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Climate change exacerbates hurricane flood
hazards along US Atlantic and Gulf Coasts
in spatially varying patterns
Reza Marsooli 1, Ning Lin 2, Kerry Emanuel 3 & Kairui Feng 2

One of the most destructive natural hazards, tropical cyclone (TC)–induced coastal flooding,

will worsen under climate change. Here we conduct climatology–hydrodynamic modeling to

quantify the effects of sea level rise (SLR) and TC climatology change (under RCP 8.5) on late

21st century flood hazards at the county level along the US Atlantic and Gulf Coasts. We find

that, under the compound effects of SLR and TC climatology change, the historical 100-year

flood level would occur annually in New England and mid-Atlantic regions and every 1–30

years in southeast Atlantic and Gulf of Mexico regions in the late 21st century. The relative

effect of TC climatology change increases continuously from New England, mid-Atlantic,

southeast Atlantic, to the Gulf of Mexico, and the effect of TC climatology change is likely to

be larger than the effect of SLR for over 40% of coastal counties in the Gulf of Mexico.
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Coastal flooding responds to both sea level rise (SLR) and
storm climatology change. SLR varies from place to
place1–3 due to the ocean circulation and glacial isostatic

adjustment, and climate change results in an interbasin variation
of cyclone characteristics4–10. Recent research has shown that the
spatial variability in SLR and extratropical cyclone (ETC) cli-
matology change results in flood hazards that vary across the
basin and global scales11–14. However, the most destructive
coastal floods are caused by tropical cyclones (TCs)15. Yet effects
of TC climatology change on flood hazards at the basin and
global scales have not been investigated, nor have the compound
effect of SLR and TC climatology change and its spatial variation.
Understanding the basin to global scale variation of TC flood
hazards and their future evolution is critical, if we are to identify
the current and future degree of flood risk in different regions and
to prioritize adaptation and mitigation investments.

Quantifying large-scale TC flood variations in the future cli-
mate is challenging for two reasons. First, most reanalysis datasets
and global circulation models (GCMs) cannot resolve TCs well
due to their relatively low resolutions16. Thus, recent studies
which assessed global scale flood hazards using these models11,13

accounted for ETCs well but not TCs. In recent years, a few
high–resolution GCMs and regional downscaled climate models
have been developed to study TCs in a warming climate8,9,17.
These models are still computationally expensive and thus not
practical for flood hazard assessment studies, which should
consider large spectra of storm scenarios in order to address
hazards induced by low-probability, high-consequence events18.
An effective approach is to statistically generate large samples of
synthetic TCs for reanalysis or GCM-projected climate
conditions19,20 to drive hydrodynamic modeling and assess flood
hazards. This climatological–hydrodynamic approach21, however,
induces the second challenge: balancing accuracy and efficiency in
hydrodynamic modeling. In order to accurately estimate floods,
hydrodynamic modeling is often performed on high-resolution
numerical meshes that can capture complex coastal bathymetry
and topography. Thus, the climatological–hydrodynamic
approach, which requires a large number of simulations on the
computationally expensive numerical meshes, has mainly been
applied at city or regional scales18,22.

Here we investigate the effects of SLR and TC climatology
change on future flood hazards along the entire US Atlantic and
Gulf Coasts. To do so, we apply the climatological–hydrodynamic
approach21 at the basin scale. Specifically, we use a statistical/
deterministic hurricane model19 to generate large numbers of
synthetic TCs under historical (1980–2005) and future projected
(2070–2095) climate conditions for the Atlantic basin. We apply a
widely used hydrodynamic model23,24 with a recently developed
basin scale computational mesh25 to simulate the storm tides (the
combination of storm surge and astronomical tide) induced by
these synthetic TCs for the US Atlantic and Gulf Coasts. Then we
estimate the historical and future return periods of flood heights,
defined as the combination of storm tide and SLR (based on a
probabilistic projection2), for each county along the US Atlantic
and Gulf Coasts. In particular, we examine the spatial variation of
the flood return levels and relative impacts of SLR and TC cli-
matology change along the US Atlantic and Gulf Coasts. We find
that, under the compound effects of SLR and TC climatology
change, the historical 100-year flood level would occur annually
in New England and mid-Atlantic regions and every 1–30 years
in southeast Atlantic and Gulf of Mexico regions in the late 21st
century. The relative effect of TC climatology change increases
continuously from New England, mid-Atlantic, southeast Atlan-
tic, to the Gulf of Mexico, and the effect of TC climatology change
is likely to be larger than the effect of SLR for over 40% of coastal
counties in the Gulf of Mexico.

