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ABSTRACT

A Steiner Problem in graphs is the problem of finding a set of edges (arcs) with

minimum total weight which connects a given set of nodes in an edge-weighted graph

(directed or undirected). This paper develops models for the directed Steiner tree

problem on graphs. New and old models are examined in terms of their amenability

to solution schemes based on Lagrangean relaxation. As a result, three algorithms

are presented and their performance comparred on a number of problems originally

tested by Beasley (1984, 1987) in the case of undirected graphs.

RESUME

Etant donne un graphe G — {\\A) et un sous-ensemble de sommets VI de V, le

probleme de Steiner consiste a determiner un graphe partiel de G de longueur mini-

male permettant de relier entreeux tous les sommets de VI en utilisant event uellement

un ou plusieurs sommets de V\\\. Le present article traite de ce probleme dans le cas

des graphes non-orientes. DifTerentes modelisations y sont examinees, ainsi que des

methodes de solution basees sur la technique de la relaxation Lagrangienne. En guise

de result at s. trois algorithmes sont presentes et testes sur un ensemble de problemes

originalement utilises par Beasley( 1984, 1987 ) dans le cas des graphes non-orientes.
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1. INTRODUCTION

1.1 Graph terminology

A directed graph G = {V, .4} consists of a finite set of vertices \'
(
\V\ = n) and a

set of arcs A (\A = m). Each arc in A is an ordered pair (t'n i<\) of distinct vertices

v,<Vj {A C Y x V). A weighted graph G — {\',A;g}. is the graph G together with

a nonnegative real function g defined over A. Since our concern is only with weighted

graphs, we drop the function g from our notation for graphs unless otherwise specified.

A subgraph G' C G is a graph G' = {V',.4'}, where V1 C \' and A' C A and

such that each arc a^. of G' (o^. 6 -4 ) is incident to the same vertices in G' and in

6'. The weight of a subgraph G , denoted by W(G ), is the sum of the weights cj. (or

c„ for a^. = (v,.i'j)) over all the arcs a^, in .4 .

A scmipalh joining vertices i s and vi in C? is a sequence of vertices r5 ,r5+ i,...,t>i

such that the arc (vs+l . vs+ ,+ \ ) G .4 or (i's+l
-

+ i, i'4+ , ) € A for each 1. A set of vertices

U C \ is weakly connected if there is a semipath of vertices in U joining any pair

of vertices in U . A path from v s to Vi in G is a sequence of arcs in A such that

(v*sV,+ i),(r,+ i,r-+2),....(ra+ i,i'5+ i+ i )...., (f/_i, v*). The path is 5zn?/)/e if all the

vertices {vs ,r5 _|_j, ...,*'<} are distinct. A path is a cycle \{v s — t>/. A set of vertices

S C V is strongly connected if there is a path from any vertex in 5 to any other vertex

in 5 which does not contain any vertices in \ \S. A maximal strongly connected set

is a strongly connected component of G. An arborescence B, {B C G) is a set of arcs

such that

(i) if (vj.U'i),(vj.U'j) are distinct arcs of B. then tr, ^ xr,
;

(at most one arc

entering a vertex)

(ii) B does, not contain a cycle;

(iii) B is weakly connected. (B is a directed tree.)

A graph G = {V, .4} is said to be connected if the set \ is weakly connected.

Let G' = {Y',A'} be a subgraph of G = {Y A} and Y" C V", then 6" is said to be a

connected subgraph with respect to V" if there exists a semipath in G' between each

pair of distincl vertices in V . Furthermore, if G is an aborescence, then subgraph

G 1

is said to be an aborescence subgraph of G with respect to \ , and if V = V = V
then G is a spanning arborescence of G. Note that one vertex in \ is designated as

the root for the aborescence.

1.2 Problem Statement

Let G = {V,,4} be a weighted connected graph. Let V] Cj V and Ct(Vj) = {G, C

6': such that 6', is a connected subgraph with respect to \']}. The problem is to find

the least weight graph in G{\] ). Such graph (denoted by G'(\\ )) is called a directed

Sterner graph of G with respect to \\. If (7*0] ) is an aborescence then it is called a



directed Sterner tree of G with respect to \\ or the minimal arborescence of G with

respect to Vj. The vertices of the graph G*{\\) not from the set Vj, are referred to

as St cine r points.

Our graph notation attempts to tie together the notational conventions developed

by Bondy and Murty (1976), Hakimi (1971) and Tarjan (1977). An arc from t>
t
to v,

is denoted either by {v
t
.Vj) or simply by (i,j) if no ambiguity results.

We restrict the discussion to weighted graphs with strictly positive weight func-

tions and to the problem of finding the minimal arborescence of G with respect to

Vj, i.e., the directed Steiner tree problem. Any solution to this problem, designates

one vertex in Vj as the root vertex of the resulting minimal arborescence of G with

respect to \\. To facilitate the forthcomming mathematical formulations, we aug-

ment the graph G with an additional vertex denoted as vertex and with a set of

arcs ((Li',), for Vj £ \\. The weight function g assigns to these arcs high positive

identical weights to assure only one such arc in the optimal solution to the directed

Steiner tree problem.

