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The mechanisms underlying yak adaptation to high-altitude
environments have been investigated using various methods,
but no report has focused on long non-coding RNA
(lncRNA). In the present study, lncRNAs were screened from
the gluteus transcriptomes of yak and their transcriptional
levels were compared with those in Sanjiang cattle, Holstein
cattle and Tibetan cattle. The potential target genes of the
differentially expressed lncRNAs between species/strains were
predicted using cis and trans models. Based on cis-regulated
target genes, no KEGG pathway was significantly enriched.
Based on trans-regulated target genes, 11 KEGG pathways in
relation to energy metabolism and three KEGG pathways
associated with muscle contraction were significantly enriched.
Compared with cattle strains, transcriptional levels of acyl-CoA
dehydrogenase, acyl-CoA-binding protein, 3-hydroxyacyl-CoA
dehydrogenase were relatively higher and those of
glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate
mutase 1, pyruvate kinase and lactate/malate dehydrogenase
were relatively lower in yak, suggesting that yaks activated
fatty acid oxidation but inhibited glucose oxidation and
glycolysis. Besides, NADH dehydrogenase and ATP synthase
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showed lower transcriptional levels in yak than in cattle, which might protect muscle tissues from

deterioration caused by reactive oxygen species (ROS). Compared with cattle strains, the higher
transcriptional level of glyoxalase in yak might contribute to dicarbonyl stress resistance. Voltage-
dependent calcium channel/calcium release channel showed a lower level in yak than in cattle
strains, which could reduce the Ca2+ influx and subsequently decrease the risk of hypertension.
However, levels of EF-hand and myosin were higher in yak than in cattle strains, which might
enhance the negative effects of reduced Ca2+ on muscle contraction. Overall, the present study
identified lncRNAs and proposed their potential regulatory functions in yak.
/journal/rsos
R.Soc.Open

Sci.7:200625
1. Introduction
The Qinghai–Tibet Plateau, the highest plateau worldwide, has an extremely harsh environment. It is cold
with low oxygen content and strong ultraviolet radiation [1]. Yak is the only large mammal in the Qinghai–
Tibet Plateau and has genetically evolved phenotypical and physiological adaptation mechanisms to
high-altitude environments, such as enhanced lung capacity, promoted oxygen delivery [2] and
augmented endogenous nitric oxide production [3]. The pulmonary artery endothelial cell in yak is
longer, wider and rounder than in cattle, which facilitates yak adaptation to high-altitude conditions [4].

The molecular mechanisms underlying yak adaptation to high-altitude environments have been
explored extensively in recent years. Two whole genomes of Tibetan mammals have been sequenced to
explore the molecular mechanisms underlying high-altitude adaptation [5,6]. Afterwards, several
investigations at the mRNA level were conducted [7–9]. Moreover, two investigations focusing on the
roles of microRNA (miRNA) in high-altitude adaptation have been reported. Guan et al. [10] revealed
that differentially expressed (DE) miRNAs in heart and lung between yak and cattle enriched hypoxia-
related pathways, including the HIF-1 signalling, insulin signalling, PI3 K-Akt signalling, nucleotide
excision repair, cell cycle, apoptosis and fatty acid metabolism. Kong et al. [11] investigated changes in
Jersey cattle in response to high-altitude hypoxia (HAH) compared with HAH-free condition. The results
indicated that under HAH condition, Jersey cattle regulated inflammatory homeostasis by inhibiting the
acute phase response, coagulation system, complement system and promoting liver X receptor/retinoid
X receptor (LXR/RXR) activation. Three genes (SLC1A2, HTT and SLC1A1) encoding the glutamate
receptor [12–14] were downregulated in the yak liver, suggesting that yak has reduced the import and
transport of glutamate to reduce excitotoxicity, which could be induced by low oxygen condition and
threat organisms [15,16]. Our transcriptome analysis [17] indicated that the transcriptional level of
BMPR2 was upregulated in yak heart and lung compared with in cattle, which might inhibit the
proliferation of vascular smooth muscle [18,19] and thus suppress hypoxic pulmonary vasoconstriction.
Moreover, CHRNA3 and SNCA were upregulated in yak compared with cattle [17], which might
promote the cardiac contractility of yak via neural and humoral regulation [20,21].