Results
Modeling and analysis. The statistical/deterministic hurricane
model19 generates synthetic TCs for a given large-scale atmo-
spheric and oceanic environment estimated from observations or a
climate model (see “Methods” section). We run the model to
generate 5018 synthetic TCs for the observed climate of the his-
torical period between 1980 and 2005, based on the National
Centers for Environmental Prediction (NCEP) reanalysis26. To
study the TC climatology change, we run the model to generate
synthetic TCs for the projected climate of the future period
between 2070 and 2095, under the RCP 8.5 greenhouse gas con-
centration scenario. Given data availability and following previous
studies7,18, we consider projections from six CMIP5 GCMs27

including CCSM4 (Community Climate System Model, the Uni-
versity Corporation for Atmospheric Research); GFDL5 (Geo-
physical Fluid Dynamics Laboratory Climate Model, USA);
HadGEM5 (Hadley Centre Global Environment Model, U.K.
Meteorological Office); MIROC (Model for Interdisciplinary
Research on Climate, University of Tokyo, National Institute for
Environmental Studies, Japan, and Japan Agency for Marine-Earth
Science and Technology Frontier Research Center for Global
Change); MPI5 (Max Planck Institute for Meteorology, Germany);
and MRI5 (Meteorological Research Institute, Japan). We simulate
5018 synthetic TCs for each model for the future period. We also
generate another 5018 TCs for each model for the historical period.

The storm tide induced by each generated synthetic storm is
simulated using the advanced circulation model (ADCIRC)23,24

with a basin scale mesh25 (see “Methods” section). For each
coastal county, we extract the storm tide associated with each
synthetic TC as the largest peak storm tide generated by the TC
along the county’s coastlines. The probabilistic SLR projection is
obtained from ref. 2 (see “Methods” section). For each coastal
county, we use the projection under RCP 8.5 of the end-of-21st
century SLR from the closest station to that county. Combining
the probabilistic projections of storm tide and SLR, we perform
statistical analysis to estimate the return periods of flood heights
(see “Methods” section). Considering that climate model projec-
tions may be biased, we bias correct the climate model-projected
storm tides based on a comparison of the model estimates for the
historical period with the NCEP-based estimates (see “Methods”
section). We also obtain a weighted average projection of storm
tides with the weight on each climate model depending on its
accuracy in the historical estimations relative to the NCEP
estimations (see “Methods” section). The flood return level
estimations are performed for each coastal county along the US
Atlantic and Gulf Coasts (Fig. 1 shows the list of the counties; the
basin is divided into four regions: Gulf of Mexico, southeast
Atlantic, mid-Atlantic, and New England).

The hydrodynamic model was previously evaluated against
historical storm tides and the model showed a satisfactory
performance25. The hurricane model was also previously evaluated
and was shown to generate synthetic storms that statistically
agree with observations28 and compare well with storms
generated by other methods5,29. Here we evaluate the integrated
climatology–hydrodynamic modeling system by comparing the
flood return period estimates derived from the NCEP-based
synthetic TCs for the historical period of 1980–2005 to those based
on the observed water levels at tide gauge stations for the same
period. Comparisons show a good agreement between the modeled
and observation-based flood level estimates for relatively short
return periods that can be resolved based on the observations
during the relatively short historical period, although larger return
levels cannot be well resolved from the observations and wide
uncertainty bounds exist (Supplementary Fig. 1). To assist the
spatial comparison of flood hazards, the flood heights are
determined relative to the local mean higher high water.
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Spatial and temporal variation of flood hazards. As examples,
Fig. 2 shows the return period curves for representative coastal
counties in each region. The future return period curves take into
account the impacts of SLR and TC climatology change, which is
the weighted average over the six climate models (with weighting
factors shown in Supplementary Fig. 2). Results indicate that the
flood level for a given return period substantially increases by the
end of 21st century, due to SLR as well as TC climatology change.
The very likely estimates (5th–95th percentiles; i.e., 90% statistical
confidence interval) of flood levels with a long return period cover
a wide range, indicating a large statistical uncertainty in such
events. The uncertainties are smaller for flood levels with a higher
probability of occurrence, e.g., the 100-year flood return level. We
retain the focus of the remainder of this paper on the 100-year
flood level.

