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Depth image super-resolution (SR) is a technique that uses

signal processing technology to enhance the resolution of a

low-resolution (LR) depth image. Generally, external database

or high-resolution (HR) images are needed to acquire prior

information for SR reconstruction. To overcome the limitations,

a depth image SR method without reference to any external

images is proposed. In this paper, a high-quality edge map is

first constructed using a sparse coding method, which uses a

dictionary learned from the original images at different scales.

Then, the high-quality edge map is used to guide the

interpolation for depth images by a modified joint trilateral

filter. During the interpolation, some information of gradient

and structural similarity (SSIM) are added to preserve the

detailed information and suppress the noise. The proposed

method can not only preserve the sharpness of image edge,

but also avoid the dependence on database. Experimental

results show that the proposed method is superior to some

state-of-the-art depth image SR methods.
1. Introduction
The depth image is mainly used to record distance information

from the camera to the objects in the scene. Such information is

essential in some research fields, such as robot navigation [1],

augmented reality [2], human pose estimation [3,4], hand pose

estimation [5,6] and so on. Nowadays, depth image can be

acquired easily using low-cost RGB-D sensors, such as Kinect

cameras, PMD (photonic mixer device) cameras and so on [7].

Unfortunately, limited by the performance of those devices, the
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resolution of acquired depth images is too low to meet the needs of many applications. To solve the

above problems, the method for depth image super-resolution (SR) came into being.

Depth image SR is an important branch of image processing technology. In general, one or more low-

resolution (LR) depth images will be chosen as the input and then mapped into a high-resolution (HR)

image. Some prior information is essential when depth image is reconstructed. According to the prior

information, depth image SR can be divided into four subclasses: (1) SR-based interpolation, (2) SR

from LR depth image frames of the same scene, (3) example-based SR, (4) colour-guided SR. Different

methods have different characteristics, including advantages and disadvantages.

In this paper, a modified joint trilateral filter is presented for depth image SR. Given an LR depth

image, HR edge map is reconstructed first by the sparse coding method. Then, HR depth image is

interpolated by joint trilateral filter with the guidance of HR edge. The proposed method has two

main contributions: (i) The sparsity of edge map is used to reconstruct high-quality edges with self-

similar patches without any external database. (ii) During the process of joint trilateral filtering,

gradient information and structural similarity (SSIM) index are used to control depth interpolation.

The rest of this paper is organized as follows: In §2, the related works are briefly introduced. In §3,

more details of the proposed method are described systematically. In §4, experiments and analyses are

illustrated, especially the results of comparative experiments with some state-of-the-art methods.

Finally, in §5, the conclusion of this paper is summarized, and problems and future work are presented.
.6:181074
2. Related works
In recent years, two major trends emerge in depth image SR. One is example-based depth image SR method.

This method mainly reconstructs an HR depth image based on example databases that could be used to

acquire learned prior information. For example, Aodha et al. [8] used the Markov random field (MRF)

model-based patches for depth image SR. Li et al. [9] proposed a modified MRF model, which matched

the input LR patches from similar patches on a set of HR training images. Besides, the approach based

on sparse representation has also been used widely in depth image SR. Yang et al. [10] jointly trained the

HR and LR dictionaries to enhance the coupling between HR and LR image blocks, which can be

represented by an alternate atomic linear combination of the dictionaries. On the basis of sparse

representation, Zhao et al. [11] proposed a multiresidue dictionary to learn and refine the depth image

SR. Timofte et al. [12] clustered dictionary atoms into sub-dictionaries by using the K-NN algorithm and

then represented the HR image blocks with the best sub-dictionary atoms. Owing to the effectiveness

and speediness of neural networks in colour image processing, neural networks are also widely used in

depth images. For example, Song et al. [13] used deep convolutional neural network to learn the end-to-

end mapping from LR depth image to HR depth image, and then further process the learned HR depth

images. Riegler et al. [14] proposed a depth image SR reconstruction method based on deep primal-dual

networks, which combines a deep fully convolutional network with a non-local variation.

The other way is the colour-guided depth image SR method. RGB-D sensor can capture simultaneously

depth image and the corresponding colour image, and the captured colour image usually has higher

resolution than the depth image. Therefore, the colour image can be used to assist depth image SR. For

example, Yang et al. [15] used one or two HR colour images as the reference, then refined the LR depth

image iteratively. Ferstl et al. [16] used an anisotropic total variation diffusion tensor computed from the

HR colour image to guide depth image SR. Lo et al. [17] proposed a framework of joint trilateral filter,

the context information of which acquired from HR colour image was used to guide depth interpolation.