Muscle tissues require a large amount of oxygen. Responses of skeletal muscle metabolism to reduced
oxygen availability are thought to influence physical capacity and systemic energy homeostasis in
adaptation of animals to high-altitude environments [22]. Under high-altitude condition, exercise
capacity drastically decreased in non-native animals, suggesting the weakened function of muscle tissues
due to low oxygen [23]. Compared with cattle, yak’s muscle shows higher activities of lactate
dehydrogenase (LDH), malate dehydrogenase (MDH) and β-hydroxyacyl-CoA dehydrogenase (HOAD),
displaying a higher anaerobic potential in carbohydrate metabolism and a higher oxidative capacity [24].
These results indicated that yak might develop special metabolism mechanisms in muscle tissues to
adapt to high-altitude conditions. Moreover, our previous study compared transcriptome profiles of
gluteus tissues between yak and low-altitude cattle strains. The results showed that yak differentially
regulated mRNA expression of genes associated with immunity and blood coagulation in gluteus, which
might facilitate their adaptation to high-altitude conditions [17].

Long non-coding RNAs (lncRNAs) play important regulatory roles at transcriptional, post-
transcriptional, translational and epigenetic levels in variable cleavage, transcriptional interference,
regulation of DNA methylation and protein modification [25–29]. Recent studies have also reported that
lncRNAs participate in various physiological processes in bovines. Analysis of lncRNA expression in
bovine macrophages suggested that lncRNAs regulated pathways of immune response during
Paratuberculosis infection [30]. Four independent studies have proved the regulatory effects of lncRNA on
proliferation and differentiation of skeletal muscle satellite cell in bovines [31–34]. Besides, Ma et al. [35]
found that lncRNA XIST mediated inflammatory response via the NF-κB/NLRP3 inflammasome
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pathway in bovine mammary epithelial cell. However, to the best of our knowledge, no report has

investigated the roles of lncRNA in yak adaption to high-altitude conditions. To explore potential
regulatory roles of lncRNA in yak, the present study examined DE lncRNAs in gluteus between yak and
Sanjiang cattle, Tibetan cattle or Holstein cattle. Their regulatory effects on mRNA expression were
predicted and the potential corresponding biological functions were discussed. These results provide
new insights in relation to mechanisms underlying yak adaptation to high-altitude environments.
lishing.org/journal/rsos
R.Soc.Open
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2. Material and methods
2.1. Sample preparation
The local farmers regularly kill dozens of Sanjiang cattle, Tibetan cattle, Holstein cattle and yak to sell
meat. First, animals were anaesthetized using electrocution by attaching a pair of electrodes to the
ears. Next, animals were killed by a lethal shock at 1 kV passing from ear to leg [36]. Blood was
completely released before further processing. Most animals raised in the farms have clear record of
birthday. From the batch of animals, female, healthy and 60-month old individuals with similar
nutritional status were selected and fresh gluteus tissues were immediately collected in vivo after
dissecting the skin at the slaughter house. Samples were frozen in liquid nitrogen until RNA isolation.
For each species/strain, three replicates were prepared by collecting samples from three individuals.
Dates and locations for sample collection have been described in Xin et al. [17].

2.2. RNA extraction, library preparation, sequencing and quality analysis
Total RNA was extracted from gluteus tissues using Biozol reagent (Bioer, Hangzhou, China), according
to the manufacturer’s protocol. Quality of RNAwas examined using an Agilent Bioanalyzer 2100 system
(Agilent Technologies, CA, USA). An RNA integrity number (RIN) higher than 8.0 was considered
qualified. The quantity of RNA was measured using the Qubit RNA assay kit on a Qubit 3.0
Flurometer (Life Technologies, CA, USA).

For each sample, 3 µg of total RNA was used to prepare the sequencing library. Firstly, ribosomal
RNA was removed using an Epicentre Ribo-zero rRNA Removal kit (Epicentre, USA), which was then
cleaned up by ethanol precipitation. Next, sequencing libraries were generated using a NEBNext Ultra
Directional RNA Library Prep Kit for Illumina (NEB, USA). Index-coded samples were clustered on a
cBot cluster generation system using a HiSeq 4000 PE cluster kit (Illumina). Afterwards, the libraries
were sequenced using an Illumina Hiseq 4000 platform to collect 150 bp paired-end reads.

