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Hyperon resonances coupled to pseudoscalar- and vector-baryon channels
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We study hyperon resonances by solving coupled channel scattering equations. The coupled systems include
pseudoscalar- and vector-baryon channels. The parameters of the model are restricted by making a χ2-fit to
the cross-section data on processes: K− p → K− p, K− p → K̄0n, K− p → η�, K− p → π 0�, K− p → π 0�0,
K− p → π±�∓. Data on the energy-level shift and width of the 1s state of the kaonic hydrogen, as well as
some cross-section ratios near the threshold are also considered in the fit. Two types of fit are found as a
result. In both cases, the properties of �(1405) are well reproduced. In addition to this, a � state is also found
with mass around 1400 MeV. Cross sections, obtained with one of the two fits, are found to stay close to the
data at energies away from the thresholds too, and as a result resonances with higher masses have also been
studied.
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I. INTRODUCTION

Investigating low-energy meson-baryon interaction, with
nonzero strange quantum number, is of great importance to
several interrelated topics in nuclear and hadron physics, such
as the determination of the nature of the low-lying hyperons
[1–10], the existence of kaonic-nuclear bound states, which
has motivated several experiments [11–13], studies of kaon
producing reactions which are, in turn, useful to understand
the interactions of kaons in a dense medium [14], etc. The
key motivational idea behind several related works is that
the strangeness −1 meson-baryon interaction is attractive in
nature, and it is especially interesting in the s-wave since,
as now widely accepted, it generates the isoscalar resonance
�(1405). The list of references on this topic is extensive,
but for some of the recent works we refer the reader to
Refs. [15–23]. A lot of effort is being put in by the lattice
community too, bringing valuable information on the topic
[24–30].

There exist evidences for the presence of an isovector
resonance too in nature, with its origin lying in the meson-
baryon dynamics, with a mass similar to �(1405) [3,31–37].
However, the case is less studied, as compared to �(1405),
and the properties of the low-lying 1/2− �(s) obtained from
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different works are different. In Ref. [3], a coupled channel
study of pseudoscalar-baryon systems was made using a ker-
nel arising from s-, u-channel exchange of the lightest octet
baryon and a contact interaction obtained from the lowest
order chiral Lagrangian. The subtraction constant required
to calculate the loop function were constrained by fitting
relevant data available, namely, the K− p → K̄N, π�, π�

cross sections and different cross-section ratios among these
processes at the K− p threshold, as well as the π+�− mass
distribution. As a result, in the case of isospin 1, two �

states were found near the K̄N threshold: 1440 − i70 MeV
and 1420 − i42 MeV. The work was further extended by con-
sidering next-to-leading-order contributions from the chiral
Lagrangian [31] and including data on the energy shift and
width of the 1s state in kaonic hydrogen, cross sections on
K− p → η�, π0π0�, etc. In this latter work, the preferred
Fit II gives rise to two poles with isospin 1 around the K̄N
threshold with pole positions: 1376 − i33 MeV and 1414 −
i12 MeV. There is another fit to data in Ref. [31], called
Fit I, with no isospin 1 poles but it is disfavored by the
photoproduction data of CLAS [6], because the two poles
associated with �(1405) are both clearly above 1.4 GeV.
Independent studies of Refs. [32–36] seem to accumulate
evidences for a Jπ = 1/2− � with a pentaquark nature, with
mass and width 1380 and 60 MeV, respectively, by study-
ing processes different to those considered in Refs. [3,31],
like: K− p → �π+π−, γ N → K+π�, �p → �pπ0, �+

c →
ηπ+�. In addition to these works, the best fit to the data
on γ + p → K+ + �±,0 + π∓,0 [38] required inclusion of
two 1/2− states in the isospin one: (1413 ± 10) − i(26 ±
5) MeV and (1394 ± 20) − i(75 ± 20) MeV. However, a re-
cent partial-wave analysis (s- and p-wave) of S = −1 low-
energy data, including differential cross sections (although
it only considers pseudoscalar-baryon contact interactions),
does not report finding of any 1/2− � around 1400 MeV [39].
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In Ref. [40] too, a study of strangeness −1 coupled systems
has been made including constraints from the CLAS photo-
production data [38] but the discussions made are focused on
isospin zero states. A different analysis of the photoproduction
data, consistent with chiral dynamics and unitarity in coupled
channels, is conducted in Ref. [41] and a �∗ state appears
as a strong cusp around the K̄N threshold, very similar to
the a0(980) shape around the KK̄ threshold. In the present
scenario, it is not clear if an isospin one partner of �(1405)
exists, and if it does, it is not clear if it corresponds to one or
two close lying poles in the complex plane.

Interestingly, in the previous study of S = −1 systems
[37], two isospin 1 poles were found, though they lied deep
in the complex plane, arising from coupled channel meson
baryon dynamics (at 1427 − i145 MeV, 1438 − i198 MeV).
However, the motivation of the work [37], done by two of
the present authors, was to build the formalism to couple
pseudoscalar- and vector-baryon systems, and it was beyond
the scope of Ref. [37] to test if the resulting amplitudes
reproduced different relevant data. Nonetheless, the poles
of the well studied �(1405) were reproduced in agreement
with other works. Besides, the kernels for the pseudoscalar-
baryon (PB) systems in Ref. [37] were obtained from the
contact interaction (the Weinberg-Tomozawa term) coming
from the lowest order chiral Lagrangian and the vector-baryon
(VB) interactions were calculated by evaluating s-, t-, and
u-channel diagrams and a contact interaction. The purpose of
our present work is to improve the model used in Ref. [37] by
including the s- and u-channel 1/2+ octet baryon-exchange
diagrams to the kernels of the pseudoscalar-baryon, which
have been found to play an important role in the generation
of � poles around 1400 MeV in Ref. [3]. The importance
of these diagrams has been pointed out in other works too,
like in Ref. [10], near the K� threshold. The main motivation
of our work is, thus, improving the model of Ref. [37] and
to study the existence of light isospin one resonances, those
in agreement with the ones predicted in Refs. [3,31–36,38].
However, the explicit treatment within coupled channels of
the vector-baryon interactions gives rise to higher-order con-
tributions beyond next-to-leading (NLO) chiral perturbation
theory (χPT). From this point of view, our study can also be
seen as a partial check of the stability of the unitarized NLO
χPT results [31,40].

With the improved PB kernels, we constrain the parameters
of the formalism (mainly the subtraction constants required to
calculate the loop functions), to reproduce different available
experimental data and test if the low lying �s found in
Ref. [37] move closer to the real axis, and could correspond
to the �s found in Refs. [3,31–36]. The generation of the
states like �(1405) or � with a similar mass is not expected
to get important contributions from VB dynamics, but the
inclusion of VB dynamics in the model can be very relevant
in determining useful informations. For example, with our
model we can obtain the R-VB couplings (where R is a reso-
nance, like �(1405), �(1670), etc.), which are required in the
calculations of t-channel diagrams, with a vector exchange,
for processes like the photoproduction/electroproduction of
�(1405). Additionally, with the improved PB kernels and
constrained PB amplitudes, we can obtain more reliable in-

formation on the properties of the hyperon resonances arising
from the vector-baryon dynamics as well.

The manuscript is organized as follows. In Sec. II we dis-
cuss the Lagrangians from which the meson-baryon interac-
tions are obtained and used as kernels to study nonperturbative
scattering in the systems. Toward the end of the same section,
we discuss the idea of carrying out a χ2-fit, the parameters
of the fit, and the data to be considered in the fit. In Sec. III
we discuss the details on the results of the fits obtained. The
properties of the resonances found in our study are also given
in Sec. III, by categorizing them in different subsections on
the basis of their spins and isospins. Finally, we present a
summary of the work.