Zhang et al. [18] presented a modified joint trilateral filter, and the depth image could be interpolated

with the assistance of edge map and intensity information extracted from the HR colour image.

These two methods can improve the resolution of depth images, but there still exist some limitations.

In general, the example-based SR method has a strong dependence on example database. And the colour-

guided method requires HR colour images that are perfectly aligned with the depth images. To overcome

these limitations, we propose a depth image SR method that needs neither the external example database

nor the assistance of the registered HR colour image.
3. Methods
In this section, firstly, the whole framework of the proposed method is introduced. Then, the construction of

high-quality edge is discussed. Finally, the modified joint trilateral filter is described that could be used to

interpolate the depth image under the guidance of high-quality edge information.
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Figure 1. Whole framework of the proposed method.
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The general steps of the proposed method are shown in figure 1. To keep sharp edge and overcome

limitations of external database, a novel depth image SR method is presented, which employs a modified

joint trilateral filter with edge guidance for LR-to-HR reconstruction.

As with the methods in [19], the input LR image Dl was firstly magnified to the same size as the

expected HR image Dh by the bicubic interpolation algorithm. Then, a shock filter [20] was used to

reduce jagged effects caused by interpolation algorithm and obtain depth image D0l.

Edge information is important for distinguishing different objects in the scene. So we first extracted

edge map El from the preprocessed LR image D0l, then constructed high-quality edge map Eh from El.

Edge map has only some primary structure information made up of lines and angles which can lead

to strong sparsity. So, the sparse coding method has the potential to recover high-quality edge maps.

The sparse coding method, however, needs to train an over-complete dictionary from a set of images.

Under the circumstance without external database, we constructed an edge map pyramid to find

similar blocks for training, as shown in figure 2.

As far as the edge map is concerned, the larger its size is, the more self-similar blocks about edge and

angle can be found. At the same time, self-similar blocks can be found more easily from the interpolated

image of the test image than from the external image. These self-similar blocks can not only improve the

efficiency of edge recovery, but also well retain the details of edge. We constructed the edge map

pyramid based on the interpolated images of the test images at different scales. From figure 2, it can

be seen that edge map pyramid can provide many self-similar blocks P01 of block P1. Based on the

extracted image blocks, an over-complete dictionary can be trained, and then edge map can be

recovered by using the atoms of the over-complete dictionary.

Once the high-quality edge map is structured, depth image can be interpolated using a modified joint

trilateral filter. Our modified trilateral filter can not only preserve the edge sharpness, but also further

suppress the noise.

From the above overview, we can divide this method into two parts: (i) the construction of high-

quality edge and (ii) edge-guided joint trilateral filter. More details will be introduced as follows.

3.1. The construction of high-quality edge

3.1.1. Dictionary training

In the beginning, the LR depth image Dl is the only original information. To obtain a dictionary training

database, we constructed a pyramid of edge map. The process is as follows:



Figure 2. Edge map pyramid for searching similar blocks.
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The LR depth image Dl is firstly interpolated by using the factors of i (i ¼ 2,3,4), and the interpolated

images Di
l can be generated. Then, edge maps E0

l and Ei
l are extracted from depth images Dl and Di

l.

Finally, a four-layer image pyramid can be constructed, which contains edge map E0
l and Ei

l, as

shown in figure 2.

Then, image blocks of size
ffiffiffi
n
p
�

ffiffiffi
n
p

can be extracted from image pyramid and database {Pk}j (k is the

index of image blocks, j denotes the level of image pyramid) can be obtained. It can be seen that many

blocks P01 similar to P1 can be found, and some rough to fine information can be extracted from these

similar blocks. A robust over-complete dictionary Ah [ Rnl�nR can be trained from database {Pk}j. For

each image block Pk, an alternative linear combination of its dictionary atoms can be found by using

the K-SVD [21] algorithm:

Ah,{qk} ¼ arg min
Ak

X

k

���Pk �Ahqk
���

2

2
s:t:

���qk
���

0

� L 8k ð3:1Þ

where L is the sparse constraint, and fqkgk is the sparse coding coefficient corresponding to the

blocks {Pk}j.

3.1.2. Edge map recovery

For the input LR depth image Dl, it is firstly interpolated to the same size as the desired HR image Dh.

