
Edit Distance
Learning Circle

Trey Jones, Search Platform
January 2020

What is edit distance?
pax

—keep the p

—insert an e (edit #1)

—keep the a

—change x to c (edit #2)

—insert another e (edit #3)

peace

● It’s a string similarity metric

● Based on number of “edits” to transform

one string to another

● Basic edit distance (Levenshtein) allows

insertion or deletion (ab ↔ abc), and

substitution (abc ↔ adc)

● Swaps (abcd ↔ acbd) are a common

variant (Damerau–Levenshtein)

The usual implementation of the edit distance algorithm uses dynamic

programming, which breaks a problem down into smaller overlapping problems,

often recursively. The edit distance algorithm, fortunately, is iterative, not

recursive.

Dynamic programming

Why dynamic programming?
Q: Given a 10 x 10 edit distance matrix—say, for converting dynamicity to
efficiency—how many possible edit paths (with insert, delete, and substitute) are
there through the grid?

Why dynamic programming?
A: Over 8 million! (For the math nerds: the number of paths through such a grid is
called the Delannoy number.)

Why dynamic programming?
There are already 63 possible edit paths just to convert eff to dyn.

Why dynamic programming?
However—if we are limited to insertion, deletion, and substitution—there are only
three cells we can come from directly. If we’ve already found the optimal path to
each of those three...

Why dynamic programming?
...then for any internal cell, we only have to look at three other cells—and only one
on the edges. This gives a polynomial run time—O(m·n)—rather than an
exponential run time to explicitly check every path.

Worked edit distance example
Below we can work through an example of editing carp into crap. The upper right
corner is initialized to 0 because it takes zero edits to convert the empty string to the
empty string.

Worked edit distance example
“Insertions” and “deletions” are really the same thing, but by convention we’ll say
insertions are horizontal. Also note that the arrows point to where you came from,
not to where you are going, so you can backtrack at the end. (It’s a little confusing.)

Worked edit distance example
For the top row—which represents converting the empty string to crap—insertion is
the only option. Cost is 1 per letter.

Worked edit distance example
Similarly, in the first column of each row, deletion is the only option.

Worked edit distance example
For the other cells, insertion, deletion, and substitution (each at a cost of 1)—or
keeping a letter unchanged for free—are all options. We choose the lowest total
cost—in this case keeping the c—and put it in the cell.

Worked edit distance example
This cell represents editing c to cr. The cheapest overall path is keep the c and insert
an r.

Worked edit distance example
For the rest of the row, insertions are the cheapest option. The end of the row
represents editing c to crap by keeping the c and inserting r-a-p.

Worked edit distance example
New row, new deletion of the first letter is the only option—now representing
editing ca to the empty string.

Worked edit distance example
In the next cell (ca to c), the best next step is to delete the a. Overall, this is keeping
the c and deleting the a.

Worked edit distance example
Our best move into the next cell is to come from the cell with 0 edits and change a
to r.

Worked edit distance example
Often, if both letters are the same, transitioning along the diagonal for free is the
optimal path into a cell. (But not always!)

Worked edit distance example
Again, at the end of an early row, inserting extra letters is often the best option.

Worked edit distance example
New row! In the first cell, deletion is the only options. In the second, the best is to
delete from the cell above. In the third cell, r maps to r, so a 0-cost diagonal
transition is the best.

Worked edit distance example
All that work for nothing! Not really—but all available paths from car to cra have the
same total cost.

Worked edit distance example
Finish the row with a diagonal transition.

Worked edit distance example
The final row is similar to previous ones. The last cell is a 0-cost diagonal transition
(keep p).

Worked edit distance example
Below are the overlapping optimal edit paths. When converting ar to ra you can
change a to r and r to a, or delete and re-insert one around the other. Two
substitutions is also the cost of carp → chip! That’s why we want discounted swaps!

A bigger example
Below is an worked out edit distance table (using only insertions, deletions, and
substitutions).

A bigger example—with arrows!
This table has arrows to indicate the optimal edits to each cell. When there are no
“good” edits, lots of sub-paths have the same cost (e.g., eff to dynamic). You can
work backward from any cell to find the optimal edit path(s).

A bigger example—with arrows!
The various overlapping optimal paths to the final cell (there are 31 total) are
highlighted in green below.

A bigger example—with arrows!
All of these paths have the same edit distance: 8.

A direct path
In this case, there is a simple straightforward path along the diagonal (shown in
blue and purple). The letters i and y happen to line up (free transitions in purple),
and the other 8 letters are substituted.

An indirect path
Other paths take advantage of both words containing ici, meaning three transitions
can take place at zero cost (in purple), making up for the insertions and deletions
needed to get to the overlapping ici path.

Another indirect path
From the start of each word to ici, and from ici to the final y, there are several
possible paths—contributing the majority of the 31 possible paths.

