








NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
RECONFIGURATION IN ROBUST DISTRIBUTED

REAL-TIME SYSTEMS
BASED ON GLOBAL CHECKPOINTS

by

Ronnie Douglas Puett

December 1991

Thesis Advisor:
Co-Advisor

:

ShirdharB. Shukla
Chyan Yang

Approved for public release; distribution is unlimited

125849





iclassified

urity Classification of this page

REPORT DOCUMENTATION PAGE
Report Security Classification

UNCLASSIFIED
lb. Restrictive Markings

Security Classification Authority

i. Declassification/Downgrading Schedule

3. Distribution Availability of Report

Approved for public release;

distribution is unlimited.

Performing Organization Report Number(s) 5. Monitoring Organization Report Number(s)

Name of Performing Organization

Naval Postgraduate School

. Address (City, State, and ZIP Code)

: Monterey, CA 93943-5000

6b. Office Symbol
(if applicable)

EC

7a. Name of Monitoring Organization

Naval Postgraduate School

7b. Address (City, State, and ZIP Code)

Monterey, CA 93943-5000

.. Name of Funding/Sponsoring
Organization

8b. Office Symbol
(if applicable)

9. Procurement Instrument Identification Number

Address (City, State, and ZIP Code) 10. Source of Funding Numbers
Program
Element Number

Project No. Task No. Work Unit
Accession No.

. Title (Include Security Classification)

:configuration in Robust Distributed Real-Time Systems Based on Global Checkpoints

:. Personal Author(s)

iett, Ronnie Douglas
14. Date of Report ("rear, Month, Day)

December 1991

la. Type of Report

Master's Thesis

13b. Time Covered

From To

15. Page Count

95
i. Supplementary Notation

The views expressed in this thesis are those of the author and do not reflect the

rficial policy or position of the Department of Defense or the United States Government.

Cosati Codes

Field Group Subgroup

18. Subject Terms (Continue on reverse if necessary and identify by block number)

Node Failure/Repair, Transparency, Distributed Real-Time, Migration

Checkpointing

). Abstract (Continue on reverse if necessary and identify by block number)

Fast, ultra-reliable, real-time computing is fundamental in today's weapons system. Increased system

Toughput and reliability can be achieved by utilizing distributed systems in which a single application

ogram executes on multiple processors, connected to a network. The distributed nature of such systems

ake it possible to tolerate failures and react to overloads without the application level performance degrading

lacceptably. Fault tolerance in these systems typically involves fault detection and recovery. Repair following

ilure involves smooth integration of the repaired processor and subsequent reconfiguration. These actions

ust take place transparently, that is without the application program noticing it. Therefore, sufficient

formation must be maintained through the use of checkpointing to describe the state of the system at any
me and ensure correct operation after failure/repair.

This thesis investigates a possible framework for achieving a fault- tolerant real-time distributed system
hiich provides transparent function-to-function message passing, status monitoring using periodic health

'. Distribution/Availability of Abstract

ill unclassified/unlimited
|

|same as report DTIC users

a. Name of Responsible Individual

Shridhar B. Shukla
FORM 1473, 84 MAR

21. Abstract Security Classification

UNCLASSIFIED
22b. Telephone (Include Area Code)

(408) 646-2764

83 APR edition may be used until exhausted

All other editions are obsolete

22c. Office Symbol

EC/Sh
security classification of this page

Unclassified



Unclassified

Security Classification of this page

19. ABSTRACT Continued:

messages and maintains a globally consistent system state by carrying out Independent checkpointing pro<

dures. The proposed scheme is simulated using concurrent Ada processing for a four node, twelve functic

distributed system.

security classification of this page

Unclassified
• *

n



Approved for public release; distribution is unlimited

Reconfiguration in Robust Distributed Real-Time Systems

Based on Global Checkpoints

by

Ronnie D. Puett

Lieutenant, USN
B.S.C.S, University of Mississippi, 1985

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

—

>

December, 1991 /^



/ Kjisib

ABSTRACT

Fast, ultra-reliable, real-time computing is fundamental in today's weapons sys-

tem. Increased system throughput and reliability can be achieved by utilizing dis-

tributed systems in which a single application program executes on multiple proces-

sors, connected to a network. The distributed nature of such systems make it possible

to tolerate failures and react to overloads without the application level performance

degrading unacceptably. Fault tolerance in these systems typically involves fault

detection and recovery. Repair following failure involves smooth integration of the

repaired processor and subsequent reconfiguration. These actions must take place

transparently, that is without the application program noticing it. Therefore, suffi-

cient information must be maintained through the use of checkpointing to describe

the state of the system at any time and ensure correct operation after failure/repair.

This thesis investigates a possible framework for achieving a fault- tolerant real-

time distributed system which provides transparent function-to-function message

passing, status monitoring using periodic health messages and maintains a glob-

ally consistent system state by carrying out independent checkpointing procedures.

The proposed scheme is simulated using concurrent Ada processing for a four node,

twelve function, distributed system.

IV



TABLE OF CONTENTS

I. INTRODUCTION 1

A. GENERAL 1

B. AIM OF THE STUDY 2

C. METHOD OF APPROACH 3

D. ORGANIZATION 5

II. ISSUES IN MAINTAINING THE SYSTEM STATE 6

A. GENERAL 6

B. ALLOCATION 6

C. MAINTAINING STATE OF FUNCTIONS 6

D. MAINTAINING STATUS OF NODES 7

E. ROUTING 8

F. NODE STATUS TABLE 8

1. Common Section 9

2. Unique Section 9

3. Node Identification 10

4. Local Variables 10

a. Recovery Variables 10

b. Checkpoint Variables 11

c. Queue Management 11

G. SUMMARY 12

III. THE LOCATION INVARIANT FUNCTION TO FUNCTION COM-

MUNICATION LAYER 13

A. GENERAL 13

v



B. INPUT SERVER 13

C. OUTPUT SERVER 15

D. STATUS MONITOR 16

1. Status Message Receipt 17

2. Status Message Broadcast 18

E. CHECKPOINTING PROCEDURES 18

IV. STATE DIAGRAM REPRESENTATION OF TASKS 20

A. GENERAL 20

B. INPUT SERVER TASK 20

C. OUTPUT SERVER TASK 20

D. STATUS MONITOR TASK 21

E. CHECKPOINT TASK 22

V. A SIMULATION USING ADA 27

A. GENERAL 27

B. SYSTEM-WIDE COMMUNITY COMPONENTS 27

C. NODE RELATED COMPONENTS 28

D. VERIFICATION OF STATE DIAGRAMS 29

E. SUMMARY 31

VI. CONCLUSIONS AND FUTURE WORK 33

A. GENERAL 33

B. CONCLUSION 33

C. FUTURE WORK 34

APPENDIX A: SIMULATION CODE 35

APPENDIX B: SIMULATION OUTPUT 78

REFERENCES 84

INITIAL DISTRIBUTION LIST 85

vi



LIST OF FIGURES

1.1 A Loosely Coupled Distributed System 3

1.2 Software Layer Configuration at Each Node 4

2.1 Node Status Table 9

4.1 Input Server State Diagram 21

4.2 Output Server State Diagram 22

4.3 Status Monitor Broadcast and Timeout State Diagrams 24

4.4 Status Monitor Message Received State Diagram 25

4.5 Checkpoint State Diagram 26

5.1 Checkpointing Events 30

5.2 Periodic Message Processing 32

vn





I. INTRODUCTION

A. GENERAL

Distributed systems have become increasingly popular in satisfying the require-

ments for increased computing power and also as a means of achieving fault tolerance

in critical real-time systems [Ref. 1]. Distributed systems are often defined to en-

compass a wide range of loosely coupled computer systems, especially network based

systems. In loosely coupled distributed systems, there are no shared resources; there-

fore, all information exchanged between the relocatable functions must occur via

message passing [Ref. 2]. As the processing speed of system nodes and the trans-

mission capacity of message transfer media increase due to technological advances,

message transmission time becomes small enough to provide a resource management

that makes the distributed nature of the system transparent to the user. This resource

management must maintain continuity of processing information for dynamically re-

located functions and therefore, requires the system state information to be globally

consistent [Ref. 3]. This state consists of the information necessary to describe the

characteristics of all system nodes and functions. In order to maintain global con-

sistency, some method of checkpoint and rollback procedures must be utilized. A

checkpoint is a saved local state of a node's active functions [Ref. 4]. A set of check-

points, one per node, is consistent if the saved states form a consistent global state.

Rollback is defined as the retransmission of messages from the last checkpoint in order

to restart the system after node failure.

Two approaches to node recovery and function reconfiguration are replicated

execution and local checkpointing, coupled with rollback, to build a consistent global



state. The problems of keeping replicas consistent in the former are formidable [Ref.

5]. Also, the number of node failures which can be tolerated must be known a

priori in order to determine the requisite number of replications. In the absence of

synchronization, functions cannot all recover simultaneously. Recovering functions

asynchronously can introduce situations in which a single failure can cause an infinite

number of rollbacks, preventing system progress. Local checkpointing may result in

a rollback whose completion time can vary considerably; therefore, it is unsuitable to

mission critical environments [Ref. 6].

The proposed framework for a distributed system utilizes the replication of code

at each node and maintains a global snapshot of the system state. This framework

minimizes recovery time, making it unnecessary to use rollback procedures during

migration, except in cases of node failure.

B. AIM OF THE STUDY

The objective of this thesis is to implement the framework necessary to provide

transparent function-to-function message passing, fault detection and checkpointing

in a robust, real-time distributed system. Robustness is the system's ability to with-

stand failures and utilize reconfiguration to minimize the impact of these failures on

overall system performance. Distribution requires the partitioning of an application

program into multiple functions, the code for which is resident at every node. How-

ever, the responsibility for execution of a particular function is assigned to only one

node in this framework. This function assignment may be fixed at initialization or

may change as a result of reconfiguration. Communication between these dynamically

relocatable functions is via a globally ordered network. This loosely coupled system

does . share any resources, as illustrated in Figure 1.1, which is reproduced from

another document [Ref. 7].



Network Communication Layer (NCL)

fm
J

f N2 j
f N3J f N4J

Figure 1.1: A Loosely Coupled Distributed System

The scope of this thesis is to implement the means necessary to provide fault

tolerance and maintain the required information to allow a rapid system reconfigura-

tion.

C. METHOD OF APPROACH

This thesis focuses on a single application executing on a distributed system.

A layered architecture was chosen to organize the different components in an easy to

manage, hierarchical fashion. The layers operate concurrently, yet interface to main-

tain communication between dynamically relocatable functions. This enables fault

tolerance and load balancing efforts to proceed independently without interruption

of the actual application processing.

Fault tolerance is accomplished by requiring each node in the system to peri-

odically broadcast its load. Receipt of these status messages does not only indicate

that the node is operational, but the load information is also utilized in the recon-

figuration algorithms. These algorithms require globally consistent data upon which



Figure 1.2: Software Layer Configuration at Each Node

to base their decisions. The globally consistent state information is maintained at

each node through the use of independent checkpointing procedures. A system node

containing four independent software layers and internal communication paths indi-

cated by arcs, is depicted in Figure 1.2, which is reproduced from another document

[Ref. 7]. The Network Communication Layer (NCL) must be a globally ordered

communications protocol which enables the broadcast of all messages. The Location

Invariant Function to Function Communication Layer (LIFFCL) provides each node

with the necessary communications interface to the NCL, implements fault tolerance

and checkpointing procedures. The LIFFCL is the major emphasis of this thesis and is

covered extensively in Chapters III and IV. The Reconfiguration Layer (RL) handles

function allocation/reconfiguration and is covered in detail in [Ref. 8]. The Applica-

tions Layer (AL) conducts actual application program execution and is responsible

for the message queue management of all active functions at a node. Specification of

AL functionality is to be covered in future thesis topics.



D. ORGANIZATION

This thesis is organized as follows. Chapter II discusses the issues in a dis-

tributed system and the mechanisms necessary to address these issues. Chapter III

discusses the means of achieving function to function communications, fault tolerance,

and maintaining state information. The detailed action of the tasks within the LIF-

FCL of an individual node is illustrated in the state diagrams shown in Chapter IV.

An overview of the implementation software and the simulation results are contained

in Chapter V. Chapter VI contains the conclusion.



II. ISSUES IN MAINTAINING THE SYSTEM
STATE

A. GENERAL

As indicated previously, the state of a distributed system entails all the variables

necessary to describe any or all of the system components at any point in time. The

distributed nature of such a system requires this state information to be current and

accessible by all nodes. The integrity of this data must be maintained in order to

implement fault tolerant procedures which enable continuity of a function's process-

ing regardless of its location. To prevent the loss of state of the functions running

on a node when the node fails, the system state must be periodically updated and

distributed to all nodes utilizing checkpointing procedures, as stated in Chapter I.

This globally consistent state information is required by reconfiguration algorithms in

making relocation decisions. These algorithms are covered in another thesis [Ref. 8].

Issues requiring the use of a system's state information are described in the following

sections.

B. ALLOCATION

Allocation is achieved at compile time or during execution. If conducted during

execution, it requires knowledge of the current system state information obtained

during checkpointing.

C. MAINTAINING STATE OF FUNCTIONS

As stated earlier, reconfiguration efforts require a globally consistent restart

point. This restart point is determined by storing a function's unique variables at each



node during checkpointing. In order to describe the state of a function, some of the

attributes that must be known about a function are the last message received, the last

message processed, time remaining till completion, time remaining till deadline, all

symbol variables, and general register contents, etc. When a function gets processing

time at a node, these statistics are updated and stored for that function. Keeping

the state of every function at every node prevents retransmission of messages if the

node where the function was active fails or cannot complete the function on time.

Another node can activate the function and maintain continuity of processing rather

than restarting the function at the last checkpoint. Each node maintains a unique

section for the data relevant to its active functions. All nodes share this data by

passing other nodes their unique section during checkpoint procedures as described

in Chapter I. This allows for ease of transportability of functions and minimizes the

communications required for this migration.

D. MAINTAINING STATUS OF NODES

Another factor in reconfiguring a system is the operational status of all nodes.

This status is maintained through health monitoring schemes which depend totally

on the exchange of status messages. Detection of node failure must result in the

migration of the assigned functions to active nodes. Knowledge of each node's status

prevents assigning a function to a non-active node.

In conjunction with the status of a node, its current load is also important.

Knowledge of every node's loading percentage may prevent a node from becoming

overloaded and resulting in functions not being completed on time. If a node is

fully loaded, transferring a function to it only overloads the node. This causes a

degradation not only to the individual node but the entire system since unnecessary

communication is required by the now overloaded node in an effort to migrate a



function to reduce loading. By keeping track of a node's status and load, appropriate

decisions can be made when reconfiguration is necessary.

E. ROUTING

A function's location must be known at all times if a system is to support

function to function communication through the use of data messages. Nodes must

maintain a queue for each function in order to store all data messages destined for a

particular function. The active function queues are maintained in the AL, and the

non-active function queues are maintained in the LIFFCL. Requiring each node to

maintain function queues, minimizes the amount of traffic to be transferred during

migration of functions. This prevents rollback during reconfiguration, except in the

case of node failure. Checkpointing and fault detection schemes provide the means

to update the variables necessary to describe the global state of the system, as in-

dicated above. These variables are maintained in a resource called the node status

table (NST), constructed at each node, as shown in Figure 2.1, which is reproduced

from another document [Ref. 7]. The NSTs are maintained consistent through the

exchange of node status messages, as well as marker messages during checkpoint. The

composition of the NST is detailed in the following section.

F. NODE STATUS TABLE

The NST is comprised of three sections: a section containing status information

that is common to all nodes, a section containing all the information unique to the

functions that are active on each node, and the node's identity. A given node contains

two complete copies of the NST; the duplicate copy being designated node status

backup (NSTBAK). Duplication of data guards against loss of information as a result

of node failure during checkpointing. The NST contains variables which are used to

describe the health of all nodes, the state of all functions, and the events since the

8



COMMON SECTION

IMC
FN_LOC
NODE_STATJ-D

UNIQUE SECTION

Nl
fill function variables

fii2

N2

Nn
fnk

NODE ID

Figure 2.1: Node Status Table

last checkpoint.

1. Common Section

The node status indicates if a node is up or down. This information is

updated through the use of status messages transmitted periodically by each node. If

a periodic status message is not received from a node within a specified time interval,

the node is assumed to have failed and is logged down.

2. Unique Section

The unique section contains the current state information for all functions

within the system. It consists of a subsection for each system node, with the sub-

sections containing separate records for those functions assigned to the appropriate

node. The functions' state information is obtained during checkpointing by each node

exchanging the applicable unique subsections of their NST.

Each node records and saves all messages sent between any two checkpoints.



All messages are contained in one of three places at a given node. The active queue

in the AL contains messages for all functions assigned to the node and the non-active

queue in the LIFFCL contains the messages for all remaining system functions. Also

messages not yet transmitted or received by the node are in the Output Server

or Input Server queues respectively. When a function is migrated, the receiving

node utilizes the messages from the non-active queue within its LIFFCL to update the

active queue for the activated function. Any messages in the output/input queues are

not be affected by the migration process. However, if a node fails, its current unique

section is not accessible to the new node and any messages in its output/input queues

are lost; therefore, a rollback is necessary.

3. Node Identification

NODEJD is self-explanatory. Several of the algorithms within the LIFFCL

and RL use this variable to determine the identity of the node since all nodes are

running concurrently. Specifics on the use of NODE-ID can be found in the program

located in Appendix A.

