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The fitness landscape metaphor has been central in our way of
thinking about adaptation. In this scenario, adaptive walks are
idealized dynamics that mimic the uphill movement of an
evolving population towards a fitness peak of the landscape.
Recent works in experimental evolution have demonstrated that
the constraints imposed by epistasis are responsible for reducing
the number of accessible mutational pathways towards fitness
peaks. Here, we exhaustively analyse the statistical properties of
adaptive walks for two empirical fitness landscapes and
theoretical NK landscapes. Some general conclusions can be
drawn from our simulation study. Regardless of the dynamics,
we observe that the shortest paths are more regularly used.
Although the accessibility of a given fitness peak is reasonably
correlated to the number of monotonic pathways towards it,
the two quantities are not exactly proportional. A negative
correlation between predictability and mean path divergence is
established, and so the decrease of the number of effective
mutational pathways ensures the convergence of the attraction
basin of fitness peaks. On the other hand, other features are not
conserved among fitness landscapes, such as the relationship
between accessibility and predictability.
1. Introduction
In evolutionary biology, adaptive processes may be studied with
the aid of fitness landscapes. This concept establishes a relation
between the genotype of an individual and its reproductive
success such that higher fitness represents best-suited specimens
[1,2]. As a consequence, adaptive landscapes can be viewed as
rugged surfaces with hills and valleys, and selective pressures
drive the evolution of individuals towards the genotypes
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placed in peaks. In this context, natural evolution is depicted by an uphill movement in the genotype

configuration space of an evolving population [3].
This hill-climbing metaphor for adaptive evolution has inspired a huge body of theoretical works,

including proposals of fitness landscape models [4–6]. The topography of the fitness landscape
determines the distribution of selection coefficients and the amount and strength of epistasis [7].
Epistasis is essentially a measure of the deviation from additive assumption of fitness effects [8],
which means that individual locus alterations may result in non-trivial fitness changes due to the
correlations between the genetic loci of a genotype. The existence of local maxima is the hallmark of a
non-additive landscape and hence a signature of epistasis [9]. In a seminal work, where a genetic
reconstruction of the protein β-lactamase was accomplished, Weinreich demonstrated that the number
of accessible paths towards fitter genotypes is remarkably smaller than the ensemble of possible
trajectories owing to epistasis [10,11], and so evolution seems to be much more predictable and
reproducible than previously expected [12].

Massive parallel evolution experiments and advances in the next-generation sequencing has allowed
the assessment of a large amount of evolutionary information on empirical landscapes [13–15], though
their analyses have been restricted to small parts of the landscapes and their inferred topography may
not be truly representative [16]. Another limitation of those empirical analyses relies on the fact that
the topography itself is shaped by the environment, which in turn is likely to change during
evolution [17–19]. In this perspective, theoretical landscape models became a helpful tool to forecast
evolutionary dynamics and produce replicates of fitness landscapes that preserve global patterns of
epistasis [16]. Within this category, the NK model, introduced by Kauffman and Weinberger [5,20,21],
seems to reasonably capture some of the features of empirical fitness landscapes [12,22]. Thus, the
study of both empirical and theoretical fitness landscapes are complementary.

Evolutionary adaptation is driven by the accumulation of beneficial mutations, i.e. those that confer a
fitness increase. The process is greatly influenced by the rate at which beneficial mutations arise, and also
their selective effects [23–25]. In the simplistic view of evolutionary adaptation, namely strong-selection
weak-mutation regime, the conditions NU≪ 1 and Ns≫ 1 hold, where N stands for population size, U is
mutation rate and s the selective advantage conferred by the beneficial mutations. Those conditions
ensure that selection proceeds much faster than mutations occur. According to this picture, the
population is monomorphic most of the time, and the dynamics can be approximated by an adaptive
walk [5,24,26,27], in which the population is depicted as a single entity that moves through the fitness
landscape towards fitness peaks. In short, adaptive walks arise as an idealized behaviour in the so-called
strong-selection weak-mutation regime of more general dynamics such as the Wright–Fisher model
[24,27,28]. The state of the system is described by the genotype S shared by the population and moves
are only allowed to the set of fitter mutant neighbours {Gi}, in which the Hamming distance d(S, Gi) = 1.

