
NISTIR 5601

AlllDM SSbbSl

Expert Control System Shell

Version 1.0

User’s Guide

Stephen A. Osella

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and Technology

Manufacturing Engineering Laboratory

Factory Automation Systems Division

Gaithersburg, MD 20899

QC

100 —
.U56

NO. 5601

1995

iMisr

NISTIR 5601

Expert Control System Shell

Version 1.0

User’s Guide

Stephen A. Osella

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown,

Secretary of Commerce

Technology Administration

Mary L. Good,

Under Secretary for Technology

National Institute of Standards and Technology

Arati Prabhakar,

Director i V %

February 1995

Disclaimer

No approval or endorsement of any commercial product by the National Institute of

Standards and Technology is intended or implied. Certain commercial equipment,

instruments, or materials are identified in this report in order to facilitate understanding.

Such identification does not imply recommendation or endorsement by the National

Institute of Standards and Technology, nor does it imply that the materials or equipment

identified are necessarily the best available for the purpose.

This publication and accompanying software was produced by the National Institute of

Standards and Technology, an agency of the United States Government, and by statute

is not subject to copyright in the United States. Recipients of this software assume all

responsibility associated with its operation, modification, maintenance, and subsequent

redistribution.

11

Table of Contents

Chapter 1 - Introduction 1

1 . 1 Computer System Requirements 1

1.2 Software Installation 2

1.3 Conventions and Organization 2

Chapter 2 - Tutorial

2.1 The D.C. Motor Control System 3

2.2 Creating a Controller File 4

2.3 Adding Controls 5

2.4 Adding the Device Driver 7

2.5 Compiling the Expert System Program 7

2.6 Running the Controller 7

Chapter 3 - Creating Controllers

3.1 Creating and Opening Controller Files 9

3.2 Adding Controls 9

3.3 Moving Controls 10

3.4 Modifying Controls 10

3.4.1 The Main Body 10

3.4.2 The Label 13

3.4.3 Digital Displays 13

3.4.4 Axis Markers 13

3.5 Cutting, Copying, and Pasting Controls 14

3.6 Saving and Copying Controller Files 14

Chapter 4 - Creating and Importing Device Interface Functions

4. 1 Device Interface Function Project Files 15

4.2 Writing Device Interface Functions 15

4.3 Device Interface Function Commands 16

4.3.1 Initialize 16

4.3.2 Terminate 16

4.3.3 Sample 17

4.3.4 Read 17

4.3.5 Write 17

4.4 Building DIF Code Resources 17

4.5 Importing DIF Code Resources 18

iii

Chapter 5 - Creating Expert System Programs

5.1 BNF Grammar 19

5.2 Compiling Expert System Programs 20

5.3 Adding and Deleting Control Modules 21

5.4 Message Passing Between Control Modules 22

Chapter 6 - Creating and Importing Expert System Functions

6.1 Expert System Function Project Files 24

6.2 Writing Expert System Functions 24

6.3 Building ESF Code Resources 25

6.4 Importing ESF Code Resources 25

Chapter 7 - Operating Controllers

7.1 Running a Controller 26

7.1.1 Starting and Stopping a Controller 26

7.1.2 Logging Data 27

7.1.3 Setting the Sampling Period 27

7.2 Converting a Log FUe to Text 28

7.3 Playing-Back a Log File 28

Appendix A
Built-In Expert System Functions 29

Appendix B
Built-In Display Constants, Variables, and Functions 35

IV

List of Illustrations

Figure

2-1: The D.C. Motor System 2

2-2: D.C. Motor Control System Block Diagram 3

2-3: D.C. Motor Controller Front Panel 4

5-1: Message passing between control modules 20

V

Chapter 1 - Introduction

CHAPTER 1

INTRODUCTION

The Expert Control System Shell (ECSS) is a software tool for rapidly prototyping and

deploying control systems of arbitrary complexity. With the ECSS, a control system designer

creates a controller which consists of a graphical user interface (called the operator front panel)

and, optionally, a collection of expert system rule-based programs. A controller can be operated in

“manual mode” where an operator interacts directly with the system to be controlled without using

the expert system, in “automatic mode” where the expert system is used to perform most, if not all,

system interactions, or in a combination of the two modes.

There are basically four steps involved in developing a functional controller with the ECSS:

1) creating controls (actuators and displays), 2) importing device interface functions, 3) creating

rule-based programs, and 4) importing expert system functions. When used in purely manual

mode, expert system programs and functions are not used. Most applications, however, require

some level of automatic control.

The ECSS allows generic interface to devices through the use of device drivers. The

device drivers must be customized for each application and must be written by the control system

developer. Device drivers are code resources which are imported into a controller file. Device

driver programs have a common code interface and respond to five messages: initialize, terminate,

sample, read ,
and write. Creating and importing device drivers is discussed in detail in chapter 4.

1.1. Computer System Requirements

The ECSS runs only on Macintosh computers having at least a 68020 CPU, a Floating

Point Unit 68881, at least 4 Mbytes of RAM, and running System 7.0 or higher. A Power

Macintosh version is being developed. Currently, ECSS version 1 .0 only permits code resources

written in C and created using Symantec’s THINK C compiler.

It is helpful if the user is familiar with the Macintosh Operating System essentials such as

how to launch applications, opening files, selecting, etc. Refer to your Macintosh User’s Guide

for additional information.

1

Chapter 1 - Introduction

1.2. Software Installation

The distribution diskette comes with three items at the root-level: 1) the ECSS application,

2) the Tutorial folder, and 3) the Examples folder. To install the software, simply copy these three

items to the folder of your choice.

1.3. Conventions and Organization

In the User’s Guide, bolded words indicate user interface items such as menu items,

dialogs, dialog items, etc. Words in italics are used for names of objects such as files, control

name, etc. Occasionally, statements in “bullet” form (i.e., •) appear in the User’s Guide and are

intended to make the user aware of particularly important aspects of the ECSS’s operation.

The User’s Guide will be discussed in the following order: 1) a tutorial on how to create a

controller, 2) creating controllers, 3) creating and importing device interface functions, 4) creating

rule-based programs, 5) importing expert system functions, and 6) operating controllers.

2

Chapter 2 - Tutorial

CHAPTER 2

TUTORIAL

This chapter presents an example, in tutorial form, of how to create a functional controller

with the ECSS. In particular, the tutorial is a step-by-step guide to re-creating the ^ dcjnotor.cfg'

example (found in the Examples.D.C. Motor folder of the distribution diskette) which is an

interactive simulator of a D.C. motor controller. This example includes 1) a controller front-panel,

2) an expert system program, and 3) a simulator device driver.

