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PREFACE

The present work is a revision and abridgment of the authors'

"Course in Mathematics for Students of Engineering and Applied

Science." The condensation of a two-volume work into a single

volume has been made possible partly by the omission of some

topics, but more especially by a rearrangement of subject matter

and new methods of treatment.

Among the subjects omitted are determinants, much of the

general theory of equations, the general equation of the conic

sections, polars and diameters related to conies, center of curv-

ature, evolutes, certain special methods of integration, complex

numbers, and some types of differential equations. All these

subjects, while interesting and important, can well be postponed

to a later course, especially as their inclusion in the present

course would mean the crowding out, or less thorough han-

dling, of subjects which are more immediately important.

The rearrangement of material is seen especially in the bring-

ing together into the first part of the book of all methods for

the graphical representation of functions of one variable, both

algebraic and transcendental. This has the effect of devoting

the first part of the book to analytic geometry of two dimen-

sions, the analytic geometry of three dimensions being treated

later when it is required for the study of functions of two

variables. The transition to the calculus is made early through

the discussion of slope and area (Chapter IX ), the student being

thus introduced in the first year of his course to the concepts

of a derivative and a definite integral as the limit of a sum.

The new methods of handling the subject matter will be

recognized by the teacher in places too numerous to specify

here. The articles on empirical equations, the remainder in

Taylor's series, and approximate integration are new.

zT^nm /*. «



iv PKEFACE

It is believed that this book can be completely studied by

an average college class in a two years' course of 180 exer-

cises. Teachers who wish a slower pace, however, may omit

the last chapter on differential equations, or substitute it for

some of the work on multiple integrals.

The book contains 2000 problems for the student, many of

which are new. It is, of course, not expected that any student

will solve all of them, but the supply is ample enough to allow the

assignment of different problems for home work and classroom

exercises, and to allow different assignments in successive years.

F. S. WOODS
F. H. BAILEY
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ANALYTIC GEOMETRY AND
CALCULUS

CHAPTER I

CARTESIAN COORDINATES

1. Direction of a straight line. Consider any straight- line

connecting two points A and B. In elementary geometry, only

the position and the length of the line are considered, and

consequently it is immaterial whether the line be called AB or

BA; but in the work to follow, it is often important to consider

the direction of the line as well. Accordingly, if the direction

of the line is considered as from
, , ,

A to B it is called AB, but if
A BO

Fn; 1

the direction is considered from

B to A it is called BA. It will be seen later that the distinc-

tion between A3 and HA is the same as that between -\-a

and — a in algel >ra.

Consider now two segments AB and BC on the same straight

line, the point B being the end of the first segment and the

beginning of the second. The segment AC is called the sum of

AB and BC and is expressed by the equation

AB+BC=AC. (1)

This is clearly true if the points are in the position of fig. 1, but

it is equally true when the points are in the position of fig. 2.

Here the line BC, being opposite

in direction to AB, cancels part of a c b

it, leaving AC. FlG
-
2

If, in the last figure, the point C is moved toward A, the

sum AC becomes smaller, until finally, when C coincides with A,

we have jb+BA = 0, or BA = -AB. (2)
l
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If the point C is at the left of A, as in fig. 3, we still have

AB +BC= AC, where AC=~ CA by (2).

It is evident that this addition is analogous to algebraic

addition, and that this sum may be an arithmetical difference.

From (1) we may obtain by

transposition a formula for sub- C A b
traction ; namely, Fig. 3

BC=AC-AB. (3)

This is universally true, since (I) is universally true.

2. Projection. Let AB and MN (figs. 4, 5) be any two straight

lines in the same plane, the positive directions of which are

respectively AB and MN. From A and B draw straight lines

perpendicular to MN, intersecting it at points A' and B' respec-

tively. Then A'B 1
is the projection of AB on MN, and is positive

if it has the direction MN (fig. 4), and negative if it has the

direction NM (fig. 5).

Denote the angle between MN and AB by </>, and draw AC
parallel to MN. Then in both cases, by trigonometry,

AC =AB cos
<f>.

But AC = A'B', and therefore

A'B' =AB cos
(f>.

Hence, to find the projection of one straight line upon a second,

multijrty the length of 'the first by the cosine of the angle between

the positive directions of the two lines.

The projection of a broken line upon a straight line is defined

as the algebraic sum of the projections of its segments.
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Let ABODE (fig. 6) be a broken line, MX a straight line

in the same plane, and AE the straight line joining the ends

of the broken line.

Draw AA', BB', CO', DD', and

EE' perpendicular to MN; then

A'B', B'C, CD', D'E', tm&A'E'

are the respective projections on

JAY of AB, BC, CD, DE, and JA.

But, by § 1, A'B' + B' C' + ( "D1 + D'E' = A '

/•/'.

Hence the projection of a broken line upon a straight line is

equal to the projection of the straight line joining the extremities

of the broken line.

3. Number scale. On any straight line assume a fixed point

as the zero point, or origin, and lay off positive numbers in

one direction and negative numbers in the other. If the line

is horizontal, as in fig. 7, it is usual, hut not necessary, to lay

off the positive numbers to the right of and the negative

numbers to the left. The numbers which we can thus lay off

are of two kinds: the rational num- „

hers, including the integers and the _I _
'. _\ _\—J

—

\
—£

—

^-^—
common fractions; and the irrational F ,

_

numbers, which cannot be expressed

exactly as integers or common fractions, but which may be so

expressed approximately to any required degree of accuracy.

The rational and the irrational numbers together form the class

of real numbers.

Then any point M on the scale represents a real number,

namely, the number which measures the distance of M from 0:

positive if M is to the right of 0, and negative if M is to the

left of 0. Conversely, any real number is represented by one

and only one real point on the stale.

Imaginary, or complex, numbers, which are of the form a+hs/— 1,

cannot be laid off on the number scale.

The result of § 1 is particularly important when applied to

segments of the number scale. For if x is any number corre-

sponding to the point M, we may always place x = 031, since both



CARTESIAN COORDINATES

x and OM are positive when M is at the right of 0, and both

x and OM are negative when M is at the left of 0. Now let M
and .!/., (fig. 8) be any two points, and let x

x
= OM and % — OM.

Then
o M

x
M„OM = x

2

On the other hand,

MM = OJf

-10 12 3

Fig. 8

03/

It is clear that the segment M
X
M

2
is positive when M

2
is at

the right of M
x
, and negative when i!f

2
is at the left of M

x
.

Hence the length and the sign of any segment of the number

scale is found by subtracting the value of the x corresponding to

the beginning of the segment from the value of the x corresponding

to the end of the segment.

4. Coordinate axes. Let OX and OY be two number scales at

right angles to each other, with their zero points coincident at 0,

as in fig. 9. y
Let P be any point in the plane, -

and through P draw straight lines

perpendicular to OX and OY re-

spectively, intersecting them at M .

and N. If now, as in § 3, we
place x = OM and y = OX, it is

clear that to any point P there

corresponds one and only one

pair of numbers x and y, and

to any pair of numbers corresponds one and only one point P.

If a point P is given, x and y may be found by drawing the

two perpendiculars MP and XP, as above, or by drawing only

one perpendicular as MP. Then

0M=x, MP=0X=y.

On the other hand, if x and y are given, the point P may be.

located by finding the points M and X corresponding to the num-

bers x and y on the two number scales and drawing perpendiculars

to OX and Y respectively through M and X. These perpen-

diculars intersect at the required point P. Or, as is often more

Fig. 9
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convenient, a point 21 corresponding to x may be located on its

number scale, and a perpendicular to OX may be drawn through

31, and on tins perpendicular the value of y laid off. In fig. 9,

for example, 31 (corresponding to x) may be found on the scale

OX, and on the perpendicular to OX at M, MI' may lie laid off

equal to y. When the point is located in either of these ways it is

said to be plotted. It is evident that plotting is most conveniently

performed when the paper is ruled in squares, as in fig. 9.

These numbers ./ and // are called respectively the abscissa and

the ordinate of the point, and together they are called its coordi-

nates. It is to be noted that the abscissa and the ordinate, as

defined, are respectively equal to the distances from <> V and OX
to the point, the direction as well as the magnitude of the distances

being taken into account. Instead of designating a point by writing

x = a and y = — b, it is customary to write /'( <t, — l>), the abscissa

always being written first in the parenthesis and separated from

the ordinate by a comma. OX and OY are called the axes of

coordinates, but are often referred to as the axes of x and y
respectively.

5. Distance. Let I^0\, y^ and /_!(./„, //..) be two points, and

at first assume that /;/.' is parallel to <>ne of the coordinate axes,

as <>X (tig. Hi). Then //, = //,. Now .!/, .)/.,,

the projection of /',/'., on OX, is evidently

equal to %Py 15ut "j/J/,= .r,- ^ (§ 3).

nence P^x-x^
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But in the right triangle P
l
RP2 ,

whence, by substitution, we have

tt-V(*t-*O
a
+(yt-tf. (3)

It is to be noted that there is an ambiguity of algebraic sign,

on account of the radical sign. But since P
X
P2 is parallel to

neither coordinate axis, the only two directions in the plane the

positive directions of which have been chosen, we are at liberty

to choose either direction of I[P2 as the positive direction, the

other becoming the negative.

It is also to be noted that formulas (1) and (2) are particular

cases of the more general formula (3).

Ex. Find the coordinates of a point equally distant from the three points

P1
(l,2),P^-i;-2),«ndP

i(2,-5).
Let P(x, y) be the required point. Then

P
X
P = I\_P and P„P = P

3
P.

But P
X
P = V(x -iy2 + (y- 2)

2
,

P
2
P = V(x + l)2 + (y + 2)

s

P
S
P = V(x - 2f + (// + 5)2.

Therefore V(z - l) 2 + (y - 2)
2 = V(x + l)'2 + (y + 2)

2
,

V(x + l) 2 + (// + 2)
2 = V(ar - 2)

2 + (y + 5)
2

;

whence, by solution, x = | and y = — f . Therefore the required point is

(I, - I)-

6. Slope. Let %(x
x, y^ and P2 (x2

, y2) (figs. 12, 13) be two

points upon a straight line. If we imagine that a point moves

along the line from P^ to P2 , the change in x caused by this

motion is measured in magnitude and sign by x
2
— xv and the

change in y is measured by y%
— yx

. We define the slope of the

straight line as the ratio of the change in y to the change in x as

a point moves along the line, and shall denote it by the letter m.

We have then, by definition,

V» — Vim = ^—^l. (1)
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A geometric interpretation of the slope is readily given. For

if we draw through 1[ a line parallel to OX, and tlirough P2 a

line parallel to OY, and call R the point in which these two

lines intersect, then x
2
— x

x
= J^E and y2

— yl
= RP2 ; and hence

It is clear from the figures that the value of m is independent

of the two points J[ and I
2
and depends only on the given line.

We may therefore choose 1[ and J', (as in figs. 12 and 13) so

that 1{R is positive. There are then two essentially different

Fig. 12 Fig. 13

cases, according as the line runs up or down toward the right

hand. In the former case; ///_; and m are positive (tig. 12); in

the latter case 1U\ and m are negative (fig. 13). We may state

this as follows:

The slope of a straight line is positive when an increase in x

causes an increase in y, and is negative when an turn-use in x

causes a decrease in y.

When the line is parallel to OX, y = y , and consequently m = 0.

If the line is parallel to )', ./•.,= x^, and therefore m = oo (§ 13).

Ex. Find a point distant 5 units from the point (1, —2) and situated

so that the slope of the straight line joining it to (1, — 2) is g.

Let P(x, y) be the required point. Then

(x - l) 2 + 0/ + 2)
2 = 25,

y±l = i
x-l 3

Solving these two equations, we find two points, (i, 2) and (— 2, — 6).
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7. Point of division. Let P(x, if) be a point on the straight

line determined by ll(*\, y^) an( l P(.X2> #»)» s0 situated that

There are three cases to consider, according to the position of

the point P. If P is between the points 7/ and J£(fig. 14), the

Jf, if Jfg

Fig. 15

segments i^P and P
1
P2

have the same direction, and PfP < 7^

;

accordingly Z is a positive number less than unity. If P is

beyond P
2
from if (fig. 15), P

X
P and P

X
P2 still have the same

direction, but P
1
P > P

X
P, ; therefore / is a positive number

greater than unity. Finally, if P is beyond P
1
from B, (fig. 16),

P
X
P and J[P

2
have opposite directions,

and I is a negative number, its nu-

merical value ranging all the way from

to 00.

In the first case P is called a point

of internal division, and in the last

two cases it is called a point of ex-

ternal division.

In all three figures draw P
X
MV PM,

and P2M2
perpendicular to OX. In each figure 0M= OM

x+Mx
M\

and since PXP =l(PxP^), Mv

M=l(M
i
M

tf) by geometry.

Therefore 0M= 0M
1
+ I(^JQ ;

whence, by substitution,

x — x
y
+ I (x

2
— xf). (1)

By drawing lines perpendicular to 07we can prove, in the

same way, y = y + / („ _ „ ). (2)

M o M, M,

Fig. 16
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In particular, if

formulas become
x

bisects the line 7//', / = }, and these

V\ + .'i-i
•r

i + X
-2

9.
II

Ex. 1. Find the coordinates of a point § of the distance from J\(2, 3)

to ]'.,(•), -:!).

If the required point is P(x, y),

x = 2 + |(3 -2) = 2§,

y = 3 + f(-3-3)=|.
Ex. 2. Prove analytically that the straight line dividing two sides

of a triangle in the same ratio is parallel to the third side.

Let one side of the triangle coincide

with OX, one vertex being at 0. Then tin;

vertices of the triangle air 0(0, 0), A(xv ••),

B(x2 , //,) (fig. 17). Let CD divide the aides

OB and AB so that 0C = l(OB) and

AD = I {All).

If the coordinates of C arc denoted by

(z
8, //..) and those of 1> by (..-.,, //.,), then, by

the above formulas,

x
3
= lxv

xi = x
1
+ /(':, -x

x )

Since ?/., = i/
i

, CI) is parallel to 0A.

X

Fig. 17

8. Variable and function. A quantity which remains un-

changed throughout a given problem or discussion is called a

constant. A quantity which changes its value in the course of

a problem or discussion is called a variable. If two quantities

are so related that, when the value of one is given the value of

the other is determined, the second quantity is called a function

of the first. When the two quantities are variables, the first is

called the independent variable^ and the function is sometimes

called the dependent variable. As a matter of fact, when two

related quantities occur in a problem, it is usually a matter of

choice which is called the independent variable and which the

function. Thus, the area of a circle and its radius are two

related quantities, such that if one is given, the other is deter-

mined. We can say that the area is a function of the radius,

and likewise that the radius is a function of the area.
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The relation between the independent variable and the function

can be graphically represented by the use of rectangular coordi-

nates. For if we represent the independent variable by x and the

corresponding value of the function by ?/, x and y will determine

a point in the plane, and a number of such points will outline a

curve indicating the correspondence of values of variable and

function. This curve is called the graph of the function.

Ex. 1. An important use of the graph of a function is in statistical

work. The following table gives the price of standard steel rails per ton

in ten successive years :

1895 $24.33 1900 $32.29

1896 28.00 1901 27.33

1897 18.75 1902 28.00

1898 17.62 1903 28.00

1899 28.12 1904 28.00

If we plot the years as abscissas (calling 1895 the first year, 1896 the

second year, etc.) and plot the price of rails as ordinates, making one unit

of ordinates correspond to

ten dollars, we shall locate

the points Pv P2 , . . ., P10 in

fig. 18. In order to study the

valuation in price, we join

these points in succession by

straight lines. The resulting

broken line serves merely to

guide the eye from point to Tig. 18

point, and no point of it

except the vertices has any other meaning. It is to be noted that there

is no law connecting the price of rails with the year. Also the nature of

the function is such that it is defined only

for isolated values of x.

Ex. 2. As a second example we take the

law that the postage on each ounce or frac-

tion of an ounce of first-class mail matter is

two cents. The postage is then a known
function of the weight. Denoting each ounce

of weight by one unit of x, and each two

cents of postage by one unit of ?/, we have

a series of straight lines (fig. 19) parallel

to the axis of x, representing corresponding

values of weight and postage. Here the function is defined by United

States law for all positive values of x, but it cannot be expressed in

$kQ

$30

Sjd

$10
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elementary mathematical symbols. A peculiarity of the graph is the series

of breaks. The lines are not connected, but all points of each line repre-

sent corresponding values of x and y.

Ex. 3. As a third example, differing in type from each of the preceding,

let us take the following. While it is known that there is some physical

law connecting the pressure of saturated steam with its temperature, so

that to every temperature there is some

corresponding pressure, this law has not

yet been formulated mathematically.

Nevertheless, knowing some correspond-

ing values of temperature and pressure,

we can construct a curve that is of con-

siderable value. In the table below, the

temperatures are in degrees centigrade

and the pressures are in millimeters

of mercury.

Temperature
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and the corresponding temperature determined. It may be added that

the more closely together the tabulated values are taken, the better

the approximation from the curve; but the curve can never be exact

at all points.

Ex. 4. As a final example, we will take the law of Boyle and Mariotte

for perfect gases; namely, at a constant temperature the volume of a

definite quantity of gas is inversely proportional to its pressure. It follows

that if we represent the pressure by

x and the corresponding volume by //,

then )/ — -, where k is a constant
x

and x and y are positive variables.

A curve (fig. 21) in the first quad-

rant, the coordinates of every point

of which satisfy this equation, repre-

sents the comparative changes in

pressure and volume, showing that

as the pressure increases by a cer-

tain amount the volume is decreased

more or less, according to the amount

of .pressure previously exerted.

This example differs from the

1
(receding in that the law of the

function is fully known and can be expressed in a mathematical

formula. Consequently we may find as many points on the curve as

we please, and may therefore construct the curve to any required

degree of accuracy.

9. Functional notation. When y is a function of x it is cus-

tomary to express this by the notation

y =/0>

Then the particular value of the function obtained by giving x

a definite value a is written /(«). For example, if

Fig. 21

f(p) 3.c
2+ l,

then /(2)=23+3.22+l=21,

/(0)=08+3.02+l= l,

/(_3) = (-3)»+3(-3)
9+ l = l,

/0)=a8+3a2+l.
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If more than one function occurs in a problem, one may be

expressed as /(a;), another as F(x), another as </>(.r), and so on.

It is also often convenient in practice to represent different

functions by the symbols /x(«), f.2(*), /3(X)> ete -

Similarly, a function of two or more variables may be ex-

pressed by the symbol f(x, y). Then /(a, 6) represents the

result of placing x—a and y—b in the function. Thus, if

f(x, y) = a-
2 +3.///-4//

J

,

/(a, J)=aa+3a*-46a
.

PROBLEMS

1. Find the perimeter of the triangle the vertices of which are

(3, 4), (- 2, 4), (2, 2).

2. Find the perimeter of the quadrilateral the vertices of which

are (2,1), (-2, 8), (-6, 5), (-2, -2).

3. Prove that the triangle the vertices of which arc (— 3, — 2),

(1, 4), (— 5, 0) is isosceles.

4. Prove that the triangle the vertices of which are (— 1, 1)
;

(1, 3), (- V3, 2 + V3) is equilateral.

5. Prove that the quadrilateral of which the vertices are (1, 3),

(3, 6), (0, 5), (- 2, 2) is a parallelogram.

6. Prove that the triangle (1, 2), (3, 4), (- 1, 4) is a right

triangle.

7. Prove that the triangle the vertices of which are (2, 3),

(_2, 5), (-1, -3) is a right, triangle.

8. Prove that (8, 0), (0, - 6), (7, - 7), (1, 1) are points of a

circle the center of which is (4, —3). What is its radius?

9. Find a point equidistant from (0, 0), (1, 0), and (0, 2).

10. Find a point equidistant from the points (—4, 3), (4, 2), and

(1,-1)-

11. Find a point equidistant from the points (1, 3), (0, 6), and

(- -*, 1).

12. Find the center of a circle passing through the points (0, 0),

(4, 2), and (6, 4).

13. Find a point on the axis of x which is equidistant from (0, 5)

and (4, 2).
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14. Find the points which are 5 units distant from (1, 3) and 4

units distant from the axis of y.

15. A point is equally distant from the points (3, 5) and (— 2, 4),

and its distance from OY is twice its distance from OX. Find its

coordinates.

16. Find the slopes of the straight lines determined by the fol-

lowing pairs of points : (1, 2), (— 3, 1) ; (3, — 1), (— 5, — 1) ;

(2, 3), (2, - 5).

17. Find the lengths and the slopes of the sides of a triangle the

vertices of which are (3, 5), (- 3, 2), (5, 2).

18. A straight line is drawn through the point (5, 0), having the

slope of the straight line determined by the points (— 1, 2) and

(4, — 2). Where will the first straight line intersect the axis OY?

19. One straight line with slope — \ passes through (2, 0), and a

second straight line with slope 1 passes through (— 2, 0). Where
do these two lines intersect ?

20. The center of a circle with radius 5 is at the point (1, 1).

Find the ends of the diameter of which the slope is J.

21. Two straight lines are drawn from (2, 3) to the axis OX. If

their slopes are respectively ^ and — 2, prove that they are the

sides of a right triangle the hypotenuse of which is on OX.

22. Find the coordinates of a point P on the straight line deter-

mined by P (- 2, 3) and P (4, 6), where^ = -•
1 1

2 O

23. A point of the straight line joining the points (3, — 1) and

(5, — 5) divides it into segments which are in the ratio 2 : 5. What
are its coordinates ?

24. On the straight line determined by the points ^(4, 6) and

P2
(— 2, — 5) find the point three fourths of the distance from

P
x

to P
2
.

25. Find the points of trisection of the line joining the points

Pj(-3, -7) and P
3 (10, 2).

26. The middle point of a certain line is (— 1, 2), and one end is

the point (2, 5). Find the coordinates of the other end.

27. To what point must the line drawn from (1, —1) to (4, 5) be

extended in the same direction, that its length may be trebled ?
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28. One end of a line is at (2, — 3), and a point one fifth of the

distance to the other end is (1, — 2). Find the coordinates of the

other end.

29. Find the lengths of the medians of the triangle (3, 4),

(-1,1), (0,-3).

30. The vertices of a triangle are ^4(0, 0), B{— 2, 5), and C(4, 3).

Show that the slope of the straight line joining the middle points

of Ali and BC is the same as the slope of AC.

31. Find the slopes of the straight lines drawn from the origin

to the points of trisection of the straight line joining (— 2, 4)

and (4, 7).

32. Given the three points A(— 2, 4), P(4, 2), and C(7, 1) upon

a straight line. Find a fourth point D, such that
'-— = — '-—-•b 1 DC BC

33. If P(x, y) is a point on the straight line determined by
P, P L

y^), such that —— = j > prov

_ ly
r., + l.jr

x _ /,//,_, + /g//l

34. Given four points J\, /'.,, Pp I\. Find the point halfway

between P
1
and P

2 , then the point one third of the distance from

this point to P
g , and finally the point one fourth of the distance

from this point to P
4

. Show that the order in which the points

are taken does not affect the result.

35. Prove analytically that the lines joining the middle points

of the opposite sides of a quadrilateral bisect each other.

36. Prove analytically that in any right triangle the straight line

drawn from the vertex of the right angle to the middle point of the

hypotenuse is equal to half the hypotenuse.

37. Prove analytically that the straight line drawn between two

sides of a triangle so as to cut off the same proportional parts, meas-

ured from their common vertex, is the same proportional part of the

third side.

38. OABC is a trapezoid of which the parallel sides OA and CB
are perpendicular to OC. D is the middle point of AB. Prove

analytically that OD = CD.
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39. Prove analytically that the diagonals of a parallelogram bisect

each other.

40. Prove analytically that if in any triangle a median is drawn

from the vertex to the base, the sum of the squares of the other two

sides is equal to twice the square of half the base plus twice the

square of the median.

41. Prove analytically that the line joining the middle points of

the nonparallel sides of a trapezoid is one half the sum of the

parallel sides.

42. Prove analytically that if two medians of a triangle are equal,

the triangle is isosceles.

43. Show that the sum of the squares on the four sides of any

plane quadrilateral is equal to the sum of the squares on the diagonals

together with four times the square on the line joining the middle

points of the diagonals.

44. The following table gives to the nearest million the num-

ber of tons of pig iron produced in the United States for the years

indicated. Eepresent the table by a graph.

1007
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46. The average yearly precipitation at the different meteoro-

logical stations of one of the states for the years indicated was as

follows. Represent the table by a graph.

1905
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51. A varying load, expressed in pounds per square inch of cross

section, was applied to the end of a concrete block originally 5 in. tall,

and the corresponding compression was measured in inches, with the

results expressed in the following table. Illustrate the test graphically.

Load
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63. If /(a-) =
jA ~

a

(7" + '

, prove that/(- x) =/(*).
a. -j- A

64. If /(a:) = xb + 5 a;
3 - 9 x, prove that /(—«) = - /(a;).

65. If /(a-) = x2 + 2 aa: - a2
,
prove that /(«) +/(- a) = 0.

66. Iff(x) = (x -
^)

(x2 - |) , prove that /(a) -/(£)

67. If /(a-) = |rff > prove that /(«.) . /(- a) = 1.

68. If/Car) =
*4 +g*'+5g + l

> prove that /(a-) =/(i)-

69

.

If fjx) = xz+ a* and f%(x) = 2 ax, prove that /, (a)- «/,(«)= 0.

70. Iffx
(x) = Va;2 - 4 and f2

(x) = Vz2 + 4, prove that

/.(•+D+/.(—
D-*»

71. H/.(a:)=-\/- + \2 a=d /,(*)= \~ - "\F> P'«™ that

[/1w]2
-[/,(-'-)]

2 =[/
1
(")]

2
-

72. If /(a-) = 2y + 1
, prove that /[/(.r)] = a-.

73. If /(a-, y)= x2 + // - 5, find /(0, 0), /(l, 0),/(0, 1),/(1, 2)

74. If/(.r, y)=^iy, prove that /(a, &)= -/(&, a).
x

i)

75. If /^aj, y) = x + ij and f,(x, y) = x - y, prove that

76. Iff^ V)=^ + l
and f%{x, y)= ^ + £ , prove that

'

./jr. //) = [/;<,-, y)]
2 - 2.

77. If /^aj, y) = a; + 3 y and /2(a;, y) = 3 a: + 9 //,
prove that

xA(x,y)+uf>(*,y)=[fi(*>y)T'



CHAPTER II

GRAPHS OF ALGEBRAIC FUNCTIONS

10. Equation and graph. If f(x) is any function, and we place

*=/(*).

we may, as already noted, construct a curve which is the graph of

the function. The relation between this curve and the equation

y =f(x) is such that all points the coordinates of which satisfy the

equation lie on the curve; and conversely, if a point lies on the

curve, its coordinates satisfy the equation.

The curve is said to be represented by the equation, and

the equation is called the equation of the curve. The curve

is also called the locus of the equation. Its use is twofold

:

on the one hand, we may study a function by means of the

appearance and the properties of the curve ; and on the other

hand, we may study the geometric properties of a curve by

means of its equation. Both methods will be illustrated in

the following pages.

Similarly, any equation in x and y expressed by

represents a curve which is the locus of the equation. To
construct this curve we have to find enough points whose

coordinates satisfy the equation to outline the curve. This

may be done by assuming at pleasure values of x, substituting

these values in the equation, and solving for the corresponding

values of y. Before this computation is carried out, however,

it is wise to endeavor to obtain some idea of the shape of the

curve. The computation is then made more systematic, or in

some cases the curve may often be sketched free-hand with

sufficient accuracy.

20
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The following plan of work is accordingly suggested:

1. Find the points in which the curve intercepts the coordi-

nate axes.

2. Find if the curve has symmetry with respect to either of

the coordinate axes or to any other line.

3. Fhid if any values of one variable are impossible, since

they make the other variable imaginary.

4. Find the values of one variable which make the other

infinite.

Each of the above suggestions is illustrated in one of the

following articles

:

11. Intercepts. The curve will have a point on the axis

of x when y = and will have a point on the axis of y
when x = 0. Hence we may find the intercepts on one of the

coordinate axes by placing the other

coordinate equal to zero and solving the

resulting equation.

Ex. 1. y = .5 (./• + 2) (.-• + ..-,) (.,• - 2).

If y = 0, x= — 2 or —.5 or 2, and there are

three points of the curve mi the axis of x.

If x — 0, y=—\, and there is one intercept

on the axis of //.

If x<— 2, all three factors are negative;

therefore y < 0, and the corresponding part of

the curve lies below the axis of x. If — 2 < x

<— .5, the first factor is positive and the other

two are negative; therefore y > 0, and the

corresponding part, of the curve lies above the

axis of x. If — .5 < x < 2, the first two factors

are positive and the third is negative; therefore

y<0, and the corresponding part of the curve lies below the axis of x.

Finally, if x > 2, all the factors are positive; therefore //><», and the

corresponding part of the curve lies above the axis of x.

Assuming values of X and finding the corresponding values of y, we plot

the curve as represented in fig. 22.

Ex. 2. y = .5 (x + 2.5) (x - l) 2
.

If y = 0, x =— 2.5 or 1, and there are two points of the curve on the

axis of x.

If x = 0, y = 1.25, and there is one intercept on the axis of ?/.

Fig. 22
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If x < — 2.5, the first factor is negative and the second factor is

positive ;
therefore y < 0, and the corresponding part of the curve lies

below the axis of x. If — 2.5 < x < 1, both factors are positive ; therefore

y > 0, and the corresponding part of the curve

lies above the axis of x. Finally, if x > 1, we
have the same result as when — 2.5 < x < 1, and

the curve does not cross the axis of x at the

point x = 1 but is tangent to it.

Assuming values of x and finding the corre-

sponding values of y, we plot the curve as repre-

sented in fig. 23.

Since it will be shown in § 31 that an

equation of the first degree in x and ?/,

Ax + By+ C=Q, Fig. 23

always represents a straight line, and since a straight line is

determined by two points, it is generally sufficient in plotting

an equation of the first degree to find the intercepts on the

two axes and draw a straight line through the two points thus

determined. The only exception is when the straight line passes

tlrrough the origin, in which case some point of the straight

line other than the origin must be found by trial.

Ex. 3. Plot the line 3a; — 5y + 12 = 0. Placing y = 0, we find x = — 4.

Placing x = 0, we find y = 2f. We lay off OL = - 4, OK = 2|, and draw a

straight line through L and K (fig. 24).

Fig. 24 Fig. 25

Ex. 4. Plot the line 3 x — 5 y = 0. Here, if x = 0, y - 0. If we place

= 1, we find y = f. The line is drawn through (0, 0) and (1, f) (fig. 25).
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12. Symmetry and impossible values. A curve is symmetri-

cal with respect to the axis of x when to each value of x

in its equation correspond two values of y, equal in magni-

tude and opposite in sign. This occurs in the simplest manner

when y is equal to plus or minus the square root of a func-

tion of x. Any value of x which makes the function under

the radical sign positive gives two points of the curve equi-

distant from the .r-axis. Values of x which make the function

under the radical sign negative make y imaginary and give

no points of the curve. These values of x we call impossible

values.

Similar remarks hold for symmetry with respect to the axis

of y. How symmetry with respect to other lines may sometimes

be determined is shown by Ex. 5.

Ex.1. y=± V(x + 2) (x - 1) (x - 5).

If x=— 2, 1, or 5, y = 0, and the graph intersects the axis of X at

three points.

The lines x=— 2, x — 1, and x = 5 divide the plane (fig. 26) into four

sections.

If x < — 2, all three factors of the

product are negative; hence the radi-

cal is imaginary and there can be DO

part of the graph in the correspond-

ing section of the plane. If — 2<x<l,
the first factor is positive and the

other two are negative; hence the

radical is real and there is a pari of

the graph in the corresponding section

of the plane. If 1 < x < .">, the first

two factors are positive and the third

is negative; hence the radical is

imaginary and there can be no part

of the graph in the corresponding'

section of the plane. Finally, if

x > 5, all three factors are positive

;

hence the radical is real and there

is a part of the graph in the corre-

sponding section of the plane.

Therefore the graph consists of two separate parts and is seen (fig. 2G)

to consist of a closed loop and a branch of infinite length.
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Ex. 2. y = ± V(jc + 2) (a; - l)8.

This will be written as

i/ = ±(x-l)Vx + 2.

The line x = — 2 divides the plane (fig. 27)

into two sections.

Proceeding as in the previous example, we

find the radical to be real if x > — 2 and

imaginary if x < — 2. Therefore there is a

part of the graph to the right of the line

x = — 2, but there can be no part of the

graph to the left of that line unless x can

have a value that makes the coefficient of the

radical zero; and this coefficient is zero only

when x equals unity. Hence all of the graph lies to the right of the

line x = — 2, as shown in fig. 27.

To every value of x correspond two values of y which are in general

distinct but become equal when x = 1. Hence the curve crosses itself

when x = 1.

Comparing this example with Ex. 1, we see that by changing the

factor x — 5 to x — 1 we have joined the infinite branch and the loop,

making a continuous curve crossing itself at the point (1, 0).

Fig. 27

Ex. 3, y = ±V(x + 2)
2 (x- l)

= ±(x + 2)Vx-l.

The line x = 1 divides the plane (fig. 28) into

two sections.

If x > 1, the radical is real and there is a

part of the graph in the corresponding sec-

tion of the plane. If x < 1, the radical is

imaginary and there will be no points of the

graph excel >t Ior sucn values of x as make

the coefficient of the radical zero. There is

but one such value, — 2, and therefore there

is but one point of the graph, (— 2, 0), to

the left of the line x = 1. The graph con-

sists, then, of the isolated point A and the

infinite branch (fig. 28).

Comparing this example also with Ex. 1,

we see that by changing the factor x — 5 to

x + 2 we have reduced the loop to a single

point, leaving the infinite branch as such.
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Ex.4. y = ±V-(x + 4:)(x + 2)
2 (x-fy

= ± (x + 2) V-(a; + 4)(x-4).

The lines x = — 4 and x = 4 divide the plane

(fig. 29) into three sections.

If — 4 < x < 4, the radical is real and there is a

part of the graph in the corresponding portion of

the plane. If x<— 4 or x > 4, the radical is imagi-

nary; and since in the corresponding sections there

is no value of x which "makes x + 2 zero, there can

be no part of the graph in those sections. It is

represented in fig. 29.

Ex. 5. 2 x" + f + 3 x - 4 y - 5 = 0.

Solving fur y, we have

2 ±y/~.y 3 x + 9,
Fig. 29

or, after the expression under the

radical sign has been factored,

y = 2±V-2(*-|)(* + 8>

The lines x = — 3 and x = •?, divide

the plane (fig. 30) into three sections,

and proceeding as before, we find that

the curve is entirely in the middle

section (that is, when — 3 <x < §)

and that the line y — 2 is an axis of

symmetry.

If now we should solve for X in

terms of ?/, we should find another

axis of symmetry, a? = — |, and that

the curve is bounded by the lines

y = — 1.2 and y = 5.2.

ii
! / In
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This is expressed concisely by the formula

Other important formulas involving infinity

GO X G = 00,

which may be explained in a similar manner. For example, to

c c
obtain the meaning of — , we may write - and then allow x to

oo x

increase indefinitely. It is obvious that the quotient decreases in

numerical value and may be made as small as we please by tak-

ing x large enough. This is the meaning of the formula — = 0.
00

It is evident that y is real for all values of x ; also, if x < 2, y is nega-

y istive, and if x > 2, y is positive. Moreover, as x increases toward

negative and becomes indefinitely great ; while as x decreases toward 2, y is

positive and becomes indefinitely great. We
can accordingly assign all values to x except 2.

The curve is represented in fig. 31.

It is seen that the nearer to 2 the value

assigned to x, the nearer the corresponding

point of the curve to the line x = 2. In fact,

we can make this distance as small as we
please by choosing an appropriate value for x.

At the same time the point recedes indefi-

nitely from OX along the curve.

Now, token a straight line has such a position

with respect to a curve that as the two are

indefinitely prolonged the distance between them

approaches zero as a limit, the straight line is

called an asymptote of the curve.

It follows from the above definition that the line x = 2 and also the

line y = are asymptotes of this curve. In this example it is to be noted

that the asymptote x = 2 is determined by the value of x which makes
the function infinite.

It is clear that all equations of the type

1

represent curves of the same general shape as that plotted in fig. 31.
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Ex. 2.

+ 2

If x 2 or if x

is infinite; hence these two

values may not be assigned

to x, all other values, however,

being possible. The curve is

represented in fig. 32.

By a discussion similar

to that of Ex. 1 it may be

proved that the lines x = — 2

and x — 2, which correspond

to the values of x which make
the function infinite, and also

the line y = 0, are asymptotes

of the curve.

This curve is a special case

of that represented by

1

" c>
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Ex. 4. f
1

a-
3'

We solve for y, forming' the equation y = ± The line x =

(fig. 34) divides the plane into two sections, and it is evident that there

can be no part of the curve in

that section for which x < 3.

Moreover, this line x = 3 is an

asymptote, as in the preceding

examples. The curve, which is a

special case of that represented by

1

x — a

is represented in fig. 34. It is to

be noted that the axis of x also

is an asymptote.

f

Ex. 5. y =
a;
2 + 1

To plot this curve we write the equation in the equivalent fori:

, = , + 1. (1)

It is evident that all values except may be assigned to x, that value

being excluded as it makes y infinite. Let us also draw the line

y = x, (2)

a straight line passing through the origin

and bisecting the first and the third

quadrants.

Comparing equations (1) and (2), we
see that if any value x

x
is assigned to x,

the corresponding ordinates of (1) and (2)

a?i + and and that

Moreover, the numerical

are respectively

they differ by — •

value of this difference decreases as greater

numerical values are assigned to xv and

it can be made less than any assigned

quantity however small by taking x
1 Fig. 35

sufficiently great. It follows that the

line y = x is an asymptote of the curve. It is also evident that the line

x = 0, determined by the value of x which makes the function infinite,

is an asymptote. The curve is represented in fig. 35.
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14. Intersection of graphs. Let

/„<>,£>=0 (1)

and /„(«,y)=0 (2)

be the equations of two curves. It is evident that any point

common to the two curves will have coordinates satisfying both

(1) and (2), and that, conversely, any values of x and y which

satisfy both (1) and (2) are coordinates of a point common to

the two curves. Hence, to find the points of intersection of two

curves, solve their equations simultaneous///.

The simplest case which can occur is that where each

equation is of the first degree and hence (§ 31) represents

a straight line. In general there is a single solution, which

locates the single point of intersection of the two straight

lines. If no solution can be found, it is evident that the lines

are parallel.

Other important cases are the two following:

Case I. f(x, y) = and fn
(x, y) = 0. Let

/1(^^)= ' (1)

/„O>30=0, (2)

be a linear equation and an equation of the nth degree, where

n > 1. The degree of a curve is defined as equal to the degree

of its equation. Accordingly this problem is to find the points

of intersection of a straight line and a curve of the rath degree,

and the method of solution is as follows:

Solve (1) for either x or y and substitute the result in (2).

If, for example, we solve (1) for ?/, the result of substituting

this value in (2) will in general be an equation of the rath

degree in x, the real roots of which are the abscissas of the

required points of intersection. The ordinates of the points of

intersection are now found by substituting in succession in (1)

the values of x which have been found.

If two roots x
1
and x

2
of the equation in x are equal, the cor-

responding ordinates are equal and the two points coincide.
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We may regard this case as a limiting case when the position

of the curves is changed so as to make x
x
and x

2
approach each

other ; that is, so as to make the points of intersection of the

straight line and the curve approach each other along the

curve. Accordingly the straight line represented by equation

(1) is, by definition, tangent to the curve represented by equa-

tion (2). In general the tangent line simply touches the

curve, without cutting it, as in the case of the circle.

Ex. 1.
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Ex. 3. Find the points of

intersection of

3x-2v/-5 =

and x2 — 4 y = 0.

(1)

(2)

Proceeding as in the two

previous examples, we obtain

x2 - 6 x + 10 = 0, the roots of

which are 3 ±V— 1. Hence

the straight line does not

intersect the curve (fig. 38).

The corresponding values of

y are 2 ± % V^l.

Ex. 4. Find the points of

intersection of

y = 2x (1)

and y
2 = x(x-Z) 2

. (2)

Substituting the value of y from (1) in (2),

we have
ar[(x-3)a-4z] = 0,

or x[x2 -10x + !)] = 0.

Its roots are 0, 1, and 9. The
corresponding values <>f y are

found from (1) to be 0, 2,

and 18. Therefore the points

of intersection are (0, 0),

(1, 2), and (9, 18) (fig. 39).

Ex. 5. Find the points of

intersection of

Fig. 40

y = 3 x + 2 (1)

and y = xs
. (2)

Substituting in (2), we have

Xs - 3 x - 2 = 0,

or (.r-2)(x + l) 2 = 0.

Its roots are 2, —1, — 1. The corresponding values

of y, found from (1), are 8, — 1, — 1. Therefore the

points of intersection are (2, 8) and (— 1, — 1), the

latter being a point of tangency (fig. 10).

Fig. 39
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12).

(1)

(2)

Ex. 6. Find the points of intersection of

2x + y-4 =

and if- — x (a?

After substitution we have x3— 4 x2 + 4 x — 16 = 0, or (x — 4) (x2 + 4) = 0,

the roots of which are 4 and ± 2 V— 1. The corresponding values of y,

found from (1), are - 4 and 4 =F 4 V^. The

only real solution of equations (1) and (2)

being x — 4 and y = — 4, the straight line

and the curve intersect in the single point

(4, - 4) (fig. 41).

Case II. fm (x, y)= and fn (x, z/)= 0.

Let /m O, #) = (1)

be an equation of the with degree, and

/„£*, y) = (2)

be an equation of the nth. degree, where

m and n are both greater than unity.

The method is the same as in the preceding case ; that is,

the elimination of either x or y, the solution of the resulting

equation, and the determination of the corresponding values

of the unknown quantity eliminated. The equation resulting

from the elimination is in general of degree 7nn, and the

number of simultaneous solutions of the original equations

is mn. If all these solutions are real and distinct, the corre-

sponding curves intersect at mn points. If, however, any of

these solutions are imaginary, or are alike if real, the correspond-

ing curves will intersect at a number of points less than mn.

Hence two curves of degrees m and n respectively can intersect at

mn points and no more.

Tig. 41

and

Ex. 7. Find the points of intersection of

=

= 0.

y

x2 + y"

_ o (1)

(2)

Subtracting (1) from (2), we eliminate y, thereby obtaining the equa-

tion x2 + 2 x — 8 = 0, the roots of which are — 4 and 2. Substituting 2
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anrl _ 4 in either (1) or (2), we find the corresponding values of y to be

± 2 and ± 2 V— 2. The real solutions of the equations are accordingly

x = 2, y = ± 2, and the corresponding

curves intersect at the points (2, 2)

and (2, - 2) (fig. 42).

From the figure it is also evident

that the value — 4 for x must make y

imaginary, as both curves lie entirely

to the right of the line x = — 4.

Ex. 8. Find the points of intersec-

tion of

and

3 y

3 a:

(1)

y* - 6 x = u. (2)

Substituting in (2) the value of y

from (1), we haw x4 - 27j; = 0. This

equation may be written

s(z-3)(x* + 8x + 9)' = 0,

the roots of which are 0, 3, and — V-3

Fig. 42

Substituting these values

of x in (1), we find the corresponding values of y to be 0, :'>. and

3T3V- :$

Therefore the real solutions of the ationa are x = 0,

y = and x= 3, y= ''>. If we had

substituted the values of x in (2),

we should have at first seemed to

find an additional real solution,

y =— 3 when a: = :>. But — 3 for

y makes x imaginary in (1 ), as no

part of (1) is below the axis of x.

Geometrically, the line x = -\

intersects the curves (1) and (2)

in a common point and also

intersects (2) in another point,

Therefore the only real solutions

of these equations are the ones

noted above, and the correspond-

ing curves intersect at the two

points (0, 0) and (3, 3) (fig. 43).

We see, moreover, that any results found must he tested by substitution in both

of the original equations.

The remaining two solutions of these equations, found by letting

- 3 ± 3 V^3
x = > are imaginary.
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Ex. 9. Find the points of intersection of

2 x2 + 3 y* = 35 (1)

and xy = 6. (2)

Since these equations are homogeneous quadratic equations, we place

y = mx (3)

and substitute for y in both (1) and (2). The results are 2 a;
2 + 3 ra2x2 = 35

and mx2 = 6, whence
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f(x^) and /(#2) are of opposite algebraic sign, the graph is on

one side of the axis when x = x^ and on the other side when
x = x

2
. Therefore it must have crossed the axis an odd number

of times between the points x = x
x
and x = x

2
. Of course it may

have touched the axis at any number of intermediate points.

Now if f(x) has a factor of the form (x— a~)
k

, the curve y=f(x)
crosses the axis of x at the point x = a when k is odd, and

touches the axis of x when k is even. In each case the equa-

tion f(x) = is said to have k equal roots, x = a. Since then a

point of crossing corresponds to an odd number of equal roots

of an equation and a point of touching corresponds to an even

number of equal roots, it follows that the equation f(x) =
has an odd number of real roots between x

x
and #

2
, if /(',)

and f(x^) have opposite signs.

The above gives a ready means of locating the real roots of

an equation in the form/(.r)= 0, for we have only to find two

values of #, as x
x
and x

2
, for which f(x) has different signs. We

then know that the equation has an odd number of real roots

between these values, and the nearer together x and x , the more

nearly do we know the values of the intermediate roots. In locat-

ing the roots in this manner it is not necessary to construct the

corresponding graph, though it may be helpful.

Ex. Find a real root of the equation i8 + 2/- 17 = 0, accurate to two

decimal places.

Denoting xs + 2 x — 17 by /"(•>') al "^ assigning successive integral values

to x, we nnd/(2)= — 5 and/(3) = lG. Hence then' is a real root of»the

equation between 2 and 3.

We now assign values to x between 2 and 3, at intervals of one tenth,

as 2.1, 2.2, 2.3, etc., and we begin with the values nearer 2, since; /(2) is

nearer zero than is /(3). Proceeding in this way we find/(2.3) =— .233

and/(2.4) = 1.624 ; hence the root is between 2.3 and 2.1.

Now, assigning values to x between 'J.:; and 2.4 at intervals of one hun-

dredth, we find /(2.31)=— .054 and /(2.32) = .127 ; hence the root is

between 2.31 and 2.32.

To determine the last decimal place accurately, we let x = 2.315 and

find /(2.315) = .037. Hence the root is between 2.31 and 2.315 and is

2.31, accurate to two decimal places.

If /(2.315) had been negative, we should have known the root to be

between 2.315 and 2.32 and to be 2.32, accurate to two decimal places.



36 GRAPHS OF ALGEBRAIC FUNCTIONS

PROBLEMS

Plot the graphs of the following equations:

1. 3* + 4// -7=0. 18. //=(.r + l)(.r-4)(.x-3)2
.

2. 2x-5y+G = 0. 19. i/=(x-l)(x + 3)(x*+ 2).

3. a-4-7y = 0. 20. y=(x-l) 2(2x2 4-6a:+ 5).

4. 4:r — 3 = 0. 21. y
2 = (x - 2) (a;

2 - 9).

5. 3 y + 8 = 0. 22. y
2 = {x + 3)(6 a - a:

2 - 8).

6. y = 4a2 +4a-3. 23. 9 y
2 = (x + 2) (2 x - If.

7. y = 4 sr - 2 x + 3. 24. 4 y
2 = a;

3 + 4 a:
2

.

8. y = 6 - x - x2
. 25.9 // = (a2 -

1) (4 x
2 - 25).

9. 7/ = - 3 x2 + 4 x. 26. y
2 = (1 - a2

) (4 a;
2 - 25).

10. y = (a4-2)(.r-l)(.r-3). 27. 4 y
2 = 9 xi - a6

.

11. y = (
ft

-2 -
1) (2.x + 9). 28. y

2 = (2a + 3)(4a2 -9).

12. y = a3 + 4 a-
2

. 29. y
2 = (x - 2)

2
(3 - 2 a;).

13. y = (x-3)(2x + lf. 30. y
2 =(2 + a-a2

)fa + 2)
2

.

14. y = a;
8 -8a;a +15aj. 31. f = x2

(x - 5)
a
(2 x - 3).

15. y = 2 ft
3 +3 a2 -14 «. 32. 4y2 =(a--l) 2 (4a2 -4a-3).

16. y = a8 - a2- 4 a; + 4. 33. f = a (as + 2)
2(x + 3)

2
.

17. y = xs - a 2
x. 34. y

2 = (2 a; - 3) (a 2 + 1).

35. y
2 = (x - 1) (2 x - l)

2
(.r

2
-f 3 x + 3).

36. a-
2 4- y

2 — 4 a; 4- 6 y + 9 = 0.

37. K2_4y_|_4y2 = 0. 48. (y - a-)
2 = 16 - a-

2
.

38. ^-y2- 2a + 4 y- 4 = 0.
'

49. (x + y)
a= y

2
(y + 1).

39. 9a2+ 36y2-96y+ 28= 0. 50. a2-4ay -5y2 + 9 y
4 = 0.

40. a3+ 3 a;
2 - y

2 - a; - 3 = 0.

41. y
3 = a(a2 -9).

42. y
3 = a2 (a 4- 3).

43. (y + l) 3 =(;*4-l)(a2 -9).

44. a-
2 —if {% + y) = 0.

45. x2 — if 4- if 4- 2 y = 0.

46. (y + 3)
2 = x (x - 2)

2
.

47. (y-2)a= (x-2)2(a;-5). 55. y
2 (a2 + a2

) = a2 (a2

51.
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56. aY + b
2x4 = a 2

b
2x2

. m . _ , 1J 67. 4y = 2» + -

—

57. 16aY=Px3(a2 —2ax). 2x

58. xy = 16. 68. y = x + — •

59. xy = — 16. 3

61. fr +iy.-iy TO. ,-«> + §.

^^F+V'^W
63. jf= -j

x2 — 5 a; — 6

x-1

72. xy2 = 4a2 (2a-x).

*3

J 2 a — x
2 _ X ~ X

' * - (x +l)(x + 3)'
?4 _ x2 f„+x)

65. x2

y
2 + 25 = 9/

: BW.x(x+l) 75. y
9
(a5

a + a9)= a«a

' a -

1

76. I/O-' + a*) = a-(u - x).

Find the points of intersection of the following pairs of loci

:

77. 3 x _ j, _ 2 = 0, 5 x - 3 // + 2 = 0.

78. 6 x - 24 y +19 = 0, 12'x + 3y + 4 = 0.

79. 2 x - y- 2 = 0, Xs + y
2 = 25.

80. 2 x - 3 y + 9 = 0, ./•- + y* + 2x + 4 y -8 = 0.

81. 4 x + 5 y - 20 = 0, x- + y
2 - 2x - 3 = 0.

82. 2y + 3x-5= 0, Xs - 2x - 2y + 4 = 0.

83. 3 x - 2 y + G = 0, if + 4 y + x + 7 = 0.

84. x - 4 y + 1 = 0, 4 y
2 + 4 y - 4 x + 5 = 0.

85. 3 x + 2 y - 7 = 0, 5 x2 + 4 y* = 21.

86. 7x - 2 y + 4 = 0, 21 x9 - 4 //- - 12 = 0.

87. x - 2 y = 0, xV + 30 = 25 y
2

.

88. 2x-y-l=0, 4y2 =(x + 2)(2x-l)2
.

89. x + 2 y - 2 = 0, y + x2
// = 1.

90. x2 + y
2 = 25, 16 x2 + 27 y

2 = 576.

91. Xs + y
2 = 12, x2 - 8 y + 8 = 0.

4xy=l, 2x2 + 2y2 = l.92
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93. 32//
2 -9:z8 = 0, %f-§x = 0.

94. 2y* = 3 -x, y
2 = T7^—

95. x2 - f = 0, x2 + f - 4 y - 4 = 0.

96. 7^ = 25-5^^-2 =^.
97. jf-2^, 16(v/ -2) = (

a; -l) 3
.

Find the real roots, accurate to two decimal places, of the

following equations :

98. xs + 2x- 6 = 0. 101. x* - 4x3 4- 4 = 0.

99. a;
3 + x + 11 = 0. 102. x* - 3 a;

a + 6 x - 11 = 0.

100. a;
4 - 11 x + 5 = 0. 103. x3 + 3 ar 4- 4 a; + 7 = 0.



CHAPTER III

CHANGE OF COORDINATE AXES

16. Introduction. So far we have dealt with the coordinates

of any point in the plane on the supposition that the axes of coor-

dinates are fixed, and therefore to a given point corresponds one,

and only one, pair of coordinates, and, conversely, to any pair of

coordinates corresponds one, and only one, point. But it is some-

times advantageous to change the position of the axes, that is, to

make a transformation of coordinates, as it is called. In such a

case we need to know the relations between the coordinates of a

point with respect to one set of axes and the coordinates of the

same point with respect to a second set of axes.

The equations expressing these relations are called formulas

of transformation. It must be borne in mind that a trans-

formation of coordinates never alters the position of the point

in the plane, the coordinates alone being changed because of

the new standards of reference

adopted.

17. Change of origin. In this

case a new origin is chosen, but

the new axes are respectively

parallel to the original axes.

Let OX and Y (fig. 40) be the

original axes, and O'X' and O'Y'

the new axes intersecting at 0',

the coordinates of 0' with respect

to the original axes being x
o
and yQ.

Let P be any point in the plane,

its coordinates being x and y with respect to OX and F, and

x' and y' with respect to O'X' and 0' Y'. Draw PMM' parallel

to OY, intersecting OX and O'X' at M and M' respectively.

39

1
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Then OM= x, MP = y,

0'M' = x', M'P = y',

NO'=x , ON=y .

But OM= NM' = NO' + O'M',

and MP= MM'+ M'P= ON+ M'P.

Therefore x = x + x', y = yo
+ y',

which are the required formulas of transformation.

Ex. 1. The coordinates of a certain point are (3, — 2). What will be

the coordinates of this same point with respect to a new set of axes

parallel respectively to the first set and intersecting at (1, — 1) with

respect to OX and OY1
Here x = 1, y — — 1, x = 3, and y = — 2. Therefore 3 = 1 + x' and

— 2 = — 1 + y', whence x' — 2 and y' = — 1.

Ex. 2. Transform the equation y
1 — 2 y — 3 x — 5 = to a new set of

axes parallel respectively to the original axes and intersecting at the

point (-2, 1).

The formulas of transformation are x = — 2 + x', y = 1 + y'. Therefore

the equation becomes

(1 + y'f - 2 (1 + 30 - 3 (- 2 +O - 5 = 0,

or y'2 - 3 x' = 0.

As no point of the curve has been moved in the plane by this transformation,

the curve has been changed in no way whatever. Its equation is different because

it is referred to new axes.

After the work of transformation has been completed the primes

may be dropped. Accordingly the equation of this example may be

written y
2 — 3 x — 0, or y

2 = 3 x, the new axes being now the only ones

considered.

18. One important use of transformation of coordinates is

the simplification of the equation of a curve. In Ex. 2 of

the last article, for example, the new equation y
1 = 3 x is

simpler than the original equation. It is obvious, however,

that the position of the new origin is of fundamental im-

portance in thus simplifying the equation, and we shall now
solve examples illustrating methods of determining the new
origin to advantage.
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Ex. 1. Transform the equation y
2 - 4 y - x3 - 3 x2 — 3 x + 3 = to

new axes parallel respectively to the original axes, so choosing the

origin that there shall be no terms of the first degree in x and y in

the new equation.

The formulas of transformation are

x = x + x' and y = y + y',

where suitable values of x and y are to be determined. The equa-

tion becomes

(i/o + y'f - 4 0/o + y') - (*o + x'Y - 3 (* + *y - 3 (*o + «0 + 3 = °>

or, after expanding and collecting like terms,

y* + (2^-4)/- x' 3 -(3x + 3)x' 2 -(3x 2 + C/ + 3)x'

+ G/o
2 ~ 4

Z/o - *o
8 ~ 3 x

o
- 3 X + 3) = 0.

By the conditions of the problem we are to choose x and ?/„ so that

2# -4 = 0, 3x^ + 0x0+3 = 0,

two equations from which we find x = — 1 and y = 2.

Therefore (— 1, 2) should be chosen as the new origin, and the new
equation is y'- — x' 3 = 0, or y" — x3 after the primes are dropped.

Ex. 2. Transform the equation

10 x2 + 25 if + 04 x - 150 y - 111 =

to new axes parallel respectively to the original axes, so choosing tin-

origin that there shall be no terms of the first degree in x and y in

the new equation.

We may solve this example by the method used in solving Ex. 1, but

since the equation is of the second degree, the following method is very ,

desirable.

Rewriting, we have

16 (x2 + 4 x) + 25 O2 - 6 y) = 111

;

whence 16 (x2 + 4 x + 4) + 25 (y* - 6 y + 9) = 400,

or 10(x + 2)'-+25(?/-3)2 =400.

Placing now x = — 2 + x/

, y = 3 + y',

we have as our new equation 16 x'2 + 25 y'2 = 400,

the new origin of coordinates being at the point (— 2, 3) with respect to

the original axes.
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19. Change of direction of axes.

Case I. Rotation of axes. Let OX and OY (fig. 47) be the

original axes, and OX' and OY' be the new axes, making Z $
with OX and OY respectively. Then Z XOY' = 90° +

<f>
and

ZYOX'= 90°-
(f>.

Let P be any point in the plane,

its coordinates being x and y with

respect to OX and OY, and a/

and y with respect to OX' and

OY'. Then, by construction, OM=x
y

OX=y, OM' = x', and M'P = y'.

Draw OP.

The projection of OP on OX is

OJf, and the projection of the

broken line OM'P on OX is OM' cos <£ + Jf'P cos (90°+ <£), or

OJf' cos </> - M'P sin </>.

Therefore M= OM' cos (/> - M'P sin 0,

by § 2.

In like manner the projection of OP on OY is (9A7", and the

projection of the broken line OM'P on OY is OJf'cos (90°- <£)

+ ilPPcos<£.

Therefore OA7"= OM' sin <£ + M'P cos (/>,

by § 2.

Replacing OJf, 0A", OJf', M'P by their values, we have

x = x' cos
(f>
— y' sin 0,

y = x1 sin <j> + y' cos </>.

Ex. 1. Transform the equation xy = 5 to new axes having the same

origin as the original axes and making an angle of 45° with them.
, ,

Here <j> = 45°, and the formulas of transformation are x =

V
V2

Substituting and simplifying, we have as the new equation x2 — y
1 = 10.

Ex. 2. Transform the equation 34 x1 + 41 y
2 — 24 xy = 100 to new axes

with the same origin as the original axes, so choosing the angle <£ that the

new equation shall have no term in xy.

V2
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The formulas of transformation are

x = x' cos
<f>
— y' sin <£,

y = x' sin <j> + y cos </>,

where
<f>

is to be determined.

Substituting in the equation and collecting like terms, we have

(34 cosa <£ + 41 sin2
<f>
- 24 sin <£ cos (f>)

x2

+ (34 sin2
<f>
+ 41 cos2

<f>
+ 24 sin <£ cos <£) y»

+ (24 sin2 <£ + 14 sin <f>cos<f>- 24 cos2
<£) xy = 100.

By the conditions of the problem we are to choose
<f>

so that

24 sin 2
</> + 14 sin<£ cos </> — 24 cos2

<f>
= 0.

One value of
<f>

satisfying this equation is tan-1 1. Accordingly we sub-

stitute sin <£ = i?- and cos
<f>
= $, and the equation reduces to x1 + 2 y

1 = 4.

Case II. Interchange of axes. If the axes of x and y are simply

interchanged, their directions are changed, and hence such ii trans-

formation is of the type under consideration in this article. Hie

formulas for such a transformation are evidently x — y',y = x'.

Case III. Rotation and interchange of axes. Finally, if the

axes are rotated through an angle
<f>
and then interchanged, the

formulas, being merely a combination of the two already found, are

x = y' cos <£ — x' sin
<f>, y = y' sin </> + x' cos

<f>.

A special case of some importance occurs when
<f>
= 270°. We

have then x = x', y =— y'.

Cases II and III, it should be added, occur much less frequently

than Case I.

If both the origin and the direction of the axes are to be

changed, the processes may evidently be performed successively,

preferably in this order : (1) change of origin
; (2) change of

direction.

20. Oblique coordinates. Up to the present time we have

always constructed the coordinate axes at right angles to each

other. This is not necessary, however, and in some problems,

indeed, it is of advantage to make the axes intersect at some

other angle. Accordingly, in fig. 48, let OX and OY intersect

at some angle to other than 90°.
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We now define x for any point in the plane as the distance

from OF to the point, measured parallel to OX, and y as the

distance from OX to the point, measured parallel to OY. The
algebraic signs are determined accord-

ing to the rules adopted in § 4.

It is immediately evident that the

rectangular coordinates are but a special

case of this new type of coordinates,

called oblique coordinates, since the new
definitions of x and y include those pre-

viously given. In fact, the term Carte-

sian, or rectilinear, coordinates includes

both the rectangular and the oblique.

Oblique coordinates are usually less convenient than rectangu-

lar ones and are very little used in this book. If necessary, the

formulas obtained by using rectangular coordinates can be trans-

formed into similar ones in oblique coordinates by the formulas

of the following article. When no angle is specified the angle

between the axes is understood to be a right angle.

21. Change from rectangular to oblique axes. Let OX and OY
(fig. 49) be the original axes, at right angles to each other, and

OX' and OY' the new Y
axes, making angles

(f>

and
(f>'

respectively with

OX. Then co = $ - <j>.

Let P be any point in

the plane, its rectangular

coordinates being x and

y, and its oblique coordi-

nates being x' and y'.

Draw PM parallel to OY, PM' parallel to OY', M'N parallel

to OY, and RM'N' parallel to OX. Then ZBM'P=<f>'.

But 031= ON+ NM = ON+ M'N' = 031' cos
<f>
+ 31'P cos

<f>',

3IP= 3IN'+N'P= N3f +N'P = 031' sin
(f>
+ 3f'P sin </>'.

Therefore x — x' cos <$> + y' cos </>',

y = x' sin <j> + y' sin
<f>'.

p
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Ex. Transform the equation —-
— "— = 1 to the lines y = ± - x as axes.

«- b- a

Here let <f> = tan-1 (

—

'-), and <£' = tan-1 -- The formulas of trans-
_.. , \ a] a

formation become

0'+ y'), y = ,-—

-

(- x' + /)•
Vo2 + b- Va2 + //-

a 2 + b-
Substituting and simplifying, we have as the new equation xy =—

i 4

Unless b = a, the axes are oblique and w = 2 tan-1 --
a

22. Degree of the transformed equation. In reviewing this

chapter we see that the expressions for the original coordinates in

terms of the new are all of the first degree. Hence the result of

any transformation cannot be of higher degree than the original

equation. On the other hand, the result cannot be of lower

degree than the original equation ; for it is evident that if any

equation is transformed to new axes and then back to the original

axes, it must resume its original form exactly. Hence, it' the

degree had been lowered by the first transformation, it must be

increased to its original value by the second transformation.

But this is impossible, as we have just noted.

It follows that the degree of an equation is unchanged by

any single transformation of coordinates or by any number of

successive transformations. In particular, the proposition that

any equation of the first degree represents a straight line is

true for oblique, as for rectangular, coordinates.

PROBLEMS

1. What are the new coordinates of the points (3, 4), (— 3, 6),

and (4, — 7) if the origin is transferred to the point (2, — 3), the

new axes being parallel to the old ?

2. Transform the equation a-
2 + 9//

2 — 4.z+18?/ + 8 = 0to new

axes parallel to the old axes and meeting at the point (2, — 1).

3. Transform the equation 2x2 + 2?/
2 — 2x -{- 2 >/ — 7=0 to new

axes parallel to the old axes and meeting at the point (^, — £).

4. Transform the equation a-
2 — if + 2x — 3 = to new axes

parallel to the old axes and meeting at the point (— 1, 0).
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5. Transform the equation f - 3 if + 3 x2 + 3y/-fl2*+ll=0
to new axes parallel to the old axes and meeting at the point (— 2, 1).

6. Transform the equation f — 4 a* — 6// + 5 = to new axes

parallel to the old axes, so choosing the new origin that the new
equation shall contain only terms in if and x.

7. Transform the equation x2 + 2x + 4?/ — 3 = to new axes

parallel to the old, so choosing the new origin that the new equation

shall contain only terms in x2 and y.

8. Transform the equation 2 x2 — 4 // + 12 x + 16 y — 7 = to

new axes parallel to the old, so choosing the origin that there shall

be no terms of the first degree in the new equation.

9. Transform the equation 4a;2 + 9 y
2 — Ax +12 y + 4 = to

new axes parallel to the old, so choosing the origin that there

shall be no terms of the first degree in the new equation.

10. Transform the equation xy — 3 y + 2 x — 12 = to new axes

parallel to the old, so choosing the origin that there shall be no terms

of the first degree in the new equation.

11. Transform the equation 6xy — 10.x + 3 y — 19 = to new

axes parallel to the old, so choosing the origin that there shall be

no terms of the first degree in the new equation.

12. Show that any equation of the form xy + ax -4- by -f- c =
can always be reduced to the form xy = k by choosing new axes

parallel to the old, and determine the value of k.

13. Show that the equation y
2

-\- ay + hx -f- c = (b ^= 0) can always

be reduced to the form if + bx = by choosing new axes parallel to

the given ones.

14 . Show that the equation ax2+ by2
-f- ex -\- dy -\-e= 0(a=f=0,b=£0)

can always be put in the form ax2 + by2 = k by choosing new axes

parallel to the old, and determine the value of k.

15. What are the coordinates of the points (0, 2), (2, 0), (2, - 2)

if the axes are rotated through an angle of 60°?

16. What are the coordinates of the points (1, 2), (2, 2), (2, -1)
if the axes are rotated through an angle of 45°?

17. What are the coordinates of the points (1, 2), (—1, —2),

(1, — 2) if the axes are rotated through an acute angle tan-1 !?

18. Transform the equation 2x2
-f 2 y

2 — 3xy — 7= to a new
set of axes by rotating the original axes through an angle of 45°.
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19. Transform the equation 4.r2 + 2 ~v3xy + 2 f — 5 = to a

new set of axes by rotating the original axes through a positive

angle of 30°.

20. Transform the equation 4 .r
2 — 12 xy + 9 f — 14 = to a new

set of axes making a positive angle tan-1 f with the original set.

21. Transform the equation 5 .r
2
-f 4 xy + 8 f — 36 = to a new

set of axes by rotating the original axes through a positive angle

tan-1(— i).

22. Transform the equation 4 x2, + 15 xy — 4 if — 34 = to a new
set of axes making a positive angle tan-1 | with the original axes.

23. Show that the equation x* + f = <r will be unchanged in

form by transformation to any pair of rectangular axes if the origin

is unchanged.

24. Transform the equation x* — f = 49 to new axes bisecting

the angles between the original axes.

25. Transform the equation 5 .,- + 2 xy + 5 if- — 12 = to one

which has no cry-term, by rotating the axes through the proper

angle.

26. Transform the equation C> ./-
-f- 2 I ./// — y

2 — 150 = to one

which has no xy-term, by rotating the axes through the proper

angle.

27. Transform the equal ion 1 6 x* - 2 I xy + 9 //" - 30 x - 40 y =
to one which has no scy-tenn, by rotal ing the axes through the proper

angle.

28. Transform the equation 11 x* -f 2 1 .#•// + 34 f -100.r - 50//

— 100 = to one which has no xy-tevm., by rotating the axes through

the proper angle.

29. Transform the _ equation 1 1 .r- - (') V:'» xy + 5 f + (22 —
12 V3)x -(20 + G V3)y +3-12 V3 = to a new set of axes

making an angle of G0° with the original axes and intersecting at

the point (—1, 2) with respect to the original axes.

30. Transform the equation 4 a-
2 + 25 f = 100 from rectangular

axes to oblique axes with the same origin and making the angles

tan-1 J and tan_1(— f) respectively with OX.

31. Transform the equation 9 x2 — 4 f = 36 from rectangular axes

to oblique axes with the same origin and making the angles tan-1 |

and tan-1(— |) respectively with OX.
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32. Transform the equation 9 x2 — 4 if = 36 from rectangular axes

to oblique axes with the same origin and making the angles tan_1 |
and tan-1 3 respectively with OX.

33. Prove that the formulas for changing from a set of rectangular

axes to a set of oblique axes having the same origin and the same
axis of x are

x = x' + y' cos u>,

y = y' sin w,

where <o is the angle between the oblique axes.

34. By rotating the axes through an angle of 45° and changing

the origin, prove that the equation x 1 + y- = a? can be transformed

into y
2 = V2 ax, and sketch the curve.

35. The equation of the Folium ofDescartes is xB + y
s — 3 axy = 0.

Rotate the axes through an angle of 45° and sketch the curve.



CHAPTER IV

GRAPHS OF TRANSCENDENTAL FUNCTIONS

23. Definition. Any function of x which is not algebraic is called

transcendental. The elementary transcendental functions are the

trigonometric, the inverse trigonometric, the exponential, and the

logarithmic functions, the definitions and the simplest properties

of which are . supposed to be known to the student. In this

chapter we shall discuss the graphs of these functions.

24. Trigonometric functions.

Ex. 1. y = sinx.

The values of y are found from a table of trigonometric functions.

In plotting it is desirable to express x in circular measure; for example,

for the angle 180° we lay off

x = it = :$.141l). When x is a

multiple of it, y — ; when

x is an odd multiple of -,

y = ± 1 ; for other values of x,

y is numerically less than 1.

The graph consists of an

indefinite number of congruent arches, alternately above and below the

axis of x, the width of each arch being it and the height being 1 (fig. 50).

The curve y = sin x may be constructed without the use of tables, by a

method illustrated in fig. 51.

Let P
t
be any point on the circumference of a circle of radius 1

with its center at C, and let AO be a diameter of the circle extended

40
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indefinitely. With a pair of dividers lay off on AO produced a distance

ON
x
equal to the arc OPv This may be done by considering the arc OP

1

as composed of a number of straight lines each of which differs inappre-

ciably from its arc. From JVj draw a line perpendicular to AO, and from

P
x
draw a line parallel to AO. Let these lines intersect in Qv Then

N
1Ql

=M
1
P1

= CP
1
sin OCPv But CP

1
= 1, and the circular measure

of OCP
l

is OP
1
= ONv If, then, we take ON

x
= x, N

1 Q 1
= y, Q1

is a

point of the curve ?/ = sin:r. By varying the position of the point P
l

we may construct as many points of the curve as we wish. The figure

shows the construction of another point Qr

Ex. 2. y — a sin bx.

When a: is a multiple of -i y = 0; when x is an odd multiple of —-,
b ' 2 b

y = ± a ; for all other values of x, y is numerically less than a. The

Y
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Ex. 5. y = sin x + | sin 2 x

The graph is

found by adding

the ordinates of

the two curves

y = sin x and

y -

4- sin 2x

sin x + -jsin 2x
y=sinx

1
l-K, that is, when x — — i where A

-

is any integer. Hence

sin 2 x, as

shown in fig. 53.

Ex. 6. y = si

w = when -

the graph crosses the axis of x at the points 1, h, \, \, £, etc. Between any

consecutive two of these points y varies continuously from to ± 1 and back

to zero. It follows that as

X approaches 0, the corre-

sponding point on the

graph oscillates an infi-

nite number of times

back and forth between

the straight lines y = ±1.

It is therefore physically

impossible to construct

the graph in the neigh-

borhood of the origin.

This is shown in fig. 51 Fig. 54

by the break in the curve.

The value of y can be calculated for any value of x, no matter how

small. For example, if x - — , y = sin— = .9G59. The value of y is

not defined for x = 0, and the function is discontinuous at that point.

Ex. 7. y = tan x.

When x is a multiple of

7r, y = ; when x is an odd

multiple of — » y is infinite,

in the sense of § 13. The
curve has therefore an un-

limited number of asymp-

totes perpendicular to OX,

i
i:

ii

i

i
'

i

!

/' /'

/! /!

/ ! / I
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25. Inverse trigonometric functions. The graphs of the inverse

trigonometric functions are evidently the same as those of the

direct functions but differently placed with reference to the

coordinate axes. It is to be noticed particularly that to any

value of x corresponds an infinite number of values of y.

Ex. l.

From this, x = sin y, and we may plot the graph

by assuming values of y and computing those of x

(fig- 56).

Fig. 56 Fig. 57

Ex. 2. y = tan- 1
:*;.

Then x = tan y, and the graph is as in fig. 57.

These curves show clearly that to any value of x corresponds an infinite

number of values of y.

26. Exponential and logarithmic functions. The equation

y = of

defines y as a continuous function of x, called the exponential func-

tion, such that to any real value of x corresponds one and only

one real positive value of y. A proof of this statement depends

upon higher mathematics, but the student is already familiar with

the methods by which the value of y may be computed for simple

values of x. If x is an integer n, y is determined by raising a to

the nth. power by multiplication. If a; is a positive fraction !-
, y is

the qth. root of the pth power of a. If x is a positive irrational num-
ber, the approximate value of y may be obtained by expressing x



EXPONENTIAL AND LOGARITHMIC FUNCTIONS 53

approximately as a rational number. If x= 0, y= a = 1. Finally,

if x — — ?n, where m is any positive number, y = a~m=— •

Practically, however, the value of ax is most readily obtained

by means of the inverse function, the logarithm; for if

y = ax
,

then x = loga y.

The quantity a is called the base of the system of logarithms

and may be any number except 1.

When a — 10, tables of logarithms are readily accessible. Sup-

pose a is not 10, and let b be such a number that

10"= a;

6 = log
10
a.

y = ax = (10")x = 106*.

that is,

Then we have

Hence

and _ logoff _ logi

b log
10
«

Ex. 1. The graph of y = log(li)x is shown in fig. 58.

It is to be noticed that the curve has the negative portion of the //-axis

for an asymptote and has no points corresponding to negative values of x.

Ex. 2. The graph of y = (1.5)* is shown in fig. 59.

Fig. 58

27. The number e. In the theory and the use of the expo-

nential and the logarithmic functions an important part is

played .by a certain irrational number, commonly denoted by

the letter e. This number is denned by an infinite series, thus:
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It can be shown that this series converges ; that is, that the

greater the number of terms taken the more nearly does their

sum approach a certain number as a limit. Assuming this, we
may compute e to seven decimal places by taking the first

eleven terms. There results

e = 2.7182818....

When y = e
x
, x is called the natural, or Napierian, logarithm

of y. The use of Napierian logarithms in theoretical work gives

simpler formulas than would result from the use of the common
logarithm. Hence in theoretical discussions the expression log x

usually means the Napierian logarithm. On the other hand,

when the chief interest is in calculation of numerical values, as

in the solution of triangles, \ogx usually means log
10
#. In this

book we shall use log x for log
e
x.

Tables of values of log
e
a: and e

x are found in many collections

of tables and may be used in finding the graphs. It is evident,

however, that the graphs

will not differ in general

shape from those in Exs. 1

and 2 of § 26.

In the following exam-

ples we give the graphs

of certain other functions

which involve e and pre-

sent other points of interest.

Ex. 1. y = er<

The curve (fig. 60) is symmetrical with respect

to OY and is always above OX. When x = 0, y = 1.

As x increases numerically, y decreases, approaching

zero. Hence OX is an asymptote.

Fig. 60

Ex. :(e" + e «).

This is the curve (fig. 61) made by a string

held at the ends and allowed to hang freely.

It is called the catenary. Fig. 61
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Ex. 3. y = e-^smbx.

The values of y may be computed by multiplying the ordinates of

the curve y = e-"* by the values of sin bx for the corresponding

abscissas. Since the value of

sin bx oscillates between 1 and — 1,

the values of e~ "* sin bx cannot

exceed those of e_ar. Hence the

graph lies in the portion of the

plane between the curves y = e~"
and y=— e- ax. When x is a multi-

ple of — , y is zero. The graph there-
o

fore crosses the axis of x an infinite

number of times. Fig. G2 shows

the graph when a = 1, b = 2 ir.

Ex. 4. y = ex.

When x approaches zero, being positive,

When x approaches zero, being negative,

y approaches zero ; for example, when
" T o\ (T>

The function is thereforep-1000 — .

increases without limit.

7

= e1000, and when

*
e1000

discontinuous for x = 0.

The line y = 1 is an asymptote (fig. 63), for

as x increases without limit, being positive or

negative, - approaches 0, and y approaches 1.

1 + (i*

As x approaches zero positively, y ap-

proaches zero. As x approaches zero nega-

tively, y approaches 10. As x increases

indefinitely, y approaches 5.

The curve (fig. 6-i) is discontinuous when
x = 0.

PROBLEMS

Plot the graphs of the following equations

Fig.

Pig. 64

1. y = £ sin 2x.

2. 2/ = 3sin^-

4. y = sin( x

5. y = 2s'm3(x — --)•

3. y=s8m[x + 6. y
x-1
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7. y = isin(2aj + 3). / *>
30. y

I. y = cos 3x.

). y = 3 cos -j- 31. y

17. y = sin -— — - sin 7ra:

>(<*-!)30. ?/ = sec (a;
8. y = cos3

i- 31. y = sm *—
10. y = 2 cos 3 (a; + 2).

32 - 2/ = cos^x + 2).

li. y = 2 cos (2*-l).
33> y^^-i^Z".

12. y= versa;. * "+" x

13. y-2 + BnSft
34

' y = ta^>+ 1)-

14. y = 2 — icosa;. 35. y = tan" 1 -——-•

15. y = sin x -f sin 3 a;. 36. y = e
x ~ x

.

16. y = \ sin a* — \ sin 2a\ 37. y = xe~ x
.

irx 1 . 38. y = a^e
-

*.

i

39. y = ice*.

41. y = e
1 -*.

l + x

19. y = 1 + cos x — £ cos 3 x. 40. y = xe x

20. y = sin2 a;.

21. y = sin a;
2
.

1 42. y = e
1^*.

22. y = a; sin-«
a; 43. y = \{f — e

~ x
).

23. y = a;
2 sin-. 44. y = £(e* + e"*).

24. y = etna;. 45. y

25. y = i tan 2a.

26. y = 2tan-« 47. y = e~ Sx sin 2jb.

46. y = e
- * eosar.

2

27. y = 4tan^p. 48. y = log ~

28. y = seca\ 49. y = log sin x.

29. y = csca;. 50. y = log tana;.



CHAPTER V

THE STRAIGHT LINE

28. The point-slope equation. If the slope of a straight line

and a point on the line are known, the equation of the line is

readily found. Let LK (fig. 65) be any straight line, I^(xv y^)
a known point on it, and m its slope. TakeP(x, y~), any point

on the line. Then, by § 6,

lzh= m.

x — x

If m is not infinite, we may clear

of fractions and obtain

y-y
x
= m(x-xj.

Fig. 65This is an equation which

obviously satisfied by the coordi-

nates of any point on LK and by those of no other point.

Hence it is the equation of LK.

If the line is parallel to OX, m — 0, and the equation of the

line is ,ONy=yx
- (2)

If the line is parallel to Y, m = <x, and the equation of the

line is . Q \x = x
x
. (3)

Ex. Find the equation of a straight line with the slope — \, passing

through the point (5, 7).

By substituting in the formula, we have

whence

y-7
2x + 3^-31

10-5);

29. The slope-intercept equation. The equation (1) of § 28

takes a special form when the point L\ is taken at B (fig. 65),

57
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where LK cuts the axis of y. If OB = b, the coordinates of B
are (0, b~). Then the equation of LK is

y — b — 7n (x — 0),

or, after a simple reduction,

y = mx + b. (1)

It is%) be noticed that the equation of a line parallel to the

axis of y cannot be put in this form, since the line does not cut

OY, but the equation of any other line can be given this form.

Conversely, any equation of the form (1), no matter what are

the values of m and b, represents a straight line. For a straight

line can be drawn with any slope m and any intercept b. The
equation of this line is then y = mx + b, and this equation is sat-

isfied by no point not on the line.

30. The two-point equation. If a straight line is determined

by the two points L^(xv y^) and B2 (x2, y2
~), then

y-i - Vxm = ,

x*~ x
i

by § 6, and the equation of the line is by (1), § 28,

y-y
x=i^rjix - xd' CO

If y2
= yv the line is parallel to OX, and its equation is

y = y, (2)

If x
2
= x^ the line is parallel to Y, and its equation is

x = x . (3)

Ex. Find a straight line through (1, 2) and (— 3, 5).

By formula (1), p- _ 9

or 3 x + 4 y - 11 = 0.

31. The general equation of the first degree. The equation

Ax + By + C=0,

where A, B, and C may be any numbers or zero, except that

A and B cannot be zero at the same time, is called the general
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equation of the first degree. We shall prove : The general

equation of the first degree with real coefficients always represents

a straight line.

1. Suppose A =£ and B =£ 0. The equation may be written

A C
& B B

This equation is of the form y = mx + b and therefore repre-

sents a straight line, by § 29.

It follows that if the equation of a straight line is in the form
Ax + By + C = 0, its slope may be found by solving the equation

for y and taking the coefficient of x.

2. Suppose A = 0, B =£ 0. The equation is then

(jBy+C=0, or y = -~,B
C

and represents a straight line parallel to OX at a distance

units from it.

3. Suppose A =£ 0, B = 0. The equation is then

Q
Ax + C=0, or x = ,

A

and represents a straight line parallel to O Y at a distance

units from it.

Therefore the equation Ax + By + C=0 always represents a

straight line.

32. Angles. The slope of a straight line enables us to solve

many problems relating to angles, some of which we take up in

this article.

1. The angle between the axis of x

and a known line. Let a known line

cut the axis of x at the point L.

Then there are four angles formed.

To avoid ambiguity we shall agree

to select that one of the four which

is above the axis of x and to the
FlG

"
66

right of the line and to consider LX as the initial line of this

angle. We shall denote this angle by $. Then if we take any
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point P on the terminal line of
<f>

and drop the perpendicular

J//', we have, in the two cases represented by figs. 66 and 67,

tan (/>

MP
LM

MP
But —— is equal to the slope of theLM
line, by (2), § 6. Therefore

tan d> = m.

If the straight line is parallel to

OY, (/> = 90° and tan
<f>
= oo. If the

line is parallel to OX, no angle
<f>

is formed, but since m = 0, we may say tan
<f>
= ; whence

<£ = 0° or 180°.

2. Parallel lines. If two lines are parallel, they make equal

angles with OX, and hence their slopes are equal. It follows that

two equations which differ only in the absolute term, such as

Fig. 67

and

Ax + By + C
x
=

Ax+By+C =0,

represent two parallel lines. It is to be noticed that these two

equations have no common solution (§14).

Ex. 1. Find the equation of a straight line passing through (— 2, 3) and

parallel to3x-5?/ + 6 = 0.

First method. The slope of the given line is %. Therefore the required

y — 3 = § (a; + 2), or 3ar-5y + 21 = 0.

Sea/ml method. We know that the required equation is of the form

3x-5y + C = 0,

where C is unknown. Since the line passes through (— 2, 3),

3 (-2) -5 (3) + C=0,

whence C = 21. Therefore the required equation is

3 x — 5 y + 21 = 0.
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3. Perpendicular lines. Let AB and CD (fig. 68) be two lines

intersecting at right angles. Through P draw PR parallel to

OX, and let RPD = </>
1
and RPB = <j>

2
. Then tan </>

1
= m

y
and

tan
<f>2
= m

2
, where m

x
and ra

2
are the slopes of the lines. But,

by hypothesis, ^ = ^+90°;

whence tan <£
2
= — cot 4>

l

which is the same

tan <£
x

That is, two straight lines are perpendicular when the slope of

one is minus the reciprocal of the slope of the other. This theorem

may be otherwise expressed

by saying that two lines are

perpendicular when the prod-

uct of their slopes is minus

unity.

It follows that two straight

lines whose equations are of

the type

Ax+By + C
x
=

and Bx - Ay + C\=0

are perpendicular.

Ex. 2. Find a straight line through (•">, 3) perpendicular to 7x+0y+l = 0.

First method. The slope of the given line is — l- Therefore the slope

of the required line is £. Therefore the required line is

y - 3 = 2 (a; - 5), or 9 x - 7 y - 24 = 0.

Second method. We know that the equation of the required line is of

the form Qx — 7y + C = 0. Substituting (5, 3), we find C =— 24. Hence

the required line is 9 x — 7 y — 24 = 0.

