centre of action, is that

of statical electricity. This force, however, is endowed with duality,

and consists of tivo forces, of which one has a positive, and the other a

negative potential. Both forces are usually combined with equal

intensity, in the same centre of action, so as to neutralize each

other's influence, and thus lie dormant. With each of these the poten-

tial is positive in reference to electricity of the other land, and negative ivith

reference to that of the same kind. The tendency to motion, arising

from one kind of electricity, is exactly equal and opposite, then, to

that which arises from the action of an equal intensity of the other

kind, distributed in the same way.

104. The action of electricity upon the mass of a particle

is indirect ; the direct action is upon the electricity associated

with the mass. In most bodies the electricity yields with more or

less facility to this action, leaves the particle with which it is

originally combined for another particle, and finally assumes such a

form of distribution within and upon the body, that the tendency to motion

shall nowhere exceed the resistance to motion. Bodies in which there is

no resistance to the motion of electricity are called perfect conductors;

while those in which the resistance is infinite are called, perfect non-

conductors.

105. Let

dm denote the mass of a particle of matter in the case of

gravitation, or the value of its potential at the unit of

distance, in the case either of gravitation or elec-

tricity
;

da, the element of volume of the mass
;

/-, the density of the matter, in the case of gravitation, or

the intensity of the force of electricity, compared

with the unit of intensity
;
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/, the distance from the particle
;

dS2, the value of the potential for the particle
;

the expression of the potential for the particle is

, r-> dm kdam =T= T-
The general value of the potential for the whole body is

°=fJ=SJ
106. With reference to a system of three rectangular axes,

let

x, y, z, be the coordinates of the point in space, for which the

potential is £2, and

£;, i], l, those of the particle.

Adopt also the functional notation

The derivatives of/ and/-1 are

Dxf=COBf= ——

.

~" P ~~T'
D- =— -Df—

Hence

xf~ P xJ ~~ P '

Dl±= -±Dlf+?rz
{Dxfy=

~ sin2y 2cos"
;

_ — 1+ 8008^—
J3

-

1 — 3 + 3^cos 2
^

ftVJ~ " ~P~ ~~ '
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and, therefore,

pd£2 = Q,

This last equation, which is called Laplace's equation, only

applies to that extent of space for which the derivatives of the

potential are continuous functions, that is, where there are no

centres of action ; but, where there are centres of action, it requires

a modification which will soon be investigated. The integration of

this equation, combined with peculiar considerations in special

cases, gives the value of the potential for all the problems of

gravitation or statical electricity.

107. The tendency to motion, resulting from the gravitating or

electrical action of a particle of matter, being normal to the level surface, is

directed in the straight line drawn to the particle. Its intensity is the

derivative of the potential, and expressed by the equation.

The force of the gravitating or electrical action of a particle of matter,

is, therefore, inversely proportional to the square of the distance from the

particle. It is attraction in the case of gravitation, or behveen electricities

of opposite kinds, and repulsion betiveen electricities of the same land.

ATTRACTION OF AN INFINITE LAMINA.

108. The investigation of the potential of a lamina of uniform

density, and included between two infinitely extended planes, is

simplified by the consideration, that it must have the same value

for all points of space which are at the same distance from either

surface of the lamina. Because all such points are similarly situ-

ated with reference to the lamina, on account of its infinite extent.

Hence, if either surface of the lamina is adopted for the plane of yz,
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the derivatives of the potential, with reference either to y or z,

must vanish, and Laplace's equation becomes

The integral of this equation gives the value of the potential,

for a point external to the lamina, or upon its surface,

in which A and B are arbitrary constants.

109. The level surfaces are the planes determined by the

equation (477 ), when £2 is the constant value of the potential for

the level surface.

110. The action of the lamina upon any external point, is in

a direction perpendicular to either surface, and its force of attraction

or repulsion is constant upon all points, for it is given by the equation

111. The values of A and B in any special case must be

ascertained by direct integration. The integration indicated in

(458 ), gives an infinite value of the potential, whereas the integra-

tion of its derivative, with reference to x, gives A itself, in a finite

form, which shows that the infinite portion of the potential belongs

to B. The integration for finding the derivative of the potential is

effected by putting

Q=fsm*,

= the projection of/ upon the plane of yz.

a= the thickness of the lamina

;

whence

f={x— £)sec*,

o= (x— £)tan^,
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da = Qdody d'E,,

= (x— I)'-sm x
f
sen"dUHl

=-£fzP sia?-

=— 2jzaJc= A.

This value of A corresponds to a positive value of x, but for a nega-

tive value of x its sign must be reversed.

112. For a point situated within the lamina, a plane may be

drawn through it parallel to the superficial planes, and dividing the

lamina into two partial laminse, of which the thicknesses are x and

a— x. Hence, the value of the derivative of the potential is

DX S2 =— 2nJcx -\- 2nk{a— x)

= 2nk(a— 2x).

poisson's modification of laplace's equation for an intepvIor point.

113. The modification which is required of Laplace's equa-

tion, in order that it may be applicable to any point of an acting

mass, must be the same for all cases. For it would not be needed,

if the point of action were contained within any extent, however

small, of void space. It depends, therefore, exclusively upon the

infinitesimal portion of matter at the point, and is unaffected by

any variations in the form and extent of the acting body. It need

be investigated, then, in only a single case. Now the derivative

of (4816 )
gives

D 2
X £2 =— 4:7i7e,

which substituted in Laplace's equation gives for an internal point



— 49 —

of the infinite lamina,

p£2 =— inJc05

"which is, therefore, the required modification of this equation.

This modified equation, in which Ic , denotes the value of 7c at the

point of action, is applicable, as remarked by Sturm, even when the

point is exterior to the body. This same geometer has observed

that, by supposing the value of Jc gradually to shade off from its

value within the hodiy to zero, this graduation occurring within an

infinitely small extent, so as not sensibly to interfere with the

actual phenomena of nature, the potential and its differential coeffi-

cients may become continuous functions. It must be further

observed, however, that this imaginary graduation must extend

throughout all space, although k must have an infinitesimal value

where there is no portion of active force ; for if it were to vanish

throughout any finite portion of space, however small, the reason-

ing of § 69, would prove that all the derivatives of the potential

were not finite and continuous.

ATTRACTION OF AN INFINITE CYLINDER.

114. The investigation of the potential of an infinite cylinder

is simplified by the consideration that its value must be the same

for all points situated upon the same straight line parallel to one of

the sides of the cylinder. If this direction is adopted for the axis

of s, the derivative of the potential, with reference to z, must

vanish, and Laplace's equation becomes

r£2 = {Di+D%)n = o.

The integral of this equation is

S2 = $(* + ysTi) + ®i(x— yvQ,
7
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in which *$ and 9^ are arbitrary functions, and must be determined

for each case by special considerations.

115. The level surfaces are the cylindrical surfaces, of which

(4930 ) is the general equation, if £2 has the constant value belonging

to that surface.

116. The attraction in the direction of the axis of x is

in which the accents denote the derivatives of the functions, with

reference to their explicit variables.

The attraction in the direction of the axis of^ is

Dy
£i = [#'(*+yvQ - ^'0 -ytfTx)]*Ci.

The whole action is, then,

s/[(Bxy^(ny
y]n = 2^[W(x+y^).^(x-y^[)^

117. When the point of action is so far from the cylinder that the

square of the linear dimensions of the base can be neglected, in comparison

ivith the square of the least distance of the point from the cylinder, the

problem can be greatly simplified.

Find in this case a line parallel to the axis of z, of which the

coordinates a and b, with reference to the axes of x and y, are

determined by the equations

f (£— a) = = f I — am,

J Or} — b)= 0=l 1] — bm.
m \J in

This line may be called the axis of gravity of the cylinder, and

its position is wholly independent of the directions of the axes of

x and y. For the conditions by which this axis is determined will
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give, with regard to any other axis of x, with reference to which

the notation is distinguished by the subjacent numbers,

If the axis of gravity is, then, assumed for the axis of z, the

equations (5025_2o) become

or

118. Since, from the nature of the cylinder, the functions

which are here to be integrated are independent of C, these

equations give

119. Let the perpendicular from the point of action upon the

axis of z be assumed for the axis of x, and let

/ be the distance of the point of action from the projection of

any particle of the cylinder upon the axis of z,

o the distance of the particle from the axis of z.

The conditions of the problem under consideration give

-:== — (l 4-— ^ = — -t- ^1 '

J /o \ Jo/ Jo Jo

J mj J mJo JmJ

Jmfo J tfoJ %J ri Jmfo'
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so that the potential is the same as if all the particles of the cylinder ivere

united in their projections upon the axis of gravity, when the point is at a

sufficiently great distancefrom the cylinder.

120. By letting

K denote the intensity of the action concentrated upon

each point of the axis of gravity when the cylinder

is projected upon it;

the value of the whole action of this axis is

oo oo

•A*^ =— /
LJr=—Kx I , .„ , >.„. g

CO —CO

inKP x 2K= I* cos* = ,

*J/o /o x

or the potential is

£2=— 2Klogx-\-B,

in which the arbitrary constant B is infinite.

121. When the base of the cylinder is the space which is contained

hctiveen two concentric circles, the axis of gravity coincides with the

geometrical axis, the potential is, from the symmetry of the figure,

the same in all directions from the axis, and its value only depends

upon the distance from the axis. Let the axes be the same as in

§§117 and 119, except that the point of action is in the plane of

x y, but not in the axis of x, and let

r= the radius vector of the point of action, and

c= the base of the Naperian system of logarithms.

The potential is a function of r, and does not involve the inclination

of r to the axis of x. Hence

Z>*S2= 0.



— 53

But by (4930)

n= ®\rc'
S

7+^C'c " /'>

whence

and

D*&= lW\rc he —W\re he JvCi=0;

W\rc Jrc = <$[\rc /re

But the two members of this equation are functions of two different

and independent variables, which are

r V— 1
—

r V— 1 .

re and re >

and, therefore, neither can be contained in the value of the other,

so that each of them disappears from their common value, which is,

therefore, constant. With regard to any variable whatever, there-

fore, this equation gives

rWr=rW1 r= A,

and, by integration,

&r= &ir=*}

<$r= A\ogr-\-B,
<&1r= Alogr-^-B^

The value of the potential is, then, if the two constants are com-

bined in one,

(—\l \ / — X
\I \

,
rc

r

~J-\-A\og\rc ' Z+^2
= 2Alogr+ B2 ,

and the action upon the point is in the direction of r, and its
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value is

r

122. When the point of action is upon the axis, it is plain,

from the symmetrical nature of the cylinder, that the action is

cancelled in each direction, and in this case

whence
4= 0.

For every point within the inner cylindrical boundary of this cylindrical

shell, the action, therefore, vanishes, and the potential is constant.

123. When the point of action is without the cylinder, the

constants are found by the condition that when the distance is very

great, the value must be the same as that of (5213). Hence

A=— K,

that is, the action upon every point, ivithont the circular cylinder, is the

same as if the ivhole mass of the cylinder were concentrated upon its axis.

124. No other case of the infinite cylinder is of sufficient

interest to divert the current of the work from the finite masses

of nature.

RELATION OF THE POTENTIAL TO ITS PARAMETER.

125. The varying value of the potential from one level

surface to another, depends upon the law of the change of surface,

and may be represented as a function of a variable, which may be

called its parameter. Let

X denote the parameter of the potential, and adopt the func-

tional notation

= Sx {Dxf= {Dxf+ (D
yy + (A)2

-
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The derivative of the potential gives

DJ2=D
7l
P-Dx l,

which is a transformation given by Lame.

126. For a point of void space, this equation gives

^= DMogDM) =—^ ;

by which the potential may be determined for given forms of I.

ATTRACTION OP A FINITE POINT UPON A DISTANT MASS. CENTRE OF GRAVITY.

127. In every finite mass there is a point called the centre

of gravity, of which the coordinates are determined by equations, for

each axis, which are similar to (5025_ 26)- This point is independent

of the positions of the axes, for these equations give for any other

axis

If the centre of gravity is adopted for the origin of coordinates,

these equations are reduced to (518_ 10 ).

128. When the point of action is so far from the attracting

mass, that the squares of the linear dimensions of the mass may be

neglected in comparison with the square of the distance of the

point from the mass, the formula becomes

f= 2.(*— ty=2x {z*— 2*£+|")
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- f - 4- 2 (- f t)

m

that is, the potential of a finite point, for a mass which is so remote that

the square of the linear dimensions of the body may he neglected, in compari-

son with the square of the distance of the point from the body, is the same as

if the body were concentrated at its centre of gravity.

ATTRACTION OP A SPHERICAL SHELL.

129. In the case of a shell of homogeneous matter, contained

between the surfaces of two concentric spheres, the value of the

potential must, from the symmetry of the figure, depend exclu-

sively upon the distance from the centre ; and for the same reason

this centre is the centre of gravity. If the centre is adopted for the

origin of coordinates, the parameter may be assumed to be the

radius vector, or any function of it. Putting, then,

derivation gives

Dx l= 2x,

PX = Q.

Hence, (558 ) becomes

The integral of this equation is, by the introduction of the arbitrary

constants A and B,

S2 =B-i= B-^.
\ K r
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130. When the point of action is at the origin, the value of

the potential is easily obtained by direct integration. Let in this

case

() and ox be the internal and external radii of the spherical

shell,

?n and mx the masses of two homogeneous spheres of the same

density with the shell, and of which the radii are respect-

ively ^) and q1 ; and

dip the elementary solid angle of which the vertex is at the

point of action.

The mass of the shell is

m= m-L— m = 4 n # (o f
— qI),

and the element of mass

dm== 7eQ
2dydQ.

The value of the potential is, therefore,

= Hf(Q \— 9 l) = 2 7tk(Ql— 9 »)
t/Tp

__ i /% ™o\

131. When the point of action is in the interior void space of the

shell, the constants of (5630 ) must have the same values as at the

origin, where r vanishes. Hence, for this space, the constants are

,1= 0,

J= 2**(9J- ? 5)= i(=i-=2J.

The value of the potential in the interior void space is, therefore,

constant, and there is no tendency to motion in any direction.
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132. For an exterior point, the potential vanishes when r is

infinite, while for a point at a great distance from the origin, its

value is, by § 128, the same as if the whole mass were concentrated

at the origin. The value of the constants in this case are then

and the potential is

Any exterior point is, then, attracted by a homogeneous spherical shell,

precisely as if the ivhole mass of the shell tvere concentrated upon its centre

of gravity.

ACTION AND REACTION OF A SURFACE OR INFINITELY THIN SHELL

OF FINITE EXTENT. CHASLESIAN SHELL.

133. An infinitely thin shell may be reduced to either of its

surfaces, upon which all its acting force may be concentrated, and

the intensity of the action at each point of the surface will be the

product of the corresponding intensity of the force of the shell,

multiplied by the thickness of the shell, and the element of the

surface must be substituted for the element of volume of the shell.

Let then,

do be the element of the surface,

N the exterior direction of the normal to the surface,

Jc the concentrated intensity of action at any point of the

surface,

dip the elementary solid angle subtended by the element of the

surface at the point of action
;

the expression of the element of the surface is

do =f2dy sec j£.
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Hence

7 7 C0S
f

1 7— /cctip = j^-lcdc)

.

The second member of this equation denotes the action

exerted by each element of the surface in a direction normal

to the surface, and towards the interior of the surface. If, there-

fore, the intensity of action is constant over the surface, the action

normal to the surface is proportional for each element of the

surface, to the solid angle subtended by the element, and the total

amount of the action, normal to the surface, exerted by any continuous extent

of the surface, is proportional to the whole solid angle subtended by the

boundary of the surface.

134. If the surface is a plane, the direction of the normal is

invariable, and the total amount of normal action exerted by any

portion of the plane is the same with the projection of the ivhole action

of this portion of the plane upon the perpendicular to the plane, which is

therefore proportional to the solid angle subtended by the portion of the

plane at the point of action.

135. If the surface returns into itself so as to include a space, ivhich

is called a closed surface, and if the point of action is situated within the

inclosed space, the ivhole angle subtended is the entire extent of four right

angles ; whereas, if the point of action is exterior to the closed surface, the

whole angle vanishes ; but it is tivo right angles when the point is upon the

surface. For, however the point of action is situated, if a line is

drawn from it so as to cut the surface more than once, the

successive angles which the line makes with the exterior normal,

will be alternately obtuse and acute as the line cuts into the

surface or out from it. The last angle, or that of which the vertex

is most remote from the point of action will always be acute. The
normal actions of two successive elements, therefore, upon the same

line, and which subtend the same solid angle, are equal, but of
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opposite signs, so that they cancel each other's effect in the total

sum of the normal forces. But if the point of action is without the

surface, the first angle is obtuse upon each line, and as the last

angle is acute, the whole number of intersections is even, and each

normal elementary action is cancelled by another, and the whole

sum vanishes. If the point of action is within the surface, the first

angle is acute, if there is more than one ; and there are an odd

number of intersections for every direction in which a line can

be drawn ; for each direction, therefore, one, and only one, normal

action remains uncancelled, which is proportional to the elemen-

tary solid angle ; and the whole sum is that of the entire extent

of four right angles. But, if the point of action is upon the

surface, and a tangent plane to the surface is drawn through it

;

every line which is drawn from the point upon the exterior side of

the plane must cut the surface an even number of times, if it cuts

at all, precisely as if it were drawn from an exterior point; but

every line which is drawn upon the interior side of the plane cuts

the surface, as if it were drawn from an interior point ; the total

sum, then, of the uncancelled elementary solid angles includes those

for all directions which are upon the inner side of the plane, that is,

it is equal to two right angles. This elegant theorem, given by

Gauss, is expressed analytically in the form

I
4 n for a point interior to a closed surface,

„-= < 2?r for a point upon the surface,

for an exterior point.

136. The expression (592 ) represents the component in the

direction of the external normal to a surface, of the action upon the

element of the surface of a mass Jc concentrated at the point which,

in that expression, was the point of action. The integral of this

expression is the whole amount of such resolved action, and by
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(6024 ) its value is

C— 4:7tk when the mass h is interior to the surface,

— / —^h= — / Jc= < — 2nk when the mass k is upon the surface,

(^
when the mass k is exterior to the surface.

Neither of these values depends upon the position of the acting

mass further than it is interior or exterior to the surface or upon

the surface. If, then,

Mi= all the mass interior to the surface,

Mu= all the mass upon the surface,

Me= all the mass exterior to the surface
;

the expression for the total action of the sum of all the masses upon a closed

surface, resolvedfor each element in the direction of the external normal, is

4:7cM— 2nM.u )

and if all the masses are exterior to the surface, this sum vanishes. If the

closed surface is one of the level surfaces of the system of bodies, this sum

expresses the total attraction of the masses upon the surface. This impor-

tant theorem is due to Gauss, and, independently to Chasles, in

almost its full extent, as well as most of the following deductions.

It is applicable, even if the surface have sharp angles, because the

extent of surface occupied by such angles is zero.

137. If the closed surface is one of the level surfaces of a

system of bodies, but not the outer boundary of a space in which

the potential is constant, the potential must at each point, by § 67,

increase in passing from the interior to the exterior or the reverse,

so that in this case the sum (61 16 ) does not vanish. But the term

of this sum, which depends upon the mass at the surface, may be

neglected at will ; for the whole mass of a true geometrical surface

is absolutely nothing. Hence, every level surface must inclose masses of
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matter, unless it be the outer material boundary of a space in which the

potential is constant.

138. When any masses lie upon the closed surface, the geo-

metrical surface may, as Gauss observed, be arbitrarily assumed as

being just exterior or interior to the masses, or passing through

them. If, therefore, all the masses are so distributed upon a surface that it

becomes itself a level surface, the potential is constant for all the inclosed

space, and there is no tendency to motion throughout this space.

139. Around every point of maximum or minimum potential

a level surface of infinitesimal dimensions may obviously be drawn
;

and, therefore, every point of maximum or minimum potential must be itself

a centre of action, and cannot be a void space.

In an inclosed space, therefore, no point can be found for which the

value of the potential exceeds the limits of value which arefound upon the

inclosing material surface; and in no point of unbounded space has the

potential so great a value as its greatest value upon the exterior surface of

the finite masses. This inference was drawn by Gauss.

140. In a system of bodies, of which gravitation is the only force,

there can be no point of absolute minimum potential. For if about a point

of maximum or minimum potential, as a centre, an infinitesimal

sphere is described, there can be no point within the sphere, either

of maximum or minimum potential, with reference to the matter

external to the sphere. But, with reference to the matter of the

sphere itself, the centre must be a point of maximum potential, and,

therefore, cannot be a point of minimum potential, with reference

to the combined action of all the masses.

This theorem is equally applicable to an aggregation of elec-

tricity, all of which is of the same kind, that is, which is homogeneous

when the point of action is assumed to be of the opposite kind of

electricity.

141. If any extent of level surface is assumed at will as a
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base, and if trajectories, like those of § 68, are drawn through each

point of its perimeter, their union forms a canal. The same canal

cuts a base, like the assumed base, from each level surface which it

intersects. Of any canal, then, ivhich is not extended so far as to include

portions of the attracting masses, the attractions upon all the bases are equal.

For the whole amount of action, resolved in the direction of the

external normal, at each point of action upon the closed surface,

formed by the faces of the canal and the two terminating bases,

vanishes, because there is no included mass. But there is no action

perpendicular to the faces, that is, in the direction of the level sur-

faces ; whereas the whole action upon the bases is normal to them.

The actions upon one base are in the directions of its external

normals, while those upon the other base are in the directions of

the internal normals ; but these actions balance each other in the

algebraic sum, and, therefore, their absolute values must be the

same. This theorem belongs to Chasles, but the brief demonstra-

tion is original.

142. In the following simple view of this whole subject, many

of its propositions are condensed into a small compass. Each centre

of action may be regarded as a fountain from which a stream is

perpetually flowing in every direction, with an amount of discharge

proportioned to the intensity of the action. The quantity which

flows from each centre, for an instant, through any given elemen-

tary surface, may easily be shown to be in exact proportion to the

force with which the surface is attracted by this centre perpendicu-

larly to itself and against the current ; and that which is true for

each centre is also applicable to the combined action of all the

centres. Upon a space, then, in which there is no spring, the

amount which is flowing out must constantly be equal to that which

is flowing in ; while from a space which contains springs, the amount

which is discharged must exceed the inward flow by all which is
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supplied by the fountains. These propositions are equivalent to

those of § 136, and it may be shown by an easy argument that

Laplace's equation, with its modification, is merely the same propo-

sition applied to the element of space.

By the additional hypothesis, that, to preserve the uniform

flow of the stream, its density must decrease in each element of

the stream with the distance from the origin, so as always to be

inversely proportional to the distance from the centre, the potential

represents the density of the combined streams, and the level

surfaces become surfaces of equal density. The aggregate current

of the combined streams is also equivalent to a single current in a

direction perpendicular to the level surfaces, and having a velocity

proportionate to the rate of decrease of density. But this is the

well known law of the propagation of heat, when there is no

radiation, and hence arise the analogies between the level and

isothermal surfaces, and the identity of the mathematical investi-

gations of the attractions of bodies and of the propagation of heat

which have been developed by Chasles.

143. If an infinitely thin homogeneous shell is formed upon each level

surface of a system of bodies, having at each point a thickness proportional

to the attraction at that point, the portion of either of these shells, which is

included in a canal formed by trajectories, bears the same ratio to the ivhole

shell, ivhich the portion of another shell included in the same canal bears to

that shell, provided there is no mass included between the shells. For if the

bases of the canal are infinitely small, they must be reciprocally

proportional to the intensities of the actions upon them, because the

whole amount of action upon the different bases is the same. But

the thicknesses of the shells are proportional to the intensities of

action, and, therefore, the products of the bases multiplied by the

thicknesses, or the volumes of the portions of shell included in the

same canal, bear a constant ratio to each other. Since the ratios
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are constant the infinitesimal volumes may be added together, and

their sums, which are the volumes included in a finite canal, are in

the same ratio, and these sums may even be extended so as to

include the whole of each shell. Hence the volume of each portion

is the same fractional part of the volume of the shell to which it

belongs ; and, as each shell is homogeneous, the mass of each por-

tion is the same fractional part of the mass of the whole shell. The

conception of these shells, and the investigation of their acting and

reacting properties was original with Chasles, and it will be con-

venient, as it is appropriate, to designate them as Chaslesian shells.

144. The volume or mass of a Chaslesian shell has a simple

ratio to the attracting mass included within it, dependent upon its

own density and thickness. For each infinitesimal element of its

volume or mass is proportional to the product of the element of the

surface multiplied by the thickness of the shell, and the thickness at

each point is proportional to the attraction at that point. The sum

of all the elements, therefore, of either volume or mass, that is, the

whole volume or mass, is proportional to the sum of all the attrac-

tions upon the whole surface. But, by § 136, the sum of all the

attractions upon the surface is proportional to the included mass, if

there is no mass at the surface. If, then,

p is the volume of the shell,

k its density,

h the modulus of its thickness, or the thickness which corre-

sponds to the unit of attraction
;

this ratio is included in the equation

H Ten

KM khM 4:71,

145. If a Chaslesian shell which is ivholly external to the acting

masses of the si/stem is assumed to be itself the attracting mass ;

9
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1. The potential of the shell is constant for all interior points, there

is no tendency to motion within it, and its own outer surface is its level

surface ;

2. Its external level surfaces are the same as those of the original

masses of the system, and the attraction of the shell upon a point external to

itself has the same direction as the attraction of the original masses.

To demonstrate these propositions, let

S2
S
be the potential of the shell for any point, and

£2 the potential of the original masses for each point of the

shell
;

the value of the element of the potential of the shell is

Hence,

In passing along the canal of the trajectories to another shell,

the ratio of d/.i to p is, by § 143, constant, whence

j-. dSi
s _ hd^D^f

But

DJ= DxNDNf=- B.JYcosf,

df.i= lido DNS2 ;

and, therefore,

d\i

D

xf=— h doDNS2Dx JVcos *=— hcla D^ £2 cos y

,

V^ — - —^ TV

The integral of this equation for the whole surface of the

d£2 s

Jcdfi

dSi, Jcdfi

[i Vf
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shell is

n Si, l-hD
x Sl C c°s /

1
(i J a J

1. For an internal point this equation becomes, by §§ 135

and 144,

n Si, 4akhD
?
Si kD^Sl

the integral of which is

Q _ kflSi

M 5

to which no constant need be added, because, when the dimensions

of the shell are infinite, £2 and S2
S both vanish, since all the points

of action are infinitely remote from the centres of action. This

equation expresses that the potential of each shell has the same

value for all internal points, and, therefore, there is no tendency to

motion within the shell, and the surface of the shell must be level,

with reference to its own action.

2. For an external point, the equation (672 ) becomes, by

§135,

Hence, by integration,

— = a constant,

which constant, however, depends for its value upon the position of

the points of action ; but since it has the same value for all the

shells to which the point is external, the potential is constant for

the same series of points external to one shell for which it is

constant through the action of another shell ; that is, all the shells

have the same external level surfaces. But the external level

surface, which is nearest to any shell, differs infinitely little from
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the level surface of the shell itself, and, therefore, the surface of

each shell is a level surface for every included shell. Hence, the

external level surfaces of a shell are the same with those of the

original masses, and the attraction of a shell upon an external point

has the same direction with the attraction of the original masses,

and is normal to the level surface passing through the point. This

theorem is due to Chasles.

146. Every infinitely thin shell, of which the surface is level, from the

action of the shell itself, must be a Chaslesian shell. For, if another shell

is constructed upon this level surface, which is the negative of the

Chaslesian, one, namely, which is repulsive, instead of being attrac-

tive, or the reverse, and the whole mass of which is equal to that of

the given shell, the two shells, having the same level surfaces,

exactly cancel each other's action throughout all space. The

elements of mass of the two shells must then be absolutely equal,

but of opposite signs at every point. For, if they were unequal at

any point, that point might be made the centre of an infinitely thin

circular element of the combined shells. From the symmetry of its

figure, a level surface for the action of this element alone might be

made to pass through its perimeter, and which could inclose no

other mass than the element itself. But such surface cannot be

level for the remainder of the combined mass of the two shells, and,

therefore, the value of the potential upon this surface for the

combined masses of both shells, including the circular element,

cannot be constant. This want of constancy in the potential is

contradicted by the fact that the shells balance each other's action

everywhere. There cannot, therefore, be any such want of con-

stancy, nor any point for which the element of mass of the given

shell is not absolutely equal to that of the Chaslesian shell, although

it is of a contrary sign. But reversal of the sign of the action of

the mass does not interfere with the Chaslesian characteristic of the

shell.



— 69 —

147. Two Chaslesian shells, which are constructed upon the same

surface, only differ in their density and their modulus of thickness. For

the density of either of them may be increased or decreased until

the value of its potential at the common surface shall be equal to

that of the other shell. If, then, its action be reversed, the value

of the potential for the combined shells will be zero both at the

surface and at an infinite distance from the surface ; and it cannot

have any other value in the intermediate space, otherwise, there

would be points or surfaces of maximum potential exterior to the

acting masses. The combined surfaces have, therefore, neither

external nor internal action, and the reasoning of the preceding

article demonstrates that the component shells are identical, except

in regard to their signs.

ATTRACTION OF AN ELLIPSOID.

148. An infinitely thin homogeneous shell, of ivhich the inner and

outer surfaces are those of similar, and similarly placed, concentric ellipsoids,

is a Chaslesian shell. For, if upon the longest axes of these ellipsoids,

as diameters, two concentric spheres are constructed, each sphere

may be compressed into the corresponding ellipsoid, by reducing

all the coordinates from the centre, as origin, parallel to either of

the two shorter axes of the ellipsoid in the ratio of the longest axis

to this shorter axis. But all points, which are originally in the

same straight line remain upon a common straight line after this

uniform compression ; and all distances which are measured in the

same direction are reduced in a common ratio. But the thick-

nesses of the spherical shell, measured upon any straight line at the

two points where this line cuts the shell are equal ; so that the

thicknesses of the ellipsoidal shell, measured at the two points

where the reduced line cuts this shell, are also equal. If, then, at a
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point assumed at will, as the vertex, within the ellipsoidal shell, an

infinitesimal cone is constructed and extended in each direction

from the vertex, till it intersects the shell, the relative masses of the

two included portions of the shell are proportional to the squares of

their distances from the vertex; and, therefore, their attractions

upon the vertex are equal, but in opposite directions. Hence, the

action of any portion of the shell upon an internal point is balanced

by the action of the opposite portion, and there is, consequently, no

tendency to motion within the shell from its own action. The

surface of the shell is thus proved to be a level surface, in respect to

its own action, and, by § 146, it can be no other than a Chaslesian

shell.

149. This proposition may be enlarged to a theorem given by

Newton, for a finite shell, of which the inner and outer surfaces are

those of similar and similarly placed concentric ellipsoids. Such a

shell may be called a Newtonian shell, so that the infinitely thin

Newtonian shell is a Chaslesian ellipsoidal shell. But the Newr-

tonian shell may be subdivided by similar and similarly placed

concentric ellipsoidal surfaces into an infinite number of Chaslesian

ellipsoidal shells, each of which is inactive with reference to an

internal point. Hence, the whole Newtonian shell exerts no action upon

an internalpoint.

150. An ellipsoid may be converted into any other similar,

and similarly placed, concentric ellipsoid by a process similar to that

by which the sphere in § 148 was changed to an ellipsoid ; that is,

by increasing or decreasing the coordinates of each point, taken

from the centre as origin, and parallel to either axis, in the ratio of

the corresponding axes of the two ellipsoids. The points of the two

ellipsoids, which correspond in this process, have been called by

Ivory corresponding points. By this process, any Newtonian shell

may be converted into another concentric and similarly placed
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Newtonian shell, and at the corresponding points there will be

corresponding elements of volume.

151. The corresponding elements of volume or mass of two corre-

sponding Neiotonian shells are proportional to the volumes- or masses of the

shells. For if

Ax , Ay , Az are the semiaxes of the outer ellipsoidal surface of

one shell,

Bx , By, Bz those of its inner ellipsoidal surface,

a its volume,

m its mass, and

n the ratio of either axis of the inner surface, divided by the

corresponding axis of the outer surface
;

and if the same letters accented denote the same quantities for the

corresponding shell, the construction of the shells gives for each

axis

Bx = nAx ,

X X

Ax Ax

and 11= ri

;

and by differentiation,

dx Ax

dx1 A 7 '

The volumes and masses are by well-known theorems of

geometry

m= Jeo = jn k (AxAyAz
— BxBy

Bz )

= i7ik(l— n 3)AxAy
Az ,

m'= 7<fo'= j 7i k' (I —

n

s
) AxAy

Az .

The ratios of the elements of volume and mass are, then,

da dxdydz _AxAyAz a

da' dx'di/dz? A'x A'yA' A' <t"X ^M-yJ3.
z U
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dm kda ha m
dm! hda' ho' m'

'

152. If the older surfaces of two corresponding Newtonian shells have

the same foci, their inner surfaces must also have the same foci. For if

e
2
is the difference of the squares of the corresponding axes of

the outer surfaces,

the condition of the identity of foci gives the equations

p 2 J 2 /j'2 /12 A'Z /12 A'l
c J±x J±x J±

y
Ji

y
xiz Jiz .

Hence, for each axis, there is the equation

so that the foci of the inner surfaces are also identical.

153. If the radius vector, from the centre of any point of an ellipsoid,

is projected upon the radius vector of another ellipsoid ivhich has the same

foci, and if the radius vector of the corresponding point of the second ellipsoid

is projected upon that radius vector of the first ellipsoid, ivhich corresponds in

direction to the projection in the second ellipsoid, the tivo projections are

inversely proportional to the radii vectores upon ivhich they are projected.

For if

o is the radius vector of the first ellipsoid upon which the

projection is made, and

£, rj, t, are the coordinates of the extremity of q ;

the equations of the corresponding points give, for each axis,

whence

_ r x _ x'
t

Ax M-x Ax

I— I
x xn



or

7^
to

lx'=l'x.

But if

p is the projection of/ upon q, and

p the projection of r upon (/,

these projections are

whence

, r' ^ a/$ 2:r (^£)
»= rcos = 2l x

—=—-—
-,1 Q Q Q

P' Q

154. The difference of the squares of the radii vectores from the

centre, of two corresponding points upon the surface of two ellipsoids which

have the same foci, is equal to the difference of the squares of their semiaxes.

For the equations of these surfaces are

~2 ~/2

2 — = 1, 2 —= 1
•At: SI*

The difference of the squares of two corresponding radii

vectores for points at the surface, is

r'
2=2M (**— af*j=Zt [z*(l— ^)]

155. The distance of any point upon the surface of an ellipsoid,

from a point upon the surface of another ellipsoid which has the same foci,

is equal to the distance of the two corresponding points of the ellipsoids from

each other. For if

10
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/ is the distance of the point of which

x, y, z, are the coordinates, from the point of which

£', if, 'Cf, are the coordinates, and

f the distance of the corresponding points

;

the values of these distances become, by (739_10 ) and (7324 ),

/2= r 2_j_ (/2_2 9y
/*= />+ Q

*-2
QP

r ,2+ o'
2+ e

2 -2o>'
2 I , '2 O , ' ' ^2

whence

156. The external level stirfaces of an ellipsoidal Chaslesian shell are

those of ellipsoids which have the same foci ivith the order surface of the

Chaslesian shell. For if

£2
C

is the potential of the given shell for any point of the

external ellipsoidal surface of the same foci, and

£l
f

c
the constant value of the potential of the corresponding

Chaslesian shell, constructed upon the external ellipsoidal

surface, for any internal point, and, therefore, for any

point of the surface of the given shell

;

the equations (72 x ) and (74 12 )
give

O
J mJ J in J

"
c

Jm'f J mmf mjmf m c

The value of S2
C

is, therefore, constant for all points of the

surface of the external ellipsoid, so that this is one of the level

surfaces of the given shell.

157. The attractions of two corresponding Newtonian shells, ivhich have
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the same foci, upon an externalpoint, have the same direction, and are propor-

tional to the masses of the shells. For the infinitely thin shell, this

proposition is a simple corollary from (7426 ). But the finite shells

can be subdivided into corresponding infinitesimal shells, and the

masses of the corresponding elementary shells will be proportional

to the masses of their respective finite shells. The attractions of

the corresponding elementary shells upon an external point, there-

fore, coincide in direction, and are proportional to the masses of the

shells; and, therefore, the components of all the corresponding

attractions have the same common ratio, and coincide in direction.

But the components of all the elementary attractions constitute the

attractions of the finite shells themselves. Several special cases of

this theorem were first given by Maclaurin, but the general form

was first demonstrated by Laplace, and afterwards more rigorously

by Legendre, and it includes the case in which the inner surfaces are reduced

to the centralpoint, and the shells become ellipsoids, having the same foci.

158. The attraction of any Chaslesian shell upon a point at its

surface is, from its construction, perpendicular to the surface, and

proportional to the thickness of the shell at that point. The attrac-

tion upon the whole surface is, therefore, proportional to the mass

of the surface, which corresponds to § 136. Hence, if

dN is the thickness at any point, and

p the perpendicular from the centre upon the tangent plane at

that point,

the attraction of the ellipsoidal Chaslesian shell at the point is

knkdN= in]idro,o$
N
r

a 7 dr r= 4:7T/c— rcos
r p

= 4:7tkp~.
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The component of this action in the direction of the axis of x is

, 7
dAx jsr

4 7T kp -j- cos .

If, moreover, the equation of the ellipsoid is

Z= ^.£— 1= 0,

the general theory of contact gives

2X {xDxL)

N Dr L pD TL
cos

Hence,

x "s/O^) 2*(xDxL)

2xxDxL= 2Zx 2̂
=Z,

ai;

N px

and ^Ae attraction in the direction of the axis of x of the ellipsoidal Chasle-

sian shell upon a point at its surface is

A.nJcp 2x-~.

159. The attraction of an ellipsoidal Chaslesian shell upon

any external point is obtained by describing the corresponding

Chaslesian shell, for which this point is upon the outer surface, and

the attractions of the two shells for this point have the same direc-

tion, and are proportional to their masses ; so that the attractions

in any direction are proportional to the masses. If, then, the

accented letters refer to the outer shell, the attraction of the inner
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shell is

, , a , dA'r . 7 a p' 2 dAx
4:71 IC—p AX—rpr= 4 71 kX-, .,„ . .

a 1 A'J o Ax Ax

160. The condition that the outer surface of the exterior shell

passes through the attracted point, is expressed by the equation

This is an equation of the third degree when it is reduced to

its simplest form. But there are two other surfaces which can be

drawn through the given point, and which depend for their defini-

tion upon the solution of the same equation. They are two

hyperboloids, both of which have the same foci with the outer

surface of the inner shell, one of which is a bipartite, and the other

an imparted hyperboloid. For each of the hyperboloids e
2

is

negative, and its absolute value, independent of its sign, is contained,

in the case of the imparted hyperboloid, between the squares of the

mean and least axes of the given ellipsoid, and, in the case of the

biparted hyperboloid, between the squares of the mean and greatest

axes.

161. The points in which all the ellipsoids, which have the same foci,

are cut by the common intersection of the tivo hyperboloids which have the

same foci, are corresponding points. For if

t
2

is the value of— e
2 for either hyperboloid,

the equation of the hyperboloid for the points of intersection with

the ellipsoid is

X 2

2 —-— = 1

If the equation (777 ) of the ellipsoid is subtracted from this

equation, the remainder divided by e
2
-j- t

2
is
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1
(e
2_^ £

/2
)a;

,

V v
fc ~T b

>±. y Z
£-< ,, y I J I ON / J 1 / 0\ -"^ <r / A •>. I OX /• A > I ->\ \J •

in which #', ,/, and / are accented, in order not to interfere with

the notation which has been adopted for the corresponding points,

and which gives for each axis

Ax
~ A'x

~ i/QAl+ ay

The substitution of these equations in (78 a ) reduces it to

v
7K = 0;*A*(A>— *'*)

the product of which by t'
2
, added to (766 ), is

= 1.~*A%{A%— J*) xAl— s'*— ^>

which expresses that the point (x,y,z) is upon the surface of the

hyperboloid, and, therefore, all the corresponding points are upon

the surfaces of both hyperboloids.

162. The hyperboloids and ellipsoids which have the same foci, inter-

sect each other perpendicularly. The conditions that two surfaces of

which the equations are

Z=0, and2/=0,

intersect each other perpendicularly is expressed algebraically by

the equation for each point of the line of intersection,

2X (DXZI)XL')=0.

But for the hyperboloids of equation (7728 ) and the ellipsoid of

equation (766 ) this condition becomes

*Ai(Ai-s'*)
u

>

which is the same with the equation already given in (7810 ). This
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same demonstration may be applied to the condition of the perpen-

dicularity of the hyperboloids, if A\ is diminished by t'
2
, and a'

2
is

changed into the difference of the squares of the semiaxes of the

two lrvperboloids.

163. It follows from these two theorems, which are derived

from Chasles, that each normal transversal to the ellipsoidal surfaces of

level is the line of intersection of two hyperboloids ivhich have the same foci.

164. The lines of intersection of these three surfaces are, upon

each surface, the lines of greatest and least curvature, for they are a

special case of the theorem demonstrated geometrically by Dupin,

that the intersections of three surfaces ivhich cut each other at right angles

at and infinitely near their common point of intersection, are their lines of

greatest and least curvature at this point. To demonstrate this theorem,

let the three normals to the three surfaces at the common point of

intersection be assumed for the axes of rectangular coordinates, and

let

be the equation of the surface, which is perpendicular to the axis of

x. This condition gives for either of the other two axes

D,£x =0,

in which equation x, y, and z may be mutually interchanged, except

that the same axial letter must not be repeated in the equation.

Those equations satisfy of themselves the condition (7825 ) of per-

pendicularity of these surfaces at the point of intersection. But the

intersection of any two of these surfaces coincides with the axis

wdiich is the intersection of their tangent planes for an infinitesimal

distance, and the two surfaces are perpendicular to each other for

this distance. Hence, each pair of surfaces gives an equation of the

form

Dz {DxLxDx Ly+ D
v
LxDy

L
y + DzLxDzLy ) = 0,
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which is reduced by (7920 ) to

DXLXD X)ZLy
-\- D

y
L

y
D yzLx= 0.

The other surfaces give the corresponding equations

D
v
L

y
D

9t x
Lz -\- DZLZD z xLy

== 0,

DZLZD Z>yLx -\- DxLxD xyLz = 0.

The sum of the products obtained by multiplying the first of

these equations by DZLZ , the second by — DXLX , and the third by

D
y
L

y
is

2D
y
LyDzLzDl zLx= 0,

and the corresponding similar equations are obtained by advancing

each letter to the following letter of the series, x, y, z, and x. But

the factors DXLX , Dy
L

y , and DZLZ , are not zero, and, therefore,

these equations may be reduced to

L)

y}Z
Lx= DxzLy

= D x y
Lz= 0,

which are the well-known conditions that the directions of the axes

of x, y, and z respectively coincide with those of the lines of greatest

and least curvature of the three surfaces at the origin.

165. The remarkable relations of these surfaces might be still

further extended, and if it were worth while to investigate the

attractions of masses of infinite extent, it might be shown that upon

each series of orthogonal transversal surfaces, Chaslesian shells of

infinite extent might be constructed. The level surfaces of these

shells would be the orthooronal transversal surfaces of the same

series, while their orthogonal transversal surfaces would be the level

surfaces of the original Chaslesian shells and the other series of

orthogonal transversal surfaces.

166. To investigate the attraction of an ellipsoid upon an

external point, it may be supposed to be divided into an infinite
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series of elementary Chaslesian shells. Let then

Ax , Ay , Az , be the semiaxes of the ellipsoid,

ax , a,j, az , those of the outer surface of either of the elementary

Chaslesian shells, and let

_ ax a
y

a,

Ac A A'

If, moreover, x, y, 0, are the coordinates of the attracted point,

Ax , Ay , Az , are the semiaxes of the ellipsoid, which has the

same foci with the given ellipsoid, and whose surface

passes through the attracted point,

ax , dy , dz , the semiaxes of the ellipsoidal surface, corre-

sponding to the outer surface of the Chaslesian shell,

and passing through the point of action,

E 2 = A'X
2—

A

x , and
9 9. ?2 2 '9 A 9 9
e*n = ctx

— a x= ax — A x ir;