● A common edit distance variant is Damerau–Levenshtein, which gives a

discount for swaps (e.g., 1.5 for a swap vs 2 for two substitutions).

Swaps

● If you don’t need to recover the optimal edit path(s), you only need two rows of

the table at a time. (Three rows if you allow swaps.)

● If you have a max allowable edit distance, you can terminate early!

○ You can have a max “raw” edit distance—say, 2 edits—or you can have a

max proportional edit distance—say, 40% of the length of the string.

○ Proportional edit distance can be compared to the longer string

(permissive), the shorter string (conservative), or a specific one of the

strings (directional).

Optimizations

Early termination
If the limit is 2 edits, then by the third row (the n in dynamicity), it’s already too late;
the edit distance isn’t going to decrease in later rows.*
 * Unless the swap cost is less than the insertion cost.

On other projects, I’ve implemented a weighted edit distance that had a lookup

table for specific edits. For example, changing one vowel to another might only

cost 0.25, or swapping s/z or t/d or m/n might be 0.50.

These kinds of custom weights tend to be very application-specific. For matching

personal names in the U.S., you could adapt something based on a phonetic

algorithm like Soundex.

Other variants: custom weights

● Russian Щ was historically pronounced /ʃtʃ/ (written “shch” in English), so

that’s how it is transliterated in Latin-based European languages

● European languages don’t have a consistent way of representing those sounds

● Composer Родион Щедрин’s surname has been transliterated as Shchedrin

(English), Ščedrin (Czech), Schtschedrin (German), Chtchedrine (French),

Szczedrin (Polish), Sxedrín (Catalan), Sjtjedrin (Danish), Scsedrin

(Hungarian), Sjtsjedrin (Dutch), Șcedrin (Romanian), and Štšedrin(Finnish).

Other variants: multi-character edits

So, when working with Russian names in transliteration, we might want to say

that shch, šč (and maybe sc), schtsch, chtch, and szcz all have a low edit distance

from each other, like 0.5.

Notes: Implementation is a pain! Early termination is all but impossible (sc ↔

schtsch would look like an edit distance of 4 until the row with the last h, when it

drops to 0.5). You need a lot more of the edit distance table because you might

need to look back 6 rows for schtsch—it’s probably easier to keep the whole thing.

Other variants: multi-character edits

● Glent is a spelling correction/

suggestion system for on-wiki

search.

● Method 0 looks at same-user

corrections to make suggestions.

● Method 1 looks across users for

similar searches to make

suggestions.

● It’s fairly likely that similar

searches (say, with an edit

distance of ≤ 2) in Method 0 are

related.

● In Method 1, there are no

guarantees of relatedness, so

weird things can happen...

Enter Glent, Method 1

● Basic tokenization would help
○ redmax → red an
○ the 43 → the (
○ hassan → has an
○ c3 c4 plants → c3 plants (2 spaces)
○ coburg oregon → coburg, oregon
○ cf gene → a gene
○ hot instagram → her instagram
○ red herring → red hering
○ greek goddeses → greek godness

Glent, Method 1—Anti-patterns
● Search syntax should be excluded

○ focus → –ous
○ king → king*

● Edit limits should be per-token†

○ cf gene → a gene
○ hot instagram → her instagram
○ 1949 uk → 1999 us
○ the 43 → the (

† While looking at these, I realized I’d never
 used edit distance on multi-word strings!

● Changing token counts is bad
○ abbys → a b s
○ redmax → red an

● Numbers matter more
○ 6th gen ipad → 4th gen ipad
○ 2018 skating → 2010 skating
○ 1949 uk → 1999 us

● First letter of a word is more
important
○ billy smith → kelly smith
○ cia assassinations → mi6

assassinations
○ cf gene → a gene
○ 6th gen ipad → 4th gen ipad

Glent, Method 1—Anti-patterns

● Duplicate letters should get a
discount
○ agripinna → agrippina
○ aggripina → agrippina

● Swaps should get a discount
○ queit → quiet

● Space-only differences should get
a discount
○ mack th eknife → mack the

knife

Glent, Method 1—Good Patterns
Note: These particular results
happened to be chosen as the best
more or less by accident. We want to
make them more likely.

● queit could just as easily matched
quilt, qubit, or quart.

● m acktheknife is too many edits
(3) from mack the knife

● aggripinna is also too many edits
(3) from agrippina

Initial Improvement Goals

● Discount for swaps (< 2.0)

● Discount for duplicate letters (≪

1)

● Discount is strings differ only by

spaces (< 1)

● Enforce proportional edit limits

per-token

● Penalty for changing digits

● Penalty for changing the first

letter of a token

● Penalty for changing the number

of tokens

● Customizable weights and limits

Token-Aware Edit Distance Goals

Token-Aware Edit Distance Goals

● Customizable tokenization

○ Redefinable “space”

○ Custom locale for lowercasing

○ Custom tokenization regex

○ Hook for external tokenizer

● Customizable normalization

(longest, shortest, first)

● Ability to disable per-token limits

● Penalty for changing a space to

not-a-space

The real improvements are the ones we made along the way...