Ex. 3. Find the equation of the perpendicular bisector of the line join-

ing (0, 5) and (5, — 11). The point midway between the given points is

(§, — 3), by § 7. The slope of the line joining the given points is — VS
by § 6. Hence the required line passes through (§, — 3), with the slope f^.

Its equation is

y + 3 = & (x - |), or 10 x - 32 y - 121 = 0.

Fm
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4. Angle between two lines. Let AB and CD (fig. 69) inter-

sect at the point P, making the angle BPD, which we shall

call /3. Draw the line PR parallel to OX, and place BPB = ^
andJSPjr> = £, Then = ^-^;

tan (^hence tan /3 = tan (</>.,

_tan</>

?V 1 +
But tan

<f>1
=m

l
and tan c/>

2

= m
2
, where ?n

2
is the slope

of CD and w
1
is the slope of

AB'. Therefore

tan ft
1 +m^

If <£>
2

is always taken

greater than c^, tan /3 will

be positive or negative

according as /? is acute

or obtuse.

Ex. 4. Find the acute angle between the two lines

2a:-3?/ + 5 = and x + 2y+2 = 0.

Since the second line makes the larger angle with OX, we jilace

m%
=- |, mx

= $.

Then, by substituting in the formula,

tan/3= ~ *~J" =- ?

Here /3 is an obtuse angle, and the supplementary acute angle is tan-1 J.

Ex. 5. Find the equation of a straight line through the point (— 2, 0),

making an angle tan-1 § with the line 3x + 4?/ + G = 0.

Here tan/3 is given as §, and one of the slopes m
z
or m

x
is known to

be — ^. Since it is unknown which of the slopes is — ^, the problem

has two solutions

:

(1) Place m
2
=— |. Then, by substituting in the formula,

2 - | - to. . 17
- = - 1. whence m. = .

3 1-flBj *
(

The equation of the required line is then

y - =- V- (x + 2),

17a: + 6y + 34 = 0.
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(2) Place Then

whence

The equation of the required line is then

or x + 18 y + 2 = 0.

33. Distance of a point from a straight line. Let LK (fig. 70)

be a given straight line with the equation

0,C:Ax+By

and let P
l
(x

l
, y^) be a given point

length of the perpendicular J^E

drawn from 1\ to LK.

Draw the ordinate ML\ and

let it intersect the line LK in

the point Q. Then the abscissa

of Q is a?, and its ordinate may
be denoted by y2

. Since Q is on

the line LK. we have

It is required to find the

F

Ax
x
+By

%
+C=0, Fig. 70

whence

Then OT-Jfi-Jf,
J./-, + />'//, + (?

It is clear that this expression is a positive quantity when
(x

lt y^) lies above the line LK and is a negative quantity when

(x^ y^) lies below ZA". It is also evident from the triangle T[QB,

and from a like triangle in other cases, that the length of P^ is

A
numerically equal to QP

X
cos cj>. But tan £ =— — i and hence

B
B

We have, then,

cos <j) =

Pi?

±V.I2+Z2

J^+Ti^ + C
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We may, if we wish, always choose the 4- sign in the denomi-

nator. Then PR is positive for all points on one side of the line

Ax -f- By + C = and negative for all points on the other side.

To determine which side of the line corresponds to the positive

sign, it is most convenient to test some one point, preferably

the origin.

Ex. Find the distance from the point (7, — 4) to the line 2 x + 3 y

+ 8 = 0.

By use of the formula,

p ^_ 2(7)+3(-4)+8 = 10_

Via V13

Since the coordinates of the origin, similarly substituted, give a positive

sign to the result, the point (7, — 4) is on the same side of the line as the

origin. A plot verifies this.

PROBLEMS

1. Find the equation of the straight line passing through (1, — 3)

with the slope 2.

2. Find the equation of the straight line passing through (— 1,

— ^) with the slope — 3.

3. Find the equation of the straight line passing through (5, —1)
with its slope the same as that of the straight line determined by

(0, 3) and (2, 0).

4. Find the equation of the straight line passing through (2, — f)

with the slope zero.

5. Find the equation of the straight line passing through (^, §)

with an infinite slope.

6. Find the equation of the straight line of which the slope is 5

and the intercept on OY is — 4.

7 . Find the equation of the straight line of which the slope is — 3

and the intercept on OF is \.

8. Find the equation of the straight line of which the slope is

and the intercept on OY is — §.

9. Find the equation of the straight line through the points

(_1, _4) and (0, 5).

10. Find the equation of the straight line through the points

(2,-1) and {-1,1).
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11. Find the equation of the straight line through the points

(2, -1) and (2, 3).

12. What is the equation of a straight line the intercepts of which

on the axes of x and y are 3 and — 4 respectively ?

13. What is the equation of the straight line the intercepts of

which on the axes of x and y are — 5 and — 8 respectively ?

14. Derive the equation of the straight line the intercepts of

which on the axes of x and y are a and b respectively.

15. Find the equation of a straight line through (|, §) and the

point of intersection of the lines 3x — 5y— 11 = and 4 x + y — 7 = 0.

16. Find the equation of the straight line joining the point of inter-

section of the lines 2x — y — 1=0 and x — y 4- 7 = and the point

of intersection of the lines x — 1 y — 1=0 and 2x — 5 y +1= 0.

17. Find the equation of the straight line passing through (2, — 3)

and making an angle of 120° with OX.

18. Find the equation of the straight line making an angle of 30°

with OX and cutting oft' an intercept 3 on >'.

19. A straight line making a zero intercept on OF makes an angle

of 45° with OX. Find its equation. Y^
20. A straight line making a zero angle with OX cuts OF at a

point 3 units from the origin. Find its equation.

21. Find the equation of the straight line through (2, — 3) parallel

to the line 2 x 4- y = 7.

22. Find the equation of the straight line through (— |, — 2)

parallel to the line 3x — 2^4-2 = 0.

23. Find the equation of the straight line passing through (— 1, — 1)

parallel to the straight line determined by (— 2, G) and (2, 1).

24. In the triangle A (—2, -1), 5(3, 1), C(— 1, 4) a straight

line is drawn bisecting the adjacent sides AB and BC. Prove by

computation that it is parallel to AC and half as long.

25. Find the equation of the straight line passing through the

point of intersection of x — 3y + 2 = and 5x -\- 6y — 4 = and

parallel to 4x + ?/4-7=0.

26. Find the equation of the straight line parallel to the line

a-f-3y — 5 = and bisecting the straight line joining (— 2, — 3)

and (5, 5).
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27. Find the equation of the straight line through the origin

perpendicular to the line 3 a- + 4 «/ — 1=0.

28. Find the equation of the straight line through (2, — 3) per-

pendicular to the line 7 x — 4 y + 3 = 0.

29. Find the equation of the perpendicular bisector of the straight

line joining the points (— 5, —1) and (— 3, 4).

30. A straight line is perpendicular to the line joining the points

(_ 4
}
0) and (4, — 1) at a point one third of the distance from the

first point to the second. What is its equation ?

31. Find the equation of the straight line perpendicular to

2x — 3 y -f- 7 = and bisecting that portion of it which is included

between the coordinate axes.

32. Find the equation of the straight line through the point of

intersection of 6x — 2 ?/ + 8 = and 4a;- 6y -\- 3 = and per-

pendicular to 5x + 2y + 6 = 0.

33. Find the equation of the perpendicular bisector of the base of

an isosceles triangle having its vertices at the points (4, 3), (— 1, — 2),

and (3, - 4).

34. Find the acute angle between the lines x — y -\- 4 = and

3x-y + 6 = 0.

35. Find the acute angle between the lines 2x — y + 8 = and

2x + 5y-4 = 0.

36. Find the acute angle between the lines x + y — 5 = and

4x + y-8 = 0.

37. Find the acute angle between the line 3x — 2 y + 6 = and

the line joining (4, — 5) and (— 3, 2).

38. Find the acute angle between the straight lines drawn

from the origin to the points of trisection of that part of the line

2x -\- 3y — 12 = which is included between the coordinate axes.

39. Show that x — y + 3 = bisects one of the angles between

the lines 4x-3v/+ll=0 and 3 x — 4 y '+ 10 = 0.

40. Find the vertices and the angles of the triangle formed by

the lines 3a: + 5?/^14 = 0, 9 a; — ?/ + 22 = 0, and x — y — 2 =
41. Find the equations of the straight lines through the point

(— 3, 0) making an angle tan_1 i with the line 3x — 5y + 9 = 0.

42. Find the equations of the straight lines through (4, —3)
making an angle of 45° with the line 3 x + 4 y = 0.



PKOBLEMS 67

43. Find the equations of the straight lines through the point

(— 1, — 1) making an angle tan-1 \ with the line 3x-\-2y — 6 = 0.

44. Find the equations of the straight lines through the point

(2, 1) making an angle tan-1 2 with the line 2x — y + 4 = 0.

45. Find the equations of the straight lines through the point

(3, 1) making an angle tan-1 3 with the line x + 3y — 3 = 0.

46. Find the distance of (2, 1) from the line y = 3x -\-7.

47. Find the distance of (2, — f) from the line x -{- 2 y — 4 = 0.

48. Find the distance of the point (b, — a) from the line

bx -f- ay = ah.

49. The equations of the sides of a triangle are respectively

3 x + 5 y — 16 = 0, x — y = 0, and 3cc + y + 4 = 0. Find the dis-

tance of each vertex from the opposite side.

50. The base of a triangle is the straight line joining the points

(— 3, 1) and (5, — 1). How far is the third vertex (6, 5) from the base ?

51. The vertex of a triangle is the point (5, 3), and the base is

the straight line joining (— 2, 2) and (3, — 4). Find the lengths of

the base and the altitude.

52. Find the equations of the medians of the triangle formed by

the lines 2x - 3y 4- 11 = 0, 3* + y - 11 = 0, and x + Ay = 0.

53. Find the foot of the perpendicular drawn from the point

(- 1, 2) to the line 3x-5y-21 = 0.

54. Find the distance between the two parallel lines 2x+3y—8=0
and 2x + 3y- 10 = 0.

55. Find the distance between the two parallel lines 3x—5y+l= Q

and3x-5y-7 = 0.

56. A triangle has the vertices (2, 4), (3, —1), and (— 5, 3). Find

the distance from the vertex (2, 4) to the point of intersection of

the median lines.

57. A straight line is drawn through (2, — 3) perpendicular to the

line 3x — 4 ?/ 4- 6 = 0. How near does it pass to the point (6, 8) ?

58. Determine the value of m so that the line y = mx 4- 3 shall

pass through the point of intersection of the lines y = 2x + l and

y = x 4- 5.

59. A straight line passes through the point (— \, 4), and its

nearest distance to the origin is 2 units. What is its slope ?
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60. One diagonal of a parallelogram joins the points (3, — 1) and

(—3, — 3). One end of the other diagonal is (2, 3). Find its equation

and its length.

61. Perpendiculars are let fall from the point (9, 5) upon the

sides of the triangle the vertices of which are at the points (8, 8),

(0, 8), and (4, 0). Show that the feet of the three perpendiculars

lie on a straight line.

62. Find a point on the line 2x -\-3y — 6 = equidistant from

the points (4, 4) and (6, 1).

63. Find a point on the line 5x — 3?/ + 15 = the distance of

which from the axis of x equals § its distance from the axis of y.

64. A point is equally distant from (3, 2) and (— 3, 4), and the

slope of the straight line joining it to the origin is $. Where is the

point ?

65. A point is 8 units distant from the origin, and the slope of the

straight line joining it to the origin is — \. What are its coordinates ?

66. A point is 5 units distant from the point (1, — 2), and the

slope of the line joining it to (0, — 8) is \. Find the point.

67. Find the points on the straight line determined by (1, 1) and

(— 2, — 3) which are 15 units distant from either of the given points.

68. Prove analytically that the locus of points equally distant

from two points is the perpendicular bisector of the straight line

joining them.

69. Prove analytically that the medians of a triangle meet in a

point.

70. Prove analytically that the perpendiculars from the vertices

of a triangle to the opposite sides meet in a point.

71. Prove analytically that the straight lines joining the middle

points of the adjacent sides of any quadrilateral form a parallelogram.

72. Prove analytically that the perpendicular bisectors of the sides

of a triangle meet in a point.

73. Prove analytically that the perpendiculars from any two ver-

tices of a triangle to the median from the third vertex are equal.

74. Prove analytically that the straight lines drawn from a vertex

of a parallelogram to the middle points of the opposite sides trisect

a diagonal.



CHAPTER VI

CERTAIN CURVES

34. Locus problems. A curve is often defined as the locus of

a point which has a certain geometric property. It is then usually

possible to obtain the equation of the curve by expressing this

property by means of an equation involving the coordinates of

any point of the locus. This is illustrated in the following

examples

:

Ex. 1. Find the locus of a point at a distance 3 from the straight line

ix+By — 6 = 0.

Let (x, y) be any point of the locus. By § 33, the distance of (a?, ?/) from

the given straight line is ± '—
Hence, by the conditiun.s of the

problem,

4 * + 3 //
- _

•">

which reduces to 4x + 3y — 21 = 0, or 1 .,+:'.// + = 0.

These are the equations of two straight lines parallel to the given line.

Ex. 2. Find the locus of a point at ;i distance 9 from the point

(- 5, - 3).

Let (x, j/) be any point of the locus. Its distance from (—5, — •"> ) is,

by § 5, V(x + 5)
a + (// + ''>)';. Hence, by the conditions of the problem,

V(x+ ."')- + (// + :'.)- = n,

which reduces to x2 + if + K) x + (i //
— 47 = 0.

This is the equation of the required locus. The curve may be plotted

from the equation or may be drawn with compasses, as it is obviously

a circle.

In the following articles we shall employ the methods just

illustrated, to obtain the equations of certain important curves.

An equation thus obtained may be used both for plotting the

curve and for examining its properties.
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35. The circle. A circle is the locus of a point at a constant

distance from a fixed point. The fixed point is the center of the

circle, and the constant distance is the radius.

Let (7i, &) be the center C (fig. 71), and let r be the radius of

the circle. Then if P (x, y~) is a point on the circle, x and y must

satisfy the equation •

(x-hy+(y-ky=r\ (1)

by §5.

Conversely, if x and y satisfy

the equation (1), the point

(x, y~) is at a distance r from

(A, k) and therefore lies on the

circle.

Therefore (1) is the equation

of the circle.

Equation (1) expanded gives

x2+y2-2 hx - 2 Icy + Jr+ P

and if this is multiplied by any quantity A, it becomes

Ax2+ Ay'2+ 2 Gx +2Fy + C=0, (2)

where tf+k2-r2=

Ex. The equation of a circle with the center (J,
— ^) and the radius § is

which reduces to 12 x2 + 12 y" — 12 x + 8 y — 1 = 0.

36. Conversely, the equation

Ax2+Ay2
-\- 2 Gx + 2Fy + C= 0,

where A =#= 0, represents a circle if it represents any curve at all.

To prove this we will follow the method of Ex. 2, § 18, and

write the equation in the form

<"+SM'+3'-
F2-AC
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There are then three possible cases

:

1. G2+F2-AC>0. The equation is then of the type (1),

§ 35, where h = , k = , r = — —
- , and therefore

represents a circle with the center ( -,
) and the radius

r-? 5 \ A A
G2+F2-AC

\ A
2. G2+F2-AC=0. The equation is then

which can be satisfied by real values of x and y only when

G F
x— and y = Hence the equation represents the point

(' F\—

,

J.
This may be called a circle of zero radius, regarding

it as the limit of a circle as the radius approaches zero.

3. G2 + F2 — A C < 0. The equation can then be satisfied

by no real values of x and y, since the sum of two positive

quantities cannot be negative. Hence the equation represents

no curve.

Ex. 1. The equation 2 x1 + -2 >/- + •-' x - '2 y - ."> = may be written

(,+ \f + {!l- lf = Z,

and represents a circle with the center (— .1. \ ) ;tn«l the radius ^ :!. Tins

circle can now be drawn with compasses, the methods of Chapter II not

being required.

Ex. 2. The equation x* + //- — 2 x + 1 y + 5 = may be written

(ar-l)s +(y + 2)
2 = 0,

and is satisfied only by the point (1, — 2).

Ex. 3. The equation .c
2 + y* — 2 .*• + 4 // + 7 = may be written

(,:-l) 2 + (// + 2)
2 =-2,

and represents no curve.
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37. To find ' equation of a circle which will satisfy given

conditions, it necessary and sufficient to determine the three

quantities h, k, r, or the ratios of the four quantities A, G, F, C.

Each condition imposed upon the circle leads usually to an equa-

tion involving, these quantities. In order to determine the three

quantities J.- .. necessary and in general sufficient to have three

equations. Henc in general, three conditions are necessary and

sufficient U. ;iine a circle.

It is l tant to enumerate all possible conditions which

may be ..^ id upon a circle, but the following three may be

menti<

1. ?£ftt the condition be imposed upon the circle to pass

through the known point (x, y^). Then (x
x
, y^) must satisfy

the equation of the circle ; therefore h, k, and r must satisfy the

condition

QXl~hy+(y-ky = r\

2. Let the condition be imposed upon the circle to be tangent

to the known straight line Ax + By + C = 0. Then the distance

fro.n the center of the circle to this line must equal the radius;

therefore, by § 33, h, k, and r must satisfy the condition.

Ah+Bk + C
=±r.

y/A2+B2

The sign will be ambiguous unless from other conditions of the

problem it is known on which side of the line the center lies.

3. Let it be required that the center of the circle should lie on

the line Ax + By + G = 0. Then h and k must satisfy the condition

A7i + Bk+G=0.

Ex. 1. Find the equation of the circle through the three points (2, — 2),

(7, 3), and (G, 0).

The quantities h, k, and r must satisfy the three conditions
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Solving these, we have ft = 2, k = 3, and r = 5. ' efore the required

equation is

(x - 2)2 + (y - 3)2 = 25,

or x2 + #
2 — 4 x — 6 y — 12 = 0.

Ex. 2. Find the equation of the circle which passes 4l —>ugh the points

(2, — 3) and (— 4, — 1) and has its center on the line 3 j n x — 18 = 0.

The quantities ft, k, and r must satisfy the condi i'>ns

(2 - 7,)
2 + (- 3 - kf = r2

,

(_.l_/,)2 + (_l_ J.)2 = ,.2
;

3 A- + h - 18 = 0.

Solving these equations, we find ft = |, /. = 'J, /•'- = J-| "'. herefore

the required equation is

(a? _§)8 + (y
_J

3
L
)
a = xjAj

or z2 + //
2 - 3 x — 11 y - 40 = 0.

Ex. 3. Find the equation of a circle which is tangent to the lines

17 x + y - 85 = and 13 a; + 11 y + 50 = 0,

and has its center on the line 88 x + 70 y + 15 = 0.

The quantities ft, k, and r must satisfy the conditions

17* + * -35 = ± r,

V290

13 ft + 11 jfc + 50
±r,

a 290

88 ft + 70 A- + 15 = 0.

These equations have the two solutions

,_., , , = V200.

,. . _ . ,., 3V290
and « = 0, K =—'tj , r = — •

20

Hence each of the two circles

3 x- + 3 //- + 5 x - 5 y - 20 =

and 40 x2 + 40 if - 400 x + 520 y + 2429 =

satisfies the conditions of the problem.
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38. The ellipse. An ellipse is the locus of a point the sum of

the distances of which from two fixed points is constant.

The two fixed points are called the fori. Let them be denoted

by F and F' (fig. 72), and let the axis of x be taken through

them, and the origin halfway

between them. Then if F is

any point on the ellipse and

2 a represents the constant

sum of its distances from the

foci, we have

F'P+FP=2a. (1)

From the triangle F'PF it

follows that

F'F<2a.

Hence there is a point A on the axis of x and to the right

of F which satisfies the definition. We have, then,

F'A+FA = 2a,

or (F' + OA) + (OA- OF) =2a;

whence

Let us now place

0A = a.

OF
OA =

e
>

diere e<l.

The quantity e is called the eccentricity of the ellipse.

Then the points F and F' are (± ae, 0). Computing the values

of F'P and FP by § 5 and substituting in (1), we have

y/(x + aef+ y*+v(x — ae~)
2+ y* (2)

By transposing the second radical to the right-hand side of the

equation, squaring, and reducing, we have

a - ex =V(x - ae) 2+f= FP. (3)

Similarly, by transposing the first radical in (2), we have

a + ex =V(a; + ag)
2+ f= F'P. (4)
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Either (3) or (4) leads to the equation

(l-e>)r+f = cc(l-e% (5)

or ~+ *
. =1. (6)

a- a"(l— e-)
v y

Since e < 1, the denominator of the second fraction is positive,

and we place

a;
2

?/
2

thus obtaining — + %-= 1. (8)

We have now shown that any pqint which satisfies ( 1 ) has

coordinates which satisfy (8).

We may show, conversely, that any point whose coordinates satisfy (8)

is such as to satisfy (1). Let us assume (8) as given. We can then obtain

(G) and (">), and (5) may be put in each of the two forms

x2 + 2 aex + a2e2 + y
2 = a2 + 2 aex + t

'-'.<-,

x2 — 2 aex + ore2 + y
2 = a9 — - cu x + t '-'. i -,

the square roots of which are respectively

F'P = ± (« + ex),

FP = ± (o - ex).

These lead to one of the four following equations:

/"/ + FP = 2a,

F'P- FP= 2a,

-F'P+ FP= 2 a,

-F'P- FP= 2a.

Of these, the last one is impossible, since the sum of two negative num-
bers cannot be positive; and the second and third are impossible, since the

difference between FP and F'P must be less than F'F, which is less than 2 a.

Hence any point which satisfies (8) satisfies (1), and therefore (8) is the

equation of the ellipse.

39. Placing y = in (8), § 38, we find x = ±a. Placing x = 0,

we find y = ±b. Hence the ellipse intersects OX in two points,

A (a, 0) and A'(— a, 0), and intersects OF in two points, B(Q, b~)

and B'(0, — 6). The points A and A' are called the vertices of the
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ellipse. The line AA', which is equal to 2 a, is called the major

axis of the ellipse, and the line BB', which is equal to 2 b, is

called the minor axis.

Solving (8) first for y and then for x, we have

= + - Var-

and

a

a /m 2

These equations show that the ellipse is symmetrical with

respect to both OX and OY, that x can have no value numeri-

cally greater than a, and that y can have no value numerically

greater than b. If we construct

the rectangle KLMN (fig. 73),

which has for a center and

sides equal to 2 a and 2 b

respectively, the ellipse will

lie entirely within it; and if

the curve is constructed in one

quadrant, it can be found by

symmetry in all quadrants.

The form of the curve is shown Fig. 73

in figs. 72 and 73.

40. Any equation of the form (8), § 38, in which a > b, repre-

sents an ellipse with the foci on OX. For if we place, as in § 38,

b
2= a

2 (l— e
2
), we find, for the eccentricity of the ellipse,

Va^b2

M



THE HYPERBOLA 77

Similarly, an equation of the form (8), § 38, in which b > a,

represents an ellipse in which the foci he on OY at a distance

Vb2— a'
2 from 0. In this case BB' = 2 b is the major axis and

AA' = 2 a is the minor axis.

Finally, any equation of the form

a 2

represents an ellipse with its center at the point (li, Tc) and its

axes parallel to OX and OY respectively; for if the axes arc

shifted to a new origin at (//, /r) by the formulas of £17, this

equation assumes the form (8), § 38.

Ex. 1. Show that 4 x2 + if + 4 x - 12 y - 1 = is the equation of an

ellipse, and find its center, semiaxes, and eccentricity.

Following the method of Ex. 2, § 18, we may write the equation in

thef°rm
Hx+ W + 6(y-iy = 8,

3

Hence this curve is an ellipse with its center at (— \, 1) and its major

/- 4 Vij 1
and minor axes equal respectively to 2 V2 and —-— Its eccentricity is ——•

''' vy

Ex. 2. Find the equation of an ellipse with the eccentricity J and its

foci at the points (— 1, 4), (7, 1).

Since the center is halfway between the foci, tin- center is the point

(3, 4). The major axis of the ellipse is parallel t<> OX, Bince it contains

the foci. Since each focus is at a distance ae from the center,

ae = 4.

But e = J, therefore a = 12.

Then, from (7), § 38, b- = a- (1 - e2) = 128.

The equation of the ellipse is therefore

Qr-3) 2 Q/-4) 2

144 128

which reduces to 8 x2 + 9 y" — 48 x — 72 y — 936 = 0.

41. The hyperbola. An hyperbola is the locus of a point the

difference of the distances of whichfrom two fixed ptoints is constant.
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The two fixed points are called the foci. Let them be F and

F' (fig. 74), and let FF' be taken as the axis of x, the origin

being halfway between F and F'. Then if P is any point on

the hyperbola and 2 a is the constant difference of its distances

from F and F'> we have

either

F'P

FP-

-FP=2a (1)

F'P = 2 a. (2)

Fig. 74

Since in the triangle

F'PF the difference of the

two sides FP and F'P is

less than F'F, it follows

that F'F >2a.
There is therefore at least one point A between and F

which satisfies the definition.

Then F'A-AF=2a,

or (F'0 + OA)-(OF-OA-)=2a;

whence OA = a.

We may therefore place

.— = e. where e>l.
OA

The quantity e is called the eccentricity of the hyperbola.

Then the points F and F' are (± ae, 0), and equations (1)

and (2) become

and

^/(x + aey+if- y/(x - aef+tf=2a

^/(x-aey+y1- yf(x + ae)'
2+ f =2 a.

(3)

(4)

By transposing one of the radicals to the right-hand side of

these • equations, squaring, and reducing, we obtain from either

(3) or (4)
(l-_ es)s3+/ = a*(l_ e3),

dz + d2 (l-e~)

(5)

(<0
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But since e>l, <r(l — e~) is a negative quantity, and w
may write a2

(1 — e
2
) = — b'

2
, thus obtaining

C=i, (?)

an equation satisfied by the coordinates of any point which

satisfies (1).

Proceeding as in § 38, we may prove, conversely, that any point whose

coordinates satisfy (7) is such as to satisfy either (1) or (2), and hence is

a point of the hyperbola.

42. If we place y = in (7), §41, we have x = ±a. Hence

the curve intersects OXva. two points, A and ./', called the vertices.

If x = 0, y is imaginary. Hence the curve does not intersect Y.

Solving (7), § 41, for y and x respectively, we have

y = ±- va

and

These show that the curve is

symmetrical with respect to both

OX and OY, that x can have no

value numerically less than a, and

that y can have all values.

Moreover, the equation for y can

be written

a N :r Fig. 75

As rr increases, the term — decreases, approaching zero as a
x'

limit. Hence the more the hyperbola is prolonged, the nearer it

comes to the straight lines y = ±-x. Therefore the straight

lines y = ±-x are the asymptotes of the hyperbola. They are

the diagonals of the rectangle constructed as in fig. 75 and are

used conveniently as guides in drawing the curve. The line AA'
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is called the transverse axis, and the line BB' the conjugate axis,

of the hyperbola. The shape of the curve is shown in figs. 74

and 75.

43. Any equation of the form (7), § 41, where a and b are

any positive real values, represents an hyperbola with the

foci on OX. For if we place — b
2 = a

2 (l — e
2

), we find for

the eccentricity of the hyperbola

Va2+b2

e =

and may find the position of the foci from the equations

OF = -OF'= ae.

Similarly, any equation of the form

a*^b2

represents an hyperbola with the foci on OY.

If the two hyperbolas,

*:-|
S

= l and -2, +g-l
a2

b
2 a2

b
1

have the same values for a and b, each is said to be the conjugate

hyperbola to the other.

If b = a, the hyperbola is called an equilateral hyperbola, and its

equation is either x2— y
2 = a2

or — x2+ y
2 = a2

.

Finally, it is evident that either

(x-h) 2 (y-k) 2

a
2

b
2

a2
b"

is the equation of an hyperbola with its center at the point (li, Tc).

44. The parabola. A parabola is the locus of a point equally

distant from a fixed point and a fixed straight line. The fixed

point is called the focus and the fixed straight line the directrix.

Let the line through the focus perpendicular to the directrix
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be taken as the axis of x, and let the origin be taken on this

line, halfway between the focus and the directrix. Let us denote

the abscissa of the focus by p. In fig. 76 let F be the focus, RS
the directrix intersecting OX at D, and P
any point on the curve. Then F is Q>, 0),

D is (— p, 0), and the equation of ES is

x = — p. Draw from P a line parallel to

OX, intersecting ES in X. If F is on the

right of ES, P must also lie on the right

of ES, and, by the definition,

SY

V p̂ ^
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A more general equation of the parabola is evidently

(y — ky= kp(x — h)

or Qx — hy= 4 p (y — &),

the vertex in either case being at the point (A, F). The work of

locating the parabola in the plane is illustrated in the following

example.

Ex. Show that y
2 + y — 3 x + 1 = is a parabola, and locate it in

the plane.

The equation may be written

?y
2 + y = 3 x - 1,

or if + y + \ = 3 x — 1 + \,

which reduces to (// + \)" = 3 (.r — \).

Hence the vertex is at the point (\, — J); the equation of the axis is

y + 1- = 0, or 2 y + 1 = ; the focus is at the point (I + 4, — I), or (1, — J-)

;

and the equation of the directrix is x — \ = — J, or 2 x + 1 = 0.

45. If IKx^ y^) and i^(#
2 , y.^) are two points on the parabola

y=4^(fig. 77), then

y" = 4JFi«

y2

2 = 4^2 ;

(1)whence
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The figure bounded by the parabola and a chord perpendic-

ular to the axis of the parabola, as Ql
OP

l
(fig. 77), is called a

parabolic segment. The chord is called the base of the segment,

the vertex of the parabola is called the vertex of the segment,

and the distance from the vertex to the base is called the

altitude of the segment.

46. The conic. A conic is the locus of a point the distance ofwhich

from a fixed point is in a constant ratio to its distancefrom a fixed

straight line.

The fixed point is called the focus,

the fixed line the directrix, and the

constant ratio the eccentricity.

We shall take tin; directrix as the

axis of y (fig. 78), and a line through

the focus F as the axis of x, and

shall call the focus (<, 0), where c

represents OF and is positive or

negative according as F lies to the

right or the left of 0.

Let P be any point on the conic;

connect P and /\ and draw I'X per-

pendicular to Y. Then, by definition,

FP = ±e.NP, (1)

J

2f
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For if P (fig. 79) is a point on the ellipse "-- + ~- = 1, we found

in § 38 that
a

FP = a- ex, F'P = a + ex;

F'P + x

1)

If now we take the point

so that 0D = ~, and D'
e

so that OD' = — -, and if we
e

draw the lines DS and D'S'

perpendicular to OX, the

line N'PN perpendicular to

JDS, and the ordinate MP,
we have Fig. 79

Therefore

-- X = 0D- OM=MD = PN,
e

- + x=I)'0+OM=D'M=N'P.
e

FP = e- PN, F'P = e • N'P.

The ellipse has, therefore, two directrices at the distances ± -
e

from the center. When the ellipse is a circle, e = and the

directrices are at infinity.

In a similar manner we may show that the hyperbola is a

special case of a conic where e > 1.

47. The witch. Let OBA (fig. 80) be a circle, OA a diameter,

and LK the tangent to y
the circle at A. From
draw any line intersect-

ing the circle at B and

LK at C. From B draw

a line parallel to LK and

from C a line perpendic-

ular to LLC, and call the intersection of these two lines P.

The locus of P is a curve called the witch.

Fig. 80
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To obtain its equation we will take the origin at and the

line OA as the axis of y. We will call the length of the diameter

of the circle 2 a. Then, by continuing CP until it meets OX at

M and calling (x, y) the coordinates of P, we have

31= x, MP = y, OA = MC = 2 a.

In the triangle 03IC,
MP
MC

OB
OC

OB . PC

~oc2
~' (1)

Draw AB. Then OBA is a right angle, and consequently

OB .00 = OA
2

; also C*= 03f+ MC*.

Therefore

that is,

and iinally,

MP
MC

JL
2a

OA

OW+MC
4 a2

x- + 4 <i-

8 az

* a»+4ta*

Solving (4) for x, we have

;(2)

(3)

(*)

x= ± 2 a
\ y

This shows that the curve is sym-

metrical with respect to OY, that y
cannot be negative nor greater than

2 a, and that // = is an asymptote.

48. The cissoid. Let 01)A (fig. 81) .

be a circle with the diameter OA,

and let LK be the tangent to the

circle at A. Through draw any

line intersecting the circle in D and

LK in E. On OE lay off a distance

OP, equal to DE. Then the locus of

P is a curve called the cissoid.

To find its equation we will take O as the origin of coordi-

nates and OA as the axis of x, and will call the diameter of the

circle 2 a. Join A and D and draw MP perpendicular to OA.

Fig. 81



86 CE11TAIN OUJiVES

Denoting angle MOP by 0, we have

OJ0=2aaec0,

OD=2acos0;
DE = OE-0D=2a (sec - cos 0).

OP=2a(sec0-cos0).

x = OM= OP cos0

= 2a(l-cos 2
6>)

= 2asin2
0.

MP v

whence

Therefore

Now

But sin =

Substituting in (5), we have

whence
2 a

This equation is satisfied by the

coordinates of any point upon the

cissoid. It may be written

OP



THE STHOPHOID 87

To find its equation take LK as the axis of x and RS as the

axis of ?/, and let OA = a. By the definition, the point P may
fall in any one of the four quadrants. If we take the positive

direction on AD as measured from A towards D, we have

OD = PD

when P is in the first quadrant,

OD=-PD
when P is in the second quadrant,

when P is in the third quadrant, and

- OD = I'D

when P is in the fourth quadrant.

These four equations are equivalent to the single equation
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50. Use of the equation of a curve. The use of the equation

of a curve in solving geometrical problems is illustrated in

the following problems

:

Ex. 1. Prove that in the

ellipse the squares of the

ordinates of any two points

are to each other as the

products of the segments of

the major axis made by the

feet of these ordinates.

We are to prove that (fig. S3)

MJ\2

_ A'MX
M

X
A

Mjn~ A'M2
. M^A

Let P
x
be (xv yx ) and let

P
2
be (x

2 , y2 ).
Then

,,2

whence

But yx
= M

1
PV a + x

x
= A'O + OM

1
= A'MV a-x

1
= OA - OM

x
=MXA,

y2
— M

2
P

2 , a + x
2
= A'M

2 , a — x
2
= M

2
A. Hence the proposition is proved.

Ex. 2. If M
l
P

l
is the ordinate of a

point Pt
of the parabola y

2 = <±px, and

a straight line drawn through the middle

point of M
1
P

1
parallel to the axis of x

cuts the curve at Q, prove that the inter-

cept of the line MM on the axis of y
equals %M

1
PV

Let P
x

(fig. 84) be (xv y x
). Then

y?
*

x. = —— , from the equation of the
ip

parabola.

By construction, the ordinate of Q
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51. Empirical equations. We have met in § 8 examples of

related quantities for which pairs of corresponding values have

been found by experiment, but for which the functional relation

connecting the quantities is not known. In such a case it is often

desirable to find an equation which will represent this relation,

at least approximately. The method, in general, is to plot the

points as in § 8 and then fit a curve to them. At best this work

is approximate, the result depending largely on the judgment of

the worker, and in complicated cases it demands methods too

advanced for this book. We shall discuss a few simple exam-

ples, to illustrate merely the fundamental principles involved.

The simplest case is that in which the plotted points appear

to lie on a straight line, or nearly so. If the two related quan-

tities are x and y, the relation between them is expressed by the

equation y=mx + b, (1)

where m and b are to be determined to fit the. data. In practice

the points are plotted, and it appears that a straight line may be

so drawn that the points either lie on it or are close to it and

about evenly distributed on both sides of it. The straight line

having been drawn, its equation may be found by means of two

points on it, which may be either two of the original data or any

two points of the graph. This method is illustrated in Ex. 1.

Closely connected with this case are two others. Suppose the

relation between the two quantities .' ami y is known or assumed

to be of the form „ .ON
V = "•' (2)

or y = a^x
i (&)

where a, b, and n are to be determined to fit the given numerical

values of x and y. By taking the logarithms of both sides of

these equations, we have respectively

log y = n log x + log a (4)

and log y = (log b~) x + log a
; (5)

or, if we place log y = y', log x = x', log a = b', log b = m,

y' = nx'+b', (G)

y' = mx + V. (7)
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We may now plot the points (V, y'~) or (x, y'~) and determine

the straight line on which they lie approximately. The equations

(0) and (7) having thus been found, the return to equations

(2) and (3) is easy. This method is illustrated in Ex. 2.

When the use of a straight line either directly or by aid of

logarithms fails, the attempt may be made to fit a parabola

y = a + bx + ex
2

(9)

to the points of the plot. Since three points are sufficient to de-

termine the constants of the equation, the parabola may be made

to pass through any three of the plotted points. This parabola

may then be tested to see if it passes reasonably near to the

other points. This method is illustrated in Ex. 3.

Other curves with equations of the form

y = a + bx + cx2+ dx*-\ + lx
n

may also be used. In this case the number of points through

which the curve may be exactly drawn is equal to the number

of arbitrary coefficients.

In all these cases it is often convenient to use different scales

for x and y, the proper allowance being made in the calculations.

This is illustrated in Ex. 2.

Ex. 1. Corresponding values of two related quantities x and y are

given by the following table :

X
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Ex. 2. Corresponding values of pressure and volume taken from an

indicator card of an air compressor are as follows :

p
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If we plot the points

we assume

is in fig. 87, they suggest a parabola. Accordingly

w = a + hx + ex2

and determine a, h, and c, so that the curve will pass through the first,

third, and last points. The equations for a, b, and c are
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10. Find the equation of the locus of a point the distance of which

from the line x = 3 is equal to its distance from (4, — 2)

.

11. Find the equation of the locus of a point which moves so that

the slope of the straight line joining it to (a, a) is one greater than

the slope of the straight line joining it to the origin.

12. A point moves so that its distance from the origin is always

equal to the slope of the straight line joining it to the origin. Find

the equation of its locus.

13. Find the equation of the locus of a point the distance of which

from the line 3 a? + 4 y — 6 = is twice its distance from (2, 1).

14. Find the equation of the circle having the center (3, — 5) and

the radius 4.

15. Find the equation of the circle having the center i
—

| } g | and

the radius 2.

16. Find the points at which the axis of x intersects the circle

having as diameter the straight line joining (1, 2) and (— 3, — 4).

17. Find the equation of the circle having as diameter that part

of the line Sx — 4// + 12 = which is included between the coor-

dinate axes.

18. Find the equation of the circle having as diameter the common
chord of the two circles

x* + y*+±x — 4y — 2 = and x- + f - 2 x + 2 y - 14 = 0.

19. Find the ('([nations of the circles of radius a winch are tangent

to the axis of y at the origin.

20. Find the center and the radius of the circle

./- + //- + 26 x + 1 6 //
- 42 = 0.

21. Find the center and the radius of the circle

2 x* + 2 y
2

-r- f> .r + 3 y -10 = 0.

22. Find the equation of a straight line passing through the cen-

ter of the circle x'
2 + if — 4.r -f- 2y — 5 = and perpendicular to

the line x — 2 // + 1 = 0. How near the origin does the line pass '.'

23. Prove that two circles are concentric if their equations differ

only in the absolute term.
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24. Show that the circles x2 + if + 2 Gx + 2Fy + C = and

a
,2

+Z/'
2 + 2r;'.r + 2F'y + C = are tangent to each other if

V(G-6") 2+(F- JP')2 = Vg 2 + J"2- C ± V<?'2 + F n - C".

25. Find the equation of the circle which passes through the

points (0, 2), (2, 0), and (0, 0).

26. Find the equation of the circle circumscribing the triangle

with the vertices (0, 1), (- 2, 0), and (0, - 1).

27. Find the equation of the circle circumscribing the isosceles

triangle of which the altitude is 5 and the base is the line joining

the points (— 4, 0) and (4, 0).

28. Find the equation of the circle circumscribed about the tri-

angle the sides of which are x + 2 y — 3 = 0, 3 cc — y — 2 = 0, and

2x-3y-6 = 0.

29. Find the equation of the circle passing through the point

(—3, 4) and concentric with the circle x2 + y
2 + 3 x — 4 y — 1 = 0.

30. A circle which is tangent to both coordinate axes passes

through (4, — 2). Find its equation.

31. The center of a circle which is tangent to the axes of x and

of y is on the line 2>x — 5 y 4- 15 = 0. What is its equation ?

32. A circle of radius 5 passes through the points (4, — 2) and

(5, — 3). What is its equation ?

33. The center of a circle which passes through the points (— 2, 4)

and (— 1, 3) is on the line 2x — 3y + 2 = 0. What is its equation ?

34. A circle which is tangent to OX passes through (—1, 2) and

(6, 9). What is its equation ?

35. The center of a circle which is tangent to the two parallel

lines x — 2 = and x — 6 = is on the line y = 3 x — 6. What is

its equation ?

36. The center of a circle is on the line 2x + y 4- 3 = 0. The
circle passes through the point (3, 1) and is tangent to the line

4a: — 3y — 14 = 0. What is its equation ?

37. The center of a circle is on the line x 4- 2y — 10 = and the

circle is tangent to the two lines 2x — 3y+9 = and 3x — 2y + 1 = 0.

What is its equation ?

38. Given the ellipse 9 x2 + 25 y
2 = 225, find its semiaxes,

eccentricity, and foci.
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39. Given the ellipse 3 a-
2 + 4 y

2 = 2, find its semiaxes, eccen-

tricity, and foci.

40. Find the vertices, eccentricity, and foci of the ellipse

4 x2 + 2 if = 1.

41. Find the center, vertices, eccentricity, and foci of the ellipse

4 a-
2 + 9 if + 16 x -18 y -11 = 0.

42. Find the center, vertices, eccentricity, and foci of the ellipse

16 x2 + 9 if - 16 x + 6 y - 139 = 0.

43. Find the equation of th» ellipse when the origin is at the

left-hand vertex and the major axis lies along OX.

44. Find the equation of the ellipse when the origin is taken at

the lower extremity of the minor axis and the minor axis lies

along OY.
x2 f

45. Determine the semiaxes a and b in the ellipse -j -f- j- = 1 so

that it shall pass through (2, 3) and (—1, — 4).

46. Find the equation of an ellipse if its axes are 8 and 4, its

center is at (2, — 3), and its major axis is parallel to OX.

47. Find the equation of an ellipse if its axes are § and £, its

center is at (1, —1), and its major axis is parallel to OY.

48. If the vertices of an ellipse are (± 6, 0) and its foci are

(±4, 0), find its equation.

49. Find the equation of an ellipse when the vertices are (± 4, 0)

and one focus is (2, 0).

50. Find the equation of an ellipse when the vertices are (0, 2)

and (0, — 4) and one focus is at the origin.

51. Find the equation of the ellipse the foci of which are (± 4, 0)

and the major axis of which is 10.

52. Find the equation of the ellipse the foci of which are (0, ± 3)

and the major axis of which is 12.

53. Find the equation of an ellipse when its center is at the

origin, one focus is at the point (— 4, 0), and the minor axis is

equal to 6.

54. Find the equation of the ellipse the foci of which are (1, ± 2)

and the major axis of which is 6.

55. Find the equation of an ellipse the eccentricity of which is §
and the foci of which are (0, ± 5).
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56. The center of an ellipse is at the origin and its major axis

lies on OX. If its major axis is 6 and its eccentricity is i, find its

.equation.

57. The center of an ellipse is at (— 2, 3), and its major axis is

parallel to OF and 8 units in length. Its eccentricity is ^. Find its

equation.

58. The center of an ellipse is at (1, 2), its eccentricity is \, and

the length of its major axis, which is parallel to OY, is 8. What is

the equation of the ellipse ?

59. Find the equation of an ellipse the eccentricity of which is ^

and the ordinate at the focus is 4, the center being at the origin and

the major axis lying on OX.

60. Find the eccentricity and the equation of an ellipse if the

foci lie halfway between the center and the vertices, the center

being at the origin and the major axis lying on OX.

61. Find the equation and the eccentricity of an ellipse if the

ordinate at the focus is one third the minor axis, the center being

at the origin and the major axis lying on OX.

62. Find the eccentricity of an ellipse if the straight line connect-

ing the positive ends of the axes is parallel to the straight line joining

the center to the upper end of the ordinate at the left-hand focus.

63. Given the hyperbola — — £- = 1. find its eccentricity, foci,

and asymptotes.

64. Given the hyperbola 4 a-
2 — 9 if — 36, find its eccentricity,

foci, and asymptotes.

65. Find the center, eccentricity, foci, and asymptotes of the

hyperbola 9 r
2 - 4 f - 36 x - 24 y - 30 = 0.

66. Find the center, eccentricity, foci, and asymptotes of the

hyperbola 2 x2 - 3 f + 4 x + 12 y + 4 = 0.

67. Find the equation of an hyperbola if its transverse axis is

V3, its conjugate axis Vf, its center at (1, — 2), and its transverse

axis parallel to OX.

68. Find the equation of an hyperbola if its transverse axis is

5, its conjugate axis 3, its center (— 2, 3), and its transverse axis

parallel to OY.

69. Find the equation of the hyperbola when the origin is at the

left-hand vertex, the transverse axis lying on OX.
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70. Find the equation of an hyperbola if the foci are (± 4, 0) and

the transverse axis is 6.

71. Find the equation of an hyperbola if the foci are (0, ± 3) and

the transverse axis is 4.

72. An hyperbola has its center at (1, 2) and its transverse axis

is parallel to OX. If its eccentricity is § and its transverse axis is

5, find its equation.

73. Find the equation of an hyperbola when the vertices are (7, 1)
and (— 1, 1) and the eccentricity is |.

74. Find the equation of an hyperbola the vertices of which are

halfway between the center and the foci, the center being at and

the transverse axis lying on OX.

76. Find the equation of the hyperbola which has the lines

y = ± | x for its asymptotes and the points (±2, 0) for its foci.

76. Find the equation of the hyperbola which has the asymptotes

y = ± | x and passes through the point (2, 1).

77. Find the equation of an equilateral hyperbola which passes

through (3, — 1) and has its axes on the coordinate axes.

78. Show that the eccentricity of an equilateral hyperbola is equal

to the ratio of a diagonal of a square to its side.

79. If the vertices of an hyperbola lie two thirds of the distances

from the center to the foci, find the angles between the transverse

axis and the asymptotes.

80. Express the angle between the asymptotes in terms of the

eccentricity of the hyperbola.

81. An ellipse and an hyperbola have the vertices of each at the

x2
ir

foci of the other. If the equation of the ellipse is — + ~ = 1, find

that of the hyperbola. Find the equations of the directrices of the

two curves.
.'- y

2

82. Show that -3 — + -h——, = 1, where k is an arbitrary

quantity, represents an ellipse confocal to -5 + '— = 1 when k2 <b2

,

and represents an hyperbola confocal to '—, + ^ = 1 when lr>b2 but

< a2
, a

2 being greater than U1 .

83. Find the vertex, axis, focus, and directrix of the parabola

lf + ±y-G X + T=0.
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84. Find the vertex, axis, focus, and directrix of the parabola

4 .r
2 + 4 x 4- 3 y - 2 = 0.

85. Determine p so that the parabola y- = A])x shall pass through

the point (— 2, 4).

86. The vertex of a parabola is at the point (2, 3), and the parab-

ola passes through the origin of coordinates. Eind its equation, its

axis being parallel to OX.

87. The vertex of a parabola is at the point (— 1^, 2), and the

parabola passes through the point (— 1, — 1). Find its equation, its

axis being parallel to OY.

88. Find the equation of the parabola when the origin is at the

focus and the axis of the parabola lies on OX.

89. Find the equation of the parabola when the axis of the curve

and its directrix are taken as the axes of x and y respectively.

90. The vertex of a parabola is (3, 2) and its focus is (5, 2). Find

its equation.

91. The vertex of a parabola is (— 1, 2) and its focus is (— 1, 0).

Find its equation.

92. Find the equation of the parabola of which the focus is

(2, — 1) and the directrix is the line y — 4 = 0.

93. The vertex of a parabola is at the point (— 2, — 5) and its

directrix is the line x — 3 = 0. Find its equation.

94. The vertex of a parabola is at (5, — 2) and its directrix is the

line ?/ 4- 4 = 0. Find its equation.

95. The focus of a parabola is at the point (4, — 1) and its direc-

trix is the line y — x = 0. Construct the curve from its definition

and derive its equation. What is the equation of its axis ?

96. The altitude of a parabolic segment is 8 ft. and the length of

its base is 14 ft. A straight line drawn across the segment perpen-

dicular to its axis is 7 ft. long. How far is it from the vertex of

the segment ?

97 . An arch in the form of a parabolic curve, the axis being verti-

cal, is 40 ft. across the bottom, and the highest point is 12 ft. above

the horizontal. What is the length of a beam placed horizontally

across the arch 3 ft. from the top ?
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98. The cable of a suspension bridge hangs in the form of a

parabola. The roadway, which is horizontal and 300 ft. long, is sup-

ported by vertical wires attached to the cable, the longest wire being

90 ft. and the shortest being 20 ft. Find the length of a supporting

wire attached to the roadway 50 ft. from the middle.

99. Any section of a given parabolic mirror made by a plane pass-

ing through the axis of the mirror is a parabolic segment of which

the altitude is 8 in. and the length of the base is 12 in. Find the

perimeter of the section of the mirror made by a plane perpendicular

to its axis and 6 in. from its vertex.

100. Given the ellipse 4 x2
-+- 9 y

2 = 36, find its foci and directrices.

101. Given the ellipse 5 x2 + 3 f — 1, find its foci and directrices.

102. Given the hyperbola 5 x2 — 10 y
2 = 50, find its foci and

directrices.

103. Find the equation of an ellipse when the foci are (± 3, 0)

and the directrices are x = ±7.

104. Find the center, vertices, foci, and directrices of the ellipse

9x2 + 25 f + 30 x + 40 y - 184 = 0.

105. Find the center, vertices, foci, and directrices of the hyper-

bola 5 x2 - 4 // + 10 x + 16 y - 31 = 0.

106. Find the equation of a circle through the vertex and the

ends of the double ordinate at the focus of the parabola f = Apx.

107. Find the equation of the circle through the vertex, the

focus, and the upper end of the ordinate at the focus of the parab-

ola f- 8.v = 0.

108. Find the equation of a circle which passes through the

vertex and the focus of the parabola f = 8 x and has its center

on the line x — y + 2 = 0.

109. Find the equation of the locus of a point which moves so

that the slope of the straight line joining it to the focus of the

parabola x2 = 8 y is three times the eccentricity of the ellipse

16 a:
2 +9/ -144 = 0.

110. Find the equation of the cissoid when the origin is at the

center of the circle used in its definition, the direction of the axes

being as in § 48.

111. Find the equation of the cissoid when its asymptote is the

axis of y and its axis is the axis of x.
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112. Find the equation of the strophoid when the asymptote is

the axis of y, the axis of x being as in § 49.

113. Find the equation of the strophoid when the origin is at

A (fig. 82), the axes being parallel to those of § 49.

114. Show that the lines y = ± x intersect the strophoid at the

origin only, and find the equation of the curve referred to these

lines as axes.

115. Find the equation of the witch when LK (fig. 80) is the axis

of x and OA the axis of y.

116. Find the equation of the witch when the origin is taken at

the center of the circle used in constructing it, the axes being par-

allel to those of § 47.

117. Show that the locus of a point which moves so that the sum

of its distances from two fixed straight lines is constant is a straight

line.

118. Find the equations of the locus of a point equally distant

from two fixed straight lines.

119. A point moves so that its distances from two fixed points

are in a constant ratio k. Show that the locus is a circle except

when k = 1.

120. A point moves so that the sum of the squares of its dis-

tances from the sides of an equilateral triangle is constant. Show

that the locus is a circle and find its center.

121. A f>oint moves so that the square of its distance from the

base of an isosceles triangle is equal to the product of its distances

from the other two sides. Show that the locus is a circle and an

hyperbola which pass through the vertices of the two base angles.

122. A point moves so that the sum of the squares of its dis-

tances from the four sides of a square is constant. Find its locus.

123. A point moves so that the sum of the squares of its dis-

tances from any number of fixed points is constant. Find its locus.

124. Find the locus of a point the square of the distance of

which from a fixed point is proportional to its distance from a

fixed straight line.

125. Find the locus of a point such that the lengths of the tan-

gents from it to two concentric circles are inversely as the radii of

the circles.
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126. A point moves so that the length of the tangent from it to

a fixed circle is equal to its distance from a fixed point. Find its

locus.

127. Find the locus of a point the tangents from which to two

fixed circles are of equal length.

128. Straight lines are drawn through the points (— a, 0) and
(a, 0) so that the difference of the angles they make with the axis

of x is tan-1 -- Find the locus of their point of intersection.

129. The slope of a straight line passing through (a, 0) is twice

the slope of a straight line passing through (— a, 0). Find the locus

of the point of intersection of these lines.

130. A point moves so that the product of the slopes of the

straight lines joining it to A (— a, 0) and /; (a, 0) is constant.

Prove that the locus is an ellipse or an hyperbola.

131. If, in the triangle ABC, tan .1 tan \ 11 = 1' and Ml is fixed,

show that the locus of C is a parabola with its vertex at A and its

focus at B.

132. Given the base 2b of a triangle and the sum s of the tan-

gents of the angles at the base. Find the locus of the vertex.

133. Find the locus of the center of a circle which is tangent to

a fixed circle and a fixed straight line.

134. Prove that the locus of the center of a circle which passes

through a fixed point and is tangent to a fixed straight line is a

parabola.

135. A point moves so that its shortest distance from a fixed

circle is equal to its distance from a fixed diameter of that circle.

Find its locus.

136. If a straight line is drawn from the origin to any point Q of

the line y = a, and if a point P is taken on this line such that its

ordinate is equal to the abscissa of Q, find the locus of P.

137. AOB and COD are two straight lines which bisect each other at

right angles. Find the locus of a point P such that PA PB = PC • PD.

138. AB and CD are perpendicular diameters of a circle and M is

any point on the circle. Through M, AM and BM are drawn. AM
intersects CD in N, and from 7Y a straight line is drawn parallel to

AB, meeting BM in P. Find the locus of P.



102 CERTAIN" CURVES

139. Given a fixed straight line All and a fixed point Q. From
any point R in AB a perpendicular to AB is drawn, equal in length

to RQ. Find the locus of the end of this perpendicular.

140. is a fixed point and AB is a fixed straight line. A straight

line is drawn from 0, meeting AB at Q, and in OQ a point P is taken

so that OP -OQ= k 2
. Find the locus of P.

141. Let OA be the diameter of a fixed circle. From B, any point

on the circle, draw a straight line perpendicular to OA, meeting it

in D. Prolong the line DB to P, so that OD:DB= OA : DP. Find

the locus of P.

142. A perpendicular is drawn from the focus of an hyperbola to

an asymptote. Show that its foot is at distances a and b from the

center and the focus respectively.

143. Two straight lines are drawn through the vertex of a parab-

ola at right angles to each other and meeting the curve at P and Q.

Show that the line PQ cuts the axis of the parabola in a fixed point.

144. In the parabola if = A,px an equilateral triangle is so

inscribed that one vertex is at the origin. What is the length

of one of its sides ?

145. Prove that in the ellipse half of the minor axis is a mean
proportional between AF and FA '.

146. Show that in an equilateral hyperbola the distance of a point

from the center is a mean proportional between the focal distances of

the point.

147. If from any point P of an hyperbola PK is drawn parallel

to the transverse axis, cutting the asymptotes in Q and R, prove

PQ • PR = «2
. If PK is drawn parallel to the conjugate axis, prove

PQ . PR = _ 6
2
.

148. Prove that the product of the distances of any point of the

hyperbola from the asymptotes is constant.

149. Prove that in the hyperbola the squares of the ordinates of

any two points are to each other as the products of the segments of

the transverse axis made by the feet of these ordinates.

150. Straight lines are drawn through a point of an ellipse from

the two ends of the minor axis. Show that the product of their

intercepts on OX is constant.
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151. P
1

is any point of the parabola y
2 = 4^.r, and P

X
Q, which

is perpendicular to OPv intersects the axis of the parabola in Q.

Prove that the projection of P
X
Q on the axis of the parabola is

always 4^>.

152. Show that the focal distance of any point on the hyperbola,

is equal to the length of the straight line drawn through the point

parallel to an asymptote to meet the corresponding directrix.

153. Show that the following points lie approximately on a straight

line, and find its equation

:

X
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157. The relation between the pressure p and the volume v of a

gas is found experimentally as follows

:

Pressure
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162. Show that the values of x and y as given in the following

table are connected by a relation of the form y = cax, and find c and a.

X



CHAPTER VII

PARAMETRIC REPRESENTATION

52. Definition. Consider the two equations

(i)

where ^(0 and f2(f)
are two functions of an independent

variable t. If we assign to t any value in (1), we determine

x and y and may plot a point with these coordinates. In

this way a value of t determines a point in the plane. So

other values of t determine other points, which together deter-

mine a curve.

The two equations (1) then represent the curve. The vari-

able t is called a parameter, and the equations (1) are called

the parametric representation of the curve. It is sometimes

easy to eliminate t from the equations (1) and obtain thus

a Cartesian equation

of the curve, but this y
elimination is not essen-

tial and is not always

desirable.

Ex. 1. x = t'
2
, y

Giving t in

the values — 3, -

1, 2, 3, we find

sponding points

= t.

succession

2, -1, 0,

the corre-

(9, -3),

Fig. 88

(4, -2), (1, -1), (0, 0),

(1, 1), (4, 2), (9, 3). These

points, if plotted, may be

connected by the curve of

fig. 88, and as many inter-

mediate points as desired may be found. In this case we may easily

eliminate t from the equations and obtain x = y
2

. The curve is a parabola.

106
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Ex. 2. x = t
3 + 2 fi, y

|, -1, -i, 0, i, 1, we

•), (1, 0), (|, |), (0, 0),

Giving t in succession the values — 2, -

find as corresponding points (0, — (J), {%,
—

(J, -
t)> (3, 0).

These points give the curve shown in

fig. 89. If more details as to the shape of

the loop are wanted, more values of t must

be assumed intermediate to those we have

used. Elimination of / in this example is

possible hut hardly desirable.

Ex. 3. ./ = <i ens"/, ij = */ sin8tf.

If values of t are assumed at convenient

intervals between t = 0° and t = 360°, the

curve may he found to be as in fig. !» ( >.

The elimination of t gives the equation

£j + yt = n t. The curve is called the four-

etaped hypocycloid (§ 58).

As the examples show, the param-

eter t is in general simply an inde-

pendent variable to which values are

assigned at pleasure. In problems of mechanics, however, the pa-

rameter frequently represents time. In this ease the curve of equa-

tions (1) represents the path

of a moving point, the position

of the point at any instant

being given by the equations.

Any of the above examples

may be interpreted in this

way. Other illustrations will

be found in the examples of

§§53 and 54.

In some cases, also, it is

possible to give a geometric

interpretation to the param-

eter t. This is illustrated

by the curves which follow, where in each case the parameter is

a certain angle.
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53. The circle. Let P(x, y) (fig. 91) be any point on a circle

with its center at the origin and its radius equal to a. Let </>

be the angle made by OP and OX. Then, from the definition of

the sine and cosine,

x = a cos cj>,

y = a sin c/>,

are the parametric equations of the circle

with
<f>

as the arbitrary parameter.

Ex. A particle moves in a circle at a con-

stant rate k. Then, if s represents the arc

traversed in the time /,

s — kt and <h = - = —
Therefore the equations of the circle are

kt

Fig. 91

54. The ellipse. In a circle with radius a let the abscissa of

every point Q (fig. 92) be left unchanged and its ordinate be

altered in a fixed ratio b : a, where b is any length whatever.

The point Q then takes such a position

as P, where in the figure b < a. The
parametric equations of the locus of P
are therefore, from § 53,

x = a cos </>,

y = b sin </>.

The elimination of cf> from these equa-

tions gives I- +[
i

1, showing that

Fig. 92
the locus of P is an ellipse.

4> is called the eccentric angle of a point on the ellipse, and

the circle x2+y2= a2
is called the auxiliary circle.

Ex. A particle Q moves at a constant rate along the auxiliary circle of

an ellipse ; required the motion of its accompanying point P.

As in § 53,
<f>
= — Hence the equations of the path are

kt

y bsm
It
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55. The cycloid. If a circle rolls upon a straight line, each

point of the circumference describes a curve called a cycloid.

Let a circle of radius a roll upon the axis of x, and let C
(fig. 93) be its center at any time of its motion, N its point of

contact with OX, and P the point on its circumference which

Fig. 93

describes the cycloid. Take as the origin of coordinates, 0, the

point found by rolling the circle to the left until P meets OX.

Then ON= arc I'X.

Draw MP and CX, each perpendicular to OX, PR parallel to

OX, and connect C and P. Let

angle X('P=
<f>.

Then x = OM= OX- MN
= arc XI'- PR
= a

<f>
— a sin

(f>.

ij = MI> = XC-RC
= a — a cos

(f>.

Hence the parametric representation of the cycloid is

x= a($ — sin </>),

y = a (1 — cos <£).

By eliminating <£, the equation of the cycloid may be written

_ „-i a— y _V2 ay - y\

but this is less convenient than the parametric representation.

At each point where the cycloid meets OX a sharp vertex

called a cusp is formed. The distance between two consecutive

cusps is evidently 2 ira.
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56. The trochoid. When a circle rolls upon a straight line,

any point upon a radius, or upon a radius produced, describes

a curve called a trochoid.

Let the circle roll upon the axis of x, and let C (figs. 9-4 and

95) be its center at any time, N its point of contact with the

axis of x, P(x, y) the point which describes the trochoid, and

K the point in which the line CP meets the circle. Take as

the origin the point found by rolling the circle toward the

left until A' is on the axis of x. Then

ON= arc NX.

Draw PM and CN perpendicular to OX, and through P a line

parallel to OX, meeting CN, or CN produced, in R. Let the

radius of the circle be a, CP be h, and angle NCP be
<f).

Then

x=OM=ON-MN
= arc NK— PR
= d(f) — h sin (p.

y = MP = NC - RC
a h cos



THE EPICYCLOID 111

57. The epicycloid. When a circle rolls upon the outside of a

fixed circle, each point of the circumference of the rolling circle

describes a curve called an epicycloid.

Let (fig. 96) be the center of the fixed circle, the center

of the rolling circle, K its point of contact with the fixed circle,

and P(x, y) the point

which describes the

epicycloid. Determine

the point K by rolling

the circle C until P
meets the circumference

of 0. Then

arc KN= arc NP.

Take as the origin

of coordinates and OK
as the axis of x. Draw
PM and CL perpendic-

ular to OX, PS parallel

to OX, meeting CL in

E, and connect and C.

Let the radius of the

rolling circle be a. that of tin- fixed circle ?>, ami denote the

angle OCP by 0, the angle KOC by cf>. Thru

arc KX= /-</>, an- NP = ad
;

whence /«/> = ad.

We now have x = 031= OL+L .V

= OC cos KOC-CP cos SPC
= (a + li) cos

<f>
— a cos (<£ + 0)

a + b

a

y =MP=LC-EC
= 0C sin KOC - OP sin SPC
= (a + b) sin <£ — a sin ($ + 0)

= (a + b) sin $ — a sin <£>.

= (a + A) cos ^-aci >s </>•
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The curve consists of a number of congruent arches, the first of

which corresponds to values of 6 between and 2 7r, that is, to

Similarly, the Mi arch corre-

2(k 1) air , 2 kair TTand —:
—

• Hence

values of <£ between and —

—

sponds to values of <j> between
b o

the curve is a closed curve when, and only when, for some value

of k,—— is a multiple of 2 it. \ia and b are incommensurable,
b

this is impossible, but if - = *1 , where — is a rational fraction in

its lowest terms, the smallest value of k — q. The curve then con-

sists of q arches and winds p times around the fixed circle.

58. The hypocycloid. When a circle rolls upon the inside of

a fixed circle, each point of the rolling circle describes a curve

called the hypocycloid. If the axes and the notation are as in

the previous article, the equa-

tions of the hypocycloid are

x = (b — a.) cos
(f>
+ a cos —

y = (b — a) sin </> — a sin
<fi

— a

a

b-a

The proof is left to the student.

The curve is shown in fig. 97.

In the special case in which

the radius of the rolling circle

is one fourth that of the fixed

circle, we have b = 4 a. Then FlG
- 97

x = a (3.cos
(f>
+ cos 3 $) = 4 a cos

3
<£ = b cos

3
<£,

y — a (3 sin c/> — sin 3 (/>) = 4 a sin
3
(£ = b sin

3
<£.

This is the four-cusped hypocycloid of Ex. 3, § 52.

59. The involute of the circle. If a string, kept taut, is

unwound from the circumference of a circle, its end describes

a curve called the involute of the circle. Let (fig. 98) be

the center of the circle, a its radius, and A the point at which
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the end of the string is on the circle. Take as the origin of

coordinates and OA as the axis of x. Let P(x, y) be a point

on the involute, PK the line drawn from P tangent to the

circle at K, and <£ the angle

XOK. Then PK represents a

portion of the unwinding string,

and hence

KP — arc AK=atf>.

Now it is clear that for all

positions of the point K, OK

makes an angle
<f>
— -^ with OY.

Hence the projection of OK on

OX is always OK cos <j> = a cos <j>,

and its projection on OY is F " •

'- ,s

(7j-\ jj-

(f)
— — \ = a sin

<f>.
Also KP always makes an angle

(f>
— —

with OX and an angle ir —
<f>

with (> Y. Hence the projection of

KP on OX is KP cos I
<f>
— — )= atf> sin <£, and its projection

on C> F is jKP cos (7r — <£) = — «</> cos (/>. The projection of OP on

OX is #, and on 01' is y. Hence, by the law of projections, § 2,

x = a cos <$> + d(f> sin
(f>,

y = a sin (f>— acf) cos
<f).

PROBLEMS

Plot the graphs of the following parametric equations

:

6 6t
1. x = t

2
, y — t -f- 1.

4 4
2. x = — > w = -•

*
2 lX

£

3. £C =
± Vl + 9 11

.'/

± Vi + 9 e

4. x = f, y a2 + *
2

5 . x = -
o > 11 =

l + t-
J

6. x = 2 a shr<f>, y

7 . cr = e* sin £, ?/ =

t(l+l*)

2 a sin3
<£

cos <£

e* cos £.



x = a<f> + a sin cf>, ij = r<
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21. A fixed circle of radius a with its center at intersects OX
at A. The straight line BC is tangent to the circle at .4. Through
any straight line is drawn, intersecting the circle at D and intersecting

BC at E. Through D a straight line is drawn parallel to OY, and

through E a straight line is drawn parallel to OX. These lines inter-

sect at P. Find the parametric equations of the locus of P in terms

of the angle XOD as parameter. Find also the Cartesian equation

and sketch the curve.

22. A circle of radius a has its center at 0, the origin of coordinates.

The tangent to the circle at any point A meets OX at .1/. Through M
a straight line is drawn parallel to <>Y, and through .1 a straight line

is drawn parallel to OX. These lines intersect at P. Find the par-

ametric equations of the locus of P, using the angle MOA as the

parameter. Find also the Cartesian equation and sketch the curve.

23. A circle of radius a has its center at the origin of coordinates

0. Through O any straight line is drawn, intersecting the circle at

A. The tangent to the circle at .1 intersects OFat /;. Through B a

straight line is drawn parallel to 0X
}
meeting OA produced at /'.

Find the parametric equations of the locus of P in terms of the

angle XOA as parameter. Find also the Cartesian equation.

24. Let OA be the diameter of a fixed circle and LK the tangent

at A. From O draw any straight line intersecting the circle at B
and LK at C, and let /' be the middle point of BC. Find the para-

metric equations of the locus of /', using the angle AOP as the

parameter, OA as the axis of y, and as the origin. Find also the

Cartesian equation.

25. A circle of radius a has its center at the origin of coordinates

0, and the straight line -I B is tangent to the circle at A(a, 0). From
any straight line is drawn, meeting All at /•; and the circle at D.

On OE, OP is taken equal to DE. Find the parametric equations of

the locus of P in terms of the angle AOP as parameter.

26. The straight line All is perpendicular to OX at A (a, 0). From
a straight line is drawn to any point C of All. The straight line

drawn from C perpendicular to OC meets OX at M. The perpendic-

ular to OX at .1/ meets' OC produced at P. Find the parametric

equations of the locus of P in terms of the angle XOC as parameter.

Find also the Cartesian equation.
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27. OBCD is a rectangle with OB = a and BC = c. Any line is

drawn through C, meeting OB in E, and the triangle EPO is con-

structed so that the angles CEP and EPO are right angles. Find

the parametric equations of the locus of P, using the angle DOP as

I he parameter, OB as the axis of x, and as the origin. Find also the

Cartesian equation of the locus.

28. A fixed circle has as diameter the straight line joining the

origin and the point A (0, 2a). Any point B of the circle is connected

with A and 0, and BM is drawn perpendicular to OX, meeting OX
at M. On MB, MP is laid off equal to BA. Find the parametric

equations of the locus of P in terms of the angle XOB as parameter.

Find also the Cartesian equation.

29. Let AB be a given straight line, a given point a units from

AB, and k a given constant. On any straight line through 0, meet-

ing AB in M, take-P so that OM • MP= k2
. Find the parametric

equations of the locus of P, using as the origin, the perpendicular

from to AB as the axis of x, and the angle between OX and OP
as the parameter. Also find the Cartesian equation.

30. ABC is a given right triangle of which the sides AB and BC
about the right angle at B are always equal to a and b respectively.

The triangle moves in the plane XOY so that A is always on OF and

B is always on OX. P is the middle point of the hypotenuse AC.

Find the parametric equations of the locus of P, using the angle

XBC as the parameter.

31. Let be the center of a circle with radius a, A a fixed point

on the circle, and B a moving point on the circle. If the tangent at

B meets the tangent at A in C, and P is the middle point of BC,

find the equations of the locus of P in parametric form, using the

angle A OB as the arbitrary parameter, OA as the axis of x, and

as the origin.

32. A fixed circle has as diameter the straight line joining the

origin of coordinates and the point A (2 a, 0), and LK is tangent to

the circle at A. From O any straight line is drawn, meeting the circle

at D and the tangent LK at E. On OE a point P is so taken that

PD= DE in both length and direction. Find the parametric equa-

tions of the locus of P in terms of the angle AOE.&s parameter.

Find also the Cartesian equation.
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33. A and B are two points on the axis of y at distances — a and

-f- a respectively from the origin. AH is any straight line through A,

meeting the axis of x at H. BK is the perpendicular from B on All,

meeting it at K. Through K a straight line is drawn parallel to

the axis of x, and through H a straight line is drawn parallel to

the axis of y. These lines meet in P. Find the parametric equa-

tions of the locus of P, using the angle BAK as the parameter.

Also find the Cartesian equation.

34. Q is the point on the auxiliary circle of the ellipse

corresponding to the point P of the ellipse. The straight line

through P parallel to OQ meets OX at L and OY at M. Prove

PL = b, and PM= a.

35. If a projectile starts with an initial velocity v in an initial

direction which makes an angle a with the axis of x, taken horizontal,

its position at any time t is given by the parametric equations

x = vt cos a, y = vt sin a — \ yP.

Pind the Cartesian equation of the path of the projectile and its

nature and position.

36. From the equations of problem 35 determine when and where

the projectile strikes a point on the axis of x.

37. From the equations of problem 35 determine when, and for

what value of x, the projectile passes through a point which is at

a distance h below the horizontal.

38. From the equations of problem 35, what elevation must be

given to a gun that the projectile may pass through a poinl b units

distant from the muzzle of the gun and lying in the horizontal line

passing through the muzzle ?

39. From the equations of problem 35, what elevation must be

given to a gun to obtain a maximum range on a horizontal line

passing through the muzzle ?

40. A gun stands on a cliff // units above the water. From the

equations of problem 35, what elevation must be given to the gun

that the projectile may strike a point in the water b units from the

base of the cliff ?

AC



CHAPTER VIII

POLAR COORDINATES

60. Coordinate system. So far we have determined the posi-

tion of a point in the plane by two distances, x and y. We
may, however, use a distance and a direction, as follows:

Let (fig. 99), called the origin, or pole, be a fixed point, and

let OM, called the initial line, be a fixed line. Take P any point

in the plane and draw OP. Denote OP by r and the angle

MOP by 0. Then r and 6 are called the polar coordinates of

the point P (r, #), and when given will completely determine P.

For example, the point (2, 15°) is plotted by laying off the

angle MOP — lb° and measuring OP = 2.

OP, or r, is called the radius vector, and 9

the vectorial angle, of P. These quantities may
be either positive or negative. A negative

value of 6 is laid off in the direction of the

motion of the hands of a clock, a positive

angle in the opposite direction. After the

angle 6 has been constructed, positive values of r are measured

from along the terminal line of 6, and negative values of r

from along the backward extension of the terminal line. It

follows that the same point may have more than one pair of

coordinates. Thus (2, 195°), (2, -165°), (-2, 15°), and

(— 2, — 345°) refer to the same point. In practice it is usually

convenient to restrict 6 to positive values.

Plotting in polar coordinates is facilitated by using paper ruled

as in figs. 100 and 101. The angle 6 is determined from the num-
bers at the ends of the straight lines, and the value of r is counted

off on the concentric circles, either towards or away from the

number which indicates 6, according as r is positive or negative.

When an equation is given in polar coordinates, the corre-

sponding curve may be plotted by giving to 6 convenient
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values, computing the corresponding values of r, plotting the

resulting points, and drawing a curve through them.

Ex. 1. r = a cos 6.

a is a constant which

may be given any con-

venient value. We may
then find from a table oi

natural cosines the value

of r which corresponds

to any value of 6. By
plottiug the points corre-

sponding to values of 6

from 0° to 90°, we obtain

the arc ABCO (fig. 100).

Values of 6 from 90° to

180° give the arc ODEA.
Values of from 180°

to 270° give again the

arc ABCO, and those

from 270° to 360° give the arc ODEA. Values of 6 greater than 360 'can

clearly give no points not already found. The curve is a circle (§ 63).

Ex. 2. r = a sin 3 0.

As 6 increases from 0° to

30°, r increases from to a;

as increases from 30°to 60
,

r decreases from a to ; the

point (?•, 6) traces out the

Loop 0A0 (fig. 101). As 6

increases from G0° to 90°,

r is negative and decreases

from to — a ; as 6 increases

from 90° to 120°, r increases

from —a to 0; the point

(r, 6) traces out the loop

OB 0. As 8 increases from

120° to 180°, the point (r, 6)

traces out the loop OCO.
Larger values of $ give

points already found, since

sin 3 (180° + '(9) = - sin 3 ft

sin 3 (G0° + 6) = — sin 3 6.

The three loops are congruent, because

This curve is called a rose of three leaves.
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Ex. 3. r2 = 2 rt
2 cos 2 0.

Solving for r, we have ±aV2cos2 0.

Hence, corresponding to any values of which make cos 26 positive, there

will be two values of r numerically equal and opposite in sign and two

corresponding points of the curve symmetrically situated with respect to

the pole. If values are assigned to 6 which make cos 2 9 negative, the cor-

responding values of r will be imaginary and there will be no points on

the curve.

Accordingly, as 6 increases

from 0° to 45°, r decreases nu-

merically from a to 0, and the

portions of the curve in the first

and the third quadrant are con-

structed ; as increases from 45°

to 135°, cos 2 6 is negative, and

there is no portion of the curve between the lines 6 = 45° and 6 = 135°;

finally, as 6 increases from 135° to 180°, r increases numerically from

to a, and the portions of the curve in the second and the fourth quadrant

are constructed. The curve is now complete, as we should only repeat the

curve already found if we assigned further values to 6; it is called the

lemniscate (fig. 102).

61. The spirals. Polar coordinates are particularly well

adapted to represent certain curves called spirals, of which

the more important follow:

Ex. 1. The spiral of Archimedes,

Fig. 102

In plotting, 6 is usually considered

in circular measure. When 9 = 0,

r — 0, and as 6 increases, r increases,

so that the curve winds infinitely often

around the origin while receding from

it (fig. 103). In the figure the heavy

line represents the portion of the spiral corresponding to positive values

of 6, and the dotted line the portion corresponding to negative values of 6.

Ex. 2. The hyperbolic spiral,

Fig. 103

As 6 increases indefinitely, r approaches zero. Hence the spiral winds

infinitely often around the origin, continually approaching it but never
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reaching it (fig. 104). As 6 approaches zero, r increases without limit.

If P is a point on the spiral and NP is the perpendicular to the initial line.

NP
6

Fig. 104

Hence, as 6 approaches zero as

a limit, NP approaches a (§ 95).

Therefore the curve comes con-

stantly nearer to, but never reaches,

the line LK, parallel to OM at a

distance a units from it. This line is therefore an asymptote. In the

figure the dotted portion of the curve corresponds to negative values of 6.

Ex. 3. The logarithmic spiral,

r = &*.

When 6 = 0, r = 1. As 9 increases, r

increases, and the curve winds around

the origin at increasing distances from

it (fig. 10")). "When 6 is negative and

increasing numerically without limit, r

approaches zero. Hence the curve winds

infinitely often around the origin, continu-

ally approaching it. The dotted line in the

figure corresponds to negative values of 6.

A property of this spiral is that it cuts

the radius vectors at a constant angle. The

student may prove this after reading § 103.

We shall now give examples of the derivation of the polar

equation of a curve from the definition of the curve.

62. The straight line. Let LK (fig. 106) be a straight line

perpendicular to OD. Let the angle MOD be denoted by a,

and let OD = p ; then p is the normal

distance of LK from the pole.

Let P(r, 6} be any point of LK.
Then, by trigonometry,

Fig. 105

OP cos DOP
r cos (0 — a)

OD,

(1)

which is the equation of the straight

line.
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I f a = and p — a, we have the special equation

r cos 6 = a,

or r = a sec 6. (2)

If the straight line passes through the origin, p = 0. The
equation of the line then becomes

cos (6 — a) = 0,

or simply 6 — — + a,

which is of the form 6 = c. (3)

63. The circle. Let C(b, a) be the center and a the radius of

a circle (fig. 107). Let P(r, 0) be any point of the circle, and

draw the straight lines OC, OP, and CP.

By trigonometry, we have

OP 2

+ OC
2 - 2 OP • OC cos POC=CP\

Noting that cos POC = cos (0 — a), OP = r, OC = h, and

CP = «, and substituting in the equation, we have the result

r
2 -2rb cos (6 - a) + 6

2 = a
2

(1)

as the polar equation of the circle.

When the origin is at the center of

the circle, b = and (1) becomes simply

Fig. 107

When the origin is on the circle, b = a and (1) becomes

r-2«cos(6>-«)=0;

which may be written r = a
Q
cos 6 + a

y
sin 0, (3)

where a and a
x
are the intercepts on the lines 6=0 and 6 = —

respectively.

When the origin is on the circle and the initial line is a

diameter, (3) becomes
?

. _ a CQg ^ ^
When the origin is on the circle and the initial line is tangent

to the circle, (3) becomes . n ^ rx
r = a sin 0. (5)
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64. The limaQon. TJirough any fixed point (fig. 108) on the

circumference of a fixed circle draw any line cutting the circle

again at D, and lay off on this line a

constant length measured from D in

either direction. The locus of the

points P and Q thus found is a curve

called the limagon.

Take as the pole, and the diameter

OA as the initial line, of a system of

polar coordinates, and call the diame-

ter of the circle a and the constant

length b. Then it is clear that the

entire locus can be found by caus-

ing OD to revolve through an angle of 3»>0° and laying off

Dl'=b, always in the direction of the terminal line of AOD.
Let P be (>•, 0), where 6 = AOD. Then r= OD+DP when

6 is in the first or the fourth quadrant, and r=— (>I) + DP
when 6 is in the* second or the third

quadrant. But it appears from the

figure that OD = OA cos 6 when 6 is

in the first or the fourth quadrant,

and that OD = — OA cos 6 when is

in the second or the third quadrant.

Hence, for any point on the limac.on,

r = a cos 6 + b.

-,„,'(-;,)

-ct>»
:

'(-af)

Fn;. 109

In studying the shape of the

curve there are three cases to be

distinguished

:

1. b>a. r is always positive; the curve appears as in fig. 108.

2. b < a. r is positive when cos 6 > •> negative when
h 1

^

c,osd< , and zero when cos = The curve appears as
a a

in fig. 109.

3. b = a. The equation now becomes
Q

r — a (cos 6 + 1) = 2 a cos
2 - •
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Here r is positive, except that when = 180° r is zero. The

curve appears as in fig. 110 and is called the cardioid.

The cardioid is an epicycloid for

which the radius of the fixed circle

equals that of the rolling circle. The

proof of this is left to the student.

65. Relation between rectangular

and polar coordinates. Let the pole

and the initial line OM of a sys-

tem of polar coordinates be at the

same time the origin and the axis

of re of a system of rectangular

coordinates. Let P (fig. HI) be FlG 110

any point of the plane, (x, y) its

rectangular coordinates, and (r, 0) its polar coordinates.

Then, by the definition of the trigonometric functions,

cos

sin 6

(1)

Whence follows, on the one hand

x = r cos 0,

y — r sin 6
;

and, on the other hand,

r =Vx2+y2
, si?i/} —

Fig. Ill

COS0 (2)
Vx2+y2

V;r'
2+ u

By means of (1) a transformation can be made from rectangular

to polar coordinates, and by means of (2) from polar to rectangular

coordinates.

Ex. 1. The equation of the cissoid (§ 48) is

x3

y = 7T-.
—

z
•

Substituting from (1) and making simple reductions, we have the polar

equation .

r = ^

—
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Ex. 2. The polar equation of the' lemniscate (Ex. 3, § 60) is

7-2 =2a2 cos2 0.

Placing cos 26 = cos26— sin2 and substituting from (2), we have the

rectangular equation

(x2 + r)
2 =2«2

(2-
2 -r)-

66. The conic, the focus being the pole. From § 46, the equa-

tion of a conic when the axis of x is an axis of the conic and

the axis of y. is a directrix is

We may transfer to new axes having the focus of the conic as

the origin and the axis of the conic as the axis of x by placing

x = c + x', y = y\

thus obtaining x'

'

2+ y' a = f-(
./•' + rf.

If we now take a system of polar coordinates having the focus

as the pole and the axis of the conic as the initial line, we have

xr=rco8 0, y
,= ram0.

The equation then becomes

r9=ea(rcos^+ c)
9
,

which is equivalent to the two equations

ce ce
r — » r = •

1 — e cos 6 1 + > cos 6

Either of these equations alone will give the entire conic.

To see this, place 6 = d
l

in the second equation, obtaining

— ce
r =

1 1 + e cos
X

Now place 6 = it + 6
X
in the first equation, obtaining r =— r

{

.

The points (r^ 6^) and (— r^ tt + #
x
) are the same. Hence any

point which can be found from the second equation can be

found from the first.

I hereiore r =
1 — f cos 6

is the required polar equation.
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67. Examples. Polar coordinates may be used with great

advantage in the solution of problems involving a number of

straight lines radiating from a given point, the given point

then being taken as the pole of the system of coordinates.

This use is illustrated in the following examples:

Ex. 1. Prove that if a secant is drawn

through the focus of a conic, the sum of the

reciprocals of the segments made by the

focus is constant.

Let P
1
P

2
(fig. 112) be any secant through

the focus F, and let FP
1
= rv FP2

= r
2 , and

the angle MFP
1
= 0. Then the polar coordi-

nates of P1
are (rv 6) and those of P

2
are

(r
2 , 6 + tt). From the polar equation of the

conic, we have

r.
— £! , Fig. 112

Hence I + I

1 — e cos (6 + 7r) 1 + e cos I

2

Ex. 2. Find the locus of the middle

of a circle all of which pass through a

Take any circle with the center C
(fig. 113), and let be any point in the

plane. If is taken for the pole, and OC
for the initial line, of a system of polar

coordinates, the equation of the circle is

r2 - 2 rb cos d + i2 - a2 = 0. (1)

Let P
X
P

2
be any chord through O, and

let OP
1
= rv OP2

= r
2

. Then 1\ and r
2
are

the two roots of equation (1) which corre-

spond to the same value of 0. Hence

?•, + r„ = 2 b cos 6.

points of a system of chords

fixed point.

If Q is the middle point of P
X
P

2
and we now place OQ — r, we have

ri +
b cos 0.

But this is the polar equation of a circle through the points and C.



Plot the following curves

1. r = a sin 2 0.

