AREA

MONTANA AND NORTH DAKOTA

A MISSOURI RIVER BASIN INVESTIGATION

FOR ADMINISTRATIVE USE ONLY
BUREAU OF LAND MANAGEMENT

AREA 3 DENVER, COLORADO

 Chta

$$
\cdots
$$

PRESENT STATUS OF BUREAU OF LAND MANAGEMENT STUDIES IN THE MISSOURI RIVER BASIN

(LAND CLASSIFICATION)

Land Planning and Classification Report Public Domain Lands

LOWER YELLOWSTONE AREA

 MONTANA AND NORTH DAKOTAA (Missouri River Basin Investigation)

For Administrative Use Only

Department of the Interior
Bureau of Land Management
Area 3

Denver, Colorado

May, 1958

The resource inventory and land status information contained in this report is based on data obtained by field examination and studies made prior to January 1955. Changes in resource data or land status subsequent to January 1955 are not necessarily in this report。

This report was compiled as a feature of the program of the Department of the Interior for the development, conservation and use of the resources of the Missouri River Basin.

TRANSMITTAL AND ACKNOW LEDGMENT

Lower Yellowstone River Area is located in Montana with a small part in North Dakota. This lower part of the Yellowstone River Basin is a tributary unit of the Missouri River Basin for which a comprehensive study is being made by the Department of the Interior. This report of the area involves an inventory of the resources and proposed development; especially for the public lands. Public domain lands are in scattered tracts which have been studied and classified individually. The area includes irrigated valley lands, dry farmed bench lands, rolling grazing lands and picturesque badlands.

Information assembled in this report provides basic data to determine the best ultimate use development of this area for the present and future. Material presented herein is based on field examination of the individual tracts of public domain lands administered by the Bureau of Land Management and uponinformation from other agencies of the Department of the Interior that administer resources in the basin. Several other Federal agencies, various state offices in Montana and North Dakota, livestock operators and others concerned with the resources of this area, have also contributed information. Field investigations and this report were completed by the Missouri River Basin staff of the Bureau of Land Management, Area 3.

This report is made as a contribution by the Bureau of Land Management to the over-all coordinated program of the Department of the Interior for the ultimate maximum development and use of the Missouri River Basin. The basins for which reports have been completed are shown on the study map which is the frontispiece of this report.

Area Administrator

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
owat \qquad
\qquad
\qquad
\qquad
wewn lefif
\qquad

CONTENTS

Topic Page
INTRODUCTION. 1
GENERAL DESCRIPTION 3
Location and Size。 3
Topography 3
Geology 4
Soils 6
Climate. 7
NATURAL RESOURCES 13
Rangelands 13
Forest Lands 14
Cropland 14
Irrigated Farm Lands 14
Non-irrigated Farm Lands 16
Wildlife. 16
Minerals. 17
Locatable Minerals 18
Leasable Minerals 18
Water. 20
HISTORY OF RESOURCE USE 22
Explorers, Trappers and Traders 22
Military Posts. 23
Settlement and Development. 23
Bureau of Land Management History in the Area 26
AREA ECONOMY 27
Transportation 27
Utilities 28
Agriculture 28
Trade and Services 38
Population 38
LAND USE AND OWNERSHIP 41
Rangeland Use. 41
State Grazing Districts 43
Farmland Use 44
Land Use for Mineral Production 48
Landownership 49
Land Utilization Areas 51
Topic Page
LANDS ADMINISTERED BY THE BUREAU OF LAND MANAGEMENT 53
Special Classifications and Uses for Public Domain 56
Maco Sica Badlands State Park 56
Cedar Creek Anticline Area 57
Prairie County Federal Lands 58
FIGURES
Number Title Opposite Page

1. Soils Within the Lower Yellowstone Area, Montana and North Dakota, 1957 6
2. Lower Yellowstone River Area, Rural and Urban Population, 1930, 1940, 1950. 40
3. Average Size of Farms in the Five Lower Yellowstone Area Counties for 1930, 1940, 1950 40
Average Number of Farms in the Five Lower Yellowstone Area Counties for 1930, 1940, 1950 40
4. Average yield and average returns of wheat per harvested acre for five Lower Yellowstone Area Counties in Montana; with the total annual precipitation and average price of wheat per bushel at Glendive, Montana; by years, 1919-1955. 47
5. Total Yield of Crops Produced on the Lower Yellowstone and Buffalo Rapids Reclamation Projects, Montana, 1955 See Appendix. 14
TABLES
Number Title Page
6. Climatological data for stations in or near Lower Yellowstone River Basin, Montana and North Dakota 9
7. Annual precipitation at four Lower Yellowstone Area Stations in Montana, 1919-1957 10
8. Comparisons of annual and long-time average amounts of precipitation for Lower Yellowstone Area Stations, Montana, 1952-1957. 12
9. Stream flows, Lower Yellowstone River, Montana, record years to 1954. 21
10. Cash receipts of farms in five Lower Yellowstone Area Counties, Montana, 1952-1955 (dollars) 30
11. Area and value of all crops, irrigated and non-irrigated, in five Lower Yellowstone Area Counties, Montana 1952-1955. 31
12. Combined crop statistics for five Lower Yellowstone Area Counties; Dawson, Fallon, Prairie, Richland and Wibaux, Montana, 1952 and 1953 32
13. Area harvested, total area planted and total yield of wheat in five Lower Yellowstone Area Counties, Montana, 1919-1955 (acres) 34
14. Yields, average yields, prices and returns of wheat per harvested acre in five Lower Yellowstone Area Counties, Montana, 1919-1955 (bushels) 35
15. Yield and value of wheat, irrigated and non-irrigated, in five Lower Yellowstone Area Counties, Montana, 1953. 37
16. Livestock on farms and ranches in five counties in the Lower Yellowstone Area, Montana, 1950, 1953 and 1956 (number of head). 42
17. Relative importance of crops grown in the Lower Yellow- stone Area as shown by yield and returns for the combined data of Dawson, Fallon, Prairie, Richland and Wibaux Counties, Montana, 1953 45
18. Landownership in the Lower Yellowstone Area by Counties, Montana and North Dakota, 1955 (acres). 50
19. Public domain land classification by counties in the Lower Yellowstone Area, Montana and North Dakota, 1955 54
20. Description, Area, Classification, Suitability and Proposed
Management of Unreserved Public Domain by Counties,
Within the Lower Yellowstone River Basin, Montana and
North Dakota, 1955. 59-92
21. Area, value and yield of crops produced on the Lower Yellowstone and Buffalo Rapids reclamation projects, Montana, 1955 Appendix 13
22. Crops produced on the Lower Yellowstone Project, Montana and North Dakota, 1946-1955 14
23. Crops produced on the Buffalo Rapids Project, Montana, 1950-1955 Appendix 15
24. Livestock and poultry on the Lower Yellowstone Reclamation Project, Montana and North Dakota, 1946-1955....... Appendix 16
25. Livestock and poultry on Buffalo Rapids and Lower Yellowstone reclamation projects, Montana and North Dakota, 1955 See Appendix 17
APPENDIXES
A. Principal plants growing on range lands of the Lower Yellow- stone River Basin, Montana and North Dakota. Appendix 1
B. Land Classification Report Form No. 4-1090 Appendix 5
C. Description and definitions of Land Use Capability Classes. Appendix 9
D. Lower Yellowstone and Buffalo Rapids Irrigation Projects See Appendix 11
MAP

Lower Yellowstone Area Land Ownership and Land Use Map. In pocket on the back cover

INTRODUCTION

Lower Yellowstone River Basin contains important agricultural, oil and gas producing areas. Badland and near badland areas are potential sources of heavy sediment production which present a control problem of importance as the area drains into the Garrison reservoir on the Missouri River. The area extends up the Yellowstone River Valley from it's confluence with the Missouri River near Buford in McKenzie County, North Dakota to ten miles above Terry in Montana. This basin has common divides with the Powder River, Little Missouri River, North Dakota Pumping, Montana Pumping, Big Dry River and Middle Yellowstone River Basins. Reports have been published by this Bureau for the first four of these adjoining basins as listed. They are available as shown on the progress map which is the frontispiece of this report. No reports have been published for the Big Dry and Middle Yellowstone areas.

The preliminary study of the area was published in March, 1949. That report proposed that each individual tract of public domain should be examined and classified to determine their resource condition and proper management. Area classification was not proposed because of the scattered pattern of public domain landownership. This final report is based on the field investigation of each tract of public domain. No large areas were classified entirely over all types of ownership, as is the practice in report areas that contain large concentrations of public domain.

Detailed studies of the scattered tracts of public domain in this area were completed in 1954. A land classification report, form number $4-1090$, was completed for each tract of public domain. This form report lists sixty items bearing on land use, classification and value. A copy of this form is appendix B of this report. These reports are filed in the Montana State Office of the Bureau of Land Management at Billings. A synopsis of each $4-1090$ report is presented in table 15 of this report, each line of the table being an outline classification of a tract of public domain in the area. Field work was performed with the aid of aerial photographs for use in mapping, locating, relating and describing. Public domain in the area is located in parts of Carter, Custer, Dawson, Fallon, Prairie, Richland and Wibaux Counties in Montana and in small parts of Golden Valley and McKenzie Counties in North Dakota.

This report and the accompanying map present the findings of the detailed studies. Federal lands are shown on the map as public domain and Land Utilization lands. All other landownership, state and privately owned lands, on the map are uncolored. Land Use is shown as
irrigated and non-irrigated lands, those proposed for irrigation development, and the proposed Maco Sica Badlands State Park. No differentiation is shown between range and cultivated lands on the map. Changes in land use and tenure are proposed for Federal lands in parts of the area in this report. Problems affecting the public domain lands are a feature of this report. Valuable resources in the area and their proper administration are considered.

Gross area of the Lower Yellowstone Basin is 4,570, 095 acres, of which 190,106 acres are public domain. There are $4,095,879$ acres in Montana and 474,216 acres in North Dakota. Public domain in Montana totals 189,801 acres. In North Dakota there are 305 acres of public domain. Land Utilization land totals 359,544 acres in Montana and 8,563 acres in North Dakota, a total of 368,107 acres in the area. Land Utilization lands are Federally acquired lands within so-called Land Utilization Projects. These are lands which were repurchased for conservation purposes during the drought and depression of the 1930's under the Bankhead-Jones Act.

The preliminary "Land Planning and Classification Report of the Public Domain Lands in the Lower Yellowstone Area" was published in March 1949 by the Bureau of Land Management. Reports are available for most of the adjacent and associated basin areas as shown on the progress map which is the frontispiece of this report. No reports have been published for the Middle or Upper Yellowstone River Basins or for the Big Dry area.

GENERAL DESCRIPTION

Location and Size

Lower Yellowstone Area includes the drainage of the Yellowstone River downstream from the Powder River drainage to the mouth of the Yellowstone, where it joins the Missouri River. The upstream point is at Calypso in Prairie County, Montana, about ten miles above Terry on the Yellowstone River. Yellowstone River joins the Missouri River near Buford, in McKenzie County, North Dakota, 115 miles northeastward. Maximum width of the basin is 82 miles and its greatest length is 148 miles from north to south. The area is in two states, Montana and North Dakota. Counties included in Montana are parts of Carter, Custer, Dawson, Fallon, Prairie, Richland and Wibaux. In North Dakota a small part of Golden Valley and a portion of McKenzie County are within the basin area, as shown on the maps with this report.

Lower Yellowstone Area covers 4,570,095 acres. There are $4,095,879$ acres in eastern Montana and 474,216 acres in western North Dakota. Public domain land in the area totals 190,106 acres, with 189 , 801 acres in Montana and 305 acres in North Dakota. Land Utilization repurchased lands comprise 368,107 acres, 359,544 acres being in Montana and 8,563 acres in North Dakota within the borders of the basin area. Total area of the basin is 7,141 square miles or 198 townships.

Topography

Topography varies from nearly level and undulating along the Yellowstone River and O'Fallon Creek to very rough and broken badlands. The Yellowstone River flows through a narrow to broad alluvial plain which is bordered by a succession of terraces, steeply rolling hills and rough, broken badlands. This succession is irregular and in some places is indefinite. Some of the terraces are broad level benches with cultivated land; in other places they are so narrow that they would not be observed. Elevations vary from 1,863 feet at the mouth of the Yellowstone River in North Dakota to 3, 830 feet on the Little Missouri River O'Fallon Creek Divide in Montana.

Physiographic features of the area are the Yellowstone River with its level bottomlands; rugged badlands; and rolling gravel hills. Bottomlands along the Yellowstone are generally quite extensive, from 2 to 5 miles in width except for short reaches near Terry and Glendive where badlands reach the river on both sides. In this area the Yellowstone is usually a sluggish, muddy stream about 250 feet wide and 3 feet deep. Ice jams in the spring frequently cause minor floods and occasionally cause major floods.

Outer limits of the area along the exterior divides are almost completely steeply rolling land, with some badland areas. Divides between tributary drainages in the area are often of this same type. Low rolling gravel hills of the Flaxville formation are along the north half of the western divide. Steep, spectacular badlands cover a large area south and east of Glendive in the central section of the Basin. This area has been proposed as a State Badlands Park. Other rugged badlands are found on the headwaters of Cedar Creek, and west of Terry. Several large natural bridges of sandstone are located in the Terry Badlands.

Most of the area is grazing land varying from gently to steeply rolling. About one-fourth of the area is sufficiently level so that it can be cultivated. Generally more of the land west of the river is suitable for farming than the more steeply rolling land east of the Yellowstone. Suitable farm land in Prairie County is mostly in the Land Utilization Area and is not farmed. There is considerable farm land east of the river in the O'Fallon Creek drainage.

Geology

Lower Yellowstone Basin is located in the western portion of the Missouri Plateau section of the Great Plains physiographic province. The basin consists of broad rolling upland surfaces dissected by the Yellowstone River and its tributaries. The Yellowstone River flows in a broadly terraced valley with as many as four terraces along the west side, varying from one half to three miles wide and extending for many miles along the river. The terraces are attributed to eastward downdip migration of the Yellowstone River during regional tilting. The tributaries to the Yellowstone River are predominantly parallel to each other and generally flowing in shallow trough-like valleys, having nearly level floors one quarter to two miles wide. Locally, erosion has dissected portions of the uplands into the "badlands" type. Elevations vary in the basin from about l, 900 feet where the Yellowstone flows into the Missouri up to about 3,500 feet on the tops of some of the hills southwest of Baker. However, local relief seldom exceeds 400 feet.

Rock formations exposed in the Lower Yellowstone Basin are of sedimentary, non marine origin, ranging in age from late Cretaceous to recent. The surface of most of eastern Montana and of the Lower Yellowstone Basin in particular is developed on the Tertiary Fort Union formation, which is the formation containing most of the lignite resources of the area. The Fort Union formation is of continental origin, having been deposited in lakes, swamps, and river flood plains.

It is composed mostly of sandstone, shale and clay and contains numerous beds of lignite. The Fort Union formation is divided into three members, the Sentinel Butte at the top. Tongue River, and the Ludlow at the base. The Ludlow lays conformably on the Cretaceous Hell Creek formation, and in most older reports, the two were undifferentiated and called the Lance formation.

The Ludlow member of the Fort Union formation and earlier formations are only exposed on the Cedar Creek anticline in the Lower Yellowstone Basin Area. The oldest formation exposed in the area along the Cedar Creek anticline is the Pierre Shale, which is overlain by the Fox Hills and subsequently the Hell Creek formation, all of upper Cretaceous age. The Sentinel Butte member, as nearly as can be determined from reports, is almost entirely removed in the area except for a few scattered remnants on some of the higher hills, such as Blue Mountain. Thus the Tongue River member forms the surface of most of the entire basin.

The upper part of the Tongue River member consists of massive, crossbedded, yellow, light buff to light gray, fine-grained, friable sandstone with interbedded light gray, poorly indurated shale and local fresh water limestone lenses. The lower part is predomin- im antly light gray. The Tongue River member as a whole contains numerous beds of lignite, and several of the beds in the lower half are thick and continuous. The thicker lignite beds are usually burned at the outcrop and for some distance back underground. The heat from the burning lignite has baked and fused the overlaying sandstone to a red to brownish colored clinker, locally called scoria, which is highly resistant to erosion.

More recent deposits include the Quaternary alluvium deposits in the bottom of the Yellowstone River Valley and some of it's tributaries and the Flaxville gravels on the terraces in the northern part of the basin west of the Yellowstone River. The Flaxville gravels consist of well rounded pebbles of igneous and metamorphic rocks varying from $1 / 8$ inch to 3 inches in diameter in a matrix of fine gravel, sand and silt. The Flaxville gravel is generally unconsolidated and has been reworked to form lower stream gravel terraces, some covering a considerable area. One of these terraces, covering the surface of Breezy Flat, west of Savage, varies from 5 to 30 feet in thickness.

The exact age of the terraces is unknown, but the presence of glacial rocks on the surface of the highest of the stream terraces indicates formation prior to Pleistocene glaciation. These glacial boulders dot the surface of the high stream terraces as far south as Intake, indicating that glaciation extended at least that far up the Yellowstone Valley.

The northeastern part of the Lower Yellowstone Drainage Basin overlaps the western portion of the so-called Williston Structural Basin, which has its center at Williston, North Dakota. The formations in the Lower Yellowstone Drainage Basin dip very gently toward the Williston Structural Basin, dipping to the northeast in the southern part and to the east in the northern part. The dip of the formations varies from about 10 to 50 feet per mile except in the vicinity of the Cedar Creek anticline, which is approximately tangent to the Williston Structural Basin. On the flanks of the Cedar Creek anticline the dip of the formations steepens to as much as 250 feet per mile. The Cedar Creek anticline is a breached anticline drained by Cedar Creek, a tributary of the Yellowstone River. Its axis trends South 30° East from its intersection with the Yellowstone about 8 miles upstream from Glendive.

Soils

Soils vary from alluvial sands and gravels along the creeks and rivers to fine clays and raw shales in the Badlands. Alluvial soils are virtually restricted to the bottomlands of the Yellowstone and Missouri Rivers along with the lower part of O'Fallon Creek, as shown on the soils map, figure 1. The Flaxville gravel areas, along the north half of the western boundary are considered to be glacial soils. Other soils in the area are nearly all residual. Most of the area is covered with soil of the Joplin type, formerly considered to be the Rosebud and Otero soils. The eastern part of the area has loam soils with clay and silt phases on terrain ranging from sloping to rolling and steep.

Soils on the public domain lands vary from sandy to clays and shales in the badlands. Most of the public domain outside of the badlands is covered with a sandy soil over a hard layer of shale, sandstone or concretion. This sandy soil is very subject to wind erosion if cultivated. Depth of the sandy layer is usually about 14 inches, but there is considerable variation.

Soils of the irrigable part of the area were surveyed by the Department of Agriculture and the Montana Agricultural Experiment Station. Results of this survey are published as No. 38, series 1932, Soil Survey of the Lower Yellowstone Valley Area, Montana, September 1939. This survey divides the soils of the area into five groups: (1) soils of the valley bottoms; (2) soils of the valley benches; (3) soils of the valley slopes; (4) soils of the upland; (5) miscellaneous soils and land types.

Figure 1

SOILS WITHIN THE LOWER YELLOWSTONE AREA

MONTANA AND NORTH DAKOTA 1957

EXPLANATION
 Williams - Morton-Bainville soils; see
Soil survey, U.S. D.A - N. Dakota Agr. Exp. Sto, No. 37, March., 1942

Alluvial soils, Mainiy loams, see Soil survey, U.S. D.A - Montono
Agr: Exp Sto, No. 38, Sept, 1939

A
Alluviol soils, Mainly loams

WMB

Willoms - Morton- Boivivice salis
\square
Joplin soils, underloin by Floxville grove

Area surveyed was 263,680 acres of river bottom and adjacent lands. Area of soil types mapped with percentage of the total area surveyed is as follows:

	Acres	$\frac{\text { Percent }}{26.1}$
Silt, clay or silty clay loam	66,496	23.3
Fine and very fine sandy loam	59,328	22.5
Rough broken land	22,976	8.7
Riverwash	18,816	7.4
Loam	16,192	6.1
Loamy fine sand	9,344	3.5
Gravelly loam	5,120	1.4
Clay	2,752	1.0
Colluvial soils	384	
Alluvial soils	263,680	100.0

Limited areas of irrigated land have become saline due to seepage, principally from ditches and lack of proper drainage.

Soils of McKenzie County, North Dakota were surveyed and mapped. Results of this survey are published as "Soil Survey of McKenzie County, North Dakota, March 1942; No. 37, U. S. D. A. and North Dakota Agricultural Experiment Station." This publication shows the portion of the county within the area to be Williams, Morton and Bainville soils. They are mostly loams, ranging from clay to sandy loams. There are some areas of clays and small areas of several other soil types.

Soils on most of the more level lands suitable for farming in the area generally have a good depth combined with both texture and permeability which are suitable for crop production. The area has more sand as a soil component than other adjoining basins. Sandy soils favor moisture penetration and frequently produce better yields of range forage or farm crops than fine soils which have poor permeability. Quality of the soil here is an important factor in land use, crop yields and income, which are presented in other sections of this report.

Climate

Cold winters, warm summers and low and erratic precipitation are characteristic of the climate. Climatological data for 18 stations in and near the Lower Yellowstone Area is presented in table 1. Temperature data, annual precipitation, average frost dates, average length of
growing season and years of record are given for each of the stations. The area extends from the mildest in eastern Montana at Miles City to the most severe along the "High Line" on the Missouri River. Miles City has the longest growing season in eastern Montana.

Length of frost free period at Miles City vaxies from 116 to 186 days in 40 years, the mean being 158 days. This period is shorter over most of the area as shown in table 1. Severe, damaging hail occurs somewhere in the area nearly every year. Infrequently hail damage or total loss affects a fairly large portion of the area. Blizzards and cold spells are normal winter occurrences. The cold may be displaced by a warm "Chinook" wind. Some winters are open and mild. Occasionally blizzards heap huge drifts of snow during protracted periods of subzero weather, disrupting traffic and killing livestock.

The area has sufficient summer rainfall, heat and humidity to be favorable for growing corn, and this is the "corn belt" of Montana. Below zero temperatures are common in the winter and those above $100^{\circ} \mathrm{F}$. in summer are quite frequent. Precipitation for the area averages about 13 inches annually, the range being from 3.73 inches at Mildred in 1934 to 24.35 inches recorded at Baker in 1927. Variations within the area are considerable in some years, as shown in table 2. Much of the summer precipitation falls as thunder showers, many of them being highly localized. Sunny, bright days are the rule. Cloudy days are infrequent and fog very seldom occurs.

Usually annual and seasonal rainfall is sufficient for the production of a satisfactory amount of range forage and also for the production of the non-irrigated crops grown in the area. Occasional droughts of six weeks or even longer during the growing season interfere with crop and range forage production. Cyclical low annual precipitation also occurs occasionally reducing yields of range forage and crops and causing abandonment of crop lands. In the thirty-seven year period, 1919 to 1955, average wheat yields per harvested acre nave been more than 8 bushels 26 times and less than 8 bushels in 11 years as shown in table 9. Climatic conditions are usually responsible for the major part of the differences between the area of wheat planted and harvested as shown in table 8. Data on yields and returns from crops as given in this report also largely reflect variations in climate.

The variation in annual precipitation between four stations in the area and from year to year is shown in table 2. This table lists the annual precipitation for four Lower Yellowstone area stations over a 39 year period, 1919 to 1957. These four stations, Glendive, Savage, Mildred and
Table 1. - Climatological data for stations in or near Lower Yellowstone River Basin, Montana and North Dakota

	Temperatures in degrees F. Avg. dates killing frost								Elevation$+M S I$	Years of Record		
Stations							Avg. days Avg. Annual Frost Precipitation					
	Jan. Mean	July Mean	Max.	Min.	Last in Sp-ing	$\begin{gathered} \text { First in } \\ \text { Fall } \end{gathered}$			for Temperature	for Precipitation		
Montana	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.	date	date	number	inches		feet	number	number
Baker	15.6	71.4	112.	-50.	May 9	Sept. 25	139	13.31	2,934	11	21	
Circle	13.3	70.2	112.	-57.	May 24	Sept. 13	112	11.67	2,428	52	54	
Culbertson	9.6	70.5	113.	-57.	May 19	Sept. 18	122	13.11	1,919	37	49	
Ekalaka	17.9	70.9	108.	-43.	May 19	Sept. 23	127	13.27	3,434	50	58	
Fallon	9.6	70.4	108.	-54.	May 19	Sept. 18	122	13.36	2,231	12	12	
Garland	17.8	73.6	112.	-51.	May 18	Sept. 23	128	12.91	2,641	31	31	
Glendive	15.1	74.9	117.	-50.	May 13	Sept. 24	134	13.07	2,091	56	64	
Knowlton	16.4	71.6	108.	-40.	May 15	Sept. 22	130	13.16	2,708	14	14	
Mildred	15.7	73.7	112.	-50.	May 14	Sept. 25	134	12.74	2,352	36	48	
Miles City	14.5	72.9	111.	-49.	Apr. 30	Oct. 5	158	14.45	2,358	40	40	
Miles City Airport	16.1	75.0	110.	-37.	May 15	Sept. 29	137	12.81	2,629	19	19	
Plevna	14.8	71.9	111.	-52.	May 18	Sept. 27	132	13.39	2,757	39	44	
Savage	12.9	72.2	111.	-53.	May 18	Sept. 22	127	13.44	1,971	49	51	
Sidney	9.2	¢8.8	110.	-47.	May 18	Sept. 21	126	14.93	1,931	17	17	
Vida	12.5	71.1	112.	-38.	May 20	Sept. 21	125	15.99	2,409	23	29	
Wibaux	16.2	69.0	110.	-55.	May 25	Sept. 13	111	15.52	2,647	18	20	
Norih Dakota												
Beach	12.1	69.9	110.	-43.	May 18	Sept. 20	124	15.14	2,779	36	36	
Watford City	11.2	71.4	112.	-45.	May 17	Sept. 21	127	15.94	2,082	23	23	
Station Averages	13.9	71.6	111.1	-48.7	May 17	Sept. 22	129	13.76	2,462	31	35	

Table 2. - Annual precipitation at four Lower Yellowstone Area Stations in Montana, 1919-1957

Year	Glendive	Savage	Mildred	Plevna	Average
1919	9.17	9.64	-	7.26	8.69
1920	13.51	13.02	-	17.14	14.56
1921	13.23	9.32	10.17	14.00	11.68
1922	13.50	12.24	15.85	18.41	15.00
1923	14.22	15.48	15.46	16.71	15.47
1924	13.40	13.21	11.77	13.57	12.99
1925	14.80	11.50	10.02	12.19	12.13
1926	10.16	10.82	7.64	11.60	10.05
1927	18.92	17.43	14.89	18.34	17.39
1928	11.53	11.05	9.02	12.53	11.03
1929	14.93	9.99	15.83	14.49	13.81
1930	12.76	10.44	11. 15	14.60	12.24
1931	9.14	6.18	8.48	7.79	7.90
1932	16.80	12.97	13.46	15.47	14.67
1933	14.70	14.46	9.91	14.12	13.30
1934	4.83	5.93	3.73	6.92	5.35
1935	14.18	11.80	10.77	12.58	12.33
1936	9.19	9.21	6.10	9.29	8.45
1937	10.52	9.84	12.28	11.94	11.14
1938	12.54	16.77	13.69	16.53	14.88
1939	10.59	12.79	10.23	17.44	12.76
1940	14.98	14.81	14.14	17.29	15.30
1941	13.69	15.75	18.15	22.61	17.55
1942	19.21	17.75	15.59	15.98	17.13
1943	14.81	16.49	17.74	12.94	15.42
1944	15.67	15.35	19.69	15.24	16.49
1945	12.89	11.19	12.25	10.03	11.59
1946	15.71	17.48	17.69	17.26	17.03
1947	18.19	14.17	13.00	14.53	14.97
1948	14.26	14.73	14.64	15.23	14.71
1949	8.28	8.26	8.85	9.41	8.70
1950	17.94	19.93	12.09	12.18	15.53
1951	9.90	11.89	12.31	12.32	11.60
1952	8.37	10.68	8.77	6.67	8.62
1953	16.67	20.02	20.93	15.05	18.17
1954	12.97	14.52	11.30	9.13	11.98
1955	10.63	13.24	10.71	11.53	11.53
1956	11.46	12.16	8.05	9.41	10.27
1957	15.91	16.42	14.42	12.04	14.70
Period					
Aver	e 13.18	13.05	12. 45	13.38	13.01
Average					
Record					
Year	13.07	13.44	12. 74	13.39	13.16
Record					
Year	No. 65	52	49	45	53
Elevation,					

Glendive and Savage are located on the Yellowstone River near the center of the area. Mildred and Plevna are upland stations in the Southern part of the area. These four stations are the only ones in the area for which records are readily available for 1919-1957.