The complexity status of the Steiner tree problem on graphs is well settled. Karp.

1972. proves the NP-completeness of this problem by polynomial transformation from

Exact Cover by 3-Sets problem. The problem remains NP-complete if all the arc

weights are equal, if G is a bipartite graph with no arcs joining two vertices in V\

(or two vertices in V \ \\ ). and also in case G is a planar graph. For more detailed

reference list on the complexity of this problem see the classic book by Garey and

Johnson, 1979. As far as a literature review of past research on the Steiner tree

problem on graphs, the readers are directed to the very fine recent paper by Winter.

1987.

2. MATHEMATICAL FORMULATIONS WITH FLOW VARI-
ABLES

In the mathematical formulations that follow, the decision variables are of two

basic types; (i) a binary (selection) variables - g/y, which accept value 1 if the arc

{v
t
,Vj) is selected in the solution and the value if not, and (ii) flow variables either

x ijp (
or x ij) representing the amount of flow through the arc (i>i,Vj) directed from

the root vertex to vertex p in Vj (or the total flow on the arc (v,,Vj)).

2.1 Mathematical Formulation - A

Minimize z = E(jj)€^ c»j»y, 0)

subject to:

- 4



1. for i - 0.

-jei'u{o} -T
'jp ~ ^ierujo} *jip -\ °- for

> + Q,P } for all p - \\ (2

1, for i = p,

*t>p < Vij, for all (rn ^) <E .4. p € V] (3)

x lJp > 0. for all (vi,Vj) e A,p£\\ (4)

y,;
= or 1, for all {v^Vj) £ A (5)

Given the objective of minimizing the total weight of the selected arcs (the arcs

for which y tJ
= 1). the constraints have to ensure the arborescence structure (with

respect to \ \ ). Constraints (2) impose the conservation of flow on all vertices in

^ \ Ol U {0}) an<^ ensure that one unit of flow leaves the root vertex for each

destination vertex p in Vj. Constraints (2) also state that one unit of flow reaches

each vertex in \\. Thus, there has to be a path (in G) from the vertex to each one

of the vertices in Vj. Constraints (3) ensure that flow is allowed only through the

arcs selected in the solution. Constraints (4) are the flow nonnegativity constraints

and (5) are the binary value constraints for the appropriate decision variables.

A note In case the weight function g of the graph G = {\ ,-4;g} is not strictly

positive, then in order to ensure a tree structure for the solution to the MDSTP we

add the constrains ^2,^\-y,j — 1 for all j f \\ (2a). Since in this paper we restrict

the discussion to strictly positive functions g. constraints (2a) are redundent and

subsequently dropped.

A more compact mathematical formulation to the one presented in (A) is ob-

tained by simply aggregating constraints (3) with respect to the index p. In this case

we obtain:

UpeV] ?ijr - fi'lMiji for a11 («'i> rj) £ A
(
3 ")

We denote the mathematical formulation which contains the equations (1), (2).

(3'), (4), and (5) as (A').

It is of interest to examine the implications of aggregating constraints (3) into the

form of (3'). Since both formulations construct the same weight solution if solved op-

timal}-

, what could be the advantage of attempting to solve one set of equations versus

the other set of equations ? The answer to this question is in most cases experimental

in the sense that a number of researchers (Magnanti and Wong, 1981, Cornuejols et

al., 1977) were much more successfull in constructing efficient solution schemes for

the disaggregated formulation (A) than the more compact (A') formulation. In

order to formalize this experimental experience we examine the linear programming

relaxations (constraints (5) become > 0. and y tJ
< 1 for all (Vj,i'j) t .4 ) of both

- 5 -



formula lions. Denote ihe objective function value for the LP relaxation for (A) as

:£p and for (A') as ~ip-

Theorem 1
..4 v, _A'
~LP - -LP-

Proof : It is clear that any feasible solution for llie linear programming relax-

ation of (A) is also feasible for the linear programming relaxation of (A'). In the

reverse direction this is not true in general. One can illustrate it by examining a

equilateral triangle graph with 4 vertices, (one in the center) and 7 directed arcs (see

Figure ] ). The \\ se1 consisls of vertices ] and 2.

Figure 1 : Equilateral triangle graph.

The flow variables x§$\ = 2,X3j] = 2.r]->i = 1.^201 = 1 are dearly feasible in

the LP relaxation for (A') and not feasible for the LP relaxation for (A) •

Given two (different) equivalent integer programming formulations (Pi ) and (P2)

for an optimization (minimization) problem. Denote by (RP1) and (RP2) the respec-

tive formulations obtained by relaxing the integrality constraints. If :j?p\ > ~RP2
and not equal in general, then formulation (Pi) is called a strong formulation

with respect to (P2). This concept of strong formulation is stated in Geoffrion, 1979

and Van Roy, 1986.

In our case, we proved that (A) is a strong formulation with respect to (A').