2. r = a cos 3 0.

3. r = a sin-'
Z

4. r = a cos

5. r

6. r8 = a2 sin 0.

7. j-
2 = «°- sin 3 0.

8. r2 = a2 sin 4 0.

9. >•= «(l + sin0).

10. r= a (2 + sin0).

11. r= « (1 + cos 2 0),

12. r= a (1 — cos 2 0).

13. / = a(l+ cos 3 0).

14. r = a (2 + cos 2 0).

15. r = a(l + 2sin0).

16. r = a(l + 2 cos 2 0).

17. >• = «(! + 2 cos 3 0).

PROBLEMS
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40. is a fixed point and LK a fixed straight line. If any straight

line through intersects LK in Q, and a point P is taken on this

line so that OP OQ = A-
2
, find the locus of P.

41. A straight line OA of constant length a revolves about 0.

From A a perpendicular is drawn to a fixed straight line OM, inter-

secting it in B. From B a perpendicular is drawn to OA, intersecting

it in P. Find the locus of P, OM being taken as the initial line.

42. is a fixed point of a circle of radius a, and OM is a fixed

straight line passing through the center of the circle. A straight

line is drawn from O to any point P
x
of the circle, and from P

1
a

straight line is drawn perpendicular to OM, meeting OM at Q. From

Q a straight line is drawn perpendicular to OPv meeting OP
1
at P.

Find the equation of the locus of P, taking O as the origin of coor-

dinates and OM as the initial line.

43. MN is a straight line perpendicular to the initial line at a

distance a from 0. From a straight line is drawn to any point B
of MN. From B a straight line is drawn perpendicular to OB, inter-

secting the initial line at C. From C a straight line is drawn per-

pendicular to BC, intersecting MN at D. Finally, from D a straight

line is drawn perpendicular to- CD, intersecting OB at P. Find

the locus of P.

Transform the following equations to polar coordinates :

44. xy = 7. 46. xi + x2f — ah? = 0.

45. x2 + f - 8 ax - Say = 0. 47. (.«
2 + iff = d2(x2 - if).

48. Find the polar equation of the strophoid when the pole is

and the initial line is OA (fig. 82).

Transform the following equations to rectangular coordinates :

49. r cos (o-
7

^) + r cos (d + ^) = 12.

50. r = « sin 0. 51. r = a tan 6.

52. Find the Cartesian equation of the rose of four petals

r= a sin 20.

53. Find the Cartesian equation of the cardioid r = a(l— cos 0).

54. Find the Cartesian equation of the limacon r = a cos 6 + b.
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55. In a parabola prove that the length of a focal chord which

makes an angle of 30° with the axis of the curve is four times the

focal chord perpendicular to the axis.

56. A comet is moving in a parabolic orbit around the sun at the

focus of the parabola. When the comet is 100,000,000 miles from

the sun the radius vector makes an angle of 60° with the axis of the

orbit. What is the equation of the comet's orbit ? How near does

it come to the sun ?

57. A comet moving in a parabolic orbit around the sun is

observed at two points of its path, its focal distances being 5 and 15

million miles, and the angle between them being 90°. How near

does it come to the sun ?

58. If a straight line drawn through the focus of an hyperbola

parallel to an asymptote meets the curve at P, prove that FP is one

fourth the chord through the focus perpendicular to the transverse

axis.

59. The focal radii of a parabola are extended beyond the curve

until their lengths are doubled. Find the locus of their extremities.

60. If 1\ and P
2
are the points of intersection of a straight line

drawn from any point to a circle, prove that <>/\ • OP
a

is constant.

61. If Pj and P
2
are the points of intersection of a straight line

from any point O to a fixed circle, and Q is a point on the same
L' OP OP

straight line such that (>(} = — —L ^> find the locus of ().

oi\ + <>P,

62. Secant lines of a circle are drawn from the same point on the

circle, and on each secant a point is taken outside the circle at a

distance equal to the portion of the secant included in the circle.

Find the locus of these points.

63. From a point O a straight line is drawn intersecting a fixed

circle at P, and on this line a point Q is taken so that OP • OQ = k 2
.

Find the locus of Q.

64. Find the locus of the middle points of the focal chords of

a conic.

65. Find the locus of the middle points of the focal radii of

a conic.

66. If P
1
FP

2
and Q

X
FQ

2
are two perpendicular focal chords of a

conic, prove that — h — is constant.
'

* P
X
F • FP

2

T
Qf • FQ

2



CHAPTER IX

SLOPES AND AREAS

68. Limits. A variable is said to approach a constant as a

limit, when, under the laiv which governs the change of value of

the variable, the difference between the variable and the constant

becomes and remains less than any quantity which can be named,

no matter how small.

If the variable is independent, it may be made to approach a

limit by assigning to it arbitrarily a succession of values follow-

ing some known law. Thus, if x is given in succession the values13 7 2
n-l

*x=2' x
*=r x

*=r •••' x^-¥~'

and so on indefinitely, it approaches 1 as a limit. For we
may make x differ from 1 by as little as we please by taking n

sufficiently great ; and for all i i 7 «
larger values of n the differ- 1 +

1 'f i-

ence between x and 1 is still

smaller. This may be made

evident graphically by marking off on a number scale the

successive values of x (fig. 114), when it will be seen that

Fig. 115

the difference between x and 1 soon becomes and remains

too minute to be represented.

Similarly, if we assign to x the succession of values1111 , 1V- 1
1 2 2 3 3 4 4 5 ' "

v ' n+1
x approaches as a limit (fig. 115).

130
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If the variable is not independent, but is a function of x, the

values which it assumes as it approaches a limit depend upon

the values arbitrarily assigned to x. For example, let y =f(x),

and let x be given a set of values,

approaching a limit a. Let the corresponding values of y be

y* y* y8> y* •••» y.» ••••

Then, if there exists a number A such that the difference between

y aifd A becomes and remains less than any assigned quantity, y
is said to approach A as a limit as x approaches a in the manner

indicated. This may be seen

graphically in fig. 116, where

the values of x approaching a

are seen on the axis of abscissas,

and the values of y approach-

ing A are seen on the axis

of ordinates. The curve of the

function is continually nearer

to the line y = A.

In the most common cases the

limit of the function depends

only upon the limit a of the

independent variable and not

upon the particular succession

approaching a. This is clearly

of values that

the case if the

x assumes in

graph of the

function is as drawn in fig. 116.

Ex. 1. Consider the function

x- + 3 x - 4y= x-l '

and let x approach 1 by passing through the succession of values

x = 1.1, !F = 1.01, x = 1.001, a: = 1.0001, •••.

Then y takes in succession the values

y = 5.1, y = 5.01, y = 5.001, y - 5.0001.

It appears as if y were approaching the limit 5. To verify this we place

X = 1 + h, where It is not zero. By substituting and dividing by h, we find
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y = 5 + h. From this it appears that y can be made as near 5 as we
please by taking h sufficiently small, and that for smaller values of h,

y is still nearer 5. Hence 5 is the limit of y as x approaches 1. More-

over, it appears that this limit is independent of the succession of values

which x assumes in approaching 1.

Ex. 2. Consider y = = as x approaches zero.

1 - Vl - x

Give x in succession the values .1, .01, .001, .0001, • • •. Then y takes the

values 1.9487, 1.9950, 1.9995, 1.9999, • • •, suggesting the limit 2.

In fact, by multiplying both terms of —= by 1 + Vl — x, we find

1 - VI - x

y = 1 + Vl— x for all values of x except zero.

Hence it appears that y approaches 2 as a; approaches 0.

We shall use the symbol = to mean "approaches as a limit."

Then the expressions

Lima- = a

and x = a

have the same significance.

The expression ~Limf(x') = A
x= a

is read " The limit of f(x), as x approaches «, is Ay
69. Theorems on limits. In operations with limits the follow-

ing propositions are of importance

:

J 1. The limit of the sum of a finite number of variables is equal

to the sum of the limits of the variables.

We will prove the theorem for three variables ; the proof is

easily extended to any number of variables.

Let X, F, and Z be three variables, such that Lim X=A,
Lim Y=B, him Z=C. From the definition of limit (§68) we
may write X= A+a, Y= B+b, Z=C+c, where a, b, and c

are three quantities each of which becomes and remains

numerically less than any assigned quantity as the variables

approach their limits.

Adding, we have

A'+ F+ Z = A +B + C+ a + b + c.
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Now if e is any assigned quantity, however small, we may

make a, b, and c each numerically less than - , so that a + b + c is
o

numerically less than e. Then the difference between X+Y+ Z
andA+B + C becomes and remains less than e; that is,

Lim (A'+ Y+ Z)=A+B + C= Lim X+ Lim Y+ Lim Z.

V
2. The limit of the product of a finite number of variables is

equal to the product of the limits of the variables.

Consider first two variables A' and F, such that Lim X= A ami

Lim Y= B. As before, we have A= A + a and Y=B+ b. Hence

XY=AB+bA+aB+ab.

Now we may make a and b so small that bA, aB, and ab are

each less than -, where e is any assigned quantity, no matter how

small. Hence
LimXY= AB = (Lim A') (Lim F).

Consider now three variables A, F, Z. Place XY= U. Then,

as just proved,
LimPZ=(LimP)(LimZ) .

that is, LimA]'Z = (LimA)')(LiinZ)
= (LiinA)(Lim)')(LimZ).

Similarly, the theorem may be proved for any finite number

of variables.

v / 3. The limit of a constant multiplied by u variable is equal to

the constant multiplied by the limit if the variable.

The proof is left for the student.

4. The limit of the quotient if two variables is equal t*> the

quotient of the limits of the variables, provided the limit of the

divisor is not zero.

Let A' and Y be two variables, such that Lim .V= J and

Lim Y==B. Then, as before, X=A+a, Y=B + b.

X A+a t A' A A + a A aB — bA
IIence

y=i^i,'
mi y-jriiTi-^^M-
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Now the fraction on the right of this equation may be made less

than any assigned quantity by taking a and b sufficiently small.

Hence Lim
LimX
Lim Y

'

The proof assumes that B is not zero.

70. Slope of a curve. By means of the conception of a limit

we may extend the definition of " slope," given in § 6 for a

straight line, so that it may be applied to any curve. Let

P
x
and P2 be any two points upon a curve

(fig. 117). If i? and P2 are connected by

a straight line, the slope of this line is

y.-yi If P2 and P
x
are close enough to-

Fig. 117

gether, the straight line P,P
2
will differ only

a little from the arc of the curve, and its

slope may be taken as approximately the

slope of the curve at the point Pv Now
this approximation is closer, the nearer the point jP is to Pv
Hence we are led naturally to the following definition:

The slope of a curve at a point P
x
(x^ y^) is the limit approached

by the fraction
y*-Vx

ivhere xn
and y are the coordinates of a

second point P2 on the curve and where the limit is taken as P^

moves toward i? along the curve.

Ex. 1. Consider the curve y = x2 and the point (5, 25) upon it, and let

«i = 5. !lx = 25 -

We take in succession various values for x
2
and y„, corresponding to

points on the curve which are nearer and nearer to (xv y^), and arrange

our results in a table as follows

:

x
a
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The arithmetical work suggests the limit 10. To verify this, place

ar2
= 5 + h. Then y2

= 25 + 10 h + h 2
. Consequently '

2

_ '

* = 10 + A, and

y« — iii
2 l

as x„ approaches x,, h approaches and " _ approaches 10. Hence the
x
i

x
\

slope of the curve y — x'
2 at the point (5, 25) is 10.

Ex. 2. Find the slope of the curve y = - at the point (3, ^).

"We have here x
x
— 3, yx

= \.

We place x„ — 3 + A, »/o
=

3 + A

rrv 7.
~ ''

1 'A. — '/l 1
1 hen x„ — x, = «, ?/., — ?/, = > aud —-

9 + 3A x8— z
2

9 + 3*

As P
2
approaches 1\ along the curve, h approaches 0, and the limit of

- is — ;t> hence the slope of the curve at the point (:5, .',) is — 1.

In a similar manner we may find the slope of any curve the

equation of which is not too complicated ; but when the equa-

tion is complicated, there is need of a more powerful method

y — y
for finding the limit of — • This method is furnished by

x
a
- x

x

the operation known as differentiation, the first principles of

which are explained in the following articles.

71. Increment. When a variable changes its value, the quan-

tity which is added to its first value to obtain its last value is

called its increment. Thus, if x changes from 5 to 5|-, its incre-

ment is i. If it changes from 5 to 4;j, the increment is — \.

So, in general, if x changes from r
x

to .>,, the increment is
*

x
2
— Xj. It is customary to denote an increment by the symbol

A (Greek delta), so that

A.r = x
2
— x^ and x„ = x

x
+ A#.

If y is a function of x, any increment added to x will cause

a corresponding increment of y. Thus, let y =f(x) and let x

change from x
1
to xn

. Then y changes from yx
to y2

, where

y=f(xr) and y2
=/(,•) =/(.r

l
+ A*).

Hence Ay = y„- yx
=f(x

l
+ A.r) -f(x^.
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72. Continuity. A function y is called a continuous function

of a variable x ivhen the increment of y approaches zero as the

increment of x approaches zero.

It is clear that a continuous function cannot change its value

by a sudden jump, since we can make the change in the function

as small as we please by taking the increment of x sufficiently

small. As a consequence of this, if a continuous function has a

value A when x= a, and a value B
when x = b, it will assume any value

C, lying between A and B, for at V

least one value of x between a and h

(fig. 118).
V

In particular, if f(a) is positive

and f(V) is negative, f(x) = for at FlG n8
least one value of x between a and b.

When Ax and Ay approach zero together, it usually happens

that — approaches a limit. In this case y is said to have a

derivative, defined in the next article.

73. Derivative. When y is a continuous function of x, the deriva-

tive of y with respect to x is the limit of the ratio of the increment

of y to the increment of x, as the increment of x approaches zero.

The derivative is expressed by the symbol — ; or, if y is

expressed by f(x), the derivative may be expressed by f'(x).

Thus, if y =f(x),

dv j., , N T . Ay T . f(x + Ax~) —f(%)
-f —f(x\ = Lim -£ = Lim 1^— J-—J-±^-.
dx ijioAx ax-=o Ax

The process of finding the derivative is called differentiation,

and we are said to differentiate y with respect to x. The process

involves, according to the definition, the following four steps

:

1. The assumption of an increment of x.

2. The computation of the corresponding increment of y.

3. The division of the increment of y by the increment of x.

4. The determination of the limit approached by this quotient

as the increment of x approaches zero.
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Ex. 1. Find the derivative of y when y = x3
.

(1) Assume Ax = Ji.

(2) Compute Ay = (x + /<)
3 - x3 = 3 x2h + 3 xJr + h s

.

(3) Find ^ = 3 x2 + 3 xh + h 2
.

,1,

(4) The limit is evidently 3 x2
. Hence — = 3 x2

.

Ex. 2. Find the derivative of - •

1
x

(1) Place y = - and assume Ax = //.

(2) Compute Ay =^-i = -^A_.

(3) Find ^ = __1—

.

Ax' « + ** ! rf

(4) The limit is cleariy = i and therefore '-— = -.

x" ax j-

It appears that the operations of finding the derivative oif(x)
are exactly those which are used in finding the slope of the curve

y=f(x). Hence the derivative is a fund inn which gives I In' slope

of the curve at each point of it.

74. Differentiation of a polynomial. The obtaining of a deriv-

ative by carrying out the operations of the last article is too

tedious for practical use. It is more convenient to use the

definition to obtain general formulas which may be used for

certain classes of functions. In this article we shall derive

all formulas necessary to differentiate a polynomial,

1. —^-—-=waof -1
, where n is a positive integer and a any

constant.

Let y = ax".

(1) Assume Ax = h.

(2) Then Ay = a (x + h) n — axn

-•(
,-ij + "(" 1 >

a»-'/t'+ ...+/<'

(3) U«.^.+ »£gJi -.-.J+ ... + i

(4) Taking the limit, we have -^ = nax" ~\
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d (ax) = a, where a is a constant.

This is a special case of the preceding formula, n being here

equal to 1. The student may prove it directly.

dc
3. — = 0, where c is a constant.

d.v

Since c is a constant, Ac is always 0, no matter what the

value of x. Hence
Ac

Ax
dc

0, and consequently the limit — = 0.

4. The derivative of a polynomial is found by adding the

derivatives of the terms in order.

This is a special case of a more general theorem (3, § 82).

The proof of the special case before us may be easily given

by the student or may be assumed temporarily.

Ex. Find the derivative of

f(x) = G x5 - 3 xi + 5 xs - 7x2 + 8 x - 2.

Applying formulas 1, 2, or 3 to each term in order, we have

f {x) = 30 x-
4 - 12 x3 + 15 x2 - 14 x + 8.

75. Sign of the derivative. A function of x is called an

increasing function when an increase in x causes an increase

in the function. A function of x is called

a decreasing function when an increase in x

causes a decrease in the function. The graph

of a function runs up toward the right hand

when the function is increasing and runs

down toward the right hand when the func-

tion is decreasing. Thus x~— x — 6 (fig. 119)

is decreasing when x < \ and increasing when

x>\.
The sign of the derivative enables us to

determine whether a function is increasing

or decreasing in accordance with the follow-

ing theorem

:

When the derivative of a function is posi-

tive, the function is increasing; when the derivative is negative, the

function is decreasing.
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To prove this, consider y =f(x), and let us suppose that

— is positive. Then, since -~ is the limit of— , it follows that —

-

dx dx Ax Ax
is positive for sufficiently small values of Ax; that is, if Ax
is assumed positive, Ay is also positive, and the function is

increasing. Similarly, if ~ is negative, Ay and Ax have oppo-

site signs for sufficiently small values of Ax, and the function is

decreasing by definition.

Ex. 1. If y = x1 — x — 6, — = 2x — 1, which is negative when x < k
dx

and positive when x>\. Hence the function is decreasing when x< \ and

increasing when x> \, as is shown in fig. 119.

Ex. 2. If y= l(x3 -3o;2 -9x + 27)
:

|x»-|r-|=|(x+l)(x-3).

Now — is positive when x< — 1, negative when -KK3, and positive
dx

when x > 3. Hence the function is increasing when x< — 1, decreasing

when a: is between —1 and 3, and increas-

ing when ./•>:; (fig. 120).

It remains to examine the cases in

which -~ = 0. Referring to the two ex-
dx

amples just given, we see that in each

the values of x which make the deriv-

ative zero separate those for which the

function is increasing from those for

which the function is decreasing. The

points on the graph which correspond

to these zero values of the derivative

can be described as turning points.

Likewise, whenever f'(x) is a continuous function of x, the

values of x for which it is positive are separated from those

for which it is negative by values of x for which it is zero

(§ 72). Now in most cases which occur in elementary work,

f'(x) is a continuous function. Hence we may say,

The values of x for which a function changes from an increas-

ing to a decreasing function are, in general, values of x which

make the derivative equal to zero.

Fig. 120
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The converse proposition is, however, not always true. A
value of x for which the derivative is zero is not necessarily a

value of x for which the function changes

from increasing to decreasing or from

decreasing to increasing. For consider

l(a;3-9o;2
-h27^-19).

Its derivative is x%— 6 x + 9 = (x — 3)
2
,

which is always positive. The function

is therefore always increasing. When
x = 3 the derivative is zero, and the

corresponding shape of the graph is

shown in fig. 121.

76. Tangent line. A tangent to a curve is the straight line

approached as a limit by a secant line as two points of intersection

of the secant and the curve are made to approach coincidence.

Let P
x
and P2

be two points on a curve. Then if a secant is

drawn through P
x
and P

2
of a curve (fig. 122) and the point

P2 is made to move along the curve toward i^, which is kept

fixed in position, the secant will turn on P
x
as a pivot and will

approach as a limit the tangent P
X
T. The point P

x
is called the

point of contact of the tangent.

From the definition it follows that the slope

of the tangent is the same as the slope of the

curve at the point of contact ; for the slope

of the tangent is evidently the limit of the

slope of the secant, and this limit is the slope

of the curve, by § 70.

The equation of the tangent is readily written by means of

§ 28 when the point of contact is known. Let (x^ y^) be

Fig. 122

denote the value of -~ when
dx

the point of contact, and let

x = x
t
and y — yx

. Then (x
x, y^) is a point on the tangent and

-~\ is its slope. Therefore its equation is

;).(•
(1)
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Ex. 1. Find the equation of the tangent to the curve y = x* at the

point (xv yx )
on it.

Using formula (1), we have

y
- >h = :j %l (x

- arx).

But since (xv yx) is on the curve, we have y 1
= a;*. Therefore the equa-

tion can be written ,, ., „ 3
y = :> xf x — 2 arf. T

Ex. 2. Find the equation of the tangent to

y = x* + 3 x

at the point the abscissa of which is 2.

dy

dx
x + :i.

Ifz^then^lOandg)^?. ^ m
Therefore the equation is

y - lo = 7(. # -2), or y-7x — 4.

If ?T (fig. 123) is a tangent line and
<f>

the angle it makes

with OX, its slope equals tan (/>, by ^ -'52. Hence

,7„
tan (/> =

l.r

77. The differential. Lot the function /(./) be represented by

the curve y=f(.r), and let /' and <J be two neighboring points

of the curve (tig. 124). Draw the

tangent /''/' and the lines PR and

RQ parallel to the axes, RQ and

FT intersecting at T. Then, from

the preceding work,

PR = Ar,

RQ = Ay,

tanRPT=/'(«>

A'T= (tan RPT) PR =f'(x)&x-
Fig. 124

The quantity f'(^x)Lx is called the differential of y and is

represented by the symbol dy. Accordingly

dy=f(x)b*\ (1)
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This definition is true for all forms of the function/ (x) and is

accordingly true when y=f(x) = x. In this case/'(V) = l, and

formula (1) gives dx = Ax. (2)

Substituting from (2) into (1), we have the final form

dy=f(x)dx. (3)

To sum this up : The differential of the independent variable is

equal to the increment of the variable ; the differential of the function

is equal to the differential of the independent variable multiplied by

the derivative of the function.

It is important to notice the difference between Ay and dy.

The figure shows that, in general, they are not equal, but that

they become more nearly equal as Ax approaches zero. Without

using the figure, we may proceed thus:

Since Lim ~f- =f'(x\
Az = AX

where Lim e = ; and hence
Aa; =

Ay =f'(x) Ax + eAx = dy + eAx.

Ex. 1. Let y = x3
.

We may increase x by an increment Ax equal to dx. Then

Ay = (x + dx) 3 - xz = 3 xHx + 3 x (dxf + (dxf.

On the" other hand, by definition,

dy = 3 x2dx.

It appears that A.y and dy differ by the expression 3 x (dx) 2 + (dx) 3
, which

is very small compared with dx.

Ex. 2. If a volume v of a perfect gas at a constant temperature is under

the pressure p, then v = -
, where k is a constant. Now let the pressure be

P
increased by an amount A/> = dp. The actual change in the volume of the

gas is then the increment

a , _ ^ _ & — kdp kfty I 1

The differential of v is, however,

p + dp p p(p + dp) p2
[
1 + 'Jp

kdp
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It is to be emphasized that dx and dy are finite quantities,

subject to all the laws governing such quantities, and are not

to be thought of as exceedingly minute. Consequently both sides

of (3) may be divided by dx, with the result

/'(*)=
_dy

dx

Then

That is, the derivative is the quotient of two differentials.

This explains the notation already chosen for the derivative.

So, in general, the limit of the quotient of two increments is equal

to the quotient of the corresponding differentials.

For let y=f(x) and z = $(x).

Ay=f'(x)Ax + e^Ax,

Az = <\>'(x) Ax + e^Ax,

dy = f'(x)dx,

dz = <f>'(x)dxt

Az 0'OO + e,'

T . Ay T . /'(*)+«, f'(x) dy
Lnn -r1 = Lim .,

v J —l = J
m .

y ' = -#

.

and

Whence
Az <l>'(x) + €

2
$(x) dz

78. Area under a curve. Let LK (fig. 125) be a curve with

equation y =/(*), and let OE = a and OB = b. It is required

to find the area bounded

by the curve LK, the axis

of x, and the ordinates at E
and B.

For convenience, we as-

sume in the first place that

a < b and that f(x) is positive

for all values of x between a

and />. We will divide the

line EB into n equal parts

by placing Ax =

J/, .V, M
3 Mt M6Ma J/

7
J/a

Fig. 125

and laying off the lengths EM^ =M
X
M^

X
B = Ax. (In fig. 125, n = 9.)
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Let OM
t
= Xj, OM

2
=x

2
, • • •, OMn _ 1

= xn _v Draw the ordinates

ED=f(a), Mfi~f(xd, M2B2 =f(x,), .
. ., ^.jP,,.^/^.,),

and BC. Draw also the lines DR^ P
X
B^ B,B3 ,

• • •, JjJ_j.fi,,, parallel

to OX Then

/(a) Ax = the area of the rectangle EDB M

,

f(x
t
}Ax = the area of the rectangle M^B^M^

/(x„) Ax = the area of the rectangle M2
B,B

3
M3J

/(*B_i)A* = the area of the rectangle Mn _ x
Pn _ x

BnB.

The sum

/(a) Ax +/(s
1)
Ax +/(.r

2)
Ax + . . . +/(x,

t
_ 1) Ax (1)

is then the sum of the areas of these rectangles and equal to

the area of the polygon EDB
X
I^B.

2
• • • Bn _ 1

B
l _ 1
Bn

B. It is evident"

that the limit of this sum as n is indefinitely increased is the

area bounded by ED, EB, BC, and the arc EC.

The sum (1) is expressed concisely by the notation

'S'/C^Ax,
i=

where 2 (sigma), the Greek form of the letter S, stands for the

word " sum," and the whole expression indicates that the sum
is to be taken of all terms obtained from /(x

f) Ax by giving to i

in succession the values 0, 1, 2, 3, • • •, n — 1, where x
Q
— a.

The limit of this sum is expressed by the symbol

r.
f(x) dx,

where | is a modified form of S.

/(x) dx = Lim V/(x.) Ax = the area EBCD.
» = <*» t =

It is evident that the result is not vitiated if ED or BC is

of length zero.
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Ex. Required to find the area bounded by the curve y = — , the axis of

x, and the ordinates x = 2 and x — 3 (fig. 126).

(1) We may divide the axis of x between x = 2 and x = 3 in 10 parts,

3-2
placing Ax = ,„ = .1.

10

We make then the following calculation
Ax

^
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79. Differential of area. Let any one of the rectangles of

fig. 125 be redrawn in fig. 127 and relettered, for convenience,

MNRP. Draw also QS and complete the rectangle MNQS.
Let A denote the variable area

EMPD. Then

MN=Ax, RQ = Ay,

MNQP=AA,
MNRP =MP . MN= yAx,

MNQS= NQ. MN
~ 0/ + %) Aft

But, from the figure,

that is,

whence

MNRP < MNQP < MNQS
;

yAx < AA < (y -\- Ay) Ax,

AA
i\X

AA dANow as Ax approaches zero as a limit, — - approaches
Ax AA dx

y is unchanged, and y + Ay approaches y. Hence , which

lies between y and y + A?/, also approaches y ; that is,

£-»-/<-> a)

In the differential notation we have

dA = f(x)dx. (2)

To find the area it is therefore necessary first to find a func-

tion whose derivative is f(x) and whose differential is f(x) dx.

80. The integral of a polynomial. The process by which a

function is found from its derivative or its differential is called

integration, and the result of the process is called the integral of

the derivative.

Integration is expressed by the symbol I • thus,

ff(x)dx= F(x), (1)
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where F(x) is a function of which the derivative is f(x). The

process may be carried out in the simpler cases by reversing the

rules for differentiation. Thus,

I 2 xdx = x2+ c, I 3 x\lx = x3+ c,

by the formulas of § 74.

In these results c may be any constant whatever, since — = 0.

In fact, any derivative has an infinite number of integrals dif-

fering by a constant. The most general form of formula (1) is

/f(x)dx = F(x)+C, (2)

where F(x) is any particular function whose derivative is f(x)

and C is any arbitrary constant, called the constant of integration.'

To integrate a polynomial we need to know that its integral is

the sum of the integrals of its terms and that the integral of

each term is found either by the formula

./'ax" dx = + c
n+1

or by the formula I adx = ax + c.

These are simply the formulas of § 74 reversed.

Ex. f (,:•+ :,,-+ 7x + B)dx = ^ + •'.;' + -
•''"

+ 3a: + C.
J \ o -

81. The definite integral. Return now to the problem of area.

From §79, dA=f(x)dx,

whence, by use of § 80, A = F(x) + C. (I)

This is the area of the figure EMPJ) (fig. 127), in which the

line MP can be drawn anywhere between ED and BC. But it' the

line MP coincides with ED, .1=0 and x= a. Substituting these

values in (1), we have
o = F(a^ + C

whence C = — F(a).
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Formula (1) now becomes

A = F(xy-F(a).

The area A becomes the area EBCD when x = b. Then

area EBCD = F(K) - F(a).

This gives us our desired method of evaluating the limit of

the sum (1), § 78, and may be expressed by the formula

i:
f(x)dx = F(V)-F(a). (2)

The limit of the sum (1), § 78, which is denoted by / f(x)dx,
U a

is called a definite integral, and the numbers a and b are called

the lower limit and the upper limit* respectively of the definite

integral.

This result gives the following rule for evaluating a definite

integral

:

To find the value of I f(x) dx, evaluate
J
f(x) dx, substitute

x = b and x = a successively, and subtract the latter result from

the former.

It is to be noticed that in evaluating
j
f(x)dx the constant

of integration is to be omitted, since — F(ji) is that constant.

However, if the constant is added, it disappears in the sub-

traction, since

[^(7>) + C] - \F(a) + C] = FQ>) - F(a).

In practice it is convenient to express F(li) — F(a) by the

symbol [FCx)~\ b

a , so that

X f(x)dx=[F(z~)fa .

Ex. The example of § 78 may now be completely solved. The required

areais r*x2
, Tx3 13 27 8 19 , .

I 5^nTol
=
T5-15

=
15

=1 --

* The student should notice that the word "limit" is here used in a sense

quite different from that in which it is used when a variable is said to approach
a limit (§ G8).
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In the foregoing discussion we have assumed that f(x) is

always positive and that a < b. These restrictions may be

removed as follows:

If f(x) is negative for all values of x between a and b, where

a < b, the graphical representation is as hi fig. 128. Here

f(a)Ax = — the area of the rectangle EMJl^I),

f(x^) Ax = — the area of the rectangle JM^M^BJ^, etc.,

so that
f
f(x) dx = - the area EBCD.

In case /(^) is sometimes positive and sometimes negative,

we have a combination of the foregoing results, as follows:

I

Ifa<b, the integral

f(x) dx represents

the algebraic sum of the

areas bounded by the

curve y =f(x), the axis

of x, and the ordinates

x = a and x = b, the

areas above the axis of

x being positive and

those below negative.

If a > b, Ax is negative, since Ax = The only change

necessary in the above statement, however, is in the algebraic

signs, the areas above the axis of x being now negative and

those below positive. It is usual to arrange the work so that

Ax shall be positive.

It is obvious, however, that

C
a

f(x~)dx = - ff(x)dx.
Jb J a

Also, from the areas involved,

Cf(x) dx = f /<V> dx+f f(x) dx.
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PROBLEMS

Find approximately, by a numerical calculation, the slope of each

of the following curves at the point given :

1. y = x2
at (2, 4).

2. y = x2
at (3, 9).

3. y = v* at (1, 1).

4. y = xs at (2, 8).

Find from the definition, without the use of formulas, the deriva-

tives of the following expressions :

7. 4a;3. 9. x5 — x. 2^

8. 5 x2 + 7x-2. io. -. X*

x2 12. V.*

,
Find by the formulas the derivatives of each of the following

polynomials

:

13. 4.r
3 -3x2 + 2x-l. 15. x s + 7 x' -6x3 + 7x-3.

14. x4 + 7 x2 - x + 3. 16. ^:6 -|ic5 + |a;4 + 22 -7 x.

17. Prove that the derivative of axs + bx2 + ex + e is the sum of

the derivatives of its terms.

18. By expanding and differentiating show that the derivative

of (4* + 3)
3
is 12(4x + 3)

2
.

19. By expanding and differentiating show that the derivative

of (x + a)'
1

is n(x + a)"
-1

.

Find the values of x for which the following expressions are

respectively increasing and decreasing, and draw their graphs

:

20. x2 + 6 x — 4. . 23. x4 — 2x2 + l.

21. x3 -3x2 + 7. 24. 2 x-3 - 15;c2 + 36 a; -270.

22. x4 + 4x-6. 25. x3 -3x2 -9x + 27.

26. If a stone is thrown up from the surface of the earth with a

velocity of 100 ft. per second, the distance traversed in t seconds is

given by the equation s = 100 1 — 16 1
2

. Find when the stone moves
up and when down.
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27. A particle is moving in a straight line in such a manner that

its distance x from a fixed point A of the straight line, at any time

t, is given by the equation x = t
3 — 9 t'

2 4- 24 t 4- 100. When will the

particle be approaching A ?

28. A piece of wire of length 20 in. is bent into a rectangle one

side of which is x. When will an increase in x cause an increase in

the area of the rectangle and when will it cause a decrease ?

29. In a given isosceles triangle of base 20 and altitude 10 a rec-

tangle of base x is inscribed. Find the effect upon the area of the

rectangle caused by increasing x.

30. A right circular cylinder with altitude 2x is inscribed in a

sphere of radius a. Find when an increase in the altitude of the

cylinder will cause an increase in its volume and when it will cause

a decrease.

31. A right circular cone of altitude x is inscribed in a sphere of

radius a. Find when an increase in the altitude of the cone will

cause an increase in its volume ami when it will cause a decrease.

32. On the line 3a: + y = G a point /' is taken and the sum s of

the squares of its distances from (5, 1 ) and (7, 3) computed. Find

the effect on s caused by moving P on the line.

Find the turning points of the following curves and draw the

curves

:

33. y = 2 ;>» - 9 x8. 35. y = \ x4 - 2 Xs + ],

34. y = 2x* + 3x* -

1

2x - 18. 36. y = x* - 2 a* + 4.

37 . Find the equation of the tangent to the curve y — 4 x 2 + 4 a- — 3

at the point the abscissa of which is — 1.

38. Find the equation of the tangent to the curve y = x3 + 4 x 1

at the point the abscissa of which is — 3.

39. Show that the equation of the tangent to the curve y = ax 2 4-

2 bx A- c at the point (xv // t
) is y = 2 (ax

i
4- 1>) x — ax? + c.

40. Show that the equation of the tangent to the curve y = x3 +
ax + b at the point (xv y^ is y = (3 x* 4- a)x — 2 x 3 4- b.

41. Find the area of the triangle included between the coordinate

axes and the tangent to the curve y = x3 at the point (3, 27).
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42. Determine the point of intersection of the tangents to the

curve y = x3 — 5 x 4- 7 at the points the abscissas of which are

— 2 and 3 respectively.

43. Determine the point of intersection of the tangents to the

curve y = x3 — 3x4-7 at the points the abscissas of which are

2 and respectively.

44. Find the angle between the tangents to the curve y = x2 —
4 x 4- 1 at the points the abscissas of which are 1 and 3 respectively.

45. Find the angle between the tangents to the curve y = x3 —
3 x2 4- 4 x — 12 at the points the abscissas of which are — 1 and 1

respectively.

46. Find the equations of the tangents to the curve y = x3 4- x2

that have the slope 8.

47 . Find the equations of the tangents to the curve 2 x3 4- 4 x2 —
x — y = that have the slope \.

48. Find the points on the curve y = 3 x3 — 4 x2 at which it makes

an angle of 45° with OX.

49. Find the points on the curve y = x3 — x2 4- 2x 4- 3 at which

the tangents are parallel to the line y = 3 x — 7.

50. How many tangents has the curve y = x3 — 2x2 + x — 2

which are parallel to the line 7 x — 4?/4-28 = 0? Find their

equations.

51. Find approximately the area bounded by the straight line

y ='2x4-3, the ordinates x = 1 and x = 2, and the axis of x, by

considering the area as the sum of rectangles the bases of which are

.2 in the first approximation and .1 in the second approximation.

Also find the area exactly by elementary geometry.

52. Find approximately the area between the axis of x and the

portion of the curve y = x — x2 which is above the axis of x, by

considering the area as the sum of rectangles the bases of which are

.2 in the first approximation and .1 in the second approximation.

53. Find approximately the area bounded by the curve y = ->

the ordinates x = 2 and x = 3, and the axis of x, by considering the

area as the sum of rectangles the bases of which are .2 in the first

approximation and .1 in the second approximation.
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54. Find the area bounded by the curve y = Va-, the ordinates

x = 1 and x = 4, and the axis of x, by considering the area as the

sum of rectangles the bases of which are .5 in the first approxima-

tion and .2 in the second approximation.

55. Find by integration the area described in Ex. 51.

56. Find by integration the area described in Ex. 52.

57. Find the area bounded by the curve y = x3 — 2ar + Sx — 1,

the ordinates x = 2 and x = 4, and the axis of x.

58. Find the area bounded by the axis of x and the portion of

the curve y = 9 — x2 above the axis of x.

59. Find the area between the axis of x and that part of the

curve y = 10 — 11 x — 6 x2 which is above the axis of x.

60. Find the area between the axis of x and that part of the

curve y = xs — 3 x2 — 9 x + 27 which is above the axis of x.

61. Find the area bounded by the axis of x and the portion of

the curve y = xa + 3x2 — 4 below the axis of x.

62. Find each of the two areas bounded by the curve y = 150 a; —
25 x2 — xs and the axis of x.

63. Find the area bounded by the axis of x, the curve y = 2x3 +
3 a;

2
-f 2, and the ordinates through the turning points of the curve.

64. Prove that the area of a parabolic segment is two thirds of

the product of its base and altitude.

65. Find the area between the parabola y = \ x2 and the straight

line Sx-2y-4: = 0.

66. Find the area of the crescent-shaped figure between the

curves y = x2 + 5 and y = 2 x 1 + 1.



CHAPTER X

DIFFERENTIATION OF ALGEBRAIC FUNCTIONS

82. Theorems on derivatives. In order to extend the process

of differentiation to functions other than polynomials, we shall

need the following theorems:

1. The derivative of a function plus a constant is equal to the

derivative of the function.

Let u be a function of x which can be differentiated, let c be

a constant, and place .. _ .,.__ „y — u -f- c.

Then if x is increased by an increment Ax, u is increased by

an increment Au, and c is unchanged. Hence the value of y
becomes u + A^ + c.

Whence Ay = (u + Ah + e) — (u + e) = Au.

Therefore — =— i

Ax Ax

and, taking the limit of each side of this equation, we have

dy __ du

dx dx
Ex. 1. 7/=:4a,-3 + 3.

2. The derivative of a constant times a function is equal to the

constant times the derivative of the function.

.Let u be a function of x which can be differentiated, let c be

a constant, and place „, __ „.
y — ta.

Give x an increment Ax, and let Au and Ay be the corre-

sponding increments of u and y. Then

Ay = c (ii + A?f) — cu — c Au.
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TT Ay Au
Hence —z- = p——

,

Ax Ax
and, by theorem 3, § 69,

T . Ay T . Au
Lmi —— = c Lim— •

Aa; Ax

Therefore -~- = c—- >

aa; aa;

by the definition of a derivative.

Ex. 2. # = 5(x3 + 3x2 + l).

lll = 5— (x3 + 3 x2 + 1) = 5 (3 x2 + 6 x) = 15 (x2 + 2 x).
dx dx

3. The derivative of the sum of a finite number of functions

is equal to the sum of the derivatives of the functions.

Let u, v, and w be three functions of x which can be differen-

tiated, and let _ u + v + UK

Give x an increment Ax, and let the corresponding increments

of u, v, w, and y be Au, Av, Aw, and A//. Then

Ay = (u + Am + v + Av + w + Aw) — (?* + v + w)

= Au + At' +Aw;

, A?/ Am At' Aw
whence -f- =— +— + -— •

Aa; Aa; Aa; Aa;

Now let Aa; approach zero. By theorem 1, § 69,

T . Ay T . An, T . Av T . Aw
Lim —^ = Lim —- + Lim \- Lim ;

Aa- Aa- Aa- Aa;

that is, by the definition of a derivative,

dy _ du ,dv dw

dx dx dx dx

The proof is evidently applicable to any finite number of

functions.

Ex. 3. y = x4 - 3 x3 + 2 x2 - 7 x.

^ = 4 x3 - 9 x2 + 4 x - 7.
dx



156 DIFFERENTIATION OF ALGEBRAIC FUNCTIONS

4. Tlie derivative of the product of a finite number offunctions

is equal to the sum of the products obtained by multiplying the

derivative of each factor by all the other factors.

Let u and v be two functions of x which can be differentiated,

and let y _ wu#

Give x an increment Ax, and let the corresponding increments

of u, v, and y be Aw, Av, and Ay.

Then Ay = (u + Aii) (v + Av) — uv

= uAv + v Au + Au • Av

Av Av Au , Aw .

and -rf- = it— + ^ t~ + -t— • Av.
Ax Ax Ax Ax

If, now, Ax approaches zero, we have, by § 69,

T . Ay T . Av
, T . Am , , . Am T . .

Lim —- = u Lim -

—

\-v Lim \- Lim —- • Lim Av.
Ax Ax Ax Ax

But L
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5. The derivative of a fraction is equal to the denominator times

the derivative of the numerator minus the numerator times the deriva-

tive of the denominator, all divided by the square ofthe denominator.

Let y = -
, where u and v are two functions of x which can be

v

differentiated. Let Ax, Am, Av, and Ay be as usual. Then

u + Au u vAu — uAv
±y

v + Av v v
2+vAv

Ah Av
v

~k
u IT

Ail Ax Ax
and —- =—;

Ax v~+v Av

Now let Ax approach zero. By § 69,

T . Au
T

. Av
v Lim u Lim—

_ . Ay A.r Ax
Lim —- = ;

Ax v~+ v Lim Ay

du dv

dy dx dx
whence

T2 — 1
Ex.5. y = -

a
—±

x* + 1

dx V

dy _ (.r
2 + l)(2x)-(j-2 -l)2j- _ 4:r

dx (x2 + l)s (.<•- + l) 2
'

6. If y is a function of x, then x is a function of y, and the
"

derivative of x with respect to y is the reciprocal of the derivative

of y with respect to x.

Let Ax and Ay be corresponding increments of x and y. Then

Ax _ 1

Ay~ Aji

Ax

whence Lim —— =
^ Lim^

Ax
dx 1

that is, -— = —-.
dy dy

dx
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7. If y is a function of u and u is a function of x, then y is

a function of x, and the derivative of y with respect to x is equal

to the derivative of y with respect to u times the derivative of u

ivith respect to x.

An increment Ax determines an increment Au, and this in turn

determines an increment Ay. Then evidently

Ay _ Ay Au
Ax Au Ax

'

whence Lim —- = Lim —— • Lim —-

;

Ax Au Ax

dy _ dy du

dx du dx

1

2 + 3 x2 2 4 + 6 a:
2

that is,

Ex. 6. y = m2 +3h + 1, where u =

The same result is obtained by substituting in the expression for y the

value of u in terms of x and then differentiating.

This result has an important application to the differential. For

suppose we have
y =/(>)j u = ^^ (1)

By substitution, we obtain

y=/[<K*)] =*•(*> (2)

and the formula proved above gives us

**(*)=/'00'.f(*> (3)

By use of § 77 we obtain from (1)

dy =f'(u) du, du = </>'(V) dx, (4)

and from (2) we have dy = F'(x)dx. (5)

It is important to know that the two values of dy in (4)

and (5) agree. In fact, by means of (3) and the second part

of (4), (5) becomes

dy=f(ii)y(i^dx=f(,i)du.

Hence it is not necessary, in applying § 77 to find a differential,

to ask whether x is an independent variable or not.
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83. Derivative of un
. If u is any function of x which can be

differentiated and n is any real constant, then

d(u n
) m , die

ax dx

To prove this formula we shall distinguish four cases:

1. When n is a positive integer.

d (wn
) d (wn

) du

dx du dx

i
du

(by 7, § 82)

=™-V (Byl, §74)

2. When w. is a positive rational fraction.

Let n = —
i
where p and q are positive integers, and place

y = u\

By raising both sides of this equation to the qt\\ power, we have

y
q = up.

Here we have two functions of x which are equal for all

values of x. If we give x an increment A.r, we have

A(y) = AO*)>

A(yO _ Ap/ p
)

Ax Ax

md therefore iSfl^Jfl;
dx dx

whence qy
q ~ l -^ = pu 1" 1— *1J dx r dx

since p and q are positive integers. Substituting the value of y
and dividing, we have

dx q dx

Hence, in this case also,

d(un
~)

__ B _ 1
du

^
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3. When n is a negative rational number.

Let n = — m, where m is a positive number, and place

, 1
y = U m = —'

um
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dy = \t x \~* d I x \

dx~3\x3 + V dx\x3 + l)

_ 1 lx3 + 1\* 1 - 2 x3

3\ X / (x3 + l) 2

l-2x3

3 xf (x3 + 1)*

84. Formulas. The formulas proved in the previous articles are

a)

(2)

(3)

*£»*_,,*+„*», (4)

d(u + c)
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85. Higher derivatives. If y =f(x), then -j- is in general a

function of x and may be differentiated with respect to x. The

result is called the second derivative of y with respect to x

and is indicated by the symbol -t~(-^}' which is commonly

abbreviated into ——•
dx1

Similarly, the derivative of the second derivative is called

the third derivative, and so on. The successive derivatives are

commonly indicated by the following notation

:

y =f(x), the original function
;

-r~ =f(x), the first derivative
;

ax

-z-(-rM = -r4 =f"(z), the second derivative;
dx\dx/ dx2 v y

A-(pL\ = fl=f»(x\ the third derivative;
dx \azr/ dx

dn
y

-7-7 =/(B)

(^)» the nt\\ derivative.

It is noted in § 9 that /(a) denotes the value of /(re) when

x = a. Similarly, /'(a), f"(a), f'
n(a) are used to denote the

values of /'(#), f"(x), f"'(x) respectively when x = a. It is

to be emphasized that the differentiation is to be carried out

before the substitution of the value of x.

Ex
-

lf /(*)=^h4' find /''(°)-
+ 1

-*+Q. + l

roo
2z3 -6a;2 -6x + 2

(x* + l) 3

Therefore /"(0) = 2.

86. Differentiation of implicit functions. Consider any equation

^ the form
/(*,</) =0; (1)

By means of this equation, if a value of x is given, values of y are

determined. Hence (1) defines y as a function of x. When (1) is
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solved for y, so that y is expressed in terms of x, y is an explicit

function. When (1) is not solved for y, y is an implicit function.

For example,

3 x*- 4 xy + 5f- 6 x+ 7 y- 8 = 0,

which may be written

5 tf+ (J- 4 *)y + (3 x*~ 6 x ~ 8) = °»

defines y as an implicit function of x.

If the equation is solved for y, giving

_ 7 + 4 x ± V209 + 64 x - 44 x*

y =- 40 '

y is expressed as an explicit function of x.

It is possible to find — from (1) without solving (1), for we

have in (1) a function of x which is always equal to zero. Hence
its derivative is zero. The derivative may be found by use of

the formulas of the previous articles, as shown in the following

examples

:

Ex. 1. Given x2 + y
2 = 5.

Then
d (* + f> = 0,

dx

that is, 2x + 2y^ = 0;
dx

, dii x
whence — =

dx y

The derivative may also be found by Bolving the equation for y. Then

± v 5 - x1
,
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Ex. 3. If x2 + «2 = 5, we have found — =
dx y

,72 „ ,7 /„\

Therefore
cPy _
dx*

'
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Ex. 1. Find the equations of the tangent and the normal to the parabola

y- = 3 x at the points for which x = 3.

When x = 3, y = ± 3.

By differentiation we have

- /'.'/_ o „„ <h _ 3
:.'/

/./ r/./'

Therefore the slope of the tangent at (3, 3) is \, and the slope of the

tangent at (3, — 3) is — \.

Hence at (3, 3) the equation of the tan-

gent is

3 = \{x - 3), or y + 3 = 0,

and the equation of the normal is

y - 3 = - 2 (a; - 3), or 2x + y-9 = 0;

and at (3, — 3) the equation of the tangent is

y + 3 = -
I

{.> - 3), or a? + 2y + 3 = 0,

and the equation of the normal is

y + 3 = 2 (./• - 3), or 2 z — y - 9 = 0.

Ex. 2. Prove that the norma] to a pa-

rabola at any point makes equal angles

with the axis of the parabola and the focal radius drawn to the point.

Lei /'(('p //i)
'"' an .v point of the parabola y* = ipx (fig. 129), and let

F(p, 0) be the focus. Then 11\ is the focal radius of /',. and let /',.Y be

the normal to the parabola. To prove ZI'\I\ — Z/'/yY.

By differentiation we have 2 y— = 1 />, whence the slope of the tan-

° p
' Ij

v
gent at P

l
is — and the Blope pf the normal is —

t

—
• It follows that

!l\ - J'

tan F2ITP
X
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The angle of intersection of two curves is the angle between

their respective tangents at the point of intersection. The

method of finding the angle of intersection is illustrated in

the following example:

Ex. 3. Find the angle of intersection of

the circle x1 + y
2 = 8 and the parabola x2 = 2y.

The points of intersection are P
t (2, 2) and

P
2
(- 2, 2) (fig. 130), and from the symmetry

of the diagram it is evident that the angles

of intersection at P
x
and P

2
are the same.

Differentiating the equation of the circle,

dy dy
we have 2 x + 2 y— = 0, whence — =

,

dx ax y
and differentiating the equation of the parab-

dy
Fig. 130

1 and the slope

ola, we find -2. = x.
dx

Hence at P
1
the slope of the tangent to the circle

of the tangent to the parabola is 2.

Accordingly, if /3 denotes the required angle of intersection,

— 1 — °
tan ft

=
o

=3,

or /3=tan-!3.

88. Sign of the second derivative. Since the second derivative

is the derivative of the first derivative, the sign of —^ shows

dy
dx1

whether — is an increasing or a decreasing function.
dx d2v

The significance of -~ for the graph y =/(*) is obtained from

the fact that -~- is equal to the slope ; hence —~ is the deriva-
G/'JO (X'X

d2v
tive of the slope. Therefore, by § 75, if —^ is positive, the

slope is increasing ; if —^ is negative, the

slope is decreasing. We may have, accord-

ingly, the following four cases:

cW

1. f>0,dx Fig. 131

Since both the ordinate and the slope are increasing, the

graph runs up toward the right with increasing slope (fig. 131).
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r

Id"

2. ^>0, g<0.
dx dor

The graph runs up toward the right

with decreasing slope (fig. 132).

3. ^<0,
dx dx2

>0. 132

The graph runs down toward the

right. The slope, which is negative, is

increasing algebraically and hence is

decreasing numerically (iig. 133).

4. ^<0,
dx dx*

<0.

\p08l-

The graph runs down toward the

right, and the slope is decreasing

algebraically (fig. 134).

The consideration of these cases leads

d2
y

to the following conclusion : If—'\

tive, the graph is concave upward ; if
^-™

is negative, the graph is concave downward.

If a curve changes from concavity in one direction to con-

cavity in the other direction at any point, that point is called a

d2
y

point of infection. It follows that at such a point \, changes

sign, either by becoming zero or by becoming infinite. These

two cases are illustrated in the following

examples

:

Ex. 1. Examine the curve y = -^(x8 — G x2
)

for points of inflection.

dy_l
2_

dx
~

I
X

" *'

cPy

dx2
x-1

Fig. 135
The curve (fig. 135) is concave downward

when x<2, is concave upward when x>2, and accordingly then' is a

point of inflection when x — 2. The ordinate of this point is — 1£.
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Ex. 2. Examine the curve y = (x — 2)* for points of inflection.

dy _ 1 dhj _ 2

da: 3 (.,-2)1

It is evident that

dx*
9 (a: -2)1

co if x = 2, and that

d*y
no finite value of x makes —2. = 0. If a: < 2,

^ > ; and if a: > 2,
f—£ < 0. Hence the point

dx* dx"
l

Fig. 136

for which x — 2 is a point of inflection, since

on the left of that point the curve is concave upward and on the right of

that point it is concave downward (fig. 130). The ordinate of this point is 0.

89. Maxima and minima. lif(x) changes from an increasing

function to a decreasing function (§ 75) when x increases through

Fig. 137

the value a and /(«) is finite, f(a) is called a maximum value of

/(.>) (figs. 137, 138); and if f(x) changes from a decreasing

O x=a

Fig. 139

O x=a

Fig. 140

function to an increasing function when x increases through the

value a and f(a) is finite, /(«) is called a minimum value oif(x)

(figs. 139, 140).

Since the derivative of an increasing function is positive and

the derivative of a decreasing function is negative, it follows
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that the derivative of the function must change sign at either

a maximum or a minimum value and hence must become either

zero or infinity. Accordingly we have two cases

:

I. If— = or oo ivhen x= a, and ~ > when x<a, and-~-<0
dx ax ax

when x > a,f(a) is a maximum value of y =f(x).

II. If -~ = or cc ivhen x = a, and ~~ < when x < a, and
, dx dx
all-~ > wAew x > a, f(a) is a minimum value of y = f(x).

If, however, —- changes sign by becoming infinite and at the

same time y becomes infinite (fig. 33), the function is discon-

tinuous and there is no corresponding maximum or minimum
value.

In order to apply the above tests it is necessary to factor-1
-,

as shown in the following examples:

Ex. 1. Find the maximum and the minimum value of

/(./) = x5 - 5 x* + 5 x3 + 10 x- - 20 x + 5.

We find f'(x) = 5 x* - 20 x3 + 15 x- + 20 x - 21 >

= 5(x2 -l)(x2 -4x + 4)

= 5(x + l)(x-l)(x-2)*.

The roots of /'(x) = are — 1, 1, and 2. As x passes through — 1, /"(./)

changes from + to — . Hence x = —1 gives /'(./) a maximum value, namely - 1.

As x passes through + 1, /"(.') changes fnnii — to + Hence x = + l gives

f(x) a minimum value, namely — 4. As x passes through 2, ./"(') does not

change sign. Hence x = 2 gives f(x) neither a maximum nor a minimum
value.

Ex. 2. A rectangular box is to be formed by cutting a square from

each corner of a rectangular piece of cardboard and bending the resulting

figure. The dimensions of the piece of cardboard being 20 by 30 in.,

required the largest box which can be made.

Let x be the side of the square cut out. Then if the cardboard is bent

along the dotted lines of fig. 141, the dimensions of the box are 30 — 2x,

20 — 2 x, x. Let y be the volume of the box. Then

y = x(20-2x)(30-2x)

= 600 x - 100 x2 + 4 x3
.

^ = 600 - 200 x + 12 x2
.

dx
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Equating
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It is evident that these tests can be used to advantage when

it may be difficult or impossible to factor ~-i and that they

fail if —4 also becomes zero.
dzr

Ex. 4. Light travels from a point A in one medium to a point B in

another, the two media being separated by a plane surface. If the velocity

in the first medium is i\ and in the second

v
2 , recpiired the path in order that the time

of propagation from .1 to B shall be a

minimum.

It is evident that the path must lie in

the plane through A and B perpendicular

to the plane separating the two media,

and that the path will be a straight line

in each medium. We have, then, fig. 143,

where MX represents the intersection of

the plane of the motion and the plane

separating the two media, and ACB rep-

resents the path.

Let MA = a, KB = b, MN= c, and MC = x. Then AC= Vaa + x* and

CB = V(c — x) 2 + b'
z

. The time of propagation from .1 to B is therefore

M
X

Fig. 143

whence

and

dx

dx2

Dl-V <r +

M
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Now
<f>

is the angle made by A C with the normal at C and is called the

angle of incidence, and if/ is the angle made by CB with the normal at C
and is called the angle of refraction. Hence the time of propagation is a

minimum when the sine of the angle of incidence is to the sine of the

angle of refraction as the velocity of the light in the first medium is to

the velocity in the second medium. This is, in fact, the law according to

which light is refracted.

In practical problems the question as to whether a value

of x for which the derivative is zero corresponds to a maxi-

mum or a minimum can often be determined by the nature of

the problem.

In Ex. 2 above, it is evident that there must be a maximum volume of

the box and that there can be no minimum value. Accordingly, when we

have found — = if x — 3.9 or 12.7, since 12.7 is unreasonable in our
dx

problem we conclude, without further discussion, that x = 3.9 corresponds

to the maximum volume.

90. Limit of ratio of arc to chord. The student is familiar

with the determination of the length of the circumference of a

circle as the limit of the length

of the perimeter of an inscribed

regular polygon. So, in general,

if the length of an arc of any

curve is required, a broken line

connecting the ends of the arc is

constructed by drawing a series of

chords to the curve as in fig. 144. f
^ 144

Then the length of the curve is

denned as the limit of the sum of the lengths of these chords

as each approaches zero and as their number therefore in-

creases without limit. The manner in which this limit is

obtained is a question of the integral calculus and will not

be taken up here.

We may use the definition, however, to find the limit of the

ratio of the length of an arc of any curve to the length of its

chord as the length of the arc approaches zero as a limit ; that is,

as the ends of the arc approach each other along the curve.
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Accordingly, let P
x
and P2 (fig. 145) be any two points of a

curve, P
X
P2 the chord joining them, and P

X
T and RT the tangents

to the curve at those points re-

spectively. We assume that the

arc PP2 lies entirely on one side

of the chord P
1P and is concave

toward the chord. These condi-

tions can in general be met by

taking the points P
x
and P2 near

enough together. Then it follows

from the definition that
l

P
1
T+TP

2
> arc PJ>, > PX

P2 ;

whence fiI±S>«55>L
P
X
P2 P

X
P2

If TR is the perpendicular from T to PJ^ and if the angles P„P
X
T

and PJ\T are denoted by a and ft respectively, then J[T— l[R sec a,

and TP =EP2 sec ft = ( /;/.] - PJi) sec ft.

Therefore P/P+ TP
2
= 2>B sec a + (/?/* - ijfi) sec ft

= iJ/J sec ft -f /;/.' (sec a - sec ft),

, P
X
T+ TJ^ i?i^ sec ft + iffi (sec a - sec ft)

= sec ft + -^—- (sec a — sec ft).

Now, as 7,* and P2 approach each other along the curve, a and ft

both approach zero as a limit, whence sec a and sec ft approach

PR
unity as a limit; and since —— is always less than unity, it fol-

PT+ TP
lows that the limit of — — is unity.

arc PP.
Hence —^-J—- lies between unity and a quantity approaching

1
. arc PR

unity as a limit, and therefore the limit of —
- is unity ; that is,

the limit of the ratio of an arc to its chord as the arc approaches

zero as a limit is unity.
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91. The differentials dx
}
dy, ds. On any given curve let the

distance from some fixed initial point measured along the curve

to any point P be denoted by s, where s is positive if P lies in

one direction from the initial point

and negative if P lies in the oppo-

site direction. The choice of the

positive direction is purely arbi-

trary. We shall take as the posi-

tive direction of the tangent that

which shows the positive direction

of the curve and shall denote the

angle between the positive direc-

tion of OXand the positive direction

of the tangent by <£.

Now for a fixed curve and a fixed initial point the position

of a point P is determined if s is given. Hence x and y, the

coordinates of P, are functions of s which in general are con-

tinuous and may be differentiated. We will now show that

dx

ds
cos<£,

dy . ,—- = sin <p.

ds

Let arc PQ = As (fig. 146), where P and Q are so chosen that

As is positive. Then PR = Ax and RQ — Ay, and

Ax
AT

Ay
As

PR _ chord PQ
axcPQ arc PQ

chord PQ „..,_—
r
~- cos RPQ,

arc PQ

RQ chord PQ

PR
chord PQ

RQ
avoPQ arc PQ

chord PQ

chord PQ

arc PQ
sin RPQ.

Taking the limit, we have, since Lim
LimRPQ^cf),

chord PQ
arc PQ

dx—- = cos d>,

ds

dy

ds
sin cf>.

1 and

(1)
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If the notation of differentials is used, equations (1) become

dx = ds • cos
(f>,

dy = ds • sin
<f> ;

whence, by squaring and adding, we obtain the important

equation , „ .,

ds =dx +dy. (2)

This relation between the differentials of x, y, and s is

often represented by the triangle of fig. 147. This figure is

convenient as a device for memorizing formula (1), but it

should be borne in mind that EQ is not

rigorously equal to dy (§ 77), nor is PQ
rigorously equal to ds. In fact, RQ= Ay
and I'(

i
>=As, but if this triangle is

regarded as a plane right triangle, we
recall immediately the values of sin <£,

cos </>, and tan <p which have been pre-

viously proved.

92. Rate of change. If y =/(.>), a change of A./- units in ./

causes a change of Ay units in //, and the quotient ' gives the
Ax

ratio of these changes. If this ratio is equal to m, Ay = mAx\
that is, the change in y is on times the change in x. Hence, if

m were independent of A./-, a change of one unit in u- would

cause a change of m units in //, and —* would consequently

measure the change in y per unit of change in ./•. But m does

depend in general upon A.r, and hence does not give an unam-

biguous measure of the relative changes in x and y. To obtain

such a measure, it is convenient to take the limit of -— as Ax
Ax

approaches zero and to call this limit the rate of change of y
with respect to x. We have then

-y- = rate of change of y with respect to x.

Ex. 1. Coefficient of expansion. Let a substance of volume v be at a

temperature t. If the temperature is increased by A^, the pressure remain-

ing constant, the volume is increased by Ac. The change per unit of vol-

ume is then — , and the ratio of this change per unit of volume to the
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change in the temperature is - — • The limit of this ratio is called the

coefficient of expansion ; that is, the coefficient of expansion equals

In other words, the coefficient of expansion is the rate of change of a unit

of volume with respect to the temperature.

Ex. 2. Elasticity. Let a substance of volume v be under a pressure p.

If the pressure is increased by A/>, the volume is increased by — Ay. The

change in volume per unit of volume is then The ratio of this

change per unit of volume to the change in the pressure is — , and
v A/>

the limit of this is called the compressibility ; that is, the compressibility

is the rate of change of a unit of volume with respect to the pressure.

The reciprocal of the compressibility is called the elasticity, which is

therefore equal to — v — •

dv

In many cases it is convenient to take time t as the inde-

pendent variable. Then —- and — measure the rates at which
1

dt dt

x and y respectively are changing with the time. If both x and

y can be expressed in terms of t, these rates may be found by

differentiating ; but if y is expressed in terms of x and x is

expressed in terms of t, -~- may be found by the formula

dy _ dy dx

dt dx dt

which is a special case of (8), § 84.

Ex. 3. A stone thrown into still water causes a series of concentric

ripples. If the radius of the outer ripple is increasing at the rate of 5 ft.

a second, how fast is the area of the disturbed water increasing when the

outer ripple has a radius of 12 ft.?

Let x be the radius of the outer ripple and A the area of the disturbed water.

Then A = ttx2

. dA n dx
and = lirx— •

dt dt

By hypothesis, — = 5.

dA
Therefore —— = 10 ttx

;

dt

and when x = 12,

dA = 120 7r, the required rate.
tit
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This problem may also be solved by expressing J. directly in terms of t.

By the conditions of the problem, x = 5 t,

and therefore
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Ex. 1. If a body is thrown up from the earth with an initial velocity

of 100 ft. per second, the space traversed, measured upward, is given by

the equation
.v = 100 t - 16 t\

Then
ds

100 - 32 t.

When t < '.)

J.,
v>0; and when £ >3 i, v <0. Hence the body rises for 3^ sec.

and then falls. The highest point reached is 100 (3 \) - 10 (3 1)
2 = 156 \.

Ex. 2. A man standing on a wharf 20 ft. above the water pulls in

a rope attached to a boat at the uniform rate of 3 ft. per second.

Required the velocity with which the boat approaches the wharf.

Let A (fig. 149) be the position of the man
and C that of the boat. Let

AB =

We wish t
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in a straight line is the rate of change of the velocity with respect

to the time. Hence, if a denotes the acceleration,

_dv_<l/<h\_cPs
a ~ dt~ dt\dt)~ dt*'

If a is constant, the motion is said to be uniformly accelerated,

and v = Jet, where k is constant.

When a is positive, an increase of t corresponds to an

increase of v. This happens when the body moves with

increasing velocity in the direction in which 8 is measured

or with decreasing velocity in the direction opposite to thai

in which a is measured.

When a is negative, an increase of t causes a decrease of v.

This happens when the body moves with decreasing velocity in

the direction in which 8 is measured or with increasing velocity

in the direction opposite to that in which 8 is measured.

The force which acts on a moving body is measured by the

product of the mass and the acceleration. 'Inns, if /•' is the force,

and hi the mass of a body moving in a straight line,

dv dh
/' = ma = m— = m —- •

dt <it-

From this it appears thai a force is considered positive or nega-

tive according as the acceleration it produces is positive or nega-

tive. Hence a force is positive when it acts in the direction in

which s is measured and negative when it acts in the opposite

direction.

Ex. 3. Let s =A + Bt + \ Ct2
.

Thou r = Jl + t 7,

a = C,

and F=mC.

If s and i' denote the values of s and v when t = 0, we have, from the

last equations,
so= A >

r
o = L >

and the original equation may be written

S = sn + vj + 1 at\
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94. Motion in a curve. When a body moves in a curve, the

discussion of velocity, acceleration, and force becomes more com-

plicated as the directions as well as the magnitudes of these quan-

tities need to be considered. We shall not discuss acceleration

and force, but will notice that the definition for the magnitude

of the velocity, or the speed, is the

same as before, namely,

ds— *•

where s is distance measured on the

curved path, and that the direction

of the velocity is that of the tangent

to the curve.

Also as the body moves along a curved

path through a distance PQ= As (fig. 150), x changes by an amount

PR = Ax and y changes by an amount BQ = Ay. We have then

Ax ds
Lim— = — = v = velocity of the body in its path,

T . Ax
Lim—— =

At



PROBLEMS 181

Ex. If a projectile starts with an initial velocity v in an initial direction

which makes an angle a with the axis of x taken as horizontal, its position

at any time t is given by the parametric equations

x = v t cos a, y = v t sin a — \ gt2.

Find its velocity in its path.

We have vx = — = t' cos a,
at

(hi
vy — -ft

~ v
«
sm a ~~ S**

Hence v = Vv 2 — 2 yv t sin a + <j-t-.

PROBLEMS

Find -^ in each of the following cases

:

ax

1. y = (2a;4-3)(a:2 + 3a;-l).

2. y = (a;
2 + 4 x - 3) (3 x* + 12 a; + 12).

x + a IS. y=(s»-l)«
3. y = ; ;'

14. // = \/4.»- 3 + (')./•-- 5.

15. y = ^x* + x2 -2x.

3

a;
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28.7/-—-7==- 31. y
x + Va2 + x2 x - Va2 + x2

Find -j- from each of the following equations :

32. :r
l + 2 ,ry + if = 0. 34. xy = (x + y)

2
.

33. x5 -\-5x4
y — 10xyi+ y

5 =0. 35. (x + ?/)* + (a; — yft = a*.

Find -— and —^ from each of the following equations

:

CttAs CbdU

36. 3 x2 + y
2 = 1. 39. sc

2 + x?/ + y
2 = 0.

37. a-
5 + y

5 = a5
. 40. y

3 = a (a;
2 + y

2
).

38. x^ + ^ = a?. 41. xy2 = a; + y.

42. Find the equations of the tangent and the normal to the

curve 5 ax2 — 4 x2
y = 4 y

3 at the point (2 a, a).

43. Find the equations of the tangent and the normal to the

> -. " - x
, L , . . / 3 a 6 a

strophoid y = ± x-v ——— at the point I —— >
—

44. Find the point at which the tangent to the curve y = x8 at

(1, 1) intersects the curve again.

45. Find the equations of the tangent and the normal to the

ellipse 3x2 + 5 y
2 = 32 at a point the abscissa of which is equal to

its ordinate.

46. Find a point at which the tangent to the curve xy— 5x2— 4 =
has the slope 1.

47. Find the length of the portion of the normal to the parabola

y
2 = 8 x at (2, 4) included between the axis and the directrix of

the parabola.

Find the equation of the tangent to each of the following curves

at the point (a?
, y^:

48. y* = xb
. 50. xl + y$ = ai.

49. Vx + Vy = Va. 51. Xs
-f y

3 - 3 ax// = 0.
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52. Prove that the equation of the tangent to the parabola

y
2 = kpx at the point (x

, y^ is y1 y = 2p(x + a
x).

53. If the slope of a tangent to the parabola y
2 = Apx is in, prove

• • P
that its equation is y = mx -\

54. Prove that the equation of the tangent to the ellipse

-5 + jt2 = 1 at the point (xv y^ is -~ + ^r = 1, and that the equa-

a2
//'-

tion of the tangent to the hyperbola — — '-; =1 at the point (xv yS)

a2
b
1

55. Prove that the equations of the tangents with slope m to the

X2
I/
2

./'" if
ellipse -^ + 7^ = 1 and the hyperbola —

2
— •— = 1 are respectively

y = mx ± V (/-//<- + //'J and y = mx ± ~v<ri/r — b
2

.

Draw each pair of the following curves in one diagram and

determine the angles at which they intersect:

56. x + y — 7 = 0, a2 - 4 x - 3 // 4- 1 = 0.

57. a2 + y
2 - 10 ./• 4- 14 = 0. ./- + y* - 8 y 4- G = 0.

58. 2 y
2 - 9 x = 0, 3 x3 4- 4 // = 0.

59. a2 = 4 ay, 2 r2 4- 2 //
J - 5 03 = 0.

,-
3

60. v/
2 = — , x- 4- y* - 2 ax = 0.

z a — x

61. ;r
2 4- >/

2 = 45, y
2 = 12a.

62. a-
2 4- y" - 12 x + 16 = 0, v/

2
a"

4-3

63. if = a3
, y

2 = -^ 65. SB* = 8 if - 4 ay, y5 -a '" y a2 4-4« 2

X*
64. a2

# = 4, y = • 66. a// = if. ,f^ + 4
;/

' * 2a -a

67. a2 -3,W, If-y^-
68. y

2 = 6(a-3), 4^=(a-3)2 (a-l).

69. Prove that the parabolas y* = 4 ax + 4 a2 and y
2 = — 4 &a + 4 b

2

are confocal and intersect at right angles.



72. Find a point on the ellipse —
2 + yj = 1 sucli that the tangent
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70. Show that for an ellipse the segments of the normal between

the point of the curve at which the normal is drawn and the axes

are in the ratio a2
: V2

.

x2
t/

2

71. Find the coordinates of a point on the ellipse ~a + T2=l

such that the tangent there is parallel to the line joining the

positive extremities of the major and the minor axes.

"*"

b2

there is equally inclined to the two axes.

73. Prove that the portion of a tangent to an hyperbola included

by the asymptotes is bisected by the point of tangency.

74. If any number of hyperbolas have the same transverse axis,

show that tangents to the hyperbolas at points having the same

abscissa all pass through the same point on the transverse axis.

75. If a tangent to an hyperbola is intersected by the tangents at

the vertices in the points Q and R, show that the circle described on

QR as a diameter passes through the foci.

76. Prove that the ordinate of the point of intersection of two

tangents to a parabola is the arithmetical mean between the ordi-

nates of the points of contact of the tangents.

77. If, on any parabola, P, Q, and R are three points the ordinates

of which are in geometrical progression, show that the tangents at

P and R meet on the ordinate of Q.

78. Show that the tangents at the extremities of the chord of a

parabola, which is perpendicular to the axis of the parabola at the

focus, are perpendicular to each other.

79. Prove that the tangents described in Ex. 78 intersect on the

directrix of the parabola.

80. Prove analytically that if the normals at all points of an

ellipse pass through the center, the ellipse is a circle.

81. Prove that any tangent to the parabola if = Apx will meet

the directrix and the straight line drawn through the focus, per-

pendicular to the axis of the parabola, in two points equidistant

from the focus.

82. Find in terms of x
x
and p the length of the perpendicular

from the focus of the parabola if = ±px to the tangent at any

point (xv yx
).
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83. If from two given points on the axis of a parabola which

are equidistant from the focus perpendiculars are let fall on any

tangent, prove that the difference of their squares is constant.

84. Show that the product of the perpendiculars from the foci

of an ellipse upon any tangent equals the square of half the

minor axis.

85. Find the equation and the length of the perpendicular from

the center of the ellipse —^ + j^ = 1 to any tangent.

86. If two concentric equilateral hyperbolas are described, the

axes of one being the asymptotes of the other, show that they

intersect at right angles.

87. Prove that an ellipse and an hyperbola with the same foci

cut each other at right angles.

88. Prove that the normal to an ellipse at any point bisects tin-

angle between the focal radii drawn to the point.

89. Prove that the normal to an hyperbola at any point makes

equal angles with the focal radii drawn to the point.

Determine the values of x for which the following curves are

(1) concave upward
; (2) concave downward :

90. a = 4 xs - 6 x8 + 3. 91. y = ** - 12 x°- + 2.

Find the points of inflection of the following curves :

92. y = 2a-3 + 9a-2 -2x-5. 96 y= 1 + *_.

93. y= 3a;4-4x»-6!B» + 4.

94. y = (x + 6 a)(x — ay. J ^ J

Find the turning points and the points of inflection of each of

the following curves and then draw the curve

:

99. y = (x — 2)
2(x + 2). 102. y = x* - 4 Xs + 16.

100. y = x3 - 3«2 - 9x - 5. 103. if = x(x2 — 4).

101. y = x {x — l) 3
.
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104. It is required to fence off a rectangular piece of ground

to contain a given area, one side to be bounded by a wall already

constructed. If the length of the side parallel to the wall is x,

will an increase in x cause an increase or a decrease in the total

amount of fencing ?

105. The hypotenuse of a right triangle is given. If one of the

sides is x, find the effect on the area caused by increasing x.

106. The stiffness of a rectangular beam varies as the product of

the breadth and the cube of the depth. From a circular cylindrical

log of radius a inches, a beam of breadth 2 a; is cut. Find the effect

on the stiffness caused by increasing x.

107. A right cone is generated by revolving an isosceles triangle

of constant perimeter about its altitude. If x is the length of

one of the equal sides of the triangle, will an increase in x cause

an increase or a decrease in the volume of the cone ?

108. A gardener has a certain length of wire fencing with which

to fence three sides of a rectangular plot of land, the fourth side be-

ing made by a wall already constructed. Required the dimensions

of the plot which contains the maximum area.

109. A rectangular plot of land to contain 216 sq. rd. is to be

inclosed by a fence and divided mto two equal parts by a fence

parallel to one of the sides. What^a*^ be the dimensions of the

rectangle that the least amount of fencing may be required ?

110. A gardener is to lay out a flower bed in the form of a sector

of a circle. If he has 20 ft. of wire with which to inclose it, what

radius will he take for the circle to have his garden as large as

possible ?

V.
111. An open tank with a square^ase and vertical sides is to

have a capacity of 4000 cu. ft. Find the dimensions so that the

cost of lining it with lead may be a minimum.

112. A rectangular box with a square base and open at the top is

to be made out of a given amount of material. If no allowance is

made for the thickness of the material or for waste in construction,

what are the dimensions of the largest box that can be made ?

113. Find a point on the line y = x such that the sum of the

squares of its distances from the points (— a, 0), (a, 0), and (0, b)

shall be a minimum.
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114. A piece of wire 12 ft. in length is cut into six portions, two

of one length and four of another. Each of the two former portions

is bent into the form of a square, and the corners of the two squares

are fastened together by the remaining portions of wire, so that the

completed figure is a rectangular parallelepiped. Find the lengths

into which the wire must be divided so as to produce a figure of

maximum volume.

115. The strength of a rectangular beam varies as the product of

its breadth and the square of its depth. Find the dimensions of the

strongest rectangular beam that can be cut from a circular cylindri-

cal log of radius a inches.

116. What are the dimensions of the rectangular beam of great-

est volume that can be cut from a log a feet in diameter and b feet

long, assuming the log to be a circular cylinder ?

117. A log in the form of a frustum of a cone is 20 ft. long, the

diameters of the bases being 2ft. and 1 ft. A beam with a square

cross section is cut from it so that the axis of tin- beam coincides

with the axis of the log. Find the beam of greatest volume that can

be so cut.

118. Find a point on the axis of x such that the sum of its dis-

tances from the two points (1, 2) and (4, 3) is a minimum.

119. Find the point on the circle jc
9 4- if = <r such that the sum

of the squares of its distances from the two points (2 a, 0) and (0, 2 a)

shall be the least possible.

120. A water tank to hold 300 cu. ft. is to be constructed in the

form of a right circular cylinder, the base of the cylinder being

horizontal. The tank is open at the top, and the material used for

the bottom costs twice as much per square foot as that used for

the lateral wall. What are the most economical proportions for the

tank ?

121. A tent is to be constructed in the form of a regular quadran-

gular pyramid. Find the ratio of its height to a side of its base

when the air space inside the tent is as great as possible for a given

wall surface.

122. An isosceles triangle of constant perimeter is revolved about

its base to form a solid of revolution. What are the altitude and

the base of the triangle when the volume of the solid generated is

a maximum ?
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123. Required the right circular cone of greatest volume which

can be inscribed in a given sphere.

124. The total surface of a regular triangular prism is to be k.

Find its altitude and the side of its base when its volume is as

great as possible.

125. The combined length and girth of a postal parcel is 60 in.

Find the maximum volume : (1) when the parcel is rectangular with

square cross section
; (2) when it is cylindrical.

126. A length I of wire is to be cut into two portions, which are

to be bent into the forms of a circle and a square respectively. Show
that the sum of the areas of these figures will be least when the

wire is cut in the ratio ir : 4.

127. A piece of galvanized iron b feet long and a feet wide is to be

bent into a U-shaped water drain b feet long. If we assume that

the cross section of the drain is exactly represented by a rectangle on

top of a semicircle, what must be the dimensions of the rectangle

and the semicircle that the drain may have the greatest capacity

:

(1) when the drain is closed on top ? (2) when it is open on top ?

128. A circular filter paper 10 in. in diameter is folded into a

right circular cone. Find the height of the cone when it has the

greatest volume.

129. It is required to construct from two equal circular plates of

radius a a buoy composed of two equal cones having a common base.

Find the radius of the base when the volume is the greatest.

130. Two towns A and B are situated respectively 10 mi. and

15 mi. back from a straight river from which they are to get their

water supply, both from the same pumping station. At what point

on the bank of the river should the station be placed that the least

amount of piping may be required, if the nearest points of the river

to A and B respectively are 20 mi. apart ?

131. A man on one side of a river, the banks of which are assumed

to be parallel straight lines 2 mi. apart, wishes to reach a point on

the opposite side of the river and 10 mi. further along the bank. If

he can row 3 mi. an hour and travel on land 5 mi. an hour, find the

route he should take to make the trip in the least time.
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132. A power house stands upon one side of a river of width

b miles and a manufacturing plant stands upon the opposite side,

a miles downstream. Find the most economical way to construct

the connecting cable if it costs m dollars per mile on .land and

n dollars per mile through water.

133. At a certain moment of time a vessel is observed at a point

A, sailing in the direction AB at the rate of 10 mi. per hour, and

another vessel is observed at C, sailing in the direction CA at the

rate of 20 mi. per hour. The angle between AB and AC is 60°, and

AC is 50 mi. When will the vessels be nearest to each other ?

134. A vessel is sailing due north at the rate of 10 mi. per hour.

Another vessel, 190 mi. north of the first, is sailing on a course

S. G0° E. at the rate of 15 mi. per hour. When will the distance

between them be the least?

135. Find the least ellipse which can be described about a given

rectangle, the area of an ellipse with semiaxes a and b being irab.

136. Find the isosceles triangle of greatest area which can be

cut from a semicircular board, assuming that the base of the triangle

is parallel to the diameter.

137. Find the isosceles triangle of greatest area which can be cut

from a parabolic segment, assuming that the vertex of the triangle

lies in the base of the segment.

138. The number of tons of coal consumed per hour by a certain

ship is 0.3 + 0.001 v3, where r miles is the Bpeed per hour. Find the

amount of coal consumed on a voyage of 1000 miles and the most

economical speed at which to make the voyage.

139. The fuel consumed by a certain .steamship in an hour is

proportional to the cube of the velocity which would be given to

the steamship in still water. If it is required to steam a certain

distance against a current flowing a miles an hour, find the most

economical rate.

140. The altitude of a variable cylinder is constantly equal to the

diameter of the base of the cylinder. If when the altitude is 8 ft. it

is increasing at the rate of 3 ft. an hour, how fast is the volume

increasing at the same instant ?

141. Find where the rate of change of the ordinate of the curve

y = x3 — 6 x~ + 3 x + 5 is equal to the rate of change of the slope

of the tangent.



190 DIFFERENTIATION OF ALGEBRAIC FUNCTIONS

142. The angle between the straight lines AB and BC is 60°, and

.1 II is 28 ft. long. A particle at A begins to move along AB toward B
at the rate of 4 ft. per second, and at the same time a particle at B
begins to move along BC toward C at the rate of 8 ft. per second. At

what rate are the two particles approaching each other after 1 sec. ?

143. A series of right sections is made in a right circular cone

of which the vertical angle is 90°. How fast will the areas of the

sections be increasing if the cutting plane recedes from the vertex

of the cone at the rate of 2 ft. per second ?

144. A roll of belt leather is unrolled on a horizontal surface at

the rate of 5 ft. of length per second. If the leather is i in. thick, at

what rate is the radius of the roll decreasing when it is equal to

2 ft., if the roll is assumed to remain always a true circle ?

145. A trough is in the form of a right prism with its ends equi-

lateral triangles placed vertically. The length of the trough is 10 ft.

It contains water which leaks out at the rate of 1 cu. ft. per minute.

Find the rate, in inches per second, at which the level of the water

is sinking in the trough when the depth is 1 ft.

146. A solution is being poured into a conical filter at the rate of

3 cc. per second and is running out at the rate of 1 cc. per second.

The radius of the top of the filter is 10 cm., and the depth of the

filter is 30 cm. Find the rate at which the level of the solution is

rising in the filter when it is one third of the way to the top.

147. A peg in the form of a right circular cone of which the ver-

tical angle is 30° is being driven into the sand at the rate of 2 in.

per second, the axis of the cone being perpendicular to the surface

of the sand, which is a plane. How fast is the lateral surface of the

peg disappearing in the sand when the end of the peg is 10 in. below

the surface of the sand ?

148. A body is moving in a straight line according to the law

s = f — 9 1-
-f- 15 t. Find its velocity and acceleration. When is

the body moving forward and when backward ?

149. A body is moving in a straight line according to the law

s = \tf — 2 t* + 4 1
2

. Find its velocity and acceleration. When is its

velocity a maximum ? During what interval is it moving backward ?

150. The top of a ladder a units long slides down the side of a

vertical wall which rests on horizontal land. If the velocity of the

top is v , what is the velocity of the bottom ?
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151. Two parallel straight wires are a feet apart. A bead slides

along one of them at the rate of b feet per second. How fast is the

bead approaching a fixed point on the other wire ?

152. A boat with the anchor fast on the bottom at a depth of

30 ft. is drifting at the rate of 4 mi. an hour, the cable attached to

the anchor slipping over the end of the boat. At what rate is the

cable leaving the boat when 50 ft. of cable are out, assuming it

forms a straight line from the boat to the anchor ?

153. A lamp is 60 ft. above the ground. A stone is let drop from

a point on the same level as the lamp and 20 ft. away from it. Find

the speed of the shadow on the ground after 1 sec, assuming that

the distance traversed by a falling body in tin' time t is 1G t
2

.

154. A particle moves in a plane so that its coordinates at any
2

time t are given by the equations x = 2 1, y = • Find the

Cartesian equation of its path, and its velocity in its path.

155. Two points, having always the same abscissa, move in such

a manner that each generates one of the curves y = xa — 12 a? + 4./-

and y = x% — 8 x2 — 8. When arc the points moving with equal

speed in the direction of the axis of // '.'

156. A particle is moving along the curve y
2 = Ax, and when

x = 4 its, ordinate is increasing at the rate of 10 ft. per second. At

what rate is the abscissa then changing, and how fast is the particle

moving in the curve? Where will the abscissa be changing ten

times as fast as the ordinate '.'

157. A ball is swung in a circle at the end of a cord 5 ft. long, so

as to make 20 revolutions a minute. If the cord breaks, allowing the

ball to fly off at a tangent, at what rate will it be receding from the

center of its previous path T^ sec. after the cord breaks, it no

allowance is made for any new force acting?