Optimizations

● Allow for early termination when...

○ ...over the raw or proportional edit limit for a given row
○ ...the token count delta is too much
○ …the character set overlap is too small (inspired by Jaccard similarity)

■ Check is O(m+n) instead of O(m·n) for the full edit distance

Token-Aware Edit Distance Goals

Bookkeeping—lots and lots of bookkeeping.

● In addition to tracking the optimal edit distance from the start to each cell,

we also need to track:

○ The token boundaries with each string

○ The normalized length of the current token pair

○ The number of edits within the current token pair

What’s the implementation?

Norm length of token pair—MAX

Norm length of token pair—MIN

Implementation by example
Let’s compare Le Mode! (with several spaces) and a_la_mood, with an edit limit

of 5.0, a proportional limit of 60%, normalization type “MAX”, and the default

tokenizer.

● Lowercase and Tokenize: [le, mode] vs [a, la, mood]

○ Count tokens and add a penalty for the delta: 0.25 * |3 - 2|

● Create strings to compute edit distance: “le mode” vs “a la mood”

● Compute spaceless versions: “lemode” != “alamood”

We now have “le mode” vs “a la mood”

● Compute normalized lengths: 7 vs 8.05 (double “oo” only counts as 1.05)

○ MAX = 8.05; 60% * 8.05 is 4.83, so the edit limit for this pair is 4.83

● The token count penalty (0.25) is not enough by itself to bail early

● The character sets in each string are: [, d, e, l, m, o] vs [, a, d, l, m, o]

○ e and a are distinct, which implies a minimum of one substitution,

which is not enough to bail early

Implementation by example

le
 m

od
e

 v
s

 a
 la

 m
oo

d
Im

p
le

m
en

ta
ti

on
 b

y
ex

am
p

le

le
 m

od
e

 v
s

 a
 la

 m
oo

d
Im

p
le

m
en

ta
ti

on
 b

y
ex

am
p

le

le
 m

od
e

 v
s

 a
 la

 m
oo

d
Im

p
le

m
en

ta
ti

on
 b

y
ex

am
p

le

le
 m

od
e

 v
s

 a
 la

 m
oo

d
Im

p
le

m
en

ta
ti

on
 b

y
ex

am
p

le

le
 m

od
e

 v
s

 a
 la

 m
oo

d
Im

p
le

m
en

ta
ti

on
 b

y
ex

am
p

le

le
 m

od
e

 v
s

 a
 la

 m
oo

d
Im

p
le

m
en

ta
ti

on
 b

y
ex

am
p

le

Im
p

le
m

en
ta

ti
on

 b
y

ex
am

p
le

le
 m

od
e

 v
s

 a
 la

 m
oo

d

le
 m

od
e

 v
s

 a
 la

 m
oo

d
Im

p
le

m
en

ta
ti

on
 b

y
ex

am
p

le

❏ Edit distance

❏ Levenshtein_distance

❏ Damerau–Levenshtein distance

❏ Dynamic programming

❏ Soundex

❏ Delannoy number

❏ 63 paths through a 3x3 grid

❏ The Cyrillic letter Щ

❏ Jaccard similarity

Links of potential interest
❏ Blog post on name matching (including Щ)

❏ Initial write up on Glent Method 1, including

patterns and anti-patterns

❏ Glent Phab Epic (with links to M0, M1, M2)

https://en.wikipedia.org/wiki/Edit_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
https://en.wikipedia.org/wiki/Dynamic_programming#Computer_programming
https://en.wikipedia.org/wiki/Soundex
https://en.wikipedia.org/wiki/Delannoy_number
https://en.wikipedia.org/wiki/Delannoy_number#Example
https://en.wikipedia.org/wiki/Shcha
https://en.wikipedia.org/wiki/Jaccard_index
https://wikimediafoundation.org/news/2018/05/08/searching-for-names-is-not-always-straightforward/
https://www.mediawiki.org/wiki/User:TJones_(WMF)/Notes/Analysis_of_DYM_Method_1#Method_1_Patterns_and_Anti-Patterns
https://www.mediawiki.org/wiki/User:TJones_(WMF)/Notes/Analysis_of_DYM_Method_1#Method_1_Patterns_and_Anti-Patterns
https://phabricator.wikimedia.org/T212884

Thank you for coming to my

TAED Talk

Appendices

Delannoy numbers formula

How many edit paths
We can use the same dynamic programming approach to compute the total number
of optimal paths through an edit distance table.

How many edit paths
We can use the same dynamic programming approach to compute the total number
of optimal paths through an edit distance table.