Climatological Data, Montana Annual Summary, 1919-1957; U. S. Department of Commerce, Weather Bureau.

Plevna, may be considered to be representative of the entire area. They are two pairs of stations, each of which is similar in elevation and site. One pair, Glendive and Savage, are on the Yellowstone River; Mildred and Plevna are more than 800 feet higher on the upland plains. Table 2 shows the variation between these stations in similar and different sites in the same year as well as variations from year to year for the 37 year period. Average precipitation for each year is also given. Most of the precipitation in the area falls as rain during the growing season.

Thornwaite's classification of climates has been used to classify cilmates in the area from 1909 to 1939. This classification is based on precipitation effectiveness indexes which were computed from precipitation and temperature data. Annual precipitation effectiveness ($\mathrm{P}-\mathrm{E}$) indexes for the climatic types are $0-15$ for arid, 16-31 for semiarid and $32-47$ for dry subhumid. For crop seasons the precipitation effectiveness ($\mathrm{P}-\mathrm{E}$) indexes are $0-7$ for arid, $8 \sim 15$ for semiarid, $16-23$ for dry subhumid and $24-31$ for moist subhumid. In the years 1900 to 1939 climatic types in the area for the entire years were 7 percent arid, 63 percent semiarid and 30 percent dry subhumid. In the same years crop seasons were 7 percent arid, 38 percent semiarid, 40 percent dry subhumid and 15 percent moist subhumid.

Annual precipitation over a six year period, 1952-1957, at ten stations in the area is compared with the long time average amounts of precipitation at these stations in table 3. The average figures for the ten stations is also given. Deviations from the norm are shown as percentages of the long time averages for each station. The difference between the annual precipitation in the odd and even years, 1952-1957, at each station is shown in inches and as a percent of the long time average annual precipitation. The comparisons for 1952 and 1953 are interesting as these two years were considerably different in amounts of annual precipitation, 1953 being a year of unusually high precipitation and 1952 being an unusually dry year. This table further emphasizes the variation in the production potential for range forage and non-irrigated crops. Soil and site conditions on nearly all of the area are such that the amount and effectiveness of precipitation are usually the governing factors for the amount of production of both range forage and nonirrigated crops.

	1952		1953			Variation 1952-53	
Station	$\begin{aligned} & \text { Precipi- } \\ & \text { tation } \\ & \text { Inches } \\ & \hline \end{aligned}$	Percent of Avg. Percent	$\begin{gathered} \text { Precipi- } \\ \text { tation } \\ \text { Inches } \\ \hline \end{gathered}$	Percent of Avg. Percent	Long Time Average Inches	Total Variation Inches	Percen of Avg. Percent
Baker	7.72	58	17.12	129	13.31	9.40	71
Fairview	9.05	68	23.62	178	13.25	14.57	114
Glendive	8.37	64	16.67	128	13.07	8.30	64
Lindsay	9.78		18.47			8. 69	
Mildred	8.77	69	20.93	164	12.74	12.16	95
Plevna	6.67	50	15.05	112	13.39	8.38	63
Savage	10.68	79	20.02	149	13.44	9.34	69
Sidney	8.46		16.15			7.69	
Terry	8.61		18.34			9.73	
Wibaux	8.50	55	15.49	100	15.52	6.99	45
Average	8.66	64	18.19	134	13.57	9.53	72

	1954		1955			Variation 1954-55	
Baker	11.78	89	15.20	114	13.31	3,42	26
Fairview	15.38	116	14.80	112	13.25	. 58	4
Glendive	12.97	99	10.63	81	13.07	2. 34	18
Lindsay	11.09		14.23			3.14	
Mildred	11.30	89	10.71	84	12.74	. 59	5
Plevna	9.13	68	11.53	86	13.39	2. 40	18
Savage	14.52	108	13.24	99	13.44	1.28	10
Sidney	13.66		13.14			. 52	
Terry	10.45		10.64			. 19	
Wibaux	17.69	114	9.39	61	15.52	8.30	53
Average	12.80	95	12.35	91	13.57	2.32	17
	1956		1957			Variation 1956-57	
Baker	9.63	72	13.49	101	13.31	3.86	29
Fairview					13.25		
Glendive	11.46	88	15.91	122	13.07	4.45	34
Lindsay	10.66		15.30			4.64	
Mildred	8.05	63	14.42	113	12. 74	6.37	50
Plevna	9.41	70	12.04	90	13.39	2.63	20
Savage	12.16	90	16.42	122	13.44	4.26	32
Sidney	11.04		13.61			2.57	
Terry	8.35		11.37			3.02	
Wibaux	9.48	61	16.62	107	15.52	7.14	46
Average	10.03	74	14.35	106	13.57	4.33	32

Climatological Data, Montana Annual Summaries, for the calendar years 195257; U. S. Department of Commerce, Weather Bureau.

NATURAL RESOURCES

Most of the area is rangeland. Soil and slope conditions on much of the area permit use for non-irrigated farming. Irrigated land is restricted to the level bottom lands of the Yellowstone and a small area of low bench land. Other natural resources of the area are oil, gas, coal, the waters of the Yellowstone, fish and wildlife and the scenic badlands.

Rangelands

Rangelands of the area vary from undulating to steeply rolling silty, sandy and clay sites with considerable areas of badlands as shown on the Soils Map, figure 1. Vegetal cover varies considerably with sites, slopes, use and climate. The common vegetal cover is grass, big sagebrush dominating the aspect on only a minor part of the area. Principal range grasses are bluestem wheatgrass, blue grama, needleandthread, prairie junegrass, sandberg bluegrass and threadleaf sedge. Big sagebrush is the only shrub making up a major part of the composition on these rangelands. There is some silver and sand (fringed) sagebrush in parts of the area. Most of this rangeland requires four to five acres to supply ananimal unit month of feed. Former farm lands, purchased by the Federal Government for conservation purposes during the drought and depression of the thirties, are now Land Utilization Project lands. Most of these lands are now covered with almost pure stands of bluestem wheatgrass and some have been seeded to crested wheatgrass. These lands produce good hay in years with good growing conditions. Two or three acres of this land supply an animal unit month of forage.

Parts of the river bottom land which are too wet or too rough to farm are used for grazing, with limited areas being cut for hay. These lands are covered with wheatgrasses, tall brome, Canada wildrye and sweetclover. Cottonwoods and willows grow along the river banks, stream margins and on islands in the Yellowstone River. Thickets of willows, chokecherry, serviceberry, rose and silver sage occur on moist bottom lands of the river and on the larger streams. Saline areas, small in extent, are usually covered with inland saltgrass with some saltbush. Greasewood and buffaloberry are also found here. Ash and boxelder grow along the creeks in the eastern part of the area.

In the badlands vegetal cover is largely confined to the level tops or "tables" or to the intervening patches of level small bottoms between the breaks and the cliffs. Grasses of the plains extend into these areas, bluestem wheatgrass and blue grama being the dominant species.

Slopes and faces are generally steep to perpendicular with little or no vegetation. Big sagebrush and silver sagebrush grow on the more gentle slopes. There are a few juniper, skunkbush and rose here。 Ten acres of badlands provide one animal unit month of range forage.

Most of the public domain is on sandy rolling to steeply rolling sites with a grass vegetal cover aspect. About six percent is in true badlands and considerable public domain is in near badlands. Land use capability classification of the public domain is 33,499 acres or 18 percent class $\mathrm{VI}_{9} 148,219$ acres or 78 percent class VII, and 8,389 acres or 4 percent class VIII. Recommended stocking rate for the class VI public domain land averages 3.8 acres per animal unit month; class VII, 5. 4 acres per AUM, and for class VIII the figure is 17 acres. Class VI public domain land supplies 24 percent of the total AUMs; class VII furnishes 75 percent, and class VIII offers only one percent. Description and definitions of land use capability classes are given in appendix C. Each tract of public domain has been classified by land use capability as outlined in table 15.

Rangelands cover $3,443,823$ acres or $75 \frac{1}{2}$ percent of the area. Wastelands, principally badlands, make up 25,272 acres or one half of one percent of the area.

Forest Lands

Tree cover on the area is so limited that none of the area is considered to be forest lands. Timber use is restricted to fuel and fence posts. Cottonwood trees are frequent along the Yellowstone River and are also found along the margins of the principal streams. In the eastern part of the area ash and boxelder grow along the margins of the creeks.

Cropland

Irrigated Farm Lands

Irrigated farm lands cover 101,000 acres in the area, practically all being in the Yellowstone River Valley. This is two percent of the area. Most of the irrigable lands, 56,170 acres, is within the Lower Yellowstone irrigation project developed by the Bureau of Reclamation in 1905-1909. An additional 22,938 acres is in the Buffalo Rapids project of the Bureau of Reclamation, a recent development which was started in 1937. The Lower Yellowstone project is irrigated from a gravity main canal supplied from a diversion dam at Intake, midway between Savage and Glendive in

Montana. This project extends 72 miles down the Yellowstone River to its mouth on the Missouri River. About two-thirds of the project is in Montana and one-third is in North Dakota. The main canal and lands of the project are shown on the Land Ownership and Land Use Map of the area with this report.

Buffalo Rapids project, located near Terry, is supplied with water by pumping. Two pumping projects were developed by state authorities. Sidney project, 5,300 acres, was constructed by the Montana Water Conservation Board in 1938. Sioux project, 700 acres in extent, was designed by the North Dakota State Water Conservation Commission in 1939.

Two pumping projects have recently been completed and put into service in the area by the Bureau of Reclamation. Savage Unit, 2,215 acres, pumps water out of the Lower Yellowstone project main canal into a distribution canal 7.8 miles in length. This project commenced delivery of water in 1952. Intake project also pumps from the Lower Yellowstone main canal to serve 881 acres through 4 miles of canals. Completed in 1946, this project has two low lifts. Both of these recent improvements adjoin the Lower Yellowstone gravity project which was completed in 1909. The balance of the irrigable land, 12,796 acres, is in small private developments with simple diversions or pumps.

Additional pumping projects have been investigated by the Bureau of Reclamation. These potential projects have not been developed, partly because the land owners do not favor them. Construction of these projects would increase crop production, help to stabilize the livestock industry, and would promote the economy and general welfare of the area. Potential projects along the Yellowstone River in the area are as follows:

Units of MRB Project	Irrigable Area-Acres	Length of Main Canal
Cartwright	800	Miles

Non-Irrigated Farm Lands

Non-irrigated farm lands make up 1,000,000 acres or 22 percent of the area. Most of this land is cropped every year, only about one-fourth being summer fallowed usually. In dry years the amount summer ofallowed will be greater. Much of the non-irrigated land is strip farmed with alternate strips of corn and wheat, these crops being rotated in the strips. Most of the crop land is west of the Yellowstone River. Land with gentle slopes, good soil depth and having suitable texture is utilized for crop land.

Amount and efficiency of precipitation is the limiting factor for crop production on the farm land. Low rainfall and low prices combined to make farming unprofitable in the dry "thirties". At this time 368,107 acres in the area were purchased by the Federal Government for conservation and relief purposes. Much of this was formerly farm land. This Federally owned land is now in Land Utilization projects and is called Land Utilization or LU land.

Potential crop lands in the area approximate 400, 000 acres, 200, 000 acres being former farm land now Federally acquired Land Utilization project land and 200, 000 acres being privately owned land now used for range. Standards for crop lands may change in the future to alter this figure as influenced by changing conditions. At present one of the principal limiting factors for classifying land to be suitable for farming in the area is in size of the site. Farm land must be in fields of sufficient size and located so"as to be an economic unit for large scale mechanized operation. Some fields and units which would not be truly economic for cash crop production are utilized in order to provide feed for the livestock of the operator. In these cases the need for hay or grain or the convenience involved becomes the ruling factor to operators whose enterprise is livestock.

Wildlife

Deer and antelope are numerous and are nearly always evident in the area. Deer are especially common in the badlands and along the Yellowstone River. Deer population of the area is estimated to be $22,000,90$ percent being blacktail deer and 10 percent are white tail deer. Pronghorn antelope are numerous on the plains and benches of the area. During the 1955 hunting season hunters were apparently able to get their limit of deer and antelope readily.

Upland game birds are quite common over most of the area. Sage grouse and sharp-tail grouse appear to be staging a good comeback, as many coveys were noted during the summer. A few coveys of Hungarian pheasants were seen on the first bench lands near the river. Ringneck or Chinese pheasants appear to be abundant in places, especially in the irrigated farm areas in Richland, Dawson and Prairie Counties.

Duck hunting is fairly good along the river sloughs and on some of the larger reservoirs. A few Mallards remain all winter in the Sidney area to nest the next spring. Fox Lake in Sections 4, 5, 8 and 9, T. 22 N., R. 55 E., has in the past been an excellent duck hunting area, but the last few years the water has been so low that many ducks have been killed by the brash water. This lake should probably either be raised or drained. The Great Northern Railway crosses this lake and it could not be raised or drained without their permission and then could only be raised about three feet. The Montana Fish and Game Department owns 520 acres in and adjacent to the lake and there are 160 acres of unreserved public domain that are nearly all under water. At the time of examination, vegetation could be seen over most of the lake area. Most of the water was not over two feet deep.

Cottontail rabbits and jack rabbits are quite plentiful all over the area. Fur bearing animals are not plentiful, except skunks and racoons. There are some bob and lynx cats in the badlands area, and a few beaver and mink along the river and the larger streams.

There is fair fishing along the Yellowstone River and one can observe the Issac Walton followers fishing all the way from Miles City to the Missouri River. The favorite spotin this area is below Glendive at Intake where the Reclamation Service has a low diversion dam. Pike, perch, catfish, sturgeon and occasionally trout are taken in the Yellowstone. Some of the larger reservoirs in the area have been stocked with breem and small mouth bass.

Minerals

The mineral resources of present economic importance within the Lower Yellowstone Basin include only oil and gas. Some interest has developed in possible uraniferous lignite deposits, particularly in the southeast portion of the area.

The relation of the mineral resources to the management and disposal activities on the public domain within this area can best be correlated on the basis of locatable and leasable minerals.

Locatable Minerals

Uraniferous lignite is a locatable mineral under Public Law 357, which provides for the exploration and exploitation, under the mining laws, of uraniferous coal deposits. However, while extensive beds of lignite, which is generally a leasable mineral, underlay the area except along the crest of the Cedar Creek anticline; the only activity to be expected under Public Law 357 will most likely be in the areas adjacent to the Ollie-Carlyle, Long Pine and Ekalaka Hills districts of the Little Missouri River Basin to the southeast. Those areas of Townships 9, 10 and 11 North, Range 59 West in which the Fort Union formation outcrops and which are underlaid by lignite beds should be considered as probable conflict areas as a result of uranium staking activities.

The Lower Yellowstone River Basin contains no known evidence of igneous activity or any relation to a metallogenetic province. Consequently, no metalliferous ore deposits are known in the area. The area has been affected only mildly by diastrophism as evidenced by the Cedar Creek anticline, which trends southeast from the vicinity of Glendive; and the Williston Basin, the western flanks of which are located in the northeast portion of the area.

Mineral production in the past has consisted primarily of sand, gravel, scoria and clay, all of which now come under the common varieties provision of Public Law 167 and are no longer locatable. Demand for sale of these materials will probably remain minor and desultory.

Leasable Minerals

The only leasable minerals of any importance are oil and gas. During 1957, eighty new wells were completed in the area, including 73 oil producers, 1 oil and gas producer and 6 abandoned wells. Of the 74 producing wells, only one was a new discovery which extended the Pennel field to the southeast.

Because a market is essentially non-existent, lignite presently has only a potential value even though the reserves are tremendous. At the present time only a very minor amount of lignite is mined for local consumption.

The comparative importance of the leasable minerals in the Lower Yellowstone River Basin is shown by the receipts of the Bureau of Land Management from royalties and rentals under the Mineral Leasing Acts. The receipts include rental and production income from public domain minerals and minerals in acquired lands. The following table, computed to include approximately only those lands of each county within the Lower Yellowstone Basin, shows the receipts by counties for the calendar year 1957:

State \&	Producing	Non-Producing			
	Oil \& Gas	Oil \& Gas	Coal \&		
County	Royalties	Rentals	Other		Totals
Montana					
Richland	\$ 0.00	\$ 17,982.00	\$644.38	\$	18,626. 38
Dawson	105,113.00	31,055.00	0.00		136,168.00
Prairie	19,563.00	20,502.00	0.00		40,065.00
Wibaux	460,906.00	6,127.00	0.00		467,033.00
McCone	0.00	232.00	0.00		232.00
Fallon	345,431.00	39,692.00	0.00		385,123.00
Custer	0.00	5,834.00	0.00		5,834.00
Carter	409.00	6,372.00	0.00		6,781.00
Total	\$931,422.00	\$127.796.00	\$644.38		059,862.38

North Dakota				
McKenzie	\$12,581.00	\$14, 694.00	\$ 0.00	\$27,275.00
Golden Valley	0.00	499.00	0.00	499.00
Total	\$12,581.00	\$15,193.00	\$0.00	\$27,774.00
Area Total	\$944, 003.00	\$142,989.00	\$644. 38	\$1, 087, 636.38
Increase or				
Decrease over	1956+64.41\%	+104.84\%	-18.46\%	+68.68\%

Disposal and management activities within the basin are not likely to be materially affected by mineral development with the exception of minor conflicts resulting from the location of uraniferous lignite claims. Only minor demands are apt to be made for the common varieties of sand, gravel, stone, scoria, clay, etc. Due to adequate classification for the leasable minerals by the United States Geological Survey, no foreseeable land use or disposal problems are indicated.

Yellowstone River is the only live flowing stream in the area. Local tributary drainages are intermittent streams. The larger creeks have occasional pot holes which usually provide livestock water nearly all of the year. There are some scattered springs in the badlands and along the creeks.

Yellowstone River is 671 miles in length, draining an area of 70,400 square miles. It originates in Yellowstone Lake, high in the Rockies of Wyoming in Yellowstone National Park. This is the largest natural lake at the source of any of the rivers west of the Mississippi in the United States. Several tributaries of the Yellowstone also rise at high elevations in the Rocky Mountains. Numerous small reservoirs have been constructed on parts of the drainage to supplement natural flows for irrigation. Boysen Reservoir on the Wind River, which is the upper part of the Bighorn River, is the only reservoir large enough to have any stabilizing effect on the lower reaches of the Yellowstone. Stream flow stabilization effect of this reservoir is virtually all utilized on the large area of irrigated land downstream from the reservoir with in the Bighorn River Drainage. It also offers little protection against flood as it only stores the Wind River drainage, which is eleven percent of the Yellowstone drainage area.

When Yellowtail Dam is constructed in Bighorn Canyon in Montana, flow of the Bighorn River will be stored and stabilized much closer to the Yellowstone River and will be of some benefit to the Lower Yellowstone Area. The dam in Bighorn Canyon will regulate the flow of 28 percent of the Yellowstone River Basin. Drainage for this dam includes high mountains with large amounts of run-off and desert areas with little production. This drainage area is considered in the Wind River and Bighorn Basin reports of the Bureau of Land Management.

Low stream flows or increase in use of upstream flows will reduce flows within the Lower Yellowstone area so as to interfere with the operation of irrigation pumps. Development of additional irrigated land may not be feasible unless there is additional storage on or near the main stream of the Yellowstone River. Absaroka dam and reservior are being investigated to provide storage for the further development of irrigated lands in the Yellowstone River Valley. In addition to providing a stabilized flow ample for all uses, this dam would also provide water of improved quality for downstream use. Although this dam would store water from only five percent of the Yellowstone drainage, it is a mountain area with high water yield and a heavy annual snow melt which can be
stored for later irrigation season use at a time when normal flow of the stream is relatively low. Absaroka Dam is located on the main stream of the Yellowstone near Livingston, Montana. This dam will also be valuable for controlling floods which periodically threaten the Yellowstone Valley. It has been proposed to store 892,000 acre-feet of water and produce 30,000 kilowatts of firm power.

Lower Yellowstone Area is 7, 141 square miles in extent, representing ten percent of the drainage area of the entire Yellowstone River Basin. Drainage above the area is 63,259 square miles or ninety percent. The intermittent streams of the Lower Yellowstone Area provide relatively little run-off to the flow of the Yellowstone River. Precipitation in the area is low. Tributary streams flow large amounts only at times of heavy rainfall or following snow melt. Run-off from Glendive Creek has been so high as to cause considerable flood damage to property in Glendive. Ice jams and stage flow variations as high as twenty feet cause flooding in the lower reaches of the Yellowstone River. Largest tributary stream in the Lower Yellowstone Area is O'Fallon Creek, 112 miles Iong, with 1,562 square miles of drainage area. Cabin Creek is 58 miles in length, draining 460 square miles. Deer Creek, 35 miles long, drains 187 square miles.

Stream flow measurements by the Geological Survey are available for four gaging stations on the Lower Yellowstone River. These discharge records are shown in table 4.

Table 4. - Stream flows, Lower Yellowstone River, Montana, record years to 1954 -

Gaging Station Location	Drainage Area	Area Irrigated	Max。 Flow	Min. Flow	Awerage Annual Flow	Record Period Years
	sq. mi。	acres	cfs	cfs	ac. ft.	
Miles City State Highway 22	48,436	$1,100,000$	96,300	996	$7,804,000$	25
Glendive	66,943		107,000	1,060	$8,113,983$	4
Intake	67,901		159,000	1,200	$10,736,539$	21
Sidney	69,450	$1,250,000$	138,000	860	$8,586,000$	20

USGS Water Supply Paper \#1389, Surface Water Supply of Missouri River Basin above Sioux City, Iowa, 1954; published 1956. Additional water use in the upper basin or low flow periods may cause water shortages in the Lower Yellowstone River unless upstream storage is developed. Low flows will particularly affect irrigated areas that are dependent upon pumping.

HISTORY OF RESOURCE USE

Explorers, Trappers and Traders

The Lower Yellowstone River and Valley have always been a travel route, both north to south and east to west. Originally used by buffalo and Indians, then by explorers, trappers and traders in canoes, on through the steamboat and the freight route to the railroad, the highway and the skyway. River steamers used the Yellowstone upstream to the site of Billings, Montana.

William Clark, of the Lewis and Clark exploring expedition, returned eastward down the Yellowstone in 1806. The first fur trading post in Montana was established a year later, in 1807, at the mouth of the Bighorn River in the Yellowstone Valley, 130 miles upstream from this area. This was Fort Manuel Lisa, the first building in Montana. Also known as Manuel's Fort, it was built by a St. Louis fur trader to trade with the Crow Indians and as headquarters for trapping brigades. John Colter left here to discover the then unbelieved geysers, hot springs and boiling mud pots of what is now Yellowstone National Park. Hostility of the Blackfeet Indians caused abandonment of the fort in 1811, and it was totally destroyed by 1812. Later trading posts built here were headquarters for trappers who explored present Wyoming. Fort Van Buren was built near here in 1835 by the American Fur Company, and served as a frontier post until 1843.

Fort Henry was established at the mouth of the Yellowstone River in 1822 by William H. Ashley as a fur trading post. The site was abandoned in 1823 until Fort Union was built in 1829. Two fur trading posts preceded Fort Buford, located a few miles east of Fort Union. Fort William was there 1833-1834, and Fort Mortimer served trade and trappers from 1842 until 1845.

Fort Union, king of the trading forts, was built on the north side of the Missouri River, at the mouth of the Yellowstone, in 1829, for the American Fur Company. Built to trade with the Assiniboine Indians and as a central depot for scattered outposts, it was not completed until 1834. It continued until 1867 when it was purchased by the Federal Government, wrecked, and the materials were used to complete Fort Buford, two miles down the Missouri. Fort Union was the best in the west with towered blockhouses 24 feet square, with embrasures for cannon and ramparts behind log stockades. In the fort were log houses, stores, accomodations for 150 horses and a powder magazine of 50,000 pounds capacity.

Fort Buford was a military outpost built on the Missouri River near the mouth of the Yellowstone in 1866. Built by the 13 th U. S. Infantry, this fort served as an infantry and cavalry frontier post until 1895. These early forts served not only as protective centers, but they were also the only law in the early days. They also served as communication, emergency, supply, transportation, health, governmental and social centers during their existence. All the Army forts were connected by military roads. These roads became freight routes to supplement the river steamers prior to the building of the railroads.

After the Custer Massacre on the Little Bighorn in July 1876, Fort Custer was built at the mouth of the Little Bighorn in Bighorn River Valley. General Miles arrived at the mouth of the Tongue River in August 1876 with orders to compel the Sioux and Cheyenne Indians to return to their reservations. Fort Keogh was built here in 1877. General Miles commanded it until 1880, when all the buffalo had been killed and many of the Indians had died. This fort was an Army post until 1900 and continued as a remount station for the cavalry until 1924. Buildings and land of the old fort are now used by the Bureau of Animal Industry and the Forest Service of the Department of Agriculture for the U.S. Livestock Experiment Station. Livestock breeding and feeding work and range utilization studies are carried on here. This fort was located 30 miles up the Yellowstone River Valley from the area. Fort Keogh and Fort Buford, at the mouth of the Yellowstone River, protected and administered the area until 1895.

Last of the great buffalo hunts occurred in the area in the early 1870's. Robe hunters brought in one million hides in a season. This wasteful slaughter was carried on in the winter, the hunters spending their summers cutting wood for river steamers. The Indians rebelled at this wanton destruction of their food supply. Sioux, Crow and Blackfoot Indians hunted and trapped in the area. Trading and trapping continued to be the principal and almost exclusive industry until 1880.

Settlement and Development

The Northern Pacific Railroad came into the area from the east in 1881 and built on westward up the Yellowstone River Valley. Construction of the military forts and building of the railroad enabled cattlemen to enter the area. First cattle came into eastern Montana from western Montana, where cattle had been introduced from Oregon in 1856. Early in the 1880's trail herds came up the Powder River trail from Texas and Kansas. These cattle thrived on the open range until the severe winter
of 1886-1887. More than half of the cattle perished in that winter. Carcasses were thick in the badlands where the cattle had gone for protection. Many deer and antelope perished with the cattle. After this, stockmen began to settle in the area and commenced to put up hay and care for their stock in the winter. Most of the trail riders were Texans. These men largely settled the area and many of the present inhabitants are their descendants.

First settlers were "squatters" who lived near the frontier military forts. Settlement spread from the forts along the Yellowstone River and on the military roads between the forts. Settlers came into the area ahead of the Northern Pacific Railroad. Practically all of the land suitable for cultivation was homesteaded and plowed in the period from 1907 to 1917. This was the era of the "dry land movement" that brought settlers to eastern Montana and the western Dakotas. Most of this land was farmed with horse equipment in small units with fair to good success until the dry year of 1919. Many dry farmers left the area in this drought period. In the twenties operating units increased in size and the use of power equipment increased.

Production of hay for range livestock and cavalry horses led to farming, both irrigation and dry farming. Low production and virtual failure of hay production in dry years, except on the most favorably situated sites, led to the practice of irrigation. Simple diversions from temporary streams in the area provided for the early irrigated areas. Livestock operators purchased hay meadows and water holes or homesteaded these sites.

Irrigation developed slowly in the area, principally because the practice is not essential to the production of most crops that had been grown there. The precipitation is usually ample for satisfactory yields of grain and wild hay which were almost the sole crops produced prior to the development of the irrigation projects. Simple diversions to spread water on hay meadows were the first irrigation developments. Surveys for the 56,170 acre Lower Yellowstone irrigation project were made soon after Congress passed the Reclamation Act of 1902. Construction started in 1905 and water was available in 1909. Ditches and structures were built by horse and man power. Large crews supported camps and pioneer towns that have vanished along with the slip. the fresno and the dump wagons that built the project.