II. FORMALISM

The problem of hadron scattering gets typically more and
more complex as the energy region to be scanned involves
opening of more and more thresholds to possible coupled
channels. To study hyperon resonances arising from hadron
dynamics, with mass up to about 2 GeV, we implement a non-
perturbative unitarization method by treating crossed-channel
dynamics perturbatively as developed in Refs. [3,42,43].
There is a connection with this method and solving the Bethe-
Salpeter equation for contact interactions [2,44]. We take into
account pseudoscalar- and vector-baryon channels, motivated
by the fact that the thresholds of these channels are spread
over the energy ranging from 1.25–2.2 GeV, and some of
them lie close enough to couple to each other, for example
K�, K̄∗N . The pseudoscalar meson-baryon interaction dia-
grams are deduced from the lowest order, O(p), Lagrangian
[1–3,45–48],

LPB = 〈B̄iγ μ∂μB + B̄iγ μ[
μ, B]〉 − MB〈B̄B〉
+ 1

2 D′〈B̄γ μγ5{uμ, B}〉 + 1
2 F ′〈B̄γ μγ5[uμ, B]〉, (1)

where uμ = iu†∂μUu† and


μ = 1

2
(u†∂μu + u∂μu†), U = u2 = exp

(
i

P

fP

)
, (2)

with fP representing the pseudoscalar decay constant, and P
(B) denoting the matrices of the octet meson (baryon) fields:

P =

⎛
⎜⎜⎝

π0 + 1√
3
η

√
2π+ √

2K+
√

2π− −π0 + 1√
3
η

√
2K0

√
2K− √

2K̄0 −2√
3
η

⎞
⎟⎟⎠,

B =

⎛
⎜⎜⎝

1√
6
� + 1√

2
�0 �+ p

�− 1√
6
� − 1√

2
�0 n

�− �0 −
√

2
3�

⎞
⎟⎟⎠.

The constants F ′ = 0.46 and D′ = 0.8, in Eq. (1), reproduce
the axial coupling constant of the nucleon: F ′ + D′ 	 gA =
1.26.
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Using this Lagrangian, we compute the following amplitudes for the contact interaction and for diagrams involving the
exchange of a 1/2+ octet baryon in the s- and u-channel, which are in agreement with other works [3,10,31,49]:

Vcont (i → j) = − 1

4 f 2
P

√
Mi + Ei

2Mi

√
Mj + Ej

2Mj
Ai j

{
(2

√
s − Mi − Mj ) + (2

√
s + Mi + Mj )

[ 
pi · 
p j + i χ†
j ( 
p j × 
pi ) · 
σ χi

(Mi + Ei )(Mj + Ej )

]}
,

(3)

Vs(i → j) = 1

2 f 2
P

√
Mi + Ei

2Mi

√
Mj + Ej

2Mj

∑
k

Bk
i j

s − M2
k

{
(
√

s − Mi )(
√

s − Mj )(
√

s − Mk )

+
[ 
pi · 
p j + i χ†

j ( 
p j × 
pi ) · 
σ χi

(Mi + Ei )(Mj + Ej )

]
(
√

s + Mi )(
√

s + Mj )(
√

s + Mk )

}
, (4)

Vu(i → j) = − 1

2 f 2
P

√
Mi + Ei

2Mi

√
Mj + Ej

2Mj

∑
k

Ck
i j

u − M2
k

(
u(

√
s + Mk ) + √

s[Mj (Mi + Mk ) + MiMk]

− Mj (Mi + Mk )(Mi + Mj ) − M2
i Mk +

[ 
pi · 
p j + i χ†
j ( 
p j × 
pi ) · 
σ χi

(Mi + Ei )(Mj + Ej )

]

× {
u(

√
s − Mk ) + √

s[Mj (Mi + Mk ) + MiMk] + Mj (Mi + Mj )(Mi + Mk ) + M2
i Mk

})
. (5)

The summation in Eqs. (4) and (5) corresponds to summing the diagrams with different allowed octet baryons exchanged in the
s-, u-channel, respectively, for a given process i → j, with i ( j) [here, and in Eqs. (3), (4), and (5)] representing the initial (final)
state. In these equations, Ml (El ) denotes the mass (energy) of the baryon in the initial/final/intermediate state, represented by
a subindex l = i/ j/k, respectively, 
pl represents the center of mass momentum in the lth channel and Ai j , Bi j , Ci j are isospin
coefficients for different processes. The coefficients Bi j , Ci j , for isospin 0 and 1, are listed in Tables VIII, IX, X, and XI in the
Appendix, where we also give the amplitudes in Eqs. (3), (4), and (5) projected on s-wave. We refer the reader to Ref. [2] for the
constants, Ai j , related to the contact interactions. It must be added here that we consider an octet baryon exchange in the s- and
u-channel, thus, the 1/2− states eventually found in the complex plane can be interpreted as those arising from the dynamics in
the system.

For the vector-baryon amplitudes, we follow the previous work [50], where the problem was studied in detail, using a
Lagrangian based on hidden local symmetry, and it was found that s-, t-, and u-channel diagrams and a contact interaction
arising from two vector field terms give comparable contributions, and must all be considered. We take the following Lagrangian
from Ref. [50]:

LVB = −g

{〈
B̄γμ

[
V μ

8 , B
]〉+ 〈B̄γμB〉〈V μ

8

〉+ 1

4M

(
F
〈
B̄σμν

[
V μν

8 , B
]〉+ D

〈
B̄σμν

{
V μν

8 , B
}〉)+ 〈B̄γμB〉〈V μ

0

〉+ C0

4M

〈
B̄σμνV μν

0 B
〉}

,

(6)

where the subscript 8 (0) denotes the octet (singlet) part of
the wave function of the vector meson (relevant in the case
of ω and φ), V μν represents the tensor field of the vector
mesons,

V μν = ∂μV ν − ∂νV μ + ig[V μ,V ν], (7)

and V μ is the SU(3) matrix for the (physical) vector mesons,

V μ = 1

2

⎛
⎜⎝

ρ0 + ω
√

2ρ+ √
2K∗+

√
2ρ− −ρ0 + ω

√
2K∗0

√
2K∗− √

2K̄∗0 √
2φ

⎞
⎟⎠

μ

. (8)

In Eq. (6), the coupling g is related to the vector meson decay
constant, fv through the Kawarabayashi-Suzuki-Riazuddin-

Fayyazuddin (KSRF) relation,

g = mv√
2 fv

, (9)

with mv being the mass of a given vector meson in the
vertex and the constants D = 2.4, F = 0.82, and C0 = 3F −
D correctly reproduce the anomalous magnetic couplings of
the ρNN , ωNN , and φNN vertices [51–53]. Together with
Eq. (6), and the kinetic term

L3V ∈ − 1
2 〈V μνVμν〉, (10)

it is possible to calculate the s-, t-, and u-channel amplitudes
as well as the contact interaction by using [V μ,V ν] for V μν

in Eq. (6). It was found in Ref. [50] that this contact inter-
action, apart from giving contributions comparable to other
amplitudes, is important to guarantee the invariance of the
Lagrangian under a gauge transformation.
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Finally, the amplitudes for the transition between the
pseudoscalar-baryon and the vector-baryon channels are
deduced from the Lagrangian [54]

LPBVB = −igPBVB

2 fv
(F ′〈B̄γμγ5[[P,V μ], B]〉

+ D′〈B̄γμγ5{[P,V μ], B}〉), (11)

which has been obtained by introducing the vector meson
field as a gauge boson of the hidden local symmetry in the
nonlinear sigma model. The procedure is, thus, like extending
the Kroll-Ruderman term for the photoproduction of a pion,
replacing, inspired by the vector meson dominance, the pho-
ton by the vector meson [54]. The constants, F ′ and D′ are the
same as those defined for Eq. (1).

The formalism has been applied to study meson-baryon
systems with various quantum numbers in Refs. [37,55,56]
and, in fact, different vector-baryon amplitudes as well as
those for the transition between pseudoscalar- and vector-
baryon channels are taken from Ref. [37] for the present
work. Though, it must be mentioned that the formalism in
the present work is more elaborate, as compared to our pre-
vious works, since we include s- and u-channel octet baryon
exchange diagrams for pseudoscalar-baryon interactions here.
The contributions from these diagrams have been found to
play an important role in the formation of isospin one res-
onances near 1400 MeV [3,31] and it is the purpose of the
present work to constrain our amplitudes to reproduce the
experimental data in the low-energy region and investigate the
formation of isospin 1 states around 1400 MeV.