4. Local Variables

In addition to the NST, each node maintains local variables used for node

recovery, checkpointing, and queue management. These variables are explained in

detail in the following sections.

a. Recovery Variables

The recovery variables are utilized by the recovering node to indi-

cate when it is ready to commence normal processing. These variables are utilized

to prevent unnecessary communication between the recovering and active nodes as

explained below.

Recovery in Progress (RCVRY_IN_PROG) is the variable which in-

10



dicates that a recovery is taking place. It prevents another periodic message from

retriggering the recovery process. Retriggering the recovery process could put the

nodes in an infinite loop. In this case, recovery of a node can never be completed.

Recovery (RCVY) is used to indicate when a node has completed recovery. In order

to recover, a node must rebuild its NST. This is accomplished by each of the other

nodes sending the common and unique sections of their NST. Each element of RCVY

indicates whether the corresponding node has sent its unique and common sections

of the NST to the recovering node. Once completion of recovery is detected, the

node clears the RCVY array and resets RCVRYJN_PROG to false. Unique Sent

(UNIQ-SENT) is utilized by the active nodes to indicate that a node has responded

to a recovery operation by sending its NST sections. Once complete recovery is de-

tected, the nodes reset this variable. UNIQ_SENT prevents additional messages from

being generated.

b. Checkpoint Variables

The checkpoint variables are utilized when updating the global state

of the system. Checkpoint Taken (CHKPT.TAKEN) is utilized to indicate when a

marker message has been received from all active nodes. A marker message is sent

by a node which has conducted a local checkpoint. CHKPT.TAKEN is used by

the checkpoint originator to indicate when a checkpoint is complete. Event Count

Out (EVNT_CNT_OUT) keeps track of the number of messages that are sent to

the network. This is only used to track messages in the output files created by the

simulation program.

c. Queue Management

Queue management variables are required to ensure the integrity of

all messages at a given node. This is particularly important when dealing with cir-

cular queues. Messages can be written over easily if pointers are not maintained

11



properly. For this reason, several variables are maintained for management of the

queues. MSG_TO_SEND is used to indicate that there are messages in the queue to

send. BLOCK.WRITE is used to prevent overwriting a message in the queue that

has not been read. RD.CNT is used as a pointer to the next message to be read.

MSG.CNT is used as a pointer to the next available queue slot into which a message

can be written.

G. SUMMARY

The status of each node and the current statistics of each function must be

maintained in the NST in order to describe the global state of the distributed system.

Although maintaining the variables of the NST requires the overhead incurred with

checkpointing procedures, the time spent is more than compensated for by quicker

fault detection and faster and more efficient reconfiguration algorithms. The check-

pointing and fault detection algorithms utilized to maintain the NST are covered in

the following chapters.

12



III. THE LOCATION INVARIANT FUNCTION
TO FUNCTION COMMUNICATION LAYER

A. GENERAL

This chapter examines the Location Invariant Function to Function Communi-

cation Layer (LIFFCL), its components, and their interface with the other layers of

the node. The LIFFCL accomplishes three distinct objectives within the node. The

first objective is to provide the node a communication interface with the NCL, in

order to support communication between the system functions. Secondly, it performs

fault detection by monitoring the health of all system nodes. It also generates periodic

health (status) messages to inform other nodes of its own status. Lastly, the LIFFCL

implements checkpoint procedures which are utilized to develop globally consistent

system states.

The LIFFCL is comprised of four specific components: Input Server (IS),

Output Server (OS), Status Monitor (SM), and Checkpoint (CP). The it pro-

vides communication interface with the NCL, via Output Server and Input Server.

Status Monitor provides fault detection and Checkpoint monitors the occurrence

of events at a given node and implements checkpointing. All of the components of

this layer shown in Figure 1.2 are covered in detail in the following sections of this

chapter. The logical progression of events for a particular task at a given node are

illustrated in Chapter IV, utilizing state diagrams.

B. INPUT SERVER

The Input Server is responsible for receiving message traffic from the com-

munication layer and redirecting messages to tasks within the node for the required

13



action. It parses the message to determine its type and the destination task to com-

plete the necessary action. It is a process that is activated periodically. It is during

this activation time quantum that a node actually receives messages. Therefore, a

queue is utilized, in which the NCL places messages. Queue management variables are

utilized to indicate overflow and underflow conditions, as well as maintain message or-

dering within the queue. The Input Server consists of two tasks, Node Initializer

and Receive Msg. It is initially given its node identification via a rendezvous call

to task Node Initializer. Thereafter, Input Server is activated periodically by

the expiration of a delay statement within the Receive Msg task. The duration of

this delay is a parameter which can be changed in relation to the periodicity of the

NCL delay, in order to analyze the affects on system throughput. The NCL delay

determines the rate at which messages are sent to the Input Server. The Input

Server maintains a circular queue which is written into by the NCL. The boolean

variable BLOCK-WRITE is set to prevent the NCL from writing over a message

that has not yet been read by the Input Server. When the NCL has a message

to send, if BLOCK-WRITE is false, it places the message into the next available

slot of the Input Server queue and sets MSG_TO_SEND to true. Upon detecting

MSG_TO_SEND, the Input Server parses the MSG.KIND field to determine if the

message is a data or control type. Data messages is sent to tasks within the AL, or to

the function queue manager task of the LIFFCL. Control messages are sent to tasks

within the RL or LIFFCL for the appropriate action. If the message is a data type

and the function designated by the DEST.FUNC field is active on that particular

node, the Input Server transfers the message to the AL. The AL must update the

NST's unique section for the indicated function with the TOT of the last message

received for that function and also the last data message processed for that function.

If the data message is for a non-active function, Input Server sends it to a non-active

14



function queue array. The details of the AL and the task to manage the non-active

function queue are left for another thesis.

If the message is a control type, additional parsing of the CNTRL.ACTION

field is required. IF the CNTRL.ACTION field is either a fnon or a fnoff, the

Input Server transfers the message to RL for further processing. When the CN-

TRL.ACTION field is a marker (MKR) or a checkpoint complete (CHKPT) message,

Input Server transfers the message to Checkpoint. If the CNTRL.ACTION field

indicates a status (STATUS) message the Input Server transfers the message to

the Status Monitor. The appropriate task receives the message by accepting a ren-

dezvous call from Input Server. All of the necessary action required of the task is

completed prior to the Input Server relinquishing processor control. In simulating

a failed node, the Input Server only allows status messages to be passed to Status

Monitor. The Input Server reads all other messages, but does not call the respec-

tive tasks. Status messages must be passed to Status Monitor since node recovery

is triggered by the first periodic status message received after a node is restarted as

explained later.

C. OUTPUT SERVER

The Output Server is responsible for ordering all message traffic generated by

tasks within a node and relaying this traffic to the NCL. Ordering of a node's mes-

sage traffic is accomplished utilizing queue management techniques as described in

the previous section. Since all tasks within a node are concurrent processes, messages

are placed into the Output Server message queue autonomously. For this reason, the

queue management variables must be accessible to any task which generates message

traffic. Proper maintenance of this queue ensures the chronological ordering of mes-

sage generating events occurring internally to a node. When a tasks places a message

15



into the Output Server queue for transmission, the task sets the boolean variable

MSG_TO_SEND to true. Another boolean variable BLOCK_WRITE, is utilized to

prevent tasks from overwriting a message in the Output Server queue before it can

be passed to the NCL. During each periodic activation, if MSG_TO_SEND is true,

the next available message in the Output Server queue is read from the queue and

written into the NCL queue. Prior to placing a message into the NCL queue, Output

Server appends a logical time stamp on the message for chronological identification

purposes. The Output Server can only send message traffic if a BLOCKJWRITE

condition does not exist within the NCL. The Output Server at any given node only

relays at most one message during a given activation period. This prevents a given

node's Output Server from monopolizing the network.

D. STATUS MONITOR

The overall purpose of the Status Monitor is to provide fault tolerant facilities

for the node, by maintaining the current operational status of all system nodes in its

NST. This is accomplished through the three functions that Status Monitor per-

forms. The three separate functions are: generate periodic status messages indicating

the health of the node, monitor and maintain a timer array within the NST to detect

failure of other nodes, and processes all status messages received by the node. The

health of the node is determined by the AL, and is a reflection of the node's ability

to complete assigned functions prior to their deadline. A load percentage greater

than one indicates an overloaded node. Fault detection is achieved by monitoring the

receipt of these periodic status message from other system nodes. If a periodic status

message is not received within a specified interval, node failure is assumed and the

appropriate node is reflected as down in the NST. Aperiodic messages are utilized by

the Status Monitor only during recovery procedures. Status Monitor, accessible

16



from the Input Server, consists of two independent tasks, Status Broadcast (SB)

and the Status Received (SR). The Status Broadcast is activated on a periodic

basis, utilizing a simple delay statement. The activation of the Status Received is

via a rendezvous call from the Input Server upon receipt of a status message. The

primary means of determining node status, is for each node to periodically broadcast

its load percentage to all other nodes. In turn, each node waits for these broadcasts as

confirmation that other nodes are in fact operational. The Status Monitor at each

node maintains a 1 by N array , each element containing the Time-of-Receipt (TOR)

of the last status message received from the appropriate node. This value is used in

comparisons with the Real-Time-Clock (RTC), to determine if nodes have failed to

transmit periodical status messages. If a given node's Status Monitor detects the

failure of another node, then it logs the failed node as down in the NST, and notifys

the Node Failure routine.

1. Status Message Receipt

As previously indicated, two types of status messages are utilized, periodic

and aperiodic, both of which are control type messages with the CONTROL-ACTION

field set equal to status. All status messages received by the Input Server are passed

to the Status Monitor for appropriate action.

Periodic messages are used to promulgate the fact that a node is opera-

tional, as well as to indicate its current load percentage. These messages are indicated

by the presence of a "1" in the DEST.NODE field of the message, with the load per-

centage contained in the DEST.FUNC field. This loading information is utilized

by the RL at each node in determining the receiving node in overload and recovery

conditions. Recovery and overload conditions, are covered in another thesis.

The aperiodic messages are indicated by the presence of a "2" in the

DEST_NODE field of the message. Aperiodic messages are transmitted in conjunction

17



with a node recovery only. Upon restart, the recovering node transmits an aperiodic

message with the load equal to zero, receipt of which causes all active nodes to trans-

mit an aperiodic message containing the common and unique sections of their NST.

2. Status Message Broadcast

The Status Broadcast periodically generates local status broadcast mes-

sages, and checks the timeout conditions of other nodes. On each activation, Status

Broadcast obtains the current value of the RTC and compares that to the TOR of

the last status message received from the applicable node. If this time differential

is greater than a predetermined Timeout interval, the associated node is reflected as

down in the NST and the Node Failure task is called.

E. CHECKPOINTING PROCEDURES

Checkpointing procedures are the cornerstone of a distributed system's frame-

work. As stated earlier, the main purpose of conducting checkpoints is to establish

globally consistent points which serve as synchronization points during reconfigura-

tion procedures. A local state of a node is defined by its initial state and the sequence

of events that have occurred at that node since the previous checkpoint. An event

occurs for each receive occurrence of a message. A checkpoint is merely a snapshot of

a local state of a node at any point in time. A set of checkpoints, one for each node

in the system, is called a global checkpoint and is consistent if all snapshots form a

consistent global statefRef. 6].

Checkpoint contains two independently activated task bodies, Check Pt and

Event Cnt. Task Check Pt is activated by a rendezvous call from the Input Server

upon receipt of a marker or checkpoint complete message. Event Cnt, activated

periodically by the use of a delay statement, monitors the number of messages received

by a given node and generates a marker message after receiving a pre-determined

18



number of messages.

Checkpointing is conducted independently at each node. Checkpointing pro-

cedures are initiated by the first node to accumulate the pre-determined number of

events. This node broadcasts a marker message containing its unique section of the

NST. Upon receipt of this marker message other nodes conduct checkpoint locally if

not already accomplished and update their NST with the unique section contained

in the body of the marker message. Additionally, when the first marker message is

received at a given node, the node also transmits a marker message containing its

own unique section of the NST. Requiring each node in turn to transmit a marker

message ensures that all nodes have exact replicas of the unique sections of the NST.

When the node originating the checkpoint has received a marker message from all

other active nodes, it transmits a checkpoint complete message. The communication

protocol, a first-in-first-out network, ensures delivery of the checkpoint complete mes-

sage (CHKPT) to each node occurs after all associated marker messages have been

received. This ensures complete and identical NSTs at each node. Since there is no

global synchronization of checkpointing events, the possibility exists that a node is

required to alter its NST between the time of local checkpoint and receipt of marker

messages from all other nodes. This is accomplished through the use of a temporary

copy of a node's unique section, made at checkpoint time. The marker messages are

retained in the temporary variable until a checkpoint complete message is received,

at which time the temporary variable is written into the NST and the entire NST is

duplicated in the backup copy NSTBAK. This method of retaining a backup copy of

the NST, ensures that a globally consistent copy of the previous checkpoint is still

available in the event that a node failure occurs during checkpoint procedures.

19



IV. STATE DIAGRAM REPRESENTATION OF
TASKS

A. GENERAL

As previously mentioned, all tasks within the LIFFCL are concurrent processes.

Input Server and Output Server are periodic tasks which are activated through the

use of a time delay. A delayed task is suspended by the node's operating system during

the period of the delay. Tasks Status Monitor and Checkpoint are activated by a

rendezvous call from the Input Server upon receipt of certain message types. This

chapter illustrates the logical progression of events occurring within the indicated

task as shown in the state diagram. The actual implementation of the user program

is covered in the next chapter.

B. INPUT SERVER TASK

Input Server periodically checks its queue for a message received. If a message

is to be processed, it parses at most two fields to determine the message type as shown

in Figure 4.1. Depending on its type, the message is passed to the appropriate layer for

further processing in order to complete the necessary action required by the message.

If no message is present, Input Server releases the processor.

C. OUTPUT SERVER TASK

Output Server checks flags set by tasks within the different layers of the node to

determine if a message is available for transmission. The Output Server accomplishes

this by transferring the message from its own queue to the queue of NCL. Output

Server ensures the NCL queue is not full before writing the message in this queue. A

20



INPUT SERVER

DATA TYPE
MSG

CONTROL TYPE
MSG

Figure 4.1: Input Server State Diagram

full queue is indicated by the NCL variable BLOCK.WRITE being true. It also time

stamps the message to ensure its ordering. These events are illustrated in Figure 4.2.

D. STATUS MONITOR TASK

As indicated previously, Status Monitor performs three different functions.

Two of these functions, Status Broadcast and Timeout, generate periodic status

messages for the node, and monitor the receipt of these messages from other nodes.

Additionally, Status Received is invoked by the Input Server upon receipt of both

21



OUTPUT SERVER

Figure 4.2: Output Server State Diagram

periodic and aperiodic status messages. The three functions and their resulting events

are shown in Figures 4.3 and 4.4.

E. CHECKPOINT TASK

Checkpoint processes two types of messages pertaining to checkpointing. A

marker message initiates checkpointing if not already in progress, and a checkpoint

complete message signifies the successful completion of a checkpoint. Information

pertaining to a node's functions is sent in the marker message so all nodes can update

their NST's. Upon completion of checkpointing, a backup copy of NST is made. This

22



backup copy is utilized during node failure, since the failed node is unable to pass the

statistics of its active functions. Two procedures are utilized to process the different

message types as shown in Figure 4.5.

23



STATUS MONITOR
(SM)

STATUS
BROADCAST

MSG
(SB)

TIMEOUT PROCESS

STATUS
MSG

TIMEOUT

Figure 4.3: Status Monitor Broadcast and Timeout State Diagrams

24



PROCESS

STATUS MSG

Figure 4.4: Status Monitor Message Received State Diagram

25



CHECKPOINT
COMPLETE

MSG

EVENT
COUNTER

Figure 4.5: Checkpoint State Diagram

26



V. A SIMULATION USING ADA

A. GENERAL

The simulation of a four node, twelve function, distributed system is imple-

mented as a group of independent Ada packages. Each node is comprised of the

Output and Input Servers, the Status Monitor, Checkpoint, and the RL. All

these components are instantiated for each node and are referred to as the node re-

lated components. The system also contains community components which include

a globally ordered communication network (NCL), a random event generator (EG),

and a front end processor (FEP).

B. SYSTEM-WIDE COMMUNITY COMPONENTS

The community components explained in this section, are the system compo-

nents not utilized in the actual processing of data or control type messages.

NCL is used to simulate the transmission of messages from the nodes' Output

Servers via a broadcast network. The Input Servers receive these messages from

the NCL utilizing a circular queue. The delay difference between the NCL, Output

Server, and the Input Server determines the number of messages in the queue at

any given time.

The random event generator is activated periodically to simulate a real-time

event. It simulates node overload and node failure. This simulation verifies the

sequence of events occurring within the LIFFCL as a result of node failure/repair

and overload conditions. The reconfiguration events normally occurring as a result

of this simulation occur primarily in the RL layer and are covered in another thesis

[Ref. 8].

27



C. NODE RELATED COMPONENTS

The node related components are algorithms and tasks utilized for processing

the different types of messages received by a node. These components are used to

implement each node and are are explained in this section.

The Input Server contains two independent task bodies, Build Node and

Receive Message. The Build Node task is utilized by the Front End Processor

only during the initialization of nodes as described previously. The other task re-

ceives messages from the NCL via a circular queue. The messages received are parsed

to determine the necessary action to be taken. Input Server establishes a rendezvous

with either the Checkpoint, Status Monitor, or the RL based on the contents of

the MSG.KIND field of a message.

The Output Server consists of a single task activated periodically by the ex-

piration of a delay statement. It sends any available messages to NCL during its

activation period.