Figure 3 displays the spatial distribution of the estimated 100-
year flood level along the US Atlantic and Gulf Coasts. The
NCEP-based best estimate of 100-year flood level (η100–yr) for the
historical period varies greatly along the coast (Fig. 3a): it is
between 1.53 and 4.30 m (with the average over all counties of
3.03 m) in the Gulf of Mexico, 0.52 and 2.82 m (1.46 m) in the
southeast Atlantic, 0.27 and 1.67 m (0.84 m) in the mid-Atlantic,
and 0.48 and 1.20 m (0.66 m) in the New England regions.
Figure 3b shows the spatial distribution of the total changes in

η100 year for the future period, hereinafter Δη100 year (changes are
weighted average over six climate models; Δη100 year projected by
each climate model is shown in Supplementary Fig. 3).

Along coastal counties in the Gulf of Mexico region, the best
estimate of Δη100 year is between 1.5 and 2.80 m, with an average
value of 2 m (66% increase in the average η100 year). The largest
Δη100 year is projected to be between 2 and 2.8 m along the
northern coast of the Gulf of Mexico (Alabama, Mississippi,
Louisiana, and East Texas). The average very likely (5th–95th
percentile) range of η100 year changes from 2.38–4.16 m in the
historical period to 4.19–6.62 m in the future period for the Gulf
of Mexico region. The best estimate of Δη100 year is between 1.34
and 1.85 m (average change of 1.52 m; 104% increase) in the
southeast Atlantic region and between 1.43 and 1.92 m (average
change of 1.67 m; 200% increase) in the mid-Atlantic region. The
average very likely estimate of η100 year changes from 1.03–2.32 m
to 2.6–3.87 m in the southeast Atlantic region and from
0.65–1.21 m to 2.24–3.10 m in the mid-Atlantic region. The best
estimate of Δη100 year for the New England region is between 1.55
and 1.82 m (average change of 1.68 m; 255%). The average very
likely estimate of η100 year in this region changes from 0.56–0.89 m
to 2.23–2.62 m.

A previous study has shown that the TC climatology change
and a 1-m SLR by the end of 21st century substantially increase

New England Mid-Atlantic
28.Westchester,NY
29.Bronx,NY
30.New York,NY
31.Rockland,NY
32.Suffolk,NY
33.Nassau,NY
34.Queens,NY
35.Kings,NY
36.Richmond,NY
37.Bergen,NJ
38.Hudson,NJ
39.Essex,NJ
40.Union,NJ
41.Middlesex,NJ
42.Monmouth,NJ
43.Ocean,NJ
44.Atlantic,NJ
45.Cape May,NJ
46.Cumberland,NJ
47.Salem,NJ
48.New Castle,DE
49.Kent,DE
50.Sussex,DE
51.Worcester,MD
52.Somerset,MD
53.Dorchester,MD
54.Talbot,MD

1.Washington,ME
2.Hancock,ME
3.Waldo,ME
4.Knox,ME
5.Lincoln,ME
6.Sagadahoc,ME
7.Cumberland,ME
8.York,ME
9.Strafford,NH
10.Rockingham,NH
11.Essex,MA
12.Suffolk,MA
13.Norfolk,MA
14.Plymouth,MA
15.Barnstable,MA
16.Bristol,MA
17.Nantucket,MA
18.Dukes,MA
19.New Port,RI
20.Bristol,Rl
21.Providence,RI
22.Kent,Rl
23.Washington,RI
24.New London,CT
25.Middlesex,CT
26.New Haven,CT
27.Fairfield,CT

55.Queen Anne’s,MD
56.Kent,MD
57.Cecil,MD
58.Harford,MD
59.Baltimore,MD
60.Anne Arundel,MD
61.Calvert,MD
62.St. Marys,MD
63.Charles,MD
64.Northampton,VA
65.Accomach,VA
66.Prince William,VA
67.Stafford,VA
68.King George,VA
69.Westmoreland,VA
70.Northumberland,VA
71.Lancaster,VA
72.Richmond,VA
73.Essex,VA
74.Middlesex,VA
75.Mathews,VA
76.Gloucester,VA
77.King and Queen,VA
78.New Kent,VA
79.James City,VA
80.York,VA
81.Poquoson,VA

82.Hampton,VA 103.Jasper,SC
104.Chatham,GA
105.Bryan,GA
106.Liberty,GA
107.McIntosh,GA
108.Glynn,GA
109.Camden,GA

83.Newport News,VA
84.Surry, VA
85.Isle of Wight,VA
86.Suffolk,VA
87.Portsmouth,VA
88.Norfolk,VA
89.Virginia Beach,VA
Southeast Atlantic
90.Currituck,NC
91.Dare,NC
92.Hyde,NC
93.Carteret,NC
94.Onslow,NC
95.Pender,NC
96.New Hanover,NC
97.Brunswick,NC
98.Horry,SC
99.Georgetown,SC
100.Charleston,SC
101.Colleton,SC
102.Beaufort,SC

