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1.    Introduction 

The analysis of x-ray line profile broadening can be 
considered as solving a series of inverse problems. 
There are usually two steps—removing the instrumen- 
tal contribution (deconvolution), and determining the 
broadening contribution in terms of crystallite size and 
microstrain. Here we are concerned with quantifying 
only the size broadening, in terms of the shape and size 
distributions of the crystallites. We present a method 
that removes the instrumental broadening and deter- 
mines the particle size distribution in a single step. The 
general theoretical framework developed makes it pos- 
sible to determine the crystallite shape and average 
dimensions, and to fully quantify these results by also 
assigning uncertainties to them. 

In general, there are two approaches that can be 
adopted. The first assumes functional forms for the size 
distribution and shape of the crystallites, and applies 
least squares fitting to determine the parameters defin- 
ing the size distribution [1,2]. For pragmatic reasons, 
this approach is often used to ensure numerical stabili- 
ty; however, it is based on an explicit assumption for 
the crystallite size distribution and does not take into 
account the non-uniqueness of the solution. 

The second approach takes into account the non- 
uniqueness of the problem of determining the size dis- 
tribution P{D) from the experimental data, by assigning 
a probability to the solutions and enabling an average 
solution to be determined from the set of solutions; 
moreover, it also allows any a priori information and 
assumptions to be included and tested. This approach is 
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embodied in the Bayesian and maximum entropy meth- 
ods [3,4,5,6]. Essentially, Bayesian theory tells us how 
to express and manipulate probabilities. It might be 
said, therefore, that Bayesian theory helps us to ask the 
appropriate questions, while the maximum entropy 
method tells us how to assign values to quantities of 
interest. 

2.    X-Ray Line Profiles 

2.1    Observed Profile 

The observed line profile, g(20), can be expressed as 

g{2e) = lki2e-2e)f{2e')di2e') + ii2e) + ri2e) (i) 

where k(26) defines the instrument profile and consid- 
ers the imperfect optics of the difEractometer;/(20) is 
the specimen profile, which (apart from strain effects 
which are not covered here) characterizes the size 
broadening due to microstructural properties of the 
specimen (i.e., crystallite shape, distribution and 
dimensions); b{29) and n{20) are the background level 
and the noise distribution, respectively. The observed 
profile, Eq. (1), can also be expressed in terms of recip- 
rocal-space units, s, centered about s^, 

gis) = gi2e) d(2g) 

ds 
(2) 

where d(20) = ^d5. 
The problem we face is determining the size distribu- 

tion and shape of the crystallites from Eq. (1), given our 
knowledge of the instrument kernel, k{20), and our 
understanding of the counting statistics, (f. We also 
want to quantify the specimen profile and size distribu- 
tion by assigning error bars to them. Before addressing 
these questions, we review line profile broadening from 
nanocrystallites. 

2.2    Crystallite-Size Broadening 

The line profile, Ip{s,D), from a specimen consisting 
of crystallites of the same size and shape can be ex- 
pressed in terms of the common-volume function [7] as 

I^(s,D)=2J'v{t,D)cos27rstdt, (3) 

where Ip(sJ)) is the intensity profile given by the 
dimensions of the crystallite, D= {£>,; /= 1,2,3}. The 
common-volume function of the crystallite, V{t,D), 
quantifies the volume between the crystallite and its 

"ghost", shifted a distance / parallel to the diffraction 
vector. The dimension T represents the maximum 
length of the crystallite in the direction of the diffrac- 
tion vector, and can be expressed in terms of the dimen- 
sions of the crystallite, D, such that T=T{D). The 
boundary conditions for the common-volume function 
are F(0, D) = VQ, where VQ is the volume of the crystal- 
lite, and F(±T, D) = 0. Figure 1 shows a schematic dia- 
gram of a crystallite and its ghost shifted a distance t in 
the direction [hkl]; the shaded region represents the 
common volume between the crystallite and its ghost. 
V{t, D) is symmetrical about the origin over the range 
/ e [-T, T]. This implies that V{t, D) is an even function 
over this range. A simple example is a set of spherical 
crystallites with diameter D, for which the common- 
volume is given by [7] as 

V{t,D)=^{t + 2D){t-Df (4a) 

and using Eq. (3) the corresponding line-profile is [2,7] 

\6n s 

D'      COS{2KSD)    Dsm(27tsD) 

8KS^ \67t's' 8;rV 
(4b) 

where T{D) = D for spherical crystallites and in the 
limit of 5 ^ 0 [Eq. (4b)] reduces to /p(0, D) = nOV^. 

Essentially, Eq. (3) is the Fourier transform of the 
V{t, D), and noting V{t, D) is an even function, the odd 
(sine) terms in the Fourier transform vanish. This also 
implies that the size-broadened profiles will always be 
symmetrical about the Bragg angle, 20Q. From Eq. (3) 
and Fig. 1, it is clear that information concerning the 
dimensions and shape of the crystallite is given in 
V{t,D). 

2.3    Particle-Size Distribution, P{D) 

A powder specimen would not normally consist of 
crystallites all having the same size, but it can be 
assumed that the crystallites can have the same shape, 
based on kinetics arguments. The effect of the particle- 
size distribution on the common volume is to "blur" the 
broadening effects of a single crystallite. 

The size-broadened line profile from a distribution of 
crystallites, P(D)Z>D, with dimensions in the range D 
to D + VD can be expressed as 

f{s) = 2[°V{t)co?,2nstdt,   V.56[-oo,+oo]       (5) 
Jo 

where V{t) is the modified common-volume function 
due to the influence of the particle-size distribution. 
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Fig. 1. The crystallite (solid line) and its "ghost" (dashed line) shift- 
ed a distance t in the direction of the scattering vector \hkl\. The crys- 
tallite and ghost have dimensions D= {Di,D2,D-^]. The shaded 
region represents the common volume between the crystallite and 
ghost. The maximum thickness of the crystallite in the direction \hkl\ 
is T. The common-volume function has the boundary conditions 
V(0, D) = Vf, and V(±T, D) = 0. AS t^ T, V(t, D) -^ 0. The plot of 
this function over t represents the Fourier coefficients from which the 
area- and volume-weighted sizes can be determined. 

V{t) = fV{t,D)P{D)VD. (6) 

In Eq. (6) a generalized measure, "DD, has been used 
which is dependent on the crystalhte shape and coordi- 
nate system. The area-weighted size, {t)^, volume- 
weighted size, (/)„ and column-length distribution (or 
area-weighted size distribution), pj^t), can be deter- 
mined from Eq. (6) [8,9]. It can be seen from Eq. (6) 
how the shape and distribution of the crystallites influ- 
ence the area- and volume-weighted quantities. 
Substituting Eq. (6) into Eq. (5), we have 

f{s) = 2 V{t,D)P(D)VD coslnstdt      (7a) 

D)cos27rstdtP{D)VD,        (7b) 

where in going from Eq. (7a) to Eq. (7b) the order of 
integration has been changed and / is integrated out. In 
addition we note that V(t, D)>0 for te [0, T] and 
V{t, D) = OfoTt> T. Inside the brackets of Eq. (7b), we 
have Ip{s, D) from Eq. (3). Hence, Eq. (7b) can be writ- 
ten as 

fis) = [l,is,D)PiD)T>D, V5'6[-oo,+oo] (g) 

where we define the profile kernel, Ip(s, D), as the size- 
broadened line profile given by a single crystallite with 
dimensions D. In Eq. (8), we notice that the effect of 
P{D) is to weight the superposition of size profiles over 
the range ofDioD + VD. 

2.4    Determining PiP) From ^($) 

In analysing the size distribution, we want to ensure 
that the statistics of the observed profile can be carried 
directly into quantifying the size distribution. Equation 
(8) expresses the specimen profile,/(s-), in terms of the 
particle-size distribution and the shape of the nanocrys- 
tallites, while (1), after transformation into .s-space, 
expresses the observed profile in terms of f{s). 
Combining these two equations, the experimental data, 
g{s), can be expressed in terms of the particle-size dis- 
tribution, P{D) as 

X{s)- ■■ f J^ k{s - /)/p (/, D)P{D)dsVD + b{s)+n{^ 

(9a) 

-■ V" K{s,D)P{D)VD + b{s)+n{s) 
Jo 

(9b) 

where the scattering kernel, K{s,D), "rolls up" the 
instrumental effects and the profile kernel, and is given 
by 

K(s, D) = f k{s - /)/p (/, D)ds. (10) 

In Eq. (10), the dummy variable s' is being integrated 
out. The results given by Eqs. (9b) and (10) enable the 
particle-size distribution to be extracted directly from 
the experimental data. This ensures that the statistics of 
the experimental data are transferred to quantifying the 
uncertainty in the solution. This approach also address- 
es a difficulty of the two-fold approach discussed by 
Armstrong [10]. 

3.    Bayesian and Maximum Entropy 
Methods 

3.1    Tlie Uniqueness of/*(D) 

In Eq. (9) we have a single expression for the 
observed profile in terms of the crystallite size distribu- 
tion and shape, background level, and statistics of the 
experiment; information concerning the crystallite 
properties has been incorporated. 

In seeking to determine PiD) from g{s), the issue of 
uniqueness for P{D) becomes important, for two rea- 
sons: firstly, because of the "conditioning" of the ker- 
nels, particularly K{s, D); and secondly, due to the pres- 
ence of statistical noise, a. 

Generally, K{s, D) will be ill-conditioned. This can 
be demonstrated in a numerical calculation by express- 
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ing K{s, D) as a matrix, K; we can show dstK^K ~ 0. 
This implies that the column vectors of K are (nearly 
all) linearly dependent, which has dire consequences, 
as any attempt to determine PiD) (given g{s), K{s, D), 
(7 and b{s)), produces a set of solutions {P{D)} rather 
than a unique solution. The presence of statistical noise 
in the data simply worsens the situation, in that the ill- 
conditioning of K{s, D) amplifies the noise and the 
solution is swamped by spurious and unphysical oscil- 
lations [11]. Faced with this situation, the following 
question arises: 

How do we develop a method to extract a unique 
P(D) from g(s), given our knowledge of K(s, D), b(s) 
and (^? 

3.2    Some Observations 

Before proceeding with developing a "method" to 
determine the crystallite size and shape from the 
observed data, g{s), some observations concerning 
these distributions need to be made. 