The next mathematical formulation for the minimal arborescence problem with

respect to Vj requires only two indices for its flow variables. It is based on a similar

TSP formulation from Gavish and Graves, 1982.

Mathematical Formulation - B

Minimize z = E(iJ)£A cijVij^ (6)

- 6



Subject to:

EJ=l**>-5:?=o*i* = -l. for all A £ \\ (7)

EJ=i **j - E?=0 *i* = 0, for all * € V \ V] (8)

a*ij < l^ilyjj, for all (v
t
.Vj) 6 -4 (9)

•r
?J
> 0. for all {vi,Vj) e A (10)

y Ij?
= or 1 for all [vi,vj) € A (11)

The formulations (A) and (B) are equivalent in terms of determining the same

optima] solution. In terms of the linear programming relaxation, formulation (A)
is a strong formulation with respect to (B) (the proof of Theorem 1 holds for this

case too). What is also clear is that any feasible solution (in terms of flow) of the

LP relaxation for (A') is also feasible for the LP relaxation of (B) and visa versa.

Thus. (A') and (B) are fully equivalent.

3. MATHEMATICAL FORMULATIONS WITHOUT FLOW VARI-
ABLES

3.1 A Note on the Minimal Spanning Arborescence Problem - (MSAP)

When attempting to solve the MDSTP on a graph, one usually reexamines the

very similar 'easy
1 problem of constructing a minimal cost spanning arborescence

(MSAP). In all the formulations of MSAP which are known to the authors, flow

variables are used (see for example Gavish, 1982) in the same fashion as in the MDSTP
formulations presented above in Section 2.1. Aneja, 1980, presents a formulation of

the MDSTP without the flow variables. His is a set covering formulation in which

the number of constraints grows exponentially with the size of problem instances.

We present a very simple formulation of the MSAP which does not require flow

variables nor does the number of constraints grow exponentially with the size of

problem instances. In this new MSAP formulation we 'borrow' a version of TSP
subtour elimination constraints (Miller. Tucker, and Zemlin, 1960).

Minimize z = E(i,j)€j4 cijVij

Subject to

E?=o3^ = l for all; = 1,2,..., 77 (12)

v, - vj + nyij < (n - 1) for all ij G V U {0} (13)

yij
= Oor 1 for all i,j e V U {0} (14)

where u , and v, are arbitrary real numbers.



Note that those cycle (subtour) elimination constraints (14) are for all i,j €

V U {0} including the 'artificial' root vertex (contrary to i,j / in the TSP
formulation). Also note that the TSP subtour elimination constraints of the type

!EtesS c~sVij < l^j
_

1 and ^tzs^iesyij — ^ ^or a^ ^ - ^ would not be appro-

priate for this MSAP formulation.

3.2 Set Covering Formulation - C

First, we present a set covering type formulation for the MDSTP, modified for

the directed graph by Wong, 1984, and originally presented by Aneja, 1980, for the

undirected graph.

Minimize z = T,(ij)eA cijVij (
15

)

Subject to:

^(tj^AaeNujeNi y >J - 1 for a11 Al - V such tha1 ° G Al and ^ n Vl ^
(16)

(A] denotes the complement of N\ in V)

yij = or 1 for all (2,7) € A (17)

In his solution scheme for formulation C, Aneja. 1980. solves optimaly the linear

programming relaxation of C. An interesting result due to Wong, 1984. is that

z£p = ~jp(> zfp =
~ip)- (I.e.. the linear programming relaxations of the set

covering formulation C and the flow formulation A. have the same optimal values.)

The number of constraints in formulation C is exponential in the size of the

problem. There is too little 'structure' in this formulation to be usefull in Lagrangean

relaxation schemes. In order to amend this 'weakeness
1 we add a number of redundent

structural constraints in the next formulation.

3.3 Modified Set Covering Formulation - D

Minimize z = E(»,j)€j4 cijVij (
18

)

Subject to:

i:?=0 ytJ
= 1 for all j eli (19)

Z(ij)€AVij > K\ - 1 (20)

v, - 11 j + ny
tJ
< (n - 1) for all (i, j) G A (21)

^Uj)^C(p) Vij > 1 for a11 P ^ V] and all cuts {C(p)} (22)

where C(p) is a cut (a subset of arcs in A) between the vertex and the vertex

p€ \\

- 6 -



y,j = or 1 for all [i.j) £ .4 (23)

v, and Vj are arbitrary real numbers.

The objective function (18) and the constraints (22). (23) define the MDSTP in

a formulation equivalent to C. Constraints (19), (20). and (21) are redundent. The
constraints in (19) ensure that only one arc enters each vertex in \\. Constraints (20)

state that at least \VC \

- 1 arcs are selected in any solution where initially \'
c = \ \ and

in principle \\ C V'c . Constraints (21) are the subtour elimination constraints. Con-

straints (21) are not the 'complicating' constraints in this case. The complicating

constraints are the set covering constraints (22) which ensure a tree structure solution

which spans all the vertices in \\. Dropping the constraints (22) results, through the

(21) constraints in a minimal weight forest solution to the remaining problem.

