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The total Born approximation cross section for pair production in a coulomb field given originally
by Racah is used to derive two simple and rapidly convergent analytic expansions for this cross sec-
tion, one valid for high energies, k, of the incident photon, the other for energies near the threshold.
For k > 4 mc? the fractional error involved in using the first four terms in the high energy expansion is
<4.4x 1075, For k <4 mc? the fractional error committed in using the first five terms of the low energy
expansion is < 1.1 X 10, The leading terms in these expansions are the well known high energy and
low energy limits of this cross section, respectively.
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The cross section for the production of an electron-positron pair in the field of an unscreened
Coulomb potential V'=—Ze?[r was first given in first Born approximation in a number of papers
nearly thirty five years ago by W. Heitler and F. Sauter [1],! H. Bethe and W. Heitler [2, 3], and
G. Racah [4]. References 1, 2, and 3 give this cross section, differential in energy but integrated
over all particle directions, without any approximation in the energy [5] as well as in a form valid
when the energy of each of the pair particles is extremely relativistic (E.R.) [6], (e > 1, €2 > 1):
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where ¢:% (med) —72-5.7938 X 102 cm?. 2)

and €, €, k are the energies of the positron, electron and photon respectively, in units of mc>.
References 2 and 3 give the total cross section (eq (1) integrated over €;), but only in the extreme
relativistic limit (k> 1):
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Only in the papers by Racah can one find an expression for the total cross section involving no
high energy approximations. Unfortunately, this expression involves indefinite integrals over
elliptic integrals, so that it is quite inconvenient for obtaining numerical values of the total cross
section. In fact, for this purpose it is equally simple to integrate directly, numerically, the differ-
ential cross section [5] in which no high energy approximations have been made. However, both

! Figures in brackets indicate the literature references at the end of this paper.
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for numerical evaluation and for an understanding of the analytical approximations involved in
the extreme relativistic expression (3), it is clear that it would be convenient to have a simple
analytic expression for the total cross section, valid over a large range of energies, which reduces
in an obvious manner to (3) in the limit of large k. A step in this direction was made in a paper by
Hough [7] who gives a corrected expression for the total cross section:
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to be applied at lower energies than those for which (3) may be used. In addition, a number of
empirical analytical expressions are given to cover the region 2 < k£ < 15. They are, however, not
really very simple, and they do not go smoothly into the high energy expression. Indeed, while
the expression (4) is, as far as numerical values are concerned, an improvement over (3) for mod-
erate energies, it is rather deceptive from the analytical standpoint: The corrections to (3) for
moderate k are not of the form 1/k. The expression (4) results in fact from an integration of the
high energy differential cross section (1) between the limits e=1 and €,=k—1 rather than 0
and k, which leads to (3):
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However, the extreme relativistic differential cross section in the integrands here has errors of
relative order 1/e7 and 1/€3, and these may be expected to give contributions of order
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i.e., of exactly the same order as the correction calculated by changing the limits of integration
from (0, k) to (1, £ —1). This is in fact borne out by the expansion given here, in which we see that
no terms of the form 1/k actually appear in successive terms in the high energy expansion.

In this note we return therefore to the expression for the total cross section without any ap-
proximation in the energy, given by Racah, and derive from it two relatively simple and rapidly
convergent expansions —one for large k&, the other for & near threshold (k= 2). The first few terms
in each of these expansions are shown to suffice for both analytic and numerical purposes for all £.

The results which we obtain are the following: For £ near threshold we derive in fact two
series, one in the expansion parameter
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the other in the somewhat more complicated expansion parameter



This second series has the advantage of being more rapidly convergent. These expansions are
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For large k£ we derive an expansion in the parameter
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where

(3)=3 ~5=1.2020569 .