Several years elapsed before irrigation was generally used on the project. Planting of alfalfa and promotion of sugar beet acreage brought about complete irrigation of project lands which has since been
an accepted practice in the area. Holly Sugar Company built a beet sugar factory at Sidney in 1925. Buffalo Rapids irrigation project added 22,938 irrigable acres to the area in 1939. Several smaller state and private projects were developed prior to 1939.

The Chicago, Milwaukee, St. Paul and Pacific Railroad was built across the area along O'Fallon Creek from Baker to Terry in 1908. Branch lines of the Northern Pacific Railway were built from Glendive to Sidney in 1912 and to Circle in 1928. The Great Northern Railway built southward from its main line north of the area into Sidney in 1913. A branch line was built westward from Sidney to Richey in 1916. Another branch line was built eastward from Fairview across the Yellowstone River to Watford City, North Dakota in 1914. These railroad lines promoted settlement and more intensive utilization and development of the area. Their service greatly enlarged the area suitable for wheat production by making economic shipment feasible.

Drought was prevalent in the area in the thirties, 1934 being the year of the lowest precipitation. Depression conditions caused low prices and the drought brought poor crops, short feed on the ranges and dry water holes. Livestock died, soil blew away and people left the ranges and non-irrigated lands. Range and dry-farmed land reverted to mortgage holders and to the counties for taxes. At this time the Federal Government purchased 368,107 acres in the area under the Bankhead-Jones Act. Much of this was former farm land which had been abandoned by the operators. Purchased range land had been in units which were submarginal in size and were in poor condition. After purchase, this Federal land was operated under conservation practices and management. Crested wheat grass was sown on much of the former farm land. Range units were redesigned to be economic units which could be operated with good conservation management. Land management and conservation practices were conducted on organized districts named Land Utilization Projects. The Federally acquired land in these projects is called Land Utilization (LU) land.

Precipitation and prices started to increase in the late "thirties" and early "forties". Dry lands in the area were resold to operators of larger units. Use of tractors and combines increased on the dry land farms. Equipment increased in size and cost, encouraging the formation of still larger units. Mechanization spread to livestock and irrigated land operations with the pick up, the jeep, the power mower, power rakes and stackers, tractors, trucks and beet harvesters. Larger units also developed on the range and in the irrigated areas.

Bureau of Land Management History in the Area

Land along the Yellowstone River was entered and patented under the Homestead Act and the Desert Land Act. During the settlement and breaking of the tillable parts of the area in 1907-1917, patents were also obtained under the Enlarged Homestead Act and the Stockraising Homestead Act. Four land offices served settlers in the area at various times; Helena, Miles City, Glasgow and Billings, all in Montana.

Cadastral surveys to sectionize the area were made from 1881 until 1909. The Montana-North Dakota State Line was surveyed in 1885 Townships along the Yellowstone River were surveyed in 1881-1883, and some of the adjacent townships were also surveyed then. Townships above the Yellowstone River were surveyed in the period from 1899 to 1909. Townships in North Dakota were surveyed during 1901-1903. Farm units within the Lower Yellowstone irrigation project were surveyed when the project was developed in 1906-1908.

Resurveys of much of the old 1881-1885 surveys along the Yellowstone River were made in 1937-1948. Original monuments had been cottonwood posts in many instances and most of the monumentation was obliterated. Many of the old rock monuments on the older surveys have disintegrated or have been lost by cultivation in the farmed areas, so there are considerable areas where resurveys are needed.

Most of the area is within Montana Grazing Districts 2 and 3 as shown on the Location Map of Lower Yellowstone Area on the Land Ownership and Land Use Map of the area with this report. Montana Grazing District 3 was one of the first grazing districts formed under the Taylor Grazing Act, having been organized April 8, 1935. Montana Grazing District 2 was established soon after, on July 11, 1935. The office of these two districts is located at Miles City, Montana. All public domain lands in the area and all other functions of the Bureau of Land Management in the area are administered from this office under the direction of the District Manager, Horace E. Jones.

AREA ECONOMY

Economy of the area is based on its natural resources and transportation. Range and cropland produce livestock, wheat, corn, alfalfa, sugar beets, barley, beans, oats and miscellaneous crops. Oil and gas production and transportation are an important segment of the economy. Some coal is produced, and it may become an important product in the future. Holly Sugar Company has a 2,200 ton per day capacity plant at Sidney, which processes sugar beets grown in the area and elsewhere. Water from the Yellowstone and from some of the tributary local drainages is used to produce irrigated crops in the area.

Transportation

The Northern Pacific Railroad, "Main Street of the Northwest", provides transcontinental freight and passenger service in the area. Their division headquarters at Glendive with offices, shops and roundhouses are an important segment of the economy. The main line enters the area from Wibaux on the east and proceeds up the Yellowstone Valley westward. A branch line extends west from Glendive to Circle and another goes northward along the Yellowstone to Sidney where it connects with a branch of the Great Northern Railway, as shown on the map of the area with this report. Great Northern Railway has two other branch lines in the area, one westward from Sidney to Richey and Brockway and the other eastward from Fairview to Watford City. Main line of the Milwaukee Road (Chicago, Milwaukee, St. Paul and Pacific Railroad) crosses the southern part of the area along O'Fallon Creek. All of these rail lines facilitate the shipment of products, especially grain, livestock and sugar, from the area to markets all over the United States and for export. These lines service grain elevators at many points in the area. In addition to providing a market and storage for grain, many of the elevators also supply seed, feed, fertilizer and other farm supplies. Sugar beets are shipped from a number of dumps on these rail lines.

Two transcontinental highways cross the area. Highway 10 traverses the Yellowstone Valley from the west to Glendive where it turns eastward toward Wibaux. Highway 12 crosses the southern part of the area through Baker. Glendive, Fallon and Terry profit from traffic on highway 10. Baker provides services for travelers on highway 12. Montana State Highway 16 is a main paved route northward down the Yellowstone Valley to Sidney where it leaves the valley to go northward to U. S. Highway 2 and Canada. Paved state routes leave Sidney northward to Fairview and to Nohly on the Missouri River and eastward to Watford City in North Dakota. Paved state routes also go east and west
from Fairview. State Highway 18 leaves Glendive westward to Circle and to connections with U. S. 18 and State 13. State 23 connects Sidney with Richey on the west. A hard-surfaced road extends northwest from Terry to Brockway on State 18. County roads service farms and ranches throughout the area, providing routes that are traversable under all but the most adverse conditions. National bus lines operate on the U. S. highways and most of the state routes. Truck freight lines operate on all of the highways.

Frontier Airlines provides daily flights to Glendive and Sidney on their Billings-Williston-Bismarck route. These flights connect at Billings with national routes and with their own south bound flights. One of the few east-west airways crosses the southern part of the area at Mildred between Miles City and Dickinson. There is one beacon on this airway in the area. Aerodromes with facilities are located at Baker, Fallon, Glendive, Sidney and Terry. A small private field is located at Mayer's Ranch on the southern tip of the area.

Utilities

Electric power in the area is furnished from the Fort Peck power plant by the Bureau of Reclamation lines. Montana-Dakota Utilities distributes power to the cities and towns and to much of the rural part of the area. Rural Electric Administration Cooperatives service parts of the area. Thermal plants at Glendive, 7,000 kilowatts steam, and at Baker, 1,000 kilowatts internal combustion, are now virtually stand-by plants with the advent of low-cost hydroelectric power from Fort Peck and Garrison power plants. Natural gas is supplied to cities and towns in the area from the Baker field by pipe lines of the Montana-Dakota Utilities Company. Telephone service is available in the cities and towns and in most of the rural areas. There are two radio broadcasting stations in the area, KXGN at Glendive and KGCX, a 5,000 watt station, at Sidney.

Agriculture

Agriculture is the basic economic surface resource use of the area, $4,544,823$ acres being used for grazing and farming. This is over 99 percent of the area. Grazing accounts for the use of $3,443,823$ acres; crops are produced on $1,101,000$ acres of farm land. Irrigated crops are produced on 101,000 acres; non-irrigated farmlands cover $1,000,000$ acres in the area. Climate, especially the amount of precipitation, is very important in determining production potential on the $4,443,823$ acres of grazing and non-irrigated farm lands, which is 97 percent of the area. Variations in annual precipitation among four stations in the area over a

39 year period are shown in table 2. Comparisons of the amount of annual precipitation, with long-time average amounts for ten stations in the area over a six year period, are presented in table 3. Effects of these variations on yields, areas harvested and returns are shown in figure 4 and in tables 5 to 10 .

The combined area of the five Lower Yellowstone area counties of Dawson, Fallon, Prairie, Richland and Wibaux in Montana has been utilized for crop data in this report. This combined area is representative of the entire Lower Yellowstone River Basin. Cash receipts of all farms in these five counties totaled $\$ 28,802,900$ in 1953. Amount of cash receipts of all farms by the five counties, with type of receipts, receipts per farm and number of farms, for the four years 1952-1955, are shown in table 5.

Harvested area and value of all crops produced, both on irrigated and non-irrigated land in the five counties, are given in table 6. Values per acre are also presented in this tabulation for the four years, 1952-1955. Comparison of returns from irrigated and non-irrigated farmland shows that irrigated land returned 4.17 times as much per acre compared with non-irrigated in 1952. This ratio fell to 2.12 in the "wet" year of 1953. It became 2.92 in 1954 and 2.48 in 1955. Average returns per acre varied from $\$ 14.91$ to $\$ 26.91$ on the non-irrigated lands. These returns compare with $\$ 53.06$ to $\$ 66.84$ per acre from irrigated land for the four years. Returns per acre from non-irrigated lands ranged from 55 to 100 percent in the four years on this basis, while returns per acre from irrigated lands varied only from 79 to 100 percent. Total value of crop production on irrigated land was maximum in 1952. In that year it was minimum on the non-irrigated farm land, being only fifty percent of the value of the maximum year, 1953. Range in value of crop production in the four-year period was 84 to 100 percent on the irrigated farmlands. These data indicate the value and stability of returns from irrigated farmlands as compared with non-irrigated.

Relative economic importance of fifteen crops in the area is shown in table 7. Area planted, area harvested, production and value are given. Yields per acre are shown for both irrigated and non-irrigated lands for 1952 and 1953. These two years are sharply contrasting, 1952 being a dry year, while 1953 had heavy precipitation. Wheat is the leading crop in the five county area both by value and area utilized. Hay is second in importance, followed by corn. Sugar beets are fourth in value but occupy less than one percent of the cultivated area. Barley and oats are the only other crops producing over two percent of the total annual crop value.

(dollars)		Livestock	Total	Govern-	Total	Cash	No.
County \&	Crops	\& Livestock	From	ment 1/	Cash	Receipts	of
Year		Products	Marketings	Paymenis	Receipts	Per Farm	'Farms
Dawson 52	2,739,500	3,444,200	5,138,700	112,200	5,295,900	7,919	795
Dawson '53	$6,600,100$	2,284,300	3, 88\%,400	100,100	8,984,500	11,301	795
Daws on '54	5,360,900	2,485,400	7,846,300	90,400	7,936, 700	10,917	727
Dawson '55	4,486,100	2,915,400	7,401,500	78,800	$7,480,300$	10,404	719
Fallon '52	1,548,700	2,901,900	4,450,600	47,700	4,498,300	10,355	434
Fallon '53	2,630,700	1,503,700	4,139,400	38, 100	4,177,500	9,626	434
Fallon '54	2,482,100	1,631,900	4,114,000	35, 200	4,150,200	10,197	407
Fallon '55	2,323,500	1,906,900	4,235,400	32,300	4,26\%,700	10,616	$40 ?$
Prairie '5?	590,000	2,314,400	2,904,400	63,800	2,958,200	10,993	270
Prairie '53	1,286,900	1,488,300	2,775,200	64, 200	2,839,400	10,516	270
Prairie ${ }^{\text {'54 }}$	1,391,500	1,517,800	2,909,300	60,800	2,970,100	10,879	273
Prairie ${ }^{5} 5$	1,370,300	1,747,300	3,117,600	60,900	3,178,500	11,772	270
Richland '52	5,0́s 1, 800	3,321,000	3,382,800	361,200	8,744,000	7,885	1,109
Richland '53	7,544,700	2,188,000	9,732,700	270,600	10,009,300	9,02́	1,109
Ric'land '54	$6,372,100$	3,242,300	9,634,400	258,300	9,902,700	9,316	1,063
Richland '55	6,531,000	3,646,200	10,177,200	301,200	10,478,400	9,970	1,051
Wibaux '5?	1, 03.4,400	1,559,400	2,593,800	34, 300	2,628,100	8,239	319
Wibaux '53	1,794,300	961,600	2,755,900	36, 300	2,792,200	8,753	319
Wibaux '54	2,007,700	933,500	2,941,200	29, 200	2,970,400	9,676	307
Wibaux ${ }^{1} 55$	1,822,100	1,387,900	3,210,000	18,600	3, 283,600	10,620	304
Total '5?	10,974,400	13,540,900	24,470,300	619,200	25,134,500	8,587	2,927
Total '53	19,856,700	8,430,900	28,287,600	515,300	28,802,900	9,840	2,927
Total '54	17,634,300	9,810,900	27,445,200	484,900	27,930,100	10,058	2,777
Total '55	16,538,000	11,603,700	28,141,700	491,800	28,633,500	10,427	2,746

Government payments do not include price supporis and quotas, which are foundations for most of the return, as wheat and sugar beets are principal crops Compiled from Montana Agricultural Statistics, Montana Department of Agriculture and USDA, Helena, Montana, Dec. 1954 \& 1956. Crop receipts are favored in comparison with livestock receipts in 1953 as that was an unusually favorable year for both crop production and price, and livestock prices were relatively low.
Table 6. Area and value of all crops, irrigated and non-irrigated, in five Lower Yellowstone Area Counties, Montana, 1952 to 1955

	IRRIGATED			NON IRRIGATED			TOTAL		
	Area	Value	Value	Area	Value	Value	Area	Value	Value
County \&	Harvested	of Crop	per Acre	Harvested	of Crop	per Acre	Harvested	of Crop	per Acre
Year	Acres	Production	Dollars	Acres	Production	Dollars	Acres	Production	Dollars
Dawson '52	14.230	\$ 794,200	55.81	255,540	\$ 3,507,400	13.73	269,770	\$ 4,301,600	15.95
Daws on '53	13,880	690,100	49.72	322, 110	8,884,500	27.58	335,990	9,574,600	28.50
Dawson '54	14,700	828,800	56.38	259,890	4,648,900	17.89	274,590	5,477,700	19.95
Dawson '55	14,110	845,600	59.93	258,890	6,765,900	26. 13	273,000	7,611,500	27.88
Fallon '52	3, 120	88, 800	28.46	187, 030	2,618,400	14.00	190,150	2,707,200	14.24
Fallon '53	1,510	41,100	27.22	220,800	4,576,600	20.73	222,310	4,617,700	20.77
Fallon 154	200	5,000	28.00	179,470	3,167,800	17.65	179,670	3,172,800	17.66
Fallon '55	400	9,600	24.00	177,870	4,095,500	23.03	178,270	4,105,100	23.03
Prairie '52	10,740	551,600	51.36	49,630	699,600	14.10	60,370	1,251,200	20.73
Prairie '53	12, 130	569,800	46.97	76,920	1,591,500	20.69	89,050	2,161,300	24.27
Prairie ${ }^{\text {S }} 5$	10,240	524,400	51.21	69,420	1,478,500	21. 30	79,660	2,002,900	25.14
Prairie '55	7,390	469,200	63.49	68,210	1,751,400	25.68	75,600	2,220,600	29.37
Richland '52	47,920	3,298,900	68.84	286,640	4,586,900	16.00	334,50́0	7,885,800	23.57
Richland '53	47,970	2,717,900	56.66	300, 620	8,495,700	28.26	348,590	11,213,600	32.17
Richland '54	47,020	2,604,100	55.38	26́2,350	4,761,200	18.15	309,370	7,365,300	23.81
Richland '55	41,370	2,912,100	70.39	281,900	8,688,500	30.82	323,270	11,600,600	35.89
Wibaux '52	200	8,400	42.00	120,960	2,008,000	16.60	121,160	2,016,400	16.64
Wibaux '53	400	8,200	20.50	144,370	3,117,100	21.59	144,770	3,125,300	21. 59
Wibaux '54	- 100	3,600	36.00	121,700	2,749,600	22. 59	121,800	2,753,200	22.60
Wibaux '55	200	5,900	29.50	111,850	2,880,300	25.75	112,050	2,886,200	25.76
Total '52	76,210	4,741,900	62.22	899,800	13,420,300	14.91	976,010	18,162,200	18.61
Total '53	75,890	4,027,100	53.06	1,064,820	26,665,400	25.04	1,140,710	30,692,500	26.91
Total '54	72, 260	3,965,900	54.88	892,830	16,806,000	18.82	965,090	20,771,900	21.52
Total '55	63,470	4,242,400	66.84	898,720	24, 181,600	26.91	962,190	28,424, 000	29.54

[^0]

 within these five counties.

Area of wheat harvested in each of the five counties during the 37 year period,1919-1955, is shown in table 8. Total area planted and harvested in the five Lower Yellowstone Area counties are also given, along with the total crop production for each year. Averages have been calculated for the period and the maxima and minima figures are presented.

In the 37 year period, 1919-1955, the area of wheat planted in the five Montana Counties of Dawson, Fallon, Prairie, Richland and Wibaux has varied from 382,300 acres to 703,600 acres, the mean being 518,400 acres. Total yield in bushels has ranged from 556,900 to $9,953,700$, with a mean of $5,182,000$ bushels. Yield per planted-acre varied from 1.44 bushels to 14.59 bushels, with a mean yield of 10.00 bushels. Data for other non-irrigated crops and totals for non-irrigated production would vary in a similar manner as wheat is both the leading crop and probably the most adaptable to the area for "dry" farming. These figures show the wide range, due to the variable climate and changing economic conditions.

Area of wheat harvested in the five Lower Yellowstone Area counties of Montana for the 37 year period, $1919-1955$, is also shown in table 8. Both the range and variability of these figures indicate the variations in climate and economic conditions that have influenced wheat production in the area. Smallest area harvested was 151, 200 acres, the largest being 672,900 acres. These figures show the variation in land use. This table also shows the area planted in the five counties. Difference between the planted and harvested figures each year do not represent total abandonment. Part of the unharvested area may have been cut for hay or pastured. In some years hail damage affects a considerable area, this damage ranging from slight to total destruction. Years of greatest differential between planted and harvested area usually are years of low precipitation when growing conditions were so poor that much of the crop was not good enough to pay to harvest. Poorest years were in the dry "thirties". In 1936, 72 percent of the planted area was not harvested. Other dry years were 1931 with 58 percent not harvested and 1934 with 59 percent. Before the thirties, 1919 was a drought year when 49 percent of the area planted was not harvested.

Yields, prices and returns per acre for wheat in the five Lower Yellowstone Area counties over the 37 year period,1919-1955, are shown in table 9. Variations among the counties in the same year as well as wide ranges from year to year are interesting and important economic data. Eight bushels per acre was selected as a probable average breakeven yield. The marginal nature of non-irrigated farming in the area is demonstrated by the fact that average yields in the area exceed 8 bushels per acre 70 percent of the 37 years and fell below 8 bushels 30 percent of the 37 years.

Table 8. - Area harvested, total area planted and total yield of wheat in five Lower Yellowstone Area Counties, Montana, 1919-1955 (acres)

| Year Dawson Fallon Prairie Richland Wibaux | Total
 Area | Total
 Area | Total
 Produced
 (Bushels) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

1919	55,200	35,500	24,400	33,700	46,800	196,600	382,300	556,900
1920	104,500	81,000	66,000	117,000	66,000	434,500	443,700	4,689,000
1921	105,500	77,500	62,000	101,000	61,500	407,500	433,000	3,568,500
1922	101,000	72,000	61,000	121,000	58,800	413,800	415,500	6,208,000
1923	107,000	86,000	66,000	125,400	61,000	445,400	463,600	4,283,000
1924	92,500	76,000	53,000	112,500	53,700	387,700	388,300	6,422,000
1925	92,000	75,000	55,000	115,500	54,000	391,500	446,100	3,753,600
1926	104,000	92,000	65,000	128,000	65,000	454,000	487, 100	2,853,000
1927	161,000	94,000	75,000	140,000	71,000	541,000	544,200	9,295,000
1928	149,900	86,800	85, 100	150,700	66,400	538,900	548,000	8,396,400
1929	162,900	94,600	90,000	170,300	67,700	585,500	631,900	4,887,000
1930	144,300	80,000	76,500	155,300	57,800	513,900	558,700	4,677, 100
1931	40,500	24,800	37,500	68,200	24,300	195,300	462,700	952, 200
1932	97,800	89, 100	32,700	155,200	65,800	490,600	539,100	5,364,100
1933	134,800	66,400	61,700	137,000	37,900	437,800	487,300	2,926,300
1934	53,800	31,500	14,500	48,000	15,000	162,800	401,300	576,500
1935	137,300	50,000	48,500	133,400	35,500	404,700	507,500	3,083,000
1936	52,500	9,700	1,200	75,400	12,400	151,200	540,400	734, 300
1937	73,100	66,300	39,200	34,600	44,200	257,400	559,900	1,349,100
1938	135,700	77, 100	73,200	146,800	69,400	503,200	603,500	2,672,300
1939	98,400	67,200	33,400	102,900	45,400	347,300	400,400	3,585,700
1940	139,600	72,300	45,900	139,600	57,700	455,100	464,200	5,836,000
1941	129,000	69,800	43,200	128,900	55,400	426, 300	437, 800	6,411,300
1942	119,900	60,600	44, 800	117,500	49,100	391,900	396,600	7,969,600
1943	135,500	73,300	55,300	163,500	46, 700	474,300	518,100	3,695,800
1944	145,800	35,500	64,000	114,600	58,500	468,400	567,300	6,667,200
1945	145,400	84,200	52,000	152,500	56,600	490,700	556,700	5,903, 100
1946	132,700	81,600	53,700	128,700	60,000	455,700	515,900	5,185,300
1947	138,200	88,400	43,800	152,000	61,900	484,300	539,300	6,620,900
1948	153,300	96,800	47,900	185,000	69,200	552,200	605,300	8,178,900
1949	173,700	115,500	48,600	180,900	72,200	590,900	666,000	3,922,500
1950	165,900	92,600	49,000	171,200	70, 100	548,800	558,400	9,556,700
1951	202,700	132,500	57,800	201,200	78,700	672,900	703,600	7,842,500
1952	171,000	111,500	29,600	199,300	62,900	574,300	688,400	4,124,600
1953	205,800	128,200	47,900	212,000	74,800	668,700	681,900	9,953,700
1954	150,700	92, 200	41,200	158,700	67,600	510,400	526,700	5,510,500
1955	143,900	90,700	40,100	159,100	56,200	490,000	502,100	8,541,600
37 Yr. Avg	125,886	78,627	52,316	133,422	56,141	446,392	518,184	5,182,000
Max. Yr.	205,800	132,500	90,000	212,000	78,700	672,900	703,600	9,953,700
Min. Yr.	40,500	9,700	1,200	33,700	12,400	151,200	382,300	556,900

Compiled from Montana Agricultural Statistics, Montana Department of Agriculture and USDA, Helena, 1954 and 1956.

Table 9. - Yields, average yields, prices and returns of wheat per harvested acre in five Lower Yellowstone Area Counties, Montana, 1919-1955 (bushels)

			COUNTY				AV	AGE	
Year	Dawson	Fallon	Prairie	Richland	Wibaux	Five Counties	+ or - 8 bu. Break-even Yield	Price Per Bushel	Returns Per Acre
1919	3.1	1.8	1.9	4.6	2.6	2.80	- 5.20	\$2. 38	\$ 6.66
1920	11.0	8.9	9.0	13.9	9.1	10.38	+ 2.38	1.31	13.60
1921	10.0	6.9	7.1	11.0	7.0	8.40	+ . 40	. 88	7. 39
1922	15.0	15.1	13.0	16.0	15.0	14.82	$+6.82$. 92	13.63
1923	10.6	9.0	9.0	10.0	9.8	9.68	+1.68	. 85	8.13
1924	15.7	14.7	13.9	20.1	15.9	16.06	+8.06	1.27	20. 40
1925	8.0	10.0	9.0	10.2	11.0	9.64	$+1.64$	1.43	13.79
1926	7.1	6.8	3.3	8.0	3.9	5.82	- 2.18	1.16	6.75
1927	17.0	16.0	16.1	19.5	15.7	16.86	+8.86	1.00	16.86
1928	15.5	13.7	13.1	18.5	14.5	15.06	+ 7.06	. 87	13.10
1929	7.7	8.9	7.2	8.7	9.8	8.46	+ . 46	1.02	8.63
1930	8.5	9.2	9.0	10.0	8.0	8.94	+ . 94	. 61	5.45
1931	4.2	5.8	4.2	4.2	8.0	5.28	- 2.72	. 55	2. 90
1932	10.1	10.4	12.1	10.2	13.1	11.18	+3.18	. 39	4.36
1933	7.0	6.3	6.8	6.4	7.2	6.74	- 1.26	. 66	4.45
1934	3.5	3.4	2.0	4.0	4.0	3.38	- 4.62	. 91	3.08
1935	6.1	7.2	6.8	10.2	5.7	7.20	- . 80	. 99	7.13
1936	4.0.	3.2	4.0	6.0	3.0	4.04	- 3.96	1.28	5.17
1937	1.9	7.4	6.6	7.4	4.7	5.60	- 2.40	1.05	5.88
1938	3.7	6.3	5.9	5.4	6.6	5.58	- 2.42	. 52	2.90
1939	8.9	11.1	9.0	10.9	11.8	10.34	$+2.34$. 67	6.93
1940	13.3	9.5	10.2	14.9	12.8	12. 14	+ 4.14	. 65	7.89
1941	14.0	13.9	10.4	15.8	20.8	14.98	+6.98	. 91	13.63
1942	21.1	16.1	18.0	22.6	20.4	19.64	+11.64	1.07	21.01
1943	20.9	11.0	11.2	21.0	21.4	17.10	+9.10	1.30	22.23
1944	15.0	12.2	15.2	12.5	17.7	14.52	+6.52	1.36	19.75
1945	10.5	13.4	11.7	10.8	17.7	12.82	+ 4.82	1.49	19.10
1946	8.1	15.0	9.7	11.4	15.0	11.84	+ 3.84	1.90	22.50
1947	12.0	10.5	14.7	15.9	15.9	13.80	+ 5.80	2. 40	33. 12
1948	12.5	14.9	12.2	16.5	16.9	14.60	+ 6.60	1. 94	28. 32
1949	6.2	5.4	7.9	7.2	7.3	6.80	- 1.20	1.96	13.33
1950	17.1	13.9	14.2	21.3	15.5	16. 40	+8.40	1. 95	31.98
1951	11.7	9.0	12. 3	12.5	13.5	11.80	+ 3.80	2.03	23.95
1952	6.3	- 6.0	6.1	8.9	7.0	6.86	-1.14	2.02	13.86
1953	17.0	11.0	12.2	16.4	13.0	13.92	+5.92	2.00	27.84
1954	10.4	9.7	12.8	10.4	13.0	11.26	$+3.26$	2.14	24.10
1955	16.8	14.5	16.8	20.2	16.6	16.98	+8.98	1.99	33.79
37 Yr .									
Avera	ge 10.56	9.95	9.85	12. 26	11.65	10.864	+ 2.86	\$1.29	\$14.42

Compiled from Montana Agricultural Statistics, Montana Department of Agriculture and USDA, Helena, 1954-1956. A break-even figure of 8 bushels per acre has been used as representative of average units. The break-even figure will vary with size of operation, cost of land and equipment, other costs, efficiency and other factors. In the 37 years tabulated, average yields have exceeded the break-even figure 26 times or 70 percent.
Yields were below the break-even point 11 times or 30 percent of the time.

Average yield for the five counties over the 37 years was 10.85 bushels per acre, only 2.85 bushels per acre over the selected breakeven figure. Actual break-even yieldis will vary greatly with prices, costs, operational efficiency and many other factors. Break-even yields will vary considerably among operators and also from year to year. Variations in yield shown in this table are expressed similarly in the volume of range forage produced in the area in different years and at varying points. Table 9 clearly shows the irregular variability and marginal nature of wheat production from year to year and within the area. It is of interest and importance to note that seven crops out of eight years were below the selected "break-even" yield of eight bushels. Six of these were consecutive in the period 1931-1938. Maintenance of operations over such a cyclical period calls for reserves, skillful management and probable relief and support measures. These data also emphasize that only the most suitable land should be cultivated under a conservation program. Most of the area is best adapted to the production of grazing plant cover.