Corollary 1: -fp > c£p ( = cfp ).

This result simply follows from the fact that we have added constraints (19) to

an equivalent formulation to C. The other constraints types ((20) and (21)) would

be satisfied in the C formulation through constraints (16).

4. LAGRANGEAN RELAXATION

In this section we describe a number of Lagrangean relaxations for the mathe-

matical formulations presented in Sections 2 and 3. Lagrangean relaxation approach

for solving 'hard' problems is based on the observation that by removing the compli-

cating constraints from a mathematical formulation, the resulting problem is 'easily'

solvable. A solution to the relaxed problem constitutes a lower bound on the solution

to the original problem. The thrusl in such an approach is to obtain a maximal lower

bound which, if il does not solve the original problem, can be integrated into an

implicit enumeration scheme such as branch and bound.

4.1 Lagrangean Relaxations of (A)

We present two Lagrangean relaxations of formulation A. In the first one the arc

selection constraints are relaxed, resulting in a shortest path type problem. In the

second relaxation the conservation of flow constraints are moved into the objective

leading to a more difficult subproblem.

4.1.1 The First Relaxation

In formulation (A), the complicating constraints are the arc selection constraints

(3). which ensure that the unit flow from the root vertex to a vertex p.p £ V\ passes

only through the arcs selected in the solution. Below we present the Lagrangean

relaxation obtained by moving the constraints (3) multiplied by nonnegative \
lJ} ,

into the objective function. For a given vector of multipliers A. the problem is

- 9 -



Minimize z{\) = L(ij)£A cijVt) ~ £>{i,j)eA £>p£V
:
\jpiVij ~ Xijp)

which after rearrangement of terms has the following form

Minimize z(\) = L(i,j)eA( cij ~ ^p€l'i X ijp)y>j + £>(i,j)€A £>p£V1
X ijP*ijp (24)

Subject to:

(1,

for i = 0, -\

0, for i ^ 0,j> > for all p G V'i (25)

-
1 , for i = p, J

< xijp < 1, for all (t,j) e A,p € V] (26)

y,j = Oor 1. for all (*,j) € ^ (27)

The 'best" Lagrangean value is obtained by maximizing z(\) over nonnegative

\' s (Aj,p > 0. for all {i,j) € -4.p € V'j ). For those optimal Lagrangean multipliers

(A^p) the following relationship holds (see Gavish, 1978, and Wong, 1984. for the

dual formulation of A):

Cij - Epev, \)p > for a11 («»J) € ^4 (28)

By observing that the above ((24) - (27)) Lagrangean formulation has the Inte-

grality Property (Geoffrion, 1974). the lower bound value obtained for the MDSTP by

solving (24) - (27) is equal to the value for the linear programming relaxation to the

problem. In this case, the main advantage for examining the Lagrangean relaxation

of A would depend on how fast, in comparison, can such a relaxation be solved. In

addition, such a solution could be more amenable for developing good heuristics.

The (28) inequalities suggest a fast solution procedure to obtain the maximal z(\)

solution for the Lagrangean relaxation of A based on the repeated use of the shortest

path algorithm with cost modifications along the way. In the algorithm outlined

below, we succssively adjust the values of the A^'s using the subgradient method

described in Held et al. ( 1974 ) while preserving the dual feasibility of these multipliers

via the (28) inequalities. We enforce for all (i,j) G A throughout the algorithm

below (in each modification of multipliers) the following constraints : Y*,p£\\ \jp —

C{j. Then the objective of the Lagrangean problem is equivalent to a shortest path

problem.

Denote by z(LAl(p)) the value of z(LAl) obtained by the Algorithm LAI outlined

below, given that p, (p £ \\) is the root node of the Steiner tree. Denote by z(LAl(p))

the weight of the tree generated by z(LAl(p)) solution (i.e., assign the actual costs

c
tj to the arcs in the Steiner tree). Let Sp(l,p) denote the shortest path from / to p

in the network with arc costs (Ajjp),(i,j) G A.

- 10 -



Algorithm LAI

Step : (Initialization)

Set \ lJp
= r& for all (i, j) G A,p £ Vj

:r (^)fce5/
= 0? -fees* - °°i I <er - Or Implter = 0;

Idivide = (preset parameter); 6 = 2; Iterlim = Maximum number of iterations;

e,S = smaller gap on <$;efces f
= relative precision desired on z(\)i>esi ;st =

Step 1 : Solve the following (Lagrangean relaxation) problem:

mine] — ^peVj ^2(ij)£A ^ijpx tjp subject to constraints (26) and (27).

This problem can be solved with a shortest path algorithm as follows:

For each p £ Vj compute all the shortest paths from p to k £ V] using arc costs

{^ijp} an d denote its cost by Sp . Select the solution with the minimal Sp value.

