Claremont Engineering Company

Claremont, California

ENVIRONMENTAL ASSESSMENT REPORT
for the
OCCIDENTAL OIL SHALE, INC. LOGAN WASH PROJECT
and
RELATED DEVELOPMENTS
by
Arnold M. Ruskin

for
OCCIDENTAL OIL SHALE, INC.
Bakersfield, California and Grand Junction, Colorado

$$
b^{*}-6 \cdot: 3 \div 5
$$

7estroc ix:ujos seviget

Table of Contents

Page
List of Figures iv
List of Tables v
Introduction 1
I. The Proposed Action 1
A. Specific Experiment 1
B. Known Environmental Issues 6
II. The Existing Environment 7
A. Locations 7
B. Geology 7
C. Hydrology 14
D. Meteorology 19
E. Societal Considerations 20
F. Aesthetic Considerations 28
G. Historic, Prehistoric, and Paleontological Resources 29
H. Political Considerations 29
I. Economic Environment 29
J. Institutional Considerations 29
K. Biological Environment 29
L. Facilities 30
III. Potential Environmental Impacts 31
A. Construction Phase 31
B. Operational Phase 31

1. Effects on Water 31
2. Effects on Land 32
3. Impacts on Air 35
4. Meteorology 37
5. Socioeconomic Impacts 37
6. Occupational Safety and Health 38
C. Post Operational Phase 38
IV. Mitigations 39
A. Water 39
B. Oil 39
C. Air 39
D. Fire 40
E. Socioeconomic Considerations 40
V. Alternatives 40
Appendix: Requirements and Suggested Actions for Environmental Protection and Compliance with Environmental Regulations 41

List of Figures

No. Page
1 Location Map 8
2 The Occidenta1 Logan Wash Property 9
3 Geologic Index Map 10
4 Seismic Index Map of Colorado 13
5 Topography of the Occidental Logan Wash Site and Vicinity 15
6 Major Drainages of the Occidental Logan Wash Site 16
7 Land Ownership Map 27
8 Aerial Photograph of the Occidental Logan Wash Site and Vicinity 33
9 Dry Gulch Rock Disposal Area 34

List of Tables

No. Page
1 Baseline Environmental Reports for Occidental's Logan Wash Site 4
2 Water Quality Parameters 18
3 Annual Growth Rates in Mesa County, Colorado, 1972-75 22
4 Annual Growth Rates in DeBeque, Colorado, 1972-75 24
5 Annual Growth Rates in Grand Valley, Colorado, 1972-75 25
6 Annual Growth Rates in Rifle, Colorado, 1972-75 26

Introduction

The Energy Research and Development Administration has requested proposals for demonstrating the technical and economic feasibility of different in situ shale oil recovery methods. Corollary objectives are to demonstrate the best explosive fracturing and rubblizing technique for the process and to determine operating conditions necessary to obtain desired retorting results. Occidental Oil Shale, Inc. has responded to this request and proposes to conduct these demonstrations for their modified in situ process.

Occidental proposes to do some early retort formation and operation studies at its Logan Wash site (known also as the D. A. Shale site) near DeBeque, Colorado, and to undertake the technical and economic feasibility demonstrations at another, as yet unnamed, site. The latter site has a higher grade of ore and is more suitable for the demonstrations, but it will not be ready for this purpose for approximately two years. Hence, early work on retort formation and operation will be done on the existing site.

Agencies of the Federal Government are required to assess the nature and extent of environmental impacts that may result from their proposed actions. Where significant impacts on the human environment are projected, the agencies are required to prepare a detailed environmental impact statement to accompany their proposals through agency review processes (40 CFR 1500.2 (b) and the National Environmental Policy Act of 1969 , Section 102 (2) (c)). This assessment report has been prepared in accord with these requirements for the shale oil recovery demonstration that is being proposed for ERDA funding by Occidental Oil Shale, Inc.

I. The Proposed Action

A. Specific Experiment

The Occidental process consists of mining an amount of low grade shale below and above an ore body, rubblizing the shale between the mined areas, and retorting the rubble in place. An over-burden of several hundred feet typically remains above the rubble. The amount of material mined is only that necessary to provide mine access and a bulk porosity in the rubble of 15 to 25 percent.

Retorting is begun by introducing a fuel and air to burn at the top of the rubble pile until the shale is heated sufficiently to produce oil and gas and a carbonaceous residue. The oil flows to a sump at the bottom of the retort and is drawn off through pipes that were installed before the rubble pile was formed. The gas is also piped off at the bottom of
the retort. The carbonaceous residue burns as air is continued and the fuel is turned off. As the residue burns, the rock below the flame is heated further and continues to produce oil, gas, and more residue. The latter then burns, continuing the process until the retorting front reaches the bottom of the retort. The front moves downward at a rate of approximately a foot per day, depending upon such factors as the rate at which air is supplied.

In addition to oil and gas, the process produces water of combustion. The water contains significant amounts of dissolved solids and other impurities and must be treated if it is to be discharged to either ground or surface waters. Depending on the amount, it may be used in the process. If limited amounts must be discarded, they can be evaporated in such a way that the residue will not degrade ground and surface waters.

The stack exhaust is relatively clean. Particulates, oxides
of nitrogen and sulfur dioxide are virtually nil. For the Logan Wash site, unburned carbon monoxide, hydrocarbon and hydrogen sulfide emissions are sufficiently low that they can be discharged through a tall stack without causing air quality standards to be violated. For the larger demonstration at the new site, sulfides will be removed from the exhaust, which will then be burned to recover its heating value. This will result in the hydrocarbons and carbon monoxide being converted to water and carbon dioxide.

Disturbance of the terrain at either site will be minimal. No spent shale and only minimal amounts of raw (natural) shale? 20% will be disposed of on the surface; the latter will be placed in canyons or gulches and vegetated to resemble their surroundings. Water supplies will be protected from pollution by runoff from or percolation through these mineral waste piles. There will be some surface facilities, e.g. roads, buildings, stacks and equipment, but only a small fraction of either site will be affected. Care will be taken to locate such facilities so that important habitats and vistas are not adversely affected. Upon eventual abandonment of a site, surface facilities will be reduced and the terrain will be restored as much as practical.

A developmental phase of the project has been underway at Logan Wash since June 1972 and now employs about 182 people, 152 at the site and 30 in a Grand Junction office. There are also up to 50 contractor personnel at the Logan Wash site. The Occidental work force at Logan Wash is not expected to grow over a twoyear period, nor is growth expected in the maximum number of contractor personne1. The personnel situation for the new site has not yet been formulated, but it will be detailed and reviewed with ERDA and other concerned governmental agencies as it is developed. Thus, adequate plans can be laid for housing, schooling, etc. in advance of the need.

The proposed demonstration continues an on-going experiment and consists of three phases. Phase I will occur at Logan Wash and involves rock-breaking and rubblizing experiments with subsequent retorting evaluation. This phase will continue but not enlarge the existing operation.

Phases II and III will occur at the new site, with Phase II beginning two years after the overall project is initiated. Phase II involves technical evaluation of the formation and simultaneous burning of a two-retort cluster that will produce 2,500 barrels of oil per day. Phase III involves economic evaluation of two clusters of two retorts each, i.e. formation and simultaneous burning of four retorts. These will produce 5,000 barrels of oil per day.

Environmental baseline studies for Phase I, i.e. for the Logan Wash site, have been conducted in the following sixteen areas:

```
    Meteorology
    Ambient air quality
    Air pollution modeling
    Ground water hydrology
    Surface water hydrology
- Archaeology
-Paleontology
Flora
Fauna
```

Engineering geology and - soil engineering Noise
Seismometry
Subsidence and uplift Process water treatment and disposition
Vegetation experiments
Socioeconomic impacts

Work performed on these studies was defined in consultation with cognizant government agencies. A minimum of one year's baseline data gathering has been completed for all environmental dimensions where this is relevant. Other studies answer specific questions for planning, evaluation, or permits. Over sixty permits have been obtained for the project on the basis of these studies and design information; a list is available on request. Work in these various areas is described in the appropriate sections below, and reports now available on the studies are listed in Table 1.

Environmental research will be continued at Logan Wash in the following areas during Phase I:

Meteorology
Ambient air quality Air pollution modeling Ground water hydrology Surface water hydrology Flora

Fauna

Subsidence and uplift Process water disposition Vegetation experiments Socioeconomic impacts

These studies will provide information and analyses to allow actual impacts, if any, to be detected and evaluated and to plan for reclamation of the site when it is eventually abandoned.