The integral equations given by Eqs. (1) and (9) refer 
to a set of continuous functions. However, the record- 
ing of the observed and instrument profiles is made in 
discrete time intervals. To convey this, we express the 
observed profile, specimen profile and size distribution 
as vectors, such thatg= {gi',i=\, 2, 3,..., M),f= {fy\ 
j'= 1, 2, 3,..., N'} and P= {Py, j= 1, 2, 3,..., TV}. The 
scattering kernel K{s, D) can be expressed as a matrix, 
K= {Kg; V i&j}, by taking the product of the instru- 
ment kernel and the line profile kernel. The instrument 
kernel can be evaluated in 20-space, such that R = 
{k{29,-20'j); i = 1, 2, 3,...,M&j'= 1, 2, 3,..., N'}, and 
using d{29) = -^ds can be mapped into s'-space. 
Similarly, the profile kernel can be evaluated over s and 
D, such that/p= {I,jf,r= 1, 2, 3, ...,N'&j= 1, 2, 3,..., 
A'^}. The matrix product gives K = RI^ and is an [M x TV] 
matrix, such that N<N'<M. 

There are two fundamental properties which g{20), 
fi2G), P{D) and V{t, D) all share. The first is that these 
distributions are positive definite; that is, the observed 
profile g{26) and specimen function f{2Q) represent 
intensities which are positive values. The second prop- 
erty is that these distributions are additive; that is, the 
sum of the distributions over a region represents a 
physically meaningfiil quantity [5]. For example, the 
integrated intensity of g{s) can be related back to the 
structure factor of the lattice, while the integrals 
J/(.s)d.s and \V{t,D)dt are inversely proportional to 
the integral breadth and quantify the specimen broaden- 
ing in terms of size and strain contributions. The inte- 
gral for P{D) is a special case, in that it must be unity. 

This ensures that we can attribute a probability for a 
particular D and determine its moments. 

These two observations are important in formulating 
a "method" that can determine both the specimen pro- 
file from the observed x-ray diffraction profile and an 
underlying distribution such as the size distribution, 
P{D), while dealing with the issue of uniqueness. That 
is, we expect our method to extract this information 
from the observed data and produce results which pre- 
serve the positivity and additivity of the profile or dis- 
tribution. It should also be possible to incorporate these 
properties of positivity and additivity without making 
additional assumptions about, say, the functional/ana- 
lytical form of the specimen profile or size distribution. 
These conditions ensure that the specimen profile or 
size distribution determined from the observed profile 
can be interpreted in general terms. 

In order to assign values to these distributions and 
preserve their additivity and positivity, a suitable func- 
tion must be selected. Based on these observations and 
various arguments, the entropy function and maximum 
entropy principle are found to be the only consistent 
approach to inferring discrete probabilities (see 
[6,12,13,14,15,16,17]). 

3.3    Bayes' Theorem for P{D) 

In analyzing size-broadened profiles, the central aim 
is to quantify the shape and size distribution of the crys- 
tallites, given the experimental data. Bayesian theory is 
well suited for testing a hypothesis in the presence of 
experimental data. This is achieved by quantifying the 
a posteriori probability distribution for P, conditional 
on the experimental data and statistical noise. The for- 
mulation of Bayes' theorem is general and can also be 
applied to determining/ 

Using Bayes' theorem, the a posteriori probability 
for P is given by 

Vx{P\g,m,K,a,a,'}) 
MP\m,a,'})?r{g\P,K,o,';) 

Vr{g\m,K,a,';) 

(11) 

This is conditional on everything after '|', viz., the 
observed profile g, an a priori model m, the scattering 
kernel K, statistical noise a, a constant a, and any addi- 
tional background information concerning the experi- 
ment, "7. 

On the right-hand side of Eq. (11) there are several 
terms that require further discussion. The likelihood 
probability distribution Pr(^ | P, K, a, '?) defines the 
probability of measuring g, given a size distribution P, 
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profile kernel K, and statistical noise G. That is, we 
include our hypothesis P, and determine how probable 
it is to measure g, given this hypothesis, K and G. The 
likelihood function is approximated as a Gaussian dis- 
tribution for large counts (»10) by applying the cen- 
tral limit theorem, 

Vr{g\P,K,G,1) 
1 

Z,{G) 
exp ~L{P,g,K,G) (12a) 

where 

i=2 
{^■-XM) 

and 

Z,iG) = Yl,l2KGf 

= det{^/2^^o^}, 

(12b) 

(12c) 

(12d) 

such that {yjlnG^} is an [Mx A/] diagonal matrix. 
The variance is defined in terms of the observed 

counts and estimated background level as G^= g.+ b1^\ 
In Eq. (12a), the kernel K has been included as it con- 
tains information about the shape of the crystallites and 
will influence the solution. We notice from Eq. (12b) 
that the matrix form of Eq. (9) has been incorporated. 

The term Pr(P|/M, a, ^) defines how probable is our 
hypothesis P, given it is a positive and additive distri- 
bution and conditional on an a priori model, m. The 
a priori probability distribution can be expressed as 

Vr{P\m,a,I) 
1 

Z^{a) 
exp[a,5(/>,/«)].        (13a) 

The entropy function is given as [6], 

S{P,m) = f,P,-mj-F HP I nij). (13b) 
7=1 

where the normalization term, Z^{a) is given as 

Z^{a) = jVPexplaSiP, m)] (13c) 

(13d) 

(13e) 

N_ 

2n V 
a 

N 

_{2ny_ 

Vdet al 

and the integration in Eq. (13c) involves the measure 

VP = Y\^ P 'dP. The log term in Eq. (13b) ensures 
A Ay—1      j J 

that positive and additive distributions are obtained and 

that P will have these fundamental characteristics. The 
a priori model, m, defines our ignorance/knowledge 
about P. That is, if we are unsure of the shape of/*, it is 
best to admit our ignorance by assigning a uniform dis- 
tribution over a specified range. The a priori model 
may also include data gathered from other sources, 
such as electron microscopy (e.g., TEM, SEM, and 
SPTM) techniques. It may also include theoretical or 
analytical models. For example, recently in the litera- 
ture (see [1,2,18]) there has been a widespread use of 
the log-normal distribution for P. However, in the 
Bayesian formulation we do not explicitly define P as a 
log-normal distribution, but set the a priori model as a 
log-normal distribution and test it in the presence of the 
observed data. 

S{P, m) is essentially a measure for P relative to m. 
Suppose the model m was found to be a log-normal dis- 
tribution and its parameters were determined using 
least squares analysis. If the resulting P lies "close" to 
m, the change in S will be small; also, this would imply 
that the underlying crystallite-size distribution in the 
specimen is a log-normal distribution with values sim- 
ilar to those determined for m, since this assumption 
has been tested in the presences of the experimental 
data. On the other hand, \fP lies "some distance" from 
m, the change in S will be large; this would imply that 
the underlying size distribution is not a log-normal dis- 
tribution with the values estimated for m. 

The denominator term in Eq. (11) has an important 
application in selecting between various kernels, K, for 
different crystallite shapes. It is called the evidence [4], 

Vx{g\m,K,G,'?)=\VP\daVx{P,g,a\m,K,G,'J). (14) 

Including all the necessary terms, the a posteriori 
probability distribution for P can be expressed as 

1 ^e 
Vr{P\g,m,K,G,a,'?) 

Z,{a)Z,{G)¥x{g\m,K,G,'!) 

(15) 

where Q= aS--^L. For convenience, Q = Q{P,Oi), 
since P and a are the only two unknown terms. The a 
term in Q{P, a) can be interpreted as an undetermined 
Lagrangian multiplier. 

Determining the most probable size distribution, P, 
depends on maximizing Eq. (15), which in turn requires 
determining the global minimum for Q{P). There are 
several algorithms for determining P from Q(P), given 
its nonlinear characteristics (see [3,19]). 

The approach we follow in determining the crystal- 
lite-size distribution is similar to that outlined by Bryan 
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[3] and Jarrell and Gubematis [20]. We start with a 
large a value and step towards a = 0. For a given a, we 
determine P such that Vg = 0. After stepping through a 
range of a values, a set of solutions, {/*(«)}, is formed 
parameterized by a. The average distribution, (/*), can 
be determined from the set of solutions {/*(«)}, 

(P) = £""' 6.aP{a) Pr(a | g, m, K, a, 1), (16) 

where Pr(a | g, m, K, a, ?) is normalized to unity 
for ae [«„„„ a„J. In the application of the 
Bayesian/MaxEnt method, the selected range was 
defined by ae [10"^, 10^]. The average particle size 
distribution can be used to determine the average spec- 
imen profile, {/), 

(/) = £"" dal^Pia) Pr(a | g, m, K, a,'?) 

3.4    Determining Pr(a | g, m, K, a, *!) 

The a parameter in Eq. (15) is important in coupling 
the entropy function S{P, m) with the likelihood fiinc- 
tion L{P). It is also a "nuisance parameter" and its influ- 
ence can be integrated out. In evaluating Eq. (16), it is 
necessary to determine Pr(a | g, m, K, a,'?); we do this 
by integrating out the P, 

?T(a\g,m,K,a,'?) = J^/>Pr(/>, a\ g m,K,a,1) 

,Pr(a)|^)Pr(/'|/M,a,/)Pr(g| P, K, o, 9} 
\VP- 

Pr(a|'7) 

Vr{g\m,K,a,'?) 

1 

¥x{g\m,K,G,'?)Z,{a)Z,{a) 

'.^VPi .Q(P.a) (17a) 

and expanding Q{P, a) » Q(P, a) + j{P-PyVyQ{P- 
P) about P for a given a. We note Vg = 0 for P = P for 
a given a. On integrating, we have 

Vr{a\g,m,K,a,']) 
Pr(a I -7) 1 

Vx{g\m,K,a,'?)Z,{a)Z,{a) 

X2n) Nql2^Q(P,a) 

VdetVVe(a) 

Pr(a I 9) 

(17b) 

1 

?rig\m,K,a,^)Z,ia) 

deta/ 

det(a/ + yl) 
^ec.a) (17c) 

where VVQ{P, a) = WQ(a) and A are the eigenvalues 
of(-VV5)^VVi(-VV5)"^={>'}^''{c7"'}^{>'}.The 
quantities in parentheses represent diagonal matrices. 
In Eq. (17a), we have introduced the a priori distribu- 
tion for a, Pr(a |'?). Generally, we set Pr(a | "7) as a uni- 
form model over a range [oCaim otmax]- Using Eq. (17) we 
can evaluate Eq. (16). In practice, we determine 
In Pr(a | g, m, K, a,'?) and A for each P and a in the 
rangeof[a„j„, aj. 