the values of E and £ are the roots of the equations

- - — I
C2 ±

1xAl-\-E

= 1jsx a 2+t2 n 2 n 2 x Al-\-z 2
~~~

The attraction of the Chaslesian shell upon the external point

in the direction of the axis of x is by (772 )

. 7 aj.au az
p' 2 dax . , ax ay az

p' 2 dn
t: JL to JU T~r> 7 y • \k. J L fi U/ ~r~o 7 T~ • 5

ax a
y
az ax ax au az n

in which the value of p is, by equations (769_18 ),
given in the

form

1 = UL
X1/» D5,{xDxL)Y~

= 5;
X 2

:

(a 2
-|-

s

2
ra
2
)
2

11

-±2
M 4 (Al+ey



— 82 —

The differential of (81 2i) after it is multiplied by n 2
is

whence by (Sl 31 )

11
s

(in = 77, c d c .

p
-

This value reduces the attraction of the shell in the direction

of the axis of x to

, , a r a„a,n^ 7 ^ n A rA„A~d.s 2— 4 7i kx ,1 ,.

,

'cat =— Inkx-

The integral of this expression is the attraction of the whole

ellipsoid. The limits of integration correspond to the values of a,

for one of which the shell is evanescent, and for the other its surface

coincides with the surface of the ellipsoid. But, when the shell

vanishes, n is zero, and e is infinite ; and Avhen its outer surface

coincides with that of the ellipsoid, n is unity, and e becomes E.

Hence, the expression for the attraction of the ellipsoid in the

direction of the axis of x is, if

M is the mass of the ellipsoid, and

./Tits mean density,

ao

DM ?jMx r

T7-2
+ £ s)v/[(^+ £ *)(^+0(^+ £

2

)]

By advancing each letter in the series x, y, e, and x to the follow-

ing, the corresponding expressions are obtained for the attractions

in the directions of the other two axes.

167. By the substitution of



the equation (S224 ) becomes

oo

r>__3Mxr
-"< K K

168. By the substitution of

A

hx h%sim+Al-A${bl+Al-Al)y

; , and
6,

u — — •

x— A' '

the equation (833 ) becomes

DM 3 3Tx C hul3Mx r~ KTju. *Jl{A%-\-v.%{A\— Al)}(Al-+ Ul(Al— A'))]

which formula, with transformations similar to the following, is

given by Legendre.

169. If Ax is assumed to be the greatest of the semiaxes of the

ellipsoid, and Az the least, let

2 Al + e*

i Ax-]-^'

.
2 . Al— A%sm^= -,T j|,

Ai — Ay
sin & = sin isin cp

,

a - Al + E*

sin = sin isin CP

;

and let the first and second forms of the elliptic integrals be

expressed by the notation

9^(jp — / sec$,
J d>T

&iCp = / cos$.
J 6r
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These equations give

e
2 sin 2

9 — A 2
x cos

2
cp — Al,

(A 2

y + e*)sm*(p = Al— Al-\-(Al— A 2
X ) sin

2
tP = (A 2

X— A 2)cos 2
6,

(Al+ z
2)sm 2tp=Al— A 2

,

(Al + z
2
) sm 2

tp = (A 2
x— A 2

z ) cos
2
y;

sin 2 (pd.a 2= — (Al -f- a
2)d.sm 2

(p = — (A 2
X
— J.

2)cosec 2 9<#.sin 2
<p,

d.i 2 =— 2 (A 2
X
— A 2

,) cosec
3 cpcos(pdcp

;

which, substituted in (8224 ), reduce the expression for the attraction

in the direction of the axis of x, when the ellipsoid is homogeneous,

to the form

Djl = SM.v f ;

i

;>
se
??a = 5*1 /%(.<) _ cos^))

= ,<* ^'. ,
.(9W'-M>);

(A x— A*)*Bmh

.

f p _ 3M _ 3M

the attraction is

x
sin 2

i
v l l

'

The same substitution gives the attractions parallel to the

other axes in the forms

D
y
S2 =Py i sin

2 9 sec 3
<3

,

^

DJ2 =zPs f tan 2
g) seed.

'

But the differential of the logarithm of (83 21 ) is

cotAZM = cote/),

and, therefore,

ZM = tan £ cot 9,
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D, (tan (p cos d ) == sec
2
(p cos d — sin 2

(.1 sec (1

z= secd(sec 2 cpcos 2
d — sin 2 d)

= sec d sec 2
cp — sec d sin 2

d (sec 2 9 -j- 1

)

= secdsec 2
(p — seed sin 2

a'( tan 2
<p -]- sin

2
cp)

= seed -|- cos 2
i sec d tan 2

9 — secdsin 2
d

= cosd -J- cos 2
? seed tan 2

9,

_, , . . N _D,h (tan cos op) cos w cot ai sec 2 tan (9— tan f) sin en

2), ( sin if cos rp seed) = p
. .
—— =— — —r—. -

9 x * ' ' sin i sin 1

= cos 2
y sec 3

d — secdsin 2
cp

=— cos 2
?'sin

2
(/)sec

3
d -j- (1 — sin

2
c/)sin

2
?')sec

3 d

— sec d sin
2

cj)

=— cos J
«sm-'c/)sec d

d -j- seed ( 1 — . /. I

=— cos 2
?'sin

2
cpsec 3

d -A- -^—-(cos 2
d — cos 2

?')
'

' sin -% v y

=— cos 2
?'sin

2
<psec3

d— cot 2
? seed -j- cosec2 /cosd.

These equations reduce the attractions to the forms

*
_ ,-, -r. C rSCC 2 /cOS^ SCC# 9 • t-> / • a\1
D,j& = Pi/J .

!

-
sin 5f-

sec 1D^ ( sin 9 cos 93 sec d
)
J

^

= P^/(^cosec 2 2?S
i
<f»— cosec 2

a'9^<£»— sec 2
?sin c/J cos cf, sec0),

Dz £l = sec
2iPz

j
[Z>6 (tan cp cosd) — cosd]

'

= sec 2?*Pg(tan*cos0— &i
cP).

170. The following values are derived from (8323-24) and (81 15 );

2
, __ ^Tj+ i? 2

__ ^_
2

C0S^ — Jf+^s— 2T"

• 2 rr> __ ^' — A\ __ A'*— A'*
sm i _^_p-^_ _

f

sin
2 0- -^" "^'' J ' 2 ' A?

Ai+w f'2 J



_ 8G —

2 Q _ Al+ E* __ A?
cos v —

Al ^_ Ei
— A,.„

. 2 ._ A\.— A*„_ A'*— A'*
Sm l— A%— Al~~A?—AT

A'l A 2 An A'l

cos 1=
a'i=a*

= a?-a?-

The equations of the attractions give, by means of these values,

that of P and (81 15 ),

sJ^=:22xDx>-n = sec
2 /Psin<l>sec<£sec0(cos2 — cos 2*)

3M , M
4:71— A'x A'y A'z

— —If

This simple equation is due to Legendre, and the first of the

two following equations which are obtained by the same process of

reduction.

A';2DX& 9 ( A'z-n»Q\
^M os cB

AlDrSi_22 (A 2 D«M\ — 3-^- %.& in JE
2—^x x —^-xk^x^—J—^Al— Al)

* M''

171. By putting

CO

the attractions may assume the form

Dx£l=—ZMxDA -2 L,
x

Djl=— ZMzDA * L.

in which the differentiations, relatively to A\, A 2
,, and _4

2
, are

performed without regard to the changes of E, dependent upon the

formula (81 J5 ).
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172. The equation (81 19 ) may, by means of the equations

(842_T ) be written in the form

or by the substitution of the value of from (8324 ),

x*-\-z*sec 2® y
2 1

il IA%— A% ' Al cos 2 (p-\-Al sin 2
(D— A\ sin 2 0>"

173. When the attracted point is upon the surface of the ellipsoid, E
vanishes, and the value of becomes

COS<P:=-^.

174. When the attracted point is within the ellipsoid, the Newtonian

shell, of which the outer surface is that of the ellipsoid, and the

inner surface passes through the point, exerts no action upon the

point, and the attraction is reduced to that of an ellipsoid similar to the

given ellipsoid, and of which the surface passes through the attracted point.

175. When the density of the ellipsoid varies in its interior,

in such a way that each of its component Chaslesian shells is homo-

geneous, It is a function of e, and after its substitution (8224 ) may be

integrated.

176. When the ellipsoid is a homogeneous oblate ellipsoid of revolution

the various formulae become

A^= Ay,

i=$ =
x + «?/

2 4-s- 2 + s
2 tan 2^ = (^l— ^)(l-f cot 2

<£)
;

s 2 tan 4 <£ -f (r
2— A\ -f .A

2
) tan

2*= A\— A\
;

Dx il = Px C sin
2
? = \Px{2 <P— sin

2

<P)

,

*

$

D
y
il = Pg f sin

2
g) = |P^(2<£— sin2<£),

U 6
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DJ2 = Pz ftanhp = P.e (tan*— *)

.

'

177. FFAera //^ ellipsoid is an homogeneous prolate ellipsoid of revolu-

tion, the formulae become

A == A*.

i--\n
cp == A,

a?»+y»-+ a «+ (y"+ »)tan»*=(^— -A»)(l + cot»*),

(y
2+ z

1
) tan

4* + (r
2— 4» — 4") tan 2* = A\— A\I 2 -

2^X2 = Pa; / sin
2 g)sec9

^

= Px [log tan (-1 rr -f- i *) — sin*] ,

Dyfl = Py / sin 2 ^ sec 3

9
o

^

= |-P# [sin*sec 2*— logtan (|- tt -j- | *)] >

Z/^iO = Ps J sin
2
(j)sec

3
g)

= iPg[sin*sec 2*— logtan {{n + |-*)].

ATTRACTION OF A SPHEROID. LEGENDRE's AND LAPLACE'S FUNCTIONS.

178. The investigation of the attraction of a spheroid is

greatly facilitated by the introduction of certain functions which

were first conceived and investigated by Legendre, but which

became so fruitful in their more general form, given in the subse-

quent researches of Laplace, that they are usually designated by

the name of the latter geometer. A method will be pursued in

their development and discussion which is similar in some respects

to that given by Jacobi.
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170. Let

11= cos (p -f- asm cp cost],

and if any power of II, denoted by n, is developed in a series of

terms arranged according to the cosines of the multiples of i], let

any one of the terms be denoted by

in which \_m~\ denotes the number of accents of CP. The required

power has then the form

II'
1= 2m (i

m<P™ cosm i] )

.

00

180. The value of i/"is not changed by reversing the sign of

i], and, therefore, the series remains unchanged by this reversal of

sign, which gives

or <P\~ mi= ± &w = (— 1
)'» <p™

;

in which the upper sign corresponds to the even values of m, and

the lower sign to the odd values of m. The equation (89n ) may
also be written

Hn= <Pn -\- 22m(i
m<P™cosmr)).

181. The integral of the product of (8922) by cosmi] is, by a

well known theorem

f (H
n cosmi]) =2 71 i

m<P[™\
v

The derivative of this equation, relatively to (p, reduced by the

condition

D^H=— sin (p -\- /cosy cosi;

,

12
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becomes
2-

2nimD
lk
<P [

™'
] = n I [_H

n~ 1 cosmi] (— sine/) -\- icoscpcosi])']
U n
o

2,r

= 11
J

[jST"
_1

(
— sm(pcosmi]-\-^icos(p(cos(m-\-l)i]-\-cos(m—I) 1]))] ;

whence, by (8927 ),

D^ <P™ =— n sin qp
*Wj 4- \ n cos <p ( *[;"__!

1]— *£!^ 1]
)

.

182. The derivative of (SO^), relatively to 1], reduced by the

condition

D H=— z'sin (p sin ij

becomes
oo

inHn ~ 1 sin ip sin i] = 2 2l
7!1
(in i

m [^ sin in i] )

.

i

The integral of the product of this equation by smmi] is

2tt

in sin <p j (
Hm~ l

sin i] sinm -jj ) == 2 ttm /
OT «£»£*]

,

or

6

which becomes by (8927 )

in 9 f [#"OT - a
(-| cos (m— 1 ) i; — £ cos (m -\- 1) ij )] = 2 re m i

m <P™

183. The equation (892T ) may assume the form

J[_II
n~ J

(cos(pjcosm,

)]-\-:kismcp(cos(m-\-l)i]-\-(cos(m—l))~\=2nim <P [™\
V

which, reduced by (8927 ),
gives

<pw = cosy <££*-!
i + I sine/) ( £fc 1]— *L'-

+
i
1]
)-
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184. The remainder, if (908 ) is subtracted from the product

of (9024 ), multiplied by cotcp, is

rf/»>~l= sm m + 1
cpl)c0,,-^-.
'

C0B V sin '"
cp

The sum of (9021 ) and n times (9031 ) is

ncosqp $£*!.! + wsinc/)c£»[r-l 1] = (n -j- m) cP\l"
]

,

the first member of which becomes identical with that of the

previous equation, when m is increased by unity. Hence,

*f;"+1: _ 1 n 0™ sin cp n Of**

sin '" cp n -)- m -)- 1 * sin '" cp n -\- m -\- 1
cos

sin '" qo

'

or, if m is diminished by unity

sin "'
(p n-\- m cos

^ sin m
~ 1

cp

'

If the sign of m is reversed in this equation, it becomes by

(8917 )

ain-g>#M =
;

^Z>„
#
(ain"+ 1

g>#£
,1+ 1i).

185. It will be found convenient here and elsewhere to adopt

the functional notation
i

rh=f
x
{-\og .z)\

which gives, by a familiar formula, or by simple integration by

parts, when h is positive, and k an integer, which is less than h -f- 1,

i

rh= h(h— 1)(A— 2) (A— A -J-l)£(_ log*)*-*

= A(A— 1)(A— 2) (A--A-j-l)r(A-^A),
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and

*(*_1)(*_2)....(*_*+ 1)=
J^.

When h is an integer, and k the next smaller integer, this

formula becomes

1.2.3 h= rh.

With this notation, Taylor's theorem assumes the form

<&

186. The equations (91 16 ) and (9120 )
give, by successive sub-

stitutions in each other, and the use of the preceding notation,

sin"!

<p
cos

^ sin m> i^'T'V^
sin'"'

9'

(— 1)"IT(m— w)sinm«p*£"]= (— 1)T(«— w')£^m (siiT'g>#£,,']

) 5

in which negative differentiation must be interpreted to be integra-

tion ; in the former equation, when n is negative, in' —|— ?z —|— 1 and

m -j- w -j- 1 must be positive ; while, in the latter equation, n,

n— m -\- 1, and n— in' -\- 1 must all be positive. When n is posi-

tive, but 11— m -\- 1, and n— in' -f- 1 are negative, the equation to

be substituted for (9215 ) is

$m m cpQ>™ _ D'^ m
(sin'"' cf^;"'

1

)

I\m— n — l)
~

l\m'— n — l) '

which equation is also to be used when n is negative. When n and

11— m-\-l are positive, but n— in -j- 1 is negative, the combina-

tion of (92 15 ) and (9223 )
gives, by representing by ii', the greatest

integer contained in n -\- 1,

(_ 1) «'-»r(n— m) sm m q,cp^ />'— n— 1) Jg^" (sm^xpOT'1

)

I\n— n') I\m'— n— l)

When 11, 11 -j- mf -f~ 1, and m -\-m-\-l are all negative, the
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equation to be substituted for (92 13 ) is

r(—l—n— m)sm'"q) l\—l—n— m') cos
sin'"' cp

'

When n and n -J-
»*' -|- 1 are negative, but m —(— « —|— 1 is posi-

tive, the combination of (9213 ) and (933 )
gives, by representing by

n
r

, the greatest integer contained in — 1 — n,

r(m-\-n)0»i (_l)»'-»T(-l-n-»i')
/
,

ffl_B, 0^
r(n-\-n')sm m cp I\—l— n— m')

cos
sin'"V

There are peculiar considerations which simplify the investiga-

tions, when 11 is integral, whether it be positive or negative ; and

these are the cases to which most of the subsequent investigations

are limited.

187. By reducing m or mr

to zero, the equations of the pre-

ceding section give, for positive values of n,

<j*" ]= rv
F,

\ N
sin"? Z?" <fi» = (— IV*—

T
\ . m f

m
<PnF(m-\-n) J cos^ » v j r( /l— ?ii)sm'"(pJ C0S(

j
)

"

, -.w Fnr(m— n— l) P>» ,

\
x
) r(n— „')/*(»'— »— l) sin»q)J cos <p

"'

and for negative values of n

$W, />-* --
1) f« ^

J-(— 1— n)sin>Jcos0 n

(—1)'".T(—1— ?t—m) . m j-)m *

~
r{m+ n) /'(— 1 — n)

Sm ^cos
* * »

'

188. IFifo?? 7? is zero, it is easily seen that

K°=1= <P
,

and that, for all other values of m
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189. When n is a positive integer, and h is also a positive integer,

the equation (918)
gives

(272 -(- h) <P% + h] — n cos (p <PH
l

±i
] + n sin

cp <P%Zi
+ /,]

.

If, then, the terms of the second member vanish for any value

of n, they will also vanish for the next higher value of n. But they

vanish, by the preceding section, when n is zero, and, therefore, they

vanish for every positive integral value of n ; that is,

Cbfr+ h] A
M n \J .

or the series is finite for positive integral values of n, and contains onlg

ii -\- 1 terms.

190. The substitution of the preceding equation in (91 8 )
gives

<£M= i sin cp <&f-p = ( I-
sin tp

)

m <P\?Z™ ]

=
( \ sin cpY

O= — sin" cp .

which equation, substituted in (9316 ), gives

®n = {^f A"os^( *lT
] sin"9) = ^jrD'U{— sin»"

;

rf,[»»] — .

sm "l(p

7}»+ ™
c sin 2

fD virn — 2-r(m+ n)
cos

^ ^ ^

— 2T(n— m)sinm <p
cos

4> ^
bm ^ '

£y 20/^ ^Ae coefficients of the development are obtained when n is a positive

integer.

191. When n is the negative of unity, the equation (8927 )
gives

o

But the value of II gives
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1 1 cos cp— i sin qp cos jj

II cos cf) -\-i sin cp cos// cos a
qp -j— sin 2 gi cos -

^

i sin cp cos t] cos qp

1 — sin 2
qp sin

2
rj

*^
cos 2

/; -\- cos 2
qp sin

2
/;

^ i sin cp cos ij \ i sin
ft
cos i\ , cos qr Dv

tan ?/

1 -(- sin qp sin j? 1 — sin qp sin //
' 1 -|- cos 2

ft
tan 2

j/

'

the integral of which is

/ 77 =— 4- 2 log
-J- sin <y> sin

q

, ^ t_ i] /
CQg ^ftn

\

J ?/
// -1 °1 — sin

ft
sin ?/

'

v ' '

Hence, by passing to the limits

2n0_ 1= 2 n,

When « and ra vanish, equation (9031 ) becomes

<P = cos <p <&_ !— sin <p <P'_ j

,

whence
r / 1 COS ft . -,

CP, = : =— tan i (o

,

sin
ft

^ '

Equation (9213 )
gives, then,

AM — sin '"^
7>m- 1 sP0 2l m**-i — 2J'(m-l) cosreC

2 ^'

192. When n is any negative integer, it is more convenient to

write the formulas with the sign of n reversed. With this change,

the sum of the product of (9031 ) multiplied by (

—

nsiny), that

of (908 ) multiplied by cosy, and that of (9024 ) multiplied by

(— cosecy) becomes

«<£^
(t+u = cosy DA*™\— («shi<p -f -¥-) <P [™1

' \ ol 11 u /

sin»-i
ft n «ea / ff) -,, .

, B+i-»\*h]= -^ -v-s=i (
( 2 n— 1 ) sm w -\ -.

) <Ptl"
t ;sec

ft
9 sin "

1
cp V ' ' ' sin

ft /

which, when

m= n— 1

,
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is reduced to

The successive substitution of 1, 2, 3, &c., for n, gives, by means

of (91 12 )

r sin " A
<jp

T r„l 2« 1 . -rr,, 11 2n(2ll 1) . -,r„ ,-,*^]

( „ + l)
= T~ Sm (P *-* = 2^T- sm 9 *-^ ]

2 " (/'») :

The substitution of this value in (932i) gives, by (9420 ),

*-<.+u= 7^^W( sin> clJ-Wa)) = 2^^cos^(— sin»"= <Pn ;

and, therefore, for all values of m less than n -J- 1,

/ -I \m r(n— m)r(n+ m) ~ [m]

v > {my n '

The equation (91 8 )
gives, when m— n vanishes, by (96 ),

&-V4d=— cot9>*w„
+1)=2^-2(— BnyJ-^cosy;

whence, by (9024 )

*^Sii, =— 2cosecy *w._ <*>[»- ri

]}
.

From this equation the successive values of cP ll]

n may be deter-

mined by successive substitution of 1, 2, 3, &c, for n, or they may
be determined by the equation derived from (9120 ) and (969 ),

cos<4

<£[» + !]
_(2n+ l)r(2») 1 f , . , y
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The remaining coefficients, in which m is greater than n, are

then to be determined by the equation derived from (9213 )

;

<£[»] _ sin '"9 rm-n ®-l
-• r(m— m)

cos
sin>"

193. In order to apply the preceding investigations to the

problem of attraction, it is requisite to introduce the form of polar

coordinates, of which zenith distance and azimuth is the familiar

instance. For this purpose let the following notation be adopted :

(jfyis the angle which a line /makes with the axis,

&f is the angle which a plane, drawn through the axis, parallel

to/, makes with the primitive plane.

The distance /, between two points, of which the radii vectores

are r and o, is given by the equation

/
2= r 2

-f- o 2— 2ro(cos</vcos(^-(- sin 9V sin 9) cos (t\.— 6 ))

— r
1 9 — 2 or cos .

Hence the notation

i=\/— 1,

Hf= cos(pf -f- ism (pfcos (i] — 3f) ,

gives

+fHf= +/cos
(ff+ ^/sin 9ycos (t]— &f)

= rcos(fr
— ()cos(p

p
-f-^cos?j(rsin9vcos$r

— osinro cos^
)

-j- ismi] (rsm(p
rsm& r

— osiny sint)
)

= rHr -qIIp ;

in which the upper sign is to be used when r is greater than 0, and

the lower sign when r is less than 0.

But it follows, from § 191, that

/ *27tJ v fH -
r 27tJ

ri
rirr— Qir

p'

13
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2tt

o o
'

in which the upper sign corresponds to r, greater than o, and the

lower sign to r, less than q, and the series represented by the fourth

member corresponds to the former of these two cases, while the

series represented by the last member corresponds to the latter

case.

194. If, in the development of the preceding series,

Qn is the coefficient of -^+y, and

Q'
n is that of~

;

the series become

The values of the coefficient in these series are determined by

the equations

o

2tt

V* — 27tJ v
Ep im

o
r

If the additional notation is adopted, corresponding to (897 )

CO

II;= [r]m -J-
22m {i

m [r]M cosm (rj — 6,)) ,

the values of the coefficients become

Qn= M- M-e+u+ 2i„((- l)
wM?1 [r]?).+i,cosm(fl

p
- d,)),

Q:= H. M-c+i, + 2 ^OT((- 1)* [r]W M?UiCosm(fl
p
- 4,)).
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Hence, by (96 18 ) and (9316 ),

Qn= Q:= M.[g].+2fw
(

r("~"
/

)

yy
,
"
h,,)

MS"1 MS*1 cob« (d
p
- <),))

=H.M,+2i,(J^^
195. The equation (45 8 )

gives for the value of the potential,

Hence, by the notation

Un =f{lcQnQ«),
'

ir- f
*«

the potential becomes
co 7-r oo

X> = 2 —-= ,2 C Z7V)

.

o ? o

"With the notation of (5823_27) and (97i ) these values become

do = Q
2
di}'d()= ()

2 smcp d(fpd&pd(>,

The first form of 12 in (9917 ) is to be used for all values of o

less than r, and the second form for all values of (> greater than r.

If, then, Jc is supposed to vanish for all points of space in which

there is no attracting mass, the limits of integration for the value of

TJn must include all the attracting mass for which () is less than r,

while those for U'n must include all the attracting mass for which o

is greater than r.
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196. By substituting in (992i_23 ) the values of Qn given in

(992 ) the resulting values of Un and U'n have the same form with

Qn so far as the elements of the direction of r are involved ; so that

the value of the term of Un which depends upon the angle m& r
has

the form

[r]L'"
] (AH" ] cosm6 r

-j- B[™hmmAr),

in which A 1,'"'* and B{™ ] are independent of the form of the body,

and the number of such constants included in the most general

value of Un is 2 n -f- 1.

197. It is expedient to introduce, at this point of the discus-

sion, some important properties of Legendre's functions. The

following theorem, given by Poisson, is of especial use in facilitating

their investigation.

If JVP denotes any function of the elements of direction of q, and if,

after the performance of the integration expressed in the second member of

the following equation, Q is made equal to r, ivhich condition is intended to be

denoted by the subsequent parenthesis, the second member ivill be reduced to

the first member, that is,

N
'= i-«)f /• [? = '•]'

'

To demonstrate this theorem, it is to be observed that all the

elements of the integral vanish, except those for which

f=0,
that is, for which

1'
r>

r= Q, Q

If, then,

i] denotes the angle which the plane of r {) makes with any

assumed fixed plane passing through r,



— 101 —

the integral becomes, by (97i6 ),

J_ f
r(r 2— Q *)XP _Xr

2

f p(V 2— g
2)sin'p

&= *] = #.
JV; r 2—

e

2

"2"
<>(»•-<?)

198. The equation (97i6 )
gives, by means of the first form of

(9SI5 ),

=/«i.((2n+ l)C.^i),

which substituted in (10020 ) reduces it to

u

by adopting the notation

*=f.(n£l(«-*>) =f^

o
r

in which it must be observed that when « is zero it must be

retained in the written expression to avoid confusion. It may also

be remarked that, from the comparison of the forms of (9912 ) and

(1012i), the most general form of N^ is the same with that given in § 196

for Un .

199. If the given function is such that, for every value of n'

different from n
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the equations (101 17_2i) give

o
r
(«.^P)=i#-i-^.

The theorems expressed in the last two equations are of fundamental

importance, and tuere given by Laplace.

200. The theorem (102 7 ), not being limited to any special

direction of r is true for all directions ; and, therefore, the most

general form may be substituted for Qn, which can be obtained by

combining all its special values in any linear function. Any such

general form would be the same with that of JYjf\ and if it is

denoted for distinction by M l

p
n/]

, the theorem (102 7 ) assumes the more

generalform given by Laplace,

in

f (MjplVF)= 0.
r

201. In considering the attraction of a spheroid upon an external

point, ivhich is so remote that r is greater than any value of q let

u be the value of q for the surface of the spheroid, and

J P

the function which is denoted by the second member of this equa-

tion being developed in the form of a series of terms of Legendre's

functions, by means of (1012i). The equation (9921 ) becomes, by
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means of (1025 ),

and the potential is

o
"V(2«+l)^+1 rn )'

202. If the point is so remote that the squares of the linear

dimensions of the body may be neglected in comparison with the

square of the distance of the attracted point, it has been shown in

§ 128 that the attraction is the same as if the body were condensed

upon its centre of gravity. In this case, therefore, if the origin is

assumed to be the centre of gravity, the potential becomes, as in

(56*),

fl= == i(0l+ f).

In all cases, then, in which the origin is the centre of gravity, this equa-

tion gives for an external point which is so remote that r is greater than q,

U = m,

0i=O,

r l

g
n \(2?i-\-l)r n + 1 ""»*/

203. A homogeneous ellipsoid can always he found, of which the

potential, for any external point, developed in the form (10320 ), will be iden-

tical with this expression in its tivo first terms. To demonstrate this

proposition, and develop the mode of investigating the ellipsoid in a

given case, it may be observed that, if the centre of the ellipsoid

coincides with the centre of gravity of the given spheroid, and if

the mass of the ellipsoid is the same with that of the spheroid, the

potential of the ellipsoid, for an external point, has the form (10320 )

with the same first term. The difficulty of the demonstration and

investigation is thus reduced to the consideration of the second
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term. The general form of this term is, by (994 ) and (1006 ),

R{P= A(cos 2
(p r
— i) -f- sin cp

r cos (p r
[B cos $

r
-\- .S'sin^)

-f sin 2

(f r ( Ccos 2&r -\-C sin 2 1\)

=— ±A -f J[cos 2
^ -f <?(cos

2
^— cos 2

j)

-\- i> COS^COS^ -J-
.# COS.COS -f- 2 6T COS^COSy

= -Sx(^ (cos 2
^— -1) + ^cosj cosy

;

in which last form the arbitrary constants Cx , Cy , Cz , Bx , By , and

Bz are introduced, for the sake of symmetry, and in which the six

constants are only equal to five, by reason of the equation

In the especial case of Q2 , these constants become, for the axis

of x,

Bx= 3cos^cos^,

Vx 2" COS x J

and similarly for the axes ofy and z.

The equation (76 6 ) of the homogeneous ellipsoid, of which the

axes are the given rectangular axes, gives, for the surface of this

ellipsoid,

1 „ cos 2
£

If, therefore, K is the density of the ellipsoid, the equation

(10227 ) becomes, in this case,

u

o J fJ
s » + 3
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and hence, by (1032 ),

v

To obtain the value of U2, it must be observed that, by (104 17 ),

4tt

/V#)=o,
<l>r

because, from the symmetrical form of the ellipsoid, the value of u

is not altered by changing either of the angles upon which it

depends into its supplement, while the sign of Br

x is reversed.

The remaining terms of the integral contained in (1052 ) have

the form

4 7T 4 7T 47T

f
(
U 5 C'Z) = f f («

5 COS 2 § = ff (u 5 COB 2
cp

p ) .

^ ^ ^

But, by the equations

cos^= sin (p cos &
p ,

(10425 ) becomes

cos" = smcpn sin£„,
y >t i>

1 _ cos 2
(jfp . sin 2

cf'p cos
2 dp , sin 2

rjr^ sin
2
0p

cos%
i

sin 2
fy , I 1 cos 2

fl
p

sin2g
p\^^ f,2„

= « -j- bcos 2
(p ,

by putting

cos 2

p . sin 2
flp , / 1 , 1 \ ,

- / 1 1 \
,

=W+ fl'cos2d
p);

14
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l
|

l

y __ J J_

h= -7-, — «.

The integral (10515 ) is, therefore,

i~ 2 7T 7T

|J
(tt

B cos a
9>p)=fjT

5 J (u 5cos>p sinyp )
r

Bat

3 f f cos 2 qrpsingrp
2J fy J <jp

p
(a+ &cos 2

<jpp)2
"

J*

cos 2 gip sin cpp — cos 3
qp

fp (
a ~f" 6cos 2

</p)
2" 3a(a-|- 6cos2

g>p)
2 '

cos ' qpp sin g-p 2 2J^
r -
J gy> (a -)- 6 cos 2

qrp)
2 3a(a-[~^) 7 ^ a '

r i=r i-=r *

J#p
a J26p2a J 2 a'+ b' cos 20pP

tan [ p

y/ (a! 2— 6' 2

) y/ (a' 2 — 6' 2

)

= ^4tant- 1 (^tan^
p) :

2tt

These values, with that of the mass of the ellipsoid, reduce

(106 8 ) and (1052 ) to

| / («
5 cos 2

f/)
p ) = 2nAxAyAl,

r
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If the axes of the ellipsoid are not those of x,y, z, but oixr
,y',z

f

,

this expression, by means of the equation,

r r x
i

, r —'y
. r z

COS2/= COS x COS x> -f" C0S
y
C0!V~r C0S

z
C0!V>

becomes

U2= ^mZx [c'x'(cos :̂
— i) + ^cosjcosl];

in which

C=^( r̂ cos
2

^),

^= 2^(^^cosJcos^).

This value becomes identical, therefore, with that of (104 8 ), if

n" -0 p

B"= —B .x 3m x

204. If the potential and its component functions for the

ellipsoid are denoted by the letter e written beneath them, the

potential of the spheroid for an external point, for ivhich r is greater than o,

becomes

e 3 e

205. A transformation of coordinates, which is the reverse of

that by which the equations (10717 ) were obtained from the reference

of the ellipsoid to the axes of the spheroid, would bring the equa-

tion (10419 ) to the form (10716 ). From the forms of the expression it

is obvious that this transformation is identical with that by which

the general equation of the second degree in space is referred to the
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axes of the surface. Hence, if Sx,, Sy,,
and Sz,, are the three roots of

the equation

(
a:— 8) (

c;;— s)
(
c:—s) + 2&b;b:—zx \bi\ <%— #)]= 0,

they are the squares of the semiaxes of the ellipsoid. But it must

be observed that the mass of the ellipsoid, being the same with that

of the spheroid, gives the equation

Cf Cf Cf J 3m V

The condition (10414 ), however, shows that the values of Cx , Gy ,

and Cz , in (1048 ), may be increased or decreased by the same quan-

tity, without changing the value of (104 8 ). The values of C", C'
y
',

and C" may, in like manner, be increased or decreased by the same

quantity, which change will produce the opposite effect upon the

roots of (IO83), until, at length, they may satisfy the equation (1089 ).

This common increase or decrease of all the roots of (1083 ) corre-

sponds to the performance of the same operation upon the squares of

the semiaxes of the ellipsoid, that is, to a change of the ellipsoid,

given by (1083 ) into another ellipsoid, which has the same foci and

the required mass. The change of mass is, however, more simply

accomplished by an increase or decrease of the density of the ellip-

soid ; and, in this view of the case, it is requisite that the value of

the density be determined by equation (108 9 ).

206. If the point is without the spheroid, but near its surface,

it is generally necessary to combine the forms of the potential given

in (9916). Thus, with the notation

/ = the integral for all directions of u greater than r,

/= the integral for all directions of u less than r,
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whence

u ij) u ip u ip

the value of the potential may be expressed in the form

S2 — 3: (— -I- V

r

n
\

in which

v Y

u

J ib UP Q

Bat it may be observed that, by (1092 ),

4 77 «

'

whence, by putting

\J ihJp U ib J P Jib J p' " S
Y

'

r
'

u u

and using ZZ„ in the signification of (9912 ), the potential assumes the

form

<2=f(^-jy,„ <?.)).

207. A similar investigation may be extended to the ellipsoid

of § 204, and if

SI' is the value of LI of (10724 )
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the value of the potentialfor a 'point which is near the surface of the spheroid

may assume theform

£2 = n>-Znf((Vpn-Vpn)Qn).
«/ 1p e

208. If the form of the spheroid differs but little from an ellipsoid

ivhich has the same foci tvith the preceding ellipsoid, and if it has a constant

density for all that portion for ivhich Q is greater than r, a combination of

two homogeneous ellipsoids may be substitutedfor the single ellipsoid, both of

which have the same foci, ivhile one coincides very nearly with the spheroid in

form and density throughout the portion exterior to r ; and the other, being

much smaller, has the requisite positive or negative density to give the alge-

braic sum of the masses of the two ellipsoids equal to that of the spheroid.

The combination of the two ellipsoids upon any external point is

the same with that of the single ellipsoid, and the larger of the two

may be substituted for it in the values of Fin (1108 ).

If, in determining the values of Ffor the spheroid or the ellip-

soid from (10922 ), u is supposed, for every direction in which the solid

is contained within the sphere, of which radius is r, not to refer to

the surface of the solid, but to coincide with r, the value of V van-

ishes for any such direction, and it becomes a continuous function,

of which the derivatives are discontinuous. The equation (101 22 ) is

applicable to such a function, for the argument by which it was

established was independent of this condition. With this modifica-

tion, therefore, the accent may be omitted in the integral sign of

(10927 ) or (1103 ), and the limits of integration extended to every

possible direction, and the result may be simplified by means of

(101«).

In the present case, in which Jc is constant, equation (IO922)

becomes

Tr k /M » +3_ r » + 3x
jfc

r rn -,
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whence

If, then, it is assumed that

0p= u— r,

z' =u— r,
e

the binomial theorem gives

and if n is changed into — (n -j- 1)

zi. (w«->_ r«-) = -. i,
( ffi

~ *1+ m) (- r)-p»-') g?)

.

n— 2 v y
1
m \ I(n— 2) J'.m v ' 9 )

These values, substituted in (1112 ), give

v v £ f
* / J> + 2) (-!)'-j>-3+m)\ -.

' P
J

P"—f4J^r— »Vi>+ 3 — m) I r(n— 2) A P p
'J

= (2, + l)/4H^-<2

)+i(^-^)+
?

42^^-</)]
,£ r__* / /'("+2)

i

(
-i)wn»-3+"»)\

r^ vmNi
^_ 7"'L/

,

^r'"- 1 Vr(w+ 3— m) ' J'(»— 2) / V"> P>\'

This value may be substituted in (1103 ), and the result reduced

by means of (101^).

209. If the spheroid is not very different from a sphere, and if the

difference in form hetiveen it and the larger of the tivo combined ellipsoids is

so small that, in consideration of the large divisors, the terms of (111 20 ) may

he neglected, in which m is greater than 3, (111 20) is reduced to

V9n— Vpn= {2n+l)Wp ,
e

if
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and, by (11020 ),

Wr =0.

But the value of the potential, derived from (1103 ), becomes in

this case by (11128 ) and (10122 ),

& =&- Zn ((2»+ 1)J ( Wp Qn))

= S2T— ±n2nW™= n'— wr

so that, in this case, the form (10724 ) is applicable to every externalpoint.

This conclusion, and the mode of investigation, includes Poisson's

analysis of the spheroid, which differs but little from a sphere by

which it was suggested.

210. The formula (10724 )
gives, for the attraction in the direc-

tion of the radius vector, the expression

Dra = DJ2 + ln [(»+ 1) (
Un— Z7„)r-<»+

2
>]

.

e 3 e

Hence, the equation is obtained

Dr
il + li2 = Dt

n +li2 + ii.[(2n+ 1) (
Um- R.) *-<"+«],

*' e * r e 3 e

which, by (103 2 ), is reduced to

Z>r I2 + li2 = D
r
£2 + 1/2 +2^ [(i?w_ ££]),.-<•+«] .

or

A[^r(i2 — i2)] = 27rv/r5n [(iZpP— ^^)r-(»+ 2
'].

e 3 e

211. If the spheroid is homogeneous, having the same density

with the ellipsoid, the equation (10431 )
gives
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R . — - n
n + 3

e
' » -J- 3 e

K

Bj assuming, then, the values

UTZp M.j Ur
Zp= Up:

' e e

tt",, — ^n+ 3 *»+ 3N
i f - - n *.»+3\V — „_|_ 3W fp >>

K
'
n—

n+ 3^ 1 t
r j '

12'= LI — &
;

the equation (11228 ) becomes

^i2'+ ii2'=_2 Jt A-„,f,[n'?0)*
+2

].

212. If the attracted point is upon the surface of the spheroid, the

preceding equation becomes, if 12 is the potential at the surface of

the spheroid,

1

' r 3

213. If the spheroid differs so little from the ellipsoid that the square

of the distance between the surfaces of these tivo solids may he neglected, the

notation

y^z— s,
e

gives

>— g
P 1/p — 1p Up-

214. If, moreover, the ellipsoid differs so little from a concentric

sphere, that the product of the difference between the radius vector

of the ellipsoid and the radius of sphere, multiplied by the distance

between the surfaces of the ellipsoid and the spheroid, may be neg-

lected, the preceding equation is reduced to

VP«=yP ;

15
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and (113 17 ) becomes

AT

In this last form, the sum of the terms in the second member is

extended to include the whole series, because the first terms which

vanish in the exact formula, may become sensible in the approxi-

mate form. But,

oo

ifr
—

" n <y r )

and, therefore, if E is the radius of the sphere,

215. If, again,

£2 Q
= the potential of the ellipsoid at its surface,

e

£2' = the potential of the ellipsoid at the surface of the
e

spheroid,

O" CV £2 .^-0 — "-o— ^0 }
e e e

I

the general equations

CO

e e

give

n';=-ini„(^Lmr-^<,)..

D,air

r"'-0 ^.i^m^^'-^)-
Since the second members of these equations are multiplied by
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y„ the values of the other factors may be reduced to those which

belong to the sphere. Hence, Bp
» becomes a constant quantity,

and, therefore,

for all values of n except zero, in which case,

7?i— -/? 3 -- 7? [01 -

and the above values become

e

DrQZ= \itKRyw
e

which give

The sum of this equation and (ll^) is, by (1139) and (11420 ),

Dr S2 + ±<2 = DJi +±nt .

216. If the ellipsoid is itself the sphere, the equation (588)
gives

e

D
r
tt =— ±7tKfi,

e

which, substituted in (115n ), gives

This is the equation given by Laplace for a spheroid which

differs but little from a sphere, and is the fundamental theorem of

his investigations upon this subject.
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217. If the attracted point is ivithin the spheroid, and at such a dis-

tance from the surface that r is less than the value of u, the formula for

the potential is, by § 195.

12 — jJ (-^- 4- U'iA

in which

*

J ib J P Q

It may also be shown by the method of §§ 208-209, that this

same formula is applicable, if the point is quite near the surface, and if the

spheroid differs so little from a sphere that the square of the difference may

be neglected.

218. The important discussions in regard to the convergency

of the series, derived from Legendre's functions, are deferred, on

account of their great length, to the volumes which will be devoted

to the application of the Analytic Mechanics.

IV.

ELASTICITY.

219. The laws by which the elementary forces of cohesion and

affinity vary with the mutual distance and direction of the particles

and atoms are undetermined ; and, therefore, the delicate inquiries

involved in the constitution and crystallization of bodies are not yet

subject to the control of geometry. But it is sufficiently apparent

that these forces are insensible at sensible distances, and that there are

peculiar laws of mechanical action corresponding to the three states
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of (/asses, liquids, and solids. The peculiarity of these states consists,

principally, in the facility with which the particles can be moved

relatively to each other, and in the phenomena which arise from

such motion, but especially in those of the disruption of solid bodies.

As long, however, as the relative positions of the particles are so

little disturbed that they return to their initial state when the dis-

turbing cause is removed, the precise law of molecular action is not

required for the investigation of the small changes which the consti-

tution of the body undergoes, and which are treated as phenomena

of elasticity.

220. To analyze the changes of form of a system of material

points which constitute a body, let

u be the distance by which a point, of which the coordinates

are x, y, and z, is moved from its initial position,

A the increment of a function for another point of the body

which is near the former point,

p the distance of the second point from the former point

;

the notation of (42]2 )
gives

px= Ax=pCOS^.,

Apx —pxDxux -\-pyDy
iix -\-pzDz ux .

Hence, if

p ^p -\- Ap,

J

P

a is the linear expansion of the body in the direction of p ; and

its value is given by the equation

(i+.).=®r=*®
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— s (
pc "*" ApcY

= ^[(1 + Dx iix)cos
p
x -\- D

y
ux cos

p
-\- Bz ux cos

P
^ .

J7j ^««, ^e reciprocal of 1 -J- e is laid offfrom the origin upon a line

drawn parallel to p, its extremity ivill be upon the ellipsoid, of which the

equation is

1 = ^[(1 + Dxux)-k-\- Dy
uxj -\- Bz ux zJ.

221. The expansions or contractions which correspond to the

axes of this ellipsoid may be called the principal expansions and con-

tractions, and one of these is a maximum, another is a minimum, and

the third is a maximum in some directions and a minimum in others.

If the ellipsoid is referred to its axes, the expression for the

expansion is, if ex , e
y , and ez are the values of £ for the axes,

(l + £
)

2= ^[(l+^)cos?]
2

.

so that for these directions the values of ux , uy , uz, are such that

(1 -f-
Dx iix)Dy

ux -f- Dx uy {l -J- Dyuy) -\- Dx iizDyuz = 0.

(i + exy= (i + DxUxy + {DxUyy + {DxUzy.

222. The notation

P
<P=P>

gives

coscp = ^"Jcos^cos^ )

;

sin
2
(p = 1— eos 2

(p

= 2X cos
2p .2x cos

2

x — Jj^Jcos^cos^ )|

= 2X ( cos^ cos z
— cos z COS y )

i'\2
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(1 -|~e) 2
sin

2
<jp
= —,^x (pcoSyCOsP —ji/cos^cos^

j

= -22* \pz cosJ
— py

cos z )

= Zx [(coslDx -f- co^Dy
-\- cospzDz)(iiz cos J

— z^cos J)J

= ^|^:c(cos a^:J(M* cos w — «2,cosf ) I ,

in which the derivatives are only applicable to ux , u
y , and uz .

Hence, if the reciprocal of the square root of (1 -\- e) sin cp is laid offfrom

the origin, upon a line draivn parallel to p, its extremity is upon the surface

of the fourth degree, of which the equation is

1 = Zx [Zx(xDx)(yuz— zu
y)Y.

223. When the axes are those of the ellipsoid of § 221, and

the disturbance is such that for each axis the equations (118 19 ) and

( USag) become

£>
y
ux= 0,

(1-f- e)
2 sin

2g>— Sx [cosjcos-? {Dz uz
— D

y
ii
y)\

= ^|cos*cosJ(e
JB
--e

y)J.

224. To determine the rotative effects of the disturbance

about the axes, let

P

and

(fg
= the projection of the angle (p upon a plane perpendicular

to the direction of q.

Hence

<P*= Wx— VXI
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, p, cos?

1
Pv cos*

. / i
s »' Dr i«2 cos?-|-X)„?«,cos^+ (1 -4- D^i„) cos

tan((px+ yx)=%-
i>„ A^cosg+ (1 + -A, u,J) cos J 4- Dz uu

qo^
'

225. If the axis of x is perpendicular toj», the equations are

P— ip—P
v— 2 F z

Wx=W
tanfo) 4- w ) — D» u*+ (1 + AQtan^

226. If the axes and conditions are those of § 223, the equa-

tion (1203 ) becomes

tan (9, -f ifjx) = i^j'% tan^i.

227. The whole expansion or contraction of the body at any

time, is derived from the consideration that, by the definition of e in

§ 220, any very minute portion of the body which is originally a

sphere, becomes, in the disturbed state, an ellipsoid similar to that

of §221. If, then,

6 = the expansion of the body
;

the sphere of which the radius is i, becomes an ellipsoid, of which

the axes are i(l -|- ex ), i(l -j- e
y),

i{l -\- t 2 ), and, therefore, its vol-

ume becomes

and

i + a-(i+ 4)(i + «,)(i+«.).

228. When the disturbance is so small that the squares of the

expansions may be neglected, which is the ordinary case of elas-
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ticity, the equation (1196 ) becomes

e = Sx cos
2

xBx ux -\- cos{,'cosf {D
y
uz -j- Dx ii

v) I

= Sx (cos
p
x Z>x)Zx (cos

p
x iixy

229. J7? //«?;?, #ta reciprocal of the square root of the linear expansion

in any direction is laid offfrom the origin upon that direction, as the radius

vector of a surface, the resulting surface is a surface of the second degree, of

which the equation is

1 = 2x \x?Dxux -\-yz(Dy
uz -{- Dz uy

)~],

or l=Zx (xDx)Zx (xux ).

230. If the axes are those of the principal expansions and

contractions, the formula for expansion becomes

6==^ (cos 2

J fcs);

and the equations of § 221 become

Dxuy -{-Dy
ux =0,

x "-"x
•

231. If the principal expansions and contractions are all of

the same name, that is, if all are expansions, or if all are contrac-

tions, the surface of § 229 is an ellipsoid. But, in other cases, in

which, neither of the principal expansions is zero, the surface is the

combination of two hyperboloids, of which one is one-parted, and

the other is bi-parted. Both these hyperboloids have the same

axes and the same asymptotic conical surface ; and the asymptotic

conical surface, corresponding to the directions, in which there is

neither expansion nor contraction, divides the directions in which

the solid is expanded from those in which it is contracted.

16
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If one of the principal expansions is zero, the surface is reduced

to a cylinder ; and if two of the principal expansions are zero, the

surface is reduced to two parallel planes.

232. In the present case, the formula of § 227, for the expan-

sion of the solid, is reduced to

ifl = ex -|-

e

y -f-
ez= 2x sx .

233. The formula (1209 ) for the rotation about the axis of x

becomes,

tan (wx 4- w) == tan w -I -^-f—

= (1 + A«*— Dyuy) tan '/' — Attytan 8
l
l> + D

y uz ,

(px= \{D
y
uz—Djt

y )
-j- l(I)yuz -\-Dzuy)cos 2y-\- \{pz uz—Dy

iiy) sin 2 y
= ITx -\-tx cos 2 (y — tj x )

•

in which

JJX= \ (Dy
uz
— Dz uy) ,

ra cos2^a= \{D
y
uz -j- ZU'

y )>

^ sin 2^= -| (Dz uz— D
y
u
y )

.

234. The maximum rotation about x corresponds, then, to

W = qh

and is yx=Hx -\-rx i

and the minimum rotation corresponds to

is

9*=Hx— %x ',

and Ilx is the mean rotation. When the maximum and minimum

rotations have opposite signs, there are two intermediate rotations
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which vanish, corresponding to

cos2(y— «?«)=— —E
-

235. There are similar formulas for rotations ahove the axes

of [I and g, and the combinations of the mean rotations give a great-

est mean rotation, represented by

the direction of which is determined by the equations represented

by

n ttx
cos r =~.x n

236. If the axes are those of § 230, the equations of § 233

become

IIX= D
y
uz=— Dz uy ,

y>x= ITx -\-
I
(Dz uz

— D
y uy) sin 2 x\>

.

237. When the disturbance is such that, for each of the prin-

cipal axes, there is the equation

D
y

iiz =0,

the equations of the preceding section become

Hx= II=0,

%= 1 (A«*— DyUy) sin 2 y ;

so that, in this case, there is compression tvithout any mean rotation.

238. When the disturbance is such that for each of the princi-

pal axes

Dr ux= :
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the equations for compression and rotation becomes

(px=nx= Dyuz ,

so that, in this case, there is rotation ivithout compression.

All the preceding investigations upon the internal changes pro-

duced by the disturbance of the form of a body are taken from

Cauchy.

239. The elastic force which is developed by any small dis-

turbance of the internal condition of a body is proportional to the

amount of disturbance, and has, therefore, the same general form

with that of the disturbance itself. But the special discussion of the

relative values of the coefficients involves the consideration of the

laws of equilibrium, and must be reserved to a subsequent chapter.

V.

MODIFYING FORCES.

240. Among the forces of nature, those which produce the

equations of condition deserve peculiar consideration. Being

merely conditional, they do not augment or decrease the power

of a system, but merely modify its direction and distribution. They

may, therefore, be called modifying forces ; and may be divided into

two classes of stationary and moving.

241. Stationary modifying forces are perpendicular to fixed sur-

faces or lines, and constitute the action by which certain material

points of a system are restrained to move upon those surfaces or

lines. A force of this nature, being perpendicular to the motion of
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its point of application, does not increase or diminish the total

power of the system, but modifies its elements of direction.

Thus the equation of condition,

Z=0,

between the coordinates of a point, involves the idea of a force,

acting in the direction iVof a normal to the surface represented by

this equation. When it is combined with its multiplier, it is equiva-

lent, by (27i6 ), (275 ), and (5431 ), to a modifying force, of which the

magnitude iso

242. This force may be decomposed into three forces, which

are parallel to three rectangular axes, either of which is represented

by

Xv/(nx)cosf,

while the point of application moves through the elementary arc

ds, its advance in the direction of the axis of x is

ds cost.

The amount of power added to the system, by the component

force in the direction of the axis of x, is

X ds y/ (
L) cos fcos*

,

and there is a consequent increase or diminution of force in this

direction. But the mutual perpendicularity of iV^and s is expressed

by the equation

^(cosfcos*) = 0.

The whole augmentation of power arising from the three com-

ponents is, therefore,

^^^(n^-^Cco-sfcos*) = 0,
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which agrees with the fundamental conception of a stationary

modifying force, and illustrates its mode of action.

243. Moving modifying forces are perpendicular to moving sur-

faces, which surfaces are themselves portions of the moving system,

and the points of application are restrained to move upon these

surfaces. In this case, the motion of each point of application may
be decomposed into two parts, of which one part is perpendicular,

and the other is parallel to the moving surfaces. The modifying

force has the same relation to the motion which is perpendicular to

it, which has been already discussed in reference to the stationary

surface
;
put by its relation to the other component of the motion,

it communicates power to the point of application, or the reverse.

But the power which is thus communicated to the point is

abstracted from the surface, and through it from the other por-

tions of the system ; and, therefore, the whole amount of power of

the system is neither increased or decreased. Although for the pur-

poses of theoretical speculation, it is convenient to regard the sur-

face and the point of application as parts of one system, it is often

the case in the useful arts that this transfer of power is of the

highest practical importance, and is the basis of the theory of the

turbine wheel.

In a rigid system of bodies, these forces constitute the bonds of

union.
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CHAPTER VI.

EQUILIBRIUM OF TRANSLATION.

244. The conditions to which any combination of forces must be sub-

ject, in order they may not tend to produce translation in the system of

material points to which they are applied, are readily investigated. It

follows immediately from §§18 and 20, and with the notation of

those sections, that the algebraic condition that the system has no

tendency to move in the direction ofp is

2[m1F1 coaf= 0.

But each term

m1F1 cosf

,

is the projection of the force m xFx upon the direction of p, and,

therefore, if the algebraic sum of the projections of all the forces upon any

direction vanishes, there is no tendency to translation in that direction.

245. It also follows from the combination of translations,

given in § 23, that if there is no tendency to translation in two different

directions, ivhich are not parallel, there is no tendency to translation in the

plane of these tivo directions ; and if there is no tendency to translation in

three directions, ivhich are not in the same place, there is no tendency to

translation in any direction.

By means of rectangular axes the algebraic conditions, which

are necessary and sufficient to produce equilibrium in respect to

translation, are combined in the formula

^x [^
f

1 (m1F1cos})Y=0.

This formula is independent of the situation of the points of the
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system, except so far as the elements of position are implicitly con-

tained in the expressions of the forces and their directions ; it would

remain unchanged, therefore, if all the points were condensed into

one, without any variation of the magnitude and direction of the

forces. The conditions of equilibrium are, then, the same as if all

the forces were applied at a single point.

246. If one of the points of the system were subject to the

condition of being confined to a fixed surface or line, the conditions

of equilibrium of translation would simply be reduced to the condi-

tion that the resultant of all the other forces would be perpendicular to this

surface or line, and the modifying force by which the point was restrained

would be equal and opposite to this resultant.

If a point of the system was absolutely fixed, or if three differ-

ent points were restrained to move upon three fixed surfaces, there

would, in general, be no possibility of translation, but the resultant of all the

forces applied to the system ivould be equal and opposite to that of the modi-

fying forces by which the points were confined.

247. The theory of the equilibrium of a point is wholly

included in that of its translation. But since every system is a

mere combination of points, the complete theory of equilibrium can

easily be evolved from that of translation. This mode, however, of

arriving at the conditions of equilibrium is neither luminous nor

instructive.

248. The conditions of the equilibrium of translation of a sys-

tem, which is free from the action of all stationary modifying forces,

may assume the form, that eachforce is equal and opposite to the result-

ant of all the other forces.

If, then, there are only two forces, they must be equal and oppo-

site ; and if there are three forces, they must all lie in the same

plane, and be represented by the sides of a triangle formed by three

lines which have the same directions with the forces ; so that each
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force must be proportional to the sine of the angle included between the other

two forces. Whatever are the forces, if we were to start from a

point, and proceed in the direction of either of the forces, through a

distance proportional to the intensity of that force, and proceed

again, in the same way, from the point at which we arrived in the

direction of another force ; and so on, proceeding successively from

each new station in the direction of the next force, through a

distance proportional to that force, the course would finally termi-

nate at the original point of its commencement.

==

CHAPTER VII.

EQUILIBRIUM OF ROTATION.

249. The conditions to which a system of forces must be subject, in

order that it mat/ not tend to produce rotation about a point or an axis, are

directly deduced from §§ 84 and 88, and are simply, that the resultant

moment of all the forces, with reference to the point or the projection of this

resultant moment upon the axis, must vanish.

250. When there is an equilibrium of rotation about a point,

the resultant of the forces may not vanish, in which case there is

not an equilibrium of translation. About any other point, there-

fore, which is not situated in the line drawn parallel to the resultant

through this point, there is not, by § 100, an equilibrium of rota-

tion
; although there is an equilibrium of rotation about every point of that

line. In order, then, that there may be an equilibrium of rotation about all

17
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points of space, or even about three points not in the same straight line, there

must be an equilibrium of translation as tvell as of rotation.

251. In the same way, it appears, that if there is an equilibrium of

rotation about parallel axes lying in the same plane, there is an equilibrium

of translation in the direction perpendicular to the plane ; and if there is

equilibrium of rotation about parallel axes which are not in the same plane,

there is an equilibrium of translation in every direction except that of the

parallel axes.

252. If there is a fixed point in a system, it is necessary and

sufficient for the equilibrium of rotation that the resultant moment for this

point should be nothing ; and, in this case, the resultant moment vanishes for

every point of the straight line which is drawn through the fixed point par-

allel to the resultant, and also for every axis ivhich is in the same plane with

this straight line.

253. If there are two fixed points in a system, it is necessary

aud sufficient for the equilibrium of rotation that the moment of the forces

should vanish for the line which joins the two points.

254. If all the forces are parallel and equal, there is, by § 99,

combined with § 250, a line parallel to the common direction of the

forces for which the resultant moment vanishes. If the common

direction of the forces is assumed for that of the axis of z, the

moment of the force acting upon a particle dm, with reference to an

axis drawn parallel to that ofy at the distance a, from the plane of

yz, is

{x— a)Fdm,

and the whole moment of the system is

f (x— a)F=Ff (x— a).
U m O m

The condition therefore that the moment vanishes for this axis is

/{%— a) = ;

m
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and the plane which is thus drawn at the distance a from the

plane of yz, includes, by § 127, the centre of gravity. Hence,

the axis, for which the resultant moment of the parallel, and equal forces

acting upon a system vanishes, passes through the centre of gravity ; and if

the system has an equilibrium of rotation, and if there is a fixed point in it,

the centre of gravity must he in the straight line which is drawn through the

fixed point in the common direction of the forces ; or, if there is a fixed axis,

the centre of gravity must lie in the plane which includes this axis and the

direction of the forces. It is also apparent that, if the centre of gravity is

advanced beyond the fixed point or axis in the direction of the forces, the

equilibrium is stable ; but if the centre of gravity is not so far advanced as

the fixed point or axis, the equilibrium is unstable.

The ordinary case of gravitation at the surface of the earth, in

which its variation in intensity and deviation from parallelism is

insensible for the small system of bodies discussed in the usual

investigations of mechanics, is the familiar type of this species of

force.

255. In the motions of translation and rotation there is no

motion of the parts of the system among themselves. There is no

change, therefore, in the mutual distance of the origin and point of

application of each of the forces which arise from the action of the

parts of the system upon each other. The origin, regarded as a

point of application of the same force, acting in the opposite direc-

tion, moves just as far in the direction of the force as the actual

point of application ; so that such a force acts precisely as a moving,

modifying force, and has no tendency to affect the equilibrium of

translation or rotation. All the forces, therefore, between the different

parts of the system may be neglected in determining the conditions of the equi-

librium of translation or rotation.

This mutual relation of the origin and point of application of

the force, by which either may be regarded, at pleasure, as being
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the origin or the point of application, by a simple reversal of the

direction of the force without any change of its intensity, is com-

monly expressed by the proposition that action and reaction are equal.

CHAPTER VIII.

EQUILIBRIUM OF EQUAL AND PARALLEL FORCES.

I.

MAXIMA AND MINIMA OF THE POTENTIAL.

256. In orcler to give precision to the modes of expression,

and have the benefit of well-known terms and forms of speech, the

force considered in this chapter, is assumed to be the typical force

of gravitation at the surface of the earth, acting within a space small

enough to admit of the neglect of its variation of intensity and devicdion

from parcdlelism.

The level surfaces of this force are horizontal planes, and the potential

decreases uniformly with the increase of height above the earth's surface.

257. Let the three rectangular axes be so assumed that the

plane of xz is horizontal, the axis of y, the upward vertical, that of

x, the northern horizontal line, and that of z, the western horizontal

line. If, then,

g is the intensity of the force of gravity,

G the distance of the centre of gravity from the origin, and
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I2 the value which the potential would assume, if all the points

were in the plane of xs
;

the actual value of the potential is, by the property of the centre of

gravity,

£l = S2 -f y= S2 -f fr—G,+ G,)

= I2 — / G
S
= S2 — niG

y
.

U m

Hence the potential is a maximum, when the height of the centre of

gravity is a minimum, and such a position of the system corresponds, by § 62,

to that of stable equilibrium ; but the potential is a minimum, when the height

of the centre of gravity is a maximum, and such a position corresponds to

that of unstable equilibrium.

258. Since the direction of gravity is the same for all the

points of the system, there cannot be an equilibrium of translation, unless

there are stationary modifying forces, the resultant of ivhich must be exactly

equal to the whole weight of the system, and have a vertical, upward direc-

tion.

2-59. The resultant moment of all the forces of gravity van-

ishes for the centre of gravity ; and, therefore, the resultant moment of

all the stationary modifying forces must vanish for the same point.

260. If there is but one modifying force in the system, it must

be vertically directed upnvarcls, have an intensity equal to the ivhole iveight of

the system, and its line of action must pass through the centre of gravity.

261. If there are but two stationary modifying forces, they

must lie in a common plane, ivhich is vertical, and includes the centre of

gravity, their resultant must have an upward direction, and be equal to the

weight of the system, and they must be reciprocally proportional to the dis-

tances of their directionsfrom the centime of gravity. This last condition is

involved in the necessity that the resultant moment must vanish

for the centre of gravity.
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262. If the intensity of the force of gravity were to be

increased or diminished, the conditions of the position of equilib-

rium would not be changed, but intensity of the modifying forces

would be proportionally increased or diminished. Even if the force

of gravity were to be made negative, that is, if the direction of its

action were to be reversed, the conditions of the position of equilib-

rium would still remain unchanged, provided that the modifying

forces were of such a nature that the direction of their action would

also be reversed ; but, in this case, the position of stable equilibrium

becomes that of unstable equilibrium and the opposite. This rever-

sal of the direction of gravity is relatively accomplished by the

rotation of the whole system about a horizontal axis.

II.

THE FUNICULAR AND THE CATENARY.

263. When the points of application of a system of forces are

united by a single continuous chord which is destitute of mass, the

polygon, which is formed in the situation of equilibrium, is called a

funicular. The general conditions of such a system involve a mere

repetition of the principles of equilibrium ; and the present discus-

sion is limited to the case, in which the points of application are

masses acted upon by gravity.

264. When there is but one fixed point to the system which

may, without any essential loss of generality, be assumed to be

either extremity of the chord, in every position of cquilibriumjlie chord

must be vertical.

But if the idea of the incompressible rod is supposed to be

included in that of the inextensible chord, each portion of the chord

included between two successive masses may be assumed to have a
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vertical direction, either upwards or downwards ; so that, if

n is the number of masses,

2 " is the number of positions of equilibrium,

all of these positions, except that one in which every portion of the

cord is directed downwards, involves an element of instability, and

must, therefore, be regarded as absolutely unstable. The tension of each

portion of the chord is, in every case, equal to that of all the tveight which it

has to sustain ; that is, to the sum of all the subsequent masses ivhich lie

upon the portion of the chord not attached to the point of suspension.

265. When there are two fixed points, the whole included

chord must hang in the same vertical plane with these two points.

The tensions of the various portions of the chord represent modifying

forces ; and the surfaces at which these forces act are those of

spheres, all the centres of which are movable, except those of the

two fixed points. In the position of equilibrium, however, all the

centres become stationary, and the conditions of equilibrium of each

mass or portion of the chord admit of independent discussion.

The forces which act upon each mass are gravity and the ten-

sions of the two portions of chord upon each side. The horizontal

projections of these two tensions must, therefore, be equal and oppo-

site in order to balance each other ; so that the horizontal projection of

the tension of the chord is invariable throughout Us whole length, and equal to

the horizontal projection of the sustaining force of each of the fixed points.

The algebraic sum of the upward verticalprojections of the tensions at

the two extremities of any portion of the chord must be equal to the ivcight of

all the intermediate masses in order to support them against the force

of gravity.

266. These two conditions are necessary and sufficient to

produce an equilibrium of translation in any portion of the chord,

and, therefore, of the whole chord. The condition of the equilib-
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rium of rotation of each portion of the chord, although included in

the preceding conditions, is an interesting and useful modification of

them.

With reference to the centre of gravity of the masses of each

portion of the chord, the moment of the gravity of the masses is

zero, and. therefore the moment of the tensions applied at the

extremities must also vanish. But the directions of these tensions

are not parallel, and therefore their lines of tension produced must

meet at a point, at which both the tensions may be regarded as

applied without affecting their tendency to produce rotation. At

this new point of application they may be combined into a result-

ant, which is vertical, because the horizontal projections of the ten-

sions are equal and opposite. This resultant has the same tendency

to produce rotation with the tensions themselves, and therefore it

must pass through the point for which this tendency vanishes,

that is, through the centre of gravity of the masses. The point of

meeting, therefore, pf the lines of extreme tension of any portion of a chord

is in the same vertical ivilh the centre of gravity of the intermediate masses.

267. If the two extremities of any portion of the chord are

in the same horizontal line, the equal horizontal projections of the

extreme tensions are exactly opposed, and therefore the moments

of the vertical projections of these tensions must be equal with

reference to the centre of gravity. The vertical projections of the

extreme tensions of any 'portion of the chord, of which the extremities are

upon the same horizontal line, are, then, reciprocally proportional to their

distances from the vertical drawn through the centre of gravity of the inter-

mediate masses.

268. Since the horizontal projection of the tension of the

chord is the same throughout its whole extent, no portion of the

chord can become vertical. If any portion of the chord is hori-

zontal, the vertical projection of its tension vanishes, and, therefore,
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the vertical projection of the chord at any other point is equal to

the sum of the weights of all the masses intermediate between this

point and the horizontal portion. If then

T is the tension of the chord at any point,

and if the axis of x is horizontal, and that of y vertical, directed

upwards, so that

Tx is the horizontal projection of T, and

T
y
its vertical projection ; and if

s is the arc of the chord at any point, and

m the sum of all the masses included between the point and

the horizontal portion of the chord
;

the following equations express the preceding conditions

:

Tcos* = T
y
= in,

, s __ m
tan x— ypr

.

The inclination of the chord to the horizon, therefore, increases

as the distance recedes from the horizontal portion.

If the chord has actually no horizontal portion, the preceding

equations are still applicable by assuming for m, such a value as

would be required to correspond to the vertical tension of any given

portion of the chord.

269. If, in proceeding from the horizontal portion in either

direction, the chord is everywhere ascending or descending, its hori-

zontal direction must also be away from the extremity of the hori-

zontal portion to which it is attached so as to form a portion of a

convex polygon, which cannot be intersected more than once by

any vertical line. Such a position of the chord corresponds to that

18
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of the perfectly stable state, or to that of the most unstable state
;

and each state is always possible.

If, in proceeding from the horizontal portion, the direction of

motion changes from ascent to descent, or the reverse, the horizon-

tal direction must be reversed at the same time, and so that the

subsequent portion of the chord will form an arc of a polygon which

will include the preceding portion within its concavity, and the con-

cavities of both portions will be turned the same way.

270. The difference of equation (137i8 ) applied to two differ-

ent portions of the chord gives the following equation between the

intermediate masses, the horizontal tension, and the directions of

tension at the two points,

m'— m sin
(
s

x
'— s

x)

Tx cos %' cos %

271. If the masses are infinite in number, and arranged in

unbroken continuity so as to form the chord itself, the curve is

called the catenary. In this case, if

k is the weight of an unit of length of the chord, the mass

of an element is

dm= 7cds ; and if

o= the radius of curvature,

the equation (13813 ), applied to the extremities of the element,

gives, for the equation of the catenary,

<?
=

T
zzD«s— -f sec

2
x

If
T

A — -i

this equation becomes

D*x s= q = J.sec 2 *.
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272. If the chord is of uniform thickness and density throughout its

length, Jc and A are constant, and the integral of (13831 ) is

s = A tan XI

to which no constant is added, because the arc is supposed to be

measured from the point at which it is horizontal.

273. The curve of the uniform chord is easily referred to rec-

tangular coordinates, for the equations

Dsjj— D.^ssin s

x= Asm s

x sec 2
*,

D*x x= Dxscos x— .Asec *

;

give, by integration, and determining the constants, so that the ori-

gin may be at the point of horizontality,

y= A(sec s

x— l),

a;= ^logtan-|-(i7r— •)

.

These equations give, by elimination and the use of the nota-

tion of potential functions,

Sin^ = tan x
s =:^,

5= 00^-1=^+ 1)- 1,

274. The vertical tension of the uniform chord is

T
y= sk= ±Tx= Txtm x= TxSm^;

and the whole tension is

T= TxsecZ= TxCos^= TX (L + l) = Tx)
J±.
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275. If the chord were required to he of such a variable thickness as

to assume a given form of curve, the law of this variable thickness is

given by the equation

T
'*•
—

2! •

pcos 2
^.

The vertical tension is

L v
== SK == il )

and the whole tension is

T=Tx sec x .

276. If the thickness of the chord ivere required to he proportional to

its tension, so that

T

the following equations are successively obtained by easy transfor-

mations

Bfs= B sec x ,

D°xz= B, z= B(Q,

Sin -^= tan *= tan ^,

|= log sec J= log Cos ^,

q= Bsec -„= BCos-jj= c y
,

T= Tx sec x=Tx sec^= Tx Cos^= Tx c\

277. If the thickness he such as to give an uniform horizontal distri-

bution of the weight, that is, such a distribution that the weight of each

portion of the chord is proportional to its horizontal projection, the

equations are
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D*s= q = Cscc 3
x,

x= Ctan *,

y= 1 67(sec
2
^— 1)= \ Cton\= ^ ;

and the curve is a parabola, of which the transverse axis is vertical.

278. If the chord were compressible and extensible, it would

be compelled to assume that thickness, in which it would have the

requisite tension ; and the form of the curve would, with this condi-

tion, be the same as if it were incompressible and inextensible.

Thus, if F denotes the function which expresses the given law of

the relation of the thickness to the tension, so that

the form of the curve is given by the equations

lDiS == q =

*>&=

D°x=

cos 2£F{sec 2
J)

'

sin'

cos 2^(sec 2 £)'

1

cos^i^sec 2
^)

279. If the chord or any portion of it is confined to a given

surface, the resultant of gravity and the tension of the chord on

each point must be normal to the surface, and is balanced by the

modifying force by which the point is fixed to the surface.

If, then, the tangent plane to the surface is, at each point,

assumed as the plane of x
'

y'
; if the axis of x' is horizontal, and that

of y directed upwards, and if

(/ is the radius of curvature, at this point, of the projection of

the chord upon this plane
;

the curve and tension may be determined by means of the equa-
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T T„,

s k&m s

y
rCOS^/ &cos 2£.cos^.

>

T

.

r = QsecP,
&sin*, COS*, COS* J

DS T:= #COS 2,/COS^/ == #COS*= JcD
sy,

T-.
J y

280. The pressure upon the surface is determined by the con-

sideration that it must exactly balance the tendency of each point

of the chord to move in the direction of the normal to the surface.

But the tendency of the tension to move any point of the chord in

any direction, as that ofp, is

DsTp= I)s (Tcos;)

= cos;DST— Tsm;

D

s

s

p .

In the case of the direction N of the normal to the surface, this

expression becomes, because s is perpendicular to N,

T
Us J- N z= J- U

s N= -j,

Tcos ?N
.

in which

q" is the radius of curvature of the projection of the chord

upon the common plane of the normal to the surface, and

the tangent the chord.

Hence the pressure sustained by the surface in the direction of

