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PREFACE 

Demonstrative geometry is taught for the purpose of 

giving the student an insight into deductive reasoning, of 

allowing him to know what it means to prove a statement, 

of giving him the privilege of '' standing upon the vantage 

ground of truth,of cultivating his habits of independent 

investigation, of developing his own rules in applied mathe¬ 

matics, and of stimulating his appreciation of the beauties 

of the science. 

In some schools the course of study permits of doing 

this work thoroughly, while in other schools the pressure 

upon the curriculum is such as to allow less time than 

might profitably be used. On this account it is necessary 

to adjust a textbook so that it may permit of such fiexi- 

bility in its use as will adapt it to curricula of various kinds. 

To accomplish this purpose the propositions and corollaries 

have been limited to those that are actually necessary for 

the proof of subsequent statements or that are needed for 

a considerable number of important exercises. The lists of 

propositions prepared under the authority of the National 

Committee on Mathematical Requirements and of the 

College Entrance Examination Board have been followed 

as closely as the best principles of sequence and selection 

seem to warrant. The exercises have been carefully se¬ 

lected and have been made so numerous that any school 

may find abundant material for a long and thorough course, 

while another school may easily limit the course without 

destroying the sequence. 
PS V 



VI PREFACE 

In general, the fundamental theorems are given first, 

ordinarily followed by the fundamental constructions to 

which the theorems lead. In this way the great basal prop¬ 

ositions are so grouped as to command the special atten¬ 

tion which they deserve. Indeed, for a brief course in 

geometry the other propositions, including the numerical 

work and circle measurement, might be omitted or else 

referred to informally in the relatively few cases in which 

they are needed in subsequent proofs. 

Among other topics the Supplement contains a treatment 

of the practical mensuration of plane and solid figures along 

the lines recognized by the College Entrance Examination 

Board as furnishing valuable replacement material for some 

of the more formal work in Books VI-VIII. This feature 

satisfies a frequent demand for a modem type of training in 

spatial perception and supplements the logical presentation 

of the standard propositions. 

Among the special features of the work may be men¬ 

tioned the selection and arrangement of propositions, the 

simplicity of language and of proofs, the introduction to 

independent demonstration, the statements of the plan of 

proof, the applications, the improved t\T)ography, and the 

emphasis secured through the framing of the diagrams. 

My long and intimate association with my lamented col¬ 

league, George Wentworth, who, unfortunately, died before 

this book was undertaken, and the life-long infiuence of 

the sound principles established by his father, George A. 

Wentworth, have, I venture to hope, qualified me to write 

in the spirit which has made the mathematical textbooks 

bearing the Wentworth name of such inestimable service 

to more than one generation of teachers and students. 

DAVID EUGENE SMITH 
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SYMBOLS AND ABBREVIATIONS 

The following are the most important symbols used : 

+ plus Z angle 
- minus A triangle 

x» • times □ rectangle 

/, : divided by EJ parallelogram 
V square root of © circle 
8/~ 

V cube root of st. straight 
= is equal to, equals. rt. right 

is equivalent to A\ A'', A-prime, A-second, 
a- square of a A'", . . A-third, • • • 

cube of a Ai, A2, A-one, A-two, 
and so on As, • • - A-three^ • • • 

> is greater than Ax. axiom 
< is less than Post. postulate 

therefore Const. construction 
—>► tends to Def. definition 
II parallel Cor. corollary 
X perpendicular Iden. identical 

Symbols of aggregation are used as explained in the text. 

There is no generally accepted symbol for is congruent 

to.’’ The sign = is commonly employed, the context tell¬ 

ing whether equality, equivalence, identity, or congruence 

is to be understood ; but teachers often use =, =, or = for 

congruence, and or for similarity. The symbol = is 

also used for identity, but is rarely needed in geometry. 

There is no generally accepted symbol for arc.” Some 

teachers recommend using AB for ”arc AB/' and this 

symbol has certain advantages. 



PLANE GEOMETRY 

INTRODUCTION 

1. Common Terms Explained 

1. Nature of Geometry. We are now about to begin 

another branch of mathematics, one not chiefly relating 

to numbers, although it uses numbers, and not primarily 

devoted to equations, although it uses them, but one that is 

concerned principally with the study of forms, such as tri¬ 

angles, parallelograms, and circles. Many facts that are 

stated in arithmetic and algebra are proved in geometry. 

2. Terms already Known. The student already has con¬ 

siderable familiarity with the terms that he will need to 

use. For example, he has a fairly good idea of such terms 

as straight line, curve, right angle, acute angle, triangle, 

square, and circle. In the case of certain of these terms 

it is unnecessary and even undesirable for the student to 

give the time and thought essential to the wording of a 

careful definition. 

3. Precise Definitions. In the case of other terms, how¬ 

ever, precise definitions are necessary, for the reason that 

we make use of such definitions in proving certain impor¬ 

tant statements to be studied later. 
Unless the student is specifically told that it is neces¬ 

sary to memorize a definition, it will be sufficient if he is 

able to use the terms correctly. 



2 COMMON TERMS EXPLAINED INTROD. 

4. Surface, Line, Point. The solid here shown has six flat 

faces, each being a rectangle. It is called a rectangular solid. 
Statements and terms that should be 

considered most carefully, although infor¬ 
mally, are printed in italic type. 

Each of the six flat faces is part 

of the surface of the solid, and each 

is itself called a surface. 
If each of these flat faces is so 

smooth that when a straight ruler 

lies upon it in any position all points 

of the ruler touch the surface, the flat face is called a plane 
surface or simply a plane, 

A surface has length and breadth, hut no thickness. 
In all such cases, examples in the classroom should be noticed. 

In the above figure some of the faces meet in lines, and 

these lines are the edges of the solid. 

The way in which faces and lines are named will be 

understood from the statement that the faces AEFB and 

ABCD meet in the line AB, 

A line has length hut neither breadth nor thickness. 
We may represent a line by a mark, but a mark is really a very 

thin solid made of chalk, ink, or some other writing material. 

We commonly speak of solids, surfaces, and lines as 

magnitudes. 
In the above figure the lines BC and CD meet in the point 

C, a vertex of the solid, and one of the eight vertices, 

A point has position but not size, 

A point, a line, a surface, or a solid, or any combination 

of these, is called a geometric figure or simply a figure. 
Plane geometry considers figures of which all parts lie 

in one plane. 



§§4,5 LINES 3 

5. Lines. The figures AB and m here shown represent 

straight lines. When no misunderstanding is likely to arise, 

a straight line is called simply a line. 
Thus, we speak of the line AB and ^ ^ 

the line m, meaning straight lines. ' 

Lines and surfaces are supposed to extend indefinitely 

far unless the contrary is stated. If we wish to speak of 

part of a line limited by two points, 

we call it a line segment or simply i—£-- 

a segment. In this figure, PQ is a line 

segment, since it is a definite part of the unlimited line I, 
If we wish to speak of a line beginning at a certain point 

O and extending indefinitely, we call it 

a ray. In this figure a, 6, c are rays. 

When no misunderstanding is likely 

to arise, it is customary to use the word ^Mine’^ instead 

of''segment^’or ''ray.'^ 

A line of which no part is straight is called a curve line 
or simply a curve. The line AB here -^ 

shown is a curve line. 

Two straight-line segments that can be placed one upon 

another so that their end points coincide are said to be 

equal, ^ C ^ 
In this figure, AB = CD, as may be seen by meas¬ 

uring with compasses. By putting one point of 

the compasses at C and the other at D, and then, 

without changing the opening of the compasses, 

putting one point at A and the other at B, we can 

transfer CD to AB. D 

In the line I here shown, AC is the sum of AB and BC\ 
that is. B c AC=AB+BC, 

Also, BC is the difference between AC and AB\ that is, 

BC=AC-AB, 



4 COMMON TERMS EXPLAINED INTROD. 

6. Angles. If two rays proceed from the same point, they 

form an angle. In this figure the rays OA and OB form 

the angle AOB, The vertex of this angle is 

0 and the arms or sides are OA and OB. 
When no misunderstanding is likely to 

arise, an angle may be named by the letter 

at the vertex or by a small letter within 

the angle, as in the cases of angles O and 
m here shown. If three letters are necessary, the middle 
one represents the vertex, as in the angle AOB above. 

The size of an angle depends upon the amount of turn¬ 
ing necessary to bring one arm to coincide with the other. 

Thus, taking these 
compasses, we see 
that the first angle is 
less than the second, 
and that the second 
is less than the third. 

We commonly measure angles in degrees, a right angle 
being 90°. In the above case the three figures are angles 
of 40°, 90°, and 120°, approximately. c 

In this figure, angle AOB is less than 
angle AOC, angle AOC is greater than -^ 
angle AOB, angle AOC is the sum of ^ ^ 
angles AOB and BOC, and angle AOB is the difference 
between angle AOC and angle BOC; that is, 

ZAOB<ZAOC, 

ZAOOZAOB, 

ZAOC = ZAOBA-ZBOC, 

and ZAOB = ZAOC - ZBOC. 

Students are advised to provide themselves with compasses, a ruler, 
and a protractor for drawing figures. 



§§6-8 RECTILINEAR FIGURES 5 

7. Rectilinear Figure. A figure which lies wholly in one 
plane and which represents a surface that is bounded by 
segments of straight lines is called a 
plane rectilinear figure or simply a recti¬ 
linear figure. 

The segments are called the sides of 
the figure, and the adjacent sides meet in the vertices 
of the figure. The sum of all the sides is the perimeter 
of the figure. 

In modern geometry the bounding line is also considered as the 
* figure, and the perimeter as the total length of this line. In this book, 

unless the contrary is stated, only those figures will be considered in 
which each of the angles within the figure is less than two right angles. 

8. Triangle. A rectilinear figure of three sides is called 
a triangle. C 

A triangle is conveniently lettered / N. 
as here shown. The small letters rep- y 
resent the sides and correspond to the / 
large letters at the opposite vertices. c 

The side upon which a triangle or any other rectilinear 
figure is supposed to stand is considered as the base of 
the figure. 

The vertex opposite the base of a triangle is called the 
vertex of the triangle. Although a triangle has three ver¬ 
tices, it has only one that is called the vertex. 

In the above triangle: 
The three vertices are A, B, Cj and the three sides are 

designated as a, 6, c or as BC, CA, AB respectively. 
The vertex is C and the base is c. 
The perimeter is a -|- 6 + c, or BC+ CA-\~AB. 
The angles are BAQ CBA, ACB. 

The various types of triangles and other common rectilinear figures 
will be considered later, when the necessity arises. 



6 COMMON TERMS EXPLAINED introd. 

Exercises. Review of Common Terms 

Draw the following figureSy writing the name under each: 

1. Rectangle. 4. Rays. 7. Rectilinear figure. 

2. Solid. 5. Triangle. 8. Straight line. 

3. Curve. 6. Angle. 9. Line segment. 

Draw a figure representing each of the following: 

10. The sum of two line segments. 

11. The difference between two line segments. 

12. The sum of two angles; of three angles. 

13. The difference between two angles. 

14. A rectangular solid has how many edges ? how many 
faces ? how many vertices ? 

15. By counting the edges, faces, and vertices of a 
rectangular solid find the number to be added to the num¬ 
ber of edges to equal the sum of the faces and vertices. 

This law, which is useful in the study of crystals, holds for all 
ordinary forms of solids bounded by planes. The student may be 
interested to try it with a pyramid or any other convenient solid. 

16. Use a ruler to find out whether the top of your desk 
is approximately a plane as described in § 4. 

Of course, no such surface is exactly a perfect plane. 

17. Draw four angles, a, 6, c, d such that a <b<c<d. 

Consult the table of symbols and abbreviations when symbols are 
not clearly understood. 

18. Draw a curve of such shape that a straight line can 
cut it in four points and only four. 

19. Draw a figure showing the number of points in which 
one straight line can intersect another. 



§§ 9-11 DEFINITIONS 7 

11. Definitions 

9. Nature of Definitions. In §§10~22 we shall consider 
certain definitions which are so important that the student 
will find it convenient to memorize them, at least in sub¬ 
stance, because they are frequently needed in proving 
other statements. 

It should be understood that these definitions can be 
turned around; that is, if we say that certain conditions 
make a right angle, it follows that a right angle implies 
these conditions. In other words, 

A definition can he inverted. 
For example, if the organ of sight is called an eye, then an eye is 

the organ of sight. 

This is mentioned at the present time because the student will 

occasionally find it convenient to invert a definition. 

10. Equal Angles. If either of two angles can be placed 
on the other so that they coincide, the ^ 
two are called equal angles, _— 

For example, these two angles are equal, all lines 

being supposed to be indefinitely long. The amount 

of turning necessary to make one angle is evidently 

the same as that necessary to make the other. 

In speaking of two figures that resemble each other it is often con¬ 

venient to use primes (q in lettering one of them. In the above case 

ZA'O'B' is read angle A-prime 0-prime S-prime." 

11. Bisector. A point, a line, or a plane that divides a geo¬ 
metric magnitude into two equal parts is called a bisector 

of the magnitude. 
For example, M, the midpoint of the line ^ 

AB, is a bisector of the line. Common sense 

will tell the student the meaning of such simple 

terms as midpoint. 

Similarly, we may have a bisector of an angle; 

for example, OM bisects the ZAOB here shown. 



8 DEFINITIONS INTROD. 

12. Straight Angle. If the arms of an angle extend in 
opposite directions so as to be in one straight line, the 

angle is called a straight angle, x 

For example, both x and y in this figure are B-^ 

straight angles, x being formed by turning the y 

arm OA halfway around the vertex O. 

A straight angle contains 180°; hence two straight angles contain 360®. 

13. Right Angle. Half of a straight angle is called a 
right angle. 

For example, x and y are evi¬ 

dently halves of the st. ZAOB and 

hence they are right angles; w, v, 

and z are also right angles. 

It follows from the definition that two right angles make a straight 

angle and that four right angles fill the space about a point. 

y/ff 

14. Perpendicular. If one line meets another so as to 
make a right angle with it, either of the two lines is said 
to be perpendicular to the other. 

In each of these figures, R is the 

vertex of a right angle ; hence in each 

figure, a is perpendicular to 6, and h is 

also perpendicular to a. 

The line a is called a perpendicular to 6, and 6 a perpendicular to a, 

A line that is perpendicular to a line segment and also bisects it is 

called a perpendicular bisector of the segment. 

The point R in each figure is called the foot of the perpendicular 

to h, or the foot of the perpendicular to a. 

The terms horizontal, vertical, oblique, and slanting, referring to 

lines, are used informally in geometry with the usual meaning with 

which the student is familiar. 

15. Square. A rectilinear figure of four equal sides and 
four right angles is called a square. 

This figure is too well known to require illustrating. 

The line joining opposite vertices of a square is called the diagonal, 

a term which we shall define later in connection with other figures. 
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16. Angles further classified. An angle is called 

an acute angle if it is less than a right angle; 
an obtuse angle if it is greater than a right angle ; 
a reflex angle if it is greater than a straight angle. 

Obtuse Angle Reflex Angle 

Acute and obtuse angles are called oblique angles, and 
each arm is said to be oblique to the other arm. 

If a wheel turns through more than 180°, each spoke turns through 

a reflex angle. If it turns through 360°, each spoke turns through a 

perigon, a term occasionally convenient. The wheel may, of course, 

turn through as many degrees as we please. If we speak of an Z O, 

however, we mean the Z O less than 180° unless the contrary is stated. 

17. Adjacent Angles. Two angles which have the same 
vertex and a common arm between them 
are called adjacent angles. 

For example, in this figure AAOB and BOC 

are adjacent angles. 

18. Angles classified by Sums. If the sum of two angles 
is a right angle, each is called the complement of the other, 
and the two angles are called complementary angles. 

If the sum of two angles is a straight angle, each is 
called the supplement of the other, and the two angles 

are called supplementary angles. 

Complementary Angles Supplementary Angles 

It may be assumed that if the sum of two adjacent angles 
is a straight angle, their exterior sides form a straight line. 

Acute Angle 



10 DEFINITIONS INTROD. 

19. Triangles classified as to Sides. A triangle is called 

an isosceles triangle when two of its sides are equal; 
an equilateral triangle when all its sides are equal. 

Isosceles Equilateral 

The word ''equilateral” means equal-sided. It is applied to any 

figure having equal sides. 

An equilateral triangle is a special kind of isosceles triangle. 

An isosceles triangle is usually represented as resting on the side 

which is not equal to either of the other sides. This side is called the 

base, and the opposite vertex is called the vertex of the triangle. Ancient 

writers often spoke of the equal sides as the legs of the isosceles tri¬ 

angle, the word " isosceles ” meaning equal-legged. 

If no two sides of a triangle are equal, the triangle is called a scalene 

triangle, but the term is not commonly used. 

20. Triangles classified as to Angles. A triangle is called 

a right triangle when one angle is a right angle; 
an obtuse triangle when one angle is an obtuse angle; 
an acute triangle when all its angles are acute angles ; 
an equiangular triangle when all its angles are equal. 

tx A 
Obtuse Acute Equiangular 

In a right triangle the side opposite the right angle is 
called the hypotenuse. 

The other two sides of a right triangle are often called simply the 

sides when no confusion is likely to arise. 

Since ancient writers usually represented the hypotenuse as the 

base, the other two sides were called the legs of the right triangle. 

Right 
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21. Circle. A closed curve lying in a plane and such that 
all its points are equally distant from a fixed point in the 
plane is called a circle. 

When we draw a circle we sometimes say that 
we describe a circle. Either word, "draw” or 
"describe,” may be used in this sense. When a 
circle is drawn with the compasses we often say 
that we construct it. 

22. Terms relating to a Circle. The point 
in the plane from which all points on the circle are equally 
distant is called the center of the circle. 

A circle is commonly named by the letter at the center. In the 
above figure we may designate the circle as the O O. 

Any .one of the equal straight-line segments which 
extend from the center of a circle to the circle itself is 
called a radius (plural radii 

A straight line through the center and terminated at 
each end by the circle is called a diameter. 

It is evident that a diameter is equal in length to two radii. 

Any portion of a circle is called an arc. 
The length of the circle, that is, the distance around the 

space inclosed, is called the circumference. 
Formerly the term circle was used to mean the part of the plane 

inclosed, and the bounding line was then called the circumference. 

An arc that is half of a circle is called a semicircle. The 
length of a semicircle is called a semicircumference. 

An arc less than a semicircle is called a minor arc; an 
arc greater than a semicircle is called a major arc. 

The word '' arc ’ ’ alone may be taken to mean a minor arc. 

23. Lines of Elementary Geometry. The straight line and 
the circle, or parts of such figures, are the only lines used 
in elementary geometry. 

Arc 

Circl® 



12 DEFINITIONS INTROD. 

Exercises. Meaning of Terms 

1. Draw four right angles in different positions. 
All the drawings required on this page may be made freehand or 

by the aid of a ruler as the teacher may direct. At present the pur¬ 

pose is to fix in mind the meaning of the terms. 

2. Draw four lines in different positions and then draw 
three lines perpendicular to each of the four lines. 

3. Draw a horizontal line and a vertical line that inter¬ 
sect. What kind of angle is formed ? 

4. Draw four acute angles of different sizes. 

5. Draw an obtuse angle that is equal to the sum of a 
right angle and one of the acute angles of Ex. 4. 

6. Draw any acute angle and then draw its complement 
and its supplement. 

The protractor may be used advantageously in such cases. 

7. Draw three straight lines intersecting by twos. They 
may determine one point or how many points ? 

If the word '’determine” is not clearly understood, it should be 

considered in class. We say that in general three lines determine three 

points, meaning that this is the greatest number that they deter¬ 

mine, although in special cases, as the student should show, they may 

determine two points, one point, or no point. 

8. Through how many degrees does the minute hand 
of a clock turn in I hr. ? in 20 min. ? in 45 min. ? in hr. ? 

9. If a radius 3f in. long is used in drawing a circle, and 
if the circumference is times the diameter, find the 
circumference. 

10. If the supplement of Z a; is 4 a;, how many degrees 
are there in each angle ? 

11. If the complement of Zm is 3 m, how many degrees 
are there in each angle ? 
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III. Demonstrative Geometry 

24. Need for Demonstrative Geometry. In looking at geo¬ 
metric figures we often find that we make mistakes if we 
judge by appearances. It is partly on this account that 
we need to demonstrate the truth of our judgments. 

For example, state which is the longer line, AB or XY, 
and estimate how many sixteenths of an inch longer it is. 

P- 

Then test your results by measuring with the compasses 
or with a carefully marked piece of paper. 

Look at this figure and state whether AB and CD are 
both straight lines. If one of them 
is not a straight line, which one is 
it? Test your answer by using a 
ruler or the folded edge of a piece 
of paper. 

2:^ 

Look at this figure and state whether the line AB will, 
if prolonged, lie on CD. Test your 
answer by laying a ruler along the 
line AB, 

Look at this figure and state which of the three lower 
lines is AB prolonged. Then test 
your answer by laying a ruler 
along AB. 

25. Bases for Proof. The proofs 
of geometry are based upon cer¬ 
tain assumptions known as ax¬ 
ioms and postulates. Since these assumptions do not depend 
merely upon the observation of figures, but upon common 
sense, they are universally accepted as the foundations 
upon which we may safely build our work. 



14 DEMONSTRATIVE GEOMETRY INTROD. 

26. Axiom. A general statement admitted without proof 
is called an axiom. The following axioms should be memo¬ 
rized ; others will be assumed when needed. 

All numbers and magnitudes referred to in the axioms are con¬ 
sidered as positive. 

1. If equals are added to equals, the sums are equal. 

For example, since 

and 
we see at once that 9 + 

9 = 5-h4 

5 = 3-h2 
5 = 54-4-1-3-1-2 

or 14 = 14 

Likewise, if a = 3 and 6 = 7, then a-}-6 = 3-|-7 = 10. 

2. If equals are subtracted from equals, the remainders 
are equal. 

For example, since 

and 
we see at once that 

or 

9 = 5-h4 

_3 = 24-1 
9-3 = 54-4-2-1 

6 = 6 

Likewise, if a = 10 and x = 3, then a — a; = 10 — 3 = 7. 

3. If equals are multiplied by equals, the products are 
equal. 

For example, since 

and 
we see at once that 

that is, 

or 

12 = 15-3 

_2 = 2_ 

2 xl2 = 2 X 15-2 X 3 

24 = 30 - 6 

24 = 24 

Likewise, if \x=l, then a; = 2 x 7 = 14. 

4. If equals are divided by equals, the quotients are equal. 
For example, since 16 = 94-7 

we see at once that 16-^4 = (9-|-7)-j-4 

that is, 4 = I -f I 

4 = = 4 

The divisor must never he zero, division by zero having no meaning. 

or 
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5. A number or magnitude may he substituted for its 
equal. 

For example, if a + a; = 6 and \ix = y, then a-\-y = h. 

If 6> £c and \i x = y, then h>y. 

x = h — a and \i y = h — a, then x = y. 

The student should make up other examples to illustrate this axiom. 

As a special case this axiom is often stated as follows: Quantities 

equal to the same quantity are equal to each other. 

The word '' quantity ’ ’ here refers to numbers or magnitudes. 

6. Like powers or like roots of equal numbers are equal. 

That is, if a: = 2, then x^ = 2^, or x^ = 4. Also, if x^ = 27, then a; = 3. 

7. If equals are added to or subtracted from unequals, or 
if unequals are multiplied or divided by equals, the results 
are unequal in the same order. 

This means that \i x>y and if a = 6, then 

x-\-a>y -\-h 

X — a>y — h 

ax > by 

X -i- a> y -i-b 

The student should illustrate each of the above cases by numerical 

examples, using the values x = 10, y = 5, a = 6 = 2, or others if desired. 

If X <y the above signs of inequality will all be reversed. 

8. If unequals are added to unequals in the same order, 
the sums are unequal in the same order; if unequals are 
subtracted from equals the remainders are unequal in 

reverse order. 

If a >b, c> d, and x — y, then a + c > b-\-d, and x — a <y — b. 

The student should illustrate as in Ax. 7. 

9. If the first of three quantities is greater than the 
second, and the second is greater than the third, then the 

first is greater than the third. 

Thus, if a> 6 and if 6 > c, then a>c. 

10. The whole is greater than any of its parts and is equal 

to the sum of all its parts. 
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27. Postulate. In geometry a geometric statement ad¬ 
mitted without proof is called a postulate. The following 
postulates of plane geometry should be memorized; others 
will be assumed when needed. 

In considering the postulates, the student should draw a figure to 

illustrate each one. 

1. One straight line and only one can he drawn through 
two distinct points. 

This postulate is sometimes more conveniently expressed 
in one of the following forms: 

Two distinct points determine a line. 
Two straight lines cannot intersect in more than one point. 

For if they intersected in two points, the lines would coincide. 

Post. 1 may be given as the authority for any one of the above 

three statements. 

2. A straight-line segment can he produced to any 
required length. 

To produce AB is to extend it through B\ ^_ 

to produce BA is to extend it through A. ^ 

In the figures in this book, lines produced are generally represented 
by dotted lines, as shown in § 48. 

3. A straight-line segment is the shortest path between 
two points. 

Since distance in a plane is measured on a straight line, this postulate 

is sometimes stated as follows: A straight line is the shortest distance 

between two points. More properly speaking, however, distance is the 

length of the line instead of the line itself. 

4. In a plane one and only one circle can he constructed 
with any given point as center and any given line segment 
as radius. 

From the definition of a circle and from this postulate we see and 

may hereafter state that all radii of the same circle are equal. 
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5. Any figure can he moved without altering its shape 
or size. 

That is, we may think of a triangle as moved about without any 

change in shape or size, and similarly for any other figure. 

6. All straight angles are equal and all right angles are 

equal. 

The second part of the postulate follows from the first, because a 

right angle is half a straight angle. 

7. A line segment can he bisected, and in one and only 

one point. 

The student should show the reasonableness of this postulate by 

means of a figure. 

8. An angle can he bisected, and by one and only one line, 
9. Angles which have equal complements or equal supple¬ 

ments are equal. 

For example, if the complement of Z a; is 22°, and the complement 

of Z 2/ is also 22°, this means that 

a;+ 22° = 90° 

and 2/+ 22° = 90°. 

Then cc + 22° = 2/ + 22°. Ax. 5 

.\x = y. Ax. 2 

10. There is one and only one line which, passing through 

a given point, is perpendicular to a given line. 

Since a perpendicular to a line makes a right angle with it, and 

since we cannot, in the first of these 

figures, have ZAOB =ZAOC(Ax. 10), 

we cannot have two perpendiculars 

through O. 

If a line swings about P as a center, 

it may be assumed for the moment that 

there is only one position at which PQ is J- to Z. It is easily proved 

later that this assumption is true. 

As the student proceeds he will find that some of the other postu¬ 

lates, assumed for the present as true, can also be proved. 
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28. Theorem. A statement which is to be proved is called 

a theorem. 

For example, it is stated in arithmetic that the square of the hypote¬ 

nuse of a right triangle is equal to the sum of the squares of the other 

two sides. This statement is one of the most important theorems of 

plane geometry, and we shall prove it later. 

29. Problem. A construction which is to be made so that 

it shall satisfy certain given conditions is called a problem. 

For example, it may be required to construct an angle equal to a 

given angle. This construction will be made in § 106. 

30. Proposition. The statement of a theorem to be proved 

or of a problem to be solved is called a proposition. 

In geometry, therefore, a proposition is either a theorem or a 

problem. We shall find that the first group of propositions is made 

up of theorems. After we have proved a number of theorems we shall 

solve some of the most important problems. 

31. Corollary. A statement that follows from another 

statement with little or no proof is called a corollary. 

For example, since we admit that all straight angles are equal, it 

follows as a corollary that all right angles are equal, since a right 

angle is half a straight angle. 

32. How Propositions are Proved. We have said that we 
are now about to prove our statements in geometry, and 

we shall first see what is meant by a proof. For this pur¬ 
pose we shall take a simple proposition concerning vertical 

angles, a term which we must first define. 

33. Vertical Angles. When two angles have the same 

vertex and the sides of one are prolon¬ 

gations of the sides of the other, these 
angles are called vertical angles. 

In the figure here shown, x and z are vertical 

angles, and so are w and y. 
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34. Study of a Figure. Suppose that we consider the 
question of vertical angles with respect to the figure here 
shown. Does there appear to be in the 
figure any other angle equal to a; ? If 
so, which angle is it? 

The amount of turning of the ray 
OA about O to make the Za; is the 
same as the amount of turning of what other ray about O 
to make the Z 2; ? 

Then how does the amount of turning necessary to 
produce any angle compare with the amount of turning 
necessary to produce its vertical angle ? 

What does this lead you to infer as to the equality of 
X and zl as to the equality of any other vertical angles ? 

Let us now see how we can prove that any angle is equal 
to its vertical angle by referring to the axioms or postulates 
instead of considering the amount of turning necessary to 
produce the two angles. 

In the above figure, which angle is the supplement of 
both X and z ? 

Then how does the supplement of x compare with the 
supplement of zl 

What does Post. 9 tell us with respect to angles which 
have equal supplements? 

What can then be said about the equality of x and z ? 
What other two angles in the figure are equal ? 
Write and complete the following statement: 

If two lines intersect, the vertical • • •. 
The student has now seen how to prove a proposition, not by trusting 

to appearances but by depending only upon a definition and a postu¬ 

late. The definition was that of the supplement of an angle (§ 18), and 

the postulate was Post. 9 as mentioned above. In § 35 we shall show 

how this proof looks when stated more systematically and in proper 

geometric form. 
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Specimen Proposition. Vertical Angles 

35. Theorem. If two lines inter sect, the vertical 

angles are equal. 

Given the lines AC and BD intersecting at O and forming 
A X, y, and z as shown. 

Prove tho,t x — z. 

Proof. a; + 2/ = ast.Z, §12 
because their arms extend in opposite directions so as to 

be in one st. line. 

Likewise, y + z = Sist.Z.. § 12 

2/ is the supplement of x and also of z. § 18 
If the sum of two A is a st. A, each is called the supplement 

of the other. 

.\X = Zy Post. 9 
because A which have equal complements or equal 

supplements are equal. 

36. Nature of a Proof. From § 35 it is seen that there are 
three steps in proving a theorem: (1) stating what is given 
(sometimes called the hypothesis), (2) stating what is to be 
proved (sometimes called the conclusion), and (3) giving the 
proof, each statement of which is supported by a definition, 
an axiom, a postulate, or a proposition previously proved. 



BOOK I 

RECTILINEAR FIGURES 

I. Fundamental Theorems 

37. Congruent Figures. If two figures have exactly the 
same shape and size, they are called congruent figures. 

For example, the two triangles shown below (§ 38) are congruent 

(con'gru-ent) figures, and are said to be congruent. Similarly, two 
circles with equal radii are congruent. 

If two figures can be made to coincide in all their parts, 
they are congruent figures. 

By the parts of a figure we mean the sides, angles,' and surface. 

38. Corresponding Parts. It is customary to letter the 
angles of a triangle by capitals arranged about the figure 
in counterclockwise order; that is, reading about the figure 
in the direction oppo- c c‘ 
site to that in which 
the hands of a clock 
move. 

Exceptions to this custom are mentioned later, as occasion arises. 

In the triangles shown above, A' corresponds to A, R' cor¬ 
responds to B,C' corresponds to C, a' corresponds to a, and 
so on; that is, these pairs of parts are respectively equal. 
It IS therefore evident that 

In two congruent figures the parts of one figure are equal 
respectively to the corresponding parts of the other figure. 

Some writers speak of corresponding parts as homologous parts. 
21 
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39. Inference as to Congruent Triangles. When we examine 
two triangles we may easily infer certain facts relating to 
them. For example, as we look at these triangles, in which 

ZA = ZA', b = b', 
c = c', the triangles s 
to be congruent, 
question is: Are 
necessarily congruent? 

It aids the eye if we mark the equal corresponding parts 
in some such way as the one used in the above figures. 

In order to aid the beginner, in the figures of Book I the important 

lines used in the proofs are made heavier than the others and the 

important angles are appropriately marked. This scheme is not used 

after Book I. 

Teachers will see the objections to the use of colored crayons to 

designate corresponding parts except, perhaps, in the case of a few 

propositions. The student should early become familiar with the tools 

that he will actually use, the black lead pencil and the white crayon. 

To prove that the two triangles are congruent let us see 
if one triangle can be placed upon the other so as to coin¬ 
cide with it. To help us see this clearly we may, if we wish, 
cut two triangles out of paper. 

Suppose that A ABC is placed upon AA'B'C' so that the 
point A lies on the point A' and c lies along c'; then where 
does the point B lie, and why ? 

On what line does b then lie, and why ? 
Then where must C lie, and why ? 
Having found where B and C lie, where does a lie ? 
What have we now shown with respect to the coinciding 

of A ABC with AA'B'C'l Are the triangles congruent? 
Complete the following statement: If two sides and the 

included angle of one triangle are equal respectively to two 
sides and the included angle of another, the triangles • • •. 

The statement and formal proof are given in § 40. 
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Proposition 1. Two Sides and Included Angle 

40. Theorem. If two sides and the included angle of 
one triangle are equal respectively to two sides and the 
included angle of another, the triangles are congruent. 

Given the k^ABC and A'B'C with c = c', b = h\ and 
ZA = ZA'. 

Prove that A ABC is congruent to AA'B'C'. 

The plan is to place one upon the other and show that they coincide. 

Proof. Place I\ABC upon AA'B'C' so that A lies on A' and 
c lies along c\ C and C' lying on the same side of c'. Post. 5 

Then B lies on B\ 

because c is given equal to c'; 

b lies along h', 

because ZAis given equal to ZA'; 

and C lies on C', 
because b is given equal to b'. 

Hence a coincides with a'. Post. 1 
One st line and only one can be drawn through two distinct points. 

A ABC is congruent to AA'B'C'y §37 
by the definition of congruent figures. 

This method of proof is called the method of superposition. 

PS 
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Exercises. First Congruence Theorem 

1. If ABCD is a square and P is the midpoint 
prove that PD =PC. 

The student should write the work in the following 

form: 

Given a square ABCD and P, the midpoint of AB. 

Prove that PD = PC. 

Proof. AP = BP, ^ 
because P is given as the midpoint of AB. 

AD = BC. 
(Give the reason from ^15.) 

ZA=ZB. 
(Give the reasons from ^15 and Post. 6.) 

Hence • • • (state what follows from § 40 and give the reason). 

.\PD = PC. 
(Give the statement at the end of § 38.) 

When proofs are written on wide sheets of paper, some teachers 
require students to rule the page vertically in the center and to write 

the statements on the left side of the line and the full authority for 
each statement on the right side. Such an arrangement is sometimes 
convenient, although it is not as concise as the form suggested above, 

which is used in many standard textbooks. 

2. In this figure, if Z.A=Z.B, if M bisects and if 
AY=BX, prove that MY=MX. 

The student should begin the work as follows: 

Given ZA = ZB, M bisecting AB, and AY = BX. 

Prove that MY = MX. 

In the proof the student should see that he can show that MY = MX 
if he can show that /\AMY is congruent to L.BMX, and that he can 
show this if • • •, and so on. 

When two figures are arranged as above, with the corresponding 
letters of one in an opposite order from those of the other, it is much 
better to read^one set counterclockwise and the other clockwise, as in 

the above statement, so as to have the letters correspond more clearly. 
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3. In the square ABCD the points P, Q, P, S bisect the 
consecutive sides. Prove that PQ = QR = rs = SP, 

In this case the student will save time by first 
proving that PQ = QR, beginning as follows: 

Given the square ABCD with P, p, P, S bisecting 

ABj BC, CD, DA respectively. 

Prove that PQ = QR. 

In the proof show first that 

' AB=BC = CD; 

then that PB = BQ = QC = CR; 

then that ZB = ZC. 

Then show that APBQ and QCR are congruent. 
What follows ? . 
It is now unnecessary to prove the other triangles congruent, 

fer evidently this can be done in precisely the same way. Simply 
write, '' Similarly, the other A are congruent, and hence PQ = QR = 
RS=SP.’* When such methods of shortening the proof are used, the 
student must be sure that the cases are exactly similar. 

4. Prove that to determine the distance AB across a 
pond one may sight from A across a 
post P, place a stake at A’ making 
PA'=AP, then sight along BP making 
PB'—BP, and finally measure A'B'. 

What is given? What is to be proved? Write 
these statements and then write the proof. 

5. Show how to find the distance from a point P west 

of a hill to a point Q east of the hill, 

using the figure here shown. 

State what measurements you would make 
on the ground. Then write the proof as in the -——^P^ 
preceding cases. 

In all such cases of outdoor measurement the land on which the 
triangles are laid out is supposed to be a horizontal plane unless the 

contrary is stated. 
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6. In the square ABCD here shown, prove that AC = BD, 

Begin as follows: 

Given the square ABCD. 

Prove that AC = BD. 

The student should attack such an exercise by 

saying to himself, I can prove this if I can prove 

that; I can prove that if I can prove this third 

statement,” and so on until he finds something already proved. He 

should then reverse this process, beginning with a proposition already 

proved and ending with the statement to be proved. 

7. In this figure, AD=BC and each is 
J_ to AB. What do you infer as to the 
relation of AC to BDl Prove the cor¬ 
rectness of your inference. 

8. If ABCD is a square, if P bisects CD, and if BM is 
made equal to AN, as shown in the figure, rt , P . n 

prove that PM = PN. 

"I can prove this if I can prove that A- 

and-are congruent. I can prove that these 

angles are congruent if • • •.” 

9. In this figure, AD = BC, each is JL 
to AB, and DP = CQ. What do you infer 
as to the relation of A APB to Z.BQA and 
of PB to QA ? Prove the correctness of 
your inferences. 

10. Suppose that it is known that a machine will work if 
three certain wheels properly gear into three other wheels. 
Suppose also that it is given that wheel a gears into wheel 
a\ that it can be shown that wheel h gears into wheel h\ 
and that it can then be shown that wheel c gears into 
wheel c\ What follows? 

An occasional exercise like Ex. 10 may be discussed for the sake of 

training in transferring geometric reasoning to other lines. 
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41. Inference as to an Isosceles Triangle. If we examine 
the isosceles triangle here shown, we can make several 
inferences; among them, that if 

6 = c, 

then Z5 = ZC. 

We have proved one proposition about 
equal angles (§ 35), but since that re¬ 
ferred to vertical angles it does not help us in this case. 

We have also proved,a proposition about congruent tri¬ 
angles (§40), and congruent triangles have equal angles. 
Possibly we may be able to prove that Z5=ZC if we can 
divide A ABC into two congruent triangles. 

In order to use § 40 we must have two sides and the 
included angle of one triangle equal respectively to two 
sides and the included angle of another triangle; hence in 
order to get two equal angles let us suppose that AM is 
the bisector of ZA (Post. 8). 

Dotted lines are used to represent such auxiliary lines as AM, which 

are inserted to assist in a proof. In speaking of ZA we mean the 

ZB AC, the original angle at A, and so in all similar cases. 

Then in A ABM and ACM, what is the relation of c to 6 ? 
What is the relation oixtoy with respect to size ? Why ? 
What line is the same in A ABM and ACM; that is, what 

line is common to the two triangles ? 
Then what parts of one triangle have you shown to be 

equal to what parts of the other triangle ? 
What can you say as to the congruence of the triangles, 

and what is the authority for the statement ? 
What can you say as to the relation of ZB to ZC? 
Complete the following statement: 

In an isosceles triangle the angles opposite the equal • • •. 
The statement and formal proof are given in § 42. 
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Proposition 2. Isosceles Triangle 

42. Theorem. In an isosceles triangle the angles oppo¬ 

site the equal sides are equal. 

C 

Given the isosceles A ABC with b = c. 

Prove that /iB = /LC. 

The plan is to prove two A congruent. 

Proof. Let p be the bisector of Z A, meeting BC at M. 
Then in A ABM and ACM it is given that 

c = b. 

Further, x = y, § 11 
because p bisects ZA; 

and side p is common to both A. 

.*. A ABM is congruent to A ACM. § 40 
If two sides and the included Z of one A are equal respectively to 

two sides and the included Z. of another, the A are congruent. 

.\ZLB=z:c, §38 
because they are corresponding parts of congruent figures. 

43. Corollary. An equilateral triangle is 
equiangular. 

Because 6 = c(why?), what follows as to ZR 

and ZC? Why? Now prove that ZA = ZR 

Why does ZA = ZC? Write out the full proof. ^ a C 
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Exercises. Isosceles Triangles 

1. In this figure, which represents the cross section of 
the attic of a house, it is known that the rafters AB and 
AC are equal in length. Suppose that 
we find by measuring that ZB = 32°, 
but that we cannot conveniently pass ^ 
the partition p so as to measure ZC. 
If we are told that ZC = 30°, is the information correct ? If 
not, what should it be? Upon what proposition does the 
answer depend ? 

2. This figure represents a square ABCD 
separated, into two triangles by the diagonal 
AC, Which angles are equal by § 42 ? 

3. In the same figure state which triangles 
are congruent by § 40, and hence show what other angles 
are equal besides those found in Ex. 2. 

4. In this figure BA = BC and Z.DBA=/lDBC. Prove 
that /\ACD is isosceles. D 

We can prove that DA = DC if we can prove 

that AABD and CBD are congruent. We can 

prove this if we can show that § 40 applies. 

5. In Ex. 4 prove that DB is ± to AC, 
What two angles must be proved equal? In order to prove them 

equal, what two triangles must be proved congruent? 

6. In this figure PB = PC and ZAPB = ZAPC, Prove 
that A ABC is isosceles. a 

7. In the figure of Ex. 6 make a list 
of all the pairs of equal angles and 
prove each statement. 

The teacher will find it helpful to introduce such exploring exercises 

in connection with various other figures, letting the student discover 

for himself as many relations as possible. 
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Proposition 3. Two Angles and Included Side 

44. Theorem. If two angles and the included side of 

one triangle are equal respectively to two angles and the 

included side of another^ the triangles are congruent 

Given the AARC and A'B'C' with ZA = ZA^ ZC= ZC', 
and &= &^ 

Prove that AABC is congruent to AA'R'C'. 
The plan is to place one upon the other and show that they coincide. 

Proof. Place A ARC upon A A'R'C' so that A lies on A' and 
h lies along h\ B and B' lying on the same side of b'. Post. 5 

Then C lies on C', 
because h is given equal to h'; 

c lies along c\ 
because /LA is given equal to /LA'; 

and a lies along a\ 
because /LC is given equal to Z. C'. 

Since R is on a and c, it lies on both a' and c\ and so 
lies on B\ the point common to both a' and c\ Post. 1 

Two st. lines cannot intersect in more than one point. 

. *. A ARC is congruent to A A'R'C', § 37 
by the definition of congruent figures. 
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Exercises. Second Congruence Theorem 

1. In this figure, ABCD is a square, M is the midpoint 
of ABj and the lines MX and MY make 
equal angles with AB. Prove that A AMY is 
congruent to A BMX, What other angles in 
these triangles are equal, and why ? 

2. In the figure of Ex. 1, what angles of 
the figureMXCDY are equal, and why? 

3. In this figure, ABCD is a square and 
p = q. What other angles in the two tri¬ 
angles are equal? What lines are equal? 
Give the necessary proofs. 

4. Wishing to measure the distance across a river, some 
boys sighted from A to a point P. They 
then laid off the line AB at right 
angles to AP. They placed a stake at 
O, halfway from A to P, and laid off 
a perpendicular to AB at P, placing a 
stake at C on this perpendicular in 
line with O and P. They then found 
the width by measuring PC. Prove that they were right. 

5. In this figure, ZPCP = ZCPA, 
Z CBD=ZDAC, and PC = AD, Find the 
other equal lines and equal angles and 
prove that they are equal. ^ 

6. Wishing to find the distance PX, some boys measured 
ZXAB and ZABX with the aid of a protractor. They 
then made ZX'AB = ZXAB and 
ZABX' = ZABX, thus laying off the 
AABX', How could they then find ^ 
the distance BX ? On what proposition 
does this depend? 
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45. Another Inference. Suppose that these two triangles 
have the three sides of one equal respectively to the three 
sides of the other; that is, sup- ^ 
pose that 

a = a\ 

h = h\ 

and c = c\ 

From the appearance of the 
triangles, what do you infer as 
to their congruence ? Would you draw the same inference 
if the three angles of one were equal respectively to the 
three angles of the other ? Draw figures to illustrate your 
answer to this second question. 

46. Examination of the Inference. In the case in which 
the three sides of one are equal respectively to the three 
sides of the other, see if you can give a satisfactory proof 
by placing A ARC upon AA'R'C', as in §§ 40 and 44. If not, 
try placing them as here shown, and 
drawing CC'. 

Because h = h\ what kind of trian¬ 
gle is AAC'C? Therefore what two 
angles of AAC'C are equal? 

Because a = a\ what kind of tri¬ 
angle is ARCC' ? Therefore what two 
angles of ARCC' are equal? 

By adding two pairs of equal angles, what can now be 
said as to the equality of ZC and ZC'? 

Can you now prove that A ARC and A'R'C' are congruent 
by using § 40 ? Try it. 

Complete the following statement: 

If the three sides of one triangle are.... 
The statement and formal proof are given in § 47. 

R 
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Proposition 4. Three Sides 

47. Theorem. If the three sides of one triangle are 

equal respectively to the three sides of another^ the 

triangles are congruent. 

Prove that A ABC is congruent to AA'B'C \ 

The plan is to adapt the figure to § 40. 

Proof. Place A ABC so that A lies on A\ c lies along c\ 

and C and C' lie on opposite sides of A’BPost. 5 

Then .R lies on .S', 
because c is given equal to c'. 

Drawing CC, we have b = b’, Given 

and hence ACC'A' =Z.C'CA'. §42 
In an isosceles A the A opposite the equal sides are equal. 

Also, since a = a', Given 

we have AlB'C'C=a1B'CC'. § 42 

Adding, a1CC'A'-\-a1B'C'C=a1C'CA' -\-AlB'CC'; Ax. 1 

that is, ZB'C'A' =ZB'CA' (ZBCA). 

AA5C is congruent to AA'.R'C'. §40 
{State the theorem of § W as the reason.) 



34 FUNDAMENTAL THEOREMS BOOK I 

Exercises. Third Congruence Theorem 

1. By placing three rods of different lengths end to end 
so as to form a triangle, can you form triangles of different 
shapes and sizes ? State the reason for your answer. 

2. Three iron rods are hinged at their ends as shown 
in this figure. Is the figure thus formed 
rigid; that is, can its shape be changed? 
State the reason. 

This explains the statement that a triangle is 

determined by its three sides. It also explains why 

the triangle is called a unit of rigidity in bridge building and in steel 

construction generally. 

3. Four iron rods are hinged at their ends as shown 
in this figure. Is the figure thus formed 
rigid ? If not, state two ways in which, by 
the addition of a single rod in each case, it 
can be made rigid. Upon what theorem 
does this depend? 

4. Draw a rough figure of the framework of a bicycle. 
State the reason or reasons for its rigidity. 

5. The following method is sometimes used for bisect¬ 
ing an angle by the aid of a carpenter’s square: Place the 
square as here shown so that the edges 
shall pass through A and B, two points 
equidistant from 0 on the arms of the q. 
given ZAOB, and so that AP = BP. 
Then draw OP. Show that OP bisects 
ZAOB. 

6. If in an equilateral triangle a line is drawn from one 
vertex to the midpoint of the opposite side, prove that 
the triangles thus formed are congruent. 
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Exercises. Review 

1. In the /\ABC it is given that AC = 5C and that CM 

bisects ZC. Prove that CM bisects AB. 

Draw the figure and say: ''I can prove this if I can prove •••.” 

Always attack an exercise in this way unless you see the proof at once. 

2. In this figure it is given that AM bisects ZA and is 
also JL to BC, Prove that A, ABC is 
isosceles. 

''I can prove this if I can prove •••. But 

I can prove that by § 44. ” Now reverse the 

reasoning and write out the proof. 

3. In the A ABC it is given that Z.A—ZB, that P bisects 
AB, and that ZNPA=ZMPB, Prove 
that AN = BM. 

I can prove this if I can prove that AAPN 

is congruent to ABPM. I can prove that be- ^ 

cause I know • • •. ” 

B 

4. In this figure it is given that ZA=ZA\ ZB=ZB\ 

and AB=A'B'. Find the other equal 
lines and equal angles and prove that ^ 

they are respectively equal. 

Remember that BCA' is one of the angles. 

5. Prove that a perpendicular to the bisector of an angle 
forms an isosceles triangle with the arms of the angle. 

6. In the A ABC it is given that ZA=ZB and that 
AP and BQ are so drawn that ZQBA = c 

ZPAB, Prove that .RQ =AP. 

I can prove this if I can prove that AARQ 

is congruent to A RAP. I can prove that because 

I know •••.’’ A* 

7. In the figure of Ex. 6 state the pairs of equal angles. 
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8. In the square ABCD it is given that the point 
P bisects CD and that PQ and PR are so drawn that 
ZQPC = 50° and ZPPQ = 80°. Prove that p ^ c 
PQ = PR. 

If Z QPC= 50° and ZRPQ = 80°, express ZD PR 
in degrees. 

In the ADRP and CQP, what parts are respec¬ 
tively equal, and why ? 

9. Prove that the line from the vertex of an isosceles 
triangle to the midpoint of the base is perpendicular to 
the base. 

10. In this section of a support for a heavy 
tank are both cross braces necessary for rigid¬ 
ity ? State the reason. If either one is unnec¬ 
essary, state a reason for having it there. 

11. Two isosceles triangles of different heights are con¬ 
structed on the same base and on the same side of the 
base. Prove that the line through their vertices bisects 
the angles at the vertices. 

12. In Ex. 11 suppose that the two isosceles triangles 
are constructed on opposite sides of the base. 

13. In this figure a = a' and b = h'. 
Prove that ZLP=zlQ. 

Hereafter the words ''prove that” will 
usually be omitted in the exercises when it is 
obvious that a proof is required. 

14. If from any vertex of a square there are drawn line 
segments to the midpoints of the two sides not adjacent 
to the vertex, these line segments are equal. 

15. From the propositions already studied write a com¬ 
plete statement of the different conditions under which 
two triangles are congruent. 
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48. Exterior Angle. The angle included by one side of a 
plane figure and an adjacent side produced is called an 
exterior angle of the figure. ^ 

For example, e is an exterior angle of this 

triangle, and A A and C are called the non- 

adjacent interior angles. -X 

49. Inference as to an Exterior Angle of a.Triangle. In the 
above figure, which seems the larger, eorZA? e or Z.Cl 

Would your inference be the same if the triangle were 
of a different shape ? Consider, for exam¬ 
ple, this figure. 

We have thus far found no way of 
proving one angle greater than another, 
but we have found five different ways of proving one angle 
equal to another, one in § 35, three in §§ 40, 44, and 47, and 
one in § 42. 

Consider this 'figure, supposing that M bisects BC, that 
AM is drawn and is then produced so that MP = AM, and 
that BP is then drawn. 

Can you prove that and CAM 
are congruent? If so, can you prove 
that ZPBM = ZACM1 

Then is ZXBOZPBMl By what ^ 
axiom is this true ? 

Then how is ZXBC related to ZC, and why? 
Can you bisect AB and proceed in a similar way to 

show that ZABY>ZA ? If so, is ZXBOZA ? 

The student has now reached the point where he may profitably 

read the model proofs without such assistance as is given above. 

The model "proofs should not be memorized, but the student should 

read the theorems and try to work out the proofs for himself before 

reading those given in the book. The complete statement of the authority 

for each step of the proof should always he given, particularly where 

the reference number alone is quoted. 
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Proposition 5. Exterior Angle of a Triangle 

50. Theorem. An exterior angle of a triangle is greater 

than either nonadjacent interior angle. 

Given the exterior AXBC of the l\ABC, 

Prove that Z.XBC > AC and that AXBC > AA, 
The plan is first to prove that ZXBC >ZPBM, which is equal to ZC. 

Proof. Let M bisect BC. Post. 7 

Draw AM and produce it so that MP = AM. Posts. 1, 2 

Draw BP. Post. 1 

The line BP lies within AXBC, for otherwise AP would 
cut either AX or AC produced in two points, which is 
impossible. Post. 1 

Then ^BMP = ZCMA, §35 

BM = CM, §11 
and MP was made equal to MA. 

Then ABPM is congruent to A CAM, §40 
and hence APBM = ZC. §38 

But ZXBOZPBM, Ax. 10 
and hence ZXBOZC. Ax. 5 

Similarly, AABY > A A, and hence AXBC > AA. 
Draw the figure and give the proof of this last statement 
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51. Parallel Lines. Lines which lie in the same plane and 
cannot meet however far they may be produced are called 
parallel lineSy or simply parallels. 

For example, AB and. CD are parallel lines. We may think of them 
as edges of a strip of ribbon. Since the stu- ^ 
dent is already familiar with such lines, further 
illustrations are not necessary. ---S 

It should be observed that in the above definition the words *'in 
the same plane ’’ are essential. 

52. Postulate of Parallels. Through a given point only 
one line can be drawn parallel to a given line. 

From this figure it seems quite evident that only one of the lines 
that can be drawn through P can be parallel to 1. 
While this is no proof for the statement, we are ~—-P - 
probably as convinced that the statement is true 
as we should be if a proof were given. ^ ^ 

53. Transversal. A line which cuts two or more lines is 
called a transversal of those lines. 

For example, in the figure below, the line t is a transversal of the 
lines I and V. 

54. Angles made by a Transversal. In the figure given 
below, it is customary to give special names to certain 
angles, as follows: 

ay by c\ d' are called exterior angles; 
a'y b'y Cy are called interior angles; 
d and 6' are called alternate angleSy 

and similarly for c and a'; 
a and a' are called corresponding angleSy and similarly 

for b and b\ for c and c\ and for d and d\ 

Sometimes a and c' are called alternate exterior angles, and similarly 
for h and d'; but when alternate angles are mentioned we ordinarily 
mean alternate interior angles; that is, we ordinarily mean d and h' 
or c and a', and this should be understood in every case unless the 

contrary is stated. 
PS 
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Proposition 6. Condition of Parallelism 

55. Theorem. When two lines in the same plane are 

cut hy a transversaly if the alternate angles are equals 

the two lines are parallel. 

Given the two lines /, V in the same plane and cut by the 
transversal t so that the alternate Ax and y are equal. 

Prove that I and V are II. 

The plan is to suppose that the lines meet and then to prove that 
this supposition leads to an impossible result. 

Proof. If I and V are not II they will meet if produced. 

Suppose that they meet at P. 

Then y>x. § 50 
An exterior A of a A> either nonadjacent interior Z.. 

But this is impossible, because it is given that y = x. 
Thus the supposition that I and V are not II leads to an 

impossible result, and hence I and V are II. § 51 

56. Indirect Proof. In the above case we have assumed 
the proposition to be false and have shown that this leads 

to an impossible result. We then conclude that the proposi¬ 

tion must be true. Such a proof is called an indirect proof. 

Since the proof excludes all possibilities other than the one stated in 
the proposition, it is also called a proof hy exclusion. It was formerly 
known as the Reductio ad absurdum, the '' reduction to an absurdity.” 
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57. Corollary. Two lines in the same plane perpendicular 
to the same line are parallel. 

Draw the figure. What A in the figure are equal and why ? Then 

by what authority can it be said that the lines are II ? 

58. Corollary. Two lines in the same plane parallel to a 
third line are parallel to each other. 

It is given that the lines x and y are both ^_ 

II to the line 1. y_ 

Then if x and y are not II, suppose that 

they meet at P. If this were possible^ how many lines should we have 

through P II to 17 How does § 52 apply ? 

59. Corollary. When two lines in the same plane are cut 
by a transversal, if two corresponding angles are equal or 
if two interior angles on the same side of the transversal 
are supplementary, the lines are parallel. 

Draw the figure and show that if two corresponding A are equal 

or if two interior A on the same side of the transversal are supple¬ 

mentary, two alternate A must be equal, and that § 55 then applies. 

60. Application. In order to draw a line parallel to a 
given line I and passing through a given point P, a drafts¬ 
man often uses a celluloid triangle, as here shown. He 
lays the hypotenuse along the given 
line I, places a ruler r along one of 
the sides, and slides the triangle 
along the ruler until the hypotenuse 
passes through P. He then draws 
a line I' along the hypotenuse. 

Using this construction, draw a line through a given 
point and parallel to a given line. State the authority 
upon which this construction depends. Could another side 
be used instead of the hypotenuse ? Has the side any 
advantage over the hypotenuse? What other instrument 
besides a triangle could be used for this purpose ? 
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Proposition 7. Parallels cut by a Transversal 

61. Theorem. If two parallel lines are cut by a trans¬ 

versal, the alternate angles are equal. 

Given AB and CD, two II lines cut by the transversal XY in 
the points M and N respectively. 

Prove that ZAMN=Z.DNM. 
The plan is to use an indirect proof. 

Proof. Suppose that ZAMN is not equal to ZDNMy but 
that a line PQ through M makes ZPMN = ZDNM. 

Then PQ is II to CD. § 55 

But this is impossible, § 52 
because AB is given as W to CD. 

Hence ZAMN = ZDNM. 

62. Corollary. If two parallel lines are cut by a trans¬ 
versal, the corresponding angles are equal. 

Show that this depends only upon §§ 35 and 61. 

63. Corollary. If two parallel lines are cut by a trans¬ 
versal, the two interior angles on the same side of the 
transversal are supplementary. 

Show that this depends only on § 61 and certain definitions. 

As a special case, if a line is perpendicular to one of two 
parallel lines, it is perpendicular to the other also. 
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Exercises. Parallel Lines 

1. If two parallel lines are cut by a transversal, the 
alternate exterior angles are equal. 

Exercises which are printed in italics are given as corollaries in 

some textbooks, and should, therefore, be solved by all students. They 

are not, however, essential to the logical sequence of the propositions, 

as they are not used in the proof of subsequent theorems. 

2. This figure shows two parallel lines 
cut by a transversal. Find the values of 
X, y, z, and w, given that a = 73°; given 
that a = 78°. 

3. Cross arms for electric wires are usually at right angles 
to the poles. What properties of parallels are illustrated 
by several cross arms on one pole ? 

4. In this figure three parallel lines 
are cut by two transversals, and certain 
angles are formed as shown. Find the 
values of w, y, z, and x. 