Table 1
Baseline Environmental Reports for Occidental's Logan Wash Site

1. H. E. Cramer Co., Inc., Comparison of Upper-Air Data at Logan Wash, Colorado, with Upper-Air Data at Grand Junction, Colorado, February 1, 1976 (prepared for Claremont Engineering Company).
2. H. E. Cramer Co., Inc., Verification of the Diffusion Model Used by H. E. Cramer Co. to Calculate the Stack Height for Room 4 at Logan Wash, Colorado, February 1, 1976 (prepared for Claremont Engineering Company).
3. David B. Thomas, Archaeological Survey of the Garrett Research and Development Co., Inc. Logan Wash Site, Garfield County, Colorado, October 1974 (prepared for Claremont Engineering Company).
4. Daniel Guthrie, Paleontological Survey of Proposed Dump Sites on the D. A. Shale/Callahan Trust Lands, Carfield County, Colorado, October 1974 (prepared for Claremont Engineering Company).
5. Wm. O. Wirtz, II, et al., An Ecological (Vertebrate) Survey of the Garrett Research and Development Co., Inc. Logan Wash Oil Shale Site (plus 3 supplements and a summary report), October 1974; January, April, August, and September 1975 (prepared for Claremont Engineering Company).
6. Neil E. West, et al., An Ecological Baseline Study of Flora, Vegetation, and Soils on the Occidental Oil Shale, Inc. Logan Wash Site Near DeBeque, Colorado, March 26, 1976 (prepared for Claremont Engineering Company).
7. Alfred B. Focke, Background Noise Measurements in the Vicinity of DeBeque and Grand Valley, Colorado, 1 March to 1 November 1975, March 30, 1976 (prepared for Claremont Engineering Company).
8. Car1 F. Petersen, Seismic Measurement at Grand Valley, Colorado, December 12, 1975 (prepared for Claremont Engineering Company).
9. Leighton and Associates, Geotechnical Evaluation of Proposed Oil Shale Development Activities by Occidental Oil Shale, Inc. Near Grand Valley, Colorado, March 26,1976 (prepared for Claremont Engineering Company).
10. R. T. Chew, L. C. Bender, and I. G. Studebaker, Environmental Considerations for a Proposed Mineral Waste Disposal Pile in Logan Wash, 1975 (prepared for Occidental Oil Shale, Inc.).

Table 1 , continued
11. W. O. Wirtz and R. L. Redmond, Cliff Nesting Raptors on the Logan Wash Site, Garfield County, Colorado, June 15, 1976 (prepared for Claremont Engineering Company).
12. Neil E. West and James R. Irvine, Distribution and Extent of Astragulus Zutosus Jones, Ceanothus martinii M. E. Jones, and Festuca dasyclada Hack, September 1975 (prepared for Claremont Engineering Company).

Environmental baseline studies for Phases II and III, i.e. for the new site, have been completed in the following thirteen areas:

Meteorology
Ambient air quality Air pollution modeling Ground water hydrology Surface water hydrology Archaeology
Scenic values

These studies have also been defined in consultation with cognizant government agencies. Since negotiations for the site are just being finalized, it is not possible to give more information about the studies at this time. Perhaps it will suffice to say (1) that environmental research will be continued at the new site during Phase I as preparation for Phases II and III and (2) that as soon as possible these results will be reviewed with ERDA in conjunction with plant design information to make any revisions needed. Moreover, environmental research will be conducted during Phases II and III in accord with a plan worked out with ERDA before ERDA-sponsored work takes place on the new site. In the meantime, it should be noted that Phases II and III will be designed to meet applicable environmental regulations.

B. Known Environmental Issues

The Occidental modifed in situ process for producing shale oil has many environmental advantages over alternative processes. These include relatively clean atmospheric exhausts, relatively little consumptive use of water, relatively little surface disturbance, no surface disposal of spent shale, minimal requirements for a temporary construction force, and a relatively smaller permanent work force. There are, however, some environmental considerations that need to be understood if the process is to be managed properly. These considerations are:

1. Minimizing atmospheric pollution economically
2. Avoiding water pollution economically.
3. Oil mist recovery.
4. Reclaiming sites economically upon abandonment.

An environmental research effort is planned to address each of these issues during the proposed program. Each aspect of this research is described later in connection with discussions of potential environmental impacts (see Section III.B.).
II. The Existing Environment

A. Locations

The Logan Wash site is in Garfield County, Colorado, 51 miles by road northeast of Grand Junction; see Figure 1. It is north of the Colorado River, west of Parachute Creek, and east of Roan Creek. It includes part of Spruce Ridge on the north side of Logan Wash north of Mt. Logan and includes Mt. Callahan.

The Logan Wash property, Figure 2, total 4360 acres and comprises most of Section 23, the north half of Sections 26 and 25 , and the southeast quarter of Section 24 , in T7S, R97W; and the south half of Section 18, the north half and southwest quarter of Section 19, the northwest quarter of Section 30 , the south half and northeast quarter of Section 17, the north half of Section 20, the southwest quarter of the southeast quarter and the southwest quarter and the north half of Section 16 , the south half of Section 9, the southwest quarter of Section 10 , and the northwest quarter of Section 15 in T7S, R96W. The nearest towns are Grand Valley, six and a half miles away, and DeBeque, nine miles away (straight-1ine distances to the adits).

The new site lies further north, closer to the center of the Colorado oil shale region. Its exact location cannot be described until negotiations for its acquisition have been completed.
B. Geology

1. General

The Logan Wash site lies at the south edge of the Piceance Creek structural basin which was the site of a vast lake covering much of northwestern Colorado and northeastern Utah during the Eocene Epoch (37 to 54 million years before present). Within this crustal warp were deposited as much as 3500 feet of lake sediments consisting of near-shore sands grading laterally to silt and clay toward the center of the basin. These deposits included organic-rich layers which accumulated on the lake bottom following periods when particularly abundant plant and animal life existed in the lake. Gradual lithification of the sediments produced the sandstone, shale, and marlstone of the Green River and Uinta Formations. The organic material contained in the marlstone was converted to a solid hydrocarbon, or kerogen. The kerogen-rich marlstone is commonly called oil shale. The principal geologic formations and their subunits (or members) underlying the Logan Wash property and surrounding areas are illustrated on the Geologic Index Map, Figure 3.

As depicted by the Geologic Index Map, the Logan Wash area is underlain by a sequence of essentially horizontally stratified sedimentary formations of Eocene age. Boundaries, or contacts between the various formations, as a consequence, generally follow the ground surface contours when observed in map view.

From oldest to youngest, and ascending in elevation, the formations include the Wasatch (at the southernly and easterly periphery of the area), the Green River, and the Uinta. The Green River Formation is further subdivided into the Anvil Points Member (which is equivalent to the Douglas Creek and Garden Gulch Members on the west), and the Parachute Creek Member containing the principal oil shale deposits. Overlying the Uinta Formation and capping Mt. Callahan in Section 16 is a small remnant of a basaltic lava flow which once undoubtedly covered a significantly larger area. It is believed to be part of a flow that extended at least to Grand Mesa about 25 miles to the south. Erosion subsequent to its formation has removed it from the intervening areas. Detailed columnar section of the Green River Formation are shown on the Geologic Index Map. The oil shale intervals are identified on the sections.

Major surficial deposits within the study area include the alluvium within the Colorado River valley, Parachute Creek, and numerous smaller valleys; remnants of older alluvium (terrace deposits on ridges about 800 feet above the Colorado River); talus deposits, slopewash, colluvium, and topsoil. Several areas of suspected ancient landslide deposits appear to affect portions of the Wasatch Formation, both north and south of the subject site but within the general area.

Because of the semi-arid climate and the normal erosional processes, very little residual soil remains in place at the surface as a result of bedrock weathering. Soil profiles, supporting varying densities and types of vegetation, are most common on north-facing slopes and those areas underlain by the more easily weathered, less resistant formations such as the Uinta and Wasatch. On the steeper middle slopes, the soil is developed from surficial rock material transported primarily by gravity and includes such deposits as colluvium, slopewash and talus. These materials, locally exceeding a depth of ten feet, can be relatively stable (where covered by vegetation) or only marginally stable, where exposed to continual creep movement, rock-fall action, or erosion from slope runoff.

2. Mineral Resources

The mineral resource of the Logan Wash site consists of approximately 300 feet of medium to low grade oil shale and nothing else. The Occidental process can use the entire ore body, i.e. "high grading" is neither necessary nor intended by Occidental.