The convergence of this high energy expansion is extremely rapid, even for rather low energies.
For example, for k=4, the fractional error, 8, (Tapprox = Texact (1 +8)) involved in using the terms
shown explicitly in (12) is only + 4.4 X 1075, The fractional errors obtained using the terms shown
explicitly in (9) and (10), also for k=4, are —1.1 X 1073 and — 1.1 X 10~4, respectively. For k£ > 4,
the errors in (12) become smaller and for £ < 4 the errors in (9) and (10) become smaller.

The first term in each of these expansions has been given previously by Racah [8]. Their
regions of validity are shown in figure 1, where we give graphs of the ratio of the first term in (10)
(o-‘hr““"‘d d) 3 <é—k—£> ), and of the first term in (12) (o-?“'zd) ( In 2k — = 8)), to the exact
total cross section, o. It is to be noted from figure 1 that the first term of (10), valid for £ near
threshold, is more than 10 percent off for £ > 1.5 MeV, and that the first term of (12), valid for
k very large, is more than 10 percent off for £ < 10 MeV. In figure 2 we give a graph of the total cross
section, o, in millibarns, as a function of the incident photon energy, &, in MeV. In table 1, values,
(U/E), of the total cross section in units of E are given for photon energies ranging from 1.03 to
1000 MeV.

We proceed now to the derivation of these expansions, our starting point being the exact
Born approximation cross section as given by Racah:

= {692 +468n + 76m*+ 108n? 692+ 360m + 6927* £
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and of the first term in expansion (12) (o",""”- =$ (29—8 In 2k—2—,>), to the exact total
7

cross section, o, as a function of the incident photon energy k, in MeV'.
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The total pair production cross section, o, in millibarns, as a function of

the incident photon energy, k, in

MeV.

where K(7) and E(n) are the complete elliptic integrals of the first and second kind, respectively

[9], and are defined by
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TABLE 1. The total cross section in units of ¢ as a function of incident
photon energy in MeV

k (MeV) ald k (MeV) ald
1.03 9.788 X 107 10 3.647
1.05 3.994 X 10— 1) 4.782
1.10 7.607 X104 20 5.618
11115 2.978 X103 30 6.826
1.20 7.134 X103 40 7.696
1255 1.342 X102 50 8.377
1.30 2.189 X102 60 8.936
1.40 4.507 X 102 80 9.822
1.50 7.577 X102 100 10.511
1575 1.777 X 10! 150 11.767
2.00 3.030 X 10! 200 12.659
2.50 5.836 X 10! 300 13.919
3.00 8.716 X 10! 400 14.813
4.00 1.416 500 15.507
5.00 1.900 600 16.074
6.00 2.328 800 16.968
8.00 3.052 1000 17.662
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where (a)n=a(a+1) ... (a+n—1) forn>0
and (a)o=1.

Thus for n» <1, we may write out the power series for K and £ in (13), integrate term by term, and
collect successive powers of m. This straightforward procedure leads to our expansion (9).
Expansion (10) is obtained by using the transformations [9]

Kn = (4 MK =5 1+ 0F (351 2) (16)
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where l-&—\//lT*r?’ n—1+)\
The series for K(\) and E(\) converge faster than those for K(n) and E(m) since A <m. Sub-
stituting (16), (17) and (18) in (13), we write out the power series for K(\), E(\) and 7 (a series in
N'2), perform the integrations term by term with respect to A, collect successive powers of A/
and write the series in terms of the variable p=2X"2=27n/[1+ V1—mn2] since p—>n as n— 0.
This gives the expansion (10).
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In order to obtain the high energy expansion (12), we note that n ~ 1 for £> 1. We therefore
need expansions of the functions K(n) and E(n) about n=1. To this end we rewrite the trans-
formations (16) and (17) with A and 7 interchanged:

_ b _z_V_vz)
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Em)==3 E<1+ )+ 7 Ky A
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Noting that 1—_|_?"= 1_(Z> (21)
2 ! 2
we define r=2 p=VI1—p? (22)
and write (19) and (20) in the form
k42
K(n):_2FK(,u") (23)
k
E(?f)):‘r—2 M)+A+2K(M) (24)

In (13), the terms preceding the integrals can now be rewritten conveniently in the form

692 +468n + T +108w7 6924 360m+ 69207 | [56 536 928 647
27(1+ ) (m) 71+ L™ _[?“Lz_u*W“LW] ()
218 512 , N ‘
[27 +27k2][ }E("r) [42+125;1, +6u 1E(r'). (25)

The desired expansions of K and E are
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-5 00
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(2). ).