Checkpoint handles the process of checkpointing and ensures that a consistent

global state is maintained. Any node can originate the checkpoint process by con-

ducting a local checkpoint and sending a marker message containing its unique data.

The node originating the checkpoint must keep track of marker messages received

from other nodes and indicate when the checkpoint is complete. Upon receipt of the

marker messages, all the nodes must store the information passed. This process is

continued until a checkpoint complete message, sent by the originator is received by

all nodes.

As indicated in Chapter III, the Status Monitor consists of three independent

tasks, Status Broadcast, Timeout, and Status Received. Status Broadcast and

Timeout are activated periodically by the expiration of a delay statement, and Status

Received establishes a rendezvous with the Input Server. Status Broadcast is

28



responsible for building and sending the periodic message to the Output Server.

Timeout detects the failure of a node to respond with a periodic message within

a specified time interval. Status Received processes both periodic and aperiodic

messages. For periodic messages, a node only updates the NST. Aperiodic messages

signal a node recovery; therefore, a node must respond by sending the unique and

common section of its NST.

D. VERIFICATION OF STATE DIAGRAMS

To illustrate the correctness of the state diagrams shown in the previous chap-

ters, timing diagrams are provided. They reflect the sequence of events occurring at

a node during simulation following the receipt of messages built and sent by either

the Event Generator or the implemented tasks of the LIFFCL.

Maintaining the global state of the system is accomplished by utilizing check-

pointing procedures. Checkpoint is initiated by the first node to record a predeter-

mined number of events. This node is designated as the checkpoint originator. As

shown in Figure 5.1, node 1 originates the checkpoint. The arcs represent the message

transmission time between nodes. Nodes 2, 3 and 4 respond to the marker message by

conducting a local checkpoint and transmitting a marker message. Also it is worth

noting that only one node is active at any given time. When node 1 has received

a marker message from all nodes, it sends a checkpoint complete message signifying

a globally consistent checkpoint has been attained. Upon receipt of this checkpoint

complete message, each node stores the checkpoint data into NSTBAK.

In order for the health of the nodes to be monitored, periodic status messages

are sent by each node. Each node records the load of the node which sent the periodic

message. A timer is used to determine if a node responded on time with this message.

A diagram listing the periodic events that occur at each node in response to the receipt

29



Nl N2 N3 N4

MKR sent from Nl

Timercvd from Nl

MKR sent from N3

Time rcvd from N3

MKR sent from N4

Time rcvd from N4

MKR sent from N2

Time rcvd from N2 598.69

(update NST)

Nl has a checkpoint complete

Checkpoint MSG
sent from Nl

Time rcvd from Nl

587.19

590.53

(orig of chkpt)

593.25

(update NST)

595.97

(update NST)

598.71

602.77

(save NSTBAK)

590.71

(send MKR &
update NST)

593.44

(update NST)

593.44

(update NST)

597.54

590.70

(send MKR &
update NST)

591.03

593.43

596.16

(update NST)

597.53

(update NST)

603.00 602.99

(save NSTBAK) (save NSTBAK)

590.70

(send MKR &
update NST)

593.43

(update NST)

591.03

596.16

597.53

(update NST)

603.00

(save NSTBAK)

Figure 5.1: Checkpointing Events

30



of these periodic messages is illustrated in Figure 5.2.

E. SUMMARY

The actual code implemented in this simulation model is contained in Appendix

A. The simulation output is contained in Appendix B. Comments have been inserted

in the areas where an algorithm or procedure needs to be placed. Areas requiring

further development are covered in the next chapter.

31



Nl N2 N3 N4

Periodic Status

msg sent fromNl

Timercvd fromNl

Periodic Status

msg sent from N2

Time rcvd from N2

Periodic Status

msg sent from N3

Time rcvd from N3

Periodic Status

msg sent from N4

Time rcvd from N4

429.76

432.64

(update own timer)

435.37

(update N2's timer)

438.11

(update N3's timer)

440.85

(update N4's timer)

432.66

(update NTs timeT)

429.76

435.39

(update own timer)

438.13

(update N3's timer)

440.87

(update N4's timer)

432.65

(update Nl's timeT)

435.379

(update N2's timer)

429.77

438.12

(update own timer)

440.86

(update N4's timer)

43166

(update Nl 's timer)

435.38

(update N2's timer)

438.12

(update N3's timer)

429.78

440.86

(update own timer)

Figure 5.2: Periodic Message Processing

32



VI. CONCLUSIONS AND FUTURE WORK
A. GENERAL

In this thesis, a scheme for building robust, fault tolerant, distributed systems

is presented. The proposed fault detection methodology, combined with the indepen-

dent checkpointing and recovery techniques, is an effective means of obtaining fault

tolerance. The checkpointing procedures enable a globally consistent system state

to be stored at every node, allowing for robust reconfiguration efforts as a result of

transient failures. Additionally, the duplication of all application code at each node

reduces the communications normally associated with rollback/recovery and func-

tion migration. Also, requiring nodes to store all data messages received prevents

retransmission of requisite message traffic during function migration.

B. CONCLUSION

The fault tolerance implementation described is a simple yet effective means

for detecting node failure. However, in some critical real-time systems, the lag time

between failure and its detection may need to be reduced. A reduction can be ob-

tained by simply increasing the frequency with which the timeout array contents are

examined. The trade-off is a reduction in the time slice that a node can dedicate to

application processing.

The proposed asynchronous checkpointing scheme appears to provide better

throughput and response time by eliminating the synchronization overhead normally

required in creating globally consistent checkpoints. The domino effect, normally

associated with asynchronous checkpoint is alleviated by maintaining a backup copy of

the previous globally consistent checkpoint data. Should node failure occur during the

33



process of checkpointing, the recovered functions must only rollback to the previous

checkpoint.

The availability of large quantities of RAM storage makes the storage of all

messages received an alternative. Rollback/recovery time increases dramatically if

nodes are required to retransmit all requisite traffic for a recovering node. The lin-

ear processing time required for message queue manipulation during checkpointing

is negligible compared to the overhead required for retransmission. Furthermore,

achievement of a globally consistent state upon recovery requires all messages to be

logged at either the transmitting or receiving node. It is believed to be advantageous

to maintain the queue as a receive queue.

C. FUTURE WORK

In order to fully realize the capabilities of the proposed scheme, a more intensive

analysis on a multi-processor implementation is required. A complete multi-layered

system as depicted in Figure 1.2 must be utilized to analyze the periodicity relation-

ship between the NCL, LIFFCL, RL and AL. A multi-processor environment would

also yield a more realistic indication of the relationship between the frequency of

checkpointing and failure recovery time. To enable truly independent functionality

among the software layers of the node, circular queues should be implemented in

each task. This prevents the Input Server from tying up the processor until a task

completes the action required by a message. Also the development of the Timeout

routine as a separate task would reduce the frequency with which Status Broadcast

is currently being activated but still maintain a short detection time.

Additionally, queue management for data messages must be implemented in

order to support the future development of the AL software. The AL software must

also provide an interface to the RL and LIFFCL layers.

34



APPENDIX A: SIMULATION CODE
/* This program code is part of a joint project. Members of */
/* the project team are as follows: S. Shukla, C. Yang, */
/* R. Puett, and K. Lehman */
/* The code is given in its entirety for completeness of */
/* of the topics covered in this thesis */
/* The code is in no particular order except for the first few */
/* sections which are the base for the remaining sections. */
/* Each section has comments preceding it and before each sub- */
/* section or task/procedure within the section to define what */
/* is occurring within that section. */
/* The first section contains the DECLARATIONS which are */
/* used throughout the program. For each of the remaining */
/* sections, a specification package precedes the package body. */
/* The package PROCESS is the second section because it needs */
/* to be compiled before the packages following it. It is the */
/* package that contains the algorithms. The next section is */
/* TRAND. It is the random number generator and needs to be */
/* compiled prior to compiling COMMNET which follows TRAND. */
/* COMMNET creates the instantiations to form the nodes. The */
/* ordering of what follows from this point on does not matter. */
/* The remaining sections are listed in the following order: */
/* INS - contains the NODE.INITIALIZER and INPUT.SERVER tasks */
/* OUTS - contains the OUTPUT.SERVER task */
/* CKPT - contains the CHECK.PT and EVENT.CNT tasks */
/* RL - contains the RECONF.LAYER task */

/* SM - contains the STATUS.REC and STATUS.BDCST tasks */
/* FP - contains the EVENT.MAKER i.e., Event Generator */
/* FEP - Front-End Processor which opens output files for each */
/* node and initiates the NST for each node. */

with text_io; use text_io;
with calendar; use calendar;
package DECLARATIONS is

F1,F2,F3,F4 : FILE.TYPE;
type MSG.TYPE is (data, control)

;

type ACTION.TYPE is (MKR, FN0N,FN0FF, STATUS, CHKPT)

;

type IMCM is array (1 .. 12, 1 .. 12)of integer; — IPC comms array
type FI is array(l . .4)of integer; —function information params

.

type FL is array (1 .. 12) of integer; —function location array
type NSL is array(l . .2, 1 . .4)of integer;—Node status and load
type RCY is array(l . .4)of integer; —array used when recovering
type STAT_TIME is array(l . .4)of float; —array used in each node to
type FAIL_FLG is array (1 .. 12) of boolean; —array used in each node to

record the times when status

35



type FUNCTION.REC is

record
TTC float

;

TTD float;
FN.INFO FI;
LAST.MSG.PROC float

;

LAST.MSG.REC float

;

REGISTER.VAL integer = 0;

SYMBOL.VAR integer = 0;

end record;
type FUNCTION.STATS is array (1 ..12)

msgs were sent by other nodes
— contents of the unique section

12) of FUNCTION.REC;
type UNIQUE is array (1

type COMMON is
record

N0DE_STAT_LD : NSL;
FN.LOC : FL;
IMC : IMCM;

end record;
type BODY.TYPE is

record
DATA : string(l. .80)

;

UNIQ : FUNCTION.STATS;
COMM : COMMON;

end record;
type MSG.RECORD IS

record
TOT : float;
TOR : float;
MSG.KIND : MSG.TYPE;
DEST.FUNC : integer :=

DEST.NODE : integer :=

0RIG_FN_N0DE : integer :=

CNTRL.ACTION : ACTION.TYPE
MSG.BODY : BODY.TYPE;

end record;
Q.SIZE : constant integer := 15;

4) of FUNCTION.STATS;

— node status and load

type QUEUE is array (1..Q.SIZE) of MSG.RECORD;

--msg to be passed on the net

—Time of Transmit of a msg
—Time of Receipt of a msg
--type of msg
--which fn a msg is sent to
—node who acts on a msg
--originator (fn or Node) of msg

--msg that needs to be read

—size of message queues

type MSG.QUEUE is
record

MSG.TO.SEND
BLOCK.WRITE
RD.CNT
MSG.CNT
MSG.QUE

end record;
type NODE.STATUS.TABLE is

record

—queue to hold msgs to send out

boolean := false; --indicates if queue has a msg
boolean := false; --used to block writing to queue
integer
integer :=

QUEUE;

= 1

= 1;

—the read pointer in queue
—the write pointer in queue
—holds up to 15 msgs

—defines contents of the NST

C0MM0N.SECTI0N
UNIQUE.SECTION
NODE.ID

COMMON;
UNIQUE;
integer = 0;

36



end record;
type VARIABLES is —status conditions for a node

— (local to each node)
record

RCVRY_IN_PROG
RCVRY
UNIQ.SENT

boolean
RCY;
boolean

CHKPT.TAKEN

CHKPT.ORIG
CHKPT.COMPLETE
LOCAL.CHKPT

CHKPT.TIMER
FIRST MKR :

RCY;

EVNT_CNT_OUT
ACTIVE.FN.QUE
DATA_MSG_QUE
OUTQ
INQ
TIMER

:= false;— indicates node recovery
—array used in rcvry process

:= false;— indicates if a unique section
— was sent by a node

—array used to indicate if a
— checkpoint is complete or not

boolean := false;— node originating chkpt
boolean := false;—a completed checkpoint done

: boolean := false;— indicates if a node has taken
a checkpoint

: float;
boolean := false;—flag to note 1st marker msg to

— come across net - indicates a
checkpoint needs to occur

—cnts up to 25 then resets to 1

— (indicates when a chkpt needs
to be taken)

— events sent by output server
— msgs for assigned functions
— holds msg for all functions
—queue to hold output msgs
—queue to hold input msgs
—array to hold times of when

status msgs were sent

EVNT.CNT : integer := 0;

integer :=

QUEUE;
QUEUE;
MSG.QUEUE
MSG.QUEUE
STATTIME

end record;
NST.NSTBAK : array (1 . .4) of NODE_STATUS_TABLE;
LOC.VAR : array (1 . .4) of VARIABLES; —gives each node a set of Loc Vars
ST : array (1. .4) of NODE_STATUS_TABLE;—temporary copy of NST
NET_BUSY: boolean; — indicates if network is tied up
NET_Q : MSG_QUEUE; —queue to hold msgs for network
FAILED.NODE : FAIL.FLG; —used to indicated failed node
end DECLARATIONS;

with DECLARATIONS; use DECLARATIONS;
with TEXT.IO; use TEXT.IO;
package PROCESS is

—this procedure gets and prints the current value of real time
procedure GET_REAL_TIME(NID: in integer; LT: in out float);

—this procedure processes a marker msg
procedure MKR.MSG (M:in out MSG_RECORD;NID:in integer ;FLG: in out

boolean)

;

—this procedure processes a function on msg
procedure FN_0N_MSG (M : in MSG.RECORD; NID : in integer);

37



—this procedure processes a function off msg
procedure FN_OFF_MSG(M: in out MSG_RECORD;NID:in integer ;MSG_FLAG:

in out boolean)

;

—this procedure processes a status msg
procedure STAT.MSG (M:in out MSG_RECORD;NID: in integer ;FLG: in out

boolean)

;

—this procedure processes a checkpoint complete msg;
procedure CHK_PT_CMPLT_MSG (M : in MSG.RECORD; NID : in integer);

end PROCESS;

with text_io;
package FLOAT.INOUT is new TEXT.IO .FLOAT.IO (FLOAT)

;

with FLOAT.INOUT; use FLOAT.INOUT;
with text.io; use text.io;
with number.io; use number.io;
with integer.io; use integer.io;
with calendar; use calendar;
with DECLARATIONS; use DECLARATIONS;

— The package PROCESS contains all the procedures necessary
— to process the different types of messages that come into
— the Input Server. Each procedure is preceeded by a
-- description of its actions.

package body PROCESS is

-- Procedure Get Real Time utilizes the system package
— calendar to access the Real time clock of the system
-- processor. In this case, only the seconds portion of
-- the calendar is utilized.

procedure GET_REAL_TIME(NID: in integer ;LT: in out float) is

S : DAY.DURATION;
R : TIME;
T : float;
begin

R := clock;
S := SECONDS (R);

T := float(S);
LT := T;

case NID is
when 1 =>

PUT(F1,T,6,5,0);
SET_C0L(F1,15);
PUT(F1," Node #1");

when 2 =>

38



PUT(F2,T,6,5,0);
SET_C0L(F2,15);
PUT(F2," Node #2")

;

when 3 =>

PUT(F3,T,6,5,0);
SET_C0L(F3,15);
PUT(F3," Node #3");

when 4 =>

PUT(F4,T,6,5,0);
SET_C0L(F4,15);
PUT(F4," Node #4");

when others =>

NULL;
end case;

end GET.REAL.TIME;

— Procedure Function On Message is called from the
— Reconfiguration task. It processes a FNON message
— and updates a Node's NST to reflect the indicated
— function's location.

procedure FN_0N_MSG(M : in MSG.RECORD; NID : in integer) is
Z,Y,X : integer;
GM : MSG.RECORD;
PT : float := 0.0;
DEACT.NODE : integer;

begin
GM := M;

Z := NST(NID).N0DE_ID;
Y := M.DEST.FUNC;
DEACT.NODE := NST(Z) .C0MM0N_SECTI0N.FN_L0C(Y)

;

NST(Z).C0MM0N_SECTI0N.FN_L0C(Y) := M.0RIG_FN_N0DE;
case Z is -- write info to specific output file

when 1 =>

GET.REAL.TIME (Z,PT);
SET_C0L(F1,25);
PUT(F1,"R_L rcvd FN.ON from Node #");

PUT(F1,M.0RIG_FN_N0DE,1);
SET_C0L(F1,60);
PUT(F1, UEVNT #");
PUT(F1,M.MSG_B0DY.UNIQ(1).SYMB0L_VAR,4);
SET_C0L(F1,72);
if M.0RIG_FN_N0DE = Z then — activating node - turns fn on
PUT_LINE(F1,"I am the activating node and changing NST.");
else
if DEACT.NODE = Z then—deactivating node
PUT_LINE(F1,"I am the deactivating node and changing NST");

else
PUT_LINE(F1, "Neither act/deact node and changing NST.");

end if;

end if;

39



SET_C0L(F1,72) ; — shows changes in NST from FNON
for R in 1. .12 loop

PUT(F1,NST(Z) .C0MM0N_SECTI0N.FN_L0C(R) ,3)

;

end loop;
NEW.LINE(Fl);

when 2 =>

GET_REAL_TIME(Z,PT);
SET_C0L(F2,25);
PUT(F2,"R_L rcvd FN.ON from Node #")

;

PUT(F2,M.0RIG_FN_N0DE,1);
SET_C0L(F2,60);
PUT(F2,"EVNT #");