110.Nassau,FL
111.Duval,FL
112.St. Johns,FL

Gulf of Mexico

Atlantic
Ocean

Gulf o
f M

aine

113.Flagler,FL

140.Bay,FL
141.Walton,FL
142.Okaloosa,FL
143.Santa Rosa,FL
144.Escambia,FL
145.Baldwin,AL
146.Mobile,AL
147.Jackson,MS
148.Harrison,MS
149.Hancock,MS
150.St. Tammany,LA
151.Orleans,LA
152.St. Bernard,LA
153.Plaquemines,LA
154.Jefferson,LA
155.Lafourche,LA
156.Terrebonne,LA
157.St. Mary,LA
158.Iberia,LA
159.Vermilion,LA
160.Cameron,LA
161.Jefferson,TX
162.Galveston,TX
163.Brazoria,TX
164.Matagorda,TX
165.Calhoun,TX
166.Aransas,TX
167.Nueces,TX
168.Kleberg,TX
169.Kenedy,TX
170.Willacy,TX
171.Cameron,TX

114.Volusia,FL
115.Brevard,FL
116.Indian River,FL
117.St. Lucie,FL
118.Martin,FL
119.Palm Beach,FL
120.Broward,FL
Gulf of Mexico
121.Miami Dade,FL
122.Monroe,FL
123.Collier,FL
124.Lee,FL
125.Charlotte,FL
126.Sarasota,FL
127.Manatee,FL
128.Hillsborough,FL
129.Pinellas,FL
130.Pasco,FL
131.Hernando,FL
132.Citrus,FL
133.Levy,FL
134.Dixie,FL
135.Taylor,FL
136.Jefferson,FL
137.Wakulla,FL
138.Franklin,FL
139.Gulf,FL

Fig. 1 Coastal counties along the US Atlantic and Gulf Coasts (numbers represent the county ID). The study area is divided into four regions: New England
(green), mid-Atlantic (orange), southeast Atlantic (blue), and Gulf of Mexico (red). Source data are provided as a Source data file
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flood levels at New York City21. Four different climate models
(based on CMIP3 A1B scenario) in this previous study21

projected an increase of between 0.8 and 1.75 m in η100 year.
Our projections from six climate models (based on CMIP5 RCP
8.5 scenario) for the New York county show an increase of
between 1.36 and 1.90 m with a weighted average increase of
1.53 m. The subtle difference between the range of projections is
mainly because the previous study was based on a different
synthetic TC dataset, its projections were not bias corrected, and a
different computational mesh was used in the hydrodynamic
model. The previous study was also based on a deterministic SLR
of 1 m, whereas the present study is based on a probabilistic
projection of SLR.

Figure 3c shows the future return periods of the historical NCEP-
based 100-year flood level, which are estimated to be between 5 and
30 years (16.4 years, averaged over all counties) for the coastal
counties in the Gulf of Mexico and between 1 and 29 years (average
8.3 years) in the southeast Atlantic. In the New England and mid-
Atlantic regions, the historical η100 year is estimated to occur
annually by the end of 21st century. In these high latitude regions,
the historical 100-year flood levels are relatively small and thus
significant changes in the future climate lead to substantial
reductions of the return periods of such flood levels.

Relative impact of SLR and TC climatology change. Figure 4
shows the contribution of SLR and TC climatology change
(respectively, Δη100 year, SLR and Δη100 year, TC) to Δη100 year. The

effect of SLR is largest in the mid-Atlantic and New England
regions, and the northern coast of the Gulf of Mexico, consistent
with the projected SLR patterns2. We find that SLR results in
an increase in η100 year of 1.07 m (35% increase in the average
η100 year) in the Gulf of Mexico (averaged over all counties in this
region), 1.08 m (74%) in the southwest Atlantic, 1.38 m (165%) in
the mid-Atlantic, and 1.58 m (239%) in New England. The effect
of TC climatology change varies along the coastlines in a contrary
way. The TC climatology change alone increases η100 year by about
0.93 m (31% increase in the average η100 year) in the Gulf of
Mexico, 0.44 m (30%) in the southeast Atlantic, 0.29 m (35%) in
the mid-Atlantic, and only 0.1 m (15%) in New England. The
largest-projected TC induced change in the 100-year flood level is
about 1.5 m for several coastal counties in Mississippi and
Louisiana. Our projections show a Δη100 year, TC of about 0.16 m
for the New York county, NY, which is consistent with a previous
study21, where results from four climate models showed that the
influence of TC climatology change on New York City’s η100 year

is between −0.2m and 0.75 m.
Our projections show that TC climatology change has a