2.1. The D.C. Motor Control System

The system to be controlled is an experimental apparatus, shown in Figure 2.1, consisting

of a D.C. motor, a fly-wheel (supplemental inertia), a magnetic brake (fixed load), a gear-box, and

a tachometer. The input voltage Vs(t) drives the motor shaft connected to the flywheel and brake-

wheel. The motor shaft is also connected to the gear-box transmission where the shaft's rotational

speed is reduced by a factor of 30. Finally, the rotational energy from the gear-box is converted by

the tachometer to produce the output voltage Vt(t).

Motor Inertia Load Gearbox Tachometer

Figure 2.1: The D.C. Motor System.

The mathematical model of the D.C. motor system is given by the transfer function:

G(s)
Y(s)

U(s)

K,

(s + —

)

X

3

Chapter 2 - Tutorial

which means that the system is being modelled as a first-order system. Km and Xm are two system

parameters; in particular, Xm is the time-constant of the system. The controller created in this

tutorial will permit the changing of these two parameters. The device driver simulator incorporates

a gearbox step-down, tachometer gain transfer function, and a voltage reducer into a “composite”

motor transfer function G(s).

The overall D.C. motor control system block diagram is shown in Figure 2.2. The

stmcture of the controller Gd(z) was arbitrarily chosen to be of the Proportional-Integral-Derivative

(PID) variety. A PID expert system function is built-in to the ECSS. This function takes as

arguments the three PID factors; Kp, Kj, and K^, which will be actuators in the controller file, and

also takes as an argument the “error” E(z) which is the difference of the desired and the actual

motor R.P.M. converted to volts by Kg. The device driver simulator returns the actual motor

“speed” which is converted to R.P.M. by K^,. A Zero-Order-Hold (ZOH) circuit proceeds the

motor transfer function.

Figure 2.2: The D.C. Motor Control System Block Diagram.

2.2. Creating a Controller File

Launch the ECSS in the normal way that application programs are executed on the

Macintosh. This will initiate an open file dialog to open an already existing controller file. Press

the Cancel button to terminate the open file dialog.

Select the File ; New Controller... menu item and, via the create file dialog, navigate to

the Tutorial folder (created during software installation), enter the name 'dc_motor.cfg\ and push

the Save button. A window will appear which can be resized as desired.

4

Chapter 2 - Tutorial

2.3. Adding Controls

After completing the tutorial, the controller window will resemble the one shown in Figure

2.3. The tutorial makes use of four types of controls: button, digital, slider, and a strip chart. The

buttons, digitals, and sliders are actuators and the strip chart is a display.

All control names must be entered exactly as they appear in Figure 2.3.

Figure 2.3: D.C. Motor Controller Front Panel.

To create the Reset push-button, select the Controller ; Controls ;
Boolean ; Button

menu item. The button icon will appear near the middle of the window. Name the new button

control by first changing to the wrench tool by selecting the Wrench item in the Tools menu.

Then, with the wrench cursor, click on the button to pop-up a menu and select the Show Label

item. Enter the name (Reset) in the ensuing dialog and click OK. Again, click on the button icon

5

Chapter 2 - Tutorial

to pop-up its menu and select the Output Information... item. Select the Internal radio button

in the dialog and click OK. Lastly, move the button icon to the appropriate position by first

changing to the hand tool by selecting the Hand item in the Tools menu and then dragging the

icon to the position shown in Figure 2.3. Repeat this procedure for the Run Simulator button.

Create the Kp control by selecting the Controller
; Controls ; Numeric ; Digital menu

item. Set the control’s name as before and make the control an internal control. Because digital

controls are, by default, displays, change the control to be an actuator by selecting the Change To

Actuator item in the control’s pop-up menu. A characteristic of digital actuators are the arrows

which can be used to change the control’s value. Lastly, move the control to the appropriate

position. Repeat this process for the Ki and Kd controls.

Create the Desired Motor R.P.M. control by selecting the Controller ; Controls ;

Numeric ; Vertical Slider menu item. Set the control’s name as before and make the control an

internal control by selecting the Output Information... item. Select the Show Digital

Display item in the control’s pop-up menu to show the digital display and arrows. To modify the

axis labels and control dimensions, click the wrench cursor on the axis markers and select the

Axis Information... menu item. Change the Maximum field to 4000.0, the Divisions to 4,

the Pixels Per Division to 12, and the Precision to 1. Click OK to dismiss the dialog.

Lastly, move the control to the appropriate position.

The other three vertical sliders are different in that they are external (device) actuators. That

is, they are associated directly with an external device driver which is covered in the next section.

As before, create the control named Control by selecting the Controller
;
Controls ; Numeric ;

Vertical Slider menu item and then set the control’s name. Click on the icon to pop-up its menu

and select the Output Information... item. By default, the Device radio button in the dialog

will be selected. Enter the name DC_MOTOR in the Device text-field. Channel 0 is also the

default, so you do not have to change this field. Click OK to dismiss the dialog. As before, show

the digital display and arrows. Change the axis information so that it resembles those in Figure

2.3. Entering negative numbers can be a little tricky. First enter the number part (e.g., 0.1), and

then put the cursor at the beginning and enter the minus sign. Lastly, move the control to the

appropriate position. Repeat this process for the Km and TAUm controls except enter channel 1

for Km and channel 2 for TAUm in the Output Information... dialog. Make sure the control

names and channel numbers are correct because they must correspond with those in the rule-based

program and device driver.

Create the Actual Motor R.P.M. control by selecting the Controller
;
Controls ;

Chart

;

Strip menu item and then set the control’s name. Modify the axis information and show the

digital display. Because strip-charts are displays (and not actuators) the digital display’s arrows

6

Chapter 2 - Tutorial

will not appear. Change the width of the strip-chart by changing the number of samples displayed

by selecting Options... in the pop-up menu and setting the Number Of Samples to 120 in the

dialog. Click on the icon to pop-up its menu and select the Input Information... item. By

default, the Device radio button in the dialog will be selected. Enter the name DC_MOTOR in the

Device text-field. Channel 0 is again the default, so you do not have to change this field. Click

OK to dismiss the dialog. Lastly, move the control to the appropriate position.

2.4. Adding the Device Driver

Creating and importing device interface functions (drivers) is discussed in detail in Chapter

4. For this tutorial, use the already created device driver called DC_MOTOR in the Tutorial folder.

To import the device driver, perform the following steps:

1) Select the menu item: Controller ;
Devices

;
Add...

2) Open the DC_MOTOR resource file

3) Select the DC_MOTOR code resource in the dialog

4) Double-click on the name, click on the OK button, or press the return key

2.5. Compiling the Expert System Program

Open the pre-written expert system rule-based program by selecting the Files ; Open...

menu item and selecting the file named dc_motor.k. Compile the program by selecting

Controller
; Modules ; Compile. A compilation-status window will appear (rather briefly)

indicating the progress of the compilation. The compilation window will disappear after the

compilation is finished. Because a module (associated with the expert system program) is added to

the controller, it is advisable to save the controller file after the compilation is finished. You can

close the ‘dc_motor.k’ window if you so desire.