Wheat yields and values on both irrigated and non-irrigated land in the five Lower Yellowstone area counties in 1953 are shown in table 10. Even in this very favorable producing year for non-irrigated wheat, the irrigated wheat produced 10.3 bushels more per acre than the non-irrigated wheat. Yields averaged 25 bushels ir rigated and 14.7 bushels from nonirrigated wheat. In 1953 winter wheat was grown on non-irrigated land only, all irrigated wheat being spring wheat.

Nearly all wheat produced in the area grades dark hard northern spring with substantial premiums for high protein content. Gluten in this wheat is of high quality so wheat from this region is desired by millers for bread flours and for blending with other wheats. Wheat from the area is shipped to the east, west and south for milling.

Holly Sugar Company operates the 2,200 tons daily capacity beet sugar factory at Sidney. This plant processes beets from the area, from more distant points up the Yellowstone River Valley, from the Milk River project, and from fields on the Missouri in Montana and North Dakota. A number of sugar beet dumps are operated in and outside of the area at railroad sidings to weigh, screen and ship beets to this factory. This plant also produces dried beet pulp and molasses for livestock feed. Most of the feed dealers in the area grind grain and mix feeds in addition to merchandising proprietary feeds and concentrates.

Livestock and livestock products are important enterprises in the area, second only to crops, as shown in table 5. In the dry year of 1952, returns from livestock and their products surpassed those from crops. Range cattle and sheep are the principal classes of livestock as shown in

		IRRIGATED		NON	IRRIGATED		TOT	L - IRRIG	TED AND N	ON-IRRIGA	TED
County	Area Harvested Acres \qquad	Yield Per Acre Bushels	Value Per Harvested Acre Dollars	\qquad	Yield Per Acre Bushels	Value Per Harvested Acre Dollars	Area Planted Acres	Area Harvested Acres	Yield Per Harvested Acre Bushels	$\begin{gathered} \text { Production } \\ \text { Bushels } \\ \hline \end{gathered}$	Crop Value Dollars
Dawson											
spring	2,100	20	39.80	203,000	17	33.83	207,200	205,100	17.0	3,493,000	6,951,100
winter				700	15	29.29	1,100	700	15.0	10,500	20,500
total				203,700	17	33.81	208,300	205,800	17.0	3,503,500	6,971,600
Fallon											
spring				126,700	11	22.66	130,600	126, 700	11.0	1,393,700	2,871,000
winter				1,500	9	17.80	1,800	1,500	9.0	13,500	26, 700
total				128,200	11	22.60	132,400	128,200	11.0	1,407,200	2,897,700
Prairie											
spring	1,900	18	36.54	39,800	11	22.33	43,000	41,700	11.3	472,000	958,200
winter				6, 200	18	35.47	6, 900	6,200	18.0	$111,600$	$219,900$
total				46,000		24.64	$49,900$	47, 900	12.2	$583,600$	$1,178,100$
Richland											
spring	8,000	28	55.72	203,100	16	$31,84$		211,100	16.5	3,473,600	6,912,500
winter				900	15	29.11	$1,200$	900	15.0	$13,500$	26,200
total				204,000	16	31.83	216,600	212,000	16.4	3,487, 100	6,938,700
Wibaux											
spring				74,700	13	26.52	75,500	74,700	13.0	971,100	1,981,000
winter				100	12	24.00	100	100	12.0	1,200	2,400
total				74,800	13	26. 52	75,600	74,800	13.0	972,300	1,983,400
Totals and weighted averages	12,000	25	49.90	656,700	14.7	29.54	682,800	668,700	14.9	9,953,700	19,969,500

Compiled from Montana Agricultural Statistics, Montana Department of Agriculture and USDA, Helena, Montana, December 1954 . The crop year of
1953 was favorable for non-irrigated crop production, so comparisons with irrigated returns will favor non-irrigated more than an average or norm.
table 11, which gives the numbers of six classes of livestock. Many farms and ranches in the area also keep some milk cows, horses, hogs and poultry. Beef cattle, sheep and horses utilize the $3,443,823$ acres of grazing land which is 75 percent of the area. They are also fed most of the hay and much of the other roughage produced on the farms and considerable quantities of grain and purchased concentrates. Other classes of livestock are usually kept on farms and make little use of rangelands. Yield of range forage and gains of sheep and cattle utilizing the range in the area are largely dependent upon the amount of precipitation received and the management of the rangelands. Annual cyclical, seasonal and local variations occur in amounts of precipitation. Quality of range and operations management vary among operators.

Shipping pens for shipping and receiving livestock are located in all of the towns on the rail lines and at several minor points. Livestock auction sales rings are operated at Glendive and Sidney.

Trade and Services

Supplies, feeds, implements and equipment are available at all of the principal towns in the area; Baker, Fairview, Glendive, Sidney and Terry. High schools, grade schools, theatres, churches, lodges, banks and all usual economic and social services are available in these towns. Motels, hotels and restaurants are available for travelers in all of the large towns and also in the smaller towns on the highways. Elevators for marketing and storing grain are available at all of the towns on railroads and at several sidings that are not named on the map of the area. Nearly all of the elevators also sell feeds.

There are four county seats in the area making a considerable contribution to the economy and population. Baker is the county seat of Fallon County; Glendive serves for Dawson County; Sidney for Richland County and Terry is the county seat of Prairie County.

Four newspapers are published in the area; one daily and three weekly. The Glendive Ranger is published daily. The Sidney Herald, the Terry Tribune and the Fallon County Times, published at Baker, are weekly newspapers.

Population

Lower Yellowstone area is largely used for ranching and dry farming, both being operated in large units which have steadily increased in size since 1919. Mechanization and increase in unit size have caused population to decrease in rural areas. Most of the population is in the
irrigated valley which is also on the railroad and highway. Trading and services to farms, ranches and the traveling public are the fundamentals of population in the towns. Schools, churches and other social services also contribute to population in the towns. The Northern Pacific Division Point at Glendive helps its population. Oil and gas production and transport have helped Baker and Glendive. Development of a new irrigated area has promoted the growth of Terry. The sugar factory at Sidney aids population there。

Population of the area gradually increased from the pioneer days of 1876. Settlement commenced prior to the coming of the rails in 1881. Peak of rural population was reached in 1918, after the land rush for dry land settlement that began in 1907. The drought of 1919 caused many to leave the area. Population increased in the Yellowstone Valley as irrigation was developed after 1906. The towns grew as travel, farms and ranches required more services, equipment and supplies. Population of counties in the area and of the area for the last three censuses is shown in the following list. Percentile changes from 1930 to 1950 are also given.

County	Entire	County	Totals	Lower	Yellows	stone A	$\begin{aligned} & \text { a Change } \\ & 1930-1950 \end{aligned}$
Montana	1930	1940	1950	1930	1940	1950	Percent
Carter	4,136	3,280	2,798	142	106	98	-31
Custer	11,242	10,422	12,661	555	287	282	-49
Fallon	4,568	3,719	3,660	3,793	3,335	3,079	-19
Prairie	3,941	2,410	2,377	2,239	2,031	2,290	+ 2
Wibaux	2,767	2,161	1,907	845	615	594	-30
Dawson	9,881	8,618	9,092	9,387	8,187	8,637	- 8
Richland	9,633	10,209	10,366	6,115	7,834	9,083	+49
Subtotal	46,168	40,819	42,863	23,076	22,395	24,063	$+4$
N. Dakota							
McKenzie	9,709	8,426	6,849	1,551	1,409	1,087	-30
Golden Val.	3,499	3,498	4,122	195	189	107	-45
Subtotal	13,208	11,924	10,971	1,746	1,598	1,185	-32
Area							
Less cities and							

Population has increased in all towns that had over 500 population in 1930, and has decreased in smaller towns, irrespective of location. Small towns and rural areas did not increase in population even in the fertile irrigated Yellowstone River Valley, except for rural increases on areas of new irrigation. Population data for towns with 100 or more persons in 1930 within the area is shown in the following list. Location is shown by YV for the Yellowstone Valley and Up for Upland sites above the valley. All of the towns are in Montana except Alexander, which is in North Dakota.

	Location		Population			Change
		Valley		Crand		
Town	County	Upland	1930	1940	1950	Percent
Baker	Fallon	Up	1,212	1,304	1,772	+46
Plevna	Fallon	Up	247	291	247	0
Terry	Prairie	YV	779	1,012	1,191	+52
Fallon	Prairie	YV	310	240	145	-55
Mildred	Prairie	Up	160	75	44	-73
Glendive	Dawson	YV	4,639	4,524	5,640	+23
Lindsay	Dawson	Up	150	100	65	-57
Fairview	Richland	YV	576	901	942	+63
Sidney	Richland	YV	2,010	2,978	2,987	+49
Savage	Richland	YV	407	346	250	-39
Lambert	Richland	Up	268	241	238	-11
Alexander	McKenzie	Up	461	415	302	-34

Population changes in the area are graphically displayed in figure 2 .

Figure 2. Lower Yellowstone River Area Rural and Urban population 1930, 1940, 1950.

Census 1950.

Figure 3.- Average size of Farms in the five Lower Yellowstone Area Countie for 1930, 1940, 1950.

Average number of Forms in the five Lower Yellowstone Area Counties for 1930, 1940, 1950

att If amoon ave rimitar agone as whene bent inotsantar, Mood, mon

LAND USE AND OWNERSHIP

Agricultural use of the surface resources of the area is presented in the following listing:

Type of Use	Area, Acres	Percent
Rangelands	$3,443,823$	75
Farmland, non-irrigated	$1,000,000$	22
Farmland, irrigated	101,000	2
Wasteland	25,272	1

Minor areas used for urban sites, oil and gas wells and for miscellaneous uses are not considered in this list.

Rangeland Use

Rangelands are used for grazing cattle, sheep and horses. Farm land in the area produces grain, hay and crop by-products used as supplementary feeds for range livestock. Milk cows, hogs and chickens are kept on farm lands. In 1956 there were 162,000 beef cattle in the five Lower Yellowstone Area Counties of Dawson, Fallon, Prairie, Richland and Wibaux. This was a 70 percent increase from 95, 300 in 1950. Numbers in 1950 had been gradually built up following the drought and depression years of the thirties until 1949-50, when drought and a severe winter again reduced range livestock numbers. Sheep increased 26 percent from 55,700 in 1950 to 70,100 in 1956. Horses decreased 44 percent from 11,700 to 6,600 head. In 1956 there was a total of 190,222 animal units of grazing animals in these five counties. Livestock numbers for 1950, 1953 and 1956 in the five Lower Yellowstone Area counties in Montana are given in table 11.

Table 11. - Livestock on farms and ranches in five counties in the Lower Yellowstone Area, Montana, 1950, 1953 and 1956 (number of head)

Prairie '50	17,600	700	11,300	1,700	1,100	14,500	21,560	22,125
Prairie '53	23,200	700	15,200	1,100	500	11,200	27,340	27,689
Prairie '56	29,400	800	13,500	1,000	1,100	12,200	33,100	33,619
Richland '50	28,600	2,900	18,600	3,000	3,800	65,000	35,320	37,570
Richland '53	36,500	2,600	23,300	2,200	2,400	51,500	43,360	44,990
Richland '56	48,100	2,400	21,600	1,900	2,600	48,200	54,320	55,934
Wibaux '50	11,200	1,100	3,300	1,200	2,200	22,100	13,060	14,052
Wibaux '53	13,000	900	7,100	800	1,400	19,500	15,220	15,960
Wibaux '56	17,500	800	7,900	700	2,200	18,800	19,780	20,706
Total '50	103,900	8,600	55,700	11,700	14,000	175,900	126,740	133,758
Total ${ }^{\prime} 53$	128,300	7,600	74,200	7,900	8,700	146,100	151,040	156,137
Total '56	169,600	7,600	70,100	6,600	13,500	145,600	190,220	196,507

1/ Exclusive of hogs and chickens; cattle, sheep, horses and mules only. Each class is one animal unit except sheep which are 5 sheep to one animal unit.
2/ Cattle, horses and mules equal one animal unit. Five sheep and lambs are one animal unit. Four hogs or 50 chickens are considered to be one animal unit.

Montána Agricultural Statistics, Vol. VI, Dec. 1956; Montana Department of Agriculture, Helena, Montana. Columns 7 and 3 have been computed as described above.

Four Montana State Grazing Districts operate in the area. These districts are named in the following listing along with all of their lands in different ownerships within the area and with recommended stocking rates in animal unit months:

District name	Federal Lands				Other Lands		Total	
	Public	Domain	Land Uti Repurch	lization hased	State \&	Private		
	acres	aums	acres	aums	acres	aums	acres	aums
East Custer	2,541	800	24,678	7,500	81,781	23,400	109,000	31,700
Fallon Creek	12,114	3,856	44,644	12,600	16,917	5,330	73,675	21,786
Prairie	48,787	8,200	270,150	62,000	472,063	120,000	791,000	190,200
Red Butte	1,516	504	11,527	3,842	7,328	2,441	20,371	6,787
Total	64,958	13,360	350,999	85,942	578,089	151,171	994,046	250,473

These non-profit Cooperative State Grazing Districts were established under authority of the "Grass Conservation Act", enacted by the legislative assembly of the State of Montana on March 15, 1939 (Chapter 208, Session Laws of Montana, 1939). Section one of the act states that its purpose is to "provide for the conservation, protection, restoration and proper utilization of grass, forage and range resources of the State of Montana; to provide for the incorporation of cooperative non profit grazing districts; to provide a means of cooperation with the Secretary of the Interior as provided in the Federal Act known as the Taylor Grazing Act, and any other Governmental Agency or Department having jurisdiction over lands belonging to the United States or other State or Federal Agencys as well as agencies having jurisdiction over Federal Lands; to permit the setting up of a form of grazing administration which will aid in the unification or control of all grazing lands within the State where the ownership is diverse and the lands intermingled; and to provide for the stabilization of the livestock industry and the protection of dependent commensurate ranch properties as defined herein. This act provides a State Grass Conservation Commission to assist in carrying out the purposes of this act, to act in an advisory capacity with the State Land Board and County Commissioners, and to supervise and coordinate the formation and operation of districts which may be incorporated under this act".

Cooperation between each cooperative State Grazing District and the Bureau of Land Management is obtained through a cooperative agreement. The purpose of this agreement is to provide for the protection, administration, regulation and improvement of the public domain and to bring about a better coordination of the use of the public domain and the other lands subject to the agreement, and to take all necessary steps to
protect such lands from over-grazing and improper use. By virtue of this agreement, the Bureau of Land Management issues to the State Cooperative Grazing Districts an annual permit for grazing privileges which may be utilized on the public domain lands by qualified licensees or permittees. Only annual permits have been issued by state grazing districts. Ten-year permits would tend to stabilize ranch units and would aid in practicing sound range management because the permittee would be assured of benefiting from range improvement.

Soil Conservation Districts cover the area. Personnel of the Soil Conservation Service cooperate with ranch and farm operators in the area to make farm and ranch plans and to recommend conservation practices, programs and structures.

Farmland Use
Number and size of farms in the Lower Yellowstone Area are indicated in the following tabulation of entire counties in Montana. Average size and number of farms in these five counties in 1930, 1940 and 1950 is shown graphically in figure 3.

	1945			
Average	1950			
County	Number	Size-Acres	Number	Average Size-Acres
Dawson	792	1,606	758	1,854
Fallon	414	2,261	403	2,458
Prairie	254	2,322	237	2,574
Richland	1,099	1,033	1,057	1,153
Wibaux	337	1,438	304	1,582
Total	2,896	8,660	2,759	9,621
Average	579	1,525	552	1,706
Percentile variant				

Farm land use in 1952 and 1953, both irrigated and non-irrigated, is presented in table 7 by crops planted and harvested. Non-irrigated farm land is principally used for the production of grain crops for sale. In 1952, seventy-six percent of the dry farm land harvested, or 682,350 acres, produced grain. Wheat was the leading crop on the non-irrigated land, 559, 900 acres being harvested, which was 62 percent of the total harvested area. In 1953, harvested dry-farmed grain was produced on 818,150 acres, 77 percent of the total harvested dry-farmed area. Wheat was harvested on 656,700 dry-farmed acres in 1953, sixty-two percent of the dry-farmed total.

Use of farm land for crops in the area is shown in table 12. Relative importance of crops is shown by area harvested and by returns. Relative importance of each crop is also shown as percents of the total area harvested and of total returns. This table includes both irrigated and nonirrigated farm land of five Lower Yellowstone Area counties in Montana in 1953.

Table 12. - Relative importance of crops grown in the Lower Yellowstone Area as shown by yield and returns for the combined data of Dawson, Fallon, Prairie, Richland and Wibaux Counties, Montana, 1953.

	Area Harvested			Returns		
	Acres	Percent		Dollars	Percent	
Crop	91,400	8.01		$2,665,700$	8.67	
Oats	51,400	4.51		$1,054,600$	3.43	
Barley	40,700	3.57		836,700	2.72	
Flaxseed	18,500	1.62		575,900	1.87	
Potatoes	590	.05		114,000	.37	
All Hay	252,800	22.16		$3,981,200$	12.95	
Alfalfa Hay	44,300	3.88		$1,563,700$	5.09	
Wild Hay	126,800	11.12		$1,523,520$	4.96	
Alfalfa Seed	3,600	.32		53,100	.17	
Crested Wheat-						
grass Seed	2,250	.20		26,300	.09	
Rye	600	.05	9,900	.03		
Beans	900	.08		89,800	.29	
Sugarbeets	8,680	.76	$1,313,800$	4.28		
Wheat	668,700	58.62	$19,969,500$	64.96		
Gardens	450	.04		41,500	.14	
Miscellaneous	140	.01		8,400	.03	

Total $1,140,710 \quad 100.00 \quad 30,740,400 \quad 100.00$

Compiled from Montana Agricultural Statistics, Montana Department of Agriculture and USDA, Helena, 1954. Data for gardens is extended from Annual Project History, Lower Yellowstone Project, 1953, and Annual Project History, Buffalo Rapids Project, 1953, Bureau of Reclamation, Region 6, Billings, Montana.

Non-irrigated farm land use in the area during 1952 and 1953 is shown in the following tabulation of crops harvested in the area on dry farmed lands:

The two years listed above were contrasting, 1952 having low precipitation and 1953 being a year of heavy precipitation. Increase in area of wheat harvested in 1953 was restricted by wheat allotment. This restriction may have increased the area of other crops, especially barley and oats. This factor, along with more favorable moisture, helped to increase the area of alfalfa hay in 1953.

The increase in area of wild hay cut in 1953 was due to heavy precipitation increasing the volume and density of native vegetation so that a much larger area of grassland was fit to cut for hay. Other hay is largely grain hay. In 1952 operators considered that 18 percent of the small grain that had been planted would be best suited for harvest as hay rather than grain because of the probable poor yield if cut for grain. In 1953 over 90 percent of the grain planted was fit for harvest as grain, so there was little grain hay produced.

Several tables, numbered 6 to 10 , are presented to show crop yields and areas planted and harvested for both irrigated and non-irrigated crops. These tables and their consideration pertain to land use, economy, natural resources and climate of the area. Data in these tables, as well as in tables 2 and 3, are indicative of variations in the production of range
(anchen

forage and of the potentials affecting range forage production. Much of this information has been combined graphically in figure 4. This figure portrays the effect of precipitation on yield and the combined effects of yield and precipitation upon returns per acre.

Data presented in this report for wheat and other non-irrigated crops in the area emphasize the variability in planted area, harvested area, yield per acre, total crop and returns from year to year, and within the area in any one year. Irrigated agriculture within the area contrasts with this picture by presenting an almost constant level of planting, harvested area, and production. Variations in returns are largely due to price fluctuations. Choice of irrigated crops is influenced by prospective returns, labor conditions, individual farm enterprise organization, personal preferences and several other factors. In addition to the stability of organization and production of the irrigated land, these desirable characteristics spread out to the non-irrigated farm and range lands of the area through the production of the irrigated land. While these values of irrigation are well known in arid lands with cyclical production and droughts, it is well to pause and view the actual conditions in this area where the advantages of irrigation were long regarded as marginal, the first projects were viewed with skepticism, and irrigation practice was slowly adapted by the resident farmers. Not only are the physical irrigated crop products and by-products available for range livestock feeding in case of range feed shortage or for fattening and finishing the range livestock, but the irrigated farms of the region also produce a fiscal stability in the local communities which stabilizes bank and retail credit so that non-irrigated farmers and range livestock producers benefit to a great extent. This is a phase of irrigation benefit which is especially appreciated in this area where "dry" farming and livestock enterprises are important land uses and where they are major segments of the economy.

Crops for livestock feeding are the principal use for irrigated lands in the area. This is shown by the crop area data given in table 6. Barley, corn, oats, hay and forage crops utilize 69 percent of the total crop area of the irrigated land. Hay is 24 percent of the total crop area in table 6, or 29 percent of the net crop area. Addition of small grain straw on 22,358 acres, bean straw on 3,166 acres and corn stover on 710 acres, would increase the total of all crops on irrigated land in table 6 to 107,007 acres. These additional residue feed crops would then be 25 percent of the new total crop area. These additional residue crops plus the listed feed crops would total 81,699 acres or 76 percent of the grand total crop area. Sugar beets and beans are principal cash crops on irrigated land. Grain and hay are also produced for sale by some farmers using irrigated land.

Crops grown on irrigated land of the Lower Yellowstone project are listed below. Percent of the area planted to different crops in 1955 and the range in percent of area planted in the ten year period 1946 to 1955 are shown. Yields per acre in 1955 are also given. Data are from the 1955 Annual Project History, Lower Yellowstone Project, Bureau of Reclamation.

Crop	Range, 1946-55 Percent of Area	1955 Percent of Area	1955 Yield Per Acre	Unit of Yield
Alfalfa	14.1 to 26.0	25.3	2.3	ton
Other hay	0.3 to 1.4	1.3	1.2	ton
Wheat	11.8 to 24.7	13.0	27.0	bu.
Oats	10.3 to 17.3	10.3	49.0	bu.
Barley	4.1 to 8.7	6.9	34.9	bu.
Flax	0.0 to 2.3	0.0		
Beans	0.2 to 5.1	5.1	13.6	bu.
Sugar beets	15.7 to 31.5	20.0	11.8	ton
Garden	0.6 to 0.9	0.6	75.7	dol.
Corn fodder				
\quad \& silage	3.6 to 6.0	5.2	6.9	ton
Potatoes	0.2 to 2.0	0.2	133.0	bu.
Pasture	2.9 to 8.8	6.5		
Miscellaneous	1.2 to 6.5	5.6		

Forage and grain crops are the principal crops grown on irrigated land in the Lower Yellowstone Area. All of the forage crops and much of the grain produced are utilized by local livestock. Data above show that forage crops were produced on 38 percent of the irrigated area in 1955, while grain crops covered 30 percent of the area. Smallest area in forage crops was 21 percent and the least in grain was 26 percent. The largest amount was 42 percent in forage crops and 51 percent in grain crops in the period 1946 to 1955. Additional information on use of irrigated land is given in the appendix for Lower Yellowstone and Buffalo Rapids projects.

Land Use for Mineral Production

Oil is produced from six fields in the area. Five fields are along the Cedar Creek anticline from Cabin Creek to Deer Creek northwest of Glendive. These fields are Cabin Creek, Glendive, Sand Creek, Woodrow and Deer Creek. Bronson field is 8 miles northwest of Sidney. Oil produced in the four fields west of Glendive is collected in an eight inch
gathering line of the Texas Company and delivered to the interstate line of the Butte Pipeline Company near Glendive. This is a ten inch line across the area from Poplar to Glendive. From Glendive to Baker it is a 12 inch line, and from there to Fort Laramie, Wyoming it is a 16 inch line. Terminus at Fort Laramie connects with the Platt Pipeline to middle-west points. Shell Oil operates a ten inch gathering line from Cabin Creek and Pennel Creek wells to the Butte line at Baker. Another gathering line, six inches in size, extends from Baker to Little Beaver field south of Baker. Sun Oil operates an eight inch line from the Bronson field into Glendive.

Gas is produced along the Cedar Creek anticline in the Cedar Creek and 101 Ranch-Plevna fields. Old developments in the vicinity of Baker, known as the Baker field, are now used for storing Wyoming gas. Montana-Dakota Utilities Company has a 12 inch gas line conveying natural gas from Wyoming which crosses the southern part of the area at the head of Cabin and Cedar Creeks. This line conveys gas to Dickinson, Mandan and Bismarck, North Dakota. Another 12 inch line extends northward from this line on Cabin Creek down the Yellowstone to serve Glendive and Sidney, and extends to Williston in North Dakota. An eight inch interconnection at Intake goes to Wolf Point and westward to Bowdoin gas field. This line extends eastward from Wolf Point to Poplar. Another 12 inch line goes southward along the Cedar Creek anticline to Belle Fourche, Rapid City and the other Black Hills cities in South Dakota.

Landownership

Surface area of the Lower Yellowstone Basin is 4,570, 095 acres or 7,141 square miles. Landownership within this area by counties and states is shown in table 13. Ninety percent of the area, $4,095,879$ acres, is in Montana and ten percent, 474,216 acres, is in North Dakota. Federal lands cover 12 percent of the area. Public domain lands make up four percent and Land Utilization Federally acquired lands within Land Utilization projects comprise eight percent of the total area. State-owned lands are six percent of the area. Private lands cover 82 percent of the total area. Federal ownership in Montana is 14 percent, and only two percent in North Dakota. In Montana five percent of the area is public domain, but it is less than one-tenth of one percent in North Dakota. Land Utilization Federally acquired lands within Land Utilization projects cover nine percent of the Montana portion of the area and two percent in the North Dakota part. State ownership in Montana is six percent and only two percent in North Dakota. Private lands make up 80 percent of the area ownership in Montana and 96 percent in the North Dakota part of the area.

29＊560＇025＇五			91＊T20＊T9S	97＊ 208^{\prime} 2	LZ＊LOI＇89を		［セłロ」
¢G｀gIて＇无Lも		$8 \mathrm{I}^{\circ} 98 \chi^{\prime} 0$ T	$09^{\prime} 98 \varepsilon^{\prime} 6$	¢9＊8 9	02＊ $299^{\prime} 8$	¢ χ° ¢0を	$\begin{gathered} \text { โełoz-qns } \\ \text { eұоצed ч7.ION } \end{gathered}$
	L6＊299 ¢ ¢	81＊乌ゅ8＇6	09＊901＇6	$59^{\circ} 8 \mathrm{I} 5$	0L＇295＇8	¢ ${ }^{\circ} \mathrm{G}$ ¢	ə！ฺz บวบ्रวN
08＊00才＇Tを	$08^{\circ} 089^{\prime} 0$ ع	00＊089	$00 \cdot 08$			$00 \cdot 08$	Кәтт＾и иәртођ
$10^{\circ} 618{ }^{\prime} 560^{\prime}$ 五	$\varepsilon \varsigma^{\prime} 08 \mathrm{~T}^{\prime} 90 \varepsilon^{\prime} \varepsilon$	$86^{\circ} \mathrm{\varepsilon} 90^{\prime} 8$ ¢	95＊もを9＇โ¢ร	18＊882＇2		$8 I^{\circ} 108{ }^{\prime} 681$	［e7ol－qns еиедиою
も¢ ¢ ¢ ¢ ¢9\％	$80^{\circ} \varepsilon L 5^{\prime} L T \varepsilon$	29＊285＇02	6 $L^{\circ} 69 \varepsilon^{\prime} \angle Z$			$6 L^{\circ} 69 \varepsilon^{\prime} L Z$	xneq！M
2T＊EL6＇689	ロも＊29と＇929		LE＇L6I＇8T	SE．96L		$26^{\circ} 000^{\prime} \mathrm{LT}$	риетчว！̣
$28^{\circ} 96 L^{\prime} 98 L$	8L＇TLL＇OTも	00＊0LI＇$¢$ \＃	も0＊乌¢8＇โをย		$10 \cdot 989$＇$\varepsilon 82$	ع0＊69［＇87	aturexd
$00^{\circ} 79 L^{\prime} 9$	$00^{\circ} \mathrm{z} 2 \mathrm{I}^{\prime} 9$	00•0も9					วบ๐ว วN
	EL＊209＇99s	$00 \cdot 099^{\prime}$ ¢	90＊6LE＇TL			18＊＊9＇とて	notieg
Iて＇088＇乌̧て＇T	も¢＇I8G＇ITI＇I		L8＊89と＇69	$9 \varepsilon^{\circ} 267^{\prime} \mathrm{T}$		［5＊928＇29	uosmed
$85^{\circ} \mathrm{SGS}$＇IET	L2・も68＇を6	$00 \cdot 808^{\prime} \mathrm{L}$	T ε＇$¢ 98^{\prime} 6$ 亿		Lع． 276^{\prime} LZ	$00^{\circ} 906^{\prime}$ I	xatsno
10＊2も8＇98T	68＊0Lて＇もしT	00.096 ＇8	2T＇TI9＇${ }^{\prime}$			2T＇T19＇	ェวา．メอ
							eurauow
eว．2	ə7entxd	27e7S	Texəpəg	${ }^{\circ}$ TPM	uoţez！titn	u！̣eura	${ }_{1}$ Kıunoz
โセヌロ」			［セұо」	－${ }^{\text {¢ }}$	puet	stiqnd	

Three Federally repurchased land areas extend into the Lower Yellowstone River Basin. Land Utilization Project Montana 4, Prairie County Land Utilization Project has the largest amount of land in this ownership, 283,686 acres. Land Utilization Project Montana 21 is second in amount of this type of Federal land with 75,858 acres in Custer and Fallon Counties in the area. North Dakota Land Utilization Project 24 includes 8,563 acres in McKenzie County in the area. Total area of Land Utilization ownership in the basin is 368, 107 acres. Management, use and administration of this land is closely associated with adjacent public domain as the same operators lease and utilize both classes of land.