Step '2 : Updating the bounds

Lower bound :

Ifz(X) > z(X)best then

z (*)best = Z
(
X )- and for all {iJ) £ A.p £ \\ , \ lJp {best) = \ ljp^ ljp {best) =

"),jp,st(best) = st, Implter =

Upper bound :

Consider the subgraph G = (V U {0},.4 ) where A — {(i,j)\Xjjp > for some

p £ V]}. Obtain the shortest path tree structure for this subgraph by computing the

shortest paths from to each node of \\. Let {y tJ
= 1} for each arc [i,j) in this

shortest path tree and otherwise.

The current solution vector (y, r) is always feasible for the original problem and

its cost Zf{y,x) = T,(i,j)€A cijyij

IfzfiV,*) < -best then

zbest = ~f(y,
x ), Implter =

Step 3: Updating A

(i) //Implter = Idivide then

Change the value b and restart from the best solution z(\) besi (i.e.. 6 = <V2,

Implter = 0. z(X) = z{\) htsi .st = st(best)/2. \ lJp
= X lJp {best),'}lJ j

l
= ~, ljp(best) for

all(t,j)e A,p£ Vi).

- ii -



Else : Compute the ascent direction *) and 1 lie step st for the current

solution.

~),jP = *ijp ~ y,j- for all {i,j)e A,p6\'\

_. *(-„„,-:(A))
st " IMP

(ii) Ayp = Ay,, - **7yp , (*\j) £ -4 -P £ 1 1

The new multipliers Ayp are obtained by solving the following problem:

min{||A - A||;EpeV, *ijp = cij,\jP > 0,(t,j) 6 A,p € Vi}

The vector A is the projection of A on {Xlpet'i Ayp = Cy,Ayp > 0,(2. ji) 6 A,p 6

Vi)

:Vo/f : The solution of the projection problem follows the procedure suggested

by Held et al. (1974. pp. 77).

Step J, : Sloping Conditions

(a) If Iter > lterlim then Stop

(b) If 6 < (6 then Stop

<
c)If '%)[,?"' < gfert then Stop

Otherwise Go To Step 2

4.1.2 The Second Relaxation

Following a different relaxation approach, we dualize on the flow constraints (2)

using \jp as the Lagrangean multipliers. The number of multipliers reduces to n\\\ j.

which is considerably less than in the previous relaxation. The objective function

becomes:

Minimize r(A) = T,(iJ)eA cijVij ~ Ep€V, *0p(Ej€V *0jp ~ Zj£V *jOp ~ 1)'~

Ep€l'i ^pp(Ej€V 'pjp-Zj'eV :rjpp+ 1
)
-
3It6l/,i^0,pSp€Vi ^tp(Ej€V *yp~Hj€V *7«p)

After rearrangement of terms the objective is converted to:

Minimize z{\) = H[ij)€A ctjVij + £p€lr
, E(ij)€ i4 *yp*yp ~ £p€Vi copp (30)

Subject to (3), (4), and (5) where cljp = \
Jp

- X ip for all (i,j) € .4 and p 6 Vj.

Note that the Ay's in this relaxation are unrestricted in sign and the Cy„ can be

handled implicitly storing n" entries instead of n entries.

- if? -



In order to strenghten the lower bound obtained from such a relaxation we amend
it with the following constraints:

^..eWij > 1 for all j 6 V] (30)

and xjjj — y,j for all (i,j) E .4 and j £ V] (31)

The constraints (30), (31) are redundent in the formulation A, but are helpful

in increasing the Lagrangean bound. Note also that (30) is a relaxation of the (tree)

constraint which ensures that only one arc enters a node in \\ (i.e., Y*i£V Vij — 1 f° r

all j G \\). The 'tree
1

constraint is tighter but not easily solvable.

Before presenting a solution procedure for the problem defined by (29), (3), (4),

(5), (30), and (31), we make the following observations:

(i) From the selection constraints (3) we notice that:

(a) If y,j - then x,
Jp

= for all p 6 V\

(b) U VlJ
= 1 then

(I) x^j = 1 which follows from (31). and

(II) Xijp
= 1 if c lJp < 0. and .r,

;/
,
= 0. if c,

Jp
> A/> ^ j.

Note that for the same reason as in the first relaxation of A. the maximum lower

bound for the MDSTP obtained by solving this relaxation can not exceed the bound

obtained from the linear programming relaxation of the problem.

Algorithm LA2

Slip 1: (Initialization) Set X,
p
= \®'

; Iter = 0: Implter — 0; -(A)^fs/ = 0:c5fs/ =

cost of the best feasible solution found so far; Idivide = preset parameter; b — 2: si -

0: Iterlim = maximum number of iterations; tf, — smaller gap on ^;t;,<5 /
= relative

precision desired on ~{X)f.tesi .

Note that A^ are randomly generated, z^^ is obtained by computing the shortest

paths from one node of \\ to all other nodes in \
]

Step 2: Solve the Lagrangean Problem:

Iter = Iter -f 1, Implter = Implter + 1. Set y tJ
= 0.x lJp

= 0. for all (i.j) £

A,p£ V].