3.5    Resolving Overlapped Profiles 

The formalism presented here enables single and 
overlapped profiles, and even whole patterns, to be ana- 
lyzed, provided that crystallite-size effects are the 
major broadening component. Line profiles are gener- 
ally overlapped due to low unit cell symmetry. 
However, specimen broadening, such as size broaden- 
ing from crystallites, can also cause profiles to be over- 
lapped. In this case, the underlying invariant quantity is 
the crystallite-size distribution, P. The above integral 
equations for overlapped peaks can be expressed in 
terms of P. The general form of Eq. (9) does not 
change; the term that does change is the kernel, K{s, D), 

K{s,D) = \"lY,k{s-s;s',^)I^{s', D)ds' (18) 

where s^^ = IsinO^^ IX and 0„^ is the Bragg angle at 
the ^th peak in the pattern. The k{s-s'; s'^^) 
term expresses the instrument kernel at each peak posi- 
tion, 00,. The Ip{s', D) term is invariant over the range of 
s. In terms of the Bayesian analysis presented above, 
nothing else changes. 

3.6    Error Analysis 

Determining the errors in P over regions of impor- 
tance is a final test for the quality of P. The error bars 
for P are dependent on the choice of the a priori model 
and the quality of the observed data, G. 

It is only possible to assign error bars over a defined 
region, because the errors between points are strongly 
correlated [5,6]. The region of interest may consist of 
features in the specimen profile or size distribution 
which may not be physical, such as ripples in the tails 
of the distribution or a second peak suggesting a 
bimodal distribution. Over the defined region, we are 
interested in the average integrated flux [6], 

= P^wl w^w 

(19) 

(20) 
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where w is a "window function" defined as, 

1   r<j</, 
0, otherwise 

(21) 

and the region of interest is defined by rr'. Expanding 
Pr(7' I g, m, K, q^ a,'?) about P, we have Pr(P | g, m, K, 
o, a, 1) o^ e^*^"^' s(P-p> -j-jjig jg ^ Gaussian centered 
about P. By inspection, the covariance matrix for P is 
given by -(VVg)"', where the elements in -(VVg)"' 
are strongly correlated with neighboring elements. 
Following the suggestion of Skilling [6] the variance 
for P is 

„2 T Cp =w [-(VV0-']w/ w w. (22) 

Hence, we can assign error bars over a region of inter- 
est to the integrated flux of 7*. 

3.7    Fuzzy Pixel Approach for Determining/ 

It is often important to assess the specimen broaden- 
ing by determining/, without making any assumptions 
concerning its functional form. This can be achieved by 
deconvolving (1). However, in determining/ "ringing 
effects" can appear in the solution. The ringing is often 
due to noise which are amplified and appear as unphys- 
ical oscillations in the solution (for example see Fig. 6 
in [10]). The above theory assumes that smoothing is 
applied globally. However, the ringing effects are local 
artifacts. In order to introduce 'local' smoothing, we 
must address how to decompose/ Explicit in the com- 
position of/is that it is expressed as a superposition of 
delta functions. 

/(20) = £5(20-20,)a, (23) 

where a = {oi, 02,..., %} is the set of coefficients that 
define the amplitude of/at the /th position. Eq. (23) 
assumes a global smoothness, while the ringing effects 
are local effects. 

Following the suggestion of Sivia [5,21], we blur 
5(29) by including the spatial correlation length or 
width. To do this, we choose a basis function which 
includes a spatial correlation length as its width and 
reduces to d(29) in the limit of the width going to zero. 
That is, we make the pixel at the /th position offfuzzy. 
A simple choice is to express / in terms of a sum of 
Gaussian functions. 

/(20) = £exp 
(20-20,)' 

2©' 
(24) 

where CD is the width of the spatial correlation or fuzzy 
pixel. In the limit of ft) —> 0, Eq. (24) reduces to Eq. 
(23). 

In matrix notation Eq. (24) becomes, 

f = Fa (25) 

where F is an [NxN] matrix containing the elements 
of the Gaussian function. 

How do we determine the optimum (O given the 
observed data, kernel and statistical noise? 

The tools for addressing this question have been pre- 
sented. That is, we employ Bayes' theorem to determine 
the a posteriori probability distribution for (O condi- 
tional on the observed line profile. The ft) that maximis- 
es the resulting a posteriori probability distribution 
becomes the optimum fuzzy pixel width, d). At a prac- 
tical level, we replace the equations where P appears 
with a, and the kernel K is replaced by 

G = RF (26) 

where G=G((i)). 
Applying Bayesian theory, the distribution for (O can 

be determined by integrating out a and a, 

Pr(ft)Ig,m, c, '7) = jZ'ajdaVr{a, a, (o\g tn, a, "J)  (27a) 

= JZ5aJd aPr( a I-7) Pr( ft) I-7) 

X Pr(a|g w? a C5 ft)-7). (27b) 

Following the same steps as in Eq. (17), we have 

Pr(a|^)Pr(ft)|^) 1 
^r{(o\g,m,(y,'?)- 

Pr(^|m,(7,7)   Z,{a)Z,{o) 

(2K fe^^"-"^ 
\jdetVVQ{a,o)) (27c) 

where Q(a, a, (o) = aS(a) - L{a, (o) for the unknown 
terms a, a, and ft); and VVQ{a, ft)) = V„V„g(a, ft)). 

Error bars can also be attributed to a and/ Using the 
results discussed in Sec. 3.6, the covariance matrix for 
«; ^^aQ can be determined. The corresponding 
covariance matrix for / can be determined from 
y^^ = Fyy^QF\ On applying Eq. (22) the error 
bars for/can be determined. 

Traditionally this problem has been solved by apply- 
ing classical techniques, such as the Stokes method 
[22]. In order to overcome the numerical instability of 
the Stokes method, methods such as direct convolution 
[23,24] and profile fitting methods, such as the Voigt 
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function [25,26,27,28,29] have been developed. These 
approaches assume an analytical function for the spec- 
imen profile; the convolution product between the 
instrument and specimen profile is refined (by updating 
the parameters that define the specimen profile) until 
the error between the calculated and observed data is 
minimized. These methods are a means to an end. 
There is often no physical basis for choosing a particu- 
lar profile function, except that it results in a minimized 
error [30]. However, the Bayesian/fuzzy pixel/MaxEnt 
approach determines the maximally uncommitted solu- 
tion or the solution with the least assumptions [31], 
given all the available data and information. 

4.    Generating and Analyzing Simulated 
Ce02 Data 

4.1    Generating the Simulated Data 

4.1.1    Particle-Size Distribution, P(D) 

In order to test the Bayesian/MaxEnt method, simu- 
lated data for the 200 and 400 line profiles from CeOj 
were generated. The crystallites were assumed to be 
spherical in shape with a log-normal crystallite-size 
distribution, 

P{D): 
1 

^2nD^ W C7( 
rexp 

\(\n{DID^) 
2       lnc7„ 

(28a) 

where /)Q is the median and o^ is the log-normal vari- 
ance. The average diameter, (£)), and variance, aL, of 
the distribution are related to these quantities by 

D) :/)/' 

and 

'{D) :Z)„^e" 'o„  Qn-a„  _j\ 

(28b) 

(28c) 

The log-normal parameters used were D^, = 13.03 nm 
and a\ = 2.89. Using Eqs. (28b and 28c), the average 
diameter and variance were determined to be, 
(£))= 15.00 nm and crL= 73.17 nm^, respectively. 
Using the results from Krill and Birringer [1] [see Eqs. 
(6)-(8), p. 625], the corresponding area- and volume- 
weighted sizes were determined. 

The area- and volume-weighted diameters for 
spheres are related to the sizes [2] by 

/) 

0) 1« 

(29a) 

and 

(29b) 

The area- and volume-weighted sizes, (j).^ and (/X, can 
be determined from the specimen profile,/ and Fourier 
coefficients, A{i), by using [32] 

(or dA{t) 

At 

(30) 

The 
volume-weighted size is inversely related to the inte- 
gral breadth and can be determined either directly from 
the specimen profile,/ or from its Fourier coefficients, 
A(t), 

i3=£/(^)d5/X 

=[2j;^(0d/ 

(31a) 

(31b) 

(31c) 

where j3 is in reciprocal space units. 
Using Eqs. (30) and (29), the area-weighted size and 

diameter were determined as (/X= 17.56 nm and 
(/)X = 26.34 nm, respectively. Using Eqs. (31a) and 
(29), the volume-weighted size and diameter were 
determined as (iX = 26.18 nm and (/))v= 34.91 nm, 
respectively. These settings are considered as the theo- 
retical values for the simulated data. The 
Bayesian/fuzzy pixel/MaxEnt results were compared 
with the theoretical sizes, and percentage differences 
were determined. 

4.1.2    Line Profiles,y(20) and ^(26) 

Using the parameters for the size distribution, the 
specimen profile for spherical crystallites, /(20), was 
modelled over the range (20o ± 1O)°20 at a step size of 
O.O1°20 [see Eq. (8)]. The simulation of the specimen 
profile over this range minimized any artifacts in the 
Fourier coefficients. The instrument profile, A:(20), was 
modelled on the diffractometer parameters and LaBg 
line-position Standard Reference Material (SRM 660a), 
as discussed in Sec. 5.1. The split-Pearson VII function 
for the 200 line consisted of the following parameters: 
FWHM,„^ = O.O3O°20,   FWHM.i^^ = O.O27°20,   and 
OT, exp,low " 6.928, m, exp.high ' 11.324, where m^^„ are the 
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split-Pearson exponents. The "low" and "high" sub- 
scripts are with respect to the Bragg positions, 20f, (see 
Sec. 5.1). 

4.1.3    Generating g(2 6) 

The observed line profiles, g(20), for the 200 and 
400 lines consisted of the convolution of the specimen 
line profile, J{29), with the instrument line profile, 
k{29), Poisson noise, and a linear background level, 
b{29). Statistical noise was also imparted onto the 
background before adding it to the convoluted product. 
This is expressed by Eq. (1). 