The mineral resources of the new site consist of several hundred feet of oil shale of varying grade and of nahcolite and dawsonite deposits of potential economic value at considerable depths below the shale. Nahcolite and dawsonite are also present to a very minor extent in the shale zones, but these latter deposits are so dispersed and represent such low overall concentrations that it is deemed uneconomic to recover them.
3. Seismic Probability

The Seismic Risk Map of the United States (U.S. Department of Commerce) includes all of Colorado within Zone 1 , the lowest risk zone, on a scale ranging as high as Zone 3 (which includes California and portions of Utah, Idaho and Montana). Sites within Seismic Risk Zone 1 are subject to earthquake intensities ranging up to V and VI (Modified Mercalli Scale), which could cause minor damage to certain types of structures.

Past earthquake activity in Colorado has been in the western two-thirds, or west of the Front Range, and generally within 50 miles of the post-01igocene-age extrusive volcanic rock areas. Refer to the Seismic Index Map, Figure 4, for the location of recorded earthquake epicenters during the period between 1880 and 1967. The largest historic earthquake was an intensity VII event occurring in 1967 near Denver. This earthquake had a Richter Magnitude of 5.3. As can be seen on the Seismic Index Map, the Logan Wash area has been relatively inactive. The epicenter closest to the site was the intensity V earthquake located approximately 40 miles east, at Glenwood Springs. Smaller, instrumentally recorded epicenters (not shown on the map) have been recorded as close as about 37 miles.

The Logan Wash area is also free of known major faults which could be sources of future seismic shaking or ground rupture risk (U.S. Geological Survey, 1959, Geological Map of Colorado). Faults have been mapped, however, as close as 10 to 15 miles south of the property, east of DeBeque Canyon.

It is anticipated that earthquake intensities at the site will not exceed the historic high for the state (VII modified Mercalli) and will most likely be considerably less because of the apparent absence of major faults and nearby historic epicenters.

Earthquake Epicenters for Events 1880-1967 (K!!suatul!!DodaW Pa!!! POW Bu!MOYS)
Modified from Hadsell, 1968

[^0]

 B)
4,
en
48
पार्यंतxy
$$
(3)
$$
4. Topography

The topography of the Logan Wash area is shown in Figure 5 and consists of long, finger-like, level benches bounded by uniformly steep (70 to 90%) slopes. Drainages have worked headward, dissecting Tertiary formations, into the southernmost remnants of the northward-retreating Roan Cliffs. The resulting slopes include all directions of exposure. The area has a topographic relief of about 4000 feet, ranging from 4890 feet along the Colorado River to 8951 feet at the high point on the plateau. On the Logan Wash site itself, the elevation ranges approximately from 6000 feet to 8600 feet. Drainage bottoms contain alluvium, and talus lies against the base of the slopes. The talus is typically no steeper than about 37 degrees.
5. Soil Classifications

Seven soil associations occur on the Logan Wash site. Typic calciorthids and typic torriorthents occur on colluvial areas high in carbonaceous material. Typic torrifluvents occur in washes on the lowland part of the site. Scree and orthents constitute steeply deposited colluvial materials below cliff faces. Lithic ustollic calciorthids and lithic ustic torriorthents occur on colluvial slopes under dense stands of Quercus and Amelanchier. Lithic cryoborolls, lithic cryumbrepts, and lithic cryochrepts occur on uplands of the plateau. Typic cryorthepts occur under Pseudotsuga. Typic cryoborolls occur under aspen groves and in surrounding areas.
C. Hydrology and Water Resources

1. Surface Water

The Logan Wash site has five major drainages: Logan Wash, Bowdish Gulch, Riley Gulch, Kelly Gulch, and Smith Gulch. See Figure 6. Logan drains into Roan Creek; it flows only during and shortly after flash rain storms. Bowdish drains into Roan Creek via Conn Creek; it too flows only during and shortly after flash rain storms. Riley drains into Parachute Creek; it is perennial in its upper reaches. Kelly and Smith drain into the Colorado River. Smith is perennial in its upper reaches, but Kelly flows only during and for a time after the snow melts and during and shortly after flash rain storms.
2. Subsurface Water

Precipitation that infiltrates into the Uinta Sandstone capping the property accumulates for a time in the Broken Zone at the top of the Parachute Creek Member of the Green River Formation and then moves downward, through fractures rather than intergranular spaces, through successive stratigraphic sections till

Tg in aty 2hene 1104

 4hath hathe 0年 (2) GIF

 (20.

20.20

antronghent

8
8
-1
8
5
$\begin{array}{r}5 \\ 5 \\ \hline\end{array}$
? 5xum

$$
8
$$

mith

it reaches a basal aquifer deep in the Green River Formation. Water moving through fractures near the outcorp gives rise to seeps that appear at different horizons from the Broken Zone to the Mahogany Zone.

Static water levels in drill holes on top the property range from 7,700 feet to 8,400 feet elevation, varying from hole to hole and with season of the year. The static water level in an individual hole may vary from 200 to 300 feet over the year.
3. Precipitation, Evapotranspiration, Runoff, and Infiltration

Annual precipitation at Logan Wash averages 19.2 inches per year. Evapotranspiration at logan Wash is estimated at 13.8 inches per year. Runoff from the Logan Wash property is estimated at 0.6 inches per year. Inflitration at Logan Wash is estimated at 5.2 inches per year. This infiltration includes water that later shows up as base flow in the gulches.
4. Surface Water Quality

Water quality data have been gathered approximately monthly for over a year on the five major Logan Wash drainages and on Roan Creek and Parachute Creek. The parameters examined are listed in Table 2 .

Following are a few highlights; a more extensive summary and analysis will be included in a future report. Total dissolved solids range from 400 ppm to 2600 ppm over the year; the domestic water standard is 500 ppm . Chloride concentrations range as high as 100 ppm but generally are less than 20 ppm ; the domestic water standard is 27 ppm . Sulfate concentrations range as high as $1,700 \mathrm{ppm}$ but are generally around 300 to 600 ppm ; the domestic water standard is 250 ppm . Nitrate concentrations range up to 19 ppm and are generally of the order of 10 ppm or less; the domestic water standard is 45 ppm . Oil and grease range up to 26 ppm ; the domestic water standard is 2 ppm . BOD_{5} ranges up to $66 \mathrm{mg} / 1$ and generally runs about 20 to 30 $\mathrm{mg} / 1$; the domestic water standard is 0.5 ppm .
5. Subsurface Water Quality

Water quality data have been gathered at a number of drill holes at approximately monthly intervals on the property and in alluvia of the gulches. The parameters measured are the same as those for surface waters, listed in Table 2. As in the case of surface water quality, a summary and analysis of these results will be included in a future report.

Table 2
Water Quality Parameters

```
Pesticides (Chlorinated), ug/l
Color, Platinum Cobalt Scale
Specific Conductance, umhos
Turbidity, FTU
pH
Total Alkalinity, mg/1 CaCO}
Bicarbonate, mg/l CaCO}
Total Organic Carbon, mg/l
Suspended Solids, mg/l
Soluble Solids, mg/l
Volatile Solids, mg/l
Sulfate (SO4), mg/l
Hardness, mg/1 CaCO}
Chloride, mg/l
Fluoride, mg/l
Chemical Oxygen Demand, mg/1
Odor, ASTM OII
Fecal Coliform Bacteria, colonies/100 ml
Phenol, mg/1
Phosphorus, mg/1
Sulfite (SO3), mg/l
Bromide, mg/l
Nitrogen-Kjeldahl, mg/l
Nitrogen-Ammonium, mg/l
Nitrate, mg/1
BOD 5, mg/l
Oil and Grease, mg/1
Sulfide, mg/1
Nitrite, mg/1
Cyanide, mg/1
Surfactants, mg/l
Silicon, mg/1
Lithium, mg/1
Sodium, mg/1
```

Potassium, mg/l
Arsenic, mg/l
Selenium, mg/l.
Mercury, mg/1
Cadmium, mg/l
Zinc, mg/1
Iron, mg/1
Magnesium, mg/l
Calcium, mg/l
Boron, mg/l
Thallium, mg/1
Chromium, mg/l
Vanadium, mg/l
Cobalt, mg/l
Nickel, mg/l.
Strontium, mg/1
Copper, mg/1
Barium, mg/1
Manganese, mg/1
Silver, mg/l
Zirconium, mg/l
Titanium, mg/l
Molybdenum, mg/1
Antimony, mg/l
Tin, mg/1
Gallium, mg/l
Lead, mg/1
Aluminum, mg/1
Beryllium, mg/1
Yttrium, mg/1
Scandium, mg/l
a, pCurie/1
B, pCurie/1
Radium 226, pCurie/1

D. Meteorology

1. C1imate

The climate at Logan Wash is semi-arid with six to twenty inches of precipitation annually, depending upon elevation and topography. Temperatures range from about $-20^{\circ} \mathrm{F}$ to $+90^{\circ} \mathrm{F}$.
2. Surface Meteorology

South and southwest winds occur approximately 50% of the time in all seasons of the year. The next most frequent wind directions are from the north and north-northwest; these directions occur approximately 20% of the time in all seasons. The average wind speed in all seasons is about 13 mph (11.5 knots), with wind speeds under 3.5 mph (3 knots) occurring less than 3% of the time.
3. Upper Air Meteorology

Early morning and late afternoon rawinsonde flights generally show near-neutral or unstable thermal stratification with moderate-to-strong wind speeds in the first three thousand feet above the elevation of Mt. Callahan. Data were taken twice daily for one year. Upper-air wind and temperature data show good agreement with concurrent observations obtained at corresponding altitudes at Grand Junction, Colorado.

