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The total Born approximation cross section for pair production in a cou lomb field given originally 
by Racah is used to derive two simple and rapidly convergent analytic expansions for thi s cross sec· 
tion , one valid for high energies, k , of the incident photon , the other for e nergies near the thres hold. 
For k > 4 me' the fractional error involved in using the first four term s in the high energy expansion is 
< 4.4 X 10- 5. For k < 4 me' the fractional error committed in using the first five terms of the low energy 
expansion is < 1.1 X 10- 4 • The leading terms in these expansions are the we Ll known high e nergy and 
low energy limits of this cross section , respectively. 
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The cross section for the production of an electron·positron pair in the fi eld of an unscreened 
Coulomb potential V= - Ze2 /r was first given in first Born approximat ion in a number of papers 
nearly thirty five years ago by W . Heitler and F. Sauter [lj,1 H. Bethe and W. Heitle r [2 , 3j, and 
G. Racah [4 1. References 1, 2, and 3 give thi s cross section, differe ntial in e nergy but integrated 
over all particle direc tions, without any approximation in the e nergy [5J as well as in a form valid 
when the energy of each of the pair particles is extremely relativistic (KR.) [61 , (EI p 1, E2 > 1): 

(KR. ) (1) 

where - e2 (Ze 2

J2 
1> =~ -'J = Z2. 5.7938 X 10- 28 c m2 . 

IL C mc-
(2) 

a nd EI , E2, k are the energies of the positron, electron and photon respectively, in units of mc2 • 

References 2 and 3 give the total cross section (eq (1) integrated over EI) , but onl y in the extre me 
relativis ti c limit (k p I): 

- (28 218) 0'=1> g In 2k- 27 . (K R.) (3) 

Only in the papers by Racah can one find an expression for the total cross section involving no 
hi gh e ne rgy approximations. Unfortunately, this express ion involves indefinite integrals over 
ellipti c integrals, so that it is quite inconvenient for obtaining numerical values of the total cross 
sec tion. In fact, for thi s purpose it is equally simple to integrate directly, numerically , the differ· 
e ntial cross sec tion [5] in which no high energy approximations have been made. Howe ver, both 

1 Figures in brackets indica te th e literature references at the end of thi s paper. 
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for numerical evaluation and for an understanding of the analytical approximations involved in 
the extreme relativistic expression (3), it is clear that it would be convenient to have a simple 
analytic expression for the total cross section, valid over a large range of energies, which reduces 
in an obvious manner to (3) in the limit of large k. A step in this direction was made in a paper by 
Hough [7] who gives a corrected expression for the total cross section: 

- (28 218 6.45) 
a-=¢ "9 ln2k - 2f--k- , (4) 

to be applied at lower energies than those for which (3) may be used. In addition, a number of 
e mpirical analytical expressions are given to cover the region 2 ~ k ~ 15. They are, however, not 
really very simple, and they do not go smoothly into the high energy expression. Indeed, while 
the expression (4) is, as far as numerical values are concerned, an improvement over (3) for mod­
erate energies, it is rather deceptive from the analytical standpoint: The corrections to (3) for 
moderate k are not of the form Ilk. The expression (4) results in fact from an integration of the 
high energy differential cross sec tion (1) between the limits E= 1 and EJ = k-I rather than ° 
and k, which leads to (3): 

4¢ 1" ( . . 2 ) ( 2EJE2 1) - (28 218) a-=- Ei + E~+-EJ Et In---- dEJ=¢ -ln2k--, 
k3 0 3 k 2 9 27 

(5) 

whereas 

in which 12- 8 In 2 = 6.45 . . . 
However, the extreme relativistic differential cross section III the integrands here has errors of 
relative order I/E1 and l/E§, and these may be expected to give contributions of order 

i.e., of exactly the same order as the correction calculated by changing the limits of integration 
from (0, k) to (1, k - 1). This is in fact borne out by the expansion given here , in which we see that 
no terms of the form 11k actually appear in successive terms in the high e nergy expansion. 

In this note we return therefore to the expression for the total cross section without any ap­
proximation in the energy, given by Racah, and derive from it two relatively simple and rapidly 
convergent expansions - one for large k, the other for k near threshold (k = 2). The first few terms 
in each of these expansions are shown to suffice for both analytic and numerical purposes for all k. 