2.6. Running the Controller

Before running the controller there is one more thing left to do. Set the sampling period by

selecting Operate
;
Set Sample Period... and enter 0.1 in the dialog. This is the sampling

period in seconds.

To run the controller, select Operate ; Run. The cursor will automatically change to the

finger tool. Click, hold, and drag the Desired Motor R.P.M. slider’s thumb (i.e., knob) so that the

slider digital display reads 2000.0. Then click on the Run Simulator push-button to start the

7

Chapter 2 - Tutorial

simulation. You will see the Control slider move up and down before settling on a constant control

value (in volts). You can set the desired R.P.M. at any time or you can change the system

parameters by actuating the Km and TAUm actuator sliders. You can modify the responsiveness

of the PID digital controller by changing the PED constants either by typing in the digital display or

by using the arrows. The Reset push-button is used to reset the PID controller and reset the

simulation to a default ‘zero’ starting point. To stop the controller, select Operate
;
Stop.

8

Chapter 3 - Creating Controllers

CHAPTER 3

CREATING CONTROLLERS

This chapter discusses the essentials of how to create and open controller files, and how to

add and modify actuators and displays. Collectively, actuators and displays are called controls.

3.1. Creating and Opening Controller Files

The first two menu items of the File menu vary depending on whether or not a controller

file is open. If a controller file is not open, the menu items will read New Controller... and

Open Controller..., respectively. The New Controller... item is used to create a new

controller file while the Open Controller... item is used to open an already existing controller

file. Only one controller file can be open at any given time.

Upon selecting the New Controller... menu item, you will be prompted for a file name.

Navigate to the appropriate folder and enter the new controller’s file name. Then, click on the

Save button or hit the return key.

To open an already existing controller file, select Open Controller... menu item.

Navigate to the appropriate folder and select the file. Then, double-click on the selected file, click

on the Open button, or hit the return key. Controller files can also be opened using the Switch

To item in the Controller menu. This option allows controller files to be quickly re-opened.

Every time a controller file is opened (or newly created), an item is added to the Switch To menu

(item). The currently opened controller file is disabled (i.e., ghosted) while all the previously

opened files are enabled. A controller file can be re-opened by selecting the appropriate menu item.

3.2. Adding Controls

Once a controller file is opened, controls can be created and/or modified. There are five

types of controls: Numeric, Boolean, Chart, Graph, and Timer. They are found in the

Controller menu and Controls menu item. Each control is either an actuator or a display;

actuators are used to effect some type of control and displays are used to visually indicate process

variable values. Numeric controls are analog or discrete, while Boolean are binary (on/off). Chart

and Timer controls can only be displays. Graphs can either be displays or actuators. There are

various control styles for each type of control.

9

Chapter 3 - Creating Controllers

To add a control, select the Controller
; Controls menu item and then select menu item

corresponding to the type and style of the control desired. The new control will initially be placed

near the middle of the controller window. Use the hand tool to move the control to the desired

location (see section 3.3).

3.3. Moving Controls

To move a control, first select the Hand tool. Then click on a control to select it. Lastly,

drag the control to the desired location. You can select a number of controls to move

simultaneously by holding down the Shift key when clicking on a control.

You can also select a number of controls by not clicking on any control. Then a cross and

rectangle will appear with which you "trap" the controls. When the mouse button is released, the

selected controls are “marqueed”. The selected controls can then be moved simultaneously by

clicking-and-holding any one of the controls and dragging the outline of the selected controls.

A grid can be used to "attract" the controls to grid boundaries by selecting Turn Grid On

item in the Controller menu. To see the grid, select the Show Grid item also in the

Controller menu.

3.4. Modifying Controls

To modify a control, select the Wrench tool (the one that looks like a bone) from the

Tools menu and then click on the part of the control you wish to modify. A pop-up menu will

appear. There are generally five parts to a control: the main body, thumb, label, digital display,

and axis markers. The pop-up menu items vary depending on the type and style of control and the

part of control selected. The thumb (e.g., the handle part of a slider) is used only for actuation; if

selected with the Wrench tool, it is as if the main body is being selected.

3.4.1. The Main Body

What constitutes the main body of a control depends on the type and style of control. In

general, however, the main body is the “picture” portion of the control. For example, the main

body of a strip-chart is the chart rectangle (by default displayed in yellow) and the main body of a

toggle is the actual toggle picture.

The Change To Display/Actuator menu item is used to modify a control’s status from

an actuator to a display, and vice versa. Most control types have this capability; however, certain

control types, such as charts and timers, do not.

10

Chapter 3 - Creating Controllers

The Show/Hide Label menu items are used to toggle the display of the control label

(i.e., its name). If the control has not been previously given a name, the first time Show Label is

selected, the ECSS will prompt you to specify a name.

The Replace menu item is in actuality the same as the Controls menu item in the

Controller menu. Upon selecting a replacement type and style of control, the current control is

replaced with the new one. With this version of the ECSS, the new control’s parameters are

initialized. Future versions of the ECSS will retain previous control parameters.

All control types except for Boolean controls have the capability to show a digital display of

the current control value. The showing and hiding of the digital display is enabled using the

Show/Hide Digital Display menu item. Of course. Digital controls (i.e., Numeric/Digital)

always show their digital displays.

Chart and Graph controls have an Options... menu item that can be used to modify

parameters intrinsic to charts and graphs. Upon selecting this menu item, a dialog, that depends on

the type of control, will appear. For example, the Foreground Color and Background Color

dialog buttons can be clicked on to modify the colors used to draw the chart or graph.

The internal value representation of Numeric controls can be modified by selecting the

corresponding data type sub-menu item of the Data Type menu. The internal representation is an

important aspect of a control because it defines 1) the storage requirements when control runs are

logged to disk (see chapter 7) and 2) the device interface requirements (see Chapter 4).

Actuator controls present an Action menu item with Standard and Momentary sub-

menu items. The Action menu item sets the “action” of the thumb upon its release. If Standard

is enabled (i.e., is checked in the menu) then the thumb will remain at the position (and thus value)

where it was released. On the other hand, the Momentary menu item dictates that the thumb

should return to the default value upon release of the thumb. In ECSS version 1.0, the default

value is pre-defined to be the minimum axis-marker value. In future versions, this default value

will be user-defined.

Actuator controls also present an Output menu item with Upon Release and

Continuous sub-menu items. If Upon Release is enabled, the ECSS will send a write

message only when the thumb is released. On the contrary, if Continuous is enabled, the ECSS

will continuously send write messages, as fast as possible, until the thumb is released.