5. A man who is walking southward changes his direc¬ 
tion to northwest. Through how many degrees does he 
turn? If he wishes to walk southward again, through 
how many degrees must he turn ? Draw a figure showing 
the man's course, and state the proposition upon which 
your second answer depends. 

6. In this figure each angle of I\ABC is 60°, 
and two lines have been drawn parallel to the 
base. What can you discover as to the number 
of degrees in each of the other angles ? 

7. Two parallel lines are cut by a transversal so as to 
make the number of degrees in one interior angle 2x and 
the number of degrees in the other interior angle on the 
same side of the transversal a; - 30. Find the value of a;. 
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Proposition 8. Angles with Parallel Arms 

64. Theorem. If two angles have their arms respec¬ 

tively parallel^ and if both pairs of parallels extend 

either in the same direction or in opposite directions 

from the vertices, the angles are equal. 

Given A x and z with arms respectively II and extending 
in the same direction from the vertices, and A a and d with 
arms respectively II and extending in opposite directions. 

Prove that x = z and that a = d. 
The plan is to show that the A in each pair are equal to the same 

Z or to equal A. 

Proof. Produce the arms of x and z, thus forming Ay, 

Then x = y = z, § 62 

Produce the arms of a and d, and suppose that ^ is a 
transversal II to QR and Q 'Rthus forming A b and c. 

Then a = 6, § 61 

and h = c = d, § 62 

,\ a = d. Ax. 5 

It should be pointed out to the class that the arms of two angles 
extend in the same direction if the arms are on the same side of a line 
joining the vertices; otherwise they extend in opposite directions. 
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Exercises. Review 

45 

1. If two angles have their arms respectively parallel, 
and if one pair of parallels extend in 
the same direction from the vertices 
and the other pair extend in opposite 
directions from the vertices, the angles are supplementary. 

2. A bricklayer often uses the instrument here 
shown for determining whether a wall is vertical. 
When the plumb line lies along a line that is par¬ 
allel to the edge AB, he knows that the wall is 
vertical. State the geometric principle involved. 

3. In Ex. 2 state the principle involved in the 
assertion that the plumb line is perpendicular to 

B 

each line formed by producing the horizontal lines of the 
brickwork. 

4. In order to draw a line perpendicular to a given line 
I and passing through a given point P, a draftsman lays 
one side of his triangle along 
the given line U places a ruler r 
along the hypotenuse, and slides 
the triangle along the ruler until ^ 
the other side passes through P. 
He then draws a line I' along this side. Using this construc¬ 
tion, draw a line through a given point perpendicular to a 
given line. Explain in full. 

5. In this figure, given that M bisects AB and CD, prove 
that AC is II to DB. 

AC is II to DB if what two alternate angles 

are equal? 
These two angles are equal if what two tri¬ 

angles are congruent ? 
These triangles are congruent according to what proposition? 
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Proposition 9. Sum of the Angles of a Triangle 

65. Theorem. The sum of the three angles of a triangle 

is a straight angle. 

Prove that xzy = a st. 
Lettering the figure as above, the plan is to show that x — x\y = y\ 

and a;' + 2: + 2/' = a st. Z. Then it will follow that x-\- z-\-y — Z.. 

Proof. Suppose p to be a line through C II to AB and 
making zia;' and y' as shown. § 52 

Then a;' + 2:4-2/'= a st. Z. §12 

But x' = x 

and y' — y- §61 

Substituting x and y for their equals, x' and y\ we have 

x-\-z-\-y = 2i^i.Z.. Ax. 5 

This proposition is one of the most important in geometry. 
In the first statement in the proof it is evident that Ax. 10 is also 

involved, but such minor statements are usually omitted in proofs. 
The teacher should call attention to them if necessary. 

For students who have never seen this proposition before, it is an 
interesting exercise to infer its truth by cutting off and fitting together 
the three angles of a paper triangle. 
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66. Corollary. An exterior angle of a triangle is equal to 
the sum of the two nonadjacent interior angles. 

For a? + 2/ = ast. Z, 

and ZA+ZC + 2/ = a st. Z. 

ZA +ZC+2/ = ^ + 2/. 
Subtracting y, we have 

ZA+ZC=a;. 

By subtracting Z C we see that ZA = a; — ZC. 

67. Corollary. If two angles and a side of one triangle are 
equal respectively to two angles and the corresponding side 
of another triangle, the triangles are congruent. 

If the A of one are x, y, z, and the A of the other are x, y, z', then 

x-\-y-\-z —A 

and + + = a st. Z, §65 

and hence x-\-y-\-z = x-\-y-^z\ Ax. 5 

z — z'. Ax. 2 

Hence, whatever side is taken, the A are congruent. § 44 

68. Corollary. If the hypotenuse and an adjacent angle 
of one right triangle are equal respectively to the hypote¬ 
nuse and an adjacent angle of another, the triangles are 
congruent. 

Consider the figures here shown, in which A ARC and A'B'C' are 
rt. A with Z A =Z A'and AC=A'C'. 

Since the rt. A are also equal (Post. 6), 
the third A must be equal (§ 65). 

We then have 

AC=A'C', 

ZA = ZA', .. 

and ZC = ZC'. 

Hence the A are congruent by § 44. 
It should be observed that this is really a fourth congruence theorem, 

but it follows so easily from § 65 as to be properly a corollary of this 
proposition. 



48 FUNDAMENTAL THEOREMS BOOK I 

Exercises. Angles of a Triangle 

1. If two triangles have the sum of two angles of one 
equal to the sum of two angles of the other, even though 
the angles themselves are not respectively equal, the third 
angles are equal. 

2. An equiangular triangle is also equilateral. 

3. The sum of the two acute angles of a right triangle 
is 90°. 

4. In a draftsman’s triangle, is a 
right angle, as shown in the figure, and 
ZA is often 30°. In such a triangle how ^ 
many degrees are there in ZC? 

5. If one angle of a right triangle is 37°, what is the 
size of the other acute angle ? 

6. Prove § 65 by using the figure in § 66 and supposing 
that a line is drawn from B II to AC. \ 

7. In this figure, what single angle 
is equal to a + c ? To the sum of what / 
angles is q equal ? To the sum of what 
angles is r equal? From these three ^ ^ 
relations of angles find the number of degrees in p + g + r. 

8. In finding the distance of the moon from the earth 
it is necessary to find first the AAMB 
at the center of the moon, AB being 
the diameter of the earth. Obser¬ 
vations are taken on opposite sides 
of the earth at A and B. The lines 
I, V are II, and A a and h are accurately measured. Show 
how, from a and 6, to find AM. 

Such figures are necessarily distorted. The details of the finding of 

A a and h need not be considered. We simply assume that these 

angles can be measured. 
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Proposition 10. Equal Sides of a Triangle 

69. Theorem. If a triangle has two equal angles, the 

sides opposite these angles are equal. 

Given the A ABC with Z.B = Z.C, 

Prove that b = c. 
The plan is to prove two A congruent. 

Proof. Suppose that AP is -L to BC. Post. 10 

The sum of the A of AABP is equal to the sum of the 
A of AACP. § 65, Ax. 5 

Then, since AB=AC Given 

and AAPB=AAPC, Post. 6 
because AP is taken as J_ to BC, 

we have ABAP=ACAP. Ax. 2 

AABP is congruent to AACP, § 44 

and hence h = c. § 38 

70. Converse Theorems. It should be observed that § 69 is 
closely related to § 42. When two theorems are so related 
that what is given in one is what is to be proved in the 
other, either theorem is said to be the converse of the other. 

Because a theorem is true it does not always follow that 
its converse is true. 
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Proposition 11. Congruence of Right Triangles 

71. Theorem. If the hypotenuse and a side of one right 

triangle are equal respectively to the hypotenuse and a 

side of anotherj the triangles are congruent. 

Given the rt. k^ABC and A'B'C with hypotenuse AC = 
hypotenuse A^C and with BC = B'C'. 

Prove that A ABC is congruent to AA'B'C\ 
The plan is first to prove that ZA — AA' and then to apply § 68. 

Proof. Place AABC next to AA'B'C' so that BC lies 
along B'C\ B lies on B\ and A and A' lie on opposite sides 
of B'C\ 

Then C lies on C\ 
because BC is given equal to B'C\ 

Post. 5 

Also, X y = Si st. Z.y §12 

and hence BA lies along A'R' produced. §18 
Since AAA'C is isosceles, 

because AC is given equal to A'C', 

§ 19 

we have ' ZA = ZA'. §42 
*. AAB'C' is congruent to AA'B'C\ §68 

and AABC is congruent to AA'R'C'. Ax. 5 
Since the corresponding parts of congruent triangles 

Ax. 5 may be applied to congruence. 

are equal. 
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Exercises. Review 

1. The accuracy of the right angle of a draftsman's 
triangle may be tested by first draw¬ 
ing a line along the side BC with the 
triangle in the position ABC on a 
line A A', and then drawing a line 
along BC with the triangle in the position A!bC, State the 
geometric principle involved. 

2. Given that the arms of these angles 
are respectively parallel, prove that d 

M 

is supplementary to a, to 6, and to c. 

3. The ancient kind of leveling instrument here shown 
consists of an isosceles right triangle. ^ 
When the plumb line cuts the mid¬ 
point M of the base BCy the line BC 
is level. State the geometric principle 
involved. 

4. If a ray of light LP strikes a mirror OP at P, it is 
reflected along a line PP' in such a way that /LQPL = 
Z QPP\ QP being _L to OP. If P' is a point « 
on a mirror OP' which is perpendicular to l 9r— 

the first mirror, the ray is similarly re- lr 
fleeted in a line P'L', QP' being J_ to OP'. P ^ 
Find all the acute angles in the figure in terms of i and 
show that P'L' is II to PL, 

5. Consider Ex. 4 when ZO = 60°; when ZO = 30°. 

6. Prove that if the Js PM, PN from the 
point Pto the sides of an Z-AOB are equal, 
the point P lies on the bisector of Z.AOB, 
Write the general statement of this theorem 
without using letters as is done here. 

^ M " 



52 FUNDAMENTAL THEOREMS BOOK I 

7. A method of finding the distance of a ship off shore 
requires the use of a large wooden isosceles triangle. First 
stand at T and sight along the sides of 
the vertical angle of the triangle to the 
ship S and along the shore on a line TA, 
Then from a point P on TA sight to T 
and S along the sides of a base angle of 
the triangle. Then TP= TS. Explain why 
this is true and show how the distance BS from the shore 
to the ship can be found. 

8. ABCD is a square and M is the midpoint of AB. 
With M as center an arc is drawn, cutting BC at P and 
AD at Q. Prove that AMRP is congruent to ^ 
AMAQ, and write the general statement of q 
this theorem without making use of letters 
as is done here. 

This statement should read, "If an arc drawn ^ ' M ' ^ 
with the midpoint of one side of a square as center 

cuts the two adjacent sides, then the triangles cut off by," and so on. 

9. Prove that if the perpendiculars from the midpoint 
M of the base AB to the sides of the A ABC are equal, 
then Z.A^/.B, What then follows as to q 
the sides AC and PC? Write the gen- 
eral statement of this theorem without 
referring to a special figure. A \ ^ i B 

10. Supposethat OFisAtoOX WithO 
as center an arc is drawn cutting OX at A 
andOFatP. Then with A as center an arc 
is drawn cutting OF at P, and with P as 
center and the same radius an arc is drawn 
cutting OX at Q. Prove that OP=OQ, 

What triangles are congruent by § 71 ? 

F 
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72. Quadrilateral. A rectilinear figure of four sides is 
called a quadrilateral. A quadrilateral is called 

a trapezoid if it has two sides parallel; 
a parallelogram if it has the opposite sides parallel. 

If nonparallel sides of a trapezoid are equal, the figure is said to be 

isosceles. In a trapezoid or a parallelogram the side parallel to the base 

is called the upper base, the base being then called the lower base. 

Trapezoid Parallelogram Rectangle Rhombus 

A parallelogram is called 

a rectangle if its angles are all right angles; 
a rhombus if its sides are all equal. 

73. Distance. The length of the line segment from one 
point to another is called the distance between the points. 

The length of the perpendicular from an external point 
to a line is called the distance from the point to the line. 

The length of a perpendicular from one parallel line to 
another is called the distance between the parallels. 

74. Height or Altitude. The length of the perpendicular 
between the bases of a parallelogram or a trapezoid is 
called the height or the altitude of the figure. 

The length of the perpendicular from the vertex of a 
triangle to the base is called the height or the altitude of 
the triangle. 

For brevity the perpendicular itsqlf, instead of its length, is often 

called the altitude. The term " altitude " is commonly used in school; 

the term ''height” is commonly used in ordinary conversation. 

75. Diagonal. The line segment joining two nonconsecu- 
tive vertices of any figure is called a diagonal of the figure. 
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Proposition 12. Opposite Parts of a Parallelogram 

76. Theorem. The opposite sides of a parallelogram 
are equal and the opposite angles are also equal. 

Given the EJABCD. 

Prove that BC = AD and AB = DC, 

and also that AB=AD and /.A =ZC. 
The plan is to prove two A congruent. 

Proof. Draw the diagonal AC. Post. 1 

Since x = x', y — y\ and AC — AC, § 61, Iden. 

then AA5C is congruent to ACDA. §44 

.-. BC=-AD, AB = DC, and ZB = ZD. § 38 

Adding equal A, AA=AC. Ax. 1 

77. Corollary. A diagonal divides a parallelogram into 
two congruent triangles. 

78. Corollary. Segments of parallel lines cut off by par¬ 
allel lines are equal. 

79. Corollary. Two parallel lines are everywhere equally 
distant from each other. 

If AB and CD are II, what can be said of Js 
drawn from any points in AB to CD (§ 78), and 
hence from all points? C D 
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Proposition 13. First Criterion for a Parallelogram 

80. Theorem. If the opposite sides of a quadrilateral 
are equal, the figure is a parallelogram. 

Given the quadrilateral ABCD with BC = AD and AB = DC. 

Prove that the quadrilateral ABCD is a O. 
The plan is to prove that x = x' and y — y'hy congruent A, and then 

to apply § 55. 

Proof. Draw the diagonal AC. Post. 1 
In the two A it must now be shown that x = x' and y = y'. 

Since BC = AD 

and AB = DC, Given 

and since AC = AC, Iden. 

we see that I^ABC is congruent to /\CDA. §47 

x = x'; §38 

whence AB is II to DC. §55 

Also, y = y'', §38 

whence BC is II to AD. §55 

Hence the quadrilateral ABCD is a O. §72 
The proposition is sometimes stated with reference to convex 

quadrilaterals; but, as stated in § 7, in this book we consider only those 
rectilinear figures in which each of the angles within the figure is less 
than two right angles. 

PS 
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Proposition 14. Second Criterion for a Parallelogram 

81. Theorem. If two sides of a quadrilateral are equal 

and parallel^ the figure is a parallelogram. 

Given the quadrilateral ABCD with AB equal and II to DC. 

Prove that the quadrilateral ABCD is a O. 

The plan is to prove that x = x' and y = y', and then to apply § 55. 

Proof. Draw the diagonal AC. Post. 1 

Since AC = AC, Iden. 

since AB = DC, Given 

and since X = x\ §61 

we see that A ARC is congruent to ACDA. §40 
Then y' = y- §38 

.*. BC is II to AD. §55 

Also, AB is II to DC. Given 

.*. ABCD is a O. §72 

82. Corollary. If both pairs of opposite angles of a quadri¬ 
lateral are equal, the figure is a parallelogram. 

The sum of the A of the above quadrilateral is the same as the sum 
of the A of the ^ABC and CDA\ that is, it is 4rt.^ (§66). Now if 
ZA = ZC and AB = AD, it follows (Ax. 1) that AA-\- ZB = AC + ZD; 
whence ZA-\-ZB = ^of4rt.A = 2rt.A. Similarly, Z AZD —2rt A. 

Hence, by § 59, the opposite sides are II, and ABCD is a O (§ 72). 
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Proposition 15. Diagonals of a Parallelogram 

83. Theorem. The diagonals of a parallelogram bisect 
each other. 

Given the O ABCD with the diagonals AC and BD inter¬ 
secting at O. 

Prove that AO = OC 

and that BO = OD, 
The plan is to show first that AAJ50 is congruent to ACDO or that 

ABCO is congruent to A DAO. 

Proof. In &.ABO and CDO we have 

AB=CD. §76 
The opposite sides of a EJ are equal' • •. 

We also have x = x' and y = y'. § 61 
If two II lines are cut by a transversal, the alternate A are equal. 

A ABO is congruent to ACDO, § 44 
If two A and the included side of one A are equal respectively to 

two A and the included side of another, the A are congruent. 

Hence AO = OC and RO = OD. §38 

84. Corollary. If the diagonals of a quadrilateral bisect 
each other, the quadrilateral is a parallelogram. 

For then A ABO is congruent to ACDO (§40), x = x' (§ 38), and AB 

is II to DC (§ 55). Similarly, AD is II to BC. Give the proof in full. 
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Proposition 16. Parallels intercept Equal Segments 

85. Theorem. If three or more parallels intercept equal 
segments on one transversal, they intercept equal seg¬ 
ments on every transversal. 

Given several II s intercepting the equal segments x, y, z on 
the transversal t and intercepting the segments AB, BC, CD 
on the transversal t\ 

Prove that AB = BC — CD. 
The plan is to prove three A congruent. 

Proof. If t is II to t\ the proposition is true by § 78. 
If t is not II to t\ we can evidently prove the theorem if we can 

show that ABC, CD are sides of congruent A. This can be done by 
§ 44 if we can prove that AP = BQ = CR and can prove that the A 

including these lines are respectively equal in each case. 

Suppose that AP, BQ, CR are each II to t. § 52 

Since AP = x, BQ = y, and CR = z, § 78 

we have AP = BQ = CR. Ax. 5 

Then ZBAP=ZCBQ=ZDCR, §62 

and ZAPB = ZBQC = ZCRD. §64 

Hence AABP, BCQ, CDR are congruent, § 44 

and AB-=BC-=-CD. §38 
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86. Corollary. If a line parallel to one 

bisects another side, it bisects the third 
side also. 

Given the A ABC as shown, with DEII to BC and 
BD = DA. 

Prove that CE = EA. 

side of a triangle 

—-r 

In the proof suppose that XY is II to DE. Then show that this is 
simply a special case of § 85, the two transversals being AB and AC. 

The student will find it interesting to take other special cases,—for 
example, the case in which the transversals cross between the lU. 

87. Corollary. The line which joins the 
sides of a triangle is parallel to the third 

to half the third side. 

Given the A ABC as shown, with BD =DA and 
CE = EA. 

Prove that DE is W to BC 

and that DE =\BC. 

In the proof suppose thatE'Eis II to AB. The corollary is evidently 
proved if we can prove that BE ED is a O and that BE = EC. 

Show that a line from D\\ to BC makes CE = EA. Then what follows 
as to DE and RC? How does EE divide RC? 

midpoints of two 

side and is equal 

A 

88. Corollary. a line parallel to the base of a trapezoid 

bisects one of the other sides, it bisects the opposite side and 

is equal to half the sum of the bases. 

Given the trapezoid ABCD as shown, •' 
PG II to AB and AP = PD. 

Prove that RQ = QC 

and that PQ=\{ABaDC). 

• Proof. Suppose that CX is II to DA. 

Then XY = YC, and RQ = QC. § 85 

Hence FQ=iXR. §87 

Also, PY = AX = DC=\{2AX:)=\{AXaDC). §78 

.-. PY+YQ=l {AX + XB + DC)=l {AB + DC). Axs. 1,5 
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Exercises. Review 

1. In this figure, B, C, and D are in a straight line. If 

X =73°, y = 49°, and z = 58°, prove that 

CE is II to BA and find the number of 

degrees in ZB and in AECA. 

2. In the figure of Ex. 1 suppose that b 
X = 138°, y = 15°, and z = 27°. Prove that 

CE is II to BA and find the number of degrees in ZB. 

The student should sketch a new figure, in which the angles conform 
approximately to the new measurements. ^ 

3. In this figure, ifx = 34°, y = 49°, and 

z = 83°, then AB is II to CB. D 
Produce RQ to meet AB. A 

4. In the figure of Ex. 3, if it is given 

that AB is II to CD, then z — x-\-y, C^ 

5. In this figure. O'A' is ± to OA, and O'B' 
is Z to OB. Name all the pairs of equal 

angles in the figure and prove each statement. 

6. In the figure of Ex. 5, what other condi¬ 

tion would make the two triangles congruent ? 
o ■A 

7. In Ex. 5 suppose that O' lies within ^AOB, as shown 
in this figure. 

Produce B'O' to meet OA, as at X. Show that 
the angles of AXOA' are respectively equal to 
the angles of AX OB'. 

8. In Ex. 7 prove that Z B'O'A'is supple- 
mentary to Z O. 

9. In Ex. 5 suppose that O' lies on OB, 
as shown in this figure. 

Show that the angles of A B'O A'are respectively 
equal to the angles of A B'O O'. 
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89. Polygon. A rectilinear figure of three or more sides 
is called a polygon. 

The terms sides, perimeter, angles, vertices, and diagonals are 
employed in the usual sense in connection with polygons in general. 

90^ Polygons classified as to Sides. A polygon is called 

a triangle if it has three sides; 
a quadrilateral if it has four sides; 
a pentagon if it has five sides; 
a hexagon if it has six sides. 

These names are sufficient for most cases. The next few names in 
order are heptagon, octagon, nonagon, decagon, undecagon, dodecagon. 

A polygon is equilateral if all its sides are equal. 

91. Polygons classified as to Angles. A polygon is 

equiangular if all its angles are equal; 
convex if each of its angles is less than a straight angle; 
concave if it has an angle greater than a straight angle. 

Equilateral Equiangular Hexagon Convex Concave 

In a concave polygon, an angle greater than a straight angle is 
called a reentrant angle. As stated in § 7, when the term polygon 

is used a convex polygon is understood unless the contrary is stated. 

92. Regular Polygon. A polygon that is both equiangular 
and equilateral is called a regular polygon, 

93. Relation of Two Polygons. Two polygons are 

mutually equiangular if the angles of the one are equal 
to the angles of the other, taken in the same order; 

mutually equilateral if the sides of the one are equal to 
the sides of the other, taken in the same order. 
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Proposition 17. Sum of the Angles, of a Polygon 

94. Theorem. The sum of the interior angles of a 
^polygon is as many straight angles less two as the 
figure has sides. 

Given the polygon ABCDEF with n sides. 

Prove that the sum of the interior A is {n — 2) st. A. 

The plan is to cut the figure into A and apply § 65. 

Proof. From any vertex A draw as many diagonals as 
possible. Then there is a A for each side except the two 
adjacent to A. Hence there are (n — 2) A. 

The sum of the A of each A is a st. Z. § 65 
Hence the sum of the A of the (72 —2) A, that is, the 

sum of the A of the polygon, is (n — 2) st. A. Ax. 3 

Notice that this proposition includes § 65 as a special case. 

95. Corollary. The sum of the angles of a quadrilateral is 
two straight angles; and if the angles are all equal, each is 
a right angle. 

Give brief oral proofs of all such corollaries. 

96. Corollary. Each angle of a regular polygon of n sides 
is equal to {n —2)/n straight angles. 



§§94-96 ANGLES OF A POLYGON 63 

Exercises. Review 

1. If the arms of one angle are respectively perpendicular 
to the arms of another angle, the angles are either equal or 
supplementary. 

2. Any two consecutive angles of a parallelogram are 
supplementary. 

3. If one angle of a triangle is 37° 30', what is the sum 
of the other two angles ? 

4. If the sum of two angles of a triangle is 37° 30', how 
many degrees are there in the other angle ? 

5. If an exterior angle at the base of an isosceles tri¬ 
angle is 98°, find the number of degrees in each angle of 
the triangle. 

6. If the exterior angle at the vertex of an isosceles 
triangle is 98°, find the number of degrees in each angle 
of the triangle. 

7. In this figure, which shows two parallel 
lines cut by a transversal, x = 59°. How many 
degrees in each of the other seven angles? 

8. Find the sum of the angles at the five points of the 
usual form of the five-pointed star. 

Such a star is sometimes called a 'pentagram. It 

was used as a badge by the followers of Pythagoras, q., 

one of the greatest of the Greek mathematicians, 

about 525 b.c. At the five points were the Greek 

letters v, 7, t, e, a, the word vyieia (hygieia) mean¬ 

ing ’’health,’' the single letter e being used for ei. 

9. Study this figure with respect to the 
sum of the marked angles, write a theorem 
concerning it, and prove this theorem. 

10. Consider the theorem of Ex. 9 for 
the special case of the parallelogram. 
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Proposition 18. Exterior Angles 

97. Theorem. The sum of the exterior angles of a 

polygon, made by producing each of its sides in suc¬ 

cession, is two straight angles. 

Given the polygon ABCDEF with its n sides produced in 
succession. 

Prove that the sum of the exterior A is 2 st. A. 
The plan is to take the sum of the interior A from n st. A. 

Proof. Designate the interior A by a, h, c, d, e,f, and the 
corresponding exterior A by a', b', c', d\ e\ f. 

Then, considering each pair of adjacent A, 

a-\-a'= a st. Z, 

and 6 + 6'=ast. Z. §12 

In like manner, each pair of adjacent Z = a st. Z. 

Then, since the polygon has n sides and n A, the sum of 
the interior and exterior Z is st. Z. Ax. 3 

But the sum of the interior Z is (n — 2) st. Z § 94 

or st. Z — 2 st. Z. 

Hence st. Z — (n st. Z — 2 st. Z) = 2 st. Z; 

that is, the sum of the exterior Z is 2 st. Z. 

Ax. 2 
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Exercises. Review 

1. In making a map of a field a surveyor uses an in¬ 
strument which enables him to find with equal ease the 
interior angles and the exterior angles 
of the field. In order to check his work 
he may use either § 94 or § 97. Which is 
the easier for him to use, and why is it 
easier? 

2. In making a map of a field of five sides a surveyor 
finds that the exterior angles are 20° 30', 39° 30', 59° 30', 
35° 30', and 24° 30'. Are his angle measures correct ? If all 
but the last are checked and thus are known to be correct, 
what is the size of the last angle ? 

3. This figure represents two pairs of parallel lines. 
State all the equalities of angles, thus: 
a = c = g = e = o = *r». Give the reason 
in each case. 

4. In the figure of Ex. 3 state ten 
pairs of nonadjacent angles which are 
supplementary; thus: a-f/i = 180° and 
d + e=lS0\ 

5. In this figure, given that AC = BC 

and that DE is II to AB, prove that 
CD = CE. Write a general statement of 
the theorem. 

6. In the figure here shown, a; = 72° 
and x = ly. Is II to CD ? Give the 
proof in full. 

7. In the figure of Ex. 6 suppose that 
X = 73° and y-x = 32°. Is AB then II to CD ? Give the proof. 

8. How many sides has a regular polygon each angle of 
which is 140° ? 



66 FUNDAMENTAL THEOREMS BOOK I 

98. Summary of Important Fundamental Theorems. There 
are many important theorems in geometry, but those 
which we have thus far studied are used more often than 
those of any other similar group. We may now summarize 
the most important of the results as follows: 

Conditions of Congruence of Triangles 

1. Two sides and included Z respectively equal. § 40 
2. Two A and included side respectively equal. § 44 
3. Three sides respectively equal. § 47 
4. Two A and any side respectively equal. § 67 

Conditions of Congruence of Right Triangles 

1. Hypotenuse and an adjacent Z respectively equal. § 68 
2. Hypotenuse and a side respectively equal. § 71 

Conditions of Parallelism 

1. Alternate A equal. 
2. Two lines J_ to the same line. 
3. Two lines II to a third line. 
4. Corresponding A equal. 
5. Interior A on same side supplementary. 

§55 
§57 
§58 
§59 
§59 

Transversal Cutting Parallels 

1. Alternate A are equal. 
2. Corresponding A are equal. 
3. Interior A on same side are supplementary. 
4. Segments on other transversals are equal. 

§61 
§62 
§63 
§85 

Sums of Angles 

1. Of a triangle, 
2. Of a polygon, 
3. Of a polygon, exterior. 

{n — 2) st. Z. 
2 st.Z. 

lst.Z. §65 
§94 
§97 
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II. Fundamental Constructions 

99. Construction. When we construct a figure we make 
the figure accurately by the aid of an unmarked ruler and 
a pair of compasses, which are the only instruments recog¬ 
nized in elementary geometry. When we draw a figure we 
make the figure without the aid of these instruments, but- 
we may use, if we wish, the draftsman’s triangle, the pro¬ 
tractor, or the T-square, so as to make a neat figure. 

In many cases it is immaterial whether we use the word draw ” 

or the word construct,” as when we speak of drawing a line. 

We shall now consider the solution of a few of the most important 

problems of construction. 

100. Nature of a Solution. A solution of a problem has 
one step that a proof of a theorem does not have. 

In proving a theorem we state (1) what is given, (2) what 
is to be proved, and (3) the proof. 

In solving a problem we must state (1) what is given; 
(2) what is required, that is, to do some definite thing; 
(3) the construction, that is, how to do it; and (4) the proof, 
showing that the construction explained in step 3 is correct. 

We prove a theorem, but we solve a problem and then 
prove that our solution is a correct one. 

In the figures for the problems in Book I, given lines are shown as 

full lines, required lines as heavy black lines, and construction lines and 

lines produced as dotted lines. (See also the note in § 39.) 

101. Discussion of a Problem. Besides the four necessary 
steps mentioned in § 100, a fifth step may profitably be 
taken in connection with every problem. This step is the 
discussion of the solution, to see if there are any interesting 
special cases in which a solution is impossible or in which 
there is more than one solution. Such discussions are, in 

general, left to the teacher and students. 



68 FUNDAMENTAL CONSTRUCTIONS BOOK I 

Proposition 19. Bisecting a Line Segment 

102. Problem. Bisect a given line segment. 

X 

.L 
"/ i W 

1 \ \ 
m\ I '\p 

/
 

/ 

1/ i i Z 
i / 

\ 1 

Y 

Given the line segment AB, 

Required to bisect AB. 
The plan is to construct two congruent A. 

Construction. With A and B as centers and with any con¬ 

venient radius construct two arcs that intersect. Post. 4 

A convenient radius in many cases is AB itself. 

Designate the points of intersection of the arcs asXand Y. 
Draw the st. line XY and designate the point where it 

cuts the given line segment as M. Post. 1 

Then XY bisects AB at M; that is, AM—BM. 

Proof. Draw AX, BX, AY, BY. Post. 1 

- Since AAYX is congruent to A RYX, §47 

we have Z Z BXY. § 38 

.*. AAMX is congruent to /\BMX. § 40 

The student has here the essential features of the proof. He should 

DOW give the steps in full. 
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Proposition 20. Bisecting an Angle 

103. Problem. Bisect a given angle. 

Given the Z.AOB. 

Required to bisect /LAOB. 
The plan is to construct two congruent A. 

Construction. With O as center and any convenient radius 
describe an arc cutting OA at X and OB at Y. Post. 4 

With X and Y as centers and with a radius greater than 
half the line segment from X to F, construct intersecting 
arcs and designate their point of intersection as P. Post. 4 

A convenient radius may be found by placing one point of the 

compasses on X and the other on F. 

Draw OP. Post. 1 

Then OP bisects ZAOB. 

Proof. Draw PX and PY. Post. 1 

Since OX= OY, Post. 4 

since PX=PY, Const. 

and since OP=OP, Iden. 

we see that AOXP is congruent to AOYP. §47 

ZXOP = ZYOP. §38 
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Proposition 21. Perpendicular through Internal Point 

104. Problem. Through a given point on a given 
straight line construct a perpendicular to the line. 

Given the line AB and the point P on AB. 

Required through P to construct a 1. to AB. 
The plan is to construct two congruent A. 

Construction. By drawing arcs, make PX=PY. Post. 4 
With X as center and XY as radius construct an arc, and 

with Y as center and the same radius construct another 
arc intersecting the first arc at C. Post. 4 

Draw PC, which is the required J_. Post. 1 

Proof. Draw CX and CY. Post. 1 

Since we used the same radius in constructing the inter¬ 
secting arcs, we have 

CX= CY. Const. 

Also PX=PY, Post. 4 

and CP = CP. Idem 

AXPC is congruent to AYPC, § 47 

and ZCPX=ZCPY. §38 

.‘.ZCPX is a rtZ, §13 

PC is _L to AP. §14 and 
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Proposition 22. Perpendicular through External Point 

105. Problem. Through a given point outside a given 
straight line construct a perpendicular to the line. 

Given the line AB and the point P not on AB, 

The plan is to construct two congruent A. 

Required through P to construct a A- to AB, 

Construction. With P as center and a radius sufficiently 
long construct an arc cutting AB at X and Y, Post. 4 

Such a radius can easily be found by simply placing one point of the 

compasses on P and the other on any point below AB. 

With X and Y as centers and a radius sufficiently long 
construct two arcs intersecting at C below AB, Post. 4 

Such a radius may be any length greater than half of XY. 

Draw PC, Post. 1 

Let M be the point of intersection of PC and AB, 

Then PM is the required ±. 

Proof. Draw PX, PF, CX, CY, Post. 1 

Then APXC is congruent to APYC, § 47 

Now write out the full proof, which should show that AXMP is 

congruent to A YMP by § 40. 

PS 
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Exercises. Constructions 

1. Draw a line segment 3} in. long and bisect this line 
segment by measuring. Then bisect it by § 102 and thus 
test the accuracy of your measurement. 

2. By the aid of a protractor draw and bisect an angle 
of 60°. Then bisect the angle by § 103. 

3. Draw a line AB, take a point P not on AB, and through 
Pdraw a perpendicular to AB by means of a draftsman's 
triangle. Then through P construct a perpendicular to AB 

by the method of § 105, and thus check the accuracy of the 
drawing. 

In ordinary practice, either of these methods is satisfactory. 

4. Draw a line AB, take a point P on the line, and through 
P draw a perpendicular to AB by means of a draftsman's 
triangle. Then construct a perpendicular as in § 104. 

5. Write a statement about the relative sizes of the halves 
of equal line segments; of the halves of equal angles; of 
the halves of equal circles; of the halves of any equal 
magnitudes. Draw a diagram to illustrate each statement. 

6. Write a statement about the result of adding equal 
line segments to equal line segments; of adding equal 
angles to equal angles. Draw a diagram to illustrate each 
statement. 

7. How many degrees are there in an angle that is equal 
to half its complement? to half its supplement? 

8. How many degrees are there in an angle that is equal 
to 10° more than its complement ? to 20° less than its com¬ 
plement? to 30° less than half its complement? 

9. Construct a line segment equal to the sum of two 
given line segments; to the difference between two given 
line segments. 
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Construct angles of the following sizes: 

10. 45°. 11. 22°30'. 12. 11° 15'. 13. 135°. 14. 157°30'. 

15. Construct a square 2 in. on a side. If the figure is cor¬ 

rectly constructed the two diagonals are equal. Check the 

work by measuring the diagonals with the compasses. 

16. By the use of 

following figures: 
compasses and ruler construct the 

The lines made of short dashes show how to locate the points needed 

in drawing the figure. They should be erased after the figure is com¬ 

pleted unless the teacher directs that they be retained to show how 

the construction was made. 

17. By the use of compasses and ruler construct the 

following figures: 

In the figures in Exs. 16 and 17 it should be noticed that the radius 

of a circle may be used to draw arcs which shall divide the circle into 

six equal parts. 

18. By the use of compasses and ruler construct four 

original designs similar in nature to those of Ex, 17, Try 

to make the designs as varied as possible. 
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Proposition 23. Constructing Equal Angles 

106. Problem. From a given point on a given line con¬ 
struct a line which shall make with the given line an 
angle equal to a given angle. 

Given the AAOB and the point P on the line ^1?. 

Required from P to draw a line making with the line QR 
an Z equal to /LAOB. 

The plan is to construct two congruent A. 

Construction. With O as center and any radius describe 
an arc cutting OA at C and OB at D. Post. 4 

With P as center and the same radius describe an arc 
MX, cutting QR at M. Post. 4 

Draw CD. Post. 1 

With M as center and CD as radius describe an arc cutting 
the arc MX at N. Post. 4 

Draw PN. Post. 1 

Then PN is the required line. 

Proof. Draw MN. Post. 1 

Now prove that A OCD and PMN are congruent by § 47. 

This method of constructing equal angles is more nearly accurate 

than the method of drawing by the aid of a protractor. 
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107. Corollary. Through a given external point construct 
a line parallel to a given line. x 

Let P be the given external point and AB the '' \ , 
given line. C. D 

Draw any line XPY through P, cutting AB as / \\ ’ 
in the figure. ^_/v ^ 

At P construct p = q, and draw DPC. ^ 
The line CD is the required line. 

Write the construction in the usual form and give the proof. 

108. Corollary. Given two sides and the included angle 

of a triangle, construct the triangle. 

Let h and c be the given sides 
and m the given Z. 

Construct ZXOY= m. 
On OX mark off with the com¬ 

passes OB=c, and on OF mark 
off OC= b. 

Draw BC. 
Then A OBC is the required A. 
Write the construction in the usual form and give the proof. 
Of course the A may be turned over, giving another appearance, 

but such cases, if thought important, are left to the consideration of 
the class. 

109. Corollary. Given a side and two a,ngles of a triangle, 

construct the triangle. 

Let a be the given side and 
m and n the given A. 

Then if the side is included by 
the A, mark off with the com¬ 
passes on any line I the segment 

PQ = a. 
At P construct an Z equal to w, and at Q construct an Z equal to n. 

Then APQR in the figure is the required A. 
Write the construction in the usual form and give the proof. 
If the side is not included by the A, find the third Z by means of 

§ 65 and then proceed as above. 
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Proposition 24. Triangle with Given Sides 

110. Problem. Construct a triangle with its sides 

equal respectively to three given line segments. 

Given the line segments /, m, n. 

Required to construct a A with sides equal to Z, m, n. 

The plan is to draw two arcs which shall determine the A. 

Construction. Draw a line a with the ruler and on it 
mark off with the compasses a line segment AB = Z. 

With A as center and m as radius draw an arc; with B 
as center and n as radius draw another arc cutting the first 
arc at C. Post. 4 

Draw AC and BC. Post. 1 

Then ABC is the required A. 

Proof. AB = Z, AC = m, and BC = n. Const. 
The discussion (§ 101) should disclose any special cases. 

111. Corollary. Given one of the sides, construct an equi¬ 
lateral triangle. 

In this case, and similarly in § 112, the student should perform the 

construction, and then write out the construction and the proof in 

proper geometric form. 

112. Corollary. Given the base and one of the two equal 
sides, construct an isosceles triangle. 
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Proposition 25. Dividing a Line Segment 

113. Problem. Divide a given line segment into a given 

number of equal parts. 

Given the line segment AB, 

Required to divide ABinto a given number of equal parts. 
The only proposition thus far studied that relates to equal segments 

on a line is the one concerning a transversal cutting lls (§ 86). The plan 

is, therefore, to bring this problem under that theorem. 

Construction. From A draw the line AX, making any con¬ 
venient Z with AB. Post. 1 

Take any convenient length and, by describing arcs, apply 
it to AX as many times as is indicated by the number of 
parts (say three) into which AB is to be divided. Post. 4 

From R, the last point thus found, draw RB. Post. 1 
From the points P, Q by which AX was divided into 

equal parts, construct FF' and QQ' II to RB. § 107 
These lines divide AB into equal parts as required. 

Proof. Construct AY W to BR. §107 

Since the lls AY, F'F, Q'Q, BR were constructed so as to 
cut off equal segments on AX, they cut off the equal seg¬ 
ments AF\ F'Q', Q’B on AB. § 85 

This method is more nearly accurate than trying to divide AB by 

measuring its length with a ruler. 
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Proposition 26. Two Sides and One Angle 

114. Problem. Given two sides of a triangle and the 

angle opposite one of therriy construct the triangle. 

Given a and two sides of a A, and A the Z opposite a. 

Required to construct the A. 

The plan is to determine the A by means of arcs. 

Construction. CASE 1. If a <b. 
On a line AX construct XXA r=Z A. § 106 

On A F take AC =b. Post. 4 

With C as center and a as radius construct an arc inter¬ 
secting the line AX at B and B\ Post. 4 

Draw BC and P'C, thus completing the A. Post. 1 

Then both A ARC and AAB'C satisfy the conditions. 
This is called the ambiguous case. 
Except for students specializing in mathematics, 

omitted. 

For the present we shall assume 

that if a < 6 there are, in general, 

two constructions as stated. If a 

is equal to the ± from C to AX, 

it is evident that there is but 

one construction, the rt. A ARC, as shown in the figure at 

If a is less than the ± from C to AX, it is apparent that 

no A, as shown in the figure at the right. 

the left, 

there is 
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Case 2. Ifa = b, 

If the given ZA is acute and a = 6, the arc constructed 
from C as center with radius a apparently cuts the line 
WX at the points A and B. There 
is, however, but one A; namely, the 
isosceles AABC. 

If A is a rt. Z or an obtuse Z, there is 

no A when a = b, for a A cannot have two 

rt. A or two obtuse A (§ 65). 

Case 3. If a>b. 

If the given Z A is acute, the arc constructed from C cuts 
the line WX on opposite sides ^ 
of A at the points B and B', 
Then AABC satisfies the con¬ 
ditions, but AAB'C does not, 
for it does not contain the acute 
ZA. There is then only one A 
that satisfies the conditions. 

If the given ZA is a rt. Z, 
the arc constructed from C cuts 
the line WX on opposite sides of 
A at the points B and B\ and 
we have two congruent rt. A 
that satisfy the conditions. 

If the given ZA is obtuse, the arc constructed from C 
cuts the line WX on opposite 
sides of A at the points B and 
B'; but only the AABC satisfies 
the conditions. 

The proofs of these statements are 

given later, but since this proposi¬ 

tion will not be used in proving any 
theorems, it is permissible to use them here in discussing the problem. 
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Exercises. Review of Constructions 

1. Divide a given line segment into four equal parts. 

2. Construct an equilateral triangle of given perimeter. 

3. Through a given point draw a line which shall make 
equal angles with the two sides of a given angle. 

4. Through a given point draw two lines which shall 
form with two intersecting lines two isosceles triangles. 

5. Construct a triangle with its three angles respec¬ 
tively equal to the three angles of a given triangle. 

By first constructing an equilateral triangle and then 
bisecting certain angles construct angles of: 

6.. 30°. 7. 15°. 8. 7° 30'. 9. i of a rt. Z. 

10. Construct an isosceles triangle with its base equal 
to one third of one of the equal sides. 

11. Construct an isosceles right triangle. 

12. Construct an isosceles triangle with one of the base 
angles 60°. What other special name can you give to the 
triangle ? Prove that your answer is correct. 

13. By the use of compasses and ruler construct the 
following figures (see Ex. 16, page 73): 

In such figures artistic patterns may be made by coloring various 

portions of the drawings. In this way designs are made for oilcloth, 

for stained-glass windows, for colored tiles, and for other decorations. 
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III. Inequalities 

Proposition 27. Unequal Sums of Lines 

115. Theorem. The sum of two line segments from a 

given external point to the extremities of a given line 

segment is greater than the sum of two other line seg¬ 

ments similarly drawn hut included hy them. 

Given the line segment AB and the segments from the ex¬ 

ternal points Qy P to A and B, 

Prove that AQ-\- QB>AP-{-PB. 

The plan is to show that AQ-\- QB > AX + XB > AP + PB. 

Proof. Produce AP to meet QB as at X, Post. 2 

Then AQ + QX>AP-fPX Post. 3 

Likewise, PX+XB>PB, Post. 3 

Adding these inequalities, we have 

AQ + QX+PX+XP>AP+PX+PP. Ax. 8 

Substituting QB for its equal, QX + XB, we have 

AQ + QP + PX>AP+PX+PP. Ax. 5 

.*. AQ-f QP>AP+PP. Ax. 7 

It may be asked why AP produced meets BQ at any point whatever. 

Such discussions, of little significance at this stage, are left to the teacher 

to initiate if thought desirable. 



82 INEQUALITIES BOOK I 

Proposition 28. Perpendicular from an External Point 

116. Theorem. One and only one perpendicular can he 

constructed to a given line from a given external point. 

Given a line XY and an external point P. 

Prove that one and only one ± can he constimcted from 
P to XY. 

The plan is to show that if two lines from P are _L to XY, then 

Post. 1 is violated. 

Proof. One 1. to XY, as PO, can be constructed. § 105 
Let PZ be any other line from P to XY. Post. 1 

Produce PO to P', making OP' = OP. Post. 2 
Draw P'Z. Post. 1 
Since POP' is a st. line, PZP' is not a st. line. Post. 1 
Hence ZLP'ZP is not a st. Z. § 12 
Since APOZ and P'OZ are rt. Z, § 14 

we have APOZ = ZP'OZ Post. 6 
Hence AOPZ is congruent to AOP'Z, § 40 

so that Z OZP = Z OZP'. § 38 
.*. AOZP, the half of AP'ZP, is not a rt. Z. § 13 

Hence PZ is not ± to XY, § 14 
and PO is the only Z to XY. 

We may now cease to depend upon part of Post. 10. 
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Proposition 29. A Perpendicular and Equal Obliques 

117. Theorem. If two line segments drawn from a point 

on a perpendicular to a given line cut off on the given 

line equal segments from the foot of the perpendicular, 

the line segments are equal and make equal angles with 

the perpendicular. 

Given PO J_ to XF, and PA and PB two lines cutting off 

from O on XY the equal segments OA and OB, 

Prove that PA = PB, 

and that AAPO = X.BPO, 
The plan is to prove that the AAOP and BOP are congruent. 

Proof. Since PO is ± to XY, Given 
we see that APOA and FOB are rt. § 14 

APOA = APOB, * Post. 6 

Also, OA = OB, Given 

and PO = PO, Iden. 

Hence AAOP is congruent to A BOP, § 40 
,\PA = PB, 

and AAPO=ABPO, §38 

While not dealing directly with inequalities, §§ 116 and 117 are related 

to the theory, as is shown later. 
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Proposition 30. A Perpendicular and Unequal Obliques 

118. Theorem. If two line segments drawn from a 

point on a perpendicular to a given line cut off on the 

given line unequal segments from the foot of the perpen¬ 

dicular, the line segment more remote is the greater. 

Given PO _L to XY and two lines PA, PC drawn from P to 
XY so that OA > OC. 

Prove that PA>PC. 
The plan is to show that PA > PB, which is equal to PC. 

Proof. Take OB =OC and draw PB. Post. 1 
Then PB = PC. §117 
Produce PO to P\ making OP'= OP. Post. 2 
Draw P'A and P'B. Post. 1 
Then PA = P'A and PB = P'B. §117 
But PA+P'A>PB + P'B, §115 

because PP' is a line segment to the ends of which we have 
drawn segments from A and B. 

:.2PA>2PB, Ax. 5 
because we may substitute PA for P'A, and PB for P'B. 

Hence PA>PB, Ax. 7 
and PA>PC. Ax. 5 
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119. Corollary. Only two equal obliques can he drawn froTU 
a given point to a given line. 

Let PA, PB, PC be three obliques and let 

PO be ± to XY. 
Then to suppose that PA = PB = PC is to 

contradict § 118, where it was proved that 

PA>PC. 

120. Corollary. Equal obliques from a point to a line cut 
off equal segments from the foot of the p 
perpendicular from the point to the line. 

JK 
A B O C 

Given PO ± to XY and PA = PB. . \ 

Prove that OA = OB. / \ 
Proof. 

^_e._ 

In AAOP and BOP we see that C ) 

APOA and POB are rt. A, §14 
because PO is given as A- to XY. 

.•. AAOP and BOP are rt. A. §20 
Also, PA=PB, Given 

and PO = PO. Iden. 

.*. A A OP is congruent to ABOP, §71 
and OA = OB. §38 

121. Corollary. If two unequal line segments are drawn 
from a point to a line, the greater cuts off the greater seg¬ 
ment from the foot of the perpendic¬ 
ular from the point to the line. 

In this figure, in which PO is _L to XYand 

PA >PB, it is impossible that A should lie 

between B and O. For if A should be at A', 
then PA (that is, PA') would be less than PB 
(§ 118), which is contrary to what is given. Further, A cannot fall on 

B, for then PA = PB, which is also contrary to what is given. 

Thus A cannot lie on B or between B and O. Hence the greater 

segment PA cuts off the greater segment on XY from O. 

Similarly, if PA lies on the right of PO, as at PC, then, since 

PA = PC, we see that OA = OC (§ 120), so that OC> OB. 
Since we have covered all possible cases, the corollary is true. 
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Proposition 31. Perpendicular Shortest Line 

122. Theorem. The 'perpendicular is the shortest line 

segment that can be constructed to a given line from a 

given external point 

Given PO, the J_ from an external point P to the line XY, 

Prove that PO is the shortest line from P to XY. 

The plan is to show that PO is shorter than any other line. 

Proof. Let PZ be any other line segment from P to XY. 

Produce PO to P\ making OP' = OP. Post. 2 

Draw P'Z. Post. 1 

Since XF is given _L to PP\ then PZ = P'Z. §117 
Then PZ+P’Z=2PZ, 

and P0 + P'0 = 2P0. Axs. 5,10 
But P0 + P'0<PZ+P'Z. Post. 3 
Hence 2PO<2PZ, Ax. 5 

and PO<PZ; Ax. 7 
that is, PO is the shortest line from P to XY. 

123. Corollary. Conversely, the shortest line segment to a 

given line from an external point is the perpendicular from 
the point to the line. 

For if PO is the shortest line segment, it must be -L to XY. Other¬ 

wise we should have a line segment from P to XY shorter than the _L, 
which is impossible (§ 122). 
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Proposition 32. Angles of a Triangle 

124. Theorem. If two sides of a triangle are unequal^ 

the angles opposite these sides are unequaly and the angle 

opposite the greater side is the greater. 

Given the AA5C with CB > CA. 

Prove that /LBAC>Z-B. 
The plan is to show that ZBAC> q = r> ZB. 

Proof. Because CB>CA we may suppose that CX can 
be marked off with the compasses on CB so that CX = CA. 

Draw AX.' Post. 1 

Then AAXC is isosceles. § 19 

Then, in the figure, ^ = r, § 42 
because in an isosceles A the A opposite the equal sides are equal. 

But r>XBy §50 
because an exterior Z of a A'> either nonadjacent interior Z. 

Also, ZBAOq. Ax. 10 

Substituting r for its equal, q, we have 

ZBAC>r. Ax. 5 

Since r>ZB, Proved 

then ZBAOZB. Ax. 9 
If the first of three quantities > the second, and the second > the 

third, then the first > the third. 

PS 
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Proposition 33. Sides of a Triangle 

125. Theorem. If two angles of a triangle are unequal, 

the sides opposite these angles are unequal, and the side 

opposite the greater angle is the greater. 

Given the l^ABC with Z.A> /LB. 

Prove that a>b. 

The plan is to show that other suppositions lead to an impossibility. 

Proof. Now a is either equal to b, less than b, or greater 
than b. 

If 

then 

And if 

that is, if 

then 

a = b, 

/A=/B. 

a<b, 

b>a, 

/B>/A. 

§42 

§124 

Both these conclusions are contrary to the fact that 

/A>/B. Given 

Hence it follows that a > 6. 

This is another example of an indirect proof (§ 56). We suppose that 

the statement to be proved is false, that is, that a = 6 and that 6 > a, 

and we show that these suppositions lead to impossibilities; namely, 

that ZA=ZB or ZB > ZA, when we know that ZA> ZB. Accord¬ 

ingly, we conclude that the theorem is true. 
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Exercises. Inequalities 

1. The sum of any two sides of a triangle is greater than 
the third side, and the difference between any two sides is 
less than the third side. 

Use Post. 3 for the first statement and Ax. 7 for the second. 

State in what cases it is possible to form triangles with 
rods of the following lengths, and give the reason: 

2. 2 in., 3 in., 4 in. 5. 7 in., 10 in., 20 in. 

3. 3 in., 4 in., 7 in. 6. 8 in., in., 18 in. 

4. 6 in., 7 in., 9 in. 7. 9| in., lOJ in., 20 in. 

8. In this figure prove thSit AB-^BC> ADDC. 
Why is DB-\-BC> DC": What is the result of 

adding AD to these unequals ? ^ 

9. In the figure of Ex. 8 suppose that 
CA = CB, and prove that CD < CB. Write 
a theorem based upon this fact. 

The theorem may begin as follows: The line segment joining the 

vertex of an isosceles triangle to any point on the base is less than.... 

10. The hypotenuse of a right triangle is greater than 
either of the other sides. 

11. Prove § 122 by the use of § 125. Is this legitimate ? 
It is legitimate in case § 122 was not used directly or indirectly in 

the proof of § 125; otherwise it is not legitimate. 
C 

12. In this figure, given that x is an ob¬ 
tuse angle and that M is the midpoint of 
AB, prove that a < 6. A‘ M 

Draw a perpendicular from C to AB. 

13. On the base AB of a quadrilateral ABCD the point 
P is taken. Prove that the perimeter of the quadrilateral 
is greater than the perimeter of A PCD. 
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Proposition 34. Unequal Angles of Triangles 

126. Theorem. If two sides of one triangle are equal 

respectively to two sides of another, hut the included 

angle of the first triangle is greater than the included 

angle of the second, then the third side of the first is 

greater than the third side of the second. 

Given the A ABC and XYZ with b = y, a = x, and ZOZ.Z. 

Prove that c^z. 

In the figure, the plan is to show that AP+PB=AP+PF> z. 

Proof. Place the A so that Z coincides with C, y lies 
along 6, and Ylies on the same side of AC as B. Post. 5 

Then since y = b,X lies on A, and since Z.Z<Z.C, x lies 
within Z.ACB. 

Let CP bisect Z YCB and draw FP. Posts. 8,1 
Then, since CP = CP, CF is given equal to CB, and Z FCB 

is bisected, we see that 

APYC is congruent to APBC. § 40 

.\PY=PB. §38 

Now AP + PF>AF. Post. 3 

.•.AP + PB>AF, Ax. 5 

AB>AY, or c>z. Ax. 10 and hence 
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Proposition 35. Unequal Sides of Triangles 

127. Theorem. If two sides of one triangle are equal 

respectively to two sides of another^ hut the third side of 

the first triangle is greater than the third side of the 

second, then the angle opposite the third side of the first 

is greater than the angle opposite the third side of 

the second. 

Given the A ABC and XYZ with b=y, a = x, and c>z. 

Prove that Z.OZ.Z. 

The plan is to show that other suppositions lead to an impossibility. 

Proof. Now ZC is either equal to ZZ, less than ZZ, 
or greater than Z.Z. 

If ZC = Z.Z, 

then A ABC is congruent to A XYZ, § 40 
because it then has two sides and the included Z equal respec¬ 

tively to two sides and the included Z. of A XYZ; 

and c = z. § 38 

And if _ ZC<ZZ, 

then c<z. 

Neither conclusion can be true, because c>z. 

.*. ZOZZ. 

§126 

Given 
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Exercises. Review 

BOOK I 

1. The point P within the A ABC is connected with 
A, B, C by the line segments x, y, z as 
shown in this’ figure. Then a + 6 is 
greater than the sum of what two line 
segments? What proposition proves 
your statement? 

A 
2. In Ex. 1, 6 + c is greater than 

what sum, and c + a is greater than what other sum? 

3. In the figure of Ex. 1 write three similar inequalities, 
beginning with x-{-y>c, add the three inequalities, and see 
what interesting result you can find relating to x + y A-^ 
and a + 6 + c. 

4. Draw a figure showing how many exterior angles a 
triangle may have and find their sum in degrees. 

5. In the angles of this figure how does x compare with 2/? 
State the reason. How does y compare with Zy and why ? 
Then how does x compare with z, and 
why? Write a theorem beginning, ”If 
from a point within a triangle lines are 
drawn to any two vertices, the angle 
formed by these lines is greater than... ^ ’. ^ 

6. Draw a rectilinear figure of four sides, and produce 
one of the sides to form an exterior angle. State your 
inference as to the relation of the size of this exterior 
angle to that of any of the nonadjacent interior angles. 
Discuss each possibility in full. 

7. The angles of a certain quadrilateral are so related 
that the second is twice the first, the third three times 
the first, and the fourth four times the first. How many 
degrees are there in each angle ? 
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IV. Attacking Originals 

128. General Suggestions. Various important suggestions 
for attacking those exercises which are often called origi¬ 
nals have already been given in connection with the exer¬ 
cises themselves. These will now be summarized: 

1. Draw the figure carefully, hut do not stop to construct 
it unless there seems to he some special need for doing so. 

A proof is often unnecessarily difficult simply because the figure 

is carelessly or incorrectly drawn. 

2. Draw as general figures as possible. 
For example, if you wish to prove a proposition about any triangle, 

do not take a triangle that is isosceles, right, or equilateral. 

3. After drawing the figure, state precisely what is given 
and precisely what is to he proved. 

Many of the difficulties of geometry come from failing to keep in 

mind precisely what is given and precisely what is to be proved. Draw 

no extra lines unless it is necessary. 

4. Now see if the proof is at once clear. If it is not, say: 
can prove this if I can prove that; I can prove that if I 

can prove.. and so on until you reach a proved propo¬ 
sition. Then reverse your reasoning. 

5. If two line segments are to he proved equal, try to prove 
them corresponding sides of congruent triangles, sides of 
an isosceles triangle, opposite sides of a parallelogram, or 
segments between parallels which cut equal segments from 
another transversal. 

6. If two angles are to he proved equal, try to prove them 
alternate or corresponding angles of parallel lines, corre¬ 
sponding angles of congruent triangles, base angles of an 
isosceles triangle, or opposite angles of a parallelogram. 

7. Try the indirect method (§ 56) as a last resort. 
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129. Synthetic Method. The method of proof in which 
known truths are put together in order to obtain a new 
truth is called the synthetic method. 

This method is used in proving most of the theorems of geometry. 

The proposition usually suggests some propositions already proved, 

and from these we proceed to the proof required. 

130. Analytic Method. The method of attack which asserts 

that a proposition under consideration is true if another 
proposition is true, and so on, step by step, until a known 
truth is reached, is called the analytic method. 

This is the method referred to in the fourth suggestion in § 128. It is 

the one which the student should use if he does not at once see the proof. 

131. Concurrent Lines. If two or more lines pass through 
the same point they are called concurrent lines. 

The word ''concurrent” is from two Latin words meaning "run¬ 

ning together.” Since two lines are generally concurrent, the term is 

commonly used in connection with three or more lines. 