Strong surface temperature inversions almost never occur at Mt. Callahan. Measurements at Mt. Callahan of the temperature difference between the top and base of the 100 ft . tower, obtained as part of the hourly surface observation program, show that the temperature at the top of the tower exceeds the temperature at the tower base by $1.5^{\circ} \mathrm{C}$ or more about 17% of the time. However, positive temperature differences larger than 2.5° occurred only 0.5% of the time and there is only one case in which such differences persisted for more than three hours.
4. Normality of Measurement Period

The surface and upper air observations obtained during the one-year observation period at Mt. Callahan show that high dilution/dispersion conditions are present throughout the year. There is an almost complete absence of both calms and persistent strong temperature inversions typically present at lower elevations. The year of record at Mt. Callahan seems to be typical.

E. Societal Considerations

1. Community Populations and Characteristics

The overwhelming majority of Occidental employees have one of seven towns as their mailing addresses. The towns, all lying along the Colorado River and within an hour's drive of the mine or the office, are Fruita, Grand Junction, Clifton, Palisade, DeBeque, Grand Valley, and Rifle; see Figure 1. Since Occidental began operations at Logan Wash in mid-1972, the number of employees not living in these towns has averaged only eight to nine and has never exceeded twenty-eight. The number of employees claiming one of these towns as a mailing address has always totaled at least eighty-seven percent of the Occidental work force.

Fruita is a town of about 2000 people ten miles northwest of Grand Junction, just north of the Colorado River and Interstate Highway 70. The census tracts centered on Fruita have a population of about 6000. The community has a downtown area with a range of services, but much of the trade goes to Grand Junction. Many of the town's residents work in Grand Junction.

Grand Junction, located 51 miles by road southwest of the mine, is the county seat of Mesa County. With a population of about 27,000 , it is the largest city in western Colorado. It is thus a regional commercial and service center for the Western Slope. The immediately surrounding population, when added to Grand Junction's own population, results in a total of about 60,000 people in the area. This latter figure includes the populations of Fruita, Clifton, and Palisade. The nearest larger communities are Provo, Utah, and Denver, Colorado, approximately 230 to 250 miles away.

Clifton is an unincorporated area seven miles east of Grand Junction. The census tracts centered on Clifton have a population of about 3500 to 4000 . The community is less selfsufficient than Fruita and its residents rely heavily on Grand Junction for goods and services.

Palisade is a town of about 1000 people thirteen miles east of Grand Junction, lying between the Colorado River and Interstate Highway 70. The census tracts centered on Palisade have a population of about 2000. The town is part of the Grand Junction economy, with a downtown geared mostly to needs that are more neighborhood than regional in character.

DeBeque is a town of about 325 people in northern Mesa County, near the Garfield County line. It lies just east of Roan Creek and north of the Colorado River and Highways 6 and 24 and future Interstate Highway 70. The town is the most accessible community to Occidental's Logan Wash site, twelve miles by road to the north and east. It is 39 miles east of

Grand Junction. The town has minimal commerce and no professional services. Many of the town's residents commute to Grand Junction and Rifle for work; others, of course, work at the Occidental mine. The school district serving the town includes parts of both Mesa and Garfield Counties.

Grand Valley is a town of about 500 people 53 miles east of Grand Junction. The census tracts centered on Grand Valley have a population of perhaps 1000 to 1200 . The town lies along the Colorado River on Highways 6 and 24 and future Interstate Highway 70 , six and a half miles north and east of the Logan Wash site. The distance to the site by road, however, is 26 miles. A limited business district exists but not professional services. Most local citizens trade in Rifle or Grand Junction.

Rifle is a town of about 2750 people 69 miles east of Grand Junction. The census tracts centered on Rifle have a population of about 4000. The town lies on Interstate Highway 70 and Highway 13, making i.t a convenient business and service center for the surrounding area. The town provides retail shopping, medical and other professional services, a courtroom, and a hospital.
2. Development Trends
a. Fruita, Grand Junction, Clifton, and Palisade

It has not often been practical to obtain data on the growth of amenities and services in the individual communities of Fruita, Grand Junction, Clifton, and Palisade. These communities are, however, over fifty miles from the mine site and within thirteen miles of their own local population center. Thus, from the perspective of the mine, the four towns appear as a single population center and are treated as such.

Even as a group, it was difficult to obtain some data. However, these communities and their immediate environs contain over 90% of the population of Mesa County. Mesa County statistics were therefore used as a proxy for the towns' statistics.

Compound annual growth rates of population and number of households; employment and business payroll; assessed valuation; elementary and secondary school enrollment; social service caseloads; physicians, dentists, and lawyers in private practice; municipal court traffic cases and county court civil and criminal cases; accidents investigated, speeding tickets issued, and penalty assessment tickets issued by the State Patrol; and fire calls answered in the city and rural fire district for the period 1972 through 1975 are listed in Table 3.

Table 3
Annual Growth Rates in Mesa County, Colorado, 1972-1975

	Annual Growth Rate	1975 Value
Population	2.6\%	61,500
Number of Households	2.8\%	20,241
Employment, Non-Agricultural	8.1\%	23,470 ${ }^{1}$
Business Payroll, 1967 dollars	9.1\%	15,123,000 ${ }^{2}$
Assessed Valuation, 1967 dollars	1.1\%	64,879,000
Elementary School Enrollment, District 51^{3}	2.5\%	6,593
Elementary School Enrollment, Grand Junction and Clifton	5.8\%	5,765
Secondary School Enrollment, District $51{ }^{3}$	1.6\%	6,870
Secondary School Enrollment, Grand Junction and Clifton	4.8\%	5,491
Social Services Caseload	-4.9\%	4,202
Physicians in Private Practice ${ }^{4}$	5.2\%	92
Dentists in Private Practice ${ }^{4}$	4.6\%	32
Lawyers in Private Practice ${ }^{4}$	5.3\%	70
Municipal Court Traffic Cases	13.3\%	5,595
County Court Civil Cases	6.8\%	907
County Court Criminal Cases	4.4\%	3,856
Accidents Investigated by State Patrol	10.7\%	1,265
Speeding Tickets Issued by State Patrol	12.1\%	2,803
Penalty Assessment Tickets Issued by State Patrol	11.0\%	4,624
Fire Calls ${ }^{5}$	5.7\%	659
${ }^{1} 1974 \text { value. }$		
${ }^{2} 1973$ value.		
${ }^{3}$ School District 51 includes Fruita, Grand Junction, Clifton and Palisade and excludes Collbran and DeBeque.		
${ }^{4}$ Excludes Collbran and DeBeque.		
${ }^{5}$ Grand Junction City and Rural Fire Distric		

b. DeBeque

Compound annual growth rates or population, assessed valuation, and school enrollment for DeBeque for the period 1972 through 1975 are listed in Table 4.
c. Grand Valley

Compound annual growth rates of population, assessed valuation, school enrollment, and social service caseload for Grand Valley for the period 1972 through 1975 are listed in Table 5.
d. Rifle

Compound annual growth rates of population; residential building permits; assessed valuations; school enrollments; social service caseloads; physicians, dentists, and lawyers in private practice; and municipal court traffic cases and county court civil and criminal cases for Rifle for the period 1972 through 1975 are listed in Table 6.
3. Land
a. Ownership

The ownership of land immediately surrounding the Logan Wash site is shown in Figure 7. The owners are the United States Government, several oil companies, and other private interests.
b. Land Use

The Logan Wash site is used for summer range by cattle. It has no other use. Except for a small amount of land that is needed for surface facilities, the surface is not disturbed or altered. Significant new surface construction is not contemplated, and the land may continue to be used for grazing during the proposed program.

4. Water Use

The Logan Wash site is not a source of surface water for any domestic or industrial use. Springs and streams serve wildlife and cattle. No change in the use of surface water is envisioned.