Two very important pop-up menu items are the Output Information... item for

actuators and Input Information... item for displays. An actuator can either be Device or

Internal. An external actuator sends write commands to the associated device named in the Device

field as well as being accessible by the expert system. Internal actuators can only be accessed by

the expert system programs.

11

Chapter 3 - Creating Controllers

A display can either be Device, Internal, or Function. A device display "connects" directly

with a device and sends read commands to its device interface function; therefore, you have to

specify a device name and channel number (see Chapter 4). If the display is a function then an

expression is specified in the Function field. The Backus-Naur-Form (BNF) grammar for an

expression is the following (bolded characters indicate literals):

:= <number> I <control_name> I <constant> I <variable> I <function> I

(<operator> <expression> <expression>)

= <digits> I <digits> . <digits>

= <digit> I <digit> <digits>

= 0 .. 9

= <identifier> I <string_ identifier>

= <letter> I <letter> <identifier_symbols>

= <identifier_symbol> I <identifier_symbol> <identifier_symbols>

= Any keyboard character except white-space characters

= “ < any keyboard character > “

= <identifier>

= <identifier>

= <identifier> (<expression_list>)

= <expression> 1 <expression> ,
<expression_list>

= * I/I + I
-

There is no operator precedence apart from parentheses and expressions are evaluated left-to-right.

There are a number of built-in constants, variables, and functions which are listed in Appendix B.

As an example, the infix expression:

10 + (4.0 * cos ((2k * 0.1 * t) + 7c/4))

would be entered into the Function field as:

(+ 10 (* 4.0 cos ((+ (* (* 2 (* PI 0.1)) t) (/ PI 4)))))

where PI stands for k and t is a built-in variable (see Appendix B) that simply keeps track of the

seconds that have passed since the controller began operation. The use of prefix notation

considerably simplifies the expression parser.

<expression>

<number>

<digits>

<digit>

<control_name>

<identifier>

<identifier_symbols>

<identifier_symbol>

<string_ identifier>

<constant>

<variable>

<function>

<expression_list>

<operator>

12

Chapter 3 - Creating Controllers

3.4.2. The Label

Selecting a control’s label with the Wrench tool pops-up a menu with three items: Hide

Label, Modify Label..., and Text Attributes... . The Hide Label menu item causes the

label not to be displayed. The Modify Label... item brings-up the dialog which was originally

used to first enter the control’s label. The Text Attributes... item is used to modify the display

attributes (font, size, and justification) of the label text.

3.4.3. Digital Displays

The pop-up menu for digital displays has three items: Hide Digital Display, Text

Attributes..., and Precision... . The Hide Digital Display menu item causes the label not

to be displayed. The Text Attributes... item is the same as for labels. The Precision... is

used to specify the number of digits after the decimal point to be displayed.

The precision also defines the amount of increment/decrement performed when using the

arrow-keys. Therefore, if the precision is equal to 2 (i.e., two digits after the decimal point), the

increment/decrement amount will be equal to 0.01 which is 10 to the power -2. The precision

depends on the controls internal data type. If the data type is not floating-point, the precision will

be automatically set to 0 and cannot be changed.

3.4.4. Axis Markers

The pop-up menu for vertical axis-markers has two items: Axis Information... and

Text Attributes... . The Axis Information... menu item brings-up a dialog with five items:

Maximum, Minimum, Division, Pixels Per Division, and Precision. The Text

Attributes... item is the same as for labels and digital displays.

The Maximum and Minimum dialog items are used to specify the maximum and

minimum values that will be displayed by the control (e.g., in the chart window). These limits are

solely used to specify the display extremes; the control value can achieve any value permissible by

its corresponding data type. The Division and Pixels Per Division items are used to specify

the number of divisions between tick mark and the number of pixels per division, respectively.

The Precision item is used to specify the number of digits after the decimal place that will

be displayed on the axis markers. As with digital displays, if the data type is not floating-point, the

precision will be set to 0 and cannot be changed. The axis marker precision and the digital display

precision can be set to different values. The former is used only to define how the axis markers

should be displayed. The digital display precision, however, is important because it also specifies

the number of digits to print-out when converting log files to text files (see Chapter 7).

13

Chapter 3 - Creating Controllers

3.5. Cutting, Copying, and Pasting Controls

Controls can be removed and duplicated using the Cut, Copy, and Paste menu items of

the Edit menu. To Cut a control means to remove the control from the current controller. A

control is Cut by first selecting the control (in the same way as if you were going to move it) and

then selecting the menu item Edit
;
Cut or by entering command-X. The control is removed

from the control but is temporarily saved onto the clipboard. The control (or controls) can

immediately be pasted (i.e., put) back by selecting the menu item Edit ; Paste or by entering

command-V. However, if any other control is cut or copied, the previous cut (or copy) is

rendered obsolete.

A control (or controls) can be copied by selecting the control, selecting the menu item Edit

; Copy or by entering command-C, and then pasting the copied controls. The controls are

pasted “in place”, so that it will appear as if nothing was pasted; however, the controls are simply

stacked one on top of the other. Use the Move tool to move the copied control to the desired

location. A copied control actually is copied first to the clipboard; therefore, you can make multiple

copies of a control since the template resides on the clipboard until the next cut or copy.

3.6. Saving and Copying Controller Files

Additions and modification to controller files only become permanent when a controller is

saved to disk. To save a controller file, press the command-S key or select the File ; Save

menu item. If a controller file has not been modified, the Save menu item is disabled. It is only

enabled when a change to the controller file has been made.

Controller files can be copied (within the ECSS) in two ways. First, if the File ; Save

As... menu item is selected, a file request dialog will appear requesting the location (volume and

folder) and name of the new controller file. Upon entering the file name (and pressing return), the

ECSS will copy the contents of the current controller file to the new controller file and then switch

to the new one. In a similar fashion, if the File
;
Save A Copy As... menu item is selected,

the contents of the current controller file will be copied to the new controller file; however, the

ECSS will not switch to the new one, but will keep the current one open instead.

14

Chapter 4 - Creating and Importing Device Interface Functions

CHAPTER 4

CREATING AND IMPORTING

DEVICE INTERFACE FUNCTIONS

In writing a Device Interface Function (DIF), you will be basically following the guidelines

for writing a code resource (See "Building Code Resources" in the THINK C User's Manual).

The device interface functions have a specific format and must set up a code resource global

variable environment. Use the “DIF_template.7r” THINK C project and "DIF_template.c" source

file as a starting point and use the example DIF’s as guides.

4.1. Device Interface Function Project Files

Duplicate one of the example DIF project files or create a new THINK C code-resource

project. In your project for the DIF, set the project type in the following manner:

Project Type (Radio Button): Code Resource
File Type: DICR
Creator: RSED
Name: The name specified here is the one that you will use when

connecting the resource to controls in the ECSS (see Section 4.5)

Type: DICR

Also, when compiling the DIF, make sure that the 68020 and 68881 options are set for your

THINK C project and enable the Purgeable attribute flag.