Land in Land Utilization projects was purchased by the Federal Government to relieve operators who owned non-economic units or who were making improper use of their land. These projects were created during the drought and depression years of the "dirty thirties". Purchased land was submarginal for the purpose for which it was then being used. Much of this land had been used for non-irrigated farming. Erosion on such land was usually severe at that time, soil loss being great from both washing and blowing away. Much of the land which had been broken and farmed was much better suited to a permanent grass cover with grazing use.

Most of the purchased land was in units which were too small to be economic, especially with lower production than that which had obtained when the units were established during the period 1907-1926. Lands in the areas were set up into proper economic units for grazing use. Excess buildings were removed. Worn, blown, eroded fields were reseeded to grass. Proper land use and good land management were established. Use and management were regulated to provide for range improvement, protection from erosion and watershed development. These lands were administered by the Soil Conservation Service for several years, and later by the Forest Service. Transfer of administration to the Bureau of Land Management is now being considered. Consummation of this transfer would place all Federal lands in the area in one agency, the Bureau of Land Management.

During the field investigation of the area certain residents of Prairie County indicated to our examiners that their county has suffered economically and as a Government unit because a large area of good farm land was included in Land Utilization area purchases there. This Federally purchased land was reverted to grass. These people also
indicated that their county has lost the potential population, trade, production and tax base of a large acreage of good wheat land. County residents also indicated that promises were made when this land was purchased that the land would be returned to farming use with the advent of improved climatic and economic conditions.

LANDS ADMINISTERED BY THE BUREAU OF LAND MANAGEMENT

Bureau of Land Management lands total 190, 106 acres in the Lower Yellowstone Area. This public domain land is in 715 separate tracts as shown on the Land Ownership and Land Use Map with this report. Each tract has been examined, classified and reported on a Land Classification report form number 4-1090. These reports for the area were completed in 1954. They are filed in the Montana State Office of the Bureau of Land Management in Billings. The form of this Land Classification report is Appendix B of this report of the area. These individual Land Classification reports are the basis for this report of the area. There was no area classification of lands in all ownerships in this basin. Classification results for each tract of public domain are presented in six categories in table 15. Classification and description of each separate tract of public domain is summarized on one line in this table. Public domain land classification and recommended management within the area is summarized by counties and states in table 14. This table also gives the recommended stocking rates.

Ninety percent of the Lower Yellowstone Area is in Montana. The Montana portion of the area has $99 \% 84$ percent of the total public domain lands in the area. Ten percent of the area is in North Dakota containing only. 16 of one percent of the public domain in the area. Most of the public domain in Montana is in two organized grazing districts as shown on the Location Map of Lower Yellowstone Area, which is a part of the map of the area with this report. Big Dry Grazing District, Montana 2, embraces all of Dawson County and that part of Prairie County which is north and west of the Yellowstone River. Powder River Grazing District, Montana 3, includes the balance of Prairie County and all of Carter, Custer and Fallon Counties within the area. Public domain lands in Richland and-Wibaux Counties and in North Dakota are not in grazing districts. Seventy-six percent of the public domain land is within the two grazing districts, 145,030 acres in extent; that outside of the districts is 45,076 acres in area, or 24 percent of the public domain in the area.

In addition to the public domain areas listed, the Federal Government has retained mineral rights on a considerable portion of the total area. These rights on deeded private lands were not considered for this report. Basic information regarding minerals retained to the Federal Government in the area is on file in the Montana Land Office at Billings.

Compiled from the analysis of the classification of individual tracts as presented in table 15.

Public domain lands in the area are valuable for watershed and for grazing by livestock and game. A large area of public domain is badlands or near badlands. There are 7,932 acres of public domain within the proposed Maco Sica Badlands State Park. Lands in this proposed park are nearly all badlands or near badlands of rugged, austere beauty. Large concentrations of public domain lands south of the proposed park, as shown on the map of the area, are also badlands or nearly so. In Township 13 North, Range 56 East, all the public domain is badlands. South of this, in Wibaux County, the public domain is steep to rough near badlands. Southward, in Fallon County on the Cedar Creek Geological Structure, the public domain lands are thin breaks and badlands.

Public domain lands east of the proposed State park in Dawson County are also near badlands. Concentration of public domain in Township 14 North, Range 57 East is steeply rolling and badlands. Public domain in the adjoining township on the north is steeply rolling, rough land. Northward, in Wibaux and Richland Counties, the concentrations of public domain shown on the map of the area are badlands and steeply rolling hills. The concentration of public domain lands west of Terry in Prairie County is thin breaks and badlands.

Surface soils in the badlands are mostly thin or lacking, being raw shales, clays or sandstone. The more nearly level spots in the badlands may have shallow sandy soil, or some other type of soil, depending upon the parent material. Much of the public domain in the area has a thin, sandy soil over sandstone or over a poorly permeable layer. If the cover on this sandy soil is seriously disturbed, the soil starts to blow away and may be completely removed to the compacted layer or to the bare rock. Conservative stocking, careful management and protection against concentration of livestock or game on many sites is essential to protect the surface resources and the watershed. Soils on the rolling public domain lands are frequently clays or clay loams known as gumbo. Most of the public domain lands are so rough and marginal in nature that they are not attractive for private ownership. None of the public domain lands in the area are suitable for homestead or desert land entry.

Public domain lands in the area are marginal to poor producers of forage cover. They offer little to attract a prospective purchaser. These lands have not been selected during eighty years of active disposal of the public lands. At present they are less desirable for private ownership than previously.

Special Classifications and Uses for Public Domain
All public domain on islands in the Yellowstone River, or on the margins thereof, should be retained in Federal ownership for wildlife use. Such lands are valuable for pheasants, deer, water fowl and furbearers. All lands adjacent to the river should be retained in Federal ownership for possible future recreation use. Considerable public domain in the vicinity of Glendive may become attractive for homesites in the future. These lands are in Sections 26, 28, 30, 32 and 34 in Township 16 North, Range 56 East; in Sections 2 and 10 in Township 15 North, Range 55 East; and in Section 26, Township 16 North, Range 54 East. Public domain within easy access of Terry also has possible future value for small tract homesites; all lands within a six mile radius of Terry should be considered for such use before they are otherwise classified. Rough terrain is not necessarily a deterent for homesite use. Some people prefer rugged sites for building their homes.

Public domain lands in the Cedar Creek Geological Structure have value for gas and oil production in addition to their other surface values. These lands, mostly thin breaks and badlands, offer little to attract buyers for their surface values. These lands should be retained in Federal ownership.

Maco Sica Badlands State Park

Maco Sica Badlands are ruggedly beautiful, scenic hills, bluffs and colorful rocks including 25,377 acres adjoining Glendive on the south and east. Area covered by this proposed State Park is shown on the map of the Lower Yellowstone Area with this report. This park should be established for a local and tourist attraction. Nearest other point of natural interest is Theodore Roosevelt National Memorial Park near Medora, North Dakota, 70 miles east. Westward are Custeri Battlefield, Bighorn Mountains and Bighorn Canyon, all about 225 miles. Further west are Yellowstone and Glacier National Parks. Development of Maco Sica State Park would create an added point of interest for travelers on U. S. Highway 10 which would correspond to Badlands National Monument in South Dakota on U. S. Highway 16. Another point of interest accessible to tourists from Glendive is Fort Peck Lake, 100 miles northwest. Maco Sica Badlands State Park would add another point of interest in Montana to attract travel on U. S. Highways 2, 10, 12 and 85.

Vegetation in the proposed park is so scant that grazing use for livestock is not justified. The park should be used for recreational purposes, watershed protection and game range. Vegetal cover is native grasses and big sagebrush with scattered juniper and scrubby yellow pine.

Recommended stocking for the proposed area of this State Park is only 14.23 acres per animal unit month.

Landownership of this proposed park is 31 percent public domain, 25 percent county, 8 percent state and 36 percent private. Landownership by townships in the proposed state park area, all within Dawson County, Montana, is as follows:

Montana				
Meridian	Public			
Twp. Range	Domain	State	County	Private
North East	Acres	Acres	Acres	Acres
1455	160	640		1,120
1456	1,096			1,628
1555	2,484	640	1,280	2,600
$15 \quad 56$	4,192	640	4,480	3,777
1655		640		
1656			640	
Total	7,932	1,920	6,400	9,125

Present access improvements in the proposed park area are a fair road from Glendive to the Sand Creek road and a number of trails to several observation points and to points of interest. There is a modern lodge near the center of the park which could be operated for meals and over night accomodations. There are a number of picnic tables at points of interest. Investigation of public domain within the area of this proposed State Park indicates that this park should be developed and livestock should be excluded to protect the park area, recreation and watershed values.

Cedar Creek Anticline Area

Cedar Creek anticline is the Geological Structure extending from Baker to the mouth of Cedar Creek, ten miles south of Glendive. The area of this structure is shown on the Lower Yellowstone Area Map with this report. Size of the area is 313,651 acres, including 65,771 acres of public domain. Oil and gas rights are retained by the Federal Government on most of the privately owned land within the structure. Virtually all of the public domain land here is badlands or thin breaks with low forage production and with relatively high values for gas and oil production and game range and watershed protection. All of this public domain has been recommended for retention for these multiple use values with the exception of 53 tracts on the margins of the area containing 8,510 acres. Each tract is described with the recommended management and an outline of its classification in table 15. There are numerous oil and gas wells, several gathering
lines and oil and gas transmission lines in the area of the structure. There are two gas pumping stations in the area. Location of the oil and gas transmission lines along and across the structure are described in the Land Use Section of this report.

Prairie County Federal Lands

Nearly half of Prairie County within the Lower Yellowstone Area is in Federal ownership, most of it being Federally acquired lands in so-called Land Utilization projects. Public domain makes up 6 percent of these Prairie County lands: Federally acquired Land Utilization project lands are 36 percent; Montana State lands cover 6 percent and privately owned lands comprise 52 percent of the county ownership in the area. Prairie County residents and officials indicated that the economy and tax base of their county has been adversely affected very severely by the large Federal purchases for Land Utilization project lands. They also indicated that these purchases were made with the understanding that they would be returned to private ownership and, so, to the tax rolls and largely to farm land use. Most of the public domain in this area is the rough badlands near Terry along the Yellowstone River. Area of the several classes of landownership in acres within Prairie County in the area is shown in the following list:

Land Utilization Project	283,686
Public Domain	48,169
State of Montana	43,170
Private	410,772
	785,797

Prairie County Grazing Association, Terry, Montana, administers most of the grazing privileges in this county. This association leases the Federal and state lands in the county and a considerable area of private land. They also own some 3,000 acres of grazing land in the county.

Badlands in the area near Terry along the Yellowstone River are rugged and beautiful. They contain several large natural bridges of sandstone. These natural features are considered to be sufficently attractive to justify exploitation as tourist attractions. Grazing value here is so low that recreation, watershed protection and wildlife are the highest type of use.
Table l5. - Description, Area, Classification, Suitability and Proposed Management of Unreserved Public Domain, by Counties,
 Private
 \pm
\sim
\sim
\sim
\sim
\sim N วายง!มd

 วtenind Private Private Private | 0 |
| :--- |
| |
| |
| 0 |
| 0 | Private Private

Private Private

 $\bigcirc \infty$
 요 in 0 o 0 $\stackrel{+}{\infty}$ Principal Suitability $\begin{array}{cl}\text { Present } & \text { Land Capability } \\ \text { AUM's Land Use } 1 / & \text { Classification 3/ }\end{array}$ 8 I NーN M $\stackrel{\infty}{\sim}$ N

Acres	General Land Character
40.92	Steeply rolling to rough
32.99	Steeply rolling to rough
39.73	Steeply rolling to rough
119.50	Steeply rolling to rough
52.72	Steeply rolling to rough
40.00	Level to rolling
40.00	Gently to steeply rolling
40.00	Gently to steeply rolling
120.00	Gently to steeply rolling
160.00	Steeply rolling to rough
87.23	Steeply rolling to rough
200.00	Steeply rolling to rough
80.00	Steeply rolling to rough
160.00	Gently rolling, undulating
40.00	Gently to steeply rolling
40.00	Steeply rolling to rough
120.00	Steeply rolling to rough
40.00	Steeply rolling to rough
160.00	Rolling to rough, broken
320.00	Rolling to rough, broken

Montana Principal Meridian
Twp. Range

Carter County
\square NMHin NN $O \infty N \infty$

N
N
N

SW $\frac{1}{4}$ NE $\frac{1}{4}$
$S W \frac{1}{4} N E \frac{1}{4}$
$E \frac{1}{2} S W \frac{1}{4}, S W$
$W \frac{1}{2} W \frac{1}{2}$
Lots 1,2
 NW $\frac{1}{4}$ SW $\frac{1}{4}$ SE $\frac{1}{4}$ NE $\frac{1}{4}$

SE $\frac{1}{4}$ SW $\frac{1}{4}$ $1 \frac{1}{1} M N$

 ing to sough,

5
\rightarrow -1 -1 274 \square CB
Table 15. - Description, Area, Classification, Suitability and Proposed Management of Unreserved Public Domain, by Counties, Within the Lower Yellowstone River Basin, Montana and North Dakota, 1955 - Continued Private Private

 $\stackrel{ \pm}{\stackrel{0}{4}}$ | \pm |
| :---: |
| $\stackrel{y}{4}$ |
| $\substack{4 \\ 0 \\ \hline \\ \hline}$ | \pm Private

Private
Private
Private
Private

20/IV:20/VI
240/VI: $80 / \mathrm{VII}$
VI
VI

$\cdots \quad \begin{aligned} & \sim \\ & \sim\end{aligned}$

320.00	Rolling to rough, broken
320.00	Steeply rolling to broken
168.70	Steeply rolling to rough
160.00	Steeply rolling to rough
155.78	Undulating, rough, broken
40.00	Steeply rolling to rough
120.00	Gently to steeply rolling
33.55	Steeply rolling to rough
80.00	Steeply rolling to rough
160.00	Gently to steeply rolling
120.00	Gently to steeply rolling

Buitiloi Kโdəats of Kโquab
Suṭdots •Sutitox Kโquaŋ
$\begin{array}{ll}320.00 & \text { Gently to steeply rolling } \\ 106.00 & \text { Gently rolling, sloping } \\ 320.00 & \text { Gently to steeply rolling }\end{array}$
Montana Principal

- Jes fseg yfron
Carter County SW $\frac{1}{4} S E \frac{1}{4}, S W \frac{1}{4}$
NW $\frac{1}{4}, W \frac{1}{2} \mathrm{NE} \frac{1}{4}, \mathrm{~N} \frac{1}{2} \mathrm{SW} \frac{1}{4}$ Lot $1,2, \mathrm{SE} \frac{1}{4} \mathrm{NE} \frac{1}{4}$,
Lot $2, S E \frac{1}{4} N W \frac{1}{4}, S \frac{1}{2} S E \frac{1}{4}$
NW $\frac{1}{4} S E \frac{1}{4}, N \frac{1}{2} S W \frac{1}{4}$
Lots 1,2
N $\frac{1}{2} N W \frac{1}{4}$
$N E \frac{1}{4}$
$W \frac{1}{2}$ NW $\frac{1}{4}, N W \frac{1}{4} N E \frac{1}{4}$
0
\sim
${\underset{N}{N}}^{N}$

$乌 \subseteq$

in
+
North East
Custer County
$\begin{array}{rrrl}6 & 54 & 26 & \mathrm{NE} \frac{1}{4} \mathrm{NE} \frac{1}{4} \\ 7 & 54 & 2 & \operatorname{Lots~} 1,2,3, S \frac{1}{2} \mathrm{NE} \frac{1}{4} \\ & & & \mathrm{~N} \frac{1}{2} \mathrm{SE} \frac{1}{4}, \mathrm{SE} \frac{1}{4} \mathrm{NW} \frac{1}{4} \\ 8 & 54 & 2 & \operatorname{Lots} 1,2,3,4 \\ 9 & 54 & 4 & \mathrm{~S} \frac{1}{2}\end{array}$
Table 15．－Description，Area，Classification，Suitability and Proposed Management of Unreserved Public Domain，by Counties， Within the Lower Yellowstone River Basin，Montana and North Dakota， 1955 －Continued
Management
Private
Private

Private
Private Private Private $\begin{array}{ll}0 & \pi \\ 0 & 4 \\ 2 & 0 \\ 2 & 0\end{array}$
Federal
Federal
Federal Private

1
1
1
1
1
1
1
1
1
$1,2,3,6$
$1,2,3,6$
$1,2,3,6$
$1,2,3,6$
1
$1,2,3,6$
$1,2,3,6$
200／VI：120／VII
$330 / \mathrm{VI}: 310 / \mathrm{VII}$
VII
$80 / \mathrm{VI}: 160 / \mathrm{VII}$
VII
VII
VI
VI
VII
\rightarrow $\stackrel{9}{>}$ $\stackrel{-}{-}$出出 出

$$
\mathrm{VI}
$$

Present
27
36
47
4 26
74
154 0 in in 0

160．00 Gently rolling to sloping
320．00 Gently to steeply rolling 640．00 Steeply rolling to rough 241． 33 Rough badlands spuetpeq yônox ふิullou $00.0 \not \subset Z$ Level to undulating ds Steeply rolling badlands Steeply rolling badlands spuerpeq ภut！lox yoinoy
321． 11 Rough rolling badlands
601． 28 Rough rolling badlands

 $\begin{array}{lll}H & N & 0 \\ \infty & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 \\ N & N & H\end{array}$

 Lots $1,2, S \frac{1}{2} N E \frac{1}{4}$ $\mathrm{N} \frac{1}{2} \mathrm{~S} \frac{1}{2}, \mathrm{~S} \frac{1}{2} \mathrm{SE} \frac{1}{4}, \mathrm{SE} \frac{1}{4} \mathrm{SW} \frac{1}{4}$ $N \frac{1}{2} S E \frac{1}{4}, S E \frac{1}{4} S E \frac{1}{4}$
AUM's Land Use苃 $\begin{array}{lll}\text { H N } & 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ N & 0 \\ N & 0 \\ N & N & H\end{array}$ Lot 5，6
$\begin{array}{cc}\exists & \infty \\ \cdots & N \\ \underset{\sim}{N} & - \\ \cdots & 0\end{array}$
 NE $\frac{1}{4} \mathrm{SE}_{\frac{1}{4}}, \mathrm{SW} \frac{1}{4}$ All $E \frac{1}{2} S E \frac{1}{4}, S \frac{1}{2} S W \frac{1}{4} S_{\frac{1}{2}} N \frac{1}{2}$
 $\stackrel{n}{0}-1 N=$
Montana Principal
Meridian Twp．Range North East Sec．
Custer County
8
오N
$10 \quad 55 \quad 22$
Dawson County
H ∞ H N N N N
䍐

み 00に
54
in
in
$13 \quad 53$
$m \quad m \quad m$
Table 15．－Description，Area，Classification，Suitability and Proposed Management of Unreserved Public Domain，by Counties，

Federal
Federal
Private
Federal
Federal
Federal
Federal
Federal
Private
Federal
Federal
Federal
Federal
Federal
Federal
Eederal Private
 วาセง！xd

640.00	Rough rolling badlands
640.00	Rough rolling badlands
640.00	Rough rolling badlands
44.14	Steeply rolling rough
644.45	Rough rolling badlands
643.92	Rough rolling badlands
640.00	Rough rolling badlands
640.00	Rough rolling badlands
320.00	Rough rolling badlands
320.00	Gently to steeply rolling
640.00	Rough rolling badlands
640.00	Rough rolling badlands
640.00	Rough rolling badlands
642.40	Rough rolling badlands
640.00	Rough rolling badlands
320.00	Rough rolling badlands
70.12	Steeply rolling，undulating
320.00	Gently to steeply rolling
120.00	Gently to steeply rolling

Montana Principal
Meridian
Twp．Range
Subdivision
All
All
All
Lot
All
All
All
All
$W \frac{1}{2}$

Nのッドか
10
$\sim \infty$
0

$0 \underset{-1}{N}$
Dawson County
Table 15．－Description，Area，Classification，Suitability and Proposed Management of Unreserved Public Domain，by Counties，
Private
Federal
Federal
Federal
Private

Private
Federal
Federal
Federal
Federal
Federal
∞

$$
\underset{0}{4} N
$$

ェวұวセגечว puert Iexəuəŋ
 Acres

 $00^{\circ} 07$

Gently to steeply rolling
Rolling gravelly hills SIIt！Y Broken，steep，rough hills Steeply rolling gravel hills
Steeply rolling gravel hills Steep，rolling gravel hills Steep rolling gravel hills Steep rolling gravel hills
Steep rolling badlands
Steep rolling badlands Steep rolling badlands
Gently to steeply rolling Rough broken badlands Rough broken badlands

N ボㅇㅇㅇㅇ
 $S E \frac{1}{4} N W \frac{1}{4}$
$N E \frac{1}{4}, E \frac{1}{2} N W \frac{1}{4}, N E \frac{1}{4} S W \frac{1}{4}$, \qquad N $\frac{1}{2}$
NW $\frac{1}{4}$ NW $\frac{1}{4}$ Lot 1 SW $\frac{1}{4}$ NW $\frac{1}{4}$ ，SW $\frac{1}{4}$ $N \frac{1}{2} N W \frac{1}{4}, E \frac{1}{2} S E \frac{1}{4}, N E \frac{1}{4}$ $N \frac{1}{2} N W \frac{1}{4}, E \frac{1}{2} S E \frac{1}{4}, N E \frac{1}{4}$
Lots $1,2,3,4, E \frac{1}{2} S W \frac{1}{4}$,
$S \frac{1}{2} S E \frac{1}{4}$ Lots $1,2,3,4, \mathrm{E} \frac{1}{2} \mathrm{SW} \frac{1}{4}$ ，
$\mathrm{S} \frac{1}{2} \mathrm{SE} \frac{1}{4}$
豆 All
$\mathrm{SE} \frac{1}{4} \mathrm{SE} \frac{1}{4}$ Lots $10,11,12,13$ $\mathrm{SW} \frac{1}{4} \mathrm{NW} \frac{1}{4}, \mathrm{NE} \frac{1}{4} \mathrm{NE} \frac{1}{4}$,
Lots $1,4,5$

 Lots $1,2,3,4, E \frac{1}{2}=\frac{1}{2}$ | － |
| :---: |
| － |
| － | $\stackrel{\infty}{-1}$ $\stackrel{\infty}{\sim} \underset{\sim}{N}$ $\begin{array}{lr}\text { SW } \frac{1}{4} \text { NW } \frac{1}{4}, \text { SW } \frac{1}{4} & 200.00\end{array}$ 0

0
0
n
n 16
 がいでで Subdivision Dawson County Montana Principal

> Twp．Range
$13 \quad 57$
\qquad
in
Table 15. - Description, Area, Classification, Suitability and Proposed Management of Unreserved Public Domain, by Counties, Within the Lower Yellowstone River Basin, Montana and North Dakota, 1955 - Continued
Proposed

Federal

 Federal Federal Feder Federal Federal Private Federal Federal Federal

 Federal Federal तु
तु
0
0
0
0
0
In

 Montana Principal Meridian
Acres General Land Character

 Land Capability Principal
 Land Capability
Classification $3 /$
Present
AUM's Land Use 1/
-i
 $\xrightarrow[-]{\circ}$
-
240.00 Rough broken badlands 320.00 Rough broken badlands 80.00 Rough broken badlands Rough broken badlands

 पถิnox of siutilox dəais
Raugh, rolling badlands Rough rolling badlands Steeply rolling to rough
 Steeply rolling to rough
 Steeply rolling to rough Steeply rolling to rough ч8ిnox of sutitiox KTdəə 7 S

 ㅇㅇㅇㅇ

Dawson	County	
14	55	20
		21
		22
		24
		26
		27
		28
		28
		33
		35
14	56	2
		4 6
		10
		12
		14
		18
,		22
		26
		30
		32
14	57	2

Table 15. - Description, Area, Classification, Suitability and Proposed Management of Unreserved Public Domain, by Counties, Within the Lower Yellowstone River Basin, Montana and North Dakota, 1955 - Continued

Private

 atentid
apentid Federal
VII
VII
$200 \mathrm{VI} / 320 \mathrm{VII}$
VI
VII
VII
VII
VII
VII
VII
VI
VI

VI
VII
VII
VII
VI
VIIVII
Principal
Suitability Suitability $2 /$ Land Capability
Classification $3 /$ Present
Land Use 1/ AUM's
○ $\begin{array}{llll}\infty & 0 & 0 & 0 \\ \infty & N\end{array}$ $\xrightarrow{\sim}$
340, 15 Steeply rolling to rough
320.00 Steeply rolling to rough 520.00 Steeply rolling to rough 320.00 Steeply rolling to rough 640.00 Steep rough badlands spueipeq sulliox Кโdəəis
 Steeply rolling badlands
Very steeply rolling
 y8inox siutiox Kidəə7S
 Rough badlands
Rough badlands, steep Gravelly hills, steep 160.00 Rough broken badlands

Table 15.-Description
Subdivision

Dawson County

Lots $1,2,6,7, S \frac{1}{2} N E \frac{1}{4}$,
 in

E $\frac{1}{2} \mathrm{SE} \frac{1}{4}$
$\mathrm{N} \frac{1}{2} \mathrm{NW} \frac{1}{4}, \mathrm{NE} \frac{1}{4}, \mathrm{SE} \frac{1}{4} \mathrm{SW} \frac{1}{4}$,
SW $\frac{1}{4}$ SE $\frac{1}{4}$

NE $\frac{1}{4}$

 E $\frac{1}{2}$示 - -in Lot 1, $\mathrm{E} \frac{1}{2} \mathrm{NW} \frac{1}{4}, \mathrm{~N} \frac{1}{2} \mathrm{NE} \frac{1}{4}$, SE $\frac{1}{4}$ NE $\frac{1}{4}, S E \frac{1}{4} S W \frac{1}{4}$ SW $\frac{1}{4}$ SE $\frac{1}{4}$ $\mathrm{N} \frac{1}{2} \mathrm{NW} \frac{1}{4}, \mathrm{NW} \frac{1}{4} \mathrm{NE} \frac{1}{4}$
$\mathrm{NW} \frac{1}{4} \mathrm{SE} \frac{1}{4}$

 $\operatorname{SE} \frac{1}{4} \mathrm{NE} \frac{1}{4}, \mathrm{~N} \frac{1}{2} \operatorname{SE} \frac{1}{4}$,