minimal impact on Δη100 year at high latitudes whereas its impact
on Δη100 year at lower latitudes is as significant as SLR. In the New
England region, SLR is projected to contribute between 82.2 and
99.7% to Δη100 year, whereas TC climatology change contributes
only between 0.3 and 17.8% (for counties bordering the Gulf of
Maine, Δη100 year, TC < 3%). The contribution of SLR to Δη100 year

is between 67.1 and 96.1% in mid-Atlantic and between 44.6 and
89.8% in southeast Atlantic. It is reduced to 35–80.1% for the Gulf
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Fig. 2 Flood return period curves for the historical period of 1980–2005 (black) and future period of 2070–2095 (blue: only effects of TC changes, red:
compound effects of SLR and TCs) at selected coastal counties. a–c Representative counties in New England; d–f representative counties in mid Atlantic;
g–i representative counties in southeast Atlantic; j–l representative counties in Gulf of Mexico. Empirical data points for the historical period are shown as
black circles. Solid lines represent the best estimates of flood return periods. Shaded areas cover the very likely range estimates (i.e., 90% statistical
confidence interval). Future projections are weighted average over the six climate models. Flood levels are relative to mean higher high water (MHHW,
obtained from https://vdatum.noaa.gov). Source data are provided as a Source data file
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of Mexico region. In 41% of coastal counties in the Gulf of
Mexico, the TC climatology change is projected to be the main
cause of increase in the future 100-year flood level (i.e.,
contribution of TC climatology change >50%). This spatial trend
of relative effects of SLR and TC climatology change on the flood
level also exists for other return periods, as shown in Fig. 2 for
representative counties.

Increasing flood levels induced by TC climatology change,
especially in lower-latitude regions, suggest that the frequency,
intensity, and/or size of TCs could increase by the end of 21st
century. Figure 5 shows that the frequency, intensity, and size of
NCEP-based historical TCs off the US Atlantic and Gulf Coasts
greatly varies as a function of latitude. While the TC frequency
and intensity (represented by maximum wind speed Vmax) are
higher in the Gulf of Mexico and southeast Atlantic regions, the
TC size (represented by radius of maximum wind speed Rmax) is
larger in the mid-Atlantic and New England regions. Figure 5
shows that both the intensity and size of TCs off the entire US
Atlantic and Gulf Coasts increase from the historical period to the
future period (up to a 21% increase). In particular, the index
Vmax

2Rmax, which we use here as a consolidated measure of TC
intensity and size, increases in the entire basin with the largest
increase in the Gulf of Mexico, resulting in the large values of
Δη100 year, TC projected for the Gulf of Mexico compared with
other regions (see Fig. 4). Changes in the TC frequency, shown in
Fig. 5, reveal a larger increase for the northern coast of the Gulf of
Mexico than the Gulf ’s eastern and western coasts, explaining the
larger Δη100 year, TC along the coastal counties of Alabama,
Mississippi, Louisiana, and East Texas than other counties in the
Gulf. In addition, our analysis of TC translation speed, not shown
here, reveals an increase in the number of slow-moving TCs and a
decrease in the number of fast-moving TCs. Slower TCs allow
winds to blow onshore for longer periods of time, resulting in
possibly larger and longer coastal flooding.

Projections based on all six climate models agree that the
largest impact of TC climatology change on the 100-year flood
level takes place in the Gulf of Mexico (Supplementary Fig. 4).
Projections from five models (out of six) suggest that Δη100 year, TC

along the northern coast of Gulf of Mexico is larger than that
along the Gulf ’s eastern and western coasts. Only MRI5 projects
a larger Δη100 year, TC along the eastern Gulf Coast. The GFDL5
model shows profoundly larger Δη100 year, TC in the Gulf of
Mexico region. This model projects an average increase of 2.19 m
(73% of the average η100 year) in this region whereas projections
from other models are between 0.49 (16%) and 1.0 m (33%). In
the Southeast Atlantic region, HadGEM5 projects the largest
Δη100 year, TC with an average increase of 1.2 m (86%). In this
region, MRI5 shows that the impact of TC climatology change on
η100 year is between −0.36 (23% decrease) and 0.68 m
(57% increase), with an average increase of 0.08 m (8%). The
projections from other models are between 0.5 (11%) and 0.79 m
(60%). In the mid-Atlantic region, HadGEM5 shows the largest
Δη100 year, TC with an average increase of 0.75 m (90%). For this
region, MRI5 shows an average decrease of 0.05 m (4%).
Projections from other models indicate an average increase
between 0.14 (17%) and 0.53 m (60%). In the New England
region, HadGEM5 shows the largest Δη100 year, TC with an
average increase of 0.41 m (57%) whereas MRI5 shows an average
decrease of 0.16 m (21%). Other models project an average
increase between 0.06 (8%) and 0.13 m (18%).