Table 4

Annual Growth Rates in DeBeque, Colorado, 1972-1975

	Annual Growth Rate	1975 Value
Population	17.9\%	325
Assessed Valuation, Residential, 1967 dollars	23.3\%	986
Assessed Valuation, Total, 1967 dollars ${ }^{1}$	-8.01\%	1,810,000 ${ }^{2}$
Assessed Valuation, Total, 1967 dollars ${ }^{3}$	-1.01\%	115,000
Public School Enrollment	8.1\%	151

[^1]Table 5

Annual Growth Rates in Grand Valley, Colorado, 1972-1975

	Annual Growth Rate	1975 Value
Population	13.1%	500
Residential Assessed Valuation, School		
\quad District, 1967 Dollars	24.2%	344,000
Total Assessed Valuation, School District,		
$\quad 1967$ Dollars	-4.6%	$2,019,000^{1}$
Total Assessed Valuation, Town, 1967	2.4%	$294,000^{1}$
\quad Dollars	5.0%	95
Elementary School Enrollment	22.1%	9.0%

${ }^{1} 1974$ value.

Table 6

Annual Growth Rates in Rifle, Colorado, 1972-1975

	Annual Growth Rate	1975 Value
Population, Town	10.5\%	2,750
Population, Urban Area	11.0\%	4,870 (est.)
Single Family Building Permits	140.0\%	23
Total Residential Building Permits, No. of Units	169.0\%	29
Residential Assessed Valuation, 1967 Dollars	47.3\%	3,321,000
Total Assessed Valuation, School District, 1967 Dollars	-4.4\%	9,843,000 ${ }^{1}$
Total Assessed Valuation, Town, 1967 Dollars	-1.5%	2,766,000 ${ }^{1}$
Elementary School Enrollment	5.7\%	851
Secondary School Enrollment	6.9\%	720
Total School Enrollment	6.6\%	1,571
Social Service Caseload	4.9\%	257
Physicians in Private Practice	18.6\%	5
Dentists in Private Practice	35.8\%	2.5
Lawyers in Private Practice	25.7\%	5
Municipal Court Traffic Cases	11.0\%	423
County Court Civil Cases	16.2\%	48
County Court Criminal Cases	48.0\% ${ }^{2}$	65

[^2]

F. Aesthetic Considerations

The Logan Wash site is not accessible to the general public, and no change in this situation is envisioned. Surface disturbances are minimal and do not damage scenic vistas. Only a meteorological tower and an exhaust stack (130') and its plume are visible from the main road (US 5 and 24). No further visual degradation is projected.

There is no serious noise or other disturbance to the neighborhood. Eighty species of birds continue to inhabit the logan Wash site, which has had mining and retorting activity since 1972.
G. Historic, Prehistoric, and Paleontological Resources

1. Archaeological Resources

Nineteen areas of the Logan Wash site have been considered for surface disturbance and were surveyed for evidence of archaeological materials and to determine whether proposed developments might affect significant archaeological investigations. In none of the areas was evidence of prehistoric occupation found, nor were any of the areas found to be very suitable for deposition and preservation of artifacts. The proposed usage of the site represents a minimal potential for the loss of any archaeological materials.

2. Paleontological Resources

Localities on and near the Logan Wash site which have been proposed for possible dump sites in oil shale operations were surveyed to determine their paleontological value. Four proposed dump sites were examined: Riley Gulch, Kelley Gulch, Smith Gulch, and a side canyon from Logan Wash, Dry Gulch. Two nearby sites were also examined for comparison purposes All the proposed dump areas are exclusively on outcrops of the Green River Formation. None of the sites contains extensive outcrops.

The Green River Formation at all sites proved fossiliferous. Impressions of both adult and larval insects were recovered from the shales, and fragmentary vertebrate remains were found in sandstone channels within the deposit. The fossils recovered from the four proposed dump sites were similar, and investigation of the nearby sites indicates that these fossil types are general throughout the area. None of the sites investigated exhibited special concentrations of fossil material nor were the specimens unique to the sites in type or quality. Coverage of the proposed dump sites by mineral waste from oil shale operations will not cause the loss of valuable paleontological material.

H. Political Considerations

Prior surveys of residents and local public officials indicate that people in the area of the Logan Wash site generally favor an experimental oil shale development that provides jobs and income and that does not have a significant adverse impact on the physical environment. ${ }^{l}$ Feelings about population growth and its consequences vary. Occidental, however, does not contemplate adding personnel for the proposed project, thereby making the latter point moot.
I. Economic Environment

The proposed project will be a continuation of an existing operation, and growth in employment is not contemplated. New employees will not be imported. Land now in agriculture will not be removed from agriculture by the project.

The average annual wage of Occidental employees is $\$ 13,266$. Average annual wages in Mesa and Garfield Counties are $\$ 7,218$ and $\$ 7,480$, respectively (a11 in 1975 dollars).

During the time that Occidental has been active at Logan Wash, i.e. since mid-1972, social service caseloads have declined at annual rates of 4.6% in Grand Valley and 4.9% in Mesa County. There appear to be no social service cases in DeBeque for public assistance or food stamps. Rifle shows an increase of 4.9% p.a. in social service caseload, but it is only half of the 10.5% p.a. growth rate of the population. Further, Occidental employees represent a zero net influx into Rifle.

J. Institutional Considerations

Refer to the Appendix for a listing of relevant regulations and responsibilities to local, state, and federal government.
K. Biological Environment

1. Flora

One hundred eighty-four species of vascular plants were recorded on the Logan Wash property. These include 7 trees, 25 shrubs, 16 grasses, 134 forbs, and 2 succulents. Five grasses and two forbs could not be identified. Ninety-one percent of the plant species are native to the site. There are ten vegetation communities on and near the site. The vegetation is typical of the Roan Cliffs.

[^3]2. Vegetation Potential

Experiments are underway to determine how best to vegetate raw mineral waste. Results to date indicate that it is possible to vegetate raw shale with little difficulty. Spent shale is not brought to the surface and does not need to be vegetated.
3. Fauna

Twenty-five species of mammals, eighty species of birds, and seven species of reptiles have been recorded at the Logan Wash site. No fish or amphibians have been noted. Included among the mammals are fifteen rodent species and seven carnivore species. The reptiles include three snake species and four lizard species. The distribution of species according to habitat has been recorded for four seasons of the year.
4. Threatened and Endangered Plants and Animals
a. Plants

One species found on the Logan Wash site, Astragulus lutosus, is classified "endangered." It has been found to be fairly abundant on steep scree-colluvial slopes of the Green River Formation, where lack of access and dangerous topography probably inhibited previous discovery.

A new record is festuca dasyclada, which was listed as "possibly extinct." Festuca dasyclada has been found to occur throughout Garfield County, Colorado, on steep, xeric scree-colluvial slopes at the contact of the Upper Parachute Creek Member of the Green River Formation and the Uinta Sandstone Formation.

b. Animals

There appears to be no rare or endangered animal species residing on the Logan Wash property or immediate environs. Prairie and Peregrine Falcons have been sighted over the area, but detailed studies have shown neither to be nesting there.

L. Facilities

No increase in Occidental employment at Logan Wash is contemplated for the proposed project. Consequently, there will be no new demand for housing, schools, public health facilities, recreation facilities, or points of interest as a result of the project.

Utilities adequate to serve the project itself are already
installed. No new demands are projected.
Transportation to and from the site is and will continue to be by motor vehicle. Supplies and product oil are trucked. Personnel travel by personal vehicles and car pools. No increase in transportation service is envisioned during the project.

Public safety manpower and equipment requirements will not be affected by the proposed project. As mentioned above, there will be no increases in motor vehicle travel or population to give rise to an increased need for public safety manpower or equipment.

III. Potential Environmental Impacts

A. Construction Phase

No new surface construction is contemplated at the Logan Wash site. Consequently, there will be no environmental impacts associated with such activities.
B. Operational Phase

1. Effects on Water

A study of the hydrology of the Logan Wash site is underway and will be continued during the proposed project as part of the environmental research plan. The objective of the study is to develop an accurate model of the existing surface and subsurface hydrologic system (water balance) so that the effect on the environment of any mining, retorting, and waste disposal activity can be predicted and adequately monitored. A water balance for the operations is also being developed.

Drill holes extending 800 feet below the surface to the lower reaches of the ore are being used to obtain water quality samples monthly and to measure water level seasonally. Slug tests have been made in three locations on the plateau in the upper Green River formation to measure transmissibilities and storage constants. The Green River formation below the ore is being monitored, at the elevation of the mineral waste pile. Observation wells in the alluvia of nearby gulches are being monitored seasonally. Streams carrying runoff from the property are being studied in terms of maximum flow, seasonal water quality, and actual seasonal flow.