Then, a shock filter [20] is applied to eliminate jagged effects. Afterwards, edge map El is extracted from

the processed image. HR edge map Eh can be recovered from El. The detailed steps are as follows:

(1) Image blocks bk
l (k is the index of image blocks) of size

ffiffiffi
n
p
�

ffiffiffi
n
p

are extracted from edge map El at the

location k [ V;

(2) The corresponding HR blocks bk
h can be represented by the sparse linear combinations of the atoms in

the dictionary Ah using OMP [22] algorithm;
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(3) The extracted blocks from the high-quality edge Eh should be as close as possible to bk

h. And the

corresponding minimized cost function with respect to Eh is as follows:

Eh ¼ arg min
Eh

X

k

���RkEh � bk
h

���
2

2
, ð3:2Þ

where Rk is the operator, which is used to extract image blocks with the same size
ffiffiffi
n
p
�

ffiffiffi
n
p

at the

location k [ V. HR edge map Eh can be acquired by using the least-squares approach.

3.2. Edge-guided joint trilateral filter
Once the high-quality edge map Eh is obtained, edge information will be used to guide the depth

interpolation by using a modified joint trilateral filter. Each pixel p in the expected SR depth image Dh

can be derived as follows:

Dh(p) ¼ 1

kp

X

q[V

Dl(q#) � fs(k p# �q#k) � fg(Gp � Gq) �Ws � fr (Eh,p,q), ð3:3Þ

where kp is a normalizing factor,V is a neighbourhood window centred at pixel p, pixel q is the adjacent pixel

of p in the neighbourhood window, fs(.) is the Gaussian function about spatial filter with standard deviation

ss and mean value 0, fg(.) is the gradient Gaussian function of standard deviation sg and mean value 0,

which weighs the variation between pixel p and pixel q, Ws is the SSIM index, and fr(.) is a function,

which discriminates whether two pixels are at the same side of edge [23].

Based on the joint bilateral filter of Xie et al. [23], two constraint functions fg(.) and Ws about the spatial

filter are added to preserve the detailed information. fg(.) is used to compute the weight of pixel by gradient

information. It is assumed that the coordinate of pixel p is (i, j ) in image Dl, and we computed firstly the abs

of its first-order gradient (G1
v(i,j),G1

h(i,j)) on both vertical and horizontal directions,

G1
v(i,j) ¼ Dl (iþ 1,j)�Dl (i� 1,j)

2

����
���� ð3:4Þ

and

G1
h(i,j) ¼ Dl (i,jþ 1)�Dl (i,j� 1)

2

����
����: ð3:5Þ

Two pixels may have the same gradient distribution near edge even if they are located on different

depth planes. So, the second-order gradient is calculated to solve this problem,

G2
v (i,j) ¼ G1

v (iþ 1,j)� G1
h (i� 1,j)

2
ð3:6Þ

and

G2
h (i,j) ¼ G1

h (i,jþ 1)� G1
h (i,j� 1)

2
: ð3:7Þ

Then, G2
v (i,j) and G2

h (i,j) will be used as the input of two-dimensional Gauss distribution to compute

the weight between adjacent pixels.

The SSIM index [24] Ws is used to relieve the impact of noise. Ws is composed of three parts, including

the mean function m( p,q), the standard deviation function s( p,q) and the structure comparison function

s( p,q) that is conducted on the normalizing signals p� mp=sp and q� mp=sq.

m( p,q) ¼
2mpmq þ C1

m2
p þ m2

q þ C1
, ð3:8Þ

s( p,q) ¼
2spsq þ C2

s2
p þ s2

q þ C2
ð3:9Þ

and s( p,q) ¼
2s pq þ C3

spsq þ C3
, ð3:10Þ

where C1, C2 and C3 are non-zero constants, which are used to avoid zero denominator. mp and sp are the

mean and the standard deviation of the pixels, respectively, in the neighbourhood window centred at pixel

p. Furthermore, mq and sq denote the mean and the standard deviation of the pixels, respectively, in the



Table 1. The parameter settings.

parameters n s ss sg C1 C2 C3 a b g

values 9 7 0.5 0.5 6.5 58.5 29.3 1 1 1
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neighbourhood window centred at pixel q. spq is the covariance of two neighbourhoods centred at pixel

p and q. So, the SSIM index Ws can be expressed as follows:

Ws ¼ SSIM( p,q) ¼ m( p,q)as( p,q)bs( p,q)g ð3:11Þ

where a, b and g are weight factors.
os
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4. Experiment and discussion
In this section, experimental environment and parameter settings are introduced. Then, the comparisons

between the proposed method and four state-of-the-art methods in terms of quality and quantity are

illustrated and analysed.