PUT(F2,M.MSG_B0DY.UNIQ(1).SYMB0L_VAR,4);
SET_C0L(F2,72);
if M.0RIG_FN_N0DE = Z then —activating node, turns fn on
PUT_LINE(F2,"I am the activating node and changing NST.");
else
if DEACT_NODE = Z then—deactivating node
PUT_LINE(F2,"I am the deactivating node and changing NST");

else
PUT_LINE(F2, "Neither act/deact node and changing NST.");

end if

;

end if;

SET_C0L(F2,72) ; — shows changes in NST from FNON
for R in 1. .12 loop

PUT(F2,NST(Z) .C0MM0N_SECTI0N.FN_L0C(R) ,3)

;

end loop;
NEW_LINE(F2);

when 3 =>

GET_REAL_TIME(Z,PT);
SET_C0L(F3,25);
PUT(F3,"R_L rcvd FN.ON from Node #");

PUT(F3,M.0RIG_FN_N0DE,1);
SET_C0L(F3,60);
PUT(F3,"EVNT #")

;

PUT(F3,M.MSG_B0DY.UNIQ(1) .SYMB0L_VAR,4)

;

SET_C0L(F3,72);
if M.0RIG_FN_N0DE = Z then — activating node - turns fn on

PUT_LINE(F3,"I am the activating node and changing NST.");
else
if DEACT.NODE = Z then—deactivating node
PUT_LINE(F3,"I am the deactivating node and changing NST");

else
PUT_LINE(F3, "Neither act/deact node and changing NST.");

end if;

end if

;

SET_C0L(F3,72); — shows changes in NST from FNON
for R in 1 . . 12 loop

PUT(F3,NST(Z) .C0MM0N_SECTI0N.FN_L0C(R) ,3)

;

end loop;
NEW_LINE(F3);

40



when 4 =>

GET_REAL_TIME(Z,PT)

;

SET_C0L(F4,25);
PUT(F4,"R_L rcvd FN.ON from Node #")

;

PUT(F4,M.0RIG_FN_N0DE,1);
SET_C0L(F4,60);
PUT(F4,"EVNT #")

;

PUT(F4,M.MSG_B0DY.UNIQ(1) .SYMB0L_VAR,4)

;

SET_C0L(F4,72);
if M.0RIG_FN_N0DE = Z then —activating node - turns fn on
PUT_LINE(F4,"I am the activating node and changing NST.");
else
if DEACT.NODE = Z then—deactivating node
PUT_LINE(F4,"I am the deactivating node and changing NST");

else
PUT_LINE(F4,"Neither act/deact node and changing NST.");

end if

;

end if;

SET_C0L(F4,72) ; — shows changes in NST from FNON
for R in 1 . . 12 loop

PUT(F4,NST(Z) .C0MM0N_SECTI0N.FN_L0C(R) ,3)

;

end loop;
NEW_LINE(F4);

when others =>

NULL;
end case;

end FN_0N_MSG;

— Procedure Function Off Message is called by the Reconfiguration
-- task. It processes a FNOFF message and determines if the node is
-- to activate a function. It also generates a FNON message if
— necessary.

procedure FN_OFF_MSG(M: in out MSG_RECORD;NID: in integer ;MSG_FLAG:
in out boolean) is

Z,Y : integer;
J : MSG.RECORD;
PT : float := 0.0;

begin
Z := NST(NID).N0DE.ID;
Y := M.DEST.NODE;
GET_REAL_TIME(Z,PT);
case Z is

when 1 =>

SET_C0L(F1,25);
PUT(F1,"R_L rcvd FN.OFF from Node #")

;

PUT(F1,M.0RIG_FN_N0DE,1);
SET_C0L(F1,60);
PUT(F1,"EVNT #");
PUT(F1,M.MSG_B0DY.UNIQ(1).SYMB0L_VAR,4);
SET_C0L(F1,72);

41



if Z = Y then
PUT(F1,"FN_0N sent to activate FN #")

;

PUT(F1,M.DEST_FUNC,2);NEW_LINE(F1);
else

PUT_LINE(Fl,"No further action required ATT.");
end if

;

when 2 =>

SET_C0L(F2,25);
PUT(F2,"R_L rcvd FN.OFF from Node #")

;

PUT(F2 ,M . 0RIG_FN_N0DE, 1)

;

SET_C0L(F2,60);
PUT(F2,"EVNT #")

;

PUT(F2,M.MSG_B0DY.UNIQ(1).SYMB0L_VAR,4);
SET_C0L(F2,72);
if Z = Y then

PUT(F2,"FN_0N sent to activate FN #")

;

PUT(F2,M.DEST_FUNC,2) ;NEW_LINE(F2)

;

else
PUT_LINE(F2,"No further action required ATT.");

end if;

when 3 =>

SET_C0L(F3,25);
PUT(F3,"R_L rcvd FN.OFF from Node #")

;

PUT(F3,M.0RIG_FN_N0DE,1);
SET_C0L(F3,60);
PUT(F3,"EVNT #")

;

PUT(F3,M.MSG_B0DY.UNIQ(1) . SYMBOL.VAR, 4) ;

SET_C0L(F3,72);
if Z = Y then

PUT(F3,"FN_0N sent to activate FN #");

PUT(F3,M.DEST_FUNC,2) ;NEW_LINE(F3)

;

else
PUT_LINE(F3,"No further action required ATT.");

end if;

when 4 =>

SET_C0L(F4,25);
PUT(F4,"R_L rcvd FN.OFF from Node #")

;

PUT(F4,M.0RIG_FN_N0DE,1);
SET_C0L(F4,60);
PUT(F4,"EVNT #");

PUT(F4,M.MSG_B0DY.UNIQ(1) .SYMB0L.VAR.4)

;

SET_C0L(F4,72);
if Z = Y then

PUT(F4,"FN_0N sent to activate FN #")

;

PUT(F4,M.DEST_FUNC,2) ;NEW_LINE(F4)

;

else
PUT_LINE(F4,"No further action required ATT.");

end if;

when others =>

NULL;
end case;

42



if Z = Y then — activating node
— create FNON msg to send
J.MSG.KIND := CONTROL;
J.DEST.FUNC := M.DEST.FUNC;
J.0RIG_FN_N0DE := Z;

J.CNTRL.ACTION := FNON;
— set flag to indicate msg needs to go to OUTPUT.SERVER
MSG.FLAG := true;
M := J;

end if

;

end FN.OFF.MSG;

— Procedure Status Message processes both periodic and aperiodic
— status messages. It is called by Status Monitor (SM) . The
— recovery process is handled by this procedure. Recovery is
-- accomplished by rebuilding the NST of the recovering node
-- from the contents of aperiodic messages (i.e. the Unique
— Section)

procedure STAT_MSG(M : in out MSG.RECORD; NID : in integer; FLG :

in out boolean) is

X,Z,Y : integer;
GM : MSG.RECORD;
RCVRY.COMPLETE : boolean := false;
MY.UNIQ.SENT : boolean := false;
PT : float := 0.0;

begin --Dest.Node field is used to designate a periodic msg (1)— or an aperiodic msg (2). The Dest.Fn field holds the value
— of the load of a node designated by the 0RIG_FN_N0DE.

Z := NST(NID).N0DE_ID;
Y := M.DEST.FUNC;
X := M.0RIG.FN.N0DE;
LOC_VAR(Z).TIMER(X) := M.TOR; --update periodic time of node
NST(Z).C0MM0N_SECTI0N.N0DE_STAT_LD(2,X) := M.DEST.FUNC;

— node load percentage.
GET_REAL_TIME(0,PT);
if L0C_VAR(Z).RCVRY_IN_PR0G and

PT - LOC_VAR(Z).TIMER(Z) > 61.5 then
L0C_VAR(Z).RCVRY_IN_PR0G := false;
NST(Z).C0MM0N_SECTI0N.N0DE_STAT_LD(1,Z) := 0;

NST(Z).C0MM0N_SECTI0N.N0DE_STAT_LD(2,Z) := 0;

for J in 1..4 loop — clear rcvry array
LOC_VAR(Z).RCVRY(J) := 0;

end loop;
case Z is

when 1 =>

GET_REAL_TIME(1,PT);
SET_C0L(F1,72);
PUT_LINE(F1, "RCVRY attempts unsuccessful. Restart RCVRY");

when 2 =>

GET_REAL_TIME(2,PT);

43



SET_C0L(F2,72);
PUT_LINE(F2,"RCVRY attempts unsuccessful. Restart RCVRY")

;

when 3 =>

GET_REAL_TIME(3,PT)

;

SET_C0L(F3,72);
PUT_LINE(F3, "RCVRY attempts unsuccessful. Restart RCVRY");

when 4 =>

GET_REAL_TIME(4,PT);
SET_C0L(F4,72);
PUT_LINE(F4, "RCVRY attempts unsuccessful. Restart RCVRY");

when others =>

NULL;
end case;

end if

;

if M.DEST.NODE = 1 then —periodic msg
if NST(Z) .C0MM0N_SECTI0N.N0DE_STAT_LD(1,X) = and

M.DEST.FUNC = then
LOC_VAR(Z).UNIQ_SENT := false;
NST(Z) .C0MM0N_SECTI0N.N0DE_STAT_LD(1,X) := 1;

FAILED.NODE(X) := false;
end if;

if not LOC_VAR(Z).RCVRY_IN_PROG and
NST(Z) .C0MM0N_SECTI0N.N0DE_STAT_LD(1,Z) = then

PUT_LINE("BUILDING an APERIODIC message.");
GM.DEST.NODE := 2; — build aperiodic status message
GM.DEST.FUNC := 0;

GM.0RIG_FN_N0DE := Z;

GM.CNTRL.ACTION := STATUS;
GM.MSG.KIND := control;
FLG := true;
L0C_VAR(Z) .RCVRY.IN.PROG := true;
for I in 1. .4 loop — reset timers of nodes other than the

if I /= X then — node whose periodic msg was received
L0C_VAR(Z) .TIMER(I) := PT;

end if

;

end loop;
end if;

else — aperiodic msg
if NST(Z).C0MM0N_SECTI0N.N0DE_STAT_LD(1,Z) = then

—recovery node
L0C_VAR(Z). RCVRY (X) := 1;

if Z /= X then
NST(Z) .UNIQUE_SECTION(X) := M.MSG.BODY.UNIQ;
NST(Z) .COMMON.SECTION := M.MSG.B0DY.C0MM;

end if;

RCVRY.COMPLETE := true;

for I in 1..4 loop — check if all nodes sent the
— unique sections

if NST(Z) .C0MM0N_SECTI0N.N0DE_STAT_LD(1,I) = 1 then
— active node

44



if LOC_VAR(Z).RCVRY(I) = then
RCVRY.COMPLETE := false;

end if;

end if;

end loop;
if RCVRY.COMPLETE then ~ call the node recovery

— procedure
GM.DEST_NODE := 1; — build periodic status message
GM.DEST_FUNC := 0; — indicates rcvry complete to

— other nodes
GM.0RIG_FN_N0DE := Z;

GM.CNTRL.ACTION := STATUS;
GM.MSG.KIND := control;
FLG := true;
L0C_VAR(Z).RCVRY_IN_PR0G := false;
for J in 1..4 loop — clear rcvry array

L0C_VAR(Z) .RCVRY(J) := 0;

end loop;
end if;

else — not the orig node of APERIODIC
— chk if unique section was sent

if not LOC_VAR(Z).UNIQ_SENT then
GM.DEST_N0DE := 2; — build an aperiodic status message
GM.DEST.FUNC := NST(Z) .C0MM0N_SECTI0N.N0DE_STAT_LD(2,NID)

;

GM.0RIG_FN_N0DE := Z;

GM.MSG_BODY.UNIQ := NST(Z) .UNIQUE_SECTION(Z)

;

GM.MSG_B0DY.C0MM := NST(Z) .C0MM0N.SECTI0N;
GM.CNTRL.ACTION := STATUS;
GM.MSG.KIND := control;
FLG := true;
MY_UNIQ_SENT := true;
L0C_VAR(Z).UNIQ_SENT := true;

end if; — UNIQ.SENT
end if

;

end if

;

GET_REAL_TIME(Z,PT);
case Z is

when 1 =>

SET_C0L(F1,25);
if M.DEST.N0DE = 1 then

PUT(F1,"S_M rcvd PERIODIC from Node #")

;

else
PUT(F1,"S_M rcvd APERIODIC from Node #");

end if;
PUT(F1,M.0RIG_FN_N0DE,1) ;

SET_C0L(F1,60);
PUT(F1,"EVNT #");

PUT(F1,M.MSG_B0DY.UNIQ(1).SYMB0L_VAR,4);
SET_C0L(F1,72);
if M.DEST.NODE = 1 then

45



PUT(F1, "Reset Timer element of Node #")

;

PUT(F1,M.0RIG_FN_N0DE,1);
NEW_LINE(F1)

;

else
if NST(Z).C0MM0N_SECTI0N.N0DE_STAT_LD(1,Z) = then

if RCVRY.COMPLETE then
PUT_LINE(F1, "Recovery complete, send PERIODIC msg")

;

else
PUT_LINE(Fl,"This is the recovering node.");

end if;

else
if LOC_VAR(Z).UNIQ_SENT and MY.UNIQ.SENT then
PUT_LINE(F1, "Sending APERIODIC with uniq sect.");

else
PUT_LINE(F1, "APERIODIC response sent, no action.");

end if;

end if

;

end if

;

when 2 =>

SET_C0L(F2,25);
if M.DEST.NODE = 1 then

PUT(F2,"S_M rcvd PERIODIC from Node #")

;

else
PUT(F2,"S_M rcvd APERIODIC from Node #")

;

end if

;

PUT(F2,M.0RIG_FN_N0DE,1);
SET_C0L(F2,60);
PUT(F2,"EVNT #")

;

PUT(F2,M.MSG_B0DY.UNIQ(1).SYMB0L_VAR,4);
SET_C0L(F2,72);
if M.DEST.NODE = 1 then

PUT(F2, "Reset Timer element of Node #")

;

PUT(F2,M.0RIG_FN_N0DE,1);
NEW_LINE(F2);

else
if NST(Z) .C0MM0N_SECTI0N.N0DE_STAT_LD(1,Z) = then

if RCVRY.COMPLETE then
PUT_LINE(F2, "Recovery complete, send PERIODIC msg");

else
PUT_LINE(F2,"This is the recovering node.");

end if

;

else
if L0C_VAR(Z) .UNIQ.SENT and MY_UNIQ_SENT then
PUT_LINE(F2, "Sending APERIODIC with uniq sect.");

else
PUT_LINE(F2, "APERIODIC response sent, no action.");

end if

;

end if

;

end if;

when 3 =>

SET_C0L(F3,25);

46



if M.DEST.NODE = 1 then
PUT(F3,"S_M rcvd PERIODIC from Node #");

else
PUT(F3,"S_M rcvd APERIODIC from Node #")

;

end if

;

PUT(F3,M.0RIG_FN_N0DE,1)

;

SET_C0L(F3,60);
PUT(F3,"EVNT #");
PUT(F3,M.MSG_B0DY.UNIQ(1) .SYMB0L_VAR,4)

;

SET_C0L(F3,72);
if M.DEST.NODE = 1 then

PUT(F3, "Reset Timer element of Node #")

;

PUT(F3,M.0RIG_FN_N0DE,1);
NEW_LINE(F3);

else
if NST(Z).C0MM0N_SECTI0N.N0DE_STAT_LD(1,Z) = then

if RCVRY.COMPLETE then
PUT_LINE(F3, "Recovery complete, send PERIODIC msg")

;

else
PUT_LINE(F3,"This is the recovering node.");

end if;

else
if LOC_VAR(Z).UNIQ_SENT and MY_UNIQ_SENT then
PUT_LINE(F3, "Sending APERIODIC with uniq sect.");

else
PUT_LINE(F3, "APERIODIC response sent, no action.");

end if

;

end if;

end if;

when 4 =>

SET_C0L(F4,25);
if M.DEST.NODE = 1 then

PUT(F4,"S_M rcvd PERIODIC from Node #")

;

else
PUT(F4,"S_M rcvd APERIODIC from Node #")

;

end if;

PUT(F4 ,M . 0RIG_FN_N0DE , 1)

;

SET_C0L(F4,60);
PUT(F4,"EVNT #");

PUT(F4,M.MSG_B0DY.UNIQ(1).SYMB0L_VAR,4);
SET_C0L(F4,72);
if M.DEST.NODE = 1 then

PUT (F4, "Reset Timer element of Node #");
PUT(F4,M.0RIG_FN_N0DE,1)

;

NEW_LINE(F4);
else

if NST(Z).C0MM0N_SECTI0N.N0DE_STAT_LD(1,Z) = then
if RCVRY.COMPLETE then
PUT_LINE(F4, "Recovery complete, send PERIODIC msg");

else
PUT_LINE(F4,"This is the recovering node.");

47



end if;

else
if LOC_VAR(Z).UNIQ_SENT and MY.UNIQ.SENT then
PUT_LINE(F4, "Sending APERIODIC with uniq sect.");

else
PUT_LINE(F4, "APERIODIC response sent, no action.");

end if;

end if

;

end if;

when others =>

NULL;
end case;

MY_UNIQ_SENT : = false;
if FLG then

M := GM;

end if

;

end STAT.MSG;

-- Procedure Marker Message processes a MKR message utilized for
— the checkpointing process. It is called from the CHECK_PT
-- task. The node's NST is updated with the contents of the
-- message body. The procedure also generates a checkpoint
-- complete message at the node originating checkpoint to
-- indicate a successful checkpoint.

procedure MKR_MSG(M : in out MSG_RECORD; NID : in integer; FLG :

in out boolean) is
X,Z,Y : integer;
GM : MSG.RECORD;
PT : float := 0.0;

begin
Z := NST(NID) .NODE.ID;
Y := M.0RIG_FN_N0DE;
if not L0C_VAR(Z) .FIRST.MKR then