Water depth will be monitored monthly and water quality will be monitored seasonally in existing wells during the project. Additional holes may be monitored to determine the extent of any changes if the holes in the immediate vicinity of the
mine show significant effects. Stream gauging and seasonal water quality monitoring will be continued during the project. Present flume installations will be improved in light of recent storm data. An evaporation pan is being installed and a lysimeter is being considered.

Water quality will be analyzed during the project according to a list containing approximately half the parameters listed in Table 2. The exact list has not yet been determined. The purpose in shortening the list is to allow more samples to be monitored without increasing the cost of the analysis program. These data will be used to identify any adverse effects that require corrective action.

From time to time, slightly more water is produced than is needed for current activities. The sources of water are mine water and water produced in retorting. There is also process water, which is either mine water or retort water that has subsequently been used in the process. Much of the excess is contained in underground sumps in the mine for later use. Any residual excess is evaporated on the surface of the mineral waste disposal pile in such a way that neither surface nor subsurface waters are degraded. This approach was developed in consultation with the Water Quality Control Division of the Colorado Department of Health, and the procudure will be continued during the proposed project.

There are no adverse impacts on water apparent which cannot be avoided. Monitoring of we11s, surface streams, and the rock near underground oil and water sumps will be used to assure that this condition indeed exists.

Leaching of spent retorts and contamination of ground water is a possible long-term effect which will be mitigated. Isolation of the shale, diversion of potential leachate, and deliberate leaching of soluble salts are possible ways to prevent long-term leaching. Retort data indicate that deliberate leaching is indeed a viable possibility, and laboratory leaching studies are now underway to determine optimum amounts of water and time required. The studies will be extended to retort experiments if the laboratory results are favorable. Isolation of spent shale and diversion of potential leachate will also be considered as alternative means of controlling ground water pollution from spent shale retorts.

No beneficial impacts on the hydrology are envisioned.
2. Effects on Land

Refer to Figures 6, 8, and 9 for maps and photographs of the Logan Wash area. Note the mineral waste disposal pile in Figures 8 and 9, in Dry Gulch, off Logan Wash. This disposal pile was approved by Garfield County after review by eleven state and federal agencies.

Experiments to grow vegetation on mineral waste and areas cut or filled are being conducted．A half－acre site on the mineral waste disposal pile was fenced and a weather station and an irrigation system were installed．A pyranograph was installed to measure solar radiation and experimental seeding of selected grasses was started in Spring 1976．A larger experimental vegetation plot will be established as the mineral waste disposal pile is enlarged．Native species will be seeded or transplanted as dictated by preliminary findings．Soil particle size will be varied to determine best conditions for plant survival．

Baseline studies indicate that there is no danger to archae－ ological material or paleontological material of significance by the proposed project．

Neither subsidence nor uplift is expected．However，any changes in surface position that occur over Retort $\# 4$ are being monitored by precise level surveys made before the retort was blasted and from time to time afterwards．Pre－ cise level surveys will continue to be made over Retort \＃$⿰ ⿰ 三 丨 ⿰ 丨 三 4$ in the summers of 1977 and 1978 to check for subsidence or uplift．Surveys may be established for Retorts $\# 5$ and $\# 6$ and repeated periodically．

Local，artificially－induced seismic shaking effects are anticipated from blasting for conventional mining operations and for creating the in situ retort．Seismic measurements made during the shot in Room No． 4 in August 1975 indicate that shaking intensities only one－tenth of that generally perceptible by humans occurred at Grand Valley．Readings closer to the blast site ranged from 0.05 g at 4100 feet away to 0.4 g at 3000 feet away．No significant damage， distress，or slope failures，however，apparently resulted from the ground shaking．

The mineral waste disposal pile represents a long－term impact that cannot be avoided．However，it is being developed to resemble natural talus and will be vegetated to blend with its surroundings when completed．Accordingly，it is deemed not to be a significant adverse impact．

3．Impacts on Air
Retort off－gas and scrubbed exhausts have been and are being monitored for sulfur dioxide，oxides of nitrogen，carbon monoxide，hydrocarbons，and hydrogen sulfide．Sulfur dioxide and oxides of nitrogen do not appear in the off－gas．The others do appear in varying amounts，depending upon retorting conditions and shale composition．Stack emission data are reported to the Air Pollution Control Division of the Colorado Department of Health．For the Logan Wash project as operated to date and planned for the ERDA proposal，the
total amounts of the pollutants that appear are sufficient1y low that they can be dispersed by a suitable stack and thereby not violate air quality standards.

Ambient concentrations of $\mathrm{SO}_{2}, \mathrm{NO}_{\mathrm{x}}$, hydrocarbons, CO , particulates, and $\mathrm{H}_{2} \mathrm{~S}$ have been measured at a point where the plume was expected to have maximum impact. Pollutants have been sampled for 24 hours every six days for one year beginning February 1, 1975, in accord with a program approved by the Air Pollution Control Division, Colorado Department of Health. Data have been submitted quarterly to APCD. The ambient air quality will be monitored while retorts are in operation and for one month afterwards to assure that air quality standards are not being exceeded. The existing station may be relocated in light of existing meteorological data.

Experiments have been performed to determine nitrogen oxide emissions from burning crude shale oil in a boiler. Results indicate that current regulations can be met.

No infringements of air quality standards are projected for the Logan Wash project, either short-term or long-term. Pollutants released at the top of the property will not be trapped under inversion layers or be subject to cold air drainage.

Sulfide in the off-gas presents an air pollution problem in general, although it is not a serious difficulty for the proposed project at Logan Wash. When off-gas volumes are significantly larger than planned for Logan Wash, the gas will be burned to recover its heating value, and the sulfide must be removed before burning in order to prevent the formation of sulful dioxide. Various approaches to controlling the sulfide concentration in the off-gas have been tried, e.g., scrubbing in Venturi scrubbers and in spent retorts. Other approaches to controlling sulfide emissions are catalytic oxidation to sulfur dioxide (which would then be removed conventionally or by absorption in a spent retort) and reduction to elemental sulfur by the Stretford process. The latter process has been tried successfully on a laboratory scale. Both catalytic oxidation and the Stretford process will be evaluated for large scale application during the proposed contract (probably at the new site).

Oil mist has occasionally appeared in the off-gas. The oil in the gas has been characterized, and steps are being taken to prevent its occurrence in the future. Electrostatic precipitation has been successfully tested on a small scale. Electrostatic precipitation or a suitable alternative will be evaluated full-scale during the ERDA contract.

No particulates have been found in the retort exhaust. However, attempts to measure them have sometimes been thwarted by the presence of water in the exhaust. The interference is annoying but has not caused a problem in controlling pollutant emissions.

It is planned to use radioactive krypton as a tracer to provide detailed information on pollutant transport for the specific Logan Wash situation. This work will be done in conjunction with tracer testing of the retorts.
4. Meteorology

Wind speed and direction and temperature and delta temperature data have been measured continuously on a 100 ft . tower near the single proposed stack location on the plateau from February 1, 1975. Rawinsonde temperature and wind data were taken twice daily every six days from February 1975 to February 1976 to obtain upper air data above the plateau; these data have been correlated with upper air data taken in Grand Junction. Relative humidity and precipitation data have also been taken, at the air quality monitoring site, from February 1, 1975. The data have been collected in accord with a program approved by the Air Pollution Control Division, Colorado Department of Health, and are being submitted quarterly to APCD. Wind speed and direction, temperature and delta temperature, relative humidity, and precipitation measurements will be continued for the duration of the project to increase the data base.

Data from the meteorology and ambient air quality studies are being used in conjunction with plant design data to model pollution concentrations from stacks and to establish stack design requirements.

The radioactive krypton tracer study described above will also serve to confirm the air pollution model or provide information to refine it.

There is almost a complete absence of upper air inversions above the Logan Wash site. See Section II.D. 3.
5. Socioeconomic Impacts

The Logan Wash project is a continuation of an on-going operation and involves no new Occidental or contractor personnel. Accordingly, there will be no new demands for services or facilities nor new impacts on nearby communities. See Sections II.E., II.I., and II.L. for information on the existing situation.

It is envisioned that additional research and development will be continued at Logan Wash upon completion of work under the PON. If and when the site is ever phased out, it is expected that the personnel will be shifted to the maximum extent practical to other Occidental projects. If the site is considered for conversion to a commercial operation, an appropriate socioeconomic impact analysis will then be performed.
6. Occupationa1 Safety and Hea1th

The Logan Wash site is being operated in compliance with pertinent mining regulations. Carbon monoxide, methane, and hydrogen sulfide monitors placed throughout the mine are used to warn of escaping retort gas. The oxygen level is also monitored throughout the mine. Personnel working at the base of the stack carry hydrogen sulfide monitors on their belts.