$\stackrel{\infty}{i n}$
$\overrightarrow{\text { in }} \quad$ in in in

む
$\ln \quad \ln$ in in
Table 15．－Description，Area，Classification，Suitability and Proposed Management of Unreserved Public Domain，by Counties， Within the Lower Yellowstone River Basin，Montana and North Dakota， 1955 －Continued
roposement
Federal
Federal
Federal
Private
Federal
Federal
Federal
Private
Private
Private
Federal
Federal
Private
Private
Private
Federal
Federal
Federal
Federal
Federal
Continued

120．00 Rough broken badlands
Rough broken badlands
spuetpeq uәroxq पठิnoy
Yริnox of ภิuillox Kidazis
Rough broken badlands
spueाpeq uәभолq पS̃oy
Gently to steeply rolling
Undulating to rolling
spuetpeq uәroxq पठ์noy

$$
\begin{aligned}
& \text { ч8̊nox of Suttion Kidəats }
\end{aligned}
$$

凯

$$
\begin{aligned}
& 880 \text { in } 0 \text { 영 }
\end{aligned}
$$

$\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ N & \infty & H\end{array}$
$\begin{array}{lllll}0 & 0 & 0 & n & 0 \\ & 0 & 0 & m & 0 \\ & 0 & 0 & \dot{1} & 0 \\ 0 & \infty & H^{1} & N & N\end{array}$

Lots 4 Lots $1,4, S \frac{1}{2}$ NW $\frac{1}{4}$
All $E \frac{1}{2}, E \frac{1}{2} W \frac{1}{2}$, Lots 3， 4 Lots 1，2，3，4，5，6，
$\mathrm{E}_{\frac{1}{2} S E \frac{1}{4}}$ Lots 1,4 $\mathrm{N} \frac{1}{2} \mathrm{NE} \frac{1}{4}, \mathrm{SW} \frac{1}{4} \mathrm{NW} \frac{1}{4}$ ， $\mathrm{N} \frac{1}{2} \mathrm{NE} \frac{1}{4}, \mathrm{SW} \frac{1}{4} \mathrm{NW} \frac{1}{4}$,
SW $\frac{1}{4}$, SW $\frac{1}{4}$ SE $\frac{1}{4}$

-14
\sum_{-1+}^{3}
3
3
S $\frac{1}{2}$ SE $\frac{1}{4}, S$
示

Montana Principal
Meridian Twp．Range

North East Sec．

Dawson County
O～みNサ゚N
N N N O 0
$\underset{-}{\sim}$
$\stackrel{O}{\mathrm{~N}}$
${ }_{N}^{\infty} \mathrm{O}$ N
$\stackrel{\bullet}{n}$
$\stackrel{n}{n}$
Table 15.-Description, Area, Classification, Suitability and Proposed Management of Unreserved Public Domain, by Counties, Within the Lower Yellowstone River Basin, Montana and North Dakota, 1955 - Continued

Montana Principal Meridian										
Twp.	Rang						Present	Land Capability P	cipal	Proposed
North	East	Sec.	Subdivision	Acres	General Land Character	AUM's	Land Use 1/	Classification 3/ Sui	ta bility 2 /	Management
Dawson County										
15	56	34	All	640.00	Rough broken badlands	40	1,2,3,6	VIII	1,6	Public
15	57	6	All	715.79	Steeply rolling to rough	154	1	385.03/VI:330.76/VII	1	Private
		8	$S^{\frac{1}{2}}$	320.00	Steeply rolling, rough	58	1	VII	1	Private
		20	All	640.00	Steeply rolling, rough	141	1	VII	1	Private
		28	All	640.00	Steeply rolling, rough	115	1	VII	1	Private
		30	Lots 2, 3, 4, E $\frac{1}{2} S W \frac{1}{4}$, W $\frac{1}{2} S E \frac{1}{4}, S E \frac{1}{4} S E \frac{1}{4}$	346.14	Steeply rolling, rough	69	1	VI	1	Private
		34	All	640.00	Steeply rolling, rough	102	1	VII	1	Private
15	58	4	Lots 1, 2	94.60	Steeply rolling, rough	26	1	VI	1	Private
16	53	22	NE $\frac{1}{4}$ NW $\frac{1}{4}, \mathrm{NW} \frac{1}{4} \mathrm{NE} \frac{1}{4}$,							
			SW $\frac{1}{4}, E$ 故SE $\frac{1}{4}$	320.00	Steeply rolling to rough	76	- 1	VII	1	Private
16	54	2	Lots 1, 2, 3, 4, $\mathrm{S}_{2}^{1} \mathrm{~N} \frac{1}{2}$	349.88	Rough broken badlands	63	1	VII	1	Private
		4	Lot 1	47.15	Rough broken badlands	12	1	VI	1	Private
		26	S $\frac{1}{2} \mathrm{~S} \frac{1}{2}$	160.00	Steeply rolling, rough	43	1	VII	1	Private
16	55	2	$\operatorname{Lot} 1,2,3,4,5 \frac{1}{2} N \frac{1}{2}$,							
			$N_{2}^{\frac{1}{2}} S W \frac{1}{4}$	426.72	Steeply rolling, rough	60	1	VII	1	Private
		4	Lot $1,2,3,4, \mathrm{~S} \frac{1}{2} \mathrm{~N} \frac{1}{2}$	333.79	Steeply rolling, broken	34	1	VII	1	Private
		24	Lot 7	36.00	Level, undulating, island	-	None	VII	1	Private
16	56	12	$S E \frac{1}{4} N E \frac{1}{4}, S E \frac{1}{4}, E \frac{1}{2} S W \frac{1}{4} \text {, }$							
		22	$\begin{aligned} & S W \frac{1}{4} S W \frac{1}{4} \\ & \text { NW } \frac{1}{4}, N \frac{1}{2} S E \frac{1}{4}, W \frac{1}{2} S W \frac{1}{4} \text {, } \end{aligned}$	320.00	Rough steep, sand, scoria	70	1	VII	1	Private
			SE $\frac{1}{4}$ SW $\frac{1}{4}$	360.00	Steep to gently rolling	71	1	VII	1	Private
		26	S $\frac{1}{2}$	320.00	Steep to gently rolling	54	1	VII	1	Private

- Continued
Table 15. - Description, Area, Classification, Suitability and Proposed Management of Unreserved Public Domain, by Counties, Within the Lower Yellowstone River Basin, Montana and North Dakota, 1955 - Continued
Private Federal
Federal त
N
0
0
0
0
0

Private
Private Private
Private

 Private范
Montana Principal \qquad
Meridian Twp. Range
North East Sec.

Montana Principal Meridian										
Twp. North	Range East		Subdivision	Acres	General Land Character	AUM's	Present Land Use $1 /$	Land Capability P Classification 3/ Su	rincipal uitability $2 /$	Proposed Management
Dawson County										
16	56	28	SE $\frac{1}{4}$	160.00	Steeply to gently rolling	40	1	VII	1	Private
		30 32	Lots 3, 4, $\mathrm{E} \frac{1}{2} \mathrm{SW} \frac{1}{4}, \mathrm{SE} \frac{1}{4}$ N $\frac{1}{2}$ NW $\frac{1}{4}$ SW $\frac{1}{4}$ NW $\frac{1}{4}$,	310.70	Steeply sloping to badlands	34	$1,2,3,6$	VII	1,2,3,6	Federal
		32	NW $\frac{1}{4}$ SW $\frac{1}{4}, \mathrm{SE} \frac{1}{4}$, Lots 3,4	398.89	Steeply sloping to badlands	48	1,2,3,6	VII 1	1,2,3,6	Federal
		34	N ${ }^{\frac{1}{2}}$	320.00	Steeply rolling, rough	72	1	VII 1	1,2,3,6	Federal
		34	SE $\frac{1}{4} \mathrm{SE} \frac{1}{4}$	40.00	Steeply rolling	11	1	VI	,	Private
16	57	14	W $\frac{1}{2}$ NE $\frac{1}{4}, \mathrm{E} \frac{1}{2}$ NW $\frac{1}{4}$,							
			NE $\frac{1}{4}$ SW $\frac{1}{4}, \mathrm{NW} \frac{1}{4} \mathrm{SE} \frac{1}{4}$	240.00	Rough, sand and scoria hills	43	1	VII	1	Private
		1822		40.00	Rough, sand and scoria hills	6	1	VII	1	Private
			NW $\frac{1}{4}$ NE $\frac{1}{4}, S E \frac{1}{4}$ NE $\frac{1}{4}$, N $\frac{1}{2}$ SE $\frac{1}{4}, S W \frac{1}{4}$ SE $\frac{1}{4}, S \frac{1}{2}$ SW $\frac{1}{4}$,							
			$N \frac{1}{2} N W \frac{1}{4}, S W \frac{1}{4} N W \frac{1}{4}$	400.00	Rough sand and scoria hills	63	1	VII	1	Private
16	58	2	Lots $1,2,4, \mathrm{SW} \frac{1}{4} \mathrm{NW} \frac{1}{4}$, $\mathrm{W} \frac{1}{2} \mathrm{SW} \frac{1}{4}, \mathrm{~S} \frac{1}{2} \mathrm{SE} \frac{1}{4}$	331.18	Steeply rolling scoria hills	89	1	160/VI:171.18/VII	1	Private
		6	Lots $1,2,3, \mathrm{SE} \frac{1}{4} \mathrm{NW} \frac{1}{4}$, S $\frac{1}{2}$ S $E \frac{1}{4}$	249.63	Rough broken scoria hills	38	1	VII	1	Private
		20	S $\frac{1}{2}$	320.00	Rough broken scoria hills	70	1	VII	1	Private
17	50	2	Lot 3, SW $\frac{1}{4} \mathrm{NW} \frac{1}{4}, \mathrm{~W} \frac{1}{2} \mathrm{SW} \frac{1}{4}$	160.24	Gently to steeply rolling	42	1	VI	1	Private
		6	Lots 5,6, SW $\frac{1}{4}$ SE $\frac{1}{4}$	117.36	Gently to steeply rolling	30	1	VI		Private
		30	Lot 4	39.74	Gently to steeply rolling	10	1	VI	1	Private
17	51	2	S $\frac{1}{2}$ SW $\frac{1}{4}$	80.00	Gently to steeply rolling	22	1	VI	1	Private
17	54	8	SW $\frac{1}{4}$	160.00	Steeply rolling to rough	24	1	VII	1	Private
		20	$\mathrm{N} \frac{1}{2}, \mathrm{SE} \frac{1}{4}$	480.00	Steeply rolling to rough	96	1	VII	1	Private

Table 15．－Description，Area，Classification，Suitability and Proposed Management of Unreserved Public Domain，by Counties， Within the Lower Yellowstone River Basin，Montana and North Dakota， 1955 －Continued

Private

苞 apenitud 4N
N
N
a
a
a
0 Private Private
号 Private
 Private
Private
Private
 Principal $\overline{2}$ Kituquezins $\begin{array}{ll} & \text { Present } \\ \text { AUM＇s Land Use 1／Capability } \\ \text { Lassification 3／}\end{array}$ Present AUM＇s Land Use Horthontran

－

Table 15．－Description，Area，Classification，Suitability and Proposed Management of Unreserved Public Domain，dy Counties，

\section*{Private} Private Private Private | 0 |
| :--- |
| + |
| 0 |
| 3 |
| 4 |
| 2 |

 Private Private Private Private | 0 |
| :---: |
| 4 |
| 2 |
| 2 |
| \vdots |

\pm
\pm
2
2
2

$$
\text { प̧snox pure dəə⿰丬s } K x \partial \Lambda
$$

$$
\text { YBnox of Su!tiox } \Lambda_{\text {Td eatS }}
$$

Steeply rolling to rough

$$
\begin{aligned}
& \text { Gently to steeply rolling } \\
& \text { Gently to steeply rolling }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Gently to steeply rolling } \\
& \text { Steeply rolling, hummock }
\end{aligned}
$$

Steeply rolling, hummocky
Rough, broken badlands
Steep rolling gravel hills

$$
\bar{y}
$$

$$
\text { + } 8: 80 \% \%
$$

$$
8
$$

$$
8
$$

$$
\begin{aligned}
& \circ \\
& \stackrel{0}{\mathbf{N}}
\end{aligned}
$$$\mathrm{N}^{\frac{1}{2}} \mathrm{NE} \mathrm{E}_{\frac{1}{4}}$

$$
\begin{gathered}
-1+-1 \\
-1 \\
-1 \\
-1 \\
2 \\
2
\end{gathered}
$$

$$
\begin{array}{r}
7 \\
7 \\
7 \\
7 \\
7 \\
7 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \text { Lots } 1,2,3,4,5,6,7,8 \text {, } \\
& 9,10,11,12
\end{aligned}
$$

$$
\begin{aligned}
& S E \frac{1}{4} N W W \frac{1}{4}, S E \frac{1}{4} \mathrm{SE}^{\frac{1}{4}} \\
& \mathrm{E}_{2}^{\frac{1}{2}} \mathrm{NE}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{E} \frac{1}{2} \\
& \mathrm{SE} \\
& 5 \frac{1}{4} \mathrm{NW} \frac{1}{4}, \mathrm{SE} \frac{1}{4} \mathrm{SE} \frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { NE } \frac{1}{4} \text { NE } \frac{1}{4} \\
& W \frac{1}{2} N W \frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{W} \frac{1}{2} \mathrm{NW}, \frac{1}{4} \\
& \mathrm{NE} \frac{1}{4}, \mathrm{~F}_{2}^{\frac{1}{2}} \mathrm{NW}^{\frac{1}{4}}, \mathrm{NW} \frac{1}{4} \mathrm{NW} \frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{NE}, \frac{1}{4}, N \frac{1}{2} S E \frac{1}{4}, S E \frac{1}{4} S E \frac{1}{4}, \\
& S E=\frac{1}{2},
\end{aligned}
$$

$$
22
$$

$$
\begin{aligned}
& 02 \\
& 8 \mathrm{I} \\
& \mathrm{IT}
\end{aligned}
$$

N No No$\stackrel{\infty}{\sim}$웅NNNNN․$\stackrel{\infty}{\sim}$앙
in \quad in in \quad in
\approx
$-$
\rightarrow

Montana Principal
Meridian
Dawson County
\quad M
Twp．
North

Montana Principal
Meridian
Twp. Range
Twp. Range
North East
Federal
Federal Federal Private
Private Private Private Private Private Private

 Private
 $\stackrel{y}{0}$
N
a
a
0

范 azenixd
рənu!̣uoう -
Table 15. - Description, Area, Classification, Suitability and Proposed Management of Unreserved Public Domain, by Counties, Within the Lower Yellowstone River Basin, Montana and North Dakota, 1955 Continued

```
00%
```

Present Land Capability Principal
Principal
Suitability
Classification 3/

General Land Character

0	0	0
m	m	
n	n	
n	n	
	$=$	

ํn.
Table 15．－Description，Area，Classification，Suitability and Proposed Management of Unreserved Public Domain，by Counties
Gently rolling sloping Gently to steeply rolling Gently rolling，sloping Gently to steeply rolling

 320．00 Steeply rolling to rough

 \circ
0
$\dot{8}$

Private Private

 Private
 Private Private
Private

Montana Principal Meridian				Acres	General Land Character
Twp．	Rang		Subdivision		
North	East	Sec．			
Dawson County					
20	52	32	W $\frac{1}{2}$ SW $\frac{1}{4}$	80.00	Steeply rolling badlands
20	55	2	SW $\frac{1}{4}$ NW $\frac{1}{4}, \mathrm{~N} \frac{1}{2} \mathrm{~S} \frac{1}{2}$	200.00	Gently to steeply rolling
		12	S $\frac{1}{2} \mathrm{SE} \frac{1}{4}$	80.00	Gently to steeply rolling
Fallon County					
5	55	8	NW $\frac{1}{4}$ NE $\frac{1}{4}$ ，NW $\frac{1}{4}$ ，		
			NW $\frac{1}{4}$ SW $\frac{1}{4}$	240.00	Gently to steeply rolling
		18	E ${ }^{\frac{1}{2}}$	320.00	Gently to steeply rolling
		24	$\mathrm{S} \frac{1}{2}$	320.00	Gently rolling to sloping
		28	W $\frac{1}{2} \mathrm{NE} \frac{1}{4}, \mathrm{NW} \frac{1}{4} \mathrm{SE} \frac{1}{4}$	120.00	Steeply rolling to rough
5	56	8	SE $\frac{1}{4}$ SW $\frac{1}{4}$ ，SW $\frac{1}{4} \mathrm{SE} \frac{1}{4}$	80.00	Steeply rolling to sloping
5	57	9	NW $\frac{1}{4}$ SE $\frac{1}{4}$	40.00	Gently rolling sloping
		30	Lot 4	40.00	Gently to steeply rolling
5	58	8	S $\frac{1}{2}$ NW $\frac{1}{4}$	80.00	Gently rolling，sloping
		32	NE $\frac{1}{4}$	160.00	Steeply rolling to rough
6	55	4	W $\frac{1}{2}$ SW $\frac{1}{4}$	80.00	Gently to steeply rolling
		6	S ${ }_{2}$ NW $\frac{1}{4}$	80.00	Steeply rolling to rough
		20	SE $\frac{1}{4} \mathrm{SE} \frac{1}{4}$	40.00	Gently to steeply rolling
		26	NW $\frac{1}{4}, \mathrm{SW} \frac{1}{4} \mathrm{NE} \frac{1}{4}, \mathrm{NW} \frac{1}{4} \mathrm{SE} \frac{1}{4}$ ，		
			N $\frac{1}{2}$ SW $\frac{1}{4}$	320.00	Steeply rolling to rough
		32	SW $\frac{1}{4}$ NW $\frac{1}{4}$	40.00	Gently to steeply rolling
6	56	6	Lots 1，2，3，4，6，7，8，		

Table 15.- Description, Area, Classification, Suitability and Proposed Management of Unreserved Public Domain, by Counties, Within the Lower Yellowstone River Rasin, Montana and North Dakota, 1955 - Continued
 Private Private
Private
 Private Private Private Private Private рәnu!̣uo Present Land Capability Suitability 2/ Classification 3/ 125/VI:515/VII $\begin{array}{ll}\text { VI:515/VII } & 1 \\ \text { VII } & 1 \\ \text { VII } & 1\end{array}$ 20/VI:200/VI 70/VIII 90/VI:30/VII
I Λ
I Λ
I Λ
I Λ 90/VI:110/VII 140/VI:140/VII

 126
88 ${\underset{\sim}{\sim}}_{\sim}^{\sim} \stackrel{0}{\sim}{ }^{\infty}{ }^{\infty}$ 24
43
10
22
56
56
 AUM's Land Use

$-1-$
Proposed
Table 15. - Description, Area, Classification, Suitability and Proposed Management of Unreserved Public Domain, by Counties,
Within the Lower Yellowstone River Basin, Montana and North Dakota, 1955 - Continued
Proposed
Management Private Private華
 \pm
0
0
0
0
0
 N Private Federal華 N

 Private Private Private

Montana Principal
Meridian
Twp. Range
North East

Fallon County

02
25
95
22
29 22
81
22 8ε
21 92 72
16
73 42 35.54/VI:115.69/VII 1 40/VI:120/VII

 30/VI:50/VII 1
320.00 Gently to steeply rolling Gently rolling to sloping

Steeply rolling rough Gently to steeply rolling Gently rolling, undulating Gently rolling, undulating Gently rolling, undulating
Undulating, to rolling Undulating, to rolling
Gently rolling to rough Sently roling to rough
 Rolling to undulating

 Gently to steeply rolling Steeply sloping

Steeply rolling to broken Gently to steeply rolling Steeply rolling, broken ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 160.00
27.69 $\circ \circ$
$\circ 80$
0
-1

$\stackrel{\circ}{\sim} \stackrel{\circ}{\circ}$
80.
 151.23
 $\mathrm{N} \frac{1}{2}$
$\mathrm{E} \frac{1}{2} \mathrm{SE}^{\frac{1}{4}}$
$\mathrm{~N} \frac{1}{2}$
SE $\frac{1}{4}$ NE $\frac{1}{4}, S E \frac{1}{4}$ SW $\frac{1}{4}$ NE $\frac{1}{4}, \mathrm{SE} \frac{1}{4}$ SW $\frac{1}{4}$
Lot $1, \mathrm{NE} \frac{1}{4} \mathrm{NW} \frac{1}{4}$ $\operatorname{SE} \frac{1}{4} \mathrm{NE} \frac{1}{4}, \mathrm{NE} \frac{1}{4} \mathrm{SE}_{\frac{1}{4}}$ Lots 8,9

 N $\frac{1}{2}$ NW $\frac{1}{4}$
 N $\frac{1}{2}$ NW $\frac{1}{4}, S W \frac{1}{4}$ NW $\frac{1}{4}$
Lot $1,3, \mathrm{NE} \frac{1}{4} \mathrm{NW} \frac{1}{4}$, N $\frac{1}{2} N E \frac{1}{4}, S W \frac{1}{4} N E \frac{1}{4}$,

$\bigcirc \underset{\sim}{\infty}$ 옹 N in in ∞
 2ε \cdots $\stackrel{\infty}{\sim}$ N in in ∞_{i}° o in

n in
Table 15.- Description, Area, Classification, Suitability and Proposed Management of Unreserved Public Domain, by Counties, Within the Lower Yellowstone River Basin, Montana and North Dakota, 1955 - Continued Federal Federal Federal Federal Federal Federal Federal Federal Ederal Federal Federal Federal

 तु
H
0
0
出 Federal
Private
Private Private

bility
 Suitability $\underline{2}$

Classification 3

VII

 VII
$\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0\end{array}$ in in in in in in 6 1,2,
1,2,
1,2,
1,2,
$\rightarrow-1$ 40/VI:280/VII
70/VI:249.17/VII
160/VI:160/VII
90/VI:230/VII
140/VI:180/VII
40/VI:121.91/VII 140/VI:180/VII
245/VI:235/VII $\begin{array}{rr}93 & 1,2,3,5,6 \\ 88 & 1,2,3,5,6 \\ 92 & 1,2,3,5,6 \\ 114 & 1,2,3,5,6 \\ 126 & 1,2,3,5,6 \\ 110 & 1,2,3,5,6 \\ 102 & 1,2,3,5,6 \\ 24 & 1,2,3,5,6 \\ 98 & 1,2,3,5,6 \\ 106 & 1,2,3,5,6 \\ 112 & 1,2,3,5,6 \\ & \\ 58 & 1,2,3,5,6 \\ & \\ 76 & 1,2,3,5,6 \\ 73 & 1,2,3,5,6 \\ 88 & 1,2,3,5,6 \\ 92 & 1,2,3,5,6 \\ 82 & 1,2,3,5,6 \\ 45 & 1,2,3,5,6 \\ 84 & 1 \\ 112 & 1\end{array}$ General Land Character
546.00 Thin breaks and badlands Steeply rolling, sloping Thin breaks to badlands spuripeq of sभeazq u!̣чI spuripeq of syeaxq uṭl
Thin breaks to badlands
Steeply rolling to rough Gently to steeply rolling
Gently to steeply rolling
 Steeply rolling to rough
Gently to steeply rolling

 Fallon County
1
3
5
9
1

~
NN N N N NO \pm
\qquad
a
in
in in
∞
a
in
a
Table 15. - Description, Area, Classification, Suitability and Proposed Management of Unreserved Public Domain, by Counties, Within the Lower Yellowstone River Basin, Montana and North Dakota, 1955 - Continued

Table 15．－Description，Area，Classification，Suitability and Proposed Management of Unreserved Public Domain，by Counties， Within the Lower Yellowstone River Basin，Montana and North Dakota， 1955 －Continued
Private
Private

 Private Private Private Federal | \pm |
| :---: |
| $\stackrel{y}{4}$ |
| $\stackrel{y}{4}$ |
| 4 |

 त
岂
0
0
0
4 Federal

 तु

Acres General Land Character

VII $1,2,3,5,6$ Federal

```
VI
```


$621,2,3,5,6$
13
10
10
9
 $\underset{\sim}{\sim} \underset{\sim}{\infty} \underset{\sim}{\infty}$ 320．00 Steeply rolling to broken
640.00 Steeply rolling to rough Broken badlands，thin break Gently sloping to rolling Steeply rolling to rough Gently to steeply rolling Gently to steeply rolling Steep，rough and broken
 Gently to steeply rolling Gently to steeply rolling Rolling to rough，broken

m
0
0 － 25 siltu pues suitioa $K_{\text {Idəə7S }} 0$ •عा $\frac{2}{8} M \frac{2}{7} \sin ^{\prime} \varepsilon^{\prime} Z^{\prime}$ I sqor Lot 3
Lot 4 Montana Principal
Meridian
Twp．Range
North East Sec．
Subdivision

Principal Suitability

$\begin{array}{cc}\text { Present } & \text { Land Capability } \\ \text { AUM＇s Land Use 1／} & \text { Classification 3／}\end{array}$
0ε
Fallon County
8 S I I

PrairieCounty
Land Capability Principal

30
2
10
18
32
MNONNHNOO
Nがが

$$
\begin{aligned}
& \begin{aligned}
\text { a in in in } \\
\text { in }
\end{aligned} \\
& \text { ごコこ }
\end{aligned}
$$

Table 15. - Description, Area, Classification, Suitability and Proposed Management of Unreserved Public Domain by Counties,

Montana Principal
Meridian
Twp. Range
North East Sec.
 Suitability Land Capability Present
AUM's Land Use 1/
 요N 억 $\stackrel{\infty}{+}$

Table 15. - Description, Area, Classification, Suitability and Proposed Management of Unreserved Public Domain, by Counties,
Federal
Private
Federal
Federal

VII VII VII VII VII VII VII VIII VII

VII	$2,3,6$
VII	$2,3,6$
VIII	$2,3,6$
VII	$2,3,6$
400/VII:246. $40 /$ VIII $2,3,6$	
550/VII:111. 36/VIII $2,3,6$	
512. 76/VII:130/VIII $2,3,6$	
399.65/VII:220/VIII $2,3,6$	
148. 95/VII:65/VIII	$2,3,6$
VI	1
VII	$1,2,3$
VII	$1,2,3$

Principal

- -
相

Acres	General Land Character
640.00	Badlands and thin breaks
640.00	Badlands and thin breaks
640.00	Badlands and thin breaks
320.00	Badlands and thin breaks
320.00	Badlands and thin breaks
640.00	Badlands and thin breaks
640.00	Badlands and thin breaks
649.88	Badlands and thin breaks
645.20	Badlands and thin breaks
646.40	Badlands and thin breaks
661.36	Badlands and thin breaks
642.76	Badlands and thin breaks
619.65	Badlands and thin breaks
213.95	Badlands and thin breaks
40.00	Gently to steeply rolling
631.84	Badlands and thin breaks
640.00	Badlands and thin breaks
160.00	Gently to steeply rolling
54.76	Gently sloping and rolling
160.00	Gently to steeply rolling

Montana Princ
Meridian
Twp. Range

Prairie County
ㅇNN N N N N N N
 $\stackrel{\infty}{\sim}$ 앙 $\underset{+}{\circ}$ 우
$\underset{\sim}{\sim}$
$\underset{\sim}{\sim}$
Table 15．－Description，Area，Classification，Suitability and Proposed Management of Unreserved Public Domain，by Counties，

Federal Federal
Federal
Federal
Private
Private
Private
Private
Private Private Private Private Federal

 Federal
 Federal Federal Federal

I	$\mathrm{I} \Lambda$
I	II Λ
I	IIN
I	II Λ
I	II Λ
I	I Λ
I	II Λ
I	II＾
I	II Λ
I	
I	I Λ
I	I Λ
$9 ' \varepsilon ' 2$	2 IIIN／SZ：IL＾／st
$9^{\prime} \varepsilon$＇$冖$	IIIム／26＊18：II $/$／¢をて
	IIム／O才
I	

000
べN

$\stackrel{\circ}{\circ}$

Gently sloping to rolling

316.92 Rough badlands

Rough badlands
Rough badlands
Steeply rolling rough Steeply rolling rough

Undulating to rolling
Rough and broken，breaks

Steeply rolling to rough thin breaks Rough，broken thin breaks

 Gently to steeply rolling Gently to steeply rolling Gently to steeply rolling

9
00
0
0
0
0

320．00 Gently to steeply rolling
18
8 N $8=$

Present
AUM's Land Use
Lot $1, \operatorname{SE} \frac{1}{4} \mathrm{NE} \frac{1}{4}, \mathrm{E} \frac{1}{2} \mathrm{SE} \frac{1}{4}$
$\mathrm{~N} \frac{1}{2}$
$\mathrm{N} \frac{1}{2}$
All
SW $\frac{1}{4}$