The generation of g{29) was carried out over 20f,± 
10°29 in order to minimize any truncation errors. The 
maximum peak height for the 200 line profile was set 
to 6500 counts (without background level and noise, or 
a total of 7835 counts including background level and 
noise) and the peak-to-background ratio, R^^,, was set to 
6.0. The corresponding percentage error in the peak 
maximum was determined using 

1 
peak 

(^*-l) 

^*(^ob+l) xlOO% (32) 

where /„Bx,bg is the maximum number of counts, includ- 
ing background level. Simulated g(20) for the 200 and 
400 line profiles are shown in Fig. 2. The uncertainty 
for the 200 line was 1.5 % in the peak height. Similarly, 
for the 400 line the maximum peak height was set to 
1500 counts (2646 counts including background level 
and noise); the average peak-to-background ratio was 
set to 2.4; and the estimated statistical uncertainty in 
the peak height was found to be 4.0 %. 

In order to simulate realistic conditions, the 
Bayesian/MaxEnt analysis of the g(20) was carried out 
in a truncated region {29f,±2)°20 for the 200 and 
(200 ± 1 ■5)°29 for the 400 line profiles. In the analysis, 
the background level was assumed to be unknown and 
was approximated by a linear function over this region. 
This was achieved by examining the Fourier coeffi- 
cients ofg{29) as the level was raised/lowered until dis- 
tortions (i.e., "hook effect", etc.) were removed. Figure 
2 shows the simulated g(20) before and after the back- 
ground level estimation for the 200 and 400 line pro- 
files. 

4.1.4    Generating the Kernels, R, /p, and K 

The numerical evaluation of the instrument kernel R, 
line profile kernel /p, and scattering kernel K, are an 

8000 ^10 

33 

Position °26' 

33 

Position °20 

3000 

i.9 69.9 

Position" 20 

70.9 

Position °2e 

Fig. 2. Simulated 'observed' 200 and 400 Ce02 profiles, g(29). (a) The 200 profile (solid line) and estimated background level 
(dashed line) over (29Q ± 2)°29, the range over which the analysis was carried out. (b) Logarithm of the 200 profile before (solid line) 
and after (dashed line) the background estimation, (c and d) Plots corresponding to (a) and (b), respectively, for the 400 profile over 
(2e(,±1.5)°2ft 
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important aspect in the application of the 
Bayesian/MaxEnt method. The evaluation of the fuzzy 
pixel kernel, F, is also important in the implementation 
of the fuzzy pixel/MaxEnt method in determining the 
specimen profile,/ This section expands on Sec. 3.2. 

The advantage of the Bryan algorithm [3] and the 
Bayesian/MaxEnt algorithm is that the search direction 
(or subspace) is defined by the singular value decompo- 
sition (SVD) of the scattering kernel, K. This approach 
is numerically efficient (in that it reduces the number of 
floating point operations) and also numerically stable, 
since it does not utilize the full column-space of the 
kernels. As was pointed out in Sec. 3.2, the vector- 
space spanned by the column vectors of K may be all 
(or nearly all) linearly dependent, causing it to be ill- 
conditioned. The ill-conditioned characteristics are 
overcome by the SVD oiK, VLU^, where the "singular 
space" spanned by the column vectors of U is used to 
define the subspace in which the size distribution can 
be determined. 

The instrument kernel, R, is an \M x TV] matrix. The 
elements of this matrix can be determined by 
Rij=k(2e,-20j), where M>N'. This matrix can be 
mapped into reciprocal-space, s, by multiplying each 
column ofR by d{29)/(is = X/cosOj: 

The line profile kernel expresses Eq. (3) as an 
[A'^' X N] matrix, /p = [/p_,j], consisting of the line profile 
from a specific common volume (i.e., shape) function. 
The formalism presented here is completely general 
and any shape function can be used where appropriate. 
In this study, we have employed the common-volume 
function for spherical crystallites [see Eq. (4)], 

^.)- 

j Dj cos(2irs'j,Dj)       DjSinilirs'jDj) 
for s'j, ^0 

for s',, =0 

(33) 

where the second term in Eq. (33) ensures that the line 
profile from a single spherical crystallite is finite for 
.5 = 0. 

The evaluation of the scattering kernel, K, is the 
matrix product of the instrument kernel (mapped into s- 
space), R, and the line profile kernel, Eq. (33). Using 
Eq. (10), 

K{s„Dj) = 5Dds"^k(s^ -Sj')lM' Dj)      (34a) 
j' 

K^=5D5s'J^R^.I^. (34b) 

K = dD5s'RI (34c) 

where R has been mapped into .s-space, Ss' is the step 
size in .5-space and approximates the integration in Eq. 
(10), while SD is the step size in /)-space and approxi- 
mates the integration in Eq. (9). Care must be taken in 
selecting SD to avoid the under-sampling of Eq. (33). 

4.2    Applying the Fuzzy Pixel/MaxEnt Method for 

This approach involves determining the specimen 
profile from the simulated data. It is equivalent to solv- 
ing the deconvolution problem, Eq. (1), and is an 
important first step in assessing the nature of the spec- 
imen broadening. In the past, we have applied the 
Skilling and Bryan [19] algorithm with global smooth- 
ing (see [5]), which we refer to here as the "old" 
MaxEnt method. However, in this section we apply the 
Fuzzy Pixel/MaxEnt method discussed in Sec. 3.7, to 
determine J{20). The results are also compared with 
those from the "old" MaxEnt method, and their reliabil- 
ity in reproducing the log-normal parameters for the 
crystallite-size distribution (specified in Sec. 4.1) is 
assessed. 

The specimen line profiles from the "old" MaxEnt 
approach are given in Fig. 3. These results were com- 
pared with the theoretical specimen profiles by evaluat- 
ing the Rfand R„ values. A summary of these and sub- 
sequent analyses is given in Table 1. 

The "old" MaxEnt method is not based on a 
Bayesian formalism (see [4,6]) and spurious oscilla- 
tions can appear in the solution specimen profile. This 
second point becomes important in analyzing high 
angle/low intensity profiles. This is further illustrated 
by inspecting the residuals in Fig. 3(b), where the 
amplitude of the residuals is large in comparison with 
the normalized peak height. We contrast the results in 
Fig. 3 with the fuzzy pixel/MaxEnt method discussed 
in Sec. 3.7. Using this theory, the fuzzy pixel distribu- 
tion specimen profiles are shown in Fig. 4. The fuzzy 
pixel distribution determines the optimum fuzzy pixel 
width, (0 [see Eq. (27)]. For the 200 line, the optimum 
value was found tohs d)~ O.O7°20 and for the 400 line, 
ft)=0.05°2ft This defines the correlation-length scale 
of the noise in the simulated data and essentially filters 
out the noise effects. It is evident from the residuals of 
the multiple orders that smoothing of the specimen pro- 
file has been achieved using this approach. 

Using the line profiles determined, and assuming a 
spherical crystallite shape, the parameters of the under- 
lying log-normal size distribution can be reproduced by 
following the approach of Krill and Birringer [1]. These 
results are shown in Table 1. The analysis has produced 
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Fig. 3. "Old" MaxEnt specimen profiles for the 200 and 400 line profiles, (a) The theoretical 200 specimen profile (solid line), "old" 
MaxEnt specimen profile (long dashed line + error bars) and the residuals (short dashed line), (b) Corresponding results for the 400 
line profile, as shown in (a). The horizontal error bars in (a) and (b) represent non-overlapping region of interest, while the vertical 
error bars represent the uncertainty in the averaged integrated flux over the region of interest. 
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Fig. 4. The tuzzy pixel distribution and MaxEnt solutions for the 200 and 400 line profiles, (a) The logPr{m\g, m, a, 1) distribution 
used to determine the optimum fuzzy pixel width, d)= 0.07°29 for the 200 specimen profile, (b) Theoretical specimen profile (solid 
line), tuzzy pixel/MaxEnt specimen profile (long dashed line + error bars) and the residuals (short dashed line) for the 200 line pro- 
file, (c) The logPr((u |g, m, a, 1) distribution used to determine the optimum tuzzy pixel width, (S) = 0.05°29 for the 400 specimen 
profile, (d) Theoretical specimen profile (solid line), tuzzy pixel/MaxEnt specimen profile (long dashed line + error bars) and the 
residuals (short dashed line) for the 400 line profile. The horizontal error bars in (a) and (c) represent the non-overlapping region of 
interest, while the vertical error bar represents the uncertainty in the averaged integrated flux over the region of interest. 

mixed results, due to the stringent but realistic condi- 
tions imposed on the background estimation. 
Comparing the 200 line profile results for the "old" 
MaxEnt and fiizzy pixels methods, there is a noticeable 
improvement in the latter results over the former. This 
is not only seen in an improved Rf value, but also in the 
reproduced log-normal parameters. In the case of the 

400 line, we notice that the i?j value has improved by a 
factor of =3 and the volume-weighted size by a factor 
of=1.5 for the fuzzy pixel/MaxEnt approach. However, 
the area-weighted size for the 400 line profile has not 
improved. As a consequence, when the underlying log- 
normal parameters are determined from the area- and 
volume-weighted sizes no improvements are gained. 
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Table 1. Area- and volume-weighted sizes for the 200 and 400 specimen line profiles (/) from the "old" MaxEnt and fuzzy pixel/MaxEnt meth- 
ods. (Z)>a and (D)^ values were determined using Eq. (29). The DQ, OQ, (D>, and cr^^,) values were determined from Eq. (28). The percentage dif- 
ferences between the calculated and theoretical values are given in parentheses 

"old" MaxEnt Fuzzy Pixel/MaxEnt 
Results 200 400 200 400 

R/o/o) 4.2 10.9 2.7 3.1 

RX/o) 2.9 3.7 3.0 3.7 
<r»m) 19.9 ±0.1(13.3%) 20.4 ±0.1(16.0%) 17.89 ±0.07(1.9%) 20.5 ±0.1(16.5%) 
<D),(nm) 29.8 ±0.2 30.5 ± 0.2 26.8 ±0.1 307 ±0.2 
<<>v(nm) 26.63 ±0.07(1.7%) 28.0 ±0.2(7.1%) 25.86 ±0.04(1.2%) 27.4 ± 0.2(4.8 %) 
(D\(nva) 35.51 ±0.09 37.4 ± 0.2 34.48 ± 0.05 36.6 ±0.3 
Z)o(nm) 19.3 ±0.4(48.1%) 18.4 ±0.5(41.5%) 14.3 ±0.2(10.1%) 19.8 ±0.6(52.0%) 