There are different versions of adaptive walks found in literature, and the choice of the version to be
studied depends on the details of how the strong-selection weak-mutation is obtained. In the simplest
version of the adaptive walk problem, dubbed random adaptive walks, the amplitudes of fitness
differences are ignored, and so all fitter one-mutational step neighbours are equally likely to be
chosen [26,29,30]. A second dynamics is referred to as natural adaptive walks, and now the selective
effects play a role in such a way that the higher the mutant’s fitness the higher the chance the
population jumps to it [28]. Thus, for each Gi in {Gi}, si(Gi) is defined as the difference si = fi− f, where
f is the fitness of the wild-type sequence S, and fi denotes the fitness of its one-mutational step
neighbour Gi. Hence, the probability of choosing the sequence Gi as the target sequence is given by

Pi(si) ¼ siP
j s j

: (1:1)

The sum runs over all neighbours satisfying the condition sj > 0. The natural adaptive walk here referred
to as the probabilistic adaptive walk falls halfway between the random adaptation walk and the greedy
adaptation, in which the population always moves to the fittest neighbour, and mimics adaptive
processes under a large mutational supply [28,31,32]. The greedy adaptation walk is therefore
deterministic. Both versions here addressed, the random and probabilistic adaptive walks, are very
similar concerning the behaviour of the mean walk length, the accumulated number of beneficial
mutations to a local optimum, which is expected to grow as ln L with sequence size L.

Within a theoretical perspective, the adaptive walk problem has been extensively investigated and
several statistical properties assessed, such as the mean walk length, walk length distributions,
distributions of fitness values at the ending points of the walks, and so on. Those theoretical works
have mostly considered uncorrelated fitness landscapes [5,29,30]. Studies of correlated fitness
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Figure 1. The graph comprising the 640 engineered mutants in the heat-shock protein Hsp90 in Saccharomyces cerevisiae. These
mutants correspond to all possible combinations of 12 amino-acid changing mutations at six sites. Each node represents a given
sequence, the wild-type (QFGWSANME) is symbolized by the central node, whereas the numbered nodes denote the six local
maxima of the fitness landscape, namely, (1) QFGWTPAME, (2) QFGLTALME, (3) QFGFSALTE, (4) QFGLSPLAE, (5) QFGLTPAQE and
(6) QFGISALQE. The innermost circumference amounts to all sequences that are one mutational step away from the wild-type
sequence. The second smallest circumference encompasses those nodes that are two mutational steps away from the wild-type
sequence, and so on. Accordingly, most of the local maxima are three mutational steps away from the wild-type sequence,
and the global maximum is given by sequence (4). The nodes are coloured according to the fitness of the configuration, from
dark blue (lowest fitness) to dark red (highest fitness), and the node-position in a given layer is given by its relative fitness:
from θ = 0 to the layer’s node with the lowest fitness to θ→ 2π to the layer’s node with the highest one. All possible
mutational transitions between configurations are given by the directed links shown in orange. The data to generate the plot
were obtained from Bank et al. (PNAS, 2016).
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landscapes unveil that the topography of the landscape plays a role, usually resulting in longer walk
lengths when compared to the uncorrelated case but this cannot be stated as a general rule [26,33,34].
The dependence of the adaptive walk length on the initial fitness has also been addressed. While
some studies show that walk lengths seem to decrease with increased initial fitness [26,34,35], on the
contrary, some experimental studies are compatible with a scenario of no dependence of the walk
length on the initial fitness, with the assertion that mutations of large fitness difference are expected
in the case of poorly adapted populations [36,37].