132. Median. A line segment from any vertex of a tri¬ 
angle to the midpoint of the opposite side is called a median 
of the triangle. 

The term is occasionally employed with reference to a trapezoid 

to mean the line segment joining the midpoints of the two nonparallel 

sides, but it is rarely needed for this purpose. 

133. Trisect. To divide any geometric magnitude into 
three equal parts is to trisect it. 

Exercises. Review 

1. How many sides are there in a regular polygon each 
of whose angles is 175° ? 

2. If a side and an angle of one isosceles triangle are 
equal respectively to the corresponding side and angle of 
another isosceles triangle, the triangles are congruent. 
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3. Given the rt. l\ABC with Z.B = 2Z^, with M the mid¬ 
point of the hypotenuse AB, and with MN II to AC, as 
shown in the figure. Give the authority for each of the 
following statements: 

iX)BN=NC, (5)ZA = 30°. 

(2) MN is ± to BC. (6) Z R = 60°. 

(3) MB = MC. (7) MB = BC. 

(4) ZA -h Z^ = 90°. (8) AB^2 BC. 

4. The bisector of an exterior angle of an isosceles tri¬ 
angle, formed by producing one of the equal sides through 
the vertex, is parallel to the base. 

I can prove that AX is II to BC if I can prove x 

that A-and-are equal. I can prove these ^Z \ 

angles equal if I can prove that Z CA Y is twice N. 

Z-of the A ABC. 

5. If the line drawn from the vertex of a triangle to the 
midpoint of the base is equal to half the base, the angle 
at the vertex is a right angle. 

6. If through any point in the bisector of 
an angle a line is drawn to either side of the 
angle parallel to the other side, the triangle 
thus formed is isosceles. 

7. If one of the equal sides of an isosceles triangle is 
produced through the vertex by its own y 
length, the line joining the end of the side 
produced to the nearer end of the base is 
perpendicular to the base. 

can prove that ZYCB is a right angle if I can 

prove that it is equal to the sum of A-and-of 

ABCY. I can prove that it is equal to this sum if I 

can prove that p = Z-and q — Z-Now reverse this reasoning 

and write out the proof in full. 
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8. Through any point P on the line AB an intersecting 
line is drawn, and from any two points on this line equi¬ 
distant from P perpendiculars are drawn to AB or AB 
produced. Prove that these perpendiculars are equal. 

9. The bisectors of two supplementary adjacent angles 
are perpendicular to each other. C 

10. The lines joining the midpoints of 
the sides of a triangle divide the triangle 
into four congruent triangles. 

11. The bisectors of two vertical angles 
are in the same straight line. 

12. The bisectors of the two pairs of 
vertical angles formed by two intersecting 
lines are perpendicular to each other. 

13. If an angle is bisected, and if a line is 
drawn through the vertex perpendicular to 
the bisector, this line forms equal angles with 
the sides of the given angle. 

« 

14. The bisector of the angle at the vertex of an isos¬ 
celes triangle bisects the base and is perpendicular to 
the base. 

15. The perpendicular bisector of the 
base of an isosceles triangle is concurrent 
with the equal sides and bisects the angle 
at the vertex. 

16. If the perpendicular bisector of the base of a triangle 
passes through the vertex, the triangle is isosceles. 

17. Any point on the bisector of the angle at the ver¬ 
tex of an isosceles triangle is equidistant from the ends 
of the base. 

Take any point Pon AM'm the figure of Ex. 15 and show that PB=PC. 



§133 EQUAL LINES 97 

Exercises. Equal Lines 

1. In an isosceles triangle the medians drawn to the 
equal sides are equal. 

2. If the sides AB and AD of a quadri¬ 
lateral ABCD are equal, as shown in this 
figure, and if the diagonal AC bisects the 
angle at A, then BC = DC, 

3. If a line segment is terminated by two parallel lines, 
and if another line segment is drawn through the mid¬ 
point of the first and is terminated by the parallels, the 
second segment is bisected by the first. 

4. In a OABCD the line BQ bisects 
AD, and DP bisects BC, Prove that BQ t 
and DP trisect AC. ^ ^ 

5. If on the base AP of a A ABC any C 
point P is taken, and the lines AP, PP, 
BC, and CA are bisected by W, X, Y, and 
Z respectively, then XY = WZ, ^ ' w' P 'x" ^ 

6. In the square ABCD, if CD is bisected by Q, and if P 
and R are taken on AP so that AP = PP, 
then PQ = RQ, 

7. In this figure, if AC — BC, and if 
= PQ = CP = CP, then PS = QR, 

8. If from the vertex and the mid¬ 
points of the equal sides of an isosceles 
triangle lines are drawn perpendicular to the base, they 
divide the base into four equal parts. ^ ^ 

9. In this figure, if AP is II to DC, if jy ' ' vj 
Z C = Z A and if CP=DQ, then AP=BQ. j\ 

Produce AP and PC to intersect. Then how ^1^1- 

can it be shown that AD = BC? 
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Exercises. Equal Angles 

1. If the angles at the vertices of two isosceles tri¬ 
angles coincide, what can be said of the bases ? Prove it. 

2. The bisectors of the equal angles of an isosceles 
triangle form with the base another isosceles triangle. 

3.. In this figure, if AB = AC, and if CQ 
and BR bisect the AYCA and XBA re¬ 
spectively, the triangle formed by pro¬ 
ducing QC and RB is isosceles. 

4. The bisectors of any two angles 
of an equilateral triangle form an angle 
equal to any exterior angle. 

5. In which direction must the side 6 of a AABC be 
produced so as to intersect the bisector of 
the opposite exterior angle ? 

Consider the three cases ZA<ZC, ZA = ZC, 
ZA>ZC. " c B~ 

6. A line drawn parallel to the base of an isosceles 
triangle makes equal angles with the sides or the sides 
produced. 

7. If the bisector of an exterior angle 
of a triangle is parallel to the opposite side, \ 
the triangle is isosceles. 

8. If through the three vertices of an isosceles triangle 
lines are drawn parallel to the opposite sides, they form an 
isosceles triangle. 

9. In the figure here shown, if AD ~ BC, 
and Z A = Z5, then DC is II to AB. 

10. If a line drawn at right angles to 
AB, the base of an isosceles /\ABC, cuts AC at P and BC 
produced at Q, then A PCQ is isosceles. 
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Exercises. Congruence 

1. If two sides and the included angle of one parallelogram 
are equal respectively to two sides and the included angle of 
anotherj the parallelograms are congruent. 

This proposition is occasionally required in courses of study. In 
proving it the method of § 40 should be used. 

2. If in a A ABC a perpendicular is drawn from B to the 
bisector of Z^, meeting this bisector at X and AC or AC 
produced at U, then 

3. If through any point equidistant from two parallel 
lines two lines are drawn cutting the parallels, they inter¬ 
cept equal segments on these parallels. 

4. If, from the point where the bisector 
of an angle of a triangle meets the opposite 
side, lines are drawn parallel to each of the 
other sides, the segments of these lines cut 
off by the sides are equal. 

5. The diagonals of a square are perpendicular to each 
other and bisect the angles of the square. 

6. If two line segments bisect each other at right angles, 
any point on either segment is equidistant from the ends 
of the other segment. 

7. If either diagonal of a parallelogram bisects one of the 
angles, the sides of the parallelogram are 
all equal. 

8. On the sides of any /\ABC the equi¬ 
lateral ABPCj CQA, ARB are constructed. 
Prove that AP=CR =BQ, 

How can we prove that AABP is congruent to 

ARBC and that A ARC is congruent to A^J5Q? 
Does proving these facts establish the proposition? 



100 ATTACKING ORIGINALS BOOK I 

Exercises. Sums of Angles 

1. An exterior angle of an acute triangle or of a right 
triangle cannot be acute. 

2. If the sum of two angles of a triangle is equal to the 
third angle, the triangle is a right triangle. 

3. If the line joining any vertex of a triangle to the 
midpoint of the opposite side divides the triangle into two 
isosceles triangles, the original triangle is a right triangle. 

4. If the angles at the vertices of two isosceles tri¬ 
angles are supplements one of the other, the base angles 
of the one are complements of those of the other. 

5. If from the ends of the base AB 
of a l\ABC perpendiculars to the other 
two sides are drawn, meeting at P, then 
ZP is the supplement of ZC. 

C 

A^ rB 

Here AP is ± to AC and BP is ± to BC. Con¬ 
sider the case in which AP is ± to PC and BP is 
± toAC. 

6. The bisectors of two consecutive angles of a paral¬ 
lelogram are perpendicular to each other. 

7. If two sides of a quadrilateral are parallel, and the 
other two sides are equal but not parallel, the sums of 
the opposite angles are equal. 

8. If the exterior angles at B and C 
of any A APC are bisected by lines meet¬ 
ing at P, then ZP-f J ZA = a rt. Z. 

9. The opposite angles of the quadri¬ 
lateral formed by the bisectors of the interior angles of 
any quadrilateral are supplementary. 

10. The angles of a quadrilateral are x,2x,2 Xy and 3 x. 
How many degrees are there in each angle ? 
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Exercises. Inequalities 

1. In the AA5C the ZA is bisected by a line meeting 
BC at D, Prove that BA > BD, and that CA > CD. 

While less important than the suggestions given in §128, the fol¬ 
lowing will be found helpful: 

If one angle is to he proved greater than another, try to show that 

it is an exterior angle of a triangle, or an angle opposite the greater 
side of a triangle. 

If one line is to he proved greater than another, try to show that it 
is opposite the greater angle of a triangle. 

2. If AD is the longest side and BC is the shortest side 
of the quadrilateral ABCD, then Z.B>Z.D and ZC>ZA. 

3. If a line is drawn from the vertex A of a 
square ABCD so as to cut CD and to meet BC 
produced in P, then AP>DB. 

4. If the angle between two adjacent sides 
of a parallelogram is increased, the length of 
the sides remaining unchanged, the diagonal from the 
vertex of this angle is diminished. 

5. If a point P is taken within a A ABC such that 
CP = CB, as shown in this figure, then 
AB>AP. 

6. In a quadrilateral ABCD, if AD = BC 
and ZC < ZP, then AC > BD. 

7. In Ex. 6 prove that ZP>ZA. 

8. In a pentagon ABCDE it is given that ZA=ZP<ZC. 
Can you make any inference as to the equality or inequality 
of A C, BD, and BE ? Explain your answer. C 

9. In the A ABC, if AB>AC and if on 
AP and AC respectively BP is taken equal 
toCQ, then BQ>CP. A 
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Exercises. Triangles 

1. If two triangles have two sides of one equal respec¬ 
tively to two sides of the other, and the angles opposite 
two equal sides equal, the angles opposite the other two 
equal sides are either equal or supplementary, and if equal 
the two triangles are 
congruent. 

Using superposition, 

as in § 40, and placing 

the corresponding parts 

in the usual way, since 

ZB'= ZB, then B'A' lies along what line? Then A' lies on A or on 

some other point of BA, as D. If A' lies on A, are AA'B'C' and ABC 
congruent ? 

If A' lies on D, are AA'B'C and DBC congruent? 

Since CD = C'A'=CA, what is the relation of ZA to ZCDAl of 

ZCDA to ZBDCl of ZA to ZBDCl 
The triangles are congruent under what conditions with respect to 

A B and B' ? with respect to Z A and A' ? 

C' (f 

t\\ 

2. The midpoint of the hypotenuse of a right triangle 
is equidistant from the three vertices. 

We have to prove that AM=BM, that CM=BM, 
or that BM is half of a line segment that is equal 

to AC. 

This may be proved in several ways. Probably 

the simplest way with this figure is to prove certain 

triangles congruent. Another way would be to adapt the figure to § 83. 

3. If one acute angle of a right triangle is double the 
other, the hypotenuse is double the C 

shorter side. 
This is the familiar 30°-60° right triangle used 

by draftsmen. 

If AM=CM, then AM=:BM=CM, as in 

Ex. 2. The exercise then reduces to proving that ABCMis equilateral 

by proving that p = 2 a = 60° = g. 
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\J 

4. A median of a triangle is less than half the sum of 
the two adjacent sides. 

The student should attack this exercise by 

analysis, beginning as follows: 

Given CM, a median of the A-4RC. 

Prove that CM <^{BC+ CA). 

I can show that CM <^{BC+ CA) if I can 

show that 2 CM<BC+ CA. 
This suggests producing CM by its own 

length to P and drawing AP. 

Now CP=2 CM, 

and I can show that 2 CM< RC + CA 

if I can show that CP < BC + CA. 

But CP<AP-\-CA. Post. 3 

Hence CP<BC-{- CA 

if I can show that BC = AP, 

and this is true if AMBC is congruent to A MAP.** 

Now complete the analysis, then reverse the reasoning, and write 

out the proof in full. 

5. The diagonals of a rhombus form four right angles. 

6. The perpendiculars from two opposite vertices of a 
parallelogram drawn to the diagonal determined by the 
other vertices are equal. 

7. From the vertex A of a A AJ5C the line AD is drawn _L 
to BC. Consider the following statements and tell which 
ones are true in general. Then tell what other conditions 
must be given in order that the other statements shall 

be true: 
(1) BD = BC. 
(2) AD<i(AB-\-AC). 
(3) ZADB>ZB. 
(4) Either Z CD A < ZB or CD A <ZC. 



104 ATTACKING ORIGINALS BOOK I 

Exercises. Review 

1. Make a list of the numbered propositions in Book I, 
stating under each the previous propositions upon which 
it depends either directly or indirectly. 

2. Make another list of the numbered propositions, stat¬ 
ing under each the subsequent propositions in Book I which 
depend upon it. 

3. The line joining the midpoints of the nonparallel 
sides of a trapezoid passes through the ^ ^ 
midpoints of the two diagonals. 

How is PQ related to AB and DC? Why ? Since 

PQ bisects AD and BC, how does it divide AC and Ar————— 

RD? Why? 
B 

4. The lines joining the midpoints of 
the consecutive sides of any quadri¬ 
lateral form a parallelogram. 

How are PQ and SR related to AC? 

5. If the diagonals of a trapezoid are equal, the trapezoid 
is isosceles. P c 

Construct DP and CQ _L to AB. How is AAQC 

related to ABPDl Why? Then how is Z.QAC 

related to ZPBDl Then how is AABD related to ' 

ABAC’i ^ P Q ^ 

6. If, from the diagonal BD of a square ABCD, BP is cut 
off equal to BC, and PQ is constructed ± 
to BD, meeting the side CD at Q, then 
PD = PQ^QC. 

How is rt. ABQP related to rt. ARQC? Why? 

How many degrees are there in ZPDQ and in 

ZPQD‘i Then how is PD related to PQ? Why? 

7. Study Ex. 6 for the case of BP= i BD, and state and 
prove the resulting proposition. 
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Exercises. Applications 

1. In order to put in a brace which shall join two 
converging beams and make equal 
angles with them, a carpenter places 
two steel squares as here shown, so 
that OP= OQ, Prove that PQ makes 
equal angles with the beams. 

2. In what other way can you con¬ 
struct the line PQ in Ex. 1 so that it shall make equal 
angles with the beams? 

\ 

2;—— 

"J 

3. Wishing to measure the distance AX in this figure, 
a boy placed a pair of compasses C on top of a post A so 
that one leg was vertical and the ^ 
other pointed to X. He then turned 
the compasses around, keeping the 
angle fixed and the leg on the post 
vertical, and sighted along the other 
leg to Y. He then measured A Y and 
thus found the distance AX. Explain the principle involved. 

4. In the figure, MM' represents a mirror 
and PQ is JL to MM' at P. If a ray of light 
LP from a light L strikes the mirror at P, 
it is reflected to the eye at E in such a way 
that a = 6. The line LL' is ± to MM'y and 
EPL' is a straight line. Prove that x = y 
and that y = Zy and explain why the light 
appears to be at the same distance behind the mirror, at L', 
that it really is in front of it, at L. 

5. This figure represents a 'parallel ruler whioh is used for 
drawing parallel lines. Explain how 
it may be used, and state the theorem 
upon which its principle depends. 
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6. It is proved in physics that two forces acting on 
an object O have the same effect as a single force known 
as their resultant. If, to scale, we let 
OX represent a force of 300 lb. pulling 
in the direction OX, and OK a force of 
1501b. pulling in the direction OF, the 
resultant is represented by the diagonal OR of the O OXRY. 
By measuring OR and XXOR we can find the magnitude 
and the direction of the resultant. Using a protractor and 
ruler, find the magnitude and the direction of the resultant 
of OX and OF in the above case. 

7. Two forces at right angles to each other are exerted 
upon an object. One force is 500 lb. to the right and the 
other is 800 lb. upward. Find the resultant as in Ex. 6. 

8. Explain geometrically why this ^ 
telephone extends horizontally when it || 
is pulled out. State each proposition 
involved in the answer. What would I /|| 
be the effect on the direction if each bar extending || 
from the top downward to the right were longer than Ml 
each bar extending downward to the left ? ^ 

9. To ascertain the height of a tree or of the school 
building, fold a piece of paper so 
as to make an angle of 45°, or take 
a draftsman’s 45-degree triangle; 
then walk back from the tree until 
the top is.seen at an angle of 45° 
with the ground, being careful to 
hold the base of the triangle level. In 
the figure prove that AB=ACy and 
hence that CX— AB-\-BYy where BY is the height of the 
observer’s eye above the ground. 
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10. This figure represents four hinged rods with AB=DC 
and AD—BC, As the angles change, do6s the figure con¬ 
tinue to be a parallelogram? Upon n_ n 
what theorem does this depend? ^ 

11. In the figure of Ex. 10, if Z A is 
125°, how large are A By C, and D^. ^ 

12. Explain how this instrument, in which the joint X 
can be moved along the rod OX, 
is used to bisect an angle with 
the sides of which the arms OA 
and OB can be made to coin¬ 
cide. State the propositions on 
which the explanation depends. 

On account of the joints and other 

mechanical features of such an instrument this method of bisection 
is not so nearly accurate as the construction given in § 103. 

13. The simple bridge construction here shown is occa¬ 
sionally used. The beams PA and P'A rest on the per¬ 
pendicular support OA in the center 
of the bridge. The rods OP and OP' 
are fastened at O, P, and P'. Show 
by means of the congruence of cer¬ 
tain triangles that the point O always remains directly 
beneath A. Why will the bridge support a weight? 

14. In laying out a tennis court it is desired to run a line 
through a point P II to AP. This is a convenient method: 
Stretch a tape from P to any point Q P . \S 
on AP; then with Q as center swing / 
the tape to cut AP at R; with P and R 
as centers and the same radius as before ^—l-1-^ 
mark arcs intersecting at S, and draw ^ ^ 
a line through P and P. Prove that PS is the line required. 
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15. In laying out a tennis court, another way of running 
a line through a point P II to AB is as follows: A line is 
drawn from P to Q, any point on AB, 
and the midpoint M of PQ is found 
with a tape. Then from another point 
X on AB the tape is stretched through ^_ 
M, and a point Y is found such that ^ ^ 
MY = XM. Then CD, drawn through Y and P, is II to AB. 

9M 

16. A board 8 in. wide is to be sawed into five strips of 
equal width. In order to draw the lines for sawing, a 
carpenter lays his steel square as 
here shown, placing the corner on 
one edge and the 10-inch mark 
on the other, and marks the board 
at the divisions 2, 4, 6, 8 on the 
square. He then moves the square 
along the board and repeats the 
process. Prove that lines drawn through the corresponding 
marks satisfy the requirements. 

17. A dentist's working table, in which bar x is fastened 
to bar y at right angles and table t is 
fixed parallel to bar x, is attached to 
a vertical wall W as shown in this 
figure. State in full the geometric proof 
that table t is always horizontal. 

18. This figure represents six hinged rods in which all 
the angles are right angles and P, Q, 
R, S bisect AB, BC, CD, DA respectively. 
Prove that the figure can be pulled into 
different shapes, the angles then ceas¬ 
ing to be right angles, but that all the "" ^ ^ 
quadrilaterals will still continue to remain parallelograms. 



BOOK II 

THE CIRCLE 

I. Fundamental Theorems 

134. Properties of a Circle. From the definitions in § 22 
and from a study of the figure we see that a circle has 
certain properties, among which are the following: 

1. All radii of the same circle or of equal circles are equal, 
2. All circles with equal radii are equal. 
3. All diameters of the same circle or of equal circles are 

equal. 
A. If a straight line intersects a circle in one point, it 

intersects it in two points and only two. 
5. If two circles intersect in one point, they intersect in 

two points and only two. 
6. A point is within, on, or outside a circle according as 

its distance from the center is less than, equal to, or greater 
than a radius. 

7. A diameter bisects the circle and the surface inclosed, 
and conversely. ■ 

These statements may be taken as postulates and referred to as 

properties of a circle, although ^they are capable of proof. 

135. Central Angle. If the vertex of an angle is at the 
center of a circle and the sides are radii of the circle, the 
angle is called a central angle. 

An angle is said to intercept any arc cut off by its sides, 
and the arc is said to subtend the angle. Preferably, we 
speak of the arc as having a central angle, and conversely. 

109 
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Proposition 1. Equal Angles have Equal Arcs 

136. Theorem. If two central angles of the same circle 

or of equal circles are equaly the angles have equal arcs; 

and if two central angles are unequal, the greater angle 

has the greater arc. 

Given the equal © 0 and O' with central ZA05= central 

Z.A'0'B^ and with central ZAOC> central ZA'0'5'. 

Prove that arc AB = arc A'B' and that arc AC > arc A'B', 
The best plan is to place one figure on the other. 

Proof. Place O O on O O' so that /LAOB coincides with 
its equal, Z.A'0'B', Post. 5 

In the case of the same O simply swing one Z about O. 

Then A lies on A' and B on B\ § 134,1 

.■. arc AB coincides with arc A-B\ § 21 
because all points of each are equidistant from O'. 

Since /-AOC>/LA'O'B' ^xi6. Z.AOB =/.A'0'B\ Given 

we have ZAOOZAOB, Ax. 5 

.\OC lies outside ZAOB, § 6 

and hence arc AC > arc AB. Ax. 10 

But arc AB= arc A 'BProved 

and hence arc AC> arc A'BAx. 5 
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Proposition 2. Equal Arcs have Equal Angles 

137. Theorem. If two arcs of the same circle or of 

equal circles are equal, the arcs have equal central 
angles; and if two minor arcs are unequal, the greater 
arc has the greater central angle. 

Given the equal © O and O' with arc AB = sltcA'B' , minor 
arc AC > minor arc A'B', and the central AAOB, A'O’B', AOC, 

Prove that AAOB=Z.A'O'B' and that AAOOAA'O'B'. 
The best plan, as in § 136, is that of superposition. 

Proof. Using the figure of § 136, place O O on O O' so 
that OA shall lie on its equal, O'A', and the arc AB on its 
equal, the arc A'B'. Post. 5 

Then OB coincides with O'B'. Post. 1 
ZAOB^ZA'O'B', §10 

thus proving the first part of the theorem. 

Since arc AC> arc A'B’, Given 

we have arc AO arc AB, Ax. 5 
because arc A'B' is given equal to arc AB; ' 

and hence OB lies within A AOC, 
because otherwise we could not have arc AO arc AB. 

ZAOOZAOB, Ax. 10 

and hence ZAOOZA'O’B', Ax. 5 

thus proving the second part of the theorem. 
This proposition is the converse (§ 70) of the one in § 136. 

138. Chord. A straight line that has its ends 
on a circle is called a chord of the circle. 

A chord is said to subtend the arcs that it cuts from 
a circle, but it is more simple to speak of the chord of 
the arc. Unless the contrary is stated, the chord is to 
be considered as belonging to the minor arc. 
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Proposition 3. Equal Arcs have Equal Chords 

139. Theorem. If two arcs of the same circle or of 
equal circles are equal, the arcs have equal chords; and 
if two minor arcs are unequal, the greater arc has the 
greater chord. 

Given the equal © 0 and O' with arc AB — arc A'B' and with 
minor arc AX'> minor arc A'B'. 

Prove that chord AB = chord A'B' 
and that chord AX > chord A’B', 

The plan is to show that two A are congruent and that the greater 

chord is opposite the greater Z of a A. 

Proof. Draw radii to A, B, X, A', B', Post. 1 

Since 0A = 0'A' and 0B=0'B', § 134,1 

and ZA0B = ^A'0'B', § 137 

we see that /AOAB is congruent to /SO’A'B', § 40 

and hence chord AR= chord A'R', §38 

thus proving the first part of the theorem. 
Then in AO AX and O'A'B' we have 

0A=0'A' and OX= O'B', § 134,1 

while ZA0X>Za'0'B', §137 

.*. chord AX> chord A'B', § 126 

thus proving the second part of the theorem. 
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Proposition 4. Equal Chords have Equal Arcs 

140. Theorem. If two chords of the same circle or of 
equal circles are equal, the chords have equal arcs; and 
if two chords are unequal, the greater chord has the 
greater minor arc. 

Given the equal © 0 and O' with chord AB = chord A'B' and 
with chord AX'> chord A'B'. 

Prove that arc AB = arc A'B' 

and that arc AX > arc A'B\ 
The plan is to show that the equal chords have equal central A and 

that the centralZof the greater chord is opposite the greater side of a A. 

Proof. Draw radii to A, B, X, A', B'. Post. 1 

Since 0A = 0'A'and 0B=0’B', § 134,1 

and chord AB= chord A'B', Given 

we see that A GAB is congruent to AO'A§ 47 
AA0B = Z.A'0'B\ §38 

and hence arc AB — arc A'B\ §136 

Then in AO AX and O'A'B' we have 

0A=^0'A'and 0X=0'B', §134,1 

while chord AX> chord A'B', Given 
ZA0X>ZA'0'B', §127 

arc AX > arc A§136 and 
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Proposition 5. Diameter Perpendicular to a Chord 

141. Theorem. If a diameter is perpendicular to a 

chord, it bisects the chord and its two arcs. 

Given the O 0 with a diameter PQ _L to a chord AB at M, 

Prove that AM = BM, 

that arc AQ= arc BQ, 

and that arc AP — arc BP, 
The plan is to prove first that two A are congruent. 

Proof. Draw radii to A and B, Post. 1 

Since PQ is given _L to AB, A AMO and BMO are rt. A. § 20 

Then since OM=OM, Iden. 

and OA = OB, § 134,1 

A AMO is congruent to A BMO, §71 

AM = BM. §38 
Likewise, ZAOQ=^ZBOQ, §38 

and ZPOA=^ZPOB; Post. 9 
hence arcAQ = arc BQ, and arc AP = arc BP. §136 

142. Corollary. If a diameter bisects a chord which is not 
itself a diameter, it is perpendicular to the chord. 

Show that § 47 applies. 
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143. Corollary. The perpendicular bisector of a chord 
passes through the center of the circle and bisects the arcs 
of the chord. 

How many _L bisectors of the chord are possible ? Then with what 
line must the ± bisector coincide (§ 141) ? Complete the proof. 

Exercises. Chords and Arcs 

1. The greater of two unequal major arcs has the 
shorter chord. 

Prove that this follows from § 139. 

2. The greater of two unequal chords has the shorter 
major arc. 

Prove that this follows from § 140. 

3. If AABC is an equilateral triangle, find 
the number of degrees in the central AAOB, 
BOC, COA and in the arcs AB, BCy CA, State 
the reason in each case. 

4. If a radius bisects an arc it bisects the 
chord of that arc. 

5. If a radius bisects a chord which is not 
a diameter, it bisects its central angle. 

6. If a diameter bisects a chord which is not itself a 
diameter it bisects the two arcs of the chord. 

7. The line bisecting the two arcs which have the same 
chord is the perpendicular bisector of the chord. 

8. If a wheel has eight spokes, spaced 
equally, how many degrees are there in each 
of the eight small arcs thus formed? State 
the reason involved in the answer. 

9. The chord of half an arc is greater than half the 
chord of the whole arc. 
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144. Tangent. An unlimited straight line which touches 
a circle at only one point is said to be tangent to the circle. 
Such a line is called a tangent to the circle. 

For example, in this figure t is tangent to the 

circle at the point P. 

The word ''tangent” is from the Latin word 

tangere, to touch. Hence we may say that a line 

touches a circle instead of saying that it is tangent 

to the circle. If a line is tangent to a circle, the circle is also said to 

be tangent to the line. 

The point at which a tangent touches the circle is called 
the point of tangency or point of contact. 

Although a tangent is unlimited in length, when we 
speak of a tangent from an external point 
to a circle we mean the segment between 
the point and the circle. 

For example, the tangent from P to the circle 

here shown is the segment PT. 

145. Tangent Circles. Two circles which are both tangent 
to the same line at the same point are called tangent circles. 

Circles are said to be tangent externally or tangent 
internally according as they lie on opposite sides or on the 
same side of the tangent line. 

For example, in the first of these 

figures the circles are tangent exter¬ 

nally, and in the second figure they are 

tangent internally. 

The point of contact of two tangent circles with the 
tangent line is called the point of contact or point of tan¬ 
gency of the circles. 

In the first of the two figures just above, the line t is 
called a common internal tangent, and in the second a com¬ 
mon external tangent. 
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Proposition 6. Condition of Tangency 

146. Theorem. If a line is perpendicular to a radius 

at its end on the circle, the line is tangent to the circle. 

Given the G O with the line XY _L to the radius OP at P. 

Prove that XY is tangent to the O. 

The plan is to show that all points on XY except P are outside the O. 

Proof. Let A be any point on AF except P,. and draw OA, 

Then OA > OP, § 122 

and hence A is outside the O. § 134, 6 

Then every point on XY except P lies outside the O, 

and hence XY is tangent to the O. § 144 

147. Corollary. If a line is tangent to a circle, it is perpen¬ 
dicular to the radius drawn to the point of contact. 

Since every point on XY except P is outside the O, then OP is the 

shortest line segment from O to XY. Hence Z OPX is a rt. Z (§ 123). 

148. Corollary. If a line is perpendicular to a tangent at 
the point of contact, it passes through the 
center of the circle. 

A radius OT is _L to a tangent at T’(§ 147). If a ±, 

say TS, constructed to XY at T, did not coincide with 

this radius, we should have two J§ to XY at the same 

point T, which is impossible (Post. 10). 
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Proposition 7. Lengths of Tangents 

149. Theorem. The tangents to a circle from an exter¬ 

nal point are equal and make equal angles with the line 

joining the point to the center. 

Given PA and PR, tangents from an external point P to the 
O 0, and also given PO, the line joining P to O. 

Prove that PA=PB 

and that Z. OP A = Z OPB. 
The plan is to prove that two A are congruent. 

Proof. Draw the radii OA, OB, Post. 1 

Now PA is _L to OAy 

and PB is ± to OR, § 147 
because if a line is tangent to a O, it is _L to the radius 

drawn to the point of contact. 

.*. AAPO and BPO are rt. A. § 20 

Then in AAPO and BPO we have 

PO^PO, Iden. 

and OA = OB, §134,1 

.*. AAPO is congruent to A BPO, § 71 
Hence PA—PB 

and ZOPA=ZOPB, §38 



§149 REVIEW EXERCISES 119 

Exercises. Review 

1. A perpendicular from the center of a circle to a tangent 
passes through the point of contact, ^ 

2. In this circle the chords AM and BM are 
equal. Prove that M bisects the arc AB and 
that the radius OM bisects the chord AB, 

3. If P is a point on a circle such that it is 
equidistant from two radii OA and OP, then P 
bisects the arc AB, 

4. If five points A, P, C, P, E are so placed 
on a circle that AB, BC, CD, DE are equal 
chords, then AC, BD, CE are equal chords, and 
AD and BE are also equal chords. q 

5. If tangents to a circle at the points 
A, B, C meet in P and Q, as here shown, C 
then AP-\-QC = PQ, 

Apply § 149 twice. 

6. If a quadrilateral has each side 
tangent to a circle, the sum of one pair 
of opposite sides equals the sum of the 
other pair. 

In this figure show that SP + QR = PQ + RS. 
Apply § 149 four times. 

7. The hexagon here shown has each 
side tangent to the circle. Prove that 

AB+CD + EF = BC + EE-\-FA, 

8. If a quadrilateral has each side tan¬ 
gent to a circle and if the vertices are 
joined to the center, the sum of the angles at the center 
opposite any two opposite sides is equal to a straight angle. 

D 
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Proposition 8. Equal Chords 

150. Theorem. Equal chords of the same circle or of 

equal circles are equidistant from the center. 

Given the O 0 with chord AB = chord CD. 

Prove that AB and CD are equidistant from O. 

The plan is to prove that two A are congruent. 

Proof. Let OP be _L to AB and let 00 be _L to CD. § 116 

Draw OA and OD. Post. 1 

Then A CAP and ODQ are rt. A § 20 

with AP= iAB and DQ = iCD. § 141 

Since AB=CD, Given 

then AP=DQ. Ax. 4 

Also, OA = OD. §134,1 

.*. A CAP is congruent to A ODQ, § 71 

and hence OP=OQ; §38 

that is, AB and CD are equidistant from 0. § 73 
Although equal © are mentioned here and in several subsequent 

theorems, it is evidently necessary to consider only a single O. 

151. Corollary. Chords that are equidistant from the center 
of a circle are equal. 

If OP = OQ, then, since OA = OD, we have two congruent rt. A (§ 71). 

Then AP=DQ (§ 38), and hence AB = CD (§ 141 and Ax. 3). 



§§ 150-152 EQUAL AND UNEQUAL CHORDS 121 

Proposition 9. Unequal Chords 

152. Theorem. The less of two chords of the same circle 

or of equal circles is more remote from the center. 

Given the O 0 with chord CD < chord AB. 

Prove that CD is more remote from 0 than AB. 

In the figure the plan is to prove that OR > OP and that OS > OR. 

Proof. Since CD<AB, Given 

we have arc CD < arc AB. § 140 

Suppose that arc AX = arc CD, and draw AX. Post. 1 

Then AX=CD. §139 

Let the _k from O upon AB, CD, AX be OP, OQ, OS 
respectively, and designate the intersection of OS and 

AB as i?. § 116 

Then OS = OQ. §150 
Equal chords • • • are equidistant from the center. 

Also, OR>OP. §122 
The J_ is the shortest line • • • from a given external point. 

But OS>OR, Ax. 10 

so that OS>OP, Ax. 9 

and hence OQ>OP; Ax. 5 

that is, CD is more remote from 0 than AB. § 73 
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Proposition 10. Chords Unequally Distant 

153. Theorem. If two chords of the same circle or of 

equal circles are unequally distant from the center, the 

chord more remote is the shorter. 

Given the O 0 with two chords, AB and CD, such that CD 
is more remote from 0. 

Prove that CD<AB. 

The plan is to show that any other possibility violates § 152 or § 150. 

Proof. Now CD must be greater than AB, equal to AB, 

or less than AB, 

If CD>AB, 

then AB is more remote from 0. §152 

If 

ft? 

II 

8 

then AB and CD are equidistant from 0. §150 

But CD is more remote from 0, Given 

.*. CD<AB, 

This proposition is the converse of the one in § 152. The student has 
probably concluded that where we have only three possible conditions, 
as we do in §§ 150 and 152, the converses are always true. 

154. Corollary. A diameter of a circle is greater than any 
other chord. 

For no other chord can be as near the center. 
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Proposition 11. Parallels and Arcs 

155. Theorem. If two parallel lines intersect a circle 

or are tangent to it, they intercept equal arcs. 

1. Given a O with AR, a tangent atP, II to a chord CD, 

Prove that arc CP = arc DP, 

The plan is to show first that certain arcs are equal by § 141. 

Proof. Let PP' be JL to AB at P, Post. 10 

Then PP' is a diameter (§ 148), and is also J_ to CD (§ 63). 

Hence arc CP = arc DP, § 141 

2. Given a O with AB and CD, two II chords. 

Prove that arc AC = arc BD, 

Proof. Let XY, a tangent at Q, be II to CD. § 52 

Then XFislltoAP. §58 

. *. arc AQ = arc BQ, and arc CQ = arc DQ. Case 1 

Hence arc AC = arc BD, Ax. 2 

3. Given a O with ARB and CSD, two II tangents. 

Prove that arc RXS = arc R YS, 

Proof. Let chord XY be II to AB. § 52 

Now complete the proof by § 58, Case 1 (above), and Ax. 1. 
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156. Inscribed and Circumscribed Polygons. If the sides of 

a polygon are all chords of a circle, the polygon is said to 

be inscribed in the circle; if the sides are all tangents, the 

polygon is said to be circumscribed about the circle. 

Inscribed Polygon Circumscribed Polygon 

The circle is said to be circumscribed about the inscribed 

polygon and to be inscribed in the circumscribed polygon. 

157. Concentric Circles.. Two circles which have the same 
center are said to be concentric. 

For example, the two circles in the first figure below are concentric. 

158. Line of Centers. The line determined by the centers 
of two circles is called the line of centers. 

centers of the © O and O'. 

159. Secant. A straight line which intersects a circle is 
called a secant. 

In this figure the line AB is a secant. 
It is readily inferred from the figure that a 

secant can intersect a circle in only two points, 
and the student should notice that this is further 
evidence of the truth of the statement given in 
§ 134, 4. This property of a circle will be stated and proved later as a 
corollary (§ 192); but until then § 134,4, may be assumed as a postulate. 
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Exercises. Review 

1. If an equilateral triangle and a square are inscribed 
in a circle, the sides of the square are more remote from 
the center than the sides of the triangle. ^ 

2. The shortest chord that can be drawn 
through a given point within a circle is 
the one which is perpendicular to the diam¬ 
eter through the point. 

Show that any other chord CD, through P, is nearer O than is AB. 

3. In this figure, if the diameter CD bisects 
the arc AB, then /LCBA=^CAB. 

What kind of triangle is A^BC? 

D 

4. In two concentric circles it is given 
that MN is a diameter of the larger circle 
and PQ an intersecting diameter of the 
smaller circle. Prove that P, M, Q, and N are the vertices 
of a parallelogram. q 

5. In this figure arc AB'> arc BC and OP 

and OQ are perpendiculars from the center 
upon AB and BC respectively. Prove that A 

ZQPOZPQO, 

6. Three equal chords AB, BC, CD are 
taken end to end, and the radii OA, OB, OC, 

OD are drawn. Prove that A.AOC — Z.BOD 

and state any other pairs of equal angles. 

7. All equal chords of a circle are tangent 
to a concentric circle. 

8. If a number of equal chords are drawn 
in this circle, the figure gives the impres¬ 
sion of a second circle inside the first and 
concentric with it. Explain the reason. 
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9. If two circles are concentric, chords of the larger 
circle that are tangents to the smaller are equal. 

10. Two equal circles cut two equal chords from a secant 
drawn parallel to the line of centers. 

11. If two intersecting chords make equal 
angles with the diameter through their point 
of intersection, the chords are equal. 

12. If two equal chords intersect, the seg¬ 
ments of one are equal respectively to the 
segments of the other. 

13. In this figure, XY is a diameter ± to 
the II chords AB and CD, arc BD = 40°, and 
arc DX = 50°. How many degrees are there 
in the arcs AC, CA, AY, and YBl 

14. In this figure, XY is tangent to the 
circle at P, the chord AB is ± to the diam¬ 
eter PQ, and the arc AQ=125°. How many 
degrees are there in arc PP? 

15. If from any number of points on the 
larger of two concentric circles tangents 
are drawn to the smaller circle, these tangents are equal. 

16. In this figure, AP and CQ are parallel 
tangents which are cut by a third tangent 
QP. If O is the center of the circle, prove 
that ZPOQ = 90°. 

What is the relation of the ^QPA and PQC? 

How do OP and OQ divide these angles ? Now consider the angles 
of the APQO. 

17. If AP is a diameter of a circle with center O, and if 
PC is any chord from P, then a radius OP which is II to PC 
and lies within Z.CBA bisects the arc CA. 
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Proposition 12. Tangent Circles 

160. Theorem. If two circles are tangent to each other, 

the line of centers passes through the point of contact. 

Given the © 0 and O' tangent at P and the line of centers 00', 

Prove that P is on the line of centers. 
The plan is to show that 00' is ± to the common tangent, which is 

left for the student to prove. Although §§ 160 and 161 are not required 

in standard courses, they have many interesting applications. 

Proposition 13. Line of Centers 

161. Theorem. If two circles intersect^ the line of cen¬ 
ters is the perpendicular bisector of their common chord. 

The proof of this proposition is left for the student. 
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Exercises. Review 

Describe the relative position of two circles if the line 
segment joining the centers is related to the radii as stated 
in Exs. 1-3, and illustrate each case by a figure: 

1. The segment is greater than the sum of the radii. 

2. The segment is equal to the sum of the radii. 

3. The segment is less than the sum but greater than 
the difference between the radii. 

4. If two circles are tangent externally, the tangents 
to them from any point of the common internal tangent 
are equal. 

5. If two circles tangent externally are tangent to a line 
AB at A and B, their common internal tangent bisects AB, 

6. The line drawn from the center of a circle to the 
point of intersection of two tangents is the perpendicular 
bisector of the chord which joins the points of contact. 

7. The diameters of two circles are 8.15 in. and 6.22 in. 
respectively. Find the distance between the centers of the 
circles if they are tangent externally. Find the distance 
between the centers of the circles if they are tangent 
internally. 

8. Three circles of diameters 2.4 in., 1.8 in., and 2.1 in. 
are tangent externally, each to the other two. Find the 
perimeter of the triangle formed by joining the centers. 

9. If two circles tangent externally at P are tangent to 
a line ARat A and B, then ABPA — 90°. 

10. If two radii of a circle, at right angles to each 
other, when produced are cut at A and 5 by a tangent to 
the circle, the other tangents from A and B are parallel 
to each other. 



§§ 162-165 MEASURES 129 

162. Measure. The number of times a quantity contains 
a unit of the same kind is called the numerical measure of 
the quantity, or simply its measure. 

For example, the numerical measure of the length of a room in feet 

is the number of times the length contains the unit of length, 1 ft. 

163. Commensurable Magnitudes. Two magnitudes of the 
same kind which can both be expressed as integers in terms 
of a common unit are called commensurable magnitudes. 

For example, 2J: sq, ft. and 3 sq. ft. are commensurable, for 1 sq. ft. 

is contained 9 times in the first and 12 times in the second. In this case 

the common unit taken was ^ sq. ft; but any unit fraction, say of 

this unit is also a common unit. 

Any common unit used in measuring two or more com¬ 
mensurable magnitudes is called a common measure of the 
magnitudes. Each of the magnitudes is called a multiple 
of any common measure. 

164. Incommensurable Magnitudes. Two magnitudes of 
the same kind which cannot both be expressed in integers 
in terms of a common unit are called incommensurable 
magnitudes. 

The diagonal and the side of a square are, as we shall later prove, 

incommensurable lines. We also have incommensurable numbers such 

as 2 and Vs, for there is no number which is contained in both of these 

numbers without a remainder. 

165. Ratio. The quotient of the numerical measures of 
two magnitudes expressed in terms of a common unit is 
called the ratio of the magnitudes. 

Thus, if a room is 20 ft. by 35 ft., the ratio of the width to the length 

is 20 ft. -4- 35 ft., or | %, which reduces to |. Here the common unit is 1 ft. 

The ratio of a to 6 is written or a: 6, as in arithmetic and algebra. 
0 

While we shall ordinarily use the first form, the form a: 6 is some¬ 

times convenient. Thus the ratio of 20° to 30°, which is §g, or §, may 

also be written 2:3. 
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166. Incommensurable Ratio. The ratio of two incommen¬ 
surable magnitudes is called an incommensurable ratio. 

Although the exact value of such a ratio cannot be 
expressed by an integer, a common fraction, or a decimal 
fraction of a limited number of places, it may be expressed 
approximately. For example, \/2 = 1.41421356 • • •, which 
is greater than 1.414213 but less than 1.414214, and there¬ 
fore differs from either by less than 0.000001. 

By carrying the decimal further an approximate value 
may be found that will differ from the ratio by less than a 
billionth, a trillionth, or any, other assigned value. That is, 
for practical purposes all ratios are commensurable. 

For the present we shall consider only the ratios of commensur¬ 

able geometric magnitudes. For the incommensurable cases see the 

optional work in §§ 515-517. 

167. Segment. A portion of a plane bounded by an arc 
of a circle and its chord is called a segment of the circle. 

In the figure of § 168 the part above the chord AB is a minor seg¬ 

ment of the circle, and the part below is a major segment. 

168. Inscribed Angle. An angle with its vertex on a circle 
and with chords for its arms is called an 
inscribed angle. 

In the figure here shown, i is an inscribed angle. 

An angle is said to be inscribed in a 
segment if its vertex is on the arc of the 
segment and its arms pass through the ends of the arc. 

In the figure above, i is inscribed in the minor segment. 

169. Sector. A portion of a plane bounded by two radii 
and the arc of the circle which is cut off 
by the radii is called a sector. 

In this figure the shaded portion AOB is a sector of 

the circle. If AB is a quarter of the circle, it and its 

sector are each called a quadrant. 
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Proposition 14. Central Angles 

170. Theorem. Two central angles of the same circle 

or of equal circles have the same ratio as their arcs. 

Given the O O with the central AAOB and ^OC. 

Prove that AAOB __ arc AB 
A BOG arcBC 

The plan is to assume that the A and their arcs are commensurable. 

Proof. Suppose that some AAOM is contained 3 times 
m AAOB and 5 times in A BOG, § 163 

AAOB AAOM _S 
ABOG 5: AAOM b 

Construct A equal to AAOM as shown. 

Then . the arcs of these A are equal, 

and 

Hence 

arc AB _ 3 • arc AM _ 3 
dire BO 5* arc AM 5 

AAOB _SLYC AB 
ABOG Sire BO' 

§165 

§106 

§136 

§165 

Ax. 5 

The proof is the same if any other numbers are used. 

171. Angle and Arc Measure. Since the central angles 
contain the same number of units as their arcs, the 
angles and their arcs have the same numerical measure. 
Briefly stated, a central angle is measured by its arc. 
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Proposition 15. Inscribed Angle 

172. Theorem. An inscribed angle is measured by half 

its intercepted arc. 

Given the O 0 with the inscribed intercepting arc AC. 

Prove that A Bis measured by i arc AC. 

In the first figure the plan is to show that ZB = ^ ZAOC. 

Proof. 1. If O is on AB, draw OC. Post. 1 

Then since OC = OB, § 134,1 

we have zlB = ZlC. ' §42 

Then since ZlB-\-ZlC = Z.AOC, §66 

we have 2zlB = ZlAOC; Ax. 5 

whence ZB=^ ZAOC. Ax. 4 

Since Z A OC is measured by arc AC, § 171 

then ^ Z AOC is measured by J arc AC. Ax. 4 

.‘. ZR is measured by I arc AC. Ax. 5 

2. If O lies within ZB, draw the diameter BD. Post. 1 

Then ZABD is measured by I arc AD, 

and ZDBC is measured by I arc DC. Case 1 

.*. ZABD-\-ZDBC is measured by ^ arc (AD + DC); Ax. 1 

that is, ZD is measured by o arc AC. Ax. 10 
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3. If O lies outside /LB, draw the diameter BD. Post. 1 

Then Z.DBC is measured by ^ arc DC, 

and is measured by 2 arc DA. Case 1 

.'. /LDBC — /LDBA is measured by 2 arc {DC — DA)', Ax. 2 

that is, ZD is measured by I arc AC. Ax. 5 

It should be observed that the expression ''ZD is measured by 

I arc AC” is only a shortened form for the expression " The measure 

of ZD = the measure of ^ arc AC. ” Furthermore, " measure of ^ arc 

AC’’ is equivalent to " | the measure of arc AC,” and hence the first 

expression is really an equation and the axioms of equations may be 

applied. 

173. Corollary. An angle inscribed in a semicircle is a 

right angle. 4^—^ 

Show that Z A is half the central st. ZBOC. 
Instead of proving the corollary in this way, it may --—-^C 

be shown that Z A is measured by half of what arc • V ^ / 

It is then what kind of Z ? - 

174. Corollary. An angle inscribed in a segment greater 

than a semicircle is an acute angle, and an angle inscribed 

in a segment less than a semicircle is an 

obtuse angle. 

In giving the proof draw the radii OC, OD. Then 

show that ZA is half the Z COD. Finally, show that 

ZB is half the reflex ZDOC {% 16), which is greater 

than a st. Z. 

175. Corollary. Angles inscribed in the 

same segment or in equal segments are equal. 

Show that each of the ZA, B, C is half the same 

central Z. 

176. Corollary. If a quadrilateral is in¬ 

scribed in a circle, the opposite angles are supplementary. 

Consider Z A and D in the figure of § 174. Their sum is measured by 

half the sum of what two arcs? Give the proof in full. 
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Exercises. Review 

1. The shorter segment of the diameter through a given 
point within a circle is the shortest line 
that can be drawn from that point to the 
circle. 

Let P be the given point. Prove that PA is shorter 

than any other line PX from P to the circle. 

2. The longer segment of the diameter through a given 
point within a circle is the longest line that can be drawn 
from that point to the circle. 

3. The diameter of the circle in¬ 
scribed in a right triangle is equal to 
the difference between the hypotenuse 
and the sum of the other two sides 

4. A line from a given point outside a circle passing 
through the center contains the short¬ 
est line segment that can be drawn 
from that point to the circle. 

Let P be the point and O the center. How 

does PC + CO compare with PO ? 

5. Through one of the points of inter¬ 
section of two circles a diameter of each 
circle is drawn. Prove that the line which 
joins the ends of the diameters passes 
through the other point of intersection. 

6. The captain of a ship sailing along 
the course AB is informed by his chart 
that the horizontal danger angle (/IL'XL) 
for a reef lying off the coast near two 
lighthouses L and V is 30°. How can the 
captain avoid the reef and where should 
he change his course ? 
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Proposition 16. Tangent and Chord 

177. Theorem. An angle formed by a tangent and a 
chord drawn from the point of contact is measured by 
half its intercepted arc. 

Given a O with the tangent MN, through P, and the chord 
PQ making the x. 

Prove that x is measured by arc PSQ. 

In the figure the plan is to show that x = y, that the arcs QSP and 

PR are equal, and then to apply § 172. 

Proof. Suppose that chord QR is II to MAT, thus forming 

Ay in the figure. § 52 

Then x = y, § 61 

and arc PSQ = arc PR. § 155 

Also, y is measured by I arc PR. § 172 

a; is measured by i arc PSQ. Ax. 5 

It may be shown that ZNPQ in the above figure is measured by 

I arc PRQ. This is done by showing that the st. ZNPM is measured 

by half the entire O, and that if we subtract x and h arc QSP, we 

have left ZNPQ and \ arc PRQ. 
It is instructive to consider the arc by which x is measured as 

PQ swings about P, first when PQ is ± to MN and then when PQ lies 

along PN so that a; is a st. Z. 
PS 
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Proposition 17. Two Chords 

178. Theorem. An angle formed by two chords inter- 

secting within a circle is measured by half the sum of 

its intercepted arc and that of its vertical angle. 

Given a O with Z x formed by the chords AC and BD. 

Prove that x is measured by \(arcAB-\- arc CD). 
The plan is to show that x=AC+ZB, and then refer to § 172. 

Proof. Draw BC. Post. 1 

Then x=-Z.C-\-^B. §66 
An exterior Z. of a is equal to the sum of the two 

nonadjacent interior A. 

Also, ZC is measured by J arc AB, 

and ZB is measured by \ arc CD. § 172 

.\x is measured by i (arc AB + arc CD). Ax. 1 

It is interesting to discuss this theorem along the following lines : 
If P is the vertex of Z x, and if we move P to the center of the O, 

to what previous proposition does this one reduce ? 
If P is on the O, as at D, to what previous proposition does this 

one then reduce ? 

Suppose that the point P remains as in the figure, and that the 
chord AC swings about P as a pivot until it coincides with the 
chord BD. What can then be said of the measure of A APB and CPDl 
What can be said as to the measure of A DP A and PPC? 
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Proposition 18. Two Secants 

179. Theorem. An angle formed by two secants^ by a 
secant and a tangenty or by two tangents drawn to a 
circle from an external point is measured by half the 
difference between its intercepted arcs. 

Given two lines PX and PY from an external point P, cutting 
off on a O two arcs b and d such that b'^d. 

Prove that Z.Pis measured by\{b — d). 
The plan is to show that ZP=h'— d', and then to apply §§ 172,177. 

Proof. In the figures as lettered above, we have an 
angle formed by two secants (Case 1), by a secant and a 
tangent (Case 2), and by two tangents (Case 3). 

In each figure draw BD, Post. 1 

In each case, since XlP-{-d' = b', § 66 

we have AP=b'—d'. Ax.2 

Then b' is measured by ^ 6, 

and d’ is measured hy^d, §§ 172,177 
.*. ZP is measured by 1^(6 — d). Ax. 5 

If the secant PY swings around to tangency, it becomes the tan¬ 
gent PB, and Case 1 becomes Case 2. If PX also swings around to 
tangency, it becomes the tangent PD, and Case 2 becomes Case 3. 
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Exercises. Measure of Angles 

1. If two circles are tangent externally and if two line 
segments drawn through the point of 
contact are terminated by the circles, the 
chords which join the ends of these lines 
are parallel. 

This can be proved if it can be shown that /.A 
equals what angle ? To what two angles can these angles be proved 

equal by § 177? Are those angles equal? 

2. If one side of a right triangle is the diameter of a 
circle, the tangent at the point where the a 
circle cuts the hypotenuse bisects the other 
side of the triangle. 

If OM is II to AC, then because BO = OA, what is 

the relation of BM to MC ? The proposition there¬ 

fore reduces to proving that OM is II to what line of 

A ABC? This can be proved if ZBOikf can be shownequal to what angle? 

BMC 

3. The radius of the circle inscribed in an equilateral 
triangle is equal to one third the altitude 
of the triangle. 

To prove this we must show that AR equals 

what line segment ? It looks as if AR might equal 

QR, and QR equal OR. Is there any way of proving 

AORQ equilateral ? of proving AAQR isosceles ? 

4. If two lines are drawn parallel to the sides through 
any point on a diagonal of a square, the points where these 
lines meet the sides lie on the circle whose 
center is the point of intersection of the 
diagonals of the square. 

It can be shown that OY= OZ if what two tri¬ 

angles a,re congruent ? How can you prove these 

triangles congruent? Then how can you prove 

that OF= OX and that OX=OW‘i 

zK 
^c 

(- 

X 

>11 
f N/ / 

- —^ D 
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II. Loci 

180. Meaning of Locus. The Latin word for place is locus, 
the plural of which is loci (usually pronounced 15'si in mathe¬ 
matics). In speaking of the place where certain points lie, 
it is often convenient to speak of it as the locus of the 
points. For example, if a gun at G in this 
figure can be turned through an angle of 
120°, and if the projectile will fall at some 
point between 5000 yd. and 9000 yd., depend¬ 
ing upon the angle at which the gun is ele¬ 
vated, the locus of the points at which the projectile may 
fall is a certain region which is represented by the shaded 
part of the figure. 

While it is proper to represent a locus as a surface, a portion of 

space, a line, or even a point, it is the custom in plane geometry to 

study only those loci which are lines. All the definitions and discus¬ 

sions of loci in Book II refer to loci in a plane. 

The following statements concerning loci are so evident 
that they may be treated as postulates: 

1. The locus of points at a given distance d from a given 
line X is a pair of lines, I and V, I-ir 
parallel to x and at the distance d x_f- 
from it. i'._i_ 

It is then said that any point on Z or Z' satisfies the con¬ 
dition that it is at the distance d from x. 

Instead of speaking of the locus of points that satisfy a given con¬ 

dition, we may speak of the locus of a point as satisfying the condition. 

2. The locus of points equidistant from a given 
point is a circle whose center is the given point. 

Since the circle is a very obvious locus, the subject 

of loci is considered in Book II. 
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181. Proof of a Locus. To prove that a certain line or group 
of lines is the locus of points that satisfy a given condition, 
it is necessary and sufficient to prove two things: 

1. Every point on the line or lines satisfies the given 
condition; 

2. Every point which satisfies the given condition lies on 
the line or lines. 

If we can prove this for any point whatsoever, that is, not merely 

for some special point, it is evidently true for every point. 

One of the best ways of determining a locus is to take on paper a 

number of points which satisfy the given condition and then try to 

determine on what line or lines they lie. 

Exercises. Loci in a Plane 

State without proof the following loci: 

1. The locus of the tip of the hour hand of a watch. 

2. The locus of the center of the hub of an automobile 
wheel as the car moves straight ahead on a level road. 

3. The locus of the tips of a pair of shears as they open, 
provided the bolt which holds the blades together remains 
always fixed in one position. 

4. The locus of the center of a circle that rolls around 
another circle, inside or outside, and always just touches it. 

Draw the following loci, hut give no proofs: 

5. The locus of points i in. below the base of a given 
A ABC, and also of points i in. above the base. 

6. The locus of points i in. from a given line AB. 

7. The locus of points f in. from a given point O. 

8. The locus of points I in. outside the circle drawn with 
a given point O as center and a radius of 1 in. 
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Proposition 19. Perpendicular Bisector 

182. Theorem. The locus of points equidistant from two 

points is the perpendicular bisector of the line segment 

joining them. 

Given two points A and and /, the X bisector of AB, 

Prove that every point on I is equidistant from A and B 
and that every point equidistant from A and B lies on I, 

The plan is first to apply § 117. 

Proof. From P, any point on I, draw PA, PB. Post. 1 

Then PA=PB. §117 

This proves the first part of the theorem. 

Let P be any point in the plane such that PA = PB. 

Suppose that PM bisects ZAPB. Post. 8 

Then A AMP is congruent to A BMP. § 40 

.*. AM = BM, and the A at M are equal. § 38 

Hence the A at M are rt. zi, § 13 

and PM is X to AB. § 14 

Since there is only one point of bisection (Post. 7), and 
since only one X can be constructed at M (Post. 10), PM is 
the X bisector oi AB; that is, P lies on I, 

This proves the second part of the theorem. 
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Proposition 20. Bisector of an Angle 

183. Theorem. The locus of points equidistant from two 
given intersecting lines is a pair of lines which bisect 
the omgles formed by them. 

Given two lines AC and BD intersecting at 0, and I and 
the bisectors of AAOB and BOC respectively. 

Prove that every point on I or V is equidistant from AC 
and BD and that every point that is equidistant from 
AC and BD is on I or V, 

The plan is to prove the two statements of § 181. 