To proceed further, we unitarize the tree-level meson-
baryon amplitudes calculated from the Lagrangians intro-
duced. The resulting expressions [3,42] are the same as ob-
tained by factorizing on-shell the potential in a Bethe-Salpeter
equation [2,44]. Though used extensively, a few words to
motivate the on-shell factorized form are in order here. Such a
method is inspired by the fact that for a contactlike interaction
potential V , when projected in s-wave and iterated in the equa-
tion, produces an off-shell dependence which leads to tadpole-
type loop integrals whose contributions can be absorbed in
the parameters, like the pion decay constant, appearing in the
kernel (see, for example, Ref. [44]). Thus, one could work

with an s-wave projected potential V in which the original
pion decay constant, which could be considered as a kind of
bare decay constant, is substituted by a dressed one and elim-
inate the associated tadpole Feynman diagrams related to the
off-shell part of the kernel. Another motivation for the on-shell
approximation comes from the two-body unitarity in coupled
channels and implementation of a dispersion relation for the
imaginary part of the inverse of the T -matrix considering the
physical (or unitarity) cut (see, for example, Ref. [42]). In both
cases, a divergent loop function of two hadrons appears and
needs to be regularized. The method differs from the field-
theoretical standard procedure of canceling such divergences
by adding counter-terms in the Lagrangian used to determine
the kernel V, a fact which gets reflected in the regularized loop
function through the appearance of the unknown subtraction
constants, which need to be fixed, for example, by fitting the
data. By fixing them, one is somehow generating the counter-
terms in the on-shell factorization scheme, since such a sub-
traction constant can be somehow reabsorbed in the kernel V ,
when iterating it in the Bethe-Salpeter equation, producing a
new kernel. This procedure is explained in detail in chapter
7 of Ref. [57]. When the potential V also contains crossed-
channel cuts this unitarization procedure can be applied by
matching algebraically (not numerically) the unitarized result
with the perturbative one order by order, as explained, e.g.,
in Refs. [3,43] or in chapter 10 of Ref. [57]. This is the
method that we are using here where V also contains the u-
channel exchange of the lightest 1/2+ octet of baryons. Either
way, the so called on-shell factorization has been remarkably
successful in understanding, reproducing and predicting the
properties of many of the resonances observed in nature, like
σ (600), f0(980), a0(980), �(1405), etc., proving its reliability
in a study like the one at hand.

With the lowest-order amplitudes discussed in this section
we solve the Bethe-Salpeter equation in its on-shell factorized
form and make a χ2-fit to the data. The parameters of the fit
are:

(1) The subtraction constants required to calculate the
loop integrals with the dimensional-regularization
method,

G(
√

s) = i2M
∫

d4q

2π4

1

(P̃ − q)2 − M2 + iε

1

q2 − m2 + iε

= 2M

16π2

(
a(μ) + ln

M2

μ2
+ m2 − M2 + s

2s
ln

m2

M2
+ q̃√

s
{ln[s − (M2 − m2) + 2q̃

√
s] + ln[s + (M2 − m2) + 2q̃

√
s]

− ln[−s + (M2 − m2) + 2q̃
√

s] − ln[s − (M2 − m2) + 2q̃
√

s]}
)

, (12)

where P̃ is the total four-momentum, M (m) is the
mass of the propagating baryon (meson), and q̃ =
λ1/2(s, M2, m2)/2

√
s, a(μ) is the subtraction constant

at a regularization scale μ = 630 MeV. In line with
the discussions on the on-shell factorization form of
the Bethe-Salpeter equation, the implementation of

coupled channel unitarity relates the imaginary part
of the inverse of the T -matrix to the phase space for
the corresponding elastic transition. In this way, when
implementing a dispersion relation for the inverse of
the T -matrix with a constant subtraction, it is expected
to have one subtraction constant for each elastic tran-
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sition, i.e., one subtraction constant for each coupled
channel. Using isospin average masses for members of
the same isospin multiplet, we would have a subtrac-
tion constant for each coupled channel in the isospin
base. Since a fit is made to both isospin 0 and 1 ampli-
tudes, we have 14 subtraction constants as parameters,
corresponding to the channels: K̄N , K�, π�, η�, π�,
η�, K̄∗N , K∗�, ρ�, ω�, φ�, ρ�, ω�, φ�.

(2) The decay constants of the mesons. In general, differ-
ent mesons have different decay constants. We could
fix the pseudoscalar and vector-meson decay constants
to their physical values. However, it is quite common
in this kind of calculations to use a unique value for the
three pseudoscalar decay constants, which typically
corresponds to the value of 93 MeV, which is the pion
decay constant (see, for example, Ref. [44]), or an
average of their physical values for all of them (see,
for example, Refs. [2,4]). The same thing can be said
for the vector decay constants. The motivation being
that a change in the value of the potential obtained at
O(p) by modifying the decay constant used, can be re-
absorbed in the value of the subtraction constant used
to regularize the loop, producing mild modifications on
its value. In the present work, where we we unitarize
the tree-level amplitudes at O(p) and in which the sub-
traction constants are obtained by fitting the data, we
have continued adopting the widely used strategy of
using an average value for the pseudoscalar decay con-
stants and an average value for the vector decay con-
stants. We allow them to vary mildly from their phys-
ical values, so that such an option could correspond to
higher order corrections of the O(p) T matrix.
Besides, not all decay constants are well known, as is
the case, for instance, of the K∗-meson (see Ref. [58]
for one of the latest calculations from lattice). Even in
the case of pseudoscalars, the extraction of a precise
value of the η-meson decay constant still seems to be
under investigation [59,60]. Thus, the average value
for the decay constant of the pseudoscalars, fP, to be
used in Eqs. (A1), (A2), (A3), and another one for the
vectors, fv , to be used in vector-baryon amplitudes,
account for two additional parameters in the fit.

(3) Finally, the coupling at the pseudoscalar-baryon–
vector-baryon vertex, gPBVB in Eq. (11), is treated as
a parameter to be fitted, whose value can be approx-
imately estimated using Eq. (9). One gets gPBVB ∼
3.5 by taking an average value for mv ∼ 850 MeV,
fv ∼ 170 MeV. However, this value could be smaller
if hadronic structure is taken into account by using
a form factor. Note that if the pion decay constant
∼93 MeV is used, instead of the vector decay constant,
in Eq. (9), then gPBVB ∼ 6 (as in Refs. [37,54,55]). We,
thus, allow gPBVB to vary between 1 and 6 in the fitting
procedure.

The experimental data considered for the fit are:

(1) The total cross sections of the processes: K− p →
K− p, K̄0n, η�, π0�π0�0, π±�∓, from the

respective thresholds to about 30–50 MeV above
the threshold [61–67].

(2) The energy-level shift and width of the 1s state of
the kaonic hydrogen measured by the SIDDHARTA
collaboration [68]: �E = 283 ± 36 ± 6 eV and 
 =
549 ± 89 ± 22 eV. We use the relation between the
energy shift and width of the 1s state of the kaonic
hydrogen and the K− p scattering length, as obtained
in Ref. [69],

�E − i



2
= −2α3μ2aK− p[1 + 2αμ(1 − lnα)aK− p],

(13)
where

aK− p = − tK− p

4π
√

sth
Mp, (14)

with Mp being the proton mass and
√

sth denoting the
K− p threshold energy.

(3) The following ratios of the cross section at the thresh-
old, taken from Refs. [70,71],

γ = σ (K− p → π+�−)

σ (K− p → π−�+)
= 2.36 ± 0.12,

Rc = σ (K− p → charged particles)

σ (K− p → all)

= 0.664 ± 0.033, (15)

Rn = σ (K− p → π0�)

σ (K− p → all neutral states)
= 0.189 ± 0.015,

where, following Ref. [31], a conservative 5% relative
error bar is assigned to the value of γ , Rc to include
the different experimental measurements.

III. RESULTS AND DISCUSSIONS

To fit the data, the χ2 per degree of freedom, χ2
d.o.f., is

calculated as [31,49,72–74]

χ2
d.o.f. =

∑N
k=1 nk

N
(∑N

k=1 nk − np
) N∑

k=1

χ2
k

nk
, (16)

where N is the number of different data sets, nk represents the
number of data points in the kth data set, np is the number of
free parameters, and the χ2 for the kth data set is obtained as

χ2
k =

nk∑
i=1

(
yth

k;i − yexp
k;i

)2

σ 2
k;i

, (17)

with yexp
k;i (yth

k;i) representing the ith experimental (theoretical)
point of the kth data set and σ 2

k;i the standard deviation
associated with it. In this context, we should mention that the
values of �E and 
 from the SIDDHARTA collaboration are
considered as two data points of the same data set.

In the fitting procedure, we find that two types of solutions
exist, which correspond to χ2

d.o.f. ∼ 1. A χ2
d.o.f. value of the

order of 1 is the expected value for such a quantity when the
number of degrees of freedom is large, with the χ2 having a
standard deviation of one. Large deviations from 1 for χ2

d.o.f.
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TABLE I. Values of the parameters obtained by constraining
the model amplitudes to reproduce experimental data (mentioned in
Sec. II). Here, ai represents the subtraction constant for the channel i
in the isospin base, fP ( fv) is an average value for the decay constants
of the pseudoscalar (vector) mesons, and gPBVB is the coupling
appearing in the PB ↔ VB vertices [see Eq. (11)]. The values of
the minimum χ 2

d.o.f. are 0.89 for Fit I and 0.91 for Fit II.