Product oil, water, shale and natural materials have been
 examined for benzo (alpha)pyrend. Various products and byproducts of the project will be subjected as appropriate to a toxicological screening program to be defined as part of the environmental research plan.

A fully equipped ambulance and a second emergency vehicle are located at the mine. The latter can be readily converted to an ambulance with equipment kept ready for the purpose. Emergency medical technicians attached to the DeBeque Fire Department are located twelve miles from the site by road. Occidental and the DeBeque Fire Department have made prior arrangements for assistance in case of emergencies.

Solid waste disposal procedures are in accord with the Garfield County Sanitarian and the Colorado Department of Health. The mineral waste disposal pile is in accord with Garfield County regulations and related Colorado regulations.

C. Post Operational Impacts

When the Logan Wash site is eventually abandoned, the area will be reclaimed in accord with a plan to be approved by the Colorado Mined Land Reclamation Board. The mine will be secured from unintended entry, all unneeded wells and core holes will be properly completed, drill pads and unneeded roads and benches will be graded to blend with their surroundings and vegetated, and unwanted surface facilities will be removed. The mineral waste disposal pile will be appropriately contoured and vegetated to minimize percolation through the pile. Excessive dust will be controlled during these operations.

The retorts will be extinguished before abandonment so that noxious gases do not escape. Retort leaching will be prevented, as described in Section III.B.1., and water that enters the mine will be allowed to pass to lower strata or seep to the outcrop.

IV. Mitigations

A. Water

Sumps in the mine in which water and oil are collected are placed in strata that are believed to be impermeable to lateral flow. Where any uncertainty exists, the sumps are either lined with gunnite or with a clay-like silt that is carried with the water and settles out. Nevertheless, some check holes may be drilled in nearby rock in order to verify that the sumps are not leaking laterally.

As mentioned above, any excess of water that occurs above current requirements and available storage is evaporated by spraying on the face of the mineral waste disposal pile. Water treatment and discharge were deemed not to be a satisfactory alternative, for treatment facilities for the relatively small amount of water are unduly expensive. Also, the preferred approach of evaporating the water provides an opportunity to learn how to optimize the procedure. This learning can then be transferred to other settings that may require evaporation as the final disposition of "blowdown" from a treatment plant.

The hydrology study will provide information on aquifer communication. In strata above the ore, at least, communication between various parts of the Green River Formation is principally by fractures.
B. Oil

Oil is handled and stored on the Logan Wash site in accord with an Oil Spill Prevention and Countermeasure Plan.
C. Air

A tall stack is used to disperse retort off-gas, which is sufficiently low in volume and pollutant concentrations that air quality standards are not violated. Flaring was considered not to be a good alternative, for it produces sulfur dioxide unless the hydrogen sulfide present is scrubbed first. Scrubbing required long lead-time equipment. Moreover, the equipment is unduly expensive for small-scale operations.

Dust is controlled in various ways. The road and parking areas are treated with a dust palliative. Mine dust and dust from disposing of mineral waste are controlled by water spraying. Barren areas are vegetated where possible.

System leaks are monitored by carbon monoxide, methane, and hydrogen sulfide alarms throughout the mine and by carbon monoxide alarms at various surface points, for example, at the adits and at base of the stack. The ambient air quality is monitored during retorting to assure that air quality standards are not violated.
D. Fire

Fire control procedures are in accord with the Colorado Bureau of Mines and Occidental's insurance company. Halon gas units are placed where electrical fires are a major possibility, e.g. the control rooms and the electrical room. Dry powder extinguishers are placed throughout the mine, in the maintenance shops, at storage tanks above ground, and on each piece of mobile diesel equipment. Foam units are installed in storage sumps and tanks. They are also available on wheels at the control rooms and at the heater-treater unit in Logan Wash. Office trailers are equipped with compliance fire extinguishers. High pressure pumps and hose are available to spray mine water if needed to extinguish a fire.

Thirty percent of the staff at the mine site have been trained in the use of the above equipment. Additional assistance is available on call from the DeBeque Fire Department, twelve miles away by road. The mine has a microwave telephone link to Grand Junction that can be used to telephone DeBeque.
E. Socioeconomic Considerations

There are no new socioeconomic impacts to be derived from the Logan Wash project, for the proposed work is an extension of an existing operation.

Emergency provisions exist at the Logan Wash site to accommodate personnel who are stranded there because of bad weather or for other reasons.

V. Alternatives

Alternatives to proceeding with the proposed project are doing the project at another site and not doing the project at all. The information to be gained from the project is vital to evaluating the technical and economic feasibility of modified in situ oil shale processing. This knowledge is essential if informed choices are to be made concerning energy sources. In view of the facts that the Logan Wash site is "ready to go" and is the only site in such a position and that no further construction-related and socioeconomic impacts will accompany the project, it is recommended that the project be undertaken at Logan Wash.

Appendix
Requirements and Suggested Actions
for Environmental Protection and
Compliance with Environmental Regulations

Claremont Engineering Company
Rev. 2/76
Suggested
Actions
Model emissions to
predict particulate
levels；install
precipitators or
scrubbers as re－
quired．
Install monitor for
particulates；use
precipitators or
scrub the effluent
as required to meet
the requirement．
」o7fuow zon TIEASUI in stack；scrub ef－ fluent as necessary
to reduce NO_{2} emis－ sions．
Model region to
determine where CO build－ups may oceur
and site stack to
minimize build－ups；
monitor co where
build－ups may occur； burn or adsorb CO as req＇d to reduce build－ ups to satisfactory
level．

Regulation
Colo．Air Qual． Reg．No． 1
Colo．Air Qual． Reg．No． 6
Federal Register， 36，April 30， 1971， 8187.

$$
\begin{aligned}
& \text { Requirements } \\
& \text { Air to contain no more } \\
& \text { than } 150 \text { Hgm/m }{ }^{3} \text { averaged } \\
& \text { over } 24 \text { hours and to } \\
& \text { average not more than } 45 \\
& \mu \mathrm{gm} / \mathrm{m}^{3} \text { (annual arithmetic } \\
& \text { mean of } 24 \text { hour values). } \\
& \text { Particulate emissions } \\
& \text { must be less than } 0.5 \\
& \text { lb. } 10^{6} \text { Btu. }
\end{aligned}
$$

Particulate emissions must be less than amount shown on page 1.5 ，Colo． Air Qual．Reg．No． 1.
Particulate emissions must be less than 0.1 bs．$/ 10^{6}$ Btu．

> Oxides of nitrogen (as NO_{2}) must be less than $0.2 \mathrm{~b} . / 10^{6} \mathrm{Btu}$ input for gaseous fuels; less than $0.3 \mathrm{lb} . / 10^{6} \mathrm{Btu}$ input for liquid fuels, and less than $0.7 \mathrm{lb} . / 10^{6} \mathrm{Btu}$ input for solid fuels (2-hr. averages).
Carbon monoxide must be less than $10 \mu \mathrm{gm} / \mathrm{m}^{3}$（ $8-\mathrm{hr}$ ． average）．［This value may be exceeded not more than
once per year providing it
does not exceed $40 \mu \mathrm{gm} / \mathrm{m}^{3}$ （l－hr．average）more than once per year．］

Conditions
 Ground level

－エ4／n7g gOI＞
$>10^{6} \mathrm{Btu} / \mathrm{hr} \cdot ;$
$<500 \times 10^{6} \mathrm{Btu} / \mathrm{hr}$.
－エy／n7a gOT x OOS＜

Activity or

Particulate
a
E
0
0
0
0
n
㝵

Fuel burning

Fuel burning
Fuel burning

Activity or
Situation
Suggèsted
Actions
Prepare plans and
secure APCD's ap-
proval thereof.
Approved air qual-
ity and meteorology
baseline monitoring
completed.
Prepare impact
statement after
plant design is
proposed.
Regulation
Colo. Air Qual.
Reg. No. 3

Take baseline environ-
mental data as determined
in conference with APCD.
 in preplanning review. Statement to include applicable climatic conditions and topofecting diffusion, ex-
isting and expected pur uevny io чวmox other habitation, be taken regarding emissions, odor, photo-reactivity, toxicity, and
damage to materials. inat air
describe impact on a
political subdivisions
Model of air behavior
and integration with

โeวtaイteue sutpntoxa laboratory equipment,
 -uxnq tonf 'swozsкs
ing equipment
$<500,000 \mathrm{Btu} / \mathrm{hour}$ input, internal
 $<1000 \mathrm{hp}$, and selected additional Excluding analytical laboratory equipment, certain ventilating ing equipment $<500,000 \mathrm{Btu} / \mathrm{hour}$ input, internal combustion engines <1000 hp, and se-
items

Construction of
any facility,
process, or
activity which
may emit a con-
taminant
-ditto-

Regulation	
Colo. Air Quail.	Suggested Reg. No. 3
Actions	
Colo. Air Quail.	Assess nature, ex- tent, and cons- quinces of possible "upsets"; develop countermeasures.
Reg. 7	Follow requirement; prepare for inspec- Lion by APCD shortly after beginning
operations.	