( 1 ) For each arc [i.j) € A

(i) Compute M
tJ
= ci} -f ^2p€\\jx£j min{0: c IJp }

(ii) If j
' t V] set M,j = M,j -+ c,jj

(iii) If M,j < then set y tJ
= 1 and
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For all p £ \\ set

Xijp

1 for Cijp < or j
' = p

otherwise

(2) For each j G Vj, if M
tJ

> for all (i,j) € j4 then determine / such that

Mjj - minj./j j)£A{Mij} and set y/, = 1, for all p such that c/
jp

< or p — j set

xjjp — 1, otherwise set x lJp
— 0.

(3) Compute z(\)

Step 3: (Updating the bounds)

(l)Ifr(A) > :(A)
fce^ then

z(*)best = ~(A).A
fcf5/

= A.-)
?P
(^5/) = 7ip , st(best) = st, Implter = 0.

(2) If the solution (?/..r) is feasible for the original problem then compute its cost

and denote the value by Zf.

If Zf < zt,es1 then set ziesi = zf. Set Impiter = 0;

Step J,: (Updating the A)

(i) If Implter = Idi vide then set 6 Implter = 0. s(A) = z(A)
fcf5f

,s/ =

st{best)/2.X ip = \,r
(best).~

llJ
= Jjp{best)

for all i € V',p 6 V],

f/st compule the ascent direction - and the step st

*>ip H (E;€V *!> ~ Ej€V ^ji'p) for a11 P e ^l-' ^ °>P

v(E>ev xpjp
_ Ejgv -tjpp + ]

)
f°r a11 pel]

imi

(ii) Ajp
:= Ajp

- stfip,i € V,p € U]

Step 5: (Stoping condition)

(a) U Iter > Jterlimit Stop

(b)lfc<e
(S

Stop

(c) If ^-y )bf< '

<<6»* Stop
: (<^Uejf

^



Otherwise Go To Step 2.

4.2 Lagrangean Relaxation of (D)

The complicating constraints in the D formulation are the set covering - (22)

constraints. The major difficulty is that the number of constraints in (22) is expo-

nential in the size of \\ set. On the other hand the number of y tJ
variables is exactly

n(n - l)/2. This implies that in the linear programming relaxation of this formula-

tion, most of the constraints in (22) are nonbinding. The difficulty lies in finding the

binding constraints. By removing the constraints (22) and adding them to the objec-

tive function multiplied by the appropriate (nonnegative) Lagrangean multipliers we

obtain the following relaxed formulation:

Minimize z{\) = E(i.j)eA c rjV'j + ^c
r
,eU *cp

(l " E(i,j)eC(p) ^j)

Subjecl to constraints (19). (20). (21) and (23) where II is the index set of all

cuts Cp between the vertex and the vertices p £ V\.

This formulation can be rewritten as:

Minimize z(\) = ECp€ n A
<->

~ —(ij'M ^ijVij (
32

)

Subjecl to constraints (19). (20). (21), and (23) where:

•cjj - Hc
Teu -V> for (*»i) £ &(p) for some P ^ V]

cu

tor(iJ)#C(p)

This last problem ((32). (19). (20), (21). and (23)) for fixed values of A can be

solved in polynomial time. (Again from Lagrangean duality we get c
tJ

> for all

{i.j) £ A.) For a given A vector denote this problem by LDl.

The question now reduces to one of finding A* which maximizes the value of z(\).

i.e., z(X*) = Maxx> {z(X)}.

Theorem 2 : r(A*) > rfp .

Proof : This result is based on the observation that the set of constraints (19),

(20), (21). and (23) do not have the Integrality Property (Geoffrion. 1974,).

4.2.1 Dual Ascent Procedure for Initial Ap Values

In this section we describe a dual ascent procedure for computing a lower bound to

the undirected version of the MDSTP using the D formulation of the problem. Mod-

ifing this dual ascent procedure for a general directed graph is left as an algorithmic

exercise.
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First we explain and provide an outline of the algorithm followed by a small

numerical example and conclude with a detailed description of a dual ascent procedure

for finding good multipliers to LDl.

The algorithm begins by solving the problem LDl with \'
c = {0} U \\ and all A

values equal to zero. Let Lq be the cost of this solution. The network structure of this

solution is that of a 'sparse' forest F of disconnected components. In case of a directed

graph, this problem can be solved with a modified Tarjan's algorithm (Tarjan, 1977).

We differentiate between two component types. Components which contain at least

one node belonging to \\ U {0} are denoted by T = {Tq. T\, T2, ...}, where Tq is the

component which contains the root node. The second set of components consists of

the points S, 5 C V \ V] not contained in any of the components in T.

At this point we pick a component Tf,.k 4- 0. and compute the minimal cost

of expanding this component. Let b\. — Min.^j zer\Tjt{^n}- &h i & * ne multiplier

value over the cut seperating the nodes in 7^ from all the other nodes. The cost

matrix is updated to:

Cij - 8k for all j 6 Tk . i e V\ T
k

-
Cij = J (33)

* c
} j

otherwise

As a result of cost matrix update, one or more arcs on the cut have a reduced

cost of zero.