Parameters Fit I Fit II

aK̄N −2.00 ± 0.06 −2.12 ± 0.10
aK� −2.43 ± 0.04 −2.43 ± 0.06
aπ� −1.09 ± 0.07 −1.18 ± 0.12
aη� −1.25 ± 0.03 −1.27 ± 0.09
aπ� −0.84 ± 0.26 −1.69 ± 0.31
aη� −3.62 ± 0.44 −1.97 ± 0.12

aK̄∗N −4.34 ± 0.08 −4.39 ± 0.09
aK∗� −3.86 ± 0.03 −3.33 ± 0.06
aρ� 1.17 ± 1.29 −2.36 ± 0.07
aω� −6.50 ± 0.70 −3.86 ± 2.09
aφ� −6.83 ± 0.60 −5.22 ± 1.13
aρ� −0.77 ± 0.20 −0.49 ± 0.47

aω� −3.55 ± 1.58 −3.65 ± 1.34
aφ� −4.67 ± 0.29 −2.51 ± 0.39
fP (MeV) 94.62 ± 1.46 97.24 ± 1.56
fv (MeV) 138.12 ± 1.54 113.46 ± 5.21
gPBVB 2.19 ± 0.09 1.81 ± 0.07

would imply, thus, that the fit found to the data could be
categorized as a bad fit. The parameter sets related to the two
solutions, which we label as Fit I and II, are given in Table I,
together with the associated error bars. The central value and
the associated error correspond to the mean value and the
standard deviation, respectively, obtained for each parameter.
The errors are estimated by admitting solutions satisfying the
condition

χ2 � χ2
0 +

√
2χ2

0 , (18)

where χ2
0 is the minimum χ2 value obtained, as in

Refs. [75,76]. Equation (18), obtained in Ref. [76], is based on
the fact that in the limit of large number of degrees of freedom,
(χ2 − n.d.o.f.)/(

√
2 n.d.o.f.) is normally distributed with the

mean value 0 and standard deviation 1. Thus, producing
random numbers, within the error bars, for the parameters
obtained from the best fit and considering all the new fits
satisfying Eq. (18) implies estimating the parameter to a
confidence level of 1 standard deviation and including, at the
same time, the correlated errors of all the free parameters.

Besides the above discussions, we must add that the biggest
contribution to the χ2

d.o.f. comes from the cross-section data
for the different K− p processes mentioned in the previous
section. Thus, when minimizing the χ2

d.o.f. it is possible to find
solutions with χ2

d.o.f. ∼ 1, but the values obtained for the ratios
of Eq. (15) and/or the SIDDHARTA data lay outside the error
bars related to the respective experimental data, making the
results from the fit incompatible with these data, in spite of
fitting well the cross sections data on the K− p processes. Such
fits have been discarded.

FIG. 1. Cross sections of different processes studied in our work.
The shaded region represents the results found with the parameters
listed under the label Fit I in Table I. Data shown as (red) filled circles
(taken from Refs. [61–67]) were used in the χ 2 fitting procedure
explained in the text.

In Fig. 1 we show the cross sections of the different pro-
cesses, as obtained by the parameter set labeled as Fit I. The
shaded bands in the panels correspond to the results obtained
by using the criteria given in Eq. (18). The data considered in
the fit are shown as (red) filled circles in Fig. 1. These data are
taken from Refs. [61–67] and are the same as those considered
in Ref. [31]. We have included more data points from Ref. [77]
and which are shown as (blue) filled squares in Fig. 1, going to
about 100–200 MeV above the threshold for these reactions.
It can be seen that the results stay close to the data points
at higher energies too, even though the data at these energies
were not used in the fit. At energies farther from the reaction
threshold, the cross sections are expected to get contributions
from interactions in higher partial waves, and, thus, the s-
wave amplitudes, which are the ones we calculate, are not
expected to be sufficient to describe data at such energies. For
a better description of the data we need to include some well-
known resonances in the formalism, such as �(1520)(3/2−),
�(1600)(1/2+), �(1620)(1/2+), which are related to p-
, d-wave pseudoscalar-baryon interactions. Such states can
be taken into account by including channels, like, meson–
decuplet-baryon [78], two meson-one baryon [79], etc. Such
extensions of our work can be done in future. Still it is
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FIG. 2. A comparison of the cross sections obtained with (dark
shaded) and without (light shaded) the coupling of pseudoscalar-
baryon channels to vector-baryon channels.

reassuring to see that the cross sections obtained at higher
energies do not differ much from the experimental data. It is
worth mentioning that the coupling to vector-baryon channels
is useful in improving this agreement, at energies away from
the threshold. Although, the presence of the vector-baryon
coupling is more significant in the case where the reaction
threshold is higher (closer to the VB thresholds). Such is the
case of the process K− p → η�, whose threshold is about 140
MeV away from the K̄∗N , keeping in mind the finite width
of K∗. The finite widths of the vector mesons are taken into
account in the formalism by folding the relevant loop function
over the variable mass range of the vector mesons as [50,80]

G̃ j (
√

s) = 1

Nj

∫ (mj+2
 j )2

(mj−2
 j )2
dm̃2

(−1

π

)
Gj (

√
s)

× Im

{
1

m̃2 − m2
j + im j
(m̃)

}
, (19)

where the subscript j refers to the jth meson-baryon channel
in the loop, mj (
 j) is the central mass (width) of the meson
in the loop, Gj (

√
s) is calculated using Eq. (12), and

Nj =
∫ (mj+2
 j )2

(mj−2
 j )2
dm̃2

(
− 1

π

)
Im

{
1

m̃2 − m2
j + im j
(m̃)

}
.

(20)

The variable width in Eqs. (19) and (20) for the jth meson
decaying to mesons a and b is calculated as


(m̃) = 
 j

(
m2

j

m̃2

)(
λ1/2

(
m̃2, m2

a, m2
b

)/
2m̃

λ1/2
(
m2

j , m2
a, m2

b

)/
2mj

)3

× θ (m̃ − ma − mb).

In Fig. 2, we show the cross sections of the processes
K− p → η� and K− p → K̄0n obtained by decoupling PB and
VB channels, around the energy region where an influence
of VB channels can be expected (∼30–150 MeV below the
lowest VB threshold). As can be seen, the coupling to the VB
channels plays a more important role in the case of the process
with a higher threshold.

Before discussing the results found, within the Fit I, for the
energy shift and width of the 1s state of the kaonic hydrogen
and cross-section ratios mentioned in Eqs. (13) and (15), as
well as the poles found in the complex plane, we show in
Fig. 3 the cross sections found with the parameter set labeled

FIG. 3. Cross sections obtained with the parameter set Fit II
given Table I. The data are taken from the same source as in Fig. 1.

as Fit II. It can be seen that the cross sections are in good
agreement with the data in the energy region corresponding
to the filled circles (which are used to minimize the χ2), as
expected, and the results stay near the data points at higher
energies except for the case of K− p → η�. This finding may
indicate, when comparing the two fits, that the results related
to the poles found in the complex plane may be more reliable
in the case of Fit I, at energies beyond ∼1.68 GeV (which
corresponds to the laboratory momentum of about 0.77 GeV
shown in Figs. 1 and 3). At lower energies, though, the two
fits are of similar quality, implying that the poles obtained
in amplitudes for both fits, in the complex plane, should be
reliable at energy below ∼1.68 GeV. Besides this finding, the
cross-section ratios, as well as the energy shift of the 1s state
of the kaonic hydrogen found within the two fits, as given in
Table II, are in good agreement with the experimental data
(see the values given in Sec. II). We, thus, find it useful to
discuss the remaining results for both fits.

Before continuing, though, a reader may wonder if having
these fits at hand and having a good deal of overlap in
the experimental data considered here and in Ref. [31], for
instance, if it is possible to do a statistical comparison between
the models used here and in Ref. [31]. A standard statistical
test to compare models is the Fisher’s test (F-test), though it
can be used to compare nested models. The formalism of the
present work and the one in Ref. [31] cannot be treated as
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TABLE II. Results found for the energy shift and width of the 1s state of the kaonic hydrogen and the cross-section ratios defined in
Eq. (15). The central value and errors correspond to the mean value and the standard deviation, respectively, determined from the solutions
satisfying Eq. (18).