4.2. Writing Device Interface Functions

The starting point of a DIF is the main function which has the following syntax:

void main (long cmd, long channel_nbr, Ptr data)

where cmd is a long int whose value depends on the specific command (See Section 4.3),

channel_nbr is a long int whose value is the id of the channel to read from or write to, and data is a

generic pointer whose value (i.e., what it points to) depends on the command.

15

Chapter 4 - Creating and Importing Device Interface Functions

Upon entering the main function, a DIF must set up the code resource’s global variable

environment. This is done by the two function calls:

RememberAO ();

SetUpA4 0;

which are provided by the Macintosh system library. You must include the file “SetUpA4.h” in

the DIF source file to access these functions. At this point, the code resource’s global variables are

accessible and everything is right with the world.

Before exiting the DIF, the old (i.e., the ECSS code) global variable environment must be

reset. This is done by calling the function:

RestoreA4 ();

4.3. Device Interface Function Commands

There are five commands to which a DIF must respond: Initialize, Terminate, Sample,

Read, and Write. They are discussed individually in this section.

4.3.1. Initialize

The Initialize command (cmd == 0) is sent every time the controller is run. This facility

should attempt to clear any buffers, check the communication lines, etc. The parameter data points

to a Boolean variable. Set *data to TRUE (1) or FALSE (0) depending on the success or failure of

the device initialization procedure, respectively.

4.3.2. Terminate

The Terminate command {cmd == 1) is sent upon stopping a run. This facility should de-

allocate any memory, turn any devices left on to off, etc. No return value is expected.

16

Chapter 4 - Creating and Importing Device Interface Functions

4.3.3. Sample

The Sample command (cmd == 2) is sent periodically to the DIF. The sampling frequency

depends on the sampling period selected (see Chapter 7). The DIF should sample all sensors upon

receiving this command. This ensures that sampling is synchronized for all sensors and in the

ECSS. The reading of the sensors (by the ECSS) is performed by the read command, which is

discussed in the next sub-section.

4.3.4. Read

The Read command {cmd == 3) is sent to read the value of the sensor associated with a

controller display. For each display in a controller, the read command is sent to read the particular

channel associated with that display. For the read command, the parameter data is a pointer to a

variable whose type depends on the internal representation of the display’s value (see Section

3.4.1). Note that for graphs, the variable is an array. Therefore, in the DIF, the parameter data

must be dereferenced using the appropriate type casting (see the example DIF’s).

• It is up to the control system developer to make sure that the internal representation

of a display’s value and the data type for the corresponding channel in the DIF are

the same.

4.3.5. Write

The Write command (cmd == 4) is sent when an actuator is acted upon either through the

user interface or in a rule-based program. The write command is similar to the read command in

that the data parameter is a pointer to a variable whose type depends on the internal representation

of the actuator’s value. Again, in the DIF, the parameter data must be dereferenced using the

appropriate type casting.

4.4. Building DIF Code Resources

After having set the DIF project type and written the DIF program, the code resource has to

be created. In the THINK C application, perform the following steps:

1) Select the menu item: Project ;
Build Code Resource...

2) Navigate to the desired folder and save the code resource file with a file name of

your choice. This is the name of the code resource file.

17

Chapter 4 - Creating and Importing Device Interface Functions

4.5. Importing DIF Code Resources

After a DIF code resource has been created, it has to be imported within the controller file.

Make note of the code resource name (not the file name) because it is this name that is used to name

the device in the Input/Output Information dialogs explained above.

To import a DIF code resource into a controller file from the ECSS, perform the following

steps:

1) Select the menu item: Controller ; Devices ;
Add...

2) Navigate to and open the resource file containing the DIF code resource

3) Select the DIF code resource in the dialog

4) Double-click on the name, click on the OK button, or press the return key

It is generally a good idea to save the ECSS controller file after importing a DIF.

• Make sure your DIF is debugged before importing it within the ECSS.

A good way to debug your DIF code is to create a test program which calls the device

driver main routine. To do this you will have to rename the device driver main function and

comment-out the lines of code pertaining to setting-up global variables, i.e., RememberAO(),

SetUpA4(), and RestoreA4().

18

Chapter 5 - Creating Expert System Programs

CHAPTER 5

CREATING EXPERT SYSTEM PROGRAMS

Creating rule-based programs is probably the trickiest part of working with the ECSS. If

you have had any experience with rule-based programming (Prolog, OPS5, CLIPS, etc.) you will

be advantaged. In the ECSS, the expert system is forward-chaining (data-driven). Each program

consists of constants, global variables, facts, and rules. The ECSS allows the incorporation of a

number of expert system programs that is limited only by the amount of available memory.

Each expert system program is associated, abstractly, with a control module of the same

name. The programs/control modules operate concurrently and have the capability to send and

receive messages to and from one another. This facility is discussed in section 5.4.

5.1. BNF Grammar

The BNF grammar for an ECSS rule-based program is the following (bolded words

indicate literals):

<program>

<program-items>

<program-item>

<constants>

<constant_pattems>

<constant_pattem>

<variables>

<variable_pattems>

<variable_pattem>

<facts>

<rule>

<conditions>

<condition>

<program-items>

<program-item> ! <program-item> <program-items>

<constants> I <variables> I <facts> I <rule>

(CONSTANTS <constant_pattems>)

<constant_pattem> ! <constant_pattem> <constant„pattems>

(<identifier> <item>

)

(VARIABLES <variable_patterns>)

<variable_pattem> I <variable_pattem> <variable_pattems>

(<identifier> <item>)

(FACTS <pattems>)

(IF <conditions> THEN <actions>)

<condition> I <condition> <conditions>

<pattem> 1 <variable> <pattem>

Note: If the variable is specified, then the fact matching the pattern is bound to the

variable. This is necessary be able to retract facts from the knowledge-base.

19

Chapter 5 - Creating Expert System Programs

<actions> <action> I <action> <actions>

(<identifier> <pattem>

)

<pattem> I <pattem> <pattems>

(<items>)

<item> I <item> <items>

<literal> I <constant> I <variable> I <function> I <pattem>

<number> I <identifier> I <string> I <boolean>

alpha-numeric characters (starting with a letter) and the underscore.

" <printable_ascii_characters>
"

<action>

<pattems>

<pattem>

<items>

<item>

<literal>

<identifier>

<string>

<boolean> TRUE I FALSE

#<identifier>

?<identifier> I @<identifier>

<constant>

<variable>

Note: ?<identifler> indicates a local variable (to the rule) and @<identifier> indicates a

global variable.

<function> =(<identifier> <pattem>) I =<variable>(<identifier> <pattern>)

Note: If the variable is included, the variable is bound to the function’s return value.