the normal is

Q
'

281. If the chord is destitute of weight upon any portion of the sur-
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face, q' becomes infinite, and the carve is that of the shortest line which can

be drawn upon the surface.

The tension, in this case, is constant, and the pressure upon the

surface becomes

TR= -.
Q

282. In the case of a cylinder, of which the axis is vertical, the

equations become

y u
?

T

T

so that the curve is the same ivhen it is developed ivith the cylinder into a

plane, which it assumes ivhen it hangs freely.

283. In the case of a surface of revolution about a vertical axis and

a chord of uniform thichiess, the equations become

T=lc{y +!/»),

rj y+ y<> .

sin „, cos y >

in which the angle which y makes with y' is determined by the

meridian curve of the given surface, the plane of xz passes through

the lowest point of the curve, and y is the length of the chord

which is equal in weight to the tension at the lowest point.

284. A special solution of the preceding problem is given by

the equations

y=0, \, = \n,

o =
cos

The curve is the circumference of the circleformed by the intersection

of a horizontal plane tvith the surface of revolution. The tension of the
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chord is the iveight of a length of the same chord which is equal to the dis-

tance of the plane of the curvefrom the vertex of the cone drawn, through the

curve, tangent to the surface.

285. If

tp is the angle which the projection of y' upon the plane of

xz makes with the axis of x, and if

dui' is the elementary angle which two successive positions

of y' make with each other,

this elementary angle and the radius of curvature are given by the

equations

dy'= $ml,dy,

1 =— D
t \, + Dtf= smpAy — D*

= sin*, Dsy — cos
y
,Dyfy,= sin*,Dsy — Z^sin*,.

If, moreover,

u' is the length of the tangent drawn to the meridian

curve at any point of the chord, and

u the projection of u' upon the axis ofy,

the following equations are obtained,

sin
s

y,
= u' . sin y

y,
Ds

xjj-= u'Ds
\p'

,

_ an,, _ D m̂^_ sin 5/COS|^__ 2y gsin*,)
;

which substituted in (14319 )
gives, by dividing by sin s

y,
cos v

yf , and

transposing,

286. In the case of the right cone, ivith the circular base, the sum of
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y' and u' is constant ; if, then,

a = u + y,

a= u -\-y= a'cos^,

;

the curve is determined by the equation

Z> , lo^ sin',= -i-:—>= — -4- -7
t >

=— i^log.sm.^.

The integral of this equation is

snu, = a'Vo

u' («'— a'- fa\)
"

(«'+ tf)
a- («'+^- 2O 2

(«'+ yC)
2-(a'-^)

'\2J

in which the constant is determined, so that «' may be equal to d

when the chord is perpendicular to u

.

The chord is also perpendicular to u', when

and also when

u = h («'+ *» ± i V [(« + I/oY + 4 «>o] •

When w' is contained between a' and ^? the expression for the

sine of the angle which the chord makes with u' is less than unity,

so that the angle is real. This angle is also real when ii surpasses

the greater of the roots of (1452i), or when it is algebraically inferior

to the smaller of those roots ; but the angle is not real when ii is

included between these roots, but is exterior to the preceding limits

ii and y'
. The curve of the catenary upon the vertical right cone consists,

therefore, of three distinct portions, of ivhich one is finite, and included

between two intermediate points, at ivhich the curve is perpendicular to the side

19
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of the cone ; ivliile the other huo portions, commencing respectively at the tivo

points, which are the highest and lowest of those at which the curve is perpen-

dicular to the side of the cone, extend to an infinite distance. These portions

have tivo of the sides of the cone for their asymptotes, because the angle

which s makes with u' vanishes, when itf is infinite.

287. The finite portion of the catenary upon the vertical right cone

may be investigated by adopting the notation

siny = V" ,
—

,

sin
22= cos 2/3,

sin i _ a'— rf
n—

i
— 7 i 7

1

cosp a +3fo

sin$ = sun sin <p

;

and that of elliptic integrals, of which the third form may be repre-

sented by

sec#

a 1 -f- n sin *
(fv

These equations give

u'= k (a' -\-y' )(l — sin i sec /? sing))

= %(a'+ y' )(l— sec(i$m6),

cos 2
^— sin 2

i sin 2
/3

sm "' cos 2
|3— sin 2 cos 2 #— sin 2 ^'

cos
\J

(cos 2
(9 — 2 sin 2

(3) _ sin i cos # cos qp

COS„,=
cos'fl— sin 3

|J
~ cos 2

<9— sin
2^'

s
sin 2

(3

tan , /— -:

—

-.
—

,
sin 1 cos a cos <p

Z>, m'= — ^ {a! -{- ^0) sin «'sec cosy

,

n s
— _ ^W _ i Q'+ ?A')Qs

2
fl— sin'fl

cos*/
-

cos ^ cos

= \ (
a' 4" #0 )

( sec /? cos A — tan /J sin ft sec 6),
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s = I ((i-\-!/o) (sec/?% — tan/? sin/? 9?
4 g>) ;

tan;%Z)(i,?/ tan (S sin (3 tan (3 sin (3

M (1 — secp'sin^cosfl (1 — n sine/) cos

tan/3 sin |S sec , sin* tan 2
/? sin gp seclanpsinpsucv , suit

1 — n - sin 2 9 "^ 1 • ?«
2 sin 2

<jp

f= tan/? sin/? 0, (- rc
2
, 9 ) + tan'" 1^ ;

for it is found, by differentiation, that

V tang) ? cos<9

_ sin i sin rp (cos 2 — sin 2
i cos 2

qp)

(cos 2 d -\- sin 2
i cos 2

cp) cos

sin i tan 2
f>
sin q> sec d

1 — ?«
2 sin 2

cp

288. The preceding value of the angle \\>' admits of geometri-

cal expression by means of the arc of the spherical ellipse in the

form given by Booth.

A spherical ellipse is the intersection of a cone of the second degree ivith

a sphere of which the centre is the vertex of the cone. Let

a and /? be the two principal semiangles of the cone, of which

a is the greater, and

10 the angular distance of any point of the arc of the ellipse

from its centre
;

and its equation is obviously

4.2 1 cos2 a i

sin 2
£

C0t 2 W = ——= -^ -\ j£.
tan^w tan^a ' tan^p

Adopt the notation

o = the arc of the spherical ellipse,
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i= the angle which the perpendicular to either of the cir-

cular sections of the cone makes with the axis, which

perpendicular is called the cyclic axis,

e = the angle which the focal of the cone makes with the axis,

rj = the angle of eccentricity of the elliptic base of the cone.

If, then, through the centre (fig. 2) of the spherical ellipse,

the axes A OA and B OB' are drawn, and B joined to the foci F
and F', the sides and angle of the spherical triangle B OF, are

BF=a, B0 = (1, OF=t,
OBF=i], BFO= \n — i,

which are connected by the equations

cos a = cos (i cose = cot rj tan/,

sin
ft
= sin a cos i= cot rj cot e

,

sine = sin a sin rj = tam'tan/?,

costj = cosicose = cot a tan/?,

sini=8in rj cos (i = cot a tan e

.

Let C and C be the points at which the cyclic axes cut the

surface of the sphere. Draw OF to any point of the ellipse, OF
perpendicular to OF, CH perpendicular to CF, OH perpendicular

to CH, F'K perpendicular to OH; take F'K equal to OC, and

draw LM perpendicular to OA. If, then,

6 = LM, 9 = LF'M,

l = HOC, l'=OCF,

the following equations are readily obtained,

cos/= cos 0C= coU'tan£,

tan£= cos a'tan I'= cos 2 /tan I

= cos 2
icose tan (p = cos icos rj tan <p ,
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sin 6 = sin isin cp

,

sec 2u __ ]_ _j_ cos2 /cos2
jj tan

2
<p = sec

2(p(cos
2
y -J- cos22COS2^sin2

<p)

= sec
2
c/>(l — sin 2

j;sin
2
g) -f- sin 2^sin 2

0)

= sec 2 9)(cos 2
d — sin

2
?] cos

2
i sin

2

y),

9 9 9,, /i i 2 -. 9 \ 1 -I- cos 2 i'tan 2
qp

cos 2w = cos-«cos 2 "(l + cosMan ''cp) = -—=

—

^-—^

—

r^—r- >

2 _ cos2 «(l -(- cos2 ^tan2
qp) _ cos 2 «cos 2

1 -(- cos 2
// tan

2
cp 1 — sin 2

// sin
2
qp

'

. o sin 2 «cos 2 cpsec 2
^

snr&i =
1 — sin 2

?/ sin
2
qo

'

r_ cos ?/ cos » cos 2
£ _ cos // cos t sin

2 «

cos 2
qp sin

2 w(l — sin 2
'// sin 2

</)

^ _ cos 2 « sin 2 //sin 2
(5 sin qr cosqo

(1 — sin 2
// sin

2
<jp)

2 sincocos(u'

y, 2
sin 2

(3 cos
2

// sin
2

// sin
2
1 sin

2 9 cos 2 "

^ cos 2 0(l — sin
2
//sin

2
qp)

2

? a cos-qp(l — sin //sin-qc)

<S>

sin 2
(3cos

2
// /cos 2 5sin 2

//sin
2 qpcos 2

-|- sin
2
?/sin

2
5>

cos 2 5(1 — sin 2
// sin qr)

2 \ cos 2 qpsec 2

£

sin
2
|3cos

2
// /cos 2 6— sin 2

//cos
2
'<sin

2 gA

cos 2 0(l — sin
2
//sin

2
93)

2 \ cos 2
qpsec 2

£ /

sin 2
|3cos

2
?/

cos
2 0(l — sin 2

j/sin
2
qp)

2 '

r. sin B cos i] sec 6

V 1 — sin 'tj sin qo

a = sin/9cosi7 <3s

i (— sin 2
^, y) = ta"^ sin

'

ffi.(— sin2
»j, 9).

289. In the particular case in which

in,

this equation is, by (14817 ), reduced to

a= tan^sin^°Js

i(— n*,-q>),
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which substituted in (1475 )
gives,

/ i
, r— 11 tan

1 ' tan <jp

290. For the length of the arc of the chord which extends

from its lowest to its highest point, this equation becomes

2tf= 2ai;

and if the magnitude of this angle is commensurate with the total

developed angle of the cone, the chord returns into itself, after passing

around the cone once, tivice, or several times, dependent upon the magnitude

of the angle of the cone.

291. To investigate the infinite portions of the chord, let

Iq and l[ be the roots of the equation (14521 ),

and the equation gives

7' f — ' '

hn— a l/o •

Adopt also the notation of § 287 and

(«'— ffo) _ a'+ tfo _ («+ K) sec Psmfjp
smi(a'-\-f —2u') cos (a'+fu— 2 v!) l' Jr l[— 2v!

suit) = sim sin9,

and the following reductions are obtained, by the substitution of

cosecg/ for sin (3,

u'= | (/q -j- l[) ( 1 — sec /5 cosec 9')

,

77 ,-lW I „M /tan ft
sin

ft
Bec/?cos 3

qp\%/S— 2 l« -h ^0 j ^~^7 un'qfcaatf)

= |(a'4-#o)[tan/5sin/5sec0'-f- sec/5cos£'-}- sec/?Z^,(cos3'cot(p')]

,

s= 1 (a'-j-^o) (sec/5 ^g>'-|- tan/5 sin/5 S^g/-}- sec/5 cosd'cotg/),
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sin - § cos (j sin
2 g/ sec 6'— sin 2

ft
sin g/ sec 0'

1 — cos 2
/? sin

2
g/

1— cos-jism-y ' '
' 9 cosgi

"

cos0'

cos g/

'

i//= tan /? sin /? <3>,(— cos 2

ft tp') — tan (i sin /if^ c/
-f- tan [

~ 1]

292. The term of the preceding value of y>', which depends

upon elliptic integrals of the third order, may be constructed by

means of a spherical ellipse, of which the parameter is the reciprocal

of that employed in the construction of the similar term of the finite

portion of the chord. The parameter of the spherical ellipse of

§ 287 being sin.], the reciprocal parameter is

sin i ,,-—= cos i
,

sin tj ' '

and the length of the arc of the corresponding spherical ellipse for

the amplitude (p

r

is

a'= sin/J cosi^C— cos 2
/*, 9') = tan

t^n/? QJ.(— cos
2
/?, 9').

This arc is reduced, in the case of

to

a'= tan sin % (— cos 2
/J, 9')

.

293. The finite portion is exactly circular tuhcn

a'=/ .

In this case

2 = 0, /$ = £ 7t = «
,

and the equations of the infinite portion become

u'= d (1 — y/ 2 . cosec 9')

,

s = asJ2 cot 9/

i
/

/=
v
/2(i7T — 9/) — 2tan [

- 1i[(
v
/2 — l)tan(|7t — }f//)].
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294. As y' diminishes from the value a , the finite portion

becomes more and more eccentric, until when

both the finite and the infinite portions degenerate into straight lines, which

are the sides of the cone.

295. When y' is negative, a! and y'^ cease to be the limits of the finite

portion, and become the limits of the infinite portion, while IQ and l[ become

the limits of the finite portion. But 1' and l[ are imaginary, ify is included

bettveen the values

/ =(-3 + 2v/2-K

so that betiveen these limits the finite portion disappears, and the chord con-

sists only of the tivo infinite portions ; and at the limits the finite portion is

circular.

To investigate the infinite portions betiveen the limits, in ivhich the finite

portion disappears, let
r . . .

tan i'— sin i\J— 1

,

sin 6"= sin i' sin y"
;

and the following equations are obtained by simple transformations,

sin (i cos/= y/-|,

u
/

=l-(a
/

-]-yo)(l— sec /3 sec g/') = -|-(a'— #o)(cos/3— seer/),

cos 2£'=l-}- tanVcosy

= secY(l — sinVsm 2
<j>")

= sec*Vcos 2 £";

B ~— i (V I

Wcos*''sec/?sinV tan/? \
*>' s— if \

a -T l/o) \ cos
* yii

cos Q
n ^ 2 . cos 6") '

,/ / ,
,,/secB .„ „ sec/?© // t.an/?^ ,A

»= *-(« +^o)(^cos^ tany -^«*r? —p-^ji
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9 * 1 — cos-pi cos- y ' ' - ' r tantf

cos »' cos 8 sec 0"
, ./ ,, ,« v= . '.

„ „ + cos? cos 8 seed
1 — i sin -

q> '

'

- Z^tan<-«(cos/Jcosy*^ - /?^tant-ii^,

i/;'=— cos/cos/3°3
i

i,(— I, y") -J- cos /cos/? 9^9"

— tan [_ 1]
( cos 8 cos 9" -^-^ ) — tan [_ 1]-^.
\ '

7 tain/ tan0

=— cos /cos/? ^i, (— i, g>") 4" cos /cos/? 3^
9"

_ r-11
tanV-fcos/?cosqr/'tan 2 0"

.

tan i' tan0"(l — cos 8 cos g/')
'

in which the elliptic integral of the third form admits of interpreta-

tion by means of the arc of the spherical ellipse.

296. When the negative of y' is equal to a the equations may

be greatly simplified and reduced to the following forms,

P--
In
2 J

2 =-\n,

cos/? = o, COS?' =Vi,

Dtf'tf
— cos q!'

V/(2-
— sin

2 <*")'

sin i//= sin qp
n

V/2

COS 2

(f"
1-- 2 sin

2
i//= COS 2 /,

„ '2.
u

a"- a'
2

jcos 2v"~ cos 2 a//

w/zj'cA 25 the polar equation of the equilateral hyperbola. In this case, there-

fore, the curve of the chord upon the developed cone is an equilateral hyper-

bola ; this case was recognized by Bobilliee in an imperfect investi-

gation of the catenary upon the surface of the vertical cone of revo-

lution.

20
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297. When the surface of revolution is an ellipsoid, of which the

equation of the vertical section made by the plane yx is,

y__i_£_

let a sphere be constructed upon the axis of revolution as a diame-

ter, and let

y be the angle from the vertical point of the sphere to a point

of which y is the ordinate, so that

^ = -4 cosy, x = B sirup,

u = .4 (secy — cosy) = A sin (p tan cp,

D^y =— As'm(p.

These equations, substituted in (14429 ), with proper regard to

the different position of the origin of coordinates, give

iyogsin*, =— ^sin^Zyogsin*, = —cotcp -4-
CJ™^_M,

• s _ jv _ iy
y>

sin qp (cos cp -\- M) \ sin 2 qp -|- iJ/sinqp

'

in which JVand Jf are arbitrary constants.

298. The maximum and minimum of sin*, are determined by

the roots of the equation

cos

2

cp -f- Mcosy = 0.

If these roots are y' and cp", the equation gives

cosy' cosy'' -4-^= 0,

J^^— 2 (cosy + cosy") =— 4 cos a (y'+ y") cos
-|
(y'— y")

= secy/ -J- secy".

Of the two roots, therefore, one is obtuse, while the other is
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acute ; if one is contained between i n and §7t, the other is impos-

sible ; and when both are real, one is confined between \ it and f it

,

while the other is without these limits. The corresponding mini-

mum and maximum values of sin*/ areN.N
-, and

tan qp' sin 2
qp' tan qj' sin 2 qp"

'

Both these, independently of their signs, are minimum values,

and when they are both absolutely greater than unity there is no

catenary ; but if either is less than unity, there is a corresponding

portion of the catenary. When both values are less than unity, the

catenary consists of two separate portions, because there is between

<p' and y" a value tp'" of tp which satisfies the equation

cosg/"= — M,

and the values of

/ /// cos 2m'— cos 2 q> sin 2 a!
COSCP COSC/) = i -. ?-= -v,' ' cos q> cos 9

/// // Sin qp n ' v rr r
cos(p — cosy = 7-V— 2sm z

(p cosy,

arc positive.

299. TVic especial case of

gives

Jf=0;

sin£,= -^—

;

* sin 2
qp

and each of the minimum values of sin*, is

2JST;
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which, being less than unity, may be expressed by

2iV=sin2«.

This equation gives

.
s _ sin 2 a

Sin,./ ~ t: .
J SHI 2

(J)

If, then, X is determined by the condition

, cos 2 cp

cos 2 /. = —»—

,

cos 2 «

simple reductions give

_ \j (cos
2 2 «— cos 2 2 r/i) cos 2 a sin 2 ?.

UUBj/ —
sin2qp sin 2 cp '

tan*/ =
tan 2 a

sin 2^.

'

Z>A qp =
cos 2 « sin

sin 2 g;

2 *— = COS*/,

D<f,s

A ~
r

= \/(
sin2 9) +X2COs2 ^) sec ^'

A
=
v
/(«n«

B2 \
9> + X*

cos f
>7

=v
/

h(1 + jj) + 2 ^p— ljcos2 a cos 2 X ;

n ...
Zfyssin;;, sin2«Z),j«

^ ' i?sin qp .Z?sin qt. sin 2 qp

'

r. sin 2aD-)SD,w—— -\—

.

A
' Bsin qp sin 2 qp

In the case of the prolate ellipsoid, the notation

. „. 2(B -— A 2)cos2a

B*-\- A*-\-(B*— A*)cos2a'

sin*} = sin isin X,

gives the equation

5= y/(Z?
2 cos 2

ce -\- A 2
sin 2 a) 8. ^.

,
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In the case of the oblate ellipsoid, the notation

X = if 71 — X,

. „., 2(A 2— B 2)cos2a

B*+A 2 -\-(A 2— B*)cos2a'

shid'= sin i sin X'

,

gives the equation

s = ^ (A
2 cos 2 a 4- £ 2sm 2 a) %X'.

In the case of the sphere the equations become

B= A, i= i'=0,

S= AX;

and this result of this case is obtained by Bobillier. This case also

gives the equation

sin 2 «DxV = sin
(f>

sin 2 cp

sin2«
21\)(sin 2 a-|- cos 2 « sin 2

P.) y' (cos 2 «— cos 2 a sin
2
A)

which by the notation

cos2;
//= tana,

sin d"= sin i" sin A.

,

becomes

T)
2secfl"

*^ sin « (1 + tan 2 »• sin 2 A)
'

y= -4-gV,(tanV,Jl)T sin a v 7
'

= 2 sin a tan 2 a !

3\„ (— sec 2 a sin
2 &'", k) -J- 2 sina 9v, X

smi"tand'
r
cosl

-f-2tan[-^

300. Returning to the general case of the ellipsoid, let

sin «
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a and /? be the limiting values of (p for the upper portion of the

curve, and

a' and $' the limiting values for the lower portion ; and let

q = i(a+ 0), £ = !(/?— a),

r!'=l(a'+F), e'=±(p'— a').

Hence the following values ofM and N are obtained

iV= £sin2a -J- .Msincc == -|sin2/3 -[- -Sfsin/?,

—N= i sin 2 a' -f Jfsin a'= | sin 2 0' -f Jfsin (?,

nr cose cos 2
»/

cose' cos 2 >/

cos // cos if
'

JY= tan^(cos 2
ij cos2e— cos 2 ecos2?])

= |-tan^(cos2e — cos2i;) = tan?}(cos 2
e— cos 2

*;)

= |-tani;'(cos2?/— cos2«
/

)= tan?/ (cos 2
?/— cos 2

/)

= tan i] sin a sin /? =— tan if sin a' sin [Y

. ,
' sin tj sin a sin @ — sin rf sin a' sin ^'

y/
sin <p (cos 37 cos <jp

— cos e cos 2 ?/) sin <p (cos ?/' cos cp— cos e' cos 2 ?/)

s ^[— (cos qp— cos a) (cos qp— cos /?) (cos (]p
— cos a') (cos <p — cos ^')]

s sin qp(cosg) -(- M)

_ vT— (cos2 cp— 2cos?/ cose cosqo ~\- cosk cos^) (cos2
qp— 2cos//cos«'cosg9 -)- cos«'cos/3')]

sin qp (cos qri -j- M)

_ y/[sin 2
y (cos y -f ilf

)

2— JV^
2
]

sin q& (cos (jd -|- M)

The numerators of the first and last values of cos*/ give, by

direct comparison,

— 2M= cosa -f- cos/5 -[- cosa'-|- cos/j'= 2cos?j cose -|- 2cos?/cose',

whence

cos?jcos?/cose':= (cos2?j— cos 2
?]) cose =— sin

2
?; cose,

cos ?; cos?/ cose = — sin
2
?/ cose',
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cos 2
»]cos

2 r/— sin 2
?] sin

2 •»/== cos(rj -|-i/)cos(j/— rj) = 0,

The comparison of the values of N, shows that the value of 1/

must be obtuse, whence

cose'= tan fj cos £

,

cos £ =— tan r[ cos e'

.

301. The general case of the surface of revolution admits of one

integration, by denoting by v the ordinate of the meridian curve of

revolution, which gives

- = — =— DAogv,

this equation, substituted in (14429 ), gives, by integration,

**"—
*(*+ *)>

in which

v is the ordinate of the meridian curve at the origin.

This form of the equation is, however, limited to the case in

which the curve has a point, in which its direction is horizontal.

But every case is included in the form

smS=

in which Mis an arbitrary constant.

302. In the case of the surface formed by the revolution of the equi-

lateral hyperbola about its asymptote, which may be called the equilateral

asymptotic hyperboloid, if the equation of the revolving hyperbola is
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the equation (159v4 ) becomes

s _ M
Silly/ jj,

and, therefore, the inclination of the curve of this catenary to the arc of the

meridian is constant.

When M is greater than b
2
, the curve is impossible, but when

M=±b 2

,

the catenary becomes a horizontal circle, and

S

y
,=±±7l.

303. It may be inferred from the comparison of the two pre-

ceding sections, that, upon the circle of intersection of any surface of revo-

lution with the equilateral asymptotic hyperboloid of equation (15931 ), the arc

of the catenary of either surface makes the same angle with the meridian

curve of tliat surface. Hence, the limiting horizontalplanes of the catenary

of equation (15916') are the intersections of the surface of revolution upon

which it lies with the equilateral asymptotic hyperboloid, of which the equa-

tion is

v(!/-\-?/o) = v yv

The catenary extends over that portion of surface which lies exterior to

the asymptotic hyperboloid, and does not extend over that portion of surface

which is included within the hyperboloid.

304. To complete the solution of the catenary upon the equilateral

asymptotic hyperboloid, the equation (15931 )
gives

tan,,/ = — -Lsv v == t
—;—rsj

whence the following equations are obtained
;

(j/+^o)
2=^ 2

cot^/,
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Dyj =—
2(y+ yo)sin s

j;

2 V J

n h*-D„\p^r— 2(y+ y„)sin 2 *,

But it is found by § 285 that

n sec g. tan;, (y -f- y„) tan g.

v 6 2 cos^, '

whence

7-i
tan f,,

2 sin 2 *, cob
J.

'

of which the integral is

W = tan
J.

2 sin*.
-|- tan *,log tan (^tt -j-l *, )

.

305. If the chord is not strictly confined to the surface so as

to be incapable of removal from it, but if it simply lies upon the

surface, without the power of penetrating it, it must leave the sur-

face whenever the pressure becomes negative, that is, when the

sign of R, computed by (14229), is reversed. The points at which

the chord leaves the surface are, therefore, determined by the

equation

R= 0.

>=

21
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CHAPTER IX.

ACTION OF MOVING BODIES.

CHARACTERISTIC FUNCTION.

306. Related to the idea of the potential, and, in some

respects including it, is that of the action of a system as proposed

by Maupebtuis. Every moving body may be regarded as constantly

expending an amount of action, equivalent to the power which its

motion represents, that is, to the product of the force of the moving

body multiplied by the space through which the body moves.

Hence, with the notation of Chapters II. and III., if V designates

the whole action expended by the system, the action expended at

each instant is

d V= 2Z
l (m1 v1 ds1 ),

and the total expenditure of action is

The function V is called by Hamilton the characteristic function

of the moving system, and he has resolved the problem of dynamics

into the investigation of its form and properties.

307. If the power, with which a system is moving at any

instant, is denoted by T, its expression becomes, by (420),

The preceding expressions for the expended action give, there-

fore,
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D,V= S1 (m^ Dth) = S1 (nh vl
a
) = 2 T,

V=J2T.

PRINCIPLE OF LIVING FORCES, OR LAW OF POWER.

308. If 12 denotes that function which, in the case of the fixed

forces of nature, is the potential of the moving system, its change

for any instant is, by (3434) and § 58,

d£2=dT=2[(m1F1df1).

Hence, in the case of the fixed forces of nature, if II is an arbi-

trary constant,

T=Q + H,

which is only the analytical form of the proposition of § 58, and is

called the principle of living forces. The term living force denotes the

power of a system, so that this principle may, with equal propriety,

be called the latv ofpower.

CANONICAL FORMS OF THE DIFFERENTIAL EQUATIONS OF MOTION.

309. The equation (815 ) may be written in the form

d £2 = 2
1 (7n1Dt

v1 d Sx)

= D
l
^1 (m1 v1 ds1 )

— ^^m^dD
t
sx )

= D,2i(«i»1^)— ^iOiM^i)-

If, then, i; l5 ?j2 , rj
3 ,

etc., are assumed to be the independent

elements of position of the n bodies of the moving system, s1} s2 , etc.,

may be regarded as expressed in terms of these elements, so that

v= Z>t s= ZJDJ
.sD

t
r
} ).
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With the notation

D
t
r)=r)',

this equation is resolved into the equations represented by

The substitution of these values give, if T
1Urj

, denotes T ex-

pressed by means of rj 1} rj2 , if1} tfiy etc.,

ZiK *>i
D

n
sx ) = Sx {m1 vxD7f

vx) = D
n
, T

Vt n
, ,

Z
1 (m1 v1 I)n

v1 ) = D
v
T

v>7]
,;

whence

I>
v
£2= (D

t
By -I)v

)T
V)V,.

This expression represents the elegant forms of the differential equa-

tions of motion given by Lagrange ; but the mode of investigation is

adopted from Hamilton.

310. In the special case, in which the independent elements

of position are the rectangular coordinates, x, y, z, of the different

points of the system, these equations become

v *= x'*+y'*-\-z'%

Dx, TXj x, = mx'= mD
t
x,

DX I2 = mD
t
x = mD* x.

When the coordinates of the system are subject to conditions,

these equations are still applicable, provided that the forces, by

which the conditions are maintained, are included in the forces of

12, or more properly of dfl. The values of Dx £2 and D
v
£2 can be

obtained from the given differential expression of i2, even when



— 165 —

such expression is incapable of integration ; for this form gives

311. By means of the notation

rj[, rf2 , • • • • etc, may be eliminated from the value of T, and

T may denote the resulting value, expressed by means of iyx ,

r
i2 , wa , o)2 , . . . . etc.

Since T is a homogeneous function of two dimensions in respect

to rfx , if2} etc., it satisfies the equation

2T=Z
v
{ifD

v
,T

lhV,)
= 2

v {if W )-

whence

2 dT= Zv
(to drf -f ifd w)

.

But the variation of T, derived by the usual method, is

dT=2
v
{DnT7lj7l

,d>rir\-<odrf);

which, subtracted from the previous value of 2 d T, leaves

dT=2v (r
I
'd6>—Dv

TV)Vrd>n ).

This equation is equivalent to the two equations

D TV}0= rf,

T) t — D T

and Lagrange's canonical form assumes the following expression given ly

Hamilton,

Dtw=I)v(£2— TV}0).

312. But £2 is, in the case of the fixed forces of nature, a

function of ra ,
ij

2 , etc., without other variables. If, then, in this case,

tt — t n
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the preceding equations assume the simple form

D
t
(o =— DV IIV>0) ,

which are given by Hamilton, in which £2 may involve the time.

VARIATIONS OF THE CHARACTERISTIC FUNCTION.

313. The variation of the characteristic function, taken upon

the hypothesis that the time does not vary, is

dV=f2dT.

But, from the preceding equations,

dF^S^adij'+ D^fdri)

the sum of which and of the equation

dT=d£2 + dH,

is

2dT= Zv (a)dii' -\- D
t cadii) + d

H

The variation of the characteristic function is, therefore,

dV= 2n
(atdi) — to dih ) -f id II,

in which w and rj are the initial values of w and rj . If, then, V is

expressed as a function of the initial and final coordinates, 17, w, rj
,
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and w , and of the constant II, its derivatives are

D„V= w , D
Vo
V= — M

,

DH V=t.

By means of these equations, the problem is resolved by Hamilton into

the determination of the single function V.

314. In the case in which the independent elements of posi-

tion are the rectangular coordinates, these equations become

W = mx = mD
t
x= Dx V,

to = iiix'q= mD
t
x =— DX(j V.

315. If the expression of the forces involves the velocities

the final expression of d T in § 313 is incomplete, and the present

mode of investigation is not easily and simply applicable to such

cases, which is of less importance, because these cases are not, in

the most comprehensive view of the subject, the cases of nature.

PRINCIPLE OF LEAST ACTION.

316. When, in the case of the fixed forces of nature, the ini-

tial and final positions of the system are given as well as the initial

power with which the system is moving, the variation of the charac-

teristic function vanishes, and, therefore, the function is generally a

maximum or a minimum. The action expended by the system,

which is measured by this function, is also a maximum or a mini-

mum ; or, in other words, the course by which the system is com-

pelled to move from its initial to its final position through the

action of the dynamic laws, is that in which the total expenditure

of action is a maximum or a minimum. But it is obvious that, in

most cases, and always, when the paths in which the various bodies
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move are quite short, the described course cannot correspond to the

maximum of expended action ; and, therefore, in most cases the sys-

tem movesfrom its given initial to its given final position with the least possi-

ble expenditure of action.

Many examples can, however, be given, in which the expended

action is, in some of its elements, a maximum ; although, even in

these cases, the expenditure is a minimum at each instant, or for

any sufficiently short portions of the paths of the bodies.

317. This principle of least action was first deduced by Maupee-

tuis, through an a priori argument from the general attributes of

Deity, which he thought to demand the utmost economy in the use

of the powers of nature, and to permit no needless expenditure or

any waste of action. This grand proposition, which was announced

by its illustrious author, with the seriousness and reverence of a

true philosopher, is the more remarkable that, derived from purely

metaphysical doctrines, and taken in combination with the law of

power which likewise reposes directly upon a metaphysical basis, it

leads, at once, to the usual form of the dynamical equations.

318. To deduce the dynamical equations from the combina-

tion of the principles of least action and living forces, add together

the two variations of T,

dT=dS2,

= 2n (Dv TVj n'
— D

t
m) d i] -|- D

t
Zn {tad i]

)

.

If the sum is introduced into the variation of V, the result,

reduced by the condition that at the limits of integration,

becomes

dV= Zvft

{Dv Tn, n,
— D,m -f Dv S2)drj = 0.



— 1G9 —

The factor of drj, in this expression, must vanish by the princi-

ples of the method of variations, which gives immediately the gen-

eral expression of Lagrange's canonical forms.

PRINCIPAL FUNCTION AND OTHER SIMILAR FUNCTIONS.

319. The function S determined by the equation

JS= V—Ht=J
t

{T+£2),

is called by Hamilton the principal function, and its variation deduced

from that of V is, obviously,

djS=dV—t$H—ffit
= 2v (<odr) — w $?j )— Hdt.

Hence, if S is regarded as a function of rj, rjQ , a, w , etc.,

with the time t, its derivatives are

Dv S=o), D
Vo
S=— w

,

DtS=— H.

The principal function may, therefore, be used in the same way ivith the

characteristic function in the determination of the motion of the system.

320. Many other functions, as suggested by Hamilton, can be

substituted for the principal and characteristic functions. Thus the

function

gives

=fzn (r} do>'+ Dfi
nd<r

}
—I)v Tn)0 dri)

22
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=fzv
(r)da>'+ Dv Tv> v

,drj) +fd£2

=zS
v
{i]dbi— rj d w )— tdH.

BaW= n , DaoW=- Vo ,

DHW=— t.

321. The introduction of

Q= W+tH=f
t

(2:n (fi a>') + H),

gives, in like manner,

322. Other functions can be formed by the combination of V
and W, or JS and Q. The combination may be such that for some

of the coordinates, the function shall have the same form as V or S,

while for the remaining coordinates it shall have the form of W or

Q, and the function

U=V'—W",
or

P= jS'—Q",

can be substituted for V or S.
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PARTIAL DIFFERENTIAL EQUATIONS FOR THE DETERMINATION OF THE CHARACTER-

ISTIC, PRINCIPAL, AND OTHER FUNCTIONS OF THE SAME CLASS.

323. By substituting in the equation

for 1], a), etc., as well as for t and H, their equivalent expressions, as

partial derivatives of V, 8, W, Q, U, and P, partial differential equa-

tions are obtained, the integrals of which give the values of these

functions. To facilitate the expression of this substitution, T and £2

may be assumed to have such functional significations that

£2(t,t}) = £2.

The partial differential equations are, then,

T{n,Dn
V) = n(DHV,n ) + H,

T{r
]
,D

Tj
S) = a — D

t
S,

T{DU W,to) = 12 (- DHW,DU W) + H,

T(Da Q,a>)= £2(t,Du Q)+ l)
t Q.

324. When the independent elements of position are the rec-

tangular coordinates of the bodies, these equations become, by the

notation of (5431 ),

S
-(knJ$ = 2£*(DHV,z) + 2H,

Zm m(z'
2
-\-?/

,2 + /*) = 2f2(—I)HW,±
i

Dx,w)+ 21I.
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325. Through the preceding investigations, the forms are

developed by which every dynamical problem can be expressed in

differential equations. It only remains, therefore, before applying

these forms to especial problems, to consider those methods of inte-

gration which are best adapted to their discussion.

CHAPTER X.

INTEGRATION OF THE DIFFERENTIAL EQUATIONS OF MOTION.

326. In discussing the differential equations of motion, it

might be permitted to suppose a previous knowledge of all that has

been written upon the integral calculus. But since the profound

philosophical views, with which this subject has been illuminated by

Jacobi, have not yet passed from the original memoirs into the text-

books, a development of them is required by the plan of the present

work to facilitate its further progress.

I.

DETERMINANTS AND FUNCTIONAL DETERMINANTS.

327. If (?z-)-i) 2 different quantities are given, which are

represented by
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in which every number from to n can be substituted for Jc or for

the number of accents denoted by i ; and if all possible products of

(n -J- 1) factors are formed similar to

±aa[d-l a [

:\

in each of which the same number is never repeated, either for k or

for i; and if these products are successively formed by mutually

interchanging two of the inferior numbers, and at the same time

reversing the sign of the product ; the sum of the products has been

called by Gauss the determinant of the given quantities, and may be repre-

sented by

%>n= 2 ±adx di a«

Thus, for example,

^0= -2" + a= a,

§&!= IE + aa\= aa\— ax d,

^2= ^ i a<h ai — ad^a'l — aa'2 a" -\- a1 a'2d
/

— ax a a2 -J- a2 a ax
— a2 ax a .

The same result might also have been produced by mutually

interchanging the accents without disturbing the inferior numbers.

328. The sign of the determinant would be reversed, by

reversing the sign of the product originally assumed as the basis of

the subsequent changes.

329. If, for the different values of Jc, all the given quantities

are equal, so that

the determinate vanishes. For, by interchanging Jc and Jc in all the

terms, the sign of the determinant is reversed by the regular process

of formation, whereas if Jc is substituted for Jc' and the reverse, no
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change is produced on account of the equality of the given terms.

Hence

n nl

or

330. Whenever all those values of the given elements vanish,

for which i is as great as m, while h is less than m, which condition

may be denoted by the equation

the form of the determinant may be simplified. For it is evident

from inspection of the fundamental product,

(««x «irr1
i)

)(«
(r«ai)

«<">)>

regarded as separated into two factors, that every elementary prod-

uct, produced by an interchange between the inferior numbers, such

as to transfer one of these numbers into the second factor, vanishes,

and may be neglected. Hence

<&
n=.2± aaWi a%-v.Z ± a™a%ff a«

if

6JL -V_J_^(»n) (m + l) (n)uv>m,n ^ I am a m + l U n •

331. When, in the preceding proposition, m is equal to n, so

that

a k<n 0,

it becomes

. ^=^_ lflW;

for, in this case,

%hn = ^±a^ = a^.
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332. When, in addition to the preceding equation, the values

of the elements vanish, for which m is equal to n— 1, so that

U>n-l) A
«i<»i — 1 U

J

the value of the determinant becomes

333. Whenever the equation (17410 ) is true for all values of

m, it may be written in the form

»P*>=0;

and the determinant is reduced to the single term

^n =aaW2 <n)
-

334. If a determinant is formed from the given elements, with

the omission of all those of which the number of accents is i, and

those of which the inferior number is k, so that n is the number of

factors of each elementary product, this determinant is the factor of

af in the expression of the determinant £&„. If, therefore, this par-

tial determinaitt is denoted by okf, the expression of the complete

determinant is

The derivative of this expression is

whence

335. The preceding notation gives

Qk = %,^ n=Z± a[4 a?>.

Hence the expression of (Mp can be deduced from that of o4
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by putting

i= Je= j

and those of — o/k
(f)

, or of — Q%, are deduced from that of ok by

putting

i= , or # = .

336. If, in the third member of (17521 ), «$ is substituted for

ajj.
l)

, the expression of the determinant is that which corresponds to

the case of § 329. Hence,

and, in the same way,

337. If a partial determinant is formed from the elements of

Q&jjp, with the omission of those in which the number of accents is i',

and those of which the inferior number is k', this determinant, taken

with its proper sign, is the factor of a (p in the value of okff. If,

then, it is denoted by Q^pf
the value of Q/bj(p is

in which it must be observed that, from the definition

These equations give

=^ y (ai?al?>i>.BP.i>aP».)= 2*,„ (aLW2>ap^aj.

338. All the given elements which have k or k' for their infe-

rior number, are excluded from the value of o^-tV? and? therefore,
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this parti.il determinant is not affected by the interchange of Jc and

1c , by which the terms of the complete determinant, comprehended

in

are transformed into those comprehended in

But this last aggregate of terms is also represented by

Hence these partial determinants satisfy the equations

<*iy?=— <*&,*2=— <*&?= <*i?#

The determinant may, therefore, be written in the form

= ^>»(Q^P(aiPaP- aJT>aS3) ).

339. The solution of linear algebraic equations is easily

accomplished by the aid of determinants. For if the given

(n -f- 1) equations are

u = at-\-a1 tl -\- -j- ajn= Zk {ak tk )

,

u'=a't 4~ «i4 + + a'Jn = ^k(a'Jk),

v

„m= a^t+ flf^ + + ct
{:Hn = Zk (a["Hk ) ;

the sum, obtained by adding the products of the given equations,

multiplied respectively by okk ,
ok k , °^i

n)
, is

<3l„4= oAkU _}_ ok'k%{ -f oik
n
hi

{n) = ^(q^V'')

23
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340. If all the quantities u, u', u", etc., vanish, t, t1} t2 , etc., must

likewise vanish, unless the determinant vanishes. If, therefore,

either of the quantities t, t1} t2 , etc., does not vanish, when u, u', u",

etc., vanish, the determinant must also vanish, whence the equation

(176 13 ) applies even when

i'= i,

or for all values of i'

Hence, it is evident that

t-.t^.U \tn= Qk^:okf:ok>'i> :
q4,w

341. The process, by which the value of in was obtained, may

be regarded as designed to eliminate the n quantities t,t1 ,t2

tn _ 1 from the given equations. By precisely a similar process, the

m quantities 4 h-, h C— i m&y be eliminated from the first

m —|— 1 of the given equations, and the form of the resulting equa-

tion must be

Bu+5V+ + J?(->«(-)= CJm+ Cm+1 tm+1+ + CJn ,

in which

In the same wav, if

rn
— 2 + ok oA{ ok'l o&w

r = 2 + okim) o4 (m+ 1) oifcw
' m,n —" _i_ m «i -+- 1 n 5

the quantities ti
{m + l)

, u
(m+2)

,
u {n) may be eliminated from those

of the equations (17730 ) which give the values of tm , tm + 1 ,
tn ,
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and the form of the resulting equation is

En+ E'u'+ + J5Wt»<->= FJm+ 1L+1C+i+ + «*>

in which

But the two equations, obtained by these processes, must be

identical in the ratios of their coefficients. Hence

Em— Fm ,

or

™Bm-

1

rm, n ?k<?i rm, n

Vn' m + l,n <->\Dn 'm+ l t n

or by extending the series of ratios to all values of m,

*«: «,: : ^-1= ^1,.: «SrM : : 0L>n,„.

But it is easily seen that

r^.= ofeM= «._!,

and

whence

ri
>
n

ok>
rn

'

3

^n= ^
Qk

rn= a^l-\

A repetition of the same process, in a different order, upon the

given equations gives

Hence
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342. The ratio of the values of rn and i\ n may be prefixed to

the series of ratios of (17916 ) in the form

The series of ratios gives, then,

or

This investigation is derived from Jacobi.

343. The variation of a function of the quantities represented

by a {

k
] is expressed by the formula

If, then, the values of the quantities, denoted by u{i

\ are such

that

and if the corresponding values of t,tx ,
tn are denoted by

t
(k)
,t\, t

(

n\ the expression of iff assumes the form

fflt^J*)= S
t [Daf ®»n (da?+ (i, *))]

,

and therefore

344. If the given quantities are such that
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it is readily perceived that

c*jp= Qkf\

Qkf{i,k)= — Qi?>(*,.*),

and

— *«* — ot
1 = (T log. n ?

which is given by Jacobi.

345. A system of equations, similar to those of § 339, repre-

sented by the form

gives, in the same way,

If

an equation similar to (18026 ) is derived,

346. Let the («-}-l)2 quantities, represented by c[
i]

, be

derived from the given elements a k
i] and b (

l
] by the formula

c k
V)= aA Jr<K Jr aPW=2m {aWp),

and let the determinant of these quantities be

Q^m=S±e^4 of.

If only one term is taken in each of the quantities c {p, the

general term of £&„ is represented by

±a^aY )a^' ) b^b^b^P
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A mutual interchange of the letters Jc, followed by a mutual

interchange of the letters i in the resulting terms, produces all the

terms of Shn , which correspond to the same combination (M) of

accents m, m1
, etc. A different combination of accents gives a dif-

ferent set of terms ; and if

Ml

^ = 2 ± a^a^air^ <,
g»w = 2 ±b {m)

b {

r'
)

^i
n" ) Kt ]

,

denote the determinants of the given elements corresponding to one

of these combinations, the complete determinant is expressed by

which is given by Jacobi.

347. In the case of

p= n

,

there is only one combination (M) of the accents, so that in this

case

&.= fc.<3».,

which was given by Cauchy.

When

P<n,

there is no combination (M), in which all the accents are different

from each other, and, therefore, it follows from § 329 that, in this case

and that, in all cases, the combination (31) must consist of accents

which differ from each other.

348. In the special case of

a k == V k >
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which gives

„(/) — r {k)

the value of the determinant is reduced to

G)„ >r /uJJu(M)\2=-*>» *^M\ Mn ) 3

which, when

is reduced to

p-=n

Qo =<m2

FUNCTIONAL DETERMINANTS.

349. If the given elements a k
i] are the derivatives of [n -J- 1)

functions f,f1} /„ of (n -f- 1) variables x,x\, xn , so that

the determinant of the elements is called the functional determinant of

the given functions. Thus, in the present case, all the terms of the

determinant

®°n= 2 ± DxfDXifxDxJ2
DXnfn}

are obtained either by a mutual interchange of the variables, or by

a mutual interchange of the functions, the interchange being

accompanied in either case with a reversal of the sign, precisely as

in deducing the terms of the ordinary determinant. The proposi-

tions, which have already been given in reference to determinants,

are easily applied to functional determinants.

350. In the case in which all the functions, above the

(m -\- l)st, are free from the first m variables, the condition of (1749 )

is satisfied, so that the notation of (1742a) gives the equation (17420 )
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351. In the case in which every function is free from the

variables of which the inferior number is less than that of the

function itself, the equation (17510 ) is satisfied, and the functional

determinant, reduced to a single term, is

352. If the given functions are not independent of each other, the

determinant vanishes. For if the equation, which denotes their mutual

dependence, is expressed by

77=0,

its derivatives, with regard to the given variables, are represented

by the equation

^(^77^/&) = 0.

The equations, included in this form, are identical with the

linear equations of § 339 when the values of u vanish and

tk= Df
h
n.

All these values of t cannot vanish, because the equation, which

expresses the mutual dependence of the functions, must involve one

or more of them ; and, therefore, the determinant must vanish

by § 340.

353. If either of the given functions (f) contains any of the other

functions, these functions may be regarded as constant in finding the

functional determinant. For each derivative off is the sum of two

parts, one of which is derived by direct differentiation with refer-

ence to the variable explicitly contained in the function, and the

other part is obtained by indirect differentiation through the

functions involved in f. The whole determinant may then be

regarded as composed of two such portions. But the portion of the

determinant obtained by the indirect differentiation off is the
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same as if/,, not containing explicitly any variables, were simply

a function of the other functions* This portion must, therefore,

vanish, and the remaining portion of the determinant is that which

is obtained by direct differentiation, conducted as if the functions,

involved in fi} were constant.

This proposition is applicable even where several of the given

functions contain the remaining functions ; but not when they

mutually involve each other.

354. If the second of the given functions contains the first,

if the third contains the first and second functions, and if, in general,

each function contains all the previous functions, the preceding

proposition is applicable. Hence if, by means of the first function,

the first variable is eliminated from all the other functions ; if, by

means of the second function thus reduced, the second variable is

eliminated from all the subsequent functions ; and if this process is

continued until each function is liberated from all the variables

designated by an inferior number, although it may involve all the

preceding functions ; the determinant is reduced to a single term as

in § 351. This will often afford a convenient method of obtaining

the functional determinant.

355. In performing the successive eliminations, the operation

must not be restricted to any prescribed order of the variables, but

one of the variables, remaining in f, must occupy the place of x
L

.

Hence there is not one of the factors of the determinant in the

form of § 351 which vanishes, unless a function be obtained from

which all the variables are explicitly eliminated, or, in other words,

unless one of the given functions is included in the others and can

be derived from them, so that they are not independent of each

other. If, therefore, the given functions are mutually independent, their

functional determinant does not vanish.

356. If F, F1} Fn are given functions of /,/i, fp ,

24
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which are themselves functions of the variables x, x1 ,
xn , the

derivatives of the functions {F
{ ) with respect to the variables (^)

are represented by the equation

nXiFk= Zm {Dj
mFk

Drifm ).

This equation coincides with (I8I24), if the notation for af is

combined with the notation

cf= D
XiFk ,

h%= »
fmFk ,

The remaining notation and conclusions of §§ 346 and 347

may, therefore, be applied to this case. Hence, by (18218 ) the

functional determinant of the independent functions (F
{ ), taken ivith respect

to the same number of variables (x
{ ), which enter into (F

t ) only as they are

involved in the same number of independent functions (f) explicitly involved

in (Fi), is obtained by multiplying the functional determinant of (F{ ) tahen

ivith respect to (f) by the functional determinant of (/,-) taken ivith respect

to (Xi).

If the number (j) -\- 1) of functions (f) exceeds the number (n -f- 1)

of functions (Fi), the complete functional determinant of (F{ ) is by (182n )

the sum of all the partial determinants of (F{ ) obtained by every possible

combination of (n-\- 1) of the functions (f).

If the number of functions (f) is less than that of the functions (F{ ),

the functional determinant vanishes, as in (18225 ), tvhich corresponds to the

proposition that the number of independent functions cannot exceed the num-

ber of variables, by which they may be expressed.

357. In the case, in which

all the derivatives of (F
t ) with reference to the variables (x

t ) vanish,
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except those included in the form

DXiFi= DXiXi = l.

In this case, therefore,

V.= JE±Df*l>A* !>,.*.,

is the functional determinant of (a:,) regarded as functions of (f),

and the equation (18218) becomes

&„= 1= #„&.,

or the functional determinant of (#,-) taken with respect to (f) is the recipro-

cal of the functional determinant of (/,) taken ivith respect to (#;).

358. If in the linear equations of § 339, the values of (t) are

expressed by the formula

either of the equations is represented by

um = 2k
{D

XtfmDfiXk ) = DAfm = .

unless

m= i,

in which case

^=^= 1,

This value substituted in (1773l) )
gives

«.*/,**= A? «.= <*if>.

359. If it is again assumed that
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the equations of § 345 give

vk= Zm {aFH% ) = Zm {D
XkfmDfJfi ) = DxJfi

2hW = ZtWfk=^ = * log &..

360. By the same process, it may be proved that, if (fi) are

the variables and (^) the independent functions,

2»V,= * lQg^=— * los ®w-

But it must be observed, that in finding the derivatives of

dxk they are supposed to be expressed as functions of the original

variables, precisely as in the preceding section the values of dfh

are supposed to be expressed in terms offk .

361. The equation (1889 ) reduced to the form

may be added to the identical equation

The sum is, by (18727 ),

= 2kji
DXk{^n

DfiXk§fi)

362. In the case, in which the arbitrary variation d is assumed

such that

except for the value

i=0,
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the preceding equation becomes

If this equation is multiplied by / and added to the equation

the sum is

363. If the equations, by which the functions (/,) depend

upon the variables {x
t ), are represented by

^= 0,

their derivatives are represented by

i x *"»i\ Jm J-k ijmj'

The comparison of this equation with (1864 ) indicates that the

concluding propositions of § 356 may be applied to this case, pro-

vided the negative sign is introduced as a factor of all the deriva-

tives taken with respect to (/£ ). Hence, if the number of the

functions (f{ ) is the same with that of the variables (a?*)

,

2 ± DX
FBSFX D,Jm = (-)n+1(&nZ + DfFDfiFl \Fn ,

and

6ft. / \» + i 2+Dx FD'i Fi -D*nFn

n ~^
> Z±DjFDf

x Fx D/n Fn
'

364. If the number of the functions (/f ) exceeds that of the

variables (x
t) and is p -j- 1 instead of n -f- 1, let (Fj) be the form of

(Fj) when the last p— n of the functions (/,) are eliminated from

it by means of the last p— n of the given equations. In this case
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it follows from the reasoning: of S 354 thato

= -2" + D FXDX F} Dx f1 s + Df F ,,!>/ F , „ -0/ F

,

2 ± DfFDfx
Fx

JDfpFp

But the equation (18926 ) is applicable to this case if (7^) is

changed to {F}), and, therefore, the introduction of a common factor

into the terms of (18926 )
gives, by means of the preceding equations,

05 _ / y,+ i 2+D^D^ F1 D*HFn Dfn+l Fn+1^»— V ) 2±DfFD/l F1 D/p Fp

365. There are various interesting and instructive relations

between the partial determinants of functions which have been

developed by Jacobi, and which will be found useful in discussing the

theory of differential equations. If the number of the functions

(fi) as well as of the variables (x
t ) is increased to m -J- n -J- i, let

')= 2 + D f-D* A D* f i^ f ...

If, then, from the function (fn+i), all the variables x, xx ,

xn _ 1 are eliminated, and the functions f,fi fn -\ introduced

in their places, and the function (f„+i) thus transformed is denoted

by (fl+i), the values of 2B become

k ^^K— 1 n+kJ n+ i
•

The determinant of the (m -f- 1)
2 functions (Bff) is, con-

sequently,

S+ Q&Q&'MZ ^^=6g,m+^2-\-Dx f
1 Dx fi, ,

Dx fi.
.^" J_ 1 2 ^ m <Jton— 1 -" J_ „J n n+ lJ »+ l n +m ./ »-)-»i •
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But it is obvious that

^n + m ^rt —1— X J n +mJ n + m>

whence

^±a«$ »a ,, =-«-i«.+».

3G6. If *$$ denotes the value which (^°„_ 1 assumes when all

the derivatives relatively to x
t
are changed into the derivatives rela-

tively to xn + k , it is evidently the factor of Dx.fn+ . in the value of

— SBjjp. In the value, therefore, of the determinant

2 + SBSBj 2BW,

the factor of I?x/,A,/»+i A /„+„, is

(_)»+i^-j
: <e<igJ <®<w.

But the factor of the same quantity in ^n+m is, by inspection,

( )
m + 1^-\-Dx fDx f, . .Dr f Dx f .... A: f ,

V / _!_ m+lJ m+2^1 m+»^ii-r

It, therefore, follows from (191 5 ) that

2 ± 2B SB} SBW

V ; n+ 1"*- J_ m + 1/ m+2/1 m+n J n— 1"

367. The factor of^_JnJri in the value of 0Bj? is — ^jf"
1
',

and therefore the determinant

(—)-^ + gB<@^ <8£-«
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is in (19112 ) the factor ofDxfn+1 D\fn +2,
Dx

m-Jn+m > But the

factor of this same quantity in §&>n+m is, by inspection,

( f^ +A fDx f, .
Dx f ,DX f Dx f

\ J
—" J_ n+ lJ n+ lJ 1 n+ m J m — 1 mJ m „ J n

= C
)"l»+l)2+ Dx fDx f, ...... Dx f.

V )
-"* _!_ mJ m +lJl m+nJ n'

Hence it follows from (191 5 ) that

2±®<®
1% ^ _1)

— (_V

+

1 <m« .2+ Dx fDx /. Dx f .

368. By the same process it will be found that, in general,

;s + SB SB;®? 0fc1)C@/^+1
(^- 1}

— ( V'+ '6j5"' ^ + -0* fDx f Dx f ,. .

369. If the factor of S^ in the value of (191 29 ) is denoted by

(

—

ykk , this expression gives

2 + <&%% «a-«= ^(*A)

in which neither the quantities
(

(®k
i]

), nor any function of them, such

as Xk , contain the derivatives of/„. Hence the derivative of /„, with

respect to xn+k , only occurs in this expression because it is in ^k , in

which its coefficient is ^B_!, so that the term of the preceding

expression which contains this derivative is Xk %>n_ 1
Dx

hfn . If
fj,k

is the coefficient of the same derivative in

2 + Dx fDx f. ... Dx f

the equation (1928 )
gives
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The comparison of (1929 ) with this equation gives

It is to be observed that, from their definitions, the functions

fik and 2BA. are both of them partial determinants of the same

functions /, /i, • • . ./„_i the former being taken with respect to

the variables xm , xm + 1 .... xn + m excluding xn+k , and the latter

being taken with respect to the variables x, x1 . . . . xn _ 1 and x)l+k .

In the case, therefore, in which m and n are equal, these

two determinants are formed with respect to an entirely different

set of variables, and each of the variables xn+k is taken in succession

from the set xn , xn+1 x2n in forming \i,k and combined with the

set x, xx xn_ x , in forming 2BA .

370. The first member of (193 3 ) does not contain any deriva-

tive of /„ with respect to a variable of which the inferior number

is less than m. The factor, therefore, of such a derivative as Dxfn

in the second member vanishes identically ; which is represented

by the equation

2tfoZ ± D*n+k fD*Jx
DxJ% n̂_1/„_ 1)= 0.

371. If in the equation (191 3 )

n= 1,

this equation becomes, by writing n— 1 for in,

%>n=^2±BxJ\DxJl
DxJl

But

25
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so that if x is supposed to be a function of the other variables and

/ to be equal to x, these equations are reduced to

zk
(oA

kn.J) = zk {^k
D.kX ) = z±Dxj\nxJi

bxji

= Qk + £k
{cA

k
n,

l
x);

1

in which

and, by (1763 ),
— okk is deduced from ok> by changing the deriva-

tives relating to xk into the derivatives relatively to x. This

equation is derived from Lagrange.

372. In the greater portion of these formulas upon functional

determinants, the derivative taken with regard to either of the

variables may be supposed to be frequently repeated, so that D x

may be substituted for Dx , and h may even be zero. Thus if, in

§ 365, D x is substituted for Dx , and if

n= l

the equations of that section are reduced to

=fD*Ji-fiD*J

Hence if

—f2J) A

*'= 7
and if n is written for m-\-l, the equation (19031 ) becomes
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If each of the functions (/•) is multiplied by t, the values of

the functions (/,) remain unchanged, and therefore the value of the

determinant

is multiplied by t
n + l

.

373. A system of functions (/•) can always be found such that

their determinant, with respect to the variables (#,-), may be equal

to a given function IT of those variables. For, if all these functions

except /„ are assumed at pleasure, and if f\ represents the form

of /„ when all the variables except xn are eliminated and the

remaining functions (/•) are introduced in their place, the required

determinant becomes

«.=&*_!#.. /i= J7.

Hence,/*, is by (18710 ) determined by the integration

in which it must be observed that the quantity under the sign of

integration is expressed in terms of/,/! fn -i and xn .

In the case of

77=1
this formula becomes

/i =/.«£. =/».-.

The substance of all these investigations upon determinants is

taken without important modifications from Jacobi.
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MULTIPLE DERIVATIVES AND INTEGRALS.

374. The functional determinant is shown by Jacobi to be of

singular use in the transformation of multiple derivatives and inte-

grals. The expression of these functions is facilitated by the

notation

and

J)n-m+l__
Jm • • ' • VAnSm+ l

f*n—m+ l

1

Pn— m-\-l

Jm " ' '
' Jfm/m+l

'Jni

•Jn

If then

£2 = D}+] W,

a new variable xn , which is a given function of all the variables, f{

may be substituted for either of them as /„ in W, and the new

derivative is given'by the formula

" S2BxJn= I)} BXn W.

Another new variable xn _ x may next be introduced instead of

/n_i in the same way, and this process may be repeated of substi-

tuting successively for each variable ft
a new variable wi} which

shall be a function of all the other variables remaining in the

derivative at the instant of the substitution of x{ , until, finally, an

entirely new set of variables shall be introduced into the derivative.

The final form is

^DxfDxJl D.rJn= D'^W.

From the comparison of this form with § 351, it appears that



— 197 —

the factor of £2 is identical with the determinant of that section.

From the reasoning of §§ 353 and 354, it follows that the determi-

nant is not changed by substituting in either of the quantities (/; )

regarded as functions of the variables (#,•) the values of any or all

the preceding functions in terms of these variables. But each of

the functions (/,-) contains, in its present form, none of the succeed-

ing functions ; so that, after this substitution, it is expressed in terms

of (.r,) . Hence

375. The preceding equation gives, for the multiple integral

in which the limiting values of (a?t-) may be supposed to be constant,

while those of (ft) may not be constant. If then IT is determined

by the integration

n=ffn,

so as to contain neither of the variables (#;) except as they are

involved in (/,), it is by § 353 unnecessary to have regard to the

derivatives of IT otherwise than as they are dependent upon / in

finding the value of the determinant, which is the first member of

the following equation, and which therefore becomes

s+n.n^fi^fi DxJn = %,
nDfn= %v

a.

But by (189 8 )

Z±DxTTDXiflDxj2
DXnfn= v^.(/7o4,);
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and, therefore,

//.!;
fl =*J.^S(^A)=J?./;:.M,.i+1

....Kms (7raki),

in which limx denotes that the function to which it is prefixed is

referred to the limiting values of xk , so that the difference of the

values of the function at these two limits is represented by this

notation.

But since

it is evident from (19713 ) that

£ \imx {IfQk)= limxJf
n

II;

and a similar equation may be given for each of the terms of the

last member of (1983 ), whereby this equation is reduced to

The multiple integral of the (n -\- 1) th order is thus reduced to

2ra -f- 2 multiple integrals of the wth order, and this reduction may

be continued until the whole process is made to depend, upon single

integrals, of which one is performed with reference to /, and the

number, performed with reference to any other of the variables (/;),

is

2l (n-\-l)n (n+ 2— i).
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II.

SIMULTANEOUS DIFFERENTIAL EQUATIONS AND LINEAR PARTIAL DIFFERENTIAL

EQUATIONS OF THE FIRST ORDER.

37C An equation

/=0,

of which the derivative vanishes identically, by means of the

simultaneous differential equations represented by

in which (X,) are given functions of the variables (#,), is called an

integral of these equations. It is a general integral if it involves arbi-

trary constants, and a particular integral if it does not involve arbi-

trary constants. When it involves an arbitrary constant, it is more

conveniently expressed in the form

f=a,

in which a is an arbitrary constant.

377. A function /, which satisfies the linear partial differential

equation of the first order

is called a solution of this equation. By means of the notation

r.= i,(JrA)

' m,n -~"(\,-' 1 j i)
"
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this equation may be written

^./='0.

378. The first member of every integral, expressed in the form (1998 )

or (19919 ), of the simultaneous differential equations (199n ) is a solution of

the partial differential equation (2002 ) ; and, conversely, every solution of

the partial differential equation (2002 ) is the first member of an integral of

the simultaneous differential equations (1998 ), and its second member is any

constant. For the derivative of (1998 ) or (19919 ) vanishes by the

substitution of (199n ), which gives

2
t
(l>.

l
fDxt)= rnf=0,

that is, / satisfies the equation (2002 ). Reciprocally, the satisfying

of this condition is all that is required in order that (19919 ) may

be an integral of (199 8 ).

379. If the equation (199 8 ) is solved relatively to x, so as to

express x as a ftfnction of the other variables (#,-), the equation

(19925 ) becomes

x— r 1
,
nx= o,

which is distinguished from (2002 ), because the function x, of which

the derivatives are taken, is involved in the functions (-X*), whereas

/ is not involved in these functions.

380. A solution of (2002 ) which shall, for a given equation

between the variables, become equal to a given function, may be

determined by means of series. For this purpose, let the given

equation be

t= r,

in which t is constant, and t a function of the variables, and let the



— 201 —

solution become a function c/> of the variables when this equation is

satisfied. If then t were assumed to be also one of the variables

of the given equation, and such that in forming the simultaneous

equations

Dt—1;

by which the simultaneous equations become

D
l
x

i
= Xi ;

and the given partial differential equation is

assume the functional notation

=—//.,

and the integral of the partial differential equation with reference

to t is

/—9— D/=0,
which gives

(1— D)/=y»

This value of/ taken from Cauchy, expresses a true solution of

the given equation if '(p is finite for all values of i and vanishes

when i is infinite, which is always the case for sufficiently small

values of t— t .

381. There are n independent solutions of the partial differential

equation (2002 ) and no more than n independent solutions.

26
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First. The equation (2002 ) has n independent solutions. It

has been proved in the preceding section that it has one such solu-

tion. Let it then be assumed that m such independent solutions

have been obtained, denoted by fn , fn -\ /»-m+i- These

independent solutions may be substituted for the m variables,

xn , xll_ 1 xn_m+1 , with regard to which they are independent

;

and iffX:f denotes the value of/ when expressed in terms of the

new variables, the equations of substitution are represented by

n—m -\- 1

But since

the substitution of these equations in (2002 ) reduces it to

r

in which the functions fk may be regarded as constant. This

reduced equation has, then, a solution by the preceding section

;

its solution does not involve the variables xn , xn _\ xn_m+l ,

and is independent of the given m solutions. The given equation is

then proved to have another solution independent of the given

solutions ; and this number may again be increased by the same

process, until the n independent solutions are obtained, fi,f2 • . • • ./„.

Secondly. The equation (2002 ) cannot have more than n inde-

pendent solutions. For if there are (n -\- 1) solutions (/,), each

gives an equation represented by

which may be regarded as a linear equation between the quantities
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(X;). By the usual process of elimination, if $% denotes the

functional determinant of (/,) with respect to the variables (#<),

these equations give, by § 340,

But all the quantities X
t
do not vanish, and, therefore,

^„= o,

or the (n -f- 1) functions (f) are, by § 355, not independent of each

other.

382. It is evident, from the preceding demonstration, that any

function of the solutions of the linear partial differential equation (2002 ) is

itself a solution of that equation.

383. A system of finite equations, of which the derivatives

are satisfied by the simultaneous equations (19912 ), is called a system

of integral equations of the simultaneous differential equations. This system

is said to be general, when, by the successive elimination of the con-

stants, it can be reduced to a form, in which each equation involves

an arbitrary constant not included in the other equations, and it is

complete when the number of finite equations is equal to that of the

given differential equations. When reduced in the method just

proposed, the general system is represented by

in which the functions (</>,) are independent of the arbitrary con-

stants (pi). The particular system is represented by a set of similar

equations, combined with other equations, which involve no arbitrary

constants, and which are represented by
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384. Each equation of a general system of integral equations,

reduced to the form (20324 ), is an integral of the given simultaneous differ-

ential equations. For the derivative of (20324 ), when reduced to a

finite equation by the substitution of the given differential equations,

is independent of the arbitrary constants (/?;), and vanishes, there-

fore, independently of the equations themselves in which these con-

stants are involved. When the system is general, therefore, the

functions (^,) are functions of the solutions (f) of the partial differ-

ential equation (2002 ).

385. If the system is particular, and if the number of the

equations (20331 ), which are free from arbitrary constants is m— n,

the same number of variables can be eliminated, by their aid, from

the functions (X
t ) and (<p,). The equations, to which (20324 ) are

thus reduced, are integrals of the simultaneous differential equations,

represented by

Dxi= Xi,

in which the variables (%?), of which the number is m, are those

which are not eliminated from (X^) and ((/),)„

386. The system of equations (20331 ) is, by itself, a particular

system of integral equations of the given differential equations,

which does not contain any arbitrary constant. For the derivative of

either of them, involving no arbitrary constant, must be satisfied by

means of the equations (199 12 ) and (20331 ), without any aid from the

equations (20324 ). The derivative of each of the equations (20324 )

is, for the same reason, satisfied by the same equations (19912 ) and

(20331 ), without the assistance of the equations (20324 ).

387. The functions (f) may be supposed to be introduced as

the variables instead of the given variables (%{ ). By this substitu-

tion, the proposed system of differential equations assumes the form
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Dx= X,

By this same substitution in the equations (203 24 ) and (20331 ), the

equations (20331 ) may be readily reduced by processes of elimination

to an equal number of equations of the form

fi=Fi}

in which the functions (F
f ) do not involve those of the functions (/,)

of which the values constitute the first members of these equations.

Hence the derivatives of these equations, reduced to a finite form

by the substitution of (2052 ) become of the form

D(Fi—fi)= XDxFi =0,
or

DxF;
= 0.

But this equation does not involve either of the functions (/,)

which are not contained in (F{), and, therefore, cannot depend upon

the equations (205 8 ). It is, therefore, identical, the functions

(F;) are independent of x, and the equations (20331 ) from which they

are derived, contain only the functions (f). The substitution in

(203 31 ) of the arbitrary constants (a
( ) for the functions (f) to which

they are equivalent, reduces these equations to conditional equa-

tions between the arbitrary constants. These equations (203 31 ), there-

fore, represent the conditional equations, to which the arbitrary constants of

the integrals of (19912 ) must be subject, in order that they may coincide with

the particular system of integral equations, to which the equations (20331 )

belong. After the introduction of the functions (f), instead of the

variables (.r
( ), into the functions (cp^, these functions (cp

{ ) can, by the
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substitution of (2058 ), be freed from all the functions (/,) which are

not contained in (i
:̂ ). The derivatives of (c^) when thus reduced

become, by means of the equations (2052 ), of the form

I)cp
i
= XI)x cp

i =0,

which must vanish independently of the equations (205 8 ), and,

therefore, the functions ((p{ ) do not involve x. Hence, by the substitution

°f (%i) for {fi) the equations (20324 )
give the values of (/^) in terms of (a

t ).

388. From any one given integral equation, denoted by

w =

the whole system of integral equations, to which it belongs, can be

readily obtained. For the finite equation, to which the derivative

of this equation is reduced by the substitution of the given differen-

tial equations, is, from the very nature of the problem, another of

the required system of integral equations. The derivative of this

new equation gives a third integral equation, and the continuation

of this process leads to the final determination of the whole of the required

system of integral equations.

389. This process of deriving a system of integral equations

from one of its component equations, affords the means of testing a

proposed equation, and ascertaining whether it be an integral equa-

tion. For as great a number of independent integral equations is

not admissible as that of the variables themselves ; if, therefore, the

application of the process to a proposed equation conducts to a number of

independent equations equal to that of the variables, it is a sufficient proof

that the proposed equation is not an integral equation.

390. When a system of integral equations contains superfluous

arbitrary constants, that is, constants, which remain in the functions

((pi), after the system is reduced to the form given in § 383 ; such
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constants supply the means of obtaining other integral equations

which are not contained in the given system. Thus if (206n ) denotes

an integral equation, from which the proposed system may be sup-

posed to be derived, so that, reciprocally, this equation may be

derived from the proposed system, and, therefore,

in which F is any arbitrary function ; and if the notation is adopted

^=\T,(jvDft
ii),

in which arbitrary constants are denoted by (/,) ; the equation

is also an integral equation. For the equation

Du=

gives, by direct differentiation,

But it is obvious, from the form of (2076 ), that the derivatives

of u with reference to those of the constants (/?.;), which are elimi-

nated from the functions (9);) and to which these functions are equal,

are, themselves, functions of (cp
{
— /5 £ ) and 1/^ ; whereas the deriva-

tives of u with reference to the superfluous independent constants

(/?,-), which are contained in the functions ((jp £ ), are not merely func-

tions of (cfi— fa) and i|v Hence the integral equation (207i3 ) is a

new equation, if it contains the derivative of u with reference to

either of the superfluous constants (/?,-), and there are as many of

these new equations as there are superfluous constants. But the

number of independent integral equations thus obtained, is, of course,
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subject to the condition, that it cannot exceed the number (n) of

the independent solutions of the equation (2002 ).

391. Of all systems of integral equations, that, in which the

arbitrary constants are the values which the variables themselves

assume for a given value of one of them, deserves especial consider-

ation. To simplify the discussion of this case, and place it in the

position, in which it will best illustrate the problems of mechanics,