Here, we extensively survey the statistical properties of adaptive walks in two empirical fitness
landscapes, Hsp90 and Gb1, and in the theoretical NK fitness landscapes. The Hsp90 landscape
corresponds to a full combinatorial multiallelic fitness landscape of 640 engineered mutants of
13 amino-acid changing mutations at six sites in the protein Hsp90 in Saccharomyces cerevisiae [13].
The corresponding fitness landscape was obtained under a condition of elevated salinity, such
that the wild-type is no longer the global maximum of the resulting fitness landscape. Figure 1
presents the subset of the genotype space that corresponds to those 640 possible combinations. The
nodes represent the sequences whereas the directed links denote the one-mutational transitions that
are allowed by the dynamics.
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The second empirical fitness landscape encompasses all variants at four amino-acid sites (204 =

160 000) in a given region of the protein Gb1 of the Streptococcal bacteria [15]. Additionally, we make
a thorough statistical analysis of the properties of adaptive walks for the NK landscape model and
three different degrees of epistasis, namely K = 1, K = 2 and K = 3. In this case, several independent
landscapes are generated and their properties checked out. Most of the quantities considered here are
well established in the literature as legitimate measurements of characterization of evolutionary
trajectories in natural populations. Notwithstanding, little is known about how those quantities
correlate with each other, and how they respond to variations of the fitness landscape of similar
global patterns. With this aim, here we quantify the statistical correlations among all variables of
characterization of evolutionary trajectories.
rnal/rsos
R.Soc.open

sci.7:192118
2. Methods
2.1. The NK landscape model
In the NK model, each individual is represented by a sequence of length N, S = (s1, s2,…, sN) with sα = 0,
1, i.e. a binary base is assumed. The other parameter of the model, K, determines the degree of correlation
between the elements of S, which means that the contribution ωj of an element j to the overall fitness f is a
function ωj = g(sj, ∏(sj)) that depends on the state of locus j and on the state of a set of K neighbours,
∏(sj), that are randomly chosen among the remaining N− 1 elements. In this way, the genetic
architecture here considered is that of random neighbours, which implies that the fitness landscape
here considered does not have a modular structure [38–40]. The values of the components ωj are
drawn from a uniform distribution (0, 1], and the fitness of the sequence is given by

f ¼ 1
N

XN

j¼1

v j: (2:1)

The sequence Smay be seen as the genetic code of an individual, and the elements sα can be considered
as its genes. In this perspective, the model is built to allow epistatic interactions among the genes, which
means that the contribution of each gene to the overall fitness depends not only on its state but also on
the state of K other genes. Because of that, a lookup table for each gene consists of 2K+1 entries. When
K = 0 the fitness landscape is simply additive, exhibiting a single peak, and a null level of roughness. In
the other extreme, when K =N− 1, the landscape becomes completely uncorrelated, and any point
mutation affects the contribution of all genes to the sequence’s fitness. The case K =N− 1 corresponds to
the random-energy model [41]. Thus, the parameter K settles the degree of roughness of the fitness
landscape. As K increases, so does the number of local maxima of the fitness landscape. Here, the
epistatic interactions are randomly assigned, i.e. for each locus, the K loci that epistatically influence its
contribution are randomly chosen among the N loci that comprise the genome.

2.2. Characterization of the adaptive trajectories
For the empirical fitness landscapes, the adaptive walks are initiated from the wild-type sequence
(QFGWSANME for the Hsp90 protein, VDGV for the Gb1 protein), while for the NK landscapes, the
adaptive walks are always initiated from the lowest fitness sequence. The trajectories terminate when
a local optimum of the landscape is reached. In the first version of the walk, the population (walker)
moves to a randomly chosen neighbouring node among those with higher fitness, and so selective
differences are not considered. As aforementioned, this version is referred to as random adaptive
walk, whereas in the second version, the probabilistic adaptive walk, the move is also random but
selective differences are now considered (see equation (1.1)).

We perform a fine-grained analysis of the adaptive walks. For each run, we keep track of the entire
array of nodes visited (S0, S1,…, Sf ), which begins at a node S0 (wild-type sequence for empirical
landscapes, and least adapted sequence for the NK landscapes) and ends up at one of the local
optima of the fitness landscape, xmax

k . The dataset for the Hsp90 fitness landscape was built assuming
substitutions at the aminoacid level and considering a subset of 13 amino-acid changing mutations
[13]. The Hsp90 fitness landscape presents 6 local maxima, all of which are accessible from the wild-
type sequence. Note that the wild-type sequence is not a local maxima of the fitness landscape in the
high salinity environment. On the other hand, the data for the Gb1 fitness landscape presents a
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complete graph comprising all variants at four amino-acid sites, leading to 204 = 160 000 sequences [15].