Proof. Let P be any point on Z, 

and let PQ be ± to AC and PR be ± to BD. § 116 

Since AAOB is, bisected by Z, Given 

then rt. A OQP is congruent to rt. AORP. § 68 

.*. PQ = PR, or P is equidistant from AC and BD. § 38 

Let P be any point in the plane such that _L PQ = ± PR. 

Draw PO. Post. 1 

Then rt. A OQP is congruent to rt. A ORP. § 71 

ZAOP = ZBOP; §38 

that is, Plies on the bisector of ZAOB, or on Z. Post. 8 

Evidently both parts of the same proof hold for I' and ZBOC. 
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184. Incenter of a Triangle. There are four propositions 
relating to loci which are often given as exercises; but 
because of their special interest they are here given more 
prominence, although their inclusion as fundamental propo¬ 
sitions is optional. The first of these propositions relates 
to the bisectors of the angles of a triangle. 

Theorem. The bisectors of the angles of a triangle 
meet in a point equidistant from the three sides. 

In giving the proof the student should first show that the bisectors 

of A A and B intersect as at O. 

from AC and AB, also from BC 
and ABy and hence from AC and 

BC. Then by § 183 prove that O 
lies on the bisector CZ. 

This point is called the in¬ 
center of the triangle. 

The reason for using this term will appear in § 193, where the prob¬ 

lem which gives this theorem its importance is considered. 

185. Circumcenter of a Triangle. The second proposition 
in this group relates to the perpendicular bisectors of the 
sides of a triangle. 

Theorem. The perpendicular bisectors of the sides of 
a triangle meet in a point equidistant from the vertices. 

In giving the proof, show that the ± bisectors of the two sides BC 
and CA intersect as at O. Then prove 

that O is equidistant from B and C, 
also from A and C, and hence from A 
and B. Then prove that O lies on the 1 

bisector PP'. 

This point is called the circum¬ 
center of the triangle. 

The reason for using this term will appear in the problem of § 188. 

Then prove that O is equidistant 

C 
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186. Orthocenter of a Triangle. The third proposition re¬ 

lates to the altitudes (§ 74) of a triangle. 

Theorem. The altitudes of a triangle meet in a point 

In giving the proof let the 

altitudes be AQ, BR, and CP. 
Through A, B, C draw B'C', 
C'A', and A'B' II to CB, AC, 
and BA respectively. Then 

prove that C'A = BC = AB'. 
What is the relation of AQ to 

B'C' ? In the same way prove 

that BR and CP are the ± bi¬ 

sectors of the other sides of the 

AA'B'C'. Then apply § 185. 

This point is called the orthocenter of the triangle. 

The prefix ''ortho-" means straight, and this center is found by 

drawing lines from the vertices straight (perpendicular) to the sides. 

187. Centroid of a Triangle. The last proposition relates 
to the medians (§ 132) of a triangle. 

Theorem. The medians of a triangle meet in a point 
which is two thirds of the distance from each vertex 
to the midpoint of the oppo¬ 
site side. 

In giving the proof let any two 

medians, as AQ and CP, meet as at 

O. Then if F is the midpoint of AO 

and Xof CO, prove that YXand PQ A^^—^^ 

are II to AC and equal to ^ AC. Then 

prove that A Y=YO= OQ, and that CX = XO = OP. Hence any median 

cuts off any other median two thirds of its length from the vertex. 

This point is called the centroid of the triangle. 

The syllable "-oid " means like, so that the word "centroid" means 

centerlike. This point is the center of gravity of the triangle. 
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Exercises. Circular and Straight-Line Loci 

1. The locus of the vertex of a right triangle which has a 
given hypotenuse as hose is the circle constructed upon this 
hypotenuse as diameter. 

2. The locus of the vertex of a triangle which has a given 
base and a given angle at the vertex is the arc which forms 
with the base a segment of a circle in which the given angle 
may be inscribed, 

3. Two forts are placed 28 mi. apart on opposite sides 
of a harbor entrance. Each fort has a gun with a range of 
16 mi. Draw a plan showing the area which can be exposed 
to the fire of both guns, using a scale of in. to a mile. 

4. A straight rod AB moves so that 
its ends constantly touch two fixed rods 
which are perpendicular to each other. 
Find the locus of its midpoint M, 

5. Show how to locate a light equidis¬ 
tant from two intersecting streets and 
48 ft. from the point of intersection, as 
shown in the figure. 

-4- 
/ 

6. A line moves so that it re¬ 
mains parallel to a given line and 
so that one end lies on a given circle. 
Find the locus of the other end. 

7. A circle of center 0 and radius r' rolls around a fixed 
circle of radius r, always touching the fixed circle. What 

is the locus of O ? Prove it. 

8. Find the locus of the mid- 
point of a line segment drawn 
from a given external point to a 
given circle. 
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9. A water main has a gate located at a point 9 ft. from 
a certain lamp-post which stands on the edge of a straight 
sidewalk. The gate is placed 4 ft. from the edge of the 
walk, toward the street. Draw a plan showing every pos¬ 
sible position of the gate and state the principles involved. 

10. During a war a man buried some valuables. He re¬ 
membered that they were buried north of an east-and-west 
line which joined two trees 140 ft. apart, and that the point 
was 80 ft. from the eastern tree and 100 ft. from the western 
tree. Draw a plan to the scale of 20 ft. = 1 in., indicate 
the point where the valuables were buried, and state the 
geometric principles involved. 

11. Find the locus of the center of a circle that passes 
through a given point between two 
parallels and cuts equal chords of a 
given length from them. 

Let P be the given point, AB, CD the 

given parallels, and MN the given length. 

Since the circle cuts equal chords from 

two parallels, what must be the relative distance of its center from 

each ? Then what line is one locus for O, the center of the circle ? 

Construct the perpendicular bisector of MN, cutting XY at S. How 

does SM compare with the radius of the circle ? What is then another 

locus for O? How can we then find O so as to 

satisfy the given conditions? 

R ' i I 

S:... 

12. Find the locus of a point equidistant 
from two given points P, Q and at a given 
distance d from a third given point R. 

13. Find the locus of the center of a 1 
circle that has a given radius and passes 
through two given points. 

14. What is the locus of the midpoints of a number of 
parallel chords of a circle ? Prove it. 
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III. Fundamental Constructions 

Proposition 21. Circle about a Triangle 

188. Problem. Circumscribe a circle about a given 

triangle. 

Given the A ABC, 

Required to circumscribe a O about /\ABC, 
The plan is to show that the intersection of the ± bisectors of two 

sides of the A is the center of the required O. 

Construction. Construct the Js bisecting the sides AB 
and AC as at M and N respectively. §§ 102,104 

These Js meet, as at 0, or else are II. If ON is II to OM, 
then ON is J_ to AB (§ 63), and hence AB is II to AC (§ 57). 

But this is impossible, since AB and AC form ZA (§ 6). 
With O as center and OA as radius, construct a O. Post. 4 

Then O ABC is the required O. 

Proof. O is equidistant from A and B, 

and O is equidistant from A and C, § 182 

.*. O is equidistant from A, B, C, 

Hence the O O passes through A, B, C, § 134, 6 

189. Corollary. Given a circle or an arc, find the center 

of the circle, 
* Take three points on the © or arc and apply § 188, 
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190. Corollary. Through any three given points not lying 
in a straight line one circle and only one can pass. 

The points may be considered as the vertices of a A, and hence a O 

can pass through them (§ 188). 

Since the points are not in a st. line (given), points equidistant from 

A, B, and C in the figure of § 188 must lie on MO and NO {% 182). Since 

these lines can intersect in only one point, O, only one O is possible. 

191. Corollary. Two distinct circles can have at most two 
points in common. 

Because if they have three points in common, they will coincide (§ 190). 

192. Corollary. A straight line can intersect a circle in at 
most two points. 

This corollary, which is essentially § 134,4, is introduced at this point 

because of its analogy to § 191. 

Suppose that the st. line ABC can intersect the O O 

in A, B, C. Then OA = OB = OC{% 134,1). 

Hence ZOCB = Z CBO and Z OB A = ZRAO (§ 42), 

and thus each is less than a rt. Z (§ 65). 

Hence if the supposition were true, we should have 

three equal obliques from O to ABC’, but this is impossible (§ 119). 

Exercises. Constructions 

1. Bisect a given arc. 

2. Upon a given line segment as a chord, construct a seg¬ 
ment of a circle in which a given angle 
may he inscribed. 

Proceed as follows: 

Given the line segment AB and the Z m. 

Required on AB as a chord to construct 
a segment of a Q in which Z.m may he 
inscribed. 

Construction. Construct Z ABX = m (§ 106). 

The rest of the construction is readily inferred from the figure. 
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Proposition 22. Circle in a Triangle 

193. Problem. Inscribe a circle in a given triangle. 

Given the AA5C. 

Required to inscribe a O in /\ABC. 
The plan is to show that the intersection of the bisectors of two A of 

the A is the center of the required O. 

The construction and proof, which are suggested by the figure, are 

left for the student. 

194. Centers of a Polygon. The center of a circle cir¬ 
cumscribed, if possible, about a polygon is called the 
circumcenter of the polygon. 

The center of a circle inscribed, if 
possible, in a polygon is called the in¬ 
center of the polygon. 

The intersections of the bisectors of 
the exterior angles of a triangle are the 
centers of three circles, each of which is 
tangent to one side of the triangle and to 
the other two sides produced. These three circles are called 
escribed circles, and their centers are called the excenters of 

the triangle. 

f 
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Proposition 23. Constructing a Tangent 

195. Problem. Through a given point construct a tan- 

gent to a given circle. 

Given the point P and the O 0, 

Required through P to construct a tangent to the O. 

The plan is to construct a line which shall make a rt. Z. with a radius. 

Construction. 1. If P is on the O, draw OP. Post. 1 
At P construct ' XY± to OP. § 104 

Then XY is the required tangent. 

2. If P is outside the O, draw OP. Post. 1 

Bisect OP, as at X, § 102 

With X as center and XP as radius, construct a O inter¬ 
secting OO as at Af and AT, and draw PM, Posts. 4, 1 

Then PM is the required tangent. 

Proof. 1. Since XY is ± to OP, Const. 

XY is tangent to the O at P. § 146 

2. Drawing OM, ZPMO is a rt. Z. § 173 

.*. PM is tangent to the O at Af. § 146 

In like manner we may prove that PN is tangent to the ©. 

f 
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Exercises. Constructions 

1. If two opposite angles of a quadrilateral are supple¬ 

mentary, the quadrilateral can be inscribed 
in a circle. 

Apply § 188 to constructing a circle through A, B, C. 
Prove that if the circle does not pass through D also, 

ZZ> is greater than or less than some other angle that 

is supplementary to ZR, which is impossible. 

2. In a Is ABC construct PQ II to the base AB and cutting 
the sides in P and Q so that PQ = AP-[-BQ. 

Assume for the moment that the problem is solved. 

Then AP must equal some part of PQ, as PX, 
and BQ must equal QX. 

But if AP = PX, what must ZPXA equal ? 

Since PQ is II to AB, what does ZPXA equal ? 

Then why must Z BAX = Z XAP ? A^^^— ^ 

Similarly, what about ZQBXand ZXBAl. 
Now reverse the process. What should we do to Z A and B in order 

to fix X ? Then how shall PQ be constructed ? Now give the proof. 

3. Construct a line intersecting two sides of a tri¬ 

angle and parallel to the third side, such that the part 

intercepted between the two sides has a 

given length. 

If PQ = d and if QR is II to PA, what does AR 
equal? Then what two constructions must you ^ 

make in order to locate Q ? B 

4. Construct a triangle, given one side, an adjacent 

angle, and the difference between ^^ c/'' 

the other two sides. a- 

If AB, ZA, and the difference d be- 1 
tween AC and RC are given, what points — A^-""^B 
in this figure are determined ? Can XB be \ 

constructed? What kind of triangle is XBCl How can the vertex C 

of the triangle be located ? 
PS 
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5. Given two angles of a triangle and the sum of two 

sides, construct the triangle. c 

Can the third angle be found ? Assume the 

problem solved. If AX=AB-{-BCy what kind 

of triangle is BXC"! What does ZCBA equal? A‘ 
Is ZX known ? How can C be fixed ? 

6. Through a given point P between 

the arms of an zlAOB construct a line 
terminated by the arms of the angle 
and bisected at P. q 

If PM=PNy and PQ is II to PO, is OQ = QikT? 

7. Given the perimeter of a triangle, one angle, and 
the altitude from the vertex of the given angle, construct 
the triangle. 

Assume for the mo¬ 

ment that the problem is 

solved, as shown in this 

figure, in which ABC is 

the required triangle, MN 
the given perimeter, ZACB the given angle, CP the given altitude, 

AM=ACy and BN=BC. By a study of the figure we shall be led to 

the following solution: 

As in Ex. 2, page 148, on MN construct a segment of a circle in which 

ZMCN, which is found by the analysis to be equal to 90°+ \ZACB, 
may be inscribed. Construct XC II to MAT at the distance CP and cut¬ 

ting the arc of the circle at C. Then the vertices A and B are on the 

perpendicular bisectors of CM and CN. 

8. Construct a line that would bisect the angle formed 
by two lines if those lines were pro¬ 
duced to meet. 

X-- 

^’
0 

\ \ \ \ 

''''' '' / 
\/ 

\ 
\/ wN. 

A'' /p ■N 

If AB and CD are the given lines, and if 

they could be produced to meet, then the 

bisector of the angle between them would 

be the perpendicular bisector of PQ, a line which makes equal angles 

with the given lines. How can we construct PQ so as to make ZP=ZQ1 
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9. Construct a common tangent to two given circles. 

If the centers are O and O' and the radii r and r', the tangent QR 
in the left-hand figure seems to be II to O'M, a tangent from O' to a 

circle whose radius is r — r'. What does this suggest? 

In general, there are four common tangents, but circles tangent 

externally and internally and intersecting circles should be considered. 

Construct an isosceles triangle, given: 

10. The base and the angle at the vertex. 

11. The base and the radius of the circumscribed circle. 

12. The perimeter and the altitude. c 
In this figure ABC is the required triangle 

and MNthe given perimeter. Then the alti¬ 

tude CP passes through the midpoint of MN, 
and the A MAC and NBC are isosceles. 

13. Construct an equilateral triangle, 
given the radius of the circumscribed 
circle. 

14. Construct a rectangle, given one side 
and the angle between the diagonals. 

15. Given two perpendicular lines ABand 
CD intersecting in 0, and a line intersecting 
these perpendiculars in E and F, construct a 
square, one of whose angles shall coincide 
with one of the right angles at O, and such 
that the vertex of the opposite angle of the 
square shall lie on EF. 

Notice the two solutions. 
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Exercises. Applications 

1. Two pulleys of radii 1 ft. 6 in. and 2 ft. 3 in. respectively 
are connected by a belt which runs straight between the 
points of tangency. If the centers of the pulleys are 6 ft. 
apart, construct the figure, using the scale of 1 in. = 1 ft. 

2. Given a portion of the tire of a 
wheel, show how to determine the center 
and to reproduce the tire of the wheel in 
a drawing. 

3. Construct this design, making the 
figure twice this size. 

First construct the equilateral triangle. Then con¬ 

struct the small cir/^les with half the side of the 

triangle as a radius. Then find the radius of the cir¬ 

cumscribed circle. 

4. A circular window in a church has a 
design similar to the accompanying figure. 
Construct the design, making the figure 
twice this size. 

This design is made from the figure of Ex. 3. 

5. From two given points P and Q construct lines which 
shall meet on a given line AB and make 
equal angles with AB, 

Since Z.BXQ must be equal to Z.AXP, then 

Z.MXP'^Z.MXP. If PP' is ± to AB, so that 

MP' = MP, and if P'Q is drawn, what follows ? 

6. Find the shortest possible path 
from a point P to a line AB and thence 
to a point Q, 

If ZPXA = AQXB, isPX+XQkPR+RQ'I 
This problem shows that a ray of light is re¬ 

flected in the shortest possible path. 

1 
^ M 

i If'''" 
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Exercises. Review 

1. Make a list of the numbered propositions in Book II, 
stating under each the propositions in Books I and II upon 
which it depends either directly or indirectly. 

2. Make another list of the numbered propositions, stat¬ 
ing under each the propositions in Book II 
which depend upon it. 

3. Show how to construct a tangent to this 
circle at the point P, the center of the circle not 
being accessible. 

4. In this figure it is given that 
X = 34° and y — 56°. Find the number 
of degrees in each of the other angles 
and determine whether or not AB is a ^ 
diameter of the circle. 

5. In a circle with center 0 the chord AB is drawn so 
that /-BAO = 31°. How many degrees are there in Z.AOB ? 

6. In this figure it is given that 
ZP=44°, ZA = 76°, and Z.BDC=^h\ 
Find the number of degrees in each of 
the other angles, and determine whether 
or not CD is a diameter. 

7. In a circle with center O the chord AB is drawn so 
that /.BAO = 35°. On either arc AB a point P is taken and 
joined to A and P. What is the- size of /APB ? 

8. Find the locus of the midpoint of a chord formed 
by a secant from a given external point to a given circle. 

9. Show how a carpenter^s square may 
be used to determine whether or not the 
curve in this casting is a perfect semicircle. 
State the geometric principle involved. 
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10. In a circle with center 0, OM and ON are con¬ 
structed JL to the chords AB and CD respectively, and it 
is known that Z.NMO = Z ONM. Prove that AB = CD. 

11. Two circles intersect at A and B, and a secant drawn 
through A cuts the circles at C and D. Prove that ADBC 
does not change in size, however the secant is drawn. 

12. Let A and B be two fixed points on a given circle, 
and M and N the ends of any diameter. Find the locus of 
the point of intersection of the lines AM and BN. 

13. Given the sum of the diagonal and one side of a 
square, construct the figure. 

Assuming the problem solved, produce the 

diagonal CA, making AE = AB. Then CE is 
the given sum and ZACB = ZBAC=45°. 
Why ? Find the value of ZE. Reversing the 

reasoning, construct AE and ECB on EC. 

14. If the opposite sides of an inscribed quadrilateral 
are produced to intersect, the bisectors of the angles at 
the points thus found intersect at Q 

right angles. 
Referring only to arcs instead of 

chords, we have 

AX-MD=XB-CM, 

and YA-BN=DY-NC. 
YX+NM=MY+XN. 

Hence ZYIX=ZXIN. 

How does this prove the proposition ? Discuss the impossible case. 

Construct a right triangle^ given: 

15. The median and the altitude upon the hypotenuse. 

16. The hypotenuse and the altitude upon the hypotenuse. 

17. Construct a triangle, given one side, an adjacent 
angle, and the sum of the other sides. 



BOOK III 

PROPORTION AND SIMILARITY 

I. Fundamental Theorems 

196. Proportion. An expression of equality between two 
ratios is called a proportion. 

Preferably, a proportion is written in the more familiar 
fractional form, as follows: 

a_c 
b d 

For convenience in printing, however, the form a:b=c:d, 
or a/b = c/d, is often used. All three forms have the same 
meaning, and each is read ''a is to 6 as c is to d,’" or ''the 
ratio of a to 6 is equal to the ratio of c to 

197. Terms. In a proportion the four quantities compared 
are called the terms. The first and third terms are called 
the antecedents; the second and fourth terms, the conse¬ 
quents. The first and fourth terms are called the extremes; 
the second and third terms, the means. 

Thus, in the proportion a:b = c:d, a and c are the antecedents, 

6 and d the consequents, a and d the extremes, h and c the means. 

Such names were of more value before algebra came into common 

use than they are at present. 

In the case of a:b = b:c, the term 6 is called the mean 

proportional between a and c. 

There is only one positive mean proportional between two numbers, 

and hence we speak of the mean proportional, as above, 

167 
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198. Algebraic Relations. Since we are treating of the 

numerical measures of lines, we shall treat all ratios alge¬ 

braically. The following laws should be understood : 

1. If ^ = ^ then ad = he, 
0 a 

For we may multiply each of the given equals by hd. Ax. 3 

2. If ^ = then d = b; and if Y = then a = c. 
0 d 0 0 

For ad = ab, by the first law, and hence d = b; or ab = cb, and 

hence a = c. 

S. If ad = bCy then 7 = v 
0 d 

For we may divide each of the given equals by bd. 

Ax. 4 

Ax. 4 

4. If f = then^ = ^- 
b d c d 

For we may multiply each of these equals by ^ • Ax. 3 

5. If 2 = £, then ^ = 
b d a c 

For we may divide 1=1, member for member, by these equals. Ax. 4 

6. = = 
b d b d 

For we may add 1 to each of these equals, giving ^ ^ ^ = UlA. Ax. 1 
0 d 

7. Jf | = £, then = 
b d b 

For we may subtract 1 from each of these equals. 

d 

a + c+e4-j7+- 

Ax. 2 

a 8 If —d.-r then ■ ■ ■— r 

For a = br, c = dr, e=fr, g = hr,’^‘, and hence 

a + c + e + 5r + ... = r(6 + d +/+ /H- • • •); 

, a + c + e + gr + -’* a 
whence , , , . ^ ^ .-= r = -• 

b + d-\-f + h‘ b 

Ax.] 

Ax. 4 
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Exercises. Algebraic Relations 

Prove the following as in § 198 or by referring to §198: 

1. In any proportion the product of the extremes is 
equal to the product of the means. 

2. If the two antecedents of a proportion are equal, 
the two consequents are equal. 

3. If the product of two quantities is equal to the product 
of two others, either two may be made the extremes of a 
proportion in which the other two are made the means. 

4. If four quantities are in proportion, they are in pro¬ 
portion by alternation; that is, the first term is to the third 
as the second term is to the fourth. 

5. If four quantities are in proportion, they are in pro¬ 
portion by inversion; that is, the second term is to the first 
as the fourth term is to the third. 

6. If four quantities are in proportion, they are in pro¬ 
portion by composition'; that is, the sum of the first two 
terms is to the second term as the sum of the last two 
terms is to the fourth term. 

7. If four quantities are in proportion, they are in pro¬ 
portion by division; that is, the difference between the 
first two terms is to the second term as the difference 
between the last two terms is to the fourth term. 

8. In a series of equal ratios the sum of the antecedents 
is to the sum of the consequents as any antecedent is to 
its consequent. 

9. li a;h = c:dj then a^:b^=c^: d^, 

10. If a:b = b:c, then a:c = a^ 

11. \i a\b = b:Cy then b = ^ac. 

We shall consider only positive numbers unless the contrary is stated. 
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199. Nature of the Quantities in a Proportion. Although 
we may have ratios of lines, of areas, or of other geometric 
magnitudes, we treat all the terms of a proportion as 
positive numbers. 

If b and d are lines or solids, for example, we cannot 

multiply each member of | ^ by bd, as in § 198,1, because 

we cannot think of multiplying by a solid. 

Hence when we speak of the product of two geometric 
magnitudes, we mean the product of the numbers which 
represent the magnitudes when they are expressed in terms 
of a common unit, 

200. Proportional Line Segments. If we have two line seg¬ 
ments AB and A'B' and if M and M' are their respective 
midpoints, then AM\MB = 1, and 
A'M': M'B' = 1, and hence A---B 

AM _A'M\ _Ml_B' 
MB M'B' 

This is evidently true whatever may be the lengths of 
AB and A'B'. 

In like manner, if we have two line segments XY and 
X'Y', we may divide XY at P and X'Y' at P' in such a 
way that Y XP _ X'P' 

PY P'Y' 

When we divide two line segments in such a way as to 
have the parts form a proportion like this one, we say that 
the line segments are divided proportionally. 

If P is on the line AB and is between A and B, it divides 
AB internally; if it is not between , 
A and B, it divides AB externally. * ---S. 

In this figure, P divides AB internally in the ratio 1:2, and P' divides 

AB externally in the ratio 1:2. That is, AP: PB = AP': P'B = 1:2, 
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Exercises. Proportion 

Express the following ratios in their simplest forms: 

1. 10:12. 4. a:al 7. f:|. 10. a:a^ + a6. 

2. 8a:12a. 5. 6:9ml 8. |:|. 11. a^-{-ah:a, 

2 32 X ^ g a -\-h ^ q — If ^ ^^2 a^ ~}~ 2 a -}-1 ^ 

* 48x ' a^—h^ ' a —b ’ a +1 

Given the proportion a: h 

13. a:d = bc: d^, 

14. l:b = c:ad. 

15. ad:b = c:l. 

16. ma: b = me: d. 

= c:d, prove the following: 

17. ma:nb = mc:nd. 

18. a—l:b = bc — d:bd. 

19. a+l :l = bc-\-d:d. 

20. l:bc=l:ad. 

21. Divide a line segment 4.2 in. long into two parts 
which shall have the ratio 1:2. 

22. Divide a line segment 3.6 in. long into two parts such 
that the ratio of the shorter part to the whole segment 
shall be 4:5. 

23. What is the ratio of half a right angle to one eighth 
of a straight angle ? 

Given the proportion a:b = b:c, prove the following: 

24. c:b = b:a. 26. (6 + \/^)(6-V^) = 0. 

25. a:c = b^:c\ 27. ac-l:6-l = 6 + l:l. 

Find the value of x in each of the following: 

28. 2:8 = a::12. 30. 7:a; = x:28. 

29. 3:5 = ir:9. 31. l:l+a; = a:-l:3. 

Certain exercises on this page, such as Exs. 1-20 and 24-31, are 

introduced merely for the purpose of accustoming the student to the 

use of ratios and proportions. They are not needed in geometry, and 

may therefore be omitted if desired. 
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Proposition 1. Sides of a Triangle 

201. Theorem. If through two sides of a triangle a 

line is constructed parallel to the third side, it divides 

the two sides proportionally. 

Given the A ABC with PQ II to AB. 

Prove that AP^BQ, 
PC QC 

Proof. Assuming AP and PC commensurable, let some seg¬ 
ment AM be contained 3 times in APand 4 times in PC. § 163 

Then AP_3 ♦ AM_3 
PC 4 * AM 4‘ 

§165 

At the several points of division on APand PC construct 
lines II to AB. § 107 

These lines divide PC into 7 equal parts, of which BQ 
contains 3 parts and QC contains 4 parts. § 85 

Then, 

Hence 

BQ_S 
QC 4* 

AP _BQ 
PC QC 

§165 

Ax. 5 

The proof is evidently the same if any other numbers are used. 
For the incommensurable case (§ 166) see § 516. 
Since the student is now so far advanced as to be able to state for 

himself the plan of attack, it is no longer given as part of the printed 
proof. The student, however, should give it as part of his proof. 

PS 
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202. Corollary. One side of a triangle is to either of its 
segments cut off by a line parallel to the base as the third 
side is to its corresponding segment. 

In the figure of § 201, 
AP BQ 

PC~ QC 

Adding 1 to each member of this proportion, we have 

^+1 = ^ + 1 
PC QC ’ 

§201 

Ax. 1 

or AP+PC BQ+QC 
PC QC * 

whence AC BC 
PC QC 

Ax. 10 

We may also begin with 
AP BQ 

§ 198, 6 

AC BC 
add 1 as above, and end with —— =- 

AP BQ 

203. Corollary. Three or more parallel lines cut off pro¬ 
portional segments on any two transversals. 

Construct AN 11 to CD. §107 

Then AL = CC, 

LM= GK, 

and MN= KD. §78 

Now 
AF_AL . 
FH~ LM' 

§201 

Hence II Ax. 5 

or 

g
f
e

 
II 

C
^ie? 

§ 198, 4 

That is, the first two segments of AB are proportional to the first 
two segments of CD. Similarly, the other segments are proportional. 
This is indicated as follows : 

AF _FH ^HB ^ 
CG~GK KD ' 

The student should also consider the case in which AB and CD 
intersect between AC and BD. 
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Proposition 2. Converse of § 201 

204. Theorem. If a line divides two sides of a tri¬ 

angle 'proportionally from a vertex, it is parallel to 

the third side. 

Proof. Taking the indirect method (§ 56), suppose that 

PQ is not II to AB. 

From P construct some other line, as PXy II to AB. § 107 

Then ^_BC 
PC xc' 

§202 

But AP_BQ 
PC QC' 

Given 

Hence AP + PC BQA-QC ^ ^ — ■■ .» § 198, 6 
PC QC 

or AC BC 
Ax. 10 

PC QC 

Hence BC BC 
Ax. 5 

QC XC' 
and QC = XC. § 198,2 

/. PQ and PX must coincide. Post. 1 
But PX is II to AB. Const. 

, PQ, which coincides with PX, is II to AB, §52 
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Exercises. Proportional Lines 

1. In the figure of §203 given that AF= 2 in., FH= 3 in., 
and CK = 6 in. Find the length of CG, 

2. If a side of this square is 10 in., the 
diagonal DB is 14.14 in. long. If DP = 4 in. 
and PQ is II to ABy what is the length of DQ ? 

3. The sides of a triangle are 6 in., 8 in., 
and 10 in. respectively. A line parallel to the 8-inch side cuts 
the 6-inch side 2 in. from the vertex of the largest angle. 
Find the lengths of the segments of the 10-inch side. 

4. Two joists 6 in. wide are fitted together at right angles, 
as here shown. The distance from A to ^ is 16 ft., that from 
A to C is 12 ft., and that from to C is 
20 ft. In fitting another joist along the 
dotted line BC the carpenter has to saw 
off the- ends of the first joists on the 
slant. Find the length of the slanting 
cut across the upright piece; across the horizontal piece. 

5. From any point P the lines PA, PP, PC are drawn to 
the vertices of a AAPC and are bisected respectively by 
A', B\ and C'. Prove that ZCPA = ZC'P'A'. 

6. From any point P within the quadrilateral ABCD lines 
are drawn to the vertices A, P, C, D and are bisected by 
A', P', C'y D\ Prove that ZCPA = ZC'B'A’. 

7. If a spider, in making its web, makes A'B' II to AP, 

P'C' II to PC, C'P' II to CP, D'E' II to DEy 

and E'F' II to EFy and then runs a line 
from F' II to PA, will it strike the 
point A'? Prove it. 

First show that OA': AA = OF': F'F, and 

then use § 204. 
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205. Similar Polygons. Polygons that have their cor¬ 

responding angles equal and their corresponding sides 

proportional are called 

similar polygons, / 

Thus, the polygons ARCZ)-E7 j 

and A'B'C'D'E' are similar if ^-'b 

ZA = ZA', ZB = ZB', Z.C = AC\ ZD = ZD\ ZE = ZE\ 

AB ^ BC ^ CD _ DE ^ EA 

A'B'~B'C' CD' D'E'~ E'A'' 

Instead of saying that two polygons are similar, it is frequently 

said that they have the same shape, or that they are the same figure 
drawn to different scales. Familiar illustrations of similar polygons 

are given by maps or by photographs of buildings. 

Q Q' 

In the figures here shown, Q and Q' are not similar, 

for although the corresponding sides are proportional, the 

corresponding angles are not 
equal; neither are the figures 

R and R' similar, even though 

the corresponding angles are 

equal, for the corresponding 

sides are not proportional. 

As will be shown in §§208-214, in the case of triangles 

either condition implies the other, but this is not true of 

other figures. 

[ZJ mj 

206. Corresponding Line Segments. In similar polygons 

those line segments that are similarly situated with respect 

to the equal angles are called corresponding line segments^ 
or simply corresponding lines. 

Corresponding lines are occasionally called homologous lines. 

207. Ratio of Similitude. The ratio of any two corre¬ 

sponding line segments in similar polygons is called the 

ratio of similitude of the polygons. 
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Exercises. Review 

1. If a pendulum swinging from the point O cuts two 

parallel lines at the varying points P and Q respectively, 

the ratio OP: OQ remains the same whatever may be the 

position of the pendulum. 

2. Through a fixed point P a line is drawn cutting a 

fixed line at X. The line segment PX is then divided at Y 
so that the ratio PY: YX always remains the same. Find 

the locus of the point F as X moves along the fixed line. 

3. Given that 3: a; = a;: 27, find the value of x, 

4. Given that a;: 8 = 32: a;, find the value of x, 

5. From the definition of a square, prove that two 

squares are always similar. 

6. From what you have proved concerning equilateral 

triangles, can you state that two equilateral triangles are 

always similar ? Give the reasons. 

7. Divide a line segment 5.4 in. long into two parts 

which shall have the ratio of 4 to 5; of 8 to 10; of 2 to 2l. 

8. The law of levers states that mW = nP, where W, as 

in this figure, is the weight; m, the dis- xr 

tance from the weight to the fulcrum F; 
P, the power applied; and ti, the distance P 
from the power to the fulcrum. State 

this equation in the form of a proportion. 

9. From the point P on the side CA of the A ABC par¬ 

allels are drawn to the other sides, meeting AB in Q and BC 
in R. Prove that A Q: QB = BR: RC. 

10. In the AABC the points P and Q are taken on the 

sides CA and BC so that AP:PC = BQ:QC. Then a line 

AR is drawn II to PP, meeting CB produced in P. Prove 

that CQ:CB = CB:CR, 
PS 
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Proposition 3. Mutually Equiangular Triangles 

208. Theorem. Two mutually equiangular triangles 

are similar. 

Given the AABC and A'B'C with AAy By C equal to 
AA\B'y C’ respectively. 

Prove that A ABC is similar to A A'B'C'. 

Proof. Since the A are given as mutually equiangular, 

we have only to prove that 

AB _BC _ AC _ 
A'B' B'C' A'C'' 

§205 

Place AA'B'C' upon AABC so that AC' coincides with 

its equal, AC, and A'B' takes the position PQ. Post. 5 

Then, in the figure, p = Z A, Given 

and hence PQ is II to AB. § 59 

Then AC 
PC 

.f(S2te).or AC 
A'C' 

BC 
B'C'' 

Ax. 5 

Similarly, by placing AA'B'C' upon AABC so that AB' 
coincides with its equal, AB, we can prove that 

AB _ BC . 
A'B' B'C'" 

whence AB _ BC _ AC 
A'B' B'C' A'C' 

AABC is similar to AA'B'C'. 

Ax. 5 

§205 
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209. Corollary. Jf two angles of one triangle are equal 
respectively to two angles of another, the triangles are 
similar. 

Since in each A the sum of the A is 2 rt. A (§ 65), and since two A 
of one A are given equal to two A of the other, the third A are equal 

(Ax. 2); that is, the A are mutually equiangular. Hence the A are 

similar (§ 208). 

210. Corollary. If an acute angle of one right triangle is 
equal to an acute angle of another, the triangles are similar. 

Since the rt. A are also equal (Post. 6), the A have two A of one equal 

respectively to two A of the other. Hence the A are similar (§ 209). 

211. Corollary. If two triangles have their sides respec¬ 
tively parallel to one another, the triangles are similar. 

In this figure how can it be proved that 

AB — AB' and that AA = AA'l. Is this sufficient 

to prove the corollary ? 

Although §§211 and 212 are interesting corol¬ 

laries of § 208, they are not needed in subsequent ^ 

propositions. Hence they may be treated as 

exercises or omitted if desired. These corollaries are required in some 

courses of study and are often given in examinations. 

212. Corollary. If two triangles have their sides respec¬ 
tively perpendicular to one another, 
the triangles are similar. 

In this figure, what Z is the complement 

of Z 5 ? of AB' ? Are these two complements 

equal? Does this prove that AB'=^AB‘l ^ 
Since A'B' is _L to AB and A'C' is ± to AC, 

what can you say about the other two A of 

the quadrilateral formed by these lines? 

What other Z is a supplement of one of these A ? Can it then be proved 

that Z A'= Z A ? Is this sufficient to prove the corollary ? 

When, as in this case, a figure becomes somewhat complicated, it is 

well to recall this fact: The corresponding sides of similar triangles are 

opposite the corresponding and mutually equal angles, and conversely. 
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Proposition 4. Angle and Proportional Sides 

213. Theorem. If two triangles have an angle of 

one equal to an angle of the other and the including 

sides proportional, the triangles are similar. 

CA CB 
C'A'~ CB'* 

Prove that AABC is similar to AA'B'C\ 

Proof. Place AA'R'C'upon AABC so that Z.C' coincides 
with its equal, ZC, A'b! taking the position PQ. Post. 5 

Now CA CB . Given 
C'A' C'B'" 

that is, CA_CB, 
CP cq' 

Ax. 5 

Hence CA-CP CB-CQ^ 
CP CQ 

§ 198, 7 

or II 
0

|0
 

o
lt

a
 

Ax. 5 

PQ is II toAB. §204 

Then ZA = p, and Z.B = q. §62 

Also, ZC = ZC'. Given 

Hence AABC is similar to APQC; §208 

that is. A ARC is similar to AA'B'C\ Ax. 5 
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Proposition 5. Proportional Sides 

214. Theorem. If two triangles have their sides respec¬ 

tively proportional^ they are similar. 

Prove that AABC is similar to AA'B'C', 

Proof. On CA take CP= C'A' and on CB take CQ = C'B\ 

Draw PQ. Post. 1 
When it is desired to give a considerable number of steps on a 

single page, the fraction form of the proportion may be replaced by 

the form used below. 

Now CA:C'A' = BC:B'C’, Given 

and, since CP = C'A\ and CQ = C'B\ Const. 

then CA:CP = CB:CQ. Ax. 5 

AABC and PQC are similar. §213 

Then CA:CP = AB:PQ; §205 

that is, CA:C'A’ = AB:PQ. Ax. 5 

But CA:C'A' = AB:A'B\ Given 

AB:PQ = AB:A’B\ Ax. 5 

and PQ = A’B', §198,2 

Hence APQC and A'B'C' are congruent. §47 

But AABC is similar to APQC, Proved 

AAiSCis similar to AA'B'C\ Ax. 5 
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Proposition 6. Right Triangle 

215. Theorem. The perpendicular from the vertex of 

the right angle of a right triangle to the hypotenuse 

divides the triangle into two triangles which are similar 

to the given triangle and to each other. 

Given the rt. A ARC with CP _L to the hypotenuse AB. 

Prove that AABC^ ACPj CBP are similar. 

Proof. Lettering the figure as shown, since a is common 
to rt. A ACP and ABC, these A are similar. § 210 

Likewise, ACBP is similar to A ABC. § 210 

Hence A ACP and CBP are each mutually equiangular 
with the given A ABC. § 205 

Then the three A are mutually equiangular, Ax. 5 

and hence the A are similar. § 208 

216. Corollary. The perpendicular from the vertex of the 
right angle to the hypotenuse of a right triangle is the mean 
proportional between the segments of the hypotenuse. 

Since A ACP and CRP are similar, §215 

we have AP: CP = CP: PB, § 205 

and hence the ± CP is the mean proportional between the segments 
AP and PB. § 197 
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217. Corollary. The perpendicular from any point on a 
circle to a diameter of the circle is the q 
mean proportional between the segments 
of the diameter. 

Since ZACBis a rt. Z (§ 173), A ARC is a rt. A, A 

and hence § 216 applies. 

218. Corollary. The square of the hypotenuse of a right 
triangle is equal to the sum of the squares of the other 
two sides. 

This means that the square of the numerical measure of the hypot¬ 

enuse is equal to the sum of the squares of the numerical measures 

of the two sides. 

This is the most celebrated single proposition in geometry, and on 

account of its great importance we shall prove it again, by another 

method, in § 252. This theorem was known for special cases as early 

as the third millennium B.C., but it is thought to have been first proved 

by Pythagoras, a famous Greek mathematician, about 525 B.c. 

In the rt. AARC, in which ZC is the rt. Z, let the X p from C 
to AB form the segments x and y as here shown. Then a simple 

proof, based on § 215, is as follows: 

Since the three A are similar. 

we have 

Hence 

and 

Then 

c a j c 6 
- = -» and - = - 
ay ox 

2 _ 

215 

205 

a" = cy, 

= cx. § 198,1 

4- 52 = c (aj + y). 

. *. + 6^ = c. c = c^. 

219. Projection. If from the ends of a given line segment 

perpendiculars are constructed to a 
given line, the segment thus formed 
on the given line is called the pro¬ 
jection of the given segment upon 
the line. 

Thus A'R' and AR' in these figures are the projections of AR upon 

the lines m and n respectively. 
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Exercises. Similar Triangles 

1. If a perpendicular is drawn from the vertex of the 
right angle of a right triangle to the hypotenuse^ each of the 
other sides is the mean proportional between the hypotenuse 
and the projection of that side upon it. 

2. The squares of the two sides of a right triangle are pro¬ 
portional to the projections of the sides upon the hypotenuse. 

In the figure of § 215, AC = 

Hence 

AR-AP, and^" 

AB^AP AP 
AB-BP BP' 

= ABBP. Why? 

3. The square of the hypotenuse and the square of either 
side of a right triangle are proportional to the hypotenuse 
and the projection of that side upon it. 

In the figure of § 215, AP^= AP- AP, and AC^=AB>AP. 

AB^ _AB>AB _AB 
AC^~ ABAP~ AP' 

Then 

4. If a perpendicular is drawn from any point on a circle 
to a diameter, the chord from that point to either end of 
the diameter is the mean proportional between the diameter 
and its segment adjacent to the chord, 

5. Perpendiculars drawn from any corresponding vertices 
of two similar triangles to the opposite sides have the same 
ratio as any two corresponding sides, 

6. Find the length of the hypotenuse of a right triangle 

of which the two sides including the right angle are 37 in. 

and 49i in. respectively. 

7. Find the other side of a right triangle of which the 

hypotenuse is 17 in. and one side is 10.2 in. 

8. From the three similar triangles in the figure of § 215 

it is possible to write a large number of proportions. Write 

twelve of them. 
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Proposition 7. Intersecting Chords 

220. Theorem. If two chords of a circle intersect, the 

product of the segments of either one is equal to the 
product of the segments of the other. 

Given a O with the chords AB and CZ>, intersecting at P. 

Prove that PA • PB = PC • PD. 

Proof. Draw AC and DD. Post. 1 

Then in the figure, as lettered above, 

a = a\ § 172 
because each of these A is measured by \ arc CB ; 

and h = h\ § 172 
because each of these A is measured by \ arc DA. 

.*. ACPA and BPD are similar, § 209 

and hence % = 

PA-PB = PC-PD. §198,1 

221. Secant to a Circle. When we speak of a secant from 
an external point to a circle it is understood that we mean 
the segment of the secant which lies between the given 
external point and the second, or more remote, point of 
intersection of the secant and the circle. 

Thus in the figure of § 222 we may speak of BA as such a secant. 
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Proposition 8. Secant and Tangent 

222. Theorem. If from a point outside a circle a secant 
and a tangent are drawn, the tangent is the mean pro¬ 
portional between the secant and its external segment 

Given a secant PA and the tangent PB drawn to the Q)ABC 
from the external point P. 

Prove that 

§
1
5

 
II 

Proof. Draw AB and BC. Post. 1 

Now a is measured by \ arc BC, §172 

id a' is measured by | arc BC. §177 

.'. a = a\ Ax. 5 

Then A PAP is similar to APBC. §209 

Hence PA_PB 
PB PC 

§205 

223. Corollary. If from a point outside a circle two or 
more secants are drawn, the product of any secant and its 
external segment is equal to the product of any other secant 
and its external segment. 

Since PA :PB = PB: PC (§ 222), then PA PC = FE^{% 198,1). 

Moreover, since PB always remains the same (§ 149), PA-PC always 

remains the same. 
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Proposition 9. Ratio of Perimeters 

224. Theorem. The perimeters of two similar polygons 

have the same ratio as any two corresponding sides. 

Given the two similar polygons ABODE and A^B'CD'E^ with 

perimeters p and respectively. 

Prove that 
V _ AB _ 
p~ A'B'' 

Proof. 

Then 

AB _ BC _ CD _ DE _ EA 
A'B' B'C' CD’ D’E' E'A'^ 

AB-\-BC-\-CD-\-DE-\-EA _ AB 
A'B'+ B'C-\-CD'-{- D 'E’-h E'A' A’B' 

§205 

§ 198,8 

Hence Ax. 5 
p AB 

The proof is evidently the same whatever the number of sides of 

the polygons. 

Exercises. Review 

1. If two chords intersect within a circle, their segments 
are reciprocally proportional. 

This means, for example, that, in the figure of § 220, PA : PD is equal 

to the reciprocal of PB: PC; that is, it is equal to PC: PB. 

2. Discuss § 220 when P is on the circle; when P is out¬ 
side the circle. 
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3. If two parallels are cut by three transversals which 

meet in a point, the corresponding segments of the parallels 

are proportional. 

4. The base and altitude of a triangle are 30 in. and 14 in. 

respectively. If the corresponding base of a similar triangle 

is 7^ in., find the corresponding altitude. 

5. The point P is any point on the arm OX of the Z.XOY, 
and from P a _L PQ is constructed to OY. Prove that for 

any position of Pon OX the ratio OP: PQ remains the same, 

and the ratio PQ: OQ also remains the same. 

6. In drawing a map of a triangular field with sides of 

75 rd., 60 rd., and 50 rd. respectively, the longest side is 

made 2 in. long. How long are the other two sides made ? 

7. This figure represents part of a diagonal scale some¬ 

times used by draftsmen. Between vertical lines 1 and 0 

the distance is 1 in.; be- 97531 

tween vertical line 1 

and the intersection of 

diagonal line 2 with 

horizontal line 0 it is 

1.2 in.; between verti¬ 

cal line 1 and the inter¬ 

section of diagonal 
% 

line 0 with horizontal line 8 it is 1.08 in.; and so on. Show 

how to measure 1.5 in.; 1.25 in.; 1.03 in.; 1.67in.; 1.79in. 

Upon what proposition does this depend? 

8. In the similar A ABC and A'B'C\ AP=3in., 

BC = si in., CA = 4 in., and A'B'= in. Find P'C' and C'A'. 

9. The perimeter of an equilateral triangle is 72 in. 

Find the side of an equilateral triangle of half the altitude. 

10. The hypotenuse of a right triangle is 98.5 mm. and 
one side is 78.8 mm. Find the other side. 
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Proposition 10. Separating Similar Polygons 

225. Theorem. If two 'polygons are similar, they can 

he separated into the same number of triangles, similar 

each to each and similarly placed. 

Given two similar polygons ABCDE and A'B'CD'E^. 

Prove that ABCDE and A'B'C'D'E' can be separated into 
the same number of A, similar each to each and similarly 
placed. 

Proof. Draw DA, D 'A' and DB, D 'BPost. 1 

thus separating each polygon into three A similarly placed. 

Since /.E = /LE\ 

and DE:D'E'=EA:E'A', §205 

we see that ADEA and D'E'A' are similar. §213 

In like manner, ADBC and D'B'C' are similar. 

Furthermore, Z A = Z A', 

and ^DAE = ZD'A'E'. §205 

Subtracting, ZBAD = ZB'A'D'. Ax. 2 

Now DA-.D'A'=EA:E'A', 

and AB:A'B'=EA:E'A'. §205 

Then DA:D'A' = AB:A'B’. Ax. 5 

• • ADAB and D'A'B' are similar. §213 



180 FUNDAMENTAL THEOREMS BOOK III 

Exercises. Review 

1. The sides of a polygon are 3 in., 3 in., 4 in., 4 in., and 
6 in. respectively. Find the perimeter of a similar polygon 
whose longest side is 9 in. 

2. In drawing a map to the scale of 1:100,000, what 
lengths, to the nearest 0.01 in., should be taken for the sides 
of a rectangular county 30 mi. long and 20 mi. wide ? 

3. By adjusting the screw at O, the lengths OA and 
OC of these 'proportional co'mpasses, ^ * _,d 
and the corresponding lengths OB 
and OD, may be varied proportionally. ^ ^ 
The distance AB is what part of CD 
when OA = 4| in. and OC = in. ? when OA = 5.25 in. and 
OC = 6.75 in. ? 

4. A baseball diamond is a square 90 ft. on a side. What 
is the distance, to the nearest 0.1 ft., from first base to 
third base ? 

5. Find a formula for the height of an equilateral triangle 
of perimeter p. 

6. Find the lengths of the sides of an isosceles triangle 
of perimeter 39 in. if the ratio of one of the equal sides to 
the base is f. 

7. Find the length and the height of a rectangle of 
perimeter 64 in. if the ratio of these dimensions is f. 

8. Within the polygon ABCDE here shown any point P is 
joined to the vertices. Beginning at 
a point A' on AP lines are drawn so 
that A'B’ is II to AB, B'C' is II to BC, 
C'D' is II to CD, and D'E' is II to DE. 
Prove that a line E'A' is II to EA and 
that the two polygons are similar. 
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Proposition 11. Condition of Similarity 

226. Theorem. If two polygons are composed of the 

same number of triangles^ similar each to each and 

similarly placed, the polygons are similar. 

Given two polygons ARCDJS^and A'B^CD'E' composed of the 
ADEA,DAB, Z)5C similar respectively to the AD'E'A\D'A'B', 
D'B'C, and similarly placed. 

Prove that ABODE is similar to A'B'C'D'E', 

Proof. Since ZDAE=ZD'A'E\ 

and since ZBAD = ZB'A'D\ 
because the A are given similar^ 

we have 

Similarly, 

and 

Also, 

and 

ZBAE=ZB'A'E’. 

ZCBA = ZC'B'A\ 

ZEDC=ZE'D’C', 

ZC = ZC\ 

ZE=ZE\ 

§205 

Ax.l 

§205 

Hence the polygons are mutually equiangular. 

Also, DE 
D’E’ 

Hence 

EA _pA ^ AB _ DB _ BC _CD §205 
E’A’ D’A' A'B' D'B' B’C' C'D'' 

because the A are given similar. 

the polygons are similar. § 205 
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Proposition 12. Bisector of an Interior Angle 

227. Theorem. The bisector of an angle of a triangle 

divides the opposite side into segments which are pro¬ 

portional to the adjacent sides. 

Given the bisector of ZC of the AABCy meeting AB at M, 

Proof. From A construct a line II to MC. §107 

Then this line must meet BC produced, 
because CM and CB cannot both be W to it. 

§52 

Let this line meet BC produced at X. 

Then AM:MB=XC:a. §201 

Also, ZACM=ZCAX, §61 

and ZMCB = ZX. §62 

But ZACM=ZMCB. §11 

zcAx=zx, Ax. 5 

and hence XC=b. §69 

Substituting h for XC in the above proportion, 

AM b 
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Proposition 13. Bisector of an Exterior Angle 

228. Theorem. If the bisector of an exterior angle of a 

triangle meets the opposite side produced^ it divides that 
side externally into segments which are proportional 

to the adjacent sides. 

Given the bisector of the exterior Z.XCA of the A ABC, 
meeting BA produced at M'. 

Prove that 
AM' _b 
M'B a 

Proof. Construct APW to M'C, meeting BC at P. §107 

Then M'B:AM'=a:PC, §202 

or AM':M'B = PC: a. § 198, 5 

Now ZXCM'=ZCPA, § 62 

and ZM'CA^ZPAC. §61 

But ZXCM' = ZM'CA. §11 

ZCPA=ZPAC, Ax. 5 

and hence b = PC. §69 

Substituting b for PC in the second proportion, 

AM' b. Ax. 5 
M'B a 

What follows when CA = CB ? when CA > CB-? 
FS 
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Exercises. Review 

1. If two circles are tangent externally, the corre¬ 
sponding segments of two lines drawn through the point 
of contact and terminated by the circles are proportional. 

2. If two circles are tangent externally, their common 
external tangent is the mean proportional between their 
diameters. 

3. Two circles are tangent, either internally or exter¬ 
nally, at P. Through P three lines are drawn, meeting one 
circle in X, Y, Z and the other in X\ Y\ Z' respectively. 
Prove that ^XYZ and X'Y'Z' are similar. 

4. If two circles are tangent internally, all chords of the 
greater circle drawn from the point of contact are divided 
proportionally by the smaller circle. 

5. From a point P a secant 7.6 in. long is drawn to a 
circle such that the external segment is 1.9 in. Find the 
length of the tangent from P. 

6. In a A ABC, AB = 16, BC = 14, and CA = 15. Find the 
segments of CA made by the bisector of ZB. 

7. The sides of a triangle are 6, 8, and 10. Find the seg¬ 
ments of the sides made by the bisectors of the angles. 

8. In an inscribed quadrilateral the product of the 
diagonals is equal to the sum of the products 
of the opposite sides. 

Construct DX, making ZXDC= ZADB. Then 

AABD and XCD are similar; and A BCD and AXD 
are also similar. 

9. Given the chords AB and AC from any 
point A on a circle, and AB, a diameter. If the tangent at 
B intersects AB and AC at B and F, and if the chord BC 

is drawn, then the A ABC and AEF are similar. 
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II. Fundamental Constructions 

Proposition 14. Dividing a Line 

229. Problem. Divide a given line segment into parts 

proportional to any number of given line segments. 

Given the line segments AB^ m, n, and p. 

Required to divide AB into parts proportional to m, n, 
and p. 

Construction. From A draw AX, making any convenient 
Z with AB. Post. 1 

On AX, using dividers, take AM=m, MN= ■n, and NP=p. 

Draw BP. Post. 1 

At N construct NN' II to PB, 

and at M construct MM'W to PB. §107 

Then M'and AT'are the required points of division. 
The proof is left for the student. It should be observed that § 113 is 

a special case of this problem. 

230. Fourth Proportional. The fourth term of a proportion 

is called the fourth proportional to the terms taken in order. 

Thus, in the proportion ciib = cid, the term d is the fourth propor¬ 
tional to a, b, and c. 
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Proposition 15. Fourth Proportional 

231. Problem. Construct the fourth 'proportional to 

three given line segments. 

Given the three line segments m, n, and p. 

Required to find the fourth proportional to m, and p. 

Construction. Draw two lines AX and AY forming any 
convenient Z YAX. Post. 1 

Any acute Z will be convenient, although an obtuse Z may be used. 

On AX, using dividers, take AB = m and BC = n. 
Similarly, on AF take AD = p. 

Draw BD. Post. 1 
At C construct a line II to BD, , § 107 

and designate the point where it meets AY as E. 

Then DE is the required fourth proportional. 
AB_AD 
BC DE 

If through two sides of a Aa line is constructed II to the third 
. side, it divides the two sides proportionally. 

Proof. §201 

Substituting m, n, p for their equals, AB, BC, AD, we have 

n DE 

/, DE is the fourth proportional to m, n, p. 

Ax. 5 

§230 
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Proposition 16. Mean Proportional 

232. Problem. Construct the mean proportional be¬ 
tween two given line segments. 

Given the two line segments m and n. 

Required to construct the mean proportional between 
m and n. 

Construction. Draw any convenient line AX. Post. 1 

On AXy using dividers, take 

AC — m and CB = n. 
Bisect AB as at O. § 102 

With 0 as center and OA as radius, construct a semicircle 

as shown. Post. 4 

At C construct the J_ CP, meeting the O at P. § 104 

Then CP is the mean proportional between m and n. 

Proof. AQ^QE 
CP CB 

§217 

Substituting m, n for their equals, AC, CB, we have 

m ^CP 

CP n 

.'. CPis the mean proportional between m and n. § 197 

Ax. 5 
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Proposition 17. Similar Polygons 

233. Problem. Upon a given line segment corresponding 

to a given side of a given polygon construct a polygon 

similar to the given polygon. 

Given the line segment A'B' and the polygon ABCDE. 

Required to construct on A'B\ corresponding to AB, a 
polygon similar to the polygon ABCDE. 

Construction. From A draw the diagonals AC, AD. Post. 1 

From A' construct A'X, A'F, and A% making 

y’=y, 

and z'=z. § 106 

Similarly, from B' construct B'C'y making Z^' = ZR; 

from C' construct C'D\ making /ID’C'A’ — Z^DCA^; and 

from D' construct D'E\ making AE'D'A' = Z.EDA. 

Then A'B'C'D'E’ is the required polygon. 

Proof. AA’B’C' is similar to AABC, 
AA'C'D' is similar to AACD, 

and AA’D'E' is similar to AADE. § 209 

. *. the two polygons are similar. § 226 
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Exercises. Constructions 

1. If a and two given lines, construct a line equal 
to X where x = y/ah. Consider the special case of a = 8, 6 = 2. 

2. Construct the third proportional to two given line 
segments. 

This means, given two line segments a and 6, find x such that 

a:b = b:x; that is, find a fourth proportional to a, 6, and b. 

3. In Ex. 2 find x both by geometric construction and 
arithmetically when a = 8 in. and 6 = 6 in. 

4. Determine both by geometric construction and arith¬ 
metically the fourth proportional to lines which are 2j in., 
4 in., and 4^ in. long respectively. 

5. Determine both by geometric construction and arith¬ 
metically the mean proportional between lines which are 
2.4 in. and 3.4 in. long respectively. 

6. Find Vt by geometric construction. Measure the 
line and thus determine the approximate arithmetic value. 

7. A map is drawn to the scale of 1 in. to 100 mi. How 
far apart are two places that are 3i in. apart on the map ? 

8. Through a given point P within a given circle 
construct a chord AB such that the ratio 
AP'.BP shall equal a given ratio m:n. 

Construct OPC so that OP:PC=n:m. Then con¬ 

struct CA equal to the fourth proportional to n, m, and 

the radius of the circle. 

9. Given the perimeter, construct a triangle similar to 
a given triangle. 

10. Construct two circles of radii i in. and J in. respec¬ 
tively which shall be tangent externally, and construct a 
third circle of radius 1 in. which shall be tangent to each 
of these two circles and inclose both of them. 
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11. Given a line segment 3.5 in. long, divide it both 

internally and externally in the ratio 3:4. 

If AB is the given segment and P' the external point of division 

(§200), then AP':P'B = 3:4. But AP' = P'B-AB, 
and hence it is possible to compute the length of P'B. 

12. Through a given point P in the arc ^ 

of the chord AB construct a -chord which ^ 

shall be bisected by AB. 

In the figure CD = CP and DE is II to BA. 
B 

13. Through a given external point 

P construct a secant PAB to a given p 

circle so that the ratio PA:AB shall 

equal a given ratio m: n. 

On the tangent PC construct D such that 

PD: DC — m\n. Then construct PA such that PA : PC = PC: PB. Con¬ 

sider any impossible case. 

14. Through a given external point P construct a secant 

PAB to a given circle so that AB = PA • PB, 

If PC is the tangent from P, then PB:PC = 
PC-.PA, or PC^ = PA • PB. But it is required 

that AB^ — PA-PB. What is the relation of 

AB to PC? What is the locus of the midpoints 

of equal chords of a circle ? By constructing a 

tangent, how can you construct the secant PAB 
so that AB = PC ? 

15. Through one of the points of intersection of two 
circles construct a secant such that the 

two chords that are formed shall be in 

a given ratio m: n. 