the variable {x), of which the value is given, may denote the time,

and the given time is the epoch or origin, at which the elements of

the system of variables are given, and from which the variations are

estimated. The values of the variables at this beginning of time

may be termed their initial values, while those at any subsequent

time are their final values. The differential equations express the

laws of change, under which the variables pass from their initial to

their final values, and are equally compatible with any proposed

combination of initial values. The initial values are, therefore, ivholly

arbitrary and independent. Their number is equal to that of the variables

(%i), and, consequently, equal to the ivhole number of independent arbitrary

constants, which is requiredfor the complete integral equations.

The epoch is also arbitrary, and seems to introduce an addi-

tional arbitrary constant. But this constant is obviously superflu-

ous ; it corresponds to the arbitrary position of the problem in

time, without involving any modification of the essential conditions

;

and is the complement of the arbitrary element, which is not

expressed, and in reference to which the derivatives in the equations

(19912 ) are supposed to be taken.

392. The passage, down the stream of time, from the initial to

the final values, conformably to the conditions of change expressed

in the differential equations, may be imagined to be reversed and,

in a retrograde transit, the same laws of change would, by their

reverted action, restore the variables to their initial values. In the
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direct action, the initial values constitute the cause, and the final

values are the effect ; whereas, in the reverted action, the final

values become the cause of which the initial values are the effect.

Hence it follows that, in any integral equation between the final and the

initial values of the variables, the final and initial values of each variable

may be mutually interchanged, and the resulting equation, if not identical with

the given equation, is a new integral equation. In making this change, the

sign of the variable, ivhich expresses the interval of time, must be reversed,

because the interval, which is positive with reference to the initial

epoch, is negative with reference to the final epoch. If, indeed, the

interval were expressed, by means of the initial value (x ) and the

final value (x) of the time, in the form (x— x ), its sign is directly

reversed by the mutual interchange of the initial and final values,

which transforms its expression to (x — x).

393. Let F° denote the form, which any function F of the

final and initial values of the variables assumes after the mutual

interchange of these values ; and let

#°= fjpi,

represent the system of integral equations reduced so that the

functions ((/),) do not involve the initial values (%{). The inter-

change of the initial and final values in this system, produces a

system of integral equations in which each variable is expressed in

terms of that one variable, which represents the time, and of the

arbitrary constants which are the initial values of the variables.

This new system is represented by

394. The discussion has, hitherto, been limited to differential

equations of the first order, but it can, readily, be extended so as to

27
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embrace those of higher orders. If, for instance, the equations are

given in the form

in which the functions (X
{) may involve all the derivatives of the

variables (x
t ), which are of an order inferior to (p?), each of these

inferior derivatives may be regarded as an independent variable,

expressed by the form

x^= D]x
i

.

With this new system of variables the given equations are

replaced by the differential equations of the first order, represented

by

Dx{?- 1)= z {

?\

Dxp~^=X
i ,

Dt=l.

The number of these differential equations of the first order is

easily seen to be (-2^ -f- 1)

.

395. When the differential equations are not given in the

normal form (2103 ), they can always be reduced to this form. For

this purpose, each of the equations, which contains none of the

highest derivatives of the variables, must be differentiated as many

times, denoted by a,, as are necessary to raise it to an order, which

contains such derivatives. If the given equations are represented by

the equations, which are thus derived from them, may be expressed

by
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in which a • is zero, when it is applied to an equation which is not

differentiated. Each of the derived equations contains at least one

of the highest derivatives of the variables, which may be expressed

by Z^i+aiXi. The functions ((/),) should be independent functions of

these derivatives ; whenever this is not the case, such derivatives

can be eliminated from the derived equations, and one or more

resulting equations will be obtained in which they are not involved.

The independence of the functions ((/>,-) can, however, be directly

tested by means of their determinant (18529 ), which vanishes when

it is taken with respect to quantities, for which these functions are

not independent.

When the functions ((/>,) are independent with respect to the highest

derivatives contcdned in them, the required normal equations (2103 ) are

obtained from the given equations and their successive derivatives of an order

not higher than those of the derived equations (21031 ) by the usual process

of elimination. For,

First, there is a sufficient number of equations, because the

number of equations, added to the given equations by differentiation,

is 2^ which is the same with the number of derivatives, superior

to the order (p{ ), the highest of which are to be retained in the

normal equations.

/Secondly, these equations are independent of each other in

respect to the derivatives of the order (p{ ), and of the superior orders,

and, therefore, sufficient for the required elimination; because if any

of the equations of the inferior orders were not independent, their

derivatives, which are included in the group, (21031 ) would not be

independent of each other.

396. When the functions (y,-) are not independent with

respect to the highest derivatives contained in them, each of the

equations of an inferior order, obtained from- the derived equations

by elimination, can be substituted for one of the derived equations,
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which is necessarily involved in the elimination by which the

reduced equation is obtained. If, therefore, one of the given

equations is involved in the elimination, the order of the given

equations is reduced by the substitution of the given equation. But

if all the equations, necessarily involved in the elimination, were

derived by differentiation from the given equations ; and if a

denotes the smallest number of successive differentiations, by which

either of these derived equations was obtained ; the reduced equa-

tion is obviously a derivative of the order («) of an equation,

which can be obtained by direct elimination from those of the

given equations, which are of an order inferior by (a) to the

derived equations, combined with the derivatives of the other

given equations of an inferior order. This reduced equation of

an inferior order may, then, be substituted for either of the given

equations of a higher order, upon which its elimination neces-

sarily depends. In all cases, therefore, in ivhich the functions (<jp,-) are

not independent ivith respect to the highest derivatives contained in them,

the order of the given equations can he reduced by the substihdion of

an cqucdion of an inferior order obtained by elimination between some of

the given equations and the derivatives of others, which are of an inferior

order.

397. That the normal forms, obtained by the process of § 395,

are, as it was remarked by Jacobi, those which are obtained with the

least complexity of operation, is easily perceived without any

attempt at demonstration. It is, also, obvious, by what modes of

substitution other normal forms can be derived from these, which

are equivalent to them in the aggregate order of differentiation, but

differ in the distribution of the derivatives. Thus if either of the

functions (Xi) is of an order inferior by (qi) to that of the given

equations, it is by (q{ ) successive differentiations elevated to an order

which contains one or more of the highest derivatives involved
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in the normal forms. The ($-,-) th derivative of the equation (2103 ),

after the values of the highest derivatives, given by the normal

equations, are substituted in its second member, so that it is

expressed in the form

D^ Xi= X\ "
5

may take the place of this equation in the system of normal equa-

tions. If then Dr/~ qiXi
' is one of the derivatives contained in (X

{ ),

and if the normal equation (210a ) is reduced to the form

it may take the place of the equation

U t' %i' —— Xi/

in the group of normal equations. By means of (21314 ) and its

derivatives of an order inferior to the (<7;)th, all the other equations

may be reduced so as only to contain derivatives of (%f) of an order

inferior to the (pv— <7,)th. The normal system is by this means trans-

formed to another normal system, in ivhich the highest derivative of one of the

variables is increased, just as much as that of another of the variables is

decreased.

398. The repetition of the process of the preceding section

may be so conducted that one or more of the variables shall finally

disappear from the system of normal equations, and the number of

equations will be simultaneously diminished to the same amount as

that of the variables. The process may be continued, indeed, until

only two variables remain, one of which is the variable (t), with

respect to which the derivatives are taken ; but the reduction to

this form involves the greatest prolixity and complexity of computa-

tion. There are special cases, however, and particularly that of
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linear differential equations, in which this mode of reduction is

peculiarly advantageous.

The principal portion of this discussion of differential equations

is the combined result of the investigations of Euler, Lagrange,

Cauchy, and Jacobi ; but an important addition to these researches

is now to be developed, for which geometry is eminently indebted

to Jacobi.

THE JACOBIAN MULTIPLIER OF DIFFERENTIAL EQUATIONS.

399. The function, which was called by Jacobi the neio multiplier,

in order to distinguish it from the Eulerian multiplier, but which, on

account of its superior importance, is here distinguished simply as

the multiplier of a linear partial differential equation of the first order

represented by (2002 ), is that function which, multiplied by this equation,

renders its first member an exact functional determinant (^„) of the indefi-

nite function (/) and of n undefined functions (f) with respect to the (n -f- 1)

variables (x
( ), zvhich are the independent variables of the given equation. On

account of the mutual relations of the partial differential equation

(2002 ) and the simultaneous differential equations (19912 ), this same

function may also be regarded as a multiplier of the differential equations

(19912 ) ; and, for the same reason, it may be considered as a multiplier

of the linear partial differential equation of the first order (20020 ) of n

independent variables.

400. If either of the functions (f), or any function of these

functions, is substituted for /, the determinant vanishes, by § 352,

and the equation (2002 ) is satisfied. The functions (f) are, therefore,

n independent solutions of the equation (2002 ).

401. If the multiplier of the equation (2002 ) is denoted by

^®Mt>, the condition, by which the multiplier is defined, is expressed by
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the identical equation

The equality of the coefficients of Zk./in the two members of

this identity is, by the notation adopted in the theory of determi-

nants, expressed by the formula

The substitution of this value of o/b^in the equation (1892 )
gives

the equation

2
i
DXi(^Ms>Xi)= 0,

"which is a linear partial differential equation of the first order, by ivhich

the multiplier is analytically defined.

402. The defining equation of the multiplier may by (19912 )

be developed into the form

^(XiD^.^Ms -f yJztioDXtXi) = S^D^ys^fLD^+^A.I;)
= 0,

or

fn ^Ms -f idA> ZiDz.Xi= D ^((d _j_ <sdi>S^Xt= .

This equation divided by <J$Ms becomes

Fn log ob4 -f SiD^Xi= D log oaA _|_ S^X,= .

If all the variables are regarded as functions of x, and if x is

introduced in place of the element of variation, by means of the

formula

Dx= X,
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the preceding equation finally assumes the form

XDX log ^Mo + ZiD^Xi= ;

which is an equation involving common differentials, by which the multiplier

is analytically defined.

403. The equation (2158 )
gives, by (1948 ), when

t= 0,

the value of the multiplier in the form

JUMd X '

404. If the values of (/,) are expressed in terms of (#,-), by

means of the equations (189]2 ), and if, by reason of the integrals

(19910 ), the constants (a,) are substituted for (/;), the value of the

multiplier becomes

^m — V ) X'^Da^D^F, £anFn
>

in which the sign may be rejected at pleasure.

405. In the particular case, in which the equations (189]2 )

assume the form

%i= (pi,

in which the functions (g^) involve the arbitrary constants (a,-),

together with no other variable than x, the value of the multiplier

is by (18912 ) reduced to

<£}Md XS±D
<h^ Az2^ F>an% ~~ X2+. Da^Da.^ Da,xn

1 1

XS±DA x
yDhxi Dfnxn

— Xqj^'>
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which equation might have been directly deduced from (216n ) and

(18710).

406. If the functions (F
{ ) are given independent functions of

(/,), they are independent solutions of the equation (2002 ) and give

a multiplier (uatfc,-) different from >J2ii, and which is determined by

the equation derived from (216n ),

X^=S± DXlFxDXiFz DXnFn .

This equation, by means of (18614 ) and (216n ), assumes the form

X^Mo
i
=%1}a2±I)flF1 I)f2F2 DfnFn

= X^M>Z±D
fl
F1 I)fiF2 DfaFn ,

which gives

^= Z±DAFxDf2
F2 DfaFn .

The second member of this equation is a function of the func-

tions {fi), and may be an arbitrary function of these functions, so

that it can have n independent values. The equation, therefore,

serves to determine n -J- 1 independent values of the multiplier

(vjb^d,.), which is, by (21512 ), the whole number of independent values

of which it is susceptible. Hence, the ratio of any two multipliers is a

solution of the equation (2002 ). It also follows from this argument that

every solution of the equation (21512 ) is a value of the multiplier.

407. In the particular case, in which

2,1).^= 0,

one of the n -\- 1 solutions of (21512 ) is reduced to a constant, so that

in this case, the constant must, contrary to the ordinary usage, be

included among the solutions of the equation. The constant may

28
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be supposed to be unity, and, therefore, one of the multipliers of the equa-

tion (2002 ) is unity, ivhen the condition (2172V ) ^ fulfilled, and all the other

multipliers are solutions of the equation (2002 ).

408. When the solutions (/{ ) of the equation (2002 ) are known,

the corresponding value of the multiplier may be determined from

(216n ). But it can be derived by a shorter process, when either

of the solutions (usM^.) of (21512 ) is known, and also the initial value

of oh>. Thus if II denotes the ratio of ua^ to <snMo, the equation

(216„) gives by (194 7 ),

When the initial values are substituted in this equation with

the notation of § 393, it becomes

qAd°
'

The value of IT may, by the elimination of the variables (xf)

be reduced to a function of the functions (//) ; and, if in this

expression the functions (f) are substituted for their initial values

(/!), the value of H is reproduced. For the function, which is

obtained by this substitution, is a function of (/*) and therefore a

solution of the equation (2002 ) ; and it is, moreover, that particular

solution, of which the initial value is the given function JI°.

409. In the especial case, in which the initial values of (f) are

the variables (x
{ ), the value of ok>° is obviously reduced to unity and

the equation (218u ) becomes

410. When, in the differential equations (199^), the arbitrary
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element of variation is assumed to be the variable x, the value of X
is unity ; and, in this case, the equation (218n ) becomes

IT" == ^^

which in the case of the preceding section is reduced to

and when, moreover, the equation (21727 ) is satisfied, so that one of

the multipliers is unity, this value is still further reduced to

n°= 1.

411. The arbitrary constants («,-) may be substituted for the

functions (/,) in the equation (218n ), when it is regarded as result-

ing from the integrals of (19912 ). By this substitution IT becomes a

function of the arbitrary constants, which may be represented by C,

and the equation gives, by means of (187i ),

®hn = Z±DaiXxDa2
X2 DaXn =

<£}MsiX'

The logarithm of this equation becomes by the substitution of

(2162 ), and including C in the constants of integration,

\0gZ±Da
1
X1 I)a2X2 DanXn= log^-+ log C— log vflA,

in which all the functions (X
{ ) can evidently be multiplied by any

common factor, without disturbing the equality.

412. In the especial case of

X=l
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the preceding formula becomes

log 2 ± Da^Da, Da
n
Xn=J2 i

DxXi
.

413. When simultaneous differential equations are transformed

from one system of variables to another, the multiplier usually under-

goes a change at the same time, but there are conditions, to which

the arbitrary element of differentiation may be subjected, and under

which the multiplier remains unchanged. Thus if the new system

of variables is represented by (?<>;), if the equations (19912 ), in their

new form, are represented by

in which the accented sign of differentiation refers to the new

arbitrary element of differentiation, and if

u— a
15— °~>

the values of
(
W

t ) become, by (1992S ) and the preceding formulae of

this section,

Wi= GDiVi= G2k (Dxk
iv

{
Dxk )

= G2k{XkDXk tvi) = GFn iv
i

.

This value of ( Wi), in combination with the formulae (19928 ) and

(2152 ), gives

2
{ ( Wt

DWif) = G2k [Xk2{
(DWifDXkwt

)-\

= G2k (XkDxJ)
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If oN is a multiplier of (220x2), the defining equation of (2152 )

is, in respect to this multiplier,

oN-^,.( WtDvj) = Z±

D

wfDWlfx DwJn .

The ratio of the equations (22027 ) and (221 3 ), reduced by means

of(18613) and (187io), gives

G df__ Z+DJD^f, Z>„„/„

-*-
I
UW X ±Jw^X-y JJw

n
%n

= {2± DxwDXlwx D,wn )-\

If, therefore, the multipliers gN* and ^(t are equal, the value of

G becomes G\ if
}

G'= JS"+DwxDWlxx DWn xn

= (JS" +DxtvDxx
ivx Dx

n
ivn

)~ x
.

414. The equation (21525 ), applied to the new system of varia-

bles (tOf), gives, by means of this equation and (22017 ), if the multi-

pliers are, for the instant, assumed to be equal,

S
t
Dw . W

i
=— D' log «jafl> = —G'D log <sM>

= G'ZiD^Xi.

415. If the arbitrary element of differentiation is supposed to

be the same in both systems of variables, the values of G, W
t , and

cN* become

G—l,



— 222 —

416. If the first m -j- 1, only, of the variables (x
{ ) are

exchanged for the new variables («#,), which limitation is expressed

by the formula

the value of G' is abbreviated to

G'=S+DwxDWlxx DWmxm

= {Z±DxivDXlWl DXmwm)-\

417. Hence if the arbitrary element of differentiation, com-

mon to the two systems, is one of the variables and is expressed by

t, so that the remaining variables are still denoted by (x
{ ) and (w,),

the formula (22115 ) continues to express the value of G'

.

418. If the last {n— m) of the variables (tVi) are solutions of

the equation (2002 ), the corresponding values of the functions
(
W

{ )

vanish by (22O22). If the multiplier is also supposed to remain

unchanged, the partial differential equation (2002 ), by which it is

determined, is reduced to

m

The arbitrary constants (/?,-) may, therefore, be substituted for

the solutions (^), and the value of G' becomes

G =2 -T Dw XJJw1
X1 ^wmXm-^Pm +iXm+ l-^'Pm +2Xm+ 2 -L'PnZ'n'

419. But if, instead of the equality of multipliers, the ele-

ments of differentiation are identical in the systems, the defining

equation is expressed in the slightly different form of

ZiDlVi (;
G'<sdkW

i)= 0,
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in which the functions
(
Wt) and the multiplier (oN*) are given by

(22V).
420. If the variables (w>€) which are retained, coincide with

the original variables (x
{ ), the equation for the multiplier becomes

m

o

in which

G=2± I>pm+1z,n+1 Dpm+2xm+ 2 Dpnxn

= {2± Dxm+1wm+1DXm+2wm+2 DXnwn
)- x

.

By the formulae of this and the two preceding sections the

multiplier of the system of differential equations, to which a given

system is reduced by means of any of its integrals, can be obtained

from the multiplier of the given system. This will, soon, appear to

be one of the most important properties of multipliers.

421. If the given differential equations are of an order, which

is higher than the first order, and have the normal form (2103 ), the

equation (21525 ), by which the multiplier is defined, is simplified by

the consideration that

i

The multiplier of the given equations, or of the equations (21015 ), by

which they should be replaced, is, therefore, determined by the equation

2) log ^tt>
-f- Ji^-nJ;= 0.

422. If the functions X
{
do not involve #/p ;

-1) or if, in general,

2
i
Djp-DX

i
= 0,

unity is one of the values of the multiplier of the given equations.
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423. If the given equations have not the formal form, but

have the form

such that they involve no derivatives of a higher order than the nor-

mal forms, to which they are reducible by immediate elimination

"without differentiation, the equation for determining the multiplier

assumes a simple symbolic form, by means of the notation

For it is to be observed that each of the subsidiary terms, of

which the second term of the equation (22325 ) is the aggregate, is to

be obtained from the equations (2243 ), by taking their derivatives

relatively to x(p~ 1] on the hypothesis that a$i) are functions of this

variable, and thence determining, by elimination, the values of these

subsidiary terms.. Hence if

ffi— DsPi-Vatei)

the derivatives of (2243 ), relatively to x(/'i~
1) are represented by

(17724 ), provided the letters t of that equation are accented * times,

and the number k is written below the u. From the comparison of

(18018 ) with (224n ), it appears that (i,k) vanishes in the present case,

and that the sign of d is to be reversed, whence the equation (18026 )

becomes

2SbtW=— Jlogflt.,

The equation (22325 ) by which the multiplier is determined, assumes the

symbolical form

D log <shMd =— ShW= d log $>„.
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424. It may, sometimes, happen that the values of a k
i] and

da$ are such that the sum of da^, and of XDa {

k
]

, in which X is

constant, is simpler than da 1,!'1
. In this case, if

d'= d-{-lD,

the addition of

Z>log«*= X2>log«.,

to the equation (22431 )
gives the symbolical form

D log (ua4 sjj,J)= <T log 9LB .

425. If the given differential equations have the form (21027 ),

so that they cannot be reduced to the normal form without differ-

entiation, the equations (21031 ), which are derived from them by

differentiation, give, by direct elimination, a system of normal forms,

which include, as a reduced system, the normal forms finally obtained

by the process of §395. The multiplier of the equations (21027 ) is

determined by the symbolic equation (22431 ), or (22510 ), provided

that in the values (224 10 ) of a{i] and daf from which <)

l(

3&„ is consti-

tuted, the value of^. is increased by a k .

426. The values of aft and daf may be determined directly

from the equations (21027 ). For this purpose, if X is written instead

of a in order to avoid the confusion which might arise from the use

of a as an arbitrary constant, and if the ingenious notation, which

is familiar to the German mathematicians, for the continued product

of all the integers from 1 to X inclusive,

Xl = X(X — l)(X— 2) 3.2.1,

is adopted, the equations (21031 ) are represented by

29
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and we find, by well-known formulas,

Dxu)(p =kv
D} [DxmFDxMxM ']

v'

The inferior limit v is determined by the condition that neither

V nor I — % -4- v' can be negative. Hence

if Ji_|_l> x
,
v'=0,

if I— l<>r, v'= x— X.

In the former of these two cases the last term is

! — DX~ KD F-

but in the latter case it is simply

It follows, then, from (224 ]0 ) that, since F
{
does not contain any

higher derivative of xk than pk ,

aV= D£iFt ,

427. The system of normal equations, derived by the process

of § 395, is related to the system of normal forms, which has been

discussed in the preceding sections, precisely as any reduced system

of differential equations is related to that from which it is reduced

by means of a portion of its integral equations. The integral equa-

tions are, in this case, the equations (21027 ) and all their derivatives,



— 227 —

which are inferior to the final derivatives expressed by equa-

tions (21031 ), the multiplier of the reduced equations is, conse-

quently, obtained by dividing the multiplier <^Ms of the equations

(21031 ) by the function G given by the expression (2239 ). The

functions (to), involved in the value of G, represent the first mem-

bers of the integral equations (21027 ) and their derivatives. But it

follows from (2264 ) and (22623) that

DxiPL+»)D
h
t
F

i
= DxivK)F=ay.

The equations (21027 ) may, now, be supposed to be arranged in

an order conformable to the orders of the derivatives, by which they

are brought to the form (21031 ), so that those, of which the higher

orders of derivative are taken, may precede the equations of which

lower orders are taken. Instead of reducing the equations, by a

single step, to the final system, the reduction may be accomplished

by successive steps ; and, at each step, the derivatives of the equa-

tions (21027 ), which are admitted into the group of integrals, may be

diminished by unity, while the number of accents of the eliminated

variables is also diminished by unity. At the step denoted by h,

therefore, the derivatives of those equations (21027 ) are added to the

group of integrals for which the orders of derivative (A,) are greater

than h. At this step a factor
(
Gh ) of G is also obtained, and all the

derivatives of which it is composed are represented by the functions

(«£>), in which the superior limit of Jc is the same with that of i.

Hence if

h— li+1>0,

the value of the factor of G is
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but if

this factor is

The logarithm of the complete value of G is, therefore,

PRINCIPLE OF THE LAST MULTIPLIER.

428. The consideration of the case in which there are two

variables, leads to a valuable principle of integration, discovered by

Jacobi, and which he called the principle of the last multiplier. In the

case of two variables, the equation (2152 ) becomes

^ {XDJ+ XXDXJ) == DJDXJX
— D^fDJ,,

which gives

Dxfx =^Jk>X

B
Xif1
=— ^MX1 .

Hence it is obvious that

Dfx
= ^fc {XDx— X,Dxx )

or, by integration,

f1= r^(XDz— X1Dz1 ),

so that ivhen the multiplier is known, this equation determines the integral of

the tivo differential equations (19912 ) of two variables, or that of the sin-
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glc equation to which they are equivalent,

XDxz1
—X1= 0,

and the multiplier is, in this case, identical ivith the well-known Eulerian

multiplier.

429. When all the integrals but one of a given system of differential

equations (19912 ) are known, of ivhich the multiplier is also given, the last

integral is determined by quadratures by the process of the preceding section ;

because the multiplier of the two differential equations with two

variables, to which the given system may, in this case, be reduced, is

determined from the given multiplier by § 418. This is Jacobi's

principle of the last multiplier.

430. In the case of § 380, in which the element of variation (t) is one

of the variables, if the functions (JQ) do not involve (t), the equation (201 8 )

gives

*=S;X
X.

from which / can be determined by quadratures, when all the other

integrals of the given equations are known, even if the multiplier is

not known, provided thatXj is reduced to a function of xi} by means

of the known integrals.

If the multiplier is also known, and if it does not involve t, the last of

the integrals ivhich do not involve t can be determined by the process of the

preceding section, and, therefore, the two last integrals of the given equations

can, in this case, be determined by quadratures.

Bid if the given multiplier (ue^Md) involves t, a multiplier (02X1(0^), which

does not involve t, can be derived from all the integrals which do not involve

t, and the quotient of these two multipliers gives by § 406, an integral involv-

ing t, and which takes the place of (22917 )
; so that, in this case, the last

integral is determined in a finite form without integration.
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431. This proposition was shown by Jacobi to admit of the

following generalization. If all the functions (X
{ ), in ivhich i is greater

than m, are free from those of the variables (x
t ) in which i is not greater

than m, and if the remaining functions satisfy the equation

in

tivo integrations can alivays he performed by quadratures, whenever a multi-

plier is known ivhich does not involve the variables {xi<m + 1 ), but ivhen the

given multiplier does involve either of these variables one integration can be

performed by quadratures, and another integral is given, immediately, tvith-

out any process of integration. For if the given multiplier oaXfc involves

only the variables (xi>m ), it not only satisfies the condition (2158 ),

but also on account of the equation (2306 )

and is, therefore, a multiplier of the portion of the equations (19912 )

in which i is greater than m. This portion of the given equations

can, therefore, be first integrated, independently of the remainder

of the system, and the last integral of this portion will be obtained

by quadratures, because its multiplier is given. But the last inte-

gral of the whole system may, also, be obtained by quadratures,

because its multiplier is known; so that two of the integrals can be

obtained by quadratures.

But if the given multiplier involves any of the variables

(xi<m+1 ), the separate integration of that portion of the equations

(19912 ) in which i is greater than m, gives a multiplier of this portion

involving only the variables (xi>m ), which satisfies the equation (23015);

and by (2306 ) it also satisfies the equation (2158 ), so that it is a new

multiplier of the given equation. The quotients of these two mill-
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tipliers gives, by §406, an integral involving (.r!<H , +1 ),and which takes

the place of the first of the two integrals, which are obtained by quad-

ratures when the given multiplier involves only the variables [xi>m ).

PARTIAL MULTIPLIERS.

432. Additional to the systems of Eulerian and Jacobian mul-

tipliers, and inclusive of them, are those, of which I have given the

investigation in Gould's Astronomical Journal, and which I have called

partial multipliers. The partial multipliers of the differential equations

(19912 ) are represented by (\sstk
iik ^ ^J, in which i,l\,/i 2 ,

. . . etc.

are any different numbers, or by (^eX(b/k), in which 1 and K denote

groups of numbers ; and they are defined by the equation

P ua%= S±

D

Xk fxD ft D fm

in which P is any arbitrary function, Je1: k2 • • • %m are numbers not

included in the groups I, and /i,/2 , etc. are solutions of the equa-

tion (2002 ). The notation (<J5vt(c
(A)

) may also be used to denote the

multiplier, with the definition that if

iT denotes the group of numbers represented by (7em ).

433. The system of multipliers of (19912 ), evidently, satisfies

the system of differential equations, which are derived from (18710 ),

and represented by

in which i includes all the numbers not belonging to the group I.

434. The group of all the numbers not included in the group
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(I) with the exception of any two, which may be selected at pleas-

ure, may be denoted by II. The elimination of the corresponding

values ofXh from the equations, obtained from (2002 ) by the substi-

tution of the various values of (/;) gives the equations, which are

represented by

2k (<mMs
(H^Xk)= 0.

This system of equations combined with that of (23128 ) defines,

analytically, the system of partial multipliers.

435. In the formation of the multipliers, a careful regard must

be had to their signs, conformably to the rule of formation of deter-

minants, so that in general

436. In the special case, in which the group (i, I) of § 433

is reduced to a single number, and in which P is X, the preceding

equations become

XwMsi=— ok
{ ,

— X^fki -f- X.^ = 0,

= J£
t
D

Xi
(Xuafc,) =2{DXt

(^MoXJ
;

so that, the multiplier is, in this case, the Jacobian multiplier.

437. In the case, in which the groups (i, I) of § 433 include

the numbers of all the variables but one, and in which P is unity,

the equations become

^k{i)= D
Xifi,

so that, the system of multipliers is, in this case, that of the Eulerian multi-

pliers amplified by Lagrange.
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438. The partial multipliers may be denoted as the first, second,

etc., to the last corresponding to the degree of the determinant which

is the second member of the equation (216n ). With this designa-

tion, the last multiplier coincides with the Jacobian multiplier and

gives a last integral of the differential equations, while the first mul-

tipliers coincide with the Eulerian, of which each system gives a

first integral of those equations. This proposition may be general-

ized, and it may be shown that each system of multipliers determines

an integral of the given equations hy means of quadratures, and holds a place

in the rank of multipliers similar to that held hy the integral, in the rank of

integrals.

The investigation of the relations of the multipliers of differ-

ent systems will be found to lead immediately to this proposition,

after its truth has been established in the case of the Eulerian mul-

tipliers.

439. The deduction of an integral of a system of differential

equations (19912 ), by means of quadratures, from a given system of

Eulerian multipliers, is quite a simple process. For the definition of

these multipliers in § 437 gives

If the quantities represented by
( #») are defined by the equa-

tion

Qi= C{^k(i)—D ĥ Qk ),J x
l

i

the required integral is

f=2i Qi
= a:

For the defining equation of Qt
gives

Dx Zk Qk= ^>.
1

30
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Hence it is found by differentiation that
( Q{ ) is free from all

the variables (xk<i ), for if this is supposed to be proved for
( Qk<i ) it

it seen, by (23227 ), that

i—

1

h

DX DX Qt= D {^k{i)— Dx Zk Qk ) = D yaHP—D^D-Su Qkhi h v
*

= D
Xk ^fe

(i)—Dx .^kw= .

The differential of (23327 ) is, therefore,

Df= St
{Dx kk QkD Xi ) =Zi

(^Dx
l),

o

which corresponds to the required differential (233 19).

440. When the differential equations (19932 ) are transformed

to other variables in the manner which is indicated in § 413, any

multiplier of the new system is obtained by the following formula

which corresponds to (231 15 ),

P'$tH=2±DWt AD f2 D fm .

If, then, the functions
(
G) are defined by the equation

G^= 2±Dvl x
i
Dw x, D *,

= (2±Dx wh Dx .
ivh% Dx . ^J

-1
,

the proposition (18620 )
gives by (23115 )

P'dfH=I>Z I (oa% £<*>)

.

441. If any of the solutions (/j-) of (2002 ) are known, they

can be assumed as new variables to take the place of either of the

given variables, and the new multipliers must be determined by
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the preceding equation. But it is evident that, in this case, the

number of elements which compose each of the terms of (cNh)

will be diminished by a number equal to that of the solutions, which

are introduced as variables. Hence since m is the number of ele-

ments which compose each term of ( *J2X(c 7), if (m— 1) is that of the

known solutions, the number of elements of {g^h) may he reduced

to one, in which case the multipliers (cNH) become Eulerian and

give the mth solution of (2002 ) or the mth. integral of (199 12 ), by

means of quadratures, which corresponds to the proposition of §438.

III.

INTEGRALS OF THE DIFFERENTIAL EQUATIONS OF MOTION.

442. When the differential equations of motion are expressed

in their utmost generality, there is no known integral which is suf-

ficiently comprehensive to embrace them. But the equation (16314 )

of living forces is an integral, which is applicable to all the great

problems of physics, and holds the most important position in refer-

ence to investigations into the phenomena of the material world.

There are other integrals of great generality, which might be inves-

tigated in this place, if the}^ were not clothed with such a character

of speciality, that they properly belong to some of the following

chapters. The application of Jacobi's principle of the last multi-

plier to dynamic equations gives results of so general a character,

that their investigation cannot appropriately be reserved for any

chapter devoted to the consideration of special problems.
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the application op jacobi s principle of the last multiplier to

lagrange's canonical forms.

443. It follows from the homogeneous nature of T (16510 ),

that each of Lagrange's equations (164]2 ), involves one or more of

the quantities represented by (?/'), and the system of these equa-

tions has, therefore, the form represented by (21030 ). If, then, (a^°)

denotes the coefficient of {rfk ) in the value of (w
t ), given by (1655 ),

this value becomes

o»
i.= -2*(4

i)

^I),

and that of T is by (165u )

so that the functions (a[
l)

) only involve the quantities represented by

(rj) and the time \t), and satisfy the equations

4:4:4:. Each of Lagrange's equations may be expressed in the

form

g>,= D
t
2k{afrfk)— i2A>k(Dv tf%ffh) — Z>, i2 = 0.

i i

Hence, when £2 is only a function of ()},) and t, the equa-

tions (22410 ) become

k

D^fi= <Mf) = A«i°+ Zh{Dv
afrfh—Dv tf%) ;
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from which are easily derived the equations

k i

k i

The notation

(i,Jc)= Z^Drfffc— D,<Wrfk),
k i

gives

ft*) =— (*>*)»

In the substitution of these values in (22431 ), it is evident from

(18018 ), (18031 ), and (1816 ) that the functions (i,k) disappear, and

since D takes the place ofD
t , (22431 ) becomes

D log vje^Md= D log %>ni

and, therefore, since the arbitrary constant may be neglected,

which holds, even if the equations of condition involve the time.

In all dynamical 'problems, therefore, in ivhich the forces arc indepen-

dent of the velocities of the moving bodies, a Jacobian multiplier is given

directly by the equation (237i9 ), so that th& fast integral can alivays be

obtained by quadratures.

445. Hence, by § 430, in any dynamical problem, in ivhich the

forces and equations of condition are independent of the time as ivell as of

the velocities of the bodies, the two last integrals can be obtained by quad-

ratures.

446. The substitution of

Ui^=xi \Jm i ,lZi+x =yi \Jmi ,l3i + i =izi slmi ,
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in (16420 ) and (16228 )
gives

2 2

mvt= Ui+ Z* i+i-\-Z'S i + 2

Hence if

2

*

the value of w^ is by (236 l5 ),

which, combined with § § 346 and 348, gives

sS>No= <&
n= 2M (W*))

in which (3i
'

l

M) denotes the functional determinant of a group (M) of

(11 -j- 1) of the functions (£;) relatively to the variables (17,). It may

be observed that if % is the number of bodies of the system, and n2

the number of conditional equations, the value of n is

n= 3 ??!— n2
— 1

.

447. If the conditional equations are represented by

77=0,

and if

their derivatives with reference to (i;
£ ) are represented by

^(W.)==0.

If then (JjT) denotes any group of n of the quantities (£,), and
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(II,h) denotes a group of n-\- 1 of the same quantities in which the

group (H) is included, the preceding equations give, by elimination,

between all those in which i remains unchanged,"o v

Since then the group (ff,h) is also denoted by (o&((d), if the

group of all the remaining quantities (£f) is denoted by {N), if M'

and N' are other groups of the same species, and if
( Q

[N)
) denotes

the determinant of the corresponding values of (c^), the preceding

equations give, by elimination,

which, it is easily seen, may be extended to the case of any groups

whatever (M and M
t ), in which each includes (w -J- 1) of the quan-

tities {%{). If, therefore, some one group is arbitrarily selected and

denoted by (M ), the equation (23813) becomes

-*=(«S)^ani
.

448. If the derivatives of (rji) relatively to (5,-) are denoted by

and if
f€<

l

M) denotes the determinant of the values of (e^), which cor-

respond to those of (bp) in ty(™\ the derivatives of (i;
f) may first

be taken with respect to (£;), and if those of (§;) are afterwards

taken with respect to (ij
t ), they give by (18620)

1 = 2 ± Dn
riD

n VlDn
ih D

n Vn= 2i(Q<P<qP).
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Hence, if gjY denotes the determinant of all the quantities (II
{ )

and (i]i) with reference to (£,-), the equation (23913 )
gives

JIH n J f)to(M) M \ n n J

which, substituted in (23920 ) reduces it to

_ zN(&
N)
y

(N:

449. If there are no equations of condition, the value of \JhMd is

reduced to

= (S-±D
1l
tD^1 D

n l nf
i ii

= (2±'D^D^ ni D^ny\
1 n

If in this case, therefore, the values of (i]
t ) coincide ivith those of (£;),

the multiplier is reduced to unity.

450. If the equations of motion were given in the system of

§ 310, in which the forces, represented by the equations of condition,

are included in those of 12, this system might, by means of the equa-

tions of condition, be reduced to that of Lagrange's canonical forms.

In performing this reduction, the equations of condition hold the

same relation to the differential equations, which the equations (21027 )

hold to the equations (21031 ), in performing the reduction of § § 395

and 425. It is also obvious that

i i

Hence the divisor by which the multiplier of the first of these
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systems is reduced to that of the last, is by (228 8 ), (222 7 ), and the

preceding sections

{2+DtfD^ D^hl D< UP; IT, D^ nn f=^-
1 n »+ l »+ 2 Sjij 2

and, therefore, the multiplier of the system, previous to reduction,

is by (2408 )

451. If the system of differential equations is given in Ham-

ilton's form, (1663 ), the equation (21525 ) for the determination of the

multiplier becomes

D log to* + S{
(D

n
Da— Du Dn ) IIn , u = D log v*Jk= 0,

i i i i

whence the multiplier of this system is unity.

CHAPTER XI.

MOTION OF TRANSLATION.

452. If the coordinates of the centre of gravity of a system

axe xg,yg , zg , and if those of any other point are xs -j- xi} yg -\-yiy

zg
-4- Si, the value of T becomes, by (16228 ) and (16420 ) and the con-

ditions of the centre of gravity (15519 ),

T= i (x'g +yl+z'g )2imt + ««[«*« +tf+ 4)]

31
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Hence the motion of the centre of gravity is determined by

the equation, derived from (16412 ),

ZimiDt
afg= 2

i
m

i
Di

t
x
s
= Dx il,

and the corresponding equations for the other axes. The value of

£2 may be restricted in this equation to the external forces and those

which correspond to the external equations of condition, for the

internal forces and equations of condition being dependent solely

upon the relative positions of the bodies of the system, are functions

of the differences of the corresponding coordinates of the bodies,

from which xg,yg , z
g
disappear.

The motion of the centre of gravity is, therefore, independent of the

mutual connections of the parts of the system, and is the same as if all the

forces ivere applied directly at this centre, provided they are unchanged in

amount and direction.

453. Since the second member of(2423 ) expresses the whole

amount of forcer acting upon the system and resolved in the direc-

tion of the axis of x, this equation expresses that the motion of the cen-

tre of gravity in any direction depends upon the whole amount of external

force acting in that direction.

If, therefore, the ivhole amount of external force acting in any direc-

tion vanishes, the velocity of the centre of gravity in that direction is uniform.

MOTION OF A POINT.

454. When the system is reduced to a single point, it becomes

a mass united at its centre of gravity, and the only possible motion

is that of translation. The position of the point is determined by

three coordinates, which, combined with their derivatives and with

the time, constitute a system of seven variables, and require, in gen-

eral, six integrals for the complete determination of the motion of
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the point. The differential equations become, in this case, if the

mass of the body is assumed to be the unit of mass,

D'1
t
x= Dxn,

with the corresponding equations for the other axes.

A POINT MOVING UrON A FIXED LINE.

455. The two equations by which the line is defined are two

equations of condition, which may be denoted by

Together with their derivatives, they take the place of four of

the integrals of § 454. Of the two remaining integrals, ivhen £2 docs not

involve the time, both can be determined by quadratures by § 445.

One of these integrals is, indeed, the equation of living forces

(163 13 ), which becomes in this case

z,
2 =2(J2-f H) = (I)

t
s)

2
.

The final integral is obtained from this integral by the equation

t==
Js \/(2Si-

\J (2 Si+ 2 H)

= 1
Dn s

\/(2Sl+ 2II)

456. It follows from (243ia ) that the velocity of a body only

depends upon its initial velocity and the value of the potential at

each point of its path ; and this conclusion coincides with the propo-

sition of § 58. In ivhatever path, therefore, a body moves from one point

to another, the increase or decrease of the square of its velocity may be meas-
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ared by that of the potential, when the equations of condition and the forces

zvhich act upon the system are, like the fixed forces of nature, independent of

the time and the velocity of the body.

457. If there is any point upon the line, beyond which the

decrease of the potential exceeds one half of the square of the

initial velocity, the body cannot proceed beyond that point. If there

is, in each direction from the initial position of the body upon the line, a lim-

iting point of this description, the motion of the body is restricted to the inter-

vening space. Since the body can only have the direction of its

motion reversed at the limiting points where its velocity vanishes, it

must oscillate back and forth upon the whole of the intervening

portion of the line, according to the law expressed by the equation

(24323 ).

It is evident from the inspection of the equation (24323), that

the time which the body occupies in passing from any point (A) of

the line to another point (B), must be the same with that which it

occupied in the preceding oscillation in the reverse transit from the

point
(
B) to the 'point {A) ; and, therefore, the entire duration of oscil-

lation must be invariable.

458. If the line returns into itself, and if there is no point

upon it for which the decrease of the potential is as great as the

initial power of the body, the body will continue to move through the

whole circuit of the line, and will always return to the same point with the

same velocity, so that the period of the circuit tvill be constant.

459. When the forces and the equations of condition involve

the time, the multiplier becomes by (23813 )

<mMs= 2x (I)v xf

and the last of the integrals, zvhich are required to solve the problem, can be

obtained by quadratures.
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TIIE MOTION OF A BODY UPON A LINE, WHEN THERE IS NO EXTERNAL FORCE.

CENTRIFUGAL FORCE.

460. When the line is fixed, and there is no external force, £2 van-

ishes in (24319 ), and the velocity is, therefore, constant.

461. In this case, the line may be regarded as the locus of a

resisting force, which acts perpendicularly to the line. The plane of

x and y may be supposed to be, for each instant, that of the curva-

ture of the line at the position of the body, R may be the resisting

force of the line, and o its radius of curvature ; and elementary con-

siderations, combined with the equation (16425 ), give

D
t
x= D

t
s sin

p= v sin p
X 1

J)*x= vcos p
zDtx = v

2 cos x I)sx = ^cos x =Bcos x ,

whence

R=-,
Q

so that the pressure against the line is measured by the quotient of the

square of the velocity divided by the radius of curvature, which is called the

centrifugal force of the body.

462. If there are external forces, the tvhole pressure upon the line

is obtained by combining the action of all the external forces resolved perpen-

dicularly to the line, with the centrifugal force.

463. The centrifugal force cannot be used as a motive power

in machinery, for the body moves perpendicularly to the direc-

tion of this force ; and, therefore, the power communicated by it

vanishes, because it is measured by the product of the intensity of

the force multiplied by the space through which it acts.

464. If the line is not fixed in position, but has a motion of
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translation, the same motion of translation may be attributed to the

axes of coordinates, so that the coordinates of the moving origin at

any time may be ax , ay , az , with reference to the fixed axes. If the

coordinates of the body with reference to the moving axes are %x) % y ,

\ z , the value of 2 T (16421 ) becomes

2T=Zx (¥x+ a'xy

= D
t
s
2
-\- 2wD

t
s cos *

-f- u?,

2= s' -j- 2 IV §' COS * -j- 2V
2

if iv denotes the velocity of the motion of the origin, and s the

length of the line passed over by the body. Hence Lagrange's

equation (16412 )
gives

D
t (/ -J- iv cos * ) = D

s (/ w cos £) = s'wD
s
cos £

.

But, since the angles which s makes with the axes are inde-

pendent of the time, the derivative is

D
t O cos i)•= D

t
2X {wx cos • )= 2X (wx cos x -\- / wx Ds cos %)

= 2x (w'x cos x)-\-s'

D

s (to cos ^),

which reduces the preceding equation to

D
t
s =— 2X (w'x cos

s

x)=— Wcos £,

if

2 2 2

W= \j(Wx -\-W'y-\-Wz )

denotes the acceleration of the line at each instant. Hence it is

easy to see that if the acceleration is perpendicular to the line, the relative

velocity of the body to the line is not changed ; but if the acceleration is in

the direction of the line, the change of relative velocity is exactly equal to the
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acceleration, so that there is, in this case, no change in the actual velocity of

the bod// in space.

465. It follows, from the preceding investigation, that if the

motion of the line is uniform, the relative velocity of the body and the line

remains constant.

466. It is also apparent from this investigation that even under

the action of external forces, the relative motion of the body to the line may

be computed, by regarding the acceleration of the line as a force acting upon

the body in a direction opposite to its actual direction.

467. If the line rotates about a fixed axis, which is assumed to

be the axis of z, let

u be the projection of the radius vector upon the plane of xy,

(p the angle which u makes with the rotating axis of x, and

a the velocity of rotation,

and the value of 2 T becomes

2T=/-\-/+u2 (<p'+a)2

= (B
t
s)

2 -\-2u2 (p'a-\-u2 a2

2= /-J- 2uas
r
cos£ -\-u2 a2

,

in which 6 is the angle, which s makes with the elementary arc udcp.

Hence the derivatives of T are

Ds T=s' -\- ua cos £
,

D
sT= /Ds

(ua cos 6) -(- «2 m cos "
;

and the equation (16412 ) becomes

D2
s=— u cos & a -\- a2 u cos ".

The former of the two terms which compose the second mem-
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ber of this equation, is the negative of the acceleration of the rota-

tive velocity resolved in the direction of the arc of the rotating line.

The latter term represents the centrifugal force, which corresponds

at the body to the rotation («), and which is also resolved in the

direction of the moving arc. But the centrifugal force is purely

relative in its character, and arises from the resistance of the body

to accompany the curve in its change of motion occasioned by rota-

tion. These terms combined show, then, that in this case, as well as

in that of translation, and, consequently, in every case the relative

motion of the body to the line may he obtained by attributing to the body the

negative of the acceleration of the line, which occurs at the position of the

body ; in the case of external forces, their action must be united to that

ivhich arises from the acceleration of the line.

468. In the case of an uniform rotation about a fixed axis, the

equation (24729 ) becomes

D2
s — a2 u cos "= a2uD,u.

The integral of the product of this equation, multiplied by

2D
t
s, is

(D
tsf=a2

(u
2 -\-A),

in which A is an arbitrary constant. Hence it is obvious that

._ r i _ r du s

469. When the constant (A) is negative, the value of u cannot

be less than \j
—A ; so that when the body approaches the axis, its

velocity upon the line is constantly retarded, and vanishes, when its

distance from the axis is reduced to \/
— A, after which the direction of

the motion is reversed. If the portion of the line, upon which the

body moves, extends at each extremity, so as to be at as small a dis-
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tance as y/— A from the axis, the body tvill oscillate upon it ivith a con-

stant period of oscillation.

470. When the constant (A) is positive, or when it is negative,

and no portion of the line in the direction, towards which the body

is moving, is at so small a distance as
\J
— A from the axis, the

motion of the body upon the line will constantly retain the same

direction. If, moreover, the curve returns into itself, the body will

always continue to move around it, with a constant period of revolution.

471. When the constant (A) vanishes, the equation (24820 )

gives

at

D
t
s= au

Js u Ju it

If the curve, also, passes through the axis of rotation, the value

of Du s may be supposed to be constant, while the body is very near

the axis, and may be represented by /? ; so that the motion of the

body in the vicinity of the axis is given by the equation

a#= (i log u.

The second member of this equation becomes infinite when u

vanishes, and, therefore, the motion of the body, in this case, is infinitely

sloio in the immediate vicinity of the axis.

472. When the rotating line is straigJd, let

p be the distance of its nearest approach to the axis of rotation, and

£ the angle which it makes with the plane of x y.

If then s is counted from the foot of the perpendicular, which

joins the nearest points of the line and the axis of revolution, the

32
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value of u2
is given by the equation

U2 =p2
-\-S

2 CO$2 A
;

whence (24824 ) becomes, in this case,

at ~ J \/ (p
2+A+s> cos2

d)

= jko
lQg & cos * + v/(/+^+^2 cos2

^)]
- log{

2

P
lte

A)
m

>

in which the arbitrary constant is determined so that t may vanish

with s, and this equation is applicable when (p
2
-|- A) is positive.

In this case, the substitution of the notation

h%=f 4- A,

tan re = -,

reduces the preceding equation to

a t cos & = log cot I <p

.

But when (p
2
-j- il) is negative, the substitution of the notation

k2= -(p2+ A),

h
sin if = s,T s cos 7

and the determination of the arbitrary constant, so that t may vanish

when s has its least possible value of Jc sec 6, reduce the equation

(2506 ) to

a t cos 6 = log tan h if

.
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When (p
2

-J- A) vanishes, the equation (250^) is reduced to

a i cos 6 = log —

;

So

in which s is the initial value of s. When p also vanishes, the sur-

face described by the line is a right cone, and when it is developed

into a plane, the path, described by the body, becomes a logarithmic spiral.

473. When the rotating line is the circumference of a circle which

is situated in the plane of rotation, let

E denote the radius of the circle,

a the distance of the centre of the circle from the origin,

2 (p the angle, which the radius of the circle, drawn to the body,

makes with that which is drawn in a direction opposite to

the origin,

and the equation (24824 ) becomes

, r 2E
at = I

Jib

When A-\-(R— a)
2
is positive, which corresponds to the case of

§ 470, let

h2 = A-{-(B-\-a)2

,

sin
2
i

K
xl -]- u>

2

4aE
V

and by the notation of elliptic integrals of § 169, the equation (25118 )

becomes

at= -£&&.

When i is so small that its fourth power may be rejected, this
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equation gives, by an easy reduction,

at= (1 -f- i sin
2/)—~— — sin

2mn2<jp.

In this case, therefore, the time of describing the semicircum-

ference, for which 2 y is greater than a quadrant, exceeds the time

of describing that for which 2 y is less than a quadrant by

R . o. iafi2 iaE2

T-snrV

When J. -|- (it— a)2 is negative, which corresponds to the case

of§4G9, let

• 2 - &
sin- 1

4afi :

• . sin w
sm 6 = —r-h

sim

and the equation (251 ]8 ) becomes

2E C . 2Rsini C
at= —r-

J
sec 6 =—-,— / sec 9

When i is so small that its square may be rejected, the duration

of an oscillation becomes

a \ a

When the circumference passes through the axis of rotation, a

is equal to R, and the time of the small oscillation becomes identical

with that of the semi-revolution of the circle ; but the time of a

larger oscillation exceeds that of the semi-revolution.
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When A-\- (R— a)
2
vanishes, the equation (251 ]8 ) becomes

at= y-J secc
J
p= ^/-logtan(i n + ky).

When A-\-(R— af is very small, and its ratio to iaR is

denoted by d A, the equation (251 18 )
gives throughout the greater

portion of the path, in which <p differs sensibly from i n, that is, in

which the body is not near its point of closest approach to the axis

of rotation, so that the square of dA may be neglected,

= (1 — Id A) i/— log tan {in-\- £(p)-— idAy/— tan 9 secy.

But in the vicinity of the point of nearest approach, let

XfJ = i 7T (p

be so small that its square is of the same order with $.4, and the

equation (251 18 )
gives

at=— U- I =— i/-Sin [
~ 1] -=, when dA is positive.

= —1/— Cos[
~ 1]

,- •

.. , when dA is negative.
V a

\f (— 8 A) ' °

474. When the rotating line is ivholly contained upon the surface of a

cylinder of revolution of which the axis is the axis of revolution, u is con-

stant and the equation (24729 ) becomes

D
(p
sD2

s=— u2 a?

,

from which (p or s may be eliminated by the given equation of the

curve.
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475. When the velocity of rotation is constant, the second

member of (25328 ) vanishes, and the velocity of the body is conse-

quently uniform.

476. When the curve is a helix, the value ofZ>.s is constant,

and the equation (25329 )
gives

M2

in which A is an arbitrary constant.

477.' When the acceleration is uniform, a' is constant, and the

integral of (25328 ) gives

(Dtsf= u2a(A— <p),

u2a't= I -jj-. ;

J sS/(A—(p)>

in which A is an arbitrary constant.

MOTION OF A HEAVY BODY UI"ON A FIXED LINE. THE SIMPLE PENDULUM.

478. When the line is fixed, and the force which acts upon

the body is that of gravity at the surface of the earth, represented

by g, and the axis of z is assumed to be the vertical, directed down-

wards, the equations (243 19_32) give

v
2 =2gz-\-2H,

t—c y r ^ s

J s ^(2gz-\-2ff) —JzS/(2ffz-\-2Jiy

479. If the curve is contained upon the surface of a cylinder

of which the axis is vertical, the motion of the body is the same as
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it would be upon the plane curve, obtained by the development of

the cylinder into a vertical plane ; because the value of Dzs is not

changed by this development.

480. If the fixed line is straight, the equation (2542S ) becomes

if ^' is the initial velocity of the body.

481. If there is no initial velocity, the preceding equations

become

cos * gt= ^{2gs cos*)= v,

or

z gt g? 2 gs s

'

482. If the curve is the circumference of a circle, the centre

of the circle may be assumed as the origin of coordinates. If then

the axis of zx is the intersection of the plane of the circle with

the vertical plane, which is drawn perpendicular to it through the

origin, and if R is the radius of the circle, and

the equation (25428 ) becomes

2Rr 2R. r

,? V
/ (23^cos^cos29+ 2#) J^sJ (2 H-j-2 gH cos*— 4 gE cos % sin

2
cp)

If then H is greater than g Rcos^, which is similar to the case

of § 470, let

h2 =2H+2gRcos z

Zi ,

4^R cos I= h2 sin2 /

;
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and the preceding equation becomes

4
2R Ct

When i is quite small, this equation admits the same reduction

with that given (251 31
—2523 ).

IfH is smaller than gR cos l1} which is similar to the case of §469,

let

h2= 4(/Bcos z
z sin

2
i

. , sin m
Sin 8 = -r—r- ,

sin i

and the equation (25524 ), becomes, by the same reduction with that

given in (25217 ),

^vyy^,<9

which when i is small gives for the time of oscillation of the simple pen-

dulum in an oblique plane

IfH is just equal to^ijlcos*, the equation (25524 ) becomes

*= V
/

(7^) 1°s tan ^ 7T + *»)

The case in which H differs but little from gBcos^, may be

subjected to the same treatment with that adopted in (2555_23 ).
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MOTION OF A HEAVY BODY UPON A MOVING LINE.

483. If the heavy body moves upon a line, which has a

motion of translation in space, the equation of motion becomes, by

the form of argument and notation adopted in § 464,

]y\s=— J7cos* -}-#,cos^

484. If the motion of the line is uniformly accelerated and

invariable in direction, the motion of the body upon the line is the

same which it would be if the line were fixed, and the force a con-

stant force which coincided in amount and direction with the re-

sultant ofg and— W. Thus if the line moves vertically downwards

with an accelerated velocity, equal to that of a heavy falling body,

the body moves upon the line with an uniform velocity.

485. If the line is straight, and if the motion of translation

follows a law, dependent exclusively upon the time, so that if

A
t
denotes the law, by which the line moves in the direction

of its length, the acceleration in the direction of the line is

— Wcos^=D2
t
Ar,

and the value of s becomes

s= a -j- It -J- a gft cos * -|- A
t ,

in which a and b are arbitrary constants. The absolute motion of

the point in any direction in space, as that of the axis oixx , is repre-

sented by the equation

x1 =(s— A,) cos s

Xi
-\-p cos p

x{,
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in which p denotes the perpendicular upon the line from the origin.

If the line is vertical, and limited in its motion to the vertical plane

of xx zu and if the axis of % is vertical, the equations which deter-

mine the position of the point in space are

gx= a -f- It -f- igt2 .

When p increases uniformly so that p is constant, these equa-

tions give

xx —p't,

s1= a -J- —,xx -j- g—7a
xn

so that the path of the body in space is a parabola, of which the

axis is vertical.

486. If the line moves with an uniform motion in a straight line,

the equation (2578 )
gives

D2
t
s= g cos*.

The integral of the product if this equation multiplied by 2 D
t
s is

(I)
t sy=f2gcoslDt

s= 2(/ft

I)
t
s= 2</z-{-a,

in which a is an arbitrary constant. Hence if

V denotes the velocity of the translation of the line,

the square of the velocity of the point in space is

(n[SlY=W(2gz-\-a)-Vcos:Y+ (Vsm:f
= 2$z-\-a-\-V2— 2Vcos^

S
/(2gz-ir a).

The augmentation of the power of the moving body above its
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initial power is, then,

P=i(DtSlf— k{Dts°Y=g{z— s )— V{vco$ v
s
— v°co$ v

s
o).

If the body had moved through the same path upon a fixed

curve, the increase of power would have been

Q=g{z— zo )-\-gVtcos
r
z .

If P is greater than Q, the excess of P above Q is the power

acquired by the body from the accelerating motion of the line. But

if Q exceeds P, the excess of Q above P is the power communi-

cated by the body to the line, which involves the theory of many

machines, of which heavy bodies are the moving forces. If, for ex-

ample, the line moves horizontally, the power communicated by the

weight islo'

Q— P=zV(vcos*— y°cosTo).

If, moreover, the initial velocity of the body, relatively to the

line, vanishes, the expression of the communicated power is re-

duced to

e_P=Fcos^[2<K2-<)];

and when the direction of the line at its extremity coincides with

that of its translation, this expression is still further reduced to

487. If the line is the circumference of a vertical circle, of which

the radius is R, and if (p is the angular distance of the body from

the lowest point of the circumference, the equation of motion (2578 )

becomes

RB^y =— Wcosw—#sin (p.
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When the motion of the line is in a vertical direction this

equation becomes

B&*(p=—( W+g) sin 9 ;

which, when q> is very small, is reduced to

RD*y = -{W-\-g)<9 ,

The integral of this equation is

(p= Asm(t
SJ^-{-b) i

in which A and b may be determined by the equations

2>J(gR)I)t
\ogA=-Wsm2(t

)
j!L+b),

2^{gR)Dt b= WA[l—
***(f\J£+ *)];

which give

sl{gR)Dt
{Asmb)=— AW&m(tsJ^-\-h)$m(tJ^

= hA Tr[cos(2^t/|4- b)— cos b]

=A W[sm2 \b— sin
2
(if */| -f hb\ ;

s/(gR)Dt
(Aco8b)=—AWsm(iJ^-\-b)cos(t^^)

= —iAw[s[n(2tJ^-j-b)-\-smb];

when TT is very small in comparison with #, J. and B may be as-

sumed to be constant in the first integration of the second members

of these equations.

When W is dependent upon the position of the body in such
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a way, that, if ^ is a function of time,

the preceding equations give

y/teB)Afab=—ft

(Van(t
}Jl)),

If, for example,

2T= 2hsmmt
;

these integrals become

• m2 Ji—g

^(2B)AcoS b=—^^sm(mt+ t
S/-£)

— _A^gin(m*—
<y/|)

in which the arbitrary constants are determined so that J. and b

vanish with the time.

488. If the line rotates about the vertical axis of s, the equation

of motion becomes, by the analysis and notation of § 467,

J}fs=— UQOs&a' -j-«2wcos"-|-y cos *

=— ucos&a -J- a
2n

D

s u -4-g D,z.

489. When the rotation about the vertical axis is uniform, this

equation becomes

D2
s= a2uDs u -\-gDs z.

The integral of the product of this equation multiplied by
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2D
t
s is

in which a is an arbitrary constant.

490. When the rotating line is straight and passes at a distance

p from the axis, if s is counted from the foot of the perpendicular

(p) upon the line, the equation becomes

(D
t
s)

2= aV sin
2

* -]- 2gs cos£ -f" ftV2

"f" a

= (a s sin % -j- - cot'j -J- a -J- a
2
/?

2— (-cot*j
,

of which the integral is easily found to be

at sin *= log(a2 ssin2 *-}~ 2g cos*-|-2a sin
$

zDt
s) -\-b,

in which b is an arbitrary constant.

491. The integral, in this case, can be just as readily obtained

from the equation (26129 ) which becomes a linear differential equa-

tion. Its direct integral is

a cos' . a t sin I
, n — atsvai

s— \ • L= Ac z -\-Bc
a sin |

'

in which A and B are arbitrary constants. This form is identical

with that given by Vieille in his solution of the particular case

of this problem, in which p vanishes.

492. If a<(^eotif—a2

p
2

the value of s must be such as to render the second member of

(2629 )
positive ; that is, the limiting values, between which the

body cannot be contained, are defined by the equation

a s sm s

z =z— -cot* +i/|(-cot*j — ct
2

p
2— a\
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The velocity of the body upon the line vanishes at these limits.

If the initial direction of the motion of the body is towards these

limits, it will approach them with a diminishing velocity ; and

when it arrives at the nearest limit, the direction of motion will be

reversed, and it will thenceforth continue to move away from the

limits.

If a =— a?p2

one of the limits is at the foot of the perpendicular (p), and the

other limit is above this foot, at the point for which

s=== -cot*.
a z

If #<— «2
j0

2

,

one of the limits is above the foot of the perpendicular, while the

other is below it. But if

a>— a2

p
2

while it satisfies the condition (26225 ), both the limits are above

the foot of the perpendicular.

493. If «>(^cos^)
2— «y,

the motion will always continue in the same direction along the line,

(a-\-a2

p
2
) will express the square of the velocity of the body upon

the line when it is at the foot of the perpendicular. The point of

least velocity upon the line will be determined by the equation

g cos

.

and the least velocity will be
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494. If a= (| cotif—ay

the direction of the motion along the line is not subject to reversal

for, in this case, the equation (2629 ) becomes

Dt s= a s sin * -(- - cot*

;

of which the integral is

(OL v sin \
r + 1 ) •

g cos *
' /

The time of reaching the point, at which

9. cos I

a sin'
2sJ

that is, the point, at which the velocity vanishes, becomes infinite

;

or in other words,, the body never reaches this point, at which its

direction of motion is to be reversed ; or if the body is placed at this

point without any initial velocity along the line, it will remain sta-

tionary upon the line.

495. If the rotating line is the circumference of a circle, of which

the radius is R, let the origin be assumed so that the centre of the

circle may be upon a level with the foot of the perpendicular (p), let

fall from the origin upon the plane of the circle. Let then

k denote the distance of the centre of the circle from the foot

of the perpendicular,

<p the angular distance upon the circumference of the body

from the lowest point of the circumference,

and the values of z and u, in equation (2622 ), are given by the
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equation

2= Rcosy sin? -|-^ cos?,

u2= (k -j- R sin 9)
2

-f- (i>
sin?— R cos 9 cos?)2

— p _|_ ^2 _|_ys
gin2 p _|_ 2 /<•R sin y_j,, 7? sin 2 ? cos 95—R2

sin
2
? cos

2
9

,

whence equation (2622 ) becomes

R2 (D
t (pf= a-\- a2 (F -}- i?2 -j-/ sin

2
*)+ 2gp cos?+ 2 a2

/cR sin 9
-j- 2 (y— «2

jo cos?) R sin? sin 9)— a2R2sm2p
z cos

2 9

.

The points of maximum and minimum velocity along the arc

are, therefore, determined by the equation

a2
JcR cos (fi

— (g— a2p cos z ) R sin? sin tp
x -f- a

2R2
sin

2
? sin (p 1 cos 9)!= ,

and are, consequently, at the intersections of the circumference with

the equilateral hyperbola, which is described in the plane and passes

through the centre of the circle, of which one of the asymptotes is

horizontal, and the polar coordinates (r2 , 92) °f the centre, with

reference to the centre of the circle, are given by the equations,

r2 sin 92=— ^ cosec2
?

,

r2 cos 92= 4 cosec?—p cot ?

.

This hyperbola cannot cut the circumference in less than two

points ; and there are four points of intersection when the distance

from the centre of the circle to the nearest point of the branch

of the hyperbola, which does not pass through it, is less than the

radius of the circle. The polar coordinates (r3 , 93) of this nearest

point of the second branch of the hyperbola are given by the

equations

tan 93= y/ tan 92 ,

r3= r2 cos 92 sec3
93

.

34
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496. When the body is originally placed at one of the points

of maximum or minimum velocity, without any initial velocity

along the circle, it remains stationary upon the curve ; but its

position upon the curve is one of stable equilibrium, when it is

placed at a point of maximum velocity, and a position of unstable

equilibrium, when it is placed at a point of minimum velocity.