L0C_VAR(Z) .FIRST.MKR := true;
if Y = Z then

LOC.VAR(Z) .CHKPT.ORIG := true;
LOC_VAR(Z).CHKPT_TAKEN(Z) := 1

GET_REAL_TIME(0,PT);
LOC_VAR(NID).CHKPT_TIMER := PT;

else
L0C_VAR(Z).CHKPT_0RIG := false:

end if

;

end if

;

if Y /= Z then — not originating node of msg
NST(Z).UNIQUE_SECTION(Y) := M.MSG.BODY.UNIQ;
if LOC.VAR(Z) .CHKPT.ORIG = true then — check point originator

L0C_VAR(Z) .CHKPT.TAKEN(Y) := 1;

LOC.VAR(Z) . CHKPT.COMPLETE := true;
for I in 1 . .4 loop

if NST(Z) .C0MM0N_SECTI0N.N0DE_STAT_LD(1,I) = 1 then

48



— node active
if LOC_VAR(Z).CHKPT_TAKEN(I) = then

LOC.VAR(Z).CHKPT_COMPLETE := false;
end if;

end if;

end loop;
if LOC_VAR(Z).CHKPT_COMPLETE = true then

GM.MSG.KIND := CONTROL;
GM.CNTRL.ACTION := CHKPT;
GM.0RIG_FN_N0DE := Z;

FLG := true;
end if;

else — not originating node
if not LOC.VAR(Z) .LOCAL.CHKPT then — didn't send unique sect

ST(Z) := NST(Z);
GM.MSG.KIND := CONTROL;
GM.CNTRL.ACTION := MKR;
GM.0RIG_FN.N0DE := Z;

GM.MSG_BODY.UNIQ := NST(Z) .UNIQUE.SECTION(Z)

;

FLG := true;
LOC.VAR(Z) .LOCAL.CHKPT := true; —true if checkpointed
end if;

end if;

end if;

GET_REAL_TIME(Z,PT);
case Z is

when 1 =>

SET_C0L(F1,25);
PUT(F1,"C_P rcvd MKR from Node #")

;

PUT(F1 ,M . ORIG.FN.NODE , 1)

;

SET_C0L(F1,60);
PUT(F1,"EVNT #");

PUT(F1,M.MSG_B0DY.UNIQ(1).SYMB0L_VAR,4);
SET_C0L(F1,72);
if L0C_VAR(Z).CHKPT_0RIG then
if L0C_VAR(Z).CHKPT_C0MPLETE then
PUT_LINE(Fl,"MKRs rcvd from all nodes, Send CHKPT.COMP")

;

else
PUT_LINE(F1,"I originated CHKPT. Not all MKRs yet rcvd");

end if

;

else
if not L0C_VAR(Z). LOCAL.CHKPT then
PUT_LINE(F1, "Local CHKPT conducted. Send uniq in MKR.");

else
PUT_LINE(F1, "Local CHKPT already conducted. Store UNIQ");

end if;

end if;

when 2 =>

SET_C0L(F2,25);
PUT(F2,"C_P rcvd MKR from Node #")

;

PUT(F2 ,M . ORIG.FN.NODE, 1)

;

49



SET_C0L(F2,60);
PUT(F2,"EVNT #")

;

PUT(F2,M.MSG.B0DY.UNIQ(1).SYMB0L_VAR,4);
SET_C0L(F2,72);
if LOC_VAR(Z).CHKPT_ORIG then
if LOC_VAR(Z).CHKPT_COMPLETE then
PUT_LINE(F2,"MKRs rcvd from all nodes, Send CHKPT.COMP")

;

else
PUT.LINE(F2,"I originated CHKPT. Not all MKRs yet rcvd");

end if

;

else
if not LOC_VAR(Z).LOCAL_CHKPT then
PUT_LINE(F2, "Local CHKPT conducted. Send uniq in MKR.");
else
PUT_LINE(F2, "Local CHKPT already conducted. Store UNIQ");

end if;

end if;

when 3 =>

SET.C0L(F3,25);
PUT(F3,"C_P rcvd MKR from Node #")

;

PUT(F3,M.0RIG_FN_N0DE,1);
SET_C0L(F3,60);
PUT(F3,"EVNT #")

;

PUT(F3,M.MSG_B0DY.UNIQ(1).SYMB0L.VAR,4);
SET_C0L(F3,72);
if L0C_VAR(Z) .CHKPT.ORIG then
if LOC_VAR(Z).CHKPT_COMPLETE then
PUT_LINE(F3,"MKRs rcvd from all nodes, Send CHKPT.COMP")

;

else
PUT_LINE(F3,"I originated CHKPT. Not all MKRs yet rcvd");

end if

;

else
if not LOC_VAR(Z).LOCAL_CHKPT then
PUT_LINE(F3, "Local CHKPT conducted. Send uniq in MKR.");
else
PUT_LINE(F3, "Local CHKPT already conducted. Store UNIQ");

end if

;

end if

;

when 4 =>

SET_C0L(F4,25);
PUT(F4,"C_P rcvd MKR from Node #");

PUT(F4,M.0RIG_FN_N0DE,1)

;

SET_C0L(F4,60);
PUT(F4,"EVNT #")

;

PUT(F4,M.MSG_B0DY.UNIQ(1) .SYMB0L_VAR,4)

;

SET_C0L(F4,72);
if L0C_VAR(Z) .CHKPT.ORIG then
if LOC_VAR(Z).CHKPT_COMPLETE then
PUT_LINE(F4,"MKRs rcvd from all nodes, Send CHKPT.COMP");

else
PUT_LINE(F4,"I originated CHKPT. Not all MKRs yet rcvd");

50



end if

;

else
if not LOC_VAR(Z).LOCAL_CHKPT then
PUT_LINE(F4, "Local CHKPT conducted. Send uniq in MKR.");

else
PUT_LINE(F4, "Local CHKPT already conducted. Store UNIQ");

end if;

end if;

when others =>

NULL;
end case;
if FLG then

M := GM;
end if

;

end MKR.MSG;

-- Procedure Checkpoint Complete Message processes a CHKPT message
— that was built in the Status Message section. It resets all
— flags set during the checkpointing process, and it copies
— checkpoint data into the backup NST (NSTBAK)

.

procedure CHK_PT_CMPLT_MSG (M : in MSG.RECORD; NID : in integer) is
Z,Y : integer := M.ORIG.FN.NODE;
PT : float := 0.0;

begin
NSTBAK(NID) := ST(NID)

;

Z := NST(NID).N0DE_ID;
LOC_VAR(NID).FIRST_MKR := FALSE;
L0C_VAR(NID).CHKPT_0RIG := FALSE;
GET_REAL_TIME(Z,PT)

;

LOC_VAR(NID).CHKPT_TIMER := PT;

GET_REAL_TIME(Z,PT)

;

case Z is

when 1 =>

SET_C0L(F1,25);
PUT(F1,"C_P rcvd CHKPT from Node #")

;

PUT(F1,M.0RIG_FN_N0DE,1);
SET.C0L(F1,60);
PUT(F1,"EVNT #");

PUT(F1,M.MSG_B0DY.UNIQ(1). SYMBOL.VAR, 4);
SET_C0L(F1,72);
if Z = Y then
PUT_LINE(F1, "CHKPT orig. Global CHKPT complete store NST");
else
PUT_LINE(F1, "Global CHKPT complete store NST");

end if

;

when 2 =>

SET_C0L(F2,25);
PUT(F2,"C_P rcvd CHKPT from Node #")

;

PUT(F2,M.0RIG_FN_N0DE,1)

;

SET_C0L(F2,60);

51



PUT(F2,"EVNT #")

;

PUT(F2,M.MSG_B0DY.UNIQ(1).SYMB0L_VAR,4);
SET_C0L(F2,72);
if Z = Y then
PUT_LINE(F2,"CHKPT orig. Global CHKPT complete store NST")

;

else
PUT_LINE(F2, "Global CHKPT complete store NST");

end if;

when 3 =>

SET_C0L(F3,25);
PUT(F3,"C_P rcvd CHKPT from Node #");
PUT(F3 ,M . 0RIG_FN_N0DE , 1)

;

SET_C0L(F3,60);
PUT(F3,"EVNT #")

;

PUT(F3,M.MSG_B0DY.UNIQ(1) .SYMB0L_VAR,4)

;

SET_C0L(F3,72);
if Z = Y then
PUT_LINE(F3,"CHKPT orig. Global CHKPT complete store NST");
else
PUT_LINE(F3, "Global CHKPT complete store NST");
end if

;

when 4 =>

SET_C0L(F4,25);
PUT(F4,"C_P rcvd CHKPT from Node #")

;

PUT(F4,M.0RIG_FN_N0DE,1);
SET_C0L(F4,60);
PUT(F4,"EVNT #")

;

PUT(F4,M.MSG_B0DY.UNIQ(1) .SYMB0L_VAR,4)

;

SET_C0L(F4,72);
if Z = Y then
PUT_LINE(F4, "CHKPT orig. Global CHKPT complete store NST");
else
PUT_LINE(F4, "Global CHKPT complete store NST");

end if

;

when others =>

NULL;
end case;
if NST(NID) .NODE.ID = Y then — CHKPT orig clears MKR array

for I in 1 . .4 loop
LOC_VAR(NID).CHKPT.TAKEN(I) := 0;

end loop;
end if;

end CHK_PT_CMPLT_MSG;
end PROCESS;

with FLOAT.INOUT; use FLOAT.INOUT;
with MATH; use MATH;
with RANDOM; use RANDOM;
with PROCESS; use PROCESS;
with TEXT_I0, integer_io;

52



use TEXT_IO, integer_io;
package TRAND is

— Procedure Test Random is a random integer generator
— which normalizes the random variable to the desired
— range as indicated by the parameter.

procedure TEST.RANDOM (VAR : in out integer)

;

end TRAND;

package body TRAND is
procedure TEST.RANDOM (VAR : in out integer) is

X : float;
begin

delay 2.0;
X := RANDOM. NEXT.NUMBER;
if VAR = 4 then

VAR := integer (X * 4.0);
while VAR = loop — X4 must be an integer in the

— interval 1-4 (# of node)
delay 1.0;
X := RANDOM. NEXT.NUMBER; — calls the function
VAR := integer (X * 4.0);

end loop;
else

if VAR =12 then
VAR := integer (X * 12.0);
while VAR = loop — VAR must be an integer in the

— interval 1-12 (# of function)
delay 1.0;
X := RANDOM. NEXT.NUMBER; — calls the function
VAR := integer (X * 12.0);

end loop;
else

— get a delay parameter
VAR := integer(-(1.0/0.5) * NAT_L0G(1.0 - X));
while VAR = loop — the delay must be an integer

— greater than 0.

delay 1.0;
X := RANDOM. NEXT.NUMBER; — calls the function
VAR := integer (X * 4.0);

end loop;
end if;

end if

;

end TEST.RAND0M;
end TRAND;

with DECLARATIONS; use DECLARATIONS;
package C0MMNET is

task NETWORK is

53



entry SEND_MSG(M : in MSG.RECORD; NID : in integer);
end;
end COMMNET;

— The following package statements create instantiations of the
— indicated package utilized in the formation of a node.

with OUTS;
package 0UTS1 is new OUTS
with OUTS;
package 0UTS2 is new OUTS
with OUTS;
package 0UTS3 is new OUTS
with OUTS;
package 0UTS4 is new OUTS
with INS;

'

package INS1 is new INS;

with INS;
package INS2 is new INS
with INS;

package INS3 is new INS
with INS;
package INS4 is new INS
with SM;
package SMI is new SM;

with SM;

package SM2 is new SM;
with SM;
package SM3 is new SM;

with SM;

package SM4 is new SM;

with CKPT;
package CKPT1 is new CKPT
with CKPT;
package CKPT2 is new CKPT;

with CKPT;
package CKPT3 is new CKPT;
with CKPT;
package CKPT4 is new CKPT;
with RL;

package RL1 is new RL;
with RL;
package RL2 is new RL;
with RL;
package RL3 is new RL;
with RL;
package RL4 is new RL;
with text_io; use text_io;
with integer_io; use integer_io;
with number_io;use number_io;
with DECLARATIONS; use DECLARATIONS;

54



with PROCESS; use PROCESS;
with TRAND; use TRAND;
with INS1; use INS1
with INS2; use INS2
with INS3; use INS3
with INS4; use INS4:

package body COMMNET is

— The NETWORK task manages a circular queue, receiving messages
— from the Output Server task and relaying them to all the
— Input Server tasks. It serves as the communication interface
— between nodes.

task body NETWORK is

W,R : integer;
MGEN : MSG.RECORD;
MSG.PRESENT : boolean := false;
DT : DURATION := 2.57;
begin

loop
select

accept SEND.MSG (M: in MSG.RECORD ;NID: in integer) do
NULL;

end;
or

delay DT;
MSG.PRESENT := false;
W := NET_Q.MSG_CNT;
R := NET_Q.RD.CNT;
if NET_Q.MSG_TO_SEND then

if R > W then
MGEN := NET_Q.MSG_QUE(R);
R := R + 1;

if R > Q_SIZE then
if W < 2 then

NET_Q.MSG_TO_SEND := false;
NET_Q.BLOCK_WRITE := false;

end if;

NET_Q.RD_CNT := 1;

else
NET_Q.RD_CNT := R;

end if;

else
if R < W then

MGEN := NET_Q.MSG_QUE(R);
R := R + 1;

if W = R then
NET_Q.BLOCK_WRITE := false;
NET_Q.MSG_TO.SEND := false;

end if;

55



NET_Q.RD_CNT := R;

end if;

end if;

MSG.PRESENT := true;
end if;

if MSG.PRESENT then
for Z in 1 . .4 loop

W := LOC_VAR(Z).INQ.MSG_CNT;
R := LOC_VAR(Z).INQ.RD_CNT;
if not LOC_VAR(Z).INQ.BLOCK_WRITE then

if W >= R then
LOC_VAR(Z).INQ.MSG_QUE(W) := MGEN;
LOC_VAR(Z).INQ.MSG_TO_SEND := true;
W := W + 1;

if W > Q.SIZE then
if R < 2 then

LOC_VAR(Z).INQ.BLOCK_WRITE := true;
end if

;

L0C_VAR(Z) .INQ.MSG.CNT := 1;

else
LOC_VAR(Z).INQ.MSG_CNT := W;

end if

;

else
if W < R then

. LOC.VAR(Z) .INQ.MSG_QUE(W) := MGEN;
L0C_VAR(Z) .INQ.MSG.TO.SEND := true;
W := W + 1;

if W = R then
LOC_VAR(Z).INQ.BLOCK_WRITE := true;

end if;

L0C_VAR(Z) .INQ.MSG.CNT := W;

end if

;

end if

;

end if;

end loop; — end for loop
end if

;

end select;
end loop:

end NETWORK
end COMMNET

with DECLARATIONS; use DECLARATIONS;
generic
package INS is
task NODE.INITIALIZER is

entry BUILD_NODE(NID: in integer);
end;
task INPUT.SERVER is

entry RECEIVE_MSG(M : in MSG.RECORD; NID : in integer);
end;

56



end INS;

with text_io; use text_io;
with integer.io; use integer_io;
with number. io; use number_io;
with PROCESS; use PROCESS;
with DECLARATIONS; use DECLARATIONS;
with COMMNET; use COMMNET;
with TRAND; use TRAND;
with RL1
with RL2
with RL3
with RL4
with SMI
with SM2
with SM3
with SM4

use RL1
use RL2
use RL3
use RL4
use SMI
use SM2
use SM3

SM4use
with CKPT1; use CKPT1;
with CKPT2; use CKPT2;
with CKPT3; use CKPT3;
with CKPT4; use CKPT4;
package body INS is

— The NODE.INITIALIZER task is utilized to initialize the node's NST,
— to be utilized in the simulation process.

task body NODE.INITIALIZER is

x,z : integer;
begin

loop
select

accept BUILD N0DE(NID: in integer) do
x := 1;

z := NID;
— this loop builds the function location array - this
— would normally be initialized by the task allocation
-- which is only done in psuedo code at this time
for J in 1 . . 12 loop

NST(z).C0MM0N_SECTI0N.FN_L0C(J) := x;

x := x + 1;

if x = 5 then
x := 1;

end if

;

end loop;
NST(z).NODE_ID := NID;
-- this loop initializes all nodes to the "up" status
— within each of the NST's
for J in 1 . .4 loop

NST (z) . COMMON.SECTION . NODE_STAT_LD ( 1 , J) : = 1

;

NST(z).C0MM0N_SECTI0N.N0DE_STAT_LD(2,J) := J;

57



end loop;
NSTBAK(z) := NST(z);

end;

— make backup copy of NST's

or
terminate;

end select;
end loop;

end;

— The INPUT.SERVER task accepts messages from the NETWORK task.
— It parses the message fields and calls the appropriate task— to process the message.

task body INPUT.SERVER is

Z,W,R,i : integer;
MGEN : MSG.RECORD;
PT : float := 0.0;
MSG.PRESENT : boolean := false;
DT : DURATION := 1.35;

begin
loop

select
-- msg being accepted from the network
accept RECEIVE.MSG (M: in MSG_REC0RD;NID: in integer) do

Z := NST(NID) .NODE.ID;
end;

or
delay DT;

MSG.PRESENT := false;
W := LOC_VAR(Z).INQ.MSG_CNT;
R := LOC_VAR(Z).INQ.RD_CNT;
if L0C_VAR(Z) .INQ.MSG_T0_SEND then

if R > W then
MGEN := LOC.VAR(Z) . INQ .MSG.QUE(R)