There are some restrictions to the above BNF grammar. For instance, fact patterns cannot

contain function items. Furthermore, no check is made to see if global variables are bound prior to

the function call. All restrictions are fairly intuitive and will be caught by the compiler.

There are a number of built-in functions in the ECSS’s expert system library and they are

listed in Appendix A.

5.2. Compiling Expert System Programs

Expert system programs must be “compiled” before they can be used to operate a

controller. Actually, the programs are not compiled in the sense that they are converted to machine

code. Instead, they are converted into an internal ECSS data structure that permits relatively more

efficient computation; however, they are stiU interpreted.

20

Chapter 5 - Creating Expert System Programs

A rule-based program is compiled in one of three ways: 1) by explicitly requesting that a

program be compiled, 2) by explicitly “bringing-up-to-date” all the programs in the controller, and

3) indirectly compiling all the programs in the controller when the controller is run. To explicitly

compile a rule-based program, the program file must first be open and then the menu item

Controller ; Modules ;
Compile must be selected (command-K). This menu item is only

enabled when a program file window is the active window and then only if the file has been

modified since the last compilation of the program. Upon selecting the Compile menu item, a

message window is displayed which shows the number of constants, global variables, facts, and

rules that have so far been compiled. The message window is automatically closed after the

program is compiled. In the (unlikely) event of a syntax error, the ECSS will display a

“Compilation Error” dialog which specifies the type of error and then it will position the cursor to

the place in the program file where the error occurred. On occasion, the cursor placement is not the

exact position of the error, but instead is the next position where an anomalous condition occurred.

All the rule-based programs in the controller can be compiled at the same time by selecting

the Controller ; Modules ;
Bring Up To Date menu item or by entering command-U. Only

the programs which need compilation are compiled. Again, the compilation message window will

appear but will be reset for each program. In the event of a compilation error, the ECSS will abort

further compilation, will position the cursor to the point of the error, and will put up the error

message dialog. If the program file is not open, the ECSS will first open the file and then position

the cursor.

Lastly, programs are automatically brought up-to-date before the controller is run (see

Chapter 7). If there is a compilation error, the controller is not run and the usual compilation error

events occur. A controller is run if (but not only if) all programs have been compiled successfully.

5.3. Adding and Deleting Control Modules

Each expert system program is associated with a control module of (exactly) the same

name. A control module can be considered as a “manager” in the hierarchical-control paradigm or

an “agent” in the autonomous-agent paradigm. A program/control-module can be added to the

controller in one of two ways: 1) explicitly and 2) implicitly when the program is compiled

successfully. A control module can be explicitly added to a controller either by selecting

Controller ; Modules ;
Add File when a program file window is the active window and the file

has not already been added to the controller, or by selecting Controller ;
Modules ;

Add... at

anytime a controller file is open. This method initiates a open-file dialog.

21

Chapter 5 - Creating Expert System Programs

Anytime a program file is compiled successfully and the corresponding control module has

not already been added to the controller, the ECSS will automatically include that program/control-

module to the active controller. Control modules can be removed from a controller by selecting the

Controller ; Modules ; Delete... menu item. This item initiates a dialog which prompts you to

select the control module you wish to delete. The ECSS will ask you to verify the removal of the

selected control module before actually removing it. Select the Cancel button in the dialog to

terminate the module deletion procedure.

5.4. Message Passing Between Control Modules

Control modules can be considered as the building-blocks for the creation of a distributed

artificial-intelligence-based control system. The ECSS allows the inclusion of a virtually unlimited

number of control modules that operate concurrently (processed sequentially) and can synchronize

their activity and/or cooperate via message passing. As illustrated in Figure 5.1, a control module

can send a message to another module. The receiving module can get the message from its

message port, process the message by looking at the message arguments, and can reply to the

message or canfree the message. The message sending module can then get the reply, process it,

and optionally free it.

Module 1

Message Port Reply Port

reply 1

Module 2

Message Port Reply Port

Figure 5.1: Message passing between control modules.

To perform these six functions, the ECSS provides six message related functions:

send_msg, get_msg, msg_arg, send_reply, get_reply, and free_msg. These functions

are listed, along with their required argument and return data types, in Appendix A. Message

arguments can be any ECSS data type (i.e., boolean, integer, real, string, and pointer). The return

value type of the iiisg_arg function varies depending on the data type of the message argument.

22

Chapter 5 - Creating Expert System Programs

The processing of a control module can be temporarily suspended pending the reception of

a message, or a reply to a message, by using the built-in function wait. Upon calling this

function, the ECSS will put the module “to sleep” immediately after completely processing the rule

which includes this function as an action. When the module is sent a message (or replied to), the

ECSS will “wake-up” the module and it will continue as if nothing ever happened.

23

Chapter 6 - Creating and Importing Expert System Functions

CHAPTER 6

CREATING AND IMPORTING

EXPERT SYSTEM FUNCTIONS

The creation of an Expert System Function (ESF) proceeds in the same manner as the

creation of device interface functions except that expert system functions do not have any

prescribed format. The function’s arguments and return value data types are defined by the call to

the function in the expert system program.

6.1. Expert System Function Project Files

In your THINK C project for the ESF set the project type in the following manner:

Project Type (Radio Button): Code Resource
File Type: KBCR
Creator: RSED
Name: This is the name that will be used in expert system programs to call

the function.

Type: KBCR

Again, when compiling the ESF, make sure that the 68020 and 68881 options are set for your

THINK C project and the Purgeable attribute flag is enabled.

6.2. Writing Expert System Functions

The arguments and return values of ESFs depend on the actual call to the function within an

expert system program. The ECSS only supports a subset of the C data types: booleans are

represented as unsigned chars, integers as signed long ints, floats as long doubles, strings

as char *, and pointers as char *. Therefore, when writing ESFs, use these type representations

for the function arguments and return value. As with all code resources, the link to the function is

main(). As with DIFs, the function calls to RememberA0(), SetUpA4(), and RestoreA4() must be

made if global or static variables are used; however, place the return statement after the call to

RestoreA4(). Look at the example ESF project ‘ESF_Template.7r’ and the corresponding

‘ESF_Template.c’. Except for these few restrictions, ESFs can be as general as is needed.

24

Chapter 6 - Creating and Importing Expert System Functions

6.3. Building ESF Code Resources

After having set the ESF project type and written the ESF program, the code resource has

to be created. The ESF code resource is created in exactly the same way as a DIF code resource.

In the THINK C application, perform the following steps:

1) Select the menu item: Project
;
Build Code Resource...

2) Navigate to the desired folder and save the code resource file with a file name of

your choice. This is the name of the code resource file, not the name of the code

resource you enter in Section 6.1.