4.1. Experimental environment and parameter setting
In the experiments, we conducted the simulations on Matlab 2016a. The configuration of computer is

Intel(R) Xeon(R) E5–2620 v3@ 2.40 Hz CPU and 64.0 GB RAM. The test images come from the

Middlebury Stereo database [25,26]. For parameters C1, C2, C3, a, b and g, their values were selected

by the default values of the structural similarity index (SSIM). Based on the papers of Yang et al. [10]

and Xie et al. [23], an initial value was given to parameters of n, s, ss and sg. Then, we computed the

root mean square error (RMSE) with one parameter changing at a time and all the others constant

until the average RMSE of all test images reached their minimum. Finally, these parameters were

determined via trial-and-error. The values of parameters are listed in table 1.

4.2. Performance evaluation
In this subsection, LR test images were reconstructed by four state-of-the-art methods and the proposed

method. The RMSE, the peak signal noise ratio (PSNR), the structural similarity (SSIM) and the

percentage error (PE) were chosen as the assessment measures to evaluate the reconstructed results.

As suggested in [22], PE is the percentage of the absolute difference in disparity that exceeds 1.

4.2.1. Methods of comparison

Four compared methods were provided in our experiments and carried out under the same condition.

These compared methods include adjusted anchored neighbourhood regression for fast super-

resolution (AANR) of Timofte et al. [12], accurate image super-resolution using very deep

convolutional networks (CNN) of Kim et al. [27], the modified sparse coding method of Zeyde et al.
[19] and the edge-guided method of Xie et al. [23].

4.2.2. Analysis of experimental results

As for the input LR test images, we obtained them by down-sampling the ground truth HR counter-

parts. Then, LR test images were reconstructed by the proposed method and four compared methods.

To demonstrate the validity of the proposed method, we evaluated the reconstructed results of 4�
scaling factor by the above four assessment measures. The experimental results are shown in

tables 2–5.

The top two best SR methods are marked in tables 2–5. The values in bold indicate the best results.

The values in italics indicate the second best results. It can be seen from tables 2 and 4 that, both the

RMSE values and the PSNR values of the proposed method ranked the first among the compared

methods. In tables 3 and 5, we can see that the SSIM and PE values of the proposed method ranked

the top two in all test results.



Table 2. RMSE values on the Middlebury Stereo database with scaling factor of 4.

RMSE �4 bowling aloe cones Indian Venus warrior tsukuba hand dove

Timofte 1.855 2.478 1.456 0.855 0.674 3.707 2.972 1.925 1.043

Kim 2.238 3.245 1.778 0.987 0.845 4.424 3.505 2.174 1.214

Zeyde 1.803 2.329 1.338 0.798 0.635 3.620 2.844 1.832 0.989

Xie 1.766 2.583 1.240 0.771 0.617 4.081 3.009 1.926 1.010

ours 1.623 2.217 1.214 0.703 0.553 3.316 2.638 1.654 0.919

Table 3. SSIM values on the Middlebury Stereo database with scaling factor of 4.

SSIM �4 bowling aloe cones Indian venus warrior tsukuba hand dove

Timofte 0.924 0.880 0.891 0.987 0.953 0.906 0.801 0.985 0.990

Kim 0.922 0.865 0.880 0.987 0.951 0.904 0.843 0.983 0.988

Zeyde 0.925 0.885 0.893 0.988 0.950 0.905 0.839 0.984 0.989

Xie 0.946 0.908 0.916 0.992 0.971 0.931 0.855 0.989 0.993

ours 0.962 0.921 0.919 0.993 0.969 0.938 0.882 0.987 0.992

Table 4. PSNR values on the Middlebury Stereo database with scaling factor of 4.

PSNR �4 bowling aloe cones Indian venus warrior tsukub hand dove

Timofte 42.761 40.245 44.864 49.485 51.553 36.748 38.669 42.451 47.762

Kim 40.667 37.764 43.131 48.237 49.587 35.214 37.237 41.396 46.444

Zeyde 43.008 40.784 45.599 50.085 52.071 36.954 39.049 42.882 48.219

Xie 42.124 39.332 46.260 50.384 52.317 35.915 38.560 42.447 48.044

ours 43.312 41.217 46.339 51.206 53.531 37.745 39.705 43.553 48.932

Table 5. PE values on the Middlebury Stereo database with scaling factor of 4.