Discrepancies between Δη100 year, TC projected by individual
climate models (Supplementary Fig. 4) are owing to differences in
projections of future TC climatology (see Supplementary Figs. 5–8).
For example, projections from GFDL5 show a profoundly larger
Δη100 year, TC in the Gulf of Mexico region, which is due to the
substantial increase in all of frequency, intensity, and size of the
future TCs projected by this model. However, the skill score and
weighting factor of GFDL5 is smaller than other models
(Supplementary Fig. 2), leading to a smaller contribution of this
model to the weighted average projections discussed earlier.

Discussion
TC flood risks are evolving along the US Atlantic and Gulf
Coasts, owing to SLR and TC climatology change in the western
North Atlantic Ocean basin. The rate at which sea level is
changing varies from place to place1–3, affecting future flood
hazards locally (e.g., ref. 14). The impact of TC climatology
change in the basin could spatially vary too although, to our best
knowledge, this was not investigated prior to the present study.
Here, for the first time, we showed that TC climatology change
would substantially increase flood return levels, with the highest
and lowest impacts in the Gulf of Mexico and Gulf of Maine
regions, respectively. We found that the effect of late 21st century
TC climatology change on 100-year flood levels exceeds the effect
of SLR for over 40% counties along the Gulf of Mexico coast.

A previous study by the United States Army Corps of Engi-
neers, USACE30 (hereafter NM14), projected the effects of SLR
on future flood return levels. Our findings on the effects of SLR
on flood return levels are comparable with those from the USACE
study. We project, for example, that SLR causes an increase of
1.38 m in the 100-year flood level at the New York county from
the historical period of 1980–2005 to the future period of
2070–2095 under the RCP 8.5 scenario. Projections from NM14
for the New York City (The Battery NY) indicate that SLR causes
an increase of 0.8 m in the 100-year flood level from 2014 to 2114
under the modified NRC-III rate SLR scenario and an increase of
1.29 m under the modified NRC-III rate (USACE High) SLR
scenario. However, our study advances the USACE study in
several ways. First, NM14 presented the flood levels at the
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location of 23 tide gauge stations in the Northeastern US whereas
we presented the spatially continuous distribution of flood levels
along the entire US Atlantic and Gulf Coasts. Second, while
NM14 considered deterministic SLR projections, our study
accounted for probabilistic SLR projections. Third, NM14 asses-
sed only the effects of SLR on flood levels while we evaluated
effects of both SLR and TC climatology change.

Current flood risk mapping from the US Federal Emergency
Management Agency (FEMA) has not accounted for the effects of
climate change. We found that under the effects of SLR and TC
climatology change, the historical 100-year flood level would
occur annually in the New England and mid-Atlantic regions and
every 1–30 years in the southeast Atlantic and Gulf of Mexico
regions in the late 21st century. Thus, we strongly suggest that
future flood mapping and flood mitigation planning account for
the effects of SLR and TC climatology change.

The basin-scale approach adopted in this study allowed us to
evaluate the spatial variation of flood return levels at the county
level. Regional-scale (and local-scale) studies and flood mapping
require a more detailed variation of flood levels along the coast-
lines to support regional flood mitigation strategies. Basin-scale
studies reveal whether a regional-scale study is essential for a
specific region (and how urgent it is), prioritizing regional-scale
flood hazard and mitigation studies. Regional scale studies cover a
smaller area and thus can have a higher resolution than basin-
scale studies. Such studies may also account for elements that are
usually missing in larger scale studies such as inundation over
coastal floodplains (see further discussion in “Methods” section).
Thus, regional-scale studies may be informed by the basin-scale
studies, and the results of regional-scale studies in turn may be
used to evaluate the accuracy of basin-scale studies. Another
benefit of a basin-scale flood hazard study such as presented here
is that it reveals regions where SLR, storm climatology change, or
both play a role in future changes in flood hazards. Regional-scale
studies for regions where the storm climatology change does not
impact future flood hazards (e.g. 100-year flood level in Gulf of
Maine) may focus on the effect of SLR, while regional-scale stu-
dies for Gulf of Mexico should consider the compound effects of
SLR and storm climatology change.