O'o 1.52 ±0.01(10.7%) 1.57 ±0.02(7.8%) 1.650 ±0.007(3.0%) 1.52 ±0.02(10.6%) 
<Z))(nm) 21.06 ±0.43(40.4%) 20.4 ± 0.5(36.0 %) 16.3 ±0.2(8.4%) 2.6 ±0.6(44.1%) 
o-^£,)(nm^) 84 ±5(15.3%) 93 ± 7(27.2 %) 75 ± 3(2.9 %) 89 ± 8(22.4 %) 

These results for the 400 line profile can be 
explained by the low peak-to-background ratio, statisti- 
cal uncertainty, and the presence of systematic errors 
arising from the background estimation. The peak-to- 
background ratio for the 400 line profile is 2.4. This 
low value results in an increased uncertainty in the esti- 
mated background level. From Eq. (32), we notice that 
as the peak-to-background ratio increases, the peak 
height uncertainty decreases and the dominant source 
of uncertainty becomes the statistical noise.' The vari- 
ance of the observed profile is determined by two com- 
ponents: the Poisson counting statistics, which can be 
approximated as ^, for g» 10 counts, and the esti- 
mated background level, b^^i; it can be expressed as 
c^ = g + ^esf The presence of statistical uncertainty and 
the low peak-to-background ratio introduces uncertain- 
ties to the slope and intercept of the estimated back- 
ground level. In turn, this introduces systematic errors 
to the Fourier coefficients of / [30]. Although the 
fuzzy/pixel method has been successful in improving 
the quality of the line profile (which amounts to reduc- 
ing the statistical error in the solution line profile), the 
systematic errors have propagated to the Fourier coef- 
ficients of the specimen profile and in turn to the area- 
weighted size. Additional calculations and applying the 
above analysis to simulated data with zero background 
(i.e., only Poisson noise) show percentage differences 
between the calculated and theoretical results of S 5 % 
for both the 200 and 400 fuzzy pixel/MaxEnt specimen 
profiles. This highlights the difficulty of analyzing 
high-angle/weak line profiles, which clearly requires a 

Taking Eq. (32), we see that in the limit of-Spi, ^ 1, ou —> 

the other hand, in the limit ofRpb ^ oo, CTp —> l/J/„Mx,bg 

pie, with Rpb = 15, CTp = l.2/,Jl~^. 

On 

. For exam- 

good understanding of the background level in order to 
reduce the influence of systematic errors. 

The application of the fuzzy pixel/MaxEnt method 
for determining/(20) enables the specimen broadening 
to be assessed. This is important in the application of 
methods such as those of Warren-Averbach and 
Williamson-Hall. Furthermore, the analysis discussed 
here can be used as the a priori information of the 
Bayesian/MaxEnt analysis. The fuzzy pixel/MaxEnt 
approach overcomes the difficulties in commonly-used 
deconvolution techniques (see [11]) and resolves the 
"ringing effects" in [10]. 

4.3    Bayesian/MaxEnt Method for P(D) Using 
Different m(D) 

The next stage in the analysis of the simulated data is 
applying the Bayesian/MaxEnt method to determine 
the particle distribution, P{D). In addition, two differ- 
ent approaches for determining a model, m{D), were 
explored and their effects on P{D) were quantified. 
The two approaches were (i) uniform model over 
D e [0, 60] nm and (ii) "low resolution" approach [30] 
using the log-normal distribution parameters deter- 
mined in Sec. 4.2 as the prior. 

4.3.1    Uniform Model 

The Fourier coefficients A(t) of the fuzzy 
pixel/MaxEnt specimen profiles (not shown here) sug- 
gest the maximum size of the crystallites is = 60 nm, 
since A{t)"0 at this length. Using this information, a 
uniform distribution was defined over D e [0, 60] nm. 
The corresponding Bayesian/MaxEnt results are shown 
in Fig. 5. The posterior distribution for a is shown in 
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Fig. 5. Bayesian/MaxEnt crystallite size distributions using a uniform a priori model, (a) The Pr(a | ^, m, CT, 1) distribution, Eq. 
(17), used to average over the set of solutions, {?(«)}. (b) The theoretical crystallite size distribution (solid line), Bayesian/MaxEnt 
size distribution (long dashed line + error bars), and the uniform a priori model (short dashed line), (c) and (d) The corresponding 
Pr(a |g, m, (T, T) distribution and Bayesian/MaxEnt size distribution for the 400 line profile. 

Figs. 5(a) and (c) for the 200 and 400 profiles, respec- 
tively. This distribution was used to average over the 
set of solutions {P) for each case. The 
Bayesian/MaxEnt results are given in Figs. 5(b) and (d) 
for the 200 and 400 profiles, respectively. 

Using a uniform model, the Bayesian/MaxEnt size 
distributions where compared with the theoretical size 
distribution, P{D). The Bayesian/MaxEnt results share 
"global" features with the theoretical size distributions. 
However, "local" features are poorly defined, especial- 
ly in the region of 0 < /) < 10 nm. This is a direct con- 
sequence of the unifonn model and the lack of relevant 
information in the data; that is, it assigns an equal 
weight to all sizes over D. The vertical error bars in 

both cases correctly represent the misfitting between 
the theoretical and Bayesian/MaxEnt size distributions; 
additionally, their magnitude also signifies that a uni- 
form model transfers little or no useful information. 
This can also be seen in the parameters for the 
Bayesian/MaxEnt distribution compared with their the- 
oretical values in Table 2. In determining the log-nor- 
mal parameters from the Bayesian/MaxEnt P{D), the 
fitted distribution produces reasonable results. This 
suggests that, although the a proiri model is uniform, 
the Bayesian/MaxEnt method can "extracf' some infor- 
mation concerning the underlying distribution from the 
simulated data. 

Table 2. P(D) results from the Bayesian/MaxEnt method for the 200 and 400 line profiles using different a/Priori models. The values for DQ, CTQ, 

(Z)>,and a^iy^ were determined by fitting the Bayesian/MaxEnt solutions with a log-normal distribution. The percentage difference between calcu- 
lated and theoretical values are given in parentheses 

Uniform model "Low' res. model 
Results 200 400 200 400 

«/%) 23.0 40.0 22.2 19.1 
Z)o(nm) 13.9 ±0.3(6.5%) 11.9 ±0.9(8.8%) 14.8 ±0.2(13.4%) 12.5 ± 0.2(4.4 %) 

o-Q 1.589 ±0.003(6.5%) 2.14 ±0.03(25.8%) 1.612 ±0.002(5.1%) 1.544 ±0.002(9.2%) 
<Z)>(nm) 15.5 ±0.3(3.0%) 15 ± 2(5.8 %) 16.6 ±0.2(10.4%) 13.7 ±0.2(8.7%) 
(j\o)iarn) 57 ± 3(22.0 %) 197±145(>100%) 70 ± 2(3.9 %) 39 ± 1(46.7 %) 
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4.3.2    "Low Resolution" Approach 

A log-normal a priori model used in the 
Bayesian/MaxEnt method was defined fi-om the /)o and 
Co of the 200 fuzzy pixel/MaxEnt line profile (see Table 
1). Unlike the uniform model, this model defines local 
features of the size-distribution. The Bayesian/MaxEnt 
results using this model are shown in Fig. 6 and the 
determined parameters in Table 2. Before discussing 
the results, it is interesting to point out that the log-nor- 
mal model and theoretical size-distribution produce a 
diiTerence of 15.8 %. One of the aims of this section is 
to assess whether this difference has been imparted to 
the Bayesian/MaxEnt size-distribution. 

Comparing the a posteriori distribution for a using a 
uniform model [see Figs. 5(a) and (c)] with that of the 
log-normal distribution, given in Figs. 6(a) and (c), we 
notice that the effect of the log-normal model is to shift 
the distribution in a-space and widen it. Essentially the 
solution space parameterized by a has been expanded 
to encompass those solutions which correspond to the 
available a priori and experimental data. 

The Bayesian/MaxEnt size distributions, given in 
Figs. 6(b) and (d), compare reasonably well with the 
theoretical distribution. However, there is noticeable 
misfitting between these  distributions.  Further,  the 

Bayesian/MaxEnt solution has been shifted slightly rel- 
ative to the log-normal model. This is also evident in 
the Rf for the 200 and 400 size distributions, given in 
Table 2. The Rffox both solutions has increased relative 
to the log-normal model by an additional =3 % to 6 %. 
This can also be seen by comparing the percentage dif- 
ferences for the /)o, CQ, (£>), and o^^,) parameters for the 
200 fuzzy pixel solution, given in Table 1 (third col- 
umn), with those given in Table 2 using the "low reso- 
lution" method, where there is a slight increase in the 
percentage difference, with the exception of the o^^^) 
value. Additional calculations suggest that misfitting 
between the solution and theoretical size distributions 
arises from errors in the a priori model. The influence 
of the background estimation which was problematic in 
the fuzzy pixel analysis does not seem to be a factor in 
this analysis. 

While there exists some misfitting between the solu- 
tion and theoretical size distributions, the vertical error 
bars correctly account for this misfitting. This charac- 
teristic of the Bayesian/MaxEnt can be seen for both 
the uniform and non-uniform models. Indeed, this fea- 
ture of the method ensures that it is fully quantitative, 
and represents a clear strength over existing methods. 
Comparing these solutions with those using a uniform 
model, considerable improvement in the size distribu- 

10       20       30       40       50 

Alpha, a 

10       20       30       40       50       60 

Diameter, D (nm) 

10 20 

Alpha, a. 

10       20       30       40       50       60 

Diameter, D (nm) 

Fig. 6. Bayesian/MaxEnt crystallite size distributions using a log-normal a priori model, (a) The Pr(o |^, m, a, ^) distribution, Eq. 
(17), used to average over the set of solutions {?(«)}. (b) The theoretical crystallite size distribution (solid line), Bayesian/MaxEnt 
size distribution (long dashed line + error bars) and the low-resolution a priori model (short dashed line), (c) and (d) The corre- 
sponding Pr(a \g, m, a, 1) distribution and Bayesian/MaxEnt size distribution for the 400 line profile. 
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tion has been achieved. The "local" information 
defined in the log-normal a priori model has been 
imparted to the Bayesian/MaxEnt solution. 