PE �4 bowling aloe cones Indian venus warrior tsukuba hand dove

Timofte 5.274 14.741 7.385 2.047 1.967 7.640 12.816 3.293 2.248

Kim 4.232 13.454 6.993 1.795 1.696 8.077 11.340 2.624 1.690

Zeyde 6.040 15.751 7.968 2.208 2.447 8.228 14.240 4.036 2.544

Xie 2.405 8.299 2.829 0.951 0.505 2.575 4.239 0.918 0.608

ours 2.365 8.242 3.154 0.943 0.641 2.593 4.217 0.912 0.724
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To evaluate the performance in qualitative sense, in figures 3 and 4, we provide the ground-truth HR

image of test image ‘bowling’ and ‘dove’ and their reconstructed images (4� scaling factor), respectively.

From these images, it can be observed that our reconstructed depth images can not only avoid blurred

edges, but also help reduce zigzags near edges.
5. Conclusion and future work
In this paper, a novel depth image SR method is proposed that does not need the assistance of any

external images. To avoid blurred and jagged results on the edge of the final image, we first



(a) (b)

(c) (d)

(e) ( f )

Figure 3. Comparison of ‘bowling’ with two regions of interest. (a) Ground truth, (b) Timofte [12], (c) Kim [27], (d ) Zeyde [19],
(e) Xie [23], ( f ) the proposed.

(a) (b) (c) (d) (e) ( f )

Figure 4. Comparison of ‘dove’ with two regions of interest. (a) Ground truth, (b) Timofte [12], (c) Kim [27], (d ) Zeyde [19], (e) Xie
[23], ( f ) the proposed.
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reconstructed high-quality edge map by the sparse coding method. What differs from other sparse

coding methods is that our sparse dictionary is trained from the interpolated images of the LR test

image at different scales. Then, under the guidance of high-quality edge, depth image was

interpolated by a modified trilateral filter. We applied local gradient information and SSIM index to

preserve detailed information and suppress noise when interpolation was performed. Quantitative

and qualitative experimental analyses demonstrate that the proposed method can obtain better results

than some state-of-the-art methods.

However, there still exist shortages in the proposed method. Running time of the proposed method is

higher than other methods because this method needs to construct dataset and train sparse dictionary



Table 6. Running time on the Middlebury Stereo database with scaling factor 4.

Time (s) bowling aloe cones Indian venus warrior tsukuba hand dove

Timofte 3.4 2.0 1.6 6.4 1.6 4.5 0.9 6.4 6.2

Kim 6.7 4.8 3.5 12.9 3.6 10.0 2.3 13.7 12.9

Zeyde 5.3 3.1 2.7 9.9 2.4 6.7 1.3 9.9 10.6

Xie 594.9 864.6 608.9 913.7 141.3 759.9 373.8 469.5 417.7

ours 95.3 116.7 121.4 195.4 73.9 135.2 71.2 93.4 91.7
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R.Soc.open

sci.6:181074
9

during depth image SR (table 6). And the process of choosing parameters is complicated. In the future,

we will further improve the works as follows: (i) Edge recovery: we will recover HR edge map with an

effective method. (ii) Parameter setting: a graphical user interface (GUI) will be designed to choose

parameters as shown in table 1.
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A deep primal-dual network for guided depth
super-resolution. arXiv:1607.08569.

15. Yang QX, Yang RG, Davis J, Nister D. 2007
Spatial-depth super resolution for range images.
In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), Minneapolis, MN, 17 – 22
June, pp. 1 – 8. Piscataway, NJ: IEEE Press.
(doi:10.1109/CVPR.2007.383211)

16. Ferstl D, Reinbacher C, Ranftl R, Ruether M,
Bischof H. 2013 Image guided depth
upsampling using anisotropic total generalized
variation. In IEEE Int. Conf. on Computer Vision
(ICCV), Sydney, Australia, 1 – 8 December, pp.
993 – 1000. Piscataway, NJ: IEEE Press. (doi:10.
1109/ICCV.2013.127)