FastQC v.0.11.8 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to evaluate
the quality of raw data [37]. Reads having more than 1% unknown bases, reads containing adapters and
reads with low-quality bases (with greater than 50% bases having a Phred quality score less than or equal
to 15) were removed. Simultaneously, indices of clean reads, including Q20, Q30 and GC contents were
calculated. All subsequent analyses were based on the clean data.

2.3. Annotation of unigenes and identification of lncRNAs
Clean reads were mapped to the reference genome of yak (BioProject number in GenBank: AGSK00000000)
using the STAR alignment program v. 2.5.1b [38]. The mapped reads with mismatches less than 5 bp were
assembled and transcripts were quantified using StringTie package v. 1.3.4 [39].

LncRNAs were identified according to the following workflow. Firstly, the class-code of transcripts were
identified using Cuffcompare package, a tool of Cufflink suite (http://cole-trapnell-lab.github.io/cufflinks/
cuffcompare/). Transcripts belonging to classes i, j, x, u and o were retained. Next, transcripts with length
less than 200 nt, reads count less than 20 and/or fragments per kilobase of transcript sequence per million
base pairs sequenced (FPKM) value less than 20 were removed. Finally, non-coding transcripts were
selected using the coding-non-coding-index (CNCI) [40] and coding potential calculator (CPC) tools [41].
The non-coding transcripts identified by both CNCI and CPC tools were candidate lncRNAs.

2.4. Comparison of mRNA and lncRNA expression levels
The union model of HTseq v. 0.60 [42] was used to calculate FPKM values of each unigene and lncRNA
in each sample. Pairwise comparison of FPKM values between two species/strains were conducted using
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DESeq2R package v. 3.8 [43]. Differences with false discovery rate (FDR) less than 0.05 (using the BH

method; [44]) and fold change greater than 2 were considered statistically significant.

2.5. Target gene prediction of lncRNAs
The target genes of lncRNAs were predicted in both cis and trans models. For the prediction of cis target
genes [45], the coding genes within 100 kb upstream and downstream from the location of lncRNAwere
retrieved. Trans regulation is not dependent on positional relationship. Trans regulation of lncRNAs in
the present study was predicted by calculating the binding energies using RNAplex [46]. The
parameters for RNAplex were set as −e < −20 and target genes localized to the same chromosome of
the lncRNA were removed [47].

The identified target genes were mapped to gene ontology (GO) database and Kyoto Encyclopedia of
Genes and Genomes database (KEGG) [48] for enrichment of GO categories and KEGG pathways using
BLAST software [49]. The significance of GO term and KEGG pathway enrichment was examined using
the Fisher’s exact test. The p-values were corrected using the BH method [44] by setting the FDR < 0.05
to produce Q values. GO terms or KEGG pathways displaying Q-value < 0.05 were considered
significantly enriched.

2.6. Validation of lncRNA expression levels using real-time quantitative PCR
Ten lncRNAs were randomly selected (electronic supplementary material, table S1) and their expression
levels were validated using real-time qPCR (RT-qPCR). The cDNA was reverse transcribed using the
BioRT cDNA first strand synthesis kit (Bioer, Hangzhou, China) with random primers according to
the manufacturer’s protocol. RT-qPCR experiments were carried out using BioEasy master mix (Bioer,
Hangzhou, China) on a Line Gene9600 Plus qPCR machine (Bioer, Hangzhou, China). The sequences
of primers are shown in electronic supplementary material, table S1. β-actin was used as the internal
control. The relative expression levels of each lncRNA were calculated using the typical 2−ΔΔCt method
[50]. The relative transcription levels of each gene were compared statistically between species/strains
using Student’s t-test in SPSS 20.
3. Results and discussion
3.1. Identification of lncRNAs
The Illumina sequencing data have been deposited in GenBank with the BioProject number of
PRJNA512958. After filtering, the number of total clean reads ranged from 75.4 to 170.8 million, and
Q20 values ranged from 96.27% to 97.59% for all samples (electronic supplementary material, table
S2). STAR alignment showed that 86.04–96.15% reads could map to the reference genome for each
sample (electronic supplementary material, table S3).

In total, 1364 lncRNAs were identified and all of them were novel lncRNAs (unidentified in all
species) with median length of 883 bp (electronic supplementary material, table S4). Approximately,
80.65%, 8.58% and 10.78% of lncRNAs were less than 2000 bp, 2000–3000 bp and greater than 3000 bp
in length, respectively (figure 1). Sequences of the identified lncRNAs are shown in electronic
supplementary material.