6.4. Importing ESF Code Resources

After a ESF code resource has been created, it has to be imported within the controller file.

To import a ESF code resource into a controller file from the ECSS, perform the following steps:

1) Select the menu item: Controller ; ES Functions
;
Add...

2) Navigate to and open the resource file containing the ESF code resource

3) Select the ESF code resource in the dialog

4) Double-click on the name, click on the OK button, or press the return key

5) Specify the ESF’s return value type by selecting the appropriate radio button. If the

function does not return a value (i.e., its a procedure) then select the Void radio

button. In this case, the ECSS will not assign a value to a “function-value” variable

in an expert system program. Make sure the ESF return value and expert system

program types correspond.

25

Chapter 7 - Operating Controllers

CHAPTER 7

OPERATING CONTROLLERS

This chapter covers the details on how to operate a controller. In particular, it covers how

to 1) start and stop a controller, 2) log data to a (binary) file, set the sampling period used to

sample devices, to log data, and by expert system programs, 3) convert binary log files to text

files, and 4) play-back a log-file “as if the controller was running” in real-time.

7.1. Running a Controller

This section covers the essentials of starting and stopping controllers, logging data, and

setting the sample period.

7.1.1. Starting and Stopping a Controller

The running of a controller is started by selecting the Operate ; Run menu item or by

entering command-R. Upon selecting this menu item, the ECSS performs a start-up sequence

involving the 1) compiling of any newly added or modified expert system programs, 2) initializing

of all devices, 3) resetting of the controls, 4) clearing of any user-interface events in the controls,

and 5) changing the active cursor tool to the Finger tool. The start-up sequence may fail on steps

1 or 2. In this event, the controller is not run until the problem has been corrected.

While running a controller, the ECSS essentially loops through the following five steps: 1)

sampling the devices, 2) updating external displays {i.e., those that read device channels), 3)

updating internal displays {i.e., those that use an input function), 4) drawing the new display

values, and 5) executing expert system programs. Steps 1-4 are performed only every sample

period (see sub-section 7.1.3) while step 5 is performed as often as possible.

The running of a controller is stopped by selecting the Operate
; Stop menu item or by

entering command-R. Note that this menu item is in the same location as the Run menu item.

While running, this menu item reads Stop. Upon selecting this menu item, the ECSS requests the

operator to confirm the shut-down. If confirmed, the shut-down sequence involves the 1) closing

and possibly the saving of the console window if it was opened (using the printf ESF), 2) closing

of the log file if data logging was occurring (see sub-section 7.1.2), and 3) terminating all devices.

26

Chapter 7 - Operating Controllers

7.1.2. Logging Data

A powerful feature of the ECSS is the capability to save control (both actuators and

displays) values to a (binary) data file during the running of a controller. The menu-item for

controlling the logging is generically the Operate ; Log Data menu-item (command-L);

however, this menu-item changes with different conditions. If the controller is not running and

data-logging is not enabled, the menu-item reads Log Data. The actual data-logging occurs only

while the controller is running. If the controller is not running and data-logging is enabled, the

menu-item reads Don’t Log Data. If the controller is running and data-logging is not enabled,

the menu-item reads Start Logging Data and if data-logging is enabled (i.e., the ECSS is

currently writing data to a file) the menu-item reads Stop Logging Data. Data-logging occurs

only on sample intervals specified by the sampling period. The log file is a temporary one and is

saved to disk only after stopping the controller, at which time a file-save dialog requests the name

and folder of the log file.

Data logging can also be controlled within an expert system program by using the built-in

ESF log_data. The statement log_data(TRUE) begins the logging of data if the ECSS is not

currently doing so and log_data(FALSE) stops data-logging if it is currently on. Data-logging

can still be controlled from the user-interface menu-item; however, the data-logging status can

change if manipulated within an expert system program.

7.1.3. Setting the Sampling Period

An important consideration when running a controller is selecting the sampling period. In

the ECSS, the sampling period 1) defines when display controls are updated (either by reading a

device channel or using an input function), 2) dictates when control values are written to the log

file, and 3) is typically used in expert system programs to properly synchronize control times. The

sampling period is set by first selecting the Operate ; Set Sample Period... menu item and

then by entering the sampling period in the dialog. The sampling period is specified in seconds

and has a granularity of l/60th of a second.

The ECSS will do it’s best to keep up with very short sampling periods. The ECSS’s

ability to keep up depends on the type of machine its running on, the complexity of the controller

(i.e., the number of controls), the number and complexity of device drivers, and so on. You might

have to do some experimentation to find a suitable sampling period for your configuration. A

reasonably short sampling period might be 0.5 seconds or 0.25 if you’re fortunate.

27

Chapter 7 - Operating Controllers

7.2. Converting a Log File to Text

The purpose of this facility is to permit the saving of data, which is stored in binary format,

to be saved as an ASCII text file. The data can be saved in tab, space, or comma-separated format.

Optionally, the names of the controls can be included as the first row of the output text file.

First of all, to convert a log file, no controller file can be open; therefore, if a controller file

is open, close it. Then, select the Operate
; Convert... menu item. Doing so will initiate an

open file dialog with which you select the (binary) log file created previously. Subsequently, a

dialog will appear requesting the type of column delimiter to use and whether or not to include the

control names. Upon selecting the OK button in this dialog, the ECSS will prompt you for the

name and folder of the text file to be created. Upon selecting the Save button in the save file

dialog, a message will appear indicating the progress of the conversion in terms of how many

“samples” have been so far converted and saved. When the conversion is completed, the message

window will disappear, and the text log file will be in the specified folder. This text file can now

be used by any text editor, spread-sheet, graphing, or mathematic application.

7.3. Playing-Back a Log File

The ability to play-back a log file is a very useful feature provided by the ECSS. Using a

remote-control, a log file can be played-back in real-time, fast-forward, or frame-by-frame. The

remote can also be used to fast-forward or rewind to any sample in the log file. Again, to play-

back a log file, no controller file can be open; therefore, if a controller file is open, close it. To

open a (binary) log file, select the Operate ; Playback... menu item and then select the log file

you wish to open. The controller window can be moved and resized and the remote window can

be moved.

The play button (>) is used to play-back the log file in real-time. Play-back will continue

until either the stop button is pressed or the last sample has been displayed. If the fast-forward

button (») is pressed while playing a log file, the samples will be displayed twice as fast (if

possible). The frame button (F) is used to play the log file back frame-by-frame. The rewind

button («) is used to return to a previously display sample. When one of the playback buttons is

pressed after using the rewind button, the controls are cleared before redrawing.