If X is constructed on the line of centers 

so that OX:XO' = m:n, if MPNis ± to PX, 
and if perpendiculars are drawn from O and O' to MP and PN, what 

follows as to the relation of ilfP to PAT? 
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III. Numerical Relations 

Proposition 18. Side opposite an Acute Angle 

234. Theorem. The square of the side opposite an acute 

angle of any triangle is equal to the sum of the squares 

of the other two sides diminished by twice the product 

of one of those sides and the projection of the other side 
upon it. 

Given the A ARC with an acute ZA, and and b\ the pro¬ 
jections of a and b respectively upon c. 

Prove that 2 Vc. ^ 

Proof. Depending on whether D is between A and B or 

not, we have or a'=6' —c. §5 

Squaring, a'^= 6'^+ 2 b'c. Ax. 6 

Adding to each side of this equation, we have 

h^-^ 6'^+ 2 6'c. Ax. 1 

But h^-\- a'^= a\ and b'^ = b\ § 218 

Substituting (P and b^ for their equals in the above equa- 

tion, we have 2 j Ax. 5 

Pages 191-198, which illustrate the application of algebra to geom¬ 

etry, may be omitted without destroying the sequence. 
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Proposition 19. Side opposite the Obtuse Angle 

235. Theorem. The square of the side opposite the obtuse 

angle of any obtuse triangle is equal to the sum of the 

squares of the other two sides increased by twice the prod¬ 

uct of one of those sides and the projection of the other 

side upon it 

Given the obtuse A ABC with the obtuse ZA, and a' and b'y 
the projections of a and b respectively upon c. 

Prove that 

Proof. a'=6'+c. Ax. 10 

Squaring, a'"=6'2+c"-|-26'c. Ax. 6 

Adding h^ to each side of this equation, we have 

Ax.l 

But 

and §218 

Substituting and b^ for their equals in the above 

equation, we have a^^b^+c‘+2b'c. Ax. 5 

The student should notice that if b swings about A so that /.A 
becomes a rt. Z, then b' becomes 0, and hence a'^ = b^ + c^; in other 
words, we have §218. If A A becomes acute, then 6'passes through 
0 and becomes negative, and hence we have § 234. 
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Proposition 20. Squares of Two Sides 

236. Theorem. The sum of the squares of two sides of 

a triangle is equal to twice the square of half the third 

side, increased by twice the square of the median upon it. 

The difference between the squares of two sides of a 

triangle is equal to twice the product of the third side 

and the projection of the median upon it 

Given the A ABC with 6> a, the median m (or CM), and the 
projection m! of m upon the side c. 

Prove that 6^+ a^= 2 AM^ + 2 

and that b‘^—a^=2 cm'. 

Proof. Z.CMA is obtuse, and /LCMB is acute. §§ 124,18 
Since it is given that 6 > a, M lies between A and D. § 118 

Then V=AM‘+ m‘+2AM-m', § 235 
and a^=MB'‘+m^-2MB- m’. §234 

Since MB = AM{% 132), if we add these equals, we have 

6^+a^=2 AM^+2ml Ax. 1 

Subtracting the second equation from the first, we have 

^ 2 MB) = 2 cm'. Ax. 2 
The student should also consider the proposition when a = b. This 

theorem enables us to compute the medians when the three sides 

are known. 
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Exercises. Numerical Relations 

1. Assuming that the area of a triangle is half the prod¬ 
uct of its base and height, as will be proved later, find the 
area of a triangle in terms of its sides. 

At least one of the zi A and B of the A ABC 
is acute. Suppose that Z.A is acute. 

In the A ADC, = b‘^-AD\ § 218, Ax. 2 

In the A ABC, a^ = b‘^ + c^-2c -AD. § 234 

6-2_^c2-a2 
Then 

Hence 

AD 

h‘^ = b‘^- 

2c 

(62^c2-( 

4c^ 

46V-(62+c^-a^)^ 
4c^ 

(2 6c+62 + c2- c'^ + a^) __a‘-^)(2 _ 

4c‘-^ 

^ [jb + cf - a"][a^ - (6 - c)^] 

4c''^ 

_ (a + 6 + c) (6 + c — a) (a + 6 — c) (a — 6 + c) 

4c^ 

Let a + 6 + c= 2s, where s stands for semiperimeter. 

Then • fe + c —a = a + 6 + c —2a = 2s —2a = 2(s —a). 

Similarly, a + 6 — c = 2 (s — c), 

and a —6 + c =2(s —6). 

Hence ■ 2(s-a) • 2(s - 6) ■ 2(a-c)_ 
4c2 

Simplifying, and finding the square root, we have 
2 _ 

h = - Vs(s — a) (s — b) (s — c). 
c 

Hence area of AABC= \ch = ^sis — a)is — b){s — c). 

This proposition dealing with area is included here on account of its 
relation to the numerical theorems given in §§ 234-236. The subject of 
area will be treated fully in Book IV. Similarly, the propositions of 
§§ 234-238 are sometimes given in Book IV and stated in relation to 
the squares on the lines instead of the squares of the lines as here given. 
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2. Find the area of the triangle with sides 3 in., 4 in., 5 in. 

Do this by substituting in the formula of Ex. 1, and check by the 

familiar rule that the area is half the product of the base and height. 

3. Using Ex. 1, find to the nearest 0.01 sq. in. the area 
of the triangle whose sides are 21 in., 3 in., 4 in. 

4. Find to the nearest 0.01 in. the diagonal of the square 
of which the side is 7 in. 

5. Find to the nearest 0.01 in. the side of the square of 
which the diagonal is 1 ft. 8 in. 

6. The minute hand and hour hand of a clock are 3 in. 
and 2| in. long respectively. How far apart are the ends of 
the hands at 3 o’clock ? 

7. From a point in the ceiling of a room 12 ft. high 
wires are stretched to two points on the fioor 6 ft. and 10 ft. 
respectively from a point directly beneath the one in the 
ceiling. Find to the nearest 0.01 ft. the lengths of the wires. 

8. The sum of the squares of the segments of two 
perpendicular chords of a circle is equal to the square of 
the diameter. 

If AB, CD are the chords, draw the diameter BEy and draw ACy 
ED, BD. Prove that AC=ED. 

9. The difference between the squares of two sides of a 
triangle is equal to the difference between the squares of 
the segments of the third side made by the perpendicular 
to this side from the opposite vertex. 

10. The square of one of the equal sides of an isosceles 
triangle is equal to the square of any line drawn from the 
vertex to the base, increased by the product of the segments 
of the base. 

11. The three sides of a triangle are 3 in., 4 in., 5 in. Find 
to the nearest 0.01 in. the length of any median. 
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Proposition 21. Bisector of an Angle 

237. Theorem. The square of the bisector of an angle 

of a triangle is equal to the product of the sides which 

form this angle diminished by the product of the seg¬ 

ments made by the bisector upon the third side of the 

triangle. _ 

Given the segment d bisecting AC of the A ABC and forming 
the segments s and s' on AB. 

Prove that d‘^=ab — ss'. 

Proof. Circumscribe a O about A ABC (§ 188), produce 
CM to cut the O as at Q (Post. 2), and draw QB(Post. 1). 

Since ic = a;' (§ 11) and since y = y' 172), we see that 

ABCQ is similar to AMCA, § 209 

Hence CQ:b = a:d; § 205 

whence ab = CQ' d = id-{-MQ)d = d‘^+MQ • d. §198,1 

But MQ-d = ss\ §220 

and hence ab = ss'. Ax. 5 

or d^=ab — ss'. Ax. 2 

This theorem combined with that of § 227 enables us to compute the 

bisectors of the angles of a triangle terminated by the opposite sides, 

if the three sides are known. 
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Proposition 22. Product of Two Sides 

238. Theorem. The product of two sides of any triangle 

is equal to the product of the diameter of the circum¬ 

scribed circle and the altitude upon the third side. 

Given the AARC with the altitude CP (or /z), and CD (or d) 
the diameter of the circumscribed O. 

Prove that II 

Proof. Draw BD. Post. 1 

Then /.CPA is a rt. Z, §74 

and /CBD is a rt. Z. §173 

Further, X is measured by \ arc BC, 

and x' is measured by J arc RC, §172 

and hence x = x\ Ax. 5 

AAPC is similar to ADBC. §210 

Hence 

II §206 

and II § 198,1 

This proposition closes the list of propositions of a semialgebraic 

nature in Book III. As stated on page 191, they may be omitted without 

destroying the geometric sequence. They are needed for the exercises 

on page 198, but not for those on pages 199 and 200. 
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Exercises. Numerical Relations 

If Ex, ly page 19Jf, has been solved, find the areas to the 
nearest 0.01 of triangles with sides as follows: 

1. 4, 5, 6. 2. 6, 8, 10. 3. 7, 8, 11. 4. 1.2, 3, 2.1. 

5. In terms of the sides of a given inscribed triangle, 

find the radius of a circle. 

Consider this exercise only in case §238 and 

Ex. 1, page 194, have been studied. 

Let CD be a diameter. By §238, what do we 

know about thQ products CA • BC and CD' CPI 
What does this tell us of ah and 2 r • CP, where r 

is the radius ? From Ex. 1, page 194, what does CP 
equal in terms of the sides? From the above reasoning show that 

abc 
r = —; -: 

4 Vs (s — a) (s — 6) (s — c) 

If Ex. 5 has been solved, compute the radii to the nearest 
0.01 of the circles circumscribed about triangles with sides 
as follows: 

6. 3, 4, 5. 7. 27, 36, 45. 8. 7, 9, 11. 9. 10, 11, 12. 

10. Find the medians of a triangle in terms of its sides. 

Omit if § 236 has not been studied. What 

do we know about a^ + 6^ as compared with 
2m2+2(^c)2? 

From this relation show that for the me¬ 

dian m in this figure, 

m = I V2(a2-l-6^) —c^. 

If Ex. 10 has been solved, find to the nearest 0.01 the three 
medians of triangles with sides as follows: 

11. 3, 4, 5. 12. 6, 8, 10. 13. 6, 7, 8. 14. 7, 9, 11. 

15. Find the altitude of a triangle of which the base is 

4 in. and the other sides are 3 in. and 2.5 in. respectively. 
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Exercises. Review 

1. Omitting §§ 234-238, make a list of the numbered 
propositions in Book III, stating under each the proposi¬ 
tions in Books I-III upon which it depends either directly 
or indirectly. 

2. Omitting §§234-238, make another list of the num¬ 
bered propositions, stating under each the propositions in 
Book III which depend upon it. 

3. The tangents to two intersecting circles, constructed 
from any point in their common chord produced, are equal. 

4. The common chord of two intersecting circles, if pro¬ 
duced, bisects their common tangents. 

5. If two circles are tangent externally, the common 
internal tangent bisects the two common external tangents. 

6. If three circles intersect one another, the common 
chords pass through the same point. 

Let two of the chords, AB and CD, meet 

at O. Join the point of intersection E to O, 

and suppose that EO produced meets its two 

circles at two different points P and Q. Then 

prove that OP=OQ(§ 220), and hence that 

the points P and Q coincide. 

7. If the bisector of an exterior angle of a triangle meets 
the opposite side produced, the square of this segment 
of the bisector is equal to the prod- e^^ 
uct of the segments determined by jc 
it upon the opposite side, dimin¬ 
ished by the product of the other two 
sides of the triangle. 

In proving that PC, let CP bisect the exterior 

ZBCX of the ^ABC. Then prove that A ADC and EBC are similar 

(§ 209), and apply § 223. 
PS 
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8. If the line of centers of two circles meets the circles 
at the consecutive points A, B, C, A and meets the common 
external tangent at P, then PA-PD =PB-PC. 

9. The line of centers of two circles meets the common 
external tangent at P, and a secant is drawn from P, cutting 
the circles at the consecutive points W, X, Y, Z. Prove that 
PW-PZ=PX-PY. 

Draw radii to the points of contact, and to W, X, Y, Z. Construct 

perpendiculars upon PZ from the centers of the circles. 

10. In a circle with a radius of 6 in., chords are drawn 
through a point 2 in. from the center. What is the product 
of the segments of each of these chords ? 

11. The chord AB is 6 in. long and is produced through 
B to the point P so that PB = 24 in. Find the length of the 
tangent to the circle from P. 

12. Two line segments AB and CD intersect at O. How 
would you ascertain, by measuring OA, OP, 00, and OP, 
whether the four points A, P, O, and P lie on the same circle ? 

13. This figure shows a center square, an instrument for 
finding the centers of circular objects. The moveable head 
which has the arms OA and OP 
can be fixed by a set screw on 
the blade 00, which always bi¬ 
sects the ZPOA. Show that, if 
OA and OP rest on a circle, 00 
passes through the center, and 
that by placing the square in 
two positions the center of the circle can be determined. 

14. If three circles are tangent externally each to the 
other two, the tangents at their points of contact pass 
through the center of the circle inscribed in the triangle 
formed by joining the centers of the three given circles. 
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AREAS OF POLYGONS 

1. Fundamental Theorems 

239. Area. If a rectangular piece of paper is 6 in. long 
and 4 in. wide, we may represent the rectangle by the 
figure here shown. We then see that there are 4 small 
squares in each column and that 
there are 6 columns; hence there 
are 6X4 small squares in the 
whole rectangle. Each of these 
squares is 1 in. on a side, and we 
define the area of such a square 
as one square inch (1 sq. in.). 

Each of the small squares is called a unit of area. The 
area of the piece of paper is 6 X 4 sq. in., or 24 sq. in. 

As with the unit of length, a precise definition of these terms for 

the purposes of proof is unnecessary. Among the common units of 

area are 1 sq. in., 1 sq. ft., and 1 sq. mi. Sometimes a unit is taken that 

is not commonly in the form of a square, as in the case of the acre; 

but this measure contains 160 sq. rd., so that the fundamental unit 

in this case is 1 sq. rd. 

In case the sides of a rectangle are considered as incom¬ 
mensurable (§ 164), the subject of areas requires special 
treatment in a manner similar to that used in § 517. For 
the present we shall consider the line segments used in 
Book IV as commensurable, as they are for all practical 

purposes of measurement. 
PS 
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240. Equivalent Figures. Figures that have equal areas 
are called equivalent figures. 

For example, the figures shown below are equivalent, 
since the area of each figure is 24 times the area of one 
of the small squares of the coordinate paper. 

Since congruent figures can be made to coincide, such 
figures are manifestly equivalent. Equivalent figures can¬ 
not usually be made to coincide, however, and hence they 
are not usually congruent, as is seen above. 

Of the above rectangles, A and B are both congruent and 
equivalent; B and C are equivalent but not congruent, and 
similarly for A and C. 

Since the word "congruent” means identically equal, the word 

'' equal ’ ’ is commonly used to mean equivalent. Thus, since their 

areas are equal, equivalent figures are frequently spoken of as equal 

figures. The symbol = may be used both for "equivalent” and for 

" congruent,” as the conditions under which it is used will determine 
which meaning is to be assigned to it. 

In propositions relating to areas the word " rectangle ” is commonly 
used for area of the rectangle, and similarly for other plane figures. 

It is also the custom to speak of the product of two line segments 

when we mean the product of their numerical measures. 
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24L Area of a Rectangle. From the preceding discussion 
we may assume as true the statement that 

The area of a rectangle is the product of the base and the 
altitude. 

In case the sides have a common unit of measure, this is readily 

proved from the figure of § 239. In case they have no common measure, 

the proof is similar to the one given in § 517. 

If the base is 3 in. and the altitude 2 in., the area is 3 X 2 sq. in., or 

6 sq. in. This is the meaning of the expression '' the product of the base 

and the altitude.’^ 

In industrial work 2.' is used for 2 ft. and 2" for 2 in. 

If R stands for the number of units of area of a rectangle 
of base b units and altitude h units, the above statement 
may be written 

R = bh; - 
T> 

whence 6 = -r-» R h 
h 

A h ^ ^ 

and ^~'b' 

formulas that we sometimes use in measuring rectangles. 

242. Ratio of Two Rectangles. In considering the areas of 
two rectangles R and R' we see that 

R _bh 
R' b'h'^ 

Then if h' = h, we have 

R^bh^b, 

R' b'h 6" 

that is, rectangles with equal altitudes are to each other as 

their bases. 
Similarly, rectangles with equal bases are to each other as 

their altitudes. 
As stated in §240, the word rectangles ” is here used for the 

areas of rectangles. 

PS 
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Exercises. Areas of Rectangles 

1. Find the ratio of a lot 180 ft. long and 120 ft. wide 
to a field 80 rd. long and 40 rd. wide. 

2. A square and a rectangle have equal perimeters of 
576 in., and the length of the rectangle is five times the 
width. Which has the greater area ? How much greater ? 

3. On a certain map the linear scale is 1 in.=20 mi. 
How many acres are represented by a square | in. on a side ? 

4. Find the area of a gravel walk 7 ft. wide which sur¬ 
rounds a rectangular plot of grass 80 ft. long and 50 ft. wide. 

5. Find the number of rods in the perimeter of a square 
field that contains exactly an acre. -jr~l 

6. Find the number of square inches 
in the cross section of this L beam. 4 J 

7. A machine for planing iron plates 
planes a surface 1 in. wide and 9 ft. long 
in 1 min. At the same rate per square 
inch, how long does it take to plane a 
plate 12 ft. long and 6 in. wide, allowing 
28min. for adjusting the machine during the process? 

8. How many tiles, each 6 in. square, does it take to 
cover a floor 36 ft. 6 in. long by 18 ft. wide ? 

9. The length of a rectangle is four times the width. 
If the perimeter is 120 ft, what is the area ? 

10. Along two adjacent sides of a rectangular field 120 rd. 
long and 80 rd. wide a road 4 rd. wide is laid out inside the 
field. How many acres are taken for the road ? 

11. From one end of a rectangular sheet of iron 12 in. 
long a square piece is cut off such that it leaves 36 sq. in. 
in the rest of the sheet How wide is the sheet ? 
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Proposition 1. Area of a Parallelogram 

243. Theorem. The area of a parallelogram is the 

product of the base and the altitude. 

Given the OJABCD with base h and altitude h. 

Prove that the area of OJABCD = bh. 

Proof. At B construct BX J_ to CD, or CD produced, and 
at A construct AY -L to CD, or CD produced. § 105 

The only cases which require special attention are shown above. 

Then ArislltoSX. §57 

ABXY is a □ with base 6 and altitude h. § 72 

Since AY=BX and AD=BC, § 78 

then rt. AADY is congruent to rt. A BOX. § 71 

Now, considering the quadrilateral ABCY, we have 

ABCY- A BCX = □ ABXY, 

and ABCY~AADY=nABCD. Ax. 10 

But ABCY-ABCX=ABCY-AADY, Ax. 2 

and hence aABXY^^CJABCD. Ax. 5 

But C]ABXY=bh. §241 

.•.OABCD = hh. Ax. 5 

By this theorem we have proved the correctness of a formula with 

which the student has long been familiar. 
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Proposition 2. Area of a Triangle 

244. Theorem. The area of a triangle is half the product 

of the base and the altitude. 

Given the A ABC with base b and altitude h. 

Prove that the area of AA5C= I hh. 

Proof. With CA and AB as adjacent sides construct the 
OABDC. § 107 

Then /\ABC = { OABDC. § 77 
But OABDC =hh. §243 

.\AABC=lhh. Ax. 4 

245. Corollary. Triangles with equal bases and equal alti¬ 
tudes are equivalent; and similarly for parallelograms. 

For, whatever the shape, the area of the A is ^ hh, and the area of 
the EJ is hh. 

246. Corollary. Triangles with equal bases are to each 
other as their altitudes; triangles with equal altitudes are 
to each other as their bases; any two triangles are to each 
other as the products of their bases and altitudes; and 
similarly for parallelograms. 

Has this been proved for E] ? What is the relation of a A to a d 

of equal base and equal altitude? What must then be the relations 
of A to one another ? Can the same be proved for [U ? 
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Proposition 3. Area of a Trapezoid 

247. Theorem. The area of a trapezoid is half the 

product of the altitude and the sum of the bases. 

Given the trapezoid ABCD with bases h and b' and altitude h. 

Prove that the area of ABCD = J (6 -f 6'). 

Proof. Draw the diagonal AC. Post. 1 

Then AABC=i~bh, 

and AACD = l-b'h. §244 

Hence ABCD=^lbh + \b'h‘, Ax. 1 

that is, ABCD = lh{b + b'). 

248. Area of an Irregular Polygon. The area of an irregular 
polygon may be found by dividing the polygon > 
into triangles and trapezoids and then find- ^ 
ing the area of each of these triangles and r' \ 

trapezoids separately. -4 
A common method used in land surveying is as U-- 

follows : Draw the longest diagonal, construct perpen- \. -y 
diculars upon this diagonal from the other vertices of 

the polygon, as shown in the figure, and then measure 

each of the dotted lines. The sum of the areas of the right triangles, 

rectangles, and trapezoids thus formed is the area of the polygon. 

The student should see that he can now measure any rectilinear figure. 
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Exercises. Areas 

1. Find the area of a trapezoid of which the bases are 
17 in. and 13 in. respectively and the altitude is 7.5 in. 

2. A railway embankment is 30 ft. 
high, 80 ft. wide at the top, and 116 ft. 
wide at the bottom. Find the area of 
the cross section. 

3. A canal is 36 ft. deep, 240 ft. wide at the top, and 
200 ft. wide at the bottom. Find the area of the cross section. 

4. A polygon of six sides is made up of six congruent 
triangles such that the base of each triangle is 4 in. and 
its altitude is 2V3in. Find the area of the polygon to the 
nearest 0.1 sq. in. 

5. In surveying the field here shown a 
surveyor laid off a north-and-south line NS 
through A and then found that = 6 rd., 
CC"=10 rd.,DD'= 7 rd., R'A=8rd., B'C'==12 rd., 
C'D'= 4rd. Find the area of the field. 

6. In Ex. 5, what would be the area if each 
of the given measurements were doubled? 

7. The area of a trapezoid is the product of the alti¬ 
tude and the line segment joining the midpoints of the 
nonparallel sides. 

8. Find the area of the cross section of 
the steel girder here shown. 

9. In Ex. 8, what would be the area if 
each of the given measurements were multi¬ 
plied by three ? 

10. The product of the sides forming the* 
right angle of a right triangle is equal to ' 
the product of the hypotenuse and the altitude upon it. 
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Proposition 4. Ratios of Areas of Triangles 

249. Theorem. If an angle of one triangle is equal to 

an angle of another^ the triangles are to each other as 

the products of the sides forming the equal angles. 

Given the ^ABC and ADE with the common ZA. 

Prove that A ABC _AB -AC 
A ADE AD-AE' 

Proof. Draw 

Then 

and 

BE, 

A ABC _ AC 
A ABE Ae' 

AABE _AB 
A ADE ad' 

Post. 1 

§246 

because A with equal altitudes are to each other as their bases. 

Since we are considering numerical measures, we may 
treat the terms of these proportions as numbers. 

Taking the product of the first members and the product 
of the second members of these equations, we have 

AABE-AABC _AB-AC 3 
AADE • A ABE AD-AE' 

Then, canceling AABE, we have the proportion 

AABC _AB -AC 
AADE AD-AE' 
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Proposition 5. Similar Triangles 

250. Theorem. The areas of two similar triangles are to 

each other as the squares on any two corresponding sides. 

Given the similar AABC and A'B'C', 

Prove that AABC _ 
AA'B'C' 

Proof. Since AABC is similar to AA'B'C\ 

we have ZA = ZA'. 

AABC _ he 
■ 7 f / ’ be 

Then 
AA'B'C' 

because • • • the A are to each other as the products of the 

sides forming the equal A ; 

Given 

§205 

§249 

that is, 

But 

AABC b c 
AA’B'C' b' c' 

— = — 
b'~c'' 

or 

Substituting for its equal, ^»we have 
c 0 

AABC _£ £ 
AA'B'C ~ c'’ c'* 

AABC __ 
AA'B'C c'"’ 

§205 

Ax. 5 
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Proposition 6. Areas of Polygons 

251. Theorem. The areas of two similar polygons are to 

each other as the squares on any two corresponding sides. 

Given two similar polygons with areas S and S' respectively. 

Prove that * 
S' a'" 

Proof. By drawing all the diagonals from any two corre¬ 
sponding vertices the two similar polygons are separated 
into the similar AP, P'; Q, Q'; P, R\ §225 

Then 
^ 6^“ AP a" 

AP' c'“ AQ' b'^~AP' a'^‘ 
§250 

Hence 
AR _ AQ AP 
AR' AQ’ AP’’ 

Ax. 5 

Then 
AR+AQ+AP AP. 
AP'+AQ'+AP' AP' 

§ 198, 8 

But 
AP a\ 
AP' a"‘ 

Proved 

Then 
AR+AQ+AP 

AP'+AQ'+AP' a'"' 
Ax. 5 

and hence 
S_ a" 
S' a'"’ 

Ax. 10 
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Proposition 7. Pythagorean Theorem 

252. Theorem. The square on the hypotenuse of a right 

triangle is equivalent to the sum of the squares on the 

other two sides. 

Given the rt. A ABC with the rt. Z C, and the squares con¬ 
structed on the sides a, 5, c respectively. 

Prove that c^=a^-\- 

Proof. Construct CXII to AR (§ 107), and draw BQ and CR. 
Since x and z are rt. Z, then XPCB is a st. Z. §13 
Hence PCB is a st. line; and similarly for ACN. §18 

Then AR = AB, AC = AQ, §15 
and zrac=a:baq. Ax.l 

AARC is congruent to AABQ. §40 
But [DAX=2AARC, §244 
because they have the same base AR and the same altitude RX. 

Similarly, V=2 AABQ = 2 AARC. 

□^X=6". Ax. 5 
Similarly, 

nAX+nBX=b^+a\ OYc^=a^-\-h\ Ax.l 
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253. Corollary. The square on either side of a right tri¬ 

angle is equivalent to the difference between the square on 

the hypotenuse and the square on the other side. 

For, since § 252 

then c^—a^=b‘\ Ax. 2 

254. Pythagorean Theorem. The fact that the square on 
the hypotenuse is equivalent to the sum of the squares on 
the other two sides has, of course, long been known to the 
student. It is usually learned in arithmetic, and we have 
already given an algebraic proof in §218. Various geo¬ 
metric proofs may be given, but the one in § 252 is the 
most satisfactory for beginners. This proof is attributed 
to Euclid, a famous mathematician who lived in Alexandria, 
in Egypt, about 300 B.C. Euclid wrote the first great text¬ 
book on geometry, and taught in the world's first great 
university, an institution founded by one of the Greek 
kings of Egypt. 

It is thought, as stated in § 218, that Pythagoras gave 
the first proof of this theorem about 525b.c., but it is not 
certain that he did so. Pythagoras founded the world's 
first great school of mathematics at Crotona, in the south¬ 
eastern part of Italy, which was then a Greek colony. 

If § 218 has been thoroughly mastered, § 252 may be omitted. 

From a study of the theorem we see that the diagonal 
and side of a square are incommensurable. 

For = + 

or (P = 2s^. 

Hence d = s V2. 

Since V2 may be carried to as many decimal places 
as we please, but cannot be exactly expressed as a rational number, it 

has no common measure with 1. That is, - = V2, an incommensurable 

number, and hence the diagonal and side are incommensurable. 
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Exercises. Areas 

Find the areas of the 'parallelograms 'whose bases and 
altitudes are respectivel'y as follows: 

1. 4.5 in., 2f in. 2. 5.4 ft, 2.4 ft 3. 4 ft 6 in., 14 in. 

Find the areas of the triangles whose bases and altitudes 
are respectivel'y as follows: 

4. 2.8 in., 3 in. 5. 13 ft, 6 ft 6. 4 ft 6 in., 2 ft 

Find the areas of the trapezoids whose bases are the first 
two of the following numbers, and whose altitudes are the 
third numbers: 

7. 2|ft, lift; 5in. 8. 4ft 7in., 3 ft; 16in. 

Fmd the altitudes of the parallelograms whose areas and 
bases are respectively as follows: 

9. 20sq.in., lOin. 10. 8 sq. ft, 3 ft 11. 7 sq. ft, 2 ft 

Fi'ud the altitudes of the triangles whose areas and bases 
are respectively as follows: 

12. 9 sq. in., 4 in. 13. 7 sq. ft, 2 ft 14. 11 sq. yd., 3 yd. 

15. Find the altitude of the trapezoid whose area and 
bases are 33 sq. in., 5 in., and 6 in. respectively. 

Given the sides of a right triangle as follows, find the 
hypotenuse to the nearest 0.01 ft.: 

16. 60 ft., 80 ft 17. 40 ft, 60 ft. 18. 7 ft. 6 in., 9 ft. 

Given the hypotenuse and one side of a right triangle as 
follows, find the other side to the nearest 0.01ft.: 

19. 25 ft., 20 ft 20. 20 ft., 12 ft. 21. 3 ft. 4 in., 2 ft 
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E 

B 

22. The square constructed upon the sum of two line 
segments is equivalent to the sum of the 
squares constructed upon the two segments, 
increased by twice the rectangle of the 
segments. 

Given the two line segments AB and BC, their 

sum AC, and the squares AG and AE constructed 

upon AC and AB respectively. Complete the figure as shown. Then 

the square AG is the sum of the squares AE, EG and the CD DE, CE. 
This proves geometrically the algebraic formula 

(a + 6)2=2 a6 4- 6^. 

23. The square constructed upon the difference between 

F 

E 

B 

two line segments is equivalent to the sum 
of the squares constructed upon the two 
segments, diminished by twice the rectangle 
of the segments. 

Given the two line segments AB and AC, their 
difference BC, the square AF constructed upon AB, 
the square AG upon AC, and the square CE upon 
BC. Complete the figure as shown. Then the square CE is the differ¬ 

ence between the whole figure and the sum of two rectangles. 
This proves geometrically the algebraic formula 

(a — hf = d^—2ah-{- b^. 

24. The difference between the squares constructed upon 
two line segments is equivalent to the rectangle of the sum 
and difference of these lines.’ 

Given the squares AD and CE constructed upon 

AB and BC respectively. Show that the difference 

between the squares AD and CE is equivalent to 
the □ AF, with dimensions AB -f- BC and AB — BC. 

This proves geometrically the algebraic formula 

a‘^-b-‘=(a + b)(a-b). " ^ 

Before our present algebra was invented the algebraic laws given 

in Exs. 22-24 were proved as above by geometry. 

E 
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25. An extension ladder 77 ft. long is placed with its top 

against a wall, and its foot 46.2 ft. from the base of the 

wall. How high, to the nearest 0.1 ft, does the ladder 

reach on the wall ? 

Sun 

26. Galileo (1564-1642), who was the first to use the tele¬ 

scope in astronomy, found the height of a mountain on the 

moon by the aid of the Pythagorean Theo¬ 

rem. On a map of the moon he measured the 

distance d from the top of the mountain M 
when it was touched by the sun's rays to the 

line dividing the light half of the moon from 

the dark half. Representing the height by h and the radius 

of the moon by r, he saw that 

{h + rf=7^+d\ 

Find h, given that the radius of the moon is 1081 mi. 

Students who have had quadratics should solve this equation for h, 
then substitute 1081 for r, and find that /i=—lOSl+VlOSl^+cJ^ where 

h is in miles. An approximate solution in feet is h = 2.44 d^. 

27. Find a formula for the altitude h of an equilateral 

triangle in terms of its side s. 

28. Find a formula for the side s of an equilateral triangle 

in terms of its altitude h. 

29. If A is the area of an equilateral triangle with side 

s, prove that A = ls^ Vs. 

30. Find the length of the longest chord and of the 

shortest chord that can be drawn through a point 1 ft. 

from the center of a circle with a radius of 20 in. 

31. If the diagonals of a quadrilateral intersect at right 

angles, the sum of the squares on one pair of opposite sides 

is equivalent to the sum of the squares on the other pair. 

32. The area of a rhombus is half the product of its 

diagonals. 
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33. Two triangles are equivalent if the base of the first 

is equal to half the altitude of the second, and the altitude 

of the first is equal to twice the base of the second. 

34. The area of a circumscribed polygon is half the 

product of the perimeter of the polygon and the radius of 

the inscribed circle. 

35. If equilateral triangles are constructed on the sides of 

a right triangle, the triangle on the hypotenuse is equiva¬ 

lent to the sum of the triangles on the other two sides. 

36. If similar polygons are constructed on the sides of a 

right triangle as corresponding sides, the polygon on the 

hypotenuse is equivalent to the sum of the polygons on the 

other two sides. 

Ex. 36 is one of the general forms of the Pythagorean Theorem. 

37. Every line drawn through the intersection of the 

diagonals of a parallelogram bisects the parallelogram. 

38. If lines are drawn from any point within a parallelo¬ 

gram to the four vertices, the sum of either pair of triangles 

with parallel bases is equivalent to the sum of the other pair. 

39. If a quadrilateral with two sides parallel is bisected 

by either diagonal, the quadrilateral is a parallelogram. 

40. The line that bisects the bases of a trapezoid divides 

the trapezoid into two equivalent parts. 

41. The triangle formed by two lines drawn from the 

midpoint of either of the nonparallel sides of a trapezoid 

to the opposite vertices is equivalent to half the trapezoid. 

42. The sides of a triangle are 1.4 in., 1.2 in., and 1.4 in. 

respectively. Is the largest angle acute, right, or obtuse ? 

43. The sides of a triangle are 9.5 in., 14.1 in., and 17 in. 

respectively. Is the largest angle acute, right, or obtuse ? 
PS 
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44. Find to the nearest 0.1 sq. in. the area of an isosceles 

triangle whose perimeter is 28 in. and whose base is 8 in. 

45. Upon any two sides AC and BC of a given ^ABC 
the HJ CM and CN are constructed. 

Two sides of these parallelograms 

are produced to meet at P as here 

shown, the line PC is drawn and M. 
produced so that QR = PC, and then 

the CJAT is constructed with BT 
equal to and parallel to QR, Prove that CM-\-CN = AT. 

This interesting generalization of the Pythagorean Theorem is due 

to the Greek geometer Pappus, about A.D. 300. It is not difficult to 

derive the Pythagorean Theorem from it by starting with a right 

triangle and by making CM and CN squares. 

46. Prove the Pythagorean Theorem by 

using this figure. 

Show that the four large right triangles are con¬ 

gruent. If the two triangles marked T and T' are 

taken from the whole figure, there remains the sum 

of the squares on the two sides. If the other two triangles are taken 

from the whole figure, there remains the square on the hypotenuse. 

47. Find the area of a right triangle if the hypotenuse 

is 3.4 in. and one of the other sides is 1.6 in. 

48. Find the ratio of the altitudes of two equal triangles 

if the base of one is 3 in. and that of the other is 9 in. 

49. The bases of a trapezoid are 68 in. and 60 in., and 

the altitude is 4 in. Find the side of a square with the 

same area.^ 

50. The cross section of a V-thread on 

a screw is an equilateral triangle. The 

distance p between successive threads 

is known as the pitch of the thread, and the distance d as the 

depth of the thread. If p = J in., what is the value of d ? 
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II. Fundamental Constructions 

Proposition 8. Sum of Two Squares 

255. Problem. Construct a square equivalent to the 
sum of two given squares. 

a2 

! 

B 

a 

1 t 1 

C\ 

a b ' C > b Ai 

Given the squares and W with sides a and h respectively. 

Required to construct a square equivalent to a^+ W. 

Construction. On any line construct the rt. ZC(§104), 

and on its arms take CB = a and CA = b. 

Draw AB, or c. Post. 1 

With c as a radius, construct the required square c^ by 
drawing arcs as shown. Post. 4 

Proof. c^=a^-{'b^» §252 

256. Purpose of These Constructions. Since the area of a 
square is easily found, it is often advantageous to trans¬ 
form a rectilinear figure into a square. It is also helpful 
to combine several squares into a single square, by first 
finding a square equivalent to two of the squares, and then 

combining this square with a third one, and so on. 

The student may omit §§ 255-260 without interfering with the sub¬ 

sequent work, and should omit §§ 261 and 262 unless preparing for more 

advanced work in mathematics. In some courses §257 is required. 
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Proposition 9. Transforming a Polygon 

257. Problem. Construct a triangle equivalent to a 

given polygon. 

Given the polygon ABCDEF. 

Required to construct a A equivalent to ABCDEF. 

Construction. Let B, C, and D be any three consecutive 
vertices of the polygon. 

Draw the diagonal DB. Post. 1 

From C construct a line II to DB. §107 

Produce AB to meet this line at Q, Post. 2 

and draw DQ. Post. 1 

Similarly, draw EQ, and from D construct a line II to EQ, 

meeting AB produced at R, and draw ER. 

Continue to reduce the number of sides of the polygon 
until the required AEPR is obtained. 

Proof. Polygon AQDEF has one side less than ABCDEF. 

Now ABDEF is common to both polygons, 

and ABQD = ABCD. § 245 

.*. AQDEF=ABCDEF. Ax. 1 

Similarly, AREF=AQDEF, 2indEPR = AREF. 
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Proposition 10. Transforming a Parallelogram 

258. Problem. Construct a square equivalent to a given 

parallelogram. 

Given the EJABCD with base b and altitude h. 

Required to construct a square equivalent to EJABCD. 

Construction. On any line take NP = h and PM — b. 
Construct the mean proportional s to /i and b. § 232 
With s as radius, construct the required square s^ by 

drawing arcs as shown. Post. 4 

Proof. Since s is _L to NMy Const. 

then h:s = s:b. §217 

.\s^=bh. § 198,1 

But OABCD = bh. §243 

.\s^ = nABCD. Ax. 5 

259. Corollary. Construct a square equivalent to a given 

triangle. 
Construct s so that h:s = s:\h. 

260. Corollary. Construct a square equivalent to a given 

polygon. 
Reduce the polygon to an equivalent A (§ 257), and then construct a 

square equivalent to this A (§ 259). 
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Exercises. Constructions 

1. Construct a square which shall have twice the area 
of a given square. 

2. Construct a triangle equivalent to the sum of any 
two given triangles. 

3. Construct a right triangle equivalent to a given 
oblique triangle. 

4. Construct a rectangle equivalent to a given parallelo¬ 
gram, and with its altitude equal to a given line. 

5. Construct a triangle equivalent to a given triangle, 
and with one side equal to a given line. 

6. Construct a right triangle equivalent to a given tri¬ 
angle, and with one of the sides of the right angle equal 
to a given line. 

7. Construct a right triangle equivalent to a given tri¬ 
angle, and with its hypotenuse equal to a given line. 

8. Divide a given triangle into two equivalent parts by 
a line through a given point P in the base. 

9. Construct a polygon similar to two given similar 
polygons and equivalent to their sum. 

Exs. 9-12 are often given in older geometries as fundamental con¬ 

structions, but in later textbooks they are usually omitted or are 

given as optional problems. Since they are not needed in proving other 

propositions, they may be omitted except by students who are special¬ 
izing in mathematics. 

10. Construct a polygon similar to a given polygon and 
such that it has a given ratio to it. 

11. Construct a polygon similar to a given polygon and 
equivalent to another given polygon. 

12. Construct a square which shall have a given ratio to 
a given square. 



§261 SUPPLEMENTARY CONSTRUCTIONS 223 

III. Supplementary Constructions 

Proposition 11. Constructing a Parallelogram 

261. Problem. Construct a parallelogram equivalent 

to a given square, and with the sum of its base and 

altitude equal to a given line. 

Given the square with side s, and the line AB, 

Required to construct a O equivalent to s\ and with the 
sum of its base and altitude equal to AB. 

Construction. Bisect AB as at O (§ 102), and with O as 
center and OA as radius, construct a semicircle (Post. 4). 

At A construct a ± to AB (§ 104), and on it take AC=s. 

At C construct CD II to ABy cutting the O at P. § 107 

At P construct PQ J- to AB. § 105 

Then any O, as M, with A Q for altitude and QB for base 
is equivalent to 

Proof. Since^Q :PQ=PQ: QB^ 217), then Pq'‘=AQ-QB, 
and since PQ is II to CA (§ 67), we have PQ = CA=s(§ 80). 

.•.AQ-QB=s\ Ax. 6 

Then M=AQ ■ QB= s\ § 243, Ax. 5 
This theorem solves geometrically the equations x^y — a^xy — h. 
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Proposition 12. Constructing a Parallelogram 

262. Problem. Construct a parallelogram equivalent to 

a given square^ and with the difference between its base 

and altitude equal to a given line. 

Given the square with side 5, and the line AB. 

Required to construct a O equivalent to s^, with the differ¬ 
ence between its base and altitude equal to AB. 

Construction. Bisect AB as at O (§ 102), and with O as 
center and OA as radius, construct a O (Post. 4). 

At A construct a tangent to the O, §195 

and on it take AC=s. 

Through 0 draw CD as shown. Post. 1 

Then any O, as CM, with CD for its base and CE for its 
altitude, is equivalent to s^. 

Proof. CD:s = s: CE. §222 

:.s^=CD^CE. § 198,1 

But CM= CD • CE. §243 
.*. CM=sl Ax. 5 

Also, CD-CE=ED=AB. § 134, 3 
By this theorem we solve geometrically the algebraic problem of 

finding x and y in the equations x — y = a,xy = b. 
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Exercises. Review 

1. Omitting §§255-262, make a list of the numbered 
propositions in Book IV, stating under each the proposi¬ 
tions in Books I-IV upon which it depends either directly 
or indirectly. 

2. This figure shows an angle cut by parallel lines. Prove 
that x = ah, and thus show that we may 
construct a line segment equal to the prod¬ 
uct of two line segments. 

We thus see that we may think of a line, as well 

as a rectangle, as representing the product of two line segments. 

3. Draw a figure of about this shape. 
Then construct a triangle equivalent to this 
polygon. Finally, construct a square equiva¬ 
lent to the triangle, measure the square, and 
thus find the area of the original polygon. 

4. Construct a square equivalent to the difference be¬ 
tween two given squares. 

5. This figure represents the cross section of a barn. 
Find the area of the section. 

In finding the number of cubic feet in the barn 

we multiply the area of the cross section by the 

length of the barn. This shows a reason for finding 

the areas of the cross sections of barns, pipes, canals, 

railway embankments, and the like. 

6. In this figure the [JJBCDA and ECDF are equivalent. 
Prove that the triangle formed by join¬ 
ing F to A and B is equivalent to either , 
parallelogram. 

7. In the figure of Ex. 6 draw the ^ ^ 
diagonals AC and FC. Then prove the 
quadrilateral ACFD equivalent to either parallelogram. 
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8. In surveying the field ABCD a sur¬ 
veyor runs a north-and-south line through 
A, and from it lays off the CC\ and 
DD\ By measuring he finds that BB'=SS rd., 
CC' = 35 rd., DD' = 14 rd., B'A=2S rd., B'C'= 
42 rd., and AZ)' = 26rd. Find the area of 
the field in square rods; in acres. 

9. Wishing to find the area of a field ABCD bounded 
on one side by a river, a surveyor made a map as here 
shown by constructing the Ji AD, 
P'P, Q’Q, R'R, BC to AB, He found 
that AP' = 26 rd., P'Q' = 18 rd., Q’R' 
= 23rd., i2'5 = 18rd., AL> = 35rd., ^__ 
PP'=42rd., QQ'=32rd.,i?iJ'=38rd., 
^C=35rd. Find the approximate area of the field. 

10. In this figure, ABCD is a parallelogram. Prove that 
APQB is equivalent to APR A, 

11. Generalize Ex. 10 by first let¬ 
ting P move down to rest on the 
line DC and seeing if Ex. 10 holds 
true. Then let P move down below 
DC so as to lie within the parallelo¬ 
gram, and let Q lie on AP produced and R on BP produced. 

12. If P is any point in the diagonal AC of OABCD, then 
AABP is equivalent to AAPD. 

13. A surveyor wishes to divide a field APCD into two 
equivalent parts by a line DP drawn 
from the vertex D. How should he 
proceed to do it ? 

Let M bisect AC and construct MP II to 

DB. From this suggestion show how the 

surveyor solved the problem. 
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REGULAR POLYGONS AND THE CIRCLE 

I. Fundamental Theorems 

263. Regular Polygon. A polygon that is both equiangular 
and equilateral is called a regular polygon (§ 92). 

264. Circumscribed and Inscribed Circles. It will be proved 
in §§ 269 and 270 that a circle can be circumscribed about, 
and a circle can be inscribed in, any regular polygon (§ 156), 
and that these circles are concentric (§ 157). 

265. Radius. The radius of the circle circumscribed about 
a regular polygon is called the radius of 
the polygon. 

In this figure, r is the radius of the polygon. 

266. Apothem. The radius of the circle 
inscribed in a regular polygon is called 
the apothem of the polygon. 

In the figure, a is the apothem of the polygon. The apothem is evi¬ 

dently perpendicular to the side of the regular .polygon (§ 147). 

267. Center. The common center of the circles circum¬ 
scribed about and inscribed in a regular polygon is called 
the center of the polygon. 

268. Angle at the Center. The angle between the radii 
drawn to the extremities of any side of a regular polygon 
is called an angle at the center of the polygon. 

In the figure, m is an angle at the center of the polygon. 
227 
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Proposition 1. Circumscribed Circle 

269. Theorem. A circle can he circumscribed about any 

regular polygon. 

Given the regular polygon ABODE. 

Prove that a O can be circumscribed about ABODE. 

Proof. Let O be the center of a O constructed through 
three vertices A, B, C of the polygon. §190 

Draw OA, OB, 00, OD. Post. 1 
Then OB =00. § 134,1 
Further, AB=OD. §263 
Also, ZOBA = ZDOB, §263 

and ZOBO = ZOOB. §42 

/. ZOBA = ZDOO. Ax. 2 
Then AOAB is congruent toAODO, §40 

and hence OA = OD. §38 
Then the’ O through A, B, G passes through D. § 134,6 

In like manner, it can be proved that the O through B, C, 
and D passes through E\ and so on. 

Hence the O constructed with O as center and OA as 
radius is circumscribed about the polygon. § 156 



§§269-273 CIRCLES AND A POLYGON 229 

Proposition 2. Inscribed Circle 

270. Theorem. A circle can he inscribed in any regular 
polygon, ^_ 

Given the regular polygon P. 

Prove that a O can he inscribed in P. 

Proof. Let 0 be the center of the O circumscribed about 
polygon P. § 269 

Since the sides of P are equal chords of the circum¬ 
scribed O (§ 156), they are equidistant from O. § 150 

Hence the G constructed with O as center and with the 
± OA as radius (§ 146) is inscribed in the polygon. § 156 

271. Corollary. The angles at the center of any regular 
polygon are equal, and each is supplementary to an interior 
angle of the polygon. 

The A at the center are corresponding A of congruent A. 

Further, in the figure of § 269, AAOB + Z OB A + ABAO = 180°, and 

ZBAO = ZCBO. Hence ZAOP + ZCPA =180° 

272. Corollary. An equilateral polygon inscribed in a circle 
is a regular polygon. 

Why are the A also equal ? 

273. Corollary. An equiangular polygon circumscribed 
about a circle is a regular polygon. 

By joining consecutive points of contact of the sides show that cer¬ 

tain isosceles A are congruent, and thus prove the polygon equilateral. 
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Proposition 3. Inscribed and Circumscribed Polygons 

274. Theorem. If a circle is divided into any number 

of equal arcs, the chords of these arcs form a regular 

inscribed polygon; and the tangents at the points of 

division form a regular circumscribed polygon. 

Given the O 0 divided into equal arcs hy A, B, C, D, and E, 
the chords AB, BC, CD, DE, EA, and the tangents PQ, QR, 
RS, ST, TP ditE, A, B, C, D respectively. 

Prove that ABODE is a regular inscribed polygon and 
that PQRST is a regular circumscribed polygon. 

Proof. The arcs AB, BC, CD, DE, EA are equal. Given 

Hence AB=BC=CD = DE = EA, § 139 
because if two arcs • • • are equal, the arcs have equal chords. 

Also, ABODE is inscribed in the O. § 156 
.*. ABODE is a regular inscribed polygon. § 272 

Since the arcs are equal, Given 
ZP=ZQ = ZR = ZS=ZT, § 179 

because an /.formed by two tangents •••is measured by half 
the difference between its intercepted arcs. 

Also, PQRST is circumscribed about the O. § 156 

PQRST is a regular circumscribed polygon. § 273 
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275. Corollary. Tangents to a circle at the vertices of a 
regular inscribed polygon form a regular circumscribed 
polygon of the same number of sides. 

For it is shown in §274 that PQRST is a regular circumscribed 

polygon. It has as many sides as there are vertices of ABCDE, and 

ABODE has as many vertices as it has sides. 

276. Corollary. Tangents to a circle at the midpoints of 
the arcs of the sides of a regular inscribed polygon form a 
regular circumscribed polygon, whose sides 
are parallel to the sides of the inscribed poly¬ 
gon and whose vertices lie on radii produced 
of the inscribed polygon. 

Since M is the midpoint of arc AB (given), then 

ZA'OM = AB'OM (§ 137). Also, OA = OB (§ 134,1), 

and OM is a common side. Hence Oilf bisects AB (§§ 40,38). Then, since 

two corresponding sides AB and A'B' are both ± to OM (§§ 142, 147), 

they are II (§ 57). 

Further, since the tangents MB' and NB' intersect at a point equi¬ 

distant from OM and ON (§ 149), they intersect upon the bisector of 

ZMON (§ 183). But OB bisects ZMON (§ 137). Hence MB' and NB' 

intersect on OB produced. 

277. Corollary. Lines drawn from each vertex of a regular 
inscribed polygon to the midpoints of the arcs of adjacent 
sides of the polygon form a regular inscribed polygon of 
double the number of sides, r 

chords in place of one, the polygon APBQC • • • has double the number 

of sides of the polygon ABCD. 

The work on inscribed and circumscribed polygons is essential to 

the understanding of the propositions in connection with the measure¬ 

ment of the circle, as will be shown later. 

A M B 
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Exercises. Inscribed and Circumscribed Polygons 

1. The perimeter of a regular inscribed polygon is less 

than the perimeter of a regular inscribed polygon of double 

the number of sides; and the perimeter of a regular 

circumscribed polygon is greater than that of a regular 

circumscribed polygon of double the number of sides. 

2. Tangents at the midpoints of the arcs 

between adjacent points of contact of the sides 

of a regular circumscribed polygon form a 

regular circumscribed polygon of double the 

number of sides. 

3. The radius drawn to any vertex of a regular polygon 

bisects the angle at the vertex. 

In a square of side s and radius r find the following: 

4. r when s = 8. 5, s when r = 9. 

In an equilateral triangle of side s, radius r, apothem a, 
and area A find the following: 

6. s when r = 4. 8. s when a = Vs. 
7. a when s = Vs. 9. Awhens = V3. 

Find the area of the square inscribed in a circle of radius: 

10. 4in. 11. Gin. 12. 10in. 13. ninches. 

In a regular octagon {§ 90) find the number of degrees in: 

14. The angle at the center. 

15. Each angle of the polygon. 

16. The sum of one angle at the center and one angle 
of the polygon. 

17. The radius of an equilateral triangle is how many 
times the apothem ? what part of the side ? 

w 



§§ 278,279 SIMILAR REGULAR POLYGONS 233 

Proposition 4. Similar Regular Polygons 

278. Theorem. Two regular polygons of the same num¬ 
ber of sides are similar. 

Given the regular polygons P and P\ each of n sides. 

Prove that P and P' are similar. 

Proof. Since P and P' are regular, 

then each Z of P = (ti — 2)/n st. Z, 

and each Z of P'= (n — 2)/n st. A. 

P and P' are mutually equiangular. 

Furthermore, a = b = c= d = e, 

and a' = b' = c' = d'=d. 

Then t £. I 1 . 
a b' d d e 

that is, the corresponding sides of P and P' are proportional. 

. *. P and P' are similar. § 205 

Given 

§96 

Ax. 5 

§263 

Ax. 4 

279. Corollary. The areas of two regular polygons of the 
same number of sides are to each other as the squares on any 
two corresponding sides. 

Since the polygons are similar (§ 278), their areas are to each other 

as the squares on any two corresponding sides (§ 251). 
PS 
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Proposition 5. Perimeters of Regular Polygons 

280. Theorem. The perimeters of two regular polygons 

of the same number of sides are to each other as their 

radiiy and also as their apothems. 

Given two regular polygons of n sides, with centers O and O', 
perimeters p and radii r and r' (or OA and O'A'), and apo¬ 
thems a and a' (or OMand O'M') respectively. 

Prove that p:p’=r:r'= a:a'. 

Proof. Draw the radii OR, O'^'. ‘ Post. 1 

Now p:p'=AB:A’B'. §§278,224 

Furthermore, Z.A0B = AA'0'B', §271, Post. 9 

and 0A:0B=1 = 0’A’:0'B’. §134,1 

Hence AOAB and O'A'B’ are similar, § 213 

and AB:A'B' = r:r\ §205 

Also, AAMO and A'M'O^ are similar. § 210 

Hence r:r' = a:a\ § 205 

/. p:p' = r:P=a:a', Ax. 5 

281. Corollary. The areas of two regular polygons of the 
same number of sides are to each other as the squares on the 
radii of the circumscribed circles, and also as the squares on 
the radii of the inscribed circles. 
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Proposition 6. Area of a Regular Polygon 

282. Theorem. The area of a regular 'polygon is half 

the product of its apothe'm and its perimeter. 

Given the regular polygon ABCDEF with apothem a, perim¬ 
eter p, and area S. 

Prove that S=i ap. 

Proof. Draw the radii OA, OB, OC, • • • to the successive 
vertices of the polygon, thus dividing the polygon into as 
many congruent A (§ 47) as it has sides. 

The apothem is the common altitude of these A, and the 
area of each A is ja X the base. § 244 

Hence the sum of the areas of all the congruent A is 
^aX the sum of all the bases. Ax. 1 

But the sum of the areas of the A is the area of the poly¬ 
gon, and the sum of the bases is its perimeter. Ax. 10 

,\S=\ap, Ax. 5 

283. Similar Parts. In different circles similar arcs, simi¬ 
lar sectors, and similar segments are such arcs, sectors, and 
segments as correspond to equal angles at the center. 

For example, two arcs of 30° in different circles are similar arcs, 

and the sectors formed by drawing radii to the ends of the arcs are 

similar sectors. 
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Exercises. Regular Polygons 

1. Find the ratio of the perimeters and the ratio of the 
areas of two regular hexagons whose sides are 4 in. and 
8 in. respectively. 

2. Find the ratio of the perimeters and the ratio of 
the areas of two regular octagons whose sides are in the 
ratio 4:2. 

3. Find the ratio of the perimeters of two squares whose 
areas are 484 sq. in. and 121 sq. in. respectively. 

4. Find the ratio of the perimeters and the ratio of the 
areas of two equilateral triangles whose altitudes are 9 in. 
and 36 in. respectively. 

5. The area of one equiangular triangle is 16 times that 
of another. Find the ratio of their altitudes. 

6. The area of the cross section of a steel beam 2 in. 
thick is 24 sq. in. What is the area of the cross section of 
a beam of the same proportions and Ij in. thick ? 

7. Squares are inscribed in two circles of radii 6 in. and 
18 in. respectively. Find the ratio of the areas of the squares, 
and also the ratio of the perimeters. 

8. Squares are inscribed in two circles of radii 6 in. and 
24 in. respectively, and on the sides of these squares equi¬ 
lateral triangles are constructed. What is the ratio of the 
areas of these triangles ? 

9. A square piece of timber is sawed from a round log 
2 ft. in diameter so as to have the cross section of the timber 
the largest possible. What is the area of this cross section ? 
What is the area of the cross section of the largest square 
beam that can be cut from a log of half this diameter ? 

10. Every equiangular polygon inscribed in a circle is 
regular if it has an odd number of sides. 



§§284,285 PUNDAMENTAL CONSTRUCTIONS 237 

II. Fundamental Constructions 

Proposition 7. Inscribed Square 

284. Problem. Inscribe a square in a given circle. 

Given a O with center 0. 

Required to inscribe a square in the O. 

Construction. Draw any diameter AOC, Post. 1 

At O construct the diameter!)^ J_ to AC. § 104 

Draw AB, BC, CD, and DA, Post. 1 

Then ABCD is the required square. 

Proof. The ACBA, DCB, ADC, BAD are rt. zi• §173 

Since the A at the center are rt. A, Const, 

then the arcs AB, BC, CD, and DA are equal. § 136 
/,AB = BC=CD = DA, §139 

Hence the quadrilateral ABCD is a square. § 15 

285. Corollary. Inscribe regular polygons of 8, 16, 32, 
sides in a given circle. 

By bisecting the successive arcs in the figure of § 284, a regular 
polygon of eight sides may be inscribed in the O. By continuing the 
process regular polygons of how many sides may be inscribed ? 

In general we may say that this corollary allows us to inscribe a 
regular polygon of 21^ sides, where n is any positive integer. 
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Proposition 8. Regular Inscribed Hexagon 

286. Problem. Inscribe a regular hexagon in a given 

circle. --- 

Given a O with center 0, 

Required to inscribe a regular hexagon in the O. 

Construction. Draw any radius, as OA. Post. 1 
With A as center and a radius equal to OA, construct an 

arc intersecting the O at B. Post. 4 

Draw AB, Post. 1 

Then AB is a side of a regular hexagon. 

Hence the required hexagon is inscribed by applying AB 
six times as a chord. 

Proof. Draw OB. Post. 1 

Then A OA5 is equiangular. §43 

.*. /LAOB is i of a st. Z, or J of 2 st. A. § 65 

Hence arc AB is i of the O, § 171 

and chord AB is a side of a regular inscribed hexagon. § 272 

287. Corollary. Inscribe an equilateral triangle in a given 
circle. 

Join the alternate vertices of a regular inscribed hexagon. 

288. Corollary. Inscribe regular polygons of 12, 2Jf, Jf8, • 
sides in a given circle. 
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289. Extreme and Mean Ratio. If a line segment is divided 
into two segments such that one is the mean proportional 
between the whole line and the other, the line segment is 
said to be divided in extreme and mean ratio. 

The name comes from the fact that one part is a mean and the 

whole line segment and the other part are extremes. 

For example, the line segment of is divided in extreme and mean 

ratio if a segment x is found such that a:x = x:a — x. From this equa¬ 

tion it can be shown that x = 0.618 a. That is, x = 0.6a and a — a; = 0.4 a, 

approximately, so that the division is about 2:3. 