�E (eV) 
(eV) γ Rc Rn

Fit I 300 ± 3 448 ± 6 2.357 ± 0.005 0.663 ± 0.003 0.191 ± 0.002
Fit II 301 ± 6 474 ± 17 2.364 ± 0.008 0.668 ± 0.003 0.193 ± 0.002
Data (from Refs. [68,70,71]) 283 ± 36 ± 6 549 ± 89 ± 22 2.36 ± 0.12 0.664 ± 0.033 0.189 ± 0.015

nested models. Another possible test, which can be used for
nested as well as nonnested models is the Akaike-information-
criterion (AIC). Strictly speaking, though, an AIC comparison
is meaningful when exactly the same data is used in the fitting
procedure and this condition is not satisfied here. For instance,
the authors of Ref. [31] consider the data on processes like
K− p → π0π0�0, K− p → π−�(1660)+ in the fit, which are
not included in the present work. In such a situation, we could
still adopt the following strategy: We could assume that the fits
obtained in Ref. [31] for the processes considered in this work
would not differ much from those the authors of Ref. [31]
would have found by excluding the data not included here.
In this way, we can calculate the AIC number as [81]

AIC = χ2
0 + 2nk

k − n − 1
, (21)

with n being the number of parameters and k the number of
data points. Under such an assumption, we find that the AIC
number for the O(p2) fit of Ref. [31] is smaller than the AIC
number for the O(p) fit of Ref. [31] and the AIC number
obtained for our model is smaller than the former two. A lower
value of AIC may be interpreted as a model more preferred
by the data. However, due to the assumptions involved in
comparing the models, any conclusions should be made with
caution.

Going back to the results obtained, inTables III–VI, we list
the poles found in the complex plane, with the amplitudes
obtained within both fits. In the following subsections we also
compare the properties of the states found in our analysis with
those available from other theoretical/experimental works.
Before proceeding, though, we would like to discuss the pro-
cedure to calculate the T -matrix in the complex energy plane,
which is needed to look for resonances/bound states formed
in the systems under investigation. For this, we calculate the
loop function for the ith channel in the first (I) and second (II)
Riemann sheet as [4,44]

Gi(
√

s) =
{

G(I )
i (

√
s), for Re{√s} < (mi + Mi )

G(II )
i (

√
s), for Re{√s} � (mi + Mi )

,

where

G(I )
i (

√
s) = Gi(

√
s) (22)

G(II )
i (

√
s) = G(I )

i (
√

s) − 2 i Im
{
G(I )

i

}
= G(I )

i (
√

s) + i
Mi q(I )

i

2π
√

s
, (23)

with mi, Mi being the masses of the ith meson and baryon, and
q(I )

i the center of mass momentum of the same channel on its

first Riemann sheet (with a positive imaginary part). If a pole
appears in the complex plane, it can be seen in the complex
amplitude for all the channels. Depending on the threshold
of a given channel, the pole can appear below or above the
threshold (i.e., on the corresponding first or second Riemann
sheet of that channel).

A. Isospin = 0, spin = 1/2

In the case of I (JP ) = 0 (1/2−), in both types of fits, a
double pole structure is found in the energy region around
1400 MeV (see Table III), which can be related to �(1405).
The double pole nature of �(1405) is widely discussed in the
literature [4,17,20,22,49,72,74].

Our results are compatible with the pole values obtained
in these former works, as well as with those determined
by the CLAS collaboration [6] from the data on the elec-
troproduction of �(1405), with the lower mass pole being
near 1368 MeV and the higher mass pole near 1423 MeV.
The pole values obtained from fits constrained by photopro-
duction data are also worth mentioning, for instance, those
obtained in Refs. [40,41]. The best solution in the former
work corresponds to the poles for �(1405): 1429+8

−7 − i12+2
−3

and 1325+15
−15 − i90+12

−18 MeV. In the latter one [41], a fit to
photoproduction data is made and the best solution is found
to reasonably describe the data on cross sections for different
final states in K− p collisions. The corresponding poles ob-
tained in Ref. [41] are 1352 − i48 MeV and 1419 − i29 MeV.
Our findings agree better with those in Ref. [40].

We give the couplings of these poles to the different meson-
baryon channels considered in the present work in Table III.
The coupled channel treatment of pseudoscalar-baryon and
vector-baryon systems is a particular feature of our formalism
and it allows us to obtain the information on the coupling
of the low lying resonances, like �(1405), to both type of
channels. The information on the coupling of the states to
vector-baryon channels is useful in studies of processes like
the photoproduction/electroproduction of �(1405) through a
t-channel vector exchange (as done in Refs. [6,82–86]).

Table III also shows a pole around 1680 MeV, which is
related to �(1670). The mass and width of this state range,
according to the particle data group (PDG) [60], between
1670–1680 MeV and 25–50 MeV, respectively. The pole posi-
tion found with Fit I: (1681 ± 1) − i(16 ± 2) MeV is in better
agreement with the properties of �(1670) from the PDG
[60]. We have determined the branching ratios of this state
for channels K̄N , π�, and η� and find them, respectively,
to be 28%, 34%, and 25% with the central values of the
parameters in Fit I and 19%, 61%, and 7% with the central
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TABLE III. Pole positions and couplings of the I (JP ) = 0(1/2−) states found. The central values and errors were obtained as explained in
the caption of Table I (for the sake of space, the errors are represented as superscripts). Masses and widths are given in MeV. The coupling of
the state to a given channel are written as rows in the Table for Fit I and II (the first (second) row is related to the results for Fit I (Fit II)). The
symbol “−” indicates that we have ignored the states found with mass beyond 1680 MeV in Fit II.

�(1405) �(1670) �(1800)

Fit I 1373±5 − i 114±9 1426±1 − i 16±1 1681±1 − i 16±2 1734±7 − i 19±2

Fit II 1385±5 − i 124±10 1426±1 − i 15±2 1681±2 − i 7±1 −
K̄N 0.84±0.14 − i 1.91±0.06 2.44±0.05 + i 0.69±0.08 0.33±0.02 − i 0.38±0.03 0.14±0.05 − i 0.12±0.07

0.66±0.35 − i 1.93±0.12 2.43±0.16 + i 0.63±0.23 0.15±0.06 − i 0.19±0.13 −
K� −0.51±0.05 + i 0.49±0.06 0.59±0.09 − i 0.19±0.04 2.74±0.26 + i 0.25±0.22 1.26±0.60 − i 0.39±0.28

−0.55±0.13 + i 0.27±0.06 0.72±0.14 − i 0.14±0.08 0.33±0.64 + i 0.28±0.34 −
π� −2.04±0.07 + i 2.29±0.08 −0.87±0.06 − i 1.05±0.09 0.27±0.02 + i 0.420.06 0.09±0.05 − i 0.14±0.07

−2.05±0.11 + i 2.27±0.09 −0.90±0.08 − i 0.96±0.15 −0.11±0.20 − i 0.13±0.35 −
η� −0.71±0.07 − i 1.24±0.04 2.45±0.05 + i 0.21±0.04 −0.83±0.14 + i 0.11±0.08 −0.50±0.23 + i 0.49±0.24

−0.80±0.10 − i 1.24±0.06 2.34±0.13 + i 0.16±0.04 −0.19±0.10 − i 0.20±0.06 −
K̄∗N 0.86±0.08 − i 0.04±0.10 −0.16±0.10 + i 0.26±0.03 −0.18±0.08 − i 0.05±0.03 −0.15±0.11 + i 0.05±0.04

0.62±0.28 − i 0.18±0.14 0.04±0.36 + i 0.23±0.19 0.50±0.92 + i 0.01±0.10 −
K∗� 1.23±0.11 − i 0.08±0.09 −0.36±0.12 + i 0.42±0.05 −2.05±0.25 + i 0.22±0.13 1.01±0.47 + i 0.22±0.18

1.17±0.12 − i 0.40±0.12 0.00±0.19 + i 0.44±0.08 1.04±2.99 − i 0.19±0.30 −
ρ� 0.16±0.11 + i 0.29±0.07 −0.24±0.09 − i 0.01±0.02 0.23±0.16 − i 0.09±0.08 −0.28±0.28 − i 0.04±0.03

0.57±0.24 + i 0.41±0.19 −0.47±0.43 + i 0.03±0.18 −1.76±2.58 + i 0.10±0.37 −
ω� −0.26±0.03 + i 0.28±0.03 −0.37±0.02 − i 0.15±0.02 0.51±0.06 − i 0.09±0.03 −0.32±0.15 − i 0.07±0.06

−0.23±0.10 + i 0.33±0.06 −0.45±0.09 − i 0.16±0.07 −0.32±0.71 + i 0.05±0.08 −
φ� 0.46±0.07 − i 0.44±0.06 0.62±0.05 + i 0.25±0.03 −0.66±0.10 + i 0.12±0.04 0.39±0.19 + i 0.11±0.07

0.44±0.27 − i 0.58±0.13 0.82±0.30 + i 0.29±0.19 0.60±1.19 − i 0.09±0.14 −

TABLE IV. Pole positions and couplings of the I (JP ) = 1(1/2−) states found in our work. The central values and errors were obtained as
explained in the caption of Table I (for the sake of space, the errors are represented as superscripts).