Lots 1，2，3，SE $\frac{1}{4} \mathrm{SE} \frac{1}{4}$ SE $\frac{1}{4}$ SW $\frac{1}{4}$ ， SW $\frac{1}{4}$ SE $\frac{1}{4}$ Lot $1,4, E \frac{1}{2} S^{2} \frac{1}{4}$ N $\frac{1}{2}$ NW $\frac{1}{4}, S W \frac{1}{4} N W \frac{1}{4}$ ，
 All Lots 1，2，3， 4 Lots 1，2，3， 4 S $\frac{1}{2}$ NW $\frac{1}{4}$, SW $\frac{1}{4}, S \frac{1}{2} S E \frac{1}{4}$ Lots $4,5, \mathrm{~W} \frac{1}{2} \mathrm{SW} \frac{1}{4}$ Lots $1,2,3,7,8,9, S E \frac{1}{4}$ E $\frac{1}{2}$ SE $\frac{1}{4}$ \qquad $\mathrm{NE} \frac{1}{4} \mathrm{SEE} \frac{1}{4} \mathrm{~N}, \mathrm{\frac{1}{4}}, \mathrm{SE} \frac{1}{4} \mathrm{NE} \frac{1}{4}$ ， $\mathrm{NE} \frac{1}{4} \mathrm{SE} \frac{1}{4}, \mathrm{~S} \frac{1}{2} \mathrm{~S} \frac{1}{2}$ Montana Principal Meridian Twp．Range

Prairie County

in
n
n
n
n
in
in
$\underset{\sim}{N} \quad N$
Table 15．－Description，Area，Classification，Suitability and Proposed Management of Unreserved Public Domain，by Counties， Within the Lower Yellowstone River Basin，Montana and North Dakota， 1955 －Continued
Proposed
Management

7
H
U
U
u

Land Capability Principal Federal
－Continued

 N～ロ $\stackrel{\infty}{\sim} \sim O_{0}$かニッー

Present

320.42	Badlands to thin breaks
320.00	Thin breaks to bad lands
160.00	Thin breaks，steep，rolling
118.50	Gently to steeply rolling
316.84	Steeply rolling to rough
320.00	Steeply rolling to rough
320.00	Steeply rolling，broken
40.00	Steep，sharp sand hills
640.00	Choppy and hills，rough
320.00	Gently rolling to sloping
480.00	Rough badlands and breaks
640.00	Rough badlands and breaks
640.00	Rough badlands，thin breaks
400.00	Gently to steeply rolling
662.04	Steeply rolling to broken
80.00	Steeply rolling to rough
320.00	Gently to steeply rolling
320.00	Steeply rolling，rough
364.97	Steeply rolling to rough
80.00	Steeply rolling，broken
160.00	Gently to steeply rolling
40.00	Gently rolling，sloping

S $\frac{1}{2}$
SW $\frac{1}{4}$ SE $\frac{1}{4}$
All

$$
\text { Suitability } 2 /
$$

Lots $1,3,4$, NE $\frac{1}{4}$,
NW $\frac{1}{4}$ SE $\frac{1}{4}$
NW $\frac{1}{4}, E \frac{1}{2} N E \frac{1}{4}, W \frac{1}{2} S W \frac{1}{4}$
N $\frac{1}{2} N \frac{1}{2}$
Lots $1,2, S E \frac{1}{4} N E \frac{1}{4}$Lots $1,2, S E \frac{1}{4} N E \frac{1}{4}$
Lots $1,2,3,4, S \frac{1}{2} N \frac{1}{2}$Lots $1,2,3,4, S_{2}^{\frac{1}{2}} \mathrm{~N}_{2}$
$\mathrm{~S} \frac{1}{2}$
$\mathrm{~S} \frac{1}{2}$S $\frac{1}{2}, S \frac{1}{2} N \frac{1}{2}$All $W \frac{1}{2}$ SE $\frac{1}{4}$All
W $\frac{1}{2} S E \frac{1}{4}$
$W \frac{1}{2}$
S $\frac{1}{2}$
Lot $4, E \frac{1}{2} N E \frac{1}{4}, S E \frac{1}{4}$ ，
$E \frac{1}{2} S W \frac{1}{4}, N E \frac{1}{4} S W \frac{1}{4}$
$E \frac{1}{2} S E \frac{1}{4}$
$S W \frac{1}{4}$
NE $\frac{1}{4}$ NE $\frac{1}{4}$
Prairie County

$$
\text { Land Use } 1 /
$$

$$
\text { Classification } 3 \text { / }
$$

－	$\stackrel{\infty}{\sim}$	in	in
m	$m \mathrm{~m}$	m	m

Table 15．－Description，Area，Classification，Suitability and Proposed Management of Unreserved Public Domain，by Counties， Within the Lower Yellowstone River Basin，Montana and North Dakota， 1955 －Continued

Management

Federal Federal

 Federal $\begin{array}{cc}\text { तु } \\ \text { त } \\ 0 \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 4 & 4\end{array}$「ехэрэл Federal Federal Federal

 โехәрәл

Proposed
－
Federal
Continued

Steeply rolling to rough

Steeply rolling to rough

640．00 Rough broken sand breaks
640.00 Rough and steep sand breaks
Choppy sand hills，broken
320.00 Choppy sand hills，rough
640.00 Choppy sand hills，steep
480.00 Steeply rolling to rough
ㅇㅇㅇ

Acres N
Table 15．－Description，Area，Classification，Suitability and Proposed Management of Unreserved Public Domain，by Counties， Within the Lower Yellowstone River Basin，Montana and North Dakota， 1955 －Continued Federal โехәрәョ范
 Federal

 Federal Federal

7
4
0
0
0
0
in

 96
51 02
56 \because

106 83
 Very rough and broken badlands Steeply rolling to rough Gently to steeply rolling Gently to steeply rolling
Gently to steeply rolling Gently to steeply rolling Steeply rolling rough 320．00 Gently to steeply rolling stic̣ pues uayoxq yoinou Rolling sand hills Gently rolling sand hills Gently to steeply rolling Gently to steeply rolling SuṬdots of Sutitox Kituaŋ 480．00 Steeply rolling to broken 40．00 Steeply rolling，broken Gently to steeply rolling Gently rolling to sloping Gently to steeply rolling Gently rolling to sloping Gently rolling to sloping
 が
\qquad 40．00 Gently to steeply rolling
Table 15. - Description, Area, Classification, Suitability and Proposed Management of Unreserved Public Domain, by Counties, Within the Lower Yellowstone River Basin, Montana and North Dakota, 1955 - Continued
$\begin{aligned} & \text { Proposed } \\ & \text { Management }\end{aligned}$

Federal
Private
Private
Private
Private
Private
Private
Private Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
U
\#
0
0
0
0

Montana Principal Meridian										
Twp.	Range						Present	Land Capability	Principal	Proposed
North	East	Sec.	Subdivision	Acres	General Land Character	AUM's	Land Use 1/	Classification 3/	Suitability $\underline{\text { 2/ }}$	Management
Prairie County										
15	49	34	NW $\frac{1}{4}$ NW $\frac{1}{4}$	40.00	Steeply rolling, broken	10	1	VII	1	Federal
15	50	20	E $\frac{1}{2}$	320.00	Steeply rolling to rough	64	1	VII	1	Private
		28	N $\frac{1}{2}$	320.00	Broken thin breaks	64	1	VII	1	Private
		30	Lots 3, 4, $\mathrm{E} \frac{1}{2} \mathrm{SW} \frac{1}{4}$	165.45	Thin breaks, rough, steep	26	1	VII	1	Private
16	49	2	SW $\frac{1}{4}$ NW $\frac{1}{4}$	40.00	Gently to steeply rolling	14	1	VI	1	Private
		4	SW $\frac{1}{4} \mathrm{NWW} \frac{1}{4}$	40.00	Gently rolling to sloping	9	1	VI	1	Private
		28	NW $\frac{1}{4}$ SW $\frac{1}{4}$	40.00	Gently rolling to sloping	11	1	VI	1	Private
		32	SW $\frac{1}{4}$ SW $\frac{1}{4}$	40.00	Gently to steeply rolling	12	1	VI	1	Private
16	50	6	SW $\frac{1}{4}$ NE ${ }^{\frac{1}{4}}$	40.00	Gently to steeply rolling	14	1	VI	1	Private
Richland County										
19	57	30	E ${ }_{2}^{1}$ SE $\frac{1}{4}$	80.00	Rough, rolling and broken	24	1	VI	1	Private
		34	NW $\frac{1}{4}$ NE $\frac{1}{4}$	40.00	Gently to steeply rolling	14	1	VI	1	Private
19	58	14	SE $\frac{1}{4}, \mathrm{SW} \frac{1}{4} \mathrm{SW} \frac{1}{4}$	200.00	Rough rolling badlands	42	1	40/VI:160/VII	1	Private
		20	Lots $1,5,6,8,9,10$, SE $\frac{1}{4} \operatorname{SE} \frac{1}{4}$	191.62	Rough rolling badlands	38	1	VII	1	Private
		22	NE $\mathrm{E}_{4}^{1} \mathrm{NW} \frac{1}{4}, \mathrm{SE} \frac{1}{4}, \mathrm{E} \frac{1}{2} \mathrm{SW} \frac{1}{4}$,							
			SW $\frac{1}{4}$ SW $\frac{1}{4}$	320.00	Rough rolling badlands	82	1	VI	1	Private
		24	E $\frac{1}{2} \mathrm{NE}_{\frac{1}{4}}, \mathrm{NW} \frac{1}{4} \mathrm{NW} \frac{1}{4}$, SW $\frac{1}{4}$ SW $\frac{1}{4}$	160.00	Rough rolling badlands	38	1	40/VI:120/VII	1	Private
		26	All	640.00	Rough, broken badlands	160	1	VII	1	Private
		28	All	640.00	Rough, broken badlands	160	1	VII	1	Private
		34	All	640.00	Rough, broken badlands	160	1	VII	1	Private

Table 15.- Description, Area, Classification, Suitability and Proposed Management of Unreserved Public Domain, by Counties, Within the Lower Yellowstone River Basin, Montana and North Dakota, 1955 - Continued Private
Private Private Private Private Private Private
 Private Private
華 0
0
0
H
0
0 atenticy
atid
Private

VII	1
VII	1
VI	1
200/VI: $120 /$ VII	1
VII	1
VI	1
VII	1
$40 /$ VI:40/VII	1
$160 /$ VI:313. $38 / \mathrm{VII}$	1
VII	1
$23.69 / \mathrm{VI}: 15.83 / \mathrm{VII}$	1
VII	1
VII	1
$40 / \mathrm{VI}: 570.35 / \mathrm{VII}$	1
VII	1
$40 / \mathrm{VI}: 400 / \mathrm{VII}$	1
VII	1
VII	1
VII	1

80

All
All
N $\frac{1}{2} N \frac{1}{2}, S W \frac{1}{4} N W \frac{1}{4}$,
NW $\frac{1}{4} S W \frac{1}{4}, E \frac{1}{2} S E \frac{1}{4}$
N $N E \frac{1}{4}, S E \frac{1}{4} N E \frac{1}{4}$,
NW $\frac{1}{4} N W \frac{1}{4}, W \frac{1}{2} S W \frac{1}{4}$,
SE $\frac{1}{4} S W \frac{1}{4}, S E \frac{1}{4} S E \frac{1}{4}$
Lots $2,3, E \frac{1}{2} S W \frac{1}{4}$
$E \frac{1}{2} S W \frac{1}{4}, S E \frac{1}{4}, S E \frac{1}{4} N W \frac{1}{4}$,
S $\frac{1}{2} N E \frac{1}{4}$
All
NW $\frac{1}{4} N W \frac{1}{4}, S W \frac{1}{4} S W \frac{1}{4}$
Lots $1,2,4,5, E \frac{1}{2}$
Lots $1,2,3$
Lots 3,8
Lots $2,3, S \frac{1}{2} N W \frac{1}{4}, S W \frac{1}{4}$
N $\frac{1}{2}$
All
All
NE $\frac{1}{4} N E \frac{1}{4}, S \frac{1}{2} N W \frac{1}{4}, S \frac{1}{2}$
W $\frac{1}{2}$
All
$E \frac{1}{2} N E \frac{1}{4}, S E \frac{1}{4}, S E \frac{1}{4} S W \frac{1}{4}$,
Lot 4

Montana Principal Meridian
Twp. Range North East Sec.

6
8

$\underset{N}{+}$

0
in

19

$\begin{array}{lll}0 & \infty & 0 \\ 0 & \text { in in }\end{array}$
$\begin{array}{lll}0 & O & O \\ N & N\end{array}$
Table 15．－Description，Area，Classification，Suitability and Proposed Management of Unreserved Public Domain，by Counties， Within the Lower Yellowstone River Basin，Montana and North Dakota， 1955 －Continued
 Priva Private ate Federal Private
 Private

 N \pm
0
\sim
\sim
\sim
\sim Private

 Private

 コーコーコーコーNいコーコーコー

 $\begin{aligned} 320.00 & \text { Steeply rolling hills } \\ 40.00 & \text { Gently to steeply rolling } \\ 53.93 & \text { Gently to steeply rolling } \\ 320.00 & \text { Gently to steeply rolling } \\ 90.92 & \text { Mostly under water，barren } \\ & \\ 228.68 & \text { Rough，broken hills } \\ 160.00 & \text { Steeply rolling hills } \\ 120.00 & \text { Steeply rolling hills } \\ & \\ 160.00 & \text { Steeply rolling to rough } \\ 640.00 & \text { Steeply rolling rough } \\ 640.00 & \text { Steeply rolling to rough } \\ 80.00 & \text { Very steeply rolling } \\ 456.48 & \text { Very steeply rolling } \\ 132.80 & \text { Very steeply rolling } \\ 38.44 & \text { Very steeply rolling } \\ 80.00 & \text { Very steeply rolling } \\ 160.00 & \text { Under water } \\ 40.00 & \text { Gently rolling to level } \\ 80.00 & \text { Gently to steeply rolling } \\ 80.00 & \text { Gently to steeply rolling } \\ 240.00 & \text { Gently to steeply rolling } \\ 40.00 & \text { Gently to steeply rolling } \\ 79.13 & \text { Gently to steeply rolling }\end{aligned}$
1
1
1
1
None 1 8
8 $8=$
-
 1

$\rightarrow \neg \neg-{\underset{K}{0}}_{0}^{0}$	
今らら』引	
ーーナー	
○ザ心が，	

 Montana Principal
Meridian
Twp．Range
North East Sec． Richland County

Table 15. - Description, Area, Classification, Suitability and Proposed Management of Unreserved Public Domain, by Counties, Within the Lower Yellowstone River Basin, Montana and North Dakota, 1955 - Continued
Private Private
 Private 0
$\stackrel{0}{0}$
$\substack{4 \\ 0 \\ 0}$

 0
0
0
2
2

0 | 0 |
| :---: |
| $\stackrel{0}{0}$ |
| 2 |
| 2 |
| 2 |

 $\begin{array}{ll} \pm & 0 \\ 0 & 4 \\ 0 & 0 \\ \text { n } \\ 0 & 4 \\ 0 & 0\end{array}$
 N
 \pm
0
0
0
0

0 \begin{tabular}{c}
\pm

$\substack{0 \\
\sim \\
\sim \\
0 \\
0}$

\hline

0

$\stackrel{0}{0}$

\sum

\multirow{2}{\sim}{}

\sim

\sim
\end{tabular} Private N

/VI $20 / \mathrm{VIII}$

学

Principal

$$
\begin{aligned}
& \text { Principal } \\
& \text { Suitability }
\end{aligned}
$$

Very rough and broken
Rough, broken, steep, rolling
Steeply rolling, rough
Gently to steeply rolling
Broken sand and clay hills
Steeply rolling
Gently to steeply rolling
Gently rolling
Gently undulating
Gently undulating
Steeply rolling, rough
Steeply rolling, rough
Gently rolling
Steeply rolling
Gently to steeply rolling
Gently to steeply rolling
Steeply rolling
Gently to steeply rolling

NE $\frac{1}{4}$
All
NE $\frac{1}{4} N W \frac{1}{4}$
W $\frac{1}{2} S W \frac{1}{4}$, SE $\frac{1}{4}$ SW $\frac{1}{4}$, Lot 4
Lots $1,2,3,4, W \frac{1}{2}$
SW $\frac{1}{4} N E \frac{1}{4}$
Lots 1,2
Lots 3,4
Lots 3,4
Lot 3
N $\frac{1}{2} N E \frac{1}{4}, S W \frac{1}{4} N E \frac{1}{4}$
Lots $1,2,3,4, W \frac{1}{2}$
Lot 2
NE $\frac{1}{4} N W \frac{1}{4}$
E $\frac{1}{2} N W \frac{1}{4}$, NE $\frac{1}{4}$ SW $\frac{1}{4}$, SE $\frac{1}{4}$
SW $\frac{1}{4} N W \frac{1}{4}$
SW $\frac{1}{4} S W \frac{1}{4}$
N $\frac{1}{2} N W \frac{1}{4}$
SW $\frac{1}{4} N W \frac{1}{4}$
Lot 4
NE $\frac{1}{4} S E \frac{1}{4}$
SE $\frac{1}{4} N E \frac{1}{4}$
NW $\frac{1}{4} S E \frac{1}{4}$

Montana Principal
Twp. Range 80.00 Gently to stee

Gently undulating
Steeply rolling, rough Steeply rolling, rough

Steeply rolling
Gently to steeply rolling
lling Gently to steeply rolling

Gently to steeply rolling Gently to steeply rolling Su!tiox K โdəąs of $К$ Tquaŋ
 NE $\frac{1}{4}$
All
NE $\frac{1}{4}$ NW $\frac{1}{4}$
W $\frac{1}{2}$ SW $\frac{1}{4}$, SE $\frac{1}{4}$ SW $\frac{1}{4}$, Lot 4
Lots $1,2,3,4$, W $\frac{1}{2}$
SW $\frac{1}{4} N E \frac{1}{4}$
Lots 1,2
Lots 3,4
Lots 3,4
Lot 3
N $\frac{1}{2} N E \frac{1}{4}$ SW $\frac{1}{4} N E \frac{1}{4}$
Lots $1,2,3,4, W \frac{1}{2}$
Lot 2
NE $\frac{1}{4} N W \frac{1}{4}$
E $\frac{1}{2} N W \frac{1}{4}$, NE $\frac{1}{4}$ SW $\frac{1}{4}$, SE $\frac{1}{4}$
SW $\frac{1}{4} N W \frac{1}{4}$
SW $\frac{1}{4} S W \frac{1}{4}$
N $\frac{1}{2} N W \frac{1}{4}$
SW $\frac{1}{4} N W \frac{1}{4}$
Lot 4
NE $\frac{1}{4}$ SE $\frac{1}{4}$
SE $\frac{1}{4} N E \frac{1}{4}$
NW $\frac{1}{4} S E \frac{1}{4}$

Richland County

in 8
0

NN
an 0
N N
in an
$n \cdots n$
0
0
n
n
n
i
i

a
in

a
in
in
a
in
$\stackrel{n}{n} \stackrel{n}{n} \stackrel{n}{n}$

1
Table 15．－Description，Area，Classification，Suitability and Proposed Management of Unreserved Public Domain，by Counties， Within the Lower Yellowstone River Basin，Montana and North Dakota， 1955 －Continued

Table 15．－Description，Area，Classification，Suitability and Proposed Management of Unreserved Public Domain，by Within the Lower Yellowstone River Basin，Montana and North Dakota， 1955 －Continued										
Montana Principal Meridian										
Twp．	Rang		Subdivision	A	Land Character		Present	Land Capability	Principal	Proposed
Wibaux County										
10	59	6	SE $\frac{1}{4}$ NW $\frac{1}{4}, N E \frac{1}{4} S W \frac{1}{4}$ ，							
			S $\frac{1}{2}$ NE $\frac{1}{4}, S E \frac{1}{4}$	320.00	Rough broken badlands	32	1	VII	1	Private
11	57	2	All	630.24	Steeply rolling to rough	126	1，2，3，5，6	VII	1，2，3，5，6	Federal
		4	All	636.24	Steeply rolling to rough	96	1，2，3，5，6	VII	1，2，3，5，6	Federal
		8	SW $\frac{1}{4}$ SW $\frac{1}{4}$	40.00	Steeply rolling to rough	14	1，2，3，5，6	VI	1，2，3，5，6	Federal
		10	All	640.00	Steeply rolling to rough	96	1，2，3，5，6	VII	$1,2,3,5,6$	Federal
		14	All	640.00	Steeply rolling to rough	128	1，2，3，5，6	VII	$1,2,3,5,6$	Federal
		22	All	640.00	Steeply rolling to rough	96	1，2，3，5，6	VII	$1,2,3,5,6$	Federal
11	58	6	Lots 1，2，3，4，5，							
		8	$\begin{aligned} & S \frac{1}{2} N W \frac{1}{4}, S E \frac{1}{4} N W \frac{1}{4} \\ & \text { NW } \frac{1}{4} N W \frac{1}{4}, E \frac{1}{2} N E \frac{1}{4}, S E \frac{1}{4}, \end{aligned}$	314.28	Rough sand hills	63	1	VII	1	Private
			SW $\frac{1}{4}$ SW $\frac{1}{4}, E \frac{1}{2}$ SW $\frac{1}{4}$	400.00	Rough broken sand hills	80	1	VII	1	Private
		10	$S^{\frac{1}{2}}$	320.00	Steeply rolling sand hills	64	1	VII	1	Private
		24	S $\frac{1}{2}$	320.00	Steeply rolling sand hills	48	1	VII	1	Private
		26	N $\frac{1}{2} \mathrm{~N} \frac{1}{2}, \mathrm{E} \frac{1}{2} \mathrm{SE} \frac{1}{4}, \mathrm{SW} \frac{1}{4} \mathrm{SE} \frac{1}{4}$	280.00	Steeply rolling sand hills	56	1	VII	1	Private
11	59	30	Lots 1，2，3，4，E $\frac{1}{2} \mathrm{~W} \frac{1}{2}$ ，							
			$\mathrm{W} \frac{1}{2} \mathrm{E} \frac{1}{2}$	468．80	Steeply rolling rough	84	1	VII	1	Private
12	57	2	SW $\frac{1}{4}$ NE $\frac{1}{4}, \mathrm{SE} \frac{1}{4} \mathrm{NW} \frac{1}{4}$ ，							
			Lot 3	103.41	Rough broken badlands	31	1	VI	1	Private
		4	All	733.40	Steeply rolling to rough	147	$1,2,3,6$	VII	1，2，3，6	Federal
		6	Lots 6，8，9，10，11，12，							
			$13,14, \mathrm{E} \frac{1}{2} \mathrm{SW} \frac{1}{4}, \mathrm{SE} \frac{1}{4}$	546.49	Steeply rolling rough	148	1，2，3，6	80／VI：466．49／VII	1，2，3，6	Federal
		8	All	640.00	Steeply rolling rough	128	1，2，3，6	VII	1，2，3，6	Federal
		10	All	640.00	Steeply rolling to rough	160	1，2，3，6	VII	1，2，3，6	Federal
		14	W $\frac{1}{2}$	320.00	Steeply rolling to rough	64	1，2，3，6	VII	1，2，3，6	Federal

Private
Private โセュ әрә」 7

0
0
0
0
0
 Continued
Table 15. - Description, Area, Classification, Suitability and Proposed Management of Unreserved Public Domain, by Counties, Within the Lower Yellowstone River Basin, Montana and North Dakota, 1955 - Continued
Federal Federal Federal Federal
Federal

 Federal Private范 | y |
| :--- |
| N |
| a |
| 4 |

 Federal 0
0
0
0
4
4
0
0 Private
Private
Private
Private
Private Private
Private
Private
Private
Private Private
Private
Private
Private
Private Private
Private
Private
Private
Private
Montana Principal

 Classification 3
 $\begin{array}{ll}0 & 0 \\ i & j \\ i & i\end{array}$

Table 15．－Description，Area，Classification，Suitability and Proposed Management of Unreserved Public Domain，by Counties， Within the Lower Yellowstone River Basin，Montana and North Dakota， 1955 －Continued

рəпuุuoว－
วpentid
วృentid
วұentid
วfentid
วtentid
วךе＾！̣d
วtentid
ว）entid
ว̇entid
ว¥entid
วtentid
วาentx
วfentid
ว¥entid
วךセィ¢̣Id
ว7entid
apentad
apenixd
วдentid

 120／VI： $200 /$ VII
VI
VII

320.00	Very steeply rolling hills
200.00	Very steeply rolling hills
80.00	Steeply rolling，rough
320.00	Steeply rolling，rough
320.00	Very steeply rolling hills
160.00	Gently rolling，undulating
320.00	Very steeply rolling hills
80.00	Very steeply rolling hills
320.00	Very steeply rolling hills
40.00	Very rough and broken
42.37	Steeply rolling to rough
82.44	Steeply rolling to rough
120.00	Steeply rolling to rough
280.00	Very steeply rolling hills
80.00	Steeply rolling to rough
40.00	Steeply rolling to rough
320.00	Gently to steeply rolling
240.00	Gently to steeply rolling
318.18	Gently to steeply rolling

Subdivision
Montana Principal
Meridian
Twp．Range
North East Sec．

Suitability $\begin{array}{ll}1 & \text { Private } \\ 1 & \text { Private } \\ 1 & \text { Private } \\ 1 & \text { Private }\end{array}$
 ーー $\leadsto \rightarrow$
peructuoy -
Table 15．－Description，Area，Classification，Suitability and Proposed Management of Unreserved Public Domain，by Counties， Within the Lower Yellowstone River Basin，Montana and North Dakota， 1955 －Continued
roposed Private Private Private苋
 Private先 $\stackrel{y}{0}$
$\stackrel{y}{4}$
0
0范
 Private Private

 Private －Continued

11	1	VII	1
32	1	$210.54 /$ VII： $47.96 /$ VIII	1
15	1	V1	1
10	1	VII	1
28	1	$40 /$ VI：80／VII	1
		$160 /$ VI： $139.36 /$ VII	1
72	1	VII	1
124	1	Vll	1
164	1	VI	1
40	1	VI	1
160	1		
		VII	1
		VII	1
62	1		
64	1	VII	1
			1
24	1	VII	1
62	1		VII

 ゴらららッ ヨら ， AUM＇s Land Use
 N ボ억웅 N 응 $\underset{\infty}{+}$
Acres General Land Character

SW $\frac{1}{4}$ SW $\frac{1}{4} \quad 40.00$ Gently to steeply rolling

 Cent to undulating $\mathrm{NE} \frac{1}{4} \mathrm{NE} \frac{1}{4} \quad 40.00$ Gently to steeply rolling 120．00 Gently to steeply rolling Rough，broken badlandsGently to steeply rolling Gently to steeply rolling Rough and broken badlands Rough，broken badlands Steeply rolling to rough Steeply rolling to rough Steeply to gently rolling Steeply to gently rolling Gently to steeply rolling Gently to steeply rolling

320．00 Gently to steeply rolling
 ± 8

8お\％ ${ }_{\circ}^{\infty}$ 옹 \therefore

320．00 Gently to steeply rolling
 Lots $\mathrm{N} \frac{1}{2} \mathrm{~N}^{\frac{1}{2}}$ Lots $1,2,3,4,5,6,7,8$ ，
$9,10,11,12, \mathrm{~N} \frac{1}{2} \mathrm{NE} \frac{1}{4}$, N $N \frac{1}{2} N W \frac{1}{4}, S W \frac{1}{4} N W \frac{1}{4}$ ， NW $\frac{1}{4}$ SW $\frac{1}{4}$ $E \frac{1}{2}$ ，Lots $1,10,11$ Lots $1,2, \mathrm{~S} \frac{1}{2} \mathrm{NE} \frac{1}{4}, \mathrm{SE}_{\frac{1}{4}}$ Lots $2,3,4,5,6,7$,
SE $\frac{1}{4}$ NW $\frac{1}{4}$, SW $\frac{1}{4}$ NE $\frac{1}{4}$, $\mathrm{SE} \frac{1}{4} \mathrm{NW} \frac{1}{4}, S W \frac{1}{4} \mathrm{NE} \frac{1}{4}$,
$\mathrm{E} \frac{1}{2} \mathrm{SW} \frac{1}{4}, \mathrm{~W} \frac{1}{2} \mathrm{SE} \frac{1}{4}$ Montana Principal

> Meridian Twp．Range North East Sec．

Wibaux County

＋

HNOHAN Homo
$\xrightarrow{\infty}$
N ${ }_{\sim}^{\infty}$
오№ $\underset{\sim}{\sim}$ 8 in $\stackrel{\infty}{n}$ $\stackrel{\infty}{n}$
in
$\stackrel{\infty}{\sim}$
$\stackrel{\infty}{\sim}$
Table 15．－Description，Area，Classification，Suitability and Proposed Management of Unreserved Public Domain，by Counties， Within the Lower Yellowstone River Basin，Montana and North Dakota， 1955
Management Private宸宸苟
$\stackrel{y y}{4}$
0 Private
Private范 Private N
$\stackrel{y}{4}$
$\stackrel{y}{4}$
0 N
N
N
N
0 Private
 Federal
Private Private
1／\＆2／Symbols denote land use and suitability：1．Grazing；2．Wildlife；3．Watershed；5．Mining；6．Recreation；7．Timber；9．Airport Lease；
3／See appendix C for detailed description of land use capability classification．
Compiled from the individual tract classification reports，form 4－1090 of the Bureau of Land Management．（see appendix B）These reports are filed at the Montana State Office，Bureau of Land Management，Billings，Montana．

Appendix A

Principal plants growing on range lands of the Lower Yellowstone River Basin, Montana and North Dakota.