158. The top of a ladder 32 ft. long rests against a vertical

wall and the foot is drawn along a horizontal plane at the rate of

4 ft. per second in a straight line from the Avail. Find the path of a

point one fourth of the distanee from the foot of the ladder, and its

velocity in its path at any time t.
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CHAPTER XI

DIFFERENTIATION OF TRANSCENDENTAL FUNCTIONS

95. Limit of In order to apply the methods of the dif-

h

ferential calculus to the trigonometric functions, it is necessary

to know the limit approached by —-— as h approaches zero as

a limit, it being assumed that h is expressed in circular measure.

Let AOB (fig. 151) be the angle A,

r the radius of the arc AB described

from as a center, a the length of AB,

p the length of the perpendicular BC 0<f-

from B to OA, and t the length of the

tangent drawn from B to meet OA pro-
^"""^J/'

duced in D. .
B '

Revolve the figure on OA as an axis

until B takes the position B'. Then the chord BCB' = 2p, the

arc BAB' = 2 a, and the tangent B'D = the tangent BD. Evidently

BD+ DB' > BAB' > BCB',

whence t>a>p.

Dividing through by r, we have

tap
r r r

that is, tan li > h > sin h.

Dividing by sin h, we have

1 h

cos h sin h

, . . _ sin h i
or, by inverting, cos h < —-— < 1.

h
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Now as h approaches zero, cos h approaches 1. Hence 1

h
which lies between cos h and 1, must also approach 1 ; that is,

T . sin h ^
Lim —=— = 1.

96. Differentiation of trigonometric functions. The formulas

for the differentiation of trigonometric functions are as follows,

where u represents any function of x which can be differentiated :

d . du— sinw = cosw —-> (1)
dx dx

(2)

(3)

(4)

(5)

d (hi— esc u = — esc u ctn u • (6

)

dx dx

1. By f8), § 84, — sin u =— sin u • — •

J w 3
dx du -/./

To find — sin u, we place y = sin u.

(hi

Then if u receives an increment An, y receives an increment Ay,

wliere
a • , , a n o / ,

A"\ •
A "

Ay = sin (?t + At< ) — sin u = 2 cos I u -f —- 1 sin— >

the last reduction being made by the trigonometric formula

. , a + b . a — b
sm a — sm 6=2 cos —-— sin—-— •

Then we have
. An . Au
sm -— sin

Ay / Au^ °

d
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Let Aw approach zero. By 2, § C>9,

sin —

—

Lim —- = Lim cos ( u + -77- ) Lim
Aw

But Lim

Aw \ 2 / Aw

by _dy
Aw cZw

Am\Lim cos ( w +— 1 = cos w,

. Aw
sin—

and Lim = 1. (By § 95)

d .

Hence — sm w = cos w,
du

, c? . c?w
and —- sm w = cos w—-

dx dx

2. To find — cos w, we write
dx

cos w = sin 1
— — w
7T

Then — cos u =— sin ( — — w

)

£e \2 /dx dx

i-)=S-) (by(1))

/tt \ (7w

—"Hi 7*)*

rfw=— sin w —- •

dx

3. To find —- tan w, we write
dx

sin u
tan w =

cos w
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„, d d sin u
Then — tan u =

dx dx cos 11

d . d
cos u— sin u — sin u— cos u

cosV

X
Cb7(5),§84)

(cos w + snrit)—
COS" W

(by (1) and (2))

= sec u— >

dx

4. To find —- ctn ?/, we write
dx

GOSU
ctn m = —

sin w

™, (7 , c? cosw
I hen — ctn u = ——

:

dx dx sm u

d d .

sm u — cos u — cos ii — sm u

(by (5), §84)

(by (1) and (2))
— shr u — co&*u du

sin*-// dx

., <///

= — CSC //— •

dx

5. To find — sec v, we write
dx

1
secw = = (cosw) .

cos u

Then — sec u = — (cos u)~'2— cos u (by (6), § 84)

= ™±*a (by(2))
cos

2^ ^ ^ y K JJ

<hi= sec m tan u —- •

dx

6. To find — esc ?/, we write

csc u — —— = (sin u)~\
sm u



196



INVERSE TRIGONOMETRIC FUNCTIONS 197

— csc
-1w = ^=— when csc

-1w is in the first or
dx uy/u*-ldx the third quadrant;

when csc
-^ is in the second or

M M -*-
c X

the fourth quadrant.

The proofs of these formulas are as follows

1. If
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4. If
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Ex. 2. y = sec- 1 Vi x2 + 1 x + 2.

dx V-i x- + 4x + 2 \ (4 r + 4x- + 2)-l

4 x + 2 1

(
I , - + -1 .,- + 2) (-2X + 1) 2 z2 + 2 x + 1

i

98. Limit of (1 + h) h
. In obtaining the formulas for the differ-

entiation of the exponential and the logarithmic functions it is
i

necessary to know the limit of (1 + // /' as // approaches zero, the

rigorous derivation of which requires methods which are too

advanced for this book. We must content ourselves, therefore,

with indicating somewhat roughly the general nature of the proof.

We begin by expanding (1 4- h )'' by the binomial theorem and

making certain simple transformations; thus,

i, KH,. KH(M
(i+ h) h =i + ~ h+—p— /r+ k '<

:!+ • • •

_ 1
1 (1-7Q (t-7>)(1 -2/0

l
+

[|

+
[I

+ "" +*

where R represents the sum of all terms involving h, Jr. K\ etc.

Now it may be shown by advanced methods that as It approaches

zero R also approaches zero, and at the same time

approaches e (§ 27). Hence
i

Lim (1 + JiY = e.

99. Differentiation of exponential and logarithmic functions.

The formulas for the differentiation of the exponential and the

logarithmic functions are as follows, where, as usual, u represents
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any function which can be differentiated with respect to x, log

means the Napierian logarithm, and a is any constant:

d , log„£ du ^^
l0goW = _6a_

(1)
dx u dx

d , 1 du a-—log u = -—-, (2)
dx u dx

d U Ul dU Q— a =a loera— ? (6)
dx & dx W
d

v _ u du .

dx dx

The proofs of these formulas are as follows

:

1.By(8),§84,|log„« = Alog„«.|.

To find — loga M, place y = loga M.

Then if u is given an increment Aw, y receives an increment

Am, where A , , , A N ,

A# = loga(w + Am) — log M

Am . /. A?/,\ A"

u \ u

the last transformation being made by the formulap logM= log l/p .

Then
Am m \ m /

— may be taken

as h of § 98.

Hence

Therefore

and

Ay
=

Am
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2. If y = log u, the base a of the previous formula is e ;

and since log
e
e = l, we have
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If cosx
dy

x = it ± 2 nw. As x passes through these values, — does
dx

not change sign. Hence these values do not correspond to turning points

of the curve.

To examine for points of inflection, we find

dx2
— sin x — i sin — sin x (4 cos x + 1).

Then velocity

acceleration

bk cos bt,

-- - Irk sin bt = b%

This is zero when x = + 2nirOTTr + 2 rnr, or when x = cos_1(— \).

As x passes through any of these values, —{ changes sign. These values
dx2

correspond, therefore, to j'oints of inflection.

Ex. 2. A particle of mass m moves in a straight line so that

.s- = /sin ///,

where t = time, s = space, and b and k are constants.

(h_

dt
~

df-

force = F= ma - — mb-s.

Let be the position of the particle when I = 0, and let <~>.\ = k and

OB — — k. Then it appears from the for las for .-.and v thai the particle

oscillates forward and backward hetween Band I. It describes the distance

(>. I in the time— and moves from A' to .1 and bach to /<' in the time -—
2 b b

The formula F=— ndi-s shows that the parti.de is acted on l>v a force

directed toward and proportional to the distance of the particle from 0.

The motion of the particle is called simple harmonic motion.

Ex. 3. A wall is to be braced by means of a beam which must pass over

a lower wall b units high and standing n units in front of the first wall.

Required the shortest beam which can lie used.

Let A B = 1 (fig. 152) be the beam, and let (' lie the top of the lower

wall. Draw the line CD parallel to OB, and let EBC = d.

Then l = BC+ CA

= ECcsc6 + nr^cO
= b esc 6 + a sec 0.

- = — b csc 6 ctn + a sec $ tan i

a sin3 — bcosz

Placing

we have

dl

dd

a sin 3

sin2 # cos-0

= 0, to find the minimum,

= b cos3
0, whence tan 8 = — •
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When 6 has a smaller value than this, a siu 3 6 < b cos3 9 ; and when has a

larger value, a sin3 9 > b cos 3 6. Hence I is a minimum when tan# = —

.

a?

Then / = Acac0 + «sec0



DIRECTION OF A CURVE

Formula (2) may be expanded as follows:

Therefore

±(dy\

dt\dx)

(dy\ d2
y dx d2x dy

dx

\dt

dt
2
dt df dt

l_x

it

d 2

y
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As A0 approaches zero the chord PQ approaches the limiting

position PT and the angle 11QP approaches i/r. But in the

triangle SPQ,
SP rsmA6

tan SQP=— =
SQ A , „ . ,A6

Ar + 2 r sin
2—

sin Ad
r

Ad

. Ad

Ar . A0
SmT

+ r sm
A6>

'

2 A(9

2

Hence, taking the limit, we have

tan^ = ^-. (1)

dd

If it is desired to find the angle MNP = <j>, it may he done by

the evident relation
, ,

' A ,~N

<f>
= yfr + 0. (2)

104. Derivatives with respect to the arc in polar coordinates.

In the triangle PQS (fig. 153),

SP
siii SQP =

chord PQ
SP arc PQ

mcPQ chord PQ
rsinA0 axcPQ

As chord PQ
sin Ad A6 arcP<?

Ad As chord PQ

As Ad approaches zero SQP approaches yjr, Lim
' = 1, and

chord PQ V5 y

Hence sin -v/r = r —- . (1)
as
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By dividing (1), just obtained, by (1) of the previous article,

C0S+ =
fs'

(2)

From (1) and (2) we obtain

rdO = sin -v/r ds, dr = cos yjr ds
;

whence, by squaring and adding, we obtain

d$2=dr 2 +r*de\ (3)

The formulas of this and the foregoing article are correctly

represented by the triangle of fig. 154, which is a convenient

device for remembering the formulas. Here

the lines marked as differentials are really

increments, but as the size of the figure is re-

duced, they become more nearly differentials.

The correct formulas arc obtained by using

the triangle as a straight-line figure. We have

. , rdd
tan yfrd* = -Jd/+r*dd\

cos yfr

dr
sin yjr =

dr

rd0

ds
'

105. Curvature. If a point describes a curve, the change

of direction of its motion may be measured by the change of

the angle <£ (§91).

For example, in the

curve of tig. loo, if AJ% — s

and im = As, and if
<f> l

and

</>„ are the values of
<f>

for

the points If and i^ respec-

tively, then </>.,
— <^) j

is the

total change of direction

of the curve between J^

and i?. If
3
-0

1

= A$,

expressed in circular meas-

A<£

unit of the arc

Fig. 155

ure, the ratio —- is the average change of direction per linear

Regarding </> as a function of 8 and
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taking the limit of

have -j-i which
as

Acb
as As approaches zero as a limit, we

is called the curvature of the curve at the

and the circle is a curve of constant

point ij". Hence the curvature of a curve is the rate of change

of the direction of the curve with respect to the length of the

arc (§92).

If ~- is constant, the curva-
ds

ture is constant or uniform ;

otherwise the curvature is va-

riable. Applying this defini-

tion to the circle of fig. 156, of

which the center is C and the

radius is a, we have A<b = P
X
CPV

and hence As = a A(f>. Therefore

Ad> 1 rT deb 1
—-£ = -. Hence -?- = -
As a ds a

curvature equal to the reciprocal of its radius.

106. Radius of curvature. The reciprocal of the curvature is

called the radius of curvature and will be denoted by p. Through

every point of a curve we may pass a circle with its radius

equal to p, which shall have the same tangent as the curve at

the point and shall lie on the same side of the tangent. Since

the curvature of a circle is uniform and equal to the reciprocal

of its radius, the curvatures of the curve and the circle are the

same, and the circle shows the curvature of the curve in a

manner similar to that in which the tangent shows the direction

of the curve. The circle is called the circle of curvature.

From the definition of curvature it follows that

.

_ ds
P
~dj>'

If the equation of the curve is in rectangular coordinates,

ds_

by (9), §84, p =±.

dx
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To transform this expression further, we note that

ds — dx + dy ;

whence, dividing by dx and taking the square root, we have

Since ^ = tan-M^j, (by § 91)

dry

d<\> dx2

dx
1+ /^y

Substituting, we have

\dx)

HS!
d 2

y
d.r

1

In the above expression for p there is an apparent ambiguity of

sign, on account of the radical sign. If only the numerical value

of p is required, a negative sign may be disregarded.

Ex. Find the radius of curvature of the ellipse — + f- = 1.
a- Ul

Here
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107. Radius of curvature in parametric representation. If x

and y are expressed in terms of any parameter t, the radius of

curvature may be found as follows:

But

and

whence

ds

ds dt

d4>
=
d$

dt

(By (9), § 84)

ds

dt~
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dx
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tty

a — a cos
<f>,

d 2x . ,= a sin g> :

a sin (p,

dhi ,— = «cos<^.

Hence, by substitution, p
— [q

2 (1 — cos
<fr)

2 + rr sin 2
<ft]

*

«(1 — cos<£) • «cos<£ — f/ sin $(// sin <£)

22 a (1- cosc£)'

= 2*a-(2siii2
|)

= 4 a sin

108. Radius of curvature in polar coordinates. For a curve

expressed in polar coordinates the radius of curvature may be

found as follows:

(h_dd
d<f>~ d$

dd

(By (9), §84)

From § 104,
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Ex. Find the radius of curvature of the cardioid r = a(l — cos $).

Here —
-r = a sin 6 aud — = a cos 0.

(10 do'1

Therefore o = [q
2(l - cos 6)" + <r sin2 flp

«2
(1 - cos Bf +2 a2 sin2 6 - a (1 - cos 5) a cos

_ [2«2(l-cosfl)]f = 2*a .£
«2(3-3cos0) ~ 3

(1 COS ^} '

P = 1(2 ar)i

PROBLEMS

Find y- in each of the following cases :

1. y = isin4 2a\ 2. y = i sin5 3 a; — 1 sin7 3 a:.

V1
4 1 • « \

3. « = -( - sin* ax — -; snr aa- )
•

9 a\i 6 /

4. y/ = i a; — I sin 4 a?. 5. y = J a; — \ sin (2 — 4 a;).

6. y = coss 3 cc
(T\ cos3 3 a; — \ cos 3 a-).

7. y = f\Vcos 2 x (cos2 2 a; — 7).

8. y = i cos (2 a + 1) [cos 2
(2 x + 1) - 3].

9. y = ^ tan8 a 4- tan2 x 4- tan a;.

10. y = - tan3

| - 2 tan | 4- a?.

11. y=-£ctn2
(a;

2 + a2).

12. y =- -etn5 - + ctn3-- 3ctn^-a-.
o o o o

2 .x
13. y = -sec6 -.

S
J

j/ 2 a; 1
14. ^ = 25^860-^1- jjsec2 - + 2jsec4

15 - ^ = j(csGbx~ ctn&c). 19. y = sin- 1 ^
~*

a; 4- Z

16. y = sin- 1
2a;.

1 x2 + 3
•i/o hn 20 « y = 7rsin

-1 - -=•'

17. y = snr 1 (2x — 1). ^ 2 2V3
,a;-2

t
2x — 3

18. y = sm- 1— 21. y = cos- 1

5
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3 x 4- 1 ,
|l — x

22. y^cos- 1

^
• 29. y = ctn- 1 ^-^--

23. y = COS
-1 -^

30. y = sec
-1 3 a-.

24. y = tan- 1
(a; — 2)

a;
2 4- a?

,
x +

31. y = sec- 1—

—

25. y = tan" 1 Vx2 + 2x.
^2. y = sec" 1

(a; + 1) •

26. y = tan- 1-^==-
33 y = csc-i(4 ^ + 4 r)

27. ?/ = ctn- 1 -^- 34. y = csc- 1-
.'•

28. y = ctn-1

x2 -l
35. y==c8c-i-(-

a + ?J

36. y = x sin
-1 Vl — x2 — Vl — x2

.

37. y = x2 tan-1 - + a 2 ctn
-1 - -f ox.

x a

1 „ ,- : 3 a 2
. . x — a

38. y =— -(x4-3a)V2ax — x2 4- -^-sin-1

39. y = log(2 x2 -4x + 3).
46>

j/

_l
log

Vaa +^-«
40. y = log Vx2 + 4 x 4- 3.

X

1 2 x — 3 • 47. // = log sin x.

41
- •'/

=
12

log
2x4-3

'

48. y = log(sec 3x4- tan 3 x).

42. y
J-logSs-A i^rfn-

2v3 3x4-V3 49.
//
= log—

43. y = log

. x
1 1 + sin

2

2 tan x 4-

1

V3 - 4 x 4- x2

44. y = log(3 x 4- V9x2 + 2).
5 °' -'7

= log
tan x 4- 2

45. y = \ log (x
:! 4- Vx° — «G

). 51. // = log ctn x — esc 2 x.

52. y = logVar, + 4 + ^-j-j.

53. y = 3 Vx7^4 + log (a3 + Vx4 -" 4

f.

1 , 1 - cos 2
54- ^=8 10g

l + cos2x 4sin 2 2x

55. y = x [(log ox)2 - 2 log aa + 2].

56. y = log(x2 + Vx4 — l) - sec- 1 x2
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57. y

58. y

59. y

2 x tan- 1 2 x — log Vl + 4 x\

| log (2 .r
2 + 1) + V2 tan" 1 x V2.

60. ?/ = x sec

a; tan-1 a« log Vl + <rx~.

ax log(oaj + Vft2
x-

2 — l).

61.
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Find -~ in each of the following cases

:

ax

.y n 91. sin (./• + 2 y) +e2x+y = 0.
89. tan- 1^ + xy = 0.

^ ""

92. ./•" + // = 0.

90. sin- 1 - + ^,f-x 2 = 0. no r
y

* 93. // — sec jv/ — tan x^ = 0.

Find -^ and -rk in each of the following cases

:

ax dxr

94. e
x + e'

J = e
r *

". 96. log ('.'•'- + //-) — tan -1 - = 0.

95. tan-^+logV7T?=0.
9?

'
°OB(*+y)+ooB(*-y)=l.

y 98. r' + " = //'.

99. Show that the portion of the tangent to the curve

a a _i_ V«*
1

a — Vr^
-V5

included between the point of contacl and the axis of y is constant.

(From this property the curve is tailed the tractrix.)

100. Draw the curve y = c~'" ens//./-, and prove thai it is tangent

to the curve y = e
-01 wherever they have a point in common.

sin.''
101. Draw the curve y = } and show that it is tangent to

the curve y = —
, wherever they have a point in common.

102. Find the angle of intersection of the curves y = sina: and

y = 'eos .''.

103. Find the angle of intersection of the curves y = sin ./ and

5 + f f

104. Find the angle of intersection of the curves y= sins and

y = sin 2 x.

105. Find the point of inflection of the curve y — (x + 1) tan-1 x.

106. Find the points of inflection of the curve y = e~'~.

107. Find the point of inflection of the curve y = e
1-ar

.

108. Draw the curve y = log tair.r. Find a point of inflection and

the slope at that point.
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109. Prove that the curve

y = \ x — § sin x + j\ sin 2 x

lias an indefinite number of points of inflection, and that two of

them lie between the points for which x = 6 and x — 10 respectively.

Find the turning points and the points of inflection of the follow-

ing curves, and draw the curves.

110. y = xe~*\
113

- // = sil^-

, ,.. o _ r 114. y = 2 sin a; 4- isin2x.
111. y = x z

e
x

.
J 2

112. }/ = x3e~ x
.

115 ' xi/ = a2 \og-'

116. A tablet 10 ft. high is placed on a wall so that the bottom

of the tablet is 8 ft. from the ground. How far from the wall should

a person stand in order that he may see the tablet to the best advan-

tage ; that is, in order that the angle between the lines from the

observer's standpoint to the top and the bottom of the tablet may
be the greatest ?

117. One side of a triangle is 5 ft., and the opposite angle is 40°.

Find the other angles of the triangle when its area is a maximum.

118. Above the center of a round table is a hanging lamp. What
must be the ratio of the height of the lamp above the table to the

radius of the table in order that the edge of the table may be most

brilliantly lighted, given that the illumination varies inversely as

the square of the distance and directly as the cosine of the angle

of incidence ?

119. A weight P is dragged along the ground by a force F. If

the coefficient of friction is K, in what direction should the force be

applied to produce the best result ?

120. An open gutter is to be constructed of boards in such a way
that the bottom and the sides, measured on the inside, are to be each

5 in. wide, and both sides are to have the same slope. How wide

should the gutter be across the top in order that its capacity may be

as great as possible ?

121. A steel girder 27 ft. long is to be moved on rollers along a

passageway and into a corridor 8 ft. in width at right angles to the

passageway. If the horizontal width of the girder is neglected, how
wide must the passageway be in order that the girder may go around

the corner ?
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122. Given that two sides and the included angle of a triangle

have at a certain moment the values 8 ft., 12 ft., and 30° respectively,

and that these quantities are changing at the rates of 4 ft., — 3 ft.,

and 12° per second respectively, what is the area of the triangle at

the given moment, and how fast is it changing ?

123. A particle of unit mass moves in a straight line so that

irt
s = 6 — 5 sin2— > where t is the time and s the distance from a

point 0. Find when the particle is moving forward and when
backward. Find also the greatest distance which the particle

reaches from 0, and the force which acts upon it.

124. A motion of a particle in a straight line is expressed by the

equation s = 5 — 2cosa£ Express the velocity and the acceleration

at any point in terms of s.

125. Two paxticles are moving in the same straight line, and

their distances from the fixed point on the line at any time t arc

respectively x = a cos ht and as' = a COS ( ht -f- .,)' A and a being

constants. Find the greatest distance between them.

126. If s = ae** + be~ kt
,
show that the particle is acted on by a

repulsive force which is proportional to the distance from the point

from which s is measured.

127. If a particle moves so that

s = e-i«*(a sin ht + b cos ///),

find expressions for the velocity and the acceleration. Hence show

that the particle is acted on by two forces, one proportional to the

distance from the origin and the other proportional to the velocity.

Describe the motion of the particle.

128. A revolving light in a lighthouse \ mi. offshore makes one

revolution a minute. If the line of the shore is a straight line, how
fast is the ray of light moving along the shore when it passes the

point of the shore nearest to the lighthouse ?

129. A, the center of one circle, is on a second circle with center

at B. A moving straight line, AMN, intersecting the two circles at

M and N respectively, has constant angular velocity about A. Prove

that BN has constant angular velocity about B.
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130. BC is a rod a feet long, connected with a piston rod at C, and

at B with a crank , I /;, h feet long, revolving about A. Find C's velocity

in terms of AB's angular velocity.

131. A body moves in a plane so that x = acos t-\-b,y= asmt -f- c,

where t denotes thne and a, b, and c are constants. Find the path of

the body, and show that its velocity is constant.

132. The parametric equations of the path of a moving point are,

in terms of the time t, x = a cos Id, y = b sin ht, where a, b, and 'k

are constants and a > b. Prove that the path is an ellipse. Find

the velocity of the point in its path. Find when the velocity is a

maximum and when a minimum.

133. A particle moves so that x = 2 cos t — cos 2 1, y = 2 sin t —
IT

sin 2 t, where t is the time. Find its velocity in its path when t — — •

134. If a wheel rolls with constant angular velocity on a straight

line, required the velocity of any point on its circumference ; also of

any point on one of the spokes.

135. Prove that a point on the rim of the wheel of problem 134

is moving parallel to the straight line on which the wheel rolls, with

a velocity proportional to its distance from OX.

136. Show that the highest point of a wheel rolling with constant

velocity on a road moves twice as fast as each of the two points in the

run whose distance from the ground is half the radius of the wheel.

137. If a wheel rolls with constant angular velocity on the cir-

cumference of a fixed wheel, find the velocity of any point on its

circumference and on its spoke.

138. If a string is unwound from a circle with constant angular

velocity, find the velocity of the end in the path described.

139. A man walks along the diameter, 200 ft. in length, of a semi-

circular courtyard at a uniform rate of 5 ft. per second. How fast

will his shadow move along the wall when the rays of the sun are

at right angles to the diameter ?

140. How fast is the shadow in the preceding problem moving if

the sun's rays make an angle a with the diameter ?

141. A man walks across the diameter of a circular courtyard at

a uniform rate. A lamp, at one extremity of the diameter perpen-

dicular to the one on which he walks, throws his shadow on the wall.

Required the velocity of the shadow along the wall.
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142. A ladder b feet long leans against a side of a house. Its foot

is drawn away in the horizontal direction at the rate of a feet per

second. Find the path described by the center of the ladder and the

velocity of the center in its path.

143. Find — and — for the curve x = a (cos
<f>

4-
<f>

sin
<f>),

y = a (sin cf>
—

<f>
cos

<f>).

144. Find — and -^ for the curve x = a cos 3
<£, y = a sin 3

<£.

145. Find -,' and , '., for the curve x = e* sin t, >/ = e* cos t.

146. Prove that the logarithmic spiral r = e
a6 cuts all radius

vectors at a constant angle.

147. Prove that the angle between the normal and the radius

vector to any point of the lemniscate is twice the angle made by

the radius vector and the initial line.

148. Prove that the angle between the cardioid r = a(l — cos 0)

and a radius vector is always half the angle between the radius

vector and the initial line.

149. I£j> is the perpendicular distance of a tangent from the pole,

prove that p

^hW
150. If a straight line drawn through the pole perpendicular to

a radius vector OP meets the tangenl in .1 and the normal in B,

show that OA = r1 —- and OB = — •

dr ad

151. Show that for any curve in polar coordinates the maximum
and the minimum values of ;• occur in general when the radius

vector is perpendicular to the tangent.

152. Sketch the curve r = 2 4- sin 3 6, and find the angle at winch

it meets the circle r = 2.

153. Sketch the curve 7-
2 = a2 sin-> and determine the angle at

which it intersects the initial line.

154. Sketch the curves i~ = a'
2
sin 2 6 and r2 = «2 cos2 0, and

show that they intersect at right angles.
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155. If a particle traverses the cardioid /• = a(l — cos 6) so that

6 makes uniformly two revolutions a second, find the rate at which
/• changes, and the velocity of the particle in its path : (1) when

= | (2) when 6 = w.

156. Find the velocity of a point moving in a limacpn

r = a cos 6 + b

when changes uniformly.

f)

157. When a point moves along the curve r = 4 sin3 - at a uniform
o

rate of 2 units per second, find the rates at which 6 and r are

changing : (1) when 6 — —
; (2) when 6 = ir.

158. Find the radius of curvature of the curve ar + y^ = a*.

159. Find the radius of curvature of the catenary y = -(ea + e
a
).

160. Show that the catenary y = -(ea + e
a
) and the parabola

1

'

y = a +— x 1 have the same slope and the same curvature at their

common point.

161. Find the radius of curvature of the curve if = £7 (x — 2)
3

at the point for which x — 3.

162. Find the radius of curvature of the cycloid

i « — x /T.
—

; 5

y = a cos
-1 ±-\2ax — x2

at a point for which x = — •

163. Find the radius of curvature of the curve y = e~ 2x sin 3x
at the origin.

164. Find the least radius of curvature of the curve y = logx.

165. Find the points of greatest and of least curvature of the

sine curve y = sin x.

166. Show that the curvature of the parabola y = ax2 + hx + c

is a maximum at the vertex.

167. Show that the product of the radii of curvature of the curve

y = ae a at the two points for which x = ± a is a2
(e + e~ l

)
z
.
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168. Find the radius of curvature of the four-cusped hypocycloid

x = a cos 3
</>, y = a sin 3

<£.

169. By use of the parametric equations of the ellipse find the

points where the radius of curvature is a maximum or a minimum,

and the values of these radii.

170. Find the radius of curvature of r = a (2 cos — 1).

171. Find the radius of curvature of the lemniscate i
a = 2 aa cos 2 0.

172. Find the greatest and the least values of the radius of

curvature of the curve r = a sin3 - •

173. If the angle between the straight line drawn from the origin

perpendicular to any tangent to a curve and the radius vector to

the point of contact of the tangent is either a maximum or a mini-

r*
mum, prove that p = — , where p is the length of the perpendicular.



CHAPTER XII

INTEGRATION

109. Introduction. In § 80 the process of integration was

defined as the determination of a function when its derivative or

its differential is known, and was denoted by the symbol I
;

that is, if „, N 7 ,„, N
J

f(x)dx = dF(x),

then ff(x) dx = F(x). (1)

The expression f(x) dx is said to be under the sign of inte-

gration, f(x) is called the integrand, and F(x) is called the

integral of f(x)dx; sometimes F(x) is called the indefinite

integral, to distinguish it from the definite integral defined

in § 81.

The determination of the indefinite integral is important in

a wide range of problems, and for that reason we shall now
deduce formulas of integration.

We ought to note first, however, that a more general form

of (1) is p
jf(x)dx = F(x)+C, (2)

where C is the constant of integration (§80). In each of the

formulas we shall derive, C will be omitted, since it is inde-

pendent of the form of the integrand, but it must be added

in all the indefinite integrals determined by means of them.

110. Fundamental formulas. The two formulas

fcdu = cfdu (1)

and j(du + dv + dw -\ ) = fdu + fdv + fdw -J (2)

are of fundamental importance, one or both of them being used

222
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in the course of almost every integration. Stated in words

they are as follows:

(1) A constant factor may be changed from one side of the sign

of integration to the other.

(2) The integral of the sum of a finite number of functions is

the sum of the integrals of the separate functions.

To prove (1), we note that since cdu = d(cu), it follows that

I cdu = I d(cu) = cu = <? I < ///.

In like manner, to prove (2), since

du + dv + dw H = d(u+v+w+ • •)»

we have

j (du + dv + dw H ) = jd(u+ v + w -\ )

= u + v + w + • •

= Cdu+ Cdv + Cdw-\ .

The application of these formulas is illustrated in the follow-

ing articles.

111. Integral of un
. Since for all values of m except m— 0,

d{ //
m
) = mum ~ ]

thi,

it follows that

Placing m = n + l, we have

d\ )= it'"
l

di(,

\m/

C m-l 7 "'"
I U du =
J m

J <-„T> <"

for all values of n except n =— 1.

In the case n =— 1, the expression under the sign of inte-

gration in (1) becomes — , which is recognized as c?(log?<).

Therefore /
-— = logw. (2)
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In applying these formulas the problem is to choose for u

some function of x which will bring the given integral, if pos-

sible, under one of the formulas. The form of the integrand

often suggests the function of x which should be chosen for u.

Ex. 1. Find the value of f(ax*+ bx +-+ ^)dx.

Applying (2), § 110, and then (1), § 110, we have

flax* + bx + -+ ^Sdx = fax2dx+fbxdx +f-/lx +f~2
dx

= afx*dx + bjxdx + cf— + efx-*dx.

The first, the second, and the fourth of these integrals may be evaluated

by formula (1) and the third by formula (2), where u = x, the results being11 e
respectively - ax 3

,
- bx2

, , and c log x.

Therefore

f(ax2 + bx + - + ~)dx = - axs + -bx* + c\ogx--+ C.
J \ x x-j 3 2 x

•s/

Ex. 2. Find the value of f(.r2 + 2)xdx.

If the factors of the integrand- are multiplied together, we have

f(x
2 + 2) xdx =f(x8 + 2 x) dx,

which may be evaluated by the same method as that used in Ex. 1, the

result being \ x* + x2 + C.

Or we may let x2 + 2 = u, whence 2 xdx = du, so that xdx = \ du. Hence

f(x
2 + 2)xdx =j\udu = ljudu

2 2

= i (a* + 2)
2 + C.

Instead of actually writing out the integral in terms of u, we may note

that xdx = ^d (x2 + 2) and proceed as follows

:

f (x2 + 2) x dx =f (x2 + 2) 1 d (x2 + 2)

.= }jf(x
2 +2)d(x2 +2)

= \(x2 +2y+C.
Comparing the two values of the integral found by the two methods of

integration, we see that they differ only by the constant unity, which may
be made a part of the constant of integration.
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Ex. 3. Find the value of C (ax2 + 2 bx) s (ax + b)dx.

Let ax- + 2 bx = u. Then (2 ax + 2 b) dx = du, so that (ax + b) dx = I du.

Hence f (ax2 + 2 bxf (ax + b) dx = f \ u 3 du
^

= \ (ax 1 + 2 bxy + C.

Or the last part of the work may be arranged as follows

:

f (ax* + 2 bx) z (ax + b) dx = f (ax2 + 2 bx)* \ d (ax* + 2 6a:)

= I f(ax2 + 2 bxf d (ax2 + 2 6x)

=
I (ax2 + 2 bx)* + C.

Ex.4. Find the value of f
* C* + V'**

.

J ax2 + 2 bx

As in Ex*. 3, let ax2 + 2 bx = u. Then (2 ax + 2 b)dx = du, so that

(ax + b) dx = I du.

Hence /4 (ax + b) dx _ r 2 <lu _ r du

ax2 + 2 bx ~ J u ~ ~ J u

= 2 log u + C
= 2 log (ar- + 2 bx) + C
= log (ax8 + 2&r)3 + <\-
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_ , p. , ,, , , P sec2 (ax + b)dx.
Ex. 6. Find the value of |

i -

J tan (ax + b) + c

Let tan (ax + /;) + c = w. Then sec2 (ox + b)adx = du.

Hence
•v tan (owe + b) + c *> a

du

/sec2 (ax + />)ox _ r 1 c/m

tan (ax + b) + c J a u

1 rdu
a J u

-logu + C

- log [tan (ax + b) + c] + C,

/• sec2 (ax + V)dx _ rl d [tan (ax + b) + c]

«/ tan (ax + 6) + c J a tan (ax + b) + c

_ 1 /• </[tan (ax + fr) + c]

a «/ tan (ax + 6) + c

= - log [tan (ax + b) + c] + C.

The student is advised to use more and more the second

method illustrated in the preceding problems as he acquires

facility in integration.

112. Integrals of trigonometric functions. By rewriting the

formulas (§ 96) for the differentiation of the trigonometric func-

tions we derive the formulas

I cos udu = sin u, (1)

I sin udu = — cos u, (2)

/

seG
2
icdu = tan u, (3)

esc'
2
u du = — ctn u

7 (4)

I sec u tan udu = sec u, (5)

/ esc u ctn wJw = — esc u. (6)
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In addition to the above are the four following formulas:

tan udu = log sec u, (7)

ctn udu — log sin. u, (8)

|
secwc?w = log(secw + tanw)= log tan(- +

-J»
(9)

it

esc udu = log (esc u — ctn u) = log tan - • (10)

To derive (7) we note that tan u = — :— , and that — sinwcJw

= d(cosu). Then

I
tan u dit — — |

— -

J J cos u

= — log COS u

= log sec u.

In like manner, / ctmidu = I
— = log sin w.

J J sin u

Direct proofs of (9) and (10) will not be given here. At

present they may be verified by differentiation. For example,

(9) is evidently true since

d log (set- u + tan u) = see u <hi.

The second form of the integral may be found by making a

trigonometric trans formation of sec u +*tan u to tanl — + -)•

Formula (10) may be treated in the same manner.

Ex. 1. Find the value of |cos(ara+ bx)(2ax + b)dx.

Let ax* + bx = u. Then (2 ax + b) dx = du.

Therefore fcos (ax2 + bx) (2 ax + b) dx = J*cos (ax- + bx) d (ax2 + bx)

= Bin (ax2 + >'>) + C.

Ex. 2. Find the value of fsec (ea3? + b) tan (e** + b) e^xdx.

Let e03? + b = u. Then eax2 2 axdx = du.

Therefore J^sec (e**
2 + 6) tan (e^ + 6) ea*\r dx

= -L Jsec (c«* + &) tan (ca '
3 + b) d (

e**' + h)

= J_ sec ((•«•'
2 + &)+ C.
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It is often possible to integrate a trigonometric expression by

means of formulas (1) and (2) of § 111. This may happen when

the integrand can be expressed in terms of one of the elementary

trigonometric functions, the expression being multiplied by the

differential of that function. For instance, the expression to be

integrated may consist of a function of sin x multiplied by cos xdx,

or of a function of cosrr multiplied by (— sin xdx), etc.

Ex. 3. Find the value of / Vsina: cos3xdx.

Since d (sin x) = cos xdx, we will separate out the factor cos xdx and

express the rest of the integrand in terms of sin x.

Thus Vsina; coszxdx = vsina;(l— sin2x) (cos xdx).

Now place sin x = u, and we have

I Vsin x cossxdx =
J
u? (1 — u") du

= I («2 _ u^)du

= $ «t - f u% + C

= ^T sinlx (7- 3 sin2 x) + C.

Ex. 4. Find the value of
f
sec6 2 xdx.

Since d(tan 2 x) = 2 sec 2 2 xdx, we separate out the factor sec 2 2 xdx and

try to express the rest of the integrand in terms of tan 2 x.

Thus sec6 2 xdx = sec 4 2 a: (sec2 2 xdx)

= (1 + tan2 2 x) 2 (sec2 2xdx)

= (1 + 2 tan2 2 x + tan4 2 x) (sec 2 2 xdx).

Now place tan 2 x = u, and we have

fsec6 2 xdx = £ f (1 + 2 m2 + u4
) du

= Jr tan 2 x + ^tan3 2 x + TVtan
5 2 x + C.

Ex. 5. Find the value of I tan5 xdx.

Placing tan5 x = tan3
a; tan2x = tan3

a; (sec 2 x — 1),

we have / tan5 xdx =
f
tan3 x sec 2 x dx —

f
tansxdx

= ^tan4 x — | tans xdx.



TRIGONOMETRIC FUNCTIONS 229

Again, placing tan3x = tanx (sec 2x — 1),

we have
J
tan3xdx —

f
tanx sec2xdx —

J
tanxtfx

= i tan2 x + log cos x + C.

Hence, by substitution,

/ tan5 x dx = ^ tan4 a: — i tan2
a; — log cos x + C.

When the above method fails, the integral can often be

brought under one or more of the fundamental formulas by a

trigonometric transformation.

Ex. 6. Find the value of j con- xdx.

Since cos2 x = J (1 + cos 2 x),

we have icos'2xdx = \ f (1 + cos 2 x) dx

= •f lLr + lfcoa2xd(2z)

= l.r+ \ sin •_'.; + C.

Ex. 7. Find the value of / Bin'z C0B*xdx.

Placing sin2 x cos4 x = (sin x cos ar)
acos8 v,

we have sin^x cos4 x = | sin2 2 x(l + cos 2 x).

Therefore
J
sin2 x cos4 xr/x = \ j sin-2xdx + l I sin 2 2 x cos2xtfx.

Using the method of Ex. 6, we have

| sin- 2 x dx — \ f (1 — cos 4 x) ilx

= h x ~ \ sin 1 •''•

Writing sin 2 2 x cos 2 x dx = sin2 2 x (cos 2 x dx)

and placing sin 2 x = u, we have

/ sin2 2 x cos 2 xdx = £ j u9 <£«

= J sin3 2 x.

Combining these results, we have, finally,

fsin2x cos4 x</x = rV x + ?V s*n3 - x — sV s*n4 x + C.
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Ex. 8. Find the value of
J
Vl + cosxdx.

Since cos x = 2 cos- -

Therefore

113. Integrals leading to inverse trigonometric functions. From
the formulas (§97) for the differentiation of the inverse trig-

onometric functions we derive the following corresponding

formulas of integration

:

/VI - u

lu

i

/.

1 + w

du

= sin 'm or - cos
-1

w,

= tan-1 ?/ or — ctn
-1

w,

sec u or
mVm2 — 1

These formulas are much more serviceable, however, if u is

u
replaced by - (a> 0). Making this substitution and evident

reductions, we have as our required formulas

du , u _, N= sin 1 -

,

(1)/Va2 - u2 a

f
du 1 _ 1

u . .

tan l -, (2)
a -f- w a a

/;
^ 1 , ?* ,ON

sec -. (o)
Vm2 - a.

2 « «

Only one of the possible values has been given for each

integral, as that single value is sufficient for all work.

Referring to 1, § 97, we see that sin
-1 - must be taken in the

first or the fourth quadrant ; if, however, it is necessary to
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have sin
-1 - in the second or the third quadrant, the minus

a

sign must be prefixed. In like manner, in (3), sec
-1 - must be

taken in the first or the third quadrant or else its sign must

be changed.

J y/9 - 4 ,

Ex. 1. Find the value
x2

- -sin-1 h C.

Letting 2x = u, we have du = 2 dx, and

f
dx = 1 r ^(^Q

J V !) - 4 x- 2 J A 9 _ (O x) 2 -

/rfa;— •

zV 3 a:
2 — 4

If we let V3a: = u, then ^/u = v3 da?, and we may write

f
dx r fl(VHx) _ = 1

scc-i^ a?

^a;V3^-4 J
V3*- V(V3*) 2- *

2 2

— •

\ 1
, - x*

Since \'l.c-r = v/
l - (.<• - 'J)-,

, have r-j^= = r
rf* = r

^*- 2>

J VI x - x- ^1- (, - 2)- J \ 1 - (./ - 2)
2

x — 2= sin" 1 "

t)

"
+ C.

/ill'—
2 ./•- + 3 x + 5

To avoid fractious and radicals, we place

dx 8 -A-- n 1
</<

+ C.

2 a •- + :! x + 5 16 x- + 24 r + 40 (4 x + '>)- + 31

Therefore

f
dx = r 4 dx = 2

r rf(^ + 3)

^2x2 +3a- + 5 J (4a: + 3)
a +31 "J (4 a: + 3)

2 + 31

= ——=tan_1— + C.

V31 V31

The methods used in Exs. 3 and 4 are often of value in dealing with

functions involving ax2 + hx + c.
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Ex. 5. Find the value of f
(?+*)&

.

Separating the integrand into two fractions, that is,

5 + 1 x4 5 + 4 x4

and using (2), § 110, we have

/
(x3 + x) dx _ r x8dx r xdx

5 + 4x4 ~J 5 + 4x4 J 5 + 4x4
'

d 4. r xZ(Ix i r i6x3 f/x i . ,_ ,
. . xBut i^M^ =

I fiJ.^M^
=
W l0g(5 + 4a:) '

and f
*^ =1 f

**«* = J- tan-i^.J5 + 4x4 4 J 5 + (2*3)3 4 V5 V5
Therefore

/ (x3 + x) r/x 1 . „ , . 4N ,
1 , , 2 x2

, _
I H 7^7- = 77: 1o 8' (5 + 4

x

4
) + —tan- 1 —- + C.

J 5 + 4x4 10
bV

w

J
4 Vo V5

Ex. 6. f^Y^~2 = P*11
"" 1
*]^? = tan_1^ - tan-i (- 1).

There is here a certain ambiguity, since tan_1 V3 and tan-1 (— 1) have

each an infinite number of values. If, however, we remember that the graph

of tan_1x is composed of an infinite number of distinct parts, or branches, the

ambiguity is removed by taking the values of tan-1 v3 and tan_1(— 1) from

= tan-1 b —
.. 1 + x2

tan-1 a and select any value of tan-1 o, then if b = a, tan-1 J must be taken

equal to tan-1 a, since the value of the integral is then zero. As b varies

from equality with a to its final value, tan_1 i will vary from tan-1 a to the

nearest value of tan- 1 ^.

The simplest way to choose the proper values of tan_1 & and tan-1 a is

to take them both between and — • Then we have

/
V3 dx _ir I 7r\ _ 7 tt

-l 1 + x2 ~ 3 \ 4/ 12
'

Ex. 7. J
2 — = sin-1 - = sin-1 \ — sin-1 0.

Va2 -x2 L «Jo

The ambiguity in the values of sin-1 \ and sin-1 is removed by notic-

ing that sin-1 - must lie in the fourth or the first quadrant and that the
a

two values must be so chosen that one comes out of the other by continuous

change. The simplest way to accomplish this is to take both sin-1 \ and

sin-1 between and — •

2 2

Then
/»2 dx

Jo Va2 -
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114. Closely resembling formulas (1) and (2) of the last

article in the form of the integrand are the following formulas

:

f-r^-; = l0g(m-V^T7»)
> (1)

J V u'- + a-

f-^L= = \og(u+V^^), (2)
J Vtt3 — aA

, C du 1 , a — a 1 . a — u . .

and I
— - = -— log or-— log — • (3)

Jir-a- 2 a
a
u + a 2 a

s
a + u w

To derive (1) we place u = a tan
<f>.

Then du = a sec
2
<£c/$, andW2+ a'

2 = a sec </>. Therefore

/ ,
= I sec &J&

Vw2 +a2 J
= leg (sec

<ft
+ tancft) (by (9), § 112)

?/.+vV+aa

=lo4—

5

= log (if -\-Vu*+ a')— log a.

But log a is a constant and may accordingly be omitted from

the formula of integration. If retained, it would affect the

constant of integration only.

To derive (2) we place u = a sec
<f>

and proceed as in the

derivation of (1).

Formula (3) is derived by means of the fact that the fraction

— may be separated into two fractions, the denominators

of which are respectively u — a and u + a ; that is,

1 1/1 1

a\u — a u + a

I ri 1 1 \

du

hi r du

Then fL-** r/_L__u
J W — a' 2 aJ \u — a u + a)

_!_{ P du C du

2 a \J u - a J u + a

=2^l0g (M _ ^ ~ l0g (M + ^

^

1 . u — a= —— log
2a b u+a
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The second form of (2) is derived by noting that

r du r - du , .

I = / = log(« — «•).

The two results differ only by a constant, for

a + u u-\- a

and hence log = log(— 1) + log ,

a + u u + a

and log(— 1) is a constant complex quantity which can be ex-

pressed in terms of V— 1.

dx
Ex. 1. Find the value of

f
-

V3 x2 + 4 x

To avoid fractions we multiply both numerator and denominator

by V3.
dx _ V3 dx -y/Srlx

Then
V3 x2 + 4 x V9 a;

2 + 12 x V(3 a; + 2)
2 - 4

Letting 3 x + 2 = w, we have c/w = 3 tfx, and

r dx _ 1 -Jr 3 r/x

' V« a;
2 + 4 x -n/3^ V(3 x + 2)

2 - 4

= ^-log (3 x + 2 + V(3 x + 2)
2 - 4 ) + C

V3

= -^=log (3 x + 2 + V9x2 + 12x) + C.

V3
/<7x

2 x2 + x - 15

Multiplying the numerator and the denominator by 8, we have

- r dx _ 2
r 4 dx

J 2 x2 + x - 15 "J (4 x + 1)'~ - (ll) 2

= 1_ (4x + l)-ll
11

&
(4x + l) + ll

+ L -

1 2 x — 5 1 2 a; — 5 1
This may be reduced to —-log + C, or —-log -— —- log 2 + C,

11 2x + b 11 x + 3 11

and the term — ^ log 2, being independent of x, may be omitted, as it will

only affect the value of the constant of integration.

Ex. 3. Find the value of ( -± '-

J 2 x2 + x - 15

If 2 x2 4- x - 15 = u, du = (4 x + 1) dx.

Now 3 x + 4 may be written as J (4 x + 1) + ^-.
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Therefore f (3* + 4)<fa = f
»(** + 1) +W*

J 2 x2 + x - 15 J 2 x2 + x - 15

_ 3 r (4x + l)r/x 13 /» dx
~ 4 J 2 x- + x - 15 4 J 2 x2 4- x 15

The first integral is § log (2 x2 + x - 15), by (2), § 111, and the last

13 o ,- _ ^
integral is of the form solved in Ex. 2 and is — log

Hence the complete integral is

3
log(2x2 + x-15) + Hlog 2x

4 ° v ' 44 " x + 3

(2x4-5) dx
Ex. 4. Find the value of f V3 x2 + 4 x

The value of this integral may be made to depend upon that of Ex. 1

in the same way that the solution of Ex. 3 was made to depend upon the

solution of Ex. 2. For let 3 x2 + 4i = u; then du = (0 z 4 1

)

dx.

Now 2 x + 5 = J (-6 x + 1) + ' .'

.

Therefore
r (2x + 5)dx _ r [\(6x + 4) + J

n
v]^x

J V3x2 +4x ^ V3 x2 + 4 x

= \ f (3 x2 + 4 x)- 1 [(6 x + 4) rfx] + ^ f
**

•

^ J ^ J V3 x2 + 4 x

The first integral is ?, V3 x2 + 4 x, by (1), § 111, and the Becond inte-

gral is = log (3 x + 2 + ">/$ x2 + 12 x), by Ex.1. Hence the complete
3 V3

integral is

11
£ V3 x2 + 4 x 4- —^plog (3x42 + V'.»x2 + 12x) 4- C.
y 3 V3

Ex.5. Find the value of jsecxdx./r dx r coQxdx
secxdx = I =

IJ cosx Jcosx t/ cos'x

J sm- x - 1 2
&

1 + sin x

1 . 1 + sin x
-log-

:
— 4- C

2 1 — sin x

1, (1 + sinx) 2 ~

2
IOg

l-sin2x
+C

ilog(l±
2 °\ c<

sinx\ 2 _

2 \ cos x

= log (sec x + tan x) 4- C.
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<t.r

Ex. 6. Find the value of f—

~

J 1 + 2+ 1 COS X

As in Ex. 8, § 112, we place cosx = 2 cos2 - — 1.

Then .1 + 2 cos x — 4 cos2 - — 1,

and
dx r dx

/
dx _ r

1 + 2 cos x
~ J

4 cos2 - — 1

Multiplying both numerator and denominator by sec2 - , we have

Now let tan - = z. Then sec2 -dx = 2 dz, and the integral assumes

the form
2dz 2 . g-V3—- log—

V3 z +V3

tan - + V3
9

Hence f ^ = —- log + C.Jl + 2cosx V3 %an|-V3

115. Integrals of exponential functions. The formulas

e
u du = e

u
(1)

and Cau du = -^-au
(2)

J log a

are derived immediately from the corresponding formulas of

differentiation. The proof is left to the student.

116. Collected formulas.

I

lu = ^—-, (1)

^ = logW
, (2)
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I cos u du = sin u, (3)

/ sin u du = — cos u, (4)

J
sec

2 u du = tan u, (5)

I csc
2w c?m = — ctn w, (6)

I sec it tan w du = sec m, (7)

I esc w ctn udu = — esc w, (8)

| tan udu = log sec w, (9)

I ctn udu = log sin a, (10)

/ sec it du = log (sec ?< + tan ?<) = log tan ( - -f -
j , (11)

/ esc u du = log (est' n — ctn u~) = log tan -
, ( 1 J )

/d!ie , u-
. =sin- 1 -t (13)

-
^ = -tan" 1 -, (14)

a2 + u 2
a a

\
— = - sec -, (15)

J MvV-aa a «

f-y== - log(« + V5F=rf> (17)
J Vu~ — a

/du 1 , u — a 1 . a — u .+ ^
-j = =— log—— or — log , (18)
m2 — a2 2a ° w + a 2a ° a + u

fe"du = e
u
, (19)

Ca H du = - a". (2(T)
J log a v
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117. Integration by substitution. In order to evaluate a given

integral it is necessary to reduce it to one of the foregoing

standard forms. A very important method by which this may
be done is that of the substitution of a new variable. In fact,

the work thus far has been of this nature, in that by inspection

we have taken some function of x as u,

In many cases where the substitution is not so obvious as in

the previous examples, it is still possible by the proper choice

of a new variable to reduce the integral to a known form.

The choice of the new variable depends largely upon the skill

and the experience of the worker, and no rules can be given

to cover all cases. We shall, however, suggest a few substi-

tutions which it is desirable to try in the cases denned.

I. Integrand involving fractional 'powers of a + bx. The substi-

tution of a power of z for a + bx will rationalize the expression.

x-ilx

(1 + 2 x)i

Here we let 1 + 2 x = z3 ; then x — h (~
3 —.1) and dx = % z2dz.

Ex. 1. Find the value of I

Therefore f
——— = - f (z' - 2 z4 + z)dz

J
(1+ 2x)i SJ

=
3 io-

2 (5~6 -16z3 + 20) + <?.

Replacing z by its value (1 + 2 x) ~s and simplifying, we have

/
x'
2dx 3

(1+2*)* 320
(1+2 x)i (9 - 12 x + 20 a,-

2
) + C.

II. Integrand involving fractional powers of a -\-bx
n

. The sub-

stitution of some power of z for a + bx11 may rationalize the

expression.

Ex. 2. Find the value of I
— dx.J

. x

We may write the integral in the form

./'
i

(xdx)

and place x2 + a 2 = z2 . Then xdx = zdz, and the integral becomes

J z2 - ,r J \ z2 -a2
/ 2

&
z + a
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Replacing z by its value in terms of x, we have

/Vx2 + a~ . /-=——
-; ,

a , Vx2 + a- — a , „
etc = Va;

2 + «2 + - log
/

+ C.
x 2 Vx2 + a* + a

Ex. 3. Find the value of JV(1 + 2 x3)^/x.

We may write the integral in the form

|V(1 + 2x3)2(xVx),

and place 1 + 2 x3 = r. Then x*dx = \zdz, and the new integral in z is

Replacing z by its value, we have

fx5 (l + 'J a ")^/x = 4', (1 + 2 x3)§ (3 z»-l) + C.

Ex. 4. Find the value of f (
g + 2

) ~ (* + 2
) ,/.,,

J
(a: + 2)* + 1

Here we assume a: + 2 = 2*. Then x = z*— 2, and dx = 4 z*dz. On substi-

tution the integral becomes

*/7Tr''-' = , /(-'
, - 2 '-s + 2 -'2 - 2 -- + 2

-rfT)"--

= I
[ l

-' - i
--* + I «* - * + 2 * - 2 !<*(* + !)]+< '

Replacing z by its value (x + 2)*, we have

r fr + 2)*-(x + 2)t
f/r = 4

t _ 8
t _ r+ i

J (,+2)Ul 5

+ 8 (x + 2 )
'
- s 1, ,g [(, + 2)* + 1] + C.

III. Integrand involving y/a*—a?. Let a; = a sin 2.

Ex. 5. Find the value of f \ <r - x2 ./x.

Let x = a sin z. Then dx = a cos z dz and V a2 — x2 = a cos z.

Therefore JV« 2 -xVx = a2 fcos2zaz = £ a2 f( 1 + cos 2 z) rfz

= J«
a (z + | sin 2 c) + C

But z = sin-1 - • and sin 2 z = 2 sin z cos z = 2— v a2 — x2
.

r/ a-

Finally, by substitution, we have

fVa2 - x*dx = * (x V«2 - x2 + a 2 sin- 1 -) + C.
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IV. Integrand involving Va?+ a2
. Let x = a tan z.

Ex. 6. Find the value of
J

-
dx

(2* + erf

Let x = a tan z. Then dx = a sec2zdz and Vj:2 + «'2 = a sec 2.

Therefore | = — /— = — / cos zJz = — sinz + C.
J

(x2 + rr)2
«"^sec2 a2 J a2

But tan s = — > whence sin z = —=== > so that, by substitution,
« Vx3 + a2

./'
dr

(x2 + rt'-)2 a2 Va;2 + a2

If we try to find the value of fVx2 + a2 dx by the substitution x = a tan z,

we meet the integral a2 C sec 3 zdz, which is not readily found. Accordingly

for a better method see Ex. 6, § 119.

V. Integrand involving Vx2— a2
. Let x = a

Ex. 7. Find the value of ix3 Vx2 — trdx.

Let x = a sec z. Then dx = a sec z tan z r/z, and Vx2 — u2 = a tan z.

Therefore
J
x3Vx 2 — a2 dx = a 5

( tan2 z sec4 zdz

= a5
I (tan2 z + tan4 z) sec2 zdz

= rt
5 (i tan3 z + l tan5 z) + C.

x Va-2 — a2

But sec z = - , whence tan z = > so that, by substitution, we have
a a

fx 3 Vx2 -a2 dx = TV V(.r2 -« 2

)
3
(2 o2 + 3r) + C.

We might have written this integral in the form C

x

2V

x

2 — a2 (x dx)

and let z2 = x2 — a2
.

VI. Integrand of the form ,

„ ,
= • Let

S J J (Ax + B)Vax* + bx + c

Ax + B =—
z

C dx
Ex. 8. Find the value of I
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Therefore

/• dx ___ r dz r dz

J (2 x + 1) Vo a.
3 + 8 x + 3 J Vz2 + t> z + 5 J V(z + 3)

2 - 4

= - logO + 3 + VY2 + tiz + 5) + C.

But 2 = > and hence
2x + l

log (z + 3 + Vz2+6z + 5) = - log
6 x + I + 2 V.j -r- + 8 ,t- + 3

2 x + 1

Or + 1
log

* + - log 2.

3 a: + 2 +V5a;2 + 8x + 3

Therefore

/ /* = leg
2J+1

+ C,
J

(2 x- + 1) V5 x-
2 + 8 x + 3 3 z + 2 + \ 5 x- + 8 x + 3

log 2 having been made a part of the constant of integration.

118. The evaluation of the definite integral I f(x)dx may*£«'
be performed in two ways, if the value of the indefinite integral

is found by substitution.

One method is to find the indefinite integral as in the pre-

vious article and then substitute the limits.

Ex . 1. Find fVa2 — x« <fe.

By Ex. 5, § 117,

fVa* - x*dx = \(x \V - x- + a 2 sin- 1 ') + C.

Therefore I Va- — x'-dx = I —
(
x \ <r — x2 + a'sin-1-

J

= _^ (
,-_„- + ,rsm-i_)

- -(() Va2 - + ^sin- 1
-)

A better method is to replace the limits of / f(x)dx by the

corresponding values of the variable substituted. To see this, sup-

pose that in
j f(x) dx the variable x is replaced by a function

of a new variable z, such that when x varies continuously from
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a to b, z varies continuously from e
Q

to z
x
. Let the work of

finding the indefinite integral be indicated as follows

:

ff(x) dx =
J4>

(«) dz = <!><»= F(x),

where F(x) is obtained by replacing z in <I> (2) by its value in

terms of .r. Then

But F(h)-F(a)= C f(x)dx,

and *W-^(«o)= f^OOcb.

Hence f /(.r) cfo = f
"

'<£ (.2) efe.

Applying this method to the example just solved, we have by Ex. 5, § 117,

I v« s — x'
2 dx = r/

2
I cos 2 ~<7~

= $a?(z + £ sin 2 z) + C,

where a; = a sin z. When x = 0, z = 0, and when x — a, z — —, so that z

as a; varies from to a.

Therefore ( Va'2 — x2 dx — a2
f'

2 cos2zdz
Jo Jo

-[*"( +
t-«')I

_ 7Trt
2

In making the substitution care should be taken that to

each value of x between a and b corresponds one and only

one value of z between z
Q
and z

%
, and conversely. Failure to

do this may lead to error.

Ex. 2. Consider j
2 cos <£ dcf>, which by direct integration is equal to

=F dx
Let us place cos

(f>
= x, whence

<f>
= cos-1 a; and dd> = — where

Vl - x2

the sign depends upon the quadrant in which
<f>

is found. We cannot,
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therefore, make this substitution in
J

2
cos <£ d<f>, since

<f>
lies in two differ-

ent quadrants ; but we may write ~ 2

f 2 cos <j> d<f> = f
cos

<f> d<f> +
J

* cos
<f> d<f>,

and in the first of the integrals on the right-hand side of this equation

place <b = cos-1 a:, dd> = , and in the second d> = cos-1 x, dd> = — •

Then V1-- VI -x-

f^cos * a* = r-^= - r°_^^ = o r
1_^= = 2 .

J_ Z ^ J Vl - X2 J
! Vl - X2 J Vl - .,

-

2

119. Integration by parts. Another method of importance in

the reduction of a given integral to a known type is thai of

integration hy parte, the formula for which is derived from the

formula for the differential of a product,

c?(w) = udv + vdu.

From this formula we derive directly that

uv
I
udv + I vdu,

which is usually written in the form

/ udv = uv — I vdu.

In the use of this formula the aim is evidently to make the

original integration depend upon the evaluation of a simpler

integral.

Ex. 1. Find the value of
f
xe*dx.

If we let x = u and tFdx = <lr, we have <lu — dx and v = eF.

Substituting in our formula, we have

J
xex dx — are* —

J
>

' dx

= .rr>- - & + (
'

=
(X _l)fix + C.

It is evident that in selecting the expression for dr it is desirable, if

possible, to choose an expression that is easily integrated.
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Ex. 2. Find the value of
J
sin-1 x^x.

dx
Here we may let sin-1 a: = u and dx — dv, whence du = '

and v = x.

Substituting in our formula, we have VI — a;/C x c

sm~ 1 xdx = x sin_1 x — I —

=

xdx

VI - x2

= a: sin- 1
.*: +Vl- x2 + C,

the last integral being evaluated by (1), § 116.

Ex. 3. Find the value of / xcosPxdx.

Since cos2 x = i(l + cos 2 x), we have/l r x2 1 r
x cos2xdx = -

J
(x + x cos 2x)dx = — + -

J
x cos 2 xdx.

Letting x = u and cos 2 xdx = dv, we have du = dx and v — 1 sin 2 x.

Therefore / x cos 2 xdx — — sin 2 x — - j sin 2 xdx

= - sin 2 x + - cos 2x + C.
2 4/x2 1 /x 1 \

x cos2 xf/x = 1— ( - sin 2 x + - cos 2 x)+ C
4 2 \2 4 /

= \ (2 x2 + 2 x sin 2 x + cos 2 x) + C.

Sometimes an integral may be evaluated by successive inte-

gration by parts.

Ex. 4. Find the value of / x2
ex dx.

Here we will let x2 = u and ex dx = dv. Then du = 2 x dx and v = ex.

Therefore fx2
ex dx = x2ex — 2 Cxex dx.

The integral / xex dx may be evaluated by integration by parts (see Ex. 1),

so that finally

Cx2ex dx = x2
ex - 2 (x - 1) ex + C = ex (x2 - 2 x + 2) + C.

Ex. 5. Find the value of
J

e000 sin bx dx.

Letting sin bx = u and e°~
x dx — dv, we have

/eax sin bxdx = - eax sin bx—- I eax cos &x rZx.

a a J
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In the integral I e"* cos bxdx we let cos bx = u and eax dx = dv, and have

/eax cos bxdx — — e"* cos 6x -\—
| eaj" sin bx dx.

Substituting this value above, we have

/e™ sin bxdx = -eax sin bx (- e"* cos bx + - I eai sin bxdx).
a a \a a J /

Now bringing to the left-hand member of the equation all the terms

containing the integral, we have

(1 + — ) I eax sin bx dx = - e** sin bx e" cos bx,
a-J J a «'-

whence /• . , eax (a sin bx — h C< is bx

)

e^ sin bx dx = *
:

'

a2 + U1

x dx

J Ex. 6. Find the value of fVx2 + a?dx.

Placing Vx2 + a2 = u and dx = dr, whence du = —= = and v = x,

we have A '" + ""

fVx* + a*dx = x Vx* + a* - f
xVx

. (1

)

J J Vx2 + «2

Since x2 = (x2 + a2
) — a 2

, the second Integra] of ( 1 ) may be written as

r (x2 + a2)dx _ „ r dx

J Vx2 + a2 J Vx2 + «'-'

which equals / vr + crdx — a* j
— •

J J a ./- + a2

Evaluating this last integral and substituting in (1), we have

fVx2 + u2 dx = x Vx2 + a2 - fVx2 + crdx + a2 log (x + Vx2 + a2
),

whence fVx2 + irdx = }, [x Vx2 + a2 + a 2 log (x + Vx2 + a2
)].

120. If the value of the indefinite integral if(ai)dx is found

by integration by parts, the value of the definite integral

X/(V) dx may be found by substituting the limits a and b, in

the usual manner, in the indefinite integral.
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Ex. Find the value of C 2 x2 sin x dx.

To find the value of the indefinite integral, let x2 = u and sinxdx — dv.

Then j x2 sin x dx = — x2 cos x + 2 I x cosxdx.

In / x cos a; (for, let x = w and cos xdx = dv.

Then I x cos a; Jx = x sin x — / sin x dx

= x sin x + cos x.

Finally, we have

j x2 sin xdx = — x2 cos x + 2x sin a; + 2 cos a; + C.

Hence f 2 x2 sin x c/x = — x2 cos x + 2 x sin x + 2 cos x

= tt-2.

The better method, however, is as follows

:

6

lif(x)dx is denoted by udv, the definite integral
j f(x)dx

Xb J a

udv, where it is understood that a and b

are the values of the independent variable. Then

I udv = [uv~\ — / vdu.

To prove this, note that it follows at once from the equation

/*>b s%b />6 s*b

[uv~\ = j
d(u,v*) =

j
(udv + vdu) = j udv + I wc?m.

Applying this method to the problem just solved, we have

C 2" x2 sin x rfx = I — x2 cos x + 2 C 2 x cos x rfx

= 2 r 2 x cos x dx
Jo

2 sin x rfx

o
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121. Integration by partial fractions. A rational fraction is a

fraction in which both the numerator and the denominator are

polynomials- If the degree of the numerator is equal to, or

greater than, the degree of the denominator, we may, by actual

division, separate the fraction into an integral expression and a

fraction in which the degree of the numerator is less than the

degree of the denominator.

For example, by actual division,

2*5 -.r4+ .r
3 +3./--3i;.r + :)(; n _ ,r

»+ 3^_4 J
.+ 20

"•"
..4 1/; ' { )

xA- 10 z*-16

It is evident, then, that we need to study the integration of

only those fractions in which the degree of the numerator is

less than the degree of the denominator.

If the denominator of such a fraction is of the first degree

or the second degree, the integration may be performed by

formulas (2), (14), (18), §116, as in Ex.3, § 114.

If the denominator is of higher degree than the second, we can

separate the fraction into partial fraction* the sum of which will

equal the given fraction.

For example,

a3+ 3 J.3-4a:4-20 _ 1 1 x-1
.r'_16 ~x-2 x+2 + a?+4'

as the reader can easily verify.

The three fractious on the right-hand side of (2) are the

partial fractions of the fraction on the left-hand side of (2).

It is to be noted that their denominators are the rational

factors of the denominator of the fraction of the left-hand

side of (2).

Substituting in (1), we have

2 :r
5_

.r
-»+ a*+ ;j ,r- 30 x + 30

a;
4- 10
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r 2 x5- x4+ xa+ 3 x2- 30 x + 36 ,
Hence

J

-
4
—3— ax

dx

^_ :r+log(r_2) _iog(:r+ 2) + ilog(^+4)-itan- 1

^

,

. (.r-2)V*2+4 1, _ x
x

= x2-x + \og^ -^
2
tM 2'

The separation of a fraction into partial fractions, as in (2),

is evidently a great aid in integration. We shall illustrate this

process in the following examples

:

Ex. 1. hnd the value of I — dx.
J (x + 3) (x2 — 4)

The factors of the denominator are x + 3, x — 2, and x + 2. We assume

x2 + 11 x + 14 _ ^ £ C a
(x + 3) (x2 - 4) x + 3 x - 2 x + 2

' ;

where A , B, and C are constants to be determined.

Clearing (1) of fractions by multiplying by (x + 3) (x2 — 4), we have

x2 +llx + 14 = .4(x-2)(x + 2)+i3(x+3)(x + 2) + C,

(x + 3)(x-2), (2)

or x2 +11 x + 14 = (A+B + C)za + (55 + C)x + (-4.4 +6 B - 6 C). (3)

Since .4, B, and C are to be determined so that the right-hand member

of (3) shall be identical with the left-hand member, the coefficients of like

powers of x on the two sides of the equation must be equal.

Therefore, equating the coefficients of like powers of x in (3), we obtain

the equations .
, d , ^_i

5B+ C = ll,

- 4 A + 6 B - 6 C = 14,

whence we find ,4 = - 2, B = 2, C = l.

Substituting these values in (1), we have

x2 + 11 x + 14 2 2 , 1

(x + 3)(x2 -4) x + 3 x-2 x + 2

. r x2 + llx+14 , r2dx
, r 2dx , r dx

and
i

(3; + 3)(x2 -4)
^ ="Jxn + i.^2 + JxT2

= -2 log(x + 3) + 2 log(x - 2) + log(x + 2) + C

= (X + 2H.-2)2

c>b
(x + 3)

2
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Ex.2. Find the value of f
4 ^ + x + l

dx.
J x3 — 1

The real factors of x3 — 1 are x — 1 and x2 + x + 1. Hence we assume

4 x2 + x + 1 = .4 Bx + C
x3 - 1 a; - 1 x2 + x + 1

"

Clearing of fractions, we have

4 x2 + x + 1 = A (x2 + x + 1) + (Bx + C) (x - 1)

= (.4 + B) x2 + (.4 - B + C)x + (-4 - C). (2)

Equating coefficients of like powers of x in (2), we obtain the equations

A + B = 4,

A - B + C = 1,

A-C = l,

whence A - 2, B = 2, C = 1.

„ 4x2 + x + 4 2 2x + l
lience = +

/'' r-i/r
;

(x + 2)
2 (x-2

B
8 - 1 x - 1. X2 + X + 1

and f
4 *2 + * + 1 ,/x=f^l + f(2*

+ l)rf*

J x3 - 1 J x - 1 J X" + X + 1

= 2 log (x - 1) + log (x2 + x + 1) + C
= log [(x - 1)

2 (X2 + X + 1)] + C.

•2 x*dx _
Here we assume

(x + 2)
2 (x-2) (x + 2)

2 x + 2 x-2 w
Clearing of fractions, we have

2 x2 = .4 (x - 2) + B (x2 - 4) + C(x + 2)
2

= (B + C)x* + (A + \C)x + (-2A -4B+4C). (2)

Equating the coefficients of like powers of x in (2), we obtain the

equations B + C — 2

A + 4 C = 0,

- 2 /I - 4 B + 4 C = 0,

whence y4 =- 2, 5 = f, C = .1.

2x2

= 2 g & ^

(x + 2)
2 (x - 2) (x + 2)

2 x + 2 x - 2
'

J (x + 2)
2 (x - 2) J (x + 2)

2 J x + 2 J x - 2

=
x~T^

+
I
l0S ( '' + 2) +

^
l0g

<* " 2) + °

—=— + log V(x + 2)
3 (x - 2) + C.

x + J
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Ex.4. Find the value off^
X

+
+

(

* ~
^

dx.

Now (x + 1) (x8 + 1) = (x + l)a
(ar

2 — x + 1), and we assume

3x3 + 3x-6 J
.

/;
|

Cx+ I>

(x + 1) (a;
8 + 1) (x + If x + 1 x2 - x + 1

Clearing (1) of fractions, we have

3 x3 + 3 x - 6 = A (,i-
2 - x + 1) + B (x8 + 1) + (C x + D) (x + l)2

= (B+ C)xs + (A + 2 C + Z>)x2 + (- .1 + C+ 2D)x

+ (A + B + D). (2)

Equating coefficients of like powers of x in (2), we obtain the equations

B + C = 3,

A + 2C + D = 0,

-A+C + 2D = 3,

A + B + D = - 6,

whence .4 = - 4, 5 = 0, C = 3, 7) = - 2.

Substituting these values in (1), we have

3 xs + 3 x - 6 - 4 3 x - 2

(x + 1) (x3 + 1) (x + 4)
2 x2 - x + 1

f
3.*3 + 3x-<! ^ = f- 4 ^ + f

3 *~ 2
dx

J (x + 1) (x3 +1) J (.' + l) 2 J x 1 - X + 1

4. 3 1 2 r — 1

= -i- + - log (x2 - x + 1) == tan- 1 V + C,
x + 1 2 V3 V3

the last integral being evaluated as in Ex. 3, § 114.

We notice in the solution of the above examples the follow-

ing points

:

1. The denominator is factored into linear or quadratic factors,

or integral powers of such factors.

2. As many partial fractions are assumed as there are factors in

the denominator.

3. Corresponding to any single linear factor, as ax -+- b, one

fraction of the form is assumed, and corresponding to the
ax + o ^

square of any linear factor, as (ax + b~)
2
, two fractions -— ,. 2

7?

H are assumed, the numerator over the square of the factor
ax + b

being of the same type as that over the first power of the factor.
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4. Corresponding to any single quadratic factor, as ax* + bx+c,

Ax + T>
one fraction of the form —5 is assumed.

ax -f- ox + c

5. The numerators assumed are determined and the integration

of the partial fractions is completed.

If (ax + by in 3 is replaced by (ax + 6)
B
, and the correspond-

ing n fractions are assumed to be

A + * +...+-*-,
(ax + of

1 (ax -\- by 1 ax + b

and if ax2 + bx + c in 4 is replaced by (ax2 + bx + c)
n

, the cor-

responding n fractions assumed being

Ax + B Cx + D Px + Q
(ax2 + bx + c)

n (ax2 + bx + c)
n _1

<i.r + 6a; -f- c
'

the above becomes a working rule for the integration of all

rational fractions in which the degree of the numerator is less

than the degree of the denominator; but the proof of the pos-

sibility of assuming the partial fractions in the form noted

above is omitted.

To make the work of this article complete we must discuss

the integral / ^-
J—-— —-dx, where n is any integer greater

J (''>" + OX + CJ

than unity.

Since d (ax2 + bx + (?)= (2 ax + i) dx, we may, as in Ex. 3,

§114, let Ax +B = -£-(2ax+ b')+B-— , and obtain the

equation

C Ax+B
dx=J± rd(ax*+bx+c) / _ Ab\ C dx

_

J (ax2+bx+cj
3

-2aJ (<tx
2+bx+cy \ 2a/J (ax*+bx+cy'

Proceeding as in Ex. 2, § 114, we may put the last integral in

the form /
—-—-— , which may be reduced to the integral /

—

—

-

J (u*+a2

y
J &

J u
2+a 2

by successive applications of the formula

r <** _ 1
r

u
\(2n s-) f - 1.

J (u 2+a2y 2<>-iyr[(w2+«2)»- 1 v J
J (w2+a2

)
B_1

J

This is a special case of (4), § 122.
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122. Reduction formulas. The methods of integration derived

in this chapter are sufficient for the solution of most of the

problems which occur in practice. If the reader should meet

any integrals which cannot be evaluated by these methods, he

should refer to a table of integrals, in which the integrals have

been either completely evaluated or expressed in terms of simpler

integrals. Some of this latter type of integrals, known as reduc-

tion formulas, have been tabulated below for convenience.

= * -fr r zrrr I
% n(a+ bxnydx, (1)

(np + m+V)b (np+m+l)bj J v J

^far(a + bx»y-idx, (2)

Cxm (a + bxnydx

_ xm + 1 (a + bxn
]

np + m + 1 np + ni

Cxm (a + bxn

y
p dx

^Xa+ tey«_(np + n+ m+V)b f^+ .(fl+tey^ (3)(m+V)a (m + l)a J
K T J ' ^ J

fx
m (a + bx'

l

)
p dx

=_ary+bz»y~ y+n+m+l C^a+^y+i dx. (4)
n(jt?+l)a n(p+l)a J

K J K J

j sinm a; cos"xdx

/'sin"
1# cos"x^»

/sinm^ cosn_2 a: cfe, (5)

+ w 4- 2 /*—
/ sinm :zcos" + 2

2;efo, (6)n+1 J
K J

x m
71 + 1

j sinm :z cosnxdx

-\— j sinm
~ 2 xcosnxdx, (7)m + nJ

sinm_1 :r cos" +1

f<

m + n

Sin"" a; cos"xdx

sinm+1 a; cos" +1 x m
m +

1

m
+ n + 2 r .

;— I
S11

lxcosnxdx. (8)
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These formulas do not always hold. For example, (1) and

(2) fail if np +m + 1= 0, (3) fails if m + 1=0, etc. In these

cases, however, it is not necessary to use these formulas, as the

integration may be performed by elementary methods.

There are also integrals which cannot be expressed in terms

of the elementary functions. For example, /
—

J V(l-z*)(l-*V)
cannot be so expressed; and, in fact, this integral defines a

function of x of an entirely new kind.

PROBLEMS

Find the values of the following integrals :

Jl. f(4 x3 + 3r + 4x-3) dx. 12.
f-x

+ e_"
x
dx.

2. f(a*
- x* + i - i)«fa 13.

f(2
+ Sx)*dx.

J \ <x*J J 1+2S-3*8

4. ft+^tl^ 15. fj»
J Vx J « +

3 xdx

b sin;

6 .
r&+ffifc „. r ('+*>'*

.

J x"

J Vl+3a;+a:8

7. / V2 + e^tfe. 18. / ^t— jr-ete.

J J <-c — cos 2x

Pe**dx C dx

'Je** + 2' 19J (x -a) [log (x -«)]«'

9. /
— r- 20. / -^<£c.

J xlogx2

J X

10
-/(i+^.-/ n-fp + f)*.*.-

n. r7
i±^5<fa. 22 . f(J=B-A±

J (x - cos a-)
2 J \ \« + x \|« -

dx.
x,
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23.

24. / ,
7^

. 40. / (am|-j-cosf )da;.

Vaa- « 2 log (as + Vx2 - d2

) J \ 3 3/

25.
J
cos 3x sinxdx. 41. / tan3 - da;.

26. fain8 (2a;+l)cos(2a;+l)da:. 42. fsec4
(3 a; + 2) da;.//• 3 T 3 x

(sec «x -4- tan ax) sec aa;da;. 43.
J
tan— sec3— da;.

/ (esc a; etna; + esc a-)'
2
da;. 44.

J
sec4 2xVtan 2xdx.

/ cos2 2 x sin3 2 a; da-. 45 .

J
esc6

^ da?.

/ sinf 3 x cos5 3 a- dx. 46.
J
ctn5

(x 4- 2) da;.

/. „x r 2x 2x
sm s

g "x - 47 . I ctn2— esc
4— dx.

/cos 3 4 x /*

, -dx. 48. I tan4ax da;.

Vsin3 4 a; J

28

29

30,

?,2

esc ^.r

/cos 2 x _ A
da-. 49. I

-

c6s a? j 1

34. I sin a; sin 2 a- da;. 50. / tan3 ^
"\J

sec | da;.

35. I (tan ax 4- ctn«x) 2 dx. 51.
J
sin2 (3x +l)dx.

fesc3 3 x - ctn3 3 x
7

/\ . _ _ N0 .

37.'/ -
;

—

7:— dx. 53. I (sin 2x — cos 2xrdx.
J esc 3 x — ctn 3 x J

38. I ( tan2 - — ctn2 -
J
dx. 54. I sin2 3x cos 2 3xdx.
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55. I cos
4
'-r/./\ 71. | (1— cos4x)^ox.

56.
Jo - 9 x2

/ cos4 |ox. 71. / (

I sin4x cos2xax. 72. I
—-

=

57. / Vcos2x +1 sin 2xdx. 73. I •

68 . /7^ _ £2il^\ fc 74. f
*

J y sin a; cos x / J /V4 ar — 9

f cos2.Wx
75 f '7 '"

59
-Jcosx + sinx' 'J 4., 2 + 4x+10

60. I sin ax sinbxdx. (a^b) 76. / ., r
<

i 5 ,. .
4

'

61. I cos ax cos focrfx. (a =£ A) 77. I _- __ -.

62.j"sin(2x + 3)cos(2x-3),/r. 78.

J
^_^_==.

63. I sin x sin 2 x sin 3. '•'/.'•. 79. I
-

./ — ./-

67

r sec 2 xox 80 f ^
"

J sec 2 x — tan 2 x
'

' J (x + 1) Vx2 + 2 x

_

r |cscx-ctn,
f/)

, 81 f4±; /,,

J > esc x + ctn x J •' + J

J 1 — COS X J • » •' + -

/ci.s.i-f/x
83 ^

r x — 2

1 + COS X J Vl — X2

2^'

7 84 -
I
-7== d».

sec aa J y,/ _ ,,

/. f sinxc/x
Vl-cosxr7x. 85.

j 1+cos2
:

J Vl+cos2x J V4x
70

il.r

IS

<l.r

+ 9
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88,

95

96

97

99.

3 — 3

dx

+ sec2
a:/

dx r dx
9«3 -2* ^ J, 2 + 2* tan*

r dx r
I /

105. |

J V4-ca + 6a; J e
2x +

/^&' 106-/vS

2 e
x sin a +

1

r' tan a— e
2

91
-

/ ~^~r^—rr- 107
- I
—^=^-

92 . f ^
108 . fi^

J V3^-2x + 3 J x-V^ + «2

93-/2l-t-^ 109.J

dx.

+

4 — 5 COS ;

94 . f
dx

110 .
r ^

J V2x2 + 4x — 7 J 4 + 3sinx

r (5x-S)dx r dx

J x2 + 63+12" in
'

J 6 + 2cos2a;'

Jx* + x-S. 112'JiT^
f (2x+10)dx r

J 2 aJ
a + 5»+i" 113

-J ;

sin 4 a;

dx

cos cc — 2 sin a;

)
2
<Zx.

r (6x + 20)dx r

J 6x2 + 73-3' 114
'J

(
eS + e *

J 2 a3 + 6* + 9* 115
-

J (^ + «0*b.

r (a?-2)rfa; /*

J 3^ + 23 + 3' 116
'J

(c
1" + e~^)xdx.

id. r (*+w*
= . 117 . rv^.

J V3 + 2x-x2 J *2

102. / /
;=- 118. / e

«n J
a

<7.r

Vi-»2
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122

123

124

126

127

. fe*+Wdx. 135. f
*''d*

,

J J (•'• + 3)'2

. fe»+™ab + ™dx. 136. C ****
.

J J 3 + 4 a;
3

' f^Ti dx - 137.^V^:

/ -jz Tdx. 139. /

J V2z-3 J x

4)i

dx.

fV*_+2+l_ fV4/-9
,

. r *'<**
. 142. r.

^
.

J (aj' + a8)* J (3 + 2sa
)*

. r-**-. 143. r -v-
.

J (a8 + 3)' J (-'- + 9)5

128. f ,
=• 144. f(a" — jcMefe.

J V(4 - a2

)
8 J

129. r *Va;
. 145. r,(,-+i) ?^.

J V(9 - x2

)
5 J

130. r^ (4

+

^j,;,. 146.j^-^y dx.

131. f ' * 147. f—*=•
J/V4 + 9ic2 J a!*V2-a9

!82. f
^^

,,,,, 148. ffit±a» fc
J X J X

/ dx C x3dx

aj
8V9K9 -4' U9

* J VT+472
'133
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,
5* 166. / xsin*3xdx.

152. / - — . 167. Ce2x amxdx.
J (rc-2)V2ar8-4a;-l J

153
r rfa f
/ — ,

=^- 168. / e*cos3aufa.
J (2jc-1)V16k2-12cc+ 3 J

^=- 169. / Vai2 — ltfa
(2.r-3)V4*2 -12a- + 5 J

1 ^'

C dx r
,

/ ,

=• 170. / sec3
a;(

J (.t + 2)Vx-'2 + 2x + 2 J
155. I =r- 170. | sec3

Z(fa.

J (.T + 2)Va;2 + 2z + 2 J

156. flogaxdx. 171. f
1
t'

r
'

(fa-

157.

+ 4)

dx.

dx

158. / t&n~ 1axdx. 173. /
—

-

J J '(>

159. /%,-(.,. + Va- 2 + « 2)^. 174. f^f^

160. | a- sin 3 a; (fa. 175. f—

—

fsee->2xdx. 176.f^±<
Ixsec-^xdx. 177. f * + 4

, <fa.

161. I sec-^xffa. 176. / r^da,

162. / x sec^Sxdx

163. I x*eixdx

164. I ai
2cos 2x(Zx

J
scVcfa. 178.

J +1)

Id

2 a; -8)
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181. f- ^—r —— dx. /^sin
x2 - 2 x + 3

x-2)(x+l)(x-S)- ioj / ;

3 I cos -

183.

184,

185.

186

187

188

189.

190

192

C 4 x- - 3
182. I

—

—

—dx. ^ 2
J (x -2) (a» + 2 x + 5)

rcos24x ,

f
8 » + **.

195-J^T^
J a;(ar-4)2

/ardse

/• </.'

f da; 197. |
7-

Jxzi- J (i + -<-V

/v + n,--6
7

198. f- ——-•

. f * • 200. f—^—r.