When the body is originally placed upon the curve, without any

initial velocity along the line, at a point different from these points

of maximum or minimum velocity, it oscillates about that point

of greatest velocity from which it is not separated by a point of

least velocity ; its oscillations embrace both the points of great-

est velocity, when the velocity is sufficient to carry it through

either of the points of least velocity, that is, when the velocity,

which corresponds to the initial point in the general equation

(265 7 ), is less than that which corresponds to one of the points

of least velocity. When the initial velocity of the body is greater

than the excess, which is given by equation (2657 ) of the velocity

at the initial poitft above the least of the minimum velocities, the

body constantly moves, in the same direction, through the entire

circumference.

497. The case in which the initial velocity of the body is

just equal to the excess, which is given by equation (2657 ) of the

velocity at the initial point above either of the minimum veloc-

ities, admits of integration. In this case, it is easy to express the

equation (2657 ) in the form

R (D
t <pf= 2a2 k (sin cp — sin Cjpx )

— a2R sin
2

?? (cos
2
(p— cos2 g^)

-\- 2 (</— a2pcos p
z ) sin r

z (cos <p — cos^),

which by means of (26520 ) assumes the form

R (D
t
cp)

2= a2 sm2p
z [2r2 cos((p -f-<p2 )

— 2r2 cos(<jp 1 -]-(p2)

—R cos2
(p -\- R cos2 cp{] .
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The condition for the determination of the point of min-

imum velocity gives also the equation

2r2 sin (^ -j- y2 )= i? sin 2 <p 1}

which substituted in the previous equation with the notation

<P=.i\(p— (p1)

jg-==
sin(qp

1
— qp2)

sin (cjPi+ fjPa)

gives

{D
t <Pf= i a

2
sin

2
\ sin

2 <P [cos 2 ( <£ -f^— II] .

If, therefore, i? is negative and absolutely greater than unity,

that is, if (p 1 is not in the same quadrant with (p2 , the value of

<P is unlimited ; but if II is less than unity, the limits of <£» are

given by the equation

cos 2 (<P-\-(p
1)= II.

The integral of the equation (267n ) is

a t sin p
z y/ ( \ cos 2 c/) x

— £ iT)

_ j
sin (<£>+?!) y/(cos 2 yi— //)— sin ?1 y/[cos 2 (<p-f yQ— #]

° cos(0)-|-qr 1)v
/ (cos2 91

— H) -\- cos ^ \J
[cos 2 ( 0>+ qn) — -#]

"

498. J7' ^<? rotating line is a parabola, of which the transverse

axis is vertical, let

q be the distance from the vertex to the focus of the parabola,

and let the origin of coordinates be assumed to be upon a level

with the vertex, and let

k denote the distance of the vertex from the foot of the perpendicu-

lar (p) let fall from the origin upon the plane of the parabola.
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If the axis of xy is the horizontal line, which is drawn in the

plane of the parabola through its vertex, and if the vertex is

the origin of xx , the values of z and u are given by the equations

iqzz=x\,

u* =^+(* -\-xxf;

and the equation (2622 ) is reduced to

(D. sf= «'/+ «2
(*+ "if+ |f+ "

= (*+i)W*f.

The integral of this equation, in its general form, can be

obtained by elliptic functions. The point of least velocity along

the curve is determined by the equation

2tf(*+ »0+!*i= 0j

but there is no such point, when

q=— l-.
* 2a?

When this latter condition is satisfied, and also

the velocity of the body along the curve is constant.

When k vanishes and

a= a2
(4 f—p

2
) -j- 2y^,

the equation (26810) becomes

D.1= ±*S\I(*+$.
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so that, in this case, the horizontal velocity of the body upon the

plane of the parabola is constant.

499. In the especial case, in which the initial velocity is that

which corresponds to the vanishing of the minimum velocity, let

x2 be the value of xx for this point of minimum velocity,

and the integral of the equation of motion is

2^v/(«
2

-r-^) = V
/ (^

2
i+ 4 ?

2

)+ ^2 log [^-}-v/(^+4 ?
2

)]

X± —— x%

500. When the axis (h) of rotation is not vertical, the equation

of motion is still reduced to the form (26124 ), and when the rotation

is uniform, it becomes

D2
t
s= a2u cos" -\-g cos *= I a2Ds u* -\-g cos*;.

501. Wlien the rotating line about the inclined axis is straight, if

the point of the axis of rotation which is nearest to the rotating

line is assumed as the origin, let

p be the perpendicular upon the line from the origin,

let s be counted from the foot of the perpendicular (p), and the

time from the instant, when the plane of the directions of the axis

and the rotating line is vertical. The values of u and cos \ are

given by the equations

a2 =pi
-j-s

2 sin",

cos^= cos * cos *
-J- sin

h
, sin

h
z cos (« t)

;
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which reduce the equation (26918 ) for this case to

D2
s= a2

s sin2 * -\-g cos * cos * -j- g sin ) sin * cos (a t)

.

The integral of this equation is

. a t sin *
,

j-. — a t sin * q cos * cos *
q sin * sin

*
, ,

.

s= Ac S+Bc s— y
2

.'

2A /,. ,' .

'
cos(al),

1

or sin
, a2

(1 -j- sin%') v ''

in which A and Z? are arbitrary constants.

502. If in the general case of the rotation of a plane curve about the

inclined axis the time is computed from the instant, when the plane

of the curve is vertical the expression of (*) is given by the

formula

cos * == cos* cos * -\- sin * sin * cos at.

MOTION OF A BODY IJPOJT A LINE IN OPPOSITION TO FRICTION, OR THROUGH A

RESISTING MEDIUM.

503. The forces of nature, which resist the motions of bodies,

are of various kinds and subject to different laws. While their

philosophical discussion must be reserved to its appropriate place,

it is sufficient for the present purpose, to recognize them as forces,

which are opposed to the motion of bodies, and which depend in

general upon the relative motions of the body and of the origin

of the resistance, whether this origin be solid or fluid.

504. If either of the resisting forces is denoted by JS1} and

if (* ) denotes the angle which the direction of its action makes

with the path of the body, the resistance to the motion of the

body in its path will be expressed by /Si cos J , which may be

immediately introduced into the equation of motion.
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505. If the bod// moves upon a fixed line, the equation of

motion (24319) becomes

A/= Ai2+^1 (5
r

1 coB y.

If there is, likeivise, no motion in the resisting medium, all the

forces of resistance can be combined in one, which is directly

opposed to the motion of the body, and the preceding equation

assumes the form

Dt s' = Ds £2— S.

506. If there is no external force, these equations become

D
t
s' =— S.

507. The integral of the latter of these equations is

t= —Js's:

Let JS have the form

S=a-\-bs'-\-es'?
,

in which a and e are positive, in the case of nature, and

b + \]{4:ae)>0,

because 8 is always positive when / is positive. The correspond-

ing integral of (271 17) is

— A 4-
1 W^+A+V (

^-4ae)A
1 ^J^— iae) °2es'+b— \/(l>

2—4ae)

in which A is an arbitrary constant, and the former integral cor-
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responds to the case of b
2 <^4ae, while the latter corresponds to

£
2>4«e. The velocity vanishes after the time t given by the

equation

t =A— ...
2

gv tan 1
- 13

y/^ae— P) ^(iae— b
2

)

^~T
v/(46

2— 4ae) °^b—
\/
(b*— 4ae)'

These values are infinite in form, when

b
2= 4:ae;

but, in this case, the integral is

ft (6s'+ 2 a) I 2 es'-f-S'

so that the velocity vanishes, when

t = A+ l= A+ Sj(ae)

These values become infinite in form when both b and e

vanish, but, in this case, which includes that of friction upon a

straight path, the integral is

t=A—-= s^^-:
a a

and the instant, at which the velocity vanishes is determined by

the equation

t
*0

°— a'

When a vanishes, the value of t is actually infinite, so that

the velocity of the body can never be wholly destroyed by any

such form of resistance. It would seem, from the preceding equa-
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tions, that the direction of motion would be reversed after the

time (7 ). But this conclusion, which is absurd, because it would

give a resistance the power of creating motion, arises from the

defective forms of notation which do not express the solution of

continuity corresponding to the abrupt ceasing of the friction at

the instant of the suspension of motion.

508. When the resistance is simply that of friction arising from

the pressure of the moving body upon the line, to which its motion is

restricted, let

p denote the direction of the perpendicular to the fixed line,

which is drawn in the common plane of the direction of

the external force and of that of the line,

dv the elementary angle made by two successive radii of cur-

vature to the fixed line, and

a the coefficient of friction,

and the equation of motion becomes by (24518 )

D
t
s = DJ2— aDp

£l—^f= DS
S2— aDp

£l— as V

.

509. When there is no external force, this equation becomes

D
t
s'= — as'v

f

;

the integral of which is

log/= ^4— av

,

in which A is an arbitrary constant. Another integration gives

P av—A r•/

'

av— A\ C( av—A\t=
l° =JAD»se )=Xy>

c
>

in which c is the Naperian base, and ^> the radius of curvature of

the fixed line.

35



— 274 —

510. If the fixed line is the involute of the circle, and if its

equation is

q = Rv,

the equation (273 28 ) becomes

t=X(av-l)c—A+ B,

in which B is an arbitrary constant.

511. If the fixed line is the logarithmic spiral, and if its equa-

tion is

Q= Rc ,

the equation (27328 ) becomes

a-\-o '

in which B is an arbitrary constant.

512. If the fixed line is the cycloid, and if its equation is

q= 4 R sin v

,

the equation (27328 ) becomes

, 4JR / . \ av—A , „
?= j. iasmv— cosj>)c ~r-"

in which B is an arbitrary constant.

513. When the resistance of the line is constant, and the resisting

medium is moving ivith an uniform velocity in an invariable direction, and

the resistance arisingfrom it is proportional to the velocity in the medium, let

a be the constant resistance of the line,

h the resistance of the medium for the unit of velocity, and

b the velocity of the medium,
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and if the direction of the motion of the medium is assumed for

that of the axis of x, the equation of motion becomes

D,s'= DS
S2— a— h s[ cos

*

= Ds
£1— a -f k (b cos ;— /)

,

in which it is carefully to be observed that the sign of a must be

reversed simultaneously with the direction of motion.

514. When the fixed line is straight and there is no external force

the integral of the equation (2756 ) becomes

log (s — b cos *
-f- j)= A— h t

in which A is an arbitrary constant. When

a<^b h cos *

,

the velocity of the body will never be destroyed, but will constantly

approximate to

I s
a

But when

a^>bh cos *

,

the velocity will vanish after the time t , determined by the equation

log
(J

—

beosU= A— ht .

If the initial velocity of the body had been negative, the

equation of motion would have assumed the form

log(—/if icwi+ j)=— 4-fA<;

so that the velocity would have vanished after the time t , deter-
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mined by the equation

log (b cos
'

x -f- jj=— A -f- h t .

The body would then have remained at rest unless the con-

dition (27514 ) had been satisfied, in which case its subsequent motion

would be defined by the equation (275n ).

515. When a heavy body moves upon a fixed straight line, and the

resistances consist of a constant resistance, arising from the friction along

the line, and also of a resistance arising from a resisting medium, ivhich

has a uniform motion in the direction of the fixed line ; and when the re-

sistance of the medium is 'proportional to the square of the velocity of the

body in the medium, let

a be the constant of friction,

b the velocity of the medium, and

h the resistance of the medium for the unit of velocity.

The line may be assumed to be vertical without diminishing

the generality of the investigation and the equation of motion

will be

D
t
s' =zg— a— h(s —by,

in which the signs of a and h must be reversed simultaneously with

those of/ and (/— b) respectively. The equation of motion has

precisely the same form with that of § 507, so that the forms of

the integral are the same which are there given, but the constants

are not subject to the restrictions of that section.

If, then, the initial velocity is upward and exceeds that of

the medium, when the medium is also moving upwards, the ascend-

ing velocity decreases by the law expressed in the equation

.
s>-b=

s
/^tan[(i-r)^h(g+ a))],
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in which x is an arbitrary constant. This law of ascent continues

until the body is brought to rest when the medium is not moving

upwards. But when the medium is moving upwards, it continues

until the instant (t), when the velocity of the body is the same

with that of the medium. After this instant, the velocity de-

creases by the law

/-^= V
/^ Tan[(^~' r)v/(M^+ a))];

which continues forever if

g + a<hb*

and the velocity constantly approximates to that, which is deter-

mined by the equation

y-f a= h(s'— bf.

But when

g+ a>hb2
,

the body is brought to a state of rest, in which it continues per-

manently if

g— a<ihb2
.

But if the motion of the medium is upward, and

g— a>hb2
,

the body moves from the state of rest with an increasing descending

velocity of which the law is expressed by the equation

s
r-b=yJ^T*n[(i-~*1)^(g-a))-],

in which %x must be determined so that the instant of rest coincides
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with that given by the equation (2778 ). The increasing velocity

continually approximates to that which is determined by the

equation

g— a=h(s— bf.

The state of rest to which the body is brought, when the

medium is not moving upwards, is permanent if

a— </>hb2
.

But if, on the contrary,

a— (/<ihb2

the body moves from the state of rest with an increasing descending

velocity, of which the law is expressed by the equation

when

in which r
1 must be determined so that the instant of rest coincides

with that given by the equation (2763y ). This law of motion con-

tinues until the instant t1} when the downward velocity of the

body becomes the same with that of the medium ; and after this

instant, the law of increasing velocity of descent is expressed by

the equation (27729 ) ; so that the velocity continually approximates

to that which is determined by the equation (2784 ).

But when the body begins to descend from the state of rest,

and

9<a,
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the law of descent is expressed by the equation

^-h= sJ
a
-^Goti{rl -t)sJ{h{a-g))-],

so that the increasing velocity constantly approximates to that

which is determined by the equation

a—g= h{s'— bf.

If the initial velocity is downward, and exceeds that deter-

mined by the equation (2784 ), the decreasing velocity when

g>a

is expressed by the equation

in which r is an arbitrary constant. If, therefore, the motion of

the medium is downward, or if it is upward and the condition

(27724) is satisfied, the decreasing velocity continually approximates

to that which is determined by the equation (27729 ). But if the

motion of the medium is upward and the condition (2772i ) is

satisfied, the body is brought to a state of rest which is permanent

if the condition (277n ) is also satisfied. If, however, the condition

(277n ) is satisfied by the upward motion of the medium, the body

leaves the state of rest and ascends with an increasing velocity,

which is defined by the equation

/_r j
==v

/.ttf!Cot[0-r
1)^(AO+ a))],

in which %x must be determined so that the instant of rest coin-

cides with that which is given by the equation (27915 ). The
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ascending velocity continually approximates to that which is

determined by the equation (27715 ).

If the initial velocity is downward, and exceeds that of the

medium, when the medium is also moving downwards, the de-

scending velocity, when

decreases by the law, expressed in the equation

'-*=v^W(*-ov(*(«-j))]>

in which % is an arbitrary constant. This law of descent continues

until the body is brought to rest, when the medium is not moving

downwards; but when the medium is moving downwards, the

law continues until the instant t, when the velocity of the body

is the same with that of the medium. After this instant, the law

of decreasing velocity becomes

which continues until the body is brought to rest, when the condi-

tion (2789 ) is satisfied. But when, on the contrary, the condition

(27812 ) is satisfied, the body continues to move forever with the

law of decreasing velocity expressed in (28019 ), and the velocity

continually approximates to that, which is determined by the

equation (279 7 ). When the body has been brought to the state

of rest, the condition and laws of leaving it are the same with

those defined in (27923_3J ), when

g>a.
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THE SIMPLE PENDULUM IN A RESISTING MEDIUM.

516. When the curve is the circumference of a vertical circle, the

problem is that of the simple pendulum in a resisting medium. If the arc

of vibration is supposed to be so small that its powers, which are higher

than the square may be neglected, and if the resistance arising from the

medium is supposed to be proportional to the velocity, and to be combined

ivith a constant friction, let

a be the friction, and

h the resistance of the medium for the unit of velocity,

and the equation of motion becomes, by adopting the notation

of § 487,

B1 9=—^ 9+ a— hD
t 9 ,

in which the sign which precedes a, must be the reverse of that of

D
t 9 . The integral of this equation is

, Ra , qpo — \ht . 7 ,

<P
=±—+jc smkt,

in which

It= i/ ^ cos a

,

hh=J ^ sin «

,

and the arbitrary constants have been determined so that the initial

angular velocity (9^) shall be the maximum velocity, and, therefore,

the initial value of 9 is

I

Ha
— 9

36



— 282 —

517. The equation (2812i) only applies to the first vibration

and for the (m-\- l)
st
vibration, the correct equation is

in which tm is the instant of the maximum angular velocity {y'm ) of

that vibration and the doubtful sign is alternately positive and

negative for the successive oscillations, so that the position of

maximum velocity is always upon the descending portion of the

oscillation.

518. The angular velocity of vibration is expressed by the

equation

«/— «/ „
— h h (*— *m) COS [k (t— T,„) -f ft]

t — y™ 6
cos« '

and it vanishes for the instants

,
— n a

t— Xm+ 2k~lc

which correspond to the beginning and end of the oscillation. The

whole time of oscillation is, therefore,

Tn I

R

— T= 7i:\/-seca,
k V g

which is invariable, although it exceeds the time of vibration in a vacuum,

in consequence of the factor, sec a

.

519. The angular deviations of the pendulum from the verti-

cal at the beginning and end of the oscillation are given by the

equation

— R a — , I R (« -J- i n) tan «
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whence the whole arc of the (m -\- l)
st vibration is

<Pm= 2 (p'm \J
— c

a a
Cos ( I n tan a )

.

520. The angular deviations of the pendulum from the ver-

tical at the end of one vibration and the beginning of the next are

identical, but the deviation from the point of maximum velocity is,

on account of the change in the position of this point, diminished

by the quantity

2Ra
9

The successive values of the maximum velocity are therefore

connected by the equation

f
/ («— i«)tan« o "A8 —- m> («+**) tana

fm c
\ ~g— T '« + 1

C
>

or

/ _ / — ft tan a „ IR .— (a -\- \ n) tan a, , — ft tan a n IR ;

9« + i= 9
)mC ~ \ ~g

c

The general expression for the maximum velocity is then

found to be

, r
— mntancc n IR — («+ hn) tan a (e—m 7r tan a— 1\

which, on account of the smallness of a and a, may be reduced to

/ r — m n tan a ^ I

R

<pm= <foC — 2 mad-.

The corresponding value of the arc of vibration is

^=^og
-w^aag-i^ g

-^ tang
Cos(^tan ft

)

c
"m
i
tanC~

1

1
-

or

_ -m n Un a ±maR
" m "o C ~

•
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The laiv of the diminution of the arc of vibration and of the maxi-

mum of velocity is, therefore, such that either of these quantities consists

of hvo terms, one of which is dependent upon the portion of the resistance,

which is proportional to the velocity, and decreases in geometrical ratio,

ivhile the other is principally dependent upon the constant friction and de-

creases, sensibly, in arithmetical ratio. The vibration ceases when the second

term of either of these quantities surpasses the first.

521. If the resistance is proportional to the square of the velocity,

and if h is its value for the unit of velocity, the equation of the

motion of the pendulum is

D2
(p=— £ sin <p— h (D, <pf

.

If one of the first integrals of this equation is supposed to be

(25426 ), in which, however, H is not constant but variable, the

differential of (25426 )
gives, by means of this equation and (25426 ),

DJI=R2 D
t
<pD2 y-\-gRsmyD

t
y=z— hR'i {D

t yy
=— 2hD

t
tp (gRcoscp -j- H),

D
<p
II=— 2ghRcos(p— 2hff;

and the integral of this last equation if

tan ju,= 2 h,

is

II=zAe * l*— gR sin fi sin ((p -j- fi),

in which A is an arbitrary constant. The equation (25426 ) is then

reduced to

R* {D
t 9 )

2= 2 A c~ 9 tan
**+ 2 gR cos fi cos (9 -f p) ;

of which the integral is

,
r R

t T= I

J<t> y/ [2 A c — <p
tan

1" -j- 2 gR cos fi cos (9 -J- p)
]

'
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The signs which precede the quantities h and fi must be re-

versed in the alternate oscillations.

522. The angle of greatest deviation from the vertical for

the (m -j- l)st oscillation is determined by the equation

gR cos fi

— wm tan u
(

,

C
T COS(yw— fl)

= c
<Pm+1 &nfl

cos(cpm+1 -\-p),

If// is adopted as the sign of finite differences, this equation

gives, when fi is so small that its square may be neglected,

J [cos cpm— (sin cpm— (pm cos (pm ) fi]=2 (sin cpm— (pm cos <pm ) fi .

When the oscillations of the pendulum are so small that the

fourth power of cpm may be neglected, and also the product of \i

by
(fin

J (pm , this equation is reduced to

4<pm=— $p<pi;

of which the approximate integral is

523. The substitution of (2855 ) reduces (28427 ) to the form

R
(I)t(pf= cos( (p-\-fi)-c- ((f+ (fm)tanix

coa (<pm— fi),
2 g cos n

which, when fi is so small that its square may be neglected, becomes

— (D
t (pf= cos (9+ fi)— cos (q>m— fi) + cos <pm (y -f- (pm ) u

= cos(p— cos (pm— fi [sin (p -\- sin (pm— (9+ cpm ) cos yw]

.

When the oscillations are very small, this equation may be
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still further reduced to

which gives

The integral of this equation is

The time of the descending semioscillation, deduced from this

equation, is

4-0=^(1+^).
The time of the preceding semioscillation is obtained by re-

versing the sign of fji, which gives

and the time of the ivhole oscillation is, therefore, the same as if the pen-

dulum vibrated in a vacuum. The preceding formulae and conclusions

coincide, substantially, with those which are given by Poisson.

524. If the law of the resistance to the motion of the pendulum

may be expressed as a function of the time, let

2T denote the resistance,

and the motion of the pendulum in a small arc is expressed by

the formulae (2609 ) and (261 7 ). If 3"
is a periodic function, which
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has the same period with that of the vibration of the pendulum,

it may be expressed in the form

gr=^ +2l
!
[^cos(?7

v/|+ ^)];

and, if the variable portions of A sin b and A cos b are denoted by

d, these equations give

ff&(Asmb)=k (l-coS(l^))—V^/Jainfc— ^cos^y/l+ft)

+^ cos ft+1,{^ cos ((z- 1)^+ ft)

-^cos^+lj^S+Z^-^cosft],

ffd(Acosb)=— A sin(rfy/|)—Vy/|cosft— ^sin(2^y/|+ ft)

+^ 1 sinft-l I
.[^sin(( ?-l)y|4-ft)

+ ^T-n((/+ l)^
V/|+ft)- 1̂

sinft] ;

which vanish with zf.

525. if the vibrations of the pendulum cause the medium to oscil-

late, the period of the oscillations of the medium is probably the same with

that of the pendulum, but the successive phases of the motion of the medium

are likely to lag someivhat behind those of the pendulum. Hence the

relative velocity of the pendulum to the medium may be ex-

pressed by the equation

V=vAcoS(t^+ b+ (l),

in which A and b may be regarded as constant for a single vibra-

tion.
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If, then, the resistance of the medium is proportional to the

relative velocity, the value of 9° assumes the form

er=2AAeofl(yf+a-fp)
;

and the equations (2878_i8 )
give

]

?
2d(Asmb)=-t sJjiS

m(b+ p)

£2 d(Acoab) =— t^Z
i
co8(b+ (i)

_ i an (2*y/£+ J +/*) + * sin (*+ /*),

whence

plogil= -.y|cosjJ-i8in(2/
v
/|4-2i+ /j)+* Sin(2J+ /?),

.£«=—y|sin/5— Jcos(2*y/|+2J+ |*)+ Jcos(2J+ /J).

If T is the time of vibration of the pendulum, the changes

of A and b in a single vibration are given by the formula

J\ogA=— ^ry/|cos/9 =— rc-cos/J,

//j=— *Fi/4sin/J=— 71- sin/3.

i/^ ^Ae resistance is proportional to the square of the velocity, the

value of ST assumes the form

®=2kA2 + 2kA2
cos (2^t/|+2^ + 2/5),

in which the sign of # must be reversed, when the direction of the



— 289 —

relative motion of the body to the medium is reversed. This

value of 9° gives

k£

J_
k£

^(4sin$)= 2— 2cos(y|)+ cos(y|4-2*4-2/?)

— h cos (otJ^ + 2^ + 2(i) — I cos (2*4-2/5),

^(^cos3)= -2sin(y|)- Sin(!5

v/|+ 2J4-2^)

-ism(3ify/|+ 2J+ 2^)+ | Sin(2J+ 2/5);

whence

- <^ ^1= 2 sin £— 2 sin(^t/| -f- i)+ sin(^ y/| -f J -f 2 /?)

— isin(3^i/|4-35-f 2/5)+ isin(3J+ 2/5)— sin(i-|-2/i),

^•=2cos5— 2cos(^y/|4-j)4-cos(^»/|4-i4-2/5)

— icos(3^y/|4-354-2/3)4-icos(3J4-2/5)— cos(J-f2J).

The changes of ^4 and # in a vibration are found, by having

regard to the reversal of the sign of k which corresponds to that

of V, to be

(/JA=— -V-£-4
2
cos/5,

g J b =— -L6- It A sin (i .

i/'
-

^e law of the resistance is similar to that of friction so as to

be constant if the medium is at rest, it must, when the medium is in

motion, be proportional to the quotient of the relative motion of

the body through the medium divided by the velocity of the

37

hA
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body. The form of 2T is, then,

^ acos(*y/§+ ft+ /?)

oob(^|+ *)

in which the sign of a must be reversed, when the direction of the

relative motion of the body to the medium is reversed. This value

of 2T gives

?d(Asmb)=— cos^i/l+ ft)
— sm (i cos Hog tan(i ^+ ^"

2

+ft
),

|d (4 cos 0) =— sin (rf y/|+ /?) -J- sin 8 sinHog tan (± re -j- *-^|±_
5

) ;

whence

*4==-5«ii(f
v/}
+*.+ /») J

<J 5=-^ oos (^1+ b + /?)-± sin fi log tan (j *+ lM±l)

.

The changes of A and J in a vibration are

J A = ,

9

J b= -j- sin fi log tan \ 8 .

The combination of these values give

9 9
6

9

J i= ll sin 8 log tan i8—n- sin 8 — -1/ * A sin (i .^ °
9 9

The change of b is exhibited in the motion of the pendulum
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by a change in the time of vibration, which differs from that which

it would be in a vacuum. The difference is

JT=— JbJ-=— -Jb.
V 9 t

526. The vibration of the pendulum may be regarded as

affected by the medium not only in consequence of its direct action

as resistance, but also indirectly, because a portion of the medium

may be regarded as composing a part of the moving body, and its

motion is sustained by the action of gravitation upon the body.

If, then,

q denotes the ratio of the mass of that portion of the medium

which moves with the body to the mass of the body,

the motion of q may be assumed to have a period identical with

that of the body, and an amplitude of excursion proportional to

that of the body, so that its velocity may be of the form

The resistance, then, arising from the preservation of the

motion of q may be expressed in 2T by the form

sr=,z>
1
r=-i^2--n(<

v
/j+*_/i').

The similarity of this form to that of (2884 ) shows that the

corresponding influence upon A and b may be expressed by the

equations
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The importance of this form of resistance was first noticed

by Dubuat and has been investigated experimentally by Dubuat,

Bessel, and Baily. The formulEe (29027 ) and (291 29 ) may be adopted

as a guide in the conduct of these and similar investigations.

527. In the application of the preceding formulae to the re-

duction of experiments, the quantities a, h, k, and q are inversely

proportional to the density of the body, and directly proportional

to the density of the medium, and for bodies of similar forms they

are nearly in an inverse ratio to their linear dimensions. For

pendulums of different lengths, h is proportional to the length of

the pendulum, and h to the time of vibration. If iZj denotes the

resistance of the medium which is proportional to the velocity for

the unit of weight and the unit of surface, and if ff2 denotes the

resistance which is proportional to the square of the velocity for

the same unit of weight and surface, the values of h and k, for the

units of weight and surface, are

528. The best experiments which have been made with the

pendulum are almost wholly free from any constant term of resist-

ance, so that, in their discussion, this term may be neglected which

reduces the formula (29026 ) to the form

JA-=— \ THX A cos §—%R ff2 A2 cos §,

of which the approximate integral is

529. In order to illustrate these formulae, they may be ap-

plied to some of the experiments which have been actually made,
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and in which the diminution of the arc of vibration has been ob-

served. For this purpose the observations of Newton, Dubuat,

Borda, Bessel, and Baily are selected, and the formula (29228 ) is

found to be applicable to all these experiments, although the values

of Hi and H2 are different for the different experiments. The unit

of length which is here adopted is the meter, the unit of weight

is the chiliogramme, and that of time is the mean solar second.

The measures and weights are, however, given in the form in

which they were actually observed.

530. In Newton's first series of experiments upon the dimi-

nution of the oscillations of a pendulum, a wooden sphere of

6| English inches in diameter, weighing 57^ ounces, of about

0.56 specific gravity, and suspended by a fine wire so as to give

10 2 feet for the length of the pendulum, was vibrated until the arc

of descent was diminished one fourth or one eighth of its initial

extent, and the number of vibrations was recorded. From the re-

duction of these observations, I have obtained for the values of

#[= 0.0223 sec/?,

J72= 0.4473 sec ^.

In Newton's second series of experiments, a leaden sphere of

2 inches in diameter, weighing 261 pounds, and suspended so as to

give 10 £ feet for the length of the pendulum, was vibrated in the

same way as in the former series. From the reduction of these

observations, I have obtained

Ht
= 0.2044 sec p,

ff2= 0.701 sec /J.

To test the accuracy of these reductions, and their conformity

with the given observations, I have computed the lengths of the
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observed arcs of vibration, and have placed them in the following

table for comparison.

COMPARISON OF NEWTON S EXPERIMENTS UPON VIBRATIONS OF THE PENDULUM

WITH COMPUTATION.

WOODEN SPHERE. LEADEN SPHERE.

in
Computed Observed

-Am
C—O m Computed

Am
Observed

Ah
C—O

in. in. in. in. in. in.

64.08 64 .08 64.03 64 .03

n 56.02 56 .02 30 56.04 56 .04

22§ 47.91 48 —.09 70 47.92 48 —.08
31.86 32 —.14 31.92 32 —.08

18i 27.92 28 —.08 53 28.00 28 0.

41§ 24.19 24 .19 121 24.07 24 .07

15.99 16 —.01 16.01 16 .01
35i 14.01 14 .01 901 13.99 14 —.01
83i 11.99 12 —.01 204 11.99 12 —.01

8.04 8 .04 8.05 8 .05

69 7.01 7 .01 140 7.01 7 .01

1621 5.95 6 —.05 318 5.95 6 —.05
4.01 4 .01 4.03 4 .03

121 3.50 ' H 0. 193 3.49 H —.01
272 2.99 3 —.01 420 2.97 3 —.03

1.98 2 —.02 2.04 2 .04

164 1.74 If —.01 228 1.74 If —.01
374 1.52 H .02 518 1.46 H —.04

1.00 l 0.

226 .88 i
8 0.

510 .75 f 0.

With these values of Hx and ff2 , a minute arc of vibration

of the wooden sphere would be reduced one eighth part in 446

vibrations, and one fourth part in 961 vibrations, and a minute

arc of vibration of the leaden sphere would be reduced one eighth

part in 290 vibrations, and one fourth part in 625 vibrations.

531. Dubuat vibrated in water a sphere of 2.645 French

inches in diameter, weighing in air 40068 grains, and in water

36448 grains, and suspended so that the length of the pendulum
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was 36.714 inches ; he observed the arc of descent at each succes-

sive oscillation. From these observations, I have obtained a result

which corresponds with his own in respect to the law of diminution

of oscillation, and which gives for the values of IIy and II2 in water

ff2= 378.7 sec /?.

Dubuat also vibrated in air a paper sphere of 4.0416 inches in

diameter, weighing in air 155 grains, with a density 11.33 times as

great as that of air, and suspended by a fine thread so that the

length of the pendulum was 36.714 inches. From these observa-

tions, I have deduced

£1= 0,

H2= 0.37 sec §.

The following table contains the comparison of Dubuat's experi-

ments with the computations derived from the values of Hi and H% .

COMPARISON OF DUBUAT's EXPERIMENTS UPON THE DIMINUTION OF THE ARC OF

VIBRATION OF A PENDULUM WITH COMPUTATION.

SPHERE IN WATER. SPHERE IN AIR.

Ill

Computed Observed C—O m Computed

An
Observed C—O

in. in. in. in. in. in.

12.00 12.00 0. 11.90 12.00 —.10
1 9.21 9.25 —.04 i 10.10 10.00 .10

2 7.47 7.42 .05 2 8.77 8.70 .07

3 6.28 6.25 .03 3 7.75 7.79 —.04
4 5.42 5.33 .09 4 6.94 6.96 —.02
5 4.77 4./5 .02

G 4.25 4.25 0.

7 3.84 3.83 .01

8 3.50 3.48 .02

9 3.22 3.23 —.01
10 2.97 2.98 —.01
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532. Borda vibrated a platinum sphere of 16i lines in diameter,

weighing with the wire and screw 9963 grains, and suspended by a

wire so that the length of the pendulum was 3.95497 metres. These

observations give for the values ofHx and H2 in air

#i= 0.10722 sec /?,

#2 =0.6267 sec /?.

In his observations for determining the length of the seconds

pendulum, this same pendulum was vibrated by Borda, and the

lengths of its arcs of vibration were observed. From the mean of

these observations, I have obtained the values of 1^ and II2 ,

#x
= 0.11214 sec/?,

II2= 0.6564 sec/?.

Borda vibrated the same sphere with a smaller wire, so that

the weight was reduced to 9958 grains, and the length increased to

3.95597 metres. From these observations I have derived

#i= 0.1134 sec/?,

#2 = 0.590 sec/?.

The comparison of Borda's experiments with the computations

based upon these values of #i and H2 is contained in the following

tables.

COMPARISON OF BORDA's OBSERVATIONS UPON THE DIMINISHED VIBRATIONS OF

THE PENDULUM WITH COMPUTATION.

First Experiment with direct reference to the Diminution of the Arc of Vibration.

m Computed

An
Observed

An
C—O m Computed Observed

An
C—O

12<)'o 120^0 0. 12600 4.2 4.1
/

0.1

1800 61.2 61.2 0. 14400 2.8 2.7

3600 35.6 35.4 .2 16200 1.9 1.8

5400 22.1 21.9 .2 18000 1.3 1.2

7200 14.2 14.1 .1 19800 0.9 0.8

9000 9.4 9.4 0. 21600 0.6 0.5

10800 6.2 6.3 —.1 36000 0.002 Very minute.
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Experiments for determining the Length of the Second's Pendulum ivith the Pendulum used in the First

Experiment.

m
Mean Value.

Computed

An
Observed

Am
C—O Computed Observed

Am
C—O Computed Observed

A,
C—O

64' &(
/ d 67

y /

<oi d
2169 321 32 i

2 34 34 32 32

4338 18 19 —1 181 19 1
2 18 18

6507 101 11 I

2 11 11 101 11 2

8676 6| 7 1
2 6* 7 1

2 6 6

60 60 61 61 64J, 64*
2169 31 31 311 311 32.

V

32*
4338 17* 17 X

2 17* 18 X
2 18 17* X

2
6507 10 10 10 10 10* 10 1

2

8676 6 6 6* 6 X
2

63 63 68 68 61 61

2169 32 32 34 341 1
2 31* 31*

4338 18 18 19 191 1
2 17* 17 1

2
6507 101 10 1

2 11 11* 1
2 10 10

8676 6 H X
4

61 7 -* 6 6

2169

591
301

591
301

571
30

571
30

62

31*
62

31*
4338 17 17 17 17 18 17 1

6507 10 10 H 10 —

*

10* 10 X
2

8676 6 6 6 6

67 67 65 65 63 63

2169 34 34 33 331 —

i

32 32
4338 181 19 1

2 181 18| 18 17* X
2

6507 11 11 101 11" —

1

10* 10 JL
2

8676 H 6 X
2

61 6* 6 6

71 71 591 591
2169 35 341 X

2 31 31
4338 191 19 X

2 171 17 *
6507 11 11 10 10

8676 7 7 6 6

Experiments Jor determining the Length of the Second's Pendulum with the Second Pendulum.

m Comp'd

An
Observ'd

An C-0 m Comp'd

Am

Observ'd

An
C—O m Computed

Am
Observed

Am
C-0

/ /, / / J / j / 1 /

551 551 79 79 111 110 1

1575 341 35 1

2 1538 47 47 1445 641 641
3150 221 23 1

2 3114 30 30 2970 401 40 1
2

4725 15 16 —1 4690 191 20 4495 26 26
6300 10 101 1

2 6266 13 14 —1 6020 171 18 1
2

7875 7 71 1

2 7842 9 91 1

2 7545 12 12
9450 5 5 9418 5 6*

1

2 9070 8 8* 2

38
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533. In Bessel's experiments made for the determination of

the length of the second's pendulum of Konigsberg, a brass sphere

of 24.164 lines in diameter, weighing 0^.695364 was suspended so

that the length of the pendulum was 1305.3 lines. From his ob-

servations with this pendulum, I have found these values of 1^

and II2 .

Hx
= 0.05698 sec /?,

.#2=0.529sec/?.

The same sphere was also vibrated with a length of pendulum

of 441.8 lines, from the observations of which I have deduced

.#!=: 0.0452 sec/?,

H2 =0.587 sec /?.

Bessel also vibrated an ivory sphere, weighing 0M5112, and

having a diameter of 24.094 lines, with each of the preceding

lengths of pendulum. From his observations with this sphere and

the long pendulum, I have obtained

H1= 0.05517 sec/?,

JI2 =0.512 sec/2;

and from his observations with the short pendulum,

7^=0.0509 sec/?,

i72 =0.282 sec/?.

In Bessel's experiments for the determination of the length of

the second's pendulum at Berlin, a hollow cylinder was vibrated,

of which the diameter of the base was 15.305 lines, and the altitude
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15.296 lines, weighing, with its appendages, when it was filled with

lead,
A'.67920, and when it was empty, 0\22595. It was suspended

in two different modes, in one of which the length of the pen-

dulum was 1304.8 lines, when the cylinder was filled, and 1303.8

lines, when it was empty ; and, in the other mode of suspension

the length was 440.9 lines when the cylinder was filled, and

440.7 lines when it was empty. From his observations with this

pendulum, I have obtained the following values of 1^ and II2 .

When the cylinder was full, and the suspension was long, the

values were

#!= 0.08544 sec/?,

H2= 0.733 sec /? ;

when it was full, and the suspension short, they were

^= 0.07026 sec/?,

II2= 0.724 sec/?.

When the cylinder was empty, and the suspension long, the

values were

ff= 0.09578 sec /?,

11= 0.559 sec /? ;

when it was empty, and the suspension short, they were

^= 0.07003 sec/?,

#2 =0.270 sec/?.

In order to compare the theory of these values with ex-

periment, all the values of observation have been recomputed,

and the comparisons are contained in the following tables.
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COMPARISON OF BESSEL S OBSERVED ARCS OF VIBRATION OF THE PENDULUM WITH

THE COMPUTED ARCS.

1. Experiments witk ike Brass Sphere and Long Suspension.

m Computed

A-m

Observed C—O Computed Observed

Am
C—O Computed

An
Observed

-A-m
C—O

38.3 38.3 39.0 39.0 39.5 39.5

500 33.7 33.8 —.1 34.2 34.2 34.6 34.6

1000 29.7 29.8 —.1 30.2 30.1 .1 30.5 30.5

1500 26.4 26.4 26.8 26.8 27.1 26.8 .3

2000 23.5 23.6 —.1 23.9 23.8 .1 24.1 23.9 .2

2500 21.0 20.9 .1 21.3 21.3 21.6 21.6

3000 18.8 18.8 19.1 19.2 —.1 19.3 19.3

3500 16.9 16.9 17.2 17.2 17.4 17.3 —.1
4000 15.3 15.4 —.1 15.5 15.5 15.7 15.7

39.7 39.9 —.2 39.0 39.3 —.3 39.6 39.7 —.1
500 34.8 34.6 .2 34.2 34.1 .1 34.7 34.8 —.1
1000 30.7 30.4 .3 30.2 30.0 .2 30.6 30.5 .1

1500 27.2 27.1 .1 26.8 26.4 .4 27.1 26.9 .2

2000 24.2 24.1 .1 23.9 23.5 .4 24.2 24.0 .2

2500 21.6 2*1.5 .1 21.3 20.9 .4 ' 21.6 21.4 .2

3000 19.4 19.3 .1 19.1 18.5 .6 19.4 19.3 .1

3500 17.4 17.3 .1 17.2 16.4 .8 17.4 17.3 .1

4000 15.7 15.5 .2 15.5 14.6 .9 15.7 15.5 .2

38.6 38.6 40.0 40.3 —.3 40.1 39.9 .2

500 33.9 33.9 35.1 34.9 .2 35.1 35.2 1

1000 29.9 29.9 30.9 30.8 .1 31.0 31.0

1500 26.5 26.6 —.1 27.4 27.2 .2 27.4 27.5 1

2000 23.7 23.6 .1 24.4 24.2 .2 24.4 24.4

2500 21.1 21.2 —.1 21.8 21.8 21.8 21.9 —

1

3000 19.0 19.0 19.5 19.5 19.6 19.6

3500 17.1 17.1 17.5 17.4 .1 17.6 17.6

4000 15.4 15.4 15.8 15.6 .2 15.8 15.9 —

1

39.1 39.1 39.3 39.2 .1 38.8 38.5 .3

500 34.3 34.3 34.5 34.5 34.0 34.0

1000 30.3 30.3 30.4 30.5 —.1 30.1 30.2 —

1

1500 26.9 26.9 27.0 27.1 —.1 26.7 27.0 —

3

2000 23.9 23.9 24.0 24.2 —.2 23.8 24.0 —

2

2500 21.4 21.4 21.5 21.8 —.3 21.3 21.5 —

2

3000 19.2 19.3 —.1 19.3 19.4 —.1 19.1 19.3 —.2
3500 17.2 17.3 —.1 17.3 17.5 —.2 17.2 17.4 —.1
4000 15.5 15.6 —1 15.6 15.7 1-1 15.5 15.5
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1. Experiments wi th the Brass Sphere and Long Suspension.— Continued.

m Computed

Am
Observed

-Am
C—O Computed

Am
Observed

Am
C—O Computed

Am

Observed

-4,
C—O

39.1 39.1 37.8 37.7 .1 39.6 39.7 —.1
500 34.3 34.2 .1 33.2 33.3 —.1 34.7 34.7

1000 30.3 30.2 .1 29.4 29.3 .1 30.6 30.6

1500 26.9 27.0 —.1 26.1 26.2 —.1 27.1 27.1

2000 23.9 24.0 —.1 23.2 23.4 —.2 24.2 24.1 .1

2500 21.4 21.5 —.1 20.8 20.9 —.1 21.6 21.6

3000 19.2 19.2 18.7 18.7 19.4 19.4

3500 17.2 17.3 —.1 16.8 16.7 .1 17.4 17.3 .1

4000 15.5 15.5 15.1 15.2 —.1 15.6 15.6 .1

39.0 39.0 41.7 41.6 .1 39.4 39.4

500 34.2 34.1 .i 36.5 36.6 —.1 34.6 34.5 .1

1000 30.2 30.1 .i 32.1 32.3 —.2 30.5 30.4 .1

1500 26.8 26.5 .3 28.4 28.6 —.2 27.0 27.1 —.1
2000 23.9 24.0 —.1 25.3 25.5 —.2 24.1 24.1

2500 21.3 21.4 —.1 22.5 22.7 —.2 21.5 21.6 —.1
3000 19.1 19.2 —.1 20.2 20.3 —.1 19.3 19.4 —.1
3500 17.2 17.2 18.1 18.1 17.3 17.3

4000 15.5 15.5 16.3 16.3 15.6 15.6

39.2 39.4 —.2 38.6 38.6 38.5 39.3 —.8
500 34.4 34.4 33.9 33.4 .5 33.8 34.2 —.4
1000 30.3 30.3 29.9 29.9 29.8 30.0 —.2
1500 26.9 26.9 26.5 26.7 —

2

26.5 26.3 .2

2000 24.0 24.0 23.7 23.6 .1 23.6 23.2 .4

2500 21.4 21.5 —

1

21.1 21.4 —

3

21.1 20.5 .6

3000 19.2 19.2 19.0 19.2 —

2

18.9 18.3 .6

3500 17.2 17.1 .1 17.1 17.2 —

1

17.0 16.3 .7

4000 15.6 15.4 .2 15.4 15.4 15.3 14.5 .8

40.0 39.9 .1 39.9 39.6 .3 39.3 39.0 .3

500 35.1 34.9 .2 35.0 35.0 34.5 34.5

1000 30.9 30.9 30.8 30.9 —

1

30.4 30.5 —

1

1500 27.4 27.5 —.1 27.3 27.5 —

2

27.0 27.1 —

1

2000 24.4 24.4 24.3 24.3 24.0 24.1 —

1

2500 21.8 21.9 —.1 21.7 21.7 21.5 21.5

3000 19.5 19.7 —

2

19.5 19.5 19.3 19.3

3500 17.5 17.6 —.1 17.5 17.3 .2 17.3 17.3

4000 15.8 15.8 15.8 15.5 .3 15.6 15.5 .1

39.7 39.8 —.1 38.9 38.8 .1 38.7 38.7

500 34.8 34.8 34.1 34.0 .1 34.0 34.3 —.3
1000 30.7 30.7 30.1 30.2 —

1

30.0 29.9 .1

1500 27.2 27.2 26.7 26.9 —

2

26.6 26.4 .2

2000 24.2 24.2 23.8 24.0 —.2 23.7 23.5 .2

2500 21.7 21.8 —.1 21.3 21.4 —.1 21.2 •21.1 .1

3000 19.4 19.4 19.1 19.2 —.1 19.0 18.9 .1

3500 17.4 17.4 17.2 17.2 17.1 16.8 .3

4000 15.7 15.6 .1 15.5 15.4 .1 15.4 15.2 .2
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1. Experiments with the Brass Sphere and Long Suspension. — Continued.

m Computed

Am
Observed

An
C—O Computed

A*
Observed

An
C—0 Computed Observed

Ai
C—0

38.7 38.7 39.3 39.3 39.1 39.2 —.1
500 34.0 34.1 —.1 34.5 34.7 —.2 34.3 34.2 .1

1000 30.0 30.0 30.4 30.2 .2 30.3 30.3

1500 26.6 26.6 27.0 27.0 26.9 27.0 —.1
2000 23.7 23.6 .1 24.0 24.1 —.1 23.9 23.9

2500 21.2 21.2 21.5 21.5 21.4 21.4

3000 19.0 19.0 19.3 19.3 19.2 19.3 —.1
3500 17.1 16.9 .2 17.3 17.3 17.2 17.2

4000 15.4 15.3 .1 15.6 15.5 .1 15.5 15.5

39.0 39.0 39.8 39.7 .1

500 34.2 34.1 .1 34.9 34.9

1000 30.2 30.1 .1 30.8 30.8

1500 26.8 26.8 27.3 27.2 .1

2000 23.9 23.7 .2 24.3 24.3

2500 21.3 21.2 21.7 21.7

3000 19.1 19.2 —.1 19.4 19.4

3500 17.2 17.2 17.5 17.4 .1

4000 15.5 15.4 .1 15.7 15.6 .1

2. Experiments with the Brass Sphere and the Short Suspension

m Computed

-A-m

Observed C—O Computed

Am

Observed

An.
C—O Computed

Am
Observed

An
C—O

14.4 14.65 —.2 13.2 13.5 —.3 12.4 12.4

560 13.5 13.7 —.2 12.4 12.7 —.3 11.7 11.6 .1

1120 12.7 12.8 —.1 11.7 11.9 —.2 11.0 10.9 .1

1680 12.0 11.9 .1 11.0 11.0 .0 10.3 10.2 .1

2240 11.3 11.0 .3 10.4 10.3 .1 9.7 9.6 .1

2800 10.6 10.3 .3 9.7 9.7 9.2 9.0 .2

3360 10.0 9.6 .4 9.2 9.0 .2 8.6 8.5 .1

3920 9.4 8.9 .5 8.6 8.4 .2 8.1 8.0 .1

4480 8.8 8.3 .5 8.1 7.9 .2 7.6 7.5 .1

5040 8.3 7.8 .5 7.6 7.4 .2 7.2 7.1 .1

5600 7.8 7.3 .5 7.2 7.0 .2 6.8 6.7 .1

12.2 12.3 —.1 11.5 11.6 —.1 12.2 12.2

560 11.5 11.5 10.9 10.9 11.5 11.5

1120 10.8 10.8 10.3 10.3 10.8 10.9 —

1

1680 10.2 10.1 .1 9.7 9.7 10.2 10.3 —

1

2240 9.6 9.5 .1 9.1 9.1 9.6 9.7 —.1
2800 9.0 8.9 .1 8.6 8.6 9.0 9.1 —.1
3360 8.5 8.4 .1 8.1 8.15 —.1 8.5 8.5

3920 8.0 8.0 7.6 7.7 —.1 8.0 8.1 —.1
4480 7.5 7.5 7.1 7.3 —.2 7.5 7.7 —.2
5040 7.1 7.0 .1 6.7 6.9 —.2 7.1 7.2 —.1
5600 6.7 6.5 .2 6.3 6.4 —.2 6.7 6.8 —.1
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2. Expert ments with the Bras : Sphere and the Short Suspei>sion.— Continued.

m Computed

A.
Observed C—O Computed Observed

4m
C—O Computed Observed

An
C—O

12.5 12.3 .2 12.8 12.7 .1 12.9 12.8

560 11.8 11.7 .1 12.0 11.95 .1 12.1 12.0

1120 11.1 11.0 .1 11.3 11.3 11.4 11.3

1680 10.4 10.4 10.7 10.7 10.8 10.7

2240 9.8 9.8 10.0 10.15 —.1 10.1 10.2 —.1

2800 9.2" 9.2 9.5 9.5 9.5 9.7 —.2
3369 8.7 8.75 —.1 8.9 8.9 9.0 9.1 —.1
3920 8.2 8.3 —.1 8.4 8.4 8.4 8.6 —.2
4480 7.7 7.9 —.2 7.9 8.0 —.1 7.9 8.1 —.2
5040 7.2 7.45 —.2 7.4 7.6 —.2 7.5 7.7 —.2
5600 6.8 7.0 —.2 7.0 7.2 —.2 7.0 7.2 —.2

13.0 12.9 .1 10.9 10.9 13.4 13.2 .2

560 12.2 12.1 .1 10.4 10.3 .1 12.6 12.5 .1

1120 11.5 11.4 .1 9.7 9.7 11.9 11.8 .1

1680 10.8 10.8 9.2 9.2 11.2 11.2

2240 10.2 10.3 —.1 8.6 8.7 —.1 10.5 10.6 —.1
2800 9.6 9.8 —.2 8.1 8.2 —.1 9.9 9.9

3360 9.0 9.2 —.2 7.6 7.7 —.1 9.3 9.3

3920 8.5 8.8 —.3 7.2 7.2 8.8 8.8

4480 8.0 8.2 —.2 6.8 6.8 8.3 8.3

5040 7.5 7.8 —.3 6.4 6.4 7.8 7.85 —.1
5600 7.1 7.4 —.3 6.0 6.0 7.3 7.45 —.1

13.3 13.3 11.1 11.3 —.2 12.4 12.5 —.1
560 12.5 12.5 10.5 10.5 11.7 11.7
1120 11.8 11.8 9.9 9.8 .1 11.0 10.9 .1

1680 11.1 11.1 9.3 9.3 10.3 10.2 .1

2240 10.4 10.5 —.1 8.8 8.8 9.7 9.6 .1

2800 9.8 9.8 8.3 8.3 9.2 9.0 .2

3360 9.2 9.2 7.8 7.8 8.6 8.5 .1

3920 8.7 8.7 7.3 7.2 .1 8.1 8.0 .1

4480 8.2 8.2 6.9 6.8 .1 7.6 7.6
5040 7.7 7.7 6.5 6.4 .1 7.2 7.2
5600 7.3 7.3 6.1 6.1 6.8 6.8

11.7 11.8 —.1
560 11.1 11.1

1120 10.4 10.4

1680 9.8 9.8

2240 9.3 9.2 .1

2800 8.7 8.7

3360 8.2 8.2

3920 7.7 7.7

4480 7.3 7.3

5040 6.8 6.8

5600 6.4 6.4
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3. Experiments with the Ivory Sphere and Long Suspension.

m Computed

A-m

Observed

Am
C—O Computed

Am

Observed

Am
C— Computed

Am
Observed

Am
C—O

36.5 3C.4 .1 38.9 38.9 38.7 38.6 .1

500 21.5 22.0 —.5 22.7 22.7 22.6 22.7 —.1
1000 13.5 13.2 .3 14.2 14.3 —.1 14.1 14.3 —.2

38.9 38.9 37.9 37.8 .1 37.9 37.9

500 22.7 22.9 —.2 22.2 22.6 —.4 22.2 22.4 —.2
1000 14.2 14.5 —.3 13.9 14.3 —.4 13.9 14.0 —.1

39.1 39.2 —.1 37.4 37.5 —.1 38.5 38.5

500 22.7 22.4 .3 21.9 21.7 .2 22.5 22.3 .2

1000 14.2 13.7 .5 13.7 12.9 .8 14.0 14.2 —.2

38.4 38.4 37.0 37.1 —.1 37.3 37.3
500 22.4 22.0 .4 21.7 21.1 .6 21.9 21.8 .1

1000 14.0 14.0 13.6 13.4 .2 13.7 13.9 —.2

37.2 37.3 —.1 36.8 36.8 37.1 36.9 .2

500 21.8 21.7 .1 21.6 21.7 —.1 21.8 22.1 —.3
1000 13.7 13.8 —.1 13.6 13.4 .2 13.7 13.9 —.2

34.7 34.7

500 20.5 20.6 —.1
1000 13.3 13.0 .3

1. Experiments with the Ivory Sphere and Short Suspension.

m Computed

Am

Observed

A-m
C—O Computed

Am

Observed

Am
C—O Computed

Am
Observed

Am
C—O

12.3 12.3 13.6 13.6 13.9 14.0 —.1
650 9.3 9.3 10.1 10.0 .1 10.3 10.1 .2

1300 7.1 7.2 —.1 7.6 7.8 —.2 7.8 7.8

1950 5.4 5.7 —.3 5.8 5.9 —.1 5.9 5.8 .1

2600 4.2 4.3 —.1 4.4 4.3 .1 4.5 4.3 .2

13.0 13.1 —.1 14.8 14.9 —.1 14.3 14.3

650 9.9 9.9 10.9 10.9 10.6 10.7 —.1
1300 7.5 7.5 8.2 8.0 .2 8.0 8.0

1950 5.7 5.7 6.2 6.0 .2 6.0 6.0

2600 4.5 4.5 4.8 4.5 .3 4.6 4.6

12.9 13.1 —.2 14.0 14.0 J3.2 13.0 .2

650 9.6 9.6 10.4 10.4 19.8 19.9 —.1
1300 7.2 7.0 .2 7.8 8.0 —.2 7.3 7.4 —.1
1950 5.5 5.4 .1 5.9 6.1 —.2 5.6 5.9 —.3
2600 4.2 4.1 .1 4.5 4.5 4.3 4.4 —.1

13.3 13.1 .2 16.0 16.0 16.8 16.8

650 9.8 10.0 —.2 11.8 11.8 12.4 12.5 —.1
1300 7.4 7.3 .1 8.9 8.8 .1 9.3 9.4 —.1
1950 5.6 5.8 —.2 6.7 6.8 —.1 7.1 7.1

2600 4.3 4.5 —.2 5.2 5.2 5.4 5.5 —.1
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4. Experiments with the Ivory Sphere and Short Suspension. — Continued.

m Computed Obserred

-4.
C—O Computed

An
Observed

An
C—O Computed

Am

Observed C—O

16.6 16.6 17.8 18.0 —.2 16.3 16.3

650 12.2 12.1 .1 13.0 13.0 12.0 12.2 —.2
1300 9.2 9.2 9.7 9.5 .2 9.0 9.1 —.1
1950 7.0 7.0 7.3 7.1 .2 6.8 .7.0 —.2
2G00 5.3 5.5 —.2 5.6 5.5 .1 5.2 5.2

16.1 16.0 .1

650 11.8 12.0 .2

1300 8.8 9.0 —.2
1950 6.7 6.8 —.1
2600 5.1 5.1

5. Experiments with the Full Cylinder and Long Suspension.

m Computed

An
Observed C—O Computed

An
Observed

Am
C—O Computed

A-m

Observed

Am
C—O

39.8 39.8 41.5 41.2 .3 38.3 38.9 —.6
500 35.8 35.9 —.1 37.3 37.5 34.5 34.3 .2

1000 32.4 32.2 .2 33.6 33.8 —.2 31.2 30.8 .4

1500 29.4 29.4 30.5 30.7 —.2 28.4 27.8 .6

2000 26.7 26.6 .1 27.7 27.8 —.1 25.8 25.2 .6

2500 24.3 24.3 25.2 25.3 —.1 23.6 22.9 .7

3000 26.3 22.0 .3 23.0 23.2 —.2 21.6 20.6 1.0

3500 20.4 20.3 .1 21.1 21.3 —.2 19.8 18.7 1.1

4000 18.7 19.0 —

3

19.3 19.5 —.2 18.2 17.1 1.1

39.4 39.6 —

2

41.0 41.5 —.5 41.7 41.8 —.1
500 35.5 35.3 .2 36.9 36.9 37.5 37.6 —.1
1000 32.1 31.9 .2 33.3 32.9 .4 33.8 33.5 .3

1500 29.1 29.0 .1 30.1 29.9 .2 30.6 30.5 .1

2000 26.5 26.2 .3 27.4 27.1 .3 27.8 27'.7 .1

2500 24.1 24.0 .1 25.0 24.6 .4 25.3 25.4 —.1
3000 22.1 22.0 .1 22.8 22.5 .3 23.1 23.2 —.1
3500 20.2 20.0 ..2 20.9 20.6 .3 21.2 21.2

4000 18.6 18.3 .3 19.1 19.0 .1 19.4 19.3 .1

39.5 39.2 .3 40.2 40.3 —.1 42.7 42.7

500 35.6 35.6 36.2 36.1 .1 38.3 38.1 .2

1000 32.1 32.4 —.3 32.7 32.7 34.5 34.6 —.1
1500 29.2 29.4 —.2 29.6 30.0 —.4 31.2 31.4 —.2

2000 26.5 26.6 —.1 26.9 27.1 —.2 28.4 28.3 .1

2500 24.2 24.3 —.1 24.5 24.7 —.2 25.8 25.9 —.1
3000 22.1 22.3 .2 22.4 22.6 —.2 23.6 23.6

3500 20.3 20.5 —.2 20.6 20.7 —.1 21.6 21.6

4000 18.6 18.7 —.1 18.9 18.9 19.8 19.9 —.1

39
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5. Experiments with the Full Cylinder and Long Suspension.— Continued.

m Computed Observed C—O Computed Observed

An
C—O Computed

An
Observed C—O

42.3 42.5 —.2 43.2 43.1 .1 42.0 41.8 .2

500 38.0 37.9 .1 38.8 38.8 37.7 38.4 —.7
1000 34.2 34.0 .2 34.9 35.0 —.1 34.0 34.0

1500 31.0 31.1 —.1 31.6 31.6 30.8 30.9 —.1
2000 28.1 28.1 28.7 28.6 .1 28.0 28.1 —.1
2500 25.6 25.5 .1 26.1 26.1 25.5 25.7 —.2
3000 23.4 23.5 —.1 23.8 23.9 —.1 23.3 23.5 .2

3500 21.4 21.5 —.1 21.8 21.7 .1 21.3 21.5 —

2

4000 19.6 19.4 .2 20.0 20.0 19.5 19.6 —.1

41.5 41.4 .1 41.4 41.2 .2 41.6 41.4 .2

500 37.3 37.2 .1 37.2 37.3 —.1 37.4 37.4

1000 33.6 33.5 .1 33.6 33.6 33.7 33.8 —.1
1500 30.5 30.5 30.4 30.4 30.5 30.6 —.1
2000 27.7 27.9 —.2 27.6 27.6 27.7 27.9 —.2
2500 25.2 25.3 —.1 25.2 25.2 25.3 25.5 —.2
3000 23.0 23.1 —.1 23.0 23.1 —.1 23.1 23.2 —.1
3500 21.1 21.3 —.2 21.0 21.2 —.2 21.1 21.3 —.2
4000 19.3 19.4 —.1 19.3 19.1 .2 19.5 19.6 —.1

41.4 41.1 .3 40.5 40.3 .2 39.3 39.4 —.1
500 37.2 37.2 36.4 36.5 —.1 35.4 35.3 .1

1000 33.6 33.6 32.9 33.0 —.1 32.0 32.0

1500 30.4 30.5 —.1 29.8 29.8 29.0 29.0

2000 27.6 27.7 —.1 27.1 27.0 .1 26.4 26.4

2500 25.2 25.2 24.7 24.6 .1 24.1 24.1

3000 23.0 23.1 —

1

22.6 22.5 .1 22.0 22.1 —.1
3500 21.0 21.2 2 20.7 20.7 20.2 20.3 —.1
4000 19.3 19.5 —

2

19.0 19.0 18.5 18.5

38.0 38.3 —

3

39.6 39.5 .1 42.0 41.8 .2

500 34.1 33.5 .6 35.6 35.6 37.7 37.9 —.2
1000 30.9 30.4 .5 32.2 32.1 .1 34.0 34.2 —.2
1500 28.0 27.8 .2 29.2 29.3 —

1

30.8 31.0 —.2
2000 25.5 25.3 .2 26.6 215.7 —

1

28.0 28.2 —

2

2500 23.2 23.0 .2 24.2 24.3 —

1

25.5 25.6 —

1

3000 21.3 21.3 22.2 22.3 —

1

23.3 23.4 —

1

3500 19.6 19.6 20.3 20.4 —

1

21.3 21.5 —.2
4000 18.0 17.8 .2 18.6 18.7 —

1

19.5 19.6 —.1

42.1 42.0 .1 41.7 41.7 40.6 40.6

500 37.8 37.9 —.1 37.4 37.4 36.5 36.6 —

1

1000 34.1 34.1 33.8 33.9 —.1 33.0 33.0

1500 30.9 30.9 30.6 30.6 29.9 30.0 —

1

2000 28.0 28.1 —.1 27.8 27.9 —.1 27.2 27.2

2500 25.5 25.7 —.2 25.3 25.5 —.2 24.8 24,8

3000 23.3 23.3 23.1 23.2 —.1 22.6 22.7 —.1
3500 21.3 21.3 21.2 21.4 —.2 20.7 20.8 —.1
4000 19.5 19.5 19.4 19.6 ,2 19.0 18.9 .1
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6. Experiments with the Full Cylinder and Short Suspension.

m Computed

An
Observed

Am
C—O Computed

An
Observed

An
C—O Computed

An
Observed

An
C—O

12.4 12.45 12.1 12.15 13.2 13.15

730 11.7 11.6 .1 11.4 11.35 12.5 12.5

14 GO 11.0 11.0 10.8 10.65 .1 11.8 11.95 —.1
2190 10.4 10.4 10.2 10.25 —.1 11.2 11.1 .1

2920 9.9 9.8 .1 9.6 9.55 .1 10.5 10.55 —.1
3G50 9.3 9.3 9.1 9.1 9.9 10.0 —.1
4380 8.8 8.85 8.6 8.6 9.4 9.45 —.1
5110 8.3 8.35 8.1 8.15 8.9 8.9

5840 7.9 7.85 7.7 7.65 8.4 8.5 —.1

13.0 13.0 12.1 12.05 12.6 12.55

730 12.3 12.25 11.5 11.7 —.2 12.0 12.0

1460 11.6 11.55 10.9 11.05 —.1 11.3 11.3

2190 10.9 11.05 —

1

10.4 10.5 —

1

10.8 10.75

2920 10.3 10.3 9.8 9.95 —

1

10.2 10.1 .1

3650 9.8 9.75 9.5 9.45 .1 9.7 9.65 .1

4380 9.2 9.2 8.9 9.05 —

1

9.2 9.25

5110 8.7 8.8 —.1 8.5 8.6 —.1 8.8 8.8

5840 8.2 8.2 8.0 8.05 8.4 8.35

12.4 12.4 12.4 12.4 13.5 13.5

730 11.8 11.65 .1 11.8 11.75 12.8 12.75 .1

1460 11.2 11.15 .1 11.2 11.2 12.2 12.35 —.1
2190 10.6 10.55 .1 10.6 10.6 11.6 11.65

2920 10.1 10.2 —

1

10.1 10.05 .1 11.0 11.0

3650 9.6 9.6 9.6 9.55 .1 10.5 10.55

4380 9.2 9.15 9.2 9.15 .1 10.0 10.0

5110 8.7 8.7 8.7 8.65 .1 9.5 9.55

5840 8.3 8.35 8.4 8.3 .1 9.1 9.1

13.0 12.95 13.6 13.6 "o 13.9 14.0 —.1
730 12.4 12.4 12.9 13.0 —.1 13.2 13.2

1460 11.7 11.85 —

1

12.3
.

12.05 .2 12.5 12.65 —.1
2190 11.2 11.3 —

1

11.6 11.5 .1 11.9 11.95

2920 10.6 10.8 —

2

11.1 11.0 .1 11.3 11.4 —.1
3650 10.1 10.1 10.5 10.55 10.7 10.55 .2

4380 9.7 9.7 10.0 10.0 10.2 10.25
5110 9.2 9.2 o 9.5 9.55 9.7 9.8 —.1
5840 8.8 8.9 -1

1

9.0
1

9.0 o
1

9.3 9.2 .1



— 308

7. Experiments with the Empty Cylinder and Long Suspension.

m Computed

A.
Observed

-Am
O—O Computed

Am
Observed

A-m
O—O Computed Observed

Am
0—0

37.5 37.7 —.2 38.2 37.8 A 37.6 37.6

500 28.1 27.7 .4 28.6 28.8 —.2 28.2 28.3 —.1
1000 21.4 21.0 .4 21.8 22.0 —.2 21.5 21.4 .1

1500 16.5 16.6 —.1 16.8 16.7 .1 16.6 16.7 —.1
2000 12.9 13.1 —.2 13.1 13.0 .1 12.9 13.0 —.1

38.0 37.9 .1 39.2 38.8 .4 38.9 38.8 .1

500 28.4 28.6 —.2 29.3 29.4 —.1 29.1 29.2 —.1
1000 21.7 21.6 .1 22.3 22.4 —.1 22.1 22.3 —.2
1500 16.7 16.8 —.1 17.2 17.2 17.1 17.2 —.1
2000 13.0 13.0 13.4 13.4 13.3 13.2 .1

40.3 40.4 —.1 40.8 40.8 38.0 38.0

500 30.0 29.9 .1 30.4 30.4 28.4 28.4

1000 22.8 22.5 .3 23.1 23.1 21.7 21.7

1500 17.6 17.8 —.2 17.7 17.9 —.2 16.7 16.8 —.1
2000 13.7 13.9 —.2 13.8 13.9 —.1 13.0 13.0

37.9 37.9 40.2 40.2 39.9 40.0 —.1
500 28.4 28.4 30.0 30.0 29.7 29.6 .1

1000 21.6 21.5 .1 22.8 22.9 —.1 22.6 22.5 .1

1500 16.7 16.8 —.1 17.5 17.6 —.1 17.4 17.3 .1

2000 13.0 13.0 13.6 13.9 —.3 13.6 13.6

39.8 40.0 —

2

39.2 39.1 .1 40.7 40.5 .2

500 29.7 29.7 29.3 29.6 —.3 30.3 30.4 —.1
1000 22.6 22.4 .2 22.3 22.3 23.0 23.1 —.1
2500 17.4 16.7 .7 17.2 17.2 17.7 17.6 .1

2000 13.5 13.2 .3 13.4 13.4 13.8 13.7 .1

40.4 40.4 40.1 40.2 —.1 40.4 40.4

500 30.1 30.3 —.2 29.9 29.9 30.1 30.2 —.1
1000 22.9 22.7 .2 22.7 22.7 22.9 22.7 .2

1500 17.6 17.5 .1 17.5 17.5 17.6 17.6

2000 13.7 13.7 13.6 13.6 13.7 13.6 .1

38.9 38.9 38.6 38.8 —

2

38.7 38.7

500 29.1 29.1 28.8 28.6 .2 28.9 28.8 .1

1000 22.1 21.9 .2 22.0 21.9 .1 22.0 22.2 —.2
1500 17.0 17.0 16.9 16.9 17.0 17.1 —.1
2000 13.3 13.4 —

1

13.2 13.2 13.2 13.4 —.2

39.5 39.5 38.1 38.0 .1 38.5 38.5

500 29.5 29.8 —.3 28.5 28.6 —.1 28.8 29.0 —

2

1000 22.4 22.4 21.7 21.8 —.1 21.9 21.9

1500 17.3 17.2 .1 16.8 16.6 .2 16.9 16.8 .1

2000 13.4 13.4 13.0 12.9 .1 13.2 13.0 .2
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7. Experiments with the Empty Cylinder and Long Suspension.— Continued.

m Computed Observed

An
C—O Computed

An
Observed

An
c—o\ Computed

An
Observed C—O

39.2 38.8 .4 38.5 38.4 .1 39.0 39.0

500 29.3 29.5 —.2 28.8 29.0 —.2 29.1 29.2 —.1
1000 22.3 22.4 —.1 21.9 21.9 22.2 22.2

1500 17.2 17.2 16.9 16.9 17.1 17.2 —.1
2000 13.4 13.6 —.2 13.2 18.2 13.3 13.4 —.1

39.9 39.9 38.4 38.4 38.9 38.9

500 29.8 29.8 28.7 28.8 1 29.1 29.2 —.1
1000 22.G 22.8 —.2 21.9 22.0 1 22.1 22.1

1500 17.4 17.6 —.2 16.9 17.0 1 17.1 17.1

2000 13.6 13.6 13.1 13.1 13.3 13.2 .1

38.6 38.6 39.1 39.1 36.8 36.8

500 28.9 28.9 29.2 29.3 1 27.6 27.6

1000 22.0 21.9 .1 22.2 22.1 .1 21.1 21.1

1500 16.9 16.8 .1 17.1 17.0 .1 16.3 16.3

2000 13.2 13.1 .1 13.3 13.1 .2 12.6 12.6

36.3 36.3 38.3 38.3 39.4 39.3 .1

500 27.3 27.4 1 28.6 28.7 1 29.4 29.5 —.1
1000 20.8 21.0 2 21.8 21.8 22.4 22.4

1500 16.1 16.1 16.8 16.8 17.2 17.3 —.1
2000 12.5 12.5 13.1 13.1 13.4 13.5 —.1

40.1 40.1 39.4 39.3 .1 38.8 38.8

500 29.9 29.9 29.4 29.5 —

1

29.0 29.4 —.4
1000 22.7 22.6 .1 22.4 22.4 22.1 22.0 .1

1500 17.5 17.4 .1 17.2 17.3 —

1

17.0 17.0

2000 13.6 13.5 .1 13.4 13.5 —

1

13.2 13.3 —.1

40.0 40.0 38.7 38.7 38.8 38.9 —.1
500 29.8 30.0 —.2 28.9 28.9 29.0 28.9 .1

1000 22.7 22.5 .2 22.0 21.9 .1 22.1 22.0 .1

1500 17.4 17.3 .1 17.0 16.9 .1 17.0 17.1 —.1
2000 13.6 13.6 13.2 13.2 13.2 13.3 —.1

39.1 39.1 38.5 38.5 38.7 38.7

500 29.2 29.1 .1 28.8 28.8 28.9 29.0 —

1

1000 22.2 22.1 .1 21.9 21.8 .1 22.0 22.0

1500 17.1 17.1 16.9 16.9 17.0 16.9 .1

2000 13.3 13.3 13.2 13.1 .1 13.2 13.2

37.7 37.7 38.8 38.8 38.1 38.2 —.1
500 28.2 28.0 .2- 29.0 29.0 28.5 28.5

1000 21.5 21.5 22.1 22.0 .1 21.7 21.5 .2

1500 16.6 16.7 —.1 17.0 16.9 .1 16.8 16.6 .2

2000 12.9 12.9 13.2 13.1 •1 13.0 12.9 .1
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8. Experiments with tlie Empty Cylinder and the Short Suspension.

m Computed

An
Observed

An
C—O Computed Observed

An
C—O Oomputed

An
Observed

An
C—O

11.4 11.4 12.2 12.3 —

1

13.3 13.3

800 9.5 9.4 ,i 10.1 10.15 11.0 10.95

1600 7.9 7.7 2 8.5 8.45 9.1 9.05

2400 6.6 6.5 1 7.1 .7.05 7.6 7.55

3200 5.5 5.5 .0 6.0 5.9 .1 6.3 6.3

4000 4.7 4.6 .1 5.0 4.9 .1 5.3 5.3

4800 4.0 3.9 .1 4.2 4.1 .1 4.4 4.5 —.1

13.3 13.3 13.4 13.4 12.1 12.1

800 11.0 11.1 —.1 11.3 11.3 10.2 10.25

1G00 9.1 9.15 9.5 9.4 .1 8.7 8.65

2400 7.6 7.8 —.2 8.0 8.05 7.3 7.4 —

1

3200 6.3 6.2 .1 6.8 6.7 .1 6.2 6.25

4000 5.3 5.4 —.1 5.8 5.7 .1 5.3 5.3

4800 4.4 4.45 4.9 4.9 4.5 4.5

12.3 12.2 .1 13.0 13.0 13.2 13.15

800 10.5 10.5 11.0 11.0 11.2 11.15

1G00 8.9 9.0 —.1 ' 9.4 9.3 .1 9.5 9.6 —

1

2400 7.6 7.85 .2 8.0 8.0 8.1 8.0 .1

3200 6.5 6.7 —.2 6.9 6.9 6.9 6.85

4000 5.6 5.75 —.2 5.9 5.9 5.9 5.95

4800 4.8 4.95 —.1 5.0 5.1 —.1 5.1 5.1

13.0 12.95 14.1 14.25 —.1 12.9 12.9

800 11.0 1I\05 11.9 11.9 10.9 10.95

1600 9.4 9.4 10.1 10.1 9.3 9.15 .1

2400 8.0 8.05 —.1 8.6 8.05 —.1 7.9 7.85

3200 6.8 6.9 —.1 7.3 7.35 —.1 6.7 6.85 —.1
4000 5.8 5.85 6.2 5.95 .3 5.7 5.85 —.1
4800 5.0 5.0 5.3 5.25 .1 4.9 4.9

In the computation of these values, there has been no regard

to the resistance arising from the wires of suspension. The dif-

ference between the values of H2 may be attributed to the uncer-

tainty of the observations, and those of Hx may, perhaps, be ac-

counted for, in the same way. The value of ff2 is nearly ten

times as great as that which is given by the observations of Borda

upon the resistance of the atmosphere. It must, therefore, be

doubtful, whether the observed diminution of the arcs of vibration
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of the pendulum is, wholly or principally, due to the medium in

which it vibrates, or to some more latent cause. This doubt is

much increased by the discussion of the observations of Baily.

534. In Baily's experiments, various pendulums, which were

mostly spheres and cylinders, were vibrated in the receiver of an

air-pump, with the air either at its ordinary pressure, or at the

small density of about one thirtieth of an atmosphere. For the

full and exact description of the pendulums the original memoir

must be consulted, but the following brief description is sufficient

for the present purpose. Numbers 1, 2, 3, and 4 are spheres of

platina, lead, brass, and ivory, all of the same diameter, which is

somewhat less than 1£ inches, and of which the weights with their

vibrating appendages are, respectively 9050, 4648, 3217, and 776 £

grains. Nos. 5, 6, and 7 are spheres of lead, brass, and ivory, all

of the same diameter, which is 2.06 inches, and of which the

weights are respectively, 13019, 9302, and 2066 i grains. Nos. 8

and 9 are the same spheres of lead and ivory with those of Nos. 5

and 7, but suspended from a wire passing over a small cylinder

instead of from a knife edge. In Nos. 10, 11, 12, and 13 the

vibrating mass was a brass cylinder, of which the diameter of the

base is 2.06 inches, the altitude 2.06 inches, and the weight 14190

grains ; in Nos. 10 and 13 the axis of the cylinder coincides with

that of the pendulum rod, but the rod of No. 13, which was also

adopted in Nos. 11 and 12, was a thick brass wire 0.185 inch in

diameter, 371 inches long, and weighing 2050 grains ; in Nos. 11

and 12 the axis of the cylinder was horizontal, in No. 11 it was

perpendicular to the plane of vibration, and in No. 12 it was in the

plane of vibration. No. 14 is a cylinder of lead, of which the

diameter of the base is 2.06 inches, the altitude 4 inches, the weight

34500 grains, and the axis coincident with the rod of the pendulum.

In Nos. 15, 16, 17, 18, and 19 the vibrating mass was a hollow cyl-



— 312 —

incler of the same position and external dimensions with No. 14

;

in No. 15 both ends were open; in No. 16 the top was open and

the bottom closed; in No. 17 the top was closed and the bottom

open; in No. 18 both ends were closed; in No. 19 an inner sliding

tube was removed so as to reduce the weight; and the weights,

with the inclosed air, were, respectively, 8497, 8922, 8622, 9048,

and 7250 grains. No. 20 is a lens of lead 2.06 inches in diameter,

an inch thick in the middle, with a flat circumference of about a

quarter of an inch wide, and a weight of 6505 grains. No. 21 is a

solid copper cylindrical rod of 0.41 inch in diameter, 58.8 inches

long, and weighing 16810 grains. In Nos. 25, 26, 27, 28, 29, 30, 31,

32, 33, and 34, the vibrating masses were convertible pendulums,

formed of plane bars, and they are vibrated successively with each

of their points of suspension, which were knife edges; in Nos. 25

and 26 the bar was brass, two inches wide, three eighths of an inch

thick, 62.2 inches long, and weighing 121406 grains; in Nos. 27

and 28 it was copper of the same width with the brass bar, half

an inch thick, 6'2.5 inches long, and weighed 155750 grains ; in

Nos. 29 and 30, it was iron of the same width and thickness with the

copper bar, 62.1 inches long, and weighed 140547 grains ; in Nos. 31,

32, 33, and 34 it was a doubly convertible brass bar, three quarters of

an inch thick, 62 inches long, and weighed 231437 grains. In Nos. 35,

36, 37, and 38, a doubly convertible pendulum, made of a brass cylin-

drical tube of lh inches in diameter, 56 inches long, and weighing

81047 grains was vibrated upon a knife edge with all four of its

planes of suspension. No. 39 is a mercurial pendulum. Nos. 40 and

41 are clock pendulums in which the vibrating mass was a leaden

cylinder 1.8 inches in diameter, 13.5 inches long, and weighing

93844 grains ; in No. 40 it was suspended from a spring, by a cylin-

drical rod of deal of three eighths of an inch in diameter, and in

No. 41 by a flat rod of deal one inch wide, 0.14 inch thick in the
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middle of its width and bevelled on each side to a thin edge, which

was opposed to the direction of its motion.

In the discussion of Baily's experiments, the value of H% is

neglected, because it is of small influence, and the arcs of vibration,

being usually given only for the beginning and end of the experi-

ment, are just sufficient to determine one of the quantities IIX

and II2 ; and the values of H^ are not reduced to the same density

of air. The ratio of the value of H^ for the ordinary state of the

air to its value in the exhausted receiver, varies from 1.9 to 4.2, in-

stead of being about 30, which it should be if it were proportional

to the density of the air ; the value of this ratio in the following

table is expressed by J.. The total resistance to the motion of the

pendulum, supposed to be proportional to the velocity is, for the

unit of velocity, expressed by H" in the table ; and this same re-

sistance, reduced to the unit of weight, is expressed by H{.

The observation of the arcs of vibration in Baily's experiments

is limited to the initial and final arcs, and the direct comparison of

the computed and observed arcs is, consequently, quite unnecessary,

and cannot contribute to verify the accuracy of the hypothesis upon

which the computation is based. The only two cases in which an

intermediate arc was observed with Nos. 6 and 14 seem to sustain

the hypothesis ; for they differ from it slightly, but in opposite direc-

tions.

The diversity of the values of Hx
indicates that the resisting

force of the motion to the pendulum demands a new experimental

investigation, conducted with a direct object to its determination

;

and that, until such an investigation has been made, the length of

the seconds pendulum must be regarded as liable to an unknown

error.

40
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Values of Hi in Bailg's Experiments upon the Vibrations of Pendulums.

No. of

Pendulums.
Barometer. Hx Hi H? J

1 0.7689 .0673 .000077 .000132 2.68

3 0.7646 .0702 .000080 .000384 2.62

2 0.7523 .0662 .000075 .000250 2.55

4 0.7660 .0561 .000063 .001272 2.71

6 0.7638 .0570 .000123 .000204 2.74

7 0.7630 .0538 .000116 .000864 ' 2.62

5 0.7644 .0627 .000128 .000] 61 3.18

9 0.7682 .0589 .000127 .000945 2.86

8 0.7677 .1021 .000219 .000261 2.92

10 0.7652 .0651 .000179 .000194 3.42

11 0.7637 .0558 .000270 .000256 2.62

12 0.7623 .0603 .000290 .000277 3.33

13 0.7552 .0571 .000235 .000262 2.98

18 0.7491 .0535 .000285 .000484 3.27

15 0.7554 .0658 .000350 .000635 4.10

16 0.7495 .0595 .000292 .000505 2.95

17 0.7584 .0558 .000297 .000531 3.39

14 0.7747 .0592 .000315 .000140 4.22

19 0.7620 .0510 .000272 .000578 3.33

20 0.7620 .0656 .000065 .000156 2.09

21 0.7575 .0661 .000742 .000682 2.72

25 0.7522 .0789 .005606 .000333 3.32

26 0.7465 .0756 .004782 .000319 3.74

31 0.7522 .1555 .003666 .000245 3.32

32 0.7520 .1581 .003673 .000245 3.55

34 0.7529 .1661 .003772 .000251 3.72

33 0.7535 .1417 .003480 .000232 3.13

35 0.7595 .0739 .003091 .000589 3.48

36 0.7627 .0660 .002763 .000526 3.31

37 0.7577 .0701 .002931 .000558 3.39

38 0.7564 .0659 .002760 .000526 2.97

39 0.7622 .001396 .000209 1.87

41 0.7573 .0664 .001260 .000207 2.52

40 0.7589 .0769 .001299 .000213 2.39
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Values of Hi in Baily's Experiments upon the Vibrations of Pendulums. — Continued.

No. of

Pendulums.
Barometer. Hx m H{' J

1 0.0288 .0251 .000028 .000049 2.68

3 0.0294 .0267 .000031 .000146 2.62

2 0.0265 .0259 .000030 .000098 2.55

4 0.0347 .0284 .000024 .000470 2.71

6 0.0268 .0285 .000044 .000074 2.74

7 0.0270 .0282 .000044 .000330 2.62

5 0.0290 .0275 .000042 .000050 3.18

9 0.0360 .0282 .000044 .000331 2.86

8 0.0299 .0348 .000075 .000089 2.92

10 0.0239 .0190 .000052 .000057 3.42

11 0.0478 .0213 .000103 .000098 2.62

12 0.0348 .0182 .000088 .000083 3.33

13 0.0370 .0192 .000092 .000089 2.98

18 0.0300 .0164 .000087 .000148 3.27

15 0.0271 .0164 .000097 .000148 4.10

16 0.0266 .0186 .000099 .000171 2.95

17 0.0362 .0165 .000088 .000157 3.39

14 0.0298 .0139 .000074 .000033 4.22

19 0.0305 .0154 .000083 .000174 3.33

20 0.0305 .0313 .000031 .000074 2.09

21 0.0288 .0244 .000274 .000251 2.72

25 0.0313 .0238 .001505 .000101 3.32

26 0.0325 .0202 .001277 .000086 3.74

31 0.0414 .0469 .001105 .000074 3.32

32 0.0391 .0439 .001034 .000069 3.55

34 0.0410 .0431 .001014 .000067 3.72

33 0.0463 .0472 .001111 .000074 3.13

35 0.0384 .0213 .000888 .000170 3.48

36 0.0367 .0200 .000834 .000160 3.31

37 0.0422 .0206 .000859 .000166 3.39

38 0.0412 .0222 .000930 .000178 2.97

39 0.0477 .000747 .000112 1.87

41 0.0457 .0263 .000498 .000083 2.52

40 0.0434 .0320 .000543 .000089 2.39
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THE TAUTOCHRONE.

535. The consideration of the pendulum leads, directly, to

the investigation of that curve, upon which the duration of the

vibration is independent of the length of the arc of oscillation.

Such a curve is called a tautochrone, and is readily determined when

the body is only subject to the action of fixed forces.

536. If the force which acts in the direction of the motion

of the body is denoted by S, the equation of its motion is

In the case in which JS is a function of s, let s denote the

point, at which the velocity vanishes, or the extremity of the arc

of vibration. Hence

and if the origin of coordinates is at the point of maximum velocity,

the time of vibration is determined by the equation

Tz=z ( y/2

o

If h—-,v
if £2 is a function of s expressed by £2

S , and if s is written instead

of sQ , the value of T becomes

T— t s ^ 2
M
—Jkij(siA—a,y

In order that the special value of the arc may disappear from
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this integral, it is obvious that S2
S has the form

S2
S
= A— Bs2

,

which reduces the value of T to

JksJBsl(l— K2

) \ 2B'

The tangential force along the curve is, therefore,

S—DJl=— 2Bs.

537. IfF denotes the actual force, which acts upon the body

in the direction of/, the preceding equation gives for an equation of

the tantochrone

Fcos{=—2Bs=FBsf,

or

A—Bs2 =fF.

538. In the case in which the body is restricted to move upon a

curve ivhich rotates uniformly about a fixed axis, the equations and

notation of §468 combined with the previous section, give for

the equation of the tantochrone

A— Bs2= ±a2 u2
,

which may assume the form

s
2

. u? ,

in which a and b are constants.

539. When the revolving curve is a plane curve, and situated in

the same plane with the axis of revolution, the notation

b = a cot i

a sin 6= a sin cp sm«,
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and that of elliptic functions give

u= b cos 6
,

s= -^—. ^(p— b cos i^i(f;

and if r is the inclination of the curve to the axis of rotation, its

value is

sin t=— cot i tan £

.

The maximum of u is b, but its least value, corresponding to

or 6 = ip i,

is u= b cos i

;

and the corresponding value of s is

s= J^asmi.

The curve consists of several branches, which form cusps by their

mutual contact at their extremities, and it resembles the cycloid in its general

character.

540. In the case of a heavy body moving upon a plane vertical curve,

let v denote the angle which the radius of curvature () makes with

its horizontal projection, and the equation (317u) gives

F
s=— ^cosv,

F .

which is the equation of the cycloid referred to its radius of curva-

ture and angle of direction, so that the cycloid is the tautochrone of a

free heavy body in a vacuum. The same curve, drawn upon the de-
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veloped surface, is the taatochrone of a heavy body, moving upon a vertical

cylinder.

541. Every curve may be regarded as being upon the surface

of its vertical cylinder of projection ; and, therefore, the tautochrone

of a heavy body moving in a vacuum upon any surface ivhatever, is the

intersection of the surface tvith such a vertical cylinder, that the intersection

is a cycloid upon the developed vertical cylinder. The determination of

the tautochrone upon any surface is thus reduced to a problem of

pure geometry. If the axis of z is the upward vertical, and if z is

the height of the lowest point of the curve above the origin, the

equation (317i6 ) becomes, in the present case,

542. If a heavy body is restricted to move upon a cylinder of which

the axis is horizontal, and of which the equation of the base is

Q1
= na cos 7^ sin"

-1
^,

in which v
x is the angle, which the radius of curvature, denoted by

q1} makes with the upward vertical ; and when the cylinder is devel-

oped into a vertical plane, if y is the height of the moving body

above the horizontal line, which corresponds to the lowest side of

the undeveloped cylinder, the value of y is

y =. a sin
n v

x .

The force of gravity, resolved in a direction tangential to the

cylinder, is

gsmv1=g^;

so that the present problem corresponds to that of a body moving in a ver-
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tical plane, and subject to a force which is fixed in direction, and propor-

tional to some poiver of the height above a given level. The equation

(319 13 )
gives for the equation of the tautochrone

B »+i* — na Mfl+i)-

s

2 4- z = j (sin v
x Dv y) =—^— a sin" +1 v,= -^—

\

y-\

543. If r denotes the angle which the radius of curvature (q)

of the tautochrone makes with the upward vertical in the developed

cylinder, the equation (31714 )
gives

2B
sin v smv,=-

—

s,
9

which, substituted in (3205), reduces the equation of the tautochrone to

B o . n /25SV+1- sf-\- z =—j— a I —r— )

g ' n -\- 1 v? sm y/

544. When z vanishes in the problem of the preceding sec-

tion, the equation of the tautochrone becomes

, . ttl / nag /yY±±

n+ l z . _«.