E(u )71+42m[¢( +2) +p(n+1)— .p( +—;—)—zp<n+%)—21w]w+2 (27)

bt 1) = (n+5) o o

where §(z) =1"(z)/I'(z), and, in particular, [10]

n=I

d;(n):—‘y-l—z I n>0
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=0

P(0)=—1, tb@:—y—zlnz (28)

v= Euler’s constant=0.5772 . . . .
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From (28) we may write
1
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where sn=—2[] ot (S .—"‘—:|, n>0

so=0. (29)

Equations (26) and (27) are then written in the form
K(p)=>3

(). ),

] «
b &= 12( ”+])'[éll+l+.§),+21n2lx]”ll+z (51)

[sn+In 2k]u2n (30)

Substitution of (30) and (31) in the right hand side of (25) gives the desired high energy expansion
of the terms in (13) preceding the integrals. We note that the terms in this expansion are either
of the form of a power series in u?= (2/k)? or In 2k times a power series in u>.

We next consider the high energy expansion of the integrals in (13). Each of these integrals
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which is precisely our expansion parameter. The first integral is

has the factor
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Since we want an expansion of [; for k> 1, i.e., 2/k < 1, we separate that part of the integrand
which becomes singular as z— 0. From (30)

I\(V/l—zz)~ln§:()(z'~’ In z) (37)

as z— 0. Thus we may write
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The evaluation of the definite integral in (38) is given in the appendix. The result is

jld?z{K(\/l—-zz)—ln j|v2ln~2~]~lz—7r~ (39)
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In the last integral in (38) we substitute (30), with u replaced by z, 2k by 4/z, and integrate term by
term. We then obtain
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Finally, we consider the second integral in (13):
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upon integrating by parts. Again we substitute (33) and (35), and obtain
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As with I;, we write

f—lnzK 1—22) = Llélnz[K(\/l—z —ln—] f|d?zlnzln§
: 2 2
3 5
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The evaluation of the first integral here is also given in the appendix. The result is
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0 <
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In the last integral in (43) in we again substitute (30) and integrate term by term. Since these in-
tegrals appear in (13) only in the form of the sum I, + I,, we give this result:
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Appendix
We evaluate here the definite integrals appearing in (38) and (43):
dz F—— 4
= K)YV1—z*)—In -
Ji fo [ )V1—2z%)—In z] (A.1)
ez = 4
Jo= —z—lnz (\/l—z-)—ln; . (A.2)
0
We define
i :
./(cx)=f [K(\/ 1 —2%)—In i—] Zi+2aqz (A.3)
0
with a = 0, so that
J1=J(0) (A.4)
h:%fwl (A.5)

Substituting t=1—2 in (A.3) and using (14b), we have

:E ! — 1+a <_ l ) lfl — $\-1+a 1_t
J(@) 4, (Il =gt 2 il 7 dr+4 , (1—1¢) In T; dt. (A.6)
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We then expand this expression in a power series in «, keeping, in the final result, terms linear
in . We note

I"2)=y(2)I(z)
I"z)=¢'(z)[(z) +Y3@2)[(z) (A.9)

and the following values for specific values of z: [10]

v=-2®). v (3)=—140
% l .y )
{(3)= "21 e 1.2020569 . . . (A.10).
We find
) 1 8 U .
J(@)=2 In? Q-E 72+ a [g In? 2—5 w2 In 2—{(3)]-&- O(a?) (A.11)

from which J; and /> follow from (A.4) and (A.5).

We would like to express our thanks to J. H. Hubbell for performing the computer calculations
involved in the preparation of figures 1 and 2 and table 1.
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