3.2. DE lncRNAs and qPCR validation
In order to validate expression levels of lncRNAs, 10 DE lncRNAswere selected for qPCR. Overall, the qPCR
and FPKM results showed similar tendencies, suggesting the reliability of levels calculated by FPKM values
(figure 2). Pairwise comparisons between the four species/strains revealed that the number of DE lncRNAs
in comparison between yak and Tibetan cattle (193) was smaller than that between yak and Sanjiang cattle
(361), and between yak andHolstein cattle (433) (table 1). The FPKMvalues of all DE lncRNAs and statistical
analyses results are included in the electronic supplementary material.

The clustering analysis of DE lncRNAs between the four samples displayed two clusters. One
included yak and Tibetan cattle, and the other contained Sanjiang and Holstein cattle (figure 3). This
pattern was consistent with the clustering result of mRNA expression profiles [17]. Tibetan, Sanjiang
and Holstein cattle belong to the same species. However, yak and Tibetan cattle live at relatively high
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Figure 1. Length distribution of identified lncRNAs in gluteus.
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altitudes, while Sanjiang and Holstain cattle live at low altitudes. The adaptation of Tibetan cattle to local
environments might regulate lncRNA transcription in gluteus tissues, driving the separation of Tibetan
cattle from Holstein and Sanjiang cattle on the clustering pattern. Besides, adaptive introgression has
been reported in butterflies [51] and humans [52], and significant gene flow from yak to Tibetan cattle
has been detected [53–55]. Adaptive introgression from yak probably also took place in Tibetan cattle,
which may drive the clustering of yak and Tibetan cattle.
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Table 1. Numbers of DE lncRNA in gluteus. SC, Sanjiang cattle; HC, Holstein cattle; TC, Tibetan cattle.

SC HC TC yak

SC — 82 361 101

HC 82 — 433 211

TC 361 433 — 193

Yak 101 211 193 —
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3.3. Target prediction of lncRNAs and KEGG enrichment
Based on cis-regulated target genes, KEGG enrichment analysis revealed no significantly enriched
pathway between yak and any cattle strain. Differentially, based on trans-regulated target genes,
KEGG enrichment analysis significantly revealed 4, 15, 3 and 11 KEGG pathways in comparisons
between yak and Sanjiang cattle, yak and Holsten cattle, Tibetan cattle and Sanjiang cattle, Tibetan
cattle and Holsten cattle, respectively (all Q-values < 0.05; table 2). Among these pathways, 11 were
related to energy metabolism (ko00010, ko00620, ko00190, ko04932, ko00020, ko01210, ko00071,
ko01212, ko01230, ko04146 and ko04922), and three associated with muscle contraction (ko05410,
ko05414 and ko04260). In high-altitude habitats which are characterized by low temperature and low
oxygen content, yak demands high metabolism to maintain body temperature. On the one hand, yak
would produce more heat by muscle contraction after acclimation to cold environments [56,57]. On
the other hand, for adaptation to low oxygen condition, yak needs to increase the efficiency of O2

utilization. As previously reported, mice showed a higher efficiency of O2 utilization under low
oxygen conditions [58]. Thus, enrichment of energy metabolism-related and muscle contraction-related
pathways in the present study could be attributed to yak adaptation to high-altitude environments.

For further analysis, the expression levels of 130 target genes in relation to energy metabolism and 37
target genes associated with muscle contraction were retrieved from our previously published
transcriptome data [17]. Student’s t-tests indicated that 25 genes involved in energy metabolism and



Table 2. Significantly enriched KEGG pathways of genes targeted by DE lncRNA between yak and Tibetan cattle, Holstein or
Sanjiang cattle. The p-values indicate statistical significance and Q-values represent corrected p-values using Benjamini and
Hochberg’s method.