/£±f^ 301.J> + „".,..,

/ ^— cZa;. 202. I -t-= r-'

J 1— x J sura cos^x

191. f*+^El dx. 203. f-'",-
J aj-Vl-a; J sin8x

f da f dx
r* 204. -r-=

j cos°a; ^y sura cos x

I
7^—

T

205.
i

-

Ja(a8 + 2)* J«cus
5
^;



CHAPTER XIII

APPLICATIONS OF INTEGRATION

123. Element of a definite integral. In §§78 and 81, by means

of the area under a curve, we have defined the definite integral

by the equation

"
/(*) dx = Lim 5)/(a0 Ax, (1)£

and have shown that this limit may be evaluated by the formula

h

f(x)dx==F(h)-F(a), (2)
I.

where dF(x)=f(x)dx.
Since any function f(x) may be graphically represented by

the curve y —f(x), formulas (1) and (2) are perfectly general.

We shall proceed to give certain applications. The general

method of handling any one of the various problems proposed

is to analyze it into the limit of the sum of an infinite number

of terms of the form f(x) dx. The expression f(x) dx, as well

as the concrete object it represents, is called the element of

the sum.

124. In finding the element of integration, it is often not

possible to express the terms of the sum (1), § 123, exactly

as f(Xi) Ax, the more exact expression being [/(#<) + ej Ax,

where the quantities e
t

are not fully determined but are

known to approach zero as a limit as Ax approaches zero.

It is consequently of the highest importance to show that

Lim V e.Ax = 0, so that

Lim 2 [/OO + eJAx=Umy/
f(xi

-)Ax= Cf(x)dx.
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For that purpose, let 7 be a positive quantity which is equal to

the largest numerical value of any e. in the sum. Then

- 7 ^ e. = 7

and — 27A.T = Se.Ar = ^7A.r.

But 27AX = 7lA.r = 7 (b — a)

and Lim ~2yAx = since 7 approaches zero as A.r approaches zero.

Hence Lim "Ze.Ax = 0.

Hence the quantities e
t
which may appear in expressing the sum

do not affect the value of the integral and may be omitted.

Quantities such as Ax and e-, which approach zero as a limit,

are called infinitesimal*. Terms such as f(x) A.r, which are formed

by multiplying Ax by a finite quantity, not zero, arc called infini-

tesimals of the same order as Ax. Quantities such as e Ax, which

are the products of two infinitesimals approaching zero together,

are called infinitesimals of higher order than either infinitesimal.

The theorem above proved may be restated in the follow-

ing way :

In forming the element of integration infinitesimals of higher

order than f(x)Ax may be disregarded.

Ex. Consider the area under a curve (§78). We have obtained it, by

means of rectangles, as
i = „-i

Lim V /(x,)Ax. (1)

Suppose that in place of the rectangles we used the trapezoids formed

by drawing the chords DPV l\l'.,, etc. (fig. 125). The area of one Buch

trapezoid is -, . A , , A A1 f(Xi)Ax + \ A//Ar.

But I Ay is a quantity which approaches zero as a limit when Ax
approaches zero, and may be denoted bye,-- Hence, it' we used the trape-

zoids, we should have for the required area

Lim"j? [/(*,)+ «*] Ax. (2)
" ~

« =

We see then directly that in this example

i'=n-l i = n-l

Lim
J) [/(*«) + */] Ar = Lim J f(xt) Ax.
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125. Area of a plane curve in Cartesian coordinates. This

problem was used to obtain the definition of a definite inte-

gral, with the result that the area bounded by the axis of

.r, the straight lines x = a and x— b (a< 6), and a

of the curve y =f(x~) which lies above the axis

given by the definite integral

f.
ydx.

portion

of x is

(i)

It has also been noted that either of the boundary lines x= a

or x = b may be replaced by a point in which the curve cuts OX.

Here the element of integration ydx represents the area of a

rectangle with the base dx and the altitude y.

Similarly, the area bounded by the axis of y, the straight lines

y = c and y — d(c < d), and a portion of the curve x =f(jf)
lying to the right of the axis

of y is given by the integral

/
d

xdy, (2)

where the element xdy repre-

sents a rectangle with base x

and altitude dy.

Areas bounded in other ways

than these are found by express-

ing the required area as the

sum or the difference of areas of the above type, or by writing

a new form of the element as illustrated in Ex. 2.

Ex. 1. Find the area of the ellipse — + '(- = 1.
«2 Ir

It is evident from the symmetry of the curve (fig. 157) that one fourth

of the required area is bounded by the axis of y, the axis of x, and the

curve. Hence, if A is the total area of the ellipse,

4 = 4

2 b

f y dx = 4 C - Vo2 - x2

Jo Jo a

lH n—2 , 2 • 1*1— \x V a* — x* + a- sin
- 1 -

a L «J

dx

TTClb.
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Ex. 2. Find the area bounded by the axis of x, the parabola y- = 4 px,

and the straight line y + 2x — ip = (fig. 15S). The straight line and

the parabola intersect at the point C
( p,

'2 p), and the straight line intersects

OX at B (2p, 0). The figure shows that

the required area is the sum of two

areas OCD and CBD. Hence, if A is

the required area,

r 1 px dx + f<>.

The area may also be found by con-

sidering it as the limit of the sum of

such rectangles as are shown in fig. 159.

The height of each of these rectangles

is Ay, and its length is x„ — xv where x„ is taken from the equation of

the straight line and x
1
from that of the parabola. The values of y range

from y = at the base of the figure to

y — 2p at the point C. Hence

-[»-?-i£]M*
In the above examples we have

replaced y in
J
ydx by its value

f(x) taken from the equation of

the curve. More generally, if the

equation of the curve is in the parametric form, we replace both

x and y by their values in terms of the independent parameter.

This is a substitution of a new variable, as explained in § 118,

and the limits must be correspondingly changed.

Ex. 3. Let the equations of the ellipse be

x = a cos <£, y = b sin
<f>.

Then the area A of Ex. 1 may be computed as follows:

J. = 4
| ydx——A j ah sin2

<f>t!<f> = 4 ah j
~ sin 2

<£ tlcf> = trab.

Fig. 159
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126. Infinite limits or integrand. If the curve extends in-

definitely to the right hand, as in figs. 160-1G2, it is possible

to consider the area bounded by the curve, the axis of as, and a

fixed ordinate x = a, the figure being unbounded at the right

hand. Such an area is expressed by the integral

f(x) dx = Lim F(b) - F(a),

which may be written concisely as

jf
f(x) dx = F(oo ) - F(d).

There is no certainty that this area is either finite or deter-

minate. Where it is so, the area bounded on the right by a

movable ordinate approaches a defi- 7
nite limit as the ordinate recedes

indefinitely from the origin.

[2vTT = ^. (Fig. 160)Ex. 1

Va

Ex. 2

Ex.

I

rs-Hr- 1 -

I sin xdx = [— cos x^°

— indeterminate. (Fig. 162)

(Fig. 161)

Similarly, the area may be unbounded

at the left hand, and the lower limit or lM^ y/M^

both limits of the definite integral may
be infinite.

In like manner let f(x) become infinite at the upper limit,

and the curve y =f(x) approach x = b as an asymptote. Then

the area bounded by the curve, the axis of x, an ordinate x = a,

and an ordinate near the asymptote x = b may approach a

definite value as the latter ordinate approaches the asymptote.

Such an area may be expressed by the integral

Lim f f(x) dx = Lim F(b - A) - F(a),

or, more concis3ely>
f /O) dx = F(b) - F(a).
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J"

a dx T . ,xl a

= sin- 1 -
o Va2 — x2 L "-1°

MEAN VALUE

.. (Fig. 163)

265

a -

Fig. 1G4

Failure to do this

(Fig. 164)

Similarly, f(x) may become infi-

nite at the lower limit or at both

limits. If it becomes infinite for

any value c between the limits,

the integral should be separated

into two integrals having c for the

upper and the lower limit respectively

may lead to error.

X
+l dx—
i

./'-

Since — becomes infinite when x = (fig. 165), w
x'
1

separate the integral into two, thus:

J-i x- J-\ x- Jo .i-

Had we carelessly applied the incorrect formula

xrs-t-as
we should have been Led to the absurd result - 2.

FlG
-
165

127. The mean value of a function. In fig. 166 let the

curve DPC be the graph of the function /(a;). Then

r f(x) dx = area ADPCB,

Let m = AX and M=AH
be respectively the smallest

and the largest value assumed

by f(x) in the interval AB.

Construct the rectangleABKH
with the base AB and the alti-

tude AM— M. Its area is AB • AH=(b - a)M. Construct also

the rectangle ABLN with the base AB and the altitude AN— m.

Its area is AB • AN= (6 — a)m.
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Now it is evident that the area ABCD is greater than the

area ABLN and less than the area ABKH. That is,

(b - a)m < f f(x) dx < (b - a) M*

Consequently I f(x) dx = (b — a) /x,

U a

where fx, is some quantity greater than m and less than M, and

is represented on fig. 166 by AS. But since f(x) is a continuous

function, there is at least one value £ between a and b such

that /(|) = fr anfl therefore

f.
f(x)dx = (b-d)f(g). (1)

Graphically, this says that the area ABCD is equal to a rec-

tangle ABTS whose base is AB and whose altitude AS lies

between AN and AH.

From (1) we have

/(D=^J^/(*)^ (2)

where f lies between a and b. The value

l r h

</./•

is called the weaw i>a?we of /(#) in the interval from a to b. This

is, in fact, an extension of the ordinary meaning of the average,

or mean, value of n measurements. For let y , yv y.2 , • • , yn_ x

correspond to n values of x, which divide the interval from a

to b into n equal parts, each equal to Ax. Then the average of

these n values of y is

yo + ^+^4- • •• + ?/„_!

n
This fraction is equal to

Oo+ ffi+yaH +yn
-,)Ax = y^x+y.Ax-hy^Ax-l + yn_,Ax

nAx b — a

*A slight modification is here necessary if f(x) = fc, a constant. Then

f(x) dx = (b — a) k.
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As n is indefinitely increased, this expression approaches as a

1 r h
1 r b

limit / ydx = I f(x) dx. Hence the mean value
t>- a Ja h - a Ja

of a function may be considered as the average of an " infinite

number " of values of the function, taken at equal distances

between a and b.

Ex. 1. Find the mean velocity of a body falling from rest during the

time tv
The velocity is gt, where g is the acceleration due to gravity. Hence the

1 rh
mean velocity is I gtdt — \gtv This is half the final velocity.

Ex. 2. Find the mean velocity of a body falling from rest through a

distance .s'r
The velocity is V'2 gs. Hence the mean velocity is—fo

h
V2glds = %V2 r̂

This is two thirds the final velocity.

128. Area of a plane curve in polar coordinates. Let (fig. 167)

be the pole, OM the initial line <>f a system of polar coordinates

(r, 0), OA and OU two fixed radius vectors for which 0= a and

B = fi respectively, and All any curve for

which the equation is r =/(#). Required

the area AOH.
The required area may be divided into

n smaller areas by dividing the angle

AOB—^ — a into n equal parts,

6 — a
each of which equals = A#,

n
and drawing the lines 0P

X
, OP^

0P
3
, • • -, OP

n _v where AOP
1
=

%OP
i
=P

2
OP3 = • • •=Pn_ 105=A^

(In the figure w= 8.) The required

area is the sum of the areas of these

elementary areas for all values of n. The areas of these small

figures may be found approximately by describing from as a

center the circular arcs AL\, 2£B
a
, P2P^ • • •, ^_i-K„« Let

OA = r , OP, = rv OP = r,, • • • , 0P_
X
= r

n _ v
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Then, by geometry,

the area of the sector A 0/>\ = }2
r'^AO,

the area of the sector J^OB2
= ^ r'^AO,

the area of the sector B_
1
OBn

= -* rl_ x
A6.

The sum of these areas, namely

is an approximation to the required area, and the limit of this

sum as n is indefinitely increased is the required area. Hence

the area A OB-*/V*

The above result is unchanged if the point A coincides with

0, but in that case OA must be tangent to the curve. So also B
may coincide with 0.

Ex. Find the area of one loop of the curve r = a sin 3 6 (fig. 101, § 60).

As the loop is contained between the two tangents $ = and $ = — > the

required area A is given by the equation

1 Jo 2 Jo

cos .6 8 a ira2

"2 d6= U\

129. Volume of a solid with parallel bases. Fig. 168 repre-

sents a solid with parallel bases. The straight line Off is drawn

perpendicular to the bases, cutting the lower base at A, where

h = a, and the upper base at B, where h = b. Let the line

AB be divided into n parts each equal to =Ah, and let
n

planes be passed through each point of division parallel to the

bases of the solid. Let A
o
be the area of the lower base of

the solid, A
1
the area of the first section parallel to the base,

A
2
the area of the second section, and so on, An _ x

being the

area of the section next below the upper base. Then A
Q
Ah

represents the volume of a cylinder with base equal to A
o
and

altitude equal to Ah, A^Ah represents the volume of a cylinder
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standing on the next section as a base and extending to the

section next above, and so forth. It is clear that

A Ah +A^h + J
2
A7i + ... +An_xMi = j?A

t
Ah

is an approximation to the volume of the solid, and that the

limit of this sum as n indefinitely increases is the volume of

the solid. That is, the required

volume /' is

V= C Adh.

To find the value of this integral

it is necessary to express .1 in terms

of h, or both A and // in terms of some

other independent variable. This is

a problem of geometry which must

be solved for each solid. It is clear

that the previous discussion is valid

if the upper base reduces to a point,

i.e. if the solid simply touches a

plane parallel to its base. Similarly,

both bases may reduce to points.
108

Ex. 1. Two ellipses with equal major axes arc placed with their equal

•pendicular. A variable ellipse moveaxes coinciding and their planes p

so that the ends of its

axes are on the two given

ellipses, the plane of the

moving ellipse being per-

pendicular to those of the

given ellipses. Required

the volume of the solid

generated.

Let the given ellipses

be ABA'W (fig. 169) with

semiaxes OA =a and OB = b, ami ACA'C with semiaxes OA =a and

OC=C, and let the common axis be OX. Let NMN'M' be one position

of the moving ellipse with the center P where OP — .r. Then ii A is the

area of NMN'M', n „ „ ,„A = ir • PM PN. (By Ex. 1, § 125)

169
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But from the ellipse ABA'B' -
n + ^f- = 1

a2 lr

and from the ellipse ACA'C - +
J—^- = 1

bePM -PN = -(a2 - x2
).

a2
Therefore

Consequently the required volume is

—— (a2 — x2
) dx = - Trdbc.

a a- o

The solid is called an ellipsoid (§ 143, Ex. 5).

Ex. 2. The axes of two equal right circular cylinders intersect at

right angles. Required the volume common to the cylinders.

Let OA and OB (fig. 170) be the axes of the

cylinders, OY their common perpendicular at

their point of intersection 0, and a the radius

of the base of each cylinder. Then the figure

represents one eighth of the required volume V.

A plane passed perpendicular to OF at a dis-

tance ON = y from intersects the solid in a

square, of which one side is

NP = -VOP 2 - ON 2 = Va2 - y
2

.

Therefore \ V= FnP* dy = f* (a2 - y
8
) dy = § a8

Jo t/0

and F=Vl «3
-

130. Volume of a solid of revolution. A solid of revolution is a

solid generated by the revolution of a plane figure about an axis

in its plane. In such a solid a section made by a plane perpen-

dicular to the axis is a circle, or is bounded by two or more

concentric circles. Therefore the method of the previous article

can usually be applied to find the volume of the solid. No
new formulas are necessary. The following examples illustrate

the method.

Ex. 1. Find the volume of the solid generated by revolving about

OX the figure bounded by the parabola y
2 — \px, the axis of x, and

the line x = a.
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The area to be revolved is shaded in fig. 171. Let P(x, y) be a point

on the parabola. Then any section of the solid through P perpendicular

to OX is a circle with radius MP = y. Hence in the formula of § 129 we
have A = try2 and dh — dx. Hence
the required volume V is

fjirfdx.

But from the equation of the pa-

rabola y- — 4 par. Therefore

'•= 4WT dx ipmr

Ex. 2. Find the volume generated by revolving around the line x

the figure described in Ex. 1.

If P (fig. 172) is a point on the curve,

a section of the required solid through

P and perpendicular to All is a circle

with radius PN = u — x. Hence in the

general formula of § 129 A = ir (n — x)-

and dh — dy. When x = a, y = 2-Vpa.

Hence the volume V is given by

V=f*^~
a
Tr(a - xfdy = Trf

2y/Pl
'(« 2 - 2 ax +

But from the equation of the parabola x = -— Hence

Jo \ 2/> li)ji-/ Id

Ex. 3. Find the volume of the ring solid generated by revolving a circle

of radius a about an axis in its plane b units from the center (ft > a).

Take the axis of revolution as OY
(fig. 173) and a line through the center

as OX. Then the equation of the circle

is (x - ft)
2 + y* = a'

2
.

A line parallel to OX meets the circle

!->A>a

Fm. 172

16 4
J

in two points, A where x = x
1
= ft — Va2 — y

2

and B where x = x
2
= ft + Vo2 — y

2
. A sec-

tion of the required solid taken through

AB perpendicular to OY is bounded by

two concentric circles with radii x
t

and x
2

respectively. Hence in § 129

A = TTxf — 7TJ'
2

, and dh = dy. The summation extends from the point L
where y —— a to the point A' where y = + a. Hence, for the volume V,

T =
^J_ (''-"

_
'ri") dy = 4 irh

i_ ,

x _
ll
~ dy -a-h.
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131. Length of a plane curve. To find the length of any

curve AB (fig. 174), assume n — 1 points, //, 7f, • • •, %_v be-

tween A and /.' and connect each pair of consecutive points by

a straight line. The length of AB is

then defined as the limit of the sum
of the lengths of the n chords AP

X ,

I^B,, P,P
Z , • • ., P

l_ 1B as n is increased

without limit and the length of each

chord approaches zero as a limit. By
means of this definition we have

already shown (§§ 91 and 104) that Fig. 174

d8= Vda?+dtf

in Cartesian coordinates, and

in polar coordinates.

Hence we have

and

ds = ^dr+r\W>

8=fV,h*+d!f

8= fy/d)*+i*dff\

CO

(2)

(3)

(4)

To evaluate either (3) or (4) we must express one of the

variables involved in terms of the other, or both in terms of a

third. The limits of integration may then be determined.

It may be noticed that (4) can be obtained from (3). For

we have /. • ax — r cos 6, y = r sm 0.

Then dx = cos 6 dr — r sin 6 dQ,

dy = sin 6 dr + r cos 6 dd,

and dx2 + dy1 = dr* + r\W\

Ex. 1. Find the length of the parabola if = ^ Px from the vertex to

the point (h, I).

From the equation of the parabola we find 2 ydy = ipdx. Hence

formula (3) becomes either

t/U \ ±p- 1 p J a
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Either integral leads to the result

* =— Vi2 + 4pa + p log !—
ip 2p

Ex. 2. Find the length of the epicycloid from cusp to cusp.

The equations of the epicycloid are (§ 57)

x = (a + 1>) cos
<f>
— a cos

<f>,

y = (" + '0 sin
<f>
— a sin — (j>.

Ileuce

Then

dx = \- (a + 6) sin <£ + (« + &) sin^— <^>1 ,/<£,

rfy = ["(„ + 5) cos <£-(« + &) cos ^-±-^lrf<£.

/,• = (a + 6) y-J - 2 /sin sin i±i <£ + c< is <£ c< >s 5!±*^ ,/<£

= (« + 6) \/2 - 2 cos - <M£ = 2 (a + 6) sin— <£ ,/<£.

Therefore s = 2 (a + 6)J^
* sin _''

tft ,/<f>
= — (a + &).

132. The work of the previous article may be brought into

connection with §124 as follows:

kT7%y
Since y_(^ + c^^_ N ^A,/ A,

V (/./" + (/// >HBr
|1+/%y

,. T . V(A.»-)'-+(A//) a
.. N VA./7 A./-

1then Lim v 7 ^=^- = Lnn— - Lim — == 1.

+m
v ( /.r + J/z-

and V(A.r) 2+ (A
ty)

2 = Vj.r + ,ty
2 + eV^+ df-

By §124 the term eV,lr + thf will not affect the limit of

2V(A,-) 2 + (A^.
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133. Area of a surface of revolution. A surface of revolution

is a surface generated by the revolution of a plane curve around

an axis in its plane (§ 130). Let the curve AB (fig. 175)
revolve about OH as an axis. To find the area of the surface

generated, assume n — 1 points, //, Pv P6 , • • .,

i£_u between A and B and connect each

pair of consecutive points by a straight x6

line. These lines are omitted in the figure -^

since they are so nearly coincident with the iV
4

arcs. The surface generated by AB is then n2

defined as the limit of the sum of the areas ^'
No

of the surfaces generated by the n chords

APV B^P,, i£j£, • • ., Pn _ x
B as n increases

without limit and the length of each chord

approaches zero as a limit.

Each chord generates the lateral surface of a frustum of a

right circular cone, the area of which may be found by

elementary geometry.

Draw the lines AJSf , I{NV B^N^ • • • perpendicular to OH, and

Place N A = r
D
, NX

P
X
= rv K2

P
2
= rif . • -, A^J^ = ra.

Then the frustum of the cone generated by PP
t + x

has for the

radius of the upper base 2fi+1J^+v for the radius of the lower base

N
t
P, and for its slant height I*Pi+v Its lateral area is therefore

equal to (N.P+N. P ^

Therefore the lateral area of the frustum of the cone equals

This is an infinitesimal which differs from

2 wr$s

by an infinitesimal of higher order, and therefore the area

generated by AB is the limit of the sum of an infinite number
of these terms. Hence, if we represent the required area by S,

we have r
S=2tt rds.
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To evaluate the integral it is necessary to express r and ds in

terms of the same variable and supply the limits of integration.

Ex. Find the area of the surface of revolution described in Ex. 1, § 130.

Here r = y and ds = Vdx2 + dy2
, where x and y satisfy the equation

y" = ipx. Consequently we may place r = 2 Vpx, and, as in Ex. 1, § 131,

ih _ /* + P
dj .

Then S = 4 tt VJ, f"
Vx + p dx = §wVp[(a + p)* -/<-]•

134. Work. By definition, the work done in moving a body

against a constant force is equal to the force multiplied by the

distance through which the body is moved. Suppose qow that

a body is moved along OX (fig. 17G) from A (x — a) to B (x = /<)

against a force which is not -
, . , t , . « , y

constant but a function of a;
A 5S * M

* * * U

and expressed by/(:r). Let the
Fl °" 176

line AB be divided into n equal intervals, each equal to Ax, by

the points M^ M
%
, M

z
, . . •, M

n _ x
. (In fig. 176, n = 7.)

Then the work done in moving the body from A to M
i

would

be f(a*) Ax if the force were constantly equal to /(«) through-

out the interval AM. Consequently, if the interval is small,

/(rt)Ax is approximately equal to the work done between A
and M

x

. Similarly, the work done between M
l
and M

a
is approxi-

mately equal to/(^) A.r, that between JA, and 3f
g
approximately

equal to/(:r,)A:r, and so on. Hence the work done between A
and B is approximately equal to

f(a)Lx+f(xdLx+f(x^*x+. ..+f(zn_JAz.

The larger the value of n, the better is this approximation.

Hence we have, if W represents the work done between A and /.',

\Y - Lim£ /(.•/) A.r = Cf(x)dx.

135. Pressure. Consider a plane surface of area A immersed

in a liquid at a uniform depth of h units below the surface.

The submerged surface supports a column of liquid of volume

hA, the weight of which is whA, where w (a constant for a

given liquid) is the weight of a unit volume of the liquid.
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This weight is the total pressure on the immersed surface. The

pressure per unit of area is then wh, which is defined as the

pressure at a point h units below the surface. By the laws of

hydrostatics this pressure is exerted equally in all directions.

We may accordingly determine, in the following manner, the

pressure on plane surfaces which are perpendicular to the

surface of the liquid:

Let BRQ (fig. 177) be a plane surface so immersed that its

plane is perpendicular to the surface of the liquid and inter-

sects that surface in the line TS. Divide BRQ into strips by

drawing lines parallel to TS. Let

the depth of a line of the first

strip be h
Q
, that of the second strip ^^M^^

be h^ that of the third strip be 7;.,, / =\
and so on. Call the area of the

first strip (A^) , that of the second / \p
strip (A.i)^ that of the third strip FlG 177

(A.4)
2

, and so on. Then the pres-

sure on the first strip is approximately wh (AA) , that on the

second strip is approximately u'h^AA)^ that on the third strip

is approximately w\(AA)^ etc. Therefore the total pressure

on BRQ is approximately

w [K(AA) + hiAA)^ . •
. + hB _ 1(^AAX-t'] = u>X ^(A^),..

This approximation is better the greater the number of strips,

since we have taken the whole strip as lying at the level of

the same line. Therefore the total pressure P is the limit of the

above sum as n = oo ; that is,

"="'/lidA.

To evaluate the integral it is necessary to express h and A in

terms of the same variable and supply the limits. In finding dA

the strips may be taken as rectangles, as in finding the area.

Ex. A parabolic segment with base 2 h and altitude a is submerged so

that its base is in the surface of the liquid and its axis vertical.

Let I?QC (fig. 178) be the parabolic segment and let CB be drawn

through the vertex of the segment perpendicular to TS. According to



CENTER OF PRESSURE 277

the data RQ = 2b, CB = a. Draw a horizontal strip LXA\LV with its

bottom line cutting CB at .1/. Let CM = x ; then the depth h of the line

LN is a — x and the breadth MM
X

of the strip is dx.

R B Q *

dx.

Consequently dA



278 APPLICATIONS OF INTEGRATION

The point at which P acts is called the center of pressure.

The formula above gives the depth of the center of pressure-

Ex. Find the depth of the center of pressure of the parabolic segment

of the example in § 135.

From the discussion just given,

2 b . v „ i , 32mj6o8— (a — x) 2x^c?aPh

F

But P = T
8
5 wba? (Ex., § 135). Therefore h = \ a. By symmetry the

center of pressure lies in CB, and is therefore fully fixed.

137. Center of gravity. Consider n particles of masses m
x,

m
2

, m
s , ••-, mn ,

placed at the points P[(xv ^), i£0
2, #2),

50«v y.). •-. ^fe y.) (%• 179) re-

spectively. The weights of these particles

form a system of parallel forces equal to

m-yff, m
2g,

m
3g,

• . ., m
ng, where g is the

acceleration due to gravity. The principles

of mechanics stated in § 136 are therefore

applicable. The resultant of these forces is

the total weight W of the n particles, where
i—n

W= m
x
g -f m„g + mz

g -f- . . . + mng =9^ m>i-

This resultant acts in a line which is determined by the con-

dition that the moment of W about any line through is equal

to the sum of the moments of the n weights.

Suppose first the figure placed so that gravity acts parallel

to OY, and that the line of action of W cuts OX in a point

the abscissa of which is x. Then the moment of W about a

line through perpendicular to the plane XOY is gx^mp and

the moment of one of the n weights is gmfr.

Hence gxV m
i
= gV m^.

Similarly, if gravity acts parallel to OX, the line of action of

the resultant cuts OF in a point the ordinate of which is y,

where _^ ^
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These two lines of action intersect in the point G, the coordi-

nates of which are __< ^
*=%— ' 3/ =%— C1 )

Z, m i Zf ^
Furthermore, if gravity acts hi the XO Y plane, but not paral-

lel to either OX or Y, the line of action of its resultant always

passes through G. This may be shown by resolving the weight of

each particle into two components parallel to OX and OY respec-

tively, finding the resultant of each set of components in the

manner just shown, and then combining these two resultants.

If gravity acts in a direction not in the XO V plane, it may still

be shown that its resultant acts through G, but the proof requires

a knowledge of space geometry not yet given in this course.

The point G is called the center of gravity of the » 'particles.

If it is desired to find the center of gravity of a physical body,

the solution of the problem is as follows: The body in question

is divided into n elementary portions such that the weight of

each may be considered as concentrated at a point within it.

If m is the total mass of the body, the mass of each element

may be represented by Am. Then if (>. //, ) arc the coordinates

of the point at which the mass of the ith element is concentrated,

the center of gravity of the body is given by the equations

V.r.Am V if Am
* =Lim^-—

,

y=Um^r —

;

Z/Am 2j Am

I xdm
|
ydm

whence * = ~~r
—"' ^ = ~7 ' ®

I dm I dm

To evaluate, the integrals must be expressed in terms of a

single variable and the limits supplied.

It is to be noticed that it is not necessary, nor indeed always

possible, to determine x9 y{
exactly, since, by § 124,

LimV (x
t -f e.) Am = Lim Va;.Am,

»=« « = i »< = * ,- = i

if e, approaches zero as Am approaches zero.
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Ex. 1. Find the center of gravity of a quarter circumference of the

circle at
2 + ?/

2 = a2
, which lies in the first quadrant.

Let the quarter circumference be divided into elements of arc ds

(fig. 180) ; then, if p is the amount of mass per unit length,

dm = p ds.

The mass of each element may be considered concentrated at a point

(x, y) of the curve. Hence

Jpxds . fpjjds

y

fpds ff
ds

If p is assumed constant, it may be removed from under the integral

signs and canceled. The denominator of each fraction is then equal

to s, a quarter circumference. To compute

the numerators, we have, from the equation

of the curve,

ds = Vdx2 + df = - dx
y

dy,

where s is assumed as measured from A so

that dx is positive and dy negative.

Therefore

and

Hence

f
xds = —

f
a dy — a2

,

|
ij ds = f a dx = «2

,

/ ds = — , a quarter circumference.

_ _ 2 a
x = y =

Ex. 2. Find the center of gravity of a quarter circumference of a circle

when the amount of matter in a unit of length is proportional to the length

of the arc measured from one extremity.

As in Ex. 1, dm = pds, but here p = ks, k being a constant. Then

dm = ksds.

The integration is best performed by use of the parametric equations of

the circle (§ 53). Then

/sxds ( 2 a3
(j> cos <b dd> ,

Jo (* t — o)a

f»* rh*<j,d<p
Jo

j'sy ds C 2 a*cp sin cf> d<p
g fl
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Ex. 3. Find the center of gravity of the area bounded by the parabola

y" = 1 px (fig. 181), the axis of x, and the ordinate through a point (/*, h)

of the curve.

As in finding the area, let the area be divided into elementary rectangles

ydx, where (x, y) is a point on the curve. Then, if p is the amount of mass

per unit area, dm = pydx,

and this mass may be considered as concentrated at the middle point

Then

of its left-hand ordinate.

X py dx
jQ

pydx

If p is assumed constant, it may be removed from under the integral

signs, and canceled. Then, by aid of the equation of the curve, we compute

the integrals

and

f
h
xydx =2p* (

h

A,lx = *p*A*= I Irk,
Jo Jo

i
( f y*dx = 2p f xdx = ph* = 1 /</.-,

"Jo Jo

f y dx = 2j,
}
- f x*dx = § pM = § hk.

x= :&h, y = | k.Therefore x = ;'-; A,

Ex. 4. Find the center of gravity of the segment of the ellipse — +

(fig. 182) cut off by the chord through the positive ends of the axes of

the curve. Divide the area into elements by j
lines parallel to OY. If we let ya lie the ordi-

nate of a point on the ellipse, and y1
the

ordinate of a point on the chord, we have

as the element of area,

and hence

(ya -yi)<fe,

dm = p(y, -yjdx, Fig. 182

where p, the amount of mass per unit of area, is assumed constant.

The mass of this element may be considered as concentrated at the

point (x,h±h).

Hence
//,)./•</./•

X'<*
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From the equation of the ellipse, y„ = - Va2 — x2
; from the equation of

I a

the chord, y1
= — (a — x).

The denominator
J(?/2

— y{)dx is equal to the area of the quadrant
o '

*

i _i

of the ellipse minus that of a right triangle, i.e. is equal to

Hence

r« r—
-

\ x\Va?
a Jo L (a )-]dx

^p f *l(*-'6-(a-*')*]d*

obi

8 (»— 2)

2 6

8(—2)

Ex. 5. Find the center of gravity of a spherical segment of one base

generated by revolving the area BDE (fig. 183) about OY, where OB = a,

and OE = c.

Let the volume be divided into elementary

cylinders as in § 130. Then the element of

volume is Ady = irx2 dy, and hence

dm = pTrx2 dy,

where p is the density, assumed constant. The
mass of this element may be considered as con-

centrated at (0, ?/), the center of its base. Hence

the center of gravity of the entire volume is in

the line Y, and its ordinate y is given by

J]
y(jp-ir&dy) £ («*>J-y

z)dy

Fig. 183

J pirx2 dy j ('r-if)dy

3 (a + c) 2

4 ' 2a + c

'

Ex. 6. Find the center of gravity of the surface of the sjmerical seg-

ment of Ex. 5.

Divide the surface into elementary bands as in § 133. Then

dm = 2 irpx ds,

where p, the amount of mass per unit area, is assumed constant.

This mass may be considered concentrated at (0, y). Hence, using the

notation and the figure of Ex. 5, we have ds =—

-

, and therefore
x

_ r^ dS fj'
d>

-> a + c

Cxds J>
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138. Attraction. Two particles of matter of masses m
1
and

m
2

respectively, separated by a distance r, attract each other

with a force equal to k l
,

2
> where k is a constant which de-

r

pends upon the units of force, distance, and mass. We shall

assume that the units are so chosen that £=1.
Consider now n particles of masses m^ m

2
, m

g, • • •, m
n
lying

in a plane at the points Pv P,

be required to find

their attraction upon

a particle of unit mass

situated at a point A
in their plane.

Let the distancesAPV
AP, • • • , AP^ be denoted

by r
x
, r

2
, • • •, rn . The

attractions of the indi-

vidual particles are

P
H

(rig. 184). Let it

Fig. 184

but these attractions cannot be added directly, since they are

not parallel forces. To find their resultant we will resolve

each into components along two perpendicular axes AX and AS
respectively. If we denote the angle XAP

t
by #,, we have as

the sum of the components along AX,

X=^cos0
1
+^cos0

2 +
r'r

x
r':

+ -\ cos en
r:

and for the sum of the components along AY,

Wl-
sin H—- sin 0„ + 4- _? sin n.

The resultant attraction is then

R=Vx*+ Y2

and acts in a direction which makes tan"J with AX.
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Let it now be required to find, the attraction of a material

body of mass m upon a particle of unit mass situated at a

point A. Let tlie body be divided into n elements, the mass of

each of which may be represented by Am, and let Jf be a point

at which the mass of one element may be considered as concen-

trated. Then the attraction of this element on the particle at A

is —- > where r
t
= I?A, and its component in the direction AX

is —- cos 6
{,
where 6

i
is the angle XAI?. The whole body, there-

fore, exerts upon the particle at A an attraction whose com-

ponent in the direction AX is

Ajos0
Lim 2^H A™ dm.

Similarly, the component in the direction AY is

Ex. Find the attraction of a uniform wire of length I and mass m
on a particle of unit mass situated in a straight line perpendicular to

the wire at one end, and at a distance

a from it.

Let the wire OL (fig. 185) be

placed in the axis of y with one

end at the origin, and let the par- /
tide of unit mass be at A on the //
axis of x where A O = a. Divide OL //',''

into n parts, 0MV MX
MV M2M8 ,

, ///'/''

Mn _ i
L, each equal to - = Ay. Then,

if p is the mass per unit of length of

the wire, the mass of each element

is Am = pAy. We shall consider the

mass of

Fig. 185

-X

each element as concen-

trated at its first point, and shall in this way obtain an approximate

expression for the attraction due to the element, this approximation

being the better, the smaller A// is made. The attraction of the element

M{Mi + 1 on A is then approximately

pAy _ pAy

AM? «2 + Vl

where y. = 0M
(
.
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The component of this attraction in the direction OX is

pAy r\A-h/r p"A//
^ ' cos OA M. = —"

-—-

,

H" + ^ («* + *,')*

and the component in the direction OY is

f** sin QAM. = PyAy

Then, if A' is the total component of the attraction parallel to OX, and

Y the total component parallel to OY, we have

X = Limy
1

Pr,A// = pa f
l <h-<

,—«ft (- + //f)
f J

* (* + ?)*

F=Lim
=^ 1^^--^-y _jpyAy__ r y»//

h (<r + !,:)*
PJ

° (>r + f) 1

To evaluate the integrals for A' and )', place y = atan#. Then, if

a = tan-1 - = OA /-,

A' = - I co% Odd = - sina= .sin a,
a Jo a id

Y=~ f Bin 0i/6--(l- cos a) = -'
(1 - cos a),

since /p = ?n.

If R is the magnitude of the resultant attraction and /i tin- angle which

its line of action makes with OX,

B =VP+P= sin - <r,

«/ 2

B = tan-1 — = tan-1— = - a.
X sin a 2

PROBLEMS

1. Find the area of an arch of the curve y = sin x.

2. Find the area bounded by the portions of the curves y = ^sin2cc

and y = sin x + h sin 2 x that extend between a- = and x = ir.

3. Find the area of the three-sided figure bounded by the coordi-

nate axes and the curve x"1 +- y* = a*.

4. Find the area bounded by the catenary i/ = -(e"-{-e a
), the

axis of x, and the lines x = ±h.
g

5. Find the area included between the witch ?/ = -5
:
—5 and its

asymptote.
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6. Find the area of one of the closed figures bounded by the

curves y
2 = 16 x and y

2 = xs
.

7. Find the area bounded by the curve y {x2 + 4) = 4 (2 — x), the

axis of x, and the axis of y.

8. Find the area bounded by the curve y
2 = x (log a-)

2
, the axis

of x, and the ordinates x = 1 and x = e.

9. Find the area bounded by the parabola y
2 = 2 (x — 4) and the

line x = 3 y.

10. Find the area between the parabola a-
2 = 4 «y and the witch

8 a3

y ~*2 + 4a2
'

11. Find the area bounded by the parabola x2 — 9y = and the

line x — 3// + 6 = 0.

12. Find the area included between the parabolas y
2 = ax and

x2 = by.

13. Find the area bounded by the curve x2

y
2

-\- a2
b
2 = a2

y
2 and its

asymptotes.

14. Find the area bounded by the hyperbola —% — jz = 1 and the

chord x = h.

15. Find the area bounded by the curve y
2
(x2

-j- a2
) = a2x2 and its

asymptotes.

16. Find the total area of the curve 81 y
2

-f- 4 x
i = 36 x2

.

17 . Find the area of the loop of the curve (y— l)
2 = (x— 1)

2
(4— x).

18. Find the area of the loop of the curve cy2= (x — a)(x — b)
2
,

(a < b).

19. Find the area of the loop of the curve 16 a3

y
2 = b

2x2 (a — 2x).

X ((t -\- X^i
20. Find the area of the loop of the strophoid y

2 = -— -•

21. Find the area of a loop of the curve y
2 (a2 + x2

) = x2 (a2 — x2
).

22. Find the total area of the curve a2
y
2 = xs

(2 a — x).

23. Find the area of the loop of the curve (2 x + y)" = x2
(2 — x).

24. Find the area between the axis of x and one arch of the cycloid

X = a (<£ — sin <£), y = a (1 — cos
<f>).

25. Find the area inclosed by the four-cusped lrypocycloid

x = a cos3
0, y = a sin3

0.
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26. Find the entire area bounded by the curve x = acosO,

y — b sin3
0.

27. Find the mean value of the lengths of the perpendiculars

from a diameter of a semicircle to the circumference, assuming

the perpendiculars to be drawn at equal distances on the diameter.

28. Find the mean length of the perpendiculars drawn from the

circumference of a semicircle of radius a to its diameter, assuming

that the points taken are equidistant on the circumference.

29. Find the mean value of the ordinates of the curve y = sin x

between x = and x = ir, assuming that the points taken are

equidistant on the axis of x.

30. A number n is divided into two parts in all possible ways.

Find the mean value of their product.

31. If the initial velocity of a projectile is v , and the angle of

elevation varies from to — > find the mean value of the range,

using the result of problem 36, Chap. VII.

32. In a sphere of radius r a series of right circular cones is

inscribed, the bases of which are perpendicular to a given diameter

at equidistant points. Find the mean volume of these cones.

33. A particle describes a simple harmonic motion defined by the

equation 8 = a sin kt. Show that the mean kinetic energy I - 1

during a complete vibration is half the maximum kinetic energy if

the average is taken with respect to the time.

34. In the motion defined in problem 33, what will be the ratio

of the mean kinetic energy during a complete vibration to the

maximum kinetic energy, if the average is taken with respect to

the space traversed ?

35. Find the area described in the first revolution by the radius

vector of the spiral of Archimedes r = a 6.

36. Show that the area bounded by the hyperbolic spiral rO = a

and two radius vectors is proportional to the difference of the

lengths of the radius vectors.

37 . Find the total area of the lemniscate r2 = 2 a2 cos 2 6.

38. Find the area of a loop of the curve r = a sinnfl.

39. Find the area of a loop of the curve r2 = a2 sin nd.
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40. Find the area swept over by the radius vector of the curve
7j-

r = a tan 6 as changes from to — •

41. Find the total area of the cardioid r = a(l + cos 6).

42. Find the area of the limacon r = 2 cos + 3.

43. Find the area of the curved strip of the plane which has two

portions of the initial line for two boundaries and the arc of the

spiral r = ad between 6 = 2 ir and 6 = 6 ir for the other boundary.

44. Find the area of the loop of the curve r
2 = a2 cos 2 6 cos 6

which is bisected by the initial line.

45. Find the area of a loop of the curve r2 sin 6 = a2 cos 2 6.

46. Find the area of the kite-shaped figure bounded by an arc of

a parabola and two straight lines from the focus making the angles

± « with the axis of the parabola.

47. Find the area bounded by the curves r = a cos 3 6 and r = a.

4
48. Find the area inclosed by the curves r = and

4
J 1 - cos e

1 ~ i + cos e

'

49. Find the area cut off one loop of the lemniscate r2 = 2 a2 cos 2 6

by the circle r = a.

50. Find the area of the segment of the cardioid r = a(l + cos 9)

cut off by a straight line perpendicular to the initial line at a distance

| a from the vertex.

51. Find the area of the loop of the curve (x2 + y
2

)

3 = ka2x2

y
2

.

(Transform to polar coordinates.)

52. Find the total area of the curve (a;
2 + iff = 4 a?x* + 4 «y.

(Transform to polar coordinates.)

53. Find the area of the loop of the Folium of Descartes,

xz + if — 3 axy = 0, by the use of polar coordinates.

x2
if

54. On the double ordinate of the ellipse —
: + 7^ = 1 as base an

isosceles triangle is constructed with its altitude equal to the dis-

tance of the ordinate from the center of the ellipse and its plane

perpendicular to the plane of the ellipse. Find the volume gener-

ated as the triangle moves along the axis of the ellipse from

vertex to vertex.
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55. Find the volume cut from a right circular cylinder of radius

a by a plane through the center of the base making an angle 6 with

the plane of the base.

56. Two parabolas have a common vertex and a common axis but

lie in perpendicular planes. An ellipse moves with its center on the

common axis, its plane perpendicular to the axis, and its vertices on

the parabolas. Find the volume generated when the ellipse has

moved to a distance h from the common vertex of the parabolas.

v 57. An equilateral triangle moves so that one side has one end in

OY and the other end in the circle x2 + f = a 2
, the plane of the

rectangle being perpendicular to OY. Required the volume of the

solid generated.

58. In a sphere of radius a find the volume of a segment of one

base and altitude h.

59. Find the volume of the solid generated by revolving about OY
the plane surface bounded by OY and the hypocycloid x l + y* = «».

60. Find the volume of the solid formed by revolving about the

line x — 3 the figure bounded by the parabola f = 8.r and the line

x = 2.

61. Find the volume of the solid formed by revolving about the

line y =—a the figure bounded by the curve y = sinx
}
the lines

77-

x — and x = — > and the line y = — a.

62. A right circular cone with vertical angle 2a has its vertex at

the center of a sphere of radius a. Find the volume of the portion

of the sphere intercepted by the cone.

63. A variable equilateral triangle moves with its plane perpen-

dicular to the axis of I/ and the ends of its base respectively on the

parts of the curves y
2 =16u.r and f = 4 ax above the axis of x.

Find the volume generated by the triangle as it moves a distance a

from the origin.

64. Find the volume of the solid formed by revolving about OX

the plane figure bounded by the cissoid f —
> the line x = a,

and the axis of x.

65. A right circular cylinder of radius a is intersected by two

planes, the first of which is perpendicular to the axis of the cylinder,

and the second of which makes an angle 6 with the first. Find the



290 APPLICATIONS OF INTEGRATION

volume of the portion of the cylinder included between these two

planes if their line of intersection is tangent to the circle cut from

the cylinder by the first plane.

66. On the double ordinate of the four-cusped hypocycloid

x* + y* = Q>* as base an isosceles triangle is constructed with its

altitude equal to the ordinate and its plane perpendicular to the

plane of the hypocycloid. Find the volume generated by the

triangle as it moves from x = — a to x — a.

67. Find the volume of the solid formed by revolving about OY
8<z3

the plane figure bounded by the witch y = -= :

—

- and the line y= a.

68. Find the volume of the solid formed by revolving about the

line y = a the plane figure bounded by the line y = a and the witch
8 a*

69. Find the volume of the solid bounded by the surface formed

by revolving the witch y = — —^ about its asymptote.

70. Find the volume of the wedge-shaped solid cut from a right

circular cylinder of radius a and altitude h by two planes which

pass through a diameter of the upper base and are tangent to the

lower base.

71. Two circular cylinders with the same altitude h have the

upper base, of radius a, in common. Their other bases are tangent

at the point where the perpendicular from the center of the upper

base meets the plane of the lower bases. Find the volume common
to the two cylinders.

72. Find the volume of the ring solid formed by revolving the

(x _ ,/)2 ?/
a

ellipse * ~- + j-% = 1 around OY {d > a).

73. The cap of a stone post is a solid of which every horizontal

cross section is a square. The corners of all the squares lie in a

spherical surface of radius 8 in. with its center 4 in. above the plane

of the base. Find the volume of the cap.

74. Find the volume of the solid formed by revolving about the

line x = — 2 the plane figure bounded by that line, the parabola

y
2 = &x, and the lines y = ± 2.
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75. Find the volume of the solid formed by revolving about the

line x = 2 the plane figure bounded by the curve if = 4 (2 — x) and
the axis of y.

76. A variable circle moves so that one point is always on OY, its

x2
if

center is always on the ellipse —
2
+ 'j^ = 1, and its plane is always

perpendicular to OY. Required the volume of the solid generated.

77. Find the volume of the solid generated by revolving about

x3

the asymptote of the cissoid y
2 = the plane area bounded by

the curve and the asymptote.

78. Find the volume of the solid formed by revolving about

OX the plane figure bounded by OX and an arch of the cycloid

x — o
((f)
— sin

<f>), y = a (1 — cos </>).

79. Find the volume of the solid generated by revolving the

cardioid /• = a(l + cos 0) about the initial line.

80. A cylinder passes through two great circles of a sphere which

are at right angles to each other. Find the common volume.

81. Find the length of the semicubical parabola //- = (x — 2)
3

from its point of intersection with the axis of x to the point (6, 8).

82. Find the length of the catenary y = „ I

' >

" + e " ) from x =
to x = It.

83. Find the total length of the four-cusped hypocycloid

X s + y
J = «¥ -

84. Show that the length of the logarithmic spiral r = c" e
bel ween

any two points is proportional to the difference of the radius vectors

of the points.

Q
85. Find the complete length of the curve r = «sin3 --

86. Find the length of the curve y = a log —
y

: from the
a1 — x2

. . a
origin to * = - •

a

87. Find the length from cusp to cusp of the cycloid

x = a (<j> — sin <£), y = a (1 — cos
<f>).
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88. From equidistant points on an arch of the cycloid

x = a (</> — sin </>), y = a(l — cos
<f>),

perpendiculars are drawn to the base of the arch. What is their

average length ?

89. From a spool of thread 2 in. in diameter three turns are

unwound. If the thread is held constantly tight, what is the length

of the path described by its end ?

e
x

-f- 1
90. Find the length of the curve y = log from x = 1

to x = 2.
e ~ 1

91. Find the mean distance of all points on the circumference

of a circle of radius a from a given point on the circumference.

92. Find the length of the spiral of Archimedes, r = a$, from

the pole to the end of the first revolution.

93. Find the length of the curve 8a3
^/ = x4 + 6«¥ from the

origin to the point x = 2 a.

94. The parametric equations of a curve are

x = 50 (1- cos 9) + 50 (2 - 0) sin 9, y = 50 sin 9 + 50 (2 - 9) cos 9.

Find the length of the curve between the points 9 = and = 2.

95. Find the length of the cardioid r = a (1 + cos 6).

96. Find the mean length of the radius vectors drawn from the

pole to equidistant points of the cardioid r — -(1 + cos 9).

9
97. Find the length of the curve r = a cos5 - from the pole to

o

the point in which the curve intersects the initial line.

98. Find the length of the tractrix (§ 200)

V = T?
log

,
fl

-Va2 - x2

from x = h to x = a.

99. Find the area of a zone of height h on a sphere of radius a.

100. Find the area of the surface formed by revolving about OX
the hypocycloid x = a cos3

0, y = a sin3
9.

101. Find the area of the surface formed by revolving about the

line x = a the portion of the hypocycloid x = a cos3
0, y = a sin3

0,

which is at the right of OY.
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102. Find the area of the surface formed by revolving about the

a - _-
tangent at its lowest point the portion of the catenary i/ — -(e"-\-e «)

between x = — h and x = h.

103. Find the area of the surface formed by revolving about the

initial line the cardioid r = a (1 + cos 6).

104. Find the area of the surface formed by revolving an arch of

the cycloid x = a(cf> — sin <f>), y = a(l — cos
<f>) about the tangent at

its highest point.

105. Find the area of the surface formed by revolving about OY
a + vV — ./•-

the traetrix (§ 200) // = 7^ log- — Va? — x*.
2 a — V"- — ./•'

106. Find the area of the surface formed by revolving the lem-

oiscate r3 = 2 a2 cos 2 6 about the initial line.

107. Find the area of the surface formed by revolving the lem-

niscate y
3 = 2 a2 cos 2 6 about the line 9 = 90°.

108. A positive charge m of electricity is fixed at 0. The repul-

sion on a unit charge at a distance x from (> is - Find the work

done in bringing a unit charge from infinity to a distance a from O.

109. Assuming that the force required to stretch a wire from the

length a to the length a -f-as is proportional to > and that a force

of lib. stretches a wire of 36 in. in length to a length .01 in.

greater, find the work done in stretching the wire from •">•'> in.

to 39 in.

110. A body moves in a straighl line according to the formula

x = cf, where x is the distance traversed in the time t II' the re-

sistance of the air is proportional to the square of the velocity, find

the work done against the resistance of the air as the body moves

from x = to x = a.

ill. Assuming that below the surface of the earth the force of

the earth's attraction varies directly as the distance from the earth's

center, find the work done in moving a weight of w pounds from a

point a miles below the surface of the earth to the surface.

112. Assuming that above the surface of the earth the force of

the earth's attraction varies inversely as the square of the distance
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from the earth's center, find the work done in moving a weight of

m pounds from the surface of the earth to a distance a miles above

the surface.

113. A wire carrying an electric current of magnitude C is bent

into a circle of radius a. The force exerted by the current upon a

unit magnetic pole at a distance x from the center of the circle in

a straight line perpendicular to the plane of the circle is known to

be -• Find the work done in bringing a unit magnetic pole

from infinity to the center of the circle along the straight line just

mentioned.

114. A spherical bag of radius 5 in. contains gas at a pressure

equal to 15 lb. per square inch. Assuming that the pressure is in-

versely proportional to the volume occupied by the gas, find the

work required to compress the bag into a sphere of radius 4 in.

115. A piston is free to slide in a cylinder of cross section S.

The force acting on the piston is equal to pS, where p is the pres-

sure of the gas in the cylinder, and a pressure of 7.7 lb. per square

inch corresponds to a volume of 2.5 cu. in. Find the work done

as the volume of the cylinder changes from 2.5 cu. in. to 5 cu. in.,

(1) assuming pv = k, (2) assuming pv1A — k.

116. Find the total pressure on a vertical rectangle with base 8

and altitude 12, submerged so that its upper edge is parallel to the

surface of the liquid at a distance 5 from it.

117. Find the depth of the center of pressure of the rectangle

in the previous problem.

118. Find the total pressure on a triangle of base 10 and altitude 4,

submerged so that the base is horizontal, the altitude vertical, and

the vertex in the surface of the liquid.

119. Show that the center of pressure of the triangle of the pre-

vious problem lies in the median three fourths of the distance from

the vertex to the base.

120. Find the total pressure on a triangle with base 8 and altitude 6,

submerged so that the base is horizontal, the altitude vertical, and the

vertex, which is above the base, at a distance 3 from the surface of

the liquid.
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121. Find the depth of the center of pressure of the triangle of

the previous problem.

122. The centerboard of a yacht is in the form of a trapezoid in

which the two parallel sides are 3 and 5 ft. respectively in length,

and the side perpendicular to these two is 4 ft. in length. Assuming

that the last-named side is parallel to the surface of the water at a

depth of 1 ft., and that the parallel sides are vertical, rind the

pressure on the board.*

123. Find the moment of the force which tends to turn the center-

board of the previous problem about the line of intersection of the

plane of the board with the surface of the water.

124. A dam is in the form of a regular trapezoid with its two

horizontal sides 400 and 100 ft. respectively, the longer side being

at the top and the height 20 ft. Assuming that the water is level

with the top of the dam, find the total pressure.

125. Find the moment of the force which tends to overturn the

dam of the previous problem by turning it on its base line.

126. Find the total pressure on a semiellipse submerged with one

axis in the surface of the liquid and the other vertical.

127. Find the depth of the center of pressure of the ellipse of

the previous problem.

128. The gasoline tank of an automobile is in the form of a

horizontal cylinder, the ends of which are plane ellipses 20 in.

high and 10 in. broad. Assuming n- as the weight of a cubic inch

of gasoline, find the pressure on one end when the gasoline is

15 in. deep-.

129. A parabolic segment with base 15 and altitude 3 is sub-

merged so that its base is horizontal, its axis vertical, and its vertex

in the surface of the liquid. Find the total pressure.

130. Find the depth of the center of pressure of the parabolic

segment of the previous problem.

131. A circular water main has a diameter of 5 ft. One end is

closed by a bulkhead and the other is connected with a reservoir in

which the surface of the water is 20 ft. above the center of the

bulkhead. Find the total pressure on the bidkhead.

*The weight of a cubic foot of water may be taken as G2 1 lb. =
J., ton.
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132. A pond of 10 ft depth is crossed by a roadway with vertical

sides. A culvert, whose cross section is in the form of a parabolic

segment with horizontal base on a level with the bottom of the pond,

runs under the road. Assuming that the base of the parabolic seg-

ment is 6 ft. and its altitude 4 ft., find the total pressure on the

bulkhead which temporarily closes the culvert.

133. Find the pressure on a board whose boundary consists

of a straight line and one arch of a sine curve, submerged so

that the board is vertical and the straight line is in the surface

of the water.

134. Find the center of gravity of the semicircumference of the

circle x2 + if = a2 which is above the axis of x.

135. Find the center of gravity of the arc of the four-cusped

hypocycloid x* + y
s = a3 which is above the axis of x.

136. Find the center of gravity of a parabolic segment.

137. Find the center of gravity of the area of a quadrant of an

ellipse.

138. Find the center of gravity of a triangle.

139. Find the center of gravity of the area bounded by the

semicubical parabola ay* = xs and any double ordinate.

140. Find the center of gravity of the area bounded by the pa-

rabola x2
-\- At/ — 16 = and the axis of x.

141. Find the center of gravity of half a spherical solid of con-

stant density.

142. Find the center of gravity of the solid formed by revolving

aj
a

v/
2

about Y the surface bounded by the hyperbola — — 'j-
2
— 1 and the

lines y = and y = b.

143. Find the center of gravity of a hemisphere.

144. Find the center of gravity of the surface of a right circular

cone.

145. Find the center of gravity of the area bounded by the curve

y = sin x and the axis of x between x = and x = it.

146. Find the center of gravity of the area between the axes of

coordinates and the parabola x 1 + y* — a*.
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147. Find the center of gravity of a uniform wire in the form of

the catenary y = - (e a
-f e~«) from x = to x = a.

148. Find the center of gravity of the solid formed by revolving

about OX the surface bounded by the parabola f = &jpx, the axis

of x, and the line x — a.

149. Find the center of gravity of the plane area bounded by the

two parabolas f = 20x and x2 = 20 y.

150. Find the center of gravity of the plane area bounded by the

parabola f = 4x, the axis of //, and the line y = 4.

151. Find the center of gravity of the solid formed by revolving

about OY the plane figure bounded by the parabola f=Aj,x, the

axis of y, and the line y = /.'.

152. Find the center of gravity of the surface of a hemisphere

when the density of each point in the surface varies as its perpen-

dicular distance from the circular base of the hemisphere.

153. Find the center of gravity of that part of the plane surface

bounded by the four-cusped hypocycloid se = acos8
0, y = a sin8 0,

which is in the first quadrant.

154. Find the center of gravity of the plane area bounded by the

ellipse -5 + T7, = 1, the circle x2 + y* = a2, and the n.xis of y.

155. Find the center of gravity of the plane area common to the

parabola x2— 8 y = and the circle aP+y2 — 128 = 0.

156. Find the center of gravity of the plane surface bounded by

the first arch of the cycloid

x = a((f> — sin <£), y = a (1— cos <£),

and the axis of x.

157. Find the center of gravity of the arc of the cycloid

x = a(<f> — sin </>), y = a (1 — cos <£),

between the first two cusps.

158. Find the center of gravity of the solid formed by rotating

about OX the parabolic segment bounded by f = 4a and x = It, if

the density at any point of the solid equals -•
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159. Find the center of gravity of the plane surface bounded by
the two circles xa

-f if = a1
, x

1+ // — 2 ax = 0, and the axis of x.

160. Show that the center of gravity of a sector of a circle lies on
. a

2
Sm

2
the line bisecting the angle of the sector at a distance - a from

2
the vertex, where a is the angle and a the radius of the sector.

161. Find the center of gravity of the solid generated by revolv-

ing about the line x = a the area bounded by that line, the axis of x,

and the parabola if = 4=px.

162. Find the center of gravity of the plane area bounded by the

two parabolas x2 — 4tp (y — b) = 0, x2 — kpy = 0, the axis of y, and

the line x = a.

163. Find the center of gravity of the arc of the curve 9 ay2 —
x (x — 3 a)'

2 = between the ordinates x = and x = 3a.

164. The density at any point of a lamina in the form of a para-

bolic segment of height 8 ft. and base 6 ft. is directly proportional

to its distance from the base. Find the center of gravity.

165. Find the center of gravity of the portion of a spherical

surface bounded by two parallel planes at distances h^ and h
2

respectively from the center.

166. Find the center of gravity of the solid formed by revolving

about OY the plane area bounded by the parabola x2 = 4^y and any

straight line through the vertex.

167. Find the center of gravity of the surface generated by the

revolution about the initial line of one of the loops of the lemniscate

r2 =2«2 cos2 0.

168. Prove that the total pressure on a plane surface perpendic-

ular to the surface of a liquid is equal to the pressure at the center

of gravity multiplied by the area of the surface.

169. Prove that the area generated by revolving a plane curve

about an axis in its plane is equal to the length of the curve multi-

plied by the circumference of the circle described by its center of

gravity.

170. Prove that the volume generated by revolving a plane figure

about an axis in its plane is equal to the area of the figure multiplied

by the circumference of the circle described by its center of gravity.
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171. Find the attraction of a uniform straight wire of length 20

and mass M upon a particle of unit mass situated in the line of

direction of the wire at a distance 3 from one end.

172. Find the attraction of a rod of mass M and length /, whose

density varies as the distance from one end, on a particle of unit

mass in its own line and distant a units from that end.

173. A particle of unit mass is situated at a perpendicular dis-

tance 5 from the center of a straight homogeneous wire of mass .1/

and length 12. Find the force of attraction of the wire.

174. Find the attraction due to a straight wire of length 2 / on a

particle of unit mass lying on the perpendicular at the middle point

of the wire and distant c units from the wire, the density of the wire

varying directly as the distance from its middle point.

175. Find the attraction of a homogeneous straight wire of neg-

ligible thickness and infinite length on a particle of unit mass at a

perpendicular distance c from the central point of the wire.

176. Find the attraction of a uniform wire of mass .1/ bent into
77-

an arc of a circle with radius 5 and angle — upon a particle of unit

mass at the center of the circle.

177. Find the attraction of a uniform circular ring of radius a

and mass M upon a particle of unit mass situated at a distance c

from the center of the ring in a straight line perpendicular to the

plane of the ring.

178. Find the attraction of a uniform circular disk of radius a

and mass M upon a particle of unit mass situated at a perpendicular

distance c from the center of the disk. (Divide the disk into con-

centric rings and use the result of problem 177.)

179. Find the attraction of a uniform right circular cylinder with

mass M, radius of its base a, and length I upon a particle of unit

mass situated in the axis of the cylinder produced, at a distance c

from one end. (Divide the cylinder into parallel disks and use the

result of problem 178.)

180. Find the attraction of a uniform straight wire of length 5

and mass M upon a particle of unit mass situated at a perpendicular

distance 12 from the wire and so that lines drawn from the particle

7T
to the ends of the wire inclose an angle —

•

o



CHAPTER XIV

SPACE GEOMETRY

139. Functions of more than one variable. A quantity z is

mid to be a function of two variables, x and y, if the values of z

are determined when the values of x and y are given. This rela-

tion is expressed by the symbols z —f(x, y), z = F(x, y), etc.

Similarly, u is a function of three variables, x, y, and z, if the

values of u are determined when the values of x, y, and z are

given. This relation is expressed by the symbols u =f(x, y, z),

u = F(x, y, z), etc.

Ex. 1. If r is the radius of the base of a circular cone, h its altitude,

and v its volume, v = ^ 7rr
2
h, and v is a function of the two variables

r and h.

Ex. 2. If / denotes the centrifugal force of a mass m revolving with a

velocity v in a circle of radius >',f= , and f is a function of the three

variables m, v, and r.

Ex. 3. Let v denote a volume of a perfect gas, t its absolute temperature,

and p its pressure. Then — = k, where k is a constant. This equation may

be written in three equivalent forms: p = k-, v — k-, t= -pv, by which

each of the quantities p, v, and / is explicitly expressed as a function of

the other two.

A function of a single variable is defined explicitly by the

equation y =f(x), and implicitly by the equation F(x, y) =
(§ 86). In either case the relation between x and y is repre-

sented graphically by a plane curve. Similarly, a function of

two variables may be defined explicitly by the equation

z =f(x, y~), or implicitly by the equation F(x, y, z) — 0. In

either case the graphical representation of the function of two

variables is the same, and may be made by introducing the

conception of space coordinates.

300
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140. Rectangular coordinates. To locate a point in space of

three dimensions, we may assume three number scales, OX, OY,

OZ (rig. 186), mutually perpendicular, and having their zero

points coincident at 0. They will determine three planes,

XO Y, YOZ, ZOX, each of which is perpendicular to the other

two. The planes are called the coordinate planes, and the three

lines OX, OY, and OZ are called the axes of x, y, and z

respectively, or the coordinate axes, and the point is called

the origin of coordinates.

Let P be any point in space, and through P pass planes

perpendicular respectively to OX, )', and OZ, intersecting

them at the points L, M, and N respectively. Then it' we
place x — OL, y = 0M, and z = ON, it is evident that to any

point there corresponds one, and only

one, set of values of x, y, and z ; and

that to any set of values of ./-, //, and n\ jj,

z there corresponds one, and only one, s'/—L—-{/
point. These values of x, y, and z are

called the coordinates of the point, which <)'</'_ \l x
is expressed as /'(./, //, z). /
From the definition of x it follows y M -17

'

that x is equal, in magnitude and direc-
Fi(

. ]S(
.

tion, to the distance of the point from the

coordinate plane YOZ. Similar meanings are evident for y
and z. It follows that a point may be [(lotted in several dif-

ferent ways by constructing in succession any three nonparallel

edges of the parallelepiped (fig. 18G) beginning at the origin

and ending at the point.

In case the axes are not mutually perpendicular, we have a system of

oblique coordinates. In this case the planes are passed through the point

parallel to the coordinate planes. Then x gives the distance and the direc-

tion from the plane YOZ to the point, measured parallel to OX, and similar

meanings are assigned to y and z. It follows that rectangular coordinates

are a special case of oblique coordinates.

141. Graphical representation of a function of two variables.

Let f(x, y) be any function of two variables, and place

s=/0,y> (i)
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Then the locus of all points the coordinates of which satisfy (1)

is -the graphical representation of the function f(sc, y). To con-

struct this locus we may assign values to x and y, as x — x
x
and

y = y l
, and compute from (1) the corresponding values of z.

There will be, in general, distinct values of z, and if (1) defines

an algebraic function, their number will be finite. The corre-

sponding points all lie on a line parallel to OZ and intersecting

XOY at the point P
l
(x

l, y^), and these points alone of this line

are points of the locus, and the portions of the line between

them do not belong to the locus. As different values are

assigned to x and y, new lines parallel to OZ are drawn on

which there are, in general, isolated points of the locus. It

follows that the locus has extension in only two dimensions,

i.e. has no thickness, and is, accordingly, a surface. Therefore

the graphical representation of a function of two variables is a

surface*

If fQx, y~) is indeterminate for particular values of x and y,

the corresponding line parallel to OZ lies entirely on the locus.

Since the equations z —f(x, y) and F(x, y, z~) = are equiv-

alent, and their graphical representations are the same, it follows

that the locus of any single equation in x, y, and z is a surface.

There are apparent exceptions to the above theorem if we demand that

the surface shall have real existence. Thus, for example,

+ f +

is satisfied by no real values of the coordinates. It is convenient in such

cases however, to speak of " imaginary surfaces."

Moreover, it may happen that the real coordinates which satisfy the

equation give points which lie upon a certain line, or are even isolated

points. For example, the equation

x2 + y- =

is satisfied in real coordinates only by the points (0, 0, z) which lie upon

the axis of z ; while the equation

x2 + if + z2 =

* It is to be noted that this method of graphically representing a function

cannot be extended to functions of more than two variables, since we have but

three dimensions in space.
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is satisfied, as far as real points go, only by (0, 0, 0). In such cases it

is still convenient to speak of a surface as represented by the equation,

and to consider the part which may be actually constructed as the real

part of that surface. The imaginary part is considered as made up of

the points corresponding to sets of complex values of x, y, and z which

satisfy the equation.

142. Cylinders. If a given equation is of the form F(x, y) = 0,

involving only two of the coordinates, it might appear to rep-

resent a curve lying in the plane of those coordinates. But if

we are dealing with space of three dimensions, such an inter-

pretation would be incorrect, in that it amounts to restricting

z to the value s = 0, whereas, in fact, the value of z corre-

sponding to any simultaneous values of x and y satisfying

the equation F(x, y)=0 may be anything whatever. Hence,

corresponding to every point of the curve F(x, //) = in the

plane XOY, there is an entire straight line, parallel to OZy

on the surface F(.r, y) = 0. Such a surface is a cylinder,

its directrix being the plane curve /''(./•, y) = Q in the plane

2 = 0, and its elements being parallel to OZ, the axis of the

coordinate not present.

For example, .r + //" = <c is the equation of a circular cylinder,

its elements being parallel to OZ, and its directrix being the circle

a?+y*= a2
in the plane XOY.

In like manner s
a= ky is the equation of a parabolic cylinder,

its elements being parallel to OX, and its directrix being the

parabola z'
2=ky in the plane ZOY.

If only one coordinate is present in the equation, the locus is a

number of planes. For example, the equation x'
1—

(
(t+ t>)x+ab=0

may be written in the form (x— a) (x— l>) = 0, which represents

the two planes x — a = and x — b — 0. Similarly, any equation

involving only one coordinate determines values of that coordinate

only and the locus is a number of planes.

Regarding a plane as a cylinder of which the directrix is a

straight line, we may say that any equation not containing all

the coordinates represents a cylinder.

If the axes are oblique, the elements of the cylinders are not

perpendicular to the plane of the directrix.
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143. Other surfaces. The surface represented by any equa-

tion /'(./-, //, z) = may be studied by means of sections made

by planes parallel to the coordinate planes. If, for example,

we places = <> in the equation of any surface, the resulting

equation in x and y is evidently the equation of the plane

curve cut from the surface by the plane XOY. Again, if we

place 2 = 2
1?

where z
x

is some fixed finite value, the resulting

equation in x and y is the equation of the plane curve cut

from the surface by a plane parallel to the plane XOY and z
l

units distant from it, and referred to new axes O'X' and O'Y',

which are the intersections of the plane z = z
x
with the planes

XOZ and YOZ respectively; for by placing z = z
x

instead of

2=0, we have virtually transferred the plane XOY, parallel to

itself, through the distance z^

In applying this method it is advisable to find first the three

plane sections made by the coordinate planes x = 0, i/ = 0, z= Q.

These alone will sometimes give a general idea of the appearance

of the surface, but it is usually desirable to study other plane sec-

tions on account of the additional information that may be derived.

The following surfaces have been chosen for illustration because

it is important that the student should be familiar Avith them.

Ex. 1. Ax + By + Cz + D = 0.

Placing- z = 0, we have (fig. 187)

Ax + By + D = 0. (1)

Hence the plane XOY cuts this surface

in a straight line. Placing y = and then

x = 0, we find the sections of this surface

made by the planes ZOX and YOZ to be

respectively the straight lines

Ax + Cz + D=0, (2)

and By + Cz + D=0. (3)

Placing z = zv we have A x + By + ( 'z
1
+ D = 0, (4)

which is the equation of a straight line in the plane z — zv The line (1)

is parallel to the line (1), since they make the angle tan- 1
/ — —J with the

parallel lines O'X' and OX and lie in parallel planes. To find the point
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where (4) intersects the plane XOZ, we place y = 0, and the result

Ax + Cz
1
+ D= shows that this point is a point of the line ("2). This

result is true for all values of zr Hence this surface is the locus of a

straight line which moves along a fixed straight line always remaining

parallel to a given initial position; hence it is a, plane.

Since the equation Ax + By + Cz +D= is the most general equa-

tion of the first degree in the three coordinates, we have proved that

the locus of every lunar equation in rectangular spaa coordinates is a plane.

+ !>//-, where a >Ex. 2. s

&>0.
Placing 2 = 0, we have

a./2 + by* = 0,

and hence the XOY plane

surface in a point (fig. L88)

,j = (), we have
z = il.i-,

which is the equation of a

with its vertex at ami its axis along

OZ. Placing x = <•, we have

z = /,n (3)

which is also the equation of a pa-

rabola with its vertex at and its

axis along (>Z.

Placing z = z
1, where z

x
> 0, we

may write the resulting equation in

t he form
b

(1)

and As the

-1 \ -1

which is the equation of an ellipse with semiaxes
\ (I \ h

plane recedes from the origin, i.e. as -

n increases, it is evident thai the

ellipse increases in magnitude. It is also evident thai the ends of the axes

of the ellipse lie on the parabolas (•_') and (:">).

If we place z = — zv the result may he w litten in the form

— y l,

and hence there is no part of this surface on the negative side of the

plane XOY.
The surface is called an elliptic paraboloid, and evidently may l>e gener-

ated by moving an ellipse of variable magnitude always parallel to the

plane XOY, the ends of its axes always lying respectively on the parabolas

2 = <u'2 and z = by2.
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Ex. 3.

Placing:

J f
i

2
b*
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T* II*
~a

Ex. 5. -
a + g + 5 = 1-

a- 6- c-

This . surface (fig. 191) is the

ellipsoid.

Ex. 6.
/;-

Fig. 191

This surface (fig. 192) is the

biparled hyperboloid or the hyper-

boloid of two sheets.

The discussions of the last three surfaces are very similar to that of

the imparted hyperboloid, and for

that reason they have been left to

the student.

Ex. 7. ~ = ax2 — by2, where a > 0,

I > 0.

Placing z = 0, we obtain the equa-

tion
ax2 - by2 = 0, (1)

i.e. two straight lines intersecting

at the origin (fig. 193). Placing

y = 0, we have
(l.r- (2)

Fig. 192

the equation of a parabola with its

v^i^x at and its axis along the positive direction of OZ.

IS x = 0, we have

= - by*, (3)

the equation of a parabola

with its vertex at and

its axis along the-negat ive

direction of OZ.

Placing ./• = ± xv we

have
Z = (,.r{ - /;//'-,

or \f ±(z-ax?), (1)

Fig. 193
a parabola with its axis

parallel to OZ and its

vertex at a distance ax*

from the plane XOY. It is evident, moreover, that the surface is sym-

metrical with respect to the plane YOZ, and that the vertices of
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these parabolas, as different values are assigned to xv all lie on the

parabola z = ax2.

Hence this surface may be generated by the parabola z = — by1 moving

always parallel to the plane YOZ, its vertex lying on the parabola z = ax".

The surface is called the hyperbolic paraboloid.

The reason for the name given to this surface becomes more evident if

two more sections are made.

Placing z = zv where z
1
> 0, we have z

x
= ax2 — hy2

, or

f
-L x2 -Lf- = l, (5)

an hyperbola with its transverse axis parallel to OX, the ends of the

transverse axis lying on the parabola z = ax'2.

If z = — zv we may write the equation in the form

v- (6)

an hyperbola with its transverse axis parallel to OY, the ends of the

transverse axis lying on the parabola z = — by'
1

.

Ex. 8. z = kxy, where

fc>0.

This surface is a

special case of the hyper-

bolic paraboloid of Ex. 7,

in which b=a. The proof

of this statement is as

follows

:

If h = a, the equation

of the surface of Ex. 7 is

z = a(x*-y*). (1)

Fig. 194Revolve the planes

XOZ and YOZ about

the axis OZ, which is held fixed, through an angle of — 45° into new

positions X'OZ and Y'OZ. By § 19, the formulas of transformation are

, _ x' + y' _ — x + //Z- , X- ,

V2

Substituting these values in (1), and simplifying, we have

z' = 2 a x'y',

which is the equation given above with k — 2a.

(2)
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The discussion of the plane sections of the surface (fig. 194) made by

the planes parallel to the coordinate planes is left to the student.

If b ^ a, we can make a similar transformation by using the formulas

of § 21, and the result will be ~' = k/y, only the coordinates will not be

rectangular.

144. Surfaces of revolution. If the sections of a surface

made by planes parallel to one of the coordinate planes are

circles with their centers on the axis of coordinates which is

perpendicular to the cutting planes, the surface is a surface of

revolution (§ 133) with that coordinate axis as the axis of

revolution. This will always occur when the equation of the

surface is in the form F{\f.r + >/% z) = 0, which means that the

two coordinates x and y enter only in the combination v.r + //-

;

for if we place z = z
1
in this equation to find the corresponding

section, and solve the resulting equation for ./•" + //", we have,

as a result, the equation of one or more circles, according to

the number of roots of the equation in x1 + y'1
.

Again, if we place x = 0, we have the equation /•'(//, z) = 0,

which is the equation of the generating curve in the plane

YOZ. Similarly, if we place // = 0, we have /•'(./-, g) = 0, which

is the equation of the generating curve in the plain' XOZ. It

should be noted that the coordinate which appears uniquely in

the equation shows which axis of coordinates is the axis of

revolution.

Ex. 1. Show that the imparted hvperboloid ', — •- + -= 1 is a surface
"'" //_ "'"

of revolution.

Writing this equation in the form

t±* -f-l = Qt

a- b-

we see that it is a surface of revolution with OY as the axis.

c
2 >r

Placing z = 0, we have — — 2-=l, an hyperbola, as the generating
a- b-

curve. The hyperbola was revolved about its conjugate axis.

Conversely, if we have any plane curve F(x, z) = in the

plane XOZ, the equation of the surface formed by revolving it

about OZ as an axis is F(Vx2 + y
2
, z) = 0, which is formed by

simply replacing x in the equation of the curve by Vx2 + y
1
.
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Ex. 2. Find the equation of the sphere formed by revolving the circle

+ z2 = a 2 about OX as an axis.

Replacing a by Vy2 + z2, we have as the equation of the sphere,

x2 + y- + z2 = a2
.

This equation may also be

found directly from a figure.

Let P
x
(fig. 195) be any point

of the circle, and .let P be any

point of the sphere, on the circle

described by Pv Since P
x

is a

point of the circle,

OZ 2 + TP{ = a2
. (1)

But LP^LP=VlM2
+Mp'

2
-

Substituting this value of LP
1

in (1), we have

OZ 2
+ LM 2 + MP 2 = a2

,

or x2 + f + z2 = a2
,

as the equation of the sphere.

145. Projection. The projection of a point on a straight line

is defined as the point of intersection of the line and a plane

through the point perpendicular to the line. Hence, in fig. 186,

L, M, and N are the projections of the point P on the axes

of x, y, and z respectively.

The projection of one straight

line of finite length upon a second

straight line is the part of the

second line included between the

projections of the ends of the first

line, its direction being from the

projection of the initial point of

the first line to the projection of

the terminal point of the first

line. In fig. 196, for example,

the projections of A and B on MN being A' and B' respectively,

the projection of AB on MJSF is A'B', and the projection of BA
on MN is B'A'. If MN and AB denote the positive directions

respectively of these lines, it follows that A'B' is positive when

M-

Q

4---
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it has the same direction as MN
y
and is negative when it has

the opposite direction to MN.
In particular, the projection on OX of the straight line i^

drawn from P
l
(xv yv zj to P

2
(x

2 , y.v z
2) is L

X
LV where OL

x
= x

and 0L
2
= x

2
. But L

x
L

2
= x

2
— xv by § 3. Hence the projection

of P
X
P2

on OX is x
2
— x

x
; and, similarly, its projections on Y

and OZ are respectively y2
—

y

t
and z

2
— z

x
.

If we define the angle between any two lines in space as the

angle between lines parallel to them and drawn from a common
point, then the projection of one *tr<ii

:
ilit line <>n a second is the

product of the length of the first line and the cosine of the angle

between the positive directions of the two lines. Then, if $ is the

angle between AB and MN (fig. 196),

A'B' = ^17? cos 4>.

To prove this proposition, draw A'C parallel to .//; and meet-

ing the plane ST at C. Then A'C= AB, and A'B'= A'C cos
<f>,

by § 2, whence the truth

of the proposition is

evident.

Defining the projec-

tion of a broken line

upon a straight line as

the sum of the projec-

tions of its segments, we
may prove, as in § 2,

that the projections on

any straight line of a

broken line and the straight line joining its ends are the same.

We will now show that the projection of a)iy plane area )i/»>n

another plane is the product of that area and the cosine of the

angle between the planes.

Let X'OY (fig. 197) be any plane through OY making an

angle
<f>

with the plane XOY. Let A'B' be any area in X'OY
such that any straight line parallel to OX' intersects its

boundary in not more than two points, and let AB be its

projection on XOY.



312 SPACE GEOMETRY

Then (§ 125) area A'B' = C(x[ - x[) dy, (1)

the limits of integration being taken so as to include the

whole area.

In like manner, area AB — I (x
2
— x

i
)dy, (2)

the limits of integration being taken so as to cover the whole area.

But the values of y are the same in both planes, since they are

measured parallel to the line of intersection of the two planes;

and hence the limits in (1) and (2) are the same. Since the x

coordinate is measured perpendicular to the line of intersection,

x
2
= x'

2
cos <£, x

1
= x[ cos

<f>,
and (2) becomes

area AB = / (./•.( — x[) cos <j> dy

= cos
<f> j

(x'
2
— .Tj') dy

= (cos <£) (area A'B').

H>-:

146. Components of a directed straight line. Let B
X
B2 (fig. 198)

be a straight line, the direction of which is from B
x
to B,. Through

B
x
and B2 pass planes parallel respectively

to the coordinate planes, thereby forming

on BJ!2 as a diagonal a rectangular paral-

lelepiped with its edges parallel to the

coordinate axes. The lines B
t Q, BX

B, and

BltS, considered with respect to both length

and direction, are called the components of

7^. It is evident that they are the projec-

tions of i^on OX, OY, and OZ respectively.

Conversely, the components of a straight line will determine

its direction and length, but not its position ; for if the compo-

nents are given equal to a, b, and e, we may lay off, from any

point Ij, a straight line parallel to OX and equal to a in length,

a straight line parallel to OY and equal to b hi length, and a

straight line parallel to OZ and equal to c in length. These

three lines determine the edges of a rectangular parallelepiped,

and hence determine the diagonal drawn from Bv That is, if B
X Q

(fig. 198) is laid off equal to a, B^ equal to b, and B
X
S equal
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to c, the rectangular parallelepiped is determined, and hence the

diagonal P
XP2 is determined in both length and direction.

It is evident that the direction of P
l
P2 will not be changed if

a, b, and c are multiplied by the same number; in other words,

the ratios of the components are the essential elements in fixing

the direction of the line. We shall accordingly speak of a

straight line as having the direction a: b : c.

On the other hand, the length of the line does depend upon

the values of a, b, and c, for

P
XP =Vy^/+i^r+^s'2 = Va2 + b

2 + c\ (1

)

147. Distance between two points. An important application

of (1), §110, is in finding the distance between two points

1\{.<\, /j
x
, zj and /._!(•'".,' //.,, ?.,). Referring to fig. 198, we have,

by §U5, a =P
1
Q=x

2
-z

l1
b=P

1
R = y%

-yv c=P
1S = z

a
-z

1 ;

whence ^ = V(.r, - .r^ +(^- yj
2 +(*,-

z

l}
2

. (1)

Ex. 1. Find the Length of the straight line joining the points (1,
-

_\

-1) and (8, — 1, 3).

The required length is

V(:S - I)- + (- 1 - 2)* + (3 + 1)- =\ 29.

Ex. 2. Find a point Vll units distant from each of the three points

(1,0,3), (2, -1, 1), (3, 1, •_').

Let P(x, y, c) be the required point.

Then (x - l) 2 + (//
- 0)

a + (z - 3)
2 = 14,

(x-2)* + (y + l)* + (z-iy = U,

(*-8)» + (y-l)» + (*-2)» = 14.

Solving these three equations, we determine the two points (0, 2, 0) and

(4, - 2, 4).

Ex. 3. Find the equation of a sphere of radius r with its center at

Pi(*v yi.*i).

If P (x, y, z) is any point of the sphere,

(z _ Xi)
2 + (y

_
yi)

a + (z _ Zi)a = r3.

Conversely, if P (x, y, z) is any point the coordinates of which satisfy

this equation, P is at the distance r from Pv and hence is a point of the

sphere. Therefore this is the required equation of the sphere.
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148. Direction cosines. If we denote by a, /3, and 7 the angles

which a straight line makes with the positive directions of the

coordinate axes OX, OY, and OZ respectively, the cosines of

these angles, i.e. cos a, cos ft, cosy are called the direction cosines

of the line.

If the line is drawn through the origin, as in fig. 199, it is

evident that the same straight line makes the angles a, /3, 7 or

17 — a, ir — /3, 17 — 7 with the coordinate

axes, according to the direction in which

the line is drawn. Hence its direction

cosines are either cos a, cos/3, cos 7 or

— cosa;, — cos/3, —cos 7. Hence the

straight line can have but one set of

direction cosines after its direction has

been chosen.

The direction cosines may be deter-

mined directly from the components of the line ; for, referring

to fig. 198, we see that

PQ

or

cos 7 =

a

Va2 + &
2 + c

2
'

c

Va 2 + 6
2 + 6"

2

'

1]E

cos/3 =

PS
-^-1 COS/3 = — , C0S7 = ——

,

CI)
P,P

2 P,P2
7

JJJJ
W

b

Va2 + b
% + c*

(2)

Squaring and adding equations (2), we have

cos
2a-f cos2

/3 + cos27=l; (3)

that is, the sum of the squares of the direction cosines of any
straight line is always equal to unity.

It follows that the direction cosines of any line are not

independent quantities.

Ex. Since the length of the line of Ex. 1, § 147, is V29, and its respec-

tive components are 2, — 3, and 4, it follows that its direction cosines are

2 3 4

V29' V29' V29
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149. Angle between two straight lines. Given two straight

lines having the respective directions a
x

: b
x

: c
x
and a

%
: b

2
: c

n .

If they are drawn from a common point P (x, y, z) (fig. 200),

let the segment of the first line extend to P
x
and the segment of

the second line extend to P2 , so that the coordinates of P
x
are

x 4- dji y + b
x
, and z + e

t,
and the coordinates

of P2 are x + a
2, y + ?>„, and z + <-

n . It follows

that the components of P
X
P2 are a

n
— a

±
, b

2
— b^

and c
n
— Cj.