or C = _ -osin"- 1 ^

l

in which

(«)-,

f=&r©"

so that ^e tautochrone on the developed cylinder of § 542 & of ^e same

trigonometric class of curves with the base of the cylinder, when it passes

through the loivest side of the undeveloped cylinder. This case is impos-

sible, when n is included between positive and negative unity ; for

when n is negative and, independently of its sign, less than unity, s

becomes infinite when y vanishes, but when n is positive and less
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than unity, the derivative of (32019 ), which is

DljS= cosec v= I Jjf\£)~^r ,

gives the impossible result that cosec v vanishes with y.

545. The differential equation of the tautochrone, in the case of §

542, referred to rectangular coordinates upon the developed cylinder, is

readily obtained from the equations of § 542, which give

^(lM(I)
1+i-^)(^+i)>

in which

7.2 9 "+ 1
/r IB na '

and the axis of x is horizontal.

In the case of § 544, in which s vanishes, this equation becomes

D^+l=P^-\

546. In the case in which n is unity, that is, in ivhich the base

of the cylinder is a cycloid, the equation of the tautochrone on the developed

cylinder, becomes

When s vanishes, this curve is reduced to a straight line, but

in all other cases, its form, if it is infinitely extended in the plane

of the developed cylinder, resembles the hyperbola. By the adop-

tion of the notation

. „ . 2aB
sir I=

,

9

y= y/(2as' )sec9,

41
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and that of elliptic functions, its equation may be expressed in the

forms

sj
9
-^ (cos 6 tan 9+% y— 8

4 9)

.

547. .7^ « /^a^ £o<^/ /s restricted to move upon a surface of revo-

lution about a vertical axis, of which the equation of the meridian

curve is that of (319 17 ). If y is the distance of the body on the

meridian curve from the lowest point of the surface, the value of

y is given by the equation (31925 ), and the force of gravity, resolved

in a direction tangential to the meridian curve is expressed by

(31929 ), so that the present problem resembles that of a body

moving in a plane, and subject to a force, which is directed

towards a fixed point in the plane, and is proportional to some

power of the distance from that point. The equation (317k) of the

tautochrone, gives

7? ,2 9 y — 2/0

in which m is the reciprocal of n, and y the value of y at the lowest

point of the tautochrone.

548. When m vanishes, the surface of revolution is a right

cone, and the equation (322]9 ) becomes

Bs2=g(y—y ).

By means of the notation

sin2 4= y(>^-y ),

sec p = 1 -j -;
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the angle (ep) which y makes with y in the developed cone is given

by the formula

tan 1(6 + h<p) tan } 0] =^^

;

so that ^e ^ofor equation of this tautochrone upon the developed cone is

expressed by the combination of (32228 ) and (3233 ).

549. When y vanishes,
ft

also vanishes, and the equation

(3233 ) becomes

fl + *9>+ cotfl=0.

550. When m is unity, the surface of revolution is cycloidal

and the equation (322 J9 ), becomes

aBs2= ig(y2—y2

),

which becomes the meridian curve itself, when y vanishes.

551. In the case given in (322u ), of a body moving in a plane

and subject to a force, ivhich is directed towards a fixed point in the plane,

and is proportional to some poiver (in) of the distance from that point,

the equation of the tautochrone may be given in the form

s
2= A(rm+1— r

m+1
),

in which the attracting point is the origin of polar coordinates.

The polar differential equation is

552. If the attraction or repulsion of the point had been any function

whatever of the distance from the origin, the equation of the tautochrone

would have assumed the form

sz=Fr— Fr
,
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in which F denotes the function of which the derivative expresses

the given law of attraction. This equation may therefore assume

the form

x2 -4- y
2= r

2= Si,

in which S± is a function of JS. If then v is the angle which the

radius of curvature makes with the axis of x, the derivatives of

this equation are

2 x sin v— 1y cos v= JS[,

(2#cosv -J- 2y sinv) Ds
v= 8"— 2

;

whence

2xD
s
v= S[ sin vD,v-\- (S^— 2) cos v,

2yDsv=— 8[ cos v Ds v -f {S"— 2) sin y,

4 81 Ds
v2= S?Ds

v2 -f ( tf"— 2)
2

,

,2

„ 2 n c.2
^ ! ' Q'

V X/
i;
i Tgtf

2)
2 2 '

which is the equation of the tautochrone expressed in terms of the radius

of curvature and the arc.

553. The polar differential equation of the tautochrone in the case

of the preceding section is

r ur y -f-i— Fr_ Fro ,

which is the same equation with that which is given by Puiseux.

554. The derivative of (32416) relatively to v is

2B
v q= K,

so that the elimination of s between (324 16 ) and (32427 )
gives the

differential equation of this tautochrone in terms of the radius of curvature

and the angle of its direction.
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555. In the case of § 552, when

$,= a s -J- b
}

the value of S2 is

JS1= as-\-b— 4 a2
.

The equation (32427 ) becomes therefore

and the equation of the tautochrone is

g= \ av

,

which is that of the involute of the circle. This case corresponds to

that in which the law of the central force is of the form.

Br{f— t*).

556. In the case of § 552, when

%= a (s+ bf,

the value of JS2 is

S2
-= f=.m2

{s-\-bY
:

in which
9 a

1— a 7

so that a must be positive and less than unity. The equation of

the tautochrone is, then,

Q= E e
mv

,

ivhich is that of the logarithmic spiral. This case corresponds to that

in which the law of the central attraction is of the form

r— rn
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that is, in which the force is proportional to the distance of the body from

the circumference of the circle described from the origin as the centre with

a radius equal to that of the initial position of the body. This case is

discussed by Puiseux.

557. In the case of § 552, ivhen the force is proportional to

the distance from the, origin. The equation (32331 ) assumes the

form

12

which, with the value of m in (32522 ), reduces Sx and iS2 to

r2

0'#!= as2,

-J-

The equation of the tautochrone is, therefore,

of which the integral is

o— , - Qos(mv)
^ 1— a v '

in which the arbitrary constant is determined so that v may vanish

with s.

The second derivative of this equation gives, for the radius of

curvature of the second evolute of the tautochrone

q = m* q

so that the second evolute is similar to the tautochrone itself.

In the case in which m is real, which corresponds to that in
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which a is positive and less than unit}*, this curve runs off to

infinity in each direction, with a constantly increasing radius of

curvature.

In the case in which m is imaginary, the substitution of

9. 9—n= in
,

reduces the equation of the tautochrone to the form

?= r5_cos(nv),

which is the equation of an epicycloid. The epicycloid is formed by the

external rotation of one circle upon another, when n is less than unity, in

which case a is negative and the force is repulsive ; but the epicycloid is

formed by internal rotation, when n is greater than unity, which corresponds

to the case when a is positive and greater than unity. In either of these

cases, the initial velocity must not be more than sufficient to carry

the body to either of the cusps.

In the case in ivhich a is infinite, the tautochrone is reduced to a

straight line.

The example of this section is discussed by Puiseux.

558. The example of the preceding section embraces the case

of any force, which is a function of a distance from the origin, in the

immediate vicinity of the point of greatest velocity. The form of

the tautochrone, near the point of greatest velocity, in the example of

\ 552, is typified, therefore, by the epicycloid, or by the curve of equa-

tion (3262i).

559. The investigation of the tautochrone in a resisting

medium is postponed to the general case of the chronic curves.
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THE BRACHYSTOCHRONE.

560. The curve upon which a body moves in the least pos-

sible time from one given point to another, is called the hrachys-

tochrone.

561. The investigation of the general case of a brachysto-

chrone which is confined to any surface or limited by any condition,

may be conducted by means of rectangular coordinates. The time

of transit from the first to the last of the given points may be ex-

pressed by the equation

Jx V

which is to be a minimum. This condition gives, for each of the

other axes, the equation

D„(^)-D,Dr (S-l)= 0.

562. When the body is only subject to the action of fixed

forces, v does not involve either y' or z ', and the preceding equation

becomes

D„v£+2>.(=r)=o,

or by (31617 ),

2>,i2+ t^D.(^")=0.

563. If the plane of xy is assumed, at each instant, to be

that in which the body moves, and if the axis of y is taken normal
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to the path of the body, the preceding equation becomes, if q ex-

presses the radius of curvature of the path

Q
J

so that the centrifugal force of the bod// is equal to the normal pressure,

and the ivhole pressure upon ihe brack//stochrone is double the centrifugal

force. This proposition was discovered by Euler.

564. When the normal pressure vanishes, the radius of curvature

is infinite, which corresponds in general to a point of contrary flexure.

When there is no force acting upon the body throughout its path, the

brachystochrone is reduced to a straight line.

565. Any conditions to which the path must be subject,

whether elementary such as that it is confined to a given sur-

face, or integral such as that its whole length is given, must be

combined with the general condition of brachystochronity by the

usual methods of the calculus of variations.

566. If the only force ivhich acts upon the body is directed to a given

point, and if the path is subject to no conditions, let the plane ofxz be

assumed to be that which passes through the centre of action and

the initial element of the path. In this case the equation (32827 )

gives

cosf=0, l= in,

or the brachystochrone is contained in a plane which passes through the

centre of action.

567. The preceding case includes that in which the centre

of action is removed to an infinite distance, so that, in the case of

parallel forces, ihe free brachystochrone is contained in a plane, ivhich is

parallel to the direction of the forces.

568. When the body is acted upon by no forces, or only by those

which are normal to its path and do not tend to change its velocity, the

42
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equation (32813 ) shoivs that the brachystochrone is the shortest line which

can be drawn under the given conditions.

569. When the force is directed towards a fixed centre, the

equation (3299 ), combined with (316 18 )
gives, if the centre is adopt-

ed as the origin

Z>,.Q 2

Si— »Qo Q sin
i

If p is the perpendicular let fall from the origin upon the

tangent to the curve, this equation becomes

Z>,.Sl _2Drp__2Drp
Si— Si r sin

j 2}
'

of which the integral is
CD

which is the equation of the brachystochrone referred to the radius vector

and the perpendicular from the origin upon the tangent as the coordinates.

This form is given by Euler.

570. When the force in the preceding case, is proportional to the

distance from the origin so that il has the form

O — ar

the equation (33014 ) becomes

of which the derivative gives

P
s

P\

If v is the anode which o makes with the fixed axis, the de-



1

rivative of this last equation gives, by means of the preceding-

equation

•which becomes

if

2 1

—

a pi

a pi

The integral of this equation is

ma pi
, Sin (mv)

so that its second evolute is similar to the brachystochrone itself.

When m is real, which corresponds to the case of a repulsive

force, and ap\ less than unity, this brachystochrone is a spiral which has

a cusp at the point at which v vanishes.

When m is imaginary, the substitution of (3275 ) reduces (331n )

to the real form

p= 7, sin (n v)
s n a p\

v '

so that in this case, the brachystochrone is an epicycloid which is formed by

internal rotation ivhen the force is attractive, and by external rotation when

the force is repulsive. This case is given by Euler.

571. When the forces are parallel, the equation (3293 )
gives, if

the axis of z is supposed to be in the direction of the forces

= 2"cot*.2>"
Si— £2 Q$h s -*-^ z s ?

of which the integral is

12— i2 = a sin
2 *,
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in which a is an arbitrary constant, and this is the equation of the

brachystochrone referred to the coordinates, ivhich are z and the inclina-

tion of the curve to the axis of z ; and the equation, referred to o

and I as coordinates, is obtained by eliminating z between (331 27 ) and

(33131 ).

572. In the case of a constant force, the preceding equation

assumes the forms

g{z— Sq) = a sin

2a

2z
5J

-sin

so that, in this case, the brachystochrone is a cycloid.

573. When the parallel forces are proportional to the distance from

a given line, which may be adopted for the axis of x, the value of

12 has the form

12 = bz2
;

whence the equation of the brachystochrone is

r

a sin %

? — V (V4+ ab sin
2
1)

'

When the force is repulsive, or luhen it is attractive, but

a

this curve consists of branches, ivhich are united by cusps, and resemble

the cycloid in general form ; but token the force is attractive, and

^<\l-
a

this curve consists of branches which are still united by external cusps

;

but the middle point of each branch is upon the axis of x, and is a point
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of inflexion, and the interval between two successive points of inflexion, ex-

pressed by elliptic integrals, is

v^(-f)W*")-^(*«)]i
in -which

,
h

' a

In the case of the attractive force, and

i
a

the equation of the brachystochrone becomes

9= g tan z
s5

which consists of tiuo infinite branches joined by an external cusp, and the

axis of x is an asymptote to each of the branches.

574. When the body is subjected to move upon a given sur-

face, the force by which it is retained upon the surface is perpen-

dicular to its path, and must be united with the second member of

equation (3293 ). Hence it follows that the centrifugal force of the

body in the direction of the tangent plane to the surface, upon ivhich it is

confined, is equal to the normal force which acts in this plane normal to

the brachystochrone.

At the beginning of the motion when the velocity is zero,

there is no centrifugal force, so that the initial direction of the

brachystochrone upon the surface coincides with thai of the tangential

force.

575. If the first and last points of the brachystochrone are

so situated upon the given surface, that a line can be drawn

through them, which coincides throughout with the direction

of the tangential force to the surface, this line is the brachysto-

chrone.
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Hence, the brach/jstochrone upon the surface of revolution is the

meridian line, ivhen both its extremities are upon the same meridian line,

and the force is directed to a point upon the axis of revolution, or is parallel

to this axis.

576. In the general case of a surface of revolution and

a force which is directed to a point upon the axis of revo-

lution, let

a denote the arc of the meridian curve measured from the pole,

u the perpendicular from the surface upon the axis,

o
r
the radius of curvature of the projection of the bracrrystochrone

upon the tangent plane to the surface,

and the proposition (33320 ) is expressed by the equation

-=DM tan 1
QT

which gives

r

But the equations

D
s Sl _Z>s (v

2
) 2 cot?

Si— $2 v2
Qt

D5u= cos "= cos 1 cos Z,

1 sin? cos ZD a -

Vr

give

T~\ / ,r\ U C0Ds (u smf) =
Qr '

and if A is an arbitrary constant,

Ds log v= D
s
\og (u sin z)

Av= usm°=u2 D
s

u
x

Av2=uv sin Z= u2 D
t

"

so that the area described by the projection of the radius vector upon
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the plane of xy is proportional to the square of the velocity of the

body.

577. The equation (33428 )
gives

D„s= sec

'

Sl
(u-—A-ir) s/ [u

2— 2 A2
{SI— J2 )]

'

tan?_ Av _A I 2{Sl—Sl )j, „ tan? Av A I 2

° x u ~u\J{u1— A2
v'
2
) u\ v?— 2A2

{tt— Sl )

578. If <3 is the angle which the radius rector makes with the

axis, the preceding values give

<t> ~ V «2—:2A2
{Si— si y

D U __A / 2(Si-SZ,>)[f*+(Ptry]
"**— u \ u2— 2A'(S2— Sl ) '

When the forces are parallel these equations give

u D.a
D.s

\j[_u
2—2A2

{Sl— Si.
i)
)'\

D «= ^_«. I 2(-^-^)
2 A2

{Si — Si u)

579. Upon the surface of revolution which is determined by

the equation

Bv= u

in which B is an arbitrary constant, the value of % is by (33

4

28 )

constant, so that upon this surface the brachystochrone makes a constant

angle with the meridian curve. In the case in which

A= B

the brachystochrone becomes perpendicular to the meridian, and is

a small circle, of which the plane is horizontal.

Whatever is the value of B, the point at which v vanishes,
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coincides with that at which u vanishes, so that at the pole of this

surface the velocity vanishes.

Upon any other surface of revolution about the same axis, the incli-

nation of the brachystochrone to the meridian arc is the same with the

corresponding inclination upon the surface of equation (33522 ), at the com-

mon circle of intersection of these tioo surfaces. Hence the limit of the

brachystochrone upon a given surface of revolution is its circle of intersection

with the surface of equation

Av = u,

and the brachystochrone extends over that portion of the given surface,

which is exterior to the given surface, by ivhich the limits are thus defined.

580. In the case of a heavy body, the surface of equation

(33522 ) is a paraboloid of revolution. When the velocity of a heavy body

upon any paraboloid of revolution, of ivhich the axis is vertical and directed

doivnivards, is fust sufficient to carry it to the vertex, the brachystochrone

mahes a constant angle ivith the meridian curve; but ivhen the velocity is

too small to carry the body to the vertex, the brachystochrone is a curve

ivhich mahes an increasing angle with the meridian as it descends, and may

sometimes become perpendicular to the meridian ; and when the velocity is

more than sufficient to carry the body to the vertex of the paraboloid, the

brachystochrone is an infinite curve, which is horizontal at its highest point,

and diminishes its angle with the meridian as it descends.

If the equation of the paraboloid is

u2 = 4p z

in which the axis of z is the downward vertical, the equation (33428 )

becomes

si»°= 4
v
/
'fe(

1 -:?)]-

If z is positive and

p>iA* ff>



the substitution of

o o "7

shr a
•lp

?

q.= &o t«Lll
2 « >

Cos if:= + 2
-

z-\-p + <?

P— q '

gives

s = h sec a (p— q) [tp + Sin (jp)

,

in which the upper signs correspond to the case in which p is

greater than q, and the lower to that in which p is less than q.

In the case in which p is greater than q, the substitution of

COS^ 111 = ;
—

-,
z+p

' 2 • P 1
sin i

-
P-\-z»

gives

=— tan a i

P-
V / ( 1 -J-

- ) 3^ u<— S; i/'— cot ^ y/ ( 1— sin
2
/ sin

2
if )

-^(-^,t)].
When ^ is smaller than q, the substitution of

2
~ z

COS W S= :

,T "+ ?

• '2 • <7 P

gives

I= tan a J (2+5) [§, y —^ 9?. ^ _|1- coty y/ (1— sin
2
/ sin

2
1//)

When

43
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the arc is

s= sec a (z— z ),

so that its inclination to the axis is constantly equal to a, and the brachys-

tochrone is defined by the equations

z= z sec
2

cp
,

"= tan a i /-(tan (p— </>).

When

the arc, measured from its cusp, is

S= 3^ ^2 +^) f— (*« +P) 1
]

•

and if

the brachystochrone is defined by the equations

p -\-z=p sec
2
/ Cos2

(p ,

^L5= tan(|^ ,+ -2
5

»).
tan j< \2sm2j' ' tan 2 r /

when

in which case the brachystochrone has a lower limit at which it is

horizontal, the substitution of

2 ^<f
sec a = ——

,

2p

-* cm"1 r/ '

COS W= '-j- ,T P+ 9



— 339 —

gives, at the lowest point of the curve, where (p vanishes

z= q,

and for the value of s, measured from the lowest point,

s= £ [p -f- q) cot a (sin (p -f- cp )

.

The substitution of

2 9— z
tan ijj =

I
—

-,
'0

sin-" i

'p+q.

gives

K-*^«v+*»<(-^.v)]-sin«y/[p (p-\-q)] L '
' q~ ' ' q * \ y

When O is negative, in which case the condition (33630 ) is

satisfied, the substitution of the equations (3372_5 ) with the lower

sign gives the corresponding value of (3377 ) for the arc measured

from its upper limit, which corresponds to the vanishing of (p.

When

— 0o<2>,

the substitution of

iCOS If

r+ ?

z-\-p*

• 2 ' P -\~ ~0
snr i= JL-1—

p— q

gives

I= tan a
\J

\-—- j I %
{ y— %

i
\\> -\- cos xj> y/ (cot

2 y -f- cos
2
i)

1

/?— y \ j9— ^ ' /J

When
— Zo>P
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the substitution of

cos 1/

; „, __ *+ ?

• 2 • P-\~ Z
snr i

—

gives

"= tan « w (—-

—

-) \$i xp— 2F
t
- ijj -4- cos \\> \J

(cos2 i/; -|- cos2 i)

When

the brachystochrone is defined by the equation

•,= ton«
[v/(^+ ^|'k?^g+^f].

581. In the case of the heavy body upon the paraboloid of revolu-

tion in which the axis is vertical and directed vpivards, the brachystochrone

forms an increasing angle with the meridian as it descends and is perpen-

dicular to the meridian at its lowest point. In this case, the inclination

to the meridian is determined by the equation

if (33625) is the equation of the paraboloid. By the substitution of

sin
2 a =~ 2p '

q == zQ tan
2 a >

Cos cp =_2z+ />-

P+<1

9> vanishes at the lowest point where
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and the value of the arc, measured from the lowest point, is

s=% {}) -4- q) sec a ((p -\- Sin ip) .

The substitution of

tair w=

snr i= -.—

gives

582. In the case of a heavy body upon a vertical right cone, if the

vertex of the cone is assumed as the origin, and if

a is the angle which the side of the cone makes with the axis,

A2
q cos a

1\ =—~2 3

sin a

Q = the angle which r makes with the axis upon the developed

cone,

the inclination to the meridian, the derivative of the arc and of & are

.
VC^'iO— r

<>)]
sin

Dr s

r

r

v/[r
s_2r

1 (r
— *•„)]'

D 6 = - V[2y,i(r— ro)]

When

the substitution of

r sj [r-— 2 rl (r —-*•«)]

2 ro>r1 ,

sin
2
/

an y
r, cot i— r-V

r = r sec2
£?,
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gives

cos 1= cos i sec {x\j— i),

s = r sin
2
i (cosec x}>— cosec 2i)— rx

log (tan \ y cot i)

,

£ = — sin[-1] (sin i sin y) -\- sin i&i<p,

in which the arc is measured from the cusps, at which point .-

6=cp=1=0, xf>=2L

This brachystochrone extends to infinity from the cusp without ever becoming

perpendicular to the side of the cone. The greatest angle which it makes

with the side is i, and at this point of least inclination to the side

tfj=i, r=2r ,
(p=z^n,

6 =— i -j- sin *^ ( h n )

.

When
2r =r1 ,

the brachystochrone is defined by the equation

H = tan.-y(^-l)_Cot.-y(^-l),

and the length of the arc, measured from the point of least inclina-

tion to the side, is

s == r— 2 r -f- r log (£— l) •

When r is positive and

2r <r1?

the substitution of

Sec2
/' =—

,

m I
r

i
Tan PTan w = +

,T — r— r
^i
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\ Tan ft
Cosec

\f>

— 1\ log Tan h y>

in which the arc is measured upon each branch from the point at

which it is horizontal and the upper sign belongs to the lower

branch and the reverse. The upper branch is finite, tvhile the lower

branch is infinite, and the value of if) extends on the upper branch

from 2 (1 to infinity, and on the lower branch from infinity to zero.

For the upper branch the substitution of

sin i= e
2 P,

r— r = r sm i sir cp
,

gives

<3 = 2 (1 -f sin i) [9?< y— <3V (sin i, y)] .

Upon the lower branch the substitution of

?

r— r,
sin i sina \\>

'

gives

6 = 2 (1 -f- sin a) ^ (sin t, i/> )

.

TF7i£« r vanishes, the equation of the brachjstochrone upon the de-

veloped cone is

r= 2 1\ sec2 £ 6

,

and the length of the arc is

s= 2 rx tan £<3 sec £ <3 -|- 2 ra log tan (i tt -|- I 6) .

When r is negative, the substitution of

2 r — 4 sin i
Cosec2

p =
r
x (1 -[-sin i)

3

' — r
x
Cos p

7
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rx Cot /•> Cosec i/>— rx log Tan \ if

in which the order of the signs and of the value of \\> is the same as

in (3434 ) with reference to the branches. The upper and finite branch

of the brachystochrone lies in this case upon the upper and inverted portion

of the cone. The formulae (343n , 343 16_19 ), apply to this case, in

which it must, however, be noticed that the sin i is negative.

583. When the solid of revolution upon which the heavy body moves,

is the ellipsoid of which the equation is

(i)+(i)=i>

the inclination to the meridian is determined by the equation

AuSl{Ai-z>) •

The problem naturally divides itself into two cases. In the first case

the velocity is more than sufficient to carry the body to the highest point of

the ellipsoid, the brachystochrone is a continuous curve which is horizontal at

its highest and lowest limits, and which, alioays running round the ellipsoid,

is most inclined to the meridian curve at the point

In the second case, the velocity is not sufficient to carry the body up to

the highest point of the ellipsoid, and the brachystochrone is horizontal at

its lowest point, but has cusps for its upper points. In each of these

cases the length of the arc can be found by means of elliptic

functions. If in the first case — z
x
and 2 are the coordinates of the

upper and lower limits, or of the common intersections of the

ellipsoid with the paraboloid of revolution of which the equation is

u*= 2A*g (s-*o),
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and if in the second case 22 refers to the intersection of the ellipsoid

with the paraboloid, while — s1 is the coordinate of the intersection

of this paraboloid, inverted at the horizontal plane of u'x, with

the hyperboloid of revolution, of which the equation is

(i) -•(!.)=!>

the derivative of the arc is

"* b ax\ (*+*,)(«,-*)

In the first case, when the ellipsoid is prolate, and

**— Ai-AV*z -*-*• u

the substitution of

gives

* v. . — ?-

When the ellipsoid is a sphere, of which the radius is R, the

hyperbola (3456 ) becomes equilateral, and the length of the arc,

measured from the lowest point, is determined by the equation

S 2 2-J-2, Z
cos == '-j- -'.

In the first case (344 17 ), the substitution of

V r •>

cos/
sin \l>

t

sin 1^2
'

44
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gives, for the sphere,

u 2coa2
±\l)

l
jx /cos \p2 -\- 30S tt>

l
s \ , 2 sin

2
\ ip,

,

sin \jj.

,.2 1

2^1 -yp
/cos il>2 -)- cos -i/>, s \ . 2 sin

2
\ xp^^ / cos i/>2

'-j- cos ipi s \

i;2 'I 1— cos U>2
'2 R/ ~T" sin i/)

2
* V 1 -f- cos i/;2

' 2 i^/

_4cos2

f \p x (Ja /cos ii;2
-|- cost/)! s \ cosi/^— cos xp2 ^ / s \

sin u>2 ' \ 1— cos iX)2
' 2 jff/ sin i/j2

* \2 11/

tan[_1] costfr-l-cosift!

\/
(sin2

i/>2 cosec
2^ -f~ sin

2
ti^ sec2^)

In the second case (34423), the substitution of

C0S 2a)= ^=^=^,
Z2 Z%2 Zn

. o . Z2 Z
Sill

2
2
-

gives, for the sphere,

u Z,-\-E g* /COS Tpo cos V>0 \ z
\

R
(Jfi /C0S tyo C0S ^ \

x R sin i/;2
' V 1— cos i/;2

'
" / R sin u>2

* V 1 -|- cos \p2
' ' /

-1+ ^ POP /C03ip2— COS1//Q \ op (
R(l— COS !/<,) VI_

i^os^L J'\ 1— cosi/,2 '^/ i \«x+ 22cos V ,

3
>VJ

cos^-cosy, g. _ cogec ,- tan[
-l]

/n j
1^.. ^

1 smi/i2
'

v (1-p-cos-i tan- 9)

In the case in which

the brachystochrone is defined by the equation

-= tan i w Tan [
-1] sin -^ 4- tan[

-1] J^A.

.

* ' 2i? ' tan|x//2

584. In the case of a heavy body upon any surface whatever,

it follows from (3293) that

v2 2g(z— z )-= -^ = a cos I .

Qt Qr
J pr
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If, then, NT is the normal to the brachystochrone drawn in the

tangent plane, and extended to meet the horizontal plane from

which the body must fall to acquire its velocity, the preceding

equation gives

NT={z—

z

)sec 2

p
=$QT ,

or the tangential radius of curvature of the brachystochrone is twice the

tangential normal ivhich extends to the horizontal plane of evanescent

velocity. This proposition is given by Jellett.

585. When the force is parallel to the axis and proportional to the

distance from a plane ivhich is perpendicular to the axis, the surface of

revolution of equation (33522 ) is an ellipsoid when the force is attractive

toivards the plane, and it is an hyperboloid of tivo sheets when the force

is repulsive from the plane.

586. When the force is directed toivards a fixed point and propor-

tional to the distance from the point, the surface of equation (33522 ) is an

ellipsoid if the force is attractive, but if the force is repulsive, the surface

may be an ellipsoid or it may be an hyperboloid of tivo sheets.

587. When the force is directed towards a fixed point, and

inversely proportional to the square of the distance from the point,

the surface of revolution of equation (33522 ) is defined by an equa-

tion of the form

K2=4 (I_i).

588. Other conditions might be combined with that of the

brachystochrone. Thus if the total length of the arc is given, the normal

pressure to the brachystochrone is

in which b is an arbitrary constant, and is dependent, for its value,
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upon the given length of the arc. This constant is generally infinite,

when the brachystochrone is a straight line.

589. Under the condition of the preceding section, the equation

of the brachystochrone, in the case of § 569, referred to the coordinates of

(33017 ) is

In the case of § 570, this equation gives

2aq = PiP

(P2-W

590. In the case of the parallel forces of \ 571, (34728 )
gives

\1— oasmy

When the force is constant, this equation gives

a2 sin *

^ g{l— basinlf

'

so that when

ba>l,

the curve has points of contrary flexure.

591. In the case of § 576, and with the condition of § 589, the

equation of the brachystochrone has the form

, , , = u sin %= u2D ".
l-\-bv " 3X

The inclination of the curve to the meridian arc is therefore con-

stant upon the surface of revolution, which is defined by the equation

Bv = u(l+bv),

and this surface has the same relation to other surfaces of revolution in
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respect to the braclvjstochronc formed under the present conditions with

those which are indicated for the surface of § 579.

In the case of a heavy body, the equation of this defining

surface of revolution is

2g(,-B )==(^-rJ.
592. If the condition is a mechanical one, such that the total

expenditure of action, defined as in § 308, shall be given, the normal pres-

sure to the brachystochrone is

in which b is an arbitrary constant, and is dependent, for its value,

upon the given expenditure of action. When this constant is in-

finite, the normal pressure is equal and opposed to the centrifugal

force.

It is apparent, from the preceding equation, that under the

action of finite forces, this brachystochrone cannot be a continuous

curve, in one portion of which the direction of the normal pressure

coincides with that of the centrifugal force, and is opposed to it in

another portion.

593. Under the condition of the preceding section, the equation

of the brachystochrone, in the case of \ 569, referred to the coordinates of

(33017 ) is

Si— £2

l
2 \vJ

In the case of § 570, this equation gives

_ [l-f25a(r2-r2

)]
2 y/^-r-g)

*>
~~

1— 2ba(f— rl)
*

plS/a '

594. In the case of the parallel forces of § 571, (3492,t )
gives

Q ~^° — sin2 *

[l + 2b(n— Si )J~ s '
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When the force is constant, this equation gives

595. i« ^e c«se of § 576 «ho? «t$A the condition of § 592, the

equation of the brachgstochrone has the form

The inclination of the curve to the meridian arc is, therefore,

constant upon the surface of revolution, which is denned by the

equation

Bv= u{l+ bv2

),

and this surface involves, for the present case, the properties of the defining

surface of § 579.

In the case of a heavy body, the equation of this defining

surface of revolution is

2B*g{z-zQ )
= i?\l + 2bg{z-z«)-]\

596. The brachjstochrone in a medium of constant resistance is

entitled to special consideration. In this case, it is convenient to

introduce the length of the arc as the independent variable. The

equation of motion along the curve is

v*=2S2— 27cs,

in which k is the constant of resistance. This equation must be

combined with the equation

(A*)2+ (A*)2=1.

If h ,"i and | fi are the respective multipliers of these equations in
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the method of variations, the brackystockrone is defined by the differential

equations

1

H'l= -s,

_ A Si vD,v4- kD
s
a= —^=—s-y±- -

;

and by the following expression of the normal pressure directed in

the opposite way to the centrifugal force

Dz 12 sin v -\- Dx Q. cos v = -—

.

When k vanishes, the value of /a, is

l

and, therefore, the value of /x is the negative of the reciprocal of the ex-

pression which is obtained for v token there is no resisting medium, and

which is independent of the magnitude of the fixed force.

597. When the force is directed toioards a fixed centre, the nota-

tion of § 569 gives by (330]5 ) for the value of \i,

PS/2

598. When the forces are parallel, the equation (331 31 )
gives

jtt in the form

a= *-.
COS V

599. From the preceding equations, the equation of Ike brackys-

tockrone of a keavy body in a medium of constant resistance has the form

Q = JR sin v

[1 — li cos (v J),,)]
3 J

in which R, k, and v are arbitrary constants.
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600. In a medium of ivhich the laio of resistance is expressed

as a given function of the velocity, the derivative equation of mo-

tion is

vDs v= Dsn—Vi

in which V is a given function of v. The differential equations, by

which the brachystochrone is defined, become, if i (i and ^ are the

multipliers of (35029 ) and (3524),

D
s (ft sin v)= Dx S2 Ds^

,

—D
s
({i sin v) = Dz S2 Ds fit ,

— 1-— vDs ii1+ H,

1 Dv V=0.

The reduction of these equations gives

I)sH,=Ds £2Dsfh= Ds (l-\-lh r),

- P= -+ Pi F;

and the expression of the normal pressure to the brachystochrone

becomes

Dz £2 sin v -J- Dx& cos v= —

^

Ds Si vs ii

Fi Vv
s

-f- v
2

QIXX
V2 J)V V Q'

601. When the forces are 'parallel to the axis of z, the equations

(3529 ) and (35217)
give

a

sin v
'

F>!
sin v v
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G02. These equations give for the br•achy'stock -one of a hear?/

body in a resisting medium,

j. i 7 y a 9
J r j.

i Ksin* Vv 7

by which v is cleterniined in terms of v. The substitution of this

value of v in the equation

v D v v ir
-——=— g cos v— V

,

gives the equation of the brachystochrone in terms of o and v. The pre-

ceding formulae include the results obtained by Jellett in his inves-

tigation of this particular case.

When V is inversely proportional to the velocity, the equation

of the brachystochrone may assume the form

2 h [h cos 2 — a) -f kf sin 2 (v— a)

^ m-\-g cos v \_h cos 2 (v— a) -\- £]

When V is proportional to the square of the velocity and has

the form

the equation of the brachystochrone is derived from the elimination

of v between the equations

, \ </ cos a q sin v
cx»(y—a)=--^ 'W ,

! a (q cos v 7 \ To q cos a , ,1 /V/ cos v , 7 \COS i

& q sin i

603. In these cases of the brachystochrone in a resisting

medium, it is apparent that the condition (3296 ) is usually violated,

and that Euler, consequently, erred in extending this proposition to

the case of the resisting medium.

45
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604. The determination of the form of the curve constitutes

the principal feature of the general problem of the brachystochrone.

But the nature of the curve may be given, and the problem is then

reduced to one of maxima and minima, in which the various param-

eters of the curve are to be determined. Euler has shown that

there is a peculiar analytic difficulty in some problems of this class.

A single example will illustrate this species of inquiry.

Let the given curve be the circumference of a circle, of which

the plane is vertical, and let the ball start from a state of rest at the

upper point. If, then, 2 a is the angle which the line, joining the

two points, makes with the horizontal line, and if 1% is the angle

which the radius drawn to the upper point makes with the vertical,

the equation for determining i is

sec i \%>i ( i n)— 8; (2 a— i)~] — [cot 2 (i— a) -j- cos f\

[^(^)-^(2«-^)]+^
v
/

cos 2 a /sin2(i— «)

sin 2 a
0.

THE IIOLOCHRONE.

605. A curve, in which the time of descent along a given arc,

is a given function of the arc, or of its defining elements may be

called a holochrone.

606. The problem of the holochrone becomes simple, when the

forces are fixed, and the time of descent is proportional to a given power of

the arc. Thus, if the time of descent is expressed by

T
s
=As11

,

in which s is the length of the arc. Let

B= ±V_pl[]r
h{1_ h2-2n

)

-
i

J
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in which the upper sign corresponds to the case, in which n is less

than unity, and the lower to that in which n exceeds unity. The

force along the curve is

S=—Bs1- 2 ".

When
n = l,

the force along the curve is

a it B
l A2 s s

607. When the force is that of gravity, the equation of the

holochrone of the preceding problem assumes the form

^sintr= — B s
l~ 2n

.

608. If the time of descent admits of being developed according to

integral ascending powers of s, the developed expressions of S and

S2
S are obtained from the formulas

&s= >
2 B

s ,

8=DS
Q

S

-

in which the successive terms of P, are obtained from the equations

represented by

u
r

The second member of this equation is to be developed in

form precisely as if V were the symbol of derivation, and in the

result there must be substituted for PJ=0 and F™jPs==0 , the values

P, = o
= cos</)PS=0 ,

r:Ps=0= (l— Bin«+*9) Z?P,_ .
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609. When the forces are fixed, and the time of descent is a

given function of the initial value of the potential, the problem of the

holochrone can be solved by the method applied by Abel to the

case of a heavy body. If A is the final value of the potential, in

which the arbitrary constant is determined so that the potential

may vanish with the velocity, the time of transit expressed as a

function of A, assumes the form

T — i- f Bn*

The integral, relatively to A of the product of this expression,

multiplied by

7ts/(Si—Ay
is

o a a
1
f Ta = 1

f\ 1
f B^ s

1
n Ja \l

(Si—A) n^-2jA i^ [Si— A] Ja y/
(A— Si)l

But the notation

l

rh=fx (-\og zy-\

with the familiar equation

i

xa-l

u

gives, by a ready reduction

r xa ~ x rar(i—n)
Jx (i— Xy

f\
1

f Si*- 1 ]_xa

n _ ,_ nxa

jAl(Si—A) l-"jQ (A— Si)"l~ a ^
%'~ asinnn'

n n

Note.— The notation (-SoG^) is substituted for that of (91 2.i)> which was unwisely

introduced instead of the usual form, which is here restored.



— 357

If the product of this equation multiplied by a cp («) is in-

tegrated relatively to a, and if the function fx of x is defined by

the equation

f(<f,(cc)x*)=fx ,

so that

*Ja

the integral gives

sinjMr f [ 1
f 2>o/a_l _ r

which, when

gives by (35616 )

a
zu

V(#-^)'

The general relations between 5 and J2 complete the solution,

and indicate the form of coordinates in which the solution should

be finally exhibited.

610. If the forces are parallel to the axis of z, 12 is a function

of 0, and the elimination of s between (357i5 ) and the equation

cos*z = Dz s,

gives this holochrone expressed in terms of the length and direction

of the arc.

611. If the forces are directed towards a fixed point, which is

assumed to be the origin of coordinates, the elimination of r be-

tween (357i5 ) and

cos"= D
T s,

gives this holochrone expressed in terms of the length of the arc

and its inclination to the radius vector.
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612. If TA , developed according to powers of A, is expressed

it is evident that

s=v/^[^^4
613. An interesting case of this potential holochrone is obtained,

ivhcn the body is supposed to approach the point of maximum potential

along a given curve, and the required curve is to be such that the ivhole

time of oscillation shall be a given function of the maximum potential. If

sx denotes the given arc, the time of oscillation has the form

rp _J_ f Dy (*+ *.) .

A yjtja \/{A— Si)'

so that, by the process of § 609,

*y

In order that the two curves may be continuous, the direction

of the given curve must coincide with that of the level surface at

the point of maximum potential. But this direction may be given

by an infinitesimal bend at the extremity of the curve, so that this

is not a practical limitation of the problem.

614. If the given time of oscillation is constant, the equation

(35818 ) assumes the form

B(s-+- Siy=(2;

and the compound curve becomes a peculiar species of tautochrone, which

was investigated by Euler in the case of heavy bodies.

615. When the forces are not wholly fixed but mag depend upon
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the velocity, the problem of the holochrone becomes, to a certain extent,

indeterminate. For, if

W=0,

is an assumed equation between s, t and v, such that / and s vanish

together, but when v vanishes, the resulting equation between s and

t assumes a given form corresponding to the given condition of the

holochrone, the derivative of this equation gives, for the expression of the

force along the curve,

D
t
W+vD

s
W

1 ~ Dv W '

from which the time is to be eliminated bg means of the assumed equation.

616. In most problems, in which the forces are dependent

upon the velocity, the form of R is not unlimited, but is usually so re-

stricted that

R= R
S+ RV ,

in which R
s is a function of s and represents the action of the fixed

forces, while Rv is a function of v and represents the resistances, to ivhich

the bodg is subject. In this form of the problem, geometers have not

made much progress towards its solution, although the case of the

tautochrone, exhibited in this aspect, has been the occasion of much

discussion and many difficult memoirs.

617. If the equation (3593 ) solved with reference to t, ac-

quires the form

i=Thm
the expression for R is

1 — rD.T..„R Vv Tl)V

which is essentially identical with Lagrange's most general formula

in the case of the tautochrone.
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618. If the equation (3593 ), solved with reference to v, ac-

quires the form

v=Vs
,

t ,

the expression for R is

R= vDs l\ t
-\-D

t
Vht ,

which formula comprises Laplace's general form of solving the taato-

chrone.

619. If the equation (3593 ), solved with reference to &, ac-

quires the form

the expression for R is

R-.
v—Dt Sv , t

620. When the equation (3593 ) is presented in the form

T-\-jS-{-V=0,

in which T, iS, and V are respectively functions of t, s, and v, the

value of R is

D
t
T-\-vDs SR =—
I)„ V

But D
t
T is a function of t and, therefore, of S -\- V; it may,

indeed, be any arbitrary function of S -j- V, so that if tf denotes

this arbitrary function, R becomes

R=— Dv V

621. When, in the preceding section, $ is changed into

— log S and

F=logy,
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the value of R may be presented in the form

R= vy(^)+ vi I>s \ogJS;

which is the same with a familiar formula of Lagrange for the case

of the tautochrone.

622. The cases, in which the formula (3G1 3 ) assumes the form

(35915 ) are easily investigated. For this purpose let

V

—~s>

and the derivatives of (361 3 )
give

Dv R= Dzl -f 2v D,\ogS=A «.,

DsDv R=— Z
gDlx+ 2zSDsDs \og!3=:Q',

whence

Dlz = c

2>S 2DsDs
\ogS=2a,

in which a is any constant. Hence

X = a s
2

-f- b z -f- e,

in which b and e are constants introduced by integration. The

value of R is, then,

R— eS-\-bv-\-(a+Ds S)^',

so that, if h and H are constants, the final values of 8 and R are

£= «#+ &«>+ *»*;

46
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and this formula of Lagrange is restricted to the resisting medium, in

which the resistance has the form

a -\-bv-\-h v
2

which was first remarked by Fontaine.

The form of T, in this case, may be derived from the equations

T
c = z,

I „„ I 7, I

e
7, I n „T I „ „-TB

t
T=j = az+ b+ °-=b+ ccT± ac >

which irive

V (2 .a) cos [(,- 1) sj (2 c a- g)] = ?"+VffiA'^
_ 2eavS-\-beS2 -\-bavi

b v S-\- e S 2
-j- a v3

When v vanishes this equation becomes

v/(26«)cos[(t— t)^{2ea— b
2)~]=b,

so that the interval t— t is independent of the length of the arc,

and the curve is a tautochronc if % is also independent of s, which

is the case when S vanishes with s, that is, when

M=- a

7 .

ii

This condition is always observed, if the direction of the curve

coincides with that of the level surface at its termination, so that in

every case, this holochrone is essentially tcmtochronons.

623. If, instead of (35925 ) we suppose

T= T

and if i\> denotes an arbitrary function, the value of R has the form

B==1
}p(Ts

,
v)^-vDs

Ts
,
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When

Ts>v= S V-\- S±

in which S and iS\ are functions of s, and V is a function of v, the

value of R becomes

which includes Lagrange's formula. Forms of this kind may be

indefinitely multiplied, without diminishing the difficulty of obtain-

ing such as are new and not included in the investigations of § 622.

624. A curious case of the holochrone is introduced, when the

form of R is

R= Rs+ Rv+ v
2
JS1 ,

in which ^ is a function of s. The only case of (361 3), which can

assume this form is easily proved to be that of (361 31 ) when JS

is left undetermined. If, then, the factor of ^'
2
, diminished by a

constant, is inversely proportional to the radius of curvature, the

form of the resistance, by including in it part of the term c S, is

that of (3623 ) increased by a term proportional to the friction upon the

curve.

If the fixed force, in this case, is that of gravity, and the axis

of z is vertical, and if v is the inclination of the radius of curvature

to the axis of z, the first and last terms of R give, if k is the con-

stant of friction,

q g sin v -\- leg cos v

e '

a-\-DsS=a— y-

j^
=— (h-)r -)S,

1 a e— h g sin v— h h g cos v

l> (1 — P) g cos v



— 364 —

so that the curve determined by (36

1

29 ) is included in this form. This

is a generalization of Bertrand's similar investigation with regard

to the cycloid.

THE TACHYTROPE.

625. A curve in which the law of the velocity is given may

be called a tachytrope.

626. When the laiv of the velocity is given in an equation between

the velocity, the space, and the time, the formidce of § 615 are directly

applicable to the complete solution of the problem ; and all the subsequent

transformations of these formidce may be applied to the present case.

627. When the time is not involved in the equation (3593),

but the portion Rv of the force R is given, the other portion Rs
is

determined by the equation

vD,W p

from which v is to be eliminated by the given equation (3 5935).

Euler has solved various cases of this tachytrope.

628. One of the simple examples, solved by Euler, is when,

in the case of a heavy body,

Rv= —kvm
y

and the velocity is to depend upon the arc in the same form as

if the body descended in a vacuum upon an inclined straight line,

so that the equation (3593 ) acquires the form

v
2= hs,

whence

g sin v= Rs =ih-\- Jc (h sf
m

.
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When
m=2,

this equation becomes

g sin v = \ h-\- khs,

or the required tachytrope is a cycloid.

629. Another simple and interesting example of this problem

was proposed by Klingstierna and solved by Clairaut. It is that

of a heavy body in a medium, of which the resistance is propor-

tional to the square of the velocity, approaching the origin with a

velocity equal to that which it would have acquired by falling

in the same medium through a height equal to the distance of

the body from the origin measured upon the curve. In this case

9 /1 „— 2ks>

Rv=kv2

whence the equation of the tachytrope is

D
s
z = 2c-* ks— 1,

of which the integral is

/c(s-\-s) = l c
-2/fcs

630. A simple example of the problem of § 627 is that in

which the velocity is uniform. In this case

JRS
=— Rv = a constant = D

s 11

,

so that in the case of a heavy body this tachytrope is a straight line ;

in that of a constant force directed toivards a fixed point, it is a loga-

rithmic spiral ; and in every case the sine of the angle, at ivhich it inter-

sects each level surface, is inversely proportional to the fixed force ivhich

acts at the point of intersection.
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631. When the given forces are parallel to the axis of s, and

the given equation (3593 ) is expressed in terms of v and z, the

equation of the tachytrope is

(Dz 12 sin v 4- Rv ) Dv W-\- Dz Wv sin v = 0,

from which v is eliminated by means of the given equation. Euler

lias solved several cases of this tachytrope.

632. If, in this case, the curve is to be such, that the velocity

shall have a constant ratio to that which it would have acquired in

a vacuum, the equation (3665 ) assumes the form

Z> £2 sin v =— -——

.

If the resistance is proportional to the square of the velocity,

so that Rv has the form

Bv=— 7cv
2=— 2ka(n-\r H),

the equation of the tachytrope is

sin vDz log (12-J-H) = ^7,-

633. When the given forces are directed towards the origin, and

the given equation (3593 ) is expressed in terms of v and r, the equation

of the iachgtrope, in a medium of given resistance is

(D
r
tt cos ; -f Rv ) Dv W-\- Dr

Wv cos r

s
=

from which v is eliminated by means of the given equation.

634. If, in this case, the curve is to be such that the velocity

shall have a constant ratio to that which it would have acquired in

a vacuum, the equation (36624 ) assumes the form

Dr
£2 cos r

s=— 3-.
s

1 — a
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If the resistance has the form (36G 1G ), the equation of the

tachytrope is

cos: Dr \og (11 ± II) = ^-a .

635. When the law of the velocity, in a medium of known resist-

ance, is given in a given direction, such for instance as that of the axis

of x, and so given that

2>COS* = Ws>x ,

in which Wsx is a given function of s and x, the equation of the

tachytrope is derived from the equation

(D
s
12 + Mv) cos * — - sin

s

x= vDs WSi x
-\- v cos % Dx Ws , x ;

from which v is eliminated by the given equation.

636. "When the velocity in the given direction is uniform,

these equations become

v cos^.= a,

n? sin i

Q— (A^+A)cossr

637. When the given force is that of gravity, and (i is the in-

clination of the given line to the vertical, the equation of this tachytrope

becomes

or sin s

(g cos (fi
—y + £v) cos

3
£

'

This problem is solved by Euler in the case in which the given

direction is horizontal and in that in which it is vertical. A special

solution is obtained upon the hypothesis of a constant velocity ; in

this case, the tachytrope is a straight line determined by the con-

dition

0cos(/J—*)+£„= 0.



— 368 —

638. When there is no resisting medium, the equation (3672,t) of

the tachytrope becomes

a2 sin x

*> g cos3 s
x Cos (fi—

s
xy

When the line is horizontal

and the equation becomes
9

a
s gcos]UJ

so that the tachytrope of this case is a parabola.

When the line is vertical

= 0,

and the equation becomes

a2 sin *

Q= r!>s
- ^cos4

i'

so that the tachytrope of this case is the evolute of the parabola.

With the notation

b
2= fl^sin/S

2d2

the equation (3683 ), expressed in rectangular coordinates is

2 b \j (x -\-y cot /?)— b x= 2 cot § log [cot /3 -(- h y/ (> -f-y cot /?)]

.

639. If the resistance is proportional to the velocity, so that

Rv=— 7t y

,

and if the direction of the line in which the velocity is given is

such that

g COS/j :=ka,

the equation of the tachytrope of a heavy body is

a2 ^ x

x sin (i—y cos
fi
= — c~ir.
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THE TACnYSTOTROrE.

640. The curve on which the final velocity in a given resist-

ing medium is a maximum, may be called a tachystotrope.

641. In a medium in which the law of resistance is expressed as

it is in § 600, the notation of that section gives for the differential

equations of the tachystotrope

Ds O sin v) = Dx 12 Bs fa ,

— Ds cos v) = Dz 12 Ds fa,

v Ds fa= fa D v V.

The reduction of these equations gives

D, fJt = D
$
£2 D

s fa = Ds {fa V)
,

P = Pi V,

and the expression of the normal pressure to the tachystotrope be-

comes

Dz 12 sin v A-Dx £2 cos v= /* = —=^ = l

n̂

642. In the case in which the law of the resistance is ex-

pressed by the formula

V— k v
m

,

the normal pressure becomes

P m q

so that the normal pressure has a constant ratio to the centrifugal force,

which result was obtained by Euler in the case of a heavy

body.

47
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643. Wlien the resistance is constant, the tachystotrope is a straight

line.

644. When the forces are parallel to the axis of z, the equa-

tions (3699 ) and (35916 )
give

a

sin v

'

a= Mi V= -

645. The equation of the tachystotrope of a heavy body is ob-

tained, therefore, by the elimination of v betiveen the equations

V-.
ga

5 sin v— a cos j''

v Dv v a a— = (7COSV y-. .

Q
" o sin v— a cos v

646. When V has the form (36924), the equation of the tachy-

stotrope of a heavy body is

jt—. ro= h? (m a q sin vY
(osmv— acosvy \ t/ \ /

THE BARTTROPE AND THE TAUTOBARYD.

647. The curve, in which the law of pressure is given, may

be called a barytrope, and that barytrope, in which the pressure is

everywhere the same, may be called a tautobaryd.

648. When the pressure is a given function of the arc, which

may be denoted by S, its equivalent expression, if F is the fixed

force which acts in the direction /, is

-—.Fean f= iS'.

Q P

and the differential equation of the barytrope is

2R= DS [<> (#+ JFcosft] = 2F$mf
p
-\- 2 Rv .
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649. In the case of a heavy bod//, if the axis of z is vertical, the

differential equation of this barytrope becomes

{S-\-g cos v) Dsq=— q Ds S-\- og sin v -f 2 R v ,

from which v may be eliminated by means of the equation

v
2= (>

(
S -\- g sin v)

.

In this case, the differential equation of the taidobaryd is

(a -\-g cos v) D
s q = Sg sin v -j- 2 7?^.

650. When the resistance is constant, the equation of the barytrope

of § 648 is

o
(
S+ F co s

/ ) = 2
(
£1 -f //) -f 2 , JZ.

.

i;i #w c«sc o/" //^ /^#ry £o«^, this equation becomes

SD
v
8-\-gcozvD

v 8 = 2ge + 2 11+ 2 s Rv ;

and that of the taidobaryd is

[a-\-g cos v)
b+3

Q == A \_g -{- a cos v
-J- sin v \/(^

2— «2
)]*,

if J. is an arbitrary constant,

and

But if

the equation of the taidobaryd is

, \q, , sol 2 Rv r_n'7+ f<!C0S1;
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When there is no resistance, the tautobaryd of the heavy body is

defined by the equation

__ A
^ ' {A-\-g cos*')

3
'

651. When &' vanishes, there is no pressure against the bary-

trope, and this curve is that on which the body moves freely.

Thus the equation of the barytrope of the heavy body becomes,

under this condition,

A
^~ (cos vf

'

ivhicli is that of a parabola.

652. When the curve of the barytrope is given, the equations (37027 )

and (37031 ), determine the laiv of the fixed force ivhen that of the re-

sistance is hioivn, or, reciprocally, that of the resistance, when the fixed

force is known.

653. When the forces are parallel to the axis of z, the equation

(37031 ) becomes^

AW.)+^^= 2JJ„

ivhich is applicable when the curve is given.

When there is no resistance, this equation gives

Fy cos3
v= —J^[cos2 vD

s (#<>)]=—fv [cos2 vZ>v (#(>)].

654. In the case of parcdlel forces, when the tautobaryd is a

circle, and there is no resistance, the fixed force has the form

F=-^
Q COS3

V

in which b and J7 must vanish, if v can become a right angle.



When the fixed force is that of gravity, and the tautobaryd

is a circle, the expression of the resistance is

Xv=—y(r— «)•

655. In the case of parallel forces, when the tautobaryd is a

cycloid of which the base makes an angle a with the direction of

the parallel forces, and when there is no resistance, the equation of

the cycloid being

o = 2 R sin (v— a),

the expression of the force is

j-j a sin (r— a) -j- ^ a sin (3 v— a) -\- ^ a sin (v -\-u) -\-b

2 sin (v— «) cos3 v

When b vanishes and a is a right angle, this expression is re-

duced to

F= i a cosecv,

which coincides with Euler's solution of this example.

THE STNCHRONE.

656. The surface or curve which is the locus, at any instant,

of all the bodies which start simultaneously from a given point

with a given velocity, and move upon paths which are related by

a given law, is called a sf/nchrone, and the given starting point may

be called its dynamic pole. This class of loci was first discussed by

John Bernoulli.

657. If an integral of the motion of the body along one of

the paths to the synchrone is obtained in the form

W=0,
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in which W is a function of the time, of the arc of the path, and of

the parameters by which the relationship of the paths is expressed

;

this equation is the required equation of the synchrone, if the time is as-

sumed to be constant ; and it is referred to the system of coordinates, con-

sisting of the described arc and the given parameters.

658. If the only force is that of a resisting medium, and if

the form of the path is given, and also the position of the dynamic

pole upon it, but not its direction in space, the synchrone is obviously

the surface of a sphere, of which the dynamic pole is the centre.

659. If the body moves, without external force and without

resistance, upon a straight line, which rotates uniformly about a

given axis passing through the dynamic pole, the synchrone is a

surface of revolution about the same axis, and it is defined by the polar

equation (25020 ) or (2513) when p vanishes and t is constant.

660. When the fixed forces are directed toivards a point, or ivhen

they are parallel, the synchrone of bodies moving upon straight lines, is a

surface of revolution, of which the axis is the line of action which passes

through the dynamic pole.

661. In the rectilinear motion of a heavy body, it is obvious from

(25513), that the polar equation of the synchrone has the form

r= a cos^-j- b,

which becomes a sphere, when b vanishes, that is, when the initial velocity

vanishes.

662. In the rectilinear motion of a heavy body through a medium,

of which the resistance is proportional to the square of the velocity, the

polar equation of the synchrone has the form,

Acr=Cos(Bcosir
z ).
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TriE SYNTACHYD.

663. The surface or curve which is the locus of all the points,

at which bodies have the same velocity, when they move from a

given point, with a given velocity, upon paths which are related by

a given law, may be called a syntachyd.

664. If an integral of the motion of a body along one of the

paths which proceed to the syntachyd is obtained in the form

W= 0,

in which W is a function of the velocity, of the described arc, and

of the parameters, this equation is that of the syntachyd in the

same form of coordinates with those in which the synchrone of

§ 657 is expressed.

665. In the case of §658, the syntachyd coincides with the syn-

chrone.

666. In the cases of §§659 and 660, the syntachyd is a surface of

revolution about the same axis ivith the synchrone.

667. When the action is exclusively that of fixed forces, the syn-

tachyd is a level surface.

668. When a heavy body moves upon a straight line, on which there

is a constant friction, and through a medium of ivhich the resistance is

proportional to the square of the velocity, the equation of the syntachyd is

c- 2hr— A = B cos (;+ «),

in which the notation of § 515 is adopted, A and B are constants

and

a = g tan a .

669. When a heavy body moves upon a straight line, on which

the friction is constant and through a medium of ivhich the resistance is
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proportional to the velocity, the equation of the syntachyd has the form

670. When the body moves upon a line on which the friction is

constant and through a medium of which the resistance is proportional to the

square of the velocity, the equation of the syntachyd, expressed in the form

of coordinates of § 657, is

(kv2
-\- A) c

2ks=fs
(D

s
Q c

2sh
),

which coincides with Jacobi's investigation of this case of motion.

A POINT MOVING UPON A FIXED SURFACE.

671. Among the various forms, in which the motion of a point

upon a fixed surface, with fixed forces, can be discussed, that of the

principle of least action is here selected. In this case, therefore,

the whole amount of action, denoted by

v=f,"'

is to be a minimum. If, then, the equation of the surface is

L=0,

if rectangular coordinates are adopted, if ^ is the multiplier of the

preceding equation of the surface, and ^ that of the conditional

equation

the equation of the path of the body, with reference to either axis, is

Dx v-^-\ix Dx L— D
s (fiaf)=0.
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The sura of these three equations, multiplied respectively by x'
,
y',

and z\ is

Ds v= Ds
\i,

or

Whence

Dx v -f ihDX L— DS (v x)= .

672. If the tangent plane to the given surface is assumed, at

each instant, to be that of xy, and if the axis of y is taken normal

to the path of the body, the preceding equation becomes, if ()j de-

notes the radius of curvature of the projection of the path upon the

tangent plane,

so that the centrifugal force of the body in the direction of the surface to

which it is restricted is equal to the normal pressure upon the path in the

direction of the tangent plane.

673. When the direction of the force is normal to the surface, which

is the case ivith the level surface, or when there is no force, the path of the

body is the shortest line which can be drawn upon the surface, and coincides

ivith the brachystochrone.

674. When the velocity is constant, the equation (37713 ) expresses the

condition that the body may move upon the intersection of a level surface

ivith the given surface. In this case qx is the radius of curvature of this

intersection, and D
y
S2 is the whole force in the direction of the

tangent plane to the surface.

675. When the velocity is a given function of the parameter of

the level surface, the equation (37713 ), with the notation of the pre-

ceding section, expresses the equation of a surface over which the

body moves upon the intersection of this surface with the level

surface.

48
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676. When the force is directed towards the origin, and the given

surface is a plane passing through the axis, the equation (377i3 ), com-

bined with (316 18 ), gives in the notation of § 569

D,..Q _ _ 2 _ 2 D,.p

Si— Si
~

q sin
r
s

~
p

'

of which the integral is

n Q !Zi 1
?
,2 I T) «j2

'-"-• "i-o y 2 " 2 -t-'t » •

Whence, if (p is the angle which r makes with the axis,

1 2 T\ 9ir*Dt y=pl.

But 2 r
2
c/g) is the elementary area described by the radius vector in

the instant dt, and it, therefore, follows that the area described bg the

radius vector is proportional to the time.

The equation (378n ), combined with that of living forces, gives

D
t
s*=py+ ri I)

t
<p*= I>t r

i+^=2(£2— S2Q),

r ^— D
t
r~ rs/[(2r

2
(J2— i2 )_ ±p*]>

Whence
2 pi

^ " " I- r
v/ [2 i*(J2— ^2 )— 4$] :-I

which is the polar equation of the path of the bodg. That this equation

can be obtained by integration by quadratures, is a simple case of

the principle of the last multiplier.

677. When the potential of the force has the form

Q=—
and the initial velocity is such that

o — o
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or

„2 9 f) — \l

the polar equation of the path of the bod// is

plr
n -'= ^(Ut)sm [0— l)(fjp— «)],

which was given by Eiccati.

If

n= i,

the law of the force is that of gravitation, and the path is a parabola of

which the origin is the focus.

If

n = 1,

the attractive force is inversely proportional to the cube of the radius vector,

and the path is a logarithmic spiral, which was proved by Newton.

If

n= |,

the attractive force is inversely proportional to the fourth power of the radius

vector, and the path is the epicycloid formed by the exterior rotation of a

circle upon an equal circle, which was proved by Stader.

If

n= 2,

the attractive force is inversely proportional to the fifth poiver of the radius

vector, and the path is the circumference of a circle, which was proved by

Newton.

If

the attractive force is inversely proportional to the sixth poiver of the radius

vector, and the path may be called the trifolia of Stader, by whom it was

investigated.
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If

n = d,

the attractive force is inversely proportional to the seventh poivcr of the

radius vector, and the path is the lemniscate of James Bernoulli, which

was proved by Staler.

If

n ==— 1 ,
-

the repulsive force is proportional to the radius vector, and the path is

an equilateral hyperbola.

When
n<l,

r becomes infinite when (<p— a) vanishes, which was remarked by

Staler.

678. When the values of £2, S2 and px
are such that, if R is

an integral function of an integral root of r,

, R = sJ[2r*(tt-S2 )-±pf],

the expression of (p in (37822 ) admits of integration. For if the

integral root of r is denoted by

mi9\= \Jr,

and if the notation of the residual calculus is adopted, the equa-

tion (37822 ) becomes

log(Vr— r
} )o 2 C 1 o 2 r log(V r_

V = 2 m
&Jr ^R= 2 "A^-%H

679. An example of the preceding section occurs, when m

is unity and

R=.af" -\-br -\-c,



— 381 —

which corresponds to

1
' r ' 2 r2 '

S2 =— -H
2 —ae,

and an attractive force of the form

2 i i

l> e
i

e
2 -\-4n\— a2 r— «*+ 75-H
—-75-^ •

In this case the value of 9 is

cp — a = - log -75 . ., —777 tan 1 iJ
-7-7-7 —t?, ,' e ^ H e\J(±ae— b

1

) \J(4ae— b
2)'

Pi -1
r2

1

2 5pf ^ r_ 11
2ar-\-e= — loff-^-1 , .,., ,

—r Tan1 ]
-7-777,

—

l
.—r,

e ° H ' e\J (b
1— 4 a e)

\J
(V— 4 a e)

When b vanishes, these expressions become

J2 =— ae,

the attractive force is

2 1

e
2+ 4/^

and the equation of the path is

When e vanishes, the expressions become

S2 = ia2
r
2+ al>r-\-

2
-4,

n»=— u\
the repulsive force is

2 1 7 4: Pi
a r-+-ab V

»

1 r>
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and the equation of the path is

« 5 (<P— a)= locr («4--)— •

2 ap{ vr ' & \ ' rf r

When Z»
2— 4 a e vanishes, the equation of the path is

G80. Another example of §678 occurs when

B= ar.+b+ e

p
which corresponds to

n =—u2
,

and an attractive force of the form

a b J*_|_2ae+ 4;»J , She , 2 e
2

The equation of the path is

2ar-f &= v^(4ag— y)tan[^
(4

^7
y)(y—

a)]

When a vanishes, the value of I2 vanishes, the attractive force is

tf+ Apt , 3be , 2e2

and the equation of the path is

log (br-\-e)= j-i(<p— a).

When P— 4 a e vanishes, the equation of the path is

2ar+ b= 4p '

a— (jp
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681. Another example of § 678 occurs when

fi= Ar'l+ B,

in which case

and the equation of the path is

^|(a-9))= log(l-ffr-^).

682. The forms, in which (37822 ) admits of explicit integration

without any special determination of S2 and p, are included in the gen-

eral expression

in which h is two, or the negative of unity, so that 12 only consists of tivo

terms, of which one is

b_

and the general form of the centred force consists, therefore, of two terms

of which one is inversely proportional to the cube of the radius vector, and

the other may be either directly proportional to the radius vector, or in-

versely proportional to the square of the radius vector.

683. In general, it is apparent that the addition of a term to

the central force, which is inversely proportional to the cube of the

radius vector, does not augment the difficulty of determining the

path of the body. In any equation of a path of a body described

under the action of central forces, which is expressed by the elements

(p — a,v and t, and which may also involve the constant p1? the multi-

plication of the angle w — a , and of p^ by the factor

*=^-^)
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gives the equation of the path, when the central force is increased hy the

term

b_

684. When there is no force the path is a straight line, so that

ivhen the central force is inversely proportional to the cube of the radius

vector, the polar equation of the path is

r cos [B (cp— «)]= B p\ i/

If the force is repulsive, B exceeds unity, the path is convex to the

origin, and its convexity increases with the increase of the repulsive

force until it terminates in a straight line. If the force is attractive,

and B2
positive, it is less than unity, the path is concave to the

origin but of infinite extent, and the concavity increases with the

increase of the attractive force until it terminates in the reciprocal

spiral of Akchimedes. If the force is attractive, B2 negative and

S2 positive, the equation of the path is

r Cos \B (9— a) \j— 1] = Bp\J^iV

so that the greatest distance of the path from the origin is limited,

and the path is a spiral about the origin in which it terminates, at

each extremity, through infinitely compressed coils. If the force is

attractive, and B2 and 12 negative, the equation of the path is

rSin[B(cp-a)
s/-l-]=Bpl sJ±,

so that the curve extends to an infinite distance from the origin at

one extremity, and terminates in an infinitely condensed coil about

the origin at the other extremity. In these three cases, the formula
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for the time which corresponds to (384 9 ) is

t=— £*tan[i(g>— a)],

the formula for (38420 ) is

t ===
Bp^~ 1

Tan [i? (y- a)V- 1]

,

and that for (38427 ) is

^=^=-1
Cot[5(9)-a)v/--l].

This law of central force has been discussed by several geometers,

and, with peculiar regard to the special cases of the problem, by

Stader, whose results coincide substantially with those of this

section.

685. When the central force is proportional to the radius vector,

the path is a conic section of ivhich the centre is at the origin. It is an

ellipse, if the force is attractive, and an hyperbola, if the force is repulsive.

In the case of the ellipse, if a point were to start from the ex-

tremity of the major axis at the same instant with the body, and

move upon the circumference of which this axis is the diameter,

with such an uniform velocity as to complete its circuit synchro-

nously with the body, the body and the point are always upon a

straight line which is perpendicular to the major axis. For dif-

ferent ellipses, the time of description is proportional to the square

root of the area. In the case of the hyperbola, if a catenary is

drawn through the extremity of the transverse axis, in such a

position that this axis is the direction of gravity, while its ex-

tremity is the lowest point of the catenary, and of such a mag-

nitude that the radius of curvature of the catenary at this point

is equal to the semi-transverse axis, and if a body starts upon the

49
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catenary simultaneously with the given body, and proceeds in such

a way as to recede uniformly from the transverse axis with a

velocity equal to that of the given body at its nearest approach

to the origin, the line which joins the two bodies will always re-

main perpendicular to the transverse axis of the hyperbola.

686. When in addition to the term, which is proportional to the

radius vector, the central force has a term inversely proportional to the

cube of the radius vector, the path can be derived from the preceding

section by the principle of \ 683.

When the term which is proportional to the radius vector is

attractive and expressed by

a r,

the polar equation of the curve is

i^-1

-f I2 =
v/ \fl\—ia

B

2

pf] cos [2 B(cp— a
)]

=
v
/ [S2l— 4:aB2

pf] Cos[2B((p— a) y/— 1]

= y/ [4:aB2
p\— 12 2

] Sin [2B((p— a) y/— 1].

When a is positive, therefore, the path does not extend to infinity,

although when B2
is negative it is compressed at each extremity

into an infinite coil. But when a is negative, the term propor-

tional to the radius vector is repulsive, and the curve extends to

infinity if B2
is positive ; but if B2

is negative the curve is limited

if S2 is negative, or it may necessarily extend to infinity if S2 is

positive.

In the special case of

tan (2 n Bn) p\

2 B ii
y/— a.

the curve is asymptotic to itself.

687. When the central force is inversely proportional to the square
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of the radius vector ivliich is the law of gravitation, the path is a conic

section, of ivhieh the origin is the focus. When the force is attractive, the