�’s around 1400 MeV �(1620) or �(1670) �(1900)

Fit I 1396±1 − i 5±2 1367±24 − i 57±21 1630±33 − i 104±13 1853±10 − i 150±10

Fit II − 1399±35 − i 36±9 − −
K̄N 0.18±0.03 + i 0.14±0.05 0.08±0.48 + i 0.52±0.73 1.47±0.08 − i 0.017±0.07 −0.86±0.03 + i 0.79±0.02

− 0.50±0.29 + i 0.33±0.18 − −
K� 1.06±0.22 + i 1.45±0.12 0.62±0.47 − i 0.42±1.00 2.89±0.26 − i 0.65±0.24 0.84±0.03 − i 0.39±0.05

− 0.81±0.42 + i 0.41±0.15 − −
π� −0.17±0.09 − i 020±0.03 0.77±0.96 − i 0.67±1.22 0.71±0.33 − i 1.63±0.19 −0.02±0.04 + i 0.32±0.08

− 1.08±0.12 + i 0.19±0.21 − −
π� 0.03±0.10 + i 0.07±0.06 −0.91±1.32 + i 0.39±0.81 −0.26±0.34 − i 0.23±0.18 0.36±0.2 + i 1.54±0.04

− −1.40±0.18 − i 0.07±0.10 − −
η� −0.43±0.03 − i 0.23±0.09 0.31±0.31 − i 0.59±1.12 −2.14±0.24 − i 0.13±0.11 0.07±0.03 − i 0.43±0.02

− 0.27±0.10 − i 0.19±0.11 − −
K̄∗N 0.04±0.10 + i 0.15±0.07 −1.69±1.99 + i 0.31±0.68 −0.31±0.09 − i 0.11±0.16 0.71±0.05 − i 0.05±0.02

− −3.46±0.21 − i 0.06±0.15 − −
K∗� −0.50±0.22 − i 0.38±0.08 1.40±2.11 − i 1.10±2.38 −1.80±0.47 − i 0.37±0.14 −0.98±0.14 − i 0.72±0.06

− −0.01±0.59 − i 0.21±0.08 − −
ρ� −0.15±0.07 − i 0.14±0.04 0.76±1.02 − i 0.58±0.85 −0.76±0.18 − i 0.53±0.49 −1.10±0.04 − i 0.34±0.03

− 3.60±0.61 − i 0.69±0.16 − −
ρ� 0.36±0.18 + i 0.29±0.07 −0.95±1.50 + i 0.93±1.84 2.44±0.50 + i 0.94±0.27 1.51±0.25 + i 0.82±0.09

− −1.26±0.19 + i 0.09±0.07 − −
ω� −0.15±0.11 − i 0.14±0.05 1.03±1.35 − i 0.55±1.10 −0.14±0.23 − i 0.44±0.14 −0.64±0.10 − i 0.23±0.04

− 2.15±0.20 − i 0.13±0.09 − −
φ� 0.27±0.17 + i 0.24±0.08 −1.73±2.27 + i 0.90±1.82 0.42±0.38 + i 0.53±0.24 1.04±0.20 + i 0.39±0.07

− −3.23±0.39 + i 0.20±0.11 − −
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TABLE V. Pole positions and couplings of the I (JP ) = 0 (3/2−)
states found. The central values and errors were obtained as ex-
plained in the caption of Table I. Since PB systems in s-wave can
only have JP = 1/2−, there is no coupling between the states listed
in this table and the PB channels in our model. Masses and widths
are in MeV. The width gets contribution from the widths of the vector
mesons (see text for more details).

�(1690)
Fit I 1802±7 − i 1.3±0.8

K̄∗N 0.91±0.03 + i 0.017±0.001

K∗� 3.30±0.05 + i 0.061±0.002

ρ� 0.51±0.35 + i 0.010±0.007

ω� −0.06±0.03 − i 0.001±0.001

φ� 0.60±0.06 + i 0.011±0.001

values in Fit II (given in Table I). The former values are in
better agreement with the values: 20−30%, 25−55%, and
10−25% given in Ref. [60]. This finding is in line with the
earlier discussions on the reliability of the results obtained
within Fit II beyond ∼1680 MeV, due to the disagreement of
the K− p → η� cross sections at energies �1680 MeV. With
this finding at hand, and with fits shown in Figs. 1 and 3, we
do not discuss the properties of the states with mass �1680
MeV found within Fit II. As mentioned earlier, however, the
two fits are of similar quality for energies �1680 MeV and
we, thus, continue discussing the properties of states found
with both the fits when the mass is lower than ∼1680 MeV.

In view of the results found in our work, and as widely
accepted, both �(1405) and �(1670) can be interpreted as
states arising from pseudoscalar-baryon dynamics. We find
a pole with I (JP ) = 0 (1/2−), which gets contribution from
vector-baryon dynamics as well, with mass around 1730 MeV
in Fit I. Only one 1/2− � state is listed in this energy region by
the PDG [60], after �(1670), which encompasses evidences
on I (JP ) = 0 (1/2−) states with masses ranging from 1720–
1850 MeV and widths ranging over 100–600 MeV. It is then
quite possible that more than one state get classified under
the same label �(1800). From our study and in light of the
information available from the PDG [60], it can be said that a
state is found around 1730 MeV with a width around 40 MeV.

TABLE VI. Pole positions and couplings of the I (JP ) = 1(3/2−)
states found in our work. The central values and errors were obtained
as explained in the caption of Table I. Since PB systems in s-wave
can only have JP = 1/2−, there is no coupling between the states
listed in this table and the PB channels (in our model).

�(1670)
Fit I 1617±37 − i 2±1

K̄∗N 0.41±0.13 + i 0.003±0.015

K∗� 3.84±1.48 + i 0.14±0.19

ρ� 0.44±0.22 + i 0.03±0.07

ρ� −1.02±0.43 − i 0.04±0.06

ω� −1.25±0.52 − i 0.05±0.07

�� 2.59±1.01 + i 0.10±0.13

However, missing channels not considered in the present work
could have an impact on the width of this state and make
it larger. A more detailed study involving such channels and
considering data on reactions producing VB channels should
be done in future to investigate further properties of this
state.

A comment regarding the widths of the states found in our
work is here in order. The half widths of the states with mass
around or above 1800 MeV have been determined from the
real axis (by reading the full width at the half maximum of
the related peaks appearing in the squared amplitudes, on the
real axis, a quite common procedure in this kind of problem
[87]). This is done because the widths of the vector mesons,
here and throughout the work, are not taken into account
when calculating the amplitudes in the complex plane, since
such a consideration would imply a variable mass of the
vector meson and, hence, a not well defined branch cut in the
complex plane. However, as explained earlier, the amplitudes
on the real axis have been obtained by taking the finite widths
of the vector mesons into account. Thus, a better estimation of
the widths of the resonances is obtained from the real axis. In
such cases, the couplings of the states to the different channels
are also determined from the real axis.