Then if 6 is the angle between these two

lines, we have, by trigonometry,

PP 2+ PP?-T\p; _
cos 6 =—*- i-2-. rn

2PP,.PP
2

K }

But Pli
2

=a; + b: + e:, P'

_, Fig. 200

Pi^O*+ &» + <&

whence, by substitution in (1) and simplification,

P.nsfl= «,«, + ¥,+ *!',
(2)

V«f+ ft»+«fVo£+ tf+ <£

If cosa
x
, eos/3^ COS7J are the direction cosines of /'/;. and cos«

2 ,

cos/3 , C0S7
2
are the direction cosines of J'J.U formula (2) may

be written, by (2), § 148,

cos 6 = cos «
1
cos a

2
+ cos /S

x
cos /3o + <•< is 7

t

c< H3 7.,. (3)

If the lines are perpendicular to each other, cos — 0, and

(2) and (3) reduce respectively to

a
i
a2+ I,A+ ,

\
(

'-Z

=0 (4 )

and cos a
i
cos «

2
+ cos fi

x
cos /?

2
+ cos 7 1

cos 7, = 0. (5)

If the lines are parallel to each other,

cos a
x
= cos «„, cos /3

X
= cos /3

2
, cos 7 X

= cos 7„,

whence it is easily shown that

?i = h = ?i. (6)
a., b., <?.,
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150. Direction of the normal to a plane. LetiJO&n yv ^) and

%(xa, i/.,, z.
2 ) be any two points of the plane

Ax + By + Cz + I)=Q. (1)

Substituting their coordinates in (1), we have

Ax
x
+ By

x
+Cz

1
+D = Q (2)

and Ax
2
+ By„ + Cz„ +D = 0. (3)

Subtracting (2) from (3), we have

A jg
- g| + 2? <£ - yx) + C (z, - dj = 0, (4)

whence, by (4), § 149, the direction A: B:C is normal to the

direction x
2
— x

x
: «/

2
— yx

: z
2
— z

x
. But the latter direction is the

direction of any straight line of the plane. Hence the direc-

tion A : B : C is the direction of the normal to the 'plane Ax 4- By
+ Cz + D = 0.

151. Equation of a plane through a given point perpendicular

to a given direction. Let the plane pass through a given point

^i(-r
i' V-a ~i)

perpendicular to a straight line having a given

direction A:B: C. Let P(x, y, y
z} be any point of the plane.

Then x — x
1

: y — yl
: z — z

x
is ^he direction of iJP, i.e. is the

direction of any straight line through P
x
in the plane.

Since a perpendicular to a plane is perpendicular to every

line in the plane, it follows that

^A (x - X^ + B(y- yj) + C(z - zj = 0,

which is, accordingly, the required equation of the plane.

Since every plane may be determined in this way, and this

equation is a linear equation, it follows that every plane may
be represented by a linear equation.

Ex. Find the equation of a plane passing through the point (1, 2, 1)

and normal to the straight line having the direction 2 : 3 : — 1.

The equation is

2(x-l) + 3(y-2)-l(2 -l) = 0,

or 2x + 3y-z-7 = 0.

152. Angle between two planes. Let the two planes be

Af + Bjf+Cp + D^O, (1)

Ajc + B„y + C
2
z + Z>

2
= 0. (2)
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The angle between these planes is the same as the angle

between their respective normals, the directions of which are

respectively the directions A
x

: B
1

: C\ and A.,: />'.,: C
g

. Hence, if

6 is the angle between the two planes, by (2), § 149,

, A
x
A« + B,B„+C,Cn

cos 6 = 1
-

1

;
1 = •

Va? + a; + c* Va* + J5
a

a + cy2

The conditions for perpendicularity and parallelism of the

planes are respectively

i A », Ci

153. Equations of a straight line. In space of three dimen-

sions a single equation in general represents a surface; hence, in

general, a curve cannot he represented by a single equation. A curve

may, however, be regarded as the line of intersection of two

surfaces. Then the coordinates of every point of the curve

satisfy the equations of the surfaces simultaneously : and, con-

versely, any point the coordinates of which satisfy the equations

of the surfaces simultaneously is in their curve of intersection.

Hence, in general, the locus of two simultaneous equations in x, //,

and z is a curve.

In particular, the locus of the two simultaneous linear equations

\x+B
xy + C'

1
2+/>

1
=0,

A
2
x + B„y + C^+J)

2
=0,

is a straight line, since it is the line of intersection of the two

planes respectively represented by the two equations.

We will now find the equations of the straight line determined

by two points, and the equations of the straight line passing through

a known point in a given direction.

154. Straight line determined by two points. Let the given

points be B,(xv yv z
x) and B,(x

2 , y.2 , z2). Then the direction of

1{B is #
2
— .r, : //., — y l

: z.,— zv Let P(x, y, z) be any point of the

line. Then the direction of P^P is x — x\ : y — yx
: z — z

x
.
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Since I[P and I(P
1

are parts of the same straight line, and

hence parallel, it follows that

x ~ x
\ _ V ~ V\ _ z ~ z

\

Here are but two independent equations in x, y, and z. This

result proves the converse of the statement above, that two

linear equations always represent a straight line ; for we have

any straight line represented by two linear equations.

It is to be noted that, if in the formation of these fractions

any denominator is zero, the corresponding component is zero,

and the line is perpendicular to the corresponding axis.

Ex. Find the equations of the straight line determined by the points

(1, 5, - 1) and (2, - 3, - 1).

x — 1 _ y — 5 _ z + 1

2^T~ -3- 1 + 1

Hence the two equations of the line are z + 1 = 0, since the line is par-

allel to the XOY plane and passes through a point for which z = — 1, and

8 x + y — 13 = 0, formed by equating the first two fractions.

155. Straight line passing through a known point in a given

direction. If the direction of the line is given as a : b : c, the

equations of the line are evidently

x — x, y — y, z — z. ^ .

(!)
a b c

for in the formula of § 154 we may place

If the direction of the line is given hi /
terms of its direction cosines, the derivation y Fig. 201

of the equations is as follows

:

Let P
1
(xv yv 2j) (fig. 201) be a known point of the line, and

let I, m, and n be its direction cosines. Let P(x, y, z) be any

point of the line. On P^P as a diagonal construct a parallele-

piped as in § 146. Then if we denote P^P by r, we have

P
x
Q=lr, %B= mr, %S= nr.

But P
x
Q=x—x

vl
PR—y — yv I£S=z — e

1,

whence x— x,= lr. y — y= mr, z — 2 = nr.
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Eliminating r from these last three equations, we have

x - *i _ y - Vx _ z - z
i

, ^2)
l m n

which are but two independent linear equations.

156. Determination of the direction cosines of a straight line.

If the equations of the straight line are hi any one of the forms

of §§ 154 and 155, the determination of the direction cosines is

very easy, for the denominators of the fractions in those formu-

las are either the direction cosines of the line or else give the

components for the line, from which the direction cosines are

quickly computed.

If the equations of the straight line, however, are in any

other form, as „ .
_ ^ .

./,./• + /;
i/
/ + r, + /,

i

= o, (1)

J,r + nji + cj 4 D
a
= 0, (2)

let its direction cosines be /, m, and n. Since* the line lies in

both planes (1) and (2), it is perpendicular to the normal to

each. Therefore, by (4), § 149,

AJ 4 Bx
m 4- C

x
n = 0,

AJ, 4 Bt
m 4 C

a
n = ;

also l* + m* + n*=l. (§148)

Here are three equations from which the values of I, m, and n

may be found.

Ex. Find the direction cosines of the straight line 2z+3y+«— 4 = 0,

4 x + >/- z + 7=0.

The three equations for I, m, and n are

2 Z + 3 m 4 n = 0,

4 I + m — n = 0,

/- + m* + n" = 1,

the solutions of which are

z = _2_ ;
3_

?

5

V38' V38' V3s'

,_ 2 3 5

V38 V38 V38
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Since cos (180° — <f>)
=— COS <ji, it is evident that if the angles corre-

sponding to the first solution are a,, j3v yv the angles corresponding to

the second solution are 180° — ap 180° — fiv 180° — yr Since these two

directions are each the negative of the other, it is sufficient to take either

solution and ignore the other.

157. Distance of a point from a plane. Let it be required

to find the perpendicular distance from the point -^(a^, yx
, aQ

to the plane

Ax+By + Cz+P> = 0. (1)

From P. (fig. 202) draw the

required perpendicular P
X
N

and also a line parallel to

the axis of z and let it cut

the plane in R. Then for the

point R, x = Xf y = y x
, and z

is determined from the equa-

tion of the plane as

-Ax
1
-By1

-D

Hence RP
1

_ Ax
1
+By

1
+ Cz

1
+I)

_

C

But P
1
N=RP

1
cos 7 where <y is the angle R^N which is equal

to the angle made by the normal to the plane with the line OZ.

Then, by § 150, c
cos 7

Hence P
X
N= ±

VA* + B 1 + Cz

Ai\+By, + Cz,+D

^A'+B^ + C*

is the magnitude of the required distance, being positive for all

points on one side of the plane and negative for all points on

the other side. If we choose, we may take the sign of the

radical always positive, in which case we can determine for

which side of the plane the above result is positive by testing

for some one point, preferably the origin.
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Ex. Find the distance of the point (1, 2, 1) from the plane 2 x — 3 y

+ 6 s + 11 = 0. The required distant is

2(l)-3(2)+0(l) + U =
7

Furthermore the point is on the same side of the plane as the origin, for

if (03 0, 0) had been substituted, the residt would have been 2, i.e. of the

same sign as 2f

.

158. Problems on the plane and the straight line. In this

article we shall solve some problems illustrating the use of

the equations of the plane and the straight line.

1. Plane through a given line and subject to one other condition.

Let the given line be

As + Bj-tCf + D^O, (1)

Ap+B# + Cf+D=Q. (2)

Multiplying the left-hand members of (1) and (2) by l\ and Jc
a

respectively, where k
x

and /-., are any two quantities independent

of x, y, and 2, and placing the sum of these products equal to

zero, we have the equation

\(A ,/•+ //,// + C
x
z +2>

x)+ fc
a Kx + BJf +''/+ ",) = o. (3)

Equation (3) is the equation of a plane, since it is a linear equa-

tion, and furthermore it passes through the given straight line,

since the coordinates of every point of that line satisfy (3) by

virtue of (1) and (2). Hence (3) is the required plane, and

it may be made to satisfy another condition by determining the

values of k^ and /-., appropriately.

Ex. 1. Find the equation of the plane determined by the point (0, 1.
|

and the line 4 x + 3 y + 2z - 4 = 0, 2x — 11 y - I : - 12 = 0.

The equation of the required plane may be written

/M (4x + 3 y + 2 z - 4) + /,-,( 2 x - 11 y -4a- 12) = 0. (1

)

Since (0, 1, 0) is a point of this plane, its coordinates satisfy (1), and

hence
fcj + 23 / , = 0, or l\ = - 23 I:,.

Substituting this value of /c'
x
in (1), and reducing, we have as the required

e(luatiuu > 9x + 8y + 5z-8 = 0.
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Ex. 2. Find the equation of the plane passing through the line 4 x + 3 y

+ 2 z — 4 = 0, 2 .r — 11 y — 4 s — 12 = 0, and perpendicular to the plane

2 x + y-2z + l = 0.

The equation of the required plane may be written

^(4 x + 3y + 2z-i) + k2(2 x - 11 y - 4 z - 12) = 0, (1)

or (4 k
x
+ 2 fc2

) x- + (3 ^ - 11 £a) y + (2 h
x
- 4 k2)z + (- 4^ - 12 fra)

= 0.

Since this plane is to be perpendicular to the plane 2 x + y — 2z + l = 0,

2 (4 fcj + 2 fc
2) + 1 (3 k, - 11 ifc2)

- 2 (2 ^ - 4 k
2)
= 0,

whence k„= — 7 kv
Substituting this value of k

2
in (1), and reducing, we have as the required

equation,
x — 8y — 32 — 8 = 0.

2. Plane determined by three points. If the equations of the

straight line determined by two of the points are derived, we
may then pass a plane through that line and the third point, as

in Ex. 1. The result is evidently the required plane.

Ex. 3. Find the equation of the plane determined by the three points

(1, 1, 1), (-1, 1, 2), and (2, - 3, -1).

The equations of the straight line determined by the first two points are

x - 1 y

-

1 z-1
-1-1 1-1 2-1

which reduce toy — 1 = 0, x + 2z — 3 = 0.

The equation of the required plane is now written in the form

k
1
(y-l) + k

2
(x + 2z- 3)^=0.

Substituting (2, — 3,-1) in this equation, we have

- 4 k
t
- 3 fcg = 0, or &

2
= — | kv

Substituting this value of k
2
in the equation of the plane, and simplify-

ing, we have as our required equation,

4a:-3# + 8z-9 = 0.

159. Space curves. We saw in § 153 that, in general, the

locus of two simultaneous equations in x, y, and z is a curve—
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the curve of intersection of the surfaces represented by the

equations taken independently.

Let /1 (a;,y, 2)=0, /,(*yf «)=0, (1)

be the two equations of a space curve.

If we assign a value to one of the coordinates in equations

(1), as x for example, there are two equations from which to

determine the corresponding values of y and z, in general a

determinate problem. But if values are assigned to two of the

coordinates, as x and y, there are two equations from which to

determine a single unknown, z, a problem generally impossible.

Hence there is only one independent variable in the equations

of a curve.

In general, we may make x the independent variable and

place the equations in the form

y = cj>
1
(x~), z = 4>2

(x), (2)

by solving the original equations (1) of the curve for y and z

in terms of x. The new surfaces, y = <f>1
(z), z = (f>j.r), deter-

mining the curve, are cylinders ($ 142), with elements parallel

to OZ and Y respectively. The equation y = <\>
x
(x) interpreted

in the plane XOY is the equation of the projection (§145) of

the curve on that plane. Similarly, the equation z =
<f>i

(x)
i

interpreted in the plane ZOX, is the equation of the projection

of the curve on that plane.

Hence, to find the projection of the curve (1) on the XOY plane

we eliminate z from the two equations.

Similarly, to find the projection on the XOZ plane we eliminate

y, and to find the projection on the YOZ plane we eliminate x.

Finally, the three equations

*=/x(9. y-/.(0. a =/»(0 (3)

are parametric equations of a curve. They may generally be

put in the form y = <f> 1
(_x), 3 = <£.,(#), by eliminating t from

the first and second equations, and from the first and third

equations.
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Ex. The space curve called the helix is the path of a point which mows
around the surface of a right circular cylinder with a constant angular

velocity and at the same time moves parallel to the axis of the cylinder

with a constant linear velocity.

Let the radius of the cylinder (fig. 203) be a, and let its axis coincide

with OZ. Let the constant angular velocity be w and the constant

linear velocity be v. Then if 6 denotes the angle through which the

plane ZOP has swung from its initial position ZOX, the coordinates

of any point P (x, y, z) of the helix are given by the equations

I>nt 6 = oit, and accordingly we may have as the

parametric equations of the helix,

x = a cos (at,

y = a sin wt,

t being the variable parameter.
n

Or, since t = —> we may regard 6 as the
CO

variable parameter, and the equations are

x = a cos 6,

y = a sin 6,

z = led,

where k is the constant — •

Fig. 203

160. Direction of space curve and element of arc. Let P(.r, y, z)

be any point of a curve, and Q (x + Ax, y + Ay, z + Az) be any

second point of the curve. Then the direction cosines of the

chord PQ are

A.r Ay Az

' Vaz 2 + Ay
2 + A/ y/Ax

2

+ Ay
2 + Az'

2

y/Ax* + Ay
2

+ Az'
2

As the point Q approaches the point P along the curve,

Ax, Ay, and Az each approach zero as a limit, and the direction

cosines of the chord PQ approach the direction cosines of the

tangent to the curve at P as limits. To determine these limits,

denote by s the distance of the point P from some fixed point
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of the curve, s being measured along the curve. Then the

arc PQ = As; and As = as PQ approaches the tangent.

Ax Ax AsNow
Vax 2+a/+az 2 As VZ7+a/Ta72

'

Ax dx
whence Lim

Asi0 VAl-
2 +Ay + A2

2 ds

for Lim —^==^===^ = 1.

WAx'+A/ + Az
2

Proceeding in the same way with the other two ratios, we
, dx dy dz ,, ,. ,. . . ,

.

nave — , -f-, — as the direction cosines of the curve at any
as as as J

point, since the directions of the tangent and the curve at any

point are the same.

whence ds = Vdx'2 + dy1 + dz'
2

, (1

)

a formula for the differential of the arc of any space curve.

It also follows from (1) that we may speak of the direction

of the curve as the direction dx : dy : dz.

Ex. 1. Find the direction of the helix

x = (i cos 6, y = a sin 6, z = kd,

at the point for which = <>.

Here dx = — a sin dO, dy — a cos 6 dO, d: = k d$. Therefore, at the point

for which $ = 0, the direction is the direction : a d6 : k dd, and the direction

a k
cosines are 0,

Va- + k- Vos + k*

Ex. 2. Find the length of an arc of the helix corresponding to an
increase of 2 ir in 6.

Using the values of dx, dy, and dz found in Ex. 1, we have

ds = Va2 + P dd
;

whence s = / Va2 + k2d$

e, + 2tt

2 7rV«2 + k-.
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161. Tangent line and normal plane. If J^(xv yv sx) is the point

of tangeney, the equations of the tangent line are, by (1), § 155,

x — x, y — il z — 2,
* = 2

—

-n = 1, f-jN
dx

x
dy

x
dz

l
^ J

where dx
x
, dyv dz

x
are the respective values of dx, dy, dz at the

point Pv
The plane perpendicular to a tangent line at the point of

tangeney is called the normal plane to the curve.

By § 151, the equation of the normal plane to the curve at ij* is

dx
x
(x - aQ + dy^y - yj + dz^z - sQ = 0. (2)

Ex. Find the equations of the tangent line and the equation of the

normal plane to the helix

x = a cos 9, y = a sin 6, z= kd

at the point for which 6 = 0. Here x
x
— a, y x

= 0, z
x
= 0, and dx1

= 0,

dij = add, d~
1
= kdd. Hence the equations of the tangent line are
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9. Show that the surface (ax 4- byf = cz is a cylinder, and

describe its directrix and generatrix.

10. Describe the surface 36 x2 —12x + <dif + ±z 1 = 0.

11. All sections of a given right cylinder made by planes parallel

to the plane XOZ are ellipses of which the longest chord is 10 in.

and the shortest is 8 in. What is the equation of the cylinder '.'

12. Describe the surface x* 4- if + z 3 = '/ f .

13. Show that the surface z = a — vVJ 4- //- is a cone of revolul ion,

and find its vertex and axis.

14. Find the equation of a prolate spheroid, i.e. the surface gen-

erated by revolving an ellipse about its major axis.

15. Find the equation of an oblate spheroid, i.e. the surface gen-

erated by revolving an ellipse about its minor axis.

16. Describe the locus of the equation xa 4- -1 xy 4- 4 if — 4 .-.- = 0.

8 a9

17. Describe the surface z = —, 5 :—;•

'- + //- 4- 4 it-

is. Find the equation of the cone of revolution formed by revolving

the line z = 2x about OX us an axis.

19. Describe the locus of the equation -.>'- — 3x — 2 = 0.

20. Find the equation of a parabolic cylinder the elements of which

are parallel to OX and the directrix of which is in the plane YOZ.

//-
-A

21. Describe the surface '— + — + —.=1.
n- Ir r

4

22. Describe the surface if —(2a — //)(.-.'- + x2)— 0.

23. Describe the surface x'
2 — f — 2 ./ + 4 y — 0.

24. Find the equation of the cone of revolution formed by revolv-

ing the line 3// = 2x +1 about the line y =1 in the plane A'OT as

an axis. What are the coordinates of the vertex of the cone ?

25. Show that the surface ./•'+ 2f- 3 z
2+ 2 x - 12 y+ 1 2 z + 7 =

is a cone with its vertex at the point (—1, 3, 2). What are its cross

sections made by plunes parallel to the plane XOY?

26. Describe the surface (x — a)x2 + (•'• + «) if + -~") = 0.

27 . Find the equation of the ring surface formed by revolving the

ellipse 4-^=1 (a > b) about <>Y as an axis.
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28. Describe the surface 4 s2 = y
2
(9 — a;

2
).

29. If P(x, y, z) is situated on the straight line drawn from

P&v I/v -x)
to I\(x

2 , yi}
z
2)

so that P
1
P = k(P

x
P£, prove that

x = x
1
+ k(x

2
-x

1), y = y1
+ A;(y

3
-y

]),
z = z

1
+ k («a

- «
x
).

i //i + & *i + *a\
ig the middle point of

2 2 2

the straight line joining P
1
(a;

1 , y^ zj and P
2
(x

2 , y2 , z
2 ).

31. Find the equation of the sphere constructed on the straight

line joining (3, — 1, 3) and (5, 3, 5) as a diameter.

32. Find a point of the plane x+3y+z=0 equally distant

from the three points (1, 1, 1), (0,12, 1), (2, 1, 2).

33. Find the points distant 5 from the points (—2, — 2, 1),

(3, - 2, 6), (3, 3, 1).

34. Find the point of the plane x + 2y + 3p — 6 = equally

distant from the points where the plane is pierced by the three

coordinate axes.

35. Find the equation of the sphere passing through the points

(- 1, 1, - 5), (- 2, 4, 3), (- 5, 0, - 2), (7, 1, - 1).

36. A point moves so that its distances from two fixed points are

in the ratio k. Prove that its locus is a sphere or a plane according

as k =£ 1 or k = 1.

37. Prove that the locus of points from which tangents of equal

length can be drawn to two given spheres is a plane perpendicular

to their line of centers.

38. A straight line makes the same angle with the three coordi-

nate axes. What is that angle ?

39. Prove that a straight line can make angles 60°, 45°, 60°

respectively with the coordinate axes.

40. Find the direction cosines of the straight line determined by

the points (1, 3, 5), (2, - 1, 4).

41. A straight line makes an angle of 30° with OX and equal

angles with O Y and OZ. What is its direction ?

42. Find the angle between the two straight lines joining the

origin to the points (1, 2, 1) and (3, — 1, 3).
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43. Prove that the three points (5, 3, - 2), (4, 1, - 1), (2, - 3, 1)

lie on one straight line.

44. Through the point (1, — 3, 1) of the straight line having the

direction 1:2:3a straight line is drawn to the point (4, 2, 0). Find

the angle between the two lines.

45. Prove that P^-l, 2, 1), P2 (2, 3, 5), and P,(4, 5, 3) are the

vertices of a right triangle.

46. Find the equation of a plane passing through the point

(— 2, 3, — 4) parallel to the plane x — 3y -{- 7 z — 11 = 0.

47. Find the equation of a plane passing through the point

(5, — 2, 7) equally inclined to the three coordinate axes.

48. Find the equation of a plane perpendicular to the straight

line joining the points (1, 3, 5) and (4, 3, 2) at its middle point.

49. Find the equation of a plane passing through the point

(1, 1, 2) perpendicular to the straight line determined by the points

(1, - 1, 1) and (3, 1, 3).

50. What is the angle between the planes 2x-\- y — 72 + 11 = 0,

5a5-2y + 5«-12 = 0?

51. Find the angle between the planes 3x + 2 y — 4 = 0, 2y -\-3z

+ 13 = 0.

52. Find the equations of the straight line determined by the

points (6, 2, - 1) and (3, 4, - 4).

53. What are the equations of the straight line determined by

the points (2, 3, 5) and (1, -1,5)?

54. Find the equations of a straight line passing through the

point (0, 3, 5) perpendicular to the plane x + 3y + 5z — 9 = 0.

55. A straight line is drawn through the point (4, 6, — 2) parallel

to the straight line drawn from the origin to the point (1, — 5, 3).

What are its equations ?

56. A straight line making angles 60°, 45°, and 60° respectively

with the axes of x, y, and z passes through the point (2, — 2, 2).

What are its equations ?

57. A straight line passes through the point (2, — 5, 2) parallel

to OY. What are its equations ?

58. Find the direction cosines of the line 4cc — 3y — 4 = 0,

12a; _ 3s -15 = 0.
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59. Find the direction cosines of the line 3x + y — 1 z — 6 = 0,

2a;-3y + 4»-7=0.
60. Find the equations of the straight line passing through

(1, 3, — 5) parallel to the line y = 3 a- — 14, 7 x — 2z = 17.

61. Prove that the three planes x — 2 y + 1 = 0, 7 //
— z — 4 = 0,

7x- 22 + 6=0 are the lateral faces of a triangular prism.

62. Find the angle between the line 3x — 2 y — 4 = 0, y + 3z

+ 5 = and the plane 3 x + y - 2 z + 31 = 0.

63. Find the distance of the plane 2* + 3s +11= from the

origin.

64. Find the locus of points distant 3 from the plane x + y + z

+ 3 = 0.

65. Find the locus of points equally distant from the planes

x + 2 y + 3 z + 4 = 0, x - 2 y + 3 z - 5 = 0.

66. Find a point on the line 3x — 2 y — 11=0, 2x—y— z — 5 =
equally distant from the points (0, 1, 1) and (1, 2, 1).

67. Find the equation of the plane passing through the point

(2, — 3, — 2) perpendicular to the line 2 x + y — 5z — 7=0, y + 2 z

-4 = 0.

68. Find the equation of a plane four units distant from the

origin and perpendicular to the straight line through the origin and

(1, - 5, 6).

69. A straight line is drawn from the origin to the plane 2x + y
+ 2 z — 5 = 0. It makes equal angles with the three coordinate axes.

Find its length.

70. Find the coordinates of a point on the straight line determined

by (- 1, 0, 1) and (1, 2, 3) and 3 units distant from (2, - 1, 1).

71. Find the foot of the perpendicular drawn from (3, — 2, 0) to

the plane 2x + y — 4«+17=0.

72. Find the length of the projection of the straight line joining

the points (1, 2, 1) and (2, —1, 2) upon the straight line determined

by the points (2, 1, 3) and (4, 4, 6).

73. Find the equation of the plane determined by the three points

(1, 3, - 2), (0, 2, - 10), and (- 2, 4, - 6). '

74. Find the direction of the normal to the plane determined by

the three points (1, 2, 3), (-1, - 2, - 3), (4, - 2, 4).
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75. Find the point of intersection of the lines

fs + 2y-3 = 1 f3y + 5* + 15 = 01

\x + y- 2*- 9 = 0/
and l3z-2*-15 = 0/

76. Prove that the lines

\2x-2>/-z + 3 = 0J U.,-2.~-3 = 0j

intersect at right angles.

77. Prove that the two lines

fx + 2y-z + 7 = \ Ux-7y + 8s + 19 = 01

\2x-y + 2z +U = 0}
an U-3y + 3s + 4 = J

are coincident.

78. Prove that the two lines

r3a._2.y-7=01 (x - z = 1

\2 //
- 3 « + 7 = J 13 .r - 4 // + 3 c - 8 = J

can determine a plane, and derive its equation.

79. Prove that the two lines

f2,+3
// + 4 = 01 f* + 2y + * + 2 = 1

\2y + « + 3 = J

,U l2x-y + 2 2 -9 = 0/

cannot determine ;i plane.

80. Prove that the two lines

Cx - 2 // - 10 = 01 f7a; - 3 --11=0 1

\4 y - z + 17 = J

aD<
17a; + 14 y - « + 43 = Oj

can determine a plane, and derive its equation.

81. Find the equation of a plane passing through the line

./•+// + 3-- — 7 = 0, 3x + 2y — a = and perpendicular to the

plane 2 x + //
- 2 .? + 11 = 0.

82. Find the equation of a plane passing through the points

(—2, 3, —2), (2, — 1, 2) perpendicular to the straight line deter-

mined by the points (0, 0, 0), (1, 2, 1).

83. Find the equation of the plane determined by the point

(1, 5, — 2) and the straight line passing through the point (6, — 2, 4)

equally inclined to the coordinate axes.

84. Find the equation of the plane passing through the points

(0, 3, 2), (2, - 3, 4) perpendicular to the plane Gx+3y-2z + 3 = Q.



332 SPACE GEOMETRY

85. Find the equation of a plane determined by the point

(2, 3, 2) and the straight line passing through (1, — 1, 1) in the

direction 1:2:3.

86. Find a point on the line 5x + 3y — 1=0, 3y — 5z — 11 =
equally distant from the planes 3 x + 3y — 2 = 0, 4 x + y + z + 4 = 0.

87. Find the equations of the projection of the line x -f- y + z

-2 = 0, a- + 2?/ + s-2 = upon the plane 3x + y + 3z — 1 = 0.

88. Find the length of the projection of the straight line joining the

points (2, 3, 4), (0, —3, 1) upon the straight line
' ='——= '"

i}

89. Prove that the plane 5 x -f- 3 y — 4 z — 35 = is tangent to

the sphere (x + l)2 + {y - 2)
2 + (« - 4)

2 = 50.

90. Find the center of the circle cut from the sphere x2 + y
2

+ z2 = 49 by the plane 4 cc + 6 y + 12 * - 49 = 0.

91. Find the equation of a plane passing through the line

x + 3y + 3z + l = 0, y + 2z + l = Q and parallel to the line

2x + y-z = 0,3x + 2z-7 = 0.

92. Find the center of a sphere of radius 7, passing through the

points (2, 4, — 4) and (3, —1,-4) and tangent to the plane 3 x — 6 y
+ 2z + 51=0.

93. What kind of line is represented by the equations x2 + z?

_ 4 y = 0, y-2 = 0?

94. What kind of line is represented by the equations x2 — 9y
-36 = 0, x + 5 = 0?

95. What is the projection of the curve y
2+ z2— 6 x = 0, z2 = £y

on the plane XOY?
96. What is the projection of the curve x2 + y

2 = a2

, y
2 + ,-

2 = a2

on the plane XOZ ?

97. Find the projection of the curve x2 + 3 y
2 — z2 = 0, a?

2 + y
2

— 2 a; = on the plane XOZ.

98. Find the projection of the curve x2 + 2 y
2 — z

2 = 1, 2 x2 — y
2

= 8«on the plane YOZ.

99. Show that the curve x2+ y
2 = a2

, y = z is an ellipse. (Rotate

the axes about OX through 45°.)

100. Find the projections of the skew cubic x = t, y = t
2

, z = £
s

on the coordinate planes.
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101. Prove that the projections of the helix x = a cos 6, y = a sin 0,

z = kd on the planes XOZ and YOZ are sine curves, the width of

each arch of which is kir.

102. What is the projection of the curve x = e', y = e~\ z = t V5
on the plane XOV?

103. Turn the plane XOZ about OZ as an axis through an angle

of 45°, and show that the projection of the curve x = e', y — e~ \

z = t V2 on the new XOZ plane is a catenary.

104. Show that the curve x = tr, y = 2t, z = t is a plane section

of a parabolic cylinder.

105. Prove that the skew quartic x = t, y = t
s
, z = t* is the inter-

section of an hyperbolic paraboloid and a cylinder of which the

directrix is the cubical parabola y = xs
.

106. The vertical angle of a cone of revolution is 90°, its vertex

is at O, and its axis coincides with OZ. A point, starting from the

vertex, moves in a spiral path along the surface of the cone so that

the measure of the distance it has traveled parallel to the axis of

the cone is equal to the circular measure of the angle through which

it has revolved about the axis of the cone. Prove that the equations

of its path, called the conical helix, are .;• = t cos t, y = t sin t, z = t.

107. Show that the helix makes a constant angle with the elements

of the cylinder on which it is drawn.

108. Find the angle between the conical helix x=tcos t, y=t8in t
}

z = t and the axis of the cone, for the point t = 2.

109. Show that the angle between the conical helix x = t cos t,

y = t sin t, z = t and the element of the cone is tan-1—-=•J V2
110. At what angle does the curve x = a (1 — cos 6), y = a sin 6,

z = <i6 intersect the straight line passing through the origin and
making equal angles with the three coordinate axes ?

111. Find the length of the curve x = t
2

, y — 2 t, z = t from the

origin to the point for which t = 1.

112. Find the length of the curve x = e*, y = t~', z = t V2
between the points for which t = and t = 1.

113. Find the length of the curve x = t
2

the origin to the point (9, 9, 6).
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114. Find the length of the curve x = t cos 2 1, y=ts'm2t,

3» = 4i* between the points for which £ = and t = l.

115. Find the equations of the tangent line and the equation of

the normal plane to the curve x = t~, y = 2 t, z = t at the point for

which t = 1.

116. Find the equations of the tangent line and the equation of

the normal plane to the curve x = e*, y = e~*, » == t V2 at the point

for which t = 0.

117. Find the equations of the tangent line and the equation of

the normal plane to the curve x — 2 t'
1 + 1, y = t — 1, z = 3 t

3 at the

point where it crosses the plane XOZ.

118. Find the equations of the tangent line and the equation of

the normal plane to the conical helix x = t cos t, y = t sin t, z = t

IT
at the point for which t — — •

119. Find the equations of the tangent line and the equation of

the normal plane to the skew quartic x = t, y = t
3
, z = t

A at the

point for which t = 1.



CHAPTER XV

PARTIAL DIFFERENTIATION

162. Partial derivatives. Consider f(x, y~), where x and y are

independent variables. We may, if we choose, allow x alone to

vary, holding y temporarily constant We thus reduce /'(./•. //) to

a function of x alone, which may have a derivative, defined and

computed as for any function of one variable. This derivative

is called the -partial derivative off(x, y) with respect to x, and is

cf( r //)

'

denoted by the symbol '
.

J
'

• Thus, by definition,

cf(.r, //) _
j hn ,

f(r + Ax, y)-f(x, y)

CX AiiO Ax

Similarly, if ./• is held constant, f(x, y) becomes temporarily a

function of //, whose derivative is called the partial derivative of

f(x, //) ivith respect /<< //, denoted by the symbol ' '

' —
• Then

CIJ
z/(><>/)_ Um f(^y + ^~)-f(^y)

(2)
cy ŷ =o Ay

Graphically, if 2 =/(./-, y) is represented by a surface, the rela-

tion between z and x when y is held constant is represented by

the curve of intersection of the surface and the plane y = const.,

and — is the slope of this curve. Also, the relation between z
ex

and y when ./• is constant is represented by the curve of inter-

section of the surface and a plane x = const., and — is the slope

of this curve.

Thus, in fig. 204, if PQSR represents a portion of the surface

z =f(x, y), PQ is the curve y = const., and PI! is the curve

x = const. Let P be the point (x, y, z), and LK=PK'=Ax,
LM= PM' = Ay.
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Then LP=f(x,y), KQ=f(x + Az, y), MR=f(z,y+ Ay-),

K'Q=f(x + Ax,y)-f(x,y), M'Ji=f(x, y + Ay) -f(x, y), and

dz
t •

K'Q
1 * C—- = Lim = slope ot PQ,

dx PK'

dz
T

. M'B . , „—- = Lim : = slope of PR.
dy PM' l

z
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•;fg (z, y, • • •, z). To compute these derivatives, we have to

apply the formulas for the derivative of a function of one variable,

regarding as constant all the variables except the one with respect

to which we differentiate.

Ex. 2. /= x3 — 3 x2
y + y

3
,

Ex. 3. /= sin (a 2 + y
2
),

V _
dx
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Also — in (2) means the limit of the ratio of the increment of r to that

of ./ when y is constant. Graphically (fig. 206), OM = £ is increased byMN =

PQ = Ax, and JIQ = A/- is thus determined. Then — = Lim —— = cos 6.

dx dr Sx c6
dX PQ

It happens here that — =— But — in (1) and — in (2) are neither equal
. . Br dx dd

V J
ex

K J L

nor reciprocal.

7
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Similarly, the third partial derivatives of f(x.

number, namely,
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The expression for Az may be modified as follows

:

The line N'S may be separated into two portions by drawing

from Q a line parallel to K'N meeting NS in N". Then

N'S = N'N" + N"S= K'Q + N" S. (3)

The line K'Q is connected with the slope of PQ by the

relation K, ~ „

Lim -—r = slope of PQ = ~,
PA' ex

the limit being taken as PK' = Ax approaches zero.

K'Q dz
Hence —- = he,,

PK' dx *

where e
x
approaches zero as Ax approaches zero, so that

a"M! +
%>
a*- (4)

Also the line N"S is connected with the slope of QS by the

relation N,, „

Lim —~— = slope of QS,

the limit being taken as QN" = Ay approaches zero. But as

Ax = 0, the curve QS approaches the curve PR. Hence we are

justified in saying

N"S dz
Lim = slope of PR = —

,

QN" F
dy

the limit being taken as both Ax and Ay approach zero.

N"S dz
Hence -= |-e„,

QN" dy 2

where e
2
approaches zero as Ax and Ay approach zero, so that

**«-(!+,,)ah (5)

since QN" = PM' = Ay.

Substituting from (4) and (5) in (3) and then in (2), we
have

j, o

Az = £ Ax + ^ Ay + e
x
Ax + e^Ay. (6)
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In a manner analogous to the procedure in the case of a

function of one variable (§ 77), we separate from the incre-

ment the terms e
J
Az + e„Ay, call the remaining terms the

total differential of the function, and denote them by dz. The
differentials of the independent variables are taken equal to

the increments, as in § 77. Thus, we have by definition, when
z is a function of two independent variables x and y,

, dz , dz , ,„^
dz = — dx +— dy. (7)

dx Cy K y

In (7) dx and dy may be given any values whatever. If,

in particular, we place either one equal to. zero, we have the

partial differentials, indicated by dxz and d
y
z. Thus

dxz = — dx, d z = — dy.
ex " dy

A partial differential expresses approximately the change in

the function caused by a change in one of the independent

variables ; the total differential expresses approximately the

change in the function caused by changes in all the inde-

pendent variables. It appears from (7) that the total differen-

tial is the sum of the partial differentials.

Ex. The period of a simple pendulum with small oscillations is

•Wj-T
U

. \ TV -I

J y.o

Let / = 100 cm. with a possible error of }, mm. in measuring and

T = 2 sec. with a possible error of T ^ ff
sec. in measuring. Then dl = ± JG

Also dg = ±£dl.-%£dT,

and we obtain the largest possible error in g by taking dl and dT of oppo-

10.36.

site signs,
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165. Extension to three or more variables. The results of the

previous article may be extended to the cases of three or more

independent variables by reasoning which is essentially that just

employed, without the geometric interpretation, which is now

impossible. For example, consider

u=f{x, y, z~). (1)

Let x, y, z be given increments Ax, Ay, Az, and let

u' =f(x -{-Ax, y + Ay, z + Az).

Then Am = u' — u.

For convenience, introduce new functions

u
x
=f(z + Ax, y + Ay, z),

u
2 =f(.x + A^' y> g>

(2)Then
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Then du is the part of this expression which does not contain

ev e'2, or e'
3 , with the increments of the independent variables

replaced as usual by their differentials. That is,

du = — ate 4 du -\ dz. (4)
OX C

I
i ' cz

The extension to more variables is obvious.

166. Directional derivative of a function of two variables. The
result of § 164 may be used to find the slope of PS (fig. 204),

which is a curve cut out of the surface z —f(z, y) by any

plane through LP. Draw the lines FN1 and LN as shown in

the figure, and let r , r „,rt .

ft LN= PX' = Ar,

where r is the distance measured from some point on the line

LN produced. Denote by 6 the angle KLX= h" /'X'. which

is equal to the angle made by the ['lane of PS with the plane

ZOX. Then __ . _ „ .

T.k A >• I M A a
6,

LK Ax n LM Ay= cos 0, = —- = sin
LX A/- LN A/-

and the slope of PS= Lim ' - = Lim -— =— 1 the limit being
PN A/- dr

taken as S approaches P along PS.

From (6), § 164,

A* cz Ax cz Ay Ax A//— =
1 - + e he.—

-

A/- fa; A/- cy Ar J Ar " Ar

= — cos 9 +— sin 4- e cos # 4- e sin 0.
ax- e y

Taking the limit, we have

'lz = c
-l cos # + ££ sin # = s iope of P&

ar ex £*/

Now — measures the rate of change of z in the direction

dz dz
LK, — the rate of change in the direction LM. and — the rate

C 'J
. .

dV
. dz

of change in the general direction LN. The derivative — is

called the directional derivative in the direction of /\
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Ex. The temperature u at any point of a plate is given by the formula

u — — - Find at the point (2, 3) the rate of change of temperature

in the direction making an angle of 30° with OX.

w.i.™, 8u - 2x du - 2 n
dx
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This result (2) has an important application when the curve

along which S moves is on the plane XO Y. For then z = 0, a

constant, and, from (2),

f +TT= ' (3)
cx cydx

where -j- is the slope of this curve, as shown in (1). We express

this result in the following theorem:

1. The value of -j- may he found from the equation

/(*,£)=o

by the formula ¥. +
dl^l = 0.

Cx Cy ax

Again, let z be defined as an implicit function of x and y by

the equation F^ ^ ^ _ 0>

If we hold y constant temporarily, the case reduces to the one
dz

discussed in theorem 1, with z in place of y and — in place
7 OX

of -j— Similarly, if we hold x temporarily constant, we get

theorem 1 with change of letters. Hence

:

2. The values of— <<n<l ' may be found from tin- equation
dy

Ffr y, g)=0

by the formulas -—(-—-—- = 0,
cx cz ox

cF c_Fdz__

dy cz cy

168. The tangent plane. In fig. 204, let P be given the fixed

coordinates (x^ yv z
x
). The tangent line to PQ in the plane

y = y 1
is, by § 76,

/g
,

-V (*),<—'*> (1)

and the tangent line to PR in the plane x — x
1

is
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Both of these lines lie in, and hence determine, the plane of

which the equation is

for this equation reduces to (1) when y = y and reduces to

(2) when x = %
x
.

This plane is called the tangent plane to the surface at the point

We shall prove that the plane (3) contains all tangent lines to

the surface z=f(x, if) which pass through P.

The line through the two points P and S has the direction

Ax : Ay : As. Its equations are therefore

x - x
x = y- y x

Ax Ay Az

A-

Ax
(x-x\

(4)

(5)

As the point S approaches the point P, the line (5) ap-

proaches as a limit a tangent line at P, and the equations

of this tangent are

'dz dz dy

ex cy dx/i l

(6)

An easy combination of these equations gives (3) as an equation

satisfied by any tangent line. Hence the theorem is proved.

If the equation of the surface is given in the form

F(x, y, Z)=0, (?)
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the equation of the tangent plane may be found without solving

for z. For, from theorem 2, § 107,

d_F

dz _ dx

dx~~d£
~dz~

cF

dy
_

dF
cz

Substituting these values in (3) and making a few simple

changes, we have as the equation of the tangent plane,

(fKH^M +(f),H)- -
The straight line perpendicular to the tangent plane at the

point of eontaet is the normal to the surface. Its equations are

(9)

(10)

x — X
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Ex. 2. Find the tangent plane and the normal line to the ellipsoid

TT dF 2 x dF 2 y dF
Here

dx a'
2 dy 0'z dz c2

Hence the tangent plane is

o r o w o -

a2 i2 c2

since -L + ^L 4. II = l,
a2

ft
2 c2

The normal line is _L = 2 1! = I 11

.

£1 2/i £1

a2 b" c2

If a curve is denned as the intersection of two surfaces by

the equations

f(x,y,z)=0, F(x,y,z)=0,

its tangent line is evidently the intersection of the two tangent

planes to these surfaces. The equations of the tangent line are

therefore two equations of the form (8). The direction cosines

of the tangent line can be found by the method of § 156. The
normal plane may be found by the method of § 151.

169. Maxima and minima. In order that the function f(x, y)
shall have a maximum or a minimum value for x = x

%,
y = yx,

it is necessary, but not sufficient, that the tangent plane to the

surface z =f(x, y~) at the point (.^, yx
, z^) should be parallel

to the plane XOY. This occurs when (y)= 0,
(f-)=°-

These

are therefore necessary conditions for a maximum or a mini-

mum, and in case the existence of a maximum or a minimum
is known from the nature of the problem, it may be located

by solving these equations.

Ex. It is required to consflrnct ont of a given amount of material a cistern

in the form of a rectangular parallelepiped open at the top. Required the

dimensions in order that the capacity may be a maximum, if no allowance

is made for thickness of the material or waste in construction.
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Let x, y, z be the length, the breadth, and the height respectively. Then
the superficial area is xy + 2 xz + 2 yz, which may be placed equal to the

given amount of material, a. If v is the capacity of the cistern,

axy — x2
t/
2

V = XlIZ = - — •

2(x + y)

rr\ &° _ (a ~ - x
ll
~ x2

) V
2 ? v _ (a ~ 2 xy — y") x2

d~x~ 2(x + y)
2 JJj~ 2(x + y)

2

For the maximum these must be zero, and since it is not admissible to

have x = 0, y = 0, we have to solve the equations

a — 2 xy — x2 = 0,

a — 2 xy - y
2 = 0,

1 fa

,<V;-
Consequently, if there is a maximum capacity, it must In- for these dimen-

sions. It is very evident that a maximum does exist; hence the problem

is solved.

which have for the only positive solutions x = y = -%/- j whence z

More generally, if a function of three or more independent

variables has a maximum or minimum when all the variables

change in any way, it must have a maximum or minimum when

each changes alone. Therefore, iff(x, y, z) has a maximum or

a minimum, it is necessary, by § 89, that

Sf-ov Z-o, 2=0.
ex cy cz

170. Exact differentials. We have seen that if z =f(x, y), then

, dz , cz , H ^

When the function f(.r, y) is known, the partial derivatives —
~ dx

and — may be found, and the second member of (1) is of

the form Mdx+Ndy, (2)

where M and JV are functions of x and >/. In § 164, (1) was

called a total differential ; it will now be called an exact differ-

ential, to emphasize the fact that it may be exactly obtained

by differentiation.
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Now expressions of the form (2) arise in practice by other

methods than by differentiation, or they may be written down

at pleasure. For example, we may write arbitrarily the two

following expressions
:'

(4 x»- 2 ,-/) dx + (4f- 2 xy) dy, (3)

(a?+xy)dx + y*dy. (4)

It is important, therefore, to know whether an expression

of the form (2) is always exact ; that is, whether it is always

possible to find z=f(x, y) so that (2) is equivalent to (1).

In discussing this question we note first that if (2) is

equivalent to (1), we must have

— = M, — = N, (5)
ox dy

d'
2
z dM dN

whence t-^- = -— = -—.
oxcy dy ex

Hence, if Mdx + Ndy is an exact differential, it is necessary

that d_M_d_N

dy ~ dx
'

^ '

From this it appears that (4) is not an exact differential,

since — = x and — = 0. On the other hand, (3) may possibly

dM . . dN ,

be exact, since —— = — 4 xy and —— = — 4 xy.
dy dx

Let us now assume that the condition (6) is met, and try to

find z. We may integrate the first equation of (5) consider-

ing y as a constant. The constant of integration then possibly

contains y and must be expressed as a function of y. Then

/Mdx + <f>(y}. (7)

Substituting this in the second equation of f5), we have

yCMdx + V<iy-)=N,

4f(jj)=N~fMte. (8)
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By hypothesis the first member of (8) does not contain x.

Hence the second member of (8) must be free from x or the

work cannot go on. Now the condition that an expression shall

be free from x is that its derivative with respect to x shall be

zero. Hence, from (8), we must have

d
*-fMdx= 0. (9)

But
ex

dx <'<!!,

tyj <!l\''J J
CU

The condition (9) is then simply (<!), which is fulfilled by

hypothesis.

From (8), the value of <£(//) can now be found and substi-

tuted in (7). The value of z is thus found.

We have accordingly the following theorem, the converse of

the one stated above.

Tf— = -^—t the expression Hfdx-\- Ndy is an exact differential
cy ex

dz, and i\r—^_ v—

—

dx dy

The process of finding z is illustrated in Kxs. 1 and '2. Ex. ;,
<

shows how the process fails if it is wrongly applied to an

expression which is not an exact differential.

Ex. l. (4 x* - 2 ./•//-)</./• + ( I y* - 2 x*y)dy.

Here —— =— 4 xy — — Hence the expression is equal to dz, and
By dx

^ = 4x*-2xf, (1)

[y*-2x*y. (2)

Integrating (1) with respect to x, we have

z = x*-xY+f(y). (3)
Substituting in (2), we have

-2x*y+f(y) = ±tf-2xhn
whence f (y) = 4 y

s
,

and / {
,/) = yi+C.

Substituting in (1), we have z — x* — x2y- + y* + C.
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Ex. 2. (I JL=) dx + _L_ dy.

V x Vf - xV Vf - x2

dM x dN
Here —— = - — The expression is therefore an exact

Sy ^2 _ x*)l dx

differential dz, and a ,

(1)

(2)

dx X x-VyZ-x*

dz 1

dV V?/2 - x2

Integrating (2) with respect to y, we have

z = log (y + V?/2 - x2
) + f(x). (3)

Substituting in (1), we have

~ x
+ f(x) = 1 y

.

V?/2 - x2
{y + Vf - x2

)
* a- y[y~* _ X2

'

whence f (x) = 0,

and f(x) = C.

Substituting in (3), we have z = log(y + V#2 — x2
) + C.

Ex. 3. (x2 + xy) dx + tfdy.

Here = x, — = 0,
dy dx

and the expression is not exact. If one wrongly put

and integrated (1) with respect to x, he would have

Substituting in (2), he would have

2 + /'(.'/) = >/
3

x2

whence /'(#) = if — —•

But /'(?/) should be a function of ?/ alone, and the last equation is absurd.

Equations (1) and (2) are therefore false.
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171. Line integrals. The expression Mdx+Ndy occurs in

certain problems involving the limit of a sum as follows

:

Let C (fig. 207) be any curve in the plane XOY connecting

the two points L and K, and let M and N be two functions of

x and y which are one-valued and continuous for all points

on C. Let C be divided into n segments by the points Pv i£,

P
z ,

- • -, Pn _v and let Ax be the pro-

jection of one of these segments on

OX and Ay its projection on OY.

That is, Ax= xi+1— x„ Ay = yi + 1
— yn

where the values of Ax and Ay arc

not necessarily the same for all

values of i. Let the value of M for

each of the n points L, Pv P,, • • -, ° pIG 2o7

P
l _ 1

be multiplied by the correspond-

ing value of Ax, and the value of N for the same point by

the corresponding value of Ay, and let the sum
i=n-l

%[M(x„ y{
)Ax+N(z

{, yJAy]

be formed.

The limit of this sum as n increases without limit and Ax
and Ay approach zero as a limit is denoted by

/J(C) ( Mdx+Ndy),
'(C)

and is called a line integral along the curve C. The point K may
coincide with the point L, thus making C a closed curve.

Ex. 1. Work. Let us assume that at every point of the plane there acts

a force which varies from point to point in magnitude and direction. We
wish to find the work done on a particle moving from L to A' along the

curve C. Let C be divided into segments, each of which is denoted by As

and one of which is represented in fig. 208 by PQ. Let F be the force

acting at P, PR the direction in which it acts, PT the tangent to C at P,

and 6 the angle PPT. Then the component of F in the direction PT is

F cos 6, and the work done on a particle moving from P to Q is F cos 6 As,

except for infinitesimals of higher order. The work W done in moving

the particle along C is, therefore,

TF = LimV Fcoa 6As= f Fcos Ods.
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Now letabe the angle between PR and OX, and 4> the angle between P77

and ".V. Then = <jt — a and cos 6 — cos «£ cos a + sin
<f>

-sin a. Therefore

X(7''
cos <£ eo.s a + 7'

7

sin
<f>

sin a) ds.

But /•' cos a is the component of force parallel to OX and is usually

denoted by A'. Also F sin a is the component of force parallel to ()Y

ami is usually denoted by )'. Moreover,

COSffids = dx and fiin<jn/s = dy (§ !»1 ).

Hence we have, finally,

=
f (Xdx + Ydy).

Ex. 2. Heat. Consider a substance in

a given state of pressure p, volume v, and

temperature t. Then p, v, t are connected

by a relation f(p, v, t) = 0, so that any

two of them may be taken as independent

variables. We shall take t and v as the

independent variables and shall therefore work on the (/, r) plane.

Now if Q is the amount of heat in the substance and an amount dQ is

added, there result changes dv and dt in v and t respectively, and, except

for infinitesimals of higher order,

dQ = Mdt + Ndv.

Hence the total amount of heat introduced into the substance by a

variation of its state indicated by the curve C is

Q= f (Mdt + Ndv).
d(C)

Ex. 3. A rea. Consider a closed curve C (fig. 200) tangent to the

straight lines x = a, x = b, y = d, and y = e, and of such shape that a

straight line parallel to either of the coordinate axes intersects it in

not more than two points. Let the

ordinate through any point M inter-

sect C in P
x
and P

2 , where MP
X
= i/

x

and MP„ = ?/„. Then, if A is the area

inclosed by the curve,

A = f !h',x - f Vidx

= — f !l-i<
lx - f !li

,lx

= -
f ydx,

the last integral being taken around C in a direction opposite to the

motion of the hands of a clock.

:

E
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Similarly, if the line NQa
intersects C in Q x

and Q.2 , where iVQj = x,

and X'l, — ./;.„ we have

l=X>-X>

./(C)

the last integral being- taken also in the direction opposite to the motion

of the hands of a clock. By adding the two values of .1, we have

2.1 = f (-ydx + xdy).
,

If we apply this to find the area of an ellipse, we may take .;• = a cos
<f>,

y = h sin </> (§ 54). Then . I = \ C^abdtft = irab.

If the equation of the curve C is known, the line integral

may be reduced to a definite integral in one variable. In

general, the value of the line integral depends upon the curve

C and not merely on the position of the points L and A". This

is illustrated in Ex. 4. If, however, Mdx + Ndy is an exact

differential rfz, we shall have

^(Mdx +Ndy)=pdz = z^

where z and z are the values of z at the points A and K. This

result is, in general, independent of the curve <\ though special

consideration may be necessary if z may take more than one

value at A or A".

The integral of an exact differential taken around a closed

path is, in general, zero ; while the line integrals of other dif-

ferentials around a closed path are not zero.

(ydx - xdy).
(0, 0)

Let us first integrate along a straight line connecting and P
x
(fig. 210).

The equation of the line is y = — r, and therefore along this line y dx — x dy= 0,
x
i

and hence the value of the integral is zero.
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Next, let us integrate along a parabola connecting O and Pv the equation

V?
of which is y

2 — — x. Along this parabola

C **-«-5fer^*-i 'u'/i-

Next, let us integrate along a path consisting of the two straight

lines OM
x
and M

X
PV Along OMv y = and dy = ; and along M

1
PV

x — x
l

and dx = 0. Hence the line integral

reduces to .—
f

l

x
1
dy =—x1yvJ o

Finally, let us integrate along a path consist-

ing of the straight lines ON
1
and N

1
PV Along

ONv x = and dx = ; and along N
1
PV y — yx

and e/y = 0. Therefore the line integral reduces

t0 f
Xl

y1dx = x1yv"0

Ex. 5.

Here

r vd — ydx + xdy
Fig. 210

Therefore
I,(x , y )

ydx + xdy

x2 + y
2

ydx + xdy

(1 ( tan-
!"

c
z + y

1
r>dd=e

x
-<

If the curve C does not pass around O, Q
x
will be the angle shown in

the figure (fig. 211). If, however, C is drawn around the origin, the final

value of 6 is 2 ir + 6V and the value of

the integral is 2ir + 6
1
—

O
.

The value of this integral around a

closed curve is zero if the curve does not

inclose the origin, and is 2 it if the curve

winds around the origin once in the posi-

tive direction.

Ex. 6. Work. If X and Y are compo-

nents of force in a field of force, and

—— = —- > then the work done in moving

a particle between two points is inde-

pendent of the path along which it is moved, and the work done on

a particle moving around a closed curve is zero. Also there exists a

function <£, called a force function, the derivatives of which with

respect to x and y give the components of force parallel to the axes
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of x and y. Such a force as this is called a conservative force. Examples

are the force of gravity and forces which are a function of the distance

from a fixed point and directed along straight lines passing through

that point.

If the components of force X and Y in a field of force are such that

— 9* — i then the work done on a particle moving between two points
cy dx

depends upon the path of the particle, the work done on a particle moving
around a closed path is not zero, and there exists no force function.

Such a force is called a nonconservative force.

Ex. 7. Heat. If a substance is brought, by a series of changes of tem-

perature, pressure, and volume, from an initial condition back to the same

condition, the amount of heat acquired or lost by the substance is the

mechanical equivalentof the work done, and is not in general zero. Hence

the Line integral Q = C(M<lt + X</r) around a (dosed curve is not zero.

and there exists no function whose partial derivatives are .1/ and N. In

fact, the heat Q is not a function of / and v, not being determined when
t and v are given.

172. Differentiation of composite functions. It is frequently

necessary to differentiate with respect fco a variable a Function

of a function of that variable. Several cases of this will now
be discussed.

1. Consider /(h), where u = $(x).

Then #«#*/*(«)*!. (1)
dx dudx J K J dx K J

This has been proved in § 82.

2. Consider /(m), where ?/ = (/>(>, //).

T>1 Of df C II .,
'II . .

Then
ti
= t,^ = >( " ,

,r

-

<2 >

The proof of this formula is like that of (1), the only

difference being that

T . Af cf T . Am du
Lun-^-=f-, Lim— = — •

Ax ox Ax ex



358
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4. Consider _f(u, v), where u = <j>(x, y), v = ty(x, y~).

Then %JL*L+ %.*
cx at cx cv ex

\ (4)
cf cf cu cf cv

by cu dy dv dy

The proof is like that of (3).

c - d-
Ex. 4. If z =f(x - y, y - x), prove — + __ = 0.

Place x — y — «, y — x = v. Then z = /'(«, v), and

cz _ cf du if dv _ cf _ cf

cx in (i- dv dx du dv

dz _ df du dfdv __ df df

£# 8u dy cr c;i cu c r

By addition the required result is obtained.

Ex. 5. Let it be required to change ! and - from rectangular coor-
dx By

dinates (x, //) to polar coordinates (r, #), where ./• = rcosO, y — /-sin#, and

/is a function of x and y.

From Ex.5. §16

whence

cr

dx
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The extension of all the foregoing relations to cases involving

more variables is obvious.

02 y 32 y
Ex. 6. Required to express —- H in polar coordinates, where V is

a function of x and y.
dx2 dy2

„ v . dV dV ,. aFsin0
t rom JirX. 5, — =— cos a - ,

dx dr dd r

BV dV . a ,
dVcoad

dy dr dd r

Then, by (4),

d2 V dVdV a BVain'Oldr ,
dVdV Q aFsin0~la0

Vd2V a d2 V sin0
,

a F sin 01 a- ^V cos & — TT^Ti ^ ~K 7T cos "

\_dr2 drdd r dd r2 J

,
ra2 F Q e2 Fsin0 dV . a aF cos 01/ sin0\

+ -k cos xr — sin x
LdrdO dd 2 r or dd r ]\ r J

&V 9A a2 F sin cos ?2 Fsin2
,
dV sin2

o 5Fsin0cosi
=^ co^- 2^0

—r— +w— +
-d7-T-

+ 2 Te^>—
Similarly,

d2 V d2 V . 2/1 , n c 2 Fsin0cos0
,
a2 Fcos 2

,
aFcos 2

o aFsin0cosi

dy* dr2 drcd r dd* r2 dr r dd r2drcd
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PROBLEMS

Find ;r- and — > when

1. .--^- 4. s = log (>/ + Vy2 -
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l

:;

.v

20. Ii' z = ey sin (x — ?/), find

21. If z = log(xa + y
2

), prove ^4 + Tl = 0-

22. If ; = tan (y 4- aa) + (//
— a#)^j prove ~ = a?

—

~

2
-

Verify ^—r- = ;—tt- 1 when :

23. » = a^ + 2ye*.

24. "^
25. g = log (a + Vy2 + x*).

V./'
2 + v

2

26. g = =!-^--

+ 2/

27. Calculate the numerical difference between Ag and rfg, when
g = cb

8 + y
3 - 3 afy, a; = 2, y = 3, A* = cZz = .01, and Ay = </y = .001.

28. The hypotenuse and one side of a right triangle are respec-

tively 5 in. and 4 in. If the hypotenuse is decreased by .01 in. and

the given side is increased by .01 in., find the total change made in

the third side, the triangle being kept a right triangle. Find the

error that would be made if the differential of the third side corre-

sponding to the above increments were taken for the change.

29. A right circular cylinder has an altitude 10 ft. and a radius

5 ft. Calculate the change in its volume caused by increasing the

altitude by .1 ft. and the radius by .01 ft. Calculate also the differ-

ential of volume corresponding to the same increments.

30. A triangle has two of its sides 8 in. and 10 in. respectively, and

the included angle is 30°. Calculate the change in the area caused

by increasing the length of each of the given sides by .01 in. and

the included angle by 1°. Calculate also the differential of area

corresponding to the same increments.

31. The distance between two points A and B on opposite sides

of a pond is determined by taking a third point C and measuring

AC = 80 ft., BC = 100 ft., and BCA = 60°. Find the greatest error

in the length of AB caused by possible errors of 6 in. in both AC
and BC, assuming that powers of the errors of measurement higher

than the first may be neglected.

32. The distance of an inaccessible object A from a point B
is found by measuring a base line BC = 100 ft. and the angles
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CBA = a = 30° and ECA = /3 = 45°. Find the largest possible error

in the length of AB caused by errors of 1" in measuring a and (3,

assuming that powers of the errors of measurement higher than the

first may be neglected.

33. The density D of a body is determined by the formula

D = -.) where w is the weight of the body in air and w' the
w — w'

b J

weight in water. If w = 243,600 gr. and w' = 218,400 gr., what is

the largest possible error in D caused by an error of o gr. in w and

an error of 8 gr. in w', assuming that powers of the errors of w and

w' higher than the first may be neglected '.'

34. If the electric potential !' at any point of a plane is given by

the formula V= log Vx'2 + >/
2

, find the rate of change of potential at

any point: (1) in a direction toward the origin
; (2) in a direction at

right angles to the direction toward the origin.

35. If the electric potential I' at any point of the plane is given

by the formula V= log

—

> find'the rate of change ofB
V(x + a)" + y*

potential at the point (0, a) in the direction of the axis of //. and at

the point (a, a) in the direction toward the point (— a, 0).

36. On the surface « = 2tan-1 —, find the slope of the curve

through the point (1, 1.
t

) whose plane makes an angle of 30° with

the plane XOZ.

37. On the paraboloid z = 2 .r
1
-p :> //-, what plane section perpen-

dicular to the plane XOY &xid through the point (2, 1, 11) will cut

out a curve with the slope zero al that point'.'

38. In what direction from the point (.'•,. //,) is the directional

derivative of the function z = hey a maximum, and what is the

value of that maximum derivative?

39. Find a general expression for the directional derivative of

the function u = e~ " sin x + - e~ 3 v sin 3 x at the point ( — j ). Find

also the maximum value of the directional derivative.

40. If s = 4 .r
2 + 2 //" and y = -, find ^-



43.

364 PARTIAL DIFFERENTIATION

v
41. If a point moves on the surface * = k tan-1 - so that its

X
</-

projection on the XOY plane is the circle x2 + if = a2
, find — •

42. Find -y- from the equation x = cex .

Find -j- from the equation 2 log a; + (sin-1 -] = c.

d? dz
44. Find y and y ' when (a + //) (y + «) (,~ + sc) = c.

45. Find ^- and tt
1

> when a"
3 + ya + ,-s

2 — log v/,?
2 = c.

ex OlJ

d- dz
46. Find y and Y' when ^3 +^ + y^ z +^ = °"

47. Find ^ and y , when (x2 + y
2 + *2

)
3 = 27 xyz.

48. Find the equations of the tangent plane and the normal line

to the ellipsoid x 2 + 3 y
2 + 2 z2 = 9 at the point (2, 1, 1).

49. Find the equations of the tangent plane and the normal line

to the surface xy 4- yz + «* =1 at the point (1, 0, 1).

50. Find the equations of the tangent plane and the normal line

to the surface z = (ax + by)'
2 at the point (xv yv z

x
).

51. Find the tangent plane to the cone x2 + y
2 — z2 = and prove

that it passes through the vertex and contains an element of the cone.

52. Show that the sum of the squares of the intercepts on the

coordinate axes of any tangent plane to the surface x* + y* 4- z 1 = a5

is constant.

53. Show that any tangent plane to the surface z = Jcxy cuts the

surface in two straight lines.

54. Find the equations of the tangent line and the normal plane

to the curve xyz = 1, y'2 = x at the point (1, 1, 1).

55. Find the equations of the tangent line and the normal plane

to the curve x = sin z, y = cos z at the point (l, 0, —)•

56. Find the equations of the tangent line and the normal plane

to the curve of intersection of the cylinders x2 + y
2 = 25, v/

2+s2 = 25

at the point (4, 3, — 4).
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57. Find the equations of the tangent line and the normal plane

to the curve of intersection of the ellipsoid 24.r2 + 16//--|-3.? 2 = 288

and the plane 2a; + 8y-f5« = 0atthe point (2, — 3, 4).

?/

58. Find the angle at which the helix x2 + if = a2
, z = k tan-1 '-

intersects the sphere x2 + if + z
2 = r(r > a).

59. Find the angle at which the curve f — z2 = a 2
, x = l>(y + z)

intersects the surface x2 + 2 zy — c
2

.

60. Find the minimum value of the function z = £x2 — 3xy
+ 9y2 + 5x + 15y + 16.

61. An open rectangular cistern is to be constructed to hold

1000 cu. ft. Required the dimensions that the cost of lining should

be a mininium.

62. Divide the number a into three parts such that their product

shall be the greatest possible.

63. Find a point in a plane quadrilateral such that the sum of the

squares of its distances from the four vertices is a minimum.

64. Find the volume of the greatest rectangular parallelepiped

inscribed in an ellipsoid.

65. Find by calculus the point in the plane 2 ./• -f "> // — ('. .-. -(-5 =
which is nearest the origin.

66. Find the points on the surface 2r J
4- 1 f — .-;'- — (/>./ + 5 y

-(- 18 = which art' nearesl the origin.

67. Find the highest point on the curve of intersection of the

hyperboloid aj
9 + //" —*-'" = 1 and the plane as + y + 2« = 0.

68. Find the volume of the greatest rectangular parallelepiped

which can be inscribed in a right elliptic cone with altitude h

and semiaxes of the base a and b, assuming that two edges of the

parallelepiped are parallel to the axes of the base of the cone.

69. Through a given point (1, 1, 2) a plane is passed which with

the coordinate planes forms a tetrahedron of minimum volume. Find

the equation of the plane.

70. Find the point inside a plane triangle from which the sum of

the squares of the perpendiculars to the three sides is a minimum.
(Express the answer in terms of K, the area of the triangle ; a, b, c,

the lengths of the three sides ; and x, y, z, the three perpendiculars

on the sides.)
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Prove that the following differentials are exact and find their

integrals

:

7 1 . (5 x* - 3 afy + 2 x,f) dx + ( 2 xh, - s8 + 5 ,f) dy.

72. (y + -\dx+(x + -\dy.

73 a

l + 2
? + aV 2^±1
ay «y *

,r2 + y3 Q J'
3

,

75. !i,fe _/£*-? +^W
y \y" y/

l

77. (cos2 2C — // sin x) da; + cos a- dy.

78. e 2 sin (x + y) da; + e'
1 [sin (a; + y) — y cos (a: + y)~\dy.

(0,0)

(1) along a straight line,

(2) along a parabola with its axis on OX.

Jr«a.o)
[(.r

2 + y"2)^.r + xdy\
(0,1)

(1) along a straight line,

(2) along a circle with its center at 0.

r&, i)

81. Find the value of
j

[y*dx + (xy + y")dy],
«7(0, 0)

(1) along a parabola with its axis on O.Y,

(2) along a broken line consisting of a portion of the ,r-axis

and a perpendicular to it.

82. Find the value of / I
,"

" „ + ?'f'7
xdx

r;

(1) along the curve x = t, y = t
2

,

(2) along a broken line consisting of a portion of the a--axis

and a perpendicular to it.



83. Find the value of
J/">(5,(3,0)
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(5, 4) _ y (JX _|_ x dy

Vx2 - f
(1) along the curve x = 3 sec 0, y = 3 tan 0,

(2) along a broken line consisting of a portion of the cc-axis

and a perpendicular to it.

84. Find, by the method of Ex. 3, § 171, the area of the four-

cusped hypocycloid x = a cos8
<f>, y = a sin8 <£.

85. Find, by the method of Ex. 3, § 171, the area between one

(arch of a hypocycloid (§ 58) and the fixed circle.

86. Find, by the method of "Ex. .">, ^ 1 7 1 . the area between one

arch of an epicycloid (§ 57) and the fixed circle.

87. If u =f(x, y) and y = F(x), find
dx*

dx*\t // ' dxi 11 dxdy < '/ i x

W'
T „ , „ '/"'/ cx~ \dy/ dxdy dxdy dv

88. Iff(x, y) = 0, prove —7' -

[cy

/x\ t

-

d~
89. If z =/(-), prove x ' +yi~ = 0.

90. If f(lx -f my + nz, x 2
-+- y'1 + »9)= <>, prove

I
ly - mx) + (ny - mz) ^ + (A- - nx

| ^ = 0.

91.If« = ^ + 2/(i + logy), Prove| = 2 y -^|.

?/\
, ,M -i

d'z
, o„.. ^*

,

•''-'-

93. If c = x<f>K + ^r
•'

,
] >rove x2

-T-T, + 2 xy -=-=r + f— = 0.
\xj r \x/ <j- dxdy (

y-

94. If z = <£(.r -+- iy) -\- \p(x — iy), where i =V— 1, prove

d-z c
2z A—; +— = 0.

95. If V is a function of ;• only, where r = Vsc3 + y
2
, find the value

of ^-g + ~-^ m terms of r and T

.
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96. If x = e
u

, y — e
v

, and z is any function of x and y, find the

d2z d2z dz dz
value of x2

TT-r, + y
2
tth + x ^—h V^~ in terms of the derivatives of z

ox" dy dx dy

with respect to w and v.

97. If x = u + w, <y
= -> and F is any function of x and ?/,

0a V d*V
2
d2 V

prove aa -^-5 — -5-5 = a- 5—«- •

98. If .x = e" cos v, y = e" sin ?;, and F is any function of x and y,

d2 V
find r—— in terms of the derivatives of V with respect to x and y.

dado

99. If x = e
u cos v, y = e" sin -v, and F is any function of x and y,

d2 V d2 V ./PV
,
d2 F\

Prove^ +^ = e~"'W +W
e« _i_ g-o ^0 e-e

100. If x = 1
—— > y = ) n~— > and F is any function of

d2 V fflV d2 V 1 d2V ldV
x and y, prove =-= — -z-= = -^-r g ^ i ^— •

•n l dx1 dy1
Ci-

2
r
2 d6 2

r dr

101. If x = ev sec u, y = e
v tan it, and <£ is any function of x and y,

/ d
2
4> d<f>\ (d2

4> d2

<f>\
I

2
a a2

<*>

102. If x -t y = 2 ee cos <j>, x — y = 2 ie8 sin <£, and F is any func-
'

a2 r a2 F , a2 F
tion of x and y, prove_ +_ « 4ay

^

103. If x=f(u, v) and y=<f>(u, v) are two functions which

satisfy the equations ^- = -r
21

> ^- = — -^-> and V is any function of

d2V d2 V (c2 V 82 V\V/df\2 (d/Vl
x and y, prove^ + -^ = (^ + -^)[{^) +{Fu) [



CHAPTER XVI

MULTIPLE INTEGRALS

173. Double integral with constant limits. By definition,

f(x) dx = Lira 2)/OO Ax,

and f(x) dx is the element of the integral. In the problems of

Chapter XIII it has been possible to form the element f(x)dx
immediately by elementary theorems of geometry and mechanics.

There are problems, however, in which it is advantageous to

determine the element itself as a definite integral.

For example, let us find the volume bounded by the planes

z = 0, .r = a, x = b(a <b~), y = c, y = d(c < d), and the surface

z=f(x,y) (fig. 212)

which lies entirely

on the positive side

of the XOY plane

for the volume to

be considered.

Divide the dis-

tance b — a on OX
into n equal parts

Arc; thus giving x

the series of values

«, x
x
= a + A.r, r,

2
= x

x
+ A.v,

Through the points thus determined on OX pass planes par-

allel to YOZ, thus dividing the required volume into slices,

such as LM.

Divide the distance d — c on OY into m equal parts Ay, thus

giving y the series of values

c, y1
= c + Ay, y2

= yx
+ Ay,

369
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Through the points thus determined on OY pass planes par-

allel to XOZ, thus subdividing the slices into volumes, such as

NQ, each of which stands on a base NB, Ax At/ in area.

If N has coordinates (z„ yj), NP =f(xv yj), and the volume of

a prism with NR as a base and NP as altitude \s,f(xv y^AxAy.
If we hold x equal to .r., and give y the values c, yv y , • • •

in succession, and take the limit of the sum as m = go, we have

UmVf(xn yi
)AxAy= I . f(xn y)Ax<h, (1)

as an approximate expression for the volume of the slice LM.
Using the definite integral (1) as an element, we now assign

to x the values a, xv x
2

,
• • in succession and take the limit

of the sum as n = cc. The result is

l^ X jf /o*, y) *u A.r =£(f"f^ y) dy)
d*' (2)

which is the required volume.

Removing the parentheses, we shall write (2) in the form

' l

f(x,y)dxJy, (3)If
where the summation is made in the order of the differentials

from right to left, i.e. first with respect to y and then with

respect to x, and the limits are in the same order as the differ-

entials, i.e. the limits of y are c and d, and the limits of x are

a and b*

Referring to fig. 212, we see that we could have made the sum-

mation first with respect to x, thereby finding an approximate

* Still another form of writing (2) is
f

dx
J

f(x, y) dy, in which the order

of summation is first with respect to y and then with respect to x.

I /(/, y)dydx, which

is merely (2) with the parentheses removed. In this form it is to be noted that

the limits and the differentials are in inverse orders, and that the order of

summation is the order of the differentials from left to right, i.e. first with

respect to y and then with respect to x. In this text this last form of writing

the double integral will not be used. In other books the context will indicate

the form of notation which the writer has chosen.
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expression for the volume of a slice bounded by two planes par-

allel to the YOZ plane. The final summation would have been

with respect to y, the result being the volume expressed by (3).

If this order had been followed, the result would have appeared

in the form

jf(jf/o* ^
ch
)

(i '/=f£/{ -" >n,j '/,ir
- (4)

Integrals (3) and (4) are called double definite integrals, t la-

limits in this case being constants. As any function f(x, y

)

may be represented graphically by the surface 2 =/(./, //), we
are led to the general definition of the double definite integral,

J j /('•, y)dydx= C J ./(,-. y)dxdy,

as equal to the limit, as m and n are both increased indefi-

nitely, of the double sum

X ' %/(&, //,)A.rA//, (5)

where Ar, A//, and (xc //, ) have the meanings already defined.

The integral is called the double integral of f(x, // ) over the

area bounded by the lines x = a, x = b, y = <; y = d. This

definition is independent of the graphical interpretation, and

therefore any problem which leads to the limit of a sum (5)
involves a double integral.

174. Double integral with variable

limits. We may now extend the idea

of a double integral as follows: In-

stead of taking the integral over a

rectangle, as in § 173, we may take

it over an area bounded by any

closed curve (fig. 213) such that a

straight line parallel to either OX or

OT intersects it in not more than

two points. Drawing straight lines

parallel to OY and straight lines parallel to OX, we form

rectangles of area AxAy, some of which are entirely within
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the area bounded by the curve and others of which are only

partly within that area. Then

%%f& y-) AxAy, (1)

where the summation includes all the rectangles which are wholly

or partly within the curve, represents approximately the volume

bounded by the plane XOY, the surface z =f(x, y), and the cyl-

inder standing on the curve as a base, since it is the sum of the

volumes of prisms, as in § 173. Now, letting the number of these

prisms increase indefinitely, while Az=0 and Ay= 0, it is evident

that (1) approaches a definite limit, the volume described above.

If we sum up first with respect to y, we add together terms

of (1) corresponding to a fixed value of x, such as x
t
. Then

if MB is the line x = :r., the result is a sum corresponding

to the strip ABCD, and the limits of y for this strip are the

values of y corresponding to x = x
i
in the equation of the curve.

That is, if for x = x
{
, the two values of y are MA=f

1
(x

i

s

) and

MB =/
2
(x

t
.), the limits of y are fx

(x^) and f%
(x^). As different

integral values are given to i, we have a series of terms corre-

sponding to strips of the type ABCD, which, when the final

summation is made with respect to x, must cover the area

bounded by the curve. Hence, if the least value of x for the

curve is the constant a and the greatest value is the constant

b, the limit of (1) appears in the form

* X

f(x,y)dxdy, (2)
7i (x)

where the subscript i is no longer needed.

On the other hand, if the first summation is made with

respect to x, the result is a series of terms each of which corre-

sponds to a strip of the type A'B'C'D', and the limits of x are

of the form ^(y) and </>„(j/)> found by solving the equation of

the curve for x in terms of y. Finally, if the least value of y
for the curve is the constant c and the greatest value is the

constant d, the limit of (1) appears in the form

n«2(Z/)f(x, y)dydx. (3)
.At/)

J a J,\(.
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While the limits of integration in (2) and (3) are different,

it is evident from the graphical representation that the integrals

are equivalent.

So far in this chapter f(x, y) has been assumed positive for

all the values of x and y considered, i.e. the surface z =f(x, y)

was entirely on the positive side of the plane XOY. If, however,

f(x, y) is negative for all the values of x and y considered, the

reasoning is exactly as in the first case, but the value of the

integral is negative. Finally, if f(x, y) is sometimes positive and

sometimes negative, the result is an algebraic sum, as in § 81.

175. Computation of a double integral. The method of comput-

ing a double integral is evident from the meaning of the notation.

Ex. 1. Find the value of
f

I xydxdy.
Jo Jo

As this integral is written, it is equivalent to j ( j xydyjdx, the integral

in parentheses being computed first, on the hypothesis that y alone varies.

Ex. 2. Find the value of the integral
j j xydxdy over the first quadrant

of the circle x- + y
2 — a 2

.

If we sum up first with respect to y, we find ;i

series of terms corresponding to strips of the type

ABCD (fig. 214), and the limits of y are the ordinate's

of the points like A and B. The ordinate of .1 is

evidently 0, and from the equation of the circle the

ordinate of B is Va* — x'
2

, where OA = x. Finally, to

cover the quadrant of the circle the limits of x are

and a. Hence the required integral is

i
.i i)

Fig. 214

Jo Jo J o |_ 2 Jo

~2L 2 4 Jo
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176. Double integral in polar coordinates. Let us assume that

we have a function f(r, 0) expressed in polar coordinates and
an area bounded by a curve (rig. 215) which is also expressed in

polar coordinates. As in § 1-11, we may graphically express the

function by placing z =f(r, 6), where the values of z correspond-

ing to assigned values of r and 6 are laid off on perpendiculars

to the plane of r and 6 at the points determined by the given

values of r and 6. It follows that the graphical representation

of f(r, 0) is a surface.

Let us now try to find the volume bounded by this surface,

the plane of r and 6, and the cylinder standing on the curve

as a base. Proceeding in a manner

analogous to that in § 174, we divide

the area into elements, such as ABCD
(fig. 215), by drawing radius vectors

at distances Ad apart, and concentric

circles the radii of which increase by

Ar. The area of ABCD is the dif-

ference of the areas of the sectors

OBC and OAD. Hence, if OA = r,

area ABCD=\ (r4-Ar) 2A0-ir2
A6>= (r-fe) Ar A0, where e=J-Ar.

Then the volume of the element standing on the base ABCD is

f(r, 0)rArA<9+/(r, 0)eArA0,

and the total volume is the limit of the double sum

5J5jr/<>, 0)rArA0+/(r, 0)eArA0],

or, what is the same thing, the limit of the double sum

XXf(r> ^ rArAe = fff(r>
e ^> r dr de

- 0-)

If the summation in (1) is made first with respect to r, the

result is a series of terms corresponding to strips such as A
1
B

l
C\D

iy

and the limits of r are functions of 6 found from the equation

of the boundary curve. The summation with respect to 6 will

then add all these terms, and the limits of 6 taken so as to

cover the entire area will be constants, i.e. the least and the

greatest value of 6 on the boundary curve.
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If, on the other hand, the summation is made first with respect

to 0, the result is a series of terms corresponding to strips such

as A
2
B

2
C\

2
D

2
, and the limits of 6 are functions of r found from

the equation of the boundary curve. The summation with respect

to r will then add all these terms, and the limits of r will be the

least and the greatest value of r on the boundary curve.

Now f(r, 6) may be any function, and (1), which is inde-

pendent of the graphical representation, is called the double

definite integral over the area considered. Furthermore, the area

of ABCD has been denoted in (1) by rdrd0, i.e. by the product

of AB and AD, for AB = dr and AD = rdO.

Ex. Find the integral of /•- over the circle r = 2acos0.

If we sum up first with respecl to r, the limits are and '2 a cos 6,

found from the equation of the boundary curve, and the result is a

series of terms corresponding to sectors of the type A OB (fig. 216). To
sum up these terms so as to cover the circle,

the limits of 6 are and • The result is

,£ "**-/.
,

,[3. "*

= f\4:a*COB*dd$

Fig. 21G

We might have solved this problem as follows: Since the Initial line

is a diameter of the circle and the values of r'
1 at corresponding points of

the two semicircles are the same, it is evideni that the required integral

is twice the integral taken over the semicircle in the first quadrant.

By this method the result is

J-.

,, jiiai

o Jo

lai f
2
co8i 0dd

Such use of symmetry as was made in the second solution above is so

often of advantage that the student should always note when there is

symmetry, and arrange his work accordingly.
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177. Area bounded by a plane curve. Let us in (2), § 174,

denote ,f\{x) by yx
and f2

(x) by y2
, and omit f(x, y). The

result is ph r „

I I 'dxdy, (1)
J a J V\

which is evidently the area bounded by the curve in fig. 213.

But nh nyi nb
yjdx, (2)

where (j/2
— y^)dx is the area of the rectangle ABCD.

In the same way we may transform (3) of § 174 into

I (x^-x^dy, (3)

which will represent the same area that is represented by (2),

(.r
2
— x^) dy being the area of the rectangle A'B' C'D'.

It is evident that, if the area

bounded by a plane curve expressed

in rectangular coordinates is found

by double integration, the result of

the first integration is an integral of

the type given in § 125.

Ex. Find the area inclosed by the curve

(y - a; -3)2 = 4-^ (fig. 217).

Solving the equation of the curve for y
in terms of x, we have

y x + 3 ± V4

Accordingly we let y1
= x + 3 — V-i — x2

and y2
= x + 3 + V4 — x2

, whence y„ — y1
= 2 V4 — x2

, and take for the

element of area a rectangle such as ABCD. Its area is 2 V4 — x2 dx.

Since the curve is bounded by the lines x = — 2 and x = 2, — 2 and 2

are the limits of integration. Hence the area = ( 2 v4 — x2 dx = 4 ir.

In like manner the area bounded by any curve in polar

coordinates may be expressed by the double integral

If'
drd9, (4)
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the element of area being that bounded by two radius vectors

the angles of which differ by A0, and by the arcs of two

circles the radii of which differ by A>\

We may transform (4) into forms similar to (2) or (3), or

we may make the double integration, substituting both sets of

lhnits in each problem.

If the first integration of (4) is with respect to r, the result

before the substitution of the limits is A rdO, which is exactly

the expression used in computation by a single integration.

178. Moment of inertia of a plane area. The moment of inertia

of a particle about an axis is the product of its mass and the square

of its distance from the axis. The moment of inertia of a number

of particles about the same axis is the sum of the moments of

inertia of the particles about that axis. From this definition we

may derive the moment of inertia of a lamina of uniform thick-

ness k, and of density p, about any axis as follows :

Divide the surface of the lamina into elements of area dA.

Then the mass of any element of the lamina is pkdA. Let B
i

be the distance of any point of the /th element Prom the axis.

We may then take as the moment of inertia of the /th element

E'rpkdA, the exact expression evidently being ( R? + e^pkdA

(§124). If the lamina is divided into n elements, V llfpk dA

is an approximate expression for the moment of inertia of the

lamina. Then, if / represents the moment of inertia of the

lamina, i=n

1= UmV RfpkdA = jA'-p/cdA, (1)
"=x 1 = 1 J

where the integration is to include the whole lamina.