The results which we obtain are the following: For k near threshold we derive in fact two 
series , one in the expansion parameter 

(7) 

the other in the some what more complicated expansion parameter 

p = 271 
1 + Yl- 71 2 

(8) 
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This seco nd series has the advantage of be ing more rapidly convergent. These expansions are 

- 27T (k-2):J [ 1 23 37 61 ] 
a = <I> 3" k 1 +"2 TJ + 40 TJ 2 + 120 TJ 3 + 192 TJ4 +. . . 

a nd 

. .]-

For large k we derive an expansion in the parameter 

where 

- {28 218 a = <I> - In 2k --
9 27 

(2)2 [ 7 2 1 7T2 ] + - 6 In 2k--+- ln3 2k- ln2 2k-- 7T2 1n 2k+2~(3) +-
k 2 3 3 6 

-Gr [:6 In 2k+~] 

-(~r [9 .2:56 In 2k - 27 :~12] + . . . } 

'" 1 
~(3) = "" -3= 1.2020569 ... 

.6 n· 
11 = 1 

(9) 

(10) 

(11) 

(12) 

The converge nce of thi s high e nergy expansion is extre mely rapid, even for rather low energies. 
For example, for k = 4, the fractional error, 0, (aapprox = a exact (1 + 8)) involved in using the term s 
shown explicitly in (12) is only + 4.4 X 10- 5. The fractional errors obtained using the terms shown 
explicitly in (9) and (10), also for k = 4, are -1. 1 X 1O- :J a nd - 1.1 X 10- 4, respectively. For k > 4, 
the errors in (12) become sm aller and for k < 4 the errors in (9) and (10) beco me smaller. 

The first term in eac h of these expan sio ns has been given previously by Racah [8]. Their 
r egions of validity are shown in figure 1, whe re we give graphs of the ratio of the first term in (10) 

( a\hres hOld = ¢ 2; (k ~ 2)) and of the first term in (12) (ap. = ¢ (~8 In 2k - 22\8)), to the exact 

total cross sec tion, a. It is to be noted from figure 1 that the first term of (10), valid for k near 
t hreshold , is more than 10 percent off for k > 1.5 Me V, and that the first term of (12), valid for 
k very large, is more than 10 percent off for k < 10 Me V. In figure 2 we give a graph of the total cross 
section, a, in millibarns , as a function of the incident photon energy, k, in MeV. In table 1, values , 
(a/1» , of the total cross section in units of -;j; are given for photon e nergies ranging from 1.03 to 
1000 MeV. 

We proceed now to the derivation of these expansions , our starting point being the exact 
Born approximation cross section as given by Racah: 

-4 (I- TJ )2[{TlK(g) dg-4 {TI~ (cK(g) dg]} (13) 
(1 + TJ )2 Jo l -g Jo 1 -~2 Jo l - g 
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FIG URE 1. The ratio of the first term in expansion (10) ((T',"' .. hOld = ;j; . 2; (k ~ 2)"). 
and of the first term in expansion (12) ((TfR . =;j; C98 In 2k - 22178)). to the exact total 

cross section , (T , as a function of the incident photon energy k, in MeV. 

10 
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FI GU RE 2. The total pair production cross section, (T, in millibarns, as a function of 
the incident photon energy, k, in MeV. 

where K (YJ) and E (YJ) are the comple te elliptic integrals of th e firs t and second kind . r espec tively 
[9] , and are defined by 

(l4a) 

='!!.-F(! L l' 2 ) = '!!.-~ G) II G) II 211 
2 2' 2' , YJ 2 L.. n! 11! YJ 

n= O 
(l4b) 
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where 

and 

TABLE 1. The total cross section in units of (f as a function of incident 
photon energy in MeV 

-
k (MeV) (T/<J> k (MeV) aN) 

1.03 9.788 X 10- 7 10 3.647 
LOS 3.994 X 10-5 15 4.782 
1.10 7.607 X 10- 4 20 5.618 
1.15 2.978 X 10-3 30 6.826 
1. 20 7. 134 X 10-3 40 7.696 
l.25 1.342 X 10-2 50 8.377 
1.30 2.189 X 10-2 60 8.936 
1.40 4.507 X 10-2 80 9.822 
1.50 7.577 X 10-2 100 10.511 
1.75 1. 777 X 10- 1 150 ll. 767 
2.00 3.030 X 10- 1 200 12.659 
2.50 5.836 X 10- 1 300 13.919 
3.00 8.716 X 10- 1 400 14.813 
4.00 1.416 500 l5.507 
5.00 1.900 600 16.074 
6.00 2.328 800 16.968 
8.00 3.052 1000 17.662 

(a) /I = a (a. + 1) . . . (a + 11 - 1) for 11 > 0 

(a.)o = 1. 