B. Isospin = 1, spin = 1/2

In the case of 1/2− isovector scattering amplitudes studied
in the complex plane, two poles appear around 1400 MeV
with the parameter set Fit I (see Table IV), while only one
pole is obtained with Fit II. It can be seen from Figs. 1 and 3
and the results in Table II that the quality of both fits is similar
in the energy region near the threshold. Thus, from our work,
it is difficult to distinguish the possibility of the existence of
one or two isovector poles around 1400 MeV. But even if two
poles exist in nature, they may be related to the same state
due to the proximity of the masses and the widths. Thus, it
can be concluded that a � state does seem to appear in this
energy region. It should be useful to compare our findings
with those available in the literature. As mentioned in the
introduction of this article, the information on the light �’s is
less abundant when compared to light �’s. Still, we can com-
pare our results with other works [3,31–36,38], where almost
all agree on the existence of one � state around 1380 MeV
with the width of about 60 MeV. An evidence for two poles
around 1400 MeV, in isospin 1 amplitudes, has been dis-
cussed in Refs. [3,31,38], out of which Ref. [31] finds one
of the poles to be narrower, as is the case of the results
for Fit I listed in Table IV. Suggestions have been made
to find this state in the χc0 decay into �̄�π [88] and in
the �+

c decay into ηπ+� [36]. We would like to mention a
couple of facts related to these lowlying � states: (1) their
masses lie in the energy region where the left hand cut is
crossed for some coupled channels. (2) Though more rigorous
treatments of the u-channel amplitude should be considered
in future to obtain the nonperturbative T matrix, we find,
interestingly, that the second pole in Fit I as well as the
pole in Fit II are found to continue to appear in the complex
plane even if the contribution from the u-channel diagrams is
switched off.
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In the energy region where vector-baryon thresholds are
open, two poles with Fit I are found in the energy region 1600–
1900 MeV, which can be related to �(1620) and �(1900),
respectively, listed by the PDG [60]. Actually, we have studied
the possibility of relating the state at 1630 ± 33 − i(104 ±
13) MeV to �(1670) as well as �(1620). Little is known
about both these �s and the PDG [60] indicates that each of
them may be related to two states, of which the spin-parity
of only one (in each case) is known. The spin-parity of one
of the �(1620)s is given as 1/2− by the PDG and for one of
the �(1670)s as 3/2− [60]. For a better analysis, we study
the following decay ratios known for �(1670) (with unknown
spin-parity) [60],


(�(1670) → K̄N )


(�(1670) → π�)
< 0.75, (24)

0.05 � 
(�(1670) → π�)


(�(1670) → π�)
� 0.85, (25)

and from the state in our Fit I, the former ratio is obtained
to be ∼0.5 and the latter one is found ∼0.06. In the case of
�(1620) (1/2−), the following partial widths are known from
different partial-wave analyses [60]:

0.08 <
{
[�(1620) → K̄N]
[�(1620) → π�]}1/2


total
< 0.35,

(26)

0.1 <
{
[�(1620) → K̄N]
[�(1620) → π�]}1/2


total
< 0.15,

(27)

0.08 <

[�(1620) → K̄N]


total
< 0.35, (28)

and we obtain them to be 0.37, 0.10, and 0.26, respectively.
This analysis shows that our state can be associated to
�(1620)(1/2−) as well as to �(1670) with unknown spin-
parity, which, in turn, may imply that both these states are
not different. It may be useful to give the branching ratios
of our state 1630 ± 33 − i(104 ± 13) MeV here. We find that
decay ratios to K̄N , π�, π�, η�, and K� are 26.3%, 52.2%,
3.5%, 7.9%, and 7.6%, respectively. Not much is known about
�(1900) either, it has been found in the partial-wave analyses
of Refs. [89,90]. The mass and width in Ref. [60] of �(1900)
are in agreement with those in Table IV.

C. Isospin = 0, spin = 3/2

The vector-baryon systems can have a total spin 1/2 or
3/2 in s-wave interactions. Thus, we can study states with
spin-parity (JP ) = (3/2−) too. Such states arise purely from
vector-baryon dynamics. In the case of the I (JP ) = 0(3/2−)
configuration, we find a state with mass around 1800 MeV, in
fit I (see Table V). To associate this state with a known �, we
look for known 3/2− states listed by the PDG [60], and find
that there are two such �s in 1690–2050 MeV: �(1690), with
mass and width of 1697 ± 6 MeV and 65 ± 14 MeV, respec-
tively, and �(2050), with mass and width listed as 2056 ± 22
and 493 ± 60 MeV, respectively, out of which the latter one

FIG. 4. Real (right) and imaginary (left) parts of the F function
for the process K− p → K− p for Fit I (shadowed region) and Fit II
(region filled with vertical lines). The solid (dashed) line represents
the result of F associated with the minimum χ2

d.o.f found for Fit I
(Fit II).

has been catalogued in Ref. [60], so far, motivated only by
the partial-wave analysis of K̄N multichannel reactions done
in Ref. [89]. A full comparison is difficult in this case, since
in our formalism, the JP = 3/2− VB channels do not couple
to JP = 1/2− PB channels in s-wave. The small widths of
the states given in Table V are due to the finite widths of the
vector mesons involved in the dynamics. For a more reliable
determination of the widths, PB and VB channels should
be coupled in this sector too, including other mechanisms,
like those in Ref. [91] and including decuplet baryons in our
formalism. In addition to this, reactions involving VB final
states might be included in the set of data fitted in the analysis.
Such extensions of our work should be done in future.

D. Isospin = 1, spin = 3/2

Some states, with I (JP ) = 1 (3/2−), are also found in our
work, as shown in Table VI. With Fit I, a pole is found around
1617 MeV which can be associated with the 3/2− �(1640)
[60], whose mass and width range in the interval 1669 ±
7 MeV and 64+10

−14, respectively. As mentioned earlier, in our
model there is no coupling between the PB and VB channels
in the spin 3/2 configuration, and, thus, the states get small
widths owing to the instability of the vector mesons, which
is taken into account by calculating the loop functions as
in Eq. (19). For a better estimation of the widths, it may
be important to consider transitions from vector-baryon to
pseudoscalar-baryon channels in spin 3/2 too, but it is beyond
the scope of the present work.

E. Additional information for the K− p → K− p reaction

In Fig. 4 we show the function F (
√

s), which is defined as

Fi(
√

s) = − Mi

4π
√

s
Tii(

√
s), (29)

with Mi being the baryon mass of channel i for the K− p
channel. This information is relevant since the processes
K− p → K− p in the energy region around the �(1405) plays
an important role when describing the absorption of K− in
nuclear surfaces [92]. The presence of the lighter �(1405)
pole extends the region of interest of the K̄N scattering
amplitude for the antikaon self-energy in the nuclear medium
toward lower energies. As can be seen, although the two sets
of solutions (Fit I) and (Fit II) produce compatible results
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TABLE VII. Scattering lengths for K− p and K̄N in isospin 0 and
1, respectively (all units are in fm).

Fit I Fit II

aK− p −0.74+0.01
−0.02 + i 0.69+0.02

−0.01 −0.74+0.07
−0.02 + i 0.73+0.03

−0.08

a0
K̄N −1.58+0.03

−0.03 + i 0.87+0.02
−0.03 −1.60+0.03

−0.01 + i 0.89+0.04
−0.13

a1
K̄N 0.09+0.02

−0.02 + i 0.50+0.04
−0.02 0.12+0.10

−0.04 + i 0.55+0.02
−0.04

below the threshold, the uncertainty associated with the Fit
II is bigger.

For completeness, we give in Table VII the K− p scattering
length, determined from Eq. (14), as well as the scattering
lengths associated with the K̄N system in isospins I = 0 and
I = 1, respectively. The value found for the K− p scattering
length is in agreement with the one obtained using directly
the SIDDHARTA data, aK− p = (−0.65 ± 0.10) + i (0.81 ±
0.15) fm, by means of Eq. (13), and with the result of
Ref. [93] from Kaonic hydrogen x rays, aK− p = (−0.78 ±
0.15 ± 0.03) + i (0.49 ± 0.25 ± 0.12) fm.

IV. SUMMARY AND OUTLOOK

A simultaneous fit to several relevant data has been
made to study hyperon resonances. Low-lying hyperon res-
onances have been studied earlier in several works, by solving
pseudoscalar-baryon coupled-channel scattering equations.
We have included both pseudoscalar- and vector-baryon dy-
namics and find that the properties of the widely known
hyperons, like �(1405), are well reproduced. The formal-
ism used in the previous work on this topic [37] has been
extended by including s- and u-channel diagrams to study
pseudoscalar-baryon interactions. We find that an isospin 1
state, around 1400 MeV, also exists, though it is not clear if
it is related to one or two poles in the complex plane. The
data fitted in the present work are related to the production

of pseudoscalar-baryon channels. Still the cross sections at
somewhat higher energies are found to follow the data, in one
of the two fits obtained in the present work. Thus, hyperons
resonances with higher masses have also been studied. The
present work can further be improved by considering data on
reactions with vector-baryon as final states and by including
decuplet baryons in our formalism.
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APPENDIX: ISOSPIN COEFFICIENTS OF DIFFERENT
PSEUDOSCALAR-BARYON AMPLITUDES

The amplitudes for the contact interaction and the s-
channel diagram, given in Eqs. (3) and (4), can be projected
on s-wave to obtain

V L=0
cont (i → j) = − 1

4 f 2
P

√
Mi + Ei

2Mi

√
Mj + Ej

2Mj

×Ai j[(2
√

s − Mi − Mj )], (A1)