path is an ellipse if S2 is positive, a parabola if S2 vanishes, and it is

that branch of the hyperbola ivhieh contains the focus, if S2 is negative.

But ivhen the force is repulsive, the path is that branch of the hyperbola

ivhieh does not contain the focus. The farther consideration of this law

of force is reserved, in this connection, for the Celestial mechanics.

688. When in addition to the term, ivhieh is inversely proportional

to the square of the radius vector, the central force has a term inversely

proportional to the cube of the radius vector, the path can be derived

from the preceding section by the principle of § 683.

If the term of central force, which is inversely proportional

to the square of the radius vector is

the polar equation of the path is

i^_ a = v/(a
2_8/2 i?

2^)cos[i?(9)— «)]

=
y/ (

a2_ 8 i2 B2
p\) Cos [B (cp— a) y/— 1]

=
yj ( 8 £2 B2

p\— a2) Sin [B (9— a
) y/— 1]

,

when S2 is positive, therefore, the curve is finite ; it returns into

itself if B2
is positive, but if B2

is negative it terminates at each

extremity in an infinitely compressed coil about the origin. When
I2 is negative, one portion at least of the path extends to an in-

finite distance from the origin ; if, moreover, a is positive and B2

negative, but such that

a2 >8S2,B2
pi,

another portion of the path is finite and terminates in the origin,
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through an infinitely compressed coil, while the two infinite por-

tions commence in such a coil ; if the negative B2
is such that

di <8S2 B2
p\

or if a is negative as well as S2 , the curve only consists of the

portion which extends from the coil to infinity. The time may be

computed by the three formulas, which correspond to the three

forms of (387M),

Tan[^(^2
o+ \/ y&pl+ ii2

«)
V Sln V* (y-°)V-l])]

= -]££»%* Tan[^(y-.)V/-1] ? •

rnt^^^o+v/^-^^rCos^^-.)^-!])]
_ a— y/ (8 .<2 #>*— <) p fl p, . , -,-,

--7(Z87VB^) b0t|_ 2 ^(9— aJV— 1J,

the upper of the double forms of the first member applies to the

case in which S2 is positive, and the lower to that in which /2 is

negative. This case was partially developed by Clairaut.

689. The principle of § 683 may be extended to § 677, and

among the resulting curves, that in which n is 2, deserves to be

noticed from its simplicity, the equation of this case is

f1 r=^smlB(cp-a^=
1̂
SmlB( (p--a)

sl-l-].

690. The laiv of central force, for which the integrals, involved in

the equations of motion, can be expressed ly the elliptic forms without
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any special determination of S2 and p1? may he reduced to two general

forms of algebraic polynomial besides other fractional forms.

The first of these forms is

— 3F=bi r
im- 3 -\-b3 r

3m- 3+ b2 r
2m - 3 -\-b1 r

m- 3 -{-br

in which m is either 2, 1, -f,
or -|-.

The second form is

F= b, r
2 '"- 3

-|- b3 r
m~ 3

-f h r~ z+ h r~m
~ 3+ b r

~2m~ 3
,

in which m is either 1 or 2. In each of these cases the term which

is inversely proportional to r must be omitted.

691. In the first case of the preceding section, when m is unity,

the equation (07822) acquires the form

2 pi
'"

J-^V/

(
a^4+ «3z3 r

3 -\- a2 r
3
-f- ax r -\- a)

'

It is obvious from inspection that whenever

is positive, a portion of the curve extends to infinity; but when-

ever «4 is negative, the curve is of finite extent. It is also apparent

that whenever

a=— 4:B2
pt,

is positive, a portion of the curve terminates in an infinitely com-

pressed coil about the origin, that no portion of the curve can ap-

proach the origin except through such a coil, and that when a is

negative, the curve does not pass through the origin.

If all the roots of the equation

a4 r
4
-\- a3 r

3

-f- a2 r
2

-f- ax r -J- a= ,

are imaginary, «4 and a must be positive, and the curve extends



— 390 —

continuously from the origin to infinity. If the moduli of the roots

are h and hly and the arguments a and a 1} and if the following

notation is adopted

I _ 2 «4 (A»+MY— 4a
P "I" ?— 2 fll— a3 (A2+ A?)

'

_ 2 aas
— (h2 -\- Itf) a

x
ai

A2 =(p— lif+ 4 jk> h sin2 £ a

,

A\= (j»— y^)
2+ 4 jo /^ sin

2
£ a x ,

i?
2= (y_ hf -\-iqli sin

2
£ a,

i?
2 =(^— A1 )

a+4 ? A1 sin
a ia 1

,-

cos^:

'^i (?
— *)'

A
X
B

a~b
x

>

and if $ is the value of when r vanishes, the equation of the

curve is

AAJM(i-fi**b )

(
_^= V(l-si^-sin^ )

og2 + .

n2 j

2p\{p— £)
2 cos2

o
xr

' (p
— q)coa-d yi u

'
u u/

-j^y (
X- sin2 /sin2 <W ^ (- cosec2

d
, 6)

, y/ (1 — sin2
« sin2

(9) — y/ (1 — sin
2
i sin

2
O) _°~

y/(sin2 — sin
2

o)

"'

and the expression of the time is

A A
x q

2 tan d (t— r) /p
2+ <?

3 cos2
i tan2 # y (p cot2 # + #) y/ (/>

2+ <?
3 cos2 i tan2 # )

~¥Xl—p){l— r) V p
2 cot2

o+ ?
2

(?+ '•)(/ cot2 ^ + ?
2)f

<7 G°
2+ .P ?) V (P

2+ ?
2
cos2 * tan2 ^o)+

(q— r) tan3 6 {f cot2 6 + ?
2
)>

I i sl{.(P
2
c°t

2
^o+ ?

2

) (1 — sin2
t'sin

2
0)]— y/ ( jo

2 cot
2 # + f?

3 cos2
i)

' °^
"

~~VO2
cot

2
O sin2 — q

2 cos2l?)~
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The elliptic integrals disappear when

which case has already been discussed in § 686. They also disap-

pear when the imaginary roots are equal, in which case

a2 a2

-= -1= 4 «2— 8 \I (a a4 ) :

a4 a tv*/'

so that if

fi=2a3 «4 r
2

-f- a| r -J- 2 «! «4 ,

the expressions for cp and t are

<p__a=ZLW^ 2o»>?
tari- 1

!

(4 gj -
r+^VJ!l_

*
\J
a ° R y/[a

1
a

3 a4 (16 a a4
— ai03)] y' [a3 (16 a or4

— cr
x
a3)]

'

^— t=— loa- 72_ t /

f

g
'
q»

) tant-^ (4a*r+ «3)vS
_

2y/«4
° V \a4 (16aa4

— ax a^)/ y/[a3 (16aa4
— ^03)]

When two of the roots of the equation (38929 ) are real and

two are imaginary, if both the real roots are negative, «4 and a

must be positive, and the curve extends continuously from the

origin to infinity. If one of the real roots, denoted by rlf is posi-

tive, and the other, denoted by r2 , is negative, and if a4 is positive,

the curve extends to infinity at each extremity, and i\ is its least

distance from the origin ; but if a4 is negative, the curve is finite,

terminates at each extremity in the origin, and i\ is its greatest

distance from the origin. If both the real roots are positive and

if a4 is also positive, the curve consists of two portions, one of

which extends to infinity at each extremity, and the greater real

root r1 is its least distance from the origin, while the other portion

is finite, terminates at each extremity in the origin, and r
2

is its

greatest distance from the origin ; but if «4 is negative the curve

consists of a continuous portion of which rx
is the greatest, and r2

the least distance from the origin. If h is the modulus and a the
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argument of one of the imaginary roots, the following notation

may be adopted.

7\— h c
a v_1= A tan !e d3 v ~ 1

,

rx
— hc~ a */- 1= Atari h c-P^- 1

,

r2— hca "/~ 1= A cot ie (fii"
/~1

}

r2— hc- a -/- 1= Acot h c~ 8
i
v_1

,

TiCot =|e= /cot £y,

r2 tan %e= l tan £y

.

When a4 is positive, if $ and i are determined by the equations

i=i„Jll(P— ft)

tan^cotie= y/(^^),
or

r sin y cos y— cos 9 sin i (8 -\- y) sin ^ (d— y)

I sin e cos ?. — cos 6 sin \ (0 -\- e) sin ^ (0— s)
'

the equation of the curve is

IA sin£(m—«W«4 1—cos£Cosy~ . .
\ rf» / • 2 • a • a\~~——= —

—

'-w^—cot y (cosy—cose)^— sir/sin2
^)

cos y— cos £', ^ r_
1]

sin vsin^y'[l— sin
2isin2 y) (1— sin

2
z'sin

2
#)]

y/(l— sin2 1 sin
2
j') 1 -)- cos y cos d ~\- sin

2
i sin

2
y sin2

and the value of (t— t) is derived from that of (cp— a) by multi-

plying by g3 and interchanging y and s. It is apparent that e is

obtuse and exceeds y, and that upon the finite portion of the

curve 6 extends from zero to y, while upon the infinite portion,

it extends from £ to n.

When «4 is negative, if & and i are determined by the equations

tan i<3 cot 2«= v/ (7-377 >
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or

r sin y 1 — cos y cos d

I sin s 1 — cos s cos d
'

the equation of the curve is

IA sin £ sin 2 y (<p—aW

—

a4 • <> err a \ / \ jw / , i\
j-i — = sin

2
/ 9^ 6 -J- (cos y— cos e) ^ (cot y, d)

I

(cos j'— cos s) cos j' , |-_j] / /cot2
2' -\- sin 2 A

~T ^(cot2

y+ sin2
t) y \cot2 -j- cosa t7 >

and the value of (t— t) is derived from that of (cp— a) by multi-

plying by g"—2 ^nd interchanging / and e.

The elliptic integrals disappear when the two real roots are

equal. In this case, a4 is positive, and the curve is continuous from

the origin to infinity. With the notation

R2= r
2 -\-h

2— 2 r h cos a= (r— h cos a)2

-J- h
2
sin

2 a

,

R\= r\ -\-h2— 2 )\ h cos a= (r1— h cos a
)

2
-\- h2

sin
2 a

,

the equation of the curve is

ri(q>— «) y/a4 1 m„ n [-i] &—rcos«_ J_ m [_i] h2— h cos a (r-f-ri) -f r ^
2^2 -A-1"'111

i? i?i " iJi?! '

and the expression of the time is given by the equation

(*_ T)v/«4= Sin[-«^=^-£ Tan^^2-^ cos " (;+ ri)+^1

.
v

- ' T A sin a Kx li M1

When «4 vanishes, if rx is the real root of the equation (38929),

the curve consists of a single portion which extends from the

origin to infinity when i\ is negative, in which case az is positive.

But if 1\ and a3 are both positive, the portion extends to infinity,

and rx is its least distance from the origin ; if r± is positive while

a3 is negative, each extremity of the curve terminates in the origin,

and rx is its greatest distance from the origin.

50
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When «3 is positive, if 6 and i are determined by the equations

tan2
1 6a Atan±e~ B* '

the equation of the curve is

, ™ B(q>— a)y/aa_ ota n+ B'
gp [

fa— B-f .1

j B(rx-Bf [_!] sing
S/(rf+^-2^r1 cos2Q

~W[ri(ri+ jB4— 2^^(50821)] 2^ V
/
Lri( 1— sin2 zsin2

0)] '

and the expression for the time is

(*_ T
) v

/08= (j_|_ JB)g?.d_2i?g^ + 2i?tan^
v
/
(
1— smS'sin2

^.

When «3 is negative, if 6 and i are determined by the equations

i=h{n— ft),

tan2 ^= ^-,
the equation of the curve is

^(^,+-g 2

)
2

Tflti^1;— * ^ (rf± Bi+2B2ri cos 2

' \/[r
1 (ri-\-B

i-\-2B 2
r-1 cos2i)'] 2B^ [r

x (l— sin^'sin2
0)] '

and the expression for the time is

(zf

—

t)V—;«3=(^—^)^^H-2^M—2^tan^v/
(
1— sin2asin2 d).

When all the roots of the equation (38929 ) are real, if, beginning

with the greatest, they are arranged in the order of algebraic

magnitude, they may be denoted by rly r2 , rz , and r4 . If they are

all negative, the curve consists of a single portion which extends

from the origin to infinity. But if rx is the only positive root, the
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curve consists of a single branch, which extends by the same law

as that expressed in (39120 ). If r
}
and r2 are positive, while the

other two roots are negative, the curve consists of one or two por-

tions, according to the same principles which distinguish the forms

of (39125 ). If r4 is the only negative root, and if #4 is positive,

the curve consists of two portions, one of which extends to in-

finity, and ri is its least distance from the origin, while the other

portion is finite and limited by the circumferences described about

the origin as centre, with r2 and rs as radii ; but if a4 is negative,

one portion terminates, at each extremity, in the origin, and rz is

its greatest radius vector, while the other portion is contained be-

tween the limiting circumferences of which rx and r2 are the radii.

If all the roots are positive and if «4 is also positive, the curve

consists of three portions, one of which extends to infinity and r x

is its least distance from the origin, a second portion is limited by

the circumferences of which r2 and r3 are the radii, and the third

portion passes through the origin at each extremity, and r4 is its

greatest radius vector ; if «4 is negative, the curve consists of two

portions, one of which is limited by the circumferences of which rx

and r2 are the radii, and the other by the circumferences of which

rz and r4 are the radii.

When #4 is positive, the following notation may be adopted.

9\— r3= A tan £ e tan £ 1]

,

ri— ri= A cot £ £ tan £
/

)] 1 ,

r2— r4= A tan £ e cot £ r\
,

r3— r4= A cot £ e cot £ i]x

,

which give

i=z £n— g

tan2^= tan??

tan //!

'
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Or sin (ra— v)
COS £ =

sin (ft-)- J?)

For the portion of the curve, which is contained between the cir-

cumferences of which r2 and r3 are the radii, the notation

r2 sin 1 1]— I sin \ %
, .

r3 cos ^i]= l cos h x ,•j

tan2 (^-^)=: f
nt^-^v J tan -%?] {r.2

— r)

gives
r sin ^ (^ -)- x) -(- sin \ (^— x) sin d

I sin i (?/! + tj) -\- sin |- (^— ??) sin (9

'

The equation of the curve is, then,

A (y— K)y/ci!4__ sintfa— ^) oj? ^ _|_ sirnfr sin ^ fa— x) qp
I" sin2 ! fa— x) ^1

2p{lcosi sin^fa— x)
l "Tsinifa— x)sin-|-fa-j-x)

l
L sin2 £fa-f- x)' J

sin i
(jj— x) y/ (sin^ cosecx) rj, y/ (1— cos2 itan2

0)

y/[sin a^ sin x— sin2 i sin2

^ fa-|- x)] y/ [1— sin2
a sin2

^ fa-f- k) cosec^ cosec x]

and the expression for the time may be obtained from this value

of (cp— a ) by'interchanging x and iy and multiplying by —f-1
.

The nature of the motion through the space exterior to the

circumference of which rx is radius, and within the circumference

of which r4 is radius, may be derived from equations (3965_15 ) by

changing r3 to rx and r2 to i\ and augmenting each of the angles

r] and % by the magnitude n.

When % is negative, the following notation may be adopted,

rx
— rs= A tan h £ tan i i]

,

7*2— r±= A tan I e cot h t]

,

i\— ?4= A cot k s tan £ i^

,

r
2,
— r3= A cot h e cot -|" ^i

,

i= I %•

The nature of the motion between the circumferences of which
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rz and r4 are the radii may, then, be expressed by the equations

(396 5_15 ), provided that rs is changed to ri} and r2 to r3 and the

sign of a4 is reversed. The character of the motion between the

circumferences of which rx
and r2 are the radii, may be expressed

by the same equations with the change of i\ to r2 , and of r2 to r4 ,

the reversal of the sign of a4 , and the increase of each of the

angles t] and x by n.

The elliptic integrals disappear when two of the roots are

equal ; in this case, if ?\ denotes one of the equal roots, and if R2
is

the quotient of the division of the first number of (38929 ) by

(r— rx )

2
so that the form of R2

is

R2= h2 r
2

-J- hi r -\- h,

the notation may be adopted

2 h -\-h 1 r= 2R sj— h tan (6 \]—h)=— 2R\/h Tan (6 sjh) ,

Jh -\-2h2r=2R <J—h2 tan ($2 sJ—/h )=— 2R\Jh2 Tan ($2 y//;2 ),

hri+
?RR\

+h)r=- ^— 1 tanWi V- 1) = Tan {Rx 6,)
y

the equation of the curve is

and the expression of the time is

t— T= 62 -\-r1 61 .

When #4 vanishes, if az is positive, the notation may be adopted

rx— r2= B2 tan2
\ e

,

rx
— r3 == B2 cot2

h e

,

r2 cos
2
ie= l cos

2
h *

,

r3 sin
2
1 e= I sin

2
h, x

,

i= in— e
;
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and for the portion of the curve contained between the circum-

ferences of which r2 and r3 are the radii,

tan2 (in— H) = tan2
ie ^=^.

The equation of this portion of the curve is, then,

(w «) J ffo COS E r~f . , /-, COS 8 \ ,575 , 9 ..y? „/ v
,

3=— g?
. d 4- ( l ) QP,- (— cos2 x, 6)2 pi I cos i. cos x ' \ cos yJ v 7

I

cosx— cose ., [_!] // 1 -|- cos2
* tan2 \~

sin x y/ (cos
2
£— cos2

'/.) y Vcos2
i — sin2

i cot
2 yJ '

and the expression of the time is obtained from this value of

((jp — «) by interchanging £ and k and multiplying by -~.

Upon the portion of the curve exterior to the circumference,

of which rx is radius, the notation

v y l-)-sino • J

gives for the equation of the curve

(y-«W«8 _ SM _ 2^2 ^ r_ fa- b*\*
^1

2 j»f cos » r
x
— .B 2

(r
x
— B 2

)
{r

x
-\- B 2

)

B _ tan[-l]
2^ v/(?-1+r-1 cos

2ttan»

V/^ (± riB 2 cos2
i— (^—B 2

)
2 sin2 i)]

u""
^ [4 ri

^'2 cos2 *~

(

ri— •fi
2

j
a sin !,

t]
'

and for the expression of the time

(^^sec^^+^^^-^S^-f^J^v/ll-fco^aan2
^)

-\-2B2 Tan[
- 1] y/(l+ cos2 i tan2

d)

.

If «3 is negative, the notation may be adopted

rx
— r3= B2 tan2 £e

,

r2— r,3= B2 cot2
£e

;
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which, combined with that obtained from (39727_3i) by changing

rz into r2 and r2 into r1} gives (398 7 ) for the equation of the por-

tion of the curve contained between the circumferences of which

7\ and r2 are the radii, while the expression of the time is derived

by the process of (39813 ). But with the notation obtained from

(39816 ) by changing rx
into r3 and reversing the sign of Z?

2
, the

equations (39819 ) and (39825 ) become the equation of the curve

and the expression of the time, upon the portion which is con-

tained within the circumference of which r3 is the radius.

The form of the central force which corresponds to the dis-

cussion of this section is

692. If m is 2 in the first class of § 690, the expression of

the central force is

F=hrS+ b3 r*-\-b,r+
b-
3 ,

and the forms of the equation of the curve are obtained from

those of §691 by changing r into r
2
, and (cp— a) into 2 (cp— a).

But the expressions of the time require, moreover, the substitution

for (39026) of

p— q K ' l '

for (391 14 ) of

t— %= J (
Aa "s

) tan[
- 1]

4 ^ r2+ g«

V \ai(16aa4
— a^a^f ' ^[^(lGaa,,— Oia3)]'

for (39223) of

(t— r)^ ai=m^
for (3939 ) of

(*— r)v/— a4 =£3s.0,
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for (39323 ) of

(<-*)V
1 T r 11 (^ cos a— ^) r2 "l~ (^ cos a ~-r)r?

for (39412) of

(t— 'r)^a3 =i%&,
for (39425 ) of

(t— r)s/— a3=i^i 6,

for (396 18 ) with the form of (39623 ) of

{t— t) y/ #4= i cos & SFj $

,

for (3975 ) of

(^— t)\/(— a4)= i cos a 9^$,

for (39724 ) of

^— T= i^,

for (398n ) and (39825 ) of

(7— t) «3= I COS « 9^ £

,

and for (3992_6 )
of -

r (£— t) y/— a3=i cos a 9^ 3

.

693. In the special case of § 692, in which F is reduced to its

F=h
first term, so that

'i' ?

two of the roots of (38929 ) are real and two are imaginary, so that

the only portion of § 691, which is applicable to this case, is from

(391 15 ) to (39323 ). In this case, moreover, one of the real roots is

positive and the other is negative if #4 is positive, so that the curve

extends to infinity ; but if #4 is negative, both of the real roots must

be positive, so that the circumferences which correspond to these

roots are the limits of the curve, and S2 is negative and satisfies the

condition
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694. In the special case of § 692, in which F is reduced to

its second term, so that

F=b3 r
3

,

the equation (38929 ) has no imaginary roots of r
2 when

X"'

When b3 is positive, there is only one real root, so that the

curve extends to infinity from the circumference, which is defined

by this root. When bz is negative, all the roots must be real, and

the two roots, which are positive, define the circumferences which

limit the extent of the curve.

695. If m is f in the first class of § 690, the expression of

the central force is

F= £4 r~i -j- b2 r-$ -f hx r~* -\-l r~\

and the forms of the equation of the curve are obtained from

those of §691 by changing r into r*, and cp — a into I ((p— a).

But the formulae for the time are more complicated, although

they are still reducible to elliptic integrals. If, indeed,

2
z= r»,

the expression for the time assumes the form

i %_ P fz2

696. In the special case of § 695, in which F is reduced to

its first term, so that

F=b. i

the conditions of the form of the curve are the same with those

51
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expressed in (40023_3o), but instead of (4003] ), the limitation of

S2 when &4 is negative is

697. In the special case of § 695, in which F is reduced to

its second term, so that

F—hr-i,

the equation (38929 ) has no imaginary roots of \j r
2

, when

hl<—±p\£2l

In the special case, in which F is reduced to its third term, so that

F=\r~i,

the equation (38929 ) has no imaginary roots, when

In each of these cases, when S2 is negative, there is only

one real positive root, so that the curve extends to infinity from

the circumference which is defined by this root. When /2 is

positive all the roots must be real, and the two roots, which are

positive, define the circumferences, which limit the extent of the

curve.

698. If m is i in the first class of § 690, the expression of the

central force is

F=bs
r~i -\- b2 r

-2
-j- ^ r~§ -\-br~ s

,

and the forms of the equation of the curve are obtained from those

of § 691 by changing r into \J r and (<p— a) into 2 (<p— «)• But if

2= \]r,
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the expression of the time assumes the form

X9 ~3

-f- a2 z
2 -\- ax

z -\- a)
'

699. In the special case of § 698, in which F is reduced to

its first term, so that

and in that, in which it is reduced to its third term, so that

F=\r-§,

two of the roots of (38929 ) are real for
\J

r, and two are imaginary,

so that the only portion of § 691, which is applicable to this case,

is from (391 15 ) to (39324). I*1 this case, moreover, one of the real

roots is positive and the other is negative if S2 is negative, so that

the curve extends to infinity ; but if S2 is positive, both of the real

roots must be positive, so that the circumferences, which correspond

to these roots, are the limits of the curve, and in the former of

these cases b3 is negative and

— *>M?(6I2jJ),

while in the latter case bx is negative and

700. In the second class of §690, when m is unity, the equa-

tion (37822 ) of the curve assumes the form

([) d I LI

Jr)J {ai r
i -\-aA r

z -\-a2 r'
i -\-al r-\-a)'>

so that it can always be obtained from the expressions of (t— t)

in § 692, by multiplying either of those expressions by 4j»;f. When,

in this class, the curve terminates in the origin, it does not usually
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pass through the condensed coil of § 691. The formula for the

time is

t- %=i t
Jr s/ («4 'f

4+ «3 r
3+ <h ?

'2+ «i r+ «)

The form of the force, which corresponds to this case, is

701. In the special case of § 700, in which F is reduced to its

third term, so that

F— h
4 J

one of the roots of (38929 ) is zero, and the condition that all the

roots are real is

When S2 is negative, if h1 is positive, the curve extends to

infinity, in the space exterior to the circumference of which the

positive root of (38929 ) is the radius ; • but if bx is negative, the

curve extends from the origin to infinity, if two of the roots are

imaginary, but if all the roots are real, one portion is exterior to

the circumference of which the greater positive root is radius and

extends to infinity, while the other portion is contained within

the circumference of which the smaller positive root is the radius,

and this portion passes through the origin. When 12 is positive, b x

is negative, and the curve passes through the origin, and is con-

tained within the circumference of which the positive root of

(38929 ) is the radius. This case of force has been analyzed by

Stader.

702. In the special case of § 700, in which F is reduced to

its last term, so that

F=K.
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all the roots of (38929 ) are imaginary when S2 and b are both

positive. When I2 is positive, therefore, b must be negative and

the curve is contained within the circumference of which the pos-

itive root of (38929 ) is the radius. When I2 is negative, if b is

positive the curve extends to infinity in the space exterior to the

circumference of which the positive root is radius ; but if b is

negative, the curve consists of two portions, one of which extends

to infinity in the space exterior to the circumference of which the

greater real root is radius, while the other portion passes through

the origin and is contained within the circumference of which the

smaller root is radius ; or it extends from the origin to infinity.

703. When m is 2 in the second class of § 690, the form of

the force is

F= b±r -j- b2 r~
3
-\- b^'

- ^
-\- br~ 7

,

and the equation of the curve can be obtained in each case from

that of §692, by multiplying {t— r) by 2p\, and changing t— %

into (p— a, and r into r
2

.

If

. the formula for the time is

Jz v ["4 z
4

-f- a3£ -\- a2 z2 -\- ax z -\- a]
'

704. In the special case of

r'
'

there are two imaginary roots of r
2 when

b^ 64p\2
'

When S2 is negative, if b is positive the curve extends to
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infinity in the space exterior to the circumference of which the

real root of (38929 ) is the radius; but if b is negative, and if all

the roots of (38929 ) are also real and two of them positive, the

curve consists of two portions, one of which extends to infinity in

the space exterior to the circumference of which the greater posi-

tive root is radius, while the other portion passes through the

origin and is contained within the circumference of which the

smaller positive root is radius ; but if neither of the roots is positive

when b and I2 are both negative, the curve consists of a single

portion which extends from the origin to infinity. When S2 is

positive, b must be negative and the curve consists of a single

portion which passes through the origin and is contained within

the circumference of which the positive root is radius. This law

of force has been analyzed by Stader.

705. Another class of central force, in which the integration

can be performed by elliptic integrals, corresponds to the form of

the potential

q bi r
im -\-bs r

3m
'-\-b2 r

3m-{-b1
rm -\-b

~
r2

(r'»+ hf
~'

in which m may be either 1 or 2. If, in these forms

z= r
m

,

Z2= di s4 -|- as z
3
-j- a2 s

2

-J- % z -\- a

= (2 b,

r

im -{-2b3 r
Sm -\-2b2 r*

m
-f- 2 bx r -f 2 b)

— (2£2 r*+ 4:Pt)(r™+hY,

the equation of the curve assumes the form

and the expression of the time is
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706. The following graphic construction gives an easy geo-

metrical process for tracing the various cases of limitation of the

extent of the path described under the action of a central force,

and especially for finding by inspection the effect of the values

of S2 and jh upon the limits of the curve. If

l

r'
2 '

construct the curve of which the equation is

y=a
which may be called the potential curve, draw the straight line of

which the equation is

y=2p\x+£2,
}

and the points of intersection of the straight line with the potential

curve give the values of x for the limits of the path of the body.

The path corresponds to those portions of the potential curve

which lie upon that side of the straight line, which is positive with

respect to the direction of the axis of y.

707. A term of £2 may be omitted in the preceding construc-

tion which is inversely proportional to the square of the radius

vector, and its negative may be combined with that term of the

equation of the straight line which determines its direction. The

omitted term corresponds to a term of the force which is inversely

proportional to the cube of the radius vector, and which may be

represented by (383 17 ) ; and the corresponding equation of the

straight line is

y=(2rf+ *)*+ fi .

708. It is evident from the preceding construction, that if the

potential curve has no point of contrary flexure, and if its convexity is turned
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in the direction of the positive axis of y, the path of the bod// can only

consist of a single portion which may have either an outer or an inner limit,

or it may have neither or both. This case includes all forces of the form

F=b1 r™+ b

? ,

in which bx and m -\- 3 have the same sign.

But if the potential curve has no point of contrary flexure, and if its

convexity is turned in the direction of the negative axis of y, the path of

the body may consist of a single portion ivhich has either an outer or an

inner limit, or it may have neither, or it may consist of two separate por-

tions of ivhich one has only an outer and the other only an inner limit. This

case includes all forces of the form (4085 ), in which bx and m -\- 3

have different signs.

709. Those portions of the potential curve, in which y and x

simultaneously increase, correspond to the distances from the centre

of action, at which the force is attractive, so that the convexity of

the path of the body is turned away from the origin. The portions

of the potential curve, in which y decreases with the increase of x,

correspond to the distances from the centre of action, at which the

force is repulsive, so that the convexity of the path of the body is

turned towards the origin. Any point, therefore, at which the

potential curve is parallel to the axis of x, and the ordinate is either

a maximum or a minimum, corresponds to a distance from the

origin, at which the central force changes from attraction to repul-

sion, and the path of the body has a point of contrary flexure.

710. If for an infinitesimal value of r denoted by i, 12 assumes

the form

£2 = kin
,

the path of the body cannot pass through the origin if n-\-2 is

positive or if k is negative, except in the former case, when p1 van-
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ishes and n is positive while S2 is negative, or n is negative while

Jc is positive ; but if Jc is positive and n-\-2 negative, the external

portion of the path passes through the origin, and after passing

through the origin, the continuity of curvature is destroyed and the

path becomes a straight line.

711. If for an infinite value of r, denoted by the reciprocal

of i, Si assumes the form (40828 ), the path of the body cannot extend

to infinity when n and Jc are both negative, or when n and 12 are

both positive, or when n vanishes and

but the external portion of the path extends to infinity when n is

negative and Jc positive, or when n is positive and X2 negative, or

when 11 vanishes and

J2 <*.

712. If a line is drawn parallel to the axis of x at the dis-

tance I2 from this axis, and assumed as a new axis of x1} and if

yx and y% are the corresponding ordinates, respectively, of the

straight line (407u ) and of the potential curve, the value of the

angle, which the path of the body makes with the radius vector,

is given by the equation

which admits of simple geometrical construction. If z2 denotes the

subtangent of the potential curve upon the axis of x1} the projection

of the radius of curvature of the path of the body upon its radius

vector is

pan := -£!,

which is constructed without difficulty. By the combination of

these two constructions, the path of the body may be obtained with

sufficient exactness for most purposes of general discussion.

52
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713. When the origin is infinitely remote from the body,

the forces of § 676 are parallel, and the plane of motion is parallel to the

direction of action, and the equation (3785 )
gives, if the axis of z is

supposed to have the same direction with the force,

-2 cot* ^*,

of which the integral is

sin2f

in which a is an arbitrary constant, which is always positive, and

this is the equation of the 'path of the body referred to the same coordi-

nates with those of § 571.

714. In the case of a constant force, the preceding equation

assumes the forms

g(*— *o)=ma
sin2 _

2a
^ g sin3 1

'

so that, in this case, the path is a parabola.

715. The velocity in the direction of the axis of x is

v sin
z= sin

s
^ ( 2 £2— 2 12 ) = y/ ( 2 a)

,

so that this velocity is constant, and

x— x = y/(2a) [t— t).

nates, is

The equation of the curve, expressed in rectangular coordi-

v-t
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716. If a potential curve is constructed by the equation

(407iO )> m which y may be changed into x, and S2 retained as a

function of z, the limits of the path of the body are defined by

the intersection of the potential curve with a line drawn parallel

to the axis of z at the distance (S2 -\- a) from this axis. The por-

tions of the potential curve which correspond to the path, lie in

a positive direction from the intersecting line.

717. If the force of § 713 has the form

F=b 1 z-\-b,

the equation of the path is

b x z+ b=
s/

(b*+ 2 h S2 + 2 hx a) sin [(x - x) y/(- ^)]

= ^(P+ 2b1
S2 +2b 1

a)Cos[(x-x
) sJ^]

= v/_ (P 4. lx
S2 + 2 h a) Sin [(*

- x) y/^]

.

718. If the force of § 713 has such a form that

O \z-\-b
llo— j^ky,

the notation

b1= 2(k1+ h)(£2 -{-a),

5= (F4-^)(i2 + a),

gives, for the equation of the path,

h—z _ • (x - x) y/ (.Q„+ a)— y/ (P -f- 2 h z— z*)

y/ {&+ %)
—

£1+ A

which is easily transformed into the forms, which are appropriate

when the radicals become imaginary.

719. In the case of a surface of revolution, and a force which is
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directed to a point upon the axis of revolution, the notation of ^ 576

gives

— ==w sin?= u2Ds Z,

A=uv sin ?= u2B
t
",

so that the elementary area described by the projection of the radius

vector upon the plane of x y is constant.

720. The notation of § 578 gives

T) „_
t
/2»2 (-Q-^) [r2+(2V) 2

]XV— y- 2v?(SZ— £„)—A2 >

n *— A
J.

r'+(^ r)
a

? * m V 2 « (fl— .Q )— ^t2
'

and, in the case of parallel forces

Dz s= Bz a sJ
2 u2

(fl— .Q )

2ic2
(tt— tt )—A2 >

AD, a

^\2u2
(P.— Sl )—A2Y

721. Upon the surface of revolution which is defined by the

equation

uv= B,

the path of the body makes a constant angle ivith the meridian curve. In

the case of

B= A,

the path is perpendicular to the meridian, and is a circle of ivhich the

plane is horizontal.

Whatever is the value of B, for the point at which v vanishes u

is infinite, while v is infinite when u vanishes..

Upon any other surface of revolution about the same axis, the in-

clination of the path of the body to the meridian arc is the same ivith
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the corresponding inclination upon the surface of equation (41221 ) at the

common circle of intersection of these two surfaces. Hence the limits of

the path upon the given surface of revolution are its intersections with the

surface of equation

n v=.A,

and the path extends over that portion of the given surface, which is ex-

terior to this surface hy which the limits are defined.

722. In the case of a heavy body the equation (4122i) be-

comes

M2 2 =r— .

2 9

723. In the case of a heavy body upon a vertical right cone, if

the body moves upon the inverted part of the cone, the path has an

upper and a lower limit ; but if it moves upon the part, which is below

the vertex, the path has an upper limit from which it extends doivmvards

to infinity. In this case, if the notation of (341 13 ) and (341 16 ) is

adopted, if two of the roots of the equation

A2

r
2
(r— r )= x——2

,

are imaginary, which corresponds to

(-fro)
3

<-TT
"

g sin
2 a cos a '

if h is the modulus and (i the argument of one of the imaginary

roots, and if rx is the real root, the notation

r1
— hc^-1= B2

c
2i -/-\

r1— hc-^-1= Bz c- 2i^-\

r— fi== B2 tan2
\ cp

,
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gives for the equation of the path upon the developed cone

2i?
tnni-n

2^(cot'(p+ cog'0
.

V (2 rx
— 2B 2 cos 2 i) <J(2r1^2B 2 cos 2 i)

>

and the position of the body at any instant is denned by the

equation

B{t— %)^{2gcota) = {rx+ B2
) ® i <p— 2B2 $

i <p

-|-2_Z?
2 tan £<jp y/(l— sin2 «sin2 (j)).

If all the roots of (41320 ) are real, and denoted in the order of

decreasing magnitude by r1} r2 , and r3 , and if

ri—

r

2= B2 tan2
(1,

rx— r3= B2 cot
2

[1

,

i=2 /? + hn,

r— r-i= /3
2 tan2

( I n— £<p),

the equation of the path upon the lower portion of the devel-

oped cone is

j B
n[_u /^^(l+ cos'ttan'g,)

~r
[^i(^i+^ 2

)
2 cos2

z— 4r2B 2

] V (r^B^cos't—^B33

and the position of the body at any instant is denned by the

equation

(t— r) cos t
\J (2^ .cos a)= (^ -4- BJ cos2 i &+ y— 2 B S

f y

-\- (jf-{-B sin (p) y/(l-4-cos2 &tan2
^).
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The equation of the path of the body upon the upper portion

of the cone is determined by the combination of the equations

(41413_16 ) with

r
x
— r— B l

Kin y sin i=
sin 2 a B\J (g cos

sin (j)sinj= j—^r,

,

' r
x
— r-\-B z?

B_ W_l]
4 /
(l+cos'iWqOKrH-^Wi-^lP]

N
/[r

1
(r

1+52
)

;J
cos'

2i— 4r2
JB2

] V ±r
x B* »

and the position of the body at any instant is defined by the

equation

{t— t) cos i y/ (2g cos a)=— \j>-\- B) cos2 / 3^ w

sin i sin qp
-j- 2 B § j 93— 2 2? sin z cos yt/-

-j- sin » sin 9

'

The path of the body upon the upper portion of the cone

may be expressed in a somewhat more simple form by the equations

snre=
r= r2 sin

2
(p -j- r3 cos

2
9

,

sin«V(2ycos«)(^-^ =
r-^^^(

r

^^),
and the corresponding formula for the position of the body at any

instant is

In the special case, in which the roots r2 and r3 are equal,

the path upon the upper portion is a horizontal circle, and the

equation of the path upon the lower portion is

(^_^ )= ta^-Y'(-^-^)-v/3.tant-y(-l-^)
i
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while the position of the point at any instant is defined by the

equation

v/(2^cosa)(^-^)= 2
V/(r+ ir

) + |- V
/(-r )tan[-y(-i-^).

724. In the case of a heavy body* upon the surface of a vertical

paraboloid of revolution, of which the axis is directed downwards, the

path has an upper limit, from which it proceeds doivnivards to infinity.

If (33625 ) is the equation of the paraboloid, and if zx and — q are

the roots of the equation

%pgz(z— s )=42
,

the path of the body when

is defined by the equations

z— zx= {zx -\-p) tan2
cp

,

q—p= [q -j- zx ) sin
2
i,

and the position of the body at any instant is given by the equation

% cos i(t— t)\J J_
=cos2

i
(3^

i (p
— &i<p-\- y/(cos

2 /tan2
cp -|- sin2 /sin2 y).

But when

the path is defined by the equations

z— zx
= {zx +p) cot2 y,

p— q= (zx -\-p) sin
2
i,

«— A
qp ( P_ w)
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and the position of the body at any instant is given by the equation

{t— r)s/\_hg (si -\-p)] = % (p— &i ^ — si
(cot2 (p— sin

2
1 cos

2
y).

In the especial case of

p— q,

the path of the body is the parabola, which is formed by the inter-

section of the paraboloid with the vertical plane, of which the

equation is

u cos % =\J (4:/ -\-ul),

and the position of the body at any instant is defined by the

equation

(t— r ) \J(p g) _, u

V'(8^+ 2«iS)
— tan -

725. In the ease of a heavy body upon the surface of a vertical

paraboloid, of which the axis is directed upward, the path has an upper

and a lower limit. If p is negative, (33625 ) is the equation of this

paraboloid, and if —s
x
and —.« 2 are the roots of the equation

(416^), they correspond to the limits of the path. The path of

the body is defined by the formulae

z=— zx cos
2

(f
— s2 sin

2
(p

,

(?2—p) sin2
i= 2'2— Zi

,

and the time is given by the equation

,_,=
v
/!(i^)gr

j(f .

53
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THE SPHERICAL PENDULUM.

726. When the surface upon which the body moves is that

of a sphere, the problem becomes that of the spherical pendulum. In

this case, the path has an upper and a lower limit. If the centre

of the sphere is the origin, if R is the radius of the sphere, the

limits of the path correspond to the roots of the equation

2g{R*— z
2 ){z— z,)—j?=0.

If the roots of this equation are z1} s2 , and —p, and if the nota-

tion is adopted

z= zx cos
2

(p -4- z2 sm2 9 >

(p-\-z1)sm*i=z1
— z2 ,

the path is defined by the formula

and the time by the formula

727. From the equation (41810 ), it is easily inferred that

zx z2 -\-R
2= p{zl -\-Z2 ),

ZQ= Zx -J- Z2 p ,

that the sum of zJ and z2 is always positive, and that p exceeds R.

728. It is apparent from the inspection of (41821 ) that, if the

mutual ratios of R^ and the roots of (41810 ) are unchanged, the
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time of oscillation of the pendulum is proportional to the square root of

its length.

729. If the length of the pendulum and the sum of zx and p
are given, it is evident from (41821 ) that the time of oscillation

increases with the increase of i, and is a minimum when i van-

ishes, that is, when

in which case the path of the pendulum is a horizontal circle.

The time of oscillation in this case is

„
r

2 nR
\/[^0> + *i)]'

The mutual relation of p and zly which is here given by the equa-

tion (41826), is

whence

This value is a minimum, when

z
1 \J

3= R,

in which case

2R ___ /2z
x

9*=«v/#=V-
which is, therefore, the greatest time of vibration when the path of

the pendulum is a horizontal circle.

It is easy to see that i cannot vanish for all values of the

sum of p and s1} but that its least value is determined by the

equation

sin
2 2 i= 4— -.—,

—

v,,
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whenever

It is also evident that the least value of the sum of p and %
which corresponds to any assumed value of i is given by (4I930 ),

so that for any value of i, the greatest time of vibration is

2WIV/
C-
±T^) 9,'<*»>=

which increases with i, and is infinite ivhen i becomes a right angle.

When i is an octant, the value of p -4- z\ in (41930 ) is a maxi-

mum, and the corresponding values of p -)- zx and T are

p -f -0j= 2 R

^=v/f^(*»)-

730. In the discussion of the form of the path of the pendu-

lum, it is convenient to adopt the notation

In the case of (419 7 ), the equations of §726 and 727 give

f-= 2 z, (/— &) = {
*~ A)

\

JT
2nTt

"'—)/<?*+ &)' '-

When 2j vanishes

#=2tt,
7T "

and T is the time of a complete revolution. When

v«= *>
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and T is the time of a semi-revolution. The time of a complete

revolution, when the pendulum moves in a horizontal circle is

Tj=2n
V

~2

so that it is proportional to the square root of the distance of the plane

of revolution from the centre of the sphere.

731. When the path of the pendulum deviates slightly from a

horizontal circle, so that i is very small, the notation

j?
a
-j- S2 = 2 £g= 2 R cos <53 ,

gives

*i— H= (j» + s's) i"=—f-r-^ i2
>2z„

2z3
'

+ lt~ -I- d Zg .9 n—
-j

f cosz (p,

732. When the path of the pendulum deviates slightly from

a great circle, so that the sum of s1 and g2 is small, p is large and i

is small, the formulae become, by neglecting the fourth and higher

powers of i

A2 (^-^[^-(^-^(I-^),

z= i (*,- z2 ) cos 2 y + -
4l^y *-'

*
2

,

f7.= 2 7T
;
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so that the vibration corresponds to a complete revolution of the pen-

dulum.

733. When the pendulum passes very near the lower point

of the sphere, so that % differs but little from R, the neglect of

this difference and its higher powers gives

22= R cos 2 i,

p=R-\-tan2 i(R— g1 ),

^-k=4:R
2 (R— Sl)sm2

i,

z= R— 2 R sin
2
i sin

2
cp— [R— sx ) cos

2
c/>

,

«r.=» + [««o<».(*»)4-'*Ssr«,^»)] v
/(2 :T ^)j

so that the vibration corresponds to a little more than a semi-?•evolution

of the pendulum.

734. In the general case the vibration of the pendulum corresponds

to an arc of revolution which exceeds a semi-revolution, but is less than

an entire revolution. When the velocity at the highest point is quite

small, the case of § 733 occurs, hut the arc of revolution, which cor-

responds to a vibration, increases with the increase of velocity at

the highest point. When the highest point is below the level of

the centre of the sphere, the case of § 731 gives the highest limit

of the velocity at this point ; but when the highest point is upon

or above the level of the centre, the greatest velocity extends to

infinity, which limit corresponds to the case of § 732.

735. The azimuth of the pendulum at any instant, is derived

from the equation of §726 in. a form suitable for computation by

means of the following formulae
;

z = Rcos 6,

r, R (COS #, COS do -\- 1

)

p=Bseca=—±— -
1

,

2

l
'

1 COS
l -f- COS C72



423

A1 m , » / ,, . N i?5
sin 3

ft sin'-' ft,—=MS tan- « (cos d, 4- cos tU = —a
-

"2g v '
- ' cos d

y
-\- cos ft

9 . 1-1- cos « cos ft,

COS- 2= =-J
t-- ,

1 -j- COS « COS /7j

sin -^ ^iSm ^ = sin-I^'

cos i ft.,

tan^^ 1+?0S,?lC0sf

sin #
2
cos ft

cos ft -)- cos ft.

tan ^x= cos a cos d2 tan fi=
sin (?!

cos ,u = cos ^2 cos^

,

co &= h Ti— i,

n \/ (cot 2
cr— sin 2

i cos2
ai)

tan /.!= s-v *
. ,

*'
,cos i cos jw

x
sin ft,

, sin // tan ft, tan i ft, tan P.

tan l2=—£——--—2—
,

tan ft
l
cos fi x

, , tan 2.

3 tan2 //(l + cos2
i tan 2 9)

'

, , tan2
i cos2 9 cos ft2 tan ju tan | 6i tan X

tan A4 j

—

jz -—. „ .—r-5—

,

COS [A COS 7] COS //j -(- (1 COS fl COS 7] COS ?/,) Sill" I Sill"
(f

TT cos i sin u tan ft r.Tf) / cos2
i cos2 u tan 2

ft, \ ~ 1

^= " Ianir L ®*
( ta^ >V~ ^ 9»J

-J- cos i cos ^ tan <3 2 ^ 9 -|- ^-1— ^2 -f~ ^3— ^t>

and the arc of revolution for the complete vibration is

**£=«+ [#<(**)_*< (i TT)] ^co^_^(i *) g
cQi u

-J- cos i cos (it tan $2 9*,- (i tt)

These formulae do not appear to differ from those of Guder-

mann, although the reduction is more extended. They give with

equal facility the area of spherical surface which is described by the

arc of a great circle, which joins the extremity of the pendulum to

the lower point of the sphere.
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MOTION OP A FREE POINT.

736. When a material point is unconstrained by any condi-

tion, and is free to obey the action of any force whatever, its

motion in any direction is simply denned by the equation

D* x= Dx tt .

737. If the coordinates are assumed to be of the partial polar

form in which

z= the distance from the plane of xy

,

o = the distance from the axis of z,

(p = the inclination of o to the axis of x,

the value of T (16228 ) is, for the unit of mass,

The corresponding values of to (1654 ) are

(D= Z',

«>! = </,

co2= o
2

<jp'

;

so that cd2 is the double of the projection of the instantaneous area, which

is described by the radius vector of the point, upon the plane o/xy.

The equation (1662 )
gives, then,

It is apparent from (39 ]0 ) that the second member of the last equation
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is the moment, with reference to the axis of z, of all the forces zvhich

act upon the point.

738. If the forces are proportional to the distances from the centres

from which they emanate, the hody moves as if it were under the influence

of a single force, acting by the same law with an intensity equal to the sum

of the intensities of the given forces, and emanatingfrom a centre zvhich is the

centre of gravity of the given centres regarded as masses proportional to the

intensities of their action. For, if the notation employed in § 128 is

adopted, and if m denotes the sum of the intensities of action, the

value of the potential is

a = i mr2
-\- I o2= £ m r

2
-\- K,

in which Zisa constant and can be absorbed into the constant H
with which S2 is connected in the equations of motion.

It follows from § 685, that the path of the body is, in this case,

a conic section, of zvhich the centre of gravity is the centre.

739. If all the forces are directed towards a fixed line, the area

described by the projection of the radius vector upon a plane perpendic-

ular to the fixed line is proportional to the time of description. For the

instantaneous area is in this case constant by the equation (42429), in

which the fixed line may be assumed for the axis of z, so that the

second member shall vanish.

740. In the example of the preceding section, a peculiar sys-

tem of coordinates may be advantageously adopted. This system

consists of the sum of the distances from two fixed points of the

given line, the difference of these distances, and the angle which

is made by a plane passing through a fixed line, with a fixed plane

which includes this line. If, then,

2p= the sum of the distances of the body from the two fixed

points,

54
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2 q— the difference of these distances,

(p = the angle which the plane including the body and the

fixed line makes with the fixed plane,

2 a= the distance of the fixed points from each other,

2 y = the angle which the two lines, which are drawn from

the body to the fixed points, make with each other,

k= the perpendicular drawn from the body to the fixed lines,

pl=p2— a2
,

the values of /c,y, and T are

a '

tan w — —

,

T
Px

,2 ,2

2cos 2
ii; ' 2sm2

ip ' ' yj
- '

LJ
\pi ' q{/ ' 2 a2

The corresponding differential equations derived from Le-

grange's canonical forms (16412) are

d,a = (i +$?-, |-?-#+ i-^"'"'+ "
'**

m

2qlpp'q'-\-qp\q

9l

The integral of (42620 ) is

k2 (p
1= B,

in which B is arbitrary, and this equation expresses the proposition

of § 739, and gives

9 — & 2~M'
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A second integral of these equations, corresponding to the

principle of living forces, is

The sum of the equations obtained by multiplying (42622) by

p\p
r

, (426.*) by (—fig) and (42T3 ) by 2 (pp' + qq') is

*A [(P
2- <?) (/- /)] - D

t [(/ + f- «2

) {£2 + //)]

— (fp'Dp S2-{-p*q'l)q £2).

This equation is integrable, whenever 12 satisfies the condition

2qDp
n— 2pD

(1 I2=(f— f)I)l q
£2,

which, by the substitution of

_ l l

p-\-q> J—
p+ q'

may be transformed into

If, then,

I2j= a2
Z>, 12—/ Dy

£2— (x—y) £2

=-(^.11—^1)=-^-?^
the equation (427i7 ) or (427n ) becomes

0-^^^-fF2^^— (tf-fy)^

= -(2>>
i2+4^-,)=-A[(f?-^)fl]

-

\ P I p2 g2/ pi g2

If, then, P and Q are arbitrary functions of p and ^ respective-

ly, the general value of £2 is

f — 9
2
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and, if

P\=2H{pi— <)-f-2(P-f C)(f— a2
)
— a2 B\

Ql= 2R(qi— ai ) Jr 2(Q—C) ^— f) — a*B\

in which C is an arbitrary constant, the integral of (4278 ) is

HP2-??{/-/) = PI- Qh

while (4273 ) may be written in the form

(/- ff (<fi/+pl /) = & p\+A Ql

It is easy to deduce from these equations

(f-hp'=Px
(p*-f)</=Q1 ,

J p Pi J q Ql

d p -» 1 U q V

1

tp = a*B f-i--fa2
j? fJL.

This solution is published by me in Gould's Astronomical Journal.

741. It is evident from the linear form of the equations

with reference to £2, that all special values of 12 may be combined

into a more general value by addition or subtraction.

742. The integrals in the values (42815_20 ) assume the elliptic

form, when P and Q have the forms

P= A+ AlP+ Aif+^p
+ .

p^a ,

Q= B + Bll±B2 ?+ a
-^-+£i

,

and it is apparent that, in the expressions of the integrals, the con-
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stants, Aq, A2 , B and B2 can be combined with II, C, and B. The

elliptic integrals become circular, when

&=—A2=B2 ,

A1= B1 =0,

as well as in other cases which do not seem to be of especial

interest.

743. When P and Q have the forms

P= A,p, Q= B,q,

the value of the potential is

n- A+A A-B,

so that, in this case, the forces are equivalent to two emanating from the

fixed points with the same law of force as that of gravitation, which case

has been integrated by Euler, Lagrange, and Jacobi, and the forms

of Lagrange's integrals are identical with those of (4281&_2o)-

744. When P and Q have the forms

P= Af, Q= —Aq\

the value of the potential is

so that, in this case, the force is equivalent to a single force emanating

from a point which is midway between the tivo fixed points, and the law

of force is proportional to the distance from the centre of force, and this

case is integrated by Euler and Lagrange.

745. When P and Q have the form

n — A— A Q— A — A
pi jr—-a11 ^

q{ or— q
27
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the value of the potential is

pi q'l a2 h% '

so that, in this case, the force is equivalent to a force which emanates

from an infinite axis of uniform extent, and is inversely proportional to

the cube of the distance from the axis.

746. When the curve is given upon which a material point

moves freely, the law of the fixed force is restricted within certain

limits which it may be interesting to investigate. The geometrical

conditions of the force are simply that it must be directed in the

osculating plane of the curve, and the normal force must be equal

to the centrifugal force of the body.

By the adoption of the notation

il
x
= S2 -fH= T,

the equality of the force in the direction of the normal N, or of

the radius of curvature q to the centrifugal force is expressed by

the equation -

DN £21= ^.

747. Since the preceding equation is linear, all the special values

of I2X by which it is satisfied, may be combined into a neiv value by ad-

dition or subtraction. Previously to this addition, each value of S2 1 may

be multiplied by a factor, which may represent the mass of the body,

and if the factor is denoted by m, the value of m X2 X will correspond

to the whole force acting upon the mass, and it is, then, evident

that, if M denotes the mass upon which the combined forces act,

and V its velocity, the combined power is

M V2 =Z(mv2

),

which expresses a condition identical with the theorem of Bonnet.
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748. If a special value of I22 is represented by S2 , and if i22

satisfies the equation

BN n2 =o,

so that it is the potential of a force, to the level surfaces of which

the given curve is a perpendicular trajectory, the complete value of

n1= n f(£22),

£2i is

in which f is an arbitrary function. It is apparent, then, that £2
X has

an endless variety of possible forms in every special case. But

each form corresponds to an arbitrary value of one of the constants

of the given curve, or of some combination of those constants.

749. If the given curve is the parabola, of which the equa-

tion is

{l/—//o)
2 = 2p {%— %*),

the values, which correspond to the arbitrary value of x , are

X
•*2a=.log(y.— ^o)+ -

n = 1

while those, which correspond to the arbitrary value of y , are

12 t+ts/^
£2 =2(%— x

())-\-p;

and it is interesting to observe that when, in this case, the arbitrary

function of S2 2 is assumed to be constant, the value of the force is

independent of % and p as well as of y .

The values, which correspond to the arbitrary value of p, are
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750. If the given curve is the conic section, of which the

equation is

P
ecos((p— cp ) = -— 1,

the values, which correspond to arbitrary values of <p are

n —ml* Ptanr
~lir+ P 1

sjn r-* 2i>- (1 ~~ fl*> r

S2 =l-e*- 2

-f,

in which

E2= e
2 ri— (Pr— r

2

f.

"When the arbitrary function of I22 is assumed to be constant,

the force is independent of e and P as well as of
<jp , and its law is

identical with that of gravitation.

751. If the given curve is the cycloid determined by the

equations

^—#0= ^(1— cos &)>

x— x = E (&— sin G)

;

the values which correspond to arbitrary values of x are

£22 = x-\- E(6 -j-sin£),

l
S2 =

y—yo'

in which 6 is to be regarded as the function of y, which is deter-

mined by (43218 ).

752. If the given curve is a circle of which the centre is the ori-

gin zvhile the radius is arbitrary, the potential of the force is an arbitrary

homogeneous function of the reciprocals of x and y, which is of the

second degree.
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This peculiar result is the more worthy of attention because

it can be extended to the sphere, so that the potential of a force by

zvhich a body may move upon a sphere of a given centre but of an ar-

bitrary radius, is likewise an arbitrary homogeneous function of the second

degree of the reciprocals of the rectangular coordinates, of which the centre

of the sphere is the origin.

These problems are fruitful of new subjects of interesting geo-

metric speculation.

CHAPTER XII.

MOTION OF ROTATION.

753. If the coordinates of the points of a system are the

partial polar coordinates of § 737, and if y is supposed to refer to

some point of the system, that is, to an axis connected with the

system, from which the corresponding angles 6 are measured, so

that the value of q> is

SP = 9>o + d,

that of T becomes

Hence the equation (16412 )
gives

the second member of which is the derivative of double the sum of

the products obtained by multiplying each element of mass by the

55
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area described by the projection of the radius vector upon the

plane perpendicular to the axis of rotation. If this area is desig-

nated as the rotation-area for the axis, it follows from (3923 ) that the

derivative of the rotation-area for the axis is equal to the sum of the

moments of the forces ivith reference to that axis. It is obvious that

the mutual actions of the system may be neglected in obtaining

the sum of the moments.

If, then, all the external forces ivhich act upon a system are directed

towards an axis, the rotation-area for that axis will be described with a uni-

form motion, which is the principle of the Conservation of Areas.

754. The rotation-area for an axis may be exhibited geomet-

rically by a portion of the axis which is taken proportional to the

area, and it is evident from the theory of projections that rotation-

areas for different axes may be combined by the same laws with

which forces applied to a point, and rotations are combined, so that

there is a corresponding parallelopiped of rotation-areas. There is, then,

for every system an axis of resultant rotation-area, ivith reference to ivhich

the rotation is a maximum, and the rotation-area for any other axis is the

corresponding projection of the resultant rotation-area. The rotation-area

vanishes, therefore, for an axis ivhich is perpendicular to the axis of

resultant rotation-area.

ROTATION OF A SOLID BODY.

755. In the rotation of a solid body, the axis of rotation does

not usually coincide with that of resultant or maximum rotation-

area ; and the relations of these two axes is of fundamental impor-

tance in the investigation of the rotation. The determination of

these relations depends directly upon the moment of inertia. The

moment of inertia of a body or system of bodies upon an axis is the sum
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of the products obtained by multiplying each element of mass by the square

of its distance from the axis.

The distorting moment ivith reference to two rectangidar axes is the

sum of the products obtained by multiplying each element of mass by the

products of its distances from the two corresponding coordinate planes.

Let then

m= the mass of the body,

Qp= the distance of the element dm from the axis of p , which

passes through the origin,

- Ip= the reciprocal of the moment of inertia for the axis of p,

m Jp= the distorting motion of inertia for the two axes which form

a rectangular system with the axis of p ,

which gives

-*p *Jm

If, then, cp
g

is the angle which the axis of p makes with the direc-

tion of q, the moment divided by the mass, becomes

=^j[[^^2-(^^ cos ^))
2

]'

= Sx (pj^— 2JX cos (py
cos <pz)

.

If Ip is set off upon the axis from the origin, its extremity

lies upon a finite surface of the second degree, which is, therefore,

an ellipsoid, and may be called the inverse ellipsoid of inertia. If the

axes of this ellipsoid are assumed for the axes of coordinates, the

values of J must vanish for each of these axes, that is, there is no
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distorting inertia for these axes which may he called the principal axes of

inertia.

756. When a body rotates about an axis, the rotation-area

for an axis, which is perpendicular to that of rotation, is obviously

proportional to the distorting inertia for these two axes. There is,

therefore, no rotation-area for a principal axis of inertia proceeding from

rotation about either of the other tivo axes of inertia.

757. If Qp is the velocity of rotation about the axis of p, the

corresponding velocity of rotation about the principal axis of x is

&
f
=ff

p coa<pxf

and the corresponding rotation-area is

m dp cos cpx

B )

the cosines of the angles, which the axis of resultant rotation-area

makes with the principal axes, are then proportional to

cosg^ cos cpv , cos go

and

so that this axis coincides with the perpendicular to the tangent

plane of the ellipsoid which is drawn at the extremity of the axis

of rotation. The plane of maximum rotation-area is, therefore, conjugate

to the diameter of the ellipsoid ivhich is the axis of rotation, which theorem

is given by Poinsot.

758. If the reciprocal of the perpendicular let fall from

the origin upon the tangent plane of the ellipsoid is set off upon

the perpendicular, its extremity lies upon a second ellipsoid, which

may be called the ellipsoid of inertia, and of which the principal axes

are the reciprocals of the principal axes of the ellipsoid of § 755, and are

proportional to the square root of the principal moments of inertia.

759. It is apparent that the tangent plane to the ellipsoid of inertia
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which is draivn at the extremity of the axis of maximum rotation-area is

perpendicular to the axis of rotation.

It is also evident, that the axis of rotation is one of the principal

axes of the section of the inverse ellipsoid of inertia, which is made by a

plane passing through the axis of inertia and perpendicular to the common

plane of the axis of rotation and of maximum rotation-area, while the latter

axis is one of the principal axes of the section of the ellipsoid of inertia,

which is made by a passing plane through this axis perpendicidar to this

same common plane.

760. Although the fixed axes of coordinates may be assumed

at any instant to coincide with the principal axes of inertia, the axes

of inertia are nevertheless in constant motion from the fixed axes,

and at the end of the instant dt, after coincidence, the axes of rota-

tion, which coincided at the beginning of the instant with the fixed

axes of y and z, will not remain perpendicular to the fixed axis

of x, but will deviate from perpendicularity by the respective angles

frz dt and — &'
v
dt.

The rate of increase of the rotation-area for the fixed axis of x,

which arises from the external forces is, therefore,

mB°*
n—jf— V* 6

* \E~~W

which represents the well-known equations given by Euler for the rota-

tion of a solid body.

If the rotation-area for the axis of p is denoted by m A'p , the

preceding equation may assume the form

lDe
n= D

t
Ax -A'y A'z {I?-l!).

761. If the equation (43722) is multiplied by 2 dx and added
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to the corresponding products for the other axes, the integral of

the sum is

m — *I>>

which is simply the equation of living forces. If p is the semidiame-

ter of the inverse ellipsoid of inertia, about which the solid is

revolving at the instant, the preceding equation may be reduced to

f>JrH_ .,2 cos2 ^_^
2

ROTATION OF A SOLID BODY WHICH IS SUBJECT TO NO EXTERNAL ACTION.

762. If a solid body is subject to no external force, the centre

of gravity may be assumed for the origin. In this case the first

member of (43722 ) or (43729 ) vanishes, and the equation (4389 )

becomes
2

p
2 m

or
&'
p
= hp,

so that the velocity of rotation is proportional to the diameter of the inverse

ellipsoid tvhich is the axis of instantaneous rotation, which is given by

Poinsot.

763. It follows from §§ 757 and 762, that, if q is the perpen-

dicular let fall upon the tangent plane which is drawn to the

inverse ellipsoid at the extremity of the axis of rotation, q is the

axis of maximum rotation-area, which is invariable when there is

no external force, and that

ft' h 2
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&'
q
= &

p cos q>p
= hp cos %= hq= -;

-°-q

so that the velocity of rotation about the axis of maximum rotation-area,

as ivell as the distance of the tangent plane which is draivn to the inverse

ellipsoid of inertia at the extremity of the axis of rotation are invariable

during the motion of the solid, which are propositions given by Poinsot.

They might have been deduced with facility from the geometrical

theorem of § 759, without the aid of the equation of living forces,

which might on the contrary have been derived, in the present case,

as an inference from these theorems, and this was the elegant pro-

cess of Poinsot.

If the solid body has no translation, the inverse ellipsoid re-

mains constantly tangent to the same plane which is that of max-

imum rotation-area, and which touches the ellipsoid at the extremity

of the axis of rotation. It is apparent, then, that in the motion of

the solid, the ellipsoid rolls upon the fixed plane of maximum rotation-area,

without any sliding ; which is Poinsot's mode of conceiving this

motion.

764. The instantaneous axis moves within the body in such a way

as to describe the surface of the cone of the second degree, of which the

equation is

-4f(W)]=°-
The base of this cone is an ellipse perpendicular to the greatest axis of

the inverse ellipsoid when q is larger than the middle axis, or perpen-

dicular to the least axis, when q is less than the middle axis ; and in

either case the centre of the ellipse is upon the axis to which it is per-

pendicular.

When q is equal to either the greatest or the least axis, this

axis becomes the permanent axis of rotation ; but when q is equal
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to the middle axis, the cone is reduced to a plane which corresponds

to one of the plane circular sections of the ellipsoid of inertia.

The axis of maximum rotation-area describes within the body

the cone of the second degree of which the equation is

2.1(2— f)*?\ = Q.

The common plane of the instantaneous axis of rotation and of the

axis of maximum rotation-area is obviously normal to the surface of the

cone described in the body by the axis of maximum rotation-area, which

defines the relative position of these two axes at each instant.

765. The position of the axis of maximum rotation-area is

fixed in space, and, therefore, the path of the instantaneous axis

of rotation in space is determined by the preceding property, and a

distinct geometrical idea of the cone described by the instantaneous

axis in space, is obtained by conceiving the cone described in the

body by the axis of maximum rotation-area to be compressed into

a line carrying with it the cone described by the instantaneous axis,

in such a way as not to change the relative inclination of the two

axes or the surface of the cone of the instantaneous axis.

The algebraic definition of the cone of the instantaneous axis

in space is obtained by assuming the axes of the inverse ellipsoid

to be arranged in the order of magnitude as x, y, s, in which

the cone of the axis of rotation has the axis of x a,9 its central axis,

and adopting the notation

cos JE!,.

jC=j?+j7_^=/_^(i-^)(i-5) j

and similar equations for the other axes, in which it is unimportant

that the angles Ex may be imaginary, but it should be observed

!?+%- = <?--ti1 -?
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that My is the largest of the quantities, Mx , My , and Mx \ the fol-

lowing notation is also to be adopted.

sin
2 E=— sin2 Ex sin

2 E
y
sin

2 Ez ,

*= (l_|)(i-5) (l _*)

=v/[(i-f)(i-f)(i-f)].

COS7J — M,*

COS ?]'
Mz— MJ

sin i
sin ?/

sin tf
'

sin 9
JW"-^)

J/j, sin * '

sin 8 = sin e sin (p ;

which give for each axis, if x y y, z denote the extremity of the in-

stantaneous axis upon the surface of the inverse ellipsoid,

I 2 x2
sin

2 E= I2

(f—M2
) sin2 Ex ,

Dx _ p Dp
~x~~ p*— Mi 1

r2 ,, 9 . a n p
2 I2

sin
2ExD p

2

I2 Dx2 sm2Ex =z
l—^—

T. hr^~-
p

2— M£

If, then, y is the angle which the plane of p and q makes

with a fixed plane passing through q, the cone of the instantaneous

axis in space is defined by the equation

/sin2

9,i> ¥
2 + ^-=i>^2 +i>/+ i>,2

,

or

T) .. __ qpD
<j,p(p

2— q
2+q2 N)

iV - -
(p

2-
q
2

)
^(pt-M2

) (M2-p2

) (p
2 -MZ)-\

q sec d - (q
2 -j-M2—M2

sin
2

t\ sin2
cp) My

sin tf
<

~M
y
sin tf

i

q
3 J¥seed '
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which gives by the use of elliptic integrals

766. The velocity with which the instantaneous axis moves

in the body is readily obtained from the equations of the preced-

ing section, which give in combination with (43722)

sin
2 E P

pDtp= 2x (zDt
x) = —hx?/z2:x

— *-je

*-z

hxy^2
Sx (Ix%2

sin
2^)= h tt(p

2—M?)
(Mf-p*) {f-Ml)-\ ;

whence

hDJ=
$ M

y
smr}n

and by elliptic integrals

M
y
sin if h (t— r ) = &t (p

.

767. In the especial case of

the axis of maximum rotation-area describes one of the circular sections of

the ellipsoid of inertia, and the equations of § 765 become

Mx=Mz= I
y ,

j
COS fj= COS V] = -^ ,My

i= 2 n

,

hl
y
(t— <v) = y,

s/ (M2—p2
) =Mqj

sin rj Tan [h (t— t) Jf
y
sin 17]

= \J{M
2— 1 2 sec

2
9 2 )
= J^ sin 17 Tan

(
^^"^ .
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The greatest value of p is, then, M
v , which corresponds to

t— % = ;

and its least value is I
y , which corresponds to

t— r = ± oo .

If the axis of rotation, therefore, coincides with the mean axis of the

ellipsoid of inertia at the commencement of the motion, its position will be

permanent in the ellipsoid, although it is affected with an element of insta-

bility ; but, in all other instances of the present case, the axis of rotation

describes the spiral of which (44230 ) is the equation, and is constantly ap-

proaching the mean axis at such a diminishing rate of velocity that it never

reaches this axis.

768. When the ellipsoid of inertia is one of revolution, the

cones, described by the instantaneous axis in the body and in space,

are both of them cones of revolution, so that the simplicity of

this case requires no further illustration ; but it may be ob-

served, that, when the ellipsoid is oblate, the moving cone rolls

externally upon the stationary, but internally when the ellipsoid

is prolate.

769. This analysis, which is substantially the same with one

of the forms of Poinsot, comprehends the principal conclusions of

Euler, Lagrange, and Laplace, and may be extended to the case in

which the origin is any fixed point of the solid.

THE GYROSCOPE AND THE TOJP.

770. When the solid is subject to any accelerated force, and

its gyration is about a fixed point, which may be assumed as the

origin, and when the ellipsoid of inertia with reference to this
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point is an ellipsoid of revolution about the axis of z, the corre-

sponding Eulerian equation is

771. If the body is also symmetrical about the axis of z, the

preceding equation becomes

#z= »,

so that the rotation about the axis of z is uniform.

772. If the force is that of gravitation, the problem becomes

that of the gyroscope. If g is the direction of gravitation, h that

of a horizontal axis, which is perpendicular to the axis of z, and

has that direction about which the rotation from g to z is posi-

tive, ifj
->

l= s
«j

h
x)

if I is the distance of the centre of gravity from the origin, ls
the

projection of I upon g, and if the gyration of the body is resolved

into the three rotations, %' about the axis of z, £' about the axis

of h, and ifj' about the axis of g, the rotation about the prin-

cipal axes are

G'z= i// cos £ -f- /,

^= w' cos I + £' cos % >

&
y
= i// cos § — £' sin /

These equations give

6'
x cos I -f d; cos |= v''

sin2 1 = ¥ (i— |) •
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The area about the axis of g is evidently described uniformly

by the principles of § 753, so that if

and if 4 is a constant, we have

l
z
(6'x cos | -f tf

y
cos f ) -f a2

1
6'
z cos f= (P— £) i//

-f- » «2 4= n a2
4

.

The equation (4383 )
gives, in the present case,

{P- id
2/+ p rs

2= h2
{i

2- id (4- 4)

,

provided the constants 7i and 4 are determined by the equations

h2 = 2gl2 I2
,

The elimination of if' from the equations (4457 ) and (44510 )

gives

p fg = W {I
2-

1

2

) (4- 4)- n2
a* (4- 4)

2
.

773. The limiting values of l
s
correspond to the vanishing

values of lg , and, therefore, reduce the second member of (44519 ) to

zero. If these values are denoted by ll7 l2 , and —p, it is evident,

from the form of the equation, that p is greater than I, while 4 and

4 are included between — <?and-|-/. The equations for the spher-

ical pendulum of §§ 726 and 727 may be directly applied to the

gyroscope by changing z into l
g
and z0} g1} and z2 mto 4? 4? and 4?

which give, by (41824_27 ),

4= 4 ~j~T ?
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nr a

With this notation and the equations derived from (41813_14 ), the

expression of the time is

and the equation of the path described by the axis of this body

in space is

which admits of reduction by the process of § 735.

774. When the velocity n vanishes, the gyroscope is re-

duced to a case of the spherical pendulum of which the length is

775. When the two roots lx and /2 are equal, the path of the

gyroscope is a horizontal circle. The values of ls , and of the velocity

of rotation can be determined for this case by the equations

7 7 _ (?—%) (h-Q
h h— p^_ 2 l1 li —3l*>

ai n2_ (P-\-2l1 li— 3Zf)
2

~W (p-ro^-i,)

The denominator of the value of (4— 4) can be written in the form

p+ 44_3J?= 3(4— hHh+ k),

in which 4 and 4 are positive quantities. If, then, lt is greater

than 4, </ ^s positive; but when 4 is contained between lh and l6 ,
y'

is negative ; and lx can never be contained between — 4 and — I-
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776. When the values of 4 and 4 are equal, if' vanishes at

