
Deployment Pipeline:
3048m overview

1

Problem statement

2

How does a user
deploy or run code ?

3

4

How many things did the user
have to care about ?

5

Let’s see now how a developer
deploys/executes code in WMF

6

● Writes the code
● Tests it locally
● Pushes to gerrit
● Waits for CI
● Gets code merged
● Builds a “deploy” repo manually

○ Running composer install, pip install, npm install, whatever
● Deploys deploy repo to production

○ At best with a blue/green method
● Tries to figure out why machine XYZ does not work

○ Is it CPU contention ?
○ Did Out of Memory exception occur ?
○ Is the machine out of disk space ?
○ Is the machine dead ?
○ Is the code in production the same they tested X days ago anymore ?

7

● Writes the code
● Tests it locally
● Pushes to gerrit
● Waits for CI
● Gets code merged
● Builds a “deploy” repo manually

○ Running composer install, pip install, npm install, whatever
● Deploys deploy repo to production

○ At best with a blue/green method
● Tries to figure out why machine XYZ does not work

○ Is it CPU contention ?
○ Did Out of Memory exception occur ?
○ Is the machine out of disk space ?
○ Is the machine dead ?
○ Is the code in production the same they tested X days ago anymore ?

8

Meanwhile
● No elasticity (can’t react to increased demand)
● Can’t run multiple versions of code simultaneously
● Colocating services leads to shared dependencies (e.g. all in nodejs6)
● No hardware fault tolerance
● development environment != deploy environment
● First deployment takes forever

○ Find hardware
○ Find out how to create deploy repo
○ Figure out how to configure deployment tool (scap)
○ And do it in beta cluster first
○ Talk with >1 teams to get code deployed

9

Abstract some problems away

● A scheduler to assign workloads (aka code) to hosts
● Decouple the service from the workloads

○ Allowing actually canary deployments
○ We kind of have this already via pybal

● Build the “deploy repo” automatically
○ Yes, that’s the docker image

● Use the deploy repo for development as well

10

Build the “deploy repo”

● The major work of the pipeline
○ Powered by jenkins and blubber

● Upload a change
● Tests are run
● Merge it
● Obtain the image
● Optionally run integration tests
● Deploy it

11

Lights! Camera!
Action!

12

● Upload to

gerrit

● Tests run

● Merge

● Get

image

13

Steps are
(going to be)
configurable

14

Dockerfiles are hard

● Non pinned/frozen dependencies
● Changes to source code invalidate builds
● Running as root
● End up in bloated images
● Use external services
● Paths are not standardized

15

Decision: Abstract Dockerfile
● Blubber
● A declarative tool (vs Dockerfile imperative nature) in Golang
● Configuration in YAML
● Supports slimming down images using multi-stage Dockerfiles
● Supports policies
● Source code files/dirs in images are not owned by root
● Code is not executed as root
● https://wikitech.wikimedia.org/wiki/Blubber

16

https://wikitech.wikimedia.org/wiki/Blubber

Blubber HelloWorld

version: v3
base: docker-registry.wikimedia.org/wikimedia-stretch

variants:
 hello:
 entrypoint: [echo, "Hello, world!"]

17

Blubber HelloWorld
FROM docker-registry.wikimedia.org/wikimedia-stretch
USER "root"
ENV HOME="/root"
RUN groupadd -o -g "65533" -r "somebody" && useradd -o -m -d "/home/somebody" -r -g
"somebody" -u "65533" "somebody" && mkdir -p "/srv/app" && chown "65533":"65533"
"/srv/app" && mkdir -p "/opt/lib" && chown "65533":"65533" "/opt/lib"
RUN groupadd -o -g "900" -r "runuser" && useradd -o -m -d "/home/runuser" -r -g
"runuser" -u "900" "runuser"
USER "somebody"
ENV HOME="/home/somebody"
WORKDIR "/srv/app"
COPY --chown=65533:65533 [".", "."]
USER "runuser"
ENV HOME="/home/runuser"
ENTRYPOINT ["echo", "Hello, world!"]

18

Decisions: Pipeline images

● Images are available for anyone to use under docker-registry.wikimedia.org
● But only the pipeline can push images
● Production images will always be based on base images provided internally

○ Yes, that means no Dockerhub (nor any other registry out there)
○ Debian based (Jessie, Stretch, Buster) to match production

● Tooling will be built to ensure as simple as possible upgrades
● We don’t tag images as latest

19

Why no Dockerhub/gcr.io/etc?

● https://vulnerablecontainers.org/official/
○ 17 for nodejs image
○ 1 for php, 23 for php-zendserver
○ 876 for rails
○ 470 for django
○ 329 for java

● In 2018, 17 dockerhub images were found with cryptominers in them

20

https://vulnerablecontainers.org/official/

But also (more importantly)!