;

R := R + 1;

if R > Q.SIZE then
if W < 2 then

L0C_VAR(Z).INQ.MSG_T0_SEND := false;
L0C_VAR(Z).INQ.BL0CK_WRITE := false;

end if;

LOC_VAR(Z).INQ.RD_CNT := 1;

else
LOC_VAR(Z).INQ.RD_CNT := R;

end if;

else
if R < W then

MGEN := LOC_VAR(Z).INQ.MSG_QUE(R);
R := R + 1;

if W = R then
L0C_VAR(Z) . INQ . BL0CK_WRITE := false;
L0C_VAR(Z) .INQ.MSG_T0_SEND := false;

58



end if;
LOC_VAR(Z).INQ.RD_CNT := R;

end if;

end if;

MSG.PRESENT := true;
end if;

if MSG.PRESENT then
LOC_VAR(Z).EVNT_CNT := LOC.VAR(Z) .EVNT.CNT + 1;

GET.REAL.TIME(0,PT);
MGEN.TOR := PT;
case Z is — call specific section of own node

when 1 =>

case MGEN.CNTRL.ACTION is
when MKR ! CHKPT =>

if NST(Z).C0MM0N_SECTION.N0DE_STAT_LD(l,l) = 1 then
CKPT1 . CHECK.PT . MARKER.MSG (MGEN , 1 )

;

end if;

when FNON ! FNOFF =>

if NST(Z).C0MM0N_SECTI0N.N0DE_STAT_LD(1,1) = 1 then
RL1.REC0NF_LAYER.IS_MSG_IN(MGEN,1);
end if;

when STATUS =>

SMI . STATUS.REC . STAT.MSG.REC (MGEN , 1 )

;

when others =>

NULL;
end case;
when 2 =>

case MGEN.CNTRL.ACTION is

when MKR ! CHKPT =>

if NST(Z).C0MM0N_SECTI0N.N0DE_STAT_LD(1,2) = 1 then
CKPT2 . CHECK.PT . MARKER.MSG (MGEN , 2)

;

end if;

when FNON ! FNOFF =>

if NST(Z).C0MM0N_SECTI0N.N0DE_STAT_LD(1,2) = 1 then
RL2 . RECONF.LAYER . IS_MSG_IN (MGEN , 2)

;

end if

;

when STATUS =>

SM2 . STATUS.REC . STAT_MSG_REC (MGEN , 2)

;

when others =>

NULL;
end case;
when 3 =>

case MGEN.CNTRL.ACTION is

when MKR ! CHKPT =>

if NST(Z) .C0MM0N_SECTI0N.N0DE_STAT_LD(1,3) = 1 then
CKPT3 . CHECK.PT . MARKER.MSG (MGEN , 3)

;

end if

;

when FNON ! FNOFF =>

if NST(Z).C0MM0N_SECTI0N.N0DE_STAT_LD(1,3) = 1 then
RL3 . RECONF.LAYER . IS.MSG.IN (MGEN , 3)

;

end if

;

59



when STATUS =>

SM3 . STATUS_REC . STAT_MSG_REC(MGEN,3)

;

when others =>

NULL;
end case;
when 4 =>

case MGEN.CNTRL_ACTION is

when MKR ! CHKPT =>

if NST(Z).C0MM0N_SECTI0N.N0DE_STAT_LD(1,4) = 1 then
CKPT4 . CHECK.PT . MARKER.MSG (MGEN , 4)

;

end if

;

when FNON ! FNOFF =>

if NST(Z).C0MM0N_SECTI0N.N0DE_STAT_LD(1,4) = 1 then
RL4.REC0NF_LAYER.IS_MSG_IN(MGEN,4);
end if

;

when STATUS =>

SM4 . STATUS.REC . STAT_MSG_REC (MGEN , 4)

;

when others =>

NULL;
end case;
when others =>

NULL;
end case;

end if

;

end select

;

end loop;
end;
end INS;

with DECLARATIONS; use DECLARATIONS;
generic
package OUTS is
task OUTPUT.SERVER is

entry START_OUTPUT(M : in MSG.RECORD; NID : in integer);
end;
end OUTS;

with text.io; use text_io;
with integer_io; use integer_io;
with number_io;use number_io;
with PROCESS; use PROCESS;
with TRAND; use TRAND;
with DECLARATIONS; use DECLARATIONS;
with COMMNET; use COMMNET;
package body OUTS is

-- The OUTPUT.SERVER task relays messages from the various tasks
— within the node, to the communication layer (NETWORK task)

.

— The task serializes a node's messages and ensures that the

60



~ NETWORK can accept it.

task body OUTPUT.SERVER is
Z,W,R : integer;
MGEN : MSG.RECORD;
PT : float := 0.0;
MSG.PRESENT : boolean := false;
DT : DURATION := 3.83;

begin
loop

select
accept START_OUTPUT(M: in MSG_RECORD;NID: in integer) do

Z := NST(NID).N0DE_ID;
end;

or
delay DT;

MSG.PRESENT := false;
W := L0C_VAR(Z).0UTQ.MSG_CNT;
R := L0C_VAR(Z).0UTQ.RD_CNT;
if L0C_VAR(Z).0UTQ.MSG_T0_SEND then

if R > W then
MGEN := L0C_VAR(Z).0UTQ.MSG_QUE(R);
R := R + 1;

if R > Q.SIZE then
if W < 2 then

L0C_VAR(Z).0UTQ.MSG.T0_SEND := false;
LOC.VAR(Z) .OUTQ.BLOCK.WRITE := false;

end if;

LOC.VAR(Z) .OUTQ.RD.CNT := 1;

else
LOC.VAR(Z) .OUTQ.RD.CNT := R;

end if;

else
if R < W then

MGEN := LOC_VAR(Z).OUTQ.MSG_QUE(R);
R := R + 1;

if W = R then
L0C_VAR(Z). OUTQ.BLOCK.WRITE := false;
LOC_VAR(Z).OUTQ.MSG_TO_SEND := false;

end if

;

LOC_VAR(Z).OUTQ.RD_CNT := R;

end if

;

end if

;

MSG.PRESENT := true;
end if

;

if MSG.PRESENT then
GET.REAL.TIME(0,PT);
MGEN. TOT := PT;

LOC_VAR(Z).EVNT_CNT_OUT := LOC.VAR(Z) .EVNT_CNT_OUT + 1;

MGEN.MSG.BODY.UNIQ(l) .SYMBOL.VAR := L0C_VAR(Z) .EVNT_CNT_OUT;
W := NET_Q.MSG_CNT;

61



R := NET_Q.RD.CNT;
if not NET_Q.BLOCK_WRITE then
if W >= R then
NET_Q.MSG_QUE(W) := MGEN;
NET_Q.MSG_TO_SEND := true;
W := W + 1;

if W > Q.SIZE then
if R < 2 then
NET_Q.BLOCK_WRITE := true;
end if;

NET_Q.MSG_CNT := 1;

else
NET_Q.MSG.CNT := W;

end if;

else
if W < R then
NET_Q.MSG_QUE(W) := MGEN;
NET_Q.MSG_TO_SEND := true;
W := W + 1;

if W = R then
NET_Q.BLOCK_WRITE := true;
end if;

NET.Q.MSG.CNT := W;

end if;

end if

;

end if;

case Z is
when 1 =>

GET_REAL_TIME(1,PT);
SET_C0L(F1,25);
PUT(F1,"0_S sending ")

;

case MGEN . CNTRL.ACTION is
when MKR =>

PUT(F1,"MKR msg.");
when FNON =>

PUT(F1,"FN0N msg.");
when FNOFF =>

PUT(F1,"FN0FF to Node #")
;

PUT(F1,MGEN.DEST_N0DE,1);
when STATUS =>

PUT (Fl," STATUS msg.");
when CHKPT =>

PUT(F1,"CHKPT msg.");
when others =>

NULL;
end case;
SET_C0L(F1,60);
PUT(F1,"EVNT #");
PUT(F1,L0C_VAR(Z).EVNT_CNT_0UT,4);
NEW.LINE(Fl);

when 2 =>

62



GET_REAL_TIME(2,PT)

;

SET_C0L(F2,25);
PUT(F2,"0_S sending ");

case MGEN.CNTRL.ACTION is

when MKR =>

PUT(F2,"MKR msg.");
when FNON =>

PUT (F2, "FNON msg.");
when FNOFF =>

PUT(F2,"FN0FF to Node #")

;

PUT (F2 , MGEN . DEST.NODE , 1)

;

when STATUS =>

PUT (F2," STATUS msg.");
when CHKPT =>

PUT (F2, "CHKPT msg.");
when others =>

NULL;
end case;
SET_C0L(F2,60);
PUT(F2,"EVNT #");
PUT(F2,L0C_VAR(Z) .EVNT_CNT_0UT,4)

;

NEW_LINE(F2)

;

when 3 =>

GET_REAL_TIME(3,PT)

;

SET_C0L(F3,25);
PUT(F3,"0_S sending ");

case MGEN.CNTRL.ACTION is
when MKR =>

PUT(F3,"MKR msg.");
when FNON =>

PUT(F3,"FN0N msg.");
when FNOFF =>

PUT(F3, "FNOFF to Node #")

;

PUT (F3 , MGEN . DEST.NODE , 1 )

;

when STATUS =>

PUT (F3, "STATUS msg.");
when CHKPT =>

PUT (F3, "CHKPT msg.");
when others =>

NULL;
end case;
SET_C0L(F3,60);
PUT(F3,"EVNT #");
PUT(F3,L0C_VAR(Z) .EVNT_CNT_0UT,4)

;

NEW_LINE(F3)

;

when 4 =>

GET_REAL_TIME(4,PT);
SET_C0L(F4,25);
PUT(F4,"0_S sending ");

case MGEN.CNTRL.ACTION is

when MKR =>

63



PUT(F4,"MKR msg.");
when FNON =>

PUT(F4,"FN0N msg.");
when FNOFF =>

PUT(F4,"FN0FF to Node #");

PUT (F4 , MGEN . DEST.NODE , 1 )

;

when STATUS =>

PUT (F4, "STATUS msg.");
when CHKPT =>

PUT(F4,"CHKPT msg.");
when others =>

NULL;
end case;
SET_C0L(F4,60);
PUT(F4,"EVNT #")

;

PUT(F4,L0C_VAR(Z) .EVNT_CNT_0UT,4)

;

NEW_LINE(F4);
when others =>

NULL;
end case;

end if; -- end if msg present
end select;

end loop;
end;
end OUTS;

with DECLARATIONS; use DECLARATIONS;
generic
package CKPT is

task CHECK.PT is

entry MARKER_MSG(M : in MSG.RECORD; NID : in integer);
entry CHKPT_COMP(M : in MSG.RECORD; NID : in integer);

end;
task EVENT.CNT is

entry EVNT_CNT_FULL(NID : in integer);
end;
end CKPT;

with text.io; use text_io;
with integer_io; use integer_io;
with number_io;use number_io;
with PROCESS; use PROCESS;
with DECLARATIONS; use DECLARATIONS;
with COMMNET; use COMMNET;
package body CKPT is

— The CHECK.PT task is called by the INPUT.SERVER when a
-- marker (MKR) or checkpoint complete (CHKPT) message is
— received. This task calls MKR.MSG or CHK_PT_CMPLT_MSG

64



— respectfully, for further processing of the messages.

task body CHECK.PT is
MGEN : MSG.RECORD;
FLG : boolean;
Z,W,R : integer;

begin
loop

select
accept MARKER.MSG (M: in MSG_RECORD;NID: in integer) do

Z := NST(NID).NODE_ID;
MGEN := M;

FLG := FALSE;
case M.CNTRL.ACTION is

when MKR =>

PROCESS. MKR.MSG (MGEN, Z, FLG);
if FLG then

W := LOC_VAR(Z).OUTQ.MSG_CNT;
R := LOC_VAR(Z).OUTQ.RD_CNT;
if not LOC_VAR(Z).OUTQ.BLOCK_WRITE then

if W >= R then
LOC_VAR(Z).OUTQ.MSG_QUE(W) := MGEN;
LOC_VAR(Z).OUTQ.MSG_TO_SEND := true;

W := W + 1;

if W > Q.SIZE then
if R < 2 then
L0C_VAR(Z) . OUTQ . BLOCK.WRITE := true;

end if;

LOC_VAR(Z).OUTQ.MSG_CNT := 1;

else
LOC_VAR(Z).OUTQ.MSG_CNT := W;

end if

;

else
if W < R then

LOC_VAR(Z).OUTQ.MSG_QUE(W) := MGEN;
LOC_VAR(Z).OUTQ.MSG_TO_SEND := true;
W := W + 1;

if W = R then
L0C_VAR(Z) . OUTQ . BLOCK.WRITE := true;

end if

;

LOC_VAR(Z).OUTQ.MSG_CNT := W;

end if

;

end if;

end if;

end if;

when CHKPT =>

Z := NST(NID).NODE_ID;
PROCESS . CHK_PT_CMPLT_MSG (M , Z)

;

when others =>

null;

65



end case;
end;

or
terminate;

end select;
end loop;

end;

— The EVENT_CNT task monitors the events at a node and originates
— the checkpoint process once a predetermined number of events has
— occurred.

task body EVENT.CNT is

MGEN : MSG.RECORD;
boolean;
integer;
integer = 10;
float := 0.0;

FLG :

Z,W,R
CNT
PT

begin
loop

select
accept EVNT_CNT_FULL(NID : in integer) do

Z := NST(NID) .NODE.ID; — initialize for simulation
CNT := CNT * NID;

end;
or

delay 33.7;
GET_REAL_TIME(0,PT)

;

if L0C_VAR(Z).CHKPT_0RIG and
PT-LOC.VAR(Z) .CHKPT.TIMER > 68.1 then
L0C_VAR(Z).L0CAL_CHKPT := false;
LOC_VAR(Z).FIRST_MKR := FALSE;
L0C_VAR(Z).CHKPT_0RIG := FALSE;
L0C_VAR(Z) .CHKPT.TIMER := PT;

for I in 1 . .4 loop
LOC_VAR(Z).CHKPT_TAKEN(I) := 0;

end loop;
case Z is

when 1 =>

GET_REAL_TIME(1,PT);
SET_C0L(F1,72);

PUT_LINE(F1,"CHKPT unsuccessful
when 2 =>

GET_REAL_TIME(2,PT);
SET_C0L(F2,72);

PUT_LINE(F2,"CHKPT unsuccessful
when 3 =>

GET_REAL_TIME(3,PT)

;

SET_C0L(F3,72);
PUT_LINE(F3,"CHKPT unsuccessful

when 4 =>

Restarting CHKPT")

;

Restarting CHKPT");

Restarting CHKPT");

66



GET_REAL_TIME(4,PT);
SET_C0L(F4,72);

PUT_LINE(F4,"CHKPT unsuccessful. Restarting CHKPT")

;

when others =>

NULL;
end case;

end if;

if LOC_VAR(Z).EVNT_CNT > CNT and
not LOC_VAR(Z).LOCAL_CHKPT then
ST(Z) := NST(Z);
MGEN.ORIG_FN_NODE := Z;

MGEN.MSG.KIND := control
MGEN. CNTRL.ACTION := MKR;
LOC_VAR(Z).EVNT_CNT := 0;

MGEN . MSG.BODY . UNIQ : = NST (Z) . UNIQUE.SECTION (Z)

;

LOC_VAR(Z).LOCAL_CHKPT := true;
LOC_VAR(Z).CHKPT_TIMER := PT;
W := LOC_VAR(Z).OUTQ.MSG_CNT;
R := LOC_VAR(Z).OUTQ.RD_CNT;
if not LOC_VAR(Z).OUTQ.BLOCK_WRITE then

if W >= R then
LOC_VAR(Z).OUTQ.MSG_QUE(W) := MGEN;
LOC_VAR(Z).OUTQ.MSG_TO_SEND := true;
W := W + 1;

if W > CLSIZE then
if R < 2 then

LOC_VAR(Z).OUTQ.BLOCK_WRITE := true;
end if

;

LOC_VAR(Z).OUTQ.MSG_CNT := 1;

else
L0C_VAR(Z) .OUTQ.MSG.CNT := W;

end if;

else
if W < R then

LOC_VAR(Z).OUTQ.MSG_QUE(W) := MGEN;
LOC_VAR(Z).OUTQ.MSG_TO.SEND := true;
W := W + 1;

if W = R then
LOC_VAR(Z).OUTQ.BLOCK_WRITE := true;

end if

;

L0C_VAR(Z) .OUTQ.MSG.CNT := W;

end if;

end if;

end if

;

end if

;

end select;
end loop;

end;
end CKPT;

67



with DECLARATIONS; use DECLARATIONS;
generic
package RL is
task RECONF.LAYER is

entry IS_MSG_IN(M : in MSG.RECORD; NID : in integer);
end;
end RL;

with text.io; use text_io;
with integer_io; use integer_io;
with number_io;use number.io;
with PROCESS; use PROCESS;
with DECLARATIONS; use DECLARATIONS;
with COMMNET; use COMMNET;
package body RL is

— The RECONF.LAYER task is called by the INPUT.SERVER task
— to process both FNON and FNOFF messages.
— It calls procedures FN_0N_REC nad FN_0FF_REC to process
-- these types of messages.

task body RECONF.LAYER is
-- specific calls may need to pass a msg back out
-- if so, set the -- msg flag