Let Lft
(

— Lq _ + &ft
where t is the iteration number.

The component Tk is merged via the zero cost arcs with a number of other

components. This process continues till Tk is merged with Tq at which point another

component in T is selected. At each iteration at least one component is added to 7),

thus this merging of components stops at most after \S\ -j- jT| — 1 steps. When the

process is completed we have only one component Tq which contains a subset S\ of

nodes (Steiner points). 5] C V \\ \. We remove from Tq all the nodes s,s £ S\ which

are dangling nodes (i.e.. their degree is < 1). Let Sq be the set of terminal nodes.

LB = L B
}
- ^2seSo cP>-s

where p s is the adjacent node of node s.s £ Tq. This last 'trimming* step is

repeated until all the terminal nodes (degree < 1) are nodes in \\ only.

Lq is the lower bound value to the MDSTP.

In order to illustrate those steps we use the following example. The example

consists of 3 required nodes (1. 3. and 4. where node 1 is designated as the root node)

and 4 potential Steiner points. The network matrix (the arc weights) is symmetric,

which in the directed graph version implies two arcs of the same weight and oposite
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direction between two adjacent nodes of the graph. The initial lower bound obtained

for this example is 5. The lower bound after two multiplier adjustments is 8. while

the optimal solution to the problem is 9.

Example 1 :

1 2 3 4 5 6 7

1
- 3 5 5 6 6 4

2 3 - 3 3 4 4 6

3 5 3 - 5 1 6 7

4 5 3 5 - 6 1 H

5 6 4 1 6 - 7 8

6 6 4 6 1 7 - 9

7 4 (i 7 8 8 9 -

Figure 2 : The original 'distance" matrix.

The initial 'forest' solution connects node 1 to node 2, node 3 to node 5. and

node 4 to node 6. This solution has a value of 5. We pick the tree containing the

nodes 3 and 5 together with the arc from 3 to 5 as our Tf, tree in the algorithm. The

corresponding <*>] value is 3 (the arc weight from node 2 to node 3) and the new lower

bound is 5 4- 3 = 8. The modified distance matrix is as follows:

<

] 2 3 4 5 6 7

1 - i 3 2 3 6 4 4

2 3 - 1 1 2 i 6

3 2 - 1 1 4

4 3 1 1 1
!
6

5 3 1 1 1 - 2 5

6 4 2 1 1 2 -
i

7

7 4 6 4 6 5 7 !

-

Figure 3 : The modified 'distance
1

matrix after one descent.

A new tree is selected since the previous one contains the root node 1. The new

tree is the arc from node 4 to node 6 together with the two nodes. The new bj.

corresponds to the arc from node 3 1o node 4 and has a weight of 2. The new lower

bound is 5 -f 3 -f 2 = 10. Since the expanded new tree contains the root node and

there are no trees remaining, we trim the tree from the dangling not required nodes

and obtain a tree which contains the nodes 1, 2. 3, and 4 and the arcs (1.2), (2.3).
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and (3.4) for the total of 10 - 2 = 8. This solution corresponds to a feasible Steiner

tree of value of 11 instead of the optimal value 9.

1 2 3 4 [ 5 6 7

1 - 3 2 3 6 4 4

2 3 - 1 1 2 6

3 2 - 1 1 4

4 3 1 - 1 1 6

5 3 1 1 1 - 2 5

6 4 2 1 1 2 - 7

7 4 6 4 6 5 7 -

Figure 4 : The final modified 'distance' matrix.

4.2.2 The Dual Ascent Algorithm

Step 1 : We start with all \Cp = and solve the problem ((32). (19). (20).

(21), and (23)) to obtain z(0). The solution to this problem is in the form of a not

necessarily connected set of trees T which might not include all the nodes in Y (i.e..

a 'sparse' forest ). In case we obtain only one tree then we have the optimal solution

for the Steiner tree problem. Denote by Lq the cost of this solution.

Step 2 : Let ;T| be the number of trees in the forest and let Tf, be the set of

nodes in tree k. One of these trees contains the root node. Denote that tree by Tq.

Denote by S the set of nodes in \ \ ^'_q7^ (i.e.. the potential new Steiner points).

Step 3 : Pick one of the trees in T \ Tq. Tree Tm for example. Compute

Let: LB = LB + A, c
tJ
= c;j - A. for all i £ Tm ,j g Tm . or j £ Tm ,i £ Tm

Step ^ : ( Merging) Every component in T \ Tm and S with exactly one zero

cost arc to Tm (i.e., c,, = j £ Tm ,i $ Tm ) is merged with Tm creating a new

forest. (In case of components with multiple zero cost arcs to Tm see Remark 1.)

Rename the trees in the new forest. Repeat Steps 3 and 4 until Tm is merged with

To.