● We need to upgrade easily and quickly for the next heartbleed, shellshock,

ghost, you name it

● And that can only happen if the Wikimedia community controls the entire

supply chain of images

21

Decision: Image Orchestration
● Docker on its own is not great in orchestrating workloads

○ Networking can painful
○ Global state of a workload is difficult to discern
○ Metrics/logging need to be implemented
○ It’s pretty good at executing workloads though

● Kubernetes is the current de facto standard for orchestrating the deployment of
workloads

● WMF is a member of CNCF of which Kubernetes is a graduated project
● SRE team already had some knowledge

22

Kubernetes has a scheduler

● You tell it the size of your workload
○ CPU
○ Memory
○ # of instances
○ Other stuff (GPU needs, workload spreading needs, etc)

● It will do the best it can to nicely spread workloads across multiple nodes
● It will reschedule workloads if a node fails

23

Kubernetes decouples the
service from workloads
● Based on a flexible tagging scheme
● Spawn X workloads, have Y of them serving production requests

○ Allows implementing canaries
● Monitors workload endpoints and depools failing ones

○ Until they are functional again, no production traffic
● Implements staged blue/green deployments

○ Have X workloads, upgrade them in batches (% at a time), stop/rollback if
problems arise

24

Kubernetes is declarative

● Define
○ The version
○ The # of instances
○ Policies, configurations etc

● It will make it happen (assuming you defined stuff correctly)
● No more caring about what the previous version/state of a app was

25

Kubernetes runtimes are
pluggable
● There’s now a standard called Open Container Initiave (OCI)
● We are not locked in to Docker.
● Any OCI compliant container runtime engine (CRE) will do
● Examples:

○ Docker
○ CRI-O
○ containerd

26

Kubernetes networking is
pluggable

● It encouraged the creation of a standard called CNI that anyone can implement

● Cisco, AWS, Apstra, Cilium, Contiv, Contrail, Calico, Flannel, OpenVSwitch

and many more all implement it

27

Decision: Calico

● After evaluation of a few CNI plugins, calico was chosen because:
○ It was compatible with our current networking setup
○ It avoided the complexity of an overlay network (e.g. VXLAN)
○ It supports Network policies

■ Required for setting up firewalling from/to workloads

28

Kubernetes: A lot of YAML and
new concepts
● Many many new concepts: Pod, StatefulSet, Deployment, ReplicaSet, Service,

NetworkPolicy, Endpoint, ConfigMap, Volume (the list goes on)
○ 9 for workloads
○ 4 for services
○ 6 for configuration and storage
○ A ton more for metadata, cluster management etc

● All of them defined in YAML many many lines long each

29

Decision: Helm

● Helm is a package manager/deployment tool for the kubernetes environment

● Abstracts kubernetes deployments complexity away

● The de facto standard again in the kubernetes community

● Group your YAML, make it more configurable, deploy it

30

Helm charts
● Group and template the various kubernetes resources

● Templates allow you to set values (e.g. version of app)

● Share the chart with the world

● Use it for local development as well (not just for production)

● Wikimedia has their own repo:

○ https://releases.wikimedia.org/charts/

○ https://gerrit.wikimedia.org/g/operations/deployment-charts/

31

https://releases.wikimedia.org/charts/
https://gerrit.wikimedia.org/g/operations/deployment-charts/

Decision: Provide Helm chart
scaffolding
● git clone https://gerrit.wikimedia.org/g/operations/deployment-charts/

● ./create_new_service.sh

● Answer questions

● (Optional) edit chart

● Submit for review

32

https://gerrit.wikimedia.org/g/operations/deployment-charts/

Helm chart tests

● Scaffolding helm tests rely on service-checker:
○ https://gerrit.wikimedia.org/g/operations/software/service-checker

● Probes:
○ OpenAPI/Swagger spec endpoint (https://swagger.io/specification/)
○ All the endpoints described in it

● But it’s really easy to add more tests/customize existing ones
● Pipeline integration tests run exactly that

33

https://gerrit.wikimedia.org/g/operations/software/service-checker
https://swagger.io/specification/

Pipeline status

● 9 services currently in the pipeline
○ Blubberoid, citoid, cxserver, eventgate-analytics, eventgate-main, mathoid,

sessionstore, termbox, zotero
● Services to be added soon

○ Restrouter (part of RestBASE), changepop, cpjobqueue, wikifeeds (part of MCS)

34

Roadmap
● Document the pipeline better
● Create a local development environment (based on minikube)
● Encourage/handhold other service owners to migrate their services to the

pipeline
● Add tooling to automatically respond to increased/decreased demand
● Allow developers to create Highly Available endpoints for apps
● TLS demarcation
● Telemetry

35