KEGG ID name of KEGG pathway involved/total gene numbers p-value Q-value

Sanjiang cattle versus yak

ko00010 glycolysis/gluconeogenesis 11/271 0.00 0.01

ko05410 hypertrophic cardiomyopathy (HCM) 12/271 0.00 0.01

ko05414 dilated cardiomyopathy 11/271 0.00 0.04

ko00620 pyruvate metabolism 7/271 0.00 0.04

Holstein cattle versus yak

ko00190 oxidative phosphorylation 76/420 0.00 0.00

ko04932 non-alcoholic fatty liver disease (NAFLD) 60/420 0.00 0.00

ko04260 muscle contraction 30/420 0.00 0.00

ko00020 citrate cycle (TCA cycle) 19/420 0.00 0.00

ko00620 pyruvate metabolism 13/420 0.00 0.00

ko01210 2-oxocarboxylic acid metabolism 7/420 0.00 0.00

ko00071 fatty acid degradation 10/420 0.00 0.00

ko01212 fatty acid metabolism 11/420 0.00 0.00

ko03050 proteasome 10/420 0.00 0.00

ko01230 biosynthesis of amino acids 13/420 0.00 0.00

ko05410 hypertrophic cardiomyopathy (HCM) 14/420 0.00 0.00

ko00010 glycolysis/gluconeogenesis 12/420 0.00 0.01

ko04146 peroxisome 13/420 0.00 0.01

ko05414 dilated cardiomyopathy 13/420 0.00 0.03

ko04922 glucagon signalling pathway 12/420 0.00 0.04

Sanjiang cattle versus Tibetan cattle

ko05150 Staphylococcus aureus infection 8/120 0.00 0.00

ko05140 leishmaniasis 7/120 0.00 0.00

ko04380 osteoclast differentiation 8/120 0.00 0.01

Holsten cattle versus Tibetan cattle

ko00190 oxidative phosphorylation 40/287 0.00 0.00

ko04932 non-alcoholic fatty liver disease (NAFLD) 31/287 0.00 0.00

ko04260 muscle contraction 22/287 0.00 0.00

ko00020 citrate cycle (TCA cycle) 12/287 0.00 0.00

ko00010 glycolysis/gluconeogenesis 13/287 0.00 0.00

ko00620 pyruvate metabolism 10/287 0.00 0.00

ko04020 calcium signalling pathway 21/287 0.00 0.00

ko01230 biosynthesis of amino acids 11/287 0.00 0.00

ko04922 glucagon signalling pathway 12/287 0.00 0.00

ko05410 hypertrophic cardiomyopathy (HCM) 11/287 0.00 0.01

ko05414 dilated cardiomyopathy 10/287 0.00 0.00

Tibetan cattle versus yak

ko04145 phagosome 14/120 0.00 0.00

ko05150 Staphylococcus aureus infection 8/120 0.00 0.00

(Continued.)
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Table 2. (Continued.)

KEGG ID name of KEGG pathway involved/total gene numbers p-value Q-value

ko05140 leishmaniasis 7/120 0.00 0.00

ko05133 pertussis 7/120 0.00 0.00

ko04380 osteoclast differentiation 8/120 0.00 0.01

royalsocietypublishing.org/journal/rsos
R.