V L=0
s (i → j) = 1

2 f 2
P

√
Mi + Ei

2Mi

√
Mj + Ej

2Mj
(
√

s − Mi )

× (
√

s − Mj )
∑

k

Bk
i j√

s + Mk
. (A2)

The amplitudes for the u-channel diagram, Eq. (5), is pro-
jected on s-wave as follows:1

V L=0
u (i → j) = − 1

2 f 2
P

√
Mi + Ei

2Mi

√
Mj + Ej

2Mj

∑
k

Ck
i j

{√
s + Mk − (Mi + Mk )(Mj + Mk )(

√
s + Mi + Mj − Mk )

2(Mi + Ei )(Mj + Ej )

+
[

(Mi + Mk )(Mj + Mk )

4| 
pi|| 
p j |
][

(
√

s − Mi − Mj + Mk ) − s + M2
k − m2

i − m2
j − 2EiEj

2(Mi + Ei )(Mj + Ej )
(
√

s + Mi + Mj − Mk )

]

× F (
√

s, mi, Mi, mj, Mj, Mk )

}
, (A3)

where

F (
√

s, mi, Mi, mj, Mj, Mk ) =

⎧⎪⎨
⎪⎩

−2
s−m2

i −m2
j −M2

k∣∣s−m2
i −m2

j −M2
k

∣∣arctg
[∣∣ 2| 
pi|| 
p j |

s−m2
i −m2

j −M2
k

∣∣], √
smin <

√
s <

√
smax

ln
( s+M2

k −m2
i −m2

j −2EiE j−2| 
pi|| 
p j |
s+M2

k −m2
i −m2

j −2EiE j+2| 
pi|| 
p j |
)
, otherwise,

1In the case of | 
pi| = 0 or | 
pj | = 0, V L=0
u can be obtained from Eq. (5) directly.
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TABLE VIII. Coefficients for the s-channel amplitudes in the isospin 0 base. We indicate in the first column the exchanged particles. For
example, the only nonzero contribution to an s-channel diagram for K̄N → K̄N , in the isospin 0, comes from a � exchange.

K̄N K� π� η�

� 0 0 0 0

� (D′+3F ′ )2

3 3F ′ 2 − D′ 2

3

√
2
3 D′(D′ + 3F ′)

√
2

3 D′(D′ + 3F ′)
K̄N

N 0 0 0 0
� 0 0 0 0

� 0 0 0 0

� 3F ′ 2 − D′ 2

3
(D′−3F ′ )2

3 −
√

2
3 D′(D′ − 3F ′) −

√
2

3 D′(D′ − 3F ′)
K̄�

N 0 0 0 0
� 0 0 0 0

� 0 0 0 0

�

√
2
3 D′(D′ + 3F ′) −

√
2
3 D′(D′ − 3F ′) 2D′ 2 2D′ 2√

3π�
N 0 0 0 0
� 0 0 0 0

� 0 0 0 0
�

√
2

3 D′(D′ + 3F ′) −
√

2
3 D′(D′ − 3F ′) 2D′ 2√

3
2D′ 2

3η�
N 0 0 0 0
� 0 0 0 0

where
√

smin = min(mi + Mi, mj + Mj ), mi (mj) represents
the meson mass in the initial (final) state, Mi, Ei (Mj , Ej)
represent the mass and energy of the baryon in the initial
(final) state, Mk is the mass of the baryon exchanged in
the s-, u-channels. The values for Ai j , Bi j , Ci j are given in
Tables VIII, IX, X, and XI for different isospins and different

processes. In Eq. (A3), | 
p j | is the center of mass momentum
of the jth channel,

| 
p j | = 1

2
√

s

[
λ
(
s, m2

j , M2
j

)]1/2
, (A4)

which becomes complex valued below the threshold.

TABLE IX. Coefficients for the s-channel amplitudes in the isospin 1 base. We indicate in the first column the exchanged particles. For
example, the only nonzero contribution to a s-channel diagram for K̄N → K̄N , in isospin 1, comes from a � exchange.

K̄N K� π� π� η�

� (D′ − F ′)2 D′ 2 − F ′ 2 2F ′(D′ − F ′) −
√

2
3 D′(D′ − F ′) −

√
2
3 D′(D′ − F ′)

� 0 0 0 0 0
K̄N

N 0 0 0 0 0
� 0 0 0 0 0

� D′ 2 − F ′ 2 (D′ + F ′)2 2F ′(D′ + F ′) −
√

2
3 D′(D′ + F ′) −

√
2
3 D′(D′ + F ′)

� 0 0 0 0 0
K̄�

N 0 0 0 0 0
� 0 0 0 0 0

� 2F ′(D′ − F ′) 2F ′(D′ + F ′) 4F ′ 2 −2
√

2
3 D′F ′ −2

√
2
3 D′F ′

� 0 0 0 0 0
π�

N 0 0 0 0 0
� 0 0 0 0 0

� −
√

2
3 D′(D′ − F ′) −

√
2
3 D′(D′ + F ′) −2

√
2
3 D′F ′ 2D′ 2

3
2D′ 2

3

� 0 0 0 0 0
π�

N 0 0 0 0 0
� 0 0 0 0 0

� −
√

2
3 D′(D′ − F ′) −

√
2
3 D′(D′ + F ′) −2

√
2
3 D′F ′ 2D′ 2

3
2D′ 2

3

� 0 0 0 0 0
η�

N 0 0 0 0 0
� 0 0 0 0 0
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TABLE X. Coefficients for the u-channel amplitudes in the isospin 0 base. We indicate in the first column the exchanged particles. For
example, a � and a � exchange in the u-channel give nonzero contributions to the process K̄N → K̄�, in isospin 0.

K̄N K� π� η�

� 0 − 3
2 (D′ 2 − F ′ 2) 0 0

� 0 − 1
6 (D′ 2 − 9F ′ 2) 0 0

K̄N
N 0 0 −

√
3
2 (D′ 2 − F ′ 2) D′ 2−9F ′ 2

3
√

2

� 0 0 0 0

� − 3
2 (D′ 2 − F ′ 2) 0 0 0

� − 1
6 (D′ 2 − 9F ′ 2) 0 0 0

K̄�
N 0 0 0 0

� 0 0
√

3
2 (D′ 2 − F ′ 2) − D′ 2−9F ′ 2

3
√

2

� 0 0 −4F ′ 2 − 2D′ 2√
3

� 0 0 2D′ 2

3 0
π�

N −
√

3
2 (D′ 2 − F ′ 2) 0 0 0

� 0
√

3
2 (D′ 2 − F ′ 2) 0 0

� 0 0 − 2D′ 2√
3

0

� 0 0 0 2D′ 2

3η�
N D′ 2−9F ′ 2

3
√

2
0 0 0

� 0 − D′ 2−9F ′ 2

3
√

2
0 0

TABLE XI. Coefficients for the u-channel amplitudes in the isospin 1 base. We indicate in the first column the exchanged particles. For
example, a � and a � in the u-channel give nonzero contributions to the process K̄N → K̄�, in isospin 1.

K̄N K� π� π� η�

� 0 − D′ 2−F ′ 2

2 0 0 0

� 0 (D′ 2−9F ′ 2 )
6 0 0 0

K̄N
N 0 0 D′ 2 − F ′ 2 (D′+F ′ )(D′+3F ′ )√

6
(D′−F ′ )(D′−3F ′ )√

6

� 0 0 0 0 0

� − D′ 2−F ′ 2

2 0 0 0 0

� (D′ 2−9F ′ 2 )
6 0 0 0 0

K̄�
N 0 0 0 0 0
� 0 0 F ′ 2 − D′ 2 (D′−F ′ )(D′−3F ′ )√

6
(D′+F ′ )(D′+3F ′ )√

6

� 0 0 2F ′ 2 2
√

2
3 D′F ′ −2

√
2
3 D′F ′

� 0 0 − 2D′ 2

3 0 0
π�

N D′ 2 − F ′ 2 0 0 0 0
� 0 F ′ 2 − D′ 2 0 0 0

� 0 0 2
√

2
3 D′F ′ 2D′ 2

3 0

� 0 0 0 0 − 2D′ 2

3π�
N (D′+F ′ )(D′+3F ′ )√

6
0 0 0 0

� 0 (D′−F ′ )(D′−3F ′ )√
6

0 0 0

� 0 0 −2
√

2
3 D′F ′ 0 2D′ 2

3

� 0 0 0 − 2D′ 2

3 0
η�

N (D′−F ′ )(D′−3F ′ )√
6

0 0 0 0

� 0 (D′+F ′ )(D′+3F ′ )√
6

0 0 0
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