the same time with £', and we shall also find

13
=z 4 == 4 >

and the equation for determining 4 and jo is

/*
2
(7

2— 4
2
) = «V(4— 4).

This is, approximately, the ordinary case of the gyroscope, and it is

evident that in this case the values of 4 and 4 cannot be equal,

unless

h=.h

so that the centre of the gyroscope cannot under these circumstances de-

scribe a horizontal circle, which coincides with the conclusion of Major

jft-V" -=& G. Barnard.

If, however, in this case, n is very large, it is obvious that the differ-

ence between 12 and \ is quite small, for this difference is

h— h — n* at '

which is also one of the results obtained by Major Barnard.

777. When 4 is algebraically greater than 4? it is also alge-

braically included between 4 and 4> so that if' is positive at the

upper limit, and negative at the lower limit. But when ls is alge-

braically smaller than 4? it is also algebraically smaller than either

4 or 4 5
so that, in this case, if' is always negative.

778. When 4 is equal to /, it is also equal to l3 , that is,

The velocity of rotation which corresponds to this case is deter-

mined by the equation

h*
- I-I

2 p+l '
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which gives

V — '"•" l-k

_ {i—kyBini— 2i{i-ky

779. When 4 is equal to — I, it is also equal to la , that is,

l\=— I= /3 .

In this case /4 is algebraically less than — I, and the velocity

of rotation which corresponds to this case is given by the equation

n**_ (Z-/Q (h-h)_ V+p)(p+ h)

h2 ~ l+k p— l
'

which gives

2l(l+k)
P — L~

i+k >

' w- 2naH
ffl (

l+ h w)w ~h(i-h)«l{p+ h)
l
\ i-h'Vr

780. When p is equal to — /, it is also equal to Is , that is,

p=— l=Is .

In this case 4 is algebraically greater than — /, and the veloc-

ity of rotation which corresponds to this case is given by the

equation

n2 a'_{l-l
i ) (1,-1,) __(l-k) (k-k)

h2 ~ l+k l+l. J

which gives

2l(l+k)
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781. If, in the preceding case, 4 is equal to the negative of

I, it will also be equal to l2 , that is,

and, in this case, the elliptic integrals disappear from the equations,

so that they become
2 ~4n" a

~h,
= l— ll,

4= /1 _(/1 -4-/)Tan
2 [A(^-T)

v/(/+4)],

and although the axis is constantly approaching the upper vertical, after

passing the loiver limit, it never reaches the upper limit ; and if it begins

at the upper limit it never recedes from it.

782. In the simplest form of the problem of the spinning of the

top, the extremity of the body is a point in the axis of revolution, ivhich

is restricted to move, ivithout friction, in a horizontal plane. In this case,

the equation (4449 ) is still applicable, as well as (4457 ), provided

that the moments of inertia are referred to the centre of gravity

of the top, and that I denotes the distance from the centre of grav-

ity to the point in the horizontal plane.

The equation (4383 )
gives, in this case, with the notation of

§772,

(/
2-42)/+r(l+^^-7,2

4
2)/=A2 (^-42

)a-4);

and if i// is eliminated by means of (4457),

P{lJr lU!-I^ll)(=h\P-ll){lg-k)-n"ai
{lz -lsf.

The comparison of this equation with (44519), shows that the

limits of motion are the same as in the case of the gyroscope, and

57
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under the condition of the equality of lx and 1%, the extremity of

the axis of the body describes a horizontal circle. The expressions

of the time and of the azimuth of the axis are not, however, capable

of expression by means of elliptic integrals, except in special cases,

of which that of § 781 is one, and another corresponds to the case

of

*-x

783. "When the horizontal plane, to which the extremity of

the top is restricted, is not smooth, the problem is usually more

complicated, although when the friction brings the lower extremity

to the case of rest, it reassumes the form of the gyroscope, and this

is the modification of the problem which has been investigated by

Poisson. In this case of the gyroscope, hoivever, the friction becomes an

interesting feature of the problem, and has a peculiar effect upon the

limits to ivhich the motion is subjected. Instead of the equation (4449),

the rotation about the axis of the body decreases uniformly, which is ex-

pressed by the equation

tfz= n— n2 t.

The area described about the vertical axis is also described in this

case, at a uniformly decreasing rate, which gives instead of (4457),

(P— I
2

)
y' + — n' t) a2

l
s
= n a2 (73— &).

The power of the system is reduced by the friction about the

body-axis, which is proportional to the angle %, and by the friction

about the vertical axis, which is proportional to \\k If, then, the

mean values of x\)' and £ for a small interval of time are denoted by

w'm and £OT , the equation of the preservation of power may be re-

duced to

(l*-l*)/+-f£=h2
{l

2 -l 2

) (4+ /o+ ^)>.
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in which

2$r?ot= ji jfO' cos £)— n
-£j§

y

n' , , .. n a2
l's , ,= p Wm * COS Sm -j¥j2

Xjlm t .

The combination of this equation with (45023 )
gives

It is obvious from this equation, that if the friction about the

body-axis vanishes, the height, to which the gyroscope ascends,

diminishes at each oscillation. If, however, the friction about the

vertical axis is destroyed, the height, to which the gyroscope

ascends at each oscillation, increases when the body-axis is directed

upwards in its mean position ; but this height diminishes when it

corresponds to a position in which the centre of gravity is h^low

the fixed extremity of the axis. In all intermediate positions, and

when both the frictions remain, the increase or decrease of ascent

depends upon the peculiar relations of the various constants.

In the spinning of the top, the rounded point rolls upon the

supporting plane, which induces an acceleration about the vertical

axis which is the reverse of friction, and this is the principal cause

of the ready rising of a top into the vertical position of apparent

repose, known as the sleeping of the top.

THE DEVIL ON TWO STICKS AND THE CHILD'S HOOP.

784. Contrasted with the motion of the gyroscope is that

of a solid of revolution of which, instead of a fixed point of the

axis, the circumference of a section drawn through the centre of
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gravity, perpendicular to the axis is restricted to move upon a

point. A convenient type of this class of motion may be found

in the familiar toy called the devil on tivo sticks. If the friction is

neglected in this case, and the notation adopted from the preceding

problem of the gyroscope, the rotation about the body-axis is found

to be constant, and the equation for the preservation of area about

the vertical axis is, by a slight reduction,

Y sin
2
£ -\- n cos £ = B,

in which B is an arbitrary constant. The principle of power gives,

by reduction, the equation

2 2

i// sin
2
£ -|- £' = H-\- a sin £

,

in which H is an arbitrary constant, and a is a constant which

depends upon the form of the solid and the radius of the confined

circumference.

785. The combination of (452 9 ) and (452M )
gives

sin
2
£ £

/2= (H-\- a sin £) sin
2
£— (B— n cos £)

2

,

from which it is obvious that, in the general case, sin £ cannot

vanish, that is, the body-axis cannot become vertical.

786. When B vanishes, and H is greater than a, we have

the ordinary case of the devil on two sticks, and, in this case, there

are three real values of sin £, for which the second member of

(45220 ) vanishes. Two of these values of sin £ are contained be-

tween positive and negative unity, and one of them is positive,

while the other is negative ; they give the limit of the motion of

the axis, and correspond respectively to the cases in which the

centre of gravity is below or above the point of dispersion, which

latter is of course the actual case of the toy. In either case, the end
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of the body-axis describes a curve ivhich is similar in form to the figure 8,

and the apparent want of rotation about the vertical axis arises from the

repeated change in the direction of rotation which occurs at each successive

return of the bodg-axis to the horizontal position.

787. When B vanishes, and II is greater than a, but satis-

fies the inequality,

H>%{hnaf n

the three values of sin£, for which the second member of (45220 )

vanishes, are all contained between positive and negative unity.

The positive value is the upper limit of the inferior position of the

centre of gravity, as in the preceding case, and as it would be if

the inequalit}^ of this section were not satisfied, so that both the

negative values were to become imaginary or equal. But the two

negative values are the limits of motion, when the centre of grav-

ity is higher than the point of suspension, and in this case the bodg-
m

axis describes a waving curve, and continues to rotate in one and the same

direction about the vertical axis, ivithout ever becoming horizontal, ivhich

phenomenon usually occurs in the devil on two sticks, at the beginning of

the game, and before it has attained a sufficiently rapid rotation to assume

a horizontal position.

When H satisfies the equation

R='6^nay— n2

,

the two negative limits of sin £ are equal, and correspond to a

gyration of the body-axis about the vertical axis in a right cone.

The motion which corresjDonds to a positive limit of sin £ in this

case can be expressed by means of elliptic integrals.

788. Whenever H satisfies the inequality

H>Bl+ a,
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the body-axis may become horizontal with the centre of gravity

above the point of suspension, and in this position its gyration

is positive or negative in conformity with the sign of B . If, more-

over, n is greater than B , the vibration of the body-axis from the

horizontal position extends so far as to reverse the direction of the

gyration about the vertical axis ; but if n is less than B, the direc-

tion of this gyration remains unchanged.

When H satisfies the inequality

H<B2
-\-a,

the body-axis cannot become horizontal with the centre of gravity

above the point of suspension.

789. The case of

B= ±n,

constitutes an exception to the conclusion of § 785, and it is

obvious that in this case the body-axis may, and generally will,

become vertical.

790. The case of a hoop rolling upon a horizontal plane, is in-

cluded in that of any rolling solid of revolution, but which is so

formed that a circumference of the section of § 784 is restricted to

roll upon a horizontal plane. The rolling condition is geomet-

rically satisfied by the restriction that the point of contact with

the plane is stationary during the instant of contact. If the nota-

tion of the preceding sections is retained, and if / is the radius of the

rolling circumference, the velocities of the centre of gravity in the

directions of the body-axis and of a horizontal perpendicular to the

body-axis are, respectively,

It' andj£.
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The equation of the power of the system multiplied by 2 I*, and

divided by m becomes, then,

i/sin2
§ + A r+ $1=H+ a sin § -f B n2

,

in which
A=1 + PI2

,

a=z2gll%,

ii is the initial velocity of rotation about the body axis, and II is

arbitrary.

The application of Lagrange's canonical forms to the preceding

expression of the power gives the equations

D
t (Y sin

2
£ -f B vz cos j-) = 0.

and by integration and reduction

vz= n,

y' sin
2
£ -]- i> « cos l—C,

A sin
2
1 r= (5"+ a sin £) sin

2
t— (C—Bn cos £)

2

;

and it is obvious that these expressions coincide in form with these

which were obtained in the investigation of the devil on tivo sticks,

so that the various inferences made in that problem are applicable to the

motion of the hoop. The analysis of the present problem is identical

with that which was adopted by Nulty.

791. When the hoop is gyrating with its plane in a position

which is nearly horizontal, the cube and higher powers of sin £ may

be neglected, in which case the equation (4552i) gives the integral

2 j2r=s;+p*
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in which it is sufficient to observe that £ is the initial value of £

and b is constant, so that the hoop constantly tends, by its inertia, to rise

from this position, which, combined ivith the irregular action of friction, ac-

counts for the peculiar forms of gyration, which frequently accompany

the fall of the hoop.

ROTARY PROGRESSION, NUTATION, AND VARIATION.

792. The positions of the axis of rotation and of maximum
rotation-area may be referred to a fixed axis, and the change of

inclination to this fixed axis may be called nutation, while the gyra-

tion about it is called progression ; and the change in the magnitude

of the rotation, or of the maximum rotation-area may be called

variation. ~

793. It is obvious from the simple principles of the computa-

tion of rotation-areas, that an accelerative force which tends to give

a rotation-area about an axis perpendicular to the axis of maximum

rotation-area, does not cause a variation of the rotation-area, but

only a motion of the axis so as to incline it in the direction of the

accelerative axis. Hence if the accelerative axis is perpendicular to the

fixed axis as well as to the axis of maximum rotation-area, progression

is produced ; if it is in the common plane of the fixed axis and axis of

maximum rotation-area, while it is perpendicular to the latter axis, nutation

is produced ; if it is in the direction of the axis of maximum rotation-

area, variation is produced.

The three directions of the accelerative axis, which correspond

to the respective production of progression, nutation, and variation

are mutually rectangular ; so that it is easy to determine the rela-

tive tendency of a given force to these different modes of action.

This neat analysis is derived from Poinsot.
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794. If the accelerative axis is constantly perpendicular to

the fixed axis, and also to the axis of maximum rotation-area, the

motion will be wholly that of progression, of which mode of action

a fixed type is presented in the precession of the equinoxes, the

discussion of which problem must be reserved for the Celestial

Mechanics. If the accelerative axis is constantly in the plane of

the fixed axis and of the axis of maximum rotation-area, while it is

perpendicular to the latter axis, the motion is exclusively that of

nutation, and this form of action is well exhibited in the friction at

the point of the top as it rolls upon the horizontal plane.

ROLLING AND SLIDING MOTION.

795. A special example of the case of rolling motion has

been considered in the hoop, and the mode of analysis tvhich ivas there

adopted can be applied to the general investigation, as it has been done

by Nulty. Thus, let the axes of x, g, z have the same directions

with the principal axes of the rolling solid, let xg,gs , and sg denote

the coordinates of the centre of gravity of the solid, and xT , gT , and

zT those of its point of contact with the surface upon which it rolls.

The condition of rolling without sliding gives the equation

*£= C^-^K-- (*,-*,) 4yi

with the similar equations for the other axes. The expression of

the power is

T= h mZx [i [1+(g-ggf+ (s-s
s)

2]- 2 (y-gs) (*—*,) Vy £)],

from which the equations of nutation can be readily obtained by

Lagrange's canonical forms.

796. If the solid slides upon the surface, it' still remains in

58
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contact with the surface, so that the point of contact does not

move in the direction of the normal to the surface. If the direc-

tion of the normal is denoted by N, this condition is expressed by the

equation

which is given by Anderson. This is the only condition, to which the

motion is subject, in the case of perfect sliding motion.

797. When the sliding: is accompanied ivith friction, the friction

may be regarded as a force proportional to the pressure applied at the point

of the solid, ivhich is in contact tvith the surface, in a direction opposite to

that of its motion.

When the velocity of rasure is destroyed by friction, the motion

ceases to be sliding and becomes a rolling motion, in ivhich form it

continues as long as the force of friction exceeds the accelerative force in

the direction of friction.

CHAPTER XIII.

MOTION OF SYSTEMS.

798. The motion of every system is necessarily subject to the

Law of Poiver, expressed in § 58, to the law of the motion of the centre

of gravity of § 452, and to the laiv of areas of § 753. These three

principles not only apply to the whole system, but to each portion

of it considered as a system in itself.

799. The various forces which act upon a system are often

quite different in the magnitude of their effects, so that they may
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be considered from this point of view as different orders of force.

In a first investigation, all but the forces of the first order may be

neglected ; and in subsequent approximations the forces of the

inferior orders may be successively introduced, as disturbing forces

and their various effects may be determined as perturbations of cor-

responding orders.

800. The separation of the system into partial systems is

closely connected with this subdivision of the forces, for it may

easily be seen that the forces, which are of chief importance in

the whole system, or some portion of it, are least active in other

portions of this system. Whenever, for instance, the parts of any

portion are so isolated from the rest of the system, that their

relative changes of position are of small influence out of the

portion, they should be treated by themselves as a partial system,

and, relatively to all the other parts, may be considered as con-

densed upon their common centre of gravity.

LAGRANGE S METHOD OF PERTURBATIONS.

801. The method of perturbations which originated with La-

grange, and which depends upon the variation of arbitrary constants,

deserves the first consideration from its surpassing elegance ; and

it is the natural introduction to the other modes of investigation.

Suppose, then, that a complete system of integral equations

is obtained, when all the forces but those of the first order are

neglected, and let one of these equations involving a single arbi-

trary constant be denoted by (19920 ). Let

£2 denote the potential of the forces of the first order, and

W that of the forces of the inferior orders,
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and the equations of motion (166a_3) assume the forms

If the constant member of (19920 ) is now assumed to vary, its

derivative is

D
t
a

i
= Z

v {DJi
D

n
T) = Zk iZv

{DJi
D

11fk)Df W-\,

for by (19925 )

= S
n
(B

r/ft
Du II-DJ{

D
ri
II)

.

The condition that W does not involve co gives algebraically,

' zk (i)ufknf y) = o.,

and the notation

Af=DJk DJt— D
nfi DJk ,

Bf= Z
v
Af,

gives in combination with (4608 )

in which a may be substituted for its equal / in the second member.

802. The integrals of (460^) obtained with the omission of

the forces of the inferior orders, admit of arbitrary variation of the

arbitrary constants, so that if such variations taken with reference

to arbitrary elements which may be denoted by x and 1, the cor-

responding variations of (4602_^) with the omission of the terms de-

pendent upon W are

D
t
D

K
a> = -I)

v
I)

K
II,
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and similar equations for X which give

= Z
v
{D1D(J

HD
K
to+DxDv

HDKn-DKDJID^-DK
D

v
HD^)

= D,D
K
R-I)

K
I),R=0,

so that if

C^1 does not involve the time explicitly.

803. If x is the element of actual variation of the arbitrary

constants when the inferior forces are introduced, which element

may be expressed as the time when it is so connected with the arbi-

trary constants, as not to cause ambiguity, the variations of the

equations ^GO^), give

so that Dx W does not involve the time explicitly. When x and I

are changed to a
t
and ak , it is sufficient to retain i and h in the

notation C£' ]

, so that it is apparent from (46118 ) that

By elimination from the equations represented in the preced-

ing form, the value of D
t
a

{
can be obtained identical with that of

(4602o), so that it is evident that B$ does not contain the time ex-

plicitly. It is also apparent that

except when
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in which case

804. The independence of B{

1
] of the time in an explicit form,

renders it possible to compute its value for any instant, and the

value thus obtained is universally true. Thus in the especial case

in which the arbitrary constants are the initial values of rj, w, etc.,

the values of B [

j^, computed for the initial instant, are easily seen

to vanish when the k and i refer to different points of the system

;

but when Jc and i refer to the i] and tu of the same point, the value

of B[

k
] is positive or negative unity, so that

Dt
co = D

v
T.

In the case of rectangular coordinates these equations become,

for either axis,

D
t
x' = Dx W.

805. The especial variation of the constant H may be de-

rived from the equation (171 7 ) which gives

n
t
ir=z

vii)v TDtn ) = i)
tTi

T,

provided that t is intended to express the t which is involved in

any of the quantities denoted by rj. This development of the

variation of the arbitrary constants is taken from Lagrange.

LAPLACE S METHOD OF PERTURBATION.

806. The values of w, ij, etc., can be substituted from the

first integrals directly in the first form of the second member of
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(460-), and the integral values of c^ which are then obtained can

be introduced into to, 17, etc., as a second approximation to their

values. This mode of analysis is especially useful when the equa-

tions of the first form are linear with reference to rj, o), and their

derivatives. For in this case it is apparent that the functions de-

noted by fi are linear with reference to rj, to, which may be demon-

strated in the following manner. Let rji} to
L , etc., be special values

of ?], to, of which there must be as many independent values as

there are equations expressed by (4602_4). The arbitrary constants

a
{
may then be such that the complete values of rj and co are

to = S
4
(a

t tot)
;

whence the values of a
L
assume, by elimination, the linear form in

reference to 1], to, etc. The values of Dafi} are then functions

of t, and do not involve rj, to, etc. If D *P represent forces, which

are also functions of the time, the integrals of (460 7 ) can be com-

pletely obtained. By the substitution of these values of a
t
thus

obtained in the expressions of rj, the complete values of rj are ob-

tained, which often admit of useful modification, and the success of

the method depends upon the skill with which this modification is

effected.

807. A special case of frequent occurrence in the problems

of celestial mechanics is one in which

10=1]',

H= corf -j- i a2 if.

The value of the integral in this case is, for a first approximation,

rj == a cos at -\-a
x sin a t ,
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o) =— a a sin a t -j- a a x cos a t.

a = rj cos at sin a t =f,

a
x
= rj sin a t -j- - cos at=f1 .

The values of the constants obtained by integration of (4602_^) ;

are increased to

and

<*-\j;{D
v
T^at)..

<*i + -/(.Oleosa*;

so that the complete value of r\ is

i'j=za cos at -f- «isin at —
j
(D

v
Tsmat) _j_

sma
/ (j)^ Wcosat).

808. The disturbed motion of the ordinary projectile ex-

hibits an easy example of change of form. In this case, by the

introduction of rectangular coordinates in which the axis of x is

horizontal, and that of y vertical, the equations are

D
t
x'= Dx W,

D
t
y'= -g+ Dy

T,

whence

%= at+ a1+ tft
Dx W—

f

t
{tDx W)

= at+ a x -\-f?Dx T,

y= —:hgf+azt+ az+ tft Dy V—ft (tDy
W)

=— i<
/ ?+ a2 t-\-a3 +f?I)v

¥.
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Hansen's method of perturbations.

809. If V
t
denotes any function of the time and of the arbi-

trary constants in the undisturbed orbit, its value in the disturbed

orbit may be obtained, from the integration of the equation

by the substitution of t for % after the integration is performed.

In the performance of the integration, the arbitrary constants are

to be regarded as variable, and the value of V
t
in the undisturbed

orbit is to be taken for the initial value of VT . This introduction

of x for t constitutes the first principle of Hansen's method of pertur-

bations.

810. The application of this method to the example of § 808,

gives, for the values of x and y

x:. = at+ W+f£(*--t)I)m ¥],

t

o
t

811. In the example of § 807, the value of rj given by this

method is

t

}] = a cos a t -\- «! sin a t J sin a (t— t) D
v
T

T
L

in which the form of notation is slightly modified so that no subse-

quent change of r to t is necessary. A case, which often occurs in

connection with this example, is worthy of notice ; it is when

D
n
¥=hcos (mtf-fe),

59
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in which case the value of rj is

rj = a cos a t -J-
ax sin a t -J-

-
2 2

cos (m ^ -|-e)

.

In the special case of

m= a,

this value of ?j becomes

7] = a cos a t -\- «! sin a t -f-
—

tf A sin {a t -J- e)

.

812. If the function F increases with the time from negative

to positive infinity, so that for all values of t

D
t V>0,

there is an instant which may be denoted by z, for which the un-

disturbed value of V coincides with its disturbed value for the in-

stant denoted by t. The corresponding value of zT is a function of

both t and t, which may be introduced into V
T
instead of r, but

after this substitution all the changes in the value of V
T
must arise

from those of z
T , so that

D
t
V=D V D

t
zr ,

DT VT= D V Dr zT ,
T T

and the differential equation for the determination of zT is

In the integration of this equation, % must be taken as the initial

value of zTi whence, for the first approximation,

DT zT =l.
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After the integration is performed, the value of z is derived from

that of z
T by changing t to t

.

813. The disturbed value of any other function, U may be

partially obtained by the substitution of z for t, and, since

D
r
u

T
=D

T
u

Zr+ D.
r
u

Zt
D

t
zt ,

the residual portion is obtained from the equation

D
t
Uz =Dt Ut —DZt

Uz Dt
zT ,

DT UT x
-. D Uz

'T?

by changing % for t after the integration is performed, and complet-

ing the integration, so that JJZ may be the value of Uz when t

vanishes.

This introduction of the disturbed time, which 'is denoted by z, con-

stitutes the second principle of Hansen's method of perturbations, and

upon the skilful use of the two principles thus developed, com-

bined with an appropriate choice of coordinates, depends the suc-

cess of this highly ingenious and original method.

814. It is obvious that, in the first approximation,

dt uZt
=o,

so that the last term of (467n ) disappears for this approximation.

815. If V is such a function that it can be expressed in terms

of r], etc., without involving a>, etc., or t, it follows from §801,

that the second member of (46

5

8 ) vanishes, when % is changed to

t, so that this must also be the case with the second member of the

equation derived from (46627 ),

D
t
zT

DT *r

- (Da i
Vr n \
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The value of the first member of this equation can therefore be

obtained by the integration of the equation

ID z \ i
Dr VrDai

DT VT-Dai
VTD\ VT ,

T~T

provided that the integration is completed in conformity with the

previous condition.

816. If one of the arbitrary constants, which may be denoted

by § is so involved in V that

in which K does not involve the time, or if the form of V is

the corresponding term of the second member of (4684 ) is

D2 V

The corresponding term of the second member of (467n), if U has

the same form with V— /3 in (468u), is

DjUr D
t (5.DT VT

817. If one of the arbitrary constants, which may be de-

noted by y is so involved in U that U— y may be expressed as a

function of V without explicitly involving y or t, the corresponding

term of (467n) is reduced to

Ay-

818. The further development of the methods of perturba-

tions depends upon the peculiarities of the problem to which they
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are applied. But the example, to which they are most appropriate,

is that from which they have derived their origin, the motions of

the bodies of the solar system, so that their ampler discussion is re-

served for the Celestial Mechanics.

SMALL OSCILLATIONS.

819. When the motion of a system is restricted to small

oscillations about a position of equilibrium, the quantities t], etc.,

may be supposed to be so small that the terms of T and £2, which

are of more than two dimensions in "reference to these quantities

and their derivatives, may be neglected.

The value of T may, then, by (1658), be expressed in the form

in which the quantities denoted by T^i]

, are constant.

If the values of r\, etc., are supposed to vanish for the position

of equilibrium, the derivative of £2 with reference to either of

these variables vanishes for the same position, so that £2 must have

the form

£2= £2Q -\-2h)i (£2fr]k r}i),

in which the quantities, denoted by £2$, are constant.

The equations of motion, derived from Lagrange's canonical

forms, are, therefore, represented by

that is, ilwj constitute a system of linear differential equations ivith constant

coefficients.

820. It follows from the linear forms of these equations, that
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the various systems of values by which they are satisfied, can be

combined by addition into a new system. This is the mathematical

expression of the important physical law of the possibility of the

superposition of small oscillations.

821. With the notation

af= T™D2— £lf,

the equation (46928 ) assumes the form

If, then, there are m of the quantities r\ , etc., if — n2
is one of the

values ofD2 which satisfies the equation, expressed in the notation

of determinants,

any system of values of ^ is expressed by the equation

i]
i
= E

i
sm(nt-{-en ),

in which en is 'an arbitrary constant, and the constants E{
have a

common arbitrary factor. The mutual ratios of the quantities E
i

are determined from the equations derived from (47010 ) by the

substitution of — n2
for D2

, and E for rj. Hence, by § 340, Et
is

determined in the form

E
i
= En D^%>m ,

in which En is an arbitrary constant.

822. By the combination of all the values of n, the complete

value of rj
t
is

Vl= Zn \En Df ^m sin (n t + «.)] ;

but it is evident that only those values of n should be retained

for which the values n2 given by (47014 ) are real, positive, and
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unequal. For all other values of n2
, the time t would be intro-

duced into the value of i]
t
in such a way that it would indefi-

nitely increase. .It is plain, therefore, that the only values of n,

which can be- retained in (4702S ), are those which correspond to

elements of stability, so that if the elements i] are selected with

a due regard to the conditions of equilibrium, those which corre-

spond to the unstable equilibrium will disappear of themselves

with the rejection of the corresponding values of n.

When the position of equilibrium is stable ivith reference to all of its

elements, all the m values of n2
are real, positive, and unequal.

823. The forms of T and S2 of § 819, lead, by inspection, to

the equations

TU] = T-lk]

and the equation (46928 )
gives, for each value of n,

if n written as an accent indicates a special value of n, to which the

functional form is applicable. If £„ is determined by the notation

and if the equations, represented by (46928), are added together

after being multiplied by Eln\ the sum is

If, moreover, Tn denotes the value of T when ^' is changed to Ej-" ]

,

the value of £„, given by integration, is

i n= Tn sm(nt-\-tn ).

The elements £ thus obtained, correspond to the independent ele-
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ments of stability which affect the position of equilibrium, and

embody the true analysis of the various forms of oscillation of

which the system is susceptible. When the different values of n

have a common divisor, the oscillation is evidently periodic.

This investigation of the theory of small oscillation coincides,

in substance, with that of Lagrange.

824. The importance and variety of the forms, in which

oscillation and vibration are physically exhibited, give peculiar

interest to the mechanical discussion of this subject. But the mode

of analysis is so dependent upon the form of the phenomena, that

the special researches are reserved for the chapters to which they

are appropriate.

A SYSTEM MOVING IN A RESISTING MEDIUM.

825. When a system moves in a resisting medium, the law

of resistance may be regarded as dependent upon the velocity, so

as to be the same for all the bodies, but it may vary by a constant

factor from one body to the other. If this constant factor for the

mass mi is denoted by ki} and if T^ is the function of the velocity

Vi, the resistance to the mass nti moving with the velocity vt
is k

t
V

t
.

If, then, rectangular coordinates are adopted, the equations of

motion assume the form

t l
nti

x
i

l %
v

{

The corresponding form of the equation for the determination of

the Jacobian multiplier is, by §§ 402 and 451,

D
t
log Mifk = 2< [h Zx DX{

M\
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This equation becomes, when the motion is unrestricted in space,

D
t
log ,**= S

t
[k

t (2J+ A, v)]
;

when the motion is in a plane,

D
t
logM = S

i
[k

i
(^-\-D

Vt
v)]

;

when the motion is in a straight line,

D
t
\og^= Z

i
{lc

i
D

Vi
V

i ).

826. It is evident from the linear form of these equations,

that the multiplier can he separated into factors, each of zvhich shall inde-

pendently correspond to a term of V}
.

827. When the resistance is constant, and the motion in a

straight line ; or when the resistance is inversely proportional to

the velocity, and the motion is in a plane ; or when the resistance

is inversely proportional to the square of the velocity, and the

motion is unrestricted in space, the multiplier becomes unity. In

either case of motion, a term of the corresponding form may be

added to the resistance without affecting the multiplier.

828. When tJie resistance is proportional to the velocity, the value of

the multiplier in the case of unrestricted motion is

in the case of motion in a plane it is

asito = c2tl i
k

i

;

and in the case of the straight line it is

njbMd = Cf S
«
k

i

.

60
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All these results, with regard to the multiplier, are derived

from Jacobi.

829. When the resistance is proportional to the square of the velocity,

the value of the multiplier for motion, which is unrestricted in

space, is

cdk ==(•*?« (*««<).;

for motion in a plane, it is

and for motion in a straight line, it is

<&MD= c2
'

z
i(
k

i
s
i>.

830. The sum of the equations (47226 ), multiplied by m { x\, is

Dt (F—£2)=— St {h mt
V, »<) .

When Vi has the form

1

Vi'

the integral of this equation is

T— 12 =—S
{ [h nii ( Si + a

t
t)] .

831. When there are no external forces acting upon the sys-

tem, the sum of the equations (47226 ) for each axis multiplied by mi}

if xg refers to the centre of gravity, is

\ Mi D\ x
g
=—S

t (wii ki V~J

.

If the resistance is proportional to the velocity, the integral of this

equation is

S
{ nii {Dt

x
g
— A) —— Si (nii Jc

t
x

t ) ,
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in which A is an arbitrary constant. If kt
has the same value for all

the bodies, the complete integral is

k x„— A= B c
-kt

in which B is an arbitrary constant.

832. The introduction of polar coordinates, and the substitu-

tion of A [

J
] for the product of the area described by mf about the axis

of &, multiplied by the mass mi} give for the corresponding equa-

tions of motion

&t Ay= Dma—kfiDt Af:

When there are no external forces, the sum of these equations is

When the resistance is proportional to the velocity, the integral of

this equation is

D
t
S

iAf=C—2i {ki Af),

in which C is an arbitrary constant, which vanishes if the area van-

ishes with the time. If k{
has the same value for all the bodies

the next integral is

2
i Af = B(l—c- kt

).

So that the rotation-area instead of being proportional to the time is pro-

portional to

l— c- kt
,

hit the position of the axis of maximum rotation-area is not affected by

this uniform mode of resistance, which proposition is from Jacobi.
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THE CONCLUSION.

833. In the beginning, the creating spirit embodied, in the

material universe, those laws and forms of motion, which were best

adapted to the instruction and development of the created intellect.

The relations of the physical world to man as developed in space

and time, as ordered in proximate simplicity and remote complica-

tion, in the immediate supply of bodily wants by the mechanic arts,

and the infinite promise of spiritual enjoyment by the contempla-

tion and study of unlimited change and variety of phenomena,

are admirably adapted to stimulate and encourage the action and

growth of the mind. True philosophy begins with the actual, but

may not remain there ; it yields sympathetically to the projectile

force of nature, and earnestly forces its path into the possible, and

even into speculations upon the impossible. But whenever the

initial impetus is exhausted, the philosopher may not be content

to remain stationary, or merely to turn upon his axis. He, then,

descends to the world of sensible phenomena for new instruction

and a stronger impulse. Let such be our method. In the present

volume the attempt has been made to concentrate the more im-

portant and abtruser speculations of analytic mechanics clothed in

the most recent forms of analysis, and to make a few additions,

which may not be rejected as unworthy of their position. Much,

undoubtedly, remains imperfect and unfinished, for it cannot be

otherwise in a science which is susceptible of infinite improve-

ment ; and much must soon become antiquated and obsolete as

the science advances, and especially when we shall have received

the full benefit of the remarkable machinery of Hamilton's Quater-

nions. But it is time to return to nature, and learn from her actual

solutions the recondite analysis of the more obscure problems of
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celestial and physical mechanics. In these researches there is one

lesson, which cannot escape the profound observer. Every portion

of the material universe is pervaded by the same laws of mechanical

action, which are incorporated into the very constitution of the hu-

man mind. The solution of the problem of this universal presence

of such a spiritual element is obvious and necessary. There is one

God, and Science is the knowledge of Him.





APPENDIX.

NOTE A.

ON THE FORCE OF MOVING BODIES.

It is remarkable, that, notwithstanding the convincing argu-

ments of Leibnitz, the force of moving bodies is almost universally

introduced into systems of analytic mechanics as being proportional to

the velocity, instead of to the square of the velocity. Some philos-

ophers, in quite an unphilosophic spirit, have stigmatized the early

discussions of this subject as a war of words, as if the eminent

geometers who entered into it could have been so deficient in their

powers of logic and analysis. The great objection to the propor-

tionality of the force to the velocity is derived from the necessity

which it involves of regarding force in one direction as beino; the

negative of that which is in the opposite direction. On this ac-

count, when a body or system rotates without any motion of transla-

tion, its aggregate force vanishes, so that such a motion would seem

capable of being produced without any expenditure of force, and

this statement has actually been made in some works upon astrono-

my. Leibnitz proposed as test propositions the transfer of motion

from body to body in various forms, in all of which he supposed the

whole force to be transferred from one body to another of a dif-

ferent weight without any external action. But it is evident from

the law of preservation of momentum that such a transfer is im-

possible, and, therefore, this test cannot be practically applied. If,

however, in the case of the impact of an elastic body upon a
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heavier one at rest, the striking body is held fast, as soon as it comes

to instantaneous rest by the transfer of all its motion to the other

body, the subsequent action of the elasticity must finally cause the

body which is struck to move forward with a velocity inversely

proportional to the square root of its mass. The external effort

applied to the system in this case to hold the body at rest, arises

from the force with which the elastic spring of the bodies is com-

pressed, and is therefore an evidence of such a compression, and

a proof that there has been an expenditure of force in its produc-

tion, although the momentum of the system is not changed until

the body is held. If, again, a spherical ball were to be impelled into

a cylindrical tube of the same diameter, which terminates in an-

other cylinder of a different diameter, but which containing a ball

that exactly fits it, and if the included air acts as a compressed

spring, it is easy to imagine such a mutual proportion of the parts

and weights that the second ball shall leave the cylinder at the

very instant when the first ball arrives at a state of rest, and when
the air has returned to its initial density. In this case the whole

living force of the first ball passes without increase or diminution

into the second ball, and the momentum is not preserved. It is

true that an external force is required to keep the cylinders in

place, but this is a mere pressure, which is no more entitled to be

regarded as an active force than is the centrifugal force, or any of

the modifying forces which are represented analytically by equa-

tions of condition. Seeing, then, that by admitting the square of

the velocity to be the true measure of the force of a moving body,

the fiction of negative force is wholly avoided, and the funda-

mental principles of mechanical problems are reduced to their

utmost simplicity, there seems to be sufficient reason to reverse the

modern decisions, and return to the higher philosophy of Leibnitz.
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NOTE B.

ON THE THEORY OF ORTHOGRAPHIC PROJECTIONS.

For the convenience of students, the theory of orthographic

projections is here condensed into a few simple formulae.

The projection of a line a upon another line b is

#6
= a cos l

.

If many successive lines represented by a
t , are so united that

each line begins where the previous line ended, and if the last line

terminates where the first began, the sum of the projections is

Si (^ cos *.)= 0.

If there are four of these lines, and if the three first are mutually

rectangular and parallel to the axes of x, y, and z, this equation

becomes

Sx {ax cos I ) -f- tf4 cos
* = .

But it is evident that ax is the projection of —

«

4 upon the axis

of x, whence

CLX= fl54 COS „ ,

and if the subjacent 4 is now omitted as unnecessary, this equation

gives

cos* = Sx (cos" cos*),

of which the equation

l = ^cos2 «,

is a particular case.

These equations may be applied to the projections of plane

areas, if each area is represented in a linear form by the length of

a line which is drawn perpendicular to it.
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Page For Read

129 axes axis.

lo^o and 15^ The signs of the second members should be reversed.

1524 acute right.

268 I lv

3017 these those.

4018 resultant resultant moment.

40,3 different lines opposite directions.

4122 force resultant of the forces.

42.,7
0' with reference to O with reference to 0'.

Wi X, x
x

.

51 4 y v.

5514 POINT UPON A DISTANT MASS MASS UPON A DISTANT POINT.

5713 4 .*•

5722 and 5728 \ I-

*592 cos-^ COS jy.

59 21 and 60^ four eight.

5933 and 6021 two four.

7316 surface surfaces.

832 \ K-
856 D% Br
8521 i 4.

86u 4rt AnK
8622 \ and \ 1 and 2.

8810 -A) + ^)-
9018 and 9O20 Jfm-l Hn~\

90^ (cos (m— 1) cos (to— 1) »/.

9125 See note on page 356.

9824 897 89^.

J J 10 rn
»».

100; independent of dependent upon.

101^ twice + r + 2r.

* This correction only applies to some copies.
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107n Al Ax,.
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111 13
—2 2.
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111
k h
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Hll9 72 24.

H7» 4212 42 22-

H722 4Px Aux.

H716

for another point of the

is near the former

body
point

which
arising from this motion.

H73i dele Ax-=.
1207 \p \n.
12020 similar to like.

121
x 119, 11

8

3 .

122^ n \n.
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Page

Abel, method of investigating the holo-

chrone, ..... 356

Acceleration of rotating cylinder upon

which a body moves, when it is

uniform, 254

of a point by a moving line, . 247

Action and Reaction, . . . .132

of moving bodies, . . . 162

principle of least, . . . .16 7

Anderson on rolling and sliding motion, 458

Archimedes, spiral of, described by ac-

tion of central force, . . . 384

Area, constant area described by a

point upon a surface of revolu-

tion 412

in the motion of a free point, . 424

constant, when all the forces are

directed towards the axis, . . 425

of rotation, .... 433

conservations of, . . . . 434

of rotation for a principal axis, 436

of rotation when it is a maximum
for a solid, . . . . .437

of rotation expressed by Euler's

equations for the motion of a

solid, 437

of rotation, its axis when it is a

maximum for the free motion of

a solid, 439

of rotation described by the gyro-

scope about the vertical axis, . 445

of rotation of gyroscope affected

by friction, 450

of rotation of the devil, . . 452

of rotation of the devil, when it

vanishes, ..... 452

Page

Areas, principle of, in a moving system, . 458

Astronomical Journal, see Gould.

Asymptote of the brachistochrone of ir.i-

finite branches, . . 333

Attraction of an infinite lamina, . 46

of an infinite cylinder, . . 49

of a point upon a distant mass, . 55

of a spherical shell, . 56

of a Chaslesian shell, . . 58

of an ellipsoid,.... 69

of a spheroid, . 88

Axis of rotation, ..... 12

of rotation, instantaneous, . 19

of gravity, .... 50

of principal expansion, . 118

of inertia principal, . 436

instantaneous in a body and in

space, .... . 439

B.

Bailey on the force of resistance to the

motion of the pendulum, . . 291

experiments on the motion of pen-

dulum of various forms in air, . 311

Barnard on the gyroscope, . . 447

Barytrope discussed, . . . .370

Bernoulli, John, on the synchrone, . 373

Bernoulli, James's, lemniscate, . . 380

Bertrand on the tautochrone, . . 364

Bessell on the resistance of the pendu-

lum, 292

experiments upon the seconds'

pendulum,..... 298

Bobillier catenary on cone, . . 153

catenary on sphere, . . .157

Bonds of union of a rigid system, . . 126

Bonnet, theorem of combination of forces, 430
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Booth, elliptic integrals, . . .147

Boeda, experiments on the seconds' pen-

dulum, 296

Brachistoehrone, 328

on the surface of revolution, . 334

Brass sphere vibrated by Bessell, . 298

spheres, cylinders, and bars vi-

brated by Bailey, . . .311

C.

Canonical forms of the equations of mo-

tion, 163

Catenary, 134

on surface of revolution, . . 143

on right cone, .... 144

on ellipsoid, . . . . .154

on equilateral asymptotic hyper-

boloid, 159

curious relation to the motion on

an hyperbola when the central

force is proportional to the dis-

tance, 385

Cauchy on elasticity, . . . 1 24

solution of partial differential equa-

tions, 201

on differential equations, . . 214

Centre of gravity, .' . . . .55
its position with regard to equilib-

rium of rotation, . . .131

resultant moment for, . . 133

motion of, 262

of systems, .... 458

of a system in a resisting medium, 474

Central force of gravitation, . . .43
in relation to tautochrone, . 323

in relation to brachistoehrone, . 330

for a point moving upon a plane, 3 78

special cases of, which admit of in-

tegration, . . . . .379

forms which admit of general in-

tegration, ..... 383

forms which admit of integration

by elliptic integrals, . . .389

third form which can be solved

by elliptic integrals, . . . 406

Centrifugal force,..... 245

for brachistoehrone, . . .329

Centrifugal force of body moving on sur-

face, 377

Characteristic function of motion, . .162
its variation, . . . .166

Chasles's shell and its attraction, . . 58

and Gauss's theorem, . . 61

trajectory canals, . . . .63
analogy of attraction and propa-

gation of heat, . . . .64
definition of his thin shells, . 65

potential of his shells, . . .61
his ellipsoidal shell, ... 70

attraction of his ellipsoidal shell, . 76

Circle rotating with a free moving body

upon its circumference, . . 251

upon which a heavy body moves, 255

rotating in a vertical position, with

heavy body moving along its cir-

cumference, . . . .259

rotating with heavy body moving

on its circumference, . . . 264

involute, with body moving along

it against resistance, . . . 2 74

involute, a case of tautochrone, 325

a tautobaryd, . . . .372

described in a case of central

force, 379

horizontal, when it is in the path

of a pendulum, . . . .419

great, when it is nearly the path

of a pendulum, . . . .421

general law of description, . 432

section of ellipsoid of inertia de-

scribed by axis of maximum ro-

tation area of a solid, . . . 442

path of the gyroscope, . . 446

Clairaut on a case of the tachytrope, . 365

motion of a body when the central

force is inversely as the cube of

the distance, .... 388

Composition of forces, .... 40

Conclusion, ...... 476

Condition, equations of, 24

Cone, catenary upon, . . . .144

tautochrone of heavy body upon, 322

brachistoehrone of heavy body

upon,. ..... 341

motion of heavy body upon, . 413
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Conic section described when the central

force is proportional to the dis-

tance,

described when the central force

is inversely proportional to the

square of the distance,

described when many central

forces act proportionally to the

distance

general law of description,

Conservation of power, ....
' of motion of centre of gravity, .

of areas,

of power in motions of systems,

Constants, variation of arbitrary,

Continuity, solution of, in cases of resist-

ance, .....
in the potential of nature,

.

Coordinates, peculiar case of, .

Couple of rotations, ....
of forces,

Cusps of brachistochrone,

Cycloid the tautochrone of a heavy body,

the base of a cylinder on which

lies a tautochrone,

meridian curve of a surface of

revolution on which lies a tau-

tochrone, ..... 323

the brachistochrone of a heavy

body, 332

a tachytrope, .... 365

conditions of description, . 432

Cylinder, attraction of, . . . .49
containing a catenary, . . 143

rotating with a body moving upon

a given line of its surface, . 253

having a heavy body upon its sur-

face, 254

vibrated by Bessell, . . . 298

vibrated by Baily, . . 311

containing a tautochrone upon

its surface, . . . . 319

385

38G

425

432

163

242

434

458

459

273

32

425

18

40

332

318

321

D.

Derivative multiple,

.

Determinants, theory of,

functional, .

196

172

183

62

Determinants applied to multiple deriva-

tives and integrals, . . .196

Devil on two sticks, .... 451

Dubuat on the law of resistance of a

medium, . . . . 292

experiments on the pendulum

against a resistance, . . 294

Dupin on orthogonal surfaces, . . .79

E.

Economy dynamic, of nature, . . . 168

Elasticity, 116

Electricity, statical, . . . . .44
Ellipse, spherical, .... 147

described by central force which

is proportional to distance, . 385

described under the law of gravi-

tation, 386

Ellipsoid, attraction of, ... 69

Chaslesian shell, . . . .70
of revolution, attraction of, . 87

of closest approximation to at-

traction of spheroid, . . . 103

of expansion, . . . . 118

of reciprocal expansion, . .121

with catenary upon its surface, 154

with brachistochrone on its surface, 344

defining surface of the brachisto-

chrone, 347

of inverse inertia, . . . 435

of inertia, 436

Elliptic integrals for attraction of ellipsoids, 83

for the catenary upon the cone, . 147

referred to spherical ellipse, . 149

for the catenary upon the sphere, 157

for the simple pendulum, . . 256

for tautochrone on a moving curve, 318

for tautochrone on a cycloidal cyl-

inder, 321

for brachistochrone with parallel

forces, 333

for brachistochrone on paraboloid, 337

for brachistochrone on inverted

paraboloid, .... 341

for brachistochrone on cone, . 343

for brachistochrone on sphere, . 346

for circular brachistochrone, . 354
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Elliptic integrals for two forms of central

force, 389

for third form of central force, . 406

for motion upon a cone, . . 413

for motion upon a paraboloid, . 416

for motion upon an inverted para-

boloid, 417

for the time of spherical pendulum, 418

for the azimuth of the spherical

pendulum, .... 423

for forms of force directed towards

axis, 428

for rotation of a free solid, . 442

for the gyroscope, . . . 446

for the top, .... 450

Epicycloid a tautochrone, . . .327

a brachistochrone, . . .331
path described under action of

central force, .... 379

Equation of tendency to motion, . . 712

of motion, differential, . . . 818

of equilibrium, 8^

of orthogonal cosines, . . .15a,

of instantaneous axis of rotation, 1

7

15

of rotation for cylinder, . . 2314

of condition involved in those of

motion and rest, . . . 26 12

of condition referred to normal, 27 16

of tendency to motion expressed

by potential, .... 3431

of resultant, . . . . 3721

of potential of gravity, . . 459

Laplace's, of potential, . . 46 3

Laplace's, modified by Poisson, 492

of potential of an infinite cylinder, 4931

of relation of potential to its para-

meter, 554

of Gauss, for action normal to

surface, 6024

of attraction of ellipsoid in direc-

tion of either axis, . . . 8221

Legendre's, for attraction of

ellipsoid, 83i2

of Legendre upon attraction, . 8610

of function for expression of the

attraction of an ellipsoid, . . 86 22

of attraction of a homogeneous ob-

late ellipsoid of revolution, . 87^

Equation of attraction of a homogeneous

prolate ellipsoid of revolution, . 88 18

of function developed in cosines

of multiple angles, . . . 8913

of elementary functions of Legen-
dre's functions, . . . 9324

of Legendre's functions in spe-

cial form, 993

of theorem for development into

Legendre's functions, . . 101 22

Laplace's upon Legendre's

functions,. . . . . 102s

Laplace's more general form of

Legendre's functions, . . 10220

of potential of ellipsoid referred to

centre of gravity, . . . 103 20

of Legendre's second function, 1043

of external potential of spheroid

with the introduction of ellipsoid

of nearest attraction, . .10724

for axes of nearest ellipsoid of at-

traction, 1083

of potential for point near the

spheroid, 1103

Laplace's, for spheroid which

differs little from a sphere, . 115^

of ellipsoid of expansion, . . 1 1

8

8

of surface of distorted expansion, 11913

of total expansion, . . . 12027

of ellipsoid of reciprocal expan-

sion, ...... 121u
of equilibrium of translation, . 127^

of funicular, .... 138 14

of catenary, .... 1382T

of extensible catenary, . . 141 16

of catenary upon a surface, . 1422

of pressure of catenary upon a

surface, . . . . . 142,^

of catenary upon a surface of

revolution, .... 14429

of arc of spherical ellipse, . . 1492a

of total expenditure of action, . 16 221

of living forces, . . . . 163M

Lagrange's canonical, ofmotion, 164^

Hamilton's changes of La-

grange's canonical forms, . 16527

for characteristic and principal

functions, .... 171 20
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Equation of determinants, . . . 173,,

linear solved by determinants, . 177

simultaneous differential, related

to linear partial differential, . 199

differential in normal form, . 2104

partial differential for Jacobian

multiplier, .... 215^

common differential for Jacobian

multiplier, . . . . 21

6

2

of Jacobian multiplier for equa-

tions of motion, . . . 237 19

of translation, . . . . 2422

of time of describing a line, . 243,,,

of centrifugal force, . . 245 18

of motion upon a rotating line, . 24 7^

of motion of a heavy body upon a

moving line, . . . . 25 78

of gain of power by motion of the

line of support, . . . 25925

of motion of a fixed line through

a resistance, .... 271 3

of motion against friction, . 273 10

of fixed force for tautochrone, . 31

7

9

of tautochrone for central force, 323i

of general brachistochrone, . 328 18

of brachistochrone for fixed force, 32827

of brachistochrone for radius vec-

tor and perpendicular from origin

in central force, . . . 33015

of brachistochrone for parallel

forces, . . . . . 331 31

of brachistochrone on surface of

revolution for central force, . 32428

of brachistochrone ofgiven length, 34 7^

of brachistochrone of given expen-

diture of action, . . . 34910

of the holochrone when the tune is

a given function of the poten-

tial, 35714

of tautochrone from Lagrange, 361 2

of tachytrope, .... 364 17

of tachytrope for central foi-ce in

resisting medium, . . . 3664

of tachistotrope in resisting me-

dium, 369 15

of barytrope, . . . . 37031

of path of a point upon a surface

with fixed forces, . . .377,

Equation of path of a body when the force

is central, .... 37822

of path of a body upon a surface

of revolution with central force

dh'ected toward the axis, . 4129_1T

of the spherical pendulum, . 418 17_21

of force for the description of a

given curve, .... 430*,

of Euler for rotation of a solid, 437^

of living force in a rolling solid, . 45 72T

of sliding motion, . . • 4585

of variation of arbitrary constants, 46020

of variation of initial values of va-

riables .... 462lljl2

of Hansen's method of perturba-

tions, . . . 46 58 , 46635, 46710

of small oscillations, . . . 4692r

of multiplier in a resisting medium, 47231

of power in a resisting medium, . 47415

of translation of a resisting me-

dium, 4742J

of rotation in a resisting medium, 475u

Equilibrium, equations of, . . .7
conditions of, . . . . 29

stable or not, . . . .30
of translation, . , . . 127

of rotation, . . . . .129

oscillation about position of, . 471

Euler, integral, 91

note on erroneous notation, . 356

on differential equations, . . 214

centrifugal force on the brachisto-

chrone, . . . v. 329

on the brachistochrone of central

forces, 330

on epicycloidal brachistochrone, 331

error regarding the brachisto-

chrone, 353

compound brachistochrone, . 354

compound tautochrone, . . 358

tachytrope of heavy body, . 364

tachytrope for parallel forces, . 366

tachytrope of constant velocity in

a given direction, . . .367

tachistotrope of heavy body, . 369

tautobaryd of heavy body, . .373

path of body gravitating to two

centres, 429
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Euler, equations of rotation of solid, . 437

rotation of solid, .... 443

Evolute of the parabola a tachytrope, . 368

Expansion, linear, . . . . .117

ellipsoid of, . . . .118
surface of distorted, . . . 119

total, 120

Expenditure of action, . . . .162

Fontaine on tautochrone, . . .362
Force, its origin, ..... 1

measure of, 2

of moving bodies, ... 4

of nature, 28

fixed, 28

expressed in form, . . .29
potential of, . . . . 29

temporarily fixed, . . .34
composition and resolution of, . 35

moment of, 38

couple of, 40

in a plane, 42

parallel, ..... 42

modifying, . . . . .124

internal, may be neglected in trans-

lation and rotation, . . .131

equal and parallel, in equilibrium, 132

principle of living, . . . 163

of perturbation, . . .459
of moving bodies, . . .479

central. See Central Force.

centrifugal. See Centrifugal Force.

Form, expressive of force, . . .29
French, weights and measures introduced, 293

Friction opposing motion of a body, . .270
changing sliding to rolling motion, 458

Functional determinant, .... 183

Funicular, . . . . . .134

G.

Gamma function, . . . . .91
note on, 356

Gauss on action perpendicular to surface, 60

maxima and minima of potential

of gravitation, . . . .62
determinants, . . . .173

Gould's Astronomical Journal, on partial

multipliers, 231

on motion when force emanates

from an axis,.... 428

Gravitation, potential of, . . . .43
potential for mass, ... 45

the type of equal and parallel

forces, 132

its level surfaces, . . . 132

Gravity. See Centre of Gravity.

Gudermann on spherical pendulum, . 423

Gyration of the devil, . . . 453

of the hoop, 456

Gyroscope, . . . . . . 443

H.

Hamilton's characteristic function, . 162

on Lagrange's canonical forms, 164

modification of Lagrange's ca-

nonical forms, . . . 165

principal function, . . .169
new method of dynamics, . . 171

quaternions, . . . .476
Hansen, method of perturbations, . 465

Helix, rotating with body moving upon it, 254

Holochrone, 354

Hoop, motion of, . . . . . 451

Hyperbola, determining the limits of mo-

tion on a rotating circumference, 265

described by central force, . 380

described by repulsive central

force proportional to distance, . 385

described by force of gravitation, 386

Hyperboloid equilateral asymtotic, con-

'

taining catenary, . . . 159

defining limits of catenary upon

other surfaces of revolution, . 160

homofocal with ellipsoid, . . 77

containing brachistochrone, . .347

Inertia of matter, 1

moment of, .... 434

Integral multiple, 197

of differential equations, . . 199

Integrals, systems of, ... . 203

elliptic. See Elliptic Integrals.
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Integration of the differential equations of

motion, 172

Involute of circle, described in a resisting

medium, 274

a tautoehrone, .... 325

Ivory on corresponding points, . .70
Ivory sphere vibrated by Bessel, . 298

J.

Jacobi on Legendre's functions, . . 88

on determinants, . . .195
on normal forms of differential

equations, 210

new multiplier, . . . . 214

principle of last multiplier, . . 228

on the motion of a body in a resist-

ing medium, . . . .376

on motion of a body gravitating to

two fixed points, . . . 429

on motion of a system in a re-

sisting medium, .... 474

Jellett on the tangential radius of curva-

ture of the brachistochrone on a

surface, 347

on the brachistochrone of a heavy

body in a resisting medium, . 353

Klingstierna's problem of the tachy-

trope, 365

Lagrange, method ofmechanical analysis, 9

canonical forms of equations of mo-

tion, 165

on determinant of derivatives, . 194

on differential equations, . . 214

modification of Eulerian multi-

plier, 232

on the tautoehrone, . . . 359

familiar formula ofthe tautoehrone, 361

on the rotation of a solid, . . 443

on the motion of a body gravitat-

ing to two centres, . . . 429

on the method of perturbations

by the variation of arbitrary con-

stants, 459

Lagrange on small oscillations, . . 472

Lamina, attraction of infinite, . . .46
Lame', relation ofpotential to its parameter, 55

Laplace, equation for the potential of

gravitation, . . . .46
equations modified by Poisson, 48

attraction of Newtonian shells, . 75

functions,..... 88

theorems on Legendre's func-

tions,...... 102

equation for nearly spherical

spheroid, 115

on the tautoehrone, . . . 360

on the rotation of a solid, . . 443

method of perturbations, . . 462

Lead sphere, vibrated by Newton, . 293

Legendre, attraction of Newtonian
shells, 75

attraction of ellipsoids, . . 83

theorems on the attraction of ellip-

soids, 86

functions, . . . . .88
special form of functions, . . 99

Leibnitz on the force of moving bodies, 479

Lemniscate, described under law of cen-

tral force, 380

Level surfaces, . . . . . 32

of gravity, 132

a syntachyd, . . . .375
Limits of brachistochrone, . . . 348

ofbody moving under central force, 40 7

of heavy body on surface of revo-

lution, 413

Linear equations solved by determinants, 177

partial differential equations, . 199

equations of small oscillations, . 469

Logarithmic spiral described by a body on

a rotating straight line, . .251

described against resistance, . 274

a tautoehrone, . . . .325

a tachytrope, . . . .365
described under the action of a

central force, . . . .379

M.

Maclaurin's attraction of ellipsoid, . 75

Mass defined, 2

Matter, inertia of, . . . . .1



494 ALPHABETICAL INDEX.

Maupertius, action of a system, 162

principle of least action, 168

Maximum and minimum of potential, . 29

for equal and parallel forces, 132

of velocity of pendulum in a re-

sisting medium, 283

Measures, French adopted, 293

Medium, resisting, .... 270

brachistochrone in, 350

holochrone in, , 359

tachytrope in, 364

tachistotrope in, 369

barytrope in, 371

tautobaryd in, . . . " . 371

synchrone in, 374

syntachyd in, . 375

systems moving in, . 472

Method of multipliers, .... 25

Hamilton's, of dynamics, . 162

Lagrange's, of perturbation,

.

459

Laplace's, of perturbations, 462

Hansen's, of perturbations, 465

Modifying forces, . . . . 124

Moment of force, 38

resultant, .... . 39

of inertia, 435

Motion necessary to phenomena, 1

uniform, .

r
. 2

measure of, . 2

tendency to, . 5

equation of, . 7

perpetual, impossible in nature, 31

of translation, 241

of a point, : . ... 242

of rotation, .... . 433

of a system, .... 458

Multiple derivatives and integrals, . . 196

Multiplier, method of, . 25

Jacobian, .... . 214

principle of last, 228

for equations of motion, . 236

for motion of a point, 244

* for motion in a resisting medium, . 472

N.

Nature, forces of, . . 28

Newton's shell, 70

Newton's experiments on pendulum, . 293

path described when the central

force is inversely as the cube of

the distance, . . . . 379

Normal form of differential equations, . 210

Notation of reference, .... 4

Nulty on the hoop, .... 455

on rolling motion, . . .457

Nutation of rotation, .... 456

0.

79

30

246

Orthogonal surfaces, ....
Oscillations about position of equilibrium,

of a body on a fixed line,

of a body on a uniformly rotating

line, ......
on a rotating circumference,

of the pendulum,....
of a heavy body on a rotating cir-

cumference, ....
of the pendulum when the resist-

ance is proportional to the veloc-

ity. •

of the pendulum when the resist-

ance is proportional to the square

of the velocity, ....
of the pendulum with the medium, 287

of the pendulum when opposed by

friction, ....
of the pendulum observed

Newton, ....
of the pendulum observed

Ddbuat, ....
of the pendulum observed

BORDA, ....
of the pendulum observed

Bessel, ....
of the pendulum observed

Bailey, ....
small, theory of,

248

252

256

266

282

285

290

by

by

by

by

by

293

295

296

298

311

469

P.

Paper sphere vibrated by Dubuat, . . 295

Parabola, path of projectile,.. . . 258

described while rotating, . .267

a tachytrope, .... 368

described by law of gravitation, .379
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Parabola, condition of description, . 431

Paraboloid, brachistochrone on, . . 336

path of heavy body on, . . 416

Parallel and equal forces, . . .132

Parallelopiped of translation, . . 11

of rotation, 14

of forces, 36

of moments, . . . . .39
of rotation-area, . . . 434

Parameter of potential, . . . .54
Perpetual motion impossible in nature, 31

Pendulum, simple, 255

in a resisting medium, . . 281

seconds, of uncertain length, . 313

spherical, 418

spherical, related to the gyroscope, 446

Perturbations, methods of, 459

Planetary perturbations, case of, . 463, 465

Platinum sphere vibrated by Borda, . 296

Poinsot, analysis of rotation, . . 12

relations of axis of rotation and

of maximum rotation-area, . . 436

velocity of rotation about axis of

maximum area,.... 439

on the rotation of a solid, . . 443

Point, equilibrium of, . . . .128

motion of, 245

Poisson, modification of Laplace's equa-

tion, 48

theorem on Legendre's functions, 100

on the pendulum in a resisting

medium, 286

on the top, . . . .450
Pole of synchrone, 373

Potential, 29

of gravitation, . . . .45
relation to its parameter, . . 54

of spheroid, 99

of equal and parallel forces, . 132

curve, 407

Power defined, ..... 3

law of, 163

gained or lost by a moving line, 259

Pressure upon the brachistochrone, . . 329

Principle of living forces, . . . 163

of least action, .... 167

of last multiplier, . . .228
Progression, rotary, 456

Projectile, path of, ... 410

disturbed, 464

Projections, theory of orthographic, . 481

Puisieux on the tautochrone, . . .326

Q-

Quaternions of Hamilton promise a new
progress to analytic mechanics, . 476

R.

Reference, notation of in this book, . . 4

Residuals to express integral of central

force, 380

Resisting medium. See Medium.

Resultant defined, 36

vanishes in equilibrium of transla-

tion, 128

Resultant-moment, 39

in relation to rotation, . . 130

of gravity for centre of gravity, . 133

Riccati on central force, . . .379
Rolling of solid, 457

Rotation, analysis of, . . . . 12

combined with translation, . .16
instantaneous axis of, . . 19

tendency to, 40
of expansion, . . . .120
equilibrium of, . . . . 129

of line upon which a body moves

about a vertical axis, . . .261
motion of, 433

of a solid body, . . .
"

. 434

Rotation-area, 433

in a resisting medium, . . .475

S.

Screw motion includes that of all solids, 1

9

Seconds pendulum, of uncertain length, . 313

Sections, conic. See Conic Sections.

Shell, attraction of spherical, . . .56
attraction of Chaslesian, . 58

Chaslesian ellipsoidal, . . 70

Newtonian, .... 70

Sleep of the top, 451

Sliding motion, ..... 457

Solid motion analyzed, . . . .18
rotation of, . . . .434
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Solution of a partial differential equation, 199

of continuity in law of resistance, 273

Sphere, attraction of, . . . .57
having catenary upon its surface, 157

vibrated as a pendulum, . . 294

a synchrone, . . . 3 74

condition of description, . . 433

Spheroid, potential of, . . . . 99

which is almost an ellipsoid, . .110

almost a sphere, . . . Ill

Spiral logarithmic path on a rotating line, 251

logarithmic described against fric-

tion, 274

logarithmic a tautochrone, . 325

a brachistochrone, . . .331

logarithmic a tachytrope, . . 365

logarithmic described when cen-

tral force is inversely proportion-

al to the cube of distance . . 379

path of the axis of a solid, . 443

Stability of the funicular, . . . .135

Stader, special cases of central force,. 379

central force inversely proportion-

al to the cube of the distance, . 385

central force inversely proportion-

al to the fourth power of the dis-

tance, 404

central force inversely proportion-

al to the seventh power of the

distance, ..... 406

Straight line, attraction of infinite, . 52

rotating uniformly, with body mov-

ing upon it, ... . 249

described by heavy body, . . 255

rotating uniformly about vertical

axis, and described by heavy

body, 262

rotating uniformly about an in-

clined axis, and described by

heavy body, . . . .269
a tachytrope, . . . .365

Superposition of small oscillations, . 470

Surfaces of the second degree homofocal, 79

orthogonal, . . . . .79
of distorted expansion, . . 119

of revolution containing catenary, 143

Sui'faces of "revolution containing tauto-

chrone, . . . . . 322

of revolution containing brachis-

tochrone, ..... 334

.with point moving upon it, . 376

Synchrone, ...... 373

Syntachyd, . . . .' . .375
Systems of integrals, .... 203

motions of, ... 458

motions in resisting medium, . . 472

T.

Tachistotrope, .....
Tachytrope,.....
Tautobaryd, .....
Tautochrone, ....

compound, ....
in Lagrange's form,

restricted by Fontaine,

Tension of the catenary,

Time disturbed in Hansen's method,

Top, spinning of, .

Translation, analysis of, .

combined with rotation, .

tendency to, . _ .

equilibrium of, .

motion of, . .

in a resisting medium,

Trifolia of Stader,

Trajectory of level surfaces,

.

. 369

364

. 370

316

. 358

359

. 362

139

. 465

449

. -7

16

. 37

127

. 241

474

. 379

32

Variation of the characteristic function, . 166

of a function of the elements of a

determinant, . . . .180
rotary, 456

of arbitrary constants, . . 459

Velocity, . 3

ViEiXLE on the motion of a body along a

rotating straight line, . . 262

Virtual velocities, principle of, . . .7

W.

Weights, French, adopted, . . . 293

Wooden sphere vibrated by Newton, 293
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