8

11 genes participating in muscle contraction were significantly differentially expressed in at least one
comparison between four samples (electronic supplementary material, table S5). To further discuss the
biological functions of these genes, the transcriptional levels of 11 coding genes related to energy
metabolism pathways and 7 coding genes related to muscle contraction pathways were compared
(figures 4 and 5), and their biological functions were discussed.
Soc.Open
Sci.7:200625
3.4. Regulation of energy metabolism in yak skeletal muscle
Genetic selectionon theperoxisomeproliferator-activated receptor gammacoactivator 1-alpha (PPARA) gene
has been reported inTibetan humanpopulations, suggesting that altered fattyacid (FA)metabolismmight be
a feature of long-term adaptation to high altitude [59]. It is generally accepted that exposure to low oxygen
condition induces a selective attenuation of FA oxidation, while glucose uptake is maintained or increased
[60]. In the present study, the transcriptional levels of three DE lncRNAs (MSTRG.16170.2, MSTRG.23394.1
and MSTRG.26388.4) were highly correlated with the levels of BmuPB003110, BmuPB012824 and
BmuPB017956 all encoding FA oxidative enzyme Acyl-CoA dehydrogenase (R2 = 0.913, 0.906 and 0.914,
respectively). These results suggested that these three lncRNAs might target on FA oxidative enzyme
Acyl-CoA dehydrogenase. The DE lncRNA MSTRG.13013.1 might target on acyl-CoA-binding protein
(BmuPB008201) with R2 of 0.915, and the DE lncRNA MSTRG.26388.4 might target on 3-hydroxyacyl-
CoA dehydrogenase (BmuPB021264) with R2 of 0.913. These five lncRNAs and their targeted coding
genes all showed significantly higher transcriptional levels in yak compared with Holstein cattle
(figure 4a and electronic supplementary material, table S5), suggesting that FA oxidation process was
more activated in yak than in Holstein cattle. Besides, the transcriptional levels of five enzymes involved
in glycolysis including glyceraldehyde 3-phosphate dehydrogenase (BmuPB000082, possibly a target
of MSTRG.24686.4, R2 = 0.926), phosphoglycerate mutase 1 (BmuPB012923, possibly a target of
MSTRG.24686.4, R2 = 0.908), pyruvate kinase (BmuPB009427, possibly a target of MSTRG.24686.4, R2=
0.920) and lactate/MDH (BmuPB021081 and BmuPB017171, possibly a target of MSTRG.11882.2 and
MSTRG.24686.4 with R2 of 0.907 and 0.924, respectively) were lower in yak compared with Holstein cattle,
Sanjiang cattle and Tibetan cattle (figure 4b and electronic supplementary material, table S5). These results
suggested that yak might preferentially use lipids for metabolism. Similar results were observed in
comparison between Tibetan people (native to high-altitude condition) and Nepali people (permanently
residing at a low altitude) [61]. Lipids make up more than 80% of the total energy reserve in mammals,
and their energy density is an order of magnitude greater than that of carbohydrates [62]. Thus, lipids are
a preferred fuel source that offsets the rapid depletion of carbohydrates in response to the combined
stresses of low oxygen and low temperature.

NADH dehydrogenase is the first and largest enzyme complex in the respiratory chain and acts as a
proton pump. ATP synthase, the last enzyme in the respiratory chain, couples with the mitochondrial
inner membrane electrochemical gradient to synthesize ATP. In the present study, MSTRG.23993.3 and
its potential target NADH dehydrogenase (BmuPB009505, R2 = 0.926) showed significantly lower levels
in yak compared with Holstein cattle, Sanjiang cattle and Tibetan cattle. MSTRG.5970.1 and its potential
target ATP synthase (BmuPB005211, R2 = 0.916) showed significantly lower levels in yak than those in
Holstein cattle (figure 4c and electronic supplementary material, table S5). The downregulation of
respiratory enzymes may contribute to yak adaptation to high-altitude environments. The decreased
respiration not only facilitated oxygen utilization under insufficient oxygen conditions but also protected
muscle tissues from deterioration caused by reactive oxygen species (ROS) [63].

Dicarbonyl stress is the abnormal accumulation of a-oxoaldehyde metabolites (methylglyoxal,
glyoxal and 3-deoxyglucosone), which is harmful to protein and DNA and may induce cell and tissue
dysfunction, ageing and disease [64]. Both hypoxia and increased glucose metabolism could induce
dicarbonyl stress [65]. Glyoxal and methylglyoxal are metabolized mainly by glyoxalase. In the
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Figure 4. Relative transcriptional levels of differentially expressed lncRNAs and their target genes in relation to energy metabolism
calculated by FPKM values.
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present study, compared with Sanjiang, Holstein and Tibetan cattle, the transcriptional levels of
MSTRG.19579.8 and its potential target glyoxalase (BmuPB015183, R2 = 0.959) increased significantly
in yak (figure 4d and electronic supplementary material, table S5), which may improve yak’s
resistance to dicarbonyl stress under low oxygen conditions.
3.5. Regulation of muscle contraction in yak
It has been well demonstrated that exposure to low oxygen condition increases glucose consumption in
animal muscle tissues [66], which is regulated by increased functions of Ca2+-pumps [67]. In high-
altitude environments, animals are always exposed to low oxygen conditions. Constant high level of
cytosolic Ca2+ in muscle cells would induce hypertension in these animals [68]. Yak is a native species
to high-altitude environments. Thus, they should have evolved regulatory mechanisms to avoid
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Figure 5. Relative transcriptional levels of differentially expressed lncRNAs and their target genes in relation to muscle contraction
calculated by FPKM values.
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hypoxia-induced high Ca2+ level. In the present study, the transcriptional levels of lncRNAs
MSTRG.16892 and MSTRG.21048.1 were highly correlated to two unigenes encoding voltage-
dependent calcium channel (BmuPB010641, R2 = 0.904; BmuPB011717, R2 = 0.958; respectively).
Similarly, the transcriptional level of MSTRG.11372.1 was positively correlated to calcium release
channel (BmuPB001050, R2 = 0.909). These results suggested that transcription of Ca2+ pumps might
be regulated by lncRNAs in yak muscles. More importantly, all these transcripts showed significantly
lower levels in yak compared with the three cattle strains (figure 5 and electronic supplementary
material, table S5) might inhibit Ca2+ transportation and minimize the potential harms caused by
hypoxia. Moreover, sarcoglycan is a component of the dystrophin–glycoprotein complex, which plays
a role in the maintenance of muscle cell integrity by binding to multiple basement membrane proteins
and forming a transmembrane link to the actin cytoskeleton [69]. It has been reported that
sarcoglycan functions in calcium homeostasis in skeletal muscle fibres [70]. The present data also
revealed significantly lower transcriptional levels of sarcoglycan (BmuPB003310, potentially targeted
by MSTRG.16892.1, R2 = 0.911, figure 5 and electronic supplementary material, table S5) in yak than in
other animals, which might also contribute to the Ca2+ homeostasis in yak muscles.