Considering that the adaptive moves occur at the aminoacid level, the fitness landscape encompasses 30
local maxima. Of those, fifteen have fitness lower than the wild-type and are clearly ruled out, and the
other three local maxima are not accessible from the wild-type at all, meaning that there exists no
monotonic fitness paths connecting them to the wild-type. As a consequence, we will focus our
attention on the remaining 12 local maxima that are accessible from the wild-type sequence and have
at least one monotonic path between them.

The whole set of adaptive walks is split into different subsets according to the terminal point. For
instance, for the Hsp90 fitness landscape, the whole set of mutational pathways is divided into six
subsets, whereas for the Gb1 fitness landscape twelve distinct subsets are generated. The current
approach allows a fine-grained analysis of the properties of the walks but also a deeper insight about
the basin of attraction of the local maxima. The same procedure is adopted for the NK landscapes.

In this manner, the evolutionary pathways inside each subset correspond to an ensemble of
trajectories in which the starting and ending points are always the same, hence endorsing us to make
use of statistical measurements that are already established in the literature to outline those trajectories
[12,42–44]. One of those quantities, known as predictability, is defined as

Pk
2 ¼

X

qka

O2(qka), (2:2)

where O(qka) is the probability of occurrence of the trajectory qka belonging to the ensemble of trajectories
that initiates at the wild-type sequence (or least adapted sequence) and terminates at the local maxima k.
The sum is taken over all distinct trajectories from the trajectory ensemble of size Ak that ends up at the
local optimum k. The predictability is just a simple measure of repeatability of the trajectories and can
vary from Pk

2 ¼ 1=Ak, when all trajectories in the ensemble are disparate, to Pk
2 ¼ 1, whenever a single

trajectory between the wild-type sequence and local optimum k exists [12]. Accordingly, its reciprocal
1/P2 gives an estimate of the number of effective trajectories exploited by dynamics.

Note that similar but not exactly identical trajectories contribute with the same weight to the
predictability, Pk

2, as two completely distinct trajectories. In this sense, completementary information
can be gathered by assessing the mean path divergence originally proposed in the study of
evolutionary paths by Lobkovsky et al. [43]. The divergence between any pair of trajectories qka and qkb,
denoted by d(qka, q

k
b), is computed by measuring the Hamming distance of each sequence in qka to all

sequences in qkb, hence storing the shortest distance only. Perceive that the length of the two
trajectories do not need to be the same. As follows, d(qka, q

k
b) is then defined as the average of these

shortest Hamming distances over all strings in qka. Finally, the mean path divergence is calculated as

�dk ¼
X

qka

O(qka)
X

qk
b

O(qkb)d(q
k
a, q

k
b), (2:3)

which yields the expected divergence of two trajectories drawn at random from the ensemble of
trajectories [43].

It is important to emphasize that both quantities, Pk
2 and �d

k
, are only meaningful provided that the

starting and ending points of the adaptive walks are always the same within an ensemble of
trajectories, a condition that is met in our approach.

Other statistical quantities also assessed through the adaptive walks are the accessibility of the local
optima and mean walk lengths. In addition, for each fitness landscape a graph analysis is carried out.
In that analysis, a graph accessibility of a given local optimum is defined, corresponding to the ratio
between the number of pathways connecting the starting node S0 to the focal local maximum and the
total number of pathways departing from S0. In the way it is defined, the graph accessibility gives
the same weight for every path, meaning that all paths are equally likely with no regards to their
lengths. For the Hsp90 and the NK landscapes, the whole set of all possible monotonic pathways
connecting the starting point and the local maxima of the landscapes are generated and their
properties examined. For the Gb1 landscape, a complete graph analysis could not be undertaken
because of the extremely high computational and time costs involved. This problem arises as a
consequence of the high connectivity of the graph, each node has coordination z = 20, leading to very
long mutational pathways. For the Gb1, the graph accessibility is indirectly inferred from an ensemble
of trajectories of the random adaptation walks, since it is expected that in the limit of an infinitely
large number of adaptive walks, all accessible paths can be reached. In the following, we present a
summary of the statistical properties here assessed and their abbreviations.
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2.3. Summary of the quantities assessed
In this section, we present the statistical measurements obtained from the three different approaches used
in the paper, which are:

—random adaptative walks:
—mean path rand: mean walk length for random adaptive walks
—access rand: accessibility under random adaptive walks
—predi rand: predictability under random adaptive walks
—diver rand: mean path divergence under random adaptive walks

—probabilistic adaptive walks:
—mean path prob: mean walk length for probabilistic adaptive walk
—access prob: accessibility under probabilistic adaptive walk
—predi prob: predictability under random adaptive walks
—diver prob: predictability under probabilistic adaptive walks

—graph analysis:
—mean path graph: average path length of all paths connecting S0 to the local maxima
—access graph: accessibility from the perspective of the graph analysis
—min path graph: minimum distance from the starting point and the local maxima
—max path graph: maximum distance from the starting point and the local maxima

3. Results and discussions
In figures 2 and 3, a graph-based metadata analysis provides all monotonic pathways from the wild-type
sequence to the six local maxima of the Hsp90 fitness landscape under random and probabilistic
dynamics, respectively. A colour gradient is employed to highlight those paths that are most frequently
assessed through the adaptive walks. The results for both dynamics, random and probabilistic, are
shown. We observe that the most operated trajectories for random and the probabilistic dynamics
exhibit a great overlapping. In general, we observe that the shortest paths are those more regularly used,
regardless of the dynamics. While some local optima display a huge number of alternative monotonic
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pathways, the number of possibilities is considerably reduced for other ones, as noted for the local
maximum QFGLTPAQE. In fact, as the walker endures longer distances, the number of possibilities
increases [45]. Although the number of ramifications will not grow indefinitely, owing to epistasis
effects, it is maximized at intermediate distances. This explains why short-length pathways are usually
promoted in detriment of the long length pathways, even for random adaptive walks. An additional
reason for the frequent usage of short-length pathways upon probabilistic adaptive walks is that short-
length walks are exactly those which are steeper, requiring that the selective effects along the pathway
are reasonably large, and so more often singled out. All of these will certainly impact the predictability
of the evolutionary dynamics. Similar patterns are found for the Gb1 landscape, and the theoretical NK
landscape model (see electronic supplementary material). Some of the mutational pathways are indirect
monotonic pathways, whose lengths are larger than the hamming distance from the wild-type to the
local optimum, and pass through nodes that are even farther from the wild-type sequence. Electronic
supplementary material, figure S1 exhibits the most used paths for the Gb1 landscape under the
probabilistic dynamics, and electronic supplementary material, figures S2–S3 display all accessible paths
for a single instance of the NK landscape.

The accessibility of the local maxima of the Hsp90 (upper panel) and Gb1 (lower panel) fitness
landscapes is shown in figure 4. In the plot, the sequences are arranged in ascending order of fitness.
While the accessibility of the local maxima through the dynamics seems to be reasonably correlated
with the graph accessibility, the two quantities are not exactly proportional. For both landscapes, one
sees some occurrences of local maxima that present high graph accessibility but are relatively less
accessed through the dynamics. We also note that while for the Hsp90 fitness landscape both
accessibility and graph accessibility tends to increase with the fitness of the local optima, such a
pattern is less clear for the Gb1 fitness landscape. Indeed, the relation between accessibility and fitness
is still not yet clarified. For uncorrelated fitness landscapes, it is expected that accessibility increases
with the fitness difference between the starting and target sequences, and decreases with sequence
size [45]. In order to more deeply address this issue and try to draw more general inferences, the
panels of figure 5 display the accessibility and graph accessibility for the NK fitness landscape model.
In the panels, the sequence size is N = 8 and different degrees of epistasis are considered: K = 1 (upper
panel), K = 2 (middle panel), and K = 3 (lower panel). By changing K, the level of fitness correlation
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among one-step neighbours ρ =K + 1/N changes and reaches ρ≈ 0.5 for K = 3. It is important to highlight
that those results presented in figure 5 for the NK model refer to a single instance of the fitness landscape.
By examining the panels, we observe that there exists a clear correlation between accessibility, as defined
by dynamics, and graph accessibility. Nonetheless, while this association between the two variables
seems to be quite tight when K = 1 and K = 2, it becomes less clear for K = 3.