We recommend that future studies on coastal flood hazards
take into account effects of ETCs and precipitation. In the
northeast region of the United States, especially in New England,
coastal flooding induced by ETCs are more frequent (but less
destructive) than TC-induced flooding31. Although ETCs may
contribute insignificantly to the 100-year flood levels focused
here, they should be accounted for in assessing less extreme flood
levels32. Also, a recent study has found that although the effect of
climate change on ETC storm surges is relatively small on aver-
age, large uncertainties exist among climate models33. In addition,
climate impact studies have shown that climate change will likely
increase TC rainfall rates in the future34,35, which can increase
coastal flood hazards for certain regions. Thus, future studies
should evaluate changes in coastal flood levels under compound
effects of SLR and climatology change of TCs, ETCs, and
related precipitation.

Methods
Hurricane model. We use the statistical/deterministic hurricane model developed
by refs. 19 to generate large numbers of synthetic storms for different climates. This
model uses both thermodynamic and kinematic statistics derived from observa-
tions or a climate model to produce synthetic TCs. The model first randomly seeds
the basin with weak, warm–core vortices. The motion of vortices is then deter-
mined by a beta–and–advection model which uses synthetic environmental wind
time series. The wind time series have the monthly means, variances, and covar-
iances calculated from daily data from observations or a climate model and obey a
geostrophic turbulence power–law distribution of kinetic energy. The pressure
deficit, maximum wind speed, and radius of maximum wind of each storm is

calculated using the deterministic coupled air–sea model, Coupled Hurricane
Intensity Prediction System (CHIPS)36.

Hydrodynamic model. We use ADCIRC, originally developed by refs. 23,24, to
simulate storm tides. We adopt the basin scale computational mesh developed by
ref. 25. The mesh covers the western North Atlantic Ocean, extending between
latitudes 8°N and 46°N and longitudes 98°W and 60°W. Details of the hydro-
dynamic model parameters can be found in ref. 25. The simulation is driven by
wind, pressure, and tidal forcing. We use the analytical model of ref. 37 to calculate
the (1 min) storm wind at the gradient level based on the maximum wind speed
and radius of maximum wind. For use in the ADCIRC model, we convert the
gradient wind to the surface level (10 m above the sea surface) with a velocity
reduction factor of 0.85 and an empirical expression of inflow angles38,39. We add
to the storm wind the surface environmental wind estimated as a fraction (0.55,
rotated counterclockwise by 20o) of the storm translation velocity, to account for
the asymmetry of the wind field40. Finally, we adjust the 1 min wind to a 10 min
average with a reduction factor of 0.89341. We use the parametric model of ref. 42

to calculate the radial profile of pressure given the pressure deficit. The water level
at the open boundaries is specified by eight major tidal constituents K1, K2, M2,
N2, O1, P1, Q1, and S2. Tidal data, including amplitudes and phases, are obtained
from the global model of ocean tides TPXO8–ATLAS with a 1/30° resolution43.
The timing of astronomical tide is matched to that of the synthetic TCs.

The hydrodynamic modeling framework was validated using historical TCs and
showed satisfactory agreements between measured and modeled storm tides with
an overall root-mean-square error, bias, and Willmott skill44 of 0.31 m, −0.04 m,
and 0.9, respectively25. In this study, the hydrodynamic modeling framework is
driven by synthetic TCs (and the evaluation is shown in Fig. S1). The simulation
starts when a storm enters the domain of interest and ends when it leaves the
domain (and does not return). The domain of interest expands 800-km seaward of
the US East and Gulf Coasts and 300-km landward.

SLR dataset. We use the probabilistic, localized SLR projections from ref. 2. The
projections consider ice sheet components (the Greenland, West Antarctic, and the
East Antarctic ice sheets); glacier and ice cap surface mass balance; global mean
thermal expansion and regional ocean steric and ocean dynamic effects; land water
storage; and long term, local, nonclimatic sea level change due to factors such as
glacial isostatic adjustment and subsidence. The database provides projections of
the probability distribution function (PDF) of SLR at tide gauge stations around the
world, under various emission scenarios. In this study, we apply the projection
under RCP 8.5 emission scenario for tidal gauges located along the US Atlantic and
Gulf Coasts.

Statistical analysis. Statistical analysis is performed on the storm tides for each
coastal county. Assuming that the storms arrive as a stationary Poisson process
under a given climate, the return period of TC-induced storm tide ηTC exceeding a
given level h is45

TηTC
hð Þ ¼ 1

Fr 1� P ηTC � h
� �� � ð1Þ

where P{ηTC ≤ h} is the cumulative probability distribution (CDF) of peak storm
tide and Fr is the TC annual frequency. Previous studies showed that the CDF of
TC storm tide is characterized by a long tail and the probability of events repre-
senting this tail can be estimated based on the extreme value theory21,46. Here we
model the tail of the storm tide CDF using the Peaks-Over-Threshold method with
a Generalized Pareto Distribution and maximum likelihood estimation47. Non-
parametric density estimations are used to model the rest of the distribution. We
determine a storm tide threshold value to separate the tail from the rest of the
distribution. The threshold value is determined by trial and error so that the
smallest error in the distribution fitted to the tail is obtained.