This analysis also demonstrates the difficulty in esti- 
mating a suitable non-uniform model based on the cur- 
rent techniques. Further, any uncertainty in the model 
parameters is also passed on to the solution distribu- 
tion. This indicates the need to quantify the uncertainty 
in the model parameters and quantify how these uncer- 
tainties are passed on to the solution size distribution. 

5.    Experimental Details 

Analysis of the simulated data highlighted difficul- 
ties of background estimation and the effect of the 
a priori model on the Bayesian/MaxEnt size distribu- 
tion. However, this analysis provided a useful under- 
standing of the experimental condition which were 
used in conducting an appropriate set of measurements. 
The fuzzy pixel/Bayesian/MaxEnt methods were 
applied to experimental CeOz diffraction data to deter- 
mine the specimen profiles, crystallite shape, and size 
distribution. These results are compared with transmis- 
sion electron microscopy data. 

5.1    XRD Details 

The CeOj specimen used here was prepared for the 
CPD and lUCR size round robin by Louer and 
Audebrand [33]. 

Diffraction patterns were collected on a Siemens 
D500^ diffractometer equipped with a focusing Ge inci- 
dent beam monochromator, sample spinner and a scin- 
tillation detector. Copper K„i radiation with a wave- 
length A = 0.154 059 45 nm was used. The divergence 
slit was 0.67°, while the receiving optics included a slit 
of 0.05° and 2° Soller slits. Data were collected in dis- 
crete regions straddling the maxima of each profile, 
with the step and scan width of each region being var- 
ied in correspondence with the FWHM. Count times 
were varied so as to obtain an approximately constant 
total number of counts for each scan region. The instru- 
ment profile function was determined using a split- 
Pearson VII profile shape function fitted to 22 reflec- 
tions collected from SRM 660a (LaB^). Figure 7, shows 
the FWHMs and exponents for the split-Pearson VII 
profile function. The low- and high-FWHMs were fit- 
ted using [34], 

FWHM' = .4 tan' Q + Dcot' Q + Ctan 0 + /),      (35) 

while the low- and high-exponents were fitted using a 
fifth-order polynomial. 

The count times for the Ce02 data were optimized 
using Eq. (32) so that the percentage error was kept in 
the range 1 % to 3 % for all peaks in the CeOj pattern. 
The scan ranges for the CeOj data were considerably 
wider, in proportion to the FWHM, than those used for 
the data collection from SRM 660a. This ensured a rea- 
sonable determination of the tails of the profiles and 
background levels. The CeOj 200 line profile is shown 
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Fig. 7. Calibration plots for the split-Pearson VII line profiles, generated fiom the SRM 660a (LaBj) difiraction pattern and used 
to model the instrument function, K{20). (a) The FWHM vs 29 for low- (+ and solid line) and high- (x and dashed line) angle 
sides of the peak, (b) The exponents vs 26 for low- (+ and solid line) and high- (x and dashed line) angle sides of the peak. 

Certain commercial equipment, instruments, or materials are iden- 
tified in this paper to foster understanding. Such identification does 
not imply recommendation or endorsement by the National Institute 
of Standards and Technology, nor does it imply that the materials or 
equipment identified are necessarily the best available for the pur- 
pose. 
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in Fig. 8(a). This illustrates a typical experimental line 
profile using the above conditions and settings. The 
estimated (linear) background level is also shown. A 
log plot of the 200 line before and after the background 
estimation is shown in Fig. 8(b). The procedure for 
determining the background level is as described in 
Sec. 4.1. 

5.2    TEM Details 

Particle agglomerates were gently crushed in ethanol 
using a mortar and pestle. A portion of the dilute slurry 
was dispersed on a holey carbon film and left to dry. 
Once in the TEM, a series of micrographs of particles 
were taken at a fixed magnification of 200kx. In the 
preliminary examination reported here, these negatives 
were scanned and analysed by manually approximating 
the particle size with an oval. The oval's major and 
minor axes were adjusted so as to tangentially intersect 
the particle surface facets. 

There are several sources of error in the measure- 
ments: TEMs typically have a 5 % error in length scale 
measurements; also, imaging the particle clusters 
means that particles are at different heights, which 
results in Fresnel fringes around the particles making it 
harder to identify particle edges. Further, larger parti- 
cles give better contrast and it is easier to detect their 
edges, so it is possible to inadvertently preferentially 
choose larger particles over smaller ones. 

A frequency histogram for about 850 particles is 
discussed in Sec. 6.2. It is shown that the 
Bayesian/MaxEnt size distributions determined from 
the non-overlapped hkl profiles of the CeOj diffraction 
pattern are in reasonable agreement with TEM data. 

6.    Analysis of CeOz X-Ray Diffraction 
Data 

Two levels of application of the Bayesian and 
MaxEnt theory has been chosen in our analysis. We 
refer to these as the qualitative and quantitative 
approaches, to reflect their degree of rigor (see Sees. 
6.1 and 6.2, respectively). 

6.1    Qualitative Analysis 

The qualitative analysis is used to determine the type 
and nature of specimen broadening, by first determin- 
ing the specimen profile,/ followed by the application 
of the Warren-Averbach and Williamson-Hall methods. 
The integral breadths, from a Williamson-Hall plot, 
identify the presence of both strain- and size-broaden- 
ing contributions, while plotting multiple-order Fourier 
coefficients and all other available Fourier coefficients 
on the same axes also allows size- and strain-broaden- 
ing contributions to be identified (see [30]). 

We have introduced the fuzzy pixel/MaxEnt method 
for determining / to ensure that no artifacts (such as 
spurious oscillations in the tails off) are promulgated to 
the solution, and also to preserve the positivity of/ 

We stress that unlike traditional methods, the 
approach in this section makes no assumptions at all 
about the nature of the specimen profile or broadening 
(i.e., be it Gaussian, Lorentzian, Voigtian, etc.). Thus, 
in further distinction from traditional deconvolution 
approaches, our approach facilitates the subsequent 
unbiased assessment of anisotropic broadening in the 
specimen, for example using contrast factors [35]. 

Figure 9 shows an example of the fuzzy 
pixel/MaxEnt method applied to the CeOj measured 
200 line profile given in Fig. 8. Figure 9(a) is an exam- 
ple of the "old" MaxEnt method, showing the effect 
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32 33 34 

Posilion °2e 

Fig. 8. Ce02 experimental 200 profile, g{29): (a) The observed 200 profiles (solid line) and estimated background level (dashed 
line) over (29Q ± 1)°29, the range over which the analysis was carried out. (b) Logarithm of the 200 measured profile before (solid 
line) and after the background estimation (dashed line). 
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Fig. 9. Specimen profiles from the "old" MaxEnt method and fiazzy pixel/MaxEnt method for the measured Ce02 200 line, (a) 
"Old MaxEnf specimen profile (solid line + error bars), (b) log Pr(o)\g, m, a, ^) distribution to determine the optimum fuzzy pixel 
width, w = 0.07°2ft (c) Fuzzy Pixel/MaxEnt specimen profile (solid line + error bars), (d) Fuzzy Pixel/MaxEnt Fourier coefficients 
(solid line). 

of noise amplification. On applying the fuzzy 
pixel/MaxEnt method, the correlation length scale for 
the profile was determined, as discussed in Sec. 3.7 and 
is shown in Fig. 9(b); the subsequent/and Fourier coef- 
ficients for the 200 line profile are given in Figs. 9(c) 
and (d), respectively. As demonstrated in the analysis of 
the simulated data, there is noticeable improvement in 
the quality of the solution line profile using the fuzzy 
pixel/MaxEnt method. This approach was applied to all 

the non-overlapped line profiles, including 111, 200, 
220, 400, 422, 511, and 531. 

The volume- and area-weighted sizes were deter- 
mined from the Williamson-Hall plot and Fourier coef- 
ficients, respectively. These results are shown in Fig. 10 
and summarized in Table 3. 

Figure 10(a) shows the Williamson-Hall plot for the 
non-overlapped line profiles. It is evident that size 
effects are the dominant source of specimen broaden- 
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Fig. 10. Volume- and area-weighted sizes from the Fuzzy Pixel/MaxEnt line profiles for measured Ce02 data, (a) Classical 
Williamson-Hall plot of the integral breadths, showing no dependency on hkl. This suggests that the crystallites are spherical in 
shape, (b) Area-weighted sizes determined fiom the Fourier coefficients of the Fuzzy Pixel/MaxEnt line profiles. 
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Table 3. Summary of Ce02 data analysis. The area- and volume-weighted sizes were determined from the specimen profile of the fuzzy 
pixel/MaxEnt method. The (t)^ and (t)^ results were determined directly from/using Eqs. (30) and (31), respectively. The area- and volume- 
weighted diameters were determined using Eq. (29), while the log-normal parameters were determined from Krill and Birringer [19] and using 
Eq. (28) 

hkl 
(nm) (nm) (nm) (nm) 

^0 
(nm) 

{D) 
(nm) (nm^) 

111 
200 
220 
400 
422 
511 
531 

19.21 ±0.05 
16.04 ±0.06 
18.92 ±0.04 
15.76 ±0.06 
15.45 ± 0.08 
15.91 ±0.07 
15.04 ±0.04 

28.81 ±0.07 
24.06 ± 0.08 
28.38 ±0.06 
23.64 ± 0.09 
23.2 ±0.1 
23.9 ±0.1 
22.55 ± 0.07 

22.88 ± 0.03 
22.22 ± 0.05 
23.24 ± 0.04 
22.03 ±0.11 
21.5 ±0.1 
21.9±0.1 
21.9±0.1 

30.50 ± 0.04 
29.63 ± 0.06 
31.00 ±0.05 
29.4 ± 0.2 
28.6 ±0.1 
29.2 ± 0.2 
29.20 ±0.16 

25.0 ± 0.2 
14.3 ± 0.2 
22.8 ± 0.2 
13.7 ±0.3 
13.7 ±0.3 
14.4 ±0.3 
11.8 ±0.2 

1270 ± 0.007 
1.578 ±0.007 
1.345 ±0.006 
1.59 ±0.01 
1.58 ±0.01 
1.57 ±0.01 
1.66 ±0.01 