MSG.FLAG : boolean := FALSE;
MGEN : MSG.RECORD;
Z,C,W,R : integer;

begin
loop

select
-- input server call R.L with a msg to send
accept IS.MSG.IN (M: in MSG.RECORD; NID : in integer) do

Z := NST(NID) .NODE.ID;
MGEN := M;

— the R.L determines whether a fn needs to be started or terminated
-- in the active fn queue - it will notify the application layer to
-- take the required action

case M.CNTRL.ACTION is
when FNON =>

PROCESS. FN_0N_MSG(M, NID);
when FNOFF =>

PROCESS. FN.OFF.MSG (MGEN, Z, MSG.FLAG);
if MSG.FLAG then -- msg needs to go to O.S but

— will add msg to out queue
— to get processed by O.S

W := LOC_VAR(Z).OUTQ.MSG_CNT;
R := LOC.VAR(Z) .OUTQ.RD.CNT;
if not LOC.VAR(Z) . OUTQ . BLOCK.WRITE then

if W >= R then

68



LOC_VAR(Z).OUTQ.MSG_QUE(W) := MGEN;
LOC_VAR(Z).OUTQ.MSG_TO_SEND := true;
W := W + 1;

if W > Q.SIZE then
if R < 2 then
LOC_VAR(Z).OUTQ.BLOCK_WRITE := true;

end if;

LOC_VAR(Z).OUTq.MSG_CNT := 1;

else
LOC_VAR(Z).OUTQ.MSG_CNT := W;

end if;

else
if W < R then

LOC_VAR(Z).OUTQ.MSG_QUE(W) := MGEN;
LOC_VAR(Z).OUTQ.MSG_TO_SEND := true;
W := W + 1;

if W = R then
LOC.VAR(Z).OUTQ.BLOCK_WRITE := true;

end if;

LOC_VAR(Z).OUTQ.MSG_CNT := W;

end if;

end if

;

end if

;

MSG.FLAG := FALSE;
end if;

when others =>

NULL;
end case;
end;

or
terminate;

end select;
end loop;

end;
end RL;

with DECLARATIONS; use DECLARATIONS;
generic
package SM is

task STATUS.REC is
entry STAT_MSG_REC(M : in MSG.RECORD; NID : in integer);

end;
task STATUS.BDCST is

entry STAT_BDCST_CHK(NID : in integer);
end;
end SM;

with FLOAT.INOUT; use FLOAT.INOUT;
with text.io; use text_io;

69



with integer_io; use integer_io;
with number_io;use number_io;
with PROCESS; use PROCESS;
with DECLARATIONS; use DECLARATIONS;
with COMMNET; use COMMNET;
package body SM is

— The STATUS.BDCST task generates periodic status messages
— for the node. Also incorporated in this task is the
— Timeout routine , which implements node failure detection.

task body STATUS.BDCST is

MGEN : MSG.RECORD;
FLG : boolean;
SB : boolean := false;
Z,C,W,R : integer;
PT : float := 0.0;

begin
loop

select
accept STAT_BDCST_CHK(NID: in integer) do

Z := NST(NID).N0DE_ID;
end;

or
delay 15.0;
GET_REAL_TIME(0,PT);
for I in 1 . .4 loop

if NST(Z) .C0MM0N_SECTI0N.N0DE_STAT_LD(1,I) = 1 and
PT - L0C_VAR(Z) .TIMER (I) > 65.0 then
NST(Z) .C0MM0N_SECTI0N.N0DE_STAT_LD(1,I) := 0;

case Z is

when 1 =>

GET_REAL_TIME(1,PT);
SET_C0L(F1,25);
PUT(F1,"S_M detects FAILURE on Node #");

PUT(F1,I,1);
SET_C0L(F1,72);
PUT_LINE(F1, "Notify NF task.");

when 2 =>

GET_REAL_TIME(2,PT);
SET_C0L(F2,25);
PUT(F2,"S_M detects FAILURE on Node #");

PUT(F2,I,1);
SET_C0L(F2,72);
PUT_LINE(F2,'*Notify NF task.");

when 3 =>

GET_REAL_TIME(3,PT);
SET_C0L(F3,25);
PUT(F3,"S_M detects FAILURE on Node #")

;

PUT(F3,I,1);
SET_C0L(F3,72);

70



PUT_LINE(F3, "Notify NF task.");
when 4 =>

GET_REAL_TIME(4,PT)

;

SET_C0L(F4,25);
PUT(F4,"S_M detects FAILURE on Node #")

;

PUT(F4,I,1);
SET_C0L(F4,72);
PUT_LINE(F4, "Notify NF task.");

when others =>

NULL;
end case;

end if;

end loop;
if NST(Z).C0MM0N_SECTI0N.N0DE_STAT_LD(1,Z) = 1

and not FAILED.NODE(Z) then
if PT - LOC_VAR(Z).TIMER(Z) > 44.0 then

MGEN.DEST.NODE := 1;

MGEN.DEST.FUNC := Z;

MGEN.CNTRL.ACTION := STATUS;
MGEN.0RIG_FN_N0DE := Z;

MGEN.MSG.KIND := control;
W := L0C_VAR(Z).0UTQ.MSG_CNT;
R := L0C_VAR(Z).0UTQ.RD_CNT;
if not L0C_VAR(Z).0UTQ.BL0CK_WRITE then

if W >= R then
L0C_VAR(Z).0UTQ.MSG_QUE(W) := MGEN;
L0C_VAR(Z).0UTQ.MSG_T0_SEND := true;
W := W + 1;

if W > Q.SIZE then
if R < 2 then

L0C_VAR(Z).0UTQ.BL0CK_WRITE := true;
end if

;

L0C_VAR(Z).0UTQ.MSG_CNT := 1;

else
L0C_VAR(Z).0UTQ.MSG.CNT := W;

end if;

else
if W < R then

L0C_VAR(Z).0UTQ.MSG_QUE(W) := MGEN;
L0C_VAR(Z) .0UTQ.MSG_T0_SEND := true;
W := W + 1;

if W = R then
L0C_VAR(Z).0UTQ.BL0CK_WRITE := true;

end if;

L0C_VAR(Z).0UTQ.MSG_CNT := W;

end if

;

end if;

end if;

end if;

end if;

end select;

71



end loop;
end;

— The STATUS.REC task is called by the INPUT.SERVER when a
— status message is received. In turn this task calls the
— STATUS_MSG procedure for further processing.

task body STATUS.REC is

MGEN : MSG.RECORD;
FLG : boolean;
SB : boolean := false;
Z,C,W,R : integer;
PT : float := 0.0;

begin
loop

select
accept STAT_MSG_REC (M:in MSG.RECORD ;NID: in integer) do

Z := NST(NID).N0DE_ID;
MGEN := M;

FLG := FALSE;
L0C_VAR(Z) .TIMER(MGEN.0RIG_FN_N0DE) := M.TOT;
PROCESS. STAT.MSG (MGEN, Z, FLG);
if FLG then

W := LOC.VAR(Z) .OUTQ.MSG.CNT;
R := L0C_VAR(Z).0UTQ.RD_CNT;
if not L0C_VAR(Z).0UTQ.BL0CK_WRITE then

if W >= R then
LOC.VAR(Z) .OUTQ.MSG.QUE(W) := MGEN;
L0C_VAR(Z).0UTQ.MSG_T0_SEND := true;
W := W + 1;

if W > Q_SIZE then
if R < 2 then
L0C_VAR(Z).0UTQ.BL0CK_WRITE := true;
end if;

L0C_VAR(Z) .OUTQ.MSG.CNT := 1;

else
LOC.VAR(Z). OUTQ.MSG.CNT := W;

end if;

else
if W < R then

LOC.VAR(Z) .0UTq.MSG_QUE(W) := MGEN;
LOC.VAR(Z) .0UTQ.MSG.T0.SEND := true;
W := W + 1;

if W = R then
L0C_VAR(Z).0UTQ.BL0CK_WRITE := true;
end if

;

L0C_VAR(Z) .OUTQ.MSG.CNT := W;

end if;

end if

;

end if

;

72



end if;

end;
or

terminate;
end select;

end loop;
end;
end SM;

with DECLARATIONS; use DECLARATIONS;
package FP is
task EVENT.MAKER is

entry NEW_EVENT(NID: in integer);
end;
end FP;

with FLOAT.INOUT; use FLOAT.INOUT;
with text_io; use text.io;
with integer_io; use integer_io;
with number. io; use number_io;
with TRAND; use TRAND;
with calendar; use calendar;
with DECLARATIONS; use DECLARATIONS;
with PROCESS; use PROCESS;
package body FP is

— The EVENT_MAKER task is utilized to simulate an actual
—distributed processing system.

task body EVENT.MAKER is

MGEN,outmsg : MSG.RECORD;
x,Z,W,R : integer;
N : integer := 0;

EN,0N,DN : integer;
MSG_BUF_EMPTY : boolean := false;
MSG.PRESENT : boolean := false;
PT : float := 0.0;
ST : DURATION := 63.15;
begin -- begin Front.End Processor

loop
select

accept NEW_EVENT(NID: in integer) do
Z := NID;

end;
or

delay ST;

N := N + 1;

MSG.PRESENT := false;
EN := 12;

TRAND. TEST_RAND0M( EN)

;

73



EN := EN mod 2;

case EN is

when 1 =>

MSG.PRESENT := true;
outmsg.CNTRL.ACTION := FNOFF;
ON := 4;
TRAND.TEST_RANDOM(ON) ;—get an active random orig node

WHILE NST(Z) .C0MM0N_SECTI0N.N0DE_STAT_LD(1,0N) = loop
delay 2.0;
ON := 4;
TRAND.TEST_RAND0M(0N)

;

end loop; -- end while loop
outmsg.0RIG_FN_N0DE := ON;

DN := 4;

TRAND.TEST_RANDOM(DN) ;--get an active random dest
—node that is not = to the orig node

WHILE NST(Z).C0MM0N_SECTI0N.N0DE_STAT_LD(1,DN) =

or DN = ON loop
delay 2.0;
DN := 4;

TRAND.TEST.RANDOM(DN)

;

end loop; — end while loop
outmsg.DEST.NODE := DN;

x := 1; — get an active fn from orig. node
while NST(Z) .C0MM0N_SECTI0N.FN_L0C(x) /= ON

and x < 13 loop
x := x + 1

;

end loop;
if x < 13 then

outmsg.DEST.FUNC := x;

else
MSG.PRESENT := false;

end if

;

outmsg.MSG_BODY.UNIQ(l) .REGISTER.VAL := DN;

outmsg.MSG.KIND := CONTROL;
when =>

ON := 4;
TRAND.TEST_RAND0M(0N)

;

WHILE NST(Z).C0MM0N_SECTI0N.N0DE_STAT_LD(1,0N)=0 loop
ON := 4;
TRAND.TEST.RANDOM(ON)

;

end loop; — end while loop
if not FAILED_N0DE(0N) then

FAILED_N0DE(0N) := true;
end if

;

case ON is
when 1 =>

GET_REAL_TIME(1,PT);
SET_C0L(F1,25);
PUT_LINE(F1,"FP generating Node FAILURE");

74



when 2 =>

GET_REAL_TIME(2,PT);
SET_C0L(F2,25);
PUT_LINE(F2,"FP generating Node FAILURE");

when 3 =>

GET_REAL_TIME(3,PT)

;

SET_C0L(F3,25);
PUT_LINE(F3,"FP generating Node FAILURE");

when 4 =>

GET_REAL_TIME(4,PT);
SET_C0L(F4,25);
PUT_LINE(F4,"FP generating Node FAILURE");

when others =>

NULL;
end case;
MSG.PRESENT := false;

when others =>

null;
end case;
if MSG.PRESENT then

MGEN := outmsg;
Z := MGEN.ORIG_FN_NODE;
W := LOC_VAR(Z).OUTQ.MSG_CNT;
R := LOC_VAR(Z).OUTQ.RD_CNT;
if not LOC_VAR(Z).OUTQ.BLOCK_WRITE then

LOC_VAR(Z).OUTQ.MSG_QUE(W) := MGEN;
L0C_VAR(Z) .0UTQ.MSG_T0_SEND := true;
W := W + 1;

if W > Q.SIZE then
LOC_VAR(Z).OUTQ.MSG_CNT := 1;

end if

;

if W = R then
LOC.VAR(Z) . OUTQ . BLOCK.WRITE := true;

else
L0C_VAR(Z) .OUTQ.MSG.CNT := W;

end if

;

end if

;

end if;

end select;
end loop;

end;
end FP;

with text_io; use text_io;
with integer_io; use integer_io;
with number_io;use number_io;
with FLOAT.INOUT; use FLOAT.INOUT;
with calendar; use calendar;
with DECLARATIONS; use DECLARATIONS;
with PROCESS; use PROCESS;

75



with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with

COMMNET; use COMMNET;
FP; use FP;

0UTS1; use 0UTS1
0UTS2; use 0UTS3:

0UTS3; use 0UTS3:
0UTS4; use 0UTS4:
INS1; use INS1
INS2; use INS2
INS3; use INS3;

INS4; use INS4;

SMI; use SMI
SM2; use SM2
SM3; use SM3
SM4; use SM4
RL1; use RL1
RL2; use RL2
RL3; use RL3
RL4; use RL4
CKPT1; use CKPT1
CKPT2; use CKPT2
CKPT3; use CKPT3
CKPT4; use CKPT4

— The procedure FEP is utilized to open individual
— output files for each node. It also initiates each node's
-- NST for simulation purposes and assigns each task its
— node identification number.

procedure FEP is
MGEN.outmsg : MSG.RECORD;
Z,W,R : integer;
PT : float := 0.0;
begin — begin Front_End Processor

0PEN(F1,M0DE=>0UT_FILE,NAME=>"N0UT1")
0PEN(F2,M0DE=>0UT_FILE,NAME=>"N0UT2")
0PEN(F3,M0DE=>0UT_FILE,NAME=>"N0UT3")
OPEN (F4 , M0DE=>0UT_FILE , NAME=>"N0UT4"

)

INS1 .N0DE_INITIALIZER.BUILD_N0DE(1)

;

INS2.N0DE_INITIALIZER.BUILD_N0DE(2);
INS3.N0DE_INITIALIZER.BUILD_N0DE(3);
INS4 . NODE.INITIALIZER . BUILD_N0DE(4)

;

GET_REAL_TIME(0,PT);
for L in 1 . .4 loop

for N in 1..4 loop — initialize periodic time array
— of each node

LOC_VAR(L).TIMER(N) := PT + float (N * 0.1);
end loop;
case L is — give identity to tasks within packages

when 1 =>

SM1.STATUS_BDCST.STAT_BDCST_CHK(1);
CKPT1.EVENT_CNT.EVNT_CNT_FULL(1)

;

76



INS1 . INPUT.SERVER. RECEIVE.MSG (outmsg, 1)

;

OUTS 1 . OUTPUT.SERVER . START.OUTPUT (outmsg , 1 )

;

when 2 =>

SM2 . STATUS.BDCST . STAT_BDCST_CHK(2)

;

CKPT2 . EVENT.CNT . EVNT_CNT_FULL (2)

;

INS2.INPUT_SERVER.RECEIVE_MSG(outmsg,2);
OUTS2 . OUTPUT.SERVER . START.OUTPUT (outmsg , 2)

;

when 3 =>

SM3 . STATUS.BDCST . STAT.BDCST.CHK (3)

;

CKPT3 . EVENT.CNT . EVNT.CNT.FULL (3)

;

INS3 . INPUT.SERVER . RECEIVE.MSG (outmsg , 3)

;

0UTS3 . OUTPUT.SERVER . START.OUTPUT (outmsg , 3)

;

when 4 =>

SM4 . STATUS.BDCST . STAT.BDCST.CHK (4)

;

CKPT4 . EVENT.CNT . EVNT.CNT.FULL (4)

;

INS4 . INPUT.SERVER . RECEIVE.MSG (outmsg , 4)

;

0UTS4 . OUTPUT.SERVER . START.OUTPUT (outmsg , 4)

;

when others =>

NULL;
end case;

end loop;
FP.EVENT.MAKER.NEW.EVENT(l) ;

end FEP;

77



APPENDIX B: SIMULATION OUTPUT
/* The output is given in its entirety. The specific events */
/* pertaining to this thesis have been provided in timming */
/* diagrams listed in previous chapters */
/* The first column indicates the time of occurrence. Column two */
/* specifies which node is active, and column three indicates what */
/* event is taking place. Column four designates the event number */
/* of the node which sent the message. The node which sent the */
/* message is listed in the previous column. The last column, */
/* which appears on a new line, explains what action is done at */
/* the active node (column two) . */

39429.76000 Node #1 0_S sending STATUS msg.
39432.64000 Node #1 S_M rcvd PERIODIC from Node #1

Reset Timer element of Node #1
39435.37000 Node #1 S_M rcvd PERIODIC from Node #2

Reset Timer element of Node #2
39438.11000 Node #1 S_M rcvd PERIODIC from Node #3

Reset Timer element of Node #3
39440.85000 Node #1 S_M rcvd PERIODIC from Node #4

Reset Timer element of Node #4
39450.88000 Node #1 FP generating Node FAILURE
39492.55000 Node #1 S_M rcvd PERIODIC from Node #3

Reset Timer element of Node #3
39495.29000 Node #1 S_M rcvd PERIODIC from Node #4

Reset Timer element of Node #4
39498.03000 Node #1 S_M rcvd PERIODIC from Node #2

Reset Timer element of Node #2
39503.76000 Node #1 S_M detects FAILURE on Node #1

Notify NF task.
39551.09000 Node #1 S_M rcvd PERIODIC from Node #3

Reset Timer element of Node #3
39552.63000 Node #1 0_S sending STATUS msg.
39553.81000 Node #1 S_M rcvd PERIODIC from Node #4

Reset Timer element of Node #4
39556.53000 Node #1 S_M rcvd PERIODIC from Node #2

Reset Timer element of Node #2
39559.25000 Node #1 S_M rcvd APERIODIC from Node #1

This is the recovering node.
39561.97000 Node #1 S_M rcvd APERIODIC from Node #3

This is the recovering node.
39564.69000 Node #1 S_M rcvd APERIODIC from Node #4

This is the recovering node.
39567.41000 Node #1 S_M rcvd APERIODIC from Node #2

Recovery complete - send PERIODIC
39567.99000 Node #1 0_S sending STATUS msg.