Requirement
Prepare curtailment
procedures in the event
of an "upset."
File contaminant emis-
sion notice with APCD,
one per stack or vent
not sooner than 60 days
and not
days before beginning
operation.
Obtain Garfield County's
permission to disturb
existing topography by
filing impact statement
showing no significant ad-
verse impact (l) on lawful
use of water through deple-
tion or pollution, (2) on
use of adjacent land through
generation of dust, vapors,
smoke, noise, glare, vi-
bration, or other emana-
tions, (3) on use of abut-
ting property by virtue of
the proximity of the pro-
posed operation, (4) on
wildlife and domestic ana-
mals via creation of ham-
ardous attractions, alter-
ion of vegetation or water
supply, blockage of migra-
tion routes, or disruption
of use patterns, (5) on
other parts of county via
hazards or noisances
caused by traffic.
f int

Consult $W Q C D$ for mon-
itoring requirements.
Regulation
Garfield County
Zoning Resolution,
Section 4.03 .07
ing archaeological and

доว до 8uţoxךsəp pṭony
Zoning Resolution,
Section 4.03 .07
Colo. Air Qual.
Reg. No. 3
Develop employee
transportation
schemes that minimize pollution from secondary sources.

impact and prepare
impact statement.
Prepare sewage dis-
posal plan. Colo. Water Qual.
Regs., Chap. 66 ,
Article 44

Colo. Water Qual. Regs., Chap. 66,
Article 28
Actions
-әхケnbəม วчュ дววฬ ment. -

> Requirements Rehabilitate any site disturbance. This includes contouring, providing for drainage, controlling erosion, and establishing vegetation.
Suggested is.

Item	Activity or Situation
32	Any construction or any disturbance of existing topography (including road construction, pipeline laying, and landfilling or dumping)
33	-ditto-
34	Employment of 500 or more people at any one time at any given location
35	Discharge of effluent or sewage into soil
36	Discharge of effluent into state waters (including ground waters)

Conditions	Requirements	Regulation	Suggested Actions
---	1. Five-day biological oxygen demand $<45 \mathrm{mg} / 1$ averaged over 7 days and <30 mg/1 averaged over 30 days.	Colo. Water Qual. Regs., Chap. 66, Article 28 and Chap. 25, Article 8	Determine best way to use or treat and dispose of waste mine and process water
	2. Suspended solids $<45 \mathrm{mg} / \mathrm{l}$ averaged over 7 days and $<30 \mathrm{mg} / \mathrm{l}$ averaged over 30 days.		
	3. Residual chlorine <0.5 $\mathrm{mg} / 1$.		
	4. $6.0<\mathrm{pH}<9.0$		
	5. Oil and grease $<10 \mathrm{mg} / 1$; no visible sheen.		
	6. Fecal coliform bacteria <1000/100 ml (geometric mean of five samples in 30-day period).		
	7. Turbidity increase <10 Jackson units.		
	8. Dissolved oxygen $>5 \mathrm{mg} / 1$.		
	9. Free from taste, color, odor, settleable solids, floating solids, and toxic materials.		
-	Secure a permit to discharge wastewater from WQCD; receiving water must not be degraded. ${ }^{6}$	Federal Register, 38, May 22, 1973,	Monitor receiving body to determine its quality; develop appropriate wastewater treatment scheme; secure permit to discharge.
---	Prevent ground or surface water from entering mine to extent practical. Minimize the formation and discharge of pollutional drainage to state waters.	Colo. Water Qual. Regs., Chap. 66, Article 28	Minimize water entering mine; collect water entering mine and handle it in accord with plan developed for item \#37.

$\left.\begin{array}{l}\text { 易 } \\ 山\end{array}\right) ~ \hat{m}$
∞

Activity or
Situation
Subsurface emplace-
ment of fluids
Drilling of wells,
cores, etc.
-ditto-
-ditto-
-ditto-
-

Suggested
Actions

วงセวโวม วụฺயエวววの

рue pauṭแ Кโบsวมฐ
：วโEYs MEx paxəuวeวm
－גกวeu บวTM วaedmos ally occurring pro－

Requirements
A violation exists if odors
are detected after being
diluted with 15 or more
volumes of odor－free air．
Conditions
Measured at the
property line
Containing known or
Corper
expental carcin－
ogens（see Colo．Air
Qual．Reg．No．8
for list）

Activity or
Situation

Odor emissions

โfo โeṭコuəวod spills（from tanks，basins， （・フュว＇วuวudṭnbə

$$
\begin{aligned}
& \text { Conditions } \\
& \text { E.g. a pipeline } \\
& \text { across federal } \\
& \text { lands }
\end{aligned}
$$

Activity or
Situation

Use of federal
lands

$\stackrel{\infty}{\checkmark}$
Footnotes
1 APCD: Air Pollution Control Division, Colorado Department of Health. ${ }^{2}$ Applications for approval of fugitive dust control plans must contain
(1) description of nature and scope of activity,
(2) proposed dust abatement and preventive measures, ${ }^{3}$
(3) time schedule for dust abatement and preventive measures, and record and report data to APCD.
${ }^{3}$ See Section II.D.9, Colorado Air Quality Regulation No. 1
4 It may be possible to use one vapor recovery system for a battery of vessels and other equipment.
5 WQCD: Water Quality Control Division, Colorado Department of Health.
6 There is a proposal to prevent all industrial discharges of wastewater in the Colorado River basin that could reach either round or surface waters, regardless of water quality. See "Proposed Water Quality Standards for Salinity, Including Numeric Criteria and Plan of Implementation for Salinity Control, Colorado River System," Colorado River Basin Salinity Control Forum, June 1975. p. 85.

Colo. Air Qual.
Reg. 3

-ditto-

Requirements and
Environmental Protection and Compliance with Environmental Regulations

Requirements

Colo. Air Qual.
Reg. 3

File permit application and
air contaminant emission
than 95 days before desired
use.

Conditions
cal labnatory ventilating systems, heater treaters burning sweet 8utuxnq [any 'ses '7ndut xnoy xad n7g and selected additional items.
2. Applies to any modification or relocation of stacks, vents or other equipment.
3. Applies to changes
in activity or
method that may in-
crease air contaminant emissions.
Activity or
Construction or 3
3
0
4
0
0
0
0
3
3
4
2
0
0
0 iration source Alteration of an
existing direct
air contamination
source

貝
M
of

Suggested

1

07 sมวาวแ โโeวsuI

and outflows, meas-
ure inventories
directly, and compare
results daily.
Consult WQCD for
approved detectors or

Obtain test instructions
from State Inspector of
0
$-\overrightarrow{-r}$
0
дมodəa prepuezs asn

Proposed Colo. Water Quality No. 7-5.2 Proposed Colo. Water Quality Control Reg.
No. $7-5.3$ Proposed Colo. Water Quality

Control Reg.
$\frac{\text { Proposed }}{}$ Colo. Water Quality
Control Reg. No. 7-5.5, 5.6

Conditions

1. Excluding analyti-
cal laboratory equipment, certain tems, heater treat-
ers burning sweet
gas, fuel burning
equipment <500,000
Btu per hour input,
and selected addi-
tional items.
səsury of saṭtdy \cdot Z
in methods of op-
rution (but
do not increase
air contaminant
emissions.
--
-sxozeotput lo sxozozjop
yeat panozdde tiezsut
Post approved test in-
pue sỵuez pue sodṭd 7 sol record results for state review; save records
leaks detected.
$i \quad 1$
Control Reg.
No. $7-5.7$ roposed Colo. Water Quality

Requirements

Report leaks within 36
hours of suspicion or confirmation to State Inspector of Oils.
Conform to Uniform Fire Code's "Recomunended Stan-
 mable Liquids.'
Conditions
Leaks greater than
250 gallons either
suspected or con-
firmed

System installation
or modification

Activity or

[^0]: ansis

[^1]: ${ }^{1}$ Garfield County part of the DeBeque School District, JT-49.
 ${ }^{2} 1974$ value.
 ${ }^{3}$ Mesa County part of the DeBeque School District, JT-49.

[^2]: ${ }^{1} 1974$ value.
 ${ }^{2}$ The trend in criminal court cases is not stable and 48% is at best a crude estimate of the recent history.

[^3]: ${ }^{1}$ C-b Shale Oil Project, Socio-Economic Assessment, Section IX (1976).