25.7 ±0.2 
15.9 ±0.2 
23.8 ±0.2 
15.3 ±0.3 
15.2 ±0.3 
16.0 ±0.3 
13.5 ±0.2 

39 ±2 
58 ±2 
52 ±2 
56 ±3 
54 ±3 
57 ±3 
53 ±3 

Average        16.6 ±0.2 24.9 ± 0.2 22.2 ± 0.2 29.6 ± 0.3 16.5 ±0.6 1.51 ±0.03 17.9 ±0.7 53 ±7 

ing, since there is no detectable slope in the integral 
breadth data. Moreover, there is no systematic variation 
of the integral breadths with hkl, further suggesting that 
the crystallite shape is independent of hkl. From these 
results, we can infer that the average shape of the crys- 
tallites is spherical. This is further supported by the 
area-weighted sizes shown in Fig. 10(b). These results 
were determined by applying Eq. (30) to the Fourier 
coefficients of the fuzzy pixel/MaxEnt specimen pro- 
files and plotted over the entire 20-range. Again, the 
relative uniformity of this plot suggests that size effects 
are the major source of specimen broadening and that 
crystallites are near-spherical in shape. Deviations for 
the 111 and 220 data points in Fig. 10(b) arise from the 
differentiation of Eq. (30) in the region i —> 0, where 
perturbations in the Fourier coefficients cause large 
changes in the area-weighted size [30]. In addition, the 
Fourier coefficients for all the non-overlapped hkl lines 
suggest that the maximum crystallite size is =50 nm to 
60 nm. An example of this can be seen in Fig. 9(d), 
where A(t) ~ 0 for =50 nm to 60 nm. This can also be 
seen from the discussion in Sec. 2.2 and by inspecting 
Fig. 1, where the boundary conditions for^(/) [or V{t)\ 
are defined in terms of the maximum size in the direc- 
tion of the scattering vector. 

Referring to Table 3, a spherical crystallite shape 
model was used to determine the area- and volume- 
weighted diameters, together with Eqs. (29a) and (29b), 
respectively. The log-normal distribution parameters, 
/)Q, (7O, (/)), and o^fl) were determined using the equa- 
tions developed by Krill and Birringer [1] and Eq. (28), 
which relate the log-normal parameters to the area- and 
volume-weighted sizes and the average diameter, (£)), 
and variance cr^£,>- 

It can be seen from Fig. 9 and Table 3, that the area 
and volume-weighted sizes are relatively uniform for 

the 2d (or hkl) range. The quoted uncertainty for the 
averages was determined from a sum of least squares 
analysis of the uncertainties in the tabulated results. 

The average results for £)„ and CTO, were used 
to define a log-normal a priori model in the 
Bayesian/MaxEnt method (see Sec. 6.2). By defining 
the a priori model as a log-normal distribution, we are 
essentially testing the assumption that the size distribu- 
tion is log-normal. 

If the underlying size distribution is indeed log-nor- 
mal, with parameters close to those in Table 3, then we 
would expect the Bayesian/MaxEnt solution to lie 
"close" to the a priori model. However, if the 
Bayesian/MaxEnt solution were "some distance" from 
the a priori model, this would imply that either the 
underlying parameters or the model were inappropri- 
ately defined. The former case was demonstrated in 
analysis of the simulated data (see Sec. 4.3), where 
uncertainties in the log-normal model were passed onto 
the Bayesian/MaxEnt solution; the latter case requires 
additional Bayesian analysis to test possible models 
[36,37]. 

In summary, the qualitative analysis has applied the 
fuzzy pixel/MaxEnt method to determine the specimen 
profile/for all non-overlapped line profiles from the 
CeOj measured data (see Fig. 9). This enabled subse- 
quent analyses to determine the Fourier coefficients, 
integral breadths, and the area- and volume-weighted 
sizes. Fig. 10 and Table 3 clearly indicate that the CeOj 
specimen on average consists of spherical crystallites. 
While a log-normal distribution can be fitted to 
these results, a quantitative method such as the 
Bayesian/MaxEnt technique is needed to determine the 
Ce02 size distribution directly from the experimental 
data and to verify the assumption of a log-normal 
model. 
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6.2    Quantitative Analysis 

The quantitative analysis method uses the a priori 
information determined from the qualitative analysis 
and the available experimental data (such as the instru- 
ment and profile kernels, statistical uncertainties and 
experimental line profiles) to directly determine the 
crystallite size distribution. 

The MaxEnt method also enables an a priori model 
to be included, while quantifying the uncertainty in the 
solution size distribution. 

In this section, we apply the Bayesian/MaxEnt 
method to the CeOj data. The analysis presented here 
follows the steps discussed in Sec. 4.3. Two a priori 
models are used: (i) a uniform model, and (ii) the log- 
normal distribution determined in Sec. 6.1. The 
Bayesian/MaxEnt size distributions for each case are 
fitted with a log-normal distribution, while the size dis- 
tributions from (ii) are compared with the TEM size 
distribution, with very good agreement. 

6.2.1    Uniform Model 

A uniform model was defined over the region 
D 6 [0,60] nm determined by the Fourier coefficients 

of the specimen profile, where A(i) ~ 0. This is illustrat- 
ed by the Fourier coefficients for the 200 line profile, 
given in Fig. 9(d). The Bayesian/MaxEnt size distribu- 
tions using this model are shown in Fig. 11 for the 200 
line profile [see Figs. 11 (a and b)]. The size distribu- 
tions for the non-overlapped line profiles are given in 
Figs. ll(c and d). 

The uncertainties in the Bayesian/MaxEnt size distri- 
bution for the 200 line profile indicate how little useful 
a priori information has been transferred from the uni- 
form model to the final distribution. We also notice that 
the final distribution is some distance from the model, 
illustrating that the underlying CeOj crystallite size dis- 
tribution consists of a non-uniform structure. As can be 
seen in Fig. 11(c), the size distributions are poorly 
defined in the range of /) e [0,5] nm, while for 
D>S nm the non-uniform structure is evident. Since 
the size distribution is the only invariant quantity, we 
also expect the solution for each hkl to be the same. 
From the size distributions given in Fig. 11 (c), there is 
a broad agreement between the distributions, with the 
exception of the 111 and 422 cases. Both of these dis- 
tributions are more likely to be susceptible to large 
experimental uncertainties. 
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Fig. 11. Ce02 Bayesian/MaxEnt crystallite-size distribution using a uniform a priori model over D E [0,60] nm: (a) The Pr(a | g, 
m, a, 1) distribution, Eq. (17), used to average over the set of solutions, \P{a)) for the 200 line profile; (b) Bayesian/MaxEnt crys- 
tallite-size distribution (solid line + error bars) and the a priori model over D E [0,60] nm; (c) Ce02 Bayesian/MaxEnt crystallite- 
size distributions for the various Ce02 hkl profiles; (d) Average diameters from the uniform model (+) and log-normal models (x). 
The horizontal lines represent the average for each model. 
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The Bayesian/MaxEnt size distributions were fitted 
with a log-normal model and the DQ, GQ, (D), and o^^) 
parameters determined. These results are given in Table 
4. The uncertainties in the solution distributions for the 
uniform model are also reflected in the uncertainties in 
the fitted quantities. This is especially the case for the 
variance of the size distributions, (f^oy, with an error of 
=80 %. This large uncertainty is a consequence of the 
scatter of size distributions shown in Fig. 11(c). Such 
scatter is also noticeable when the average diameters, 
(£)), (Table 4) are plotted, as shown in Fig. 11 (d). The 
average values for DQ, CQ, (D), and a^^) are again in 
broad agreement with results determined in Sec. 6.1, 
once the uncertainties are taken into account. 

Table 4. Size distribution results using a uniform a priori model in 
the Bayesian/MaxEnt method. The Bayesian/MaxEnt size distribu- 
tions given in Fig. 11 (c) were fitted with a log-normal size distribu- 
tion and the above parameters determined 

hkl 
(nm) 

OD 
{D) 

(nm) 

HI 13.1 ±0.4 1.9 ±0.1 16.3 ±0.8 140 ± 43 
200 14.7 ±0.3 1.61 ±0.03 16.4 ±0.4 69 ±7 
220 15.5 ±0.4 1.70 ±0.08 17.8 ±0.6 104 ± 25 
400 15.8 ±0.8 1.7 ±0.1 18± 1 120 ±48 
422 11.1 ±0.2 1.728 ±0.007 12.8 ±0.2 58 ±2 
511 14.3 ± 0.3 166 ±0.05 16.3 ±0.4 78 ±15 

Average 14 ± 1 1.7 ±0.2 16±2 95 ±71 

In summary, the use of the uniform model in the 
Bayesian/MaxEnt method has shown that there is a 
non-uniform structure to the Ce02 size distributions. 
However, the lack of information in this model results 
in large uncertainties and considerable scatter of the 
distributions when plotted on the same axes [see Fig. 
11(c)]. 

6.2.2    Log-Normal Model 

The parameters for the log-normal distribution deter- 
mined in Sec. 6.1 were used as the non-uniform a pri- 
ori model in the Bayesian/MaxEnt method. The model 
was defined over the range of £> e [0,60] nm. 