Step 5 : If jT| ^ 1 then go to Step 2, otherwise: eliminate all the terminal

nodes in Tq which belong to V \ Vj and reduce the corresponding Lg value by the

corresponding arc costs. I.e.. Lq = L B -
*EL seSo cPs-s- ^B ls * ne l°wer bound value

for the Steiner tree problem.

Remark 1 : If we add multiple zero cost arcs between Tm and another tree in
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T then a cycle is created. Thus, at each merge operation only one arc can be added

between any pair of trees. Since without loss of generality we can assume (different
)

integer arc weights, we can expect that the number of zero cost arcs between a pair

of trees in a merge step is small. This suggests a parallel processing algorithm for

the construction of the new trees (merged trees) at Step 5. In each case were more

than one (say k) zero cost arc exists between a pair of trees, k new merged trees will

be stored and processed in parallel. At the end, following Step 5, we obtain the best

lower bound by examining all the trees grown in parallel.

5. COMPUTATIONAL RESULTS

The solution methods which were developed and described in the previous sections

provide a lower and upper bounds on the value of the optimal Steiner tree solution

for a given graph. Optimal solutions were obtained for the problems for which the

diflerence between the value of the upper bound and the lower bound was less than

one. In order to investigate the comperative performence of the solution methods

developed in this paper, they were programmed and tested on a set of problems

taken from Beasley (1984). We present the results of these tesU in TABLE I

below. The algorithms LAI and LA2 were programmed in FORTRAN and the Dual

Ascent Algorithm (D.A. Algorithm in Table I) was programmed in PASCAL. The

data set is the one tested in Beasley ( 1 984 ) and consists of 18 randomly generated

problems for undirected graphs. For algorithms LAI and LA2 we have considered the

directed version of these problems by duplicating each arc and assigning directions.

The three algorithms were tested using a VAX 8600. In all the tests the number of

subgradiant iterations was restricted to 800. the initial fi value was set to 2 and the

parameter Idivide was set to 20 for LAI and to 40 for LA2.
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Problem

Number \V\ \A\ |ll|

Algoritl

Lower

Bound

im LAI

Upper

Bound

Algorithm LA2

Lower Upper

Bound Bound

D.A. Algorithm

Lower i Upper

Bound Bound

1 50 126 9 81.99 82* 81.44 82* 72 83

2 50 126 13 83.00 83* 82.88 90 60 124

3 50 126 25 137.88 138* 137.07 177 107 160

4 50 200 9 59.00 59* 58.95 77 48 93

5 50 200 13 60.98 61* 60.58 65 49 109

6 50 200 25 121.65 122* 121.33 148 84 154

7 75 188 13 110.97 111* 108.79 123 92 138

8 75 188 19 103.99 104* 101.81 118 73 125

9 75 188 38 219.79 220* 207.81 234 207 255

10 75 300 13 85.90 86* 84.81 124 61 175

11 75 300 19 88.00 88* 87.79 127 64 192

12 75 300 38 172.20 174 166.20 228 139 204

13 100 250 17 165.00 165* 162.77 192 94 263

14 100 250 25 234.91 235* 224.56 277 131 310

15 100 250 50 317.60 318* 301.27
|

353 249 387

16 100 400 17 127.00 127* 122.65 1 162 73 256

17 100 400 25 128.17 131 124.52 143 101 163

18 100 400 50 215.56 218 209.52 ! 280 182 260

TABLE I : Computational results for the three algorithms for Steiner tree

problem on graphs.

Out of the 18 problems attempted. 15 were solved optimally by the LAI algorithm.

Only the first problem was solved optimally by the LA2 algorithm and the Dual

Ascent algorithm did not produce a single optimal solution. In terms of the quality

of the lower bound values, LA Is lower bound values dominate the values generated

by LA2 and the dual ascent algorithm. (The optimal solution is noted by *.)

SAMMERY AND CONCLUSIONS

We have presented a number of mathematical formulations for the directed and

undirected Steiner tree problem on graphs. These formulations have been used to

develop Lagrangean based lower bounding procedures for the problem. In compu-

tational tests (on 18 problems used by Beasley (1984. 1987) for testing undirected

Steiner tree problems), it has been shown that one of the algorithms (LAI
)
generates
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lower bound values thai are close to the optima] solutions. The nonfeasible solutions

generated by the Lagrangean based procedure have been incorporated into heuristics

which attempt to generate "good" feasible solutions. Here again algorithm LAI has

generated optimal solutions to 15 out of the 18 problems. For the other 3 problems

the gap between the feasible and lower bound values were under 2% . Note that in

case of an undirected graph, Beasley (1984) reports solving to optimally only 6 out of

the 18 problems, and Beasley (1987) again for the undirected graphs reports solving

to optimality 15 out of the 18 problems using Cray X-Mp/48 machine. The combined

results (Beasley and ours) solve optimally 17 out of the 18 problems.

Based on the above results, it is our believe that algorithm LAI can be used as

an effective tool in B^ranch and Bound based procedures for solving the problem.

Acknowledgment : We thank J.E. Beasley for providing us with a copy of his test

problems.
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