EVNT #

EVNT #

EVNT #

EVNT #

EVNT #

EVNT # 2

EVNT # 2

EVNT # 2

EVNT #

EVNT # 2

EVNT # 4

EVNT # 4

EVNT # 2

EVNT # 4

EVNT # 5

EVNT # 5

msg.
EVNT # 3

78



39570 .13000 Node #1

39587 .19000 Node #1
39590 .53000 Node #1

39593 .25000 Node #1

39594 .87000 Node #1
39595 .97000 Node #1

39598 69000 Node #1

39598 71000 Node #1
39600 05000 Node #1

39602 77000 Node #1

39605 49000 Node #1

39610 93000 Node #1

39625 58000 Node #1
39625 89000 Node #1

39628 61000 Node #1

39631 33000 Node #1

S_M rcvd PERIODIC from Node #1 EVNT #

Reset Timer element of Node #1
0_S sending MKR msg. EVNT #
C_P rcvd MKR from Node #1 EVNT #

4

4
I originated CHKPT. Not all MKRs yet rcvd.
C_P rcvd MKR from Node #3 EVNT # 5

I originated CHKPT. Not all MKRs yet rcvd.
0_S sending FN0FF to Node #2 EVNT # 5

C_P rcvd MKR from Node #4 EVNT # 6

I originated CHKPT. Not all MKRs yet rcvd.
C_P rcvd MKR from Node #2 EVNT # 6

MKRs rcvd from all nodes. Send CHKPT.C0MP
0_S sending CHKPT msg. EVNT # 6

R_L rcvd FN.0FF from Node #1 EVNT # 5

No further action required ATT.
C_P rcvd CHKPT from Node #1 EVNT # 6

CHKPT orig. Global CHKPT complete store NST
R_L rcvd FN_0N from Node #2 EVNT # 7

I am the deactivating node and changing NST223212341234
S_M rcvd PERIODIC from Node #3 EVNT # 6

Reset Timer element of Node #3
0_S sending STATUS msg. EVNT # 7

S_M rcvd PERIODIC from Node #1 EVNT # 7

Reset Timer element of Node #1

S_M rcvd PERIODIC from Node #4 EVNT # 7

Reset Timer element of Node #4
S_M rcvd PERIODIC from Node #2 EVNT # 8

Reset Timer element of Node #2

39429 76000 Node #2
39432 66000 Node #2

39435 39000 Node #2

39438 13000 Node #2

39440 87000 Node #2

39491 .22000 Node #2
39492 .57000 Node #2

39495 .31000 Node #2

39498 .05000 Node #2

39503 .76000 Node #2

39523 .90000 Node #2

0_S sending STATUS msg.
S_M rcvd PERIODIC from Node #1

Reset Timer element of Node #1

S_M rcvd PERIODIC from Node #2
Reset Timer element of Node #2
S_M rcvd PERIODIC from Node #3
Reset Timer element of Node #3
S_M rcvd PERIODIC from Node #4
Reset Timer element of Node #4
0_S sending STATUS msg.
S_M rcvd PERIODIC from Node #3
Reset Timer element of Node #3

S_M rcvd PERIODIC from Node #4
Reset Timer element of Node #4
S_M rcvd PERIODIC from Node #2
Reset Timer element of Node #2

S_M detects FAILURE on Node #1

Notify NF task.
R_L rcvd FN_0FF from Node #4

EVNT #
EVNT #

EVNT #

EVNT #

EVNT #

EVNT # 2

EVNT # 2

EVNT # 2

EVNT # 2

EVNT #

79



39525 78000 Node #2
39528 00000 Node #2

39548 .80900 Node #2
39551 .17900 Node #2

39553 .91000 Node #2

39556 64000 Node #2

39559 37000 Node #2

39560 32000 Node #2
39562 11000 Node #2

39564 84000 Node #2

39567 57000 Node #2

39570 30000 Node #2

39590 71000 Node #2

39591 04000 Node #2
39593 44000 Node #2

39596 17000 Node #2

39597 54000 Node #2

39600 27000 Node #2

39602 54000 Node #2
39603 00000 Node #2

39605 74000 Node #2

39611 20000 Node #2

39625 59000 Node #2
39626 17000 Node #2

39628 90000 Node #2

39631 63000 Node #2

EVNT #

EVNT #

EVNT #

sections
EVNT #

EVNT #

4
3

5

4

FN_0N sent to activate FN # 4
0_S sending FN0N msg. EVNT #

R_L rcvd FN.0N from Node #2 EVNT #
I am the activating node and changing NST.123212341234
0_S sending STATUS msg. EVNT #

S_M rcvd PERIODIC from Node #3 EVNT #

Reset Timer element of Node #3
S_M rcvd PERIODIC from Node #4
Reset Timer element of Node #4
S_M rcvd PERIODIC from Node #2
Reset Timer element of Node #2
S_M rcvd APERIODIC from Node #1
Sending APERIODIC with NST unique
0_S sending STATUS msg.
S_M rcvd APERIODIC from Node #3
APERIODIC response already sent, no action
S_M rcvd APERIODIC from Node #4 EVNT #

APERIODIC response already sent, no action
S_M rcvd APERIODIC from Node #2 EVNT #

APERIODIC response already sent, no action
S_M rcvd PERIODIC from Node #1 EVNT #
Reset Timer element of Node #1
C_P rcvd MKR from Node #1 EVNT #

Local CHKPT already conducted. Store UNIQ.
0_S sending MKR msg. EVNT #

C_P rcvd MKR from Node #3 EVNT #

Local CHKPT already conducted. Store UNIQ.
C_P rcvd MKR from Node #4 EVNT #

Local CHKPT already conducted. Store UNIQ.
C_P rcvd MKR from Node #2
Local CHKPT already conducted
R_L rcvd FN.0FF from Node #1
FN_0N sent to activate FN # 1

0_S sending FN0N msg.
C_P rcvd CHKPT from Node #1
Global CHKPT complete store NST
R_L rcvd FN.0N from Node #2 EVNT # 7

I am the activating node and changing NST.223212341234
S.M rcvd PERIODIC from Node #3 EVNT # 6

Reset Timer element of Node #3
0_S sending STATUS msg. EVNT # 8

S.M rcvd PERIODIC from Node #1 EVNT # 7

Reset Timer element of Node #1

S.M rcvd PERIODIC from Node #4 EVNT # 7

Reset Timer element of Node #4
S.M rcvd PERIODIC from Node #2 EVNT # 8

Reset Timer element of Node #2

EVNT # 6

Store UNIQ.
EVNT # 5

EVNT # 7

EVNT # 6

80



39429 77000 Node #3
39432 65000 Node #3

39435 37900 Node #3

39438 12000 Node #3

39440 86000 Node #3

39491 19000 Node #3
39492 56000 Node #3

39495 30000 Node #3

39498 04000 Node #3

39503 76900 Node #3

39523 89000 Node #3

39527 99000 Node #3

39548 80000 Node #3
39551 16000 Node #3

39553 90000 Node #3

39556 63000 Node #3

39559 36000 Node #3

39560 31000 Node #3
39562 10000 Node #3

39564 83000 Node #3

39567 56000 Node #3

39570 .29000 Node #3

39590 .70000 Node #3

39591 .03000 Node #3
39593 .43000 Node #3

39596 .16000 Node #3

39597 .53000 Node #3

0_S sending STATUS msg. EVNT #
S_M rcvd PERIODIC from Node #1 EVNT #
Reset Timer element of Node #1
S_M rcvd PERIODIC from Node #2 EVNT #
Reset Timer element of Node #2
S_M rcvd PERIODIC from Node #3 EVNT #
Reset Timer element of Node #3
S_M rcvd PERIODIC from Node #4 EVNT #
Reset Timer element of Node #4
0_S sending STATUS msg. EVNT # 2

S_M rcvd PERIODIC from Node #3 EVNT # 2

Reset Timer element of Node #3
S_M rcvd PERIODIC from Node #4 EVNT # 2

Reset Timer element of Node #4
S_M rcvd PERIODIC from Node #2 EVNT # 2

Reset Timer element of Node #2
S_M detects FAILURE on Node #1
Notify NF task.
R_L rcvd FN.0FF from Node #4 EVNT # 3
No further action required ATT.
R_L rcvd FN_0N from Node #2 EVNT # 3
Neither act/deact node and changing NST.123212341234
0_S sending STATUS msg. EVNT # 3

S_M rcvd PERIODIC from Node #3 EVNT # 3
Reset Timer element of Node #3
S_M rcvd PERIODIC from Node #4 EVNT # 4
Reset Timer element of Node #4
S_M rcvd PERIODIC from Node #2 EVNT # 4
Reset Timer element of Node #2
S_M rcvd APERIODIC from Node #1 EVNT # 2

Sending APERIODIC with NST unique sections.
0_S sending STATUS msg. EVNT # 4
S_M rcvd APERIODIC from Node #3 EVNT # 4
APERIODIC response already sent, no action.
S_M rcvd APERIODIC from Node #4 EVNT # 5

APERIODIC response already sent, no action.
S_M rcvd APERIODIC from Node #2 EVNT # 5

APERIODIC response already sent, no action.
S_M rcvd PERIODIC from Node #1 EVNT # 3

Reset Timer element of Node #1

C_P rcvd MKR from Node #1 EVNT # 4
Local CHKPT already conducted. Store UNIQ.
0_S sending MKR msg. EVNT # 5

C_P rcvd MKR from Node #3 EVNT # 5

Local CHKPT already conducted. Store UNIQ.
C_P rcvd MKR from Node #4 EVNT # 6

Local CHKPT already conducted. Store UNIQ.
C_P rcvd MKR from Node #2 EVNT # 6

Local CHKPT already conducted. Store UNIQ.

81



39600.26000

39602.99000

39605.73000

39610.22000
39611.19000

39626.16000

39628.89000

39631.62000

Node #3

Node #3

Node #3

Node #3
Node #3

Node #3

Node #3

Node #3

R_L rcvd FN.0FF from Node #1 EVNT #
No further action required ATT.
C_P rcvd CHKPT from Node #1 EVNT #

Global CHKPT complete store NST
R_L rcvd FN_0N from Node #2 EVNT #

Neither act/deact node and changing NST.223212341234
0_S sending STATUS msg. EVNT #

S_M rcvd PERIODIC from Node #3 EVNT #

Reset Timer element of Node #3
S_M rcvd PERIODIC from Node #1 EVNT #
Reset Timer element of Node #1
S_M rcvd PERIODIC from Node #4 EVNT #
Reset Timer element of Node #4
S_M rcvd PERIODIC from Node #2 EVNT #

Reset Timer element of Node #2

5

6

7

6

6

7

7

8

39429 78000 Node #4
39432 66000 Node #4

39435 38000 Node #4

39438 12000 Node #4

39440 86000 Node #4

39491 22000 Node #4
39492 56000 Node #4

39495 30000 Node #4

39498 04000 Node #4

39503 77000 Node #4

39521 94000 Node #4
39523 90000 Node #4

39528 00000 Node #4

39548 80000 Node #4
39551 17000 Node #4

39553 90900 Node #4

39556 63900 Node #4

0_S sending STATUS msg.
S_M rcvd PERIODIC from Node #1
Reset Timer element of Node #1
S_M rcvd PERIODIC from Node #2
Reset Timer element of Node #2
S_M rcvd PERIODIC from Node #3
Reset Timer element of Node #3
S_M rcvd PERIODIC from Node #4
Reset Timer element of Node #4
0_S sending STATUS msg.
S_M rcvd PERIODIC from Node #3
Reset Timer element of Node #3
S_M rcvd PERIODIC from Node #4
Reset Timer element of Node #4
S_M rcvd PERIODIC from Node #2

Reset Timer element of Node #2
S_M detects FAILURE on Node #1

Notify NF task.
0_S sending FN0FF to Node #2
R_L rcvd FN.0FF from Node #4
No further action required ATT.
R_L rcvd FN.0N from Node #2
I am the deactivating node and12321234123
0_S sending STATUS msg.
S_M rcvd PERIODIC from Node #3
Reset Timer element of Node #3
S_M rcvd PERIODIC from Node #4
Reset Timer element of Node #4
S_M rcvd PERIODIC from Node #2
Reset Timer element of Node #2

EVNT «

EVNT #

EVNT #

EVNT #

EVNT #

EVNT # 2

EVNT # 2

EVNT # 2

EVNT « 2

EVNT # 3

EVNT # 3

EVNT # 3

changing NST
4

EVNT # 4
EVNT # 3

EVNT # 4

EVNT # 4

82



39559 37000 Node #4

39560 31000 Node #4
39562 10900 Node #4

39564 84000 Node #4

39567 57000 Node #4

39570 29900 Node #4

39590 70000 Node #4

39591 03000 Node #4
39593 43000 Node #4

39596 16000 Node «4

39597 53000 Node #4

39600 26000 Node #4

39602 99900 Node #4

39605 74000 Node #4

39611 .19900 Node #4

39625 .58000 Node #4
39626 .17000 Node #4

39628 .90000 Node #4

39631 .62900 Node #4

S_M rcvd APERIODIC from Node #1 EVNT # 2

Sending APERIODIC with NST unique sections.
0_S sending STATUS msg. EVNT # 5

S_M rcvd APERIODIC from Node #3 EVNT # 4
APERIODIC response already sent, no action.
S_M rcvd APERIODIC from Node #4 EVNT # 5

APERIODIC response already sent, no action.
S_M rcvd APERIODIC from Node #2 EVNT # 5

APERIODIC response already sent, no action.
S_M rcvd PERIODIC from Node #1 EVNT # 3
Reset Timer element of Node #1
C_P rcvd MKR from Node #1 EVNT # 4
Local CHKPT already conducted. Store UNIQ.
0_S sending MKR msg. EVNT # 6

C_P rcvd MKR from Node #3 EVNT # 5

Local CHKPT already conducted. Store UNIQ.
C_P rcvd MKR from Node #4 EVNT # 6

Local CHKPT already conducted. Store UNiq.
C.P rcvd MKR from Node #2
Local CHKPT already conducted.
R_L rcvd FN.0FF from Node #1
No further action required ATT.
C.P rcvd CHKPT from Node #1

Global CHKPT complete store NST
R_L rcvd FN.0N from Node #2
Neither act/deact node and changing NST.223212341234
S_M rcvd PERIODIC from Node #3 EVNT # 6

Reset Timer element of Node #3
0_S sending STATUS msg. EVNT # 7

S_M rcvd PERIODIC from Node #1 EVNT # 7

Reset Timer element of Node #1

S_M rcvd PERIODIC from Node #4 EVNT # 7
Reset Timer element of Node #4
S_M rcvd PERIODIC from Node #2 EVNT # 8

Reset Timer element of Node #2

EVNT #

Store UNIQ
EVNT #

EVNT #

EVNT #

83



REFERENCES
1. Kleinrock L., "Distributed Systems," Communications of the ACM, Vol 28, No.

11, NOV 1985.

2. Deitel H.M., Operating Systems, pp. 500-550, Addison-Wesley Co., 1990.

3. Mullender S. and others, Distributed Systems, pp 319-357, Addison-Wesley Co.,

1990.

4. Koo R., Toueg S., "Checkpointing and Rollback-Recovery for Distributed Sys-

tems," IEEE Transactions on Software Engineering, Vol. SE-13, No. 1, JAN 1987.

5. Lala J.H., Harper R.E., Alger L.S., "A Design Approach for Ultrareliable Real-

Time Systems," Computer, Vol 24, No. 5, MAY 1991.

6. Bhargava B., Lian S., "Independent Checkpointing and Concurrent Rollback for

Recovery in Distributed Systems - An Optimistic Approach," Proc. of 7th Symp.
on Reliable Distributed Systems, 1988.

7. Shukla S., Yang C, Puett R., Lehman K., Masters M., "A Framework for Node
Failure/Repair Transparency in Distributed Real-time Systems," paper submit-

ted to the Fault Tolerant Computing International Symposium, Boston^MA. 1992.

8. Lehman K., Function Allocation in a Robust Distributed Real-Time Environment,
Master's Thesis, Naval Postgraduate School, Monterey, California, DEC 1991.

84



INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Cameron Station

Alexandria, VA 22304-6145

2. Library, Code 52

Naval Postgraduate School

Monterey, CA 93943-5000

3. Chairman, Code EC

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5000

4. Professor Shridhar B. Shukla, Code EC/Sh

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5000

5. Professor Chyan Yang, Code EC/Ya

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5000

6. Commanding Officer

Supervisor of Shipbuilding

85



Conversion and Repair, USN

Pascagoula, MS 39568-2210

Michael W. Masters, Code N35

Naval Surface Warfare Center

Dahlgren, VA 22448-5000

86







Thesis
P947485 Puett
c.l Reconfiguration in

robust distributed
real-time systems
based on global
checkpoints.

Thesis
P947485

c.l

Puett
Reconfiguration in

robust distributed
real-time systems

based on global
checkpoints.

Ŵ