(1Sa) 

(1Sb) 

Thus for Y/ < 1, we may write out the power series for K and E in (13), integrate term by term , and 
collect successive powe rs of Y/ . This straightforward procedure leads to our expansion (9). 

Expan sion (10) is obtained by usin g th e transformations [9] 

(16) 

E('Yl) = _2_ E(A) - (1- A)K(A) = 7T F (_l -.!.. 1· A2) 
./ I + A 2(1+ A) 2' 2' , (1 7) 

where 
1 - Y 1- y/ 2 

A =-----'-
1 +Y1- y/2' 

(18) 

The se ries for K(A ) and E(A) converge faster tha n those for K(y/) and E(y/) since A < Y/. S ub­
s tituting (16), (17) and (18) in (13), we write out the power series for K(A), E(A) and Y/ (a seri es in 
A 1/2), perform th e in tegrations term by term with respect to A, collect successive powers of A' /2 
a nd write the seri es in te rm s of the variable p =2A'/2=2Y/ / [l +Y1 - y/ 2] since p -"> y/ as y/ -">O. 
This gives the expansion (10). 
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In order to obtain the high energy expansion (12), we note that YJ ~ 1 for k ~ 1. We therefore 
need expansions of the functions K (YJ) and E (YJ) about YJ = 1. To this end we rewrite the trans­
formations (16) and (17) with A and YJ interchanged: 

K( ) =_l_K (2V;) 
YJ l+YJ l+YJ 

(19) 

(20) 

Noting that 2v:;j = J1- (~)2 
l+YJ k 

(21) 

we define (22) 
and write (19) and (20) in the form 

(23) 

(24) 

In (13), the terms pre ceding the integrals can now be rewritten conveniently in the form 

692 + 468YJ + 76YJ2 + 108YJ3 _ 692 + 360YJ + 692YJ2 _ [56 536 928 64 J 
27(l+YJ)3 K(YJ) 27(l + YJ) 3 E(YJ)- 9 +27k +27k2+9k3 K(YJ) 

_[22\8+:;:2J [1 +~JE(YJ) = 227 [42 +12511? +6p,4]K(p, ')-227 [109+ 64p,2]E(p,'). (25) 

The desired expansions of K and E are 

(26) 

1 ~ (~)" G)" [ ( ) ( ) ( 3) (f) J " E(p,') = l +- L.. , ,!./In +2 + !./In + 1 - !./J n +- - !./J n +- -2lnp, p,211 +2 
4 n = O n. (n + 1) . 2 2 

(27) 

where !./J(z) = [ ' (z) /[(z) , and , in particular, [10] 

1/. - 1 1 
!./J ( n) =- y+L l ' n > O 

1= 1 

( 1) '1 '~I 1 !./J n +"2 =- Y-2'n2 +2,~2/ + 1 ' n > O 

!./J (O) =-y, (1) ,-
tjJ "2 =- y-2In2 (28) 

y = Euler's co nstant = O.5772 ... 
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From (28) we may write 

where n > O 

So=O. (29) 

Equations (26) and (27) are then wri tte n in the for m 

(30) 

(1) (3) 
1 x 2 2 

E( ') - 1+- "" II II [ + + 2 1 2k] 211 +2 
f.L - 4 L" '( + 1)' SII + l SII n f.L 

11 = 0 11 . 11 . • 
(31 ) 

S ubstitution of (30) and (31) in the ri ght hand side of (25) gives the des ired hi gh e nergy expansion 
of the te rm s in (13) preceding the integrals . We note th at the terms in this expans ion are ei th er 
of the form of a power seri es in f.L 2= (2/k )2 or In 2k times a power series in f.L 2. 