28

Appendix A

APPENDIX A

Built-In Expert System Functions

29

Appendix A

Functions:

Function Name

sampHng_period()

sampling_frequency()

sample_number()

sainple_time()

assert([items])

retract(factjptr)

bh_2tssert([items])

bb_retract(/ac^_ptr)

send_msg(name [args])

get_msg()

msg_arg(/nsg nbr)

send_reply(msg^ [args])

get_reply()

free_msg(/nsg)

wait()

terminateO

haltQ

Description

The sampling period in seconds

The sampling frequency

The current sample number

The current sample time

Assert fact to module fact-base

[items]
:
general

Retract the fact from the module fact-base

fact_ptr
:
pointer

Assert fact to black-board fact-base

[items]
:
general

Retract the fact from the black-board fact-base

fact_ptr : pointer

Send a message to module name

name : string

[args] : Optional list of general arguments

Get next message in message port

Get argument nbr from message msg

msg
:
pointer

nbr : integer

Send a reply to message msg

msg
:
pointer

[args] : Optional list of general arguments

Get next reply in reply port

Free (deallocate memory) message msg

msg
:
pointer

Put module to sleep pending message

Remove module from processing cue

Stop running controller

Return Type

real

real

integer

real

void

void

void

void

void

pointer

general

void

void

void

void

void

void

30

Appendix A

Functions:

Function Name Description Return Type

rand()

reset_rand(seed)

set_rand_type(0'/^e)

Return a floating-point random number

Reset random number generator seed

seed : integer

Set random number generator type

type : string (“uniform” or “normal”)

real

void

void

get_\a\ue(name)

set_\a\ue(name value)

aci\\ate{name YorN)

event_occurred(wam^)

clear_event(«am^)

clear_events(na/n^)

acknowIedge(promp/)

coniirmiprompt)

dev_write(d^v chnl val)

dev_read(dev chnl)

Get the control value

name : string

Get the control value

name : string

value : general

Make control accessible to user-interface

name : string

YorN : boolean

Did user access this control?

name : string

Clear oldest user-interface “event”

name : string

Clear all user-interface “events”

name : string

Prompt user to acknowledge a message

prompt : string

Prompt user to confirm a message

prompt : string

Write val to device dev at channel chnl

dev : string

chnl : integer

val
:
general

Read from device dev at channel chnl

dev : string

chnl : integer

general

void

void

boolean

void

void

void

boolean

void

general

31

Appendix A

Functions:

Function Name Description Return T\

log_data(ForA^) Start or stop logging data

YorN ; boolean

void

save_log_file(/7Vam^) Save log file to file vmRQfName

fName : string

void

delete_log_data() Delete current log file and stop logging data void

sys_beep() System Beep void

ctimeO Time in string format string

clockO Clock ticks in integer format integer

fclockO Clock in seconds real

fopen(wa/ne mode) Open file name with mode mode

name : string

mode : string

pointer

tcXoseifp) Close file whose file pointer is^

fp :
pointer

void

fprintf(/p [args]) Print arguments to file

fp :
pointer

[args] : Optional list of general arguments

integer

fscanfifp [args]) Read arguments from filefp

fp :
pointer

[args] : Optional hst of general arguments

integer

pr'miiijargs]) Print arguments to console window

[args] : Optional list of general arguments

void

strcat(s/ s2) Concatenate s2 to si and return result

si : string

s2 : string

string

strcpy(si s2) Copy s2 to si and return si

si : string

s2 : string

string

32

Appendix A

Functions:

Function Name Description Return Type

abs(ji:) The absolute value of x real

acos(jc) The arc-cosine of x real

asin(a:) The arc-sine of x real

atan(ji:) The arc-tangent of x real

atan2(ji: >>) The arc-tangent of x/y real

ceil(A:) Rounds up to the next highest integer real

cos(a:) The cosine of x real

cosh(A:) The hyperbolic-cosine of x real

expCx) The exponential of x real

floor(x) Rounds down to the next lowest integer real

fmod(jc 3^) Floating-point remainder of x / y real

log(x) The natural logarithm of x real

loglO(x) The base- 10 logarithm of x real

POw(a: y) X to the y real

sin(x) The sine of x real

sinhCx) The hyperbolic-sine of x real

sqr(x) The square of x real

sqrt(jt:) The square-root of x real

tan(A:) The tangent of x real

tanh(jc) The hyperbolic-tangent of x real

+ix y) X -h y number

-(X y) x-y number

*(x y) X * y number

/{X y) x/y number

itoa(0 Convert integer i to string format string

atoi(s) Convert string s to integer integer

ftoa(jc) Convert real x to string format string

atof(s) Convert string s to real real

33

Appendix A

Functions:

Function Name Description Return Type

gtix y)

gte(A: y)

\tix y)

lte(x 3^)

eq(A: y)

neqU y)

Is X greater-than yl boolean

X : real or integer

y : real or integer

Is X greater-than or equal to yl boolean

Is X less-than yl boolean

Is X less-than or equal to yl boolean

Is X equal to yl boolean

Is X not equal to yl boolean

and(a b)

or(a b)

not(a)

Logical a and b

a : boolean

b : boolean

Logical aorb

Logical negation of a

boolean

boolean

boolean

34

Appendix B

APPENDIX B

Built-In Display Constants, Variables, and Functions

35

Appendix B

Constants:

PI

Variables:

T

Fs

n

t

Functions:

abs(x)

acos(x)

asin(x)

atan(x)

atan2(x y)

ceil(x)

cos(x)

cosh(x)

exp(x)

floor(x)

fmod(x y)

ln(x)

loglO(x)

pow(x y)

sin(x)

sinh(x)

sqr(x)

sqrt(x)

tan(x)

tanh(x)

rand()

randnO

The constant n

The sampling period

The sampling frequency (i.e., Fs= 1/T)

The current sample number

The current sample time (i.e., t = nT)

The absolute value of x

The arc-cosine of x

The arc-sine of x

The arc-tangent of x

The arc-tangent of x/y

Rounds up to the next highest integer

The cosine of x

The hyperbolic-cosine of x

The exponential of x

Rounds down to the next lowest integer

Floating-point remainder of x / y

The natural logarithm of x

The base- 10 logarithm of x

X to the y

The sine of x

The hyperbolic-sine of x

The square of x

The square-root of x

The tangent of x

The hyperbolic-tangent of x

Uniformly distributed pseudo-random numbers

Normally distributed pseudo-random numbers

36

:;v;<
' vvfl^Mfjr

wa
' .:^=«"> %.
.^ S^v -

'

-^.
Cl?tf -

; 'uir

' *n*

wvv>,-#,'4

% M'00^^ikmMM

, 1‘? >\

i'3

^^A%}mm'-

iximi

•: •'r:
''•«

vv; 'W,(}^''''.’l|^-.
'

'

,
.

. ' ;-' “

'

... ,;
i?,

*#'5:0'

sM*® :-,, /i”-,'™), „

.::

'

':l£ .1
Si

::' .V.
' khm

:'ii '(i{t^

«W '

'