If in (1) we let k=l and /o = l, the resulting equation is

/- dA, (2)

where I is called the moment of inertia of the plane area which is

covered by the integration. When dA in (1) or (2) is replaced

by either dxdy or rdrdO, the double sign of integration must

be used.
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Ex. 1. Find the moment of inertia, about an axis perpendicular to the

plane at the origin., of the plane area (fig. 218) bounded by the parabola

y- = -1 ((.c, the line y = 2 a, and the axis OY.

We divide the area into elements by straight lines parallel to OX and OY,

Then (1. 1 = dx dy, and R2 = x2 + //-, whence the expression for the moment of

inertia of any element is (x2 + y
2)dxdy.

If the integration is made first with respect to x, the limits of that

if
integration are and — , since the operation is the summing of elements

4 a

of moment of inertia due to the elementary rectangles in any strip corre-

sponding to a fixed value of y ; the limit is found from the axis of y,

if
and the limit — is found from the equation

4 a

of the parabola.

Finally, the limits of y must be taken so

as to include all the strips parallel to OX,

and hence must be and 2 a.

Therefore
Jo Jo

Jo \U)2 as 4 a
J

178

105'

Y
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We divide the area into elements of area by drawing concentric circles

and radius vectors. Then dA = rdnlQ (§ 176), and R- = /-, whence the

element of moment of inertia is r^drdd.

If the first integration is made with respect to r, the result is the moment
of inertia of a strip bounded by two successive radius vectors and a circular

arc ; hence the limits for r are and a sin 2 $. Since the values of 6 for

the loop of the curve vary from to — > it is

evident that those values are the limits for

$ in the final integration.

Therefore / = f - f"
sl

"
r*d9dr

=
I a* C *8in< 2 6<16

Pig. 219

179. Center of gravity of plane areas. If the center of gravity

of any physical body can be expressed by two coordinates x and

y, we proved in § lo7 that

/ xdm I >i dm

P'" ./' lm

where x and y are the coordinates of the point at which the

element of mass <hn may l>r regarded as concentrated.

We may now place

d in = pil.nl'//, or dm = prdrd0
1

where p is the mass per unit area, in which ease the above

integrals become double integrals.

Ex. 1. Find the center oi gravity of the segment »>t the ellipse — + 1- = 1
rt
2 or

cut off by the chord through the positive ends of the axes of the curve.

This is Ex. 4, § lo7, and the student should compare the two solutions.

The equation of the chord is bx + ay = ab.

Dividing the area into elements dxdy (fig. 220), we have dm = pdxdy,

but we may omit p since it is constant. Hence, to determine x and y, we

.have to compute the two integrals CCxdxdy and CCydxdy over the area

A CUD, and also find that area.
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The area is the area of a quadrant of the ellipse less the area of the

triangle formed by the coordinate axes and the chord, and accordingly is

\(Trab)- \ah= \ ah {ir -2).

For the integrals the limits of

integration with respect to y are

Vi
= ab — bx

and
b /—

yl
being found from the equation

of the chord, and y2
being found

from the equation of the ellipse.

The limits for x are evidently

and a.

f"P'JO J„b-
x dxdy= fV^xVa2

J \fl

f fa
°

ydxdy = — f°(- b°-x" + dPz)dx
Jo Jab-bx CpJo

b2a.

Therefore
2 6

3(*-2) " 8(»-2)

Ex. 2. Find the center of gravity of the area bounded by the two circles

r = a cos 0, r = b cos 6.
(J>
> a)

It is evident from the symmetry

of the area (fig. 221) that y = 0.

As p is constant, the denominator

of x is the difference of the areas of

the two circles, and is equal to

^ =
l
"(W-**).

Since x — r cos 6, and the ele-

ment of area is rdrdO, the numer-

)r of x be
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180. Area of any surface. Let C (fig. 222) be any closed

curve on the surface f(x, y, z) = 0. Let its projection on the

plane XOY be C. We shall assume that the given surface is

such that the perpendicular to the plane XOY at any point

within the curve C meets the surface in but a single point.

In the plane XOY draw straight lines parallel to OX and OY,

forming rectangles of area AxAy, which lie wholly or partly in

the area bounded by C. Through these lines pass planes paral-

lel to OZ. These planes will intersect the surface in curves,

which intersect in points the z

projections of which on the

plane XOY are the vertices of

the rectangles ; for example,

M is the projection of P. At
every such point as P draw

the tangent plane to the sur-

face. From each tangent plane

there will be cut a parallelo-

gram* by the planes

drawn parallel to <>Z.

We shall now

define the area

of the surface

/(•<, Ih *0=0,
bounded by the

curve C, as the limit of the sum of the areas of these parallelo-

grams cut from the tangent planes, as their number is made ti>

increase indefinitely, at the same time that Ax==0 and Ai/ = 0.

It may be proved that the limit is independent of the manner

in which the tangent planes are drawn, or of the way hi which

the small areas are made to approach zero.

If AA denotes the area of one of these parallelograms in a

tangent plane, and 7 denotes the angle which the normal to the

tangent plane makes with OZ, then (§ 145)

A.rA^ = AA cos 7, (1)

* This parallelogram is not drawn in the figure, since it coincides so nearly

with the surface element.
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since the projection of A.'i on the plane XOY is A.rAv/. The

direction cosines of the normal are, by (9), § 168, proportional

dz dz
to

dx c//
1 ; hence

cos 7

:

1

n^ar
and hence

and

a-'=^ +
(IJ

+
(SJ

a^ <2>

x—xx^RSFM^ &
According to the definition, to find A we must take the limit

of (3) as A.i-=0 and A
t
// = 0; that is,

114 -'s)
+@)** O)

where the integration must be extended over the area in the

plane XOY bounded by the curve C.

Ex. 1. Find the area of an octant of a sjihere of radius a.

If the center of the sphere is taken as the origin of coordinates (fig. 223),

the equation of the sphere is

x2 + y
2 + z2 = a2

,

and the projection of the required

area on the plane XOY is the area

in the first quadrant bounded by

the circle

y2 + y
2 = a 2

and the axes OX and OY.

From (1), —=--,
v J

dx z

dy z'

^FWFW-
Therefore A = I = -ira I dx = -

Jo Jo yVr -./;-- u2 2 Jo 2
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Ex. 2. The center of a sphere of radius 2 a is on the surface of a right

circular cylinder of radius a. Find the area of the part of the cylinder

intercepted by the sphere.

Let the equation of the

sphere be

Xs + f + z* = 1 a\ (1)

the center being at the

origin (fig. 224), and let

the equation of the cylin-

der be

f + ~ 2 - 2 ay = 0, (2)

the elements of the cylin-

der being parallel to OX.
To find the projection

of the required area on

the plane XOY it is

necessary to find the

projection on that plane of the line of intersection of (1) and (2).

Hence (§ lo'.t) we must eliminate : from (1) and (•_'). The result is

1 a- = 0. (3)

From (2), 0, -

^(iHtr=^§ Jfl! =

and dA
adydx

\ •_' a~y - f
itive side of t!uSince the area on the positive side of the plane XOY is symmetrica]

with respect to the plane YOZ, it is twice the area on the positive side of

the latter plane. Hence we may find this latter area and multiply by 2.

If the first integration is with reaped to x, the lower limit is evidently

and the upper limit, found from (:'>), is V4

a

2 — 2 ay. For the final

integration with respect to y the limits are <) and 2a, the latter being

found from (3).

adydx
Therefore .1

J n Jo

Vi*
8 <fi.

As an equal area is intercepted on the negative .side of the plane XOY, the

above result must be multiplied by 2. Hence the total required area is 16 a-.

The evaluation of (4) may sometimes be simplified by trans-

forming to polar coordinates in the plane XOY.
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Ex. 3. Find the area of the sphere x" + f + z" = a 2 included in a

cylinder having its elements parallel to OZ and one loop of the curve

r = a cos 2d (fig. 225) in the plane XOY as its directrix.

Proceeding as in Ex. 1, we find the integrand

—

Trans-
V«2 — x2 — if

forming this integrand to polar coordinates, and multiplying by rdrdO,

we have

, . ardrdd
(IA —

Fig. 225

V«2 - r2

It is evident that the required area q
is twice the area cut out of the sphere

on one side of the plane XOY, and

that this latter area is twice the area

over the half of the loop of the curve

r — a cos 2 6 which is in the first

quadrant.

Hence we integrate first with respect to r from to a cos 2 6, and then

integrate with respect to 6 from to — > the limits of integration all being

determined from the equation r — a cos 2 6. This integral we multiply by

4 to obtain the required area.

Jo Jo Va2 - >•-'

= 4rr r ¥ (l-sin2 0W0
Jo

Therefore

If the required area is projected on the plane YOZ, we have

(5)'-J5M -'l)
+ (i"

where the integration extends over the projection of the area

on the plane YOZ; and if the required area is projected on the

plane XOZ, we have

fU ^B+ay** (6)

where the integration extends over the projection of the area

on the plane XOZ.
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181. Triple integrals. 1. Rectangular coordinates. Let any

volume (fig. 226) be divided into rectangular parallelepipeds

of volume AxAyAz by planes parallel respectively to the coor-

dinate planes, some of the parallelepipeds extending outside

the volume in a manner similar to that in which the rectangles

in § 174 extend outside the area. Let (a;,., yp z^) be a point

of intersection of any three of these planes and form the sum

as in § 174. Then the limit of this sum as n, m, and p increase

indefinitely, while Ax= 0, Ay = 0, Az = 0, so as to include all

points of the volume, is called the triple integral of ,/'(./-, y, z)

throughout the volume. It is

denoted by the symbol

Iff
/'(./. y, z)dxdydz, (1)

the limits remaining to be substi

tuted. If the summation is made

first with respect to z, x and y
remaining constant, the result is

to extend the integration through-

out a column of cross section

AxAy ; if next ./• remains constant

and y varies, the integration is

extended so as to combine the columns into slices; and, finally,

as x varies, the slices are combined so as to complete the

integration throughout the volume.

The volume of the parallelepiped with edges d.r, dy, dz is the

element of volume c/F, and hence

Fig. tk\

dV= dxdydz. (2)

2. Cylindrical coordinates. If the x and the y of the rectan-

gular coordinates are replaced by polar coordinates r and 6 in

the plane XOY, and the z coordinate is retained with its original
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Fig.

significance, the new coordinates r, 0, and z are called cylindri-

cal coordinates. The formulas connecting the two systems of

coordinates are evidently

x = r cos 0, y — r sin 0, z — z.

Turning to fig. 227, we see that z = z
1

determines a plane parallel to the plane

XOY, that = Q
x

determines a plane

MONP, passing through OZ and making

an angle
1
with the plane XOZ, and

that r — r
x
determines a right circular

cylinder with radius r
1
and OZ as its

axis. These three surfaces intersect at

the point P.

The element of volume in cylindrical coordinates (fig. 228)

is the volume bounded by two cylin-

ders of radii r and r + Ar, two planes

corresponding to z and z + Az, and

two planes corresponding to and

+ A0. It is accordingly a cylinder

with its altitude equal to Az and the

area of its base approximately equal

to rA0Ar (§ 176). Hence, in cylin-

drical coordinates,

dV=rdrdddz, (3) / Fig. 228

and the triple definite integral in cylindrical coordinates is

Ifff(r, 0, z)rdrd0dz, (4)

the limits remaining to be substituted.

3. Polar coordinates. In fig. 229 the

cylindrical coordinates of P are OM= r,

MP = z, and ZLOM= 0. If instead of

placing OM= r we place OP = r, and

denote the angle NOP by (/>, we shall

have r, </>, and as the polar coordi-

nates of P. Then, since 0N= OP cos
<f>
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and 0M= OB sin
<f>,

the following equations evidently express

the connection between the rectangular and the polar coordi-

nates of P:

z = r cos
(f>,

x = r sin
<f>

cos 6, y = r sin
(f>

sin 6.

The polar coordinates of a point determine three surfaces

which intersect at the point. For 6 = 6^ determines a plane

(fig. 230) through OZ, making

the angle with the plane XOZ\

4>= (f> l
determines a cone of revo-

lution, the axis and the vertical

angle of which are respectively

OZ and 2^; and r = r^ drier-

mines a sphere with its center

at and radius r

.

The element of volume in

polar coordinates (fig. 231) is

the volume hounded by two

spheres of radii r and r + Ar,

two conical surfaces corresponding to
(f>

and
(f> + A$, and two

planes corresponding to 6 and 6 + A$. The volume of the

spherical pyramid O-ABCD is

equal to the area of its base

ABCD multiplied by one third

of its altitude r. To find the

area of ABCD we note first that

the area of the zone formed by

completing the arcs AD and BC
is equal to its altitude, rcos$ —
r cos

((f) + A<£), multiplied by 2irr.

Also the area of ABCD is to the

area of the zone as the angle Ad
is tO 2 7T.

Hence area ABCD
and vol O-ABCD

Similarly, vol 0~EFGII= l(r+ A/-)
3A0 [cos <f>- cos (<f>+ A<£)].

rA6 [r cos
(f)
— r cos ((f) + A$)]

I r
3Ad [cos

<f>
- cos ((f) + A(£)].
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Therefore vol ABCDEFGH =
J

[(/• + Ar) 3- r
3

] A0 [cos
<f>

-eos(<£+ A<£)].

i [(r + A;-)
3 - >•'] = '

/2Ar + rAr* + I AT-
3

= (r
2 + e

1
)Ar.

cos (/> — cos ((£ + A<£) = — A cos c£

= (sin <£ + e
2) A<£. (§77)

Hence vol ABCDEFGH = (f sin
<f>
+ e

8)
A>-A0 A<£,

which differs from r
2 sin ArA0A</> by an infinitesimal of a

higher order.

Accordingly we let dV= r
2
sin <f>drd<j)d6, (5)

and the triple integral in polar coordinates is

W>/(r, (/>, 0) r
2
sin

<f>
dr d<$> dd, (6)

the limits remaining to be substituted.

It is to be noted that dV is equal to the product of the

three dimensions AB, AD, and A£J, which are respectively rd<f>,

r sin dO, and dr.

182. Change of coordinates. When a double integral is given

in the form jjf(x, y)dxdy, where the limits are to be substi-

tuted so as to cover a given area, it may be easier to determine the

value of the integral if the rectangular coordinates are replaced

by polar coordinates. Then f(x, y) becomes f(r cos 6, r sin 0),

i.e. a function of r and 6. As the other factor, dxdy, indicates

the element of area, we may replace dxdy by rdrdd. These two

elements of area are not equivalent, but the two integrals are

nevertheless equivalent, provided the limits of integration in each

system of coordinates are taken so as to cover the same area.

In like manner the three triple integrals

HP
Iff

Iff

f(x, y, z)dxdydz,

f(r cos 6, r sin 6, z)rdrdddz,

f(r sin
<f>

cos 0, r sin $ sin 0, r cos (/>) r
2
sin <f>drd<f>d6
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are equivalent when the integration is taken over the same volume

in all three and the limits are so taken in each as to include the

total volume to be considered.

183. Volume. In § 181 we found expressions for the element

of volume in rectangular, in cylindrical, and in polar coordinates.

The volume of a solid bounded by any .surfaces will be the limit

of the sum of these elements as their number increases indefi-

nitely while their magnitudes approach the limit zero. It will

accordingly be expressed as a triple integral.

Find the volume bounded by the ellipsoid
/,-

= 1.

From symmetry (fig. 232) it is evident that the required volume is

eight times the volume in the first octant b6unded by the Burface and the

coordinate planes.

In summing up the rectangu-

lar parallelepipeds dxdydz to

form a prism with edges paral-

lel to OZ, the limits for z are

and
V.

x2 y*
the latter

being found from the equation

of the ellipsoid.

Summing up next with respect

to y, to obtain the volume of a

slice, we have as the lower limit

of y, and 6 a/IV

Fi

- as the upper limit. This latte

1, found by letting

VI

limit is determined

: = in the equationby solving the equation — 4- '—

of the ellipsoid; for it is in the plane z = that the ellipsoid has the

greatest extension in the direction <>)', corresponding to any value of x.

Finally, the limits for x are evidently and o.

Therefore
Jo t/0 Jo

^dxdydz

dxdy
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It is to be noted that the first integration, when rectangular

coordinates are used, leads to an integral of the form

//<
(Zo-z^dxdy,

where z
2
and z

y
are found from the equations of the boundary

surfaces. It follows that many volumes may be found as easily

by double as by triple integration.

In particular, if z
x
= 0, the volume is the one graphically repre-

senting the double integral (§ 174).

Ex. 2. Find the volume bounded by the surface z = ae-^ + v
2
) and the

plane z = 0.

To determine this volume it will be advantageous to use cylindrical

coordinates. Then the equation of the surface becomes z = ae~ r', and the

element of volume is (§ 181) rdrdOdz.

Integrating first with respect to z, we have as the limits of integration

and ae~ r2
. If we integrate next with respect to r, the limits are and go,

for in the plane z = 0, r = cc, and as ~ increases the value of r decreases

toward zero as a limit. For the final integration with respect to 6 the

limits are and 2tt.

Therefore V= f"
K

f°°f
ae

' rdOdrdz
Jo Jo Jo

= a f
2n

f"re- r\l9dr
Jo Jo

In the same way that the computation of the volume in Ex. 2

has been simplified by the use of cylindrical coordinates, the

computation of a volume may be simplified by a change to polar

coordinates ; and the student should always keep in mind the

possible advantage of such a change.

184. Moment of inertia of a solid. Following the method

of § 178 we divide the volume of the solid into n elements Ay

and multiply each element by its density p. Then, if R
t

is the

distance of any point of the ith. element from the axis about

which the moment of inertia is to be taken, we may take It'fpAv
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as the moment of inertia of that element. If / denotes the

moment of inertia of the solid, Vi?.2pAv is an approximate

expression for /. Finally, if we let n = oo and at the same time

let each element of volume approach zero as a limit, we have

1= Limit 2} Hfpkv =
J

Kydv,

where B, p, and civ are to be expressed in terms of the same

variables and the proper limits of integration substituted. In

particular, if civ is replaced by any one of the three elements

of volume determined in § 181, the integral becomes a triple

integral.

Ex. Find the moment of inertia of a sphere of radius a about a diameter

if the density varies directly as the square of the distance from the diameter

about which the moment of inertia is to be taken.

We shall take the center of the sphere as the origin of coordinates, and

the diameter about which the moment is to be taken as the axis of r. The

problem will then be most easily solved by using cylindrical coordinates.

The equation of the sphere will be r2 + «2 = a2, and dv = rdrd6dz
)

R = r, and p = kr'2 , so that we have to find the value of the triple integral

*///•*»**
Since the solid is symmetrical with respecl to the plane 2 = 0, we

shall take and \
f
<r — /- as the limits of integration with respect to z,

the latter limit being found from the equation of the sphere, and double

the result.

Integrating next with respect to r, we have the limits and r/, thereby

finding the moment of a sector of the sphere. To include all the sectors,

we have to take and 2 ir as the limits of in the last integration.

Therefore I=2lC'
U
C" C ' V< ,16 dr dz.

Jo Jo Jo

As a result of the first integration,

/ = 2 /.' f

'

"
f

"
r' N

'"'- -~7- dd dr.
Jo Jo

After the second integration,

I =lo%^f^d6,

and, finally, /= ffig Ittu 1
.
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185. Center of gravity of a solid. The center of gravity of a

solid has three coordinates, x, y, z, which are defined by the

equations

I xdm
j
ydm j zdm

I dm j dm j
i hit

where dm is an element of mass of the solid and r, y, and z are

the coordinates of the point at which the element dm may be

regarded as concentrated. The derivation of these formulas is

the same as that in § 137.

When dm is expressed in terms of space coordinates, the

integrals become triple integrals, and the limits of integration

are to be substituted so as to include the whole solid.

The denominator of each of the preceding fractions is evi-

dently M, the mass of the body.

Ex. Find the center of gravity of a body of uniform density, bounded

by one nappe of a right circular cone of vertical angle 2 a and a sphere of

radius a, the center of the sphere being at the vertex of the cone.

If the center of the sphere is taken as the origin of coordinates and the

axis of the cone as the axis of z, it is evident from the symmetry of the

solid that x — y = 0. To find z, we shall use polar coordinates, the equations

of the sphere and the cone being respectively r = a and
<f>
= a.

f
^ f f°r cos <£ • r2 sin (fydOd^dr

Then ~ = Jo JoJ\
f'

n

f" fV sin tf> (Id d<l>dr
Jo Jo Jo

The denominator is the volume of a spherical cone the base of which

is a zone of one base with altitude a (1 — cos ex) ; therefore its volume

equals § ira3 (1 — cos a).

f f f
>'
3 cos $ sin <jid9d(f>dr = \ a* C C cos <£ s'mcf}d6dcf>

= 1 a4 (l-cos2
«) f

2n
d9

Jo

=
1:7ra

4 (l — cos2 a:).

Therefore z =
j} (1 + cos a) a.
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186. Attraction. The formula

'cos 6dm

P ir
(§ 138)

for the component of attraction in the direction OX is entirely

general. Similar formulas for the components in the direc-

tions OY and OZ may be deduced. The application of these

formulas requires us to express

B, cos 6, and dm in terms of

the same variables, and to substi-

tute limits of integration so as

to include the whole of the

attracting mass. In general, the

integral, after the substitution of

the variables, will be a double

or triple integral.

Ex. Find the attraction due to a

homogeneous circular cylinder of

density p, of height h, and radius

of cross section a, on a particle in

the line of the axis of the cylinder

at a distance l> units from one end

of the cylinder.

Take the particle at the origin of

coordinates (fig. 233), and the axis of

the cylinder as ()Z. Using cylindrical

coordinates, we have dm = prdrdddz

and R = Vz~ + r2.

From tlie symmetry of the figure the

Fig. 233

sultant components of attrac-

tion in the directions OX and O Y are zero, and cos 6 =
resultant component in the direction OZ.

1 represent

X2
7T r% a r\b

i JO Jb

Vr2
for the

Therefore, letting A represent the component in the direction OZ,

+ h

we have dddrdz,
(c2 + r2)2

where the limits of integration are evident from fig. 233.

A = p f*' ["I
r - r

) dOdr
Jo Jo VVi2 + r2 V(h + h) 2 + /•-/

= P f
2w

(k + V62 + a* - V(/> + ?>y
2 + «2

) <io

S¥ V(/; + ],y + a2
).
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PROBLEMS

Find the values of the following integrals

:

iff %dxdy. 4.
J

I log^dxdy

2. C^f^xcosydxdy.
5

" f £ {* + V)*V**

Jo Jo

6. Express in two ways the inte-

gral off(x, y) over the smaller area

sin (x + //) dx dy.
bounded by the curves x + V = 2 a

and (x — a)'
1 + y

2 — a2
.

Find the values of the following integrals

:

7. / / rdtfdr. 8. / / t*mn*$dOdr.
Jo Jo J- 1 17

o

9. Find the integral of r over one loop of the curve r = a sin 2 0.

10. Find the integral of r over the area bounded by the initial

line and the curves r = a and r — a(l -4- cos 0).

11. Find the area bounded by the curves y = x% and ?/ = 2 — x2
.

12. Find the area bounded by the hyperbola xy = 4 and the line

x + y - 5 = 0.

13. Find the area bounded by the confocal parabolas if = 4 ax

+ 4 aa, v/ =- 4 Ax + 4 h\

14. Find the area of the loop of the curve (a; + yf = if (// +1).

15. Find the area bounded by the curves x2 + if = 25, 3 y
2 = 16 x,

3x2 = 16y.

16. Find each of the areas bounded by the circle x2
-f- if — 5 a2

and the witch ?/ = ————-•

x- + 4 ar

17. Find the area bounded by the circles r = a cos 6, r = a sin 6.

18. Find the area cut off from a loop of the curve r = a cos 2

by the curve r = — •

19. Find the area cut off from the lemniscate r2 = 2«2 cos 2 by

the straight line r cos = -jr- a.
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20. Find the area bounded by the limacon r = 2 cos 6 + 3 and

the circle r = 2 cos 6.

21. Find the area which is outside the circle r=a and inside

the cardioid r = a(l + cos 6).

22. Find the area in the first quadrant bounded by the circle

r — 2a sin $ and the lemniscate r
2 = 2 a2 cos 2 0.

23. Find the moment of inertia of the area bounded by the hyper-

bola xy = 4 and the line x + y — 5 = about an axis perpendicular

to its plane at O.

24. Find the moment of inertia of the area bounded by the curves

y = /2

,
y=2 — x'

2 about an axis perpendicular to its plane at 0.

25. Find the moment of inertia about OY of the area bounded by

OK and the parabola y
2 = 1 — x.

26. Find the moment of inertia aboul an axis through perpen-

dicular to the coordinate plane of thai pari of the first quadrant

included between the first two successive coils of the spiral /• = e°*.

27. Find the moment of inertia of the entire area bounded by

the curve r — a3 sin 30 about an axis perpendicular to its plane at

the pole.

28. Find the moment of inertia of the area of one loop of the lem-

niscate j-
2 = 2 «2 cos 2 9 about an axis perpendicular to its plane at

the pole.

29. Find the moment of inertia of the total area bounded by tin-

curve 1* = a2
sin 6 about an axis in its plane perpendicular to the

initial line at the pole.

30. Find the moment of inertia about OX of the area bounded by

the parabolas if — 4 ax + 4 a3
, y

2 = — 4 />./ + 4 U2 .

31. Find the moment of inertia about OF of the area of the loop

of the curve y
2 = x2

(2 — x).

32. Find the moment of inertia of the area of the cardioid

r — a (1 + cos 6) about an axis perpendicular to its plane at the pole.

33. Find the moment of inertia of the area of a circle of radius a

about an axis perpendicular to the plane of the circle at any point

on its circumference.

34. Find the moment of inertia about its base of the area of a

parabolic segment of height h and base 2 a.
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35. Find the moment of inertia about OX of the area bounded on

the left by an arc of the curve y
2 = ax -4- as and on the right by an

arc of the curve x" + if = a'
1

.

36. Find the moment of inertia of the area of one loop of the

lemniscate r* = 2 a2 cos 2 6 about an axis in its plane perpendicular

to the initial line at the pole.

37. Find the moment of inertia about the initial line as an axis

of the area of the cardioid r = a (cos 6 -\- 1) above the initial line.

38. Find the moment of inertia of the area bounded by a semi-

circle of radius a and the corresponding diameter, about the tangent

parallel to the diameter.

39. Find the moment of inertia of the area of a loop of the curve

v = a cos 2 6 about the axis of the loop as an axis.

40. Find the moment of inertia of the area of the circle r = a

which is not included in the curve r = a sin 2 6 about an axis

perpendicular to its plane at the pole.

41. Determine the center of gravity of the half of a parabolic

segment of altitude 9 in. and of base 12 in. formed by drawing a

straight line from the vertex of the segment to the middle point

of its base.

42. Find the center of gravity of a lamina in the form of a

parabolic segment of altitude 7 in. and of base 28 in. if the density

at any point of the lamina is directly proportional to its distance

from the axis of the lamina.

43. Find the center of gravity of the area of a loop of the curve

ay = «V - x6
.

44. Find the center of gravity of the area bounded by the parabola

x* -4- ?/
2 = a* and the circle x2 + if = a2

.

45. Find the center of gravity of the area bounded by the cardioid

r = a (cos 6 + 1).

46. Find the center of gravity of the area bounded by the parabola

x2 = 4 aii and the witch y = -= :

—

-
•J J x1 + 4 a2

47. A plate is in the form of a sector of a circle of radius a, the

angle of the sector being 2 a. If the thickness varies directly as the

distance from the center, find its center of gravity.
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48. Find .the center of gravity of the area in the first quadrant

bounded by the curve x$ + //'• = "•' and the line x 4- y = a.

49. The density at any point of a lamina in the form of a loop

of the curve r == a cos 2 8 is directly proportional to its distance

from the point of the loop. Determine its center of gravity.

50. Find the center of gravity of the area bounded by the limacon

r = 2 cos $ 4- 3.

51. Find the center of gravity of the area bounded by the curve

v = a sin - as $ changes from to 2 it.

52. Find the center of gravity of the area bounded by the cissoid

x3

f = and its asymptote.

53. Find the center of gravity of the area cut off from the lemnis-

V3
cate r2 = 2 a2 cos 2 6 by the straight line rcos0= -jr- a.

''-
'r

54. From a homogeneous elliptic plate, —, + ',., — F is cut a circular

plate of radius /•(/• <
-J

with center at f-j OJ. Find the center of

gravity of the part left.

55. Find the area of the surface cut from the] >aral >< >loid //"+ v- = 4 <is

by the cylinder //- = ax and the plane ./• = .'! a.

56. Find the area, of the surface of the cone ./- 4- //- — 4 ::
2 =

cut out by the cylinder .r + //- — 4./- = 0.

57. Find the area of the surface cut from the cylinder ./•- 4- // = a 2

by the cylinder if + -- = a'
1

.

58. Find the area of the surface of a sphere of radius a inter-

cepted by a right circular cylinder of radius \ a, if an element of

the cylinder passes through the center of the sphere.

59. Find the area of the sphere x2 4- // + z2 = a2 included in the

cylinder with elements parallel to OZ and having for its directrix in

the plane XOY a single loop of the curve r = a cos 30.

60. Find the area of the surface of the cylinder x2 4- if — 2 ax =
bounded by the plane ZOFand a right circular cone having its vertex

at 0, its axis along OZ, and its vertical angle equal to 90°.
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61. Find the area of the paraboloid x2 4- y
2 = 2 az included in the

cylinder with elements parallel to OZ and having for its directrix in

the plane XOY one loop of the curve r2 = a2 sin 2 0.

62. Find the area of the surface z — xy included in the cylinder

X 1
y

z

63. Find the area of that part of the surface z = — the projec-

tion of which on the plane XOY is bounded by the curve r2 = a2 cos 0.

64. Find the area of the surface of the cylinder x2 + y
2 — 2 ax =

included in the cone x2 — y
2 + 2 z2 = 0.

65. Find the area of the sphere x2 + y
2 4- z

2 = 4«2 bounded by

the intersection of the sphere and the right cylinder the elements

of which are parallel to OZ and the directrix of which is the cardioid

r = a (cos + 1) in the plane XOY.

66. Find the area of the surface of the sphere (x— a)2+y2+ z2= a2

included in one nappe of the cone x2 4- y
2 — z

2 = 0.

Find the values of the following integrals :

dxdydz

n*
8 r^^-y2

dxdy<

1 **~f
67.

V^T^i
/
^V„2_ x2 _j/

2 yzdxdydz
68 11 1 *

J
e
x + y + z dxdydz.

Jo

70. / I / r
3 drd$dz.

Jo Jo Jo

,Vf7T72

7-^ rzdddrdz

J-iJa&mBJO

72.

{a2 - r
2 + z2y

•dzn f
cme

f dOdra

Jo J, 1 »V

73. I I I r sin2

<f>
cos

<f>
cos d6d(f> dr.

%J0 i/0 t/asin0

Xtt
/-» 2 tt /»a cos

/ I r sin 3
<f>d<f>d0 dr.

Jo Jo
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75. Find the volume bounded by the surface x^ + y^ + z^ = a?

and the coordinate planes.

76. Find the volume of a cylindrical column bounded by the

surfaces y = x2
, x = if, z = 0, z = 12 + y — x2

.

77. Find the volume bounded by the plane z = and the

cylinders x2 + y
2 = a2

, f = a2 — az.

78. Find the volume bounded by the surfaces r2 = bz, z = 0,

r — a cos 0.

79. Find the volume bounded by the sphere x2
-\- f + z

2 = 5 and

the paraboloid x2 + if — 4 z.

80. Find the volume bounded by the cylinder z2 = x -\- y and the

planes x = 0, y = 0, z = 4.

81. Find the volume of the paraboloid y
2 + z2 = 2 x cut off by

the plane y = x — 1.

82. Find the volume bounded by a sphere of radios " and a right

circular cone, the axis of the cone coinciding with a diameter of the

sphere, the vertex being at an end of the diameter and the vertical

angle of the cone being 90°.

83. Find the total volume bounded by the surface (x2 + y
2 + z2

)

3

= 27 asxyz. (Change to polar coordinates.)

84. Find the volume bounded by the plane XOY, the cylinder

.'"" + if"
— 2aa! = 0, and the right circular cone having its vertex at

<>, its axis coincident with UZ, and its vertical angle equal to 90°.

x2
i/
2

z*
85. Find the total volume bounded by the surface —

2
+ 'j^ + — = 1.

86. Find the volume bounded below by the paraboloid x2 + y
2 = az

and above by the sphere x2 + if + z2 — 2 az = 0.

87 . Find the volume bounded by the surface b
2z2 = if (a

2 — x2

)

and the planes y — 0, y = b.

88. Find the volume cut from a sphere of radius a, by a right

circular cylinder of radius -> one element of the cylinder passing

through the center of the sphere.

89. Find the total volume bounded by the surface (x2 + y
2 + z2

)

2

= axyz.
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90. Kind the volume in the first octant bounded by the surfaces

* = (a + !/f, x1 + if = «a
-

91. Find the volume of the sphere j'2 + //

2 + z
2 = a? included in

a cylinder with elements parallel to OZ, and having for its directrix

in the plane XOY one loop of the curve r2 = a2 cos 2 0.

92. Find the volume bounded by the surfaces az= xy, x + y + z

= a, z = 0.

93. Find the total volume which is bounded by the surface x* + //'>

+ ~i = J.

94. Find the total volume which is bounded by the surface r2 -f- z"

= 2 ar cos 2 6.

95. Find the moment of inertia about its axis of a hollow right

circular cylinder of mass M, the inner radius and the outer radius

of which are respectively r
x
and v

%
: (1) if the cylinder is homoge-

neous
; (2) if the density of any particle is proportional to its

distance from the axis of the cylinder.

96. A solid is bounded by the plane z = 0, the cone z = r (cylindri-

cal coordinates), and the cylinder having its elements parallel to OZ
and its directrix one loop of the lemniscate r = 2 a2 cos 2 6 in the

plane XOY. Find its moment of inertia about OZ if the density at

any point varies directly as its distance from OZ.

97. Find the moment of inertia of a homogeneous right circular

cone of density p, of which the height is h and the radius of the base

is a, about an axis perpendicular to the axis of the cone at its vertex.

98. A ring is cut from a homogeneous spherical shell of density p,

the inner radius and the outer radius of which are respectively 4 ft.

and 5 ft., by two parallel planes on the same side of the center of

the shell and distant 1 ft. and 3 ft. respectively from the center.

Find the moment of inertia of this ring about its axis.

99. A mass M is in the form of a right circular cone of altitude

h and with a vertical angle of 120°. Find its moment of inertia

about its axis if the density of any particle is proportional to its

distance from the base of the cone.

100. The radius of the upper base and the radius of the lower

base of the frustum of a homogeneous right circular cone are respec-

tively &,

its axis.
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101. The density of any point of a solid sphere of mass M and

radius a is directly proportional to its distance from a diametral

plane. Find its moment of inertia about the diameter perpendicular

to the above diametral plane.

102. Given a right circular cylinder of mass M, height //, and

radius a, the density of any particle of which is /.• times its distance

from the lower base. Find the moment of inertia of this cylinder

about a diameter of its lower base.

103. Find the moment of inertia about (>Z of that portion of the

surface of the hemisphere z = V«" — x'~ — f which lies within the

cylinder x" + if = ax.

104. A homogeneous solid of density p is in the form of a hemi-

spherical shell, the inner radius and the outer radius of which are

respectively i\ and /;,. Find its moment of inertia about any diam-

eter of the base of the shell.

105. A homogeneous anchor ring of mass .1/ is bounded by the

surface generated by revolving a circle of radius a about an axis in

its plane, distant b(b > a) from its center. Find the moment of

inertia of this anchor ring about its axis.

106. The density at any point of the hemisphere z = "\Ar — x'
2 — >f

is k times its distance from the base of the hemisphere. Find the

moment of inertia about OZ of the portion of the hemisphere in-

cluded in the cylinder x'
2 + //" = OX.

107. Through a homogeneous spherical shell of density p, of

which the inner radius and the outer radius are respectively a^ and

"„ a circular hole of radius b(b<a^) is bored, the axis of the hole

coinciding with a diameter of the shell Find the moment of inertia

of the ring thus formed about the axis of the hole.

108. Find the center of gravity of the portion of a uniform wire

in the form of the curve x = at'
2
, // = j- <<f-\ ,-„ = \ af 4

}
between the

points for which t — and t = 1.

109. Find the center of gravity of a uniform wire in the form of

the helix x = a cos 0, y = a sin 6, z = k9, between the points for

which = and = 6V
"When will the center of gravity fall on the

axis of the helix ?

110. Find the center of gravity of a homogeneous solid bounded

by the coordinate planes and the surface x- + //- + ^ = «5
-
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111. Find the center of gravity of a homogeneous body in the

form of an octant of the ellipsoid '— 4- 7= + -z = 1.
1 a2

(r c
2

112. Eind the center of gravity of the homogeneous solid bounded

by the surfaces z — 0, y = 0, y = b, b
2z2 = y'2 (a2 — ar).

113. Eind the center of gravity of a homogeneous solid bounded

by the paraboloid a2x2 + b'
2

y
2 = z and the plane z = c.

114. A ring is cut from a homogeneous spherical shell of density

p, the inner radius and the outer radius of which are respectively

4 ft. and 5 ft., by two parallel planes on the same side of the

center of the shell and distant 1 ft. and 3 ft. respectively from the

center. Eind the center of gravity of this ring.

115. Eind the center of gravity of a homogeneous solid bounded

by a spherical surface of radius b and two planes passing through

its center and including a dihedral angle 2 a.

116. Find the center of gravity of a hemisphere of radius a if

the density at any point varies directly as the distance of the point

from the base of the hemisphere.

117. Find the center of gravity of a homogeneous solid bounded

by the surfaces of a right circular cone and a hemisphere of radius

a which have the same base and the same vertex.

118. Eind the center of gravity of an octant of a sphere of radius

a if the density at any point varies directly as its distance from the

center of the sphere.

119. Find the center of gravity of a right circular cone of altitude

a, the density of each circular slice of which varies directly as the

square of its distance from the vertex.

120. Eind the center of gravity of a homogeneous solid bounded

by two concentric spherical surfaces of radii 4 ft. and 5 ft. respec-

tively and a plane through the common center of the two spherical

surfaces.

121. Find the center of gravity of a homogeneous solid in the

form of the frustum of a right circular cone, the height of which

is h and the radius of the upper base and the radius of the lower

base of which are respectively r
%
and rr
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122. A solid is bounded by a sphere of radius a and a right circu-

7T
lar cone, the vertical angle of which is — > the vertex of which is on

o

the surface of the sphere, and the axis of which coincides with a

diameter of the sphere. Find its center of gravity if the density at

any point is k times its distance from the axis of the cone.

123. Find the attraction of a hemisphere of radius a on a particle

of unit mass at the center of its base if the density at any point of

the hemisphere varies directly as its distance from the base.

124. A homogeneous solid of density p is bounded by the plane

z = 3 and the surface z% == x1 + if. Find the attraction of this solid

on a particle of unit mass at the origin of coordinates.

125. A portion of a right circular cylinder of radius <i and uniform

density p is bounded by a spherical surface of radius b(b>a), the

center of which coincides with the center of the base of the cylinder.

Find the attraction of this portion of the cylinder on a particle of

unit mass at the middle point of its' base

126. A portion of a right circular cylinder of radius a is bounded

by a spherical surface of radius b(b>a), the center of winch coin-

cides with the center of the base of the cylinder. Find the attraction

of this portion of the cylinder on a particle of unit mass at the

middle point of its base, the density of any particle of the cylinder

being proportional to its distance from the axis of the cylinder.

127. Show that the attraction of a segment of one base, cut from

a homogeneous sphere of radius a, on a particle of unit mass at its

vertex is 2ir/ip(l — - ^l_), where p is the density of the sphere

and h is the height of the segment.

128. A ring is cut from a homogeneous spherical shell of density

p, the inner radius and the outer radius of which are respectively

4 ft. and 5 ft., by two parallel planes on the same side of the center

of the shell and distant 1 ft. and 3 ft. respectively from the center.

Find the attraction of this ring on a particle of unit mass at the

center of the shell.

129. The density of a hemisphere of mass ^^ and radius a varies

directly as the distance from the base. Find its attraction on a

particle of unit mass in the straight line perpendicular to the base
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at its center, and at a distance a from the base in the direction

away from the hemisphere.

130. A solid of mass M is bounded by a right circular cone of

vertical angle 90° and a spherical surface of radius 2 ft., the center

of the spherical surface being at the vertex of the cone. If the

density of any particle of the above solid is directly proportional to

its distance from the vertex of the cone, find the attraction of the

solid on a particle of unit mass at the vertex of the cone.

131. The vertex of a right circular cone of vertical angle 2 a is

at the center of a homogeneous spherical shell, the inner radius and

the outer radius of which are respectively a
x
and «

2
. Eind the attrac-

tion of the portion of the shell outside the cone on a particle of unit

mass at the center of the shell, in terms of the attracting mass.

132. The density at any point of a given solid of mass M in the

form of a hollow right circular cylinder is directly proportional to

its distance from the axis of the cylinder. If the height of the

cylinder is 2 ft., and its inner radius and outer radius are respec-

tively 1 ft. and 2 ft., find its attraction on a particle of unit mass

situated on its axis 2 ft. below the base.



CHAPTER XVII

INFINITE SERIES

187. Convergence. The expression

«
l
+ a

1 + a
I
"+a

4 + a
B + ---, (1)

where the number of the terms is unlimited, is called an infinite

semes.

An infinite series is said to converge, or to be convergent, when tin-

sum of the first n terms ajyproaches a limit as n increases without limit.

Thus, referring to (1), we may place

s„=a
1
+a

2 ,

Then, if Lim8n
= A,

the series is said to converge to the limit ./. The quantity A is

frequently called the sum of the series, although, strict ly speaking,

it is the limit of the sum of the first n terms. The convergence

of (1) may be seen graphically by plotting *
r *.,, *.., • • •, 8n on the

number scale, as in § 3.

A series which is not convergent is called divergent. This may

happen in two ways : either the sum of the first n terms increases

without limit as n increases without limit ; or sn may fail to approach

a limit, but without becoming indefinitely great.

Ex. 1. Consider the geometric series

a + ar + ar" + <ir
z + • • •

.

1 — r"
Here sn = a + ar + ar2 + • • • + ar"- 1 = a- Xow if r is numerically

\ — r

less than 1, r" approaches zero as a limit as n increases without limit ; and
ac 405
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therefore Lim sn
= If, however, r is numerically greater than 1,

rn increases without limit as n increases without limit ; and therefore sn

increases without limit. If r = 1, the series is

and therefore sn increases without limit with n. If r = — 1, the series is

a — a + a — «+•••,

and sn is alternately a and 0, and hence does not approach a limit.

Therefore, the geometric series converges to the limit when r is numeri-

cally less than unity, and diverges when r is numerically equal to, or greater

than, unity.

Ex. 2. Consider the harmonic series

1 + I + I +
1 + 1+1 + I + I

+ ... + 1 + .;.,2345078 n

consisting of the sum of the reciprocals of the positive integers. Now

£ + £ > \ + k = h HHI + ?>H1+Hi = l.

and in this way the sum of the first n terms of the series may be seen to

be greater than any multiple of ^ for a sufficiently large n. Hence the

harmonic series diverges.

188. The comparison test for convergence. If each term of a

given series of positive numbers is less than, or equal to, the corre-

sponding term of a known convergent series, the given series

converges.

If each term of a given series is greater than, or equal to, the

corresponding term of a known divergent series of positive numbers,

the given series diverges.

Let «
1
+«

2
+ rt3+ fl,

4
+ •••

C1 )

be a given series in which each term is a positive number, and let

K+h+h+\+--- (2)

be a known convergent series such that ak^ bk .

Then, if sn is the sum of the first n terms of (1), s'n the sum
of the first n terms of (2), and B the limit of s'n , it follows that
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since all terms of (1), and therefore of (2), are positive. Now as

n increases, sn increases but always remains less than B. Hence sH

approaches a limit, which is either less than, or equal to, B.

The first part of the theorem is now proved ; the second part

is too obvious to need formal proof.

In applying this test it is not necessary to begin with the

first term of either series, but with any convenient term. The
terms before those with which comparison begins form a poly-

nomial, the value of which is of course finite, and the remaining

terms form the infinite series the convergence of which is to be

determined.

+ -, + - + -+•• +

Ex. 1. Consider

1 2s :P i* (n-1)"

Each term after the third is less than the corresponding term of the con-

vergent geometric .scries

i + i + ^ + i + i + ... +
5
l

i
+ ....

Therefore the first series converges.

Ex. 2. Consider %

V2 V3 Vi V5 VTi

Each term after the first is greater than the corresponding term of the

divergent harmonic scries

Therefore the first series diverges.

189. The ratio test for convergence. If in a series of positive

numbers the ratio of the (>i+l)s. term to the nth term approaches

a limit L as n increases without limit, then, if L<\, the series

converges ; if L>1, the series diverges ; if L — 1, the series may
either diverge or converge.

Let a, + a
a
+ a

3
-\ + a

n + an+1 H (1)

be a series of positive numbers, and let Limi-i±i =X. We have

three cases to consider.
" =:

° "
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1. L<1. Take r any number such that i<r<l. Then,

since the ratio -Ail approaches L as a limit, this ratio must

become and remain less than r for sufficiently large values of n.

Let the ratio be less than r for the rath and all subsequent

terms. Then am + 1
<a

iu
r,

am+ -2< am + i
r< a„A

Now compare the series

am + ^m + l + «m + 2 + «m + 3H (2)

with the series am + amr + amr
2
-f amr

3 + • • •. (3)

Each term of (2) except the first is less than the correspond-

ing term of (3), and (3) is a convergent series since it is a

geometric series with its ratio less than unity. Hence (2)

converges by the comparison test, and therefore (1) converges.

2. L>1. Since -JL±1 approaches I as a limit as n increases

without limit, this ratio eventually becomes and remains greater

than unity. Suppose this happens for the wth and all subsequent

terms. Then ^am+\ ~^ am1

«m +2> am+l>V

Each term of the series (2) is greater than the corresponding

term of the divergent series

a» + «»+ ««+ fflJ • (4 )

Hence (2) and therefore (1) diverges.

3. L =1. Neither of the preceding arguments is valid, and

examples show that in this case the series may either converge

or diverge.

In applying this test, the student will usually find -R±1 hi

the form of a fraction involving n. To find the limit of this
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fraction as n increases without limit, it is often possible to

divide numerator and denominator by some power of n, so as

to be able to apply the theorem (§13) that Lim- = 0, or some
other known theorem of limits.

Ex. 1. Consider

2 3 4 5 n

3»-

The nth term is ——- and the (n + l)st term is

(n + l)st term to the nth term is , and
3ft

j

T . n + 1 T . n 1Lim = Lim = -
n=» 3fl „=„ 3 3

+ 1
The ratio of the

Therefore the given series converges.

Ex. 2. Consider 1 +
38 4 4

+ r +

The nth term is — and the (n + l)st term is
(» + l)'-

the (n + l)st term to the nth term is
(n + !)» + '

n + 1

- = £+*)"
(n + L)»" \ n /

Lto(!i±l)-=Lim(l + l)
n = » \ ft / n = ao \ n/

Therefore the given series diverges.

The ratio of

, and

(§98)

190. Absolute convergence. The absolute value of a real num-
ber is its arithmetical value independent of its algebraic sign.

Thus the absolute value of both + 2 and — 2 is 2. The abso-

lute value of a quantity a is often indicated by \a\. It is evi-

dent that the absolute value of the sum of n quantities is

less than, or equal to, the sum of the absolute values of

the quantities.

A series converges when the absolute values of its terms form a

convergent series, and is said to converge absolutely.

Let a
i + a

2 + a
z + a

i~\

•be a given series, and

(i)

(2)
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the series formed by replacing each term of (1) by its absolute

value. We assume that (2) converges, and wish to show the

convergence of (1).

Form the auxiliary series

(«i + KI) + («k + N)+ («. + |«,|) + (a
4 + |aJ)+.... (3)

The terms of (3) are either zero or twice the corresponding

terms of (2). For ak =— \ak \

when ak is negative, and a
k
= \ak

\

when ak is positive.

Now, by hypothesis, (2) converges, and hence the series

2W+2|«.l+2|«1|+2|aJ+... (4)

converges. But each term of (3) is either equal to or less

than the corresponding term of (4), and hence (3) converges by

the comparison test.

Now let sn be the sum of the first n terms of (1), s'
n the sum

of the first n terms of (2), and s'J the. sum of the first n terms

of (3). Then '

s
n
= s'J-s'n ,

and, since s" and s'n
approach limits, s

n also approaches a limit.

Hence the series (1) converges.

We shall consider in this chapter only absolute convergence.

Hence the tests of §§ 188, 189 may be applied, since in testhig

for absolute convergence all terms are considered positive.

191. The power series. A power series is defined by

% +v; +v;2 + a
z
x* ^ • a

nx" -\— >

where « , a , a , a
8
, • are numbers not involving x.

We shall prove the following theorem : If a 'power series con-

verges for x = xv it converges absolutely for any value of x such

that \x\<\x
x

\.

For convenience, let \x\ = X, \an \
= An ,

jzj = A'
a
. By hyjDothe-

sis the series

a + a
x
x

x + a„x\ + a
z
x\ -\ h anx[

l

H (1)

converges, and we wish to show that

A + A
X
X+ AX' + A

Z
X* + • • • + A

nX'
1 + • • • (2)

converges if X<X,.
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Since (1) converges, all its terms are finite. Consequently

there must be numbers winch are greater than the absolute

value of any term of (1). Let M be one such number. Then

we have AnX" < M for all values of n.

Then
/ TV IX\*

Each term of the series (2) is therefore less than the corre-

sponding term of the series

M+ M
(f)

+M(§)'+ u(§]
+

•

• + *©"+ " - (3)

But (3) is a geometric series, which converges when X< X
x
.

Hence, by the comparison test, (2) converges when X<X.
From the preceding discussion it follows that a power series

will converge for values of x lying between two numbers — B
and + B, and diverge for all other values of x. In some cases

B may be infinity, that is, the series may converge for all values

of x. In other cases, less frequent, B may be zero, that is, the

series may converge only for x = 0.

In any case the values of x for which the series converges

are together called the region of convergence. If represented

on a number scale, the region of convergence is in general a

portion of the scale having the zero point as its middle point.

In some cases the region may extend to infinity or shrink to

a point. In practice the student will generally find it con-

venient to determine the region of convergence by applying

the ratio test, as shown hi the examples.

Ex. 1. Consider

1 + 2 x + 3 x2 + 4 xs + • • • + nx"- 1 + -.

The nth term is nxn - 1
, the (n + l)st term is (n + l)xn

, and their ratio is

x. Lim x — x Lim (1 + -) = x. Hence the series converges when
n „ = *, n n = oo\ n)

\x\ <1 and diverges when \x\ >1. The region of convergence extends on

the number scale between — 1 and + 1.
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Ex. 2. Consider 1 + Z + £. + ± + . . . + JL_- + . . ..

1 [2 13
|
». — 1

—-j the (n + l)st term is — , and their ratio is -•
|n — 1 [n ra

Liin - = for any finite value of x. Hence the series converges for any

value of x and its region of convergence covers the entire number scale.

Ex. 3. Consider

1 + x + (2 x2 + [3 Xs + • • • + Ira-l a;"- 1 + • • •.

The nth term is \n — l a;"
-1

, the (n + l)st term is \nx n
, and their ratio

is nx. This ratio increases without limit for all values of x except x = 0.

Therefore the series converges for no value of x except x — 0.

A power series defines a function of x for values of x within the

region of convergence, and we may write

f(x)=%+ a
x
x + a^x"+ a

3
x3

-\ + a„of+ • • •

,

(4)

it being understood that the value of f(x) is the limit of the

sum of the series on the right of the equation. The power

series has the important property, not possessed by all kinds

of series, of behaving very similarly to a polynomial. When a

function is expressed as a power series it may be integrated

or differentiated by integrating or differentiating the series term

by term. The new series will be valid for the same values of

the variable for which the original series is valid. If the method

is applied to a definite integral, the limits must be values for

which the series is valid.

Similarly, if two functions are each expressed by a power series,

their sum, difference, product, or quotient is the sum, the dif-

ference, the product, or the quotient of the series.

For proofs of these theorems the student is referred to ad-

vanced treatises.

192. Maclaurin's and Taylor's series. We have noted that any

convergent power series may define a function. Conversely,

it may be shown (see § 193) that any function which is con-

tinuous and has continuous derivatives may be expressed as a

power series. When a function is so expressed it is possible to
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3=|/"'(°)' • • "> ^=^/(n)

(0).
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express the coefficients of the series in terms of the fmiction

and its derivatives. For let

f(x)= %+ a
r
v + ajr+ a

3
x3+ «/+•••+ a„af

+

By differentiating we have

f(x)=a
1
+ 2 a

2
x + 3 «,**+ 4 a

4
x3

H + na^' 1
-] ,

f"(x)= 2 «
2
+ 3 • 2 rt

8
.r + 4 • 3 «/+ • • • + n(n-l)«yf- f+ • • •,

f"(x)= S. 2a
8
+4 • 3 • 2a

4
«+ • • +»(n-l)(n-2)a.af-»+ • ,

/ (%r) = [>(W -1)(h- 2) • • • 3 • 2]an+ • -.

Placing £=0 in each of these equations, we find

=/(0), a=f(0-),a =

Consequently we have

/(.O=/(0)+/X0), +-^..+^,-+ ... +-^.+ ..,(i)

This is called Maclaurin
,

8 series.

Again, if in the right-hand side of

f(x) = a
Q
+ a

t
x + ./.,/•- + ay + . . . + ,/„.>•" + . .

.

we place x = a 4- •>•', and arrange according to powers of a/, we have

f(x) = ?>
o
+ 6/ + 6

a
a/

a + ft/8 + • • • + ?>,/» + . .
.,

or, by replacing ./•' by its value a; — a,

/(.r) = 6 + ^(s- a)+ \(x- a)a+ 6,(a:- a

)

:,+ . . • + K(x- a)*+

By differentiating this equation successively, and placing x=a
in the results, we readily find

».=/oo. Woo. &
a=,4/'oo, ».-[l/"(«).-. j-=^/(b)

(«)-

Hence

/w-««)+c»-«)f«+^/'(«)+^Vw+ • •
•

+-*^^.r00+---- (2)

This is Taylors series.
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Another convenient form of (2) is obtained by placing

x— a = h, whence x = a + h. We have then

/(« + h) =/(«) + hf(a) +~f\a) +^f"(a) + .

If If

Maclaurin's series (1) enables its to expand a function into

a series in terms of ascending powers of x when we know the

value of the function and its derivatives for x = 0. By means

of the series the function may be computed for values of x for

which the series converges. Practically the computation is con-

venient for small values of x.

Taylor's series (2) enables us to expand a function in terms

of powers of x — a when the value of the function and its

derivatives are known for x = a. The function is said to be

expanded in the neighborhood of x = a, and the series can be

used to compute the value of the function for values of x

which are near a.

Ex. 1. Expand ex into a power series and compute its value when x = \.

Since f(x) = e*,f (x) = e*, f" (x) = eF, etc., /(0)= 1,f (0) = 1, f" (0) = 1,

etc. Hence, by Maclaurin's. series,

x .r
2 x3 xi

e* = 1 +
l
+

j.
+

ii
+

j4
+ -"-

This converges for all values of x. If we place x = J, we have e* = 1

+ i + is + t<?2 + tsjW = 1-3956, correct to four decimal places. If x has

a larger value, more terms of the series must be taken in the computation,

so that the series, while valid, is inconvenient for large values of x.

Ex. 2. Expand (a + a;)" into a power series in x. Here

f{x) = (n + xy, /(0) = a»,

f(x) = n(a + x)n~ 1
, f'(0) = nan - 1

,

f" (x) = n (n - 1) (a + x)« ~ 2
, f" (0) = n (n - 1) a» - 2

,

f" (x) = n (n - 1) (n - 2) (a + x)n - 3
, f" (0) = n (n - 1) (n - 2) a"'3

.

Hence, by Maclaurin's series,

(a + xy = a" + na»-ix +
n (n

~ l )
(l"-*x2 + " (" ~ ^ (n ~ 2>>

a«~ 3xs + • -.
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This is the binomial theorem. If n is a positive integer, the expansion is

a polynomial of n + 1 terms, since f(n + 1) (x) and all higher derivatives are

equal to 0. But if n is a negative integer or a fraction, the series converges

when x is numerically less than a.

Ex. 3. Find the value of sin 61°.

Let f(x) = sinx, then f'(x) = cosx,f (x) = — sinx, etc., provided x is

expressed in circular measure. 61° expressed in circular measure is ^Vo 7r

= — + -^—
. Since sin - and cos - are known to be respectively - v3

3 180 3 3
* J

2

and — , it will be convenient to use Taylor's series with a = - Formula
2

J
3

(it
, ,\ . I,, 7T h- . IT ft

8 7T
- + h = sin - + h cos - — — sin - — — cos - + • • •

^3 / 3 3 [2 3 [3 a

ivi +J»-^-ip +

Placing /* = —— and computing, we have

^(ll*)
sin 61° = .S74G.

The expansion of a function may sometimes be obtained by-

special devices more conveniently than by direct use of the for-

mula (1) or (2): This is illustrated by the following examples :

Ex. 4. Required to expand sin_1 x.

We have

sin-ix= f
X

= f
X
(l-x*)-ldx

Jo VT^~72 J °

Io\
1 + h2 + hi

xi + hT^ x6 + --)'lx (1,yEx - 2)

1 x* 1-3 x5 1-3-5 x7

~ X + 2'32-4'52-4-6'7

„ . m i sm_1 x
Ex. 5. To expand

Vl - x2

x3 3 x5 5 x7

ByEx.4, sin-i x = x + | + i£. +^ + ..-

i r2 3 x4 5 x6
by Ex.2,

(l_,T l = l + |. + ^_ + !_+...

Hence, by multiplication,

sin- 1 j 2x3 Sx5 16 x7

Vf^~c*~ 3 15 35
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193. The remainder in Taylor's series. Let us write

/(*) =/(«) +O - «)/' 00 + ^w^-f" 00 + • •
•

and attempt to determine R. For that purpose place

In the right-hand member of equation (1), with P in the

form (2), replace a everywhere, except in P, by z, and call

F(z) the difference between f(x) and this new expression.

That is, let F(z) be defined by the equation

f(?) =f(p)-m - o - *)/' oo - (J~^r oo- •

5~y (*}—khTp
'

(3)

where x is considered constant.

Differentiate (3) with respect to z, still holding z constant.

All the terms obtained cancel, except the last two, and we have

f> <» = -^f^> +i) (z)
+ (*^y P

=^£): [P _/(re+1)(g)]-
(4)

IZ:

Now when 2 — 2*, P(2)=0, as is at once apparent from (3).

Also when z — a, F(^z) = 0, as appears from (3) with the aid

of (1). Hence F(z) must have a maximum or a minimum for

some (unknown) value of z between z = a and z — x. That is,

F'Q) =

where f lies between a and x.*

* The theorem that if F(z) = Ofor z = a and z = b, then F'(z) = for some
value of z between z — a and z = b is called Rolle's Theorem. It is geometrically

evident on drawing a graph. Of course F(z) and F'(z) must be continuous and
hence finite.
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From (4), it follows that

p=/(b+1)
(£>,

and hence, from (2),

S = ^fff^(?)- (5)

This is the remainder in Taylor s Theorem. It measures the

difference between the value of the function /(./) and the sum
of the first n + 1 terms in (1).

It is evident that if R approaches zero as n is indefinitely

increased, the Taylor's series converges and represents the

function. We have, then, in this case, a proof of the possi-

bility of a series expansion for the function, which was assumed

in § 192.

Generally also it will be sufficient to test the convergence

of the series by one of the methods of §§ 188 and 189. For

usually if the series converges, it properly represents the func-

tion. Examples can be given in which this is not true, but the

student will certainly not meet them in practice.

The remainder may be said to measure the error made in cal-

culating the value oif(x) by means of n + 1 terms of a Taylor's

or Maelaurin's series. It is therefore often important to know

Bometihing of the magnitude of R. Now H can usually nut be

found exactly, since £ is unknown, but it can sometimes be seen

that B cannot exceed some known value, and this is enough for

practice. This is illustrated in the examples.

Ex. 1. What error is made by calculating < 8 by 5 terms of Maelaurin's

series? (See Ex.1, § 102.)

When/(x)= e?
r,/<B+1>(a:) = <. Hence, in Maelaurin's series for e*,

n + ]

where £ lies between and x.

In the present example n = 4 and x = 3.

Therefore 11 =^e^ = —— &
5 29160
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where £ lies between and J. Since the largest value of £ gives the

largest value of e$, we may write

-ft < 23 i so e3 < ^^ f <nr
3?

;

whence it appears that .R<.00005.

The calculation of Ex. 1, § 192, is therefore correct to 4 decimal places.

Ex. 2. How many terms of Maclaurin's series must be taken to compute

e? correctly to 4 decimal places ?

CAY1 * 1 *

As in Ex.1, 2J=I*2_^
\n + 1

where $ is between and \. Hence

h + 1

and n + 1 must be so determined that

£i^32<.00005.
n + 1

This can be done only by trial. It results that n + 1 = 6. Then 6 terms

will be sufficient to assure the required accuracy, though from the nature

of the calculation fewer terms may do.

194. Relations between the exponential and the trigonometric

functions. By Maclaurin's series, we find

^ i+
i
+
i
+
i
+T

(i
+ ---> (1)

x3 x5 x 1

sin * = ;c__ + ___ + ...
> (2)

cos, =l-| + |-^+.., (3)

where the laws governing the terms are evident. It is possible

to show that in each case R approaches zero as the number of

the terms increases without limit, no matter what the value of x.

Hence the series converge and represent the functions for all

real values of x.

The series (1) may be used to define the meaning of e* when

x is a pure imaginary quantity and the definitions of § 26 no
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longer have a meaning. We write as usual i =V— 1 and replace

x in (1) by ix. We obtain

- i + T + "]2~ + "]3
_ + "]^ +

•"•

Then, since i*= — l, i
3= — i, &*=+l, etc.,

fa A *
2

*
4

\, / *
3

,
*5

\

•-f-i+g—H*;ii+s— >
But the two series here involved are equal to cos a; and sin a;

respectively by (3) and (2). Hence we have

e
ix = cos x + i sin x. (4)

Similarly, e~
ix = cos # — i sin #, (5)

and, from (4) and (5),

(6)

(7)

The results (4)-(7) are of great importance in some appli-

cations, notably to the simplification of certain results in the

solution of differential equations.

It may be proved from (1) that t? le
Xt = e

Xl+x
-. Then

e

~

iy = (fe-
ilJ = e

x (cos y - i sil i y). (9)

195. Approximate integration. When it is not possible, or

convenient, to evaluate the integral

sin a;
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Substituting this in (1), we have

I f(x)dx = A(b-a}+lBQ)-ay+ ±C(b-ay+ \D(l>-ay

=^[6^+3jB(5-a)+2C(6-a)2+fZ>(6-a)
8
]. (3)

Now, from (2),

/(«) = 4
/(J) = .4 + /? (J _ a) + C(J - ay +D(b- a) 3

,

and / fe±±\ = l+ }5(i-«)+j C(J - a)
2 + | Z>(5 - a) 3

;

from which it appears that equation (3) can be written in the

f0™ jj^J^t[m + if(^)+m]. (4)

This is the prismoidal formula.

If the integral (1) is interpreted as an area, the result (4)

may be expressed as follows : The area bounded by the axis of x,

two ordinates, and a curve may be found approximately by multi-

plying one sixth of the distance between the ordinates by the sum of

the first, the last, and four times the middle ordinate.

If the .integral (1) arises in finding the volume V of a solid

with parallel bases, then formula (4) becomes

F=|(2? + 4Jf+5), (5)

where h is the altitude of the solid, B the area of the lower

base, b the area of the upper base, and M the area of the section

midway between the bases.

Of course the prismoidal formula gives an exact result when

f(x) can be exactly represented in the form (2), where any of

the coefficients may be zero. The most important and frequent

cases in which (5) is exact are those in which f(x) is a quadratic

polynomial in x. In this way the student may show that the

formula applies to frustra of pyramids, prisms, wedges, cones,

cylinders, spheres, or solids of revolution in which the gener-

ating curve is a portion of a conic with one axis parallel to the

axis of revolution, and also to the complete solids just named.
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The formula takes its name, however, from its applicability

to the solid called the prismoid, which we define as a solid hav-

ing for its two ends dissimilar plane polygons with the same

number of sides and the corresponding sides parallel, and for

its lateral faces trapezoids.

Furthermore, the formula is applicable to a more general

solid two of whose faces are plane polygons lying in parallel

planes and whose lateral faces are triangles with their vertices

in the vertices of these polygons.

Finally, if the number of sides of the polygons of the last

defined solid is allowed to increase without limit, the solid goes

over into a solid whose bases are plane curves in parallel planes

and whose curved surface is generated by a straight line which

touches each of the base curves. To such a solid the formula

also applies.

The formula is extensively used by engineers hi computing

earthworks.

2. Simp8orC% ndr. When f(x) is not exactly expressed by

(2), the prismoidal formula will in general give better results

the nearer b is to a. Hence we may obtain greater accuracy

by dividing the interval 1> — <t into segments and applying the

prismoidal formula to each. Taking the interpretation of (1)

as an area, we divide the distance L — <i into an even number

(2ri) of segments, each equal to A./-, and call the values of ./•

at the points of division a, x^ x ,
3*

3
, • • •, J\,

n _ v b. At each point

of division we draw an ordinate of the curve, thus cutting the

required area into strips, and apply the prismoidal formula to

figures each of which is made up of two of these strips, so that

SB, ./•„, ./'., • • •, JC2b_ 1
correspond to the middle ordinates of these

figures. Adding the results thus obtained, we have

I /(sb) dx =^ [/(a) + 4/0O + 2/(,;) + 4/(,-
3) + 2/(sb

4)

+ --. + 4./'( ,-,„_,) +/(5)]. (6)
This is Simpson's rule.

3. The trapezoidal rule. An area may also be computed

approximately as the sum of rectangles, as shown in § 78. It is

more exact, however, to replace the rectangles of fig. 1 25, § 78, by
AC
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trapezoids. This amounts to replacing a small portion of the

curve y =f(x) by a straight line, which is equivalent to using

the first two terms of the series (2). If Ax and xv x
2
, a?

8
, • • •

are taken as in § 78, this method leads to the result

f /(*) dx =^ [/(a) + 2/00 + 2M) + 2/W + ' • •

+ 2/0„_1
)+/(J)]. (7)

This is the trapezoidal rule. It is evident that it gives less

accurate results than those found by Simpson's rule.

Ex. Evaluate C (1 + x2)? dx.

1. By the prismoidal formula.

/(0) = 1, /(|) = 5.859, /(3) = 31.623.

f
3

(l + x2)?dx = g[l + 4(5.859) + 31.623] = 28.030.

2. By Simpson's rule.

Take Ax = \. Then

/(0) = 1, /(' ) = 1.398, /(l) = 2.828, /(|) = 5.859,

/(2) = 11.180, /(§) = 19.521, /(3) = 31.623.

f
3

(l + x2)trfx = £[1 + 4 (1.398) + 2 (2.828) + 4 (5.859)

+ 2 (11.180) + 4 (19.521) + 31.623]

= 27.96.

3. By the trapezoidal rule.

Take Ax = \ and use the previous calculations.

f
3

(l + x2)^dx = 1[1 + 2(1.398) + 2(2.828) + 2(5.859)

+ 2 (11.180) + 2 (19.521) + 31.623]

= 28.55.

196. The theorem of the mean. If in the general form of

Taylor's series (1), § 193, with R in the form (5), § 193, we
take n = 1, we obtain

f(x) =/(«) + (x -«)/'(£>, (1)

or, placing x = a +• h,

/(a + A)=/(a) + A/'(f), (2)

where £ is between a and a +• h.
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This result either in the form (1) or the form (2) is called the

theorem of the mean, and has a very simple graphical interpre-

tation. For let LK (fig. 234) be the graph of y =/(»), and let

OA = a,OB=a + h. Then AB = h, f(a) = AD, /(« + li) = BE,

and
f(a + h) -f(a)

h
the slope of the chord BE.

If now £ is any value of 2", /'(£) is the slope of the tangent

at the corresponding point of LK. Ilenee (2) asserts that there

is some point between I) and

E for which the tangent is

parallel to the chord BE.

This is evidently true iff(x)
and f(x) are continuous.

Formula (1) may be used

to prove the proposition

which we have previously

used without proof ; namely,

If the derivative ofafunction

is always zero, the function is a constant. For let /'(./) be always

zero and let a be any value of x. Then, by (l),f(x) —f(a) = 0.

That is, the function is a constant.

From this it follows that t/r<> functions which have tlw same

derivative differ by a constant. For if f'(x) = <f>Xx), then

d

</.r

{f(x) - <£(»] = ; whence f(x) = tf>(x) + C.

197. The indeterminate form -. Consider the fraction

and let a be a number such that f(a)

(1)

0. Ifand 4>(<t)

literally meaningless.

It is customary, however, to define the value of the frac-

tion (1), when x=a, as the limit approached by the fraction

as x approaches a.

In some cases this limit can be found bv elementarv methods.
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When x — a this becomes - • When x 5* a we may divide both terms

of the fraction by a — x, and have

a2 — x2

= a + x

for all values of x except x = a. This equation is true as x approaches a,

and hence

Lim = Lim (a + x) = 2 a.

Ex. 2.
x

When x = this becomes — When i^Owe have

1 - Vl - x2 1 - Vl - x2 l + Vl-x2

x x i + Vl-A-2 1 + Vl-x2

„ T . 1 - Vl - x2
T . x nHence Lim = Lim = 0.

x = X xi0l + Vl-*2

The theorem of the mean may be used to obtain a general

method. For we have

f(x) = f(a + A) _ f(a) + A/'(f,)

where | x
and f2

lie between a and a + h. By hypothesis,/(a) = 0,

4>(a) = 0. Therefore for h*Q

As a: is made to approach a, 7i approaches zero, and |x
and £2

approach a. Hence

Lim .zw =m. (2)
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If, however, f'(a) = and $'(a) = 0, the right-hand side of

(2) becomes - • In this case we take more terms of Taylor's

series and have -,n

whence Lim ^ v J = '

„
v y

>

unless /"(a) = and <£"(«)= 0. In the latter case we take still

more terms of Taylor's series, with a similar result.

Accordingly we have the rule

:

To find the value of a fraction which takes the form - when

x= a, replace the numerator and the denominator each by its deriv-

ative and substitute x = a. If the new fraction is also - > repeat

the process.

Ex. 3. To find the limit approached by -when x = 0.
sin x

By the rule, Lim ^ ~ e
~*

= |"fl±iZ!l =- = 2.
x =o sinx L cosx J x =o 1

gSC — O cog x "f* €— x
Ex. 4. To find the limit approached by when x = 0.

xsmx
If we apply the rule once, we have

T . ex - 2 cos x + e~ x [ex + 2 sin x — e~ x~\

Lim = = -.
x=o xsinx L sinx + xcosx Jx=o

We therefore apply the rule again, thus

:

T . e* — 2cosx + e~ x fe* + 2 cosx + e~ xl 4 _
Lim ; = — ; = - = 2.
x =o xsmx L 2 cosx — x smx 1^=0 2

198. Other indeterminate forms. If /(«) = oo and <£(V)=ao,

the fraction ,

''
takes the meaningless form — when x = a.

The value of the fraction is then defined as the limit approached
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by the fraction as x approaches a as a limit. It may be proved

that the. rule for finding the value of a fraction which becomes -

holds also for a fraction which becomes —

.

.
oo

The proof of this statement involves mathematical reasoning

which is too advanced for this book and will not be given.

Ex. 1. To find the limit approached by ° (n > 0) as x becomes infinite.

1

By the rule, Lim * X = Lim = Lim = 0.
.t=o) xn x=oa nz" -1 x=oo nxn

There are other indeterminate forms indicated by the symbols

• 00, oo - 00, 0°, oo°, 1",

The form • oo arises when, in a product f(x) • ^>(^)» we
have f(a)= and <£(V) = oo. The form oo — oo arises when, in

f(x) — <f>
(V), we have f(a) = oo, <j> (a) = oo.

- These forms are handled by expressing f(x) <f> (#) or f(x) —

(f>(x), as the case may be, in the form of a fraction which

becomes - or ^ when x = a. The rule of § 197 may then be

applied.

Ex. 2. x3e~^.

xs

When x = co this becomes co • 0. We have, however, x3e_x2 = —j> which

becomes — when x = co. Then
co

x3 3 x2 3 x 3
Lim— = Lim = Lim = Lim = 0.

x=«>el! i=»2i^ x=o,2e^ x=«,±xe3?

In the same manner Lim xne~ ^ = for any value of n.

Ex. 3. sec x — tan x.

When x = - this is co — co. We have, however,

1 — sin x
sec x — tan x — ,

cos a;

which becomes - when x = — • Then
2

Lim (sec x — tan x) = Lim = Lim
.

„. n COSX
. n

2 2
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The forms 0°, oo°, 1" may arise for the function

[ZOO]**"
9 when »= «•

If we place u = [/(a;) ]*<*>,

we have log u =
<f>
(x) log/(a;).

If Lim
<f>

(:r) log/(.r) can be obtained by the previous methods,
x = o

the limit approached by u can be found.

i

Ex. 4. (1 - jy.

When x = this becomes 1". Place

then log u = —2-i '-

x

now Lim ioga-*) = r^ri =_i.
x = X LI - xJJ-= o

Hence log u approaches the limit — 1 and u approaches the limit - •

e

199. Fourier's series. A series of the form

-^ + «
x
cos ./• + a„ cos 2 x + • • • + a„ cos wa; -+- • • •

+ 6, sin & + &
a
sin 2x+ h 6„ sin »./• H , (1)

where the coefficients a
Q
, a

x
,

• • •, 6
t
, ?>

2
, • • • do not involve a-, is

called a Fourier's series. Every term of (1) has the period *

2 7r, and hence (1) has that period. Accordingly any function

defined for all values of x by a Fourier's series of form (1)

must have the period 2tt. But even if a function does not have

the period 2 ir, it is possible to find a Fourier's series which will

represent the function for all values of x between — ir and ir,

provided that in the interval — ir to ir the function is single-

valued, finite, and continuous except for finite discontinuities,!

*f(x) is called a periodic function, with period k, if f(x + k) =f(x).

t If x
x

is any value of x, such that f(x
l
— e) and f(x

x
+ e) have different

limits as e approaches the limit zero, then f(x) is said to have a finite discon-

tinuity for the value x = xv Graphically, the curve y = /(x) approaches two

distinct points on the ordinate x = xv one point being approached as x increases

toward xv and the other being approached as x decreases toward xv
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and provided there is not an infinite number of maxima or

minima in the neighborhood of any point.

We will now try to determine the formulas for the coeffi-

cients of a Fourier's series, which, for all values of x between

— it and 7r, shall represent a given function, f(x), which satisfies

the above conditions.

Let f(x) = -£ + a
1
cos x + a

2
cos 2 x + • • • + a

n cos nx + • • •

u

+ b
x
sin x + £„ sin 2 x + • • • + bn sin nx + • • • • (2)

To determine a
Q
, multiply (2) by dx, and integrate from — it

to 7r, term by term. The result is

I f(x)dx = a Tr,

whence a = —
\ f(x) dx, (3)

since all the terms on the right-hand side of the equation,

except the one involving « , vanish.

To determine the coefficient of the general cosine term, as

an, multiply (2) by cos nxdx, and integrate from — -rr to tt,

term by term. Since for all integral values of m and n

L
£

sin mx cos nx dx = 0,

cos mx cos nx dx = 0, (m =£ n)

and / cos
2 nx dx = tt,

all the terms on the right-hand side of the equation, except

the one involving an, vanish, and the result is

£ f(x) cos nx dx = an7Tj
T

i rn

whence an = — I f(x) cos nx dx. (4)

It is to be noted that (4) reduces to (3) when n = 0.
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In like manner, to determine b
n , multiply (2) by sin nxdx, and

integrate from — ir to 7r, term by term. The result is

^JO sin nx dx. (5)

For a proof of the validity of the above method of deriving the

formulas (3), (4), and (5), the reader is referred to advanced

treatises.

Ex. 1. Expand x in a Fourier's series, the development to hold for all

values of x between — tt and tt.

By (3),

by (4),

and by (5),

1 r*
i = — I xdx = 0,

TT J- n

1 /*"
i„ = - I x cos nxdx = 0,

f>n = — / x sin
7r«/-7r

nxdx
2
- cos nir.

Hence only the sine terms appear in the series for x, the values of the

coefficients being determined by giving n in the expression for hn the values

1, 2, :!,••• in succession. Therefore b
l
= 2, ba

= — |, bs = §, • • •, and

sin :? x

'(2ir,0) /(37T,0)

Tlic graph of the function x is the infinite straight line passing through

the origin and bisecting the angles of the first and the third quadrant.

The limit curve of the series coincides with this line for all values of x

between — it and it, but not for x = — it and x = tt; for every term oi the

scries vanishes when x — — tt

or x = tt, and therefore the

graph of the series has the

points (± tt, 0) as isolated

points (fig. 235).

By taking x
x
as any value

of x between — tt and tt, and

giving k the values 1, 2, 3, • • •

in succession, we can represent all values of x by x
x
± 2 kir. But the series

has the period 2 tt, and accordingly has the same value for x
l
±2 kir as

for a;,. Hence the limit curve is a series of repetitions of the part between

x = — tt and x — tt, and the isolated points (±2 k-rr, 0).

It should be noted that the function defined by the series has finite discon-

tinuities, while the function from which the series is derived is continuous.

235
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It is not necessary that/(a:) should be denned by the same law

throughout the interval from — tt to it. In this case the integrals

defining the coefficients break up into two or more integrals, as

shown in the following examples :

Ex. 2. Find the Fourier's series for f(x) for all values of x between — tt

and it, where f(x) = x + tt if — rr < x < 0, and /'(./•) =ir — xii. 0<x<ir.

Here a = -
\f (x + tt) dx + j"(v - x) dx\ = tt ;

o„ = - / (./; + tt) cos nxdx +
J

(tt — x) cos nxdx

2=— (1 - cos rnr)
;

bn = -
J

(x + tt) sin nx dx +
J

(tt — x) sin. nx dx\

Therefore the required series is

4 /cos4 /cos x cos 3 x cos ox
2
+
* \V~ ~&~ ~~5*~

The graph of f(x) for values of x be-

tween — it and 7r is the broken line ABC
(fig. 236). When x = the series reduces to

&+hh+-)- *"b +hh*

Fig. 230

When ±7T

the series reduces to 0. Hence the limit curve of the series coincides with

the broken line ABC at all points. From the periodicity of the series it

is seen, as in Ex. 1, that the limit curve is the broken line of fig. 236.

Ex. 3. Find the Fourier's series for f(x), for all values of x between — tt

and tt, where /(x) = if — tt < x < 0, &ndf(x) = tt if < x < tt.

Here

1 r~
an = —

f
tt cos nx dx = ;

TT Jo

1 r n l
bn = —

I w sin nxdx = - (1 — cosnrr).
it do n v

Therefore the required series is

7r
, n /sin a; ,

sin 3 x , sin 5 x
, \

2
+
-l-l-

+—— + -*— + --}

*Byerly, Fourier'' s Scries, p. 40.
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The graph of the function for the values of x between — ir and tt is the

axis of x from x =— ir to x = 0, and the straight line AB (fig. 237), there

being a finite discontinuity _r

when x = 0.

The curves (1), (2), (3),

and (4) are the approxima-

tion curves corresponding re-

spectively to the equations

y = l>
(i)

y = | + 2mnx, (2)
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By comparison with a geometric or a harmonic series establish

the convergence or the divergence of the following series

:

3. 1 + 1 + 1 + 1 + . . . + —L- + • • •.

[2 [3 [4 |w + 1

2 22 2s 2" _1

3 3-5 3 5 i 3 5 • i • • • (2n + 1)

3 4 5 6 to + 2
5

' 2
+ 3T2 + 4T3 + 5T4 + "*" +

(n + l)n
+ ""

By comparison with the series of problem 2 establish the con-

vergence of the following series :

e.i + | +
i
+ ...+_L_ + ....

1 • 3 ' 5 • 7 ' 9 • 11 ' (4 n - 3) (4 n - 1)

8
1

I

1
I

1
I

* L2-3- 42- 3- 4. 63- 4. 5.

6

+
rc(» + l)(n + 2)(n + 3)

+ ""'

9
-i

+
-5
+

i^
+ --- + ^TT + '--

By the ratio test establish the convergence or the divergence of

the following series :

1 1
10

* 2- l
+

28
- 3
+

25
- 5

H
2a—1(2w-l)

e 5 5a 53 5"" 1

11. 1 + - + - + - + ... + =+....
1 12 [3

|
w. — 1

2 22 23 2" /
12-i—2 + 2T-3 + 3^ + --- +^lf + ---'

13
' 5

+ 3T52 + 4753+ '" ''(n+l)^"*""'

12 3 n

"•S + S + 3 +-+S + --
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-i+f+l+f +•••+£+••••
.3 32 33 3"

\* 1
,

1 3
,

1 32
,

1 3"- 1

16
' 2

+ 5-2> + 5>-3> + -'- + 5^-^r + ---

Find the region of convergence of each of the following series

xs X5
£C
2n_1

17. a; +- + -+... + + . . ..

3 5 2 n — 1

a; ar
2 *3 ./"

18-2-2 + S +
(P
+ "- + (^+---

ic X2 Xs
.r"

19
- ^r-r> + Tr-r + r-7i + --- +1-2 ' 3- 4 ' 5- 6 ' ' (2n-l)2n '

1 X X2 xn ~ l

20. - + -2 + -3
+. .• +— + ....

03 1 CC
8

, 1 X5
, , . .. , 1 X2n_1

21-3-3-3-3 + 5-3^ + --- + (- 1)"- 1

2^i-3^ + ---

nn . x2
,

1 • 3 . 1 . 3 • 5 .
,22 - 1

--i
+ TT2

xi
-rYT3 x* + ---

1.3.5-2.-3
^ ' 1.2-3...n-l + '

Find the following expansions and verify the given region of ^
convergence

:

23 . sinx = x -- + --...+ (
-ir

- +
L- '— ' (— GO <z<co).

24. cosz = l- - + -_... +(_l).-i__ + ...

\=- li l±2 (-»<«< oo).

25. log(l+ aj)=a;-f.+ f +(-l)-»- + • • •

" (-1<*<1).

26. bB^. a (. + £ + £+... +^ + ...)
1 — x \ 3 5 2/1—1 /

(-l<aj<l).

27. tan^ = ,-f + f-... +(-l)-£^ +;
..
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Expand each of the following functions in a series of ascending

powers of x, obtaining four terms no one of which is zero

:

28. . 30. sec a;. 32. log(a: + Vl+ar).
V?14- x2Y

31. e-'seca:. 33. log cos as.

29. tana;.

Find four terms of the expansion into a Taylor's series of each

of the following functions :

7T
34. cos a-, in the neighborhood of x = — •

35. logo-, in the neighborhood of x = 5.

36. e
x

, in the neighborhood of as = 4.

37. tan_1 a;, in the neighborhood of x =1.

38. Vl -|- x2
, in the neighborhood of x = 2.

39. Compute sin 12° to four decimal places by Maclaurin's series.

40. Compute sin 46° to four decimal places by Taylor's series.

41. Compute cos 10° to four decimal places by Maclaurin's series.

42. Compute cos 32° to four decimal places by Taylor's series.

43. Using the result of problem 33, compute log cos 18° to four

decimal places.

44. Using the series in problem 25, compute log § to five decimal

places.

45. Using the series in problem 26, compute log 2 to five decimal

places, and thence by aid of the result of problem 44 find log 3.

46. Using the series in problem' 2G, compute log | to five decimal

places, and thence by aid of the result of problem 45 find log 5.

47. Using the series in problem 26, compute log J to four decimal

places, and thence by aid of the result of problem 45 find log 7.