This division of a line segment is often called the Golden 
Sectiony a relatively modern term. At one time, about 1500, 
it was commonly called the Divine Proportion, 

290. Geometric Forms in Art. Since the division of a line 
in the ratio 2:3 is especially pleasing to the eye, the Golden 
Section is often seen in architecture and in the general 
plans of paintings. It is also seen in leaves and flowers. 

Mosaic from Damascus Arabic Pattern 

The use of geometric forms in art is so familiar as to 
require only brief mention. The flgures here shown illus¬ 
trate combinations of regular and semiregular polygons. 

Except for students specializing in mathematics, §§ 289-296 may be 

omitted. They are not generally required in standard courses. 
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Proposition 9. Golden Section 

291. Problem. Divide a given line segment in extreme 

and mean ratio. 

Given the line segment AB. 

Required to divide AB in extreme and mean ratio. 

Construction. At B construct a J_ to AB, § 104 

and on it take BO = iAB = BM. §102 

With O as center and BO as radius, construct a O. Post. 4 

Draw AO, meeting the O at D and E. Post. 1 

On AB take AC=AD, and on BA produced take AC'=AE. 
Then C, C' are the required points of division; that is, 

AB:AC = AC:CB, and AB:AC'==AC’:C'B. 

Proof. AE:AB = AB: AD. 

Then, by the laws given in § 198, we have 

222 

AE-AB:AB = 
AB-AD:AD. 

.AE-DE:AB = 

AB-{-AE:AE= 

AD-{-AB:AB. 

.\AB+AC':AC'= 
AB-AC:AC. 

AC:AR=C5:AC. 

.\AB:AC=AC:CB. 

AD+DE:AB. 

.*. C'B:AC'=AC':AB. 

.\AB:AC'=AC':C'B. 



§291 GOLDEN SECTION 241 

Exercises. Review 

1. Given an equilateral triangle inscribed in a circle, 
circumscribe an equilateral triangle about the circle. 

2. Given an equilateral triangle inscribed in a circle, 
inscribe a regular hexagon in the circle and circumscribe 
a regular hexagon about the circle. 

3. Divide a line 2 in. long in extreme and mean ratio. 
Measure to the nearest iV in. the lengths of the two seg¬ 
ments of both the internal and the external division and 
compare the results with the ratio given in § 289. 

4. Consider Ex. 3 for a line 2| in. long; a line 3 in. long. 

5. In this illustration from 
a mosaic in an ancient church 
at Constantinople it looks as if 
the broad bands which connect 
the regular hexagons formed 
equilateral triangles. It also 
looks as if the midpoints of the 
sides of these triangles were 
the vertices of other equilateral 
triangles. Investigate these 
two possibilities geometrically. 

6. Find the ratio of the side of an inscribed equilateral 
triangle to the side of a similar circumscribed triangle. 

7. In the internal division of the given line segment in 
§ 291, which part is the mean proportional, the long part 
or the short one? How is it in the case of the external 
division? Write a statement of these two facts. 

8. Find a point within a given triangle such that lines 
from this point to the vertices divide the triangle into three 

equivalent parts. 
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Proposition 10. Regular Inscribed Decagon 

292. Problem. Inscribe a regular decagon in a given 

circle, - 

Given a O with center 0. 

Required to inscribe a regular decagon in the O. 

Construction. Draw any radius OA. Post. 1 

Divide OA in extreme and mean ratio; § 291 

that is, so that OA: OP = OP: AP, 

With A as center and OP as radius, construct an arc 
intersecting the O at B. Post. 4 

Draw AB. Post. 1 
Then AB is a side of a regular decagon. 

Hence the required regular decagon is inscribed 
plying AB ten times as a chord. 

by ap- 

Proof. Draw PB and OB. Post. 1 
Now OA:OP=OP:AP, 

and AB = OP. Const. 
OA:AB=AB:AP. Ax. 5 

Moreover, ZBAO = ZBAP. Iden. 
Then A OAB and BAP are similar, §213 

and hence OA:BA = OB:BP. §205 
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But OA = OB, § 134,1 

Then BA = BP, §198,2 

and hence BA=BP= OP, Ax. 5 

AAPB=ABAP2ind ZPOB = ZOBP. §42 

But ZAPB = ZPOB-{-ZOBP, §66 

and hence ZBAP=: 2 ZPOB, Ax. 5 

Now ZBAP=ZBAO =ZOBA, Iden., § 42 

and ZPOB=ZAOB, Iden. 

Hence ZBAO =ZOBA = 2 ZAOB, Ax. 5 

and the sum of the A of ZOAB= 5ZAOB. Ax. 1 

But the sum of these ^ = a st. Z. § 65 

Hence bZAOB=SiSt.Z, Ax. 5 

and 10ZAOB= 2st A; Ax.3 

whence ZAOB = tV of 2 st. Z. Ax. 4 

Hence arc AB is iV of the O, § 171 

and chord AB is a side of a regular inscribed decagon. § 272 

293. Corollary. Inscribe a regular pentagon in a given 
circle. 

Join the alternate vertices of a regular inscribed decagon. 

From the regular pentagon it is possible to construct the regular 

five-pointed star here shown. 

The Pythagoreans (§ 254), about 525 B.C., are sup¬ 

posed to have been the first to solve the problem of 

constructing a regular pentagon. Because of this fact 

they chose the regular five-pointed star as the badge 

of a brotherhood made up of members of their 

famous school. 

294. Corollary. Inscribe regular polygons of 20,40, 80,--- 
sides in a given circle. 

By bisecting the arcs of the sides of a regular inscribed decagon, 

a regular polygon of how many sides may be inscribed in the O ? By 

continuing the process, regular polygons of how many sides may be 

inscribed in the O? 
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Proposition 11. Regular Polygon of 15 Sides 

295. Problem. Inscribe a regular polygon of fifteen 

sides in a given circle. 

Given a O. 

Required to inscribe a regular polygon of 15 sides in the O. 

Construction. From any point A on the O construct a 
chord AC equal to the radius of the O (§ 286), and a chord 
AB equal to a side of a regular inscribed decagon (§ 292). 

In order to obtain a distinct figure only a portion of the G is shown, 

and the detailed construction of the chord AB is assumed from § 292. 

Draw BC, Post. 1 

Then BC is a side of a regular polygon of 15 sides. 

Hence the required polygon is inscribed by applying 
BC fifteen times as chord. 

Proof. Since arc AC is J of the O § 286 

and arc AB is fo of the O, § 292 

then arc BC is tV, or tV of the O. Ax. 2 

Hence chord BC is a side of a regular inscribed polygon 
of 15 sides. § 272 

A polygon of 15 sides is called a pentadecagon, but the term is 
rarely used. 

296. Corollary. Inscribe regular polygons of 30y 60y 120y • * • 
sides in a given circle. 
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Exercises. Regular Polygons 

1. A five-cent piece is placed on the table. How many 
five-cent pieces can be placed around it, each tangent to it 
and tangent to two of the others ? Prove it. 

Circumscribe about a given circle the following regular 

polygons: 

2. Triangle. 4. Hexagon. 6. Pentagon. 

3. Square. 5. Octagon. 7. Decagon. 

Construct an angle of: 

8. 36°. 9. 18°. 10. 9°. 11. 24°. 12. 12°. 

With a side of given length construct: 

13. An equilateral triangle. 16. A regular octagon. 

14. A square. 17. A regular pentagon. 

15. A regular hexagon. 18. A regular decagon. 

19. A regular polygon of fifteen sides. 

20. Prove that the diagonals AC, JSD, CE, DFy EA, FB 

of the regular hexagon ABCDEF form another regular 
hexagon. 

21. Prove that the diagonals AC, BDy CE, DAy EB of the 

regular pentagon ABCDE form another regular pentagon. 

In a regular inscribed polygon in which n is the number 

of sideSy a the apothem, r the radiuSy A an angle^ and C an 

angle at the centery prove the following: 

22. If n = 3, then A = 60°, a=r, and C=120°. 

23. If 71 = 4, then A = 90°, a = JrV2, and C=90°. 

24. If 77 = 6, then A = 120°, a=^r Vs, and C = 60°. 

25. If 77=10, then A=144°, a=\ 7^'\/l0+2\/5, and C=36°. 
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26. Find the perimeter of an equilateral triangle inscribed 
in a circle of radius 3 in. 

27. Find the perimeter of an equilateral triangle circum¬ 
scribed about a circle of radius 2 in. 

28. Find the perimeter of a regular hexagon circum¬ 
scribed about a circle of radius 4 in. 

29. From a circular log with a diameter of 18 in. a builder 
wishes to cut a column with its cross section as large a 
regular octagon as possible. Find the length of a side of 
the cross section. 

30. In the figure here shown ABCD is a D ^ 
square. Arc POQ is constructed as part p 
of a circle with center A and radius AO, 
and the other arcs are constructed in a 
similar manner. Prove that the octagon ^ ^ 
seen in the figure is regular. ^ 

31. The area of a regular inscribed hexagon is what part 
of the area of a regular hexagon circumscribed about the 
same circle? 

32. Construct a regular pentagon, given one of the 
diagonals. 

33. In a given equilateral triangle inscribe three equal 
circles, tangent each to the other two and to two sides of 
the triangle. 

34. The points A, J5, C, A * * * are consecutive vertices of 
a regular inscribed octagon, and A, B\ C\ D', • • • are con¬ 
secutive vertices of a regular polygon of twelve sides in¬ 
scribed in the same circle. Find the angle formed by each 
pair of the following lines, produced if necessary: 

(1) AB and AB'. (3) AB and AC. (5) AB' and AD. 

(2) AB and AC'. (4) AB and AD. (6) B'C' and AC. 
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III. Circle Measurement 

297. Plan of Measurement. For practical purposes we can 
find the circumference of a circle very easily. If we wind 
a piece of paper about a cylinder, prick through the paper 
with a needle where the paper overlaps, and then fiatten 
the paper out on a table, we can measure with a fair degree 
of accuracy the distance between the two points thus made. 
Evidently, however, this is not as accurate as the measure¬ 
ment of a straight line by means of a pair of dividers or 
compasses, because paper tends to stretch or to contract. 

For scientific purposes we therefore resort to mathe¬ 
matics. One reason for showing how to inscribe and cir¬ 
cumscribe regular polygons, and then to double the number 
of sides, is to construct polygons that approach nearer and 
nearer to the circle. Since we can measure these polygons, 
both as to perimeter and as to area, we can thus approxi¬ 
mate the circumference, and can also approximate the area 
which the circle incloses. We may carry this approximation 
to any degree of accuracy that we wish. 

For example, if we find the perimeter of an inscribed 
square, then find the perimeter of an inscribed regular 
octagon, and continue this process for polygons of 16, 32, 
64, • • • sides, we can find a perimeter which approaches as 
near the circumference as we choose, and similarly for the 
area inclosed by the circle. 

In this way we can find the approximate ratio of the circumference 

of a circle to its diameter. The student who takes up the calculus in 

college will there find a simpler method of solving this problem. 

We shall, therefore, first consider the problem of finding 
the perimeter of a regular polygon of double the number 
of sides of a given regular polygon; or, what is more simple, 
of finding one side of such a polygon. 
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Proposition 12. Doubling the Sides 

298. Problem. Given the side and the radius of a 

regular inscribed polygon^ find the side of a regular 

inscribed polygon of double the number of sides. 

Given 5 (or AR), the side, and r, the radius, of a regular 

polygon inscribed in the G with center 0, 
Required to find a side of a regular inscribed polygon of 

double the number of sides. 

Solution. Construct PQ, the J_ bisector of s. §§ 102, 104 

Draw AP and AQ, Post. 1 

Then PQ is a diameter and bisects arc AB, §143 

AP is the required side. §277 

Since AM=is, ONf=r^—\s^; §253 

whence OM = V r^— 1 Ax. 6 

:.PM=r-OM=r-Vr"- \ Ax. 5 
Further, A AMP and QAP are similar, §210 

and hence PM:AP=AP:PQ, §205 

Then AP‘=PQ-PM-, § 198,1 

whence AP^=2r{r — ^7^—\s^). Ax. 5 

Hence AP=a/2 r (r — Vr^—5 s^). Ax. 6 

or AP=V^(2r — V4r^— s^). 
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299. Constant and Variable. If we inscribe a regular poly¬ 
gon in a given circle, and then continue to double the 
number of sides of this polygon, the perimeter continues 
to vary in size, approaching nearer and nearer the circle, 
which remains constantly the same in size. A quantity 
considered as having a fixed value throughout a given dis¬ 
cussion is called a constant, and a quantity considered as 
having different successive values is called a variable. 

In the above case, the perimeter of the polygon, as we increase the 

number of sides, is a variable, but the circle is a constant. 

300. Limit. When a variable so approaches a constant that 
the difference between the two may become and remain 
less than any assigned positive quantity, however small, 
the constant is called the limit of the variable. 

Sometimes variables can reach their limits and sometimes they 

cannot. For example, a chord may increase in length up to a certain 

limit, the diameter, and it can reach this limit and still be a chord; 

it may decrease, approaching the limit 0, but it cannot reach this limit 

and still be a chord as we define it in elementary work. 

If p is the perimeter of a regular inscribed or of a regular circum¬ 

scribed polygon and c is the circle, we say that ''p tends to c,’' or 

approaches c as its limit,” indicating this by the symbol p— 

301. Principles of Limits. From the above definition we 
may assume as postulates the following principles: 

1. If a variable x approaches a finite limit Z, and if c is a 

constant, then cx approaches the limit cl, and - approaches 
I ^ the limit - • 
c X I 

That is, if x—^l, then cx—ycl and 

2. If, while approaching their respective limits, two vari¬ 
ables are always equal, their limits are equal. 

For if the limits were unequal, the two variables would be unequal 

when they were very near their limits. 
PS 



250 CIRCLE MEASUREMENT BOOK V 

302. Area of a Circle. The area of the space inclosed by 

a circle is called the area of the circle. 
With the modern definition of a circle as a line, the expression 

'' area of a circle ” has no meaning unless it is specifically defined. 

We therefore define it as a brief form of the longer expression area 

inclosed by a circle.’^ 

303. Limits related to the Circle. From what has been said 
concerning the circle and the regular inscribed polygon we 

may assume as true the following statements: 

1. The circumference of a circle is the limit of the perim¬ 
eter of a regular inscribed or of a regular circumscribed 

polygon as the number of sides is indefinitely increased, 

2. The area of a circle is the limit of the area of a regular 
inscribed or of a regular circumscribed polygon as the number 

of sides is indefinitely increased. 

3. If the number of sides of a regular inscribed polygon is 
indefinitely increased, the apothem of the polygon approaches 
the radius of the circle as its limit. 

In this figure, if n is the number of sides of the 

polygon, then a—>ON as n—^co; that is, a ap¬ 

proaches ON as its limit as the number of sides 

increases without limit. We are not justified in 

saying that the expression n—>-oo means that n 

approaches infinity as a limit, because the word 

'' infinity ” means without limit. We may, however, say that n tends 

to infinity ” or that '' n approaches infinity.” 

In higher mathematics the statements given above are proved with 

the same care with which we prove a proposition in the geometry of 

rectilinear figures, but in an elementary treatment of measurement it 

is impossible to give satisfactory proofs; indeed, the truth of the 

statements would be no more evident if the proofs were given. By 

informal discussion their truth is as apparent as that of any postulate. 

In the case of a regular circumscribed polygon the apothem is always 

the same as the radius of the circle, and hence, with this fact under¬ 

stood, we may say that all three assumptions apply to either inscribed 

or circumscribed regular polygons. 
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Proposition 13. Ratio of Circumferences 

304. Theorem. Two circumferences have the same ratio 

as the radii. 

Given the © O and O' with circumferences C and C' and 
radii r and r' respectively. 

Prove that C:C'=r:r', 

Proof. Let he the perimeters of two similar regular 
inscribed polygons. § 269 

Then p:p'=r:r', §280 
/,pr' = p'r, ^ §198,1 

Let the number of sides be increased uniformly. 

Then p-^C, and C\ § 303,1 
and hence Cr'=C'r, §301 

. ,\C:C'=r:r\ §198,3 

305. Corollary. The ratio of any circle to its diameter is 
constant. 

Since C:C' = 2r:2r\ then C:2r=C''.2r'. 

306. Symbol tt. The constant ratio of a circle to its diam¬ 
eter is represented by the Greek letter tt (pi). 

307. Corollary. In any circle^ C—2irr = n-d. 
c c 

By definition (§ 306), tt = — = -; whence C = 2 7rr and C = Trd. 
2r d 



252 CIRCLE MEASUREMENT BOOK V 

Proposition 14. Area of a Circle 

308. Theorem. The area of a circle is half the product 

of the radius and the circumference. 

Given the O 0 with radius r, circumference C, and area A, 

Prove that A = ^ rC, 

Proof. Circumscribe about the O a regular polygon of 
n sides, and let p be its perimeter and A' its area. § 270 

Then 

Let 

Since 

and 

then 

Also, 

But, always. 

A’-- irp. 

n be increased indefinitely. 

p^C 

r is constant. 

(282 

i 303,1 

\rp- -irC. § 301,1 

§ 303, 2 

§282 

§ 301, 2 

A'-^A. 

A'=^rp. 

A = lrC. 

309. Corollary. The area of a circle is tt times the square 
on the radius. 

For A = ^ rC = I r X 2 7rr = Trr^. 

310. Corollary. The areas of two circles are to each other 
as the squares on the radii. 
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Exercises. Circumference and Area 

1. The area of a sector is half the product of the radius 
and the arc, 

2. If the circumference of one circle is twice that of 
another, the square on the radius of the first is how many 
times the square on the radius of the second ? 

3. If the circumference of one circle is four times that 
of another, an equilateral triangle constructed on the 
diameter of the first as side has how many times the area 
of an equilateral triangle constructed on the diameter of 
the second as side ? 

4. A water pipe with a diameter of 3 in. has a circum¬ 
ference of 9.425 in. Find the circumference of a water pipe 
which has a diameter of 4 in. 

5. A wheel with a circumference of 8 ft. has a diameter, 
expressed to the nearest 0.01 ft., of 2.55 ft. Find the cir¬ 
cumference of a wheel with a diameter of 3.175 ft. 

6. A regular hexagon is 4 in. on a side. Find both its 
apothem and its area to the nearest 0.01. 

7. If the radius of one circle is four times that of 
another, and if the area of the smaller circle is 31.4 sq. in., 
what is the area of the larger circle ? 

8. If the radius of one circle is five times that of 
another, and if the area of the smaller circle is 9.6 sq. in., 
what is the area of the larger circle ? 

9. The circumferences of two cylindric steel shafts are 
7 in. and 3j in. respectively. The area of the cross section 
of the first shaft is how m^ny times that of the second ? 

10. If the arc of a sector of a circle 3j in. in diameter is 
2 in. long, what is the area of the sector ? 

Use Ex. 1, above, in finding the required area. 
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Proposition 15. The Value of tt 

311. Problem. Find the approximate value of the ratio 

of the circumference of a circle to its diameter. 

Given a O with circumference C and diameter d. 

Required to find the approximate value of tt. 

Solution. Let Sq be the length of a side of a regular 
inscribed polygon of 6 sides, of 12 sides, and so on. 

The student need not perform the computations or recall the follow¬ 

ing steps, but he should understand the general nature of the work. 

Then Sj2 = '\/r{2r — y/4:F — si). §298 

But, when r = 1, Se = 1* § 286 

Hence, using the successive values of s, we have 

Form of Computation Length of Side Perimeter 

s.,=V2-V4-r 0.51763809 6.21165708 

= V2 - \/4 - 0.51763809" 0.26105238 6.26525722 

S48 = V2 - V4 - 0.26105238" 0.13080626 6.27870041 

Sge = ■\/2 - V4 - 0.13080626" 0.06543817 6.28206396 

s.*,=V2 - V4 - 0.06543817" 0.03272346 6.28290510 

8394=V2 - \/4 - 0.03272346" 0.01636228 6.28311544 

s,e»=V2 - V4 - 0.01636228" 0.00818121 6.28316941 

Since C = 27rr, §307 

when r = 1, tt = C. 

But, when n = 768, C = 6.28317, approximately, 

and hence tt = 3.14159, approximately. 

For thousands of years the world tried to find the value of the 

incommensurable number tt. The ancients generally considered the 

value as 3 or as 3b We generally use the following values: tt = 3.1416, 
or 3b and I/tt = 0.31831. 
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Exercises. Circle Measurement 

Find the circumferences of circles with radii as follows: 

1. 2 in. 3. 3.2 in. 5. 6iin. 7. 3 ft. 6 in. 

2. 3 in. 4. 4.3 in. 6. 7f in. 8. 4 ft. 2 in. 

In all the work on this page use the value 3.1416 for tt. 

Find the circumferences of circles with diameters as 

follows: 

9. 4 in. 11. 6.2 in. 13. 3| ft. 15. 30 cm. 

10. 22 in. 12. 8.3 in. 14. 2|in. 16. 42 mm. 

Find the radii of circles with circumferences as follows: 

17. 3-77. 19. 15.708 in. 21. 18.8496. 23. 345.576. 

18. 47r. ' 20. 21.9912 ft. 22. 125.664. 24. 3487.176. 

Find the diameters of circles with circumferences as 

follows: 

25. 87r. 27. 27rr. 29. 188.496in. 31. 3361.512in. 

26. tt". 28. 37ra". 30. 219.912 in. 32. 3173.016 in. 

Find the areas of circles with radii as follows: 

33. 2x. 35. 16 ft. 37. 4jin. 39. 3 ft. 4in. 

34. 37r. 36. 5.8 ft. 38. 3|in. 40. 5 ft. 8 in. 

Find the areas of circles with diameters as follows: 

41. 10 ah. 43. 3.5 ft. 45. 2f yd. 47. 2 ft. 4 in. 

42. 12 7^^ 44. 4.3 in. 46. 3i yd. 48. 3 ft. 6 in. 

Find the areas of circles with circumferences as follows: 

49. 3 7r. 50. tt/c. 51. 18.8496 in. 52. 333.0096 in. 

Fhid the radii of circles with areas as follows: 

53. 'tto^, 54. TT. 55. 12.5664. 56. 78.54. 
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Exercises. Applications 

1. The diameter of a bicycle wheel is 28 in. How many 
revolutions does the wheel make in 8 mi.? 

2. Find the diameter of an automobile wheel which 
makes r revolutions in half a mile. 

3. A circular pond 200 yd. in diameter is surrounded by 
a walk 8 ft. wide. Find the area of the walk. 

4. The span (chord) of a bridge in the form of a circular 
arc is 60 ft., and the highest point of the arch is 7 ft. 6 in. 
above the piers. Find the radius of the arch. 

5. Two branch drain pipes lead into a main drain pipe. 
It is necessary that the cross-section area of the main pipe 
shall equal the sum of the cross-section areas, of the two 
branch pipes, which are respectively 6 in, 
and 8 in. in diameter. Find the diameter of 
the main pipe. 

6. The top part of the kite here shown is 
a semicircle and the lower part is a triangle. 
Find the area of the kite. 

7. In making a drawing for an arch it is 
necessary to mark off on a circle drawn with 
a radius of 10|- in. an arc that shall be 11 in. long. This is 
best done by finding the angle at the center. How many 
degrees are there in this angle? 

8. In the iron washer here shown, the 
diameter of the hole is 2f in. and the width 
of the metal ring is fin. Find the area of 
one face of the washer. 

9. Find the area of a fan which opens out into a sector 
of 120° with a radius of 10 in. 

10. Consider Ex. 9 for a radius of 5 in. 
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IV. General Review 

Exercises. Review 

Write a classification of the different kinds of: 

1. Lines. 3. Triangles. 5. Polygons. 

2. Angles. 4. Quadrilaterals. 6. Parallelograms. 

State the conditions under which: 

7. Two triangles are congruent; are equal in area; are 
similar. 

8. Two straight lines are parallel. 

9. Two parallelograms are equal in area. 

10. Two polygons are similar. 

Complete the following statements in general terms: 

11. In a right triangle the square on the • • 

12. If two parallel lines are cut by a transversal, • • •. 

13. An angle formed by two secants drawn to a circle 
is measured by • • •. 

14. The perimeters of two similar polygons are to each 
other as • • •, and their areas are to each other as • • •. 

15. Equal chords of the same circle or of equal circles • • •. 

16. Two central angles of the same circle or of equal 
circles have • • •. 

17. If two secants intersect within, on, or outside a circle, 
the product of • • *. 

18. The sum of the interior angles of • • •. 

19. The area of a polygon is • • •. 

20. One formula for the • • • of a circle is I ird^. 

21. One formula for a • • • is 7rr. 
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Exercises. Loci 

1. Find the locus of the center of the circle inscribed 
in a triangle which has a given base and a given angle at 
the vertex. 

2. Given a line segment, find the locus of the end of a 
tangent to a given circle such that the length of the 
tangent is equal-to the length of the given segment. 

3. Find the locus of a point from which tangents drawn 
to a given circle form a given angle. 

4. Find the locus of the intersection of the perpendic¬ 
ulars from the three vertices to the opposite sides of a tri¬ 
angle which has a given base and a given angle at the vertex. 

5. Find the locus of the midpoint of a line segment 
drawn from a given point to a given line. 

6. Find the locus of the vertex of a triangle which has 
a given base and a given altitude. 

7. Find the locus of a point such that the sum of its 
distances from two given parallel lines is constant. 

8. Find the locus of a point such that the difference 
between its distances from two given parallel lines is 
constant. 

9. Find the locus of a point such that the sum of its 
distances from two given intersecting lines is constant. 

10. Find the locus of a point such that the difference 
between its distances from two given intersecting lines is 
constant. 

11. Find the locus of a point such that its distances from 
two given points are in the ratio 3:4. 

12. Find the locus of a point such that its distances from 
two given parallel lines are in the ratio m: n. 
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Exercises. Constructions 

1. In a given circle inscribe a regular polygon similar 
to a given regular polygon. 

2. Divide the area of a given circle into two equivalent 
parts by a circle which has the same center as the given 
circle. 

3. Construct a circle with its circumference equal to the 
sum of the circumferences of two circles of given radii. 

4. Construct a circle with its circumference equal to 
the difference between two circumferences of given radii. 

5. Construct a circle with its area equal to the sum of 
the areas of two circles of given radii. 

6. Construct a circle such that its area is three times 
the area of a given circle. • 

7. Construct a circle such that the ratio of its area to 
that of a given circle \s>m:n. 

8. In a given square inscribe four equal circles such 
that each circle is tangent to two of the others and to two 
sides of the square. 

9. In a given square inscribe four equal circles such 
that each circle is tangent to two of the others and to one 
side and only one side of the square. 

10. Construct a common secant to two given circles, 
which are exterior to each other, such that the intercepted 
chords shall have the given lengths a and 6. 

11. Through a point of intersection of two given inter¬ 
secting circles construct a common secant of a given length. 

12. Construct a tangent to a given circle such that the 
segment intercepted between the point of contact and a 
given line has a given length. 
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Exercises. Formulas 

If r is .the radius of a circle, s one side of a regular 
inscribed polygon, and n the number of sides, prove the 
following, and find s to the nearest 0.01 when r==l: 

1. If n = 3, s = r Vs. 4. If 7z = 5, g = |r\/l0 —2 V5. 

2. If = 4, s = r V2. 5. If n = 8, s = r ^2 — V2. 

3. li n = Q, s = r. 6. If 7t = 10, § = 1 r(V5 —l). 

7. If a regular pentagon of side s is inscribed in a circle 
of radius r, find the apothem. 

8. If a regular polygon of side s and apothem a is in¬ 
scribed in a circle of radius r, prove that 

a = V4r^— 

9. A regular polygon of side s is inscribed in a circle of 
radius r. If a side of the similar circumscribed regular 
polygon is s', prove that 

2gr ^ 

V4 f^—s^ 

10. Three equal circles are constructed, each tangent to 
the other two. If the common radius is r, find the area 
inclosed by the arcs between the points of tangency. 

11. Given p and P, the perimeters of regular polygons of 
n sides respectively inscribed in and circumscribed about 
a given circle of radius r, find p' and P', the perimeters of 
regular polygons of 2 n sides respectively inscribed in and 
circumscribed about the given circle. 

12. A circular plot of land a feet in diameter is surrounded 
by a walk b feet wide. Find the area of the circular plot 
and the area of the walk. 

13. In Ex. 12 find the circumference at the outer edge 
of the walk. 
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Exercises. Review 

1. The segment which joins the midpoints of the diag¬ 
onals of a trapezoid is equal to half the difference between 
the bases. 

2. If from any point on a circle a chord and a tangent 
are drawn, the perpendiculars drawn to them from the 
midpoint of the minor arc are equal. 

3. Consider Ex. 2 with respect to the midpoint of the 
major arc. 

4. If two equal chords are produced to meet outside a 
circle, the secants thus formed are equal. 

5. If squares are constructed outwardly on the six sides 
of a regular hexagon, the exterior vertices of these squares 
are the vertices of a regular polygon of twelve sides. 

6. The sum of the perpendiculars drawn to any tangent 
to a circle from the ends of a diameter is equal to the 
diameter. 

7. No oblique parallelogram can be inscribed in a circle. 
An oblique parallelogram has oblique angles (§ 16). 

8. Two points C and D are taken on a semicircle of 
diameter AB. If AD and BC meet in E, and AC and BD meet 
in F, then EF is _L to AB. 

9. If the tangents from a given point P to three given 
circles which do not intersect are all equal, the circle drawn 
with center P and passing through the points of contact of 
these tangents cuts the given circles at right angles. 

Two circles are said to intersect at right angles if their tangents at 
a point of intersection are perpendicular to each other. 

10. State and prove the converse of the proposition that 
the square on the hypotenuse of a right triangle is equiv¬ 
alent to the sum of the squares on the other two sides. 
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Exercises. Applications 

1. On a railway curve which is the arc of a circle two 
points P and Q are taken and the chord PQ is found to be 
400 ft. The distance from the midpoint of the arc to the 
midpoint of the chord is 28 ft. Find the radius of the circle. 

2. Two rectangular city lots have the same depth, the 
frontage of the first is twice that of the second, and their 
combined frontage is equal to their common depth. Find 
the ratio of their areas and the ratio of their perimeters. 

3. A ladder 50 ft. long reaches a window 40 ft. from the 
ground on one side of a street, and when tipped backward 
to rest against the building on the opposite side it reaches 
a window 30 ft. from the ground. How wide is the street ? 

4. Two wheat bins of the same height are respectively 
8 ft. and 10 ft. square on the bottom. Find the dimensions 
of the square bottom of a third bin which has the same 
height as each of the other two and the same volume as 
the other two combined. 

5. Two forces of 180 lb. and 240 lb. make an angle of 90° 
with each other. Compute the resultant. 

The resultant is represented graphically by the diagonal of a rec¬ 

tangle of sides 180 and 240. See Ex. 6, p. 106. 

6. In laying out a park it is desired to plant eight trees 
equidistant from one another and each 200 ft. from a foun¬ 
tain. Construct a figure with all construction lines to show 
how the trees should be placed. 

7. A water main is to be laid to two branch pipes which 
have diameters of 12 in. and 18 in. respectively. The diam¬ 
eter of the main must be such that the area of its cross 
section is equal to the sum of the cross-section areas of the 
branches. Find the diameter of the main to the nearest I in. 
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Exercises. Review 

1. If the three points of tangency of a circle inscribed 
in a triangle are joined, the angles of the resulting triangle 
are all acute. 

2. If two consecutive angles of a quadrilateral are right 
angles, the bisectors of the other two angles of the quadri¬ 
lateral form a right angle. 

3. The two line segments which join the midpoints of 
the opposite sides of a quadrilateral bisect each other. 

4. If two triangles have equal bases and equal angles 
at the vertex, the areas of the circumscribed circles are 
equal. 

5. If two circles are concentric, the segments inter¬ 
cepted between them on any line are equal. 

6. If any two consecutive sides of an inscribed hexa¬ 
gon are respectively parallel to their opposite sides, the 
remaining two sides are parallel. 

7. The lines which bisect any angle of an inscribed 
quadrilateral and the exterior angle at the opposite vertex 
intersect on the circle. 

8. In order that a parallelogram can be circumscribed 
about a circle, the parallelogram must have equal sides. 

9. The area of a triangle is half the product of its 
perimeter and the radius of the inscribed circle. 

10. The perimeter of a triangle is to any side as the 
altitude from the opposite vertex of the triangle is to the 
radius of the inscribed circle. 

11. If two equivalent triangles have the same base and 
lie on the same side of this base, any line which cuts the 
triangles and is parallel to the base cuts off equal areas 
from the triangles. 
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12. In the triangle whose sides are 10, 36, and 40 com¬ 
pute the length of the projection of the longest side upon 
the shortest side. 

13. Within a rhombus ABCD, in which A and C are oppo¬ 
site vertices, the point P is chosen so that PB=PD. Prove 
that A, P, and C are in the same straight line, and that 
ap-pc=ab‘-pb\ 

14. An isosceles A ABC is inscribed in a circle, and from 
the vertex A a chord AD is drawn to cut the base BC in the 
point E. Prove that AB^—AE^=BE • CE. 

15. In an acute A ABC the altitudes BD and CE inter¬ 
sect in the point O. Prove that OB:OC = OE: OD. 

16. From an external point P two secants are drawn, 
one cutting the circle at the points A and 5, and the other 
at the points C and A so that PA = 5 in., AB = 35 in., and 
PC = CD. Find the length of PD. 

17. The sum of the perpendiculars drawn to the sides of a 
regular polygon from any point within the polygon is equal 
to the product of the apothem and the number of sides. 

18. Find the perimeter and the area of a regular octagon 
inscribed in a circle with a diameter of 32 in. 

19. On the sides of a square ABCD of side a, the points 
P, Q, P, S are taken such that AP — BQ==CR = DS = ^a. 

Prove that PQRS is a square and then find its area. 

20. Each side of a triangle is 2 a inches, and about each 
vertex as a center a circle is constructed with a radius 
of a inches. Find the area bounded by the three arcs 
which lie outside the triangle, and the area bounded by 
the three arcs which lie inside the triangle. 

21. Every equilateral polygon circumscribed about a cir¬ 
cle is regular if it has an odd number of sides. 
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Exercises. Miscellaneous Applications 

1. Extend your arm toward a distant object, and, closing 

your left eye, sight across a finger tip with your right 

eye. Now keep the finger in the same position and sight 

with your left eye. The finger then seems to point to an 

object some distance to the right of the one at which you 

were pointing. If you can estimate the distance between 

these two objects, which can often be done with a fair 

degree of accuracy when there are houses between them, 

then your distance from the objects is approximately ten 

times the estimated distance between them. Draw a plan 

which shows that the lines of sight are sides of triangles, 

and explain the geometric principle involved. 

2. The distance across a stream can be found by the 

principle involved in any one of these 

three diagrams. Explain the method 

in each case and state the geometric 

principles involved. 

3. An instrument like the one here shown is used 

in measuring heights. The base is graduated in equal 

divisions, say 50, and the upright arm 

is similarly divided. At each end of the 

hinged bar is a sight. If an observer lying 

50 ft. from a tree sights at the top, and 

finds that the hinged bar cuts the upright 

arm at 27, he knows that the tree is 
27 ft. high. Explain the geometric principle involved. 

4. If three streets intersect as here shown, find the area 

of the shaded triangle. 

Use the formula in Ex. 1, page 194. 

5. Can the triangle of Ex. 4 be a 

right triangle ? Prove your answer. 

 \ ^ 

PS 
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6. If a dangerous shoal lies near a headland, the verti¬ 

cal danger angle is the angle {AHAX) between the level of 

the water and the line of sight to the h 

headland H from any point, as A, on a _ 

circle of sufficient radius to inclose the pg 

dangerous area. In order to avoid the 

shoal, ships coming near the headland ^ ^ 

should be careful to keep far enough away, say at S, so 

that the AHSX is less than the known danger angle. 

Explain the geometric principle involved. 

7. On his voyage to Egypt, Napoleon is said to have sug¬ 

gested to his staff the problem of dividing a circle into four 

equal parts by the use of circles alone. It is also said that 

the problem was solved by using the figure here shown. 

How was it done? a 

Prove that the area of OR is one fourth that of 

(DA. Then prove that the sum of the four areas 

marked D is equal to the sum of the four areas 

marked C. Then prove that one of the D’s, the 

white part of one of the B’s, and one of the C-s 

together make one fourth of OA. 

8. In locating the site for a union-school building for 

three villages A, B, and C, it is desired to place the school 

so that it shall be equidistant from the three villages. If A 

is 41 mi. from B and 6 mi. from C, and B is 5| mi. from C, 

draw a map to the scale of 1 in. = 1 mi. and show the 

location for the school. 

While in practice the established roads between the villages would 

have to be considered, it may be assumed here that all distances are 

measured in a straight line. 

9. By measuring the map in Ex. 8, find how far it will 

be from each village to the school, and check your answer 

by the formula given in Ex. 5, page 198. 
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10. If a carpenter's square is placed on top of an upright 

stick, as here shown, and an observer ^ 

sights along the arms to a distant point 

B and to a point A near the stick, then 

if AD and DC are measured, the length ___ 

of DB can be found. Show how this ^ ^ ^ 

can be done, explaining the geometric principle involved. 

Roman surveyors knew this method two thousand years ago. 

11. Surveyors sometimes lay off a right angle in a field 

by setting two stakes P and 5 on a \P 

line 3 ft. apart. They then hold the 

end of a tape at B and the 9-foot AA^:^^-- 

mark at P, stretch the tape taut a 

toward A, and set a stake at A on the 5-foot mark. Prove 

that ZP is a right angle. 

12. The captain of a ship which is sailing on the course 

ABX observes a lighthouse L when the ship is at A, and 

measures ZA. He then observes the lighthouse until the 

angle at B is just twice that at A. 

He determines the distance AP from 

his log, an instrument which tells 

how far a ship has gone. He then 

knows that PL, the distance from 

the lighthouse, is the same as AP, the distance sailed. 

State the geometric principle involved in this method, 

which is known as ''doubling the angle on the bow." 

13. The rectangular frame here shown has a plumb line 

/ 

P 
->x 

ML from M 

the upper strip of wood. Prove that / % 
when the point of the plumb bob is 

at the midpoint of AP, the base of the V 1 y 
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14. A draftsman’s triangle is placed over two nails 

driven into a board at A and B. If a pencil point is placed 

at P, it will mark an arc of a circle 

as the triangle is moved about so that 

the arms of ZP always touch the two 

nails. State the geometric principle 

involved. 

15. In Ex. 14, if P is taken as the vertex of the inside 

right angle of the triangle and its arms always touch A 

and By what kind of arc is formed upon AB as chord ? 

16. In laying out the tracks for a street railway, which 

is to turn a right-angled corner as shown in this plan, the 

curve is to be tangent to both the 

vertical tracks and to the horizontal 

tracks. The curve is also to be as 

large as possible without running 

the inside track beyond the corner C. 

Show how to find the center of curva¬ 

ture; that is, the center O from which 

the arcs for the curve are drawn. 

17. If an engineer has to extend a curve which he knows 

is an arc of a circle, but which is too large to be drawn 

with a tapeline, or which cannot be ^ 

easily reached from the center, the 

following method is sometimes used : 

Take P as the midpoint of the known \ 

part APB of the curve. Then stretch 

the tape from A to B and construct PM ± to AB, Then 

swing the length AM about P, and the length PM about P, 

until they meet at L, and stretch the length AB along PL 

to Q, thus fixing the point Q. The point C is fixed in the 

same way, and so on for as many points as are necessary. 

Explain the geometric principle involved. 
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18. In shops where two pulleys are driven by belting, 

we have a case of two tangents to two given circles. If 

the belt runs straight between the pulleys, we have the 

case of two exterior tangents. If the belt is crossed so that 

the pulleys turn in opposite directions, we have the case of 

two interior tangents. In case the belt is liable to change 

its length, on account of stretching or variation in heat or 

moisture, a third pulley C is often used. We then have the 

case of tangents to three pairs of circles. Construct the 

figure for each of the three cases. 

19. This figure shows how a circular 

driveway was laid out from a gate G 

to a porch P so as to avoid a group of 

rocks R. Explain how the plan was 

constructed and state the geometric 

principles involved. 

20. In making the plans for a park a landscape architect 

wished to connect two parallel roads R and R' by the curve 

here shown, which consists of two arcs and is known 

as a reversed curve. From the 

figure explain how the architect 

proceeded to construct the plan, 

and state the geometric prin¬ 

ciples involved at each step. 

The architect located the center 
line of the curve, the dot-and-dash line, before drawing the lines which 

represent the sides of the road. Considering the center line, notice 

that each arc is tangent to a road and that the arcs are tangent to 
each other. 
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21. A draftsman who wished to draw one long line 
perpendicular to another used his T-square 
in the two positions shown in the figure, 
instead of using a triangle. State the 
geometric principles involved in drawing 
the lines in this way. 

22. This instrument is used for drawing a line parallel 
to the edge of a board. Block B is fastened to the end of 
bar E and has a sharp marking 
point on its underside. Block A 

can be clamped in any position 
on bar E by the set screw C. If 
block A is moved along one edge of 
the board, will the point on B trace 
a line parallel to the edge ? Why ? 

23. The gauge in Ex. 22 is also used for dividing a board 
into two equal parts. The equal brass arms AD and BD are 
pivoted at i) by a marking point, and are also pivoted at A 

and B. Blocks A and B are set to the width of the board 
to be divided, and then block A is moved along one edge 
of the board while point D traces the dividing line. State 
the geometric principle involved. 

AB 

24. In turning a piston ring for an engine a larger ring 
is made than is needed in the cylinder. Usually the outside 
diameter of the ring is made 1.5% longer than 
the diameter of the cylinder. The piece AB is 
then cut out, the ring is drawn together at P, 
as shown by the dotted lines, and is fitted in 
place. If the diameter of the cylinder is 4 in., 
what diameter should be used in turning the 
ring and what length should be cut off (AB) to make the 
ring fit the cylinder ? 
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Cr-. 

25. In surveying it is often necessary to run a straight 
line beyond an obstacle through which it is impossible to 
sight and over which it is impossible to pass. One of the 
methods, which is illustrated by the 
adjoining figure, is as follows: Sup¬ 
pose that the surveyor desires to 
run the line AB beyond the house H; 
he first runs a line BC at right angles 
to AB\ at C he runs a line CD at right angles to BC; at D 

he runs a line DX at right angles to CD; on DX he lays off 
DE= CB, and at E he runs a line EF at right angles to DE. 

Prove that EF is part of the straight line AB prolonged. 

26. An 8-inch pipe can carry how many times as much 
water as a 1-inch pipe ? as a 2-inch pipe ? as a 4-inch pipe ? 

In an 8-inch pipe the internal diameter is 8 in. 

27. The diameter of the safety valve of a boiler is 2| in. 
Find the total pressure of the steam upon the face of the 
valve when the steam gauge indicates that the pressure is 
140 lb. per square inch. 

28. The drive wheel of a locomotive is 6 ft. in diameter 
and makes 1722 revolutions while the locomotive is going 
6 mi. Find the distance lost through the slipping of the 
wheel on the track. 

29. The ''dip of the horizonis the Z.TEH in this figure. 
It is the angle formed at the eye E of an observer by the 
line EH which is J_ to OE, the earth's radius 

. produced, and ET, the tangent from E to the 
sea horizon. Prove that the dip of the horizon 
is equal to the Z O at the center of the earth. 

The proportions of such a figure are necessarily ex¬ 

aggerated in drawing. Those who have studied physics 

will also observe that in practice the question of the bending of the 

light rays must be considered. 
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Exercises. College Entrance Examinations 

1. The sum of the angles of a triangle is 180°, and the 
sum of the angles of polygon P is 180°. What do you infer 
as to the number of sides of P? The sum of the sides of a 
certain triangle is 180 in., and the sum of the sides of poly¬ 
gon P is 180 in. What do you infer as to the number of 
sides of P? 

State your reasons in both cases, and similarly in Ex. 2. 

2. If three parallels cut off equal segments on one trans¬ 
versal, they cut off equal segments on every other trans¬ 
versal. Three given lines do cut off equal segments on one 
transversal and also cut off equal segments on another 
transversal. What do you infer as to whether or not these 
three lines are parallel ? 

3. The sum of the four sides of any quadrilateral is 
greater than the sum of the two diagonals. 

4. In the fifth century B.C., Hippocrates, a Greek mathe¬ 
matician, proved a theorem which asserts that if three 
semicircles are constructed on the sides 
of a right triangle as diameters, as here 
shown, the crescents L and L' are to¬ 
gether equivalent to the A T. Prove the 
statement. 

This statement is in a somewhat more general form than the one 

given by Hippocrates. 

5. If two altitudes of a triangle are equal, the triangle is 
isosceles; if three altitudes are equal, it is equilateral. 

6. From an external point P a tangent PA is drawn to a 
circle. If the diameter AB and the secant PB, cutting the 
circle at Q, are also drawn, then APAB is similar to A AQP. 

The exercises on pages 272 and 273 have been adapted from various 

examination questions, and represent cases of average difficulty. 
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7. Through a point Pinside a circle with center O chords 
whose midpoints are Mi, Mg, Mg, • • • are drawn. Find the 
locus of Ml, Mg, Mg, ‘ 

8. Given a line segment a, construct an equilateral tri¬ 
angle with altitude a. 

9. If the side BA of a AABC is produced through A to 
jD, and if the bisector of ZP meets the bisector of ACAD 

at P, then Z APP = J Z C. 

10. The bisectors of the base A A and P of the equi¬ 
lateral AABC meet in the point P. From P lines are con¬ 
structed II to AC and PC and meeting the base in X and Y 

respectively. Prove that X and Y trisect the base. 

11. Construct a circle which shall have half the area of 
a given circle of radius r. 

12. A circular arch of masonry of radius r feet rests on 
two piers which are d feet apart. Find the height of the 
center of the arch above the level of the top of the piers. 
Discuss the result when r = 25, = 40; when r = 25, cZ = 50. 

13. Without performing the actual construction, show 
how to construct an equilateral triangle equivalent to a 
given square of side s. 

14. A circle of radius 2 in. rolls around the outside of a 
square of side 4 in. Find the length of the path made by 
the center of the circle. 

15. Construct the locus of the center of a circle of radius 
0.5 in. which rolls around an equilateral triangle of altitude 
2 in. Find the length of this locus to the nearest 0.1 in. 

16. While the wind is blowing directly from the north 
at the rate of 10 mi. per hour, a steamer is sailing directly 
east at the same rate. In what direction is a weather vane 
on the ship pointing ? State the reason. 
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Exercises. Optional Trigonometry 

1. Using the right triangle here shown, define, sin A, 
cos A, and tan A in terms of a, b, and c. 

This page is intended only for those who 

have studied trigonometry and are preparing 

for an examination that includes the trigo- 

nometry of the right triangle. The following 

table of natural functions is sufficient for the exercises given below: 

Angle sin cos tan Angle sin cos tan 

o
 

C
O

 0.500 0.866 0.577 60° 0.866 0.500 1.732 

40° .643 .766 .839 70° .940 .342 2.747 

o
 

ia
 .766 .643 1.192 0

0
 

.985 .174 5.671 

Given the following, find the other parts and the area of 

the right triangle shown above: 

2. A = 30°, a = 20 ft. 5. 5 = 60°, a = 8.2 in. 

3. 40°, 6 = 70 ft. 6. A = 70°, c = 83 yd. 

4. A = 50°, b = 9.5 in. 7. 6 = 20 ft., a = 23.84 ft. 

8. The angle of elevation of a balloon from a point P 

is 60°, and the distance from P to a point directly beneath 
the balloon is 375 yd. Find the height of the balloon. 

9. When a pole 59.6 ft. high casts a horizontal shadow 
50 ft. long, what is the angle of elevation of the sun ? 

10. A fiagpole is broken by the wind, and the upper part 
falls over so as to form a right triangle with the lower 
part and the ground. If the upper part makes an angle of 
70° with the ground and the top of the pole is 15 ft. from 
its foot, find the original height of the pole. 

11. Two sides of a parallelogram are 7 ft. and 9 ft. 6 in. 
respectively, and the included angle is 80°. Find the area 
of the parallelogram. 



SOLID GEOMETRY 

BOOK VI 

LINES AND PLANES IN SPACE 

I. Lines and Planes 

312. Nature of Solid Geometry. In plane geometry we con¬ 
sidered figures lying in a plane, studied their properties 
and relations, and measured their dimensions and areas. 
Such figures are, in general, two-dimensional. 

In solid geometry we shall consider not only figures 
of one dimension and two dimensions, but also three- 
dimensional figures, such as cubes and spheres. 

We shall not need to construct the solid figures by 
means of the straightedge and compasses, and hence we 
shall not discuss any problems of construction. 

313. Plane. A surface such that a straight line joining 
any two of its points lies wholly in the surface is called 
a plane surface, or simply a plane. 

A plane has no thickness, and is understood to be in¬ 
definite in extent. A plane may be conveniently repre¬ 
sented by a thin rectangular solid seen obliquely, as in 
any of the three ways shown above. 

275 
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314. Postulates of Planes. Just as in plane geometry we 
assumed certain postulates upon which to build the proofs 
of the propositions, we now assume certain postulates re¬ 
specting planes. The following are the ones needed in the 
elementary part of solid geometry: 

1. Two intersecting straight lines 

determine a plane. 

Although the plane p may turn about 
one of its lines AB, as shown in the upper 
figure, and occupy any number of positions, 
as p'y p", • • •, it cannot turn if it must also 
pass through an intersecting line CD, as 
shown in the lower figure. In other words, 
the intersecting lines AB and CD deter¬ 
mine the plane p. 

This postulate may be taken to 
include the following statements: 

A straight line and a point not on the line determine a 

plane. 

For example, the line AB and the point C in the second figure are 
sufficient to determine the plane p. 

Three points not in a straight line determine a plane. 

If two of them are connected with the third, we have the case of 
the postulate as first stated. 

Two parallel straight lines determine a plane. 

By definition (§ 51) they must lie in a plane, and one of the par¬ 
allels and any point on the other determine the plane. 

Any one of the four statements given above may be referred to 
as § 314,1. 

2. If two planes have one point in common, they have at 

least one other point in common. 

It is evident that they must then coincide or else that they must 
intersect in a straight line. 
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Exercises. Planes 

1. We commonly say that we live in a space of three 
dimensions, these dimensions being length, width, and 
thickness. We may, then, consider a plane as a space of 
how many and what dimensions? Similarly, a line is a 
space of how many and what dimensions ? 

2. Explain the meaning of the statement that a plane 
passes through a line; that it cuts or intersects the line. 
Draw a figure to illustrate each case. 

3. Two lines in a plane may have no point in common, 
in which case they are parallel; they may have one point 
in common, in which case they intersect; or they may have 
an infinite number of points in common. Write a similar 
statement respecting two planes in three-dimensional space. 

4. Write a statement mentioning three points in the 
room and describing the position of the plane determined 
by them. Illustrate the statement by a drawing. 

5. Write a statement explaining why a three-legged 
stool stands firmly on the fioor while a four-legged chair 
may not do so. 

6. Write a statement describing the position of two 
lines in the room which are so situated that they do not 
determine a plane and do not meet however far produced. 

7. State the geometric reason why a triangle is neces¬ 
sarily a plane figure while a quadrilateral in three-dimen¬ 
sional space need not be. 

8. In three-dimensional space how many different planes, 
are determined by four points ? by five points ? 

9. If n lines, no two of which are parallel, meet a given 
line Z, how many planes are determined, upon what 
postulate does your answer depend ? 
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Proposition 1. Intersection of Planes 

315. Theorem. If two 'planes meet, they intersect in a 

straight line. 

Given two planes p and q which meet. 

Prove that p and q intersect in a st. line. 

Proof. Since p and q meet, they must have at least one 
point, as A, in common. Hence they must have at least one 
other point, as B, in common. § 314, 2 

Draw AB. Post. 1 

Then AB lies in both p and q, § 313 
because otherwise p and q would not he planes. 

Also, no point not on AB can be in both p and q, § 314,1 
because p and q would then coincide instead of meeting. 

Hence the st. line determined by A and B contains all 
points common to p and q. 

. *. AB is the intersection of p and q, 
because this is the meaning of intersection. 

p and q intersect in a st. line. Hence 
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316. Perpendicular to a Plane. If a straight line which 
meets a plane is perpendicular to every straight line which 
lies in the plane and passes through the point of meeting, 
the line is said to be perpendicular 

to the plane, and the plane is said 
to be perpendicular to the Him. 

In this figure we may have any num¬ 

ber of planes containing I, and in each 

plane we may have a perpendicular to I 

at O. Hence we may have any number of perpendiculars, as a, b, c, , 

to I at O. 

If, as will be shown (§ 321) to be the case, a,h,c,"- all lie in one 

plane m, then Hs _L to m, and m is ± to 1. 

If we invert the above definition (§ 9), we see that if a 
straight line is perpendicular to a plane, the line is perpen¬ 
dicular to every line in the plane that passes through the 
point of meeting. 

317. Foot of a Perpendicular. The point at which a perpen¬ 
dicular meets a plane is called the foot of the perpendicular. 

318. Oblique to a Plane. If a straight line which meets a 
plane is not perpendicular to the plane, the line is said to 
be oblique to the plane, and the plane is said to be oblique 

to the line. 

Lines which are perpendicular or oblique to a plane are called 

'perpendiculars or obliques respectively. 

When we speak of a perpendicular or an oblique from a point to a 

plane, we mean the line segment from the point to the plane. 

319. Parallel to a Plane. If a straight line cannot meet a 
plane, however far each is produced, the line is said to be 
parallel to the plane, and the plane is said to be parallel to 

the line. Similarly, if one plane cannot meet another plane, 
however far each is produced, the planes are said to be 
parallel. 
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Proposition 2. Perpendicular to a Plane 

320. Theorem. If a line is perpendicular to each of 

two intersecting lines at their point of intersection^ it is 

perpendicular to the plane of the two lines. 

Given AO J- to OP and OR at 0, and m, the plane of OP and OR. 

Prove that ' AO is to m. 

Proof. Through O drav^ any other line OX in the plane 
m, and draw PR, cutting OP, OX, OR in P, Q, and R 
respectively. On AO produced take OA'= OA. 

Join A and A' to P, Q, and R respectively. 

Then AP=A'P and AR=A'R, § 117 
because OP and OR are each ± to AA' at its midpoint. 

.*. A APR is congruent to A A'PR. § 47 

Then ZRPA = ZRPA'. §38 

.*. APQA is congruent to APQA'. § 40 

Then, since AQ = A'Q (§ 38), OQ is _L to AA' at O. § 182 

Hence AO is _L to any line in the plane m through O, 
and thus is J_ to m. § 316 
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Proposition 3. Perpendiculars to a Line 

321. Theorem. Every line 'perpendicular to a given 

line at a given point lies in a plane perpendicular to 

the given line at the given point 

Given OA, OB, OC, • • • and the plane m, all _L to OY at 0, 

Prove that OA, OB, OC, — ■ lie in m. 

Proof. Suppose that the plane p, determined by OA and 
OY, does not intersect m in OA, but intersects it in OA'. 

Then OA'is_LtoOF. §316 
But OA is J_ to OF. Given 
Hence the supposition is false. 

.p intersects m in OA. Post. 10 

Hence OA lies in m, and similarly for OB, OC,--. § 313 

322. Corollary. Through a given internal point there can 
he one and only one plane perpendicular to a given line. 

323. Corollary. Through a given external point there can 
he one and only one plane perpendicular to a given line. 

In a, the plane of YY' and the given point 

P, let PO be J_ to YY'. In h, any other plane 

containing YY', let OQ be ± to YY'. Then 

m, the plane of OP and OQ, is ± to YY' at O 

(§ 321). Now prove that m is the only X plane 

by using Post. 10. 
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Proposition 4. Perpendicular through Internal Point 

324. Theorem. Through a given internal 'point there 

can pass one and only one line perpendicular to a plane. 

Given the plane m and the internal point P. 

Prove that through P there can pass one and only one line 
which is _L to m. 

Proof. If a and b are any two lines in the plane m passing 
through P, then through P there is a plane x which is J_ to 
a and a plane y which is _L to 6. § 322 

Since a and h are not identical but meet at P, x and y are 
not identical and must intersect in a st. line BQ. § 315 

Since a is _L to x^ it is _L to PQ. § 316 

Similarly, 6 is _L to PQ, 

and hence PQ is _L to m. § 320 

Now if another linePQ' could pass through Pand be J_ 
to m, it would be ± to a and to 6. § 316 

Hence PQ' would lie in both x and y, § 316 

and PQ' would coincide with PQ. 

. *. PQ is the one and only _L to m through P. 
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Proposition 5. Perpendicular through External Point 

325. Theorem. Through a given external point there can 

pass one and only one line perpendicular to a plane. 

Given the plane m and the external point P. 

Prove that through P there can pass one and only one line 
which is _L to m. 

Proof. Let I be any line in m, and let PA be J_ to 1. 

In m construct AR _L to I, and in the plane of AR and P 
construct PO-L to Ai?. §§104,105 

Produce PO to P', making OP' = OP. Post. 2 
Let OB be any other line from O to I, and draw PP, 

P'A, and P'P. 

Then Z is J- to plane AP'P. § 316 

Now prove that rt. A APB is congruent to rt. AAP'B, hence that 

A OPB is congruent to A OP'B, and hence that PO is _L to OB. 

Then PO is J_ to m. § 316 

Further, if PQ is any other line from P to m and QO is 
drawn, then Z.QOP is a rt. Z. § 316 

Hence PQ is not ± to m, and PO is the only ±. 
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Proposition 6. A Perpendicular and Obliques 

326. Theorem. If from an external 'point a perpen¬ 

dicular and obliques are dra'wn to a plane^ 

1. The perpendicular is shorter than an'y oblique; 

2. Obliques meeting the plane at equal distances from 

the foot of the perpendicular are equal; 

3. Of two obliques meeting the plane at unequal dis¬ 

tances from the foot of the perpendicular, the more 

remote is the longer. 

Given the plane m, the external point P, PO X to and the 
obliques PA, PB, PC drawn to m so that OA > OB = OC. 

Prove that PO < PC, PB = PC, and PA > PC. 

Proof. Produce PO to P', making OP' = OP. Post. 2 

Draw P'C. Post. 1 

Now prove that PP'<PC+CP', and hence that PO<PC. 

Then prove that A OBP is congruent to A OOP, 

and hence that PB = PC^ 

Finally, prove that PA>PB, 

and hence that PA>PC. 
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327. Distance. The length of the perpendicular from a 

point to a plane is called the distance from the point to 

the plane. 