The Bayesian/MaxEnt size distributions for this 
model are shown in Fig. 12. The results are listed in 
Table 5. Figures 12(a) and (b) show the results for the 
200 size distribution using this model. The 
Bayesian/MaxEnt solution lies close to the log-normal 
model, while the uncertainties have decreased consid- 
erably compared with the size distribution (using a uni- 
form model) in Fig. 11(b); however, although the verti- 

Table 5. Size distribution results using a log-normal a priori model 
in the Bayesian/MaxEnt method. The Bayesian/MaxEnt size distri- 
butions given in Fig. 11(c) were fitted with a log-normal size distri- 
bution and the above parameters determined 

hkl ^0 
(nm) 

oo 
(nm) (nmO 

111 15.9 ±0.2 1.50 ±0.008 17.2 ±0.2 54±2 
200 16.64 ±0.04 1.469 ±0.005 17.91 ±0.04 51±1 
220 15.68 ±0.06 1.502 ±0.008 17.04 ±0.08 52±2 
400 15.48 ±0.01 1.480 ±0.005 16.72 ±0.03 46±1 
422 15.86 ±0.07 1.4799 ±0.0002 17.12 ±0.08 48.7 ±0.5 
511 16.21 ±0.07 1.497 ±0.002 17.58 ±0.08 54.7 ± 0.6 
531 16.32 ±0.07 1.500 ±0.005 17.72 ±0.09 56 ±1 

Average    16.0 ± 0.2 1.49 ± 0.01 17.3 ±0.3 52±3 

cal error bars have decreased, they are still consider- 
able. This can be explained in terms of the influence of 
the peak-to-background ratio. As discussed in Sec 4.2, 
the variance of the experimental data is determined by 
two terms, the statistical noise and the variance in the 
estimated background level. If the peak-to-background 
ratio is large (>10), then the statistical noise dominates 
and the corresponding error bars in the 
Bayesian/MaxEnt distribution become small when the 
solution is close to the underlying size distribution. 
This has been demonstrated using computer simula- 
tions. However, if the peak-to-background ratio is finite 
(<10), the corresponding error bars in the 
MaxEnt/Bayesian solution remain finite regardless of 
how close the solution is to the underlying distribution. 
This is a consequence of determining the size distribu- 
tion directly from the experimental data. 

The Bayesian/MaxEnt size distributions for all the 
non-overlapped hkl line profiles are shown in Fig. 
12(c). They lie very close to each other, reflecting the 
invariance of the size distribution and remaining close 
to the log-normal model. The scatter in the size distri- 
butions that was noticeable in Fig. 11 (c) for the uniform 
model has disappeared. Further, these results imply that 
the underlying size distribution from the Ce02 crystal- 
lites can be described by a log-normal distribution. 
Comparing these results with the TEM size distribu- 
tion, very good agreement is obtained for 14 < /) < 60 
nm. Due to its poor statistics, the TEM size distribution 
is ill-defined for /) < 14 nm. As mentioned above, the 
CeOj agglomerates were not separated, making it diffi- 
cult to identify the smaller crystallites and contributing 
to the poorly defined region for /) < 14 nm. The TEM 
size distribution, given in Fig. 12(d), represents a pre- 
liminary set of data. 
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Fig. 12. Ce02 Bayesian/MaxEnt crystallite-size distribution using a log-normal a priori model over D e [0,60] nm. (a) Pr(a\g, 
m, a, 1) distribution, Eq. (17), used to average over the set of solutions {?(«)}, for the 200 line, (b) Bayesian/MaxEnt crystallite- 
size distribution (solid line + error bars) and the a priori model (dashed line) over D s [0,60] nm. (c) Ce02 Bayesian/MaxEnt crys- 
tallite-size distributions for the non-overlapped line profiles, (d) Comparison of TEM and Bayesian/MaxEnt distributions. Due to 
difficulties in de-aggregating the Ce02 particles and identifying smaller crystallites, the TEM size distribution is poorly defined for 
Z) < 14 nm. However, for Z) > 14 nm, the comparison is excellent. 

The correspondence between the Bayesian/MaxEnt 
size distributions and the TEM distribution is very good 
for /) > 14 nm. The size distributions shown in Fig. 
12(c) were fitted with a log-normal distribution and the 
/)Q, CTQ, (£)), and &(p) parameters were determined. 
These results are shown in Table 5. The fitted distribu- 
tion compared very closely with the solution distribu- 
tion. The small uncertainties in the fitted quantities of 
Table 5 reflect the quality of the Bayesian/MaxEnt dis- 
tributions. This can also be seen in the low uncertainty 
in the variance, O^^), which is =8 %. 

The average quantities given in Table 5 can be con- 
sidered to represent the size distribution for the Ce02 
specimen. Hence, the use of the fuzzy pixel/ 
Bayesian/MaxEnt methods has determined the speci- 
men profile,/, and enabled size effects to be identified 
as the major source of specimen broadening. The analy- 
sis of the line profiles has shown that the crystallite 
shape is spherical, on average. The Fourier coefficients 
of the specimen profiles also show that the crystallites 
have a maximum size of =60 nm. This was subsequent- 
ly shown from the Bayesian/MaxEnt size distributions. 
Using this information, the Bayesian/MaxEnt method 
successfully determined the Ce02 size distribution. 

While the size distributions using a uniform a priori 
model broadly agree with the results from the fiizzy 
pixel analysis, the uncertainty in the results is large; on 
using a log-normal a priori model, considerable 
improvements in the size distribution were obtained. 
The non-uniform structure in the model has been trans- 
ferred to the Bayesian/MaxEnt solution. 

The TEM micrograph of the Ce02 specimen, shown 
in Fig. 13, confirms the results that have been deter- 
mined fi-om the x-ray diffraction data. From the micro- 
graph, it can be seen that the crystallites are near-spher- 
ical in shape. It can also be seen that the crystallites are 
in the range of size predicted by crystallite-size analy- 
sis. Considerable overlapping of the crystallites, which 
complicates the task of gathering sufficiently reliable 
data for the TEM size distribution is evident. 

7.    Conclusion 

The central aim of this study was to develop a single- 
step, self-contained method for determining the crystal- 
lite-size distribution and shape from experimental line 
profile data. We have shown that the crystallite-size 
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Fig. 13. A TEM micrograph of the Ce02 specimen taken at a mag- 
nification of 200kx. The crystallites appear to have a spherical-like 
shape and size that are in the range predicted by the crystallite-size 
analysis presented here. 

distribution can be determined without assuming a 
functional form for the size distribution, determining 
instead the size distribution with the least assumptions. 

This was achieved by reviewing size broadening the- 
ory showing how the observed line profile can be 
expressed in terms of the instrument kernel, line profile 
kernel and size distribution. It was also shown that the 
instrument and line profile kernels could be combined 
into a single kernel, hence enabling the simultaneous 
removal of instrumental broadening while determining 
the size distribution (see Sec. 2). 

The development of this method made use of two 
fundamental observations—that distributions such as 
the specimen profile and size distribution must be both 
positive and additive. Drawing on extensive theoretical 
developments, the entropy function was selected as the 
function that can attribute values to the specimen line 
profile and size distribution, while preserving the posi- 
tivity and additivity of the profile and distribution. It 
can be also argued that the entropy function is the only 
function that produces consistent results in the light of 
experimental data (see Sec. 3.2). 

Using the mathematical and statistical foundations of 
Bayesian theory, the a posteriori distributions of P{D) 
in terms of the experimental data, statistical noise and 
scattering kernel can be determined. By maximizing 
this distribution, the most probable size distribution can 
be calculated from the experimental line profile, with- 
out making any assumptions concerning the functional 
form of the size distribution. Determining the most 
probable size distribution addresses the inherent non- 

uniqueness and ill-conditioning in the integral equa- 
tions arising from scattering and instrumental broaden- 
ing. The generality of this formalism enables any crys- 
tallite shape to be used and any number of principal 
axes, D = {/)i, D2, D^}, of the crystalhte shape can be 
included in determining the corresponding size distri- 
butions. 

Simulated data were used to test the fuzzy pixel and 
Bayesian/MaxEnt methods on size-broadened line pro- 
files. The reliability of these methods was established 
by showing that they can reproduce the underlying 
parameters of the area- and volume-weighted sizes, and 
the parameters of the size distributions. 

The application of these methods to CeOj experi- 
mental data generally produced very good results. The 
line profile analysis applying fuzzy pixel/MaxEnt 
methods produced reliable and consistent results over a 
wide range of low-, mid- and high-angle profiles. 

The application of the Bayesian/MaxEnt method to 
the CeOj data demonstrated that this method can deter- 
mine size distributions, while making the minimum 
number of assumptions. The use of a uniform a priori 
model produced broadly consistent results with the 
fuzzy pixel/MaxEnt method; however, the lack of 
information defined in this model was evident in the 
large uncertainties of the estimated quantities. 

Using the fuzzy pixel/MaxEnt results as the log-nor- 
mal a priori model demonstrated that once "useful" 
information is encoded in the model, improvements in 
the size distributions and considerable reduction in the 
uncertainties can be achieved. Analysis of the x-ray dif- 
fraction profiles using the log-normal model in the 
Bayesian/MaxEnt method revealed that the crystallites 
are spherical in shape, with a size distribution corre- 
sponding to the distribution in Fig. 12 and average 
quantities in Table 5. The comparison of these 
Bayesian/MaxEnt results with TEM results is favor- 
able, but it does reveal shortcomings in the collected 
TEM data arising from particle aggregation. The TEM 
distribution micrographs support the results from the 
line profile analysis. 

The use of simulated and experimental data demon- 
strates that the fuzzy pixel/Bayesian/ MaxEnt methods 
are fully quantitative in their ability to determine and 
attribute errors to the solution line profiles and size dis- 
tributions. 

Although the results from the Bayesian/MaxEnt 
method are in good agreement and address the limita- 
tions of the earlier work (see [30,10]), several impor- 
tant issues have been raised and are the subject of fur- 
ther investigation. These concern the accurate back- 
ground estimation of the observed line profile and are 
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very important; for example, the analysis of simulated 
data demonstrated how systematic errors affect the 
Fourier coefficients. Recently, David and Sivia [38] 
have developed a Bayesian technique for estimating the 
background, which can be adopted in this method. 
Another problem encountered was in the estimation 
and quantifying of a non-uniform a priori model. In 
this analysis we have used the information determined 
from the fuzzy pixel/MaxEnt method; however, the 
issue of determining the a priori model can also be 
addressed in a Bayesian context, by using a process of 
model selection [36,37] and defining an a posteriori 
distribution of parameters in the model [20]. Further, 
only single line profiles were analyzed here; while the 
formalism has been expressed for overlapped line pro- 
files, demonstrating that the Bayesian/MaxEnt method 
is flexible in its application, additional analysis of over- 
lapped line profiles is needed. 

The literature has seen considerable debate over the 
type of distribution that best describes the distribution 
of sizes (see [1, 2, 39, 40]). In the analysis presented 
here we have simply used a log-normal distribution to 
demonstrate that the Bayesian/MaxEnt method can 
reproduce the parameters. Moreover, the position we 
have taken in developing the Bayesian/MaxEnt method 
is that we are not concerned with the type of distribu- 
tion; rather, we have produced a reliable and consistent 
method that can determine the specimen profile and/or 
the size distribution, given our understanding of the 
experimental data, statistical noise and instrumental 
effects. 
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