Next, we check out two quantities that have been used to characterize the distribution of accessible
pathways [12,43,44]. Figures 6 and 7 show the predictability, as given by equation (2.2), and figures 8
and 9 show the mean path divergence, defined by equation (2.3), for the ensemble of trajectories for
each local optimum of the Hsp90 and Gb1 landscapes, as well as the same NK fitness landscapes
analysed in the previous figure. By comparing these figures and looking more closely at the extreme
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cases, it is possible to guess the occurrence of a negative correlation between predictability and mean
path divergence. The predictability P2 seems to be a much more responsive quantity than the mean
path divergence, which exhibits a relatively smaller variation. Although, at least for the extreme cases,
we observe for both Hsp90 and Gb1 landscapes that the highest predictability values go along with
the smallest mean path divergence values, while the reverse situation also applies. In between, we still
observe an overall tendency of decreased mean path divergence as the predictability grows.

While it is still apparent that there is a negative correlation between accessibility and predictability
for the Hsp90 fitness landscape, when one contrasts figures 4 and 6, one can not easily infer the
interdependence between the two quantities when resolving the data for the Gb1 fitness landscape.
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For the NK fitness landscapes, the situation is even more troublesome, as the association between
accessibility and predictability seems to depend on the level of epistasis. The results for K = 1 suggest
a positive association between the two variables, while the contrary seems to occur for K = 2 and K =
3. Remember that these data concern a single instance of the fitness landscape. A great convenience of
dealing with theoretical landscapes is that any hypothesis can be tested over a set of independently
generated fitness landscapes in a tunable way.

Theoretical fitness landscapes, such as the NK model, can provide productive insights into this
problem as an ensemble of fitness landscapes can be generated while their global properties are
preserved, such as the level of epistasis and fitness correlation among one-step neighbours.
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Additionally, an ensemble of fitness landscapes can help us in gathering information on the variability
and spreading of the resulting correlation coefficients for pairwise comparisons between the quantities
of interest. This will be done in the following.

In order to better synthesize the aforementioned outcomes, figure 10 presents a correlation table, which
specifies the level of statistical correlation between a pair of variables. The results refer to the probabilistic
adaptive walk and concern the empirical fitness landscapes, Hsp90 and Gb1. The table derived for the Gb1
fitness landscape does not include the quantities assessed through the graph analysis for the reasons raised
previously, with the exception of the graph accessibility, which in this case is indirectly estimated from the
random adaptive dynamics. On the other hand, figure 11 presents the correlation tables of NK landscapes
and for different levels of epistasis. In this case, ten independent replicates of the fitness landscape for each
value of the epistasis parameter K were assembled for evaluation of the average values. Electronic
supplementary material, figures S6–S8 plots the correlation tables of the individual fitness landscapes
used to obtain the final results displayed in figure 11.

Electronic supplementary material, figures S6–S8 disclose an impressive variation of the statistical
correlation values across the distinct samples of fitness landscapes, while keeping the degree of
epistasis K. Some of the pairwise correlation coefficients change not only their strength but even their
sign as other landscapes are analysed. While keeping in mind that very different scenarios may come
about when comparing distinct samples of fitness landscapes, the results shown in figure 11 provide a
robust and important guide for understanding how those are linked to each other.

Next, we proceed with the analysis of the information gathered from all those correlation tables. A
first point that becomes clear from this essay is that while graph accessibility is positively correlated
to the accessibility of the fitness peaks via the dynamics, the relation seems to be weakened with