The return period of flood level η (combination of TC storm tide and SLR)
exceeding a given level h is defined as

Tη hð Þ ¼ 1
Fr 1� P η � hf gð Þ ð2Þ

where P{η ≤ h} is the CDF of flood level, which like refs. 45,48 is calculated through
a convolution of the CDF of storm tide and the PDF of relative sea level (RSL):

P η � hf g ¼ P ηTC þ ηRSL � h
� � ¼

Z þ1

�1
P ηTC � h� x
� �

fηRSL xð Þdx ð3Þ

where ηRSL is the RSL, which represents the mean sea level in any year relative to
the mean sea level in the baseline year 2000, and fηRSL(x) is the PDF of RSL.

We note that projections from climate models may be biased. Therefore, we bias
correct the GCM-projected storm tide climatology before combining it with RSL
distributions to estimate flood hazards. Similar to refs. 45,48, we bias correct the
storm frequency and storm tide CDF for each GCM by comparing the GCM-
estimated frequencies and CDFs for the historical period with NCEP-based
estimates and assuming that the biases calculated for the historical period can be
employed to bias correct future projections. In particular, we bias correct the storm
tide CDF through quantile–quantile mapping. For each return period (with an
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increment step of 1 year), we calculated the bias by subtracting the NCEP-based
return level from the climate-model-estimated return level for the historical period
and subtracted this bias from the climate-model-projected return level for the
future period.

In addition to the future projection of storm tides from each climate model, we
also calculate a single composite projection which represents the weighted–average
value over all climate models. The weighting factor assigned to each climate model
is determined by comparing the NCEP-based storm tide return levels with those
projected by the climate models for the historical period. Specifically, the weighting
factor Wi of the climate model i is simply calculated as Wi= Si/∑Si, where Si is the
Wilmott skill score (0 < S < 1, S= 1 means a perfect fit) for estimating the storm
tide return levels.

Limitations. There are some limitations to the results presented in this paper. The
hydrodynamic model neglects the wave setup (i.e., the water level increase at the
coast due to breaking waves in the surf zone). Wave setup can increase the flood
levels up to a few tens of centimetres25,49,50. The wave setup can be computed by
coupling the hydrodynamic model with a spectral wave model. However, the
computational cost would increase significantly (note that we simulated about
65,000 synthetic TCs). Another limitation of the hydrodynamic model is the spatial
resolution of the computational mesh, which is about 1 km along the coastlines. A
higher resolution mesh could reduce numerical errors and better resolve physical
processes especially the wave setup (when the hydrodynamic model is coupled with
a wave model as in ref. 25). The basin-scale computational mesh does not cover
coastal floodplains. Including the floodplains requires a higher resolution mesh that
resolves the complex features of coastal areas especially in urbanized regions (e.g.,
flood protection systems, roads, narrow waterways, etc.). These components may
be incorporated in future assessments when computational resources allow.

We assume that SLR and storm tides are independent and, thus, the nonlinear
interactions are neglected. Although the nonlinear effects have been shown to be
negligible for some coastal areas21,51, depending on the bathymetry and geometry
of the coast, SLR could influence the tidal range and storm surge height52–54.
Accounting for this nonlinear interaction through direct simulation is
computationally expensive, if possible, for full probabilistic assessments, as it would
require simulating numerous combinations of all possible storms and SLR
scenarios. (Direct simulations may be applied for studies with substantially reduced
number of scenarios, for example, through focusing on a few selected SLR
scenarios54). Developing parametric approximations may be necessary. Ultimately,
SLR and storm climatology changes are correlated in the climate and ocean
system55. Here they are assumed independent conditioned on the emission
scenario (RCP 8.5) and the overall climate modeling (CMIP5). An integrated
modeling framework that can estimate SLR and storm activity together for each
climate projection may help both accounting for their correlation more accurately
and providing reduced sample sizes that can be directly simulated to fully account
for the nonlinear interactions between SLR and storm tides.

Data availability
The source data underlying all figures (Figs. 1–5 and Supplementary Figs. 1–8) are
provided as a Source Data file. All data are available from the authors upon reasonable
request.

Code availability
Codes used for this work are available from the authors upon reasonable request.
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