We nex t cons ider th e higb energy ex pan ion of the integral s in (13). Each of th ese integr als 
has th e factor 

which is precisely our expans ion parameter. The first integral is 

Let 

from whi ch 

Now fro m (19) we have 

so th at 
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(32) 

(33 ) 

(34) 

(35 ) 
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Since we want an expansion of II for k ~ 1, i. e., 2/k «: 1, we separate that part of the integrand 
whi c h becomes singular as z ~ o. From (30) 

(37) 

as z ~ O. Thus we may write 

1 11 dz [ , ;C;--;; 4] 1 11 dz 4 II = - - K ( v 1 - Z2) - In - + - - In -
2 2 z z 2 2 z Z 

- -
k k 

III dz [ , ;C;--;; 4] 1. .J 1 J" dz [ , ;C;--;; 4] = - - K(vl-z2)- ln - + - ln2 2k - ln-2 -- - K(vl - z2 ) - ln - · 
20z z 4 20z z 

(38) 

The evaluation of the definite integral in (38) is given in the appendix. The result is 

(39) 

In the last integral in (38) we subs titute (30), with !.L replaced by z, 2k by 4/z , and integrate term by 
term. We then obtain 

(40) 

Finally, we consider the second integral in (13): 

(4]) 

upon integrating by parts. Again we substitute (33) and (35), and obtain 

k lldz , 1-12 = - 211 In -2 - - In zK ( v 1 - Z2). 
2 Z 

(42) 

k 

As with II , we write 

1, 1 dz , 1- 1,1 dz [, ;c;--;; 4] 11 dz 4 - In zK ( v 1 - Z2) = - In z K ( v 1 - Z2) - In - + - In z In -
2Z 2Z Z 2 Z Z 
- - -
" h· " 

2 

II dz [, ;c;--;; 4] 1 2 2 1" dz [, ;c;--;; 4] = -lnz K(vl-z2)-ln - +- ln3 -- ln21n L - - In z K(vl - z2 ) - ln - · 
oZ z 3 k k oZ z 

(43) 

The evaluation of the first integral here is also give n in the appendix. The res ult is 

(44) 
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In the las t integral in (43) in we again subs titute (30) and integrate term by term. Since these in­
tegrals appear in (13) on ly in the form of the s um II + 12 , we give thi s result: 

_1 ~ Gt (~t (n+ 1) [I 2k + . + n +2 ] (~):" (45) 
4 L. f f 2 n s" 2 ( + 1) k 11 = 1 n.n.n n n 

Appendix 

We evaluate here the definite integrals appearing in (38) and (43): 

11 dz [ . -'J 4] 
JI = 0 Z K)V I - z-)- ln -; 

We de fin e 

with a ;?! 0, so that 

JI = J(O) 

h = ~ J ' (O). 

Substitut ing t = ] - Z2 in (A.3) and us in g (I4b) , we have 

Here 

and [llJ 

Thus 

11 1 
(1- t) - l+adt = -, 

o a 

11 d fl 1 (l - t)- l+a In (1 - t)dt =- (l - t) - I +adt = ----: 
o da 0 a 2 

(I _ - I+a (! L .) _ f(a) (! L .) _ [ f(a) ]2. 
Jo (1 t) F 2' 2, 1, t dt - f(a+I) F 2 ' 2' l+a, 1 - ( 1) 

f a+ -
2 

J (a )= 
p(~) P(a + I )--7 f2(a+~) - 4aP(a+~) In 2 

4a2P(a+~) 
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We then expand this expression in a power series in a , keeping, in the final result , terms linear 
in a. We note 

[ ' (z) = t/J (z)f(z) 

[I/(z) = t/J ' (z)[(z) + t/J2(Z)f(Z) (A.9) 

and the following values for s pecific values of z: [10] 

[(1) = 1, [ G) = 7Tl t2 

t/J(l)=- y, t/J G) =- Y-2In 2 

t/J'(l) = ~2, t/J' (4) = ;2 
t/J1/(1) = - 2~(3), t/J I/ (4) =- 14~(3) 

x 1 
~(3) = 2: 3 = 1.2020569 . .. 

n = 1 n 
·(A. IO) 

We find 

(A. ll) 

from which 1, and 12 follow from (A.4) and (A.5). 

We would like to express our thanks to J. H. Hubbell for performing the computer calculations 
involved in the preparation of figures 1 and 2 and table 1. 
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