0.8

0.4

0

–0.4

–0.8

0.8

0.4

0

–0.4

–0.8

0.8

0.4

0

–0.4

–0.8

fitness

hamming

mean_path_prob

access_prob

predi_prob

diver_prob

mean_path_graph

access_graph

min_path_graph

max_path_graph

fitness

hamming

mean_path_prob

access_prob

predi_prob

diver_prob

mean_path_graph

access_graph

min_path_graph

max_path_graph

fitness

hamming

mean_path_prob

access_prob

predi_prob

diver_prob

mean_path_graph

access_graph

min_path_graph

max_path_graph

fi
tn

es
s

ha
m

m
in

g

m
ea

n_
pa

th
_p

ro
b

ac
ce

ss
_p

ro
b

pr
ed

i_
pr

ob

di
ve

r_
pr

ob

m
ea

n_
pa

th
_g

ra
ph

ac
ce

ss
_g

ra
ph

m
in

_p
at

h_
gr

ap
h

m
ax

_p
at

h_
gr

ap
h

1.0 –0.1 0.0 0.6 0.1 –0.0 0.5 0.4 –0.1 0.4

–0.1 1.0 0.8 –0.7 –0.9 0.8 –0.6 –0.6 1.0 –0.6

0.0 0.8 1.0 –0.4 –0.8 0.9 –0.3 –0.4 0.8 –0.4

0.6 –0.7 –0.4 1.0 0.6 –0.4 0.8 0.8 –0.7 0.8

0.1 –0.9 –0.8 0.6 1.0 –0.9 0.5 0.5 –0.9 0.5

–0.0 0.8 0.9 –0.4 –0.9 1.0 –0.3 –0.3 0.8 –0.4

0.5 –0.6 –0.3 0.8 0.5 –0.3 1.0 1.0 –0.6 0.9

0.4 –0.6 –0.4 0.8 0.5 –0.3 1.0 1.0 –0.6 1.0

–0.1 1.0 0.8 –0.7 –0.9 0.8 –0.6 –0.6 1.0 –0.6

0.4 –0.6 –0.4 0.8 0.5 –0.4 0.9 1.0 –0.6 1.0

1.0 0.1 0.3 0.3 –0.4 0.6 0.7 0.7 0.1 0.6

0.1 1.0 0.9 –0.4 –0.7 0.4 0.2 0.1 1.0 0.2

0.3 0.9 1.0 –0.3 –0.7 0.6 0.3 0.3 0.9 0.3

0.3 –0.4 –0.3 1.0 0.3 –0.1 0.2 0.4  –0.4 0.3

–0.4 –0.7 –0.7 0.3 1.0 –0.8 –0.5 –0.4 –0.7 –0.4

0.6 0.4 0.6 –0.1 –0.8 1.0 0.7 0.7 0.4 0.7

0.7 0.2 0.3 0.2 –0.5 0.7 1.0 0.9 0.2 0.9

0.7 0.1 0.3 0.4 –0.4 0.7 0.9 1.0 0.1 0.8

0.1 1.0 0.9 –0.4 –0.7 0.4 0.2 0.1 1.0 0.2

0.6 0.2 0.3 0.3 –0.4 0.7 0.9 0.8 0.2 1.0

1.0 0.1 0.2 0.4 –0.3 0.5 0.7 0.7 0.1 0.7

0.1 1.0 0.9 –0.5 –0.5 0.5 0.2 0.2 1.0 0.3

0.2 0.9 1.0 –0.5 –0.6 0.6 0.4 0.3 0.9 0.4

0.4 –0.5 –0.5 1.0 0.4 –0.3 0.2 0.2 –0.5 0.2

–0.3 –0.5 –0.6 0.4 1.0 –0.8 –0.3 –0.4 –0.5 –0.3

0.5 0.5 0.6 –0.3 –0.8 1.0 0.4 0.5 0.5 0.4

0.7 0.2 0.4 0.2 –0.3 0.4 1.0 0.9 0.2 0.9

0.7 0.2 0.3 0.2 –0.4 0.5 0.9 1.0 0.2 0.8

0.1 1.0 0.9 –0.5 –0.5 0.5 0.2 0.2 1.0 0.3

0.7 0.3 0.4 0.2 –0.3 0.4 0.9 0.8 0.3 1.0

Figure 11. Correlation between probabilistic adaptive walks and graph measures of the NK-model with N = 8 and epistasis degrees of
K = 1 (upper panel), K = 2 (middle panel) and K= 3 (lower panel). The abbreviations of the variables in the label are declared in §2.3.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:192118
12
increased ruggedness, K, of the fitness landscape. The prediction for the empirical landscapes seems to be
compatible with those of the NK landscapes with a reasonable amount of epistasis. This outcome
suggests that as the landscape becomes more rugged, graph accessibility becomes less informative
about the basin of attraction of the set of local optima, possibly owing to an increased number of
nodes belonging to the basin of attraction of distinct local optima.