Besides the functions in glucose uptake, Ca2+ is also greatly important to muscle contraction. When
an action potential is generated, voltage-dependent calcium channel/calcium release channel on the
sarcoplasmic reticulum (SR) is activated, which next releases Ca2+ from SR into the sarcoplasm and
initiates skeletal muscle contraction. When Ca2+ pump transfers Ca2+ into SR, muscles relax. Forces
are generated in striated muscles from the cyclical interaction between myosin and actin, which is
mediated by the actin-associated regulatory proteins, troponin and tropomyosin. In the absence of
Ca2+, tropomyosin sterically prevents myosin from binding to actin; while upon Ca2+ binding to
troponin through a pair of EF-hand [71], tropomyosin’s equilibrium position shifts, allowing
cooperative binding of myosin by exposing neighbouring actin binding sites [72,73]. To minimize the
negative effects of decreased levels of Ca2+ pumps, yak may regulate other components during muscle
contraction. In the present study, the transcriptional levels of myosin (BmuPB009477) and EF-hand
domain (BmuPB011617) were highly correlated with the lncRNAs MSTRG.25261.1 and MSTRG.2086.1
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with R2 of 0.916 and 0.931, respectively, suggesting the potential regulatory relationship between them.
Their transcriptional levels all increased significantly in yak, compared with other animals (figure 5 and
electronic supplementary material, table S5). Over-representation of these genes should increase the
binding ability to Ca2+ and subsequently enhance muscle contraction even at a low level of Ca2+. The
transcription of tropomyosin (BmuPB019192 and BmuPB010503) might be regulated by lncRNAs
MSTRG.1770.1 and MSTRG.24686.4, respectively, since the R2 between their transcriptional levels were
high (0.946 and 0.929, respectively). Tropomyosin showed significantly lower level in yak compared
with the three cattle strains, which might facilitate the muscle contraction, since tropomyosin plays
negative roles during this process.

Moreover, titin is responsible for the elasticity of striated muscle by providing connections between
microfilaments [74]. In the present study, titin (BmuPB017752) was positively related to the
transcriptional level of MSTRG.11409.1 (R2 = 0.913), demonstrating a potential regulatory relationship.
Both transcripts showed significantly lower level in yak than those in cattle strains (figure 5 and
electronic supplementary material, table S5). These changes may have biological significances to yak
adaption to the high-altitude environments. Similar results have been reported. Expression level of
titin was significantly reduced in response to a low oxygen condition in rats, which may associate
with the decline of passive tension of diaphragm [75].
Sci.7:200625
4. Conclusion
The present study identified 1365 lncRNAs from the transcriptome of yak muscle tissues. Compared with
yak, 193, 361 and 433 lncRNAs were significantly differentially expressed in Tibetan cattle, Sanjiang cattle
and Holstein cattle, respectively. The potential target genes of these DE lncRNAs were predicted, which
might regulate energy metabolism and muscle contraction in yak. These changes would promote yak
adaptation to high-altitude environments.
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