/ xs x5 \ M—N
48. Prove logil/=logiV-f 2( x + '— + — + • • •) where a; = •

49. Compute the value of it to four decimal places from the

1 7T
expansion of sin_1 a; (Ex.4, §192) and the relation sin-1 - = — •

50. Compute the value of it to four decimal places from the expan-

1 1 7T

sion of tan-1 a: (problem 27) and the relation tan-1 - + 2 tan 1 - = — •
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51. By the binomial theorem find Vl7 to four decimal places.

52. By the binomial theorem find V26 to four decimal places.

53. Show that in the expansion of log (1 + x) (problem 25)

I'^iSl when a>0
'

and '*'<
(» + ixi + *r'

whe
" x< °'

1 4- x
54. Show that, in the expansion of log- (problem 26),

2xn + 2
X

2\xn + 2
\

\

R \<7—T^i ^TTi when x >°> and
\

R \<7—
, ox/1 i n» + 21

' (n 4- 2)(1 — x)n + 2
'

' (n 4- 2) (1 + .*•)" + -

when x < 0, where n is the exponent of x in the last term retained

in the expansion.

55. By integrating the expansion of -, to obtain the expan.
1+J"

\x" + 2

\

sion of tan _1 a\ show that for the latter expansion \R\ < -; > where
1

' n + 2

n is the exponent of x in the last term retained in the expansion.

56. Show that, in the expansion of (1 + x)k
,

|

n + 1

aml i^i <
A

i^i
1

(i+4^i^ 1

i

wtog<0
'

if n - 1: + 1 > 0.

57. From the result of problem 53 estimate the error made

in computing log 1.2 from three terms of the series. Bow many

terms of the series are sufficient to compute log 1.2 accurately to 6

decimal places ?

58. From the result of problem 53 how many terms of the

expansion of log (1 + x) are sufficient to compute log .9 to 5

decimal places ?

59. From the result of problem 54 how many terms of the expan-

1 4- i-

sion of log are required to compute log § to 4 decimal places ?

60. Using the result of problem 55, find how many terms of the

expansion of tan-1 a; are sufficient to compute tan-1 1 to four decimal

places. Also estimate the error made in computing tan-1 ^ from 5

terms of the series.
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61. From the result of problem 56 find how many terms of the

binomial series are sufficient to compute Vl02 to four decimal places.

62. Compute
J

, approximately,

(1) by the prismoidal formula,

(2) by Simpson's ride, taking Ax = 1,

(3) by the trapezoidal rule, taking Ax = 1.

r z dx

7, (i + ^2

)
2 '

Compute I ———jrj, approximately,

(1) by the prismoidal formula,

(2) by Simpson's rule, taking Ax = i,

(3) by the trapezoidal rule, taking Ax = i.

64. Compute
J

log cos x dx, approximately

,

(1) by the prismoidal formula,

(2) by Simpson's rule, taking Ax = — >

_
(3) by the trapezoidal rule, taking Ax = — •

Find the limit approached by each of the following functions as

the variable approaches its given value

:

_ _ 2 COS 2 X — 1 . 7T
65. ,X:

7r 6 sin3x

66.

sin x — x .

72. )j = 0.
x — tan x

sin 2 x cot 5 x

a 2x _ px
67. -

> x = 0.
2x

(*-!)'
68.^ ^,x^f

2 sin x -

1

6

e*_ e-*_2x
69. : >x = 0.

x — sin x

log sin -

70. r-^x = 7r.

(x - tt)
2

73.
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86. {f + £C)« x = oo.

87. a'
1^, x=l.

88. (cosa-)C8CJr
, x==0.

89. (1+ sin xy, x = 0.

90. a-
J

, x = 0.

Expand each of the following functions into a Fourier's series for

values of x between — w and ir :

91. x\ 92. e"*.

93. /(aj), where/(x)=—9rif— 7T<a;<0,and/(aj)='7rifO<a;<7r.

94. /(./), where/(a;) = - a- if - tt < x < 0, and/(x) = if < x < nr.

95. f(x), where /(a-) ='—ir if — 7r < ./ < 0, and/(.r) = x if < a- < ?r.

96. f(x), where/(a) = Oif — w<x < 0, and/(x) = ./- if < x < it.

78.



CHAPTER XVIII

DIFFERENTIAL EQUATIONS

200. Definitions. A differential equation is an equation which

contains derivatives. Such an equation can be changed into

one which contains differentials, and hence its name, but this

change is usually not desirable unless the equation contains the

first derivative only.

A differential equation containing x, y, and derivatives of y
with respect to x, is said to be solved or integrated when a

relation between x and y, but not containing the derivatives,

has been found which, if substituted in the differential equa-

tion, reduces it to an identity.

The manner in which differential equations can occur in

practice and methods for their integration are illustrated in

I ii n a

the following examples

:

Ex. 1. Required the curve the slope of which

at auy point is twice the abscissa of the point.

By hypothesis, — = 2 x.
ax

Therefore y = x% + C. (1)

Any curve whose equation can be derived

from (1) by giving C a definite value satisfies

the condition of the problem (fig. 238). If it is

required that the curve should pass through

the point (2, 3), we have, from (1),

3 = 4 + C; whence C=-l,
and therefore the equation of the curve is

» = *»-!. Fig. 238

But if it is required that the curve should pass through (—3, 10), we
have, from (1), 10 = 9 + C; whence C = l,

and the equation is y = x 2 + 1.

438
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Ex. 2. Required a curve such that the length of the tangent from any

point to its intersection with OF is constant.

Let P(x, y) (fig. 239) be any point on the required curve. Then the

equation of the tangent at P is

Y-y = ^(X-x),
dx

where (A', F) are the variable coordinates of a moving point of the tangent,

(x, y) the constant coordinates of a fixed point on the tangent (the point

of tangency), and — is derived from the,

as yet unknown, equation of the curve'.

The coordinates of II, where the tangent

intersects OY, are then X

Y

dx

and the length of PR is -\\x- + •'-(—)"

he coRepresenting by a the constant length

of the tangent, we have

which is the differentia] equation

is clearly

(1)

if tl>.

239

-*/ y/cp - ./-

:
Va« -*-+" leg

dx + C

a ± V a- — .

+ C.(2)

The arbitrary constant C Bhowa thai

there is an infinite number of curves which

satisfy the conditions of the problem.

Assuming a fixed value for C, we see

from (1) and (2) that the curve is sym-

metrical with respect to OY, that x- cannot

be greater than a2
, that — = and y = C

dx

when x = a, and that — becomes infinite
dx

as x approaches zero.

From these facts and the defining property the curve is easily sketched,

as shown in fi"\ 240. The curve is called the tractrix.
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Ex. 3. A uniform cable is suspended from two fixed points. Required

the curve in which it hangs.

Let A (fig. 241) be the lowest point, and P any point on the required

curve, and let PT be the tangent at P. Since the cable is in equilibrium,

we may consider the portion AP as a rigid body acted on by three forces,

—

the. tension t at P acting along PT, the tension h at A acting horizontally,

and the weight of AP acting vertically. Since the cable is uniform, the

weight of AP is ps, where a- is the length of AP and p the weight of the

cable per unit, of length. Equating the horizontal components of these

forces, we have , , ,

and equating the vertical components, we have

t sin <j> = ps.

From these two equations we have

tan</>

_ dy
h

'

dx

O

Fig. 241
where - = a, a constant.

P
This equation contains three variables, x, y, and s, but by differentiating

with respect to x we have (§ 91)

(1)
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The value of C depends upon the position of OX, since y = a + C when
x = 0. We can, if we wish, so take OX that OA = a. Then C" = 0, and

we have, finally,

the equation of the catenary (fig. 61, § 27).

The order of a differential equation is equal to that of the

derivative of the highest order in it.

The simplest differential equation is that of the first order

and of the first degree in the derivative, the general form of

which is

or Mdx+2Tdy = Q, (1)

where M and N are functions of % and //, <>r constants.

In the following articles we shall consider some cases in

which this equation can be readily solved.

201. The equation Mdx + Ndy = when the variables can

be separated. If the equation (1), § 200, is in the form

/^)e7x-+/
2 Cy)<ty

= 0,

it is said that the variables are separated. The solution is then

evidently

Jf1
(p)dx+jf

i (iy)dy
= €,

where c is an arbitrary constant.

The variables can be separated if M and N can each be

factored mto two factors one of which is a function of x alone

and the other a function of y alone. The equation may then

be divided by the factor of M which contains y multiplied by

the factor of N wliich contains x.

Ex. 1. dy=f(x)dx.

From this follows y=( f(x) dx + c.

Any indefinite integral may be regarded as the solution of a differential

equation with separated variables.
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Ex. 2. VI - f dx + VI - x2 dy = 0.

This equation may be written

dx dy = 0:

Vl - x'
2 Vl - y

2

whence, by integration, sin- 1 ^ + sin- 1 ^ = c. (1)

This solution can be put into another form, thus : Let sin_1 x =
<f>

and

sin- 1
?/ = i//. Equation (1) is then <j> + \p = c, whence sin(<£ + if/) = sine;

that is, sin </> cos \p + cos <£ sin ^ = k, where k is a constant. But sin
<f>
= x,

sin \p = y, cos
<f>
= Vl - x2

, cos ^ =Vl — ?/
2

; hence we have

xVl-y2 + y Vl-x* = k. (2)

In (1) and (2) we have not two solutions, but two forms of the same

solution, of the differential equation. It is, in fact, an important theorem

that the differential equation Mdx + Ndy = has only one solution involv-

ing an arbitrary constant. The student must be prepared, however, to meet

different forms of the same solution.

Ex. 3
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This property enables us to extend the idea of homogeneity to

functions which are not polynomials. Representing by f(x, y)
a function of x and y, we shall say that f(x, y) is a homogeneous

function of x and y of the nth degree, if, when we place y = vx,

f(x, y~)=xnF(y). Thus V^ + y
2

is homogeneous of the first

degree, since vV2
-f y'2= x Vl + v'

2
, and log- is homogeneous of

degree 0, since log - = log v = x° log v.

When M and N are homogeneous functions of the same degree

the equation Mdx + NJy=0
is said to be homogeneous and can be solved as follows

:

Place y = vx. Then dy = vdx + xdv and the differential equa-

tion becomes ^^ dx + ggf^ (v dx + sdv) = 0,

or [./;(?') + 2̂00] J* +«» *> = 0. (1)

If /j(«)+ tj/j(v) =£ 0, this can be written

* ./iOO + ^O)
where the variables are now separated and the equation may be

solved as in § 201.

If/jOO + w/jOO = 0, (1) becomes dv= ; whence w= 6' and y= ex.

Ex. (x-
2 — if) dx + "2 .r//'/// = 0.

Place y = vx. There results

(1- v*)dx + 2v(xdv + vdx) = 0,

die 2vdv _

Integrating, we have logx + log(l + r2) = c
;

whence x(l + r2 ) = c,

or ./•"- + f — ex.

203. The equation

(a
x
x + bty + cj rfz + (a

2
x + b„y + c2) dy = (I)

is not homogeneous, but it can usually be made so, as follows

:

Place x = x' + h, y = y' + k. (2)

Equation (1) becomes

(ttjx'4- /;
1/+ OjA + ^Z; + c

x ) (/x-'+ («2
x + \,/+ a

2A + bjc + c2) r//= 0. (3)
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If, now, we can determine h and k so that

a1h + b1k+c1
= 0^

> (4)
a2A+62fc+c2 = 0j

(3) becomes (o
1

.x-

/ + b^f) dx + (" 2
r' + h.'/) "V/ ~ ®>

which is homogeneous and can be solved as in § 202.

Now (4) cannot be solved if a-J)2
— <ij»

1
= 0. In this case — = -2 = k,

where k is some constant. Equation (1) is then of the form l 1

(axx + \y + cx) rfa; + [_k (a
x
x + \y) + c2] J// = 0, (5)

so that, if we place a-^x + bty — x', (5) becomes

(V + cjdx + (kx' + c2)
r// ~ "1</X = 0,

which is dx+ -
,

kX+C
:
2

<lx = 0,

("l
— O-JCjX + OjCj — UjCg

and the variables are separated.

Hence (1) can always be solved.

204. The linear equation of the first order. The equation

%+fi(*)y=U^ (i)

where fx
(x) and f2

(re) may reduce to constants but cannot con-

tain y, is called a linear equation of the first order.

An equation of the form Mdx -f Ndy = may be put in

form (V) if, after transforming it to -— -\ = 0, — can be
dx N N

expressed as /x
(x) y —f2

(x) ; that is, as the difference of two

terms one of which is y multiplied by a function of x and the

other of which is a function of x only.

To solve (1) let . ONv J y = uv, (2)

where u and v are unknown functions of x to be determined later

in any way which may be advantageous. Then (1) becomes

dv du „ „

,[| +/iW .] +«*_/i(,). (3)
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Let us now determine u so that the coefficient of v in (3)

shall be zero. We have

£+/.««-*

or — +fx
(x) dx = 0,

of which the general solution is

log u + I fx
(x) dx = c.

Since, however, all we need is a particular function which will

make the coefficient of v in (3) equal to zero, we may take c=Q.

Then log u = — / f\ (x) dx,

-f/i(x)dx , ,.

or u = e J
. (4)

With this value of u, (3) becomes

.-/».-* _/iWi

dv ffi(x)dXj. , N

whence v may be found by integration. Substituting the values

of u and v in (2), we have the solution of (1).

Ex. (1 - a:
2
) -2. + xy = ax.
dx

Dividing the equation by 1 — x2
, we have the linear equation

dy x nx

Substituting uv for y, we have

(du x \ dv ax
v\ u ) + u — = (2)
\dx 1 - x2 / da: 1 - x2 l J
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Placing the coefficient of v equal to zero, we have

lu . x
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(1)

Ex. &-1-.
dx x
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Integrating (1) with respect to x, we have

f(x, y) = x* + 5 xhf - 3 xy* + F(y).

Substituting this value in (2), we have

15 xY ~ I2 *tf + F' 0) = 15 *V - 12 xy8 + 5 y*
;

whence F' (y) = 5 y* and F(j/) = y
b

.

Therefore /(.r, y) = x4 + 5 a%8 — 3 xy* + ?/
5

,

and the solution of the differential equation is

a;
4 + 5 xhf — 3 xif + y

h = c.

207. The integrating factor. If the equation

Mdx + Ndy = (1)

is not exact, i.e. if —— =f —- >

c?/ ox

it may be proved that there exists an infinite number of func-

tions of x and y such that if (1) is multiplied by any one of

them it is made an exact equation. Such a function is called

an integrating factor.

No general method is known for finding integrating factors,

though the factors are known for certain cases, and lists can

be found hi treatises on differential equations. Sometimes an

integrating factor can be found by inspection. In endeavoring

to do this the student should keep in mind certain common
differentials, such as

d(uv) = vdu + udv,

?' du — u dv

, , ;u vdu — udv
d tan

-1 - = —
,

V U + V

, , u v du — u dv
d log - =

,

V uv

d (u2 + v
2
) = 2 (u du+ v dvy
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Ex. {x2 - f) dx + 2 xydij = 0.

We may write this equation in the form

x2 dx — y
2 dx + xdty*) = 0.

The last two terms of the left-hand member of the equation form the

numerator of dl—
J.

Consequently we multiply the equation by — , and have

dx + **<*>-f& ^i
x-

the solution of which is x + — = c,

x

or x2 + y
2 = ex.

It is to be noted that it is not necessary to use the method of § 206 to

solve the equation, for when the integrating factor is found by inspection,

the solution is at once evident.

208. Certain equations of the second order. There are certain

equations of the second order, occurring frequently in practice,

which are readily integrated. These arc of the four types:

We proceed to discuss these four types in order:

1
d*y tr~\

By direct integration,

2;-//»*+*

y = I lf(x) dx
2+ c

x
x + c

%
.

(Ty
This method is equally applicable to the equation —— =/(#).
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Ex. 1. Differential equations of this type appear in the theory of the

bending of beams. Each of the forces which act on the beam, such as the

loads and the reactions at the supports, has a moment about any cross sec-

tion of the beam equal to the product of the force and the distance of

its point of application from the section. The sum of these moments

for all forces on one side of a given section is called the bending moment

at the section. On the other hand, it is shown in the theory of beams
pi r

that the bending moment is equal to —— , where E, the modulus of elas-

ticity of the material of the beam, and I, the moment of inertia of the

cross section about a horizontal line through its center, are constants, and

72 is the radius of curvature of the curve into which the beam is bent.

Now, by 8 10G,3 *
dfy

1 dx*

R
HS)j

where the axis of x is horizontal. But in most cases arising in practice

-j- is very small, and if we expand — by the binomial theorem, thus

:

1 =W1_3/W I

R dx2
[_ 2\dx) J

C B

we may neglect all terms except the first without sensible error. Hence

the bending moment is taken to be El— - This expression equated to
dx'2

the bending moment as defined above gives the differential equation of the

shape of the beam. y
We will apply this to find the

shape of a beam uniformly loaded A
and supported at its ends. 4

7j

Let / be the distance between the
r̂ TP 242

supports, and to the load per foot-run.

Take the origin of coordinates at the lowest point of the beam, which, by

symmetry, is at its middle point. Take a plane section C (fig. 242) at a

distance x from and consider the forces at the right of C. These are

the load on CB and the reaction of the support at B. The load on CB is

w I- — x\, acting at the center of gravity of CB, which is at the distance

1 (I \
2

2
~ X W \2~ X

)
of —-— from C. Hence the moment of the load is ~ j which is

taken negative, since the load acts downward. The support B supports
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half the load, equal to— • The moment of this reaction about C is therefore

— ( - — x). Hence we have

"*r~>, wi (i \ w(i \" w/r~ ,\

The general solution of this equation is

EIy =1%{-8~~ii)
+CiX+c*'

But in the case of the beam, since, when x = 0, both y and — are 0, we
have c

x
= 0, c

2
= 0.

dx

Hence the required equation is

to /Px* x*\
EIy = 2[-8- 12>

2 ^y -Ax dlJ
\

The essential thing here is that the equation contains — and

<Py
dx

~, but does not contain y except implicitly in these derivatives.

Hence, if we place -~ = p, we have -—, — -*-
> and the equation

, dx 'l.r- dx
becomes -j-=f(x, />), which is a differential equation of the

first order in which p and x are the variables. If we can find

p from this equation, we can then find y from -^-=p. This

method has been exemplified in Ex. 3, § 200.

'•SM*!>
The essential thing here is that the equation contains -~- and

—^i but does not contain x. As before, we place -£-=p, but

now write —4 = ,=,,—?>,' so that the equation becomes
, dxr dx dy dx ay

p— =f(y, jo), which is a differential equation of the first order

in which p and y are the variables. If we can find p from tins

equation, we can find y from -y- = p.
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Ex. 2. Find the curve for which the radius of curvature at any point

is equal to the length of the portion of the normal between the point and

the axis of x. . r-
/dy\a~] %

The length of the radius of curvature is ± —
(§ 106). The

equation of the normal is (§ 87) —

-

dx dx2

This intersects OX at the point [x + w— , ). The length of the normal

I—7w V dx
'

is therefore y -v 1 + (— )
•

The conditions of the problem are satisfied by either of the differential

d2
y

dx*

21 f

+ + &•y\l+ 2 C1 )

b<mE^-nM^-y

dx2

Placing — = p and —\ = p—-\n (1), we have
dx dx'2 dy

l+P*=Py-;

dy p dp
whence — = ——^—z •

y 1+p2

The solution of the last equation is

y = Cj V1 + j)
1

;

Vw2 - c 2

whence /> = —

2

L

.

Replacing p by — , we have l = dx.p y
dx Vfir^

Transforming this equation to

- = dx

and integrating, we have
4i- 1

whence
Z/
= 7T\ e e

i + e Cl
/

(2)
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This is the equation of a catenary with its vertex at the point (c
2 , Cj).

If we place —- = p, and —- — p — in (2), we have
dx dx- ay

whence — = —±—'- •

U 1 + 1>~

The solution of this equation is y
Vl

whence p =

Replacing p by — » we have
ax

J^U = dx.

Integrating, we have — v c
j

2 _ y- = j: — ^ f

or (x — c„) 2 + //
2 = c

2
.

This is the equation of a circle with its center on OX.

If we multiply both sides of this equation by 2 '
' </./•, we have

Integrating, we have ('-^j=j 2/(
<y) tfy + c

x
;

whence, by separating the variables, we have

fV2//(y)rfy + «i

#+(?„.

Ex. 3. Consider the motion of a simple pendulum consisting of a parti-

cle P (fig. 243) of mass m suspended from a point C by a weightless string

of length /. Let the angle A CP — 6, where A C is the vertical, and let

AC
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d2
sA J' = 8. By § 93 the force acting in the direction AP is equal to m—-

;

dt2

but the only force acting in this direction is the component of gravity.

The weight of the pendulum being mg, its component in the direction AP
is equal to — mg sin 0. Hence the differential equation of the motion is

d 2s . „

dt2
•mg sin

We shall treat this equation on the hypothe-

sis that the angle through which the pendulum
swings is so small that we may place sin 6 = 6,

without sensible error. Then, since 6 = - , the

equation becomes

9dh
dt2

ds
Multiplying by 2 ^ dt and integrating, we

have
(ds\* a

(I)
(a' - **),

\dt!
L

I I

where a2 is a new arbitrary constant. Separating the variables, we have

whence sin
- 1 - = -i /- (t — t ),

where t is an arbitrary constant. From this, finally,

s = a sin -i /- (t — / ).

The physical meaning of the arbitrary constants can be given. For a

is the maximum value of s; it is therefore the amplitude of the swing.

When t = t , s = ; hence t is the time at which the pendulum passes

through the vertical.

209. The linear equation with constant coefficients. The differ-

ential equation

dn ~ l

y ,
dydn

y
dx11 1 dxn !+•• + anV =/0), (1)

where «
x
, «

2
,

• • •, an_v a
n are constants, and where f(x) is a

function of x which may reduce to a constant or even be zero,

is called a linear differential equation with constant coefficients.
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To study (1) it is convenient to express -j- by Dy, —~ by
7 ;,

oLx dxr

LPy, • • •, ~- by D"y, and to rewrite (1) in the form

Dn
y + ap"- x

y + • • • + %_ xDy + a
ny =/(ar),

or, more compactly,

<JT + a^-^ • • • + o^D + a,:)y =f(x). (2)

The expression in parentheses in (2) is called an operator,

and we are said to operate upon a quantity with it when we
carry out the indicated operations of differential ion, multiplica-

tion, and addition. Thus, if we operate on sin x with D3 — 2D2

+ 3 D — 5, we have

(D3— 2D2
-f- 3D — 5) sin x = — cos x + 2 sin ./• + 3 c< >s x — 5 sin x

= 2 cos a; — 3 sin ./•.

Also, the solution of (1) or (2) is expressed by the equation

* = 7, + „
i

/r- +
1

.. + „,_,/, + „/
<J>' <3>

where the expression on the right hand of this equation is not

to be considered as a fraction but simply as a symbol to ex-

press the solution of (2). Thus, if (2) is the very simple

equation Dy =f(x), then (3) becomes

y=±f(x)=jf(x)dx. (4)

In this case — means integration with respect to x. What the

more complicated symbol (3) may mean, we are now to study.

210. The linear equation of the first order with constant

coefficients. The linear equation of the first order with con-

stant coefficients is

or, symbolically, (D—a)y=f(x). (1)
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The solution of this equation is given in § 204. Hence

y = —L- f(x) = ce°* + e-je—fix) dx. (2)

The solution (2) consists of two parts. The first part, ce
ax

, con-

tains an arbitrary constant, does not contain f(x), and, if taken

alone, is not a solution of (1) unless f(x) is zero. The second

part, e
ax

I e~
axf(x)dx, contains /(:r), and, taken alone, is a solu-

tion of (1), since (1) is satisfied by (2) when c has any value,

including 0. Hence e~/W(s)<fc is called particular inU-

gral of (1), and, in distinction from this, ce
ax

is called the

complementary function. The sum of the complementary func-

tion and the particular integral is the general solution (2). The

complementary function can be written down from the left-hand

member of equation (1), but the determination of the particular

integral requires integration.

Ex. 1. Solve ^ + 3 y = 5 xs
.

dx

This equation may be written

(D + 3)y = 5x*.

Hence the complementary function is ce~ 3x
. The particular integral is

-L^ (5 x*) = 5 e-**fe**xSdx = f z» - gz2 +V x - £f.

Hence the general solution is y = ce~ 3x+ §x3 — §x2 + ^-x — hj.

Ex. 2. Solve— + y = sin x.
dx

The complementary function is cc~ x . The particular integral is

—-—- sinx = e~ x
( ex sinxdx = ^(sinx — cosx).

D +

1

J

Therefore the general solution is y = ce~ x + \ (sin a; — cos a;).

211. The linear equation of the second order with constant

coefficients. The symbol (D — a~)(D — K)y means that y is to
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be operated on with D — b and the result operated on with

D — a. Now (D — b~)y = -j- — by, and hence

<*-><*-»»-£(*-*)-.(*-%

= (^+JP*> + *)* (1)

where p =— (a + &), g = aft.

This result, obtained by considering the real meaning of the

operators, is the same as if the operators D — a and D — b had

been multiplied together, regarding D as an algebraic quantity.

Similarly, we find

(i)-6)(2)-a)y= [2)
3-(a+&)D+a5]y=(i)-a)(D-S)y.

That is, the order in which the two operators D — a and D — b

are used does not affect the result.

Moreover, if (lP+pD + q)y is given, it is possible to find a

and b so that (1) is satisfied. In fact, we have simply to factor

D2+pD + q, considering D as an algebraic quantity.

This gives a method of solving the Linear equation of the

second order with constant coefficients. For such an equation

has the form r> ,ay 'iii j., x

or, what is the same thing,

(D*+pD + q)y=f(x), (2)

where p and q are constants and /(a?) is a function of x which

may reduce to a constant or be zero.

Equation (2) may be written

whence, by (2), § 210,

(D - V)y = jf—f(?) = ^""+ f*.Jr-f(x)to.
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Again applying (2), § 210, we have

= c^*+ $* fe
- bx

(c'e
ax+ e

ar Ce- a:'f(xyx\dx. (3)

There are now two cases to be distinguished:

I. If a =£ b, (3) becomes

y ^c/x+ Cle^+eix CUa-^ x Ce-^f(^d^dx. (4)

II. If a = 5, (3) becomes

y = 2 + <v*Q
&ax +

?*ff
e~"ZOO **. (5)

In each case the solution consists of two parts. The one is

the complementary function c
x
e
ax

' + c^e
hx

or (<?
2
+ c

x
x) 0°% involving

two arbitrary constants but not involving f(x). It can be

written down from the left-hand member of the equation, and

is, in fact, the solution of the equation (D — a) (D — b) y — 0.

The other part of the general solution is the particular integral,

and involves f(x). Its computation by (4) or (5) necessitates

two integrations.

Formula (4) holds whether a and b are real or complex.

But when a and b are conjugate complex it is convenient to

modify the complementary function as follows: Let us place

a = m + in, b = m — in.

Then the complementary function is

- e-^e** + c,e"
£nx

) (§194)
_ g)na:

J"

^cog^ _|_ £ gm ^^ _|_ ^ ^cog nx
__ £ gjn n£y j

__ gjm
£^ cog W;Z

. _j_ ^ gul ^^ (g)

where C
x
= c

x
+ c

g
, C

2
= i(c

x
— c

2
). Since c

x
and c

2
are arbitrary

constants, so also are C
x
and C

2
, and we obtain all real forms of

the complementary function by giving real values to C
x
and C

2
.
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The form (6) may also be modified as follows: Whatever
be the values of C

1
and C we may always find an angle a such

C C
that cos a = 1

i , sin a =
'

2
. Then (6*) becomes

Vcf+c* V^+c;2

ke
mjr cos (jix — a), (7)

where a and k= v C\+ C'2
2 are new arbitrary constants. Or we may

— C C
find an angle /3 such that sin ft = * - , cos /3

Then (6) becomes V^ + 3 V
^'i + ^

£v'"
r
sin (wa: - £). (8)

Ex.1. ^ + 5^ + 6y = ^.

This equation may be written

(2) + 2)(D + 3)y = e*.

The complementary function is therefore c
x
er** + c.

2
e~ Ax

. To find the

particular integral we proceed as follows:

1 r 1
(I) + 3) v = e = e~ 2x <*xdx - -e*v y,/ D + 2 J 3

'-5Ti(i«')--/i*
to

*-B' 1

Therefore the general solution is

Ex.2. g + 2^ + y = x.

This equation may be written (J) + l)'2// = x.

Therefore the complementary function is (c
x + e2a?) £-*. To fin<l the

particular integral we proceed as follows:

(Z) + 1)y = 77TT^ e"'/' /./• = X - 1.

y = ^-^ f> - 1) = er*f(x - Y)<*dx = x-2.

Therefore the general solution is

.'/ = Oi + V)''- '+'•- 2.

Ex. 3. Consider the motion of a particle of unit mass acted on by an
attracting force directed toward a center and proportional to the distance

of the particle from the center, the motion being resisted by a force pro-

portional to the velocity of the particle.
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If we take s as the distance of the particle from the center of force, the

ds
attracting force is — ks and the resisting force is — h— > where k and h are

positive constants. Hence the equation of motion is

or (D* + hD + fc)s = 0. (1)

The factors of the operator in (1) are

We have therefore to consider three cases :

I. h2 - 4 k<0. The solution of (1) is then

s = e - ( C , cos 1 + C 9 sin t } ,

-i . (V4k-h* tor s = ae l sin I t — pj.

The graph of s has the general shape of that shown in fig. 62, § 27. The
particle makes an infinite number of oscillations with decreasing ampli-

tudes, which approach zero as a limit as t becomes infinite.

II. A2 - 4 k> 0. The solution of (1) is then

-(-- ^A2 - 4iA. (h
.
V/i3-4t >

hi 4*.

The particle makes no oscillations, but approaches rest as t becomes

infinite.

III. h2 - 4 k = 0. The solution of (1) is

_h

s = (c
1 + c

2
e "•

The particle approaches rest as t becomes infinite.

212. The general linear equation with constant coefficients.

The methods of solving a linear equation of the second order

with constant coefficients are readily extended to an equation

of the ?ith order with constant coefficients. Such an equation is

<fry <fr~
x

y dy .
.,

d?
+ a'&^ + -" +"-^ +^ =/(^ <*>

or, symbolically written,

(B" + a^"- 1 + • • • + an _^D + a
n
~)y =f(x). (2)
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dx2 dx
J

This may be written (D + 3) (D - 2) y = e4 '.

The complementary function is rp<-'" + c
2e
-8 *. To find the particular

integral, we place . _ , 4
..

and substitute in the equation. We obtain

li.k-4
' =e4 '.

To satisfy the equation, we must have

11.1 = 1, whence .1 = ^\.

Therefore the particular integral is

1 — 1 4 ' I

and the general solution is

y
-

Ci
^x + c2e-"+ V,'

4>
-

Ex.2. ^ +^ = sin2x.
</.r' dx2

This may be written l)-(I) + 1)// = sin 2 x.

The complementary function is therefore <, + r.,.r + <-.^- x
. To find the

particular integral, place

I= Asua 2x + B cos

2

x,

and substitute in the equation. We obtain

(SB- 1 .1 )sin2x — (4 B + SA )cos2x = sin 2x.

To satisfy the equation, we must have

SB- 4 A =1, 1 B+ s.l = 0,

whence Z> = ,',,, A = — ._,',,.

Therefore the particular integral is

I = — J sin 2 .c +
{ \,

cos 2 x,

and the general solution is

H = <\ + V + c8e-* - -A sm 2 x + to cos 2 x.

Ex.3. $K +& = *«-.
oar aa;

Substituting y = exz, we have

This may be written (D + 1) (£> + 2) z = x'
1
. (2)

fz + :i

ll

f + 2z = x>. (1)
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The complementary function is therefore cxe~
x + c2e~

2x
. To find the

particular integral, place

I = Ax2 + Bx + C,

and substitute in (1). We obtain

2 Ax" + (6 .1 + 2 S) .*• + (2A + BB + 2 C) = a,-
2
.

Therefore 2 .4 = 1, G .1 + 2 B = 0, 2 ,1 + 35 + 2 C = 0,

whence A = h, B = — i}, and C = J.

Hence the particular integral is

7"_l~2_3~i7

and the general solution of (1) is

z = Cle-
X + c

2
e~ 2x + ^x2 - |x + \,

whence y = c\ + c
2
e- x + e*(^ x2 — § a; + |).

This may be written

(D - 1) (D + 2) (Z> - 2)y = e2 *.

Since 2) — 2 is a factor of P (Z>), we place

I = Axe2x
,

and substitute in the equation. We obtain

4Ae2oc = e2x
,

whence A = \ and I = \ xe2x.

The general solution is

y = Cl e
x + c

2
e- 2c + c

3
e2x + ^a;e2a;

.

~ - d?y
,

Ex. 5. —- + y — sin x.

dx2

This may be written (D2 + l)y = sin a;.

By III, we write I = Ax sin x + i?x cos x,

and substitute in the equation. There results

— 2B sin x + 2A cos a; = sin x.

1 a:

Therefore B = , A — 0, and I —— - cos x.

The general solution is

-2?/ = Cjc" + c
2
e~ ix — - cos x = C

1
cos x + C2

sin a; — - cos x.
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Ex.6, fir 2|& +£ = **- + «-.
tlx6 ax- ax

This may be written D(D - l) 2
y = xe2x + e3x.

The complementary function is c
1 + (c

2 + c
3
x) ex . The particular integral

I is the sum of I
1
and I

2 , where I
x
corresponds to the term .<r-', and /

2

to e3 '. To find Iv place y = e'
2x z in the equation

(D3 -2D2 + D)y = are
3

There results (7)3 + 4 Z)2 + 5 Z> + 2) z = x.

Placing 2 = ylx + .6, we find /l = ^, ZJ = — §.

Therefore A = I (- * - 5) e2 *.

To find I
2 , we substitute y = AeZx in the equation

(D8 — 22^+ /))// = e8*.

We find 7
2
= TV e3 *.

Hence I =\{2x- 5)ea* + ,V

e

3x
-

The general solution of the equation is

V = c, + ('•., + c8z)
<• + J (2 z - 5)<

-
' + ,',, <

Ba
>.

214. Systems of linear differential equations with constant

coefficients. The operators of the previous articles may be em-

ployed in solving a system of two or more linear differential

equations with constant coefficients, when the equations involve

only one independent variable and a number of dependent vari-

ables equal to the number of the equations. The method by

which this may be done can best be explained by an example.

,-. dx (Jii

<lt dt

These equations may be written

(D-l)x + (D-4)y = e 5t
, (1)

(D-2)x + (D-Z)y = e 2K (2)

We may now eliminate y from the equations in a manner analogous to

that used in solving two algebraic equations. We first operate on (1) with

D — 3, the coefficient of y in (2), and have

(D2 - 4 D + 3)x + (D2 - IB + Yl)y = 2 e« (3)
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since (D - Z)e 6i = 5 e 6« - 3 e 6t = 2 r 5 '. We then operate on (2) with D- 4

the coefficient of y in (1), and have

(D- -(W>+ 8) x + (D2 -77) + 12) y = - 2 e 2 ', (4)

since (D — 4)e 2 ' = — 2 e 2 '. By subtracting (4) from (3) we have

(2D - 5)x = 2 e 5« + 2e 2
', (5)

the solution of which is a
- = c

x
e** + § e 5 ' — 2 e2'. (6)

Similarly, by operating on (1) with (D — 2) and on (2) with D — 1, and

subtracting the result of the first operation from that of the second, we have

(2D-5)y = -3e 5t + e 2
',

"

(7)

the solution of which is y = c
2
e^' — § eu — e 2(

. (8)

The constants in (6) and (8) are, however, not independent, for the

values of x and y given in (6) and (8), if substituted in (1) and (2), must

reduce the latter equations to identities. Making these substitutions, we
have

l(ci — ««)«*' + e 5t = e 5t
,

whence it is evident that c„ = cv Therefore, replacing c
x
by c, we have

x = ce%
1 + 2e 5'-2e 2

',

y = ce^ — 3. e 5« — g'2^

as the solutions of the given equations.

215. Solution by series. The solution of a differential equa-

tion can usually be expanded into a series. This is, in fact, an

important and powerful method of investigating the function

defined by the equation. We shall limit ourselves, however,

to showing by examples how the series may be obtained. The

method consists in assuming a series of the form

y = a
o
xm + ajc

m +

1

+ a
2
xm + '2 + • . •

,

where m and the coefficients a
Q

, a
%
, a

2
, • • • are undetermined.

This series is then substituted in the differential equation, and

m and the coefficients are so determined that the equation is

identically satisfied.
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Ex.l. ,g + (,-8)2-2, = a

We assume a series of the form given above, and write the expression

for each term of the differential equation, placing like powers of x under

each other. We have then

x -3| =m(m-l)a xm- 1 + (m+l)ma1x
m++ (m + r+l)(m + r)ar+1x

m+r+ • •

,

ax
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Computing from this the coefficients of the first four terms of the series,

we have the solution

* = 4'-f*' + 6V-6^7r' + -)- (7 >

We have now in (5) and (7) two independent solutions of the differential

('(liiation. A more general solution is

y = q.'/i + coj2 >

and this may be shown to be the most general solution.

(I V uV
Ex. 2. Lcgendre's equation. (1 — a;

2
)
—- — 2 x— + n (n + 1) y = 0. ,

il.r- dx •

Assuming the general form of the series, we have

—~ = m(m— l)fl .r"'~ 2 + (m + l,)ma
1
2r
m— J + (m+ 2)(m + l~)a2x

m + •••,

- X
*d^=

—m(m-l)a x»> ,

-2x C-^= -2ma.jrm - •,
dx

n (n + \)y= n (n + 1) a xm + • • •

.

Equating to zero the coefficients of xm ~'2
, xm_1 , and x'n , we have

m (m - 1) a = 0, (1)

(m + l)ma1
= 0, (2)

(m + 2) (m + l)o, - (m - n) (m + n + 1) a = 0. (3)

To find a general law for the coefficients, we will find the term contain-

ing xm+r~ 2 in each of the above expansions, this term being chosen because

it contains ar in the first expansion. We have

d2
>i-\- + (m + r)O + r - l)arxm + r- 2 + -,

- x*j¥ = (m + r - 2)(m + r - 3)a,._ 2x
m + r -*

,

- 2 x
<]

j- = 2 (m + r- 2)a,._ 2x
m + r -*

,

n(n +l)y = ••• + n(n + l)a,._.2x
m + r - 2 + •••.

The coefficient of xm + r -'2 equated to zero gives

(m + r) (m + r - 1) ar - (m -n + r-2) (m + n + r — V)ar_ 2 = 0. (4)



»(» +1)
«
2 = g «o5
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Ex. 3. BesseVs equation. xl—- + x — + (x~ — n?)y = 0.
ax* dx

Assuming the series for y in the usual form, we have

x 2^ = m(m - l)a x<» + (m +l)ma
1
xm+ i + (m + 2) (m + l)r,,x"' + 2 +

as^ = wfl xm + (m + 1 ) a
x
xm + 1 + (m + 2) «

2
x» + 2 + • • •

,

— n 2y = — n2a xm — rfa1
xm+1 — n'

2a
2
xm + '2 — • • •,

x2y — a xm + 2 +

Equating to zero the coefficient of each of the first three powers of x,

we have
(w«-n«)a = 0, (1)

[(B, + l)»-„rja
1
.= 0, (2)

[(m + 2)
2 -ra2]a2 + a = 0. (3)

To obtain the general law for the coefficients, we have

,d*y

dx2

dy

c
2—| = • • • + (m + r) (m + r - 1) arx

m+ r +

•••+(?» + r) arx
m + '" + • • •,

— n2y = ... — ri
2a rx

m + r — • • •

,

z2
?/ = • • • + n,._ 2i'

m + r + • • •.

Equating to zero the coefficient of xm + r
, we have

[(m + r) 2 - n2]

a

r + a r _.2 = 0. (4)

Equation (1) may be satisfied by m = ± n. We will take first m = n. Then
from (2), (3), and (4) we have

Oj = 0, a
2(2n + 2) r(2n + r)

By use of these results we obtain the series

/ x2 x4 \
•A = **

I
1 ~ 2(2» + 2)

+
2.4.(2» + 2)(2» + 4)

""'")' (5)

Similarly, by placing wi = — n, we obtain the series

y2
= a^"(1 +

2(2n-2)
+
2.4.(2n-2)(2»-4)

+ ---)- (G)
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If, now, n is any number except an integer or zero, each of the series

(5) and (6) converges and the two series are distinct from each other.

Hence in this case the general solution of the differential equation is

V = CiVi + 'j.v-

If n = the two series (5) and (6) are identical. If n is a positive

integer, series (6) is meaningless, since some of the coefficients become
infinite. If n is a negative integer, series (">) is meaningless, since some
of the coefficients become infinite. Hence, if n is zero or an integer, we
have in (5) and (6) only one particular solution of the differential equa-

tion, and another particular solution must 1><- found before the general

solution is known. The manner in which this may be done cannot,

however, be taken up here.

The series (5) and (6) with special values assigned to a define new-

transcendental functions of x, called Bessel's Junctions. They are important

in many applications to mathematical physics.

PROBLEMS

Solve the following equations :

1. x(l-y)dx + y(l-x)dy = 0.

2. sec2ydx -|- gob2xdy = 0.

3. fdx - (x2 4- 2 xy)dy = 0.

4. (x Vj/2 + f — y*)dx + xydy = 0.

V V

5. [(.r — ;/),' -j- x"]dx + xc' ill/ = 0.

6. (2 X + 3 y - 4) dx + < 3 x + y + 1) dy = 0.

7. (./• + i, - .-,),/,• + (x 4- y - 3)dy = 0.

8. (y — x*— l)dx + xdy=0. 10. dx + (x — y)dy= 0.

9. xdy— (y+ x*e?x)dx = 0. 11. (a: + 1 fydx +(x+ l fdy = dx.

12. (y + xy*)dx-dy = 0.

13. (1 + -rfdy - [(1 + x)y 4- x'f^lx = 0.

14. (2 x 4- !,<"
) dx 4- (cos y + xe nr

) dy = 0.

. 1 3 x2 + ^2 + 2 xf - 2 £\dx 4 (3 f +4+2 x*y 4- 2
J
W = 0.

1 // |\ . I\ y- \
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18. xdx + ydy = (x
2 + y

2)dx.

19. xdy — ydx == V.r — y*dx.

20. ye vdx — (xe •" + y*)di/ = 0.

21.3 sin (a- + y) dx + [3 sin (x -f y) — 2y cos (x + y)~] dy = 0.

22. x GOS2ydx — esc xdij = 0.

23. c/ic + (x tan //
— sec y)dy = 0.

24. (,//
- Vx2 + y

2)dx - xdy = 0.

25. (a-
2 - ?/

8
) tfa; + 3 xi/dy = 0.

26. (2x — 5y + 5) <2as -f (4 a; — y + 1) dy = 0.

c--
(2y



50.
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Solve the following equations :

69. ^--^-0,, = 6-7x-3*2
.

1 1. 1- dx

70 .
pL +&-a t-84*2* «.£ + •* + «,-*.
<l.i- dx dx- dx

72. ^ + 4
,]

f + 4.7/ = 4,- - 8x + 2.
dx2 dx

73. a + 9 y = 6*. 76. ^-3^=2-6x.
dec

2
* oar dx

74. ^ -^ + v = Xs + 6. 77. ^ - 4 « = e
2 * sin 2x.

d.,- dx • dx2 J

75 .
a + 8^ +16 y = 2fl--. 78. ^ + 4^ + o> = 20cos3x.
dar dx dx- dx

79. 4--4-4^ — 3 ?/ = 2 sin x + cos 2 x.
dx2 dx

80. V?-2^+ 3'/ = e--
r cosx. 82. t4 + 9y = 2 sin 3 «•

dx2 dx ^ dx2 J

d2« „ dy
84. —4 — 7 +1 + 10 // = xe2 * + sin x.

dx dx

85. ^{ + 2^ + 4 y= 2x + 3 e
2 ''.

dx- dx

86. —^-2-^ — Zy = xr" + cos 2 x.
dx2 dx J

87. p{ - 4^ + 8 y = 4 x2 - 15 cos 3 x.
dx- dx

88.^ + 2/ = x3 + x.

89. 'p{ + 3'p{-p-3i, = 3x2 +10 sin 3*.
dxs dx- dx

90 .
3̂
-2^-4^ + 8y = x<r<+4*2

.

dx8 dx2 dx ^
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r/
3
y d2

// , dy

d*y d*y dy

d?-7t? + A dx-^/
= cos2x -

cPy , dhi dy
.
—- + 2 — — 2 v = 5 sin 2 ;• -I- 1 *> w2"

94. -^- + 3-^ + 3-^ + y = 5e* sin
dx8 dx- dx

hi96
- ^> + -7? + « = -

3
+ --

r/
4

y d*V
97. ti + 534-36v= 20 e

3* cos 3 x,

d*y dSi
98. -2 + 2 -4 = 2 x + 25 e f sin 2 x.

r/./'
4 dx8

dSf ,
d*y

dx* dx 4

100.
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Solve the following equations by means of series

:

108
- *% +(•'- **>%-»» = a

io9.(.-^g + «4 + e,-ft

no. rfg +w*+c— «)ir = a

111. (1 + a2)-^ + £c~ - ny = 0.
7 oar ofcc

113.& + 3^ +^ = 0.
tfar da:

114. Prove that any curve the slope of which at any point is

proportional to the abscissa of the point is a parabola.

115. Find a curve passing through (0, — 2) and such that its

slope at any point is equal to three more than the ordinate of

the point.

116. Find the curve the slope of which at any point is propor-

tional to the square of the ordinate of the point and which passes

through (1, 1).

117. Find the. curve in which the slope of the tangent at any

point is n times the slope of the straight line joining the point to

the origin.

118. Find in polar coordinates the equation of a curve such

that the tangent of the angle between the radius vector and the

curve is equal to minus the reciprocal of the radius vector.

119. Find in polar coordinates the equation of a curve such that

the tangent of the angle between the radius vector and the curve is

equal to the square of the radius vector.

120. Find in polar coordinates the curve in which the angle be-

tween the radius vector and the tangent is n times the vectorial angle.

121. A point moves in a plane curve such that the tangent to the

curve at any point and the straight line from the same point to

the origin of coordinates make complementary angles with the axis

of x. What is the equation of the curve ?
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122. Show that if the normal to a curve always passes through

a fixed point the curve is a circle.

123. Find the curve in which the perpendicular from the origin

upon the tangent is equal to the abscissa of the point of contact.

124. Find the curve in which the perpendicular upon the tangent

from the foot of the ordinate of the point of contact is a constant a.

125. Find the curve in which the length of the portion of the

normal between the curve and the axis of x is proportional to the

square of the ordinate.

126. Derive the equation of a curve such that the sum of the ordi-

nate at any point on it and the distance from the point to the axis of

x, measured along the tangent, is always equal to a constanl </.

127. Find the polar equation of a curve such that the perpendic-

ular from the pole upon any tangent is /.- times the radius vector of

the point of contact.

128. Find the curve in which the chain of a suspension bridge

hangs, assuming that the load on the chain is proportional to its

projection on a horizontal line.

129. Find the curve such that the area included between the

curve, the axis of x, a fixed ordinate, and a variable ordinate is

proportional to the difference between the fixed ordinate and the

variable ordinate.

130. Find the curve in which the area bounded by the curve, tin-

axis of x, a fixed ordinate, and a variable ordinate is proporl kraal to

the length of the arc which is pail .»t' the boundary.

131. Find the curve in which the length of the arc from a fixed

point to any point P is proportional to the square root of the

abscissa of P.

132. Find the space traversed by a moving body in the time t if

its velocity is proportional to the distance traveled and if the body

travels 100 ft. in 10 sec. and 200 ft. in 15 sec.

133. In a chemical reaction the rate of change of concentration

of a substance is proportional to the concentration of the substance.

If the concentration is T%v when t = 0, and ^i^ when t = 5, find the

law connecting the concentration and the time.
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134. Assuming that the rate of change of atmospheric pressure

p at a distance h above the surface of the earth is proportional to

tin' pressure, and that the pressure at sea level is 14.71b. per square

inch and at a distance of 1G00 ft. above sea level is 13.8 lb. per

square inch, find the law connecting Ji and p.

135. The sum of $100 is put at interest at the rate of 5% per

annum, under the condition that the interest shall be compounded

at each instant of time. How much will it amount to in 50 yr. ?

136. If water is running out of an orifice near the bottom of a

cylindrical tank, the rate at which the level of the water is sinking

is proportional to the square root of the depth of water. If the level

of the water sinks halfway to the orifice in 20 min., how long will

it be before it sinks to the orifice ?

137. Find the deflection of a beam fixed at one end and weighted

at the other.

138. Find the deflection of a beam fixed at one end and uniformly

loaded.

139. Find the deflection of a beam loaded at its center and sup-

ported at its ends.

140. Find the curve whose radius of curvature is constant.

141. Find the curve in which the radius of curvature at any point

varies as the cube of the length of the normal between that point

and the axis of x.

142. A particle moves in a straight line from a distance a towards
u

a center of force which attracts with a magnitude equal to ^- If the

particle was originally at rest, how long will it be before it reaches

the center ?

143. A particle moves in a straight line from a distance a towards

a center of force which attracts with a magnitude equal to fir~i. If

the particle was originally at rest, how long will it be before it

reaches the center ?

144. A particle begins to move from a distance a towards a fixed

center of force which repels with a magnitude equal to /x times the

distance of the particle from the center. If its initial velocity is

V/u."'
2
, show that the particle will continually approach, but never

reach, the center.
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145. A particle moves along a straight line towards a center of

force which attracts directly as the distance from the center. If it

starts from a position of rest a units from the center, what velocity

will it have acquired when it has traversed half the distance to the

center ?

146. A particle moves in a straight line from a distance a towards

a center of force which attracts with a magnitude equal to —,,

r denoting the distance of the particle from the center of force. If

the particle had an initial velocity of —=> how long will it take to
Va

traverse half the distance to the center ?

147. A body moves through a distance <l under the action of a

constant force. Its initial velocity is p , and its final velocity is v..

Find the time required.

148. A particle moves from rest to a center of force which attracts

with a magnitude equal to — Show that the average velocity on the

first half of its path is to the average velocity on the second half in

the ratio 7T — 2 : 7T + 2.

149. Assuming that gravity varies inversely as the square of the

distance from the center of the earth, find the velocity acquired by

a body falling from infinity to the surface of the earth.

150. Find the velocity acquired by ;i body sliding down a curve,

without friction, under the influence of gravity.

151. A bullet is fired horizontally into ;i sand bank in which the

retardation is equal to the square root of the velocity. When will it

come to rest if the velocity on entering is 100 it. per second'/

152. A motor boat weighing LOOOlb. is moving in a straight line

with a velocity of 100 ft. per second when the motor is shut off. If

the resistance of the water is directly proportional to the velocity of

the boat, and is equal to 101b. when the velocity is 1 ft. per second,

how far will the boat move before its velocity is reduced to 25 ft.

per second '.' How long will it be before this reduction of velocity

takes place ?

153. A particle is projected vertically upward from the earth's

surface in a medium in which the resistance is k times the square

of the velocity. If v
t

is the velocity of projection and v
a

is the
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velocity with which the particle returns to its starting point, find

the value of y
g
in terms of v

t, k, and the mass of the particle.

154. The force exerted by a stretched elastic string is directly

proportional to the difference between its stretched length and its

natural length. One end of an elastic string of inconsiderable mass

and of natural length 2 ft. is fastened at a point on the surface of a

smooth table. A particle of mass ^ lb. is attached to the other end

of the string and is drawn back till the string is stretched by an

amount 1 ft., and is then released. Find the time of a complete

oscillation of the particle if a force of \ lb. is required to stretch

the string to double its natural length.

155. A particle of unit mass moving in a straight line is acted

on by an attracting force in its line of motion directed towards a

center and proportional to the distance of the particle from the

center, and also by a periodic force equal to a cos kt. Determine

its motion.

156. A particle of unit mass moving in a straight line is acted

on by three forces— an attracting force in its line of motion directed

towards a center and proportional to the distance of the particle

from the center, a resisting force proportional to the velocity of

the particle, and a periodic force equal to a cos kt. Determine the

motion of the particle.

157. Under what conditions will the motion of the particle in

problem 156 consist of oscillations the amplitudes of which become

very large as the time increases without limit ?
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Page 13 CHAPTER I

1. 6 + 8V5._ 9.(',1). 11 (_2 ¥̂,3|i). 13.(-£,0).
2. 10 + 2V05. 10. (,' s . L'j ). 12. (-3,11).

Page 14
14. (4, 7), (4, - 1), (- 4, 3). 16. \, 0, 00.

15. (lW, tt)' (If. - ;)• 17. 3 V5, i ; 8, ; V13. - }.

"• (0, 4). 22. (£, 41). 25. (1^,-4), (5§, -1).
19. (— r-;, 1 .\). 23. (3f, -2}), (4f,-3f). 26. (- 4, - 1).

'

20. (4, 5), (- 2, - 3). 24. (- 1 , - u
J

>.
'

27. (10, 17).

Page 15

28. (- 3, 2). 29. § V5, ', \/26, J, Vl49. 31. 00, 3. 32. (16, - 2).

Page 18

59. 02, - 1, - 13. 62. ! \ 16, 0, jV§.

Page 19

73. - 5, - -1. - 1. 0.

Page 37 CHAPTER II

77. (2, 4). 83. (-4.-3). (-3'. -1§). 88. (.'„ 0), (2, 3).

78. (-
I, §). 84. (5, 1!). 89. (0,1). (1, .'.,.

79. (3, 4), (- is, -4i). 85. (2, },), (1, 2). 90. (± 3, ±4).
80. (-3,1). 86. (-1. -l.\). 91. (±2V2,2).
82. (- I ± }2VZ, Y T |V5). 87. (± 4, ± 2)", (± 3, ±1},). 92. (± 1, ± },).

Page 38
93. (0, 0), (2, ± 1<). 96. (±1, •;-;). 99. - 2.07. 102. 2.41.

94. (1, ± 1). 97. (3, 2£), (- 1, 1
I). 100. .40. 2.05. 103. - 2.52.

95. (±2V2, 2). 98.1.40." 101.1.12,3.93.

Page 45 CHAPTER III

1. (1,7), (- 5,9), (2, -4). 2. x2 + 9*/2 = 5. 3. x 2 + y* = 4. 4. x*-y*=4.

Page 46
5. y

3 + 3x2 = 0. 7. jc- + 4y = 0. 9. 4s2 + 9y2 = l.

6. ?y
2 = 4 j. 8. 2 x2 - 4 ;/

2 = 9. 10. xy = 6.

11. Sxy = 7. 15. (V3, l), (l, -V3), (l - V3, - 1- V§).
12. o& - c 16. (|V2, iV2), (2V2, 0), (1V2, -|V2).

14 £l + * _ e
17- (2, 1),

('-
2, - 1), (- f,

- 21).
" 4a 46 18. x2 + 7y2 = 14.

417.2 481
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Page

19.

20.

21.

22.

Page

32.

Page

14.

15.

16.

Page

27.

28.

29.

30.

Page

43.

44.

45.

49.

50.

Page

64.

Page

3.

4.

5.

6.

Page

10.

13.

14.

15.

16.

17.

47

5 x- + y
2 = 5. 24. 2 xy ± 40 =

13 y
2 - 14 = 0. 25. 3x 2 + 2ya

4

x

2 + 9 y" = 36. 26. 3 x2 - 2 y
2

x*-y* = 4. 27. y
2 = 2x.

48

24x2 -15y2 = 200.

65

6x + a.v — a* = 0. 21.

Ux + 4y -18 = 0. 22.

2Sx-Uy + 26=0. 23.

66

4x-3y = 0.

4x + 7?/ + 13 = 0.

4x + 10 2/ + 1 = 0.

24 x - 21y + 109 = 0.

40. (- 2, 4), tan-

41. 2x— 9y + 6

42. 7 x + y - 25
67

8x + 2/ + 9 = 0, 4x+72/+ll=0.
y — 1 = 0, 4x 4- 3y- 11 = 0.

x-3==0, 4x-3?/-9 = 0.

§VlO^ jfV34, 4V2.

ffVl7.

0.

: 6.

= 30.

10x2 4- 5 ?/
2- 22x + 4 2/- 20 = 0.

205 x2 4- 520?/2 = 4264.

4 xy + 13 = 0.

CHAPTER V

1 =2x + y-
Gx-4y
5 x + 4 •(/

25. 12 x + 3 ?/ -2
26. 2x + 6y — 9 =

f 24 77

102/4

2/ — 5

-35 =
1 = 0.

= 0.

31. 36

x

32. 4x-
33. 2x-
34. tan-11.

fi; (-3, -5), tan-

1

= 0, 7x- 6y + 21 =
: 0, x - 7 y - 25 = 0.

(3, 1),

35.
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27.

37.

29. x2 + y
1 + 3 x - 4 y = 0.

30. x- + y- — 4 x + 4 y + 4 = 0,

x- + j/
2 - 20 x + 20 y + 100 = 0.

5 + 240x— 240y + 225 = 0.

2 y + 40 = 0.

34 // + 81 = 0.

Kt

Page 94

25. x 2 + y
2 -2x-2y = 0.

26. 2x2 + 2y2 + 3^-2 = 0.

5 x2 + 5 y
2 ± 9 y - 80 = 0.

7x2 + 7 //
2 - 19x + 11 y - 6 = 0.

4

x

2 + i y
2 - 60 x - GOy + 225 = 0, 64

x

2 + 64

x2 + y
2 - 2x4- 12 j/ + 12 = 0, x 2 + y

2 -16x
x2 + y

2 + 26x + 16y-32 = 0.

x2 + y
2 — 6x - 10 y + 9 = 0, x 2 + y

2 + 18 x -

x2 + 2/
2 -8x- 12^/4- 48 = 0.

x2 + ?/
2 + 4x - 2 // - 20 = 0, x2 + if + 24 x - 42 „

13 x2 + 13 y
2 - 156x- 52 y + 295 = 0, 13 x 2 4- 13 r - 52 x - 104 y + 259 = 0.

5,3; |; (±4,0).

95

iV6, ^Vf; I; (±i.V6,0).

(0, ±^V2); iV2; (0, ± fc).

(-2,1); (-5,1), (1,1);

iV5; (-2±V5, l).

(*.-*>; G.-41MM*);
1x7; <-.- '

;
| ^7).

&2X2 + a2y
2 _ 2 „,,,'x _ _

62x2 + ahj2 - 2 a2by = 0.

i a/385. 1 VlG5.

Page

39.

40.

41.

44.

45.

Page

56.

57.

58.

59.

60.

61.

Page

70.

71.

72.

73.

74.

75.

46. x2 + 4 y
2 - 4x + 24y + 24 = 0.

47. 36 x 1 + 25 if - 72 x + 60y+ 60 = 0.

48. Sx2 + 9//2 = 180.

49. :;./- + 4// 2 = 48.

50. <..,•-' + 8 //
2 + 16.y- 04 = 0.

51. Bx2 + 25,/ 2 = 225.

52. 4x 2 + 3,/
2 =108.

53. 9x2 + 25 y
2 = 225.

54. 1 3 <- + 9 if - 26x — 104 = 0.

55. :;<lx2 + 20i/
2 = 1125.

\
N -

!, \ 29; (±V29, 0) ;

2x ±_5»/ = 0._
£Vl3; (±Vl3,0);
2x + 3w=0.

96

3x 2 +4?y2 = 27. 62.

9 x 2 + 8 if + 36x - 48 y - 20 = 0. 63.

1 <;.,- + 1 5 yi _ 32 x _ 00 y - 1G4 = 0.

8x2 + 9y2 = 162. 64.

J
: 3x2 + 4p2 = 8a2

.

4x 2 + •>,/- = 4 a 2
;

V\/5.

65. (2, - 3) ; Wl3 ; (2 ± Vl3, - 3)_; 3x - 2 y - 12 = 0, 3x + 2 y = 0.

66. (- 1, 2) ; \ a 10
;
(- 1, 2 ± ^VlO)

; y - 2 = ± J V6 (x 4- 1).

67. 4 x2 - 20 .v
2 - 8 x - 80 // - 79 = 0.

68. 100

x

2 - 36y2 + 400 x + 216 y + 301 = 0.

69. &*x2 - <fy 2 - 2 a^X = 0.

97

7 x2 - 9 y
2 = 63. 76. 9 x 2 - 16 if = 20.

6y* - 4x 2 = 20.

28 X2 - 36 y
2 - 56 x + 144 y - 291 = 0.

9 x2 - 16 y
2 — 54 x + 32 y - 79 = 0.

3x2 -y2 = 3a2
.

153x2 -425y2 = 450.

81. 9 x2 - 7 y
2 = 63 ; \7 7 x ± 16 = 0, 4 x ± 7 =

83. ( »„ - 2) ; y + 2 = ; (2, - 2) ; x + 1 = 0.

76. Ox 2 -16?/

77. x2

79. ±

1/3 =
tan

(.-OS"

„V5.
2-e2
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Page 98

84. (- 1,1); 2.r + l=0; {- },, {•!); 92. x2 - 4a- + 10 y - 11 = 0.

16 y — 19 = 0. 93. y'2 + 10 y + 20x + 65 = 0.

86. 2?/2 - 12y + Ox = 0. 94. x 2 - lOx - Sy + 9 = 0.

87. 12

x

2 + 36 x + ;/ + 25 = 0. 96. x2+ 2xy+y*— 16«+ 4y+34=0;
88. j/

a = 4px + 4 p2
. x + y - 3 = 0.

89. j/
2 = 4px-4p a

. 96. 2ft.

90. v/
2 - 4 y - 8 x + 28 = 0. 97. 20 ft.

91. x2 + 2x + 8 2/ -15 = 0.

Page 99

98. 27^ ft. 105. (-1, 2); (-3, 2), (1, 2); (-4,2),

99. 6 ir V3 in. (2, 2) ; 3 x + 7 = 0, 3 x - 1 = 0.

100. (±VE, 0);_V
/5x±9 = 0. 106. x2 + 2/

2 -5px = 0.

101. (0, ± jVV30); 02/±V30=0. 107. x2 + y
2 - 2x - 4 (/ = 0.

102. (± Vl5, 0); 3x±2Vl5 = 0. 108. x2 + 2/
2 - 2x - 6y = 0.

103. 4x2 + 72/
2 = 84. 109. 3V7x - 4?y + 8 = 0.

104. (-If, - |); (- 6|, - |), uo o = (a + x)\

(H, -§);(- &l - $h
' a ~ x

(2^, -i); 12x + 95 = 0, m 3= (2a + x)*

12 x- 55 = 0. '
a:

Page 100
.,

(x — a) 2 (2 a — x) 4 r/3_„T2
112. y

2 = '-j.
-

116. y =

115. y =
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16. x = ± a sin 0, y — a (1 T sin 0) tan 0.

17. x = (a + b) cos <p — h cos <f>, y — (a + b) sin — A sin 0.

18. x = (b — a) cos + h cos 0, y = (b — a) sin
<f>
— h sin 0.

19. Straight line.

20. x = a (1 — tan <f>), y = a tan (1 — tan 0) ; x2 — a (x — y).

Page 115
21. x — a cos 0, ?/ = a tan

; x2 (a2 + ?/
2
) = a 4

.

22. x = a sec <p, y = a sin
; se

2 («- — y-) = a*.

23. x = a esc ctn 0, y = a esc ; ?/
4 = «2 (x 2 + */

2
).

24. x = a sin (cos + sec 0), y = a cos (cos + sec 0) ;

y(x*+ 2/
2
) = «(x2 + 2*/2 ).

25. x = a(l — cos0), y — a tan 0(1 — CO8 0).

26. x = a sec2 0, // = a sec2 tan
; i8 = « (x2 + y

2
).

Page 116
27. X = (a — C tan 0) sin2 0, y — (a cos — c sin 0) sin

;

?/(x2 + y
2
) = x(ay - ex).

28. X = a sin 2 0, y = 2 a cos
; //

4 = 4 a2 (//
2 - x2

).

29. x = -{a2 + fc
2 cos2 0li y = -(a2 tan2 + i2 8in0cos0)

;

«(x-«)(x2 + ?/
2
) = A-

2x2
.

30. x = J, (a sin + 6 cos 0), y = £ (<( ens <p + h sin 0).

.,
c / • 0\

31. x = a cos- i i/ = I sin 0+ tan )•

2 ' 2l 2j

32. x = 2 a cos 2 0, 2/ = 2 a Ci is 2 tan
;

,«,

Page 117
2 </ + X

33. x = a tan 0. // = a ens 2
; y (a2 + x 2

) = </ (a2 — x 2
).

35. 2 r 2
// COS2 a = ''-'./• Mil -1 a — ;/.r-.

, 2 v sin a c2 .

36. < = — - ; x = —sin 2 a.
.'/ !/

37. x= ()'-' sin <t ens, t + iTnsii v2gh+ o2 sin2 a)

;

t= (usina + \'2i/h + u2 sin 2 a),

1 . , gb „ it
38. sm 1

• 39. •

•2 u2 4

40. tan- 1 — (u2 + VV* + 2 i'V<. - g-b~).
gb

CHAPTEB VIII
Page 127

34.(«V2,0). 37.^0.0^4-^/1^. B9.(0,0),r±a

35 (l.085o,|Y V N4
''

(2a, 0), („v2, 0. 38. (0,0), (± 2a,
j).

, </2 4/ \ */2 4 '
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2ax 2a(4a-3y) 45. 3a: + 5y ± 16 =
' 3 y

2 - 2 ay ' (3 y - 2 a)8 ' 5x-3?/±4=0.

41
1-y2

. 2(?/
2 -l)(4x + y) 46. (± 1, ± 9).
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108. Length is twice breadth.

109. 12 rd., 18 rd.

110. 5 ft.

Page 187

114. 4 portions 1 ft. long
;

2 portions 4 ft. long.

115. Breadth = —V§,
3

depth =—V6.
116. Breadth = depth.

117. 13'
r
ft. long.

118. (21, 0).

111. Side of base = 20 ft., depth = 10 ft.

112. Depth = one half side of base.

113. (*,*).
\6 6/

(l^H-
120. Height = twice radius of base.

121. J-.
V2

122. Altitude = -V2;
P

4

base = - (p = perimeter).
4

Page 188

123. Altitude = * radius of sphere.

124 ^5*. V^
sf ' sl

125. 200 cu. in.; 2547 cu. in.

127. Height of rectangle = radius

of semicircle
;

semicircle of radius — •

IT

Page 189

132. a
Ian

miles on laud

miles in water.

Vn2
-

lm

Vn2 - m?

133. l^i hr.

134. 7hr.

135. Area of ellipse = - area of

rectangle.

128. -L in.

V3

129. "VS.
3

130. 8 mi. from point on bank near-

est to A,

131. He travels 8.', mi. on land.

136. Altitude = \ \ 2 radius of semi-

circle.

137. Altitude = § altitude of seg-

ment.

138. \ 150 mi. per hour.

139. Velocity in still water —mi.
per hour.

140. 144 w cu. ft. per hour.

141. (1,3), (5, -5).

Page 190

142. 2 V? ft. per second.

143. 4 7r times distance from vertex.

144. .1 in. per second.

145. .02 in. per second.

146. .00 cm. per second.

147. 34.9 sq. in. per second.

148. Forward if t < 1 or t > 5
;

backward if 1 < t < 5.

149. d max. when t = .85
;

backward if 2 < t < 4.

150. - v (y = distance of top of lad-

der from ground, x = dis-

tance of bottom of ladder

from wall).
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Page 191

151. 6 COS0 (0 is the angle between

the wire on which the bead

slides and the straight line

drawn from the bead to the

fixed point).

152. 281 J ft. per minute.

153. 150 ft. per second.

154. y
8 2V(t2 + l)4 + 4t2

x* + 4 '
"

(«2 + l) 2

155. When x = |.

156. 20 ft. per second
;

10 V5 ft. per second
; (100, 20).

157. .22 ft. per second.

158. Ellipse; 2J144 ~ 2

f -

Page

1.

2.

3.

4.

CHAPTER XI
212

2sin3 2xcos2x. 11. xctn(x2 + a2
) esc2 (x2 + a2

)

.

3 sin4 3 x cos3 3 x. , _ x . x
. _ ,

12. ctn6 -.
sm3 ax cos3 ax. 3

sin2 2 x.

cos 2 (l-2x).

cost 3 x sin3 3 x.
14 . sec|

* Un5 5

.

sin3 2 x 5 5

15. esc bx (esc bx — ctn bx)

.

2

Vl-4x2

1

13. sec5 - tan -

.

2 2
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95<
s + y .

2(x2 +y2
)

' x-y' (x - y)
s

% 2z + y 10(x2 + s/
2
)

' x - 2 y ' (x — 2 yf
tan x tan2 y sec2 x + tan2 x sec2 y

104. tan-i3, tan-i^.

97.
tan y

'

tan3
y

105.
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138. a0w, where a is radius of circle, ad is distance through which point of

string in contact with circle has moved along circle, and w is the
constant angular velocity.

139. — ft. per second, where x is distance of man from center
V10000 - x2

of diameter.

140. ft. per second, where x is distance of man from
Vl0000-x2 sin2 a
center of diameter.

2 a2

-
— times man's rate, where x is distance of man from center pf
a2 + x:

diameter.

Page 219

142. Circle; feet per
2Vb2 -aH*

second, where at is distance

of foot of ladder from side

of house.

143. tan ;^.
a*

Page 220

155. 4 7ra, 4 ira V2 ; 0, 8 ira.

156. w Va2 + 2 ab cos 8 + b2 , where

w = rate of 6.

157. 2, V3; }, 1.

165. Greatest when x = (2 k + 1) - ; Least when X = few.
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168. S a sin* cos*. 169. t- * 170.
a

(
5 - 4 ^^) f

, 171
2a2

.

b a 9 — 6 cos 3 r

144.
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34. § sin8 x.
46. - 4 eta - - - ctn 3 - - - ctn« -

.

1 %
4. 3 4 5 4

35. -(tan ax — ctn ax). ._ . . .
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)
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.
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/ x
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2 3 3 51. \x- 1
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9 _2 54. J
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44. glj Vtan 2 x (7tan 2 x + 3 tan3 2 x)

.
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72

1
s[n

_l
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_
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71. _(cos3 2x-3cos2x). ^ ^ log (2

x

+ Vi^T^)

•



ANSWERS 495

Page 256

87. £log(3x + V9x2 -2).

12 °3x + V2~
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90. I log?LZ*.
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105. sec a tan- 1 (r- sec a + tan a).

106. sin- 1 (e* cos « + sin or).

107. log (x + Vxa - 1 ) + sec-1 x.
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.
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205
sinx(2 + 3cos2 x)

8cos4 x

+ I log (sec x + tanx).
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CHAPTER XIII
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.

9- f. 16. 8.
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139. (— i 0), where x = h is the

equation of the ordinate.

140. (0, |).

141. On the radius perpendicular to

the base of the hemisphere, £
of the distance from the base.

142. y = A &

143. Middle point of the axis.

144. On the axis of the cone, § of

the distance from the vertex

to the base.

145. -

146.

Page 297

147.
2 a a (e4 + 4 e2 - 1)

N

148. x =

fi + 1

2 a

4e(e2 -l)

149. (9, 9).

150. (|, 3).

151. y=-ik.
152. On the axis, § of the distance

from the base to the vertex.
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162.

163.

298

\2 2(4tt-3V3)
On the axis of the solid, TV of

the distance from the base to

the highest point.

\2 2 lip)

ha aVs
\T' 4

153.
/256 a

\315tt

256 a\

3157T/

'4_a 4(« + 'j)
n

155. 0,

3tt

352
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157. {ira, |a).

158. x = --

164. On the axis of the lamina, 3f ft.
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165. On the diameter of the sphere

perpendicular to the planes,

and half way between them.

166. The middle point of the axis of

the solid.

167. .= !(VS i).
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171.

172.

173.

174.

175.
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M

2M L. l + a
log

i2 \ a

M
5Ve!
2cM/l 1

—
)

1 + a)

, where M
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2
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— , where p is the mass of a
c

unit length of the wire.
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a2 l
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72. xy + logxy. 77. \ (x + sin x cosx) + ?/ cosx.
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91 — (3 ir + 20 — 10 V2)
96

' § to<i
'
where k is the coefficient

9 of variation.

92. - (17- 12 log 4). 97. ^- (a2 + 4 ft*).

Atto8.

98. 2917T/0.

99. $Mh*.
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' "§/

'

of the cone.

u, (0,
» $. - fv T- t);
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to the base.
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115

" 16 a
f r°m

°
enter °f Spbere "

cal surfaces

116. On the axis of the hemisphere,
121. On the axis of the frustum,
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2 + 2r1r2 + 3r|)

from the

15

base. smaller base.
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from the

Page 403

122. On the axis of the cone

q(407r + 27V3)

40~7r

vertex.

3 a2

124. 2ttP .

123.

125.
irpa

(2 b -a).

——- (36 — 2 a), where k is the

coefficient of the variation of

the density.

2_7T/J

5

4 3/(7- 4 V2~)

15 a2
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131.
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Page 434

CHAPTER XVII

19. -1<x<1.

20. - 2 < x < 2.

21. - 3 < x < 3.

I l
7=<X< -^-

V2 V2

2 2-4 2- 4. <;

29. x+ \x*+
,

2.x* +
:i
\'

:
,x'+ ....

„„ , x2 5x4 61 x"
30. I 4- — + + + • • • •

\1 li 16

31. 1 + j + x-+ |x8 + •.

32.x-
1 .^ +

1^-^- 1:^^ +
2 3 2-4 5 2-4-6 7

J „
*"

-K)-¥<¥*434.

V2

35.1og5 +^^-^^^ +
1(X - 5)3

2 52 3 53

3^[ 1 + (-4)+(^ + fe^ + ...].

7T j_l (X-1) 2 (X-l)3
37. - + -5 - + + •..

4 2 4 12

38. V5[l+ § (x - 2) + 5-V(x - 2)
2 - T i 5 (x -2)8 + • ]•



5.08 ANSWERS

39. .2070. 42. .8480. 45. .00315; 1.0980.

40. .7103. 43. -.0502. 46. .22314; 1.0004.

41. .0848. 44. .40546. 47. .8473; 1.040.

Page 435

51. 2.0305. 52. 2.9625. 57.
|
R

|
< .0004 ; 7.

Page 436

62. 1.328; 1.300; 64. -.0062; -.0050; „w . a
67. loe-

1.308. -.0991. &
6

63. .14; .1325; 65. - 2 V3. 68. 0.

.1418. 66. 3. 69. 2.

Page 437

78. |. 81. 0. 84. 1.

79. 6. 82. - §. 85. 1.

80. 0. 83. 1. 86. e. 88. 1.

7T
2

. /COS X COS 2 X COS 3 X \
9i

- j-i-v"— +^—)•

eaK — e~ air a (e"" — er an
) I cos x cos 2 x

'

cos 3 x
* 2^ w \l 2 +a2_ 22 + a2 32 + a2

'

gf<77 _,. e- on- / s ;n x 2 sin 2 x 3 sin 3 x \
+

60. \B



11. y

12. y

13. y =

x + 1 (x + l) 2
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)

Page 472

18. log (z2 + y2) = 2 as + c.

19. sin- ! - = log x + c.

» + — = c.

2

14.
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Page 474

69. FSBVM+ V-i-+£ + *-L n
- ?' =V+ V^"+*«--

70. y = cxe* + c2e-
2 72

- " = (cix + h) e~**+{x- 2)
2

.

— -}- (0 sin 2 x + 2 cos 2 x). 73. y = c
2
cos 3 x + c

2
sin 3 x + J e 3 *.

74. ?/ = e2 (cj cos'— 1- c
2
sin—— ) + x 3 + 3x2

.
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1
+ c.,e'
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2

.
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2
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2
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2 Jcos3x.
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2
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(x x2
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88. y = c
1
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3
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x
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+ c
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+ ^(15 + 18 x + 9xs + 2x8).
x3

109. y = Cj (35 - 42 x + 21 x 2 - 4 J-
3
) + ^ (3 - 14 x + 21 x2

).

XG +

6 [1 6-7 [2 6-7-8 [3

+
4-5-6. -(r + 3).g X

v ;
6 • 7 • 8 • • • (r + 5) [r /

/, n ., »(n-4) . »(n-4)(n— 16)
ni. y = c1 (i +

i
* +^r-ix* + - -f

n(n-4)(n-16)...[>-(2r-2)g] \

III
"7

+ C2X
(
1 + !Lzlx2+

(»- 1H--^
x4 +

("-i)(n-

7

Q)(n-25)
x6 +

(n - 1) („ - 9) (n - 25) • [n - (2 r - l) 2
] ^ r

1 2 r + 1

^ + ...).
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112. y = cJ\ +~ + „ f r n + •

\ 2-5 2-4.5-9

[2 - 4 - 6 • • • 2 r] [5 - 9 - 13 - - • (4 r + 1)]

+ c £i( 1 +
2-3 2- 4-3-7

[2-4-G...2r][3-7-ll.--(4r-l)]

113. w = Cl (l-— +—

+

+ (- l) 1
-

22r|2r_+l

'\ 22 |2 2*14

T4 r

115.
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Page 479

-..* a ittt i_ , . ., 149. About 7 mi. per second.
145. - V3A:, where A; is the constant „ ,-—-

*
2 150. V2gh.

ratio. 151. 20 sec.

146. J (4- V2) Vol 152. 234| ft. ; 4.3 sec. (g = 32.)

147. 153.J. »1X/

mg
,

.

V mg + fcoj
v
i +

Page 480

154. 1.8 sec. (£/ = 32.)

155. s = c, cosht + c n sin /i( 4 — cosfcf, where h- is the constant ratio
K1 — fc

a

s = Cj cos Af + c2 sin ht H sin kt, if h = k.

It t^P-ih* t^/p-th-

156. s = e~ 2 (qe 2 + c
2
e a )

,
a(/t2 - k2

) coskt + akl sin kt .. , „

,

+
(tf-*y + (tt)'

'
lf * >2 *

;

-£/ «V4/i2 - J
2

. fV4A2 -/2\
2

I c, cos |-c„sin —

I

\
x

2
2

2 /

a (A2 - fc
2)cosfe<4- akl sin W

+
(A2 -Jfc2

)
2 +(tt)2

'**<2A;

Vl 2 '

(A* -*»)* + (2 M:) 3

(/(- and / arc the constant ratios.)

157. h = fc, I very small.

s = e
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(The numbers refer to the pages)

Abscissa, 5

Acceleration, 178

Angle, 59, 166, 205, 315, 316

eccentric, 108

vectorial, 118

Arc, differential of, 174, 206, 324

limit of ratio to chord, 172

Archimedes, spiral of, 120

Area, of any surface, 381

as double integral, 376

as line integral, 354

of plane curve, 143, 262, 267

of surface of revolution, 274

Asymptote, 26, 79

Attraction, 283, 393

Axis of conic, 76, 80, 81

Bemouilli's equation, 446

Bessel's equation, 470

Bessel's functions, 471

Bisection of straight line, 9

Cardioid, 124

Catenary, 54, 441

Center of gravity, 278, 379, 392

Center of pressure, 277

Change of coordinates, 39, 124, 386,

387, 388

Circle, 70, 108, 122

auxiliary, 108

involute of, 112

Cissoid, 85, 124

Comparison test, 406

Components, of a straight line, 312

of velocity, 180

Concavity of plane curve, 167

Cone, 306

Conic, 83, 125

Constant of integration, 147, 222

Continuity, 136, 339

Convergence, 405, 409

Coordinates, Cartesian, 1, 4, 301

cylindrical, 385

oblique, 43, 301

polar, 118, 386

Curvature, 207

Curves, in space, 322

intersection of, 29

Cusp, 109

Cycloid, 109

Cylinder, 303

Degree of plane curve, 29

Derivative, 136

directional, 343

higher, 162, 338

in parametric representation, 204

partial, 335

sign of, 138, 166

total, 344

Differential, 141, 339, 359

of arc, 174, 206, 324

of area, 146

exact, 349

total, 341

Differentiation, 136

of algebraic functions, 154

of composite functions, 357

of implicit functions, 162

partial, 335

of polynomial, 137

successive, 162, 338

of transcendental functions, 192

Direction in polar coordinates, 205

',11



INDEX U5

Direction cosines, 314, 319, 324

Directrix of conic, 80, 83

Discontinuity, finite, 427

Distance, of point from plane, 320

of point from straight line, 63

between two points, 5, 313

Divergence, 405

Division of straight line, 8

e, the number, 53

Eccentricity of conic, 74, 78, 83

Element of definite integral. 2H0

Ellipse, 74, 108

area of, 262

Ellipsoid, 307

volume of, 270

Epicycloid, 111

Epi trochoid, 114

Equations, differential, 438

empirical, 89

parametric, 106

roots of, 34

Factor, integrating, 448

Focus of coiii,-, 74, 78, 80, 83

Force, 179

Forms, indeterminate, 423. 12">

Fourier's series, 427

Fractions, partial, 247

Function, 9, 300

Bessel's, 471

complementary, 456, 458, 461

composite, 357

implicit, 163, 300

notation, 12

periodic, 427

transcendental, 49

Graph, 10, 20, 49, 301

Helix, 324

Hyperbola, 77

Hyperboloid, 306, 307

Hypocycloid, 112

four-cusped, 107

Hypotrochoid, 114

Increment, 135, 339

Infinitesimal, 261

Infinity, 25

Inflection, point of, 167

Integral, 146, 222

constant of, 147, 222

definite, 147, 260

line, 353

multiple. 369

particular, 456, 458, 461

triple, 385

Integrand, 222, 264

Integration, 222

approximate, 41H

collected formulas of, 236

by partial fraction.-. 2 17

by paiis. 21:;

of a polynomial. 1 Pi

by reduction formulas, 252

by substitution, 238

Intercepts, 21

Intersections, 2!»

Involute of circle, 1 12

Legendre's coefficients, 169

Legendre's equation, 168

Lemniscate, 120, L25

Length of a curve, 272. 325

Limacon, 123

Limit, 130

of ratio of arc to chord, 172

Of ^\ 1,2
h

of (i+ ft)*, iog

theorems on, 132

Limits of definite integral, 148, 264

Line, straight, 57, 121, 317

Line integral, 353

Locus, 21). <;'.>

Logarithm, Napierian, 54

Maclaurin's series, 412

Maxima and minima, 168, 348

Mean, theorem of, 422

Moment of inertia, 377, 390
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Motion, in a curve, 180

rectilinear, 177

simple harmonic, 203

Normal, to curve, 104, 326

to plane, 310

to surface, 347

Number scale, 3

Operator, 455

Order of differential equation, 441

Ordinate, 5

Origin, 3, 118

Parabola, 80

segment of, 83

Paraboloid, 305, 308

Parameter, 106

Parts, integration by, 243

Plane, 305, 316

Point, of division, 8

turning, 139

Pole, 118

Polynomial, derivative of, 137

integral of, 146

Pressure, 275

center of, 277

Prismoid, 421

Prismoidal formula, 419

Projectile, path of, 181

Projection, 2, 310, 323

Radius of curvature, 208

Radius vector, 118

Rate of change, 175

Ratio test, 407

Reduction formulas, 252

Region of convergence, 411

Remainder in Taylor's series, 416

Revolution, surface of, 270, 274, 309

Rolle's theorem, 416

Roots of an equation, 34

Rose of three leaves, 119

Segment, parabolic, 83

Series, 405

Fourier's, 427

geometric, 405

harmonic, 406

Maclaurin's, 412

power, 410

Taylor's, 412

Simpson's rule, 421

Slope, 6, 134

Space geometry, 300

Sphere, 310, 313

Spirals, 120

Strophoid, 86

Substitution, integration by, 238

Surfaces, 304

of revolution, 270, 274, 309

Symmetry, 23

Tangent, to plane curve, 30, 140, 164

to space curve, 326

to surface, 345

Taylors series, 412

Tractrix, 439

Transformation of coordinates, 39,

124, 386, 387, 388

Trapezoidal rule, 421

Trochoid, 110

Value, absolute, 409

infinite, 25

mean, 265

Variable, 9

Vector, radius, 118

Velocity, 177, 180

Vertex of conic, 75, 79, 81

Volume, of any solid, 389

element of, 385, 386, 387

of solid with parallel bases, 268

of solid of revolution, 270

Witch, 84

Work, 275, 353, 356
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