The following corollaries (§§ 328, 329) extend the idea of a locus with 
which the student is familiar from plane geometry. 

328. Corollary. The locus of 'points equidistant from the 

vertices of a triangle is a line through the center of the cir¬ 

cumscribed circle, and perpen¬ 

dicular to the plane of the 

triangle. 

We have first to prove (§ 181) 
that any point P on the A.OY satis¬ 
fies the conditions; that is, that 

AP — BP = CP. But this follows 
from §§ 134,1 and 326, 2. 

We have then to prove that any 
point P which satisfies the conditions 

that AP = BP = CP is on the line OY. Now AO = BO = CO (§ 134,1). 
Then since OP is a common side, A A OP, POP, and OOP are congruent 
(§ 47). Then the A made by OP with any lines in m are equal, and hence 

they are rt. A. Hence OP is JL to m at O (§ 316), and since OP is part 
of OP(§ 324), Pis on OY. 

329. Corollary. The locus of points equidistant from two 

given points is the plane perpendicular at the midpoint to 

the line segment joining the points. 

We have first to prove (§ 181) that any 
point P in m satisfies the condition that 
PA = PB. We have then to prove that any 

point P' such that P'A = P'B lies in m, 

which is best done by an indirect proof. 

The proof of each of these steps is left 
for the student. 

We here meet a case in which the locus 

is a plane instead of a line. In plane geometry, as the student has 
already found, a locus is usually a line; in solid geometry a locus may 

be a line or it may be a surface. 

Y 
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Exercises. Lines and Planes 

1. Equal oblique lines drawn from a point to a plane 
meet the plane at equal distances from the foot of the per¬ 
pendicular from the point to the plane; and of two unequal 
oblique lines the greater meets the plane at the greater 
distance from the foot of the perpendicular. 

2. The locus of points equidistant from all points on a 
circle is a line through the center, perpendicular to the 
plane of the circle. 

3. Find the locus of points at a given distance from each 
of two given points. 

4. Explain how a carpenter might proceed to set a joist 
so that it shall be perpendicular to a horizontal floor. Draw 
a flgure to illustrate any method which seems practical to 
you for the carpenter to use. 

5. What geometric principle is involved in the statement 
that if the spoke of a wheel is perpendicular to the axle, 
the spoke determines a plane as the wheel revolves ? 

6. A steel smokestack 80 ft. high is braced by four steel 
wires each 100 ft. long and reaching from the top of the 
stack to the ground. If the wires are straight, at what dis¬ 
tance from the foot of the stack does each reach the ground? 
Would three wires serve as well ? Would two serve as well ? 
Would one serve as well? State the geometric principle 
involved in each case. 

7. Through a point P there pass four lines such that no 
three are in the same plane. Find the number of planes 
determined by the four lines. 

8. In a plane P there lie four lines such that no three 
pass through the same point. Find the greatest number 
of points that can be determined by the four lines. 
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Proposition 7. Perpendiculars to a Plane 

330. Theorem. Two lines 'perpendicular to the same 

plane are parallel. 

Given AB and CZ>, each JL to the plane m. 

Prove that AB is W to CD. 

Proof. Draw AD and BD, and in m draw PQ _L to BD at 

Z), making DP=DQ. Draw AP, AQ, BP, BQ. 

By congruent A (§ 47) prove that A ADP = ZADQ = 90°, and then 
that BD, CD, and AD lie in the same plane (§ 321). Then prove that 
AB also lies in this plane (§ 313), and then that AB and CD are each ± 
to BD{% 316). 

, AB is II to CD. §57 

331. Corollary. If one of two parallel lines is perpendicular 

to a plane, the other is also perpendicular 

to the plane. 

For if through any point O of 6 a line is drawn X 
to m, how is it related to a (§ 330)? Now apply § 52. 

332. Corollary. If two lines are parallel 

to a third line, they are parallel to each 

other. 

For if 6 is X to m, so are a and c (§ 331).. 
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Proposition 8. Parallel Lines 

333. Theorem. If two lines are parallel^ every plane 

containing one and only one of the . lines is parallel to 

the other. 

Given the II lines AB and CD, and the plane m containing 
CD but not AB. 

Prove that m is II to AB. 

Proof. AB and CD determine a plane n, § 314, 1 

and AB lies in n, however far each is produced. § 313 

Hence, if AB meets m, it meets CD. § 313 
Since AB cannot meet CD, § 51 

AB cannot meet m; 

that is, m is II to AB. § 319 

334. Corollary. Through either of two lines not in the 
same plane one and only one plane can 
pass parallel to the other line. 

For if AB and CD are the given lines, and 
if CX is II to AB, what can be said of the 
plane m, which is determined by CD and CX, 
with respect to the line AB ? Why can there be only one such plane ? 

Lines placed like AB and CD in this figure are called skew lines. 
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335. Corollary. Through a given point one and only one 
plane can pass parallel to each of two given lines not in the 
same plane. 

Let P be the given point and AB and CD the given lines. If, now, 

we construct through P the line A'B' II to AB, and the line C'D' II to 

CD, these lines determine the plane m. 

Then prove that m is II to AB and CD, 
and that no other such plane is possible 

through P. 

In the above figure, the lines AB and 

CD are said to form an angle, although X ^ / 
they do not meet. This angle is defined 

as the Z. C'PB', but the concept is rarely used in elementary geometry. 

Exercises. Lines and Planes 

1. State the geometric principle by which we know that 
a straight edge results from folding a piece of paper. 

2. In a given plane what is the locus of points equi¬ 
distant from two parallel lines in the plane? Given two 
parallel planes instead of two parallel lines, what is the cor¬ 
responding locus in a space of three dimensions? Draw 
the figures but give no proofs. 

3. If a given line is parallel to a given plane, the inter¬ 
section of the plane with any plane passed through the 
given line is parallel to that line. 

4. If a given line is parallel to a given plane, a line parallel 
to the given line drawn through any point of the plane lies 
in the plane. 

5. If equal oblique lines are drawn from a given external 
point to a plane, they make equal angles with lines drawn 
from the points where the oblique lines meet the plane to 
the foot of the perpendicular drawn from the given point 
to the plane. 
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Proposition 9. Parallel Planes 

336. Theorem. Two planes perpendicular to the same 

line are parallel. 

Given the planes m and n, each -L to the line /. 

Prove that m is II to n. 

Proof. If m is not II to n, it must meet n, in which case 

we should have two planes through a point in their inter¬ 

section both J_ to 1. 
Since this is impossible (§ 322), m is II to n. 
The following corollary, which is analogous to the Postulate of 

Parallels (§ 52), may be assumed, if desired, without proof. 

337. Corollary. Through a given external point one and 
only one plane can pass parallel to a given plane. 

If P is the point and m is the plane, as shown in the left-hand 
figure, there is only one line PQ that is ± to m (§ 325). Through P 
there is one and only one plane 
n that is _L to PQ (§ 322), and 
this is II to w (§ 336). 

If through P there were two 
planes II to m, one would be 
oblique to PQ, as shown in the 
right-hand figure, and would con¬ 

tain some line PP' that would meet its projection QQ' in m. Then n 
would not be II to m (§ 319). Hence only one plane through P is II to m. 
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Exercises. Review 

1. If from the foot of a perpendicular to a plane a line 
is constructed at right angles to any line in the plane, the 
line drawn from its intersection with the line in the plane 
to any point on the perpendicular is perpendicular to the 
line in the plane. 

2. If two perpendiculars extend from a given external 
point to a plane and to a line in that plane respectively, the 
line joining the feet of the two perpendiculars is perpen¬ 
dicular to the given line. 

3. From two vertices of a triangle perpendiculars are 
constructed upon the opposite sides. From the intersection 
of these perpendiculars there is a perpendicular to the plane 
of the triangle. Prove that a line drawn to any vertex of 
the triangle from any point on this perpendicular is perpen¬ 
dicular to the line drawn through that vertex parallel to 
the opposite side. 

4. Find the point in a plane to which lines may be drawn 
from two given external points on the same side of the 
plane so that their sum shall be the least possible. 

From one point A suppose that a line O is ± to the plane and that 

it is produced to A', making OA'= OA. Connect A' and the other point B 
by a line cutting the plane at P. Then AP APB is the least sum. 

5. If three equal oblique lines are drawn from an exter¬ 
nal point to a plane, the perpendicular from the point to 
the plane meets the plane at the center of the circle circum¬ 
scribed about the triangle which has for its vertices the 
points where the oblique lines meet the plane. 

6. State and prove the propositions of plane geometry 
corresponding to §§330, 331, and 332. Why do not the 
proofs of those propositions apply to the corresponding 
propositions of solid geometry? 
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Proposition 10. Parallel Planes Intersected 

338. Theorem. If two parallel planes are cut by a third 
plane^ the lines of intersection are parallel. 

Given the II planes m and n, intersected by a third plane p 
in AB and CD respectively. 

Prove that AB is II to CD. 

Proof. AB and CD are in the same plane p. Given 

Since AB is always in m and CD is always in n, § 313 

m and n must meet if AB and CD meet. 

But m is II to n, Given 

and hence m and n cannot meet. § 319 

.*. A5is II toCD. §51 

339. Corollary. A line perpendicular to one of two parallel 
planes is perpendicular to the other 
also. 

Let PQ be ± to m, and let p and q be two 

planes containing PQ. Now prove (§ 338) that 

QB is II to PA and that QD is II to PC. Then 

prove that PQ is ± to QB and QD, and hence 

that PQ is ± to n. 
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340. Distance between Parallel Planes. The length of a 
perpendicular line segment between two parallel planes is 
called the distance between the planes. 

It has been shown (§ 339) that if this segment is perpendicular to 

one of two parallel planes it is perpendicular to the other. It will now 

be shown (§ 341) that the length is the same whatever perpendicular 

between the planes is taken. 

341. Corollary. Two parallel planes are everywhere equi¬ 
distant from each other. 

In the figure of §339, if AB is constructed II to PQ, then ABQPis 
a O (§ 72). Since it is given that PQ is J. to m, then AB is also ± to m 

(§ 331). Both AB and PQ are then ± to n (§ 339) and represent distances 

measured on any two _h. But AR = PQ(§ 76), and hence m and n are 

everywhere equidistant from each other. 

342. Parallel in the Same Sense. If two parallel rays lie 
on the same side of the line segment which joins their 
end points, they are said to be parallel in the same seme. 

Exercises. Parallel Planes 

1. Parallel lines included between parallel planes are 

equal. 

2. The locus of points equidistant from two parallel 
planes is a plane which is perpendicular to a line perpen¬ 
dicular to the planes and which bisects the segment cut 

off by them. 

3. The locus of points equidistant from two parallel lines 
is a plane which is perpendicular to a line perpendicular 
to the given lines and which bisects the segment cut off 

by them. 

4. The locus of points at a given distance from a plane 
is a pair of parallel planes, each at the given distance from 

the given plane. 
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Proposition 11. Arms of Angles Parallel 

343. Theorem. If two angles not in the same plane 
have their arms respectively parallel in the same sense, 

the angles are equal and their planes are parallel. 

Given the A A and A' in the planes m and n respectively, 
with their arms respectively II in the same sense. 

Prove that AA = AA' and that m is W to n. 

Proof. Take AB=A'B\ and AC—A'C\ and draw BC, 
B'C\ AA', BB\ CC\ 

Then A A' is equal and II to BB' and to CC', § 81 

Hence BB'=CC'{Kx. 5), and BB' is II to CC'(§ 332). 

Since5C=5'C'(§76), AA^Ciscongruent toAA'^'C'. § 47 

.•.ZA = ZA'. §38 

Now if m is not II to n, they will meet in a line 1. § 315 
Since AB and AC are II to ?^ (§ 333), neither can meet 1. 
But since both AB and AC cannot be II to Z (§ 332), m can¬ 

not meet n, and hence m is II to n, 

344. Corollary. If two intersecting lines are each parallel 
to a plane, the plane of these lines is parallel to that plane. 

In the figure of § 343, if AB and AC are both II to n, show that AB 
cannot meet a line A'B', which is the intersection of n and the plane 

of AA' and AB. Similarly, AC is II to A'C'. Hence m is II to n (§ 343). 
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Proposition 12. Transversals in Space 

345. Theorem. If two lines are cut hy three parallel 
planeSy their corresponding segments are proportional. 

Af Ej By and C, F, D respectively. 

Prove that AE_CF 
EB Fd' 

Proof. Let q intersect the plane of A, B, D in EG and 
the plane of A, D, C in GF. 

Then EG is II to BD and GF is II to AC. §338 

Hence 
AE AG 

gd' EB 

and 
CF_ AG §201 
FD gd' 

Hence 
AE_ CF Ax. 5 
EB fd' 

It should be observed that this proposition is a generalization of § 203, 

which applies only to a figure lying in one plane. It may be stated 

still more generally as follows: If two lines are cut hy any number of 
parallel planes^ their corresponding segments are proportional. 

Consider also the case of AB intersecting CD between the planes. 
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Exercises. Review 

1. In a given plane find the locus of points equidistant 

from two given points not in the plane. 

2. Find the locus of points equidistant from three given 

points not in a straight line. 

3. Find the locus of points equidistant from two given 
parallel planes and also equidistant from two given points. 

4. What is the locus of points at a given distance from 
each of two planes ? 

5. The line AB cuts three parallel planes in the points A, 
E, B; and the line CD cuts these planes in the points C, F, D. 
If AE=Z in., EB — A in., and CD = 6 in., what are the lengths 
of CFandFD? 

6. In Ex. 5, if AB = 1^ in., 0^ = 10 in., and CD = 18 in., 
what are the lengths of AE and EB^. 

7. It is proved in plane geometry that if three or more 
parallels intercept equal segments on one transversal, they 
intercept equal segments on every transversal. State and 
prove a corresponding proposition in solid geometry. 

8. It is proved in plane geometry that the line which 
joins the midpoints of two sides of a triangle is parallel 
to the third side. State and prove a proposition in solid 
geometry which shall refer to a plane passing through the 
midpoints of two sides of a triangle. 

9. A cylindric water tank which is 16 ft. deep and 12 ft. 
in diameter is filled with water to a depth of 9 ft. A pole 
standing obliquely in the tank just reaches from a point 
on the circumference of the base to a point exactly oppo¬ 
site on the upper rim. Find the length of that part of the 
pole which is under water. 

10. Consider Ex. 9 when the water level rises 3 ft. 
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II. Dihedral Angles 

346. Half-Planes. Any straight line in a plane is said to 
divide the plane into two half-planes. 

This term corresponds to the term rays in plane geometry. 

347. Dihedral Angle. If two half-planes proceed from the 
same line, they form a dihedral angle. 

In this figure the half-planes p and q 

are the faces of the dihedral angle, and AB 

is the edge. 

This dihedral angle may be designated 
by pq, d, p-AB-q, or AB, of which the first 
two forms are the most convenient. 

348. Plane Angle of a Dihedral Angle. A plane angle whose 
arms are perpendicular to the edge of a 
dihedral angle and lie respectively in the 
faces is called the plane angle of the 
dihedral angle. 

For example, if OA, OB] O'A', O'B'; 0"A", 

0"B" are each perpendicular to 00' in this figure, 
each of the AO, O', O" may be taken as the plane 
angle of the dihedral angle. 

349. Corollary. Two dihedral angles have the same ratio 
as their plane angles. 

For it is evident that the amount of turning necessary to generate 
a dihedral angle is the same as that which is necessary to generate its 
plane angle. Hence their numerical measures are always identical. 

If a proof were necessary, it would be substantially the same as 
the one in § 136. 

350. Kinds of Dihedral Angles. A dihedral angle is right, 
acute, or obtuse according as its plane angle is right, acute, 
or obtuse. 

Similarly we may use the terms straight, vertical, adjacent, comple¬ 

mentary, supplementary, and oblique in connection with dihedral angles. 
PS 
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351. Relation of Dihedral Angles to Plane Angles. It is 
evident that the proofs of many properties of dihedral 
angles are identical with those of analogous properties of 
plane angles. A few of the more important propositions 
will be proved, but the following may be assumed without 
proof or may be taken as exercises: 

1. If a plane meets another plane, it forms with it two 
adjacent dihedral angles whose sum is equal to two right 
dihedral angles. 

2. If the sum of two adjacent dihedral angles is equal to 
two right dihedral angles, their exterior faces are in the 
same plane. 

3. If two planes intersect each other, the vertical dihedral 
angles are equal. 

A. If a plane intersects two parallel planes, the alter¬ 
nate dihedral angles are equal; the corresponding dihedral 
angles are equal; and the two interior dihedral angles on 
the same side of the transverse plane are supplementary. 

5. When two planes are cut by a third plane, if the 
alternate dihedral angles are equal, or the corresponding 
dihedral angles are equal, and the edges of the dihedral 
angles thus formed are parallel, the two planes are parallel. 

6. Two dihedral angles whose faces are parallel each to 
each are either equal or supplementary. 

7. Two planes parallel to the same plane are parallel to 
each other. 

While the proofs of the above propositions are valuable as exercises 

in logic, they are not essential. 

352. Perpendicular Planes. If two intersecting planes 
form a right dihedral angle, the planes are said to be 
perpendicular to each other. 

As in all definitions we may invert the statement and say that, if the 

planes are perpendicular, they form a right dihedral angle. 
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Proposition 13. Perpendicular Planes 

353. Theorem. If two planes are perpendicular to each 
othery a line drawn in one of them perpendicular to their 
intersection is perpendicular to the other. 

Given the planes m and n -L to each other, and the line CD 
in m _L to ABy the intersection of m and n. 

Prove that CD is ± to n. 

Proof. In n construct DE J_ to AB at D. §104 

Then Z.EDC is a rt. Z. §352 

Also, Z.CDA is a rt. Z. Given 

. *. CD is Z to n. §320 

354. Corollary. If two planes are perpendicular to each 
othery a line perpendicular to one of them at any point of 
their intersection lies in the other. 

In the figure of § 353, let DC be constructed in the plane m ± to AB 
at any point D. Then DC is _L to n (§ 353). Now through D there can 
be only one _L to (§ 324). Hence a ± to n through D must coincide 
with DC and lie in the plane m. 

355. Corollary. If two planes are perpendicular to each 
other, a line perpendicular to one plane through any point 
in the other lies in the second plane. 

In the figure of § 353, if CD is constructed in the plane m J. to AB 
through C, it is J. to n (§ 353). But only one such ± is possible (§ 325). 
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Proposition 14. Plane through a Perpendicular 

356. Theorem. If a line is 'perpendicular to a planey 

every plane passed through this line is perpendicular 

to the plane. 

Given the line CD _L to the plane n at the point D, and any 
plane m through CD. 

Prove that mis 1. to n. 

Proof. Let AB be the intersection of the planes m and n. 

In n construct DE ± to AB at D. § 104 

Since CD is J_ to n, Given 

then CD is ± to AB. § 316 
If a st. line is A. to a plane, the line is J_ to every line in the 

plane that passes through the point of meeting. 

Now Z.EDC measures the dihedral Znm, § 349 
because the plane Z. of a dihedral Z may he taken as the 

measure of the dihedral Z. 

But ZlEDC is a rt. Z, § 316 
because CD is given Zto n. 

. *. m is X to §352 
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357. Corollary. Through a line not perpendicular to a 
given plane, one and only one plane can pass perpendicular 
to the given plane. 

Let AB be any line oblique to plane m, 

and from any point P on AB let a ± PQ be 

drawn to m. Then the plane n, determined 

by AB and PQ, is _L to m (§ 356), so that one 
such plane is possible. 

If another such plane, say x, were possi¬ 

ble, PQ would lie in x (§ 355), so that x would be determined by AB and 

PQ, and hence would coincide with n. 

Exercises. Planes and Perpendiculars 

1. A plane perpendicular to the edge of a dihedral angle 
is perpendicular to each of its faces. 

2. If two intersecting planes are respectively perpen¬ 
dicular to two intersecting lines, the line which is deter¬ 
mined by the planes is perpendicular to the plane which is 
determined by the lines. 

3. .Consider Ex. 2 after interchanging the words'' planes ^ ^ 
and 'Hines'’ in every instance. 

4. The plane passing through a given point P and per¬ 
pendicular to the edge of a given dihedral angle contains 
the perpendiculars from P to the faces of the angle. 

5. A workman with a 12-foot pole, a piece of chalk, and 
a string stands in a room that is 10 ft. high. By the use 
of these instruments how can he find a point on the floor 
that is directly below a given point on the ceiling ? 

6. If two planes are perpendicular to each other, a line 
perpendicular to either plane through an internal point not 
on their intersection is parallel to the other plane. 

7. Consider Ex. 6 after substituting the word "plane" 
for "line" and "line" for "plane." 
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Proposition 15. Two Perpendicular Planes 

358. Theorem. If two intersecting planes are each per¬ 
pendicular to a third plane, their intersection is also 
perpendicular to that plane. 

Given the planes m and n intersecting in AB and each J_ to 
the plane q. 

Prove that AB is _L to q. 

Proof. Through P, any point on AB, there can pass but 
one line, as PX, which is _L to g. § 325 

Now PX must lie in both m and n, § 355 

Hence PX coincides with AP (§ 315); that is, AB is J_ to q. 

359. Corollary. The locus of points equidistant from two 
intersecting planes is the pair of planes which bisect the 
dihedral angles formed hy the given 
planes. 

Let plane h bisect the dihedral Anm. 
We must first show that, if the JsPQ, PR 
from any point P to m and n are equal, P lies 
in 6. Now g, the plane of PQ and PR, is ± to 
m and n (§ 356). Then OA is ± to g (§ 358). 
Since A OPQ is congruent to A OPR (§ 71), 
ZPOQ = ZPOR (§ 38). Then P lies in 6. 
Now prove by congruent A (§ 68) that for any point P lying in 6, PQ = PR. 

A similar proof evidently holds for the plane a. 
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Exercises. Review 

1. If three equal lines are drawn to a plane from an ex¬ 
ternal point, the perpendicular from the point to the plane 
determines the center of the circle circumscribed about the 
triangle determined by the intersections of the planes of 
the three lines with the given plane. 

2. If three lines not in the same plane meet in a point, 
how shall a line be drawn so as to make equal angles with 
all three of these lines ? 

After proving Exs. 3-5, interchange the words ^Hine” and 
'' plane'' and prove the resulting statements: 

3. If a line is parallel to one of two parallel planes, it is 
also parallel to the other plane. 

Exs. 3-5 illustrate what are known as dual propositions, which are 

propositions that are also true if we interchange such terms as 'Mine” 

and "plane.” Another kind of dual propositions is seen in Exs. 6 and 7. 

4. If a plane and a line not in the plane are perpen¬ 
dicular to the same line, they are parallel. 

'' In the plane ’ ’ will become '' through the line' ’ in the dual. 

5. Parallel planes make equal angles with a given line. 
If P is an external point and PA is a segment from P to a plane, let 

PQ be perpendicular to the plane. Then the inclination of PA to the 

plane, or the angle which it makes with the plane, is the Z QAP. 

In Exs. 6 and 7 interchange ^'poinV^ and "^plane^^ and 
draw figures to illustrate each statement and its dual: 

6. Three points, in general, determine a plane. 

7. A point and a line determine a plane. 

8. If a plane is perpendicular to one of two parallel lines, 
it is perpendicular to the other line also. Write the dual, 
as in Exs. 3-5, and prove it. 
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Proposition 16. Common Perpendicular 

360. Theorem. Between two lines not in the same plane 
there is one and only one common perpendicular. 

Given AB and CD, two lines not in the same plane. 

Prove that there is one and only one common _L between 
AB and CD, 

Proof. In the plane of A and CD let AX be II to CD, § 107 

Then m, the plane of AX and AB, is II to CD, §333 

Let DD' be the ± from D to m. §325 

Then n, the plane of DD' and CD, is _L to m. §356 

Let n intersect m in C'D', 

Then CD cannot meet C'D' without meeting m. §313 

But m is II to CD, Proved 

.*. CD is II to C'D', §51 

If AB is II to C'D', 

AB is also II to CD, §332 

Since AB and CD are not in the same plane, Given 

AB is not II to CD, §51 

.*. AB must intersect C'D', 

Designate the point of intersection as P. 
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Let PQ be -L to m. §324 
Then PQ is X to AB and to C'D', §316 

and hence PQ is X to CD. §63 
Hence 

If there 

there is one common J_. 

is another common _L, suppose it to be EA. 

Then EA is _L to AX, §63 
and hence EA is J_ to m. §320 

Let EE'he _L to C'D'. § 105 
Then EE' is _L to m. §353 
But if EA is ± to m, 

EE' cannot be J_ to m. §325 

That is, the supposition that there is a second common 
-L, as EA, leads to an impossible result. 

Hence there is one and only one common J_ between the 
lines AB and CD. 

Exercises. Review 

1. The common perpendicular between two lines not in 
the same plane is the shortest line joining them. 

2. If three lines passing through a given point P are cut 
by a fourth line that does not pass through P, the four lines 
all lie in the same plane. 

3. If seven lines, no three of which lie in the same plane, 
pass through the same point, how many planes are deter¬ 
mined by these lines ? 

4. A cubic tank 10 in. deep is filled with water to a depth 
of 7 in. A foot rule resting on and oblique to the bottom just 
reaches the top edge of the tank. Make a sketch of the 
tank, and compute the length of the rule covered by water. 

5. A plane perpendicular to one of two parallel planes 
is also perpendicular to the other plane. 
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6. If the walls of a room are perpendicular to both the 
ceiling and the floor, what is the geometric reason for 
asserting that the ceiling is parallel to the floor ? 

7. If four points lie in a straight line, can their pro¬ 
jections on a plane lie in a straight line? Must they lie 
in a straight line? Draw the flgures to illustrate your 
answers and state the geometric principles involved. 

8. In plane geometry we find that three lines, in gen¬ 
eral, determine three points; namely, the vertices of the 
triangle formed by the lines. Draw a figure illustrating 
the corresponding case for planes in solid geometry and 
state what is determined. 

9. The equal sides of an isosceles triangle make equal 
angles with any plane that contains the base. 

10. The base BC of the isosceles A ARC in the plane m 
is 3 in., and the perimeter of the triangle is 10 in. If the 
triangle revolves about its base as an axis, what is the 
greatest distance, to the nearest 0.001 in., from the plane 
that is reached by A? 

In finding roots or powers, the student should make use of the table 

given on page 462. 

11. A point P moves so as to be constantly 10 in. from 
each of the points A and B, which are 8 in. apart. Find to 
the nearest 0.001 in. the length of the locus of P. 

12. Two parallel planes m and n are cut by a third plane P 
so that one of the dihedral angles contains 32° 45'. Find 
the sizes of the other dihedral angles. 

13. From a point P which is 12 in. above a plane m, PO is 
drawn perpendicular to m. With 0 as center and a radius 
of 9 in. a circle is drawn in m. At Q, any point on this 
circle, a tangent QR, 20 in. in length, is drawn in m. Find 
the length of PR to the nearest 0.01 in. 
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III. Polyhedral Angles 

361. Polyhedral Angle. If three or more planes meet in a 

point, they form a polyhedral angle. 
If we consider angles greater than 360°, two lines which meet form 

an infinite number of plane angles; but this 
fact never confuses us in plane geometry. 
Similarly, in solid geometry, if three planes 
meet in a point, they form an infinite num¬ 
ber of polyhedral angles; but since we shall 
always make clear the angle to be considered, 
this fact will cause no difficulty. 

The three planes AVB, BVC, and CVA, in the above figure, form a 
polyhedral angle which we designate by V, or by V-ABC. The letters 
are given in the order in which they occur 
around the figure. 

If the figure formed on a plane which cuts 
all the planes forming a polyhedral angle is 
convex, the angle is said to be convex; if the 
figure is concave, as here shown, the angle is v 
said to be concave. Since we shall consider 
only convex polyhedral angles, this distinction need not be memorized. 

362. Parts of a Polyhedral Angle. The common point at 

which the planes meet to form a polyhedral angle is called 

the vertex of the angle. The intersections of the planes are 

called the edges of the angle. The portions of the planes 

lying between the edges are called the faces of the angle. 

The angles formed by adjacent edges are called the face 
angles of the polyhedral angle. The vertex, edges, faces, 

face angles, and the dihedral angles formed by the faces 

are the parts of a polyhedral angle. 

In a polyhedral angle of n faces there are n edges, 

n face angles, and n dihedral angles. 

In the first of the above figures, the vertex is V; the edges are VA, 
VB,VC; the faces are AVB, BVC, CVA; the face angles are ZAVB, 
ZBVC, ZAVC; and the dihedral angles are VA, VB, VC. 
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363. Classes of Polyhedral Angles. A polyhedral angle of 
three faces is called a trihedral angle. 

Polyhedral angles of four, five, six, seven, • • • faces take the prefixes 
tetra-, penta-, hexa-, hepta-, • • •. Since, however, we rarely refer to 
polyhedral angles of more than three faces, these names need not be 

memorized. 

364. Equal Polyhedral Angles. If two polyhedral angles . 
can be placed so that their ver¬ 
tices and edges coincide, the 
angles are said to be equal. 

Conversely, if polyhedral angles are 
equal, they can be made to coincide by 
superposition, because, if the vertices ^ 
and edges coincide, all the correspond¬ 
ing parts coincide. In this figure the trihedral A V and V' are equal. 

Exercises. Review 

1. A reading lamp is attached to an upright rod which 
is fastened to two iron pieces, or feet, resting on the floor 
as here shown. If the rod is perpendicular to 
the two pieces, is it perpendicular to the floor ? 
Would three pieces be better ? Would four be 
better? Would five be still better? State the 
geometric principles involved in your answers. 

2. Two adjacent walls and the ceiling of a _ JL _ 
rectangular room form a trihedral angle. Write 
a statement of the relations of the parts of the angle; for 
example, that each dihedral angle has a certain size. 

3. It is known that the projections of four points upon 
a plane (that is, the feet of the perpendiculars from the 
points to the plane) lie in a straight line. Write your con¬ 
clusion as to Vhether or not these points lie in a straight 
line; lie in a plane; are scattered at random in space. 
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365. Symmetric Polyhedral Angles. If the faces of the 
polyhedral ^V-ABCD are produced through the vertex 
y, another polyhedral angle, the ZV-A'B'C'D', is formed. 
The ^V-A'B'C'D' is said to be 
symmetric with respect to 
ZV-ABCD, 

The face AAVB, BVC, - •, in the 

figure at the left, are’ equal respec¬ 

tively to the face AA'VB', B'VC, • • • 

of the polyhedral ZV-A'B'C'D' 
Also, the dihedral AVA, VB, • • • are 

equal respectively to the dihedral 

A VA', VB', • • • (§ 351, 3). The figure at the right shows a pair of these 
vertical dihedral angles. 

B' B' 

Looked at from the point V, the edges of Z.V-ABCD are 
arranged counterclockwise (from left to right) in the order 
VA, VB, VC, VD, but the edges of ZV-A'B'C'D' are arranged 
clockwise (from right to left) in the order VA', VB', VC', VD'; 

that is, in an order which is the reverse of the order of the 
edges of /LV-ABCD, Therefore, 

Two symmetric polyhedral angles have all their parts equal, 
each to each, hut arranged in reverse order. 

366. Symmetric Polyhedral Angles not Superposable. In gen¬ 
eral, two symmetric polyhedral angles cannot be superposed. 

If the trihedral Z.V-A'B'C' here shown is . 
made to turn 180° about XY, the bisector of 
Z.CVA', then VA' coincides with VC, yc'with 
yA, and the face A'VC' with the faceAyC. 
But since the dihedral ZyA, and hence the 
dihedral ZyA', is not equal to the dihedral 
ZyC, the face A'VB' does not coincide with 
the face BVC, nor does C'ys' with A VB. Hence 
VB' takes some position as VB"; that is, symmetric trihedral 
angles cannot, in general, be superposed. 
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Proposition 17. Trihedral Angles 

367. Theorem. If the three face angles of one trihe¬ 

dral angle are equal respectively to the three face angles 

of another^ the trihedral angles are either equal or 

symmetric. 

Given the trihedral and V^-X'Y'Z' with face 
AYVX, ZVXy ZVY equal respectively to face AY'VX'y 
Z'VX'y Z^V’Y'. 

Prove that the trihedral A V-XYZand V'-X'Y'Z' are either 
equal or symmetric. 

Proof. On the edges of the trihedral A take the six equal 
segments VA, VB, VC, V'A', V'B', V'C'. 

Draw AB, BC, CA, A'B\ B'C', C'A\ 
Since the face A are respectively equal, Given 

then /\BAV is congruent to /\B'A'V\ 
A CAP is congruent to AC'A'y', 

and ACRF is congruent to /\C'B'V\ §40 
Hence AB=A'B\ BC=B'C\ CA=C'A\ §38 

ABAC is congruent to AB'A'C'. §47 
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From any point P on VA construct PQ in the face XVY 
and PR in the face XVZ, each _L to VA. § 104 

Since zi VABand VACare equal A of isosceles A, 

A VAB and VAC are acute. § 65 

Hence the _k PQ and PR meet AB and AC respectively. 

Draw QR. 

OnA'y'take A'P=AP. 

In the faces X'V'Y' and X'V'Z' construct P'Q' and P'R’ 
respectively, each J_ to V'A'. 

Draw Q'R'. 
Since AP=A'P', Const. 

since ZQPA = ZQ'P'A', Post. 6 
and since ZPAQ = ZP'A'Q', §38 
then AAPQ is congruent to AA'P'Q'. §44 

Hence AQ=A'Q' 

and PQ = P'Q'. §38 
Similarly, AR=A’B' and PR = P’R'. 

Now, since APAC is congruent to AP'A'C', Proved 
we have ACAB = AC'A'B'. §38 

Then AARQ is congruent to AA'P'Q', §40 
and hence RQ —R'Q\ §38 

Then AQPR is congruent to AQ'P'P', §47 

and hence ARPQ = AR'P'Q'. §38 
y . dihedral Z VA = dihedral Z F'A'. §349 

Similarly, dihedral AVB= dihedral ZV'P', 

and dihedral AVC = dihedral Z V'C'. 

Hence Z V-XYZ=A V-X'Y'Z\ §364 

or these trihedral A are symmetric. §365 

The symmetric angles are shown in the two figures at the right. 
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Exercises. Review 

1. Make a list of the numbered propositions in Book VI, 

stating under each the previous propositions employed 

directly in its proof. 

2. Make another list of the numbered propositions, stat¬ 

ing under each the subsequent propositions or corollaries 

in Book VI in which it is used as an authority. 

3. Mention three trihedral angles which may be found 

in a room, and state whether they are equal, symmetric, or 

both equal and symmetric. 

4. By consulting a dictionary find the derivation of 

the words ''dihedral,^^ ^'trihedral,” and polyhedral,’^ and 

explain how these derivations apply to the figures. 

5. If each of two trihedral angles have right angles for 

their face angles, they are both equal and symmetric. 

6. Consider whether or not two trihedral angles are 

equal if two face angles and the included dihedral angle 

of one are equal respectively to two face angles and the 

included dihedral angle of the other, and give the proof. 

7. State a condition under which two polyhedral angles 

of four faces are equal, and prove the equality. 

8. In the trihedral Z.V-ABC, what is the locus of points 
equidistant from the faces VAB and VBCl from the faces 

VAB and VGA ? from the faces VAB and VBC, and also from 

the faces VAB and VCAl To what proposition in plane 

geometry does this correspond ? 

9. If two intersecting planes pass through two parallel 

lines a and b respectively, their line of intersection is also 
parallel to a and h. 

10. A line parallel to each of two intersecting planes is 
parallel to their line of intersection. 
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POLYHEDRONS, CYLINDERS, AND CONES 

I. Prisms 

368. Polyhedron. A solid bounded by planes is called a 
polyhedron. 

For example, in the second figure of § 367, if we consider that part 

of the Z.V-XYZ cut off by the plane ABC, we have a polyhedron. 

The bounding planes are called the faces of the polyhedron, the 

intersections of the faces are called the edges of the polyhedron, and 

the intersections of the edges are called the vertices of the polyhedron. 

A line joining any two vertices not in the same face is called a 

diagonal of the polyhedron. 

If every plane which cuts a given polyhedron forms a convex polygon, 

the polyhedron is said to be convex. We shall consider only convex 

polyhedrons in this course. 

369. Prism. A polyhedron of which two faces are con¬ 
gruent polygons in parallel planes, and the other faces are 
parallelograms, is called a prism. 

The figure at the right shows a prism. 

The parallel polygons are called the bases 

of the prism, the parallelograms are called 

the lateral faces, and the intersections of the 

lateral faces are called the lateral edges. 

The lateral edges of a prism are equal (§ 76). 

The sum of the areas of the lateral faces 

is called the lateral area of the prism. 

The perpendicular distance between the 

planes of the bases is called the height or altitude of the prism. 

The meaning of the terms congruent and equivalent as applied to 

polyhedrons is evident from plane geometry. 

PS 313 
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370. Right Prism. A prism whose lateral edges are per¬ 

pendicular to its bases is called a right prism. 
The first of the figures below shows a right prism. The lateral 

edges of a right prism are equal to the altitude (§ 341). 

371. Oblique Prism. A prism whose lateral edges are 

oblique to its bases is called an oblique prism. 
The second of the figures below shows an oblique prism. 

372. Prisms classified as to Bases. Prisms are said to be 

triangular, quadrangular, and so on, according as their 

bases are triangles, quadrilaterals, and so on. 
Thus, the first figure above shows a quadrangular prism, the second 

shows a triangular prism, and so on. 

373. Right Section. The polygon formed by the intersec¬ 

tions of the lateral faces of a prism with a plane which 

cuts all the lateral edges, produced if necessary, and is 

perpendicular to them, is called a right section. 
The third figure above shows how a right section is formed. 

374. Truncated Prism. The part of a prism included be¬ 

tween the base and a section made by a plane oblique to 

the base is called a truncated prism. 
The fourth of the above figures shows a truncated prism. 
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Proposition 1. Sections of a Prism 

375. Theorem. The sections of a prism made by par¬ 

allel planes cutting all the lateral edges are congruent 

polygons. 

Given the prism PR and the sections AD and A^D' made by 

II planes cutting all the lateral edges. ' ^ 

Prove that AD is congruent to A'D'. 

Proof. Lettering the figure as shown above, we see_that 

AB is II to A'B\ BC is II to^'C', CD is II to C'D\ 

and so on for all the corresponding sides. § 338 
If two II planes are cut by a third plane, the lines 

of intersection are II. 

Then AB=A'B', BC==B'C', CD = C'D', 

and so on for all the corresponding sides. § 76 
The opposite sides of a EJ are equal • • •. 

Also, ZCBA = ZC'B'A\ ZDCB = ZD'C'B\ 

and so on for all the corresponding A. § 343 

AD is congruent to A'D'. § 37 
Since all their corresponding parts are equal, the sections can he 

made to coincide by superposition. 

As a special case of this theorem, all right sections of a prism are 

congruent. 



316 PRISMS BOOK VII 

Proposition 2. Lateral Area 

376. Theorem. The lateral area of a prism is the prod¬ 

uct of a lateral edge and the perimeter of a right section. 

Given FF, a rt. section of the prism AD'; L, the lateral area; 

e, a lateral edge; and p, the perimeter of the rt. section. 

Prove that L — ep. 

Proof. Lettering the figure as shown, we see that 

AA'=BB'=CC'=DD'=EE'=e. §369 

Also, VWis ± toBB'. §316 

Similarly, WX is ± to CC', and so on. 

nAB' = BB' -VW^e- VW. §243 

Similarly, nBC'^CC ■ WX-= e ■ WX, 

and so on for all the lateral faces. 

Now L is the sum of these areas. §369 

L = e{VW+WX + XY+YZ + ZV). Ax.l 

But VW+WX + XY+YZ+ ZV= p. §7 

II Ax. 5 
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Exercises. Practical Measurements 

1. The lateral area of a right prism is the product of 
the altitude and the perimeter of the base. 

2. The right section of a steel rod 10 ft. long is a square 

whose area is 4.41 sq. in. If the lateral surface is to be 

nickeled, how many square inches are to be covered ? 

3. The right section of an iron rod 8 ft. long is an equi¬ 

lateral triangle whose area is Vs sq. in. If the lateral sur¬ 

face is enameled, how many square inches are covered ? 

4. The lateral surface of an iron bar 6 ft. long is to 

be gilded. If the right section is a square whose area is 

1.69 sq. in., how many square inches are covered ? 

5. A right prism is 2| in. long and its basejs an equi¬ 

lateral triangle whose altitude is 0.866 in. (or I- \/3 in.). Find 

the lateral area. 

6. Find the total area of a right prism twice as long as 

it is thick, and whose base is a square 5.76 sq. in. in area. 

7. What is the total area of a right prism whose altitude 

is 28 in., and whose base is a right triangle of which the 

hypotenuse is 70 in. and one side is 42 in.? 

Find the lateral areas of the right prisms whose altitudes 
{h) and perimeters {p) of bases are as follows: 

8. = 16 in., p = 27 in. 9. A = 2 ft. 9 in., p = 3 ft. 8 in. 

Find the lateral areas of the prisms whose lateral edges 
(e) and perimeters {p) of right sections are as follows: 

10. e = 15 in., p = 28 in. 11. e = 1 ft. 7 in., p = 2 ft. 8 in. 

Find the lateral edges of the prisms whose lateral areas 
(L) and perimeters {p) of right sections are as follows: 

12. L = 169, p = 2. 13. L = 225 sq. ft., p = 9 ft. 
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Proposition 3. Congruent Prisms 

377. Theorem. If the three faces which include a tri¬ 

hedral angle of one 'prism are congruent respectively to 

three faces which include a trihedral angle of another, 

and are similarly placed, the prisms are congruent 

Given the prisms AI, with faces AD, AG, AJ congruent 

respectively to faces A'G\ A'J', and similarly placed. 

Prove that AI is congruent to A'I'. 

Proof. Lettering as shown, we see that ABAE = ZB'A'E', 
ZBAF = ZB'A’F', ZEAF = ZE’A'F' (§ 38), and that they 

are arranged in the same order (given). 

.*. trihedral ZA= trihedral ZA\ § 367 

Now show by superposition that face AD can be made to coincide 

with face A'D', face AG with face A'G', and face AJ with face A'J'; 

C lying on C', and D on D'. 

Then show by §§ 52, 314 that the planes of the upper bases coincide. 

Finally show that the prisms coincide and hence are congruent. 

378. Corollary. Two truncated prisms are congruent under 
the conditions given in § 377. 

379. Corollary. Two right prisms which have congruent 
bases and equal altitudes are congruent. 
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Proposition 4. Equivalent Prisms 

380. Theorem. An oblique prism is equivalent to a 

right prism whose base is equal to a right section of 

the oblique prism, and whose altitude is equal to a 

lateral edge of the oblique prism. 

Given FI, a rt. section of the oblique prism AD\ and FF, 

a rt. prism whose altitude is equal to a lateral edge of AD\ 

Prove that AD' is equivalent to FI'. 

Proof. Lettering the figure as shown, we see that if we 

take from the equal lateral edges of AD' and FI' (§ 370) the 

lateral edges of FD', which are common to both, we have 

AF=A'F',BG = B'G',CH=C'H'r ''- Ax. 2 

Also, base FI is congruent to base F'l'. § 369 

Now prove the truncated prisms AI and A'F congruent (§ 378). 

Then AI-\-FD'=A'l'->rFD'. Ax.l 

Now AI-\-FD'=^AD', 

and A'l'-\-FD'==Fl'. Ax. 10 

. ad' is equivalent to FI'. Ax. 5 
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381. Parallelepiped. A prism whose bases are parallelo¬ 
grams is called a parallelepiped. 

382. Right Parallelepiped. A parallelepiped with edges 
perpendicular to the bases is called a right parallelepiped. 

383. Rectangular Parallelepiped. A right parallelepiped 
whose bases are rectangles is called a rectangular paral¬ 
lelepiped. 

The first figure below shows a rectangular parallelepiped. The four 

lateral faces of this solid are also rectangles. 

The terms 'parallelepiped, right parallelepiped, and rectangular 

parallelepiped are not commonly used outside the school, the last being 

generally called a rectangular solid or a square solid. Some teachers 

employ the term cuboid, but it has not come into practical use. 

Among the common illustrations of rectangular solids are boxes, 

bricks, rooms, and the like. 

The oblique parallelepiped illustrated in the third figure above is 

rarely found in practice, and no special definition is necessary. 

384. Cube. A parallelepiped whose six faces are all 
squares is called a cube. 

The second figure above shows a cube. It might properly be asked 

how we know that such a figure is possible. We may, for example, 

speak of a seven-edged polyhedron, but such a figure does not exist. 

In elementary work, however, it is not expected that attention will be 

given to such details. 
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Proposition 5. Opposite Faces 

385. Theorem. The opposite faces of a parallelepiped 

. are congruent and parallel. 

Given the parallelepiped AC. 

Prove that the faces AB\ DC' and the faces AD', BC' are 

respectively congruent and II. 

What previous proposition can be used to prove that AB' is II to DC' ? 
Can it be proved by superposition that AB' is congruent to DC' ? The 
proof is left for the student. 

Exercises. Parallelepipeds 

1. The diagonals of a parallelepiped bisect each other. 

2. The lateral faces of a right parallelepiped are rec¬ 

tangles, and its four diagonals are equal. 

3. Compute the lengths of the diagonals of a rectangular 

parallelepiped whose edges meeting at any vertex are a, h, c. 

4. Every section of a parallelepiped made by a plane 

parallel to the lateral edges is a parallelogram. 

5. Investigate Ex. 4 for any prism whatever. 

6. Given a rectangular parallelepiped, lettered as in the 

figure of § 385, with AB = 8, BC = 6, and CC' = find the 

length of the diagonal AC'. 



822 PRISMS BOOK VII 

Proposition 6. Diagonal Plane of a Parallelepiped 

386. Theorem. The plane passed through diagonally 
opposite edges of a parallelepiped divides the parallele¬ 

piped into two equivalent triangular prisms. 

Given the plane m passed through the opposite edges AA^ and 

CC of the parallelepiped AC. 

Prove that AC' is divided into two equivalent triangular 
prisms ABC-B' and CDA-D'. 

Proof. Let WXYZ be a right section of AC'. § 373 

Then faces AB' and DC' are congruent and II, 

and faces and BC' are congruent and II. § 385 

Hence in the section WXYZ, 

WX is II to ZY, and XY is II to WZ. § 338 

Hence WXYZ is a O, § 72 

and AWXY is congruent to AYZW. § 77 

Now prism ABC-B' is equivalent to a rt. prism with 
base WXY and altitude A A', and prism CDA-D' is equivalent 
to a rt. prism with base YZW and altitude AA'. § 380 

The rest of the proof is left for the student. 
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Exercises. Practical Measurements 

1. Given that the three plane angles at one of the 

vertices of a parallelepiped are 80°, 70°, and 75° respectively, 

find all the other angles in all the faces. 

2. The three edges of the trihedral angle at one of the 

vertices of a rectangular parallelepiped are 10 in., 12 in., 

and 14 in. respectively. Find the area of the total surface 

of the parallelepiped. 

3. The three face angles at one vertex of a parallelepiped 

are each 60°, and the three edges of the trihedral angle at 

that vertex are 6 in., 4 in., and 2 in. respectively. Find the 

area of the total surface to the nearest 0.01 sq. in. 

4. In a rectangular parallelepiped the square of any 

diagonal is equivalent to the sum of the squares of any 

three edges which meet at one vertex. 

5. In a box 6 in. deep and 12 in. wide, a wire 2 ft. long 

reaches from one corner to the diagonally opposite corner. 

Find the length of the box to the nearest 0.01 in. 

6. The height of a rectangular parallelepiped is 22 in. 

and the length of the diagonal of the base is 30 in. Find the 

length of the diagonal of the parallelepiped. 

7. The total area of the six faces of a cube is 108 sq. in. 

Find the length of the diagonal of the cube. 

8. The diagonal of the face of a cube is V6. Find the 

diagonal of the cube. 

9. The diagonal of a cube is 5 J Vs. Find the diagonal 

of a face of the cube. 

10. A water tank is 4 ft. long, 3 ft. wide, and 2 ft. deep. 

How many square feet of zinc will be required to line the 

four sides and the base, allowing 2 sq. ft. for overlapping 

and for turning the top edge ? 
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11. A square sheet of galvanized iron 8 ft. on a side leans 
against a wall and is inclined at an angle of 60° to the 
horizontal. What area of ground does the sheet protect 
from rain falling vertically ? 

12. Through a point P on the sheet of iron in Ex. 11, what 
line in the inclined plane will make the largest angle with 
the horizontal ? Give the reason for your answer, and state 
the number of degrees in this angle. 

13. A rectangular solid has for its lower base the □ ABCD 

and for its upper base the \Z\A'B'C'D\ lettered in the cor¬ 
responding way. What plane passing through the diagonal 
DB' is II to AB, and what angle does the plane make with 
the lower base ? 

14. The length of the diagonal of a rectangular solid 
is 17 in. and the area of the total surface is 552 sq. in. Find 
the sum of the three dimensions. 

15. If the length, width, and height of a room are a, h, 
and c respectively, what is the total area of the four walls ? 
of the walls, floor, and ceiling ? 

16. The outside dimensions of a closed wooden box are 
8 in., 10 in., and 12 in., and the area of the total inside sur¬ 
face is 376 sq. in. Find the thickness of the wood used in 
making the box. 

17. The area of the total surface of a rectangular block 
is 1332 sq. in. and the dimensions are proportional to 4, 5, 
and 6. Find the dimensions. 

18. The lower base of a cube which is \/2 on an edge 
is ABCD, and the upper base \s>A'B'C'D\ lettered in the 
corresponding way. If a plane passes through A', C', and 
B, what is the area of the AA'BC'^l 

19. The area of AA'BC' in Ex. 18 is what part of the 
area of the diagonal plane AB'C'Dl 
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387. Unit of Volume. In measuring volumes, a cube whose 

edges are all equal to the unit of length is taken as the unit 
of volume. 

Thus, if we are measuring the contents of a box of which the dimen¬ 

sions are given in feet, we take 1 cu. ft. as the unit of volume. 

388. Volume. The number of units of volume contained 
by a solid is called its volume. 

389. Equivalent Solids. Two solids which have equal vol¬ 
umes are said to be equivalent. 

390. Dimensions. The lengths of the three edges of a rec¬ 

tangular parallelepiped which meet at a common vertex are 

called its dimensions, 

391. Volume of a Rectangular Parallelepiped. Assuming 
that the three edges are commensurable, suppose that Z, 

the length, contains 4 units; that w, the 

width, contains 2 units; and that h, the 

height, contains 5 units. Then y, the vol¬ 

ume, contains 4 X 2 X 5, or 40, cubic units. 

In general, if there are I units of length, 
w units of width, and h units of height, then 

V=lwh\ 

that is, the volume of a rectangular parallelepiped is the 

product of its three dimensions. 

For on each square unit of base there is one cubic unit for every 

unit of height. Then, since there are Iw square units of base (§ 241), 

there are Iw cubic units for every unit of height. Hence for h units of 

height, there are Iwh cubic units of volume. 

The incommensurable case is considered in § 517. 

392. Corollary. The volume of a rectangular parallelepiped 

is the product of its base and altitude. 

For, if B is the area of the base, B = Iw, and hence V=Bh. 

/ 
h * 

<-1- 
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Proposition 7. Volume of a Parallelepiped 

393. Theorem. The volume of any parallelepiped is 

the product of the base and the altitude. 

Given P, a parallelepiped with no two faces _L to each other; 
F, the volume; B, the area of the base; and h, the altitude. 

Prove that V=Bh. 

Proof. Produce the edge CD and the edges II to CD, and 
cut them perpendicularly by two II planes whose distance 
apart, EF, is equal to CD. We then have the oblique paral¬ 
lelepiped Q whose base is a □. 

Produce EG and the edges II to EG, and cut them perpen¬ 
dicularly by two II planes whose distance apart, HI, is equal 
to EG. We then have the rectangular parallelepiped R. 

Since P=Q, and Q = R, § 380 

then P = R. Ax. 5 

Also, P, Q, and R have the common altitude h. § 341 
Let B' be the area of the base of Q, and B" that of R. 

Since B = B\ and B' = B", § 245 

then B = B\ Ax. 5 

Now the volume of R is B''h. § 392 

.\V=Bh. Ax. 5 
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Exercises. Parallelepipeds 

1. Two rectangular parallelepipeds with congruent bases 
are to each other as their altitudes. 

In all such cases the words '' the volumes of ’ ’ are understood. 

2. Two rectangular parallelepipeds with equal altitudes 
are to each other as their bases. 

3. Two rectangular parallelepipeds with one dimension 
in common are to each other as the products of their other 
two dimensions. 

4. Two rectangular parallelepipeds with two dimensions 
in common are to each other as their third dimensions. 

5. Two rectangular parallelepipeds are to each other as 
the products of their three dimensions. 

6. The volume of any parallelepiped is equal to that of 
a rectangular parallelepiped of equivalent base and equal 
altitude. 

7. Find the ratio of two rectangular parallelepipeds 
which have the dimensions a, 6, c, and 2 a, 3 6, and 4 c 
respectively. 

8. Find the ratio of two rectangular parallelepipeds 
both of whose altitudes are h inches, and whose bases are a 
inches by 2 6 inches, and 2 6 inches by 3 a inches respectively. 

9. Find the volume of a rectangular parallelepiped I feet 
long, w inches wide, and h yards high, expressing the result 

as cubic inches; as cubic feet; as cubic yards. 

10. Find the volume of a rectangular parallelepiped 

whose base is B square feet and whose altitude is h inches, 
expressing the result as cubic inches; as cubic feet. 

11. The volume of a parallelepiped is a^ cubic inches and 
the area of the base is a square feet. Express the altitude 

in inches; in feet. 
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Exercises. Practical Measurements 

1. The volume of a rectangular parallelepiped with a 
square base is 84 cu. in. and the altitude is 6 in. Find the 
dimensions. 

2. A rectangular tank full of water is 9 ft. long and 
5 ft. 6 in. wide. How many cubic feet of water must be 
drawn off in order that the surface may be lowered 1 ft? 

In all such cases the measurements are supposed to be made on the 

inside unless the contrary is stated. 

3. What dimensions should be allowed for a rectan¬ 
gular container which shall hold just 1 gal. (231 cu. in.) if 
each dimension must be a whole number of inches ? 

4. The inside dimensions of a covered box, made of 
steel I in. thick and weighing 490 lb. per cubic foot, are 
16 in., 9 in., and 4 in. Find the total weight of the box. 

5. A steel bar 6 ft. long is 2 in. wide and if in. thick. 
At 490 lb. per cubic foot, how much does it weigh ? 

6. If 3 cu. in. of gold beaten into gold leaf will cover 
75,000 sq. in. of surface, what is the thickness of the leaf ? 

7. The sum of the squares of the four diagonals of a 
parallelepiped is equal to the sum of the squares of the 
twelve edges. 

8. The volume of a cube is 216 cu. in. Find to the 
nearest 0.01 in. the length of the diagonal. 

9. Find a formula for the total surface of a cube in 
terms of the diagonal of the cube. 

10. If the total surface of one cube is n times that of 
another cube, the volume of the first is how many times the 
volume of the second ? 

11. Find the weight of a wooden beam 8 in. by 10 in., 
18 ft. long, and weighing 54 lb. per cubic foot. 
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Proposition 8. Triangular Prism 

394. Theorem. The volume of a triangular prism is 

the product of the base and the altitude. 

Given PQR-Q'^ a triangular prism; F, the volume; By the 

area of the base; and /z, the altitude. 

Prove that V = Bh. 

Proof. Since, in any plane, we can construct a line li to 

a given line, we can construct PS II to QR, RS II to QP, 
SS' II to PP'y P'S' II to PS, and R'S' II to RS, thus forming 

the parallelepiped PQRS-Q'. 

Then pqr-Q'=1 PQRS-Q'. § 386 

But PQRS-Q'=PQRS • h, § 393 

and PQRS=2B. §77 

Hence PQRS-Q' =2B>h, 

and PQR-Q' = l{2B'h), Ax. 5 

PQR-Q'=Bh. 

Substituting V for PQR-Q', we have 

V=Bh. 

or 
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Proposition 9. Volume of a Prism 

395. Theorem. The volume of any prism is the product 

of the base and the altitude. 

Given PR\ a prism; F, the volume; 15, the area of the base ; 

and hy the altitude. 

Prove that V = Bh. 

Proof. From the vertex R in the lower base PQR ST draw 
the diagonals RP and RT. 

From the vertex R' in the upper base P'Q'R'S'T' draw 

the diagonals R'P' and R'T'. 
Taken together, the triangular prisms thus determined 

form the given prism. 

Similarly, taken together, the respective bases of the 

triangular prisms form the bases of the given prism. 

Now the volume of each triangular prism is the product 

of the base and the altitude h. § 394 

Hence the total volume of the prism PR' is the sum of 

the bases of the triangular prisms multiplied by the com¬ 

mon altitude h. Ax. 1 

That is. V=Bh. 
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Exercises. Review 

1. Prisms with equivalent bases and equal altitudes are 
equivalent. 

2. Prisms with equivalent bases are to each other as 
their altitudes; prisms with equal altitudes are to each 
other as their bases. 

3. The volume of a triangular prism is equal to half the 

product of a lateral face and the distance of this face from 
the opposite edge. 

4. The edge of a cube is e. Write a formula for the sum 

of the edges; for the area of the total surface; for the 
xliagonal of the cube. 

5. The edge of a cube is e. Find the volume of a cube 

that has an edge twice as long. Find the edge of a cube 

of twice the volume. 

6. The altitude of a prism is 7 in., and the base is an 

equilateral triangle which is 7 in. on a side. Find the vol¬ 
ume of the prism. 

7. The number of square millimeters in the area of the 

total surface of a certain cube is equal to the number of 

cubic millimeters in the volume of the cube. Find the 

length of 'each edge. 

8. In Ex. 7 find the length of the diagonal of the cube. 

9. The number of square millimeters in the area of the 

total surface of a right triangular prism with an equilateral 

base is equal to the number of cubic millimeters in the 

volume, and the altitude of the prism is equal to the side 

of the base. Find the altitude. 

10. If the base of a right prism is a regular polygon 

of apothem a, and the area of the lateral surface is L, 

the volume V is given by the formula aL. 
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Exercises. Practical Measurements 

1. If the length of a rectangular parallelepiped is 22 in., 
the width 8 in., and the height 6 in., what is the area of the 
total surface ? 