Other relations are of special interest, especially those widely employed in the characterization of
adaptive walks, such as the mean walk length, hamming distance and fitness values. In general, we
observe a negative correlation between the accessibility of the fitness peaks and the mean walk length,
which is a direct consequence of the negative correlation between accessibility and hamming distance,
i.e. the local maxima that are more easily reached are exactly those whose hamming distance is small.
In spite of still playing a role, the height of the fitness peaks is less influential in determining the walk
lengths than their hamming distance to the wild-type.

Concerning the predictability and the mean path divergence, we observe that in general the mean
walk length is negatively correlated to the predictability but positively associated with the mean path
divergence. In a coarse-grained description, one can say that the negative correlation between mean
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walk length and predictability is a consequence of the fact that longer walks encompass more possible
combinations of paths and additionally are associated with less steep trajectories. On the other hand,
the positive correlation between mean walk length and mean path divergence follows from the
positive association between walk lengths and hamming distance. Mainly, long walks occur for those
local optima which are further away, which in turn opens new room for the paths to cover a broader
and divergent domain across the genotype space. These combined effects result in a strong negative
correlation between predictability and mean path divergence, which is verified in all scenarios.

Except for the Gb1 fitness landscape, there exists a positive correlation between the fitness of the local
maxima and accessibility. This outcome evinces the finding that higher peaks of fitness landscapes are in
general more accessible, as demonstrated for uncorrelated fitness landscapes [45], and has greater
applicability. On the other hand, negative values of correlation are found between fitness values of
the peaks and their corresponding measures of predictability, over nearly all scenarios. Indeed, the
larger the fitness difference between the start and end points of the adaptive walks, more alternative
routes that embrace an increased number of mutations of small effect arise, thus contributing to
longer walks, and increased unpredictability.
c.open
sci.7:192118
4. Concluding remarks
The concept of the fitness landscape is central in evolutionary biology, and recent efforts have been
concentrated on surveying how the topography of fitness landscapes steers evolution [16,17]. The
topography of fitness landscapes is mainly determined by epistatic interactions among genetic loci
[12,46]. Single-peak and smooth landscapes are characterized by a lack of epistasis. On the other
hand, epistatic interactions introduce curvature, and the occurrence of sign and reciprocal sign
epistasis can result in multi-peaked landscapes [47,48]. In smooth landscapes, the outcome of the
evolutionary process is quite predictable, whereas the number of mutational pathways is vast. By
contrast, in rugged landscapes one loses the power of predicting the evolutionary outcome,
nevertheless, the mutational pathways through sequence space are constrained by sign epistasis, and
so the direction of evolution can be more easily anticipated [49,50].

A more detailed description of evolutionary processes requires us to gather information at the genetic
level, i.e. by storing the set of genotypes visited along the adaptive process [43,44]. Within this scenario,
new measurements were proposed in order to characterize the distribution and frequency of mutational
pathways. Therefore, it is crucial to understand how those measurements are associated and how
susceptible they are to variations of the fitness landscape. This is the main objective of the present study.

Here, we performed an exhaustive analysis of the statistical properties of the adaptive walks in two
empirical fitness landscapes [13,15]. Their results are compared with those obtained from theoretical NK
landscapes. The importance of dealing with theoretical landscapes is that an ensemble of fitness
landscapes can be produced while global properties are preserved. The analysis of theoretical
landscapes allowed us to conclude that the variation obtained in the characterization of the empirical
landscapes are compatible with the observed variation in NK landscapes. Some general conclusions
can be drawn: positive correlations are established between graph accessibility and accessibility
through the dynamics; accessibility and fitness; mean walk length and mean path divergence; whereas
negative correlations are established between predictability and mean path divergence; accessibility
and Hamming distance; mean walk length and predictability. On the other hand, the pairwise
correlation between accessibility and predictability is not preserved across fitness landscapes. While
for the two empirical fitness landscapes the two quantities are inversely correlated, the opposite
behaviour is found for NK landscapes.
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