17. Lo KH, Wang YCF, Hua KL. 2018 Edge-preserving
depth map upsampling by joint trilateral filter.
IEEE Trans. Cybern. 48, 371 – 384. (doi:10.1109/
TCYB.2016.2637661)

18. Zhang S, Zhong W, Ye L, Zhang Q. 2017 A
modified joint trilateral filter for depth image
super resolution. CCIS 685, 53 – 62. (doi:10.
1007/978-981-10-4211-9_6)

http://dx.doi.org/10.5061/dryad.5ph7sm6
http://dx.doi.org/10.5061/dryad.5ph7sm6
http://dx.doi.org/10.5061/dryad.5ph7sm6
http://dx.doi.org/10.1016/j.eswa.2012.02.006
http://dx.doi.org/10.1109/ICCV.2011.6126270
http://dx.doi.org/10.1145/2398356.2398381
http://dx.doi.org/10.1109/ICCV.2013.400
http://dx.doi.org/10.1109/ICCV.2013.400
http://dx.doi.org/10.1109/CVPR.2014.490
http://dx.doi.org/10.1109/CVPR.2014.490
http://dx.doi.org/10.1109/SOLI.2016.7551663
http://dx.doi.org/10.1007/978-3-642-33712-3_6
http://dx.doi.org/10.1007/978-3-642-33712-3_6
http://dx.doi.org/10.1109/CVPR.2014.431
http://dx.doi.org/10.1109/CVPR.2014.431
http://dx.doi.org/10.1109/TIP.2010.2050625
http://dx.doi.org/10.1109/ICME.2017.8019331
http://dx.doi.org/10.1109/ICME.2017.8019331
http://dx.doi.org/10.1007/978-3-319-16817-3_8
http://dx.doi.org/10.1007/978-3-319-16817-3_8
http://dx.doi.org/10.1007/978-3-319-54190-7_22
http://dx.doi.org/10.1007/978-3-319-54190-7_22
http://dx.doi.org/10.1109/CVPR.2007.383211
http://dx.doi.org/10.1109/ICCV.2013.127
http://dx.doi.org/10.1109/ICCV.2013.127
http://dx.doi.org/10.1109/TCYB.2016.2637661
http://dx.doi.org/10.1109/TCYB.2016.2637661
http://dx.doi.org/10.1007/978-981-10-4211-9_6
http://dx.doi.org/10.1007/978-981-10-4211-9_6


royalsocietypublishing.org/journal/rsos
R.Soc.o

10
19. Zeyde R, Elad M, Protter M. 2010 On single
image scale-up using sparse-representations. In
7th Int. Conf. on Curves and Surfaces, Avignon,
France, 24 – 30 June. Lecture Notes in Computer
Science, vol. 6920, pp. 711 – 730. Berlin,
Germany: Springer-Verlag. (doi:10.1007/978-3-
642-27413-8_47)

20. Gilboa G, Sochen N, Zeevi YY. 2004 Image
enhancement and denoising by complex
diffusion processes. IEEE Trans. Pattern Anal.
Mach. Intell. 26, 1020 – 1036. (doi:10.1109/
TPAMI.2004.47)

21. Aharon M, Elad M, Bruckstein A. 2006 K-SVD:
an algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Trans.
Signal Process. 54, 4311 – 4322. (doi:10.1109/
TSP.2006.881199)

22. Tropp JA, Gilbert AC. 2007 Signal recovery from
random measurements via orthogonal matching
pursuit. IEEE Trans. Inf. Theory 53, 4655 – 4666.
(doi:10.1109/TIT.2007.909108)

23. Xie J, Feris RS, Sun MT. 2016. Edge-guided
single depth image super resolution. IEEE Trans.
Image Process. 25, 428 – 438. (doi:10.1109/TIP.
2015.2501749)

24. Xiang XZ, Yan ZK, Nan CJ, Xu WW, Zhang L.
2016 A modified joint trilateral filter based
depth map refinement method. In 12th World
Congress on Intelligent Control and Automation
(WCICA), Guilin, China, 12 – 15 June, pp.
1403 – 1407. Piscataway, NJ: IEEE Press. (doi:10.
1109/WCICA.2016.7578282)

25. Baker S, Scharstein D, Lewis JP, Roth S, Black MJ,
Szeliski R. 2011 A database and evaluation
methodology for optical flow. Int. J. Comput. Vis.
92, 1 – 31. (doi:10.1007/s11263-010-0390-2)

26. Scharstein D, Hirschmüller H, Kitajima Y,
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