2. Find the volume of a triangular prism whose height 
is 14 in. and whose base has the sides 10 in., 8 in., and 6 in. 

3. Find the volume of a prism whose height is 12 ft. and 
whose base is an equilateral triangle 10 in. on a side. 

4. The base of a right prism is a rhombus of which one 
side is 10 in., and the shorter diagonal 12 in. The height of 
the prism is 15 in. Find the area of the total surface and 
the volume of the prism. » 

5. An open tank 8 ft. long and 51' ft. wide holds 264 cu. ft. 
of water. How many square feet of sheet lead will it take 
to line the sides and bottom ? 

6. How much sheet lead will be required to line an open 
tank which is 5 ft. long, 3 ft. 6 in. wide, and contains 
105 cu. ft.? 

7. The diagonal of one of the faces of a cube is V? in. 
Find the volume of the cube. 

8. The three dimensions of a rectangular parallelepiped 
are a, h, c. Find in terms of a, h, and c the volume, the area 
of the total surface, and the length of the diagonal. 

9. If the height of a prism is 5 in., and the base is a 
regular hexagon 1 in. on a side, what is the volume ? 

10. An open cistern is made of iron \ in. thick, and the 
inside dimensions are as follows: length, 6 ft.; width, 4 ft.; 
depth, 3ft. What will the cistern weigh when empty? 
when full of water? 

A cubic foot of water weighs 62^ lb. The specific gravity of iron 

is 7.2; that is, iron is 7.2 times as heavy as water. 
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II. Pyramids 

396. Pyramid. A polyhedron of which one face, called the 

base, is any polygon and the other faces are triangles with 

a common vertex is called a pyramid. 
The triangular faces with the common vertex are called the lateral 

faces, their intersections are called the lateral edges, and their common 

vertex is called the vertex of the pyramid. In our work we shall con¬ 

sider only pyramids whose bases are convex polygons. 

The spm of the areas of the lateral faces is called the lateral area 
of the pyramid. The perpendicular distance from the vertex to the 

plane of the base is called the height or altitude of the pyramid. 

397. Pyramids classified as to Bases. Pyramids are said to 

be triangular, quadrangular, and so on, according as their 

bases are triangles, quadrilaterals, and so on. 

A triangular pyramid is also called a tetrahedron. 

398. Regular Pyramid. If the base of a pyramid is a 

regular polygon whose center coincides with the foot of 

the perpendicular from the vertex to the base, the pyramid 

is called a regular pyramid. 
The altitude of the triangle which forms one of the lateral faces of 

a regular pyramid is called the slant height of the pyramid. 

The figures above show different types of pyramids, the two at the 

right being regular pyramids. 
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399. Properties of Regular Pyramids. The proofs of the 

following obvious properties of regular pyramids depend 

upon the theorems indicated: 

1. The lateral edges of a regular pyramid are 

equal (§ 326). 

For they meet the base at equal distances from the 

center (§ 398). 

2. The lateral faces of a regular pyramid are 

congruent isosceles triangles (§47). 

3. The slant height of a regular pyramid is the same for 

all the lateral faces (§ 326). 

400. Frustum of a Pyramid. The portion of a pyramid 

included between the base and a section parallel to the 

base is called Si frustum of a pyramid. 

The figure at the right shows a frustum 

of a regular pyramid. 

A more general term, including a frustum 

as a special case, is truncated pyramid, which 
is applied to the portion of a pyramid in¬ 

cluded between the base and any section 

whatever made by a plane that cuts all the 

lateral edges. This term, however, is little 

used at the present time. 

The base of the pyramid and the parallel section are called the bases 
of the frustum. 

The perpendicular distance between the bases is called the height 
or altitude of the frustum. The altitude is 

represented by h in the figure here shown. 

The portions of the lateral faces of a pyra¬ 

mid that lie between the bases of a frustum 

are called the lateral faces of the frustum, 

and the sum of their areas is called the lateral 
area of the frustum. 

The altitude of one of the lateral faces of a frustum of a regular 

pyramid is called the slant height of the frustum. The slant height is 

represented by I in the above figure. 
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Proposition 10. Lateral Area of a Pyramid 

401. Theorem. The lateral area of a regular pyramid 

is half the product of the slant height and the perimeter 

of the base. 

Given V-ABCDE^ a regular pyramid; L, the lateral area; 
/, the slant height; and p, the perimeter of the base. 

Prove that L — \lp. 

Proof. The lateral faces are congruent A. § 399,2 

Now the area of each face is JZ times the base, § 244 

and the sum of the bases of the A is p. § 7 

Then the sum of the areas of the A is ^ Ip. Ax. 1 

. *. L = \ Ip. Ax. 5 

402. Corollary. The lateral area of a frustum of a regular 
pyramid is half the product of the slant 
height of the frustum and the sum of the 

perimeters of the bases. 

How is the area of a trapezoid found (§ 247)? 

Are the faces congruent trapezoids ? What is the 

sum of their lower bases ? of their upper bases ? 

What is the sum of their areas? Write the for¬ 

mula and give the proof in full. 
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Proposition 11. Section Parallel to Base 

403. Theorem. If a 'pyramid is cut hy a plane parallel 

to the basey 

1. The lateral edges and the altitude are divided pro¬ 

portionally, 
2. The section is a polygon similar to the base. 
3. The area of the section is to the area of the base as 

the square of the distance of the plane from the vertex 
is to the square of the altitude of the pyramid. 

Given the pyramid V-ABCDE cut by tti, a plane li to the 
base and intersecting the altitude FO in O'y emd A'B’C'D'E'y 
the section thus formed. 

Prove that ^ = that A’B'C'D'E' is 

similar to ABODE; and that ^^■ 
ABODE yo 

1. Use §§ 338 and 201 to prove the first proportion. 
2. Prove AVA'B' similar to AVAB, and so on. Then prove the neces¬ 

sary conditions (§ 205) under which two polygons are similar. 

3. Prove that A'B'CD'E': ABCDE=A^'^: AB'^ =VO''^ :VO'\ 
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404. Corollary. If twa pyramids have equal altitudes and 
equivalent bases, sections made by planes parallel to the bases 
at equal distances from the vertices are equivalent 

A'B'C'D'E' VO'‘^ 

ABODE ~ FO" ' 

X'Y'Z' 

XYZ 

VO' ^ WP' 

VO WP’ 

. VO'^^WP'‘" 

Fo " ~ Wp' 

Then 
A'B'C'D'E' __ X'Y'Z' 

ABODE ~ XYZ 

and hence A'B'C'D'E'= X'Y'Z'. § 198,2 

Exercises. Review 

1. The base of a pyramid is an equilateral triangle 2 in. 

on a side. Find the area of a section parallel to the base 

and halfway between the vertex and the base. 

2. A section of a pyramid parallel to the base is equal to 

half the base. If the altitude of the pyramid is 10 in., how 

far is the section from the base ? 

3. Solve Ex. 2 when the section is one nth. of the base 

and the altitude of the pyramid is h feet. 

4. The perimeter of the base of a regular pyramid is 

40 mm. and the lateral area is 320 sq. mm. Find the slant 

height of the pyramid. 

5. The top of a certain obelisk is a regular pyramid with 

a square base 225 sq. in. in area and an altitude of 30 in. 

Find to the nearest 0.1 in. the slant height of the pyramid, 

and then find the lateral area. 
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Proposition 12. Triangular Pyramids 

405. Theorem. Two triangular pyramids with equiv¬ 

alent bases and equal altitudes are equivalent. 

Given the triangular pyramids P and P' with the equivalent 

bases ABC and and the equal altitudes h. 

Prove that P = P'. 

Proof. Place the bases in the plane m, divide h into any 

number of equal parts, as a, and through the points of divi¬ 

sion of h let the planes n, p, q, • • • pass II to m, as shown. 

Let the prisms y, z, - • with lateral edges II to VA have 

DEF, GHI, • • • for their upper bases, and let the prisms 

x', y\ ' with lateral edges II to V'A' have A'B'C\ D'E'F\ 
G'H'I',' ■ ‘ for their lower bases. 

In the above figure there are two prisms in one case and three in 

the other, but the proof may be applied to any number. 

Since 

and 

we have 

Similarly, 

DEF = D'E'F' 

the altitudes are equal, 

y = y'- 

z — z. 

§404 

Const. 

§395 
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Hence x' y' z' — {y-\-z) = x'. Ax. 2 

Then by substituting P\ which is less than x'-\-y'-\-z\ 
for cc'H- 2/'+ and by substituting P, which is greater than 
y-\-z, for y-\-z,v^e have 

P'-P<x\ 

That is, the difference between the pyramids is less than 
x\ which is the difference between the sets of prisms. 

Now by increasing indefinitely the number of parts into 
which h is divided, and consequently decreasing a indefi¬ 
nitely, x' can be made as small as we please. 

Hence whatever difference we assume to exist between 
the pyramids, x' can be made smaller than that difference. 

But this is impossible, since we have shown that x' is 
greater than the difference, if any exists. 

Hence it leads to an impossibility to suppose that 

P'>Py or that P'<P. 
.*. P = P\ 

Exercises. Review 

1. The slant height of a regular pyramid is 12 in., and the 
base is an equilateral triangle whose altitude is 4V3in. 
Find the lateral area. 

2. The slant height of a regular triangular pyramid is* 
equal to the altitude of the base, and the area of the base 
is \/5 sq. ft. Find the area of the total surface. 

3. If one pyramid has for its base a right triangle with 
hypotenuse 10 and shortest side 6, and another pyramid of 
equal altitude has for its base an equilateral triangle which 

is 4 V2 Vs on a side, the pyramids are equivalent. 
4. The base of one of two equivalent pyramids 6 in. high 

is 8 sq. in. in area, and that of the other is an equilateral 
triangle. Find the lateral area of the second pyramid. 
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Proposition 13. Volume of a Triangular Pyramid 

406. Theorem. The volume of a triangular pyramid is 
one third the product of the base and the altitude. 

Given P-QRSy a triangular pyramid; F, the volume ; the 
area of the base; and /i, the altitude. 

Prove that V=i Bh. 

Proof. On QRS as base let there stand the prism QRS-XPY, 
and let the plane XPS pass through XP and S. 

Then the prism is composed of the three triangular pyra¬ 
mids P-QRS, P-SYX, and P-QSX. 

Now P-SYX and P-QSX have the same altitude, §396 

and base SYX = base QSX. §77 

.*. P-SYX = P-QSX. §405 

But P-SYX is the same as S-XPY. 

Now S-XPY has the same altitude as P-QRS, §341 

and base XPY= base QRS. §369 

.'. P-SYX = P-QRS. §405 

Then P-QRS = P-SYX = P-QSX, Ax. 5 

and hence P-QRS = J of QRS-XPY. 

§394 



§§ 406,407 VOLUME 341 

Proposition 14. Volume of any Pyramid 

407. Theorem. The volume of any pyramid is one third 
the product of the base and the altitude. 

Given P-QRSTU^ a pyramid; F, the volume; By the area of 
the base; and /z, the altitude. 

Prove that V=\Bh. 

Proof. From any vertex of the base draw diagonals to 
the other vertices. In the above figure, let these diagonals 
be TQ and TR. 

Then the planes determined by PT and the diagonals 
TQ, TR divide the given pyramid into three triangular 
pyramids, each of which has the altitude h. 

The volume of each of these triangular pyramids is 
^ h times the area of the base. § 406 

Hence the volume of P-QRSTU, the sum of the triangular 
pyramids, \s>\h times the sum of the bases. Ax. 1 

But the sum of the bases is B. Ax. 10 

,\V=lBh. Ax. 5 

The proof is evidently the same whatever the number of the tri¬ 

angular pyramids into which the given pyramid is divided. 
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Exercises. Properties of Pyramids 

1. The volume of a triangular pyramid is equal to one 
third the volume of a triangular prism of the same base and 
altitude. 

2. The volumes of two pyramids are to each other as the 
products of their bases and altitudes. 

3. Pyramids with equivalent bases are to each other as 
their altitudes. 

4. Pyramids with equal altitudes are to each other as 
their bases. 

5. Pyramids with equivalent bases and equal altitudes 
are equivalent. 

6. In the tetrahedron (§ 397) V-ABC, the midpoints of 
VA, VC, BA, BC are vertices of a parallelogram. 

7. The lines joining the midpoints of the opposite edges 
of a tetrahedron meet in a point. 

In the figure described in Ex. 6 the opposite edges are VA and BC; 
VB and AC; VC and AB. 

8. The plane which passes through an edge of a tetra¬ 
hedron and the midpoint of the opposite edge divides the 
tetrahedron into two equivalent tetrahedrons. 

9. Given that a regular triangular pyramid has all its 
four faces congruent, and that its volume is known, show 
how to find the area of the total surface. 

10. Show how to find the volume of any polyhedron by 
dividing the polyhedron into pyramids. 

11. Given the edge a of the base and the area T of the 
total surface of a regular pyramid with a square base, find 
the height h in terms of a and T. 

12. In Ex. 11 find the volume V in terms of a and T. 
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Exercises. Measuring the Pyramid 

1. What is the lateral area of a regular pyramid whose 
slant height is 34 in., and the perimeter of the base 57 in.? 

2. Find the volume of a pyramid with an altitude of 
7 in. and a base 9 sq. in. in area. 

3. The base of a regular pyramid is an octagon 3 m. on 
a side and the slant height is 5 m. Find the lateral area of 
the pyramid. 

4. Find the volume of a pyramid with an altitude of 
6.75 m. and a square base whose diagonal is 3\/2m. 

5. The volume of a regular pyramid with a square base 
is 912 cu. ft. and the altitude is 19 ft. Find the lateral area. 

6. The volume of a regular pyramid with a hexagonal 
base is 249.4 cu. m., and the altitude is 8 m. Find the length 
of each side of the base. 

7. The base of a pyramid is a triangle with sides which 
are 6 in., 8 in., and 10 in., and the volume is 240 cu. in. Find 
the height of the pyramid. 

8. A pyramid 12 in. high has a base which is an equi¬ 
lateral triangle 10 in. on a side. Find the volume. 

9. Find the volume of a regular pyramid with a lateral 
edge of 100 ft. and a square base whose side is 40 ft. 

10. Find the volume of a regular pyramid whose slant 
height is 12 ft. and whose base is an equilateral triangle 

inscribed in a circle 10 ft. in radius. 

11. The eight edges of a regular pyramid with a square 
base are equal and the area of the total surface is T. Find 

the edge. 

12. Given the height h and the area Toi the total surface, 
find the base edge a of a regular quadrangular pyramid. 
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Proposition 15. Volume of a Frustum 

408. Theorem. The volume of a frustum of a pyramid 
is one third the product of the altitude by the sum of the 
two bases and the mean proportional between them. 

Given F, a frustum; F, the volume ; F, B\ the areas of the 

bases; and h, the altitude. 

Prove that v^\h{B + B' + \/bB'). 

Proof. Let P be the volume of the pyramid from which F 
is cut, and let P' and h' be the volume and altitude respec¬ 

tively of the small pyramid remaining after F is removed. 

Then V= P- P' = \b (h + h')-^B'h\ §407 

Now -jB:^fB'=h-\-h':h\ §403,3; Ax.6 

Solving, h'= hMiFBpJJ')_ 
^b-Vb' b-b’ 

Then V = i \Bh + (B - 
L B — B . 

Simplifying, V=\h{B + B'+y/m'). 

Ax. 5 

This is a subsidiary proposition in mensuration and may be omitted, 

together with pages 345 and 346, without disturbing the sequence. 



§408 FRUSTUM OF A PYRAMID 345 

Exercises. Frustum of a Pyramid 

1. A piece of marble is in the form of a frustum of a 

regular pyramid with a square base. The frustum is 8 ft. 

high and the sides of the bases are 3 ft. and 2 ft. respec¬ 

tively. Taking the weight of 1 cu. ft. of marble as 165 lb., 

find the weight of the piece. 

2. The slant height of a frustum of a regular pyramid is 

10 ft. and the sides of the square bases are 3 ft. and 2 ft. 

respectively. Find the area of the total surface. 

3. How much earth was removed in an excavation which 

is 6 ft. deep, 40 ft. square at the top, and 36 ft. square at 

the bottom ? 

4. A pile of broken stone is in the form of a frustum of 

a pyramid. The lower base is a rectangle 75 ft. long and 

9 ft. wide, the upper base is 50 ft. by 6 ft., and the height 

of the frustum is 6 ft. If the broken stone is spread over 

a road 30 ft. wide to a depth of 3 in., what length of road 

will it cover ? 

5. A pyramid 4 in. high with a base whose area is 16 sq. in. 

is cut by a plane parallel to the base and 2 in. from the 

vertex. Find the volume of the frustum. 

6. A pyramid 6 in. high with a base whose area is 

324 sq. in. is cut by a plane parallel to the base and 2 in. 

from the vertex. Find the volume of the frustum. 

7. The lower base of a frustum of a pyramid is a square 

8 in. on a side. The side of the upper base is half that of the 

lower base, and the altitude of the frustum is the same as 

the side of the upper base. Find the volume of the frustum. 

8. Consider the formula V=\h{B B' ^BB') of §408 

when 0. Discuss the meaning of the result. Also dis¬ 

cuss the case in which B = B\ 
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Exercises. Review 

1. The lower base of a frustum of a pyramid is a square 

6 in. on a side. The area of the upper base is half that of 

the lower base, and the altitude of the frustum is 4 in. Find 

to the nearest 0.01 cu. in. the volume of the frustum. 

2. A pyramid has six edges, each 2 in. long. Find to the 

nearest 0.01 cu. in. the volume of the pyramid. 

3. A regular pyramid 8 in. high has a triangular base, 

and the volume of the pyramid is 16 V2 cu. in. Find to the 

nearest 0.01 in. the length of a side of the base. 

4. In Ex. 3 find the area of the total surface. 

5. The base of a regular pyramid is a square I feet on a 

side, and the slant height is s feet. Find the area of the 

total surface. 

6. The lower base of a frustum of a pyramid is a quad¬ 

rilateral whose sides are 5 in., 6 in., 7 in., and 9 in., respec¬ 

tively, and the corresponding sides of the upper base are 

3 in., X inches, y inches, and z inches. Find y, and z. 

7. A schoolroom 30 ft. long, 24 ft. wide, and 14 ft. high 

is ventilated by an electric fan which discharges every 

20 min. a volume of air equal to the volume of the room. 

Find the amount of air discharged per minute. 

8. An oblique pyramid with a square base 10 in. on a 

side is cut by a plane parallel to the base so that the alti¬ 

tude, measured from the vertex, is divided in the ratio 3: 2. 

Find the area of the section. 

9. A frustum of a square pyramid is 18 ft. high and the 

sides of the bases are 1 ft. and 3 ft. respectively. If the 

frustum is divided into three parts by planes passed par¬ 

allel to the bases and dividing the altitude equally, what 

is the volume of each part ? 
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III. General Polyhedrons 

409. Polyhedrons classified as to Faces. A polyhedron of 

four faces is called a tetrahedron; one of six faces, a hexa¬ 
hedron; one of eight faces, an octahedron; one of twelve 

faces, a dodecahedron; one of twenty faces, an icosahedron. 

410. Regular Polyhedron. A polyhedron whose faces are 

congruent regular polygons, and whose polyhedral angles 

are equal, is called a regular polyhedron. 

It is proved in § 413 that there cannot be more than five regular 

polyhedrons, and as a matter of fact there are just five. The five 

regular polyhedrons are shown in the above illustration in the order in 

which the polyhedrons are mentioned in § 409. 

These regular solids occupied the attention of Pythagoras and his 

followers (about 550 B.C.). They were also studied so extensively in the 

school of Plato (about 375 B.c.) that they are often known as the Platonic 

Bodies. The early Greek writers connected them in a fanciful way with 

various phenomena of nature. For example, they assigned the tetra¬ 

hedron to fire, the hexahedron to earth, the octahedron to air, the 

icosahedron to water, and the dodecahedron, apparently the last one 

discovered, to the universe. 

Some of the regular polyhedrons are met in the study of 

crystals. Thus, the cube is found in salt crystals and the 

regular octahedron in certain compounds of copper. 

Pages 347-350, while important in the study of crystals, may be 

omitted without affecting the sequence of propositions. 
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411. Models of Regular Polyhedrons. In a work printed in 
1525 a great artist, Albrecht Diirer, showed how to make 
paper models of the five regular polyhedrons. His descrip¬ 
tion suggested drawing on stiff paper the diagrams shown 
below, and then cutting along the full lines and pasting 
strips of thin paper on the edges as indicated. By folding 
on the dotted lines and keeping the edges together by the 
pasted strips of paper, the models can be easily made. 

Tetrahedron Hexahedron 

412. Relation of Parts of a Polyhedron. If the number of 
edges of a polyhedron is represented by e, the number of ver¬ 
tices by V, and the number of faces by/, then e + 2 = v -f/. 
This remarkable relation was possibly known to the Greek 
mathematician Archimedes (about 250 B.C.), but was first 
clearly stated by the French writer Descartes (about 1635). 
It was also discovered independently by Euler (1752), and 
is often known as Euler^s Theorem. 

The proof of this law is too difficult to be given at this time, but the 

student will be asked to verify it for certain special cases on page 350. 
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Proposition 16. Regular Polyhedrons 

413. Theorem. There cannot he more than five regular 

polyhedrons. 

Proof. A polyhedral Z has at least three faces. § 361 

Also, the sum of its face A is less than 360°, § 13 
because the polyhedral Z. would flatten out into 

a plane at 36(f. 

Since each Z of an equilateral A is 60°, § 65 

polyhedral A may be formed with three, four, or five equi¬ 

lateral A as faces. . 

Now the sum of six face Z of 60° is 360°. Ax. 1 

Hence not more tha^i ^hY’ee regular polyhedrons with 

equilateral A as face^are possible. 

Since each Z of a square is 90°, § 15 

a polyhedral Z may be formed with three squares as faces. 

Now the sum of four face A of 90° is 360°. Ax. 1 

Hence not more than one regular polyhedron with squares 

as faces is possible. 

Since each Z of a regular pentagon is 108°, § 96 

a polyhedral Z may be formed with three regular penta¬ 

gons as faces. 

Now the sum of four face A of 108° is 432°. Ax. 1 

Hence not more than one regular polyhedron with regu¬ 

lar pentagons as faces is possible. 

Now the sum of three Z of a regular hexagon is 360°; 

of a regular heptagon, more than 360°; and so on. 

Hence there cannot be more than five regular poly¬ 

hedrons. 

It is not of enough importance to prove that there are actually five 

regular polyhedrons as stated in §410. In elementary work the fact 

may be safely assumed. 
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Exercises. Polyhedrons 

1. Count the number of edges, vertices, and faces on 
each of the five regular polyhedrons and then fill in the 
blank spaces in the following table: 

Name Edges Vertices Faces 

Tetrahedron . . . 6 4 4 

Hexahedron (cube) . 

Octahedron .... 

Dodecahedron . . . 

Icosahedron .... 

2. From the above table show that in each case the law 
e-\-2 = v -{-f holds true. 

3. Assuming that the law in Ex. 2 is true for all poly¬ 
hedrons, prove that a seven-edged polyhedron is impossible. 

4. If the centers of the six faces of a cube are joined, 
what kind of polyhedron is constructed ? Draw the figure 
and prove that any two edges are equal. 

5. If the centers of the four faces of a regular tetrahe¬ 
dron are joined, what kind of polyhedron is constructed? 
Draw the figure and prove any two edges equal. 

6. As in Ex. 4, consider the figure which results from 
joining the centers of the faces of a regular octahedron. 

7. A quartz crystal is in the form of a 
hexagonal prism with a pyramid on one 
of its bases, as here shown. Show that 
the relation stated in Ex. 2 holds true. 

8. A given polyhedron has six vertices and five faces. 
How many edges are there? 
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IV. Cylinders 

414. Cylindric Surface. A surface generated by a moving 
straight line which is always parallel to a fixed straight 
line, and touches a fixed curve not in the plane of the fixed 
line, is called a cylindric surface, or a cylindrical surface. 

The moving line is called the generatrix and the fixed curve is called 

the directrix. In the first figure below, ABC is the directrix of the cylin¬ 

dric surface shown. The generatrix in any position is called an element. 

415. Cylinder. A solid bounded by a cylindric surface and 
two parallel plane surfaces cutting all the elements is called 
a cylinder. 

It is evident that all elements of a cylinder are equal. The terms 

bases, lateral area, and altitude are used as with prisms. 

416. Cylinders classified. If the elements of a cylinder 
are perpendicular to the bases, the cylinder is called a 
right cylinder; if oblique, it is called an oblique cylinder. A 
cylinder whose bases are circles is called a circular cylinder. 

The second figure above shows a right circular cylinder, and the 

third an oblique cylinder. The straight line through the centers of the 

bases of a circular cylinder is called the axis of the cylinder. 

Since a right circular cylinder can be generated by revolving a rec¬ 

tangle about one side as an axis, it is also called a cylinder of revolution. 
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Proposition 17. Bases of a Cylinder 

417. Theorem. The bases of a cylinder are congruent 

Given the cylinder c with bases b and h\ 

Prove that b is congruent to b'. 

Proof. Let X, Y, Z be any three points on the perimeter 

of 6, and let XX’, YY', ZZ' be elements. 

Draw XY, YZ, ZX, X'Y', Y'Z', Z’X’. Post. 1 

Then XY is II to X’Y’, and XX' is II to YY’, §§ 338, 414 

Hence XYY’X’ is a O, § 72 

and XY = X’Y’. §76 

Similarly, YZ = Y’Z’ and ZX = Z’X’, 

and hence lYXYZ is congruent to AX'Y'Z'. § 47 

Place b on b’ so that X lies on X', and Y on Y'; then Z, 
which is any third point on the perimeter of b, has one 

and only one corresponding point on the perimeter of 6'. 

Hence the same is true of every point on the perimeter 
of b; that is, b can be made to coincide with 6'. 

.*. 6 is congruent to 6'. §37 
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Exercises. Cylinders 

1. Every section of a cylinder made by a plane passing 
through two elements is a parallelogram. 

2. Every section of a right cylinder made by a plane 
passing through two elements is a rectangle. 

3. Any two sections of a cylinder made by parallel planes 
which cut all the elements are congruent. 

• 4. Any section of a cylinder parallel to the base is con¬ 
gruent to the base. 

5. The straight line joining the centers of the bases of a 
circular cylinder passes through the centers of all sections 
of the cylinder parallel to the bases. 

6. If a rectangle revolves about one of its sides, it forms 
a right circular cylinder. 

7. If two right circular cylinders have equal bases and 
equal altitudes, they are congruent. 

8. The locus of points equidistant from a given line is 
a cylindric surface. 

The given line is called the axis of the surface. 

9. The center of any section of a circular cylinder par¬ 
allel to the base is on the axis. 

10. If parallel planes cut all the elements of a cylindric 
surface, the sections thus formed are congruent. 

11. If a section of an oblique cylinder is made by a 
plane parallel to an element, is the resulting figure a 
parallelogram ? Can it be a rectangle ? Give the proofs. 

12. From the center of the upper base of a right circular 
cylinder 4 in. high lines are drawn to the perimeter of the 
lower base. If the diameters of the bases are 6 in., what is 
the length of each line ? 
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418. Tangent Plane. A plane which contains an element 
of a cylinder, but does not cut the surface, is called a tan¬ 
gent plane. 

From this definition it is. evident that 

A plane passing through a tangent to the base of a cir¬ 
cular cylinder and the element through the point of contact 
is tangent to the cylinder. 

If a plane is tangent to a circular cylinder, its intersection 
with the plane of the base is tangent to the base. 

419. Inscribed Prism. A prism whose lateral edges are 
elements of a cylinder and whose bases are inscribed in 
the bases of the cylinder is called an inscribed prism. 

The first figure above shows an inscribed prism. The cylinder is 

said to be circumscribed about the prism. 

420. Circumscribed Prism. A prism whose lateral faces are 
tangent to the lateral surface of a cylinder and whose bases 
are circumscribed about the bases of the cylinder is called 
a circumscribed prism. 

The second figure above shows a circumscribed prism. The cylinder 

is said to be inscribed in the prism. 
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421. Transverse Section. A section of a cylinder made by 
a plane that cuts all the elements is called a transverse 
section of the cylinder. 

If the plane is perpendicular to the elements, the section is called a 

right section. 

422. Cylinder as a Limit. From the principles of limits 
studied in plane geometry, and from the nature of inscribed 
and circumscribed prisms, the properties of the cylinder 
stated below may be assumed without proof. 

If a 'prism 'whose base is a regular polygon is inscribed in 
or circumscribed about a circular cylinder, and if the number 
of sides of the prism is indefinitely increased, 

1. The volume of the cylinder is the limit of the volume of 

the prism. 
2. The lateral area of the cylinder is the limit of the lateral 

area of the prism. 
3. The perimeter of any transverse section of the cylinder 

is the limit of the perimeter of the corresponding section of 

the prism. 

As we increase the number of sides of the inscribed or circum¬ 

scribed prism whose base is a regular polygon, the perimeter of the 

base approaches the circle as its limit (§ 303,1). This brings the lateral 

surface of each prism nearer and nearer the cylindric surface. 
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Proposition 18. Lateral Area of a Cylinder 

423. Theorem. The lateral area of a circular cylinder 

is the product of an element and the perimeter of a right 

section. 

Given c, a circular cylinder; S, the lateral area; e, an ele¬ 
ment ; and p, the perimeter of a rt. section. 

Prove that S = ep. 

Proof. Let a prism whose base is a regular polygon be 
inscribed in c, and let L be the lateral area and p' the perim¬ 
eter of a rt. section. 

Then L = ep'. §376 

If the number of lateral faces is indefinitely increased, 

L-^S, § 422, 2 

p'->p, §422,3 
and ep'—^ ep. § 301,1 

.*. S=ep. § 301, 2 

424. Corollary. In a cylinder of revolution of lateral area 
S, total area T, altitude h, and radius r, 

S=2irrhy and T=2 7rr{h-\-r). 



§§ 423-426 AREA AND VOLUME 357 

Proposition 19. Volume of a Cylinder 

425. Theorem. The volume of a circular cylinder is 
the product of the base and altitude. 

Given c, a circular cylinder; V, the volume; B, the area of 

the base; and h, the altitude. 

Prove that V=Bh. 

Proof. Let a prism whose base is a regular polygon be 
inscribed in c, and let V' be the volume and B' the area of 
the base. 

Then V=^B’h. §395 

If the number of lateral faces is indefinitely increased, 

§422,1 

B'-^B, §303,2 

and B'h-^Bh. §301,1 

.\V=Bh. §301,2 

426. Corollary. Tn a cylinder of revolution of volume V, 
radius r, and altitude h, ^21, 

’ ’ V^irr h. 

Since R = Trr^ (§ 309), then V='Kr^h. This formula and the first one 

of § 424 are those most used in practical work. 
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Exercises. Cylinders 

1. The diameter of a well is 5 ft. and the water is 8 ft. 
deep. Reckoning 7] gal. to the cubic foot, how many 
gallons of water are there in the well? 

2. When an irregular solid body is placed under water 
in a right circular cylinder 50 cm. in diameter, the level of 
the water rises 30 cm. Find the volume of the body. 

3. How many cubic yards of earth were removed in 
constructing a tunnel which is 140 yd. long and whose 
cross section is a semicircle 18 ft. in radius ? 

4. Find to the nearest 0.01 in. the radius of a hollow 
cylinder 16 in. high and containing 3 cu. ft. 

5. Given that the height of a cylindric container which 
holds 20 qt. is equal to the diameter, find the altitude and 
the diameter. 

6. Given that the area of the lateral surface of a right 
circular cylinder is S, the volume is V, and the altitude is h, 
find two formulas for the radius r. 

7. Given that the circumference of the base of a right 
circular cylinder is C and the altitude is h, find the volume V. 

8. From the formula T=2 7rr(k-l-r) in §424 find the 
value of r. 

Ex. 8 should be omitted unless quadratics have been studied. 

9. Defining similar cylinders of revolution as cylinders 
formed by the revolution of similar rectangles about corre¬ 
sponding sides, prove that the lateral areas of two such 
cylinders are to each other as the squares of the altitudes 
or as the squares of the radii. 

10. Is Ex. 9 true for total areas ? Prove your answer. 

11. Consider Ex. 9 for volumes instead of lateral areas, 
changing the statement as may be necessary. 
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V. Cones 

427. Conic Surface. A surface generated by a moving 
straight line which always touches a fixed plane curve 
and passes through a fixed point not in the 
plane of the curve is called a conic surface. 

If a pencil is held by the point and the other end 

is allowed to swing round a circle, the pencil will 

generate a conic surface. 

We may also swing a blackboard pointer about 

any point near the middle in such a way that either 

end shall touch a fixed plane curve, and thus generate 

a conic surface. Such a surface is represented in the 

figure here shown. 

The moving line is celled the generatrix, the fixed 

curve the directrix, and the fixed point the vertex. 
The generatrix in any position is called an element 

of the conic surface. 

Since the generatrix is of indefinite length, the conic surface con¬ 

sists of two portions,— one above and the other below the vertex, as 

shown in this figure. These portions are ,ca,lled the upper nappe and 

lower nappe respectively. 

428. Cone. A solid bounded by a conic surface and a plane 

cutting all the elements is called a cone. 
Since the terms base, lateral area, vertex, 

and altitude are used as with pyramids, their 

further definition is unnecessary. 

429. Circular Cones. A cone whose 
base is a circle is called a circular cone. 

The straight line joining the vertex of a 

circular cone and the center of the base is 

called the axis of the cone. 

Each of these figures shows a circular cone. In the one at the left, 

the axis is perpendicular to the base ; in the other it is oblique. 

Many machine parts, such as roller bearings, bevel gears, taper 

spindles, and the like, are made in the form of circular cones or parts 

of such cones. 
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430. Further Classification of Cones. If the axis of a circu¬ 

lar cone is perpendicular to the base, the cone is called a 

right circular cone; if oblique, it is called 

an oblique circular cone. 
Since a right circular cone may be 

generated by the revolution of a right 

triangle about one of the sides of the 

right angle, as shov^n in this figure, it is 

also called a cone of revolution. 

The hypotenuse of the triangle corresponds to an element of the 
surface and is called the slant height of the cone. 

We seldom have occasion to measure any except right circular cones. 

431. Conic Section. A section formed by the intersection 

of a plane and the conic surface of a cone of revolution, as 

in the figures below, is called a conic section. 

Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 

In Fig. 1 the conic section is two intersecting straight lines. In Fig. 2 
the conic section is a circle, which is discussed in § 432. In Fig. 3 the 
conic section is an ellipse, the form a circle seems to take when looked 
at obliquely. The orbit of a planet is an ellipse. In Fig. 4 the cutting 
plane is parallel to an element, and the conic section is a parabola, the 
path of a projectile in a vacuum. In Fig. 5 the cutting plane is parallel 
to the axis, and the conic section is a hyperbola. 

The general study of conic sections is not a part of elementary 
geometry, but the names of the sections are so frequently met in gen¬ 
eral reading that they should be known. 
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Proposition 20. Section Parallel to Base 

432. Theorem. The section of a circular cone made hy 

a plane parallel to the base is a circle. 

Given a circular cone with the section A'B'C'D' made by the 
plane m II to the base. 

Prove that A'B'C'D' is a Q, 

Proof. Let O be the center of the base, and let O' be the 
point in which the axis VO pierces the plane m. 

Let the planes of FO and any elements VA, VB cut the 
base in the radii OA, OB and the plane m in O'A', O'B', 

Then O'A' is II to OA, and O'B' is II to OB. 
Since O'A', O'R'divide VA, FO, F5 proportionally, 

then • A A OF is similar to AA'O'F, 

and A BOV is similar to AB'O'V, 

OA _VO _ OB 
O'A' FO' O'B'' 

Hence 

§338 
§201 

§213 

§205 

Since OA = OB (§ 134,1), then O'A'= O'B', § 198, 2 
Since A and B are any points on ABCD, then A' and B' 

are any points on the intersection of m and the cone. 

A'^'C'O'isaO. §134,6 
PS 
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433. Tangent Plane. A plane which contains an element 
of a cone, but does not cut the surface (as in the first figure 
below), is called a tangent plane. 

From this definition, it is evident that 

A plane passing through a tangent to the base of a circular 
cone and the element through the point of contact is tangent 
to the cone. 

If a plane is tangent to a circtdar cone, its intersection 
with the plane of the base is tangent to the base. 

434. Inscribed Pyramid. A pyramid whose lateral edges 
are elements of a cone and whose base is inscribed in the 
base of the cone is called an inscribed pyramid. 

The second figure above shows an inscribed pyramid. The cone is 
said to be circumscribed about the pyramid. 

435. Circumscribed Pyramid. A pyramid whose lateral 
faces are tangent to the lateral surface of a cone and 
whose base is circumscribed about the base of the cone is 
called a circumscribed pyramid. 

The third figure above shows a circumscribed pyramid. The cone is 
said to be inscribed in the pyramid. 
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436. Frustum of a Cone. The portion of a cone included 
between the base and a section parallel to the base is called 
a frustum of a cone. 

This figure shows a frustum of a cone of 

revolution. 

The base of the cone and the parallel 

section are together called the bases of the 

frustum. 

The terms altitude and lateral area as 

applied to a frustum of a cone, and slant 

height as applied to a frustum of a right 

circular cone, have the same meaning as they do when applied to a 

frustum of a pyramid. As with frustums of regular pyramids, only 

frustums of cones of revolution have a slant height. 

437. Cones and Frustums as Limits. The following proper¬ 
ties of cones and frustums, similar to those given in § 422, 
may be assumed without proof from a study of the figures 
accompanying the statements: 

1. If a pyramid whose base is a regular polygon is in¬ 
scribed in or circumscribed about a circular 
conCy and if the number of lateral faces of 
the pyramid is indefinitely increased, the 
volume of the cone is the limit of the volume 
of the pyramid, and the lateral area of the 
cone is the limit of the lateral area of the 
pyramid. 

2. The volume of a frustum of a cone is the limit of the 
volumes of the corresponding frustums of the inscribed and 
circumscribed pyramids whose bases are reg¬ 
ular polygons as the number of lateral faces 
is indefinitely increased, and the lateral area 
of the frustum of a cone is the limit of the lat¬ 
eral areas of the corresponding frustums of 
the inscribed and circumscribed pyramids. 
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Proposition 21. Lateral Area of a Cone 

438. Theorem. The lateral area of a cone of revolution 

is half the product of the slant height and the circum¬ 

ference of the base. 

Given a cone of revolution; S, the lateral area; C, the cir¬ 
cumference of the base; and /, the slant height. 

Prove that s=ilC. 

Proof. In a regular circumscribed pyramid whose lateral 
area is L and whose perimeter of base is p, L = ^ Ip. § 401 

If the number of lateral faces is indefinitely increased, 

L-^S, §437,1 

and p^C. §303,1 

Then llp-^llC. §301,1 

.•.S=J^C. §301,2 

439. Corollary. In a cone of revolution of lateral area S, 
total area T, slant height I, and radius r, 

S = ttW, and T— 7rr{l r). 

440. Corollary. The theorem of § Jf03 applies to a circular 
cone. 

The necessary changes in wording are obvious. 
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Proposition 22.^ Lateral Area of a Frustum 

441. Theorem. The lateral area of a frustum of a cone 

of revolution is half the product of the slant height and 

the sum of the circumferences of its bases. 

Given a frustum of a cone of revolution; S, the lateral area; 
C and C'f the circumferences of the bases; and /, the slant height. 

Prove that S = ll{CCf 

Proof. Let L be the lateral area of the corresponding frus¬ 
tum of a regular circumscribed pyramid, and let p, p' be the 
perimeters of the bases corresponding to C, C' respectively. 

Then L = il{p-\-p'). §402 

If the number of lateral faces is indefinitely increased, 

L-^S. §437,2 

From § 303,1, we may assume that 

p-\-p'-^C-\-C’. 

Then ll{p-{-p')-^hliC-\-Cf §301,1 

/. S = jl{C§301,2 

442. Corollary. The lateral area of a frustum of a cone 
of revolution is the product of the slant height and the cir¬ 
cumference of a section equidistant from the bases. 
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Proposition 23. Volume of a Cone 

443. Theorem. The volume of a circular cone is one 

third the product of the base and the altitude. 

Given a circular cone; F, the volume; the area of the 
base; and 7z, the altitude. 

Prove that V=\Bh. 

Proof. Let a pyramid whose base is a regular polygon be 
inscribed in the cone. 

Let V' be the volume and B' the area of the base of the 
inscribed pyramid. 

Then v'=\b% §407 

If the number of lateral faces is indefinitely increased, 

V'^V, §437,1 

and B'-^B. §303,2 

Then ^B'h^^Bh. §301,1 

.\V=\Bh. §301,2 

444. Corollary. In a circular cone of volume V, radius r, 
and altitude h, 

V=\irr\. 



§§ 443-445 VOLUME 367 

Proposition 24. Volume of a Frustum 

445. Theorem. The volume of a frustum of a circular 

cone is one third the product of the altitude of the frus¬ 

tum by the sum of the areas of the bases and the mean 

proportional between them. 

Given a frustum of a circular cone; F, the volume; 
the areas of the bases; and /z, the altitude. 

Prove that V=^h{B + B’+ V^'). 

Proof. Let C be the volume of the cone from which the 
frustum is cut; and let C' and h' be the volume and alti¬ 
tude respectively of the small cone remaining after the 

frustum is removed. 

Then V=C-C'=lB{h + h')-\B'h'. 

Now 

Solving, h'= - 

§443 

^B\y/^'=h-\-h'\h. §440, Ax. 6 

hVB' 
B-B' Vp-Vp' 

Then F= i j^Pfe + (P - P') j • Ax. 5 

Simplifying, F=M(P + P'+V^). 
Since B = Trr^ and B'=Trr'^, the above formula may be written 

V = ^Trh{T^ rr'). 

This subsidiary proposition may be omitted, if desired. 
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Exercises. Numerical Computations 

Find the lateral areas of cones of revolution, given the slant 
heights and the circumferences of the bases respectively as 
follows: 

1. 4iin.,5i in. 2. 4.7 in., 6.2 in. 3. 3 ft. 6 in., 5 ft. 

Find the lateral areas of cones of revolution, given the slant 
heights and the radii of the bases respectively as follows: 

4. 2.5 in., 2.1 in. 5. 5.8 in., 5.6 in. 6. 3 ft. 3 in., 7 in. 

Find the total areas of cones of revolution, given the slant 
heights and the radii of the bases respectively as follows: 

7. 4 in., 3| in. 9. 16 in., 7 in. 11. 8 ft., 3^^ ft. 

8. 6 in., 3j in. 10. 18 in., 7 in. 12. 14 ft., 7 ft. 

Find the volumes of circular cones, given the altitudes and 
the areas of the bases respectively as follows: 

13. 4| in., 8f sq. in. 15. 6 in., 5.8 sq. in. 

14. 6^ in., 10 sq. in. 16. 8.1 in., 18.8 sq. in. 

Find the volumes of circular cones, given the altitudes and 
the radii of the bases respectively as follows: 

17. 8 in., 4.2 in. 19. 18 in., 7 in. 21. 4.9 in., 2.1 in. 

18. 3 in., 2.1 in. 20. 21 in., 7 in. 22. 10.5 in., 6.2 in. 

23. How many cubic feet are there in a conical tent 
which is 14 ft. in diameter and 9 ft. high ? 

24. How many cubic feet are there in a conical pile of 
earth which is 18 ft. in diameter and 10 ft. high ? 

25. An isosceles triangle whose altitude is 4 in. and whose 
equal sides are each 5 in. revolves about the base. Find the 
volume of the double cone thus formed. 
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Exercises. Formulas 

Deducej if possible, formulas for the following, stating the 
impossible cases, if any: 

1. The lateral area of a cone of revolution in terms of 
the radius of the base and the altitude. 

2. The slant height of a cone of revolution in terms of 
the lateral area and the circumference of the base. 

3. The slant height of a cone of revolution in terms of 
the lateral area and the radius of the base. 

4. The radius of the base of a cone of revolution in terms 
of the lateral area and the slant height. 

5. The slant height of a cone of revolution in terms of 
the total area and the radius of the base. 

6. The circumference of the base of a circular cylinder 
in terms of the lateral area and the slant height. 

7. The volume of a cylinder in terms of the altitude 
and the lateral area. 

8. The altitude of a circular cone in terms of the volume 
and the area of the base. 

9. The area of the base of a circular cone in terms of 
the volume and the altitude. 

10. The altitude of a circular cylinder in terms of the 
volume and the radius of the base. 

11. The radius of the base of a circular cylinder in terms 
of the volume and the altitude. 

12. The volume of a cone of revolution in terms of the 
slant height and the radius of the base. 

13. The slant height and the altitude of a cone of revo¬ 
lution in terms of the volume and the circumference of 
the base. 
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Exercises. Theory of the Cone 

1. Every section of a cone made by a plane passing 
through the vertex is a triangle. 

2. The axis of a circular cone passes through the center 
of every section which is parallel to the base. 

3. Defining similar cones of revolution as cones formed 
by the revolution of similar right triangles about corre¬ 
sponding sides, prove that the lateral areas of two similar 
cones of revolution are to each other as the squares of their 
altitudes. 

4. In Ex. 3, consider the case of the total areas. 

5. Consider Ex. 3 with '' slant heights substituted for 
altitudes. 

6. Consider Ex. 3 with ''radii’’ substituted for "alti¬ 
tudes.” 

7. Consider Ex. 3 with respect to volumes instead of 
lateral areas, changing the statement as may be necessary. 

8. If the lateral surface of a cone of revolution is cut 
along one of the elements and unrolled on a plane, show 
that it becomes a sector of a circle. Show also that there 
can be deduced a formula for the area of a sector of a 
circle that shall be the same as the formula for the lateral 
area of a cone. 

9. Deduce a formula for finding the altitude of a frus¬ 
tum of a circular cone in terms of the volume and the areas 
of the bases. 

If the subsidiary proposition of § 445 was not taken, omit Exs. 9 

and 10. 

10. Deduce a formula for finding the altitude of a frus¬ 
tum of a cone of revolution in terms of the volume and 
the radii of the bases. 
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Exercises. Industrial Problems 

1. A steamer's funnel 4 ft. 8 in. in diameter is built up 
of four equal plates in girth, with a lap at each joint of 
If in. Find one dimension of each plate. 

2. There is a rule for calculating the strongest beam that 
can be cut from a cylindric log, as follows: Trisect the 
diameter ABy and at the points of division 
P, Q erect the Js PC, QD on opposite sides 
of AB, and meeting the circle in C and D. 

Then ADBC is a section of the strongest 
beam. Given that the diameter AB of a log 
is 18 in., calculate the dimensions AD and 
DB of the strongest beam that can be cut from the log. 

3. A tubular boiler has 128 tubes each 3| in. in diameter 
and 16 ft. long. Find the area of the total surface of the 
tubes to the nearest square foot. 

4. In a room of a factory heated by steam pipes, there 
are 280 ft. of 2-inch pipe, 36 ft. of 3-inch pipe, and 6 ft. of 
4|-inch feed pipe. Find the total heating surface to the 
nearest square foot. 

5. A triangular plate of wrought iron | in. thick is 
3 ft. 4 in. on each side. If the weight of a plate 1 ft. square 
and I in. thick is 5 lb., what is the weight, to the nearest 
pound, of the triangular plate ? 

6. A cylinder 18 in. in diameter is required to hold 60 gal. 
of water. Allowing 231 cu. in. to the gallon, what must be 
the height of the cylinder to the nearest 0.1 in. ? 

7. The water level of an upright cylindric boiler is 1 ft. 4 in. 
below the top of the boiler. If the cross-section area of the 
boiler is 14 sq. ft, what is the volume of the steam space 
above the water ? 
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8. Allowing 490 lb. per cubic foot, find to the nearest 
0.01 lb. the weight of a steel plate 5 ft. by 4 ft. 6 in. by if in. 

9. Through a steel plate 5 ft. long, 3 ft. 8 in. wide, and 
f in. thick, a porthole 12 in. in diameter is cut. Allowing 
0.29 lb. per cubic inch, find the weight of the finished plate. 

10. A cast-iron base for a column is in the form of a frus¬ 
tum of a regular pyramid. The lower base is a square 26 in. 
on a side, the upper base has one fourth the area of the 
lower base, and the altitude of the frustum is 10 in. If the 
total surface is to be painted, what area must be covered ? 

11. A cylinder head for a steam 
engine has the shape shown in 
this figure. Allowing 41 lb. for 
the weight of a steel plate 1ft. 
square and 1 in. thick, find the 
weight of the cylinder head to 
the nearest 0.1 lb. 

12. A hollow steel shaft 14 ft. long has an exterior diam¬ 
eter of 16 in. and an interior diameter of 9 in. Allowing 
0.29 lb. per cubic inch, find the weight to the nearest pound. 

13. A steel beam in the form here shown is 
16 ft. long. Allowing 0.29 lb. per cubic inch, find 
the weight of the beam to the nearest pound. 

14. How many square feet of tin are re¬ 
quired to make a funnel, if the diameters at 
the top and bottom are to be 32 in. and 16 in. 
respectively, the height is to be 24 in., and 4 sq. in. are 
allowed for waste ? 

15. Find the cost, at $1.35 per square foot, of finishing 
the curve surface of a frustum of a right circular cone 
whose slant height is 12 ft. and the radii of whose bases 
are 3 ft. 6 in. and 2 ft. 4 in. respectively. 
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Exercises. Equivalent Solids 

1. When a cube of iron 6 in. on an edge is melted it just 
fills a mold in the form of a right prism whose base is a 
rectangle 8 in. long.and 6 in. wide. Find the height of the 
prism and the difference between its total area and the 
total area of the cube. 

2. A pile of bricks in the form of a regular pyramid 
10 ft. high is repiled in the form of a regular prism with 
an equivalent base. Assuming no loss due to piling the 
bricks a different way, find the height of the prism. 

3. The diameter of a cylinder is 12 ft. and its height is 
6 ft. Find the height of an equivalent right prism, the base 
of which is a square 5 ft. on a side. 

4. If one edge of a cube is e, what is the height h of an 
equivalent right circular cylinder whose radius is r ? 

5. The dimensions of a rectangular parallelepiped are 
a, 6, c. Find the height of an equivalent right circular cyl¬ 
inder which has a for the radius of its base. Also find the 
height of an equivalent right circular cone which has a for 
the radius of its base. 

6. A right circular cylinder 5 ft. in diameter is equivalent 
to a right circular cone 5 ft. in diameter. If the height of 
the cone is 6 ft., what is the height of the cylinder ? 

7. The heights of two equivalent right circular cylinders 
are in the ratio 4:9. If the diameter of the first is 5 ft., 
what is the diameter of the second ? 

8. A frustum of a cone of revolution is 5 ft. high and the 
diameters of its bases are 2 ft. and 4 ft. respectively. Find 
the height of an equivalent right circular cylinder whose 
radius is 5 ft. 

Omit Ex. 8 if § 445 was not taken. 
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Exercises. Miscellaneous Problems 

1. The slant height of a frustum of a regular pyramid 
is 24 ft., and the bases are squares whose sides are 50 ft. 
and 20 ft. respectively. Find the volume. 

Exs. 1-6 should be omitted if §§ 408 and 445 were not taken. 

2. Given that the bases of a frustum of a pyramid are 
regular hexagons whose sides are 2 ft. and 3 ft. respec¬ 
tively, and that the volume is 16 cu. ft., find the altitude. 

3. From a right circular cone whose slant height is 24 ft. 
and the circumference of whose base is 8 ft., there is cut off 
by a plane parallel to the base a cone whose slant height is 
5 ft. Find the lateral area and the volume of the frustum. 

4. Find the difference between the volume of a frustum 
of a pyramid, whose altitude is 8 ft. and whose bases are 
squares 16 ft. and 12 ft. respectively on a side, and the vol¬ 
ume of a prism of the same altitude whose base is a section of 
the frustum parallel to its bases and equidistant from them. 

5. A stone windmill is in the shape of a frustum of a 
right circular cone. The mill is 14 m. high, the outer diam¬ 
eters at the bottom and the top are 18 m. and 14 m., and 
the inner diameters are 14 m. and 8 m. respectively. How 
many cubic meters of stone were required to build it? 

6. A brick chimney has the shape of a frustum of a 
regular pyramid. The chimney is 160 ft. high, its upper 
and lower bases are squares 9 ft. and 14 ft. on a side respec¬ 
tively, and a square flue 6 ft. on a side runs from top to 
bottom. How much brickwork does the chimney contain ? 

7. Two right triangles whose bases are 5 in. and 7 in., 
and whose hypotenuses are 8^ in. and Ilf in. respectively, 
revolve about their third sides. Find the ratio of the total 
areas of the solids generated and find their volumes. 
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THE SPHERE 

1. Fundamental Theorems 

446. Sphere. The locus of points in space at a given dis¬ 
tance from a given point is called a sphere. 

The terms center, radius, chord, and diameter are used as in the 

case of the circle. 

This is the modern definition, analogous 

to the modern definition of a circle, but it 

will be found that no confusion will arise 

if the student considers a sphere as the 

solid inclosed by a spherical surface or 

spheric surface. In modern mathematics 

the volume of a sphere is considered to 

mean the volume inclosed by the surface 

which is called a sphere. 

447. A Point and a Sphere. A point may be on a sphere, 
within the sphere (inclosed by it), or outside the sphere (not 
inclosed by it). 

448. Properties of a Sphere. As in § 134, we have 

1. All radii of the same sphere or of equal spheres are 

equal. 
2. All spheres of equal radii are equal. 
3. A point is within, on, or outside a sphere according as 

the distance of the point from the center is less than, equal 
to, or greater than the radius. 

There are also other properties, such as that a diameter is twice a 

radius, which are too obvious to require mention. 

375 
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Proposition 1. Plane Intersecting a Sphere 

449. Theorem. If a plane intersects a sphere^ the line 

of intersection is a circle. 

Given the plane p intersecting the sphere s with center 0. 

Prove that the line of intersection is a O. 

Proof. Let OA, OB be any two radii of s to points on the 
line of intersection, and let OC be the _L from O to p. 

Draw CA and CB. Post. 1 

Then A AGO and BCO are rt. A, §316 

OC = OC, Iden. 

and OA = OB. § 448,1 

Hence AAOC is congruent to ABOC, §71 

and CA = CB. §38 

Then any points A and B, and hence all points on the line 
of intersection, lie on a O. § 134, 6 

That is, the line of intersection is a O. 

450. Great Circle. The line of intersection of a sphere and 
a plane passing through the center is called a great circle 
of the sphere. 
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451. Corollary. Through any two points on a sphere an 
arc of a great circle can he drawn. 

For the two points and the center of the sphere determine a plane. 

452. Small Circle. The line of intersection of a sphere and 
a plane which does not pass through the center is called 
a small circle of the sphere. 

453. Corollary. Through any three points on a sphere one 
and only one circle can he drawn. 

454. Corollary. A diameter of a sphere perpendicular to 
the plane of a circle of the sphere passes through the center 
of the circle. 

455. Poles of a Circle. If a diameter of a sphere is perpen¬ 
dicular to the plane of a circle of the sphere, the ends of the 
diameter are called the poles of the circle. 

456. Spherical Distance. The length of the smaller arc of 
the great circle joining two points on a sphere is called the 
spherical distance between the points, or, where no con¬ 
fusion is likely to arise, simply the distance. 

457. Polar Distance. The spherical distance from the 
nearer pole of a circle to any point on the circle is called 
the polar distance of the circle. 

The spherical distance of a great circle from either of its poles may 

be taken as the polar distance of the circle. 

458. Quadrant. One fourth of a great circle is called a 
quadrant. 

459. Tangent Lines and Planes. A line or plane that has 
one and only one point in common with a sphere, however 
far produced, is said to be tangent to the sphere, and the 
sphere is said to be tangent to the line or plane. 

460. Tangent Spheres. Two spheres which have one and 
only one point in common are said to be tangent. 

PS 
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Proposition 2. Equal Polar Distances 

461. Theorem. All 'points on a circle of a sphere are 

equidistant fro'm either pole of the circle. 

Given A, By C, any points on a O of the sphere 5; P, P\ 
the poles of O ARC; and PAP\ PBP', PCP\ arcs of great © 
through Ay By C. 

Prove that arc PA = arc PB = arc PC, 

and that arc P'A — arc P'B= arc P'C. 

Proof. Draw PP' and the chords PA, PB, PC. 

Then PP' is _L to the plane of O ABC, § 455 

and passes through the center of QABC. § 454 

Then chord PA = chord PR= chord PC. § 326, 2 

Since the planes of great © pass through the center 
of s, the ® have equal radii (§ 448,1), and hence are equal. 

. ‘. arc PA = arc PB = arc PC. § 140 

Similarly, by drawing chords from P'to A, B, C, we have 

arc P'A = arc P'B= arc P'C. 

462. Corollary. The polar distance of a great circle is a 
quadrant. 



§§461,462 EQUAL POLAR DISTANCES 

Exercises. Circles of a Sphere 

Draw figures to illustrate each of the following: 

379 

1. Great circle. 

2. Small circle. 

3. Poles of a circle. 

4. Spherical distance. 

5. Polar distance. 

6. Quadrant. 

Prove the important properties in Exs. 7-11: 

7. Parallel circles of a sphere have the same poles. 

8. All great circles of a sphere are equal. 

9. Every great circle bisects the sphere. 

10. Two great circles bisect each other. 

11. If the planes of two great circles are perpendicular to 
each other, each circle passes through the poles of the other. 

12. A radius of a sphere perpendicular to a chord of the 
sphere bisects the chord. 

13. Equal chords of a sphere are equidistant from the 
center. 

14. Of the chords of a sphere through a point within it, 
the chords which are perpendicular to the diameter of the 
sphere through the point are the shortest. 

The student has doubtless noticed the analogy between the propo¬ 

sitions relating to the circle and those relating to the sphere. If we 

think of a plane as passing through the center of a sphere and any 

other point under discusssion, the figure of the corresponding propo¬ 

sition in plane geometry will often appear on this plane. 

15. An infinite number of spheres can pass through two 
given points, and their centers lie in a fixed plane. 

16. An infinite number of spheres can pass through thr^e 
given points, and their centers lie on a fixed straight line. 

17. The distance between