Scientific Name
Common Name

Grass

Agropyron cristatum
Agropyron smithi
Agropyron spicatum
Agrostis alba
Andropogon scoparius
Aristida longiseta
Beckmannia syzigachne
Blepharoneuron tric holepis
Bouteloua curtipendula
Bouteloua gracilis
Bromus ciliatus
Bromus inermis
Bromus tectorum
Buchloe dactyloides
Calamagrostis canadensis
Calamovilfa longifolia
Distichlis stricta

Echinochloa crusgalli
Elymus canadensis
Festuca octoflora
Hordeum jubatum
Koeleria cristata
Oryzopsis hymenoides
Panicum virgatum
Phleum pratense
Poa pratensis
Poa secunda

Crested wheatgrass
Bluestem wheatgrass
Bearded bluebunch wheatgrass
Redtop
Little bluestem
Red threeawn

American sloughgrass
Pine dropseed
Sideoats grama
Blue grama
Fringed brome
Smooth brome
Cheatgrass brome
Buffalograss
Bluejoint reedgrass
Prairie sandreed

Inland saltgrass
Barnyardgrass
Canada wildrye
Six-week fescue

Foxtail barley
Prairie junegrass
Indian ricegrass
Switchgrass
Timothy
Kentucky bluegrass
Sandberg bluegrass

Schedonnardus paniculatus
Sporobolus airoides
Stipa comata
Stipa viridula

Carex filifolia

Achillea lanulosa
Allium spp.
Antennaria spp.
Aplopappus acaulis
Aster spp.
Balsamorhiza sagittata
Calochortus nuttalli
Chenopodium spp.
Cirsium spp.
Cruciferae spp.
Equisetum spp.
Erigeron spp.
Eriogonum spp.
Euphorbia marginata
Eurotia lanata

Glycyrrhiza lepidota
Grindelia squarrosa

Iris spp.
Lappula spp.
Lupinus spp.

Penstemon spp.
Phlox spp.
Plantago spp.
Potentilla spp.

Sedge

Tumblegrass
Alkali sacaton
Needleandthread
Green needlegrass

Threadleaf sedge
Forbs

Western yarrow
Onion
Pussytoes
Goldenweed
Aster

Arrowleaf balsamroot

Segolily mariposa Goosefoot
Thistle
Mustard

Horsetail
Fleabane
Eriogonum
Euphorbia
Common winterfat

American licorice
Curlycup gumweed

Iris

Stickseed
Lupine

Penstemon
Phlox
Plantain
Cinquefoil

Scientific Name

Rumex spp.

Salsola kali tenuifolia
Senico spp.
Solidago spp.
Vica spp.

Artemisia cana
Artemisia frigida
Artemisia tridentata
Atriplex confertifolia
Atriplex nuttallii

Chrysothamnus spp.
Gutierrezia sarothrae
Opuntia spp.
Prunus spp.
Purshia tridentata

Rhus trilobata
Rosa spp.
Salix spp.
Sarcobatus vermiculatus
Symphoricarpos albus

Tetradymia nuttalli

Yucca glauca
Amelanchier alnifolia

Atriplex nuttalli

Dock

Tumbling Russianthistle Groundsel
Goldenrod

Vetch
Shrubs

Pricklypear
Chokecherry
Antelope bitterbrush
Skunkbush sumac
Rose

Willow
Black greasewood
Common snowberry

Nuttall horse-brush

Small soapweed

Acer negundo

Fraxinus lanceolata

Juniperus scopulorum

Populus deltoides

Poisonous Plants

Asclepias spp.
Aster xylorrhiza

Delphinium spp.
Zigadenus venenosus

Boxelder
Green ash

Rocky Mountain juniper

Eastern poplar

Milkweed
Common woody aster

Larkspur
Meadow deathcamus

Nomenclature from "Standard Plant Names", H. P. Kelsey and W. A. Dayton: published by Horace McFarland Company, Harrisburg, Pennsylvania, 1942.

LAND CLASSIFICATION REPORT
(Date of field examination) 19

I. SUMMARY

1. Region
State
County
Serial
2. Type of application
3. Land description: T
R.
Mer. Applicant Acres
4. Location and accessibility
5. Elevation
6. Annual precipitation
7. Topography
8. Soil
9. Vegetation
10. Type and extent of erosion
11. Present land uses
12. Potential land uses
13. Present improvements
14. Needed improvements
15. (a) Value of land, $\$$
(b) Value of
, \$
(c) Value of
,
Total value, $\$$
16. Conflicts
17. Does the land contain: (a) Mineral
(b) Hot springs
(c) Water needed by public?
(d) Is it occupied by natives (Alaska)?
18. Findings and recommendations:

19. Classification

II. LAND USE FACTORS

A. Crop Factors:
20. Soil
21. Precipitation
22. Growing season
23. Area adaptable for crop production: Total acres
(a) By irrigation
(b) By dry-farming
24. Principal crops and average yields on similar lands in locality
25. Crop failures in locality
(a) Frequency
(b) Causes
26. Extent of farm land abandonment in locality
27. Water supply :
(a) Source
(b) Quality
(c) Adequacy
(d) Dependability
28. Feasibility of irrigation development (construction of facilities, water rights, costs, and returns) :
29. Minimum acreage required for average farm family unit
30. Agricultural rating: (a) Good
31. Comments :
(b) Fair
(c) Poor
B. Grazing Factors:
32. Vegetation (type association)
33. (a) Density
(b) Condition
34. Principal forage plants
35. Nonforage plants
36. Present grazing capacity
37. Stock water available: Stream
38. Is this water needed by public?
(AUMs) ; Potential grazing capacity
(AUMs) Spring ...--.-.-. Well
If so, explain
39. Treatment, structures, or other changes or improvements necessary for best use and management \qquad
40. Name and address of lessee
41. Comments :
C. Timber :
42. Acres timbered:

43

Species	UnIt	Volume	Unit Value	Value

44. Total value of timber
45. Quality and condition
46. Accessibility
47. Demand
48. Comments:
D. Minerals:
49. (a) Metallic
(b) Nonmetallic
50. Extent of development, leases and claims
51. Comments:

E. Other Land Use:

52. Does the land have value or adaptability for airfield, wildlife conservation, hunting, community, industrial, homesite, business, recreation, or other?
53. Type and ownership of improvements on this and adjacent lands
54. Comments:
III. APPRAISAL (55-60). -List evidence of value considered (sales, tax assessments, opinions, rentals, etc.) and state conclusions. Improvements should be appraised separately.
Appendix C - Description and definitions of land-use capability classes \sqrt{d}

Class	Suitable for	Topocraphy		Characteristic : :ative Vçetation	Soilcharactertstics						Vulnerabilityto Erosion	Requisite Special Practices
		$\begin{gathered} \text { Slope } \\ \text { (percent) } \end{gathered}$	Character of Surface		Texture	Jepth	$\begin{aligned} & \text { Relative } \\ & \text { Salinity } \end{aligned}$	Fcrtility	Productivity	Drainage		
	Best type of farming land	0 to 2	Level or nearly level	Tall and mid-grasses, thrifty sagebrus., dicciduous trees	$\begin{aligned} & \text { Mediun; } \\ & \text { Friable } \end{aligned}$	$\begin{aligned} & 12 " \text { or } \\ & \text { more; } \\ & \text { soil } 366^{\prime \prime} \\ & \text { or more } \end{aligned}$	Negligible	High	Good to Migh	Cood to Fxccllent	Low	::one to minor
II	Farming with simple conservation practices	0 to 10	Irregular	Tall, mild, and short grasses; big sagebrush, deciduous trees	Light to Heavy; Friable	$\begin{aligned} & 3^{\prime \prime} \text { or } \\ & \text { more; sub- } \\ & \text { soil } 3 \in{ }^{\prime \prime \prime} \\ & \text { or more } \end{aligned}$	$\begin{aligned} & \text { Negligible } \\ & \text { to slight } \end{aligned}$	Good to Migh	:Soderate to High	Good	Slichit to moderate	:Unor to oirple practices
III	Farming with complex conservation practices	0 to 10	Irregular	Tall, mid, and short grasses; bic sagebrush, rabbitbrush, greasewood, coniferous, and deciduous trees	Light to Heavy; Friable	(" or more; subsoil 24 or more	Slight to moderate	Fair to	Moderate to High with management	often poor; may be needed	Moderate to High	Complex practices essential
IV	Limited or occasional cultivation; best for permanent hay or pasture	0 to 15	Irregular or stony	Tall, mild, and short grasses; big sagebrush, rabbitbrush, greasewood, coniferous, deciduous trees, saltbush, winterfat	Sandy to Clay; porous or tight	$\begin{aligned} & \epsilon^{\epsilon \prime} \text { or } \\ & \text { more; may } \\ & \text { have } \\ & \text { shallow } \\ & \text { hardpan } \end{aligned}$	$\begin{aligned} & \text { Negligible } \\ & \text { to } \\ & \text { critical } \end{aligned}$	$\begin{aligned} & \text { Door to } \\ & \text { Good } \end{aligned}$	Poor for row crops; best for hay and pasture	Not Justifiable if needed	Moderate to High or nil	Complex and intensive practices with good management
	Fange or woodland; farming only if irrigation water becomes available	0 to 5.	Smooth to irregular; may be stony or wet	Tall, mid, and short grasses; big sagebrush, rabbitbrush, greasewood, coniferous, and decíduous trees	Light to Heavy; Friable	Good permeability to 24 " depth	$\begin{aligned} & \text { Meglieqble } \\ & \text { to moder- } \\ & \text { ate } \end{aligned}$	Good to lligh	Moderate to High	$\begin{aligned} & \text { Usually } \\ & \text { not a } \\ & \text { problem } \end{aligned}$	Low	None to minor or drainage
vI	Range and woodland only	0 to 20 (greater only on good soils)	Irregular to rough or rocky	Tall, mid, and short grasses; big sagebrueh, rabbitbrush, greasewood, coniferous, deciduous trees, saltbush, winterfat	Very uight to Heavy	Shallow to moderate; perneability excessive to poor	$\begin{aligned} & \text { Negligible } \\ & \text { to } \\ & \text { moderate } \end{aligned}$	Fair to Good	Light to Moderate;	$\left\lvert\, \begin{aligned} & \text { Not prac- } \\ & \text { ticable } \\ & \text { if a } \\ & \text { problem } \end{aligned}\right.$	Moderate	Proper management with simple restrictions
VII	Range and woodland with severe restrictions	0 to 100	Rough, rocky, or eroded	Tall, mid, and short grasses; big sagebrush, rabbitbrush, greasewood, coniferous, deciduous trees, saltbush, winterrat, mountain browse and annuals	Any: May be tight clay or sand or gravel	Often shallow, poorly developed	$\begin{aligned} & \text { Miegligible } \\ & \text { to } \\ & \text { critical } \end{aligned}$	$\begin{aligned} & \text { May be } \\ & \text { Poor } \end{aligned}$	Poor to Light	Seldom a problem or not practicable	${ }^{111} \mathrm{gh}$	Proper management with complex restrictions and intensive practices
VIII	Watershed, wildlife and recreation	$\begin{array}{\|l\|l\|} \text { Generally } \\ \text { steep } \\ \text { or swampy } \end{array}$	Extremely rough, barren or inaccessible	Often only annuals or ocanty perennials; may be dense coniferous timber	Usually poorly developed	$\begin{aligned} & \text { Very } \\ & \text { ohallow } \\ & \text { or nil } \end{aligned}$	May be axcessive for plant growth	$\begin{aligned} & \text { Usually } \\ & \text { very } \\ & \text { low } \end{aligned}$	Usually very low or nil	often poor;not Justifi- able if a pro blem	$\begin{aligned} & \text { IIIgh (unless } \\ & \text { a swamp) } \end{aligned}$	Complete protection

Bureau of Reclamation has developed two irrigation projects in the Lower Yellowstone Area covering 79, 108 acres. Lower Yellowstone is a gravity project of 56, 170 acres, built in 1905-1909, extending from Intake to the mouth of the Yellowstone River in Montana and North Dakota. Main canal and area of this project are shown on the Lower Yellowstone Area Map with this report. Buffalo Rapids is a pumping project of 22,938 acres near Terry, Montana, started in 1937. Two pumping projects have recently been completed in the area by the Bureau of Reclamation. Both pump water from the Lower Yellowstone main canal. Savage Unit, serving 2,215 acres, commenced delivery of water in 1952. Intake Unit was completed in 1946 to serve 881 acres with two low lifts. These projects are described in the irrigated lands section of this report and their value to the area is emphasized in the Economic and Land Use Sections of this report. Additional tabular detailed information is presented in this appendix for these two projects to further bring out their importance to the area for their production of livestock and livestock feed; as a tremendous force for fiscal and production stability and for their economic value to the area, to the State of Montana and to the Nation.

Table 16 shows the crops produced on both the Lower Yellowstone and Buffalo Rapids projects in 1955, both singly and in total. Yield, area and values are shown per acre and in total for all crops. Relative importance of crops by area and value are shown. Lower Yellowstone project produced crops valued at $2,556,435$ dollars, and Buffalo Rapids project produced 1,021, 103 dollars worth, a total of $3,577,538$ dollars. Sugar beets are the most valuable crop, followed by alfalfa and wheat. Alfalfa covers the largest acreage, sugar beets being second. Potatoes produced the greatest value per acre, followed by sugar beets. Crop yields of these two projects in 1955 are shown graphically in figure 5.

Table 17 shows the area and percent of the total of crops produced on the Lower Yellowstone project during the years 1946-1955. Average area of each crop for the period and average yields are also given. Total areas, values, and average values per acre for each year are also given. Over the period production value averaged 2, 956, 683 dollars annually for the project or 60.74 dollars per acre. Alfalfa is the leading crop followed by sugar beets.

Table 18 presents areas and percentile portions of the total area of crops produced on the Buffalo Rapids project from 1950 to 1955. Averages of these and total areas are also shown. Alfalfa, the principal. crop, covered 25 percent of the project. On an average for the period of six years, miscellaneous crops used 17 percent and wheat occupied 15 percent of the total area on the project.

Table 19 presents an inventory of livestock and poultry on the Lower Yellowstone Reclamation project for each of the years 1948-1955. Numbers of livestock fattened are also given. Numbers of calves, pigs, lambs, chickens and turkeys raised each year from 1952 through 1955 are also shown. Dairy cattle have steadily increased in number from 958 to 1, 269. Other cattle increased from 1, 183 in 1948 to 3, 025 in 1955.

Table 20 shows the numbers of livestock and poultry on both the Lower Yellowstone and Buffalo Rapids projects in 1955. Numbers of farms reporting and the number of animals reported is given for each project and for the totals of both projects. Numbers of livestock fattened and raised during the year are also presented for each project along with the totals for both projects. This table shows that feeding is an important enterprise on both projects. Livestock fattened for market included 10,651 cattle and calves and 141,669 lambs and sheep. On an animal unit basis, lambs lead cattle for feeding nearly three to one.
1/ Estimate by Bureau of Land Management, Missouri River Basin Investigations Section.

LOWER YELLOWSTONE $1 \& 2$ ELFFALO RAPIDS $1 \& 2$ TOTAL LOWER YELLOWSTONE \& DUFFALORPG

Crop	Area Acres	Value of Production Dollars	Value Per Acre Dollars		Unit of Measure	Area Acres	Value of Production Dollars	Value Per Acre Dollars	Units Per Acre	Area Acres	Value o: Production Dollars	value Per Acze Dollars	Units Per Acre	Tota! Production Units
Earley	3,393	97,318	28.68	39.80	bu.	1,295	33,146	25.00	30.00	-7,088	130,404	27.83	38.79	181, 5185
Corn	710	29,215	41.14	32.90	bu.	1,053	$\pm 2,459$	40.32	3. 3.10	1,763	71,674	40. us	33.00	58,175
Oats	5, 085	126,137	24.81	49.60	bu.	2, 854	84,708	29.68	52.10	7,939	210,845	26.56	50.50	400, 5s. 1
Wheat	6,405	405,612	63. 32.	33.70	bu.	1,349	71,055	52.67	25.70	7,754	476,667	61.47	32.29	250, 112
Spelt	172	4,780	27.79	50.50	bu.	37	1,560	42.16	70.30	209	6,340	30.33	54.02	11, 290
Alfalfa	12,475	260,488	20.88	2.61	ton	5,961	218,008	36.57	2.61	18,436	478,496	25.95,	2.61	18,133
Other hay	626	3,796	6.06	1.10	ton	482	10,153	21.06	1.91	1,108	13,949	12.59	1.46	1.613
Corn fodder	222	3,736	16.82	2.10	ton	540	26, 213	48.54	4.41	762	29,949	39. 30	3.74	2, 550
Corn stover					tor	1,053	5,056	4.80	2. 40	1,053	5,056	4.80	2.40	2,528
Beet tops	9,844	26,201	2.66	14.79	ton	2,392	28.996	12.12	16.16	12,236	55,197	4.51	15.06	184,222
lrigated pasture	3. 204	32,040	10.001	1/ 5.50	AUM	1,963	44,432	22.63	6.47	5,167	76,472	14. 80	5.87	30,317
Corn silage	2,307	62,269	26.99	8.43	ton	1,036	52,356	50.54	8.42	3, 343	114,625	34.29	8.43	28,185
Oat silage	18	256	14.22	4.44	ton					18	256	14.22	4.44	80
Sugar beets	9,844	1,346,431	136.77	14.79	ton	2,392	35?,6?4	149.51	16.16	12,236	1,704,055	139.27	15.06	181,222
Beans	2, 521	119,551	47.42	8.78	cwt.	645	21,713	33.66	4.25	3, 166	141,264	44.62	8.61	27, 248
Alfalfa seed	187	2,958	15.82	90	cwt.	207	4,960	23.96	1.50	39.4	7,918	20.10	1.22	479
Clover seed	14	234	16.71	1.86	cwt.					14	234	16.71	1.80	26
Flax					cwt.	15	62	4.13	1.00	15	26, 62	4.13	1.00	15
Potatoes	79	15,238	192.88	167.70	bu.	48	11,502.	239.63	177.50	127	26,740	210.55	171.42	21,770
Garden	269	20,175	75.00			71	7 7,100	100.00		340	27, 275	80.22		
Total all crops	57,375					23,393				80,768				
Less rnultiple cropped	187					207				394				379 163
Less residue crops	9,844					3,445				13,289				5.12
Net total	47,344	2,556,435	54.00			19,741	1,021,103	51.72		67,085	3,577,538	53.33		
Returns from														
sugar program	9,844	563,126	57. 20			2,392	148,877	62.24		12, 236	712,003	58.19		
Sugar beets, all income	9,844	1,909,557	193.98			2.392	506,501	211.75		12,236	2,416,058	197.45		
Total returns	47,344	3,119,561	65.89			19,741	1,169,980	56.65		67,085	4,289,541	63.94		

Table 17.-Crops produced on the Lower Yellowstone Project, Montana and North Dakota, 1946-1955

Compiled from Project History, 1955, Lower Yellowstone Project, Bureau of Reclamation, Region 6, Billings, Montana

Figure 5 . Total yield of crops produced on the Lower Yellowstone and Buffalo Rapids Reclamation Projects, Montana, 1955.

Table 18．－Crops produced on the Buffalo Rapids Project，Montana，1950－1955

Crop	1950	1951	1952	1953	1934	1955	Mean
Barley，acres percent	$\begin{array}{r} 3,006 \\ 14.5 \end{array}$	$\begin{array}{r} 1,753 \\ 7.4 \end{array}$	$\begin{array}{r} 1,486 \\ 6.4 \end{array}$	$\begin{array}{r} 1,584 \\ 6.8 \end{array}$	$\begin{array}{r} 1,603 \\ 6.6 \end{array}$	$\begin{array}{r} 1,469 \\ 6.0 \end{array}$	$\begin{array}{r} 1,817 \\ 7.9 \end{array}$
Oats，acres percent	$\begin{array}{r} 2,829 \\ 13.7 \end{array}$	$\begin{array}{r} 2,669 \\ 11.3 \end{array}$	$\begin{array}{r} 2,862 \\ 12.3 \end{array}$	$\begin{array}{r} 3,285 \\ 14.0 \end{array}$	$\begin{array}{r} 2,940 \\ 12,0 \end{array}$	$\begin{array}{r} 3,135 \\ 12.8 \end{array}$	$\begin{array}{r} 2,953 \\ 12.7 \end{array}$
Wheat，acres percent́	$\begin{array}{r} 3,238 \\ 15.7 \end{array}$	$\begin{array}{r} 5,232 \\ 26.4 \end{array}$	$\begin{array}{r} 4,640 \\ 20.0 \end{array}$	$\begin{array}{r} 2,976 \\ 12.7 \end{array}$	$\begin{array}{r} 2,419 \\ 9.9 \end{array}$	$\begin{array}{r} 1,585 \\ 6.5 \end{array}$	$\begin{array}{r} 3,515 \\ 15,2 \end{array}$
Alfalfa，acres percent	$\begin{array}{r} 3,975 \\ 19.2 \end{array}$	$\begin{array}{r} 4,964 \\ 21,0 \end{array}$	$\begin{array}{r} 6,367 \\ 27.4 \end{array}$	$\begin{array}{r} 6,936 \\ 29.8 \end{array}$	$\begin{array}{r} 6,499 \\ 26.6 \end{array}$	$\begin{array}{r} 6,656 \\ 27.2 \end{array}$	$\begin{array}{r} 5,908 \\ 25.2 \end{array}$
Corn silage，acres percent	180.	$\begin{array}{r} 624 \\ 2.6 \end{array}$	$\begin{array}{r} 1,529 \\ 6.6 \end{array}$	$\begin{array}{r} 1,007 \\ 4.3 \end{array}$	$\begin{array}{r} 1,113 \\ 4.6 \end{array}$	$\begin{array}{r} 1,162 \\ 4.7 \end{array}$	$\begin{array}{r} 936 \\ 4.0 \end{array}$
Sugar beets，acres percent	$\begin{aligned} & 3,101 \\ & 15.0 \end{aligned}$	$\begin{array}{r} 2,354 \\ 10.0 \end{array}$	$\begin{array}{r} 1,902 \\ 8.2 \end{array}$	$\begin{array}{r} 2,529 \\ 10.8 \end{array}$	$\begin{array}{r} 2,749 \\ 11.2 \end{array}$	$\begin{array}{r} 2,672 \\ 10.9 \end{array}$	$\begin{array}{r} 2,551 \\ 11.0 \end{array}$
Ir rigated pasture，acres percent	$\begin{array}{r} 581 \\ 2.8 \end{array}$	$\begin{array}{r} 913 \\ 3.9 \end{array}$	$\begin{array}{r} 1,567 \\ 6.7 \end{array}$	$\begin{array}{r} 2,046 \\ 8.8 \end{array}$	$\begin{array}{r} 2,546 \\ 10.4 \end{array}$	$\begin{array}{r} 2,245 \\ 9: 2 \end{array}$	$\begin{array}{r} 1,650 \\ 7.0 \end{array}$
Miscellaneous，acres	3，771	4，114	2，883	3，001	4，574	5，555	3，983
	－18．2	17.4	12．4	12.8	18.7	22.7	17.0

23，313
$24,443 \quad 24,479$
$23,414 \quad 24,443$
$23,236 \quad 23,414$
$23,623 \quad 23,236$
とて 9° とて $189^{\circ} 02$

Total acres
Project Fistory 1955，Buffalo Rapids Project，Bureau of Reclamation，Region ó，Billings，Montana，

Table 19. -Livestock and poultry on the Lower Yellowsione Reclamation Project, Montana and North Dakota, 1945-1955

Inventories	1948	1949	1950	1952	1953	1954	1955
Dairy cows	958	831	985	1,122	1,220	- 1,208	1,269
Beef cows	527	888	631	1,687	2,992	1,398	1,609
Other cattle	1,183	1,417	1,486	3, 057	1,643	2,974	3,025
Sows				123		141	38
Other hogs \& pigs	2,436	2,173	1,693	1,597	1,164	1,163	1,178
Ewes 1 yr. \& +				10,032	7,377	4,431	4,200
Other sheep	8,251	1,891	9,781	7,158	4,318	3,390	1,231
Chickens	24,327	26,818	20,473	15,172	16,370	16,790	14,908
Turkeys	497	160	40	549	331	793	414
Fattened							
Cattle \& calves	7,113	4,047	4,601	5,734	5,377	6,396	7,900
Pigs \& hogs				508	1,252	120	75
Lambs \& sheep	103,204	82,053	78,512	108,720	92,461	105,885	133,844
Raised							
Calves				1,809	1,559	1,413	962
Pigs				391	266	294	403
Lambs				5,824	4,481	3,060	1,956
Chickens				15,714	18,652	18,354	11,115
Turkeys				18	802	743	43

Annual Project Reports, Lower Yellowstone Project, Montana and North Dakota; Bureau of Reclamation, Department of the Interior, Region 6, Billings, Montana.

Table 20. - Livestock and poultry on Buffalo Rapids and Lower Yellowstone reclamation projects, Montana and North Dakota, 1955

	Buffalo Rapids Lower Yellowstone Total Both Projects No. Farms No. Head No. Farms No. Head No. Farms No. Head Reporting Reported Reporting Reported Reporting Reported					
Dairy cows	111	964	320	1,269	431	2,233
Beef cows	89	3,946	108	1,609	197	5,555
Other cattle	87	2,859	293	3,025	380	5,884
Sows	34	163	24	38	58	201
Other hogs \& pigs	38	1,087	126	1,178	164	2, 265
Ewes l yr. \& older	18	5,251	62	4, 200	80	9,451
Other sheep	27	1,781	39	1,231	66	3, 012
All hens \& pullets	84	6,196	270	14,908	354	21,104
Turkeys	6	257	6	414	12	671

Fattened for market

Cattle \& calves	57	2,751	129	7,900	186	10,651
Pigs \& hogs	16	300	15	75	31	375
Lambs \& sheep	12	7,825	126	133,844	138	141,669

Raised during year

Calves	87	2,586	106	962	193	3,548
Pigs	20	396	26	403	46	799
Lambs	10	2,188	14	1,956	24	4,144
Chickens	47	5,268	201	11,115	243	16,383
Turkeys	3	49	1	43	4	92

Project History, 1955, Buffalo Rapids project; Project History 1955, Lower Yellowstone project, Bureau of Reclamation, Region 6, Billings, Montana, 1957.

```
1-1の11! 1 1
```


blm lidmáay

 FS 150A BLDG. 50 DENVER FEDERAL CENTERP.O. BOX 25047

DENVEF, CO 80225

1

BLM LIDAAF RS 150A BLDG. 50 DENVER FEDERAL CENTER P.O. BOX 25047 DENVER, CO 80225
SN

[^0]:

 present a potential for the immediate future, rather than an average, as both prices and conditions were good to excellent for "dry"
 farming in 1953 . Figures for 1952 are more representative of average production and returns at current prices. Note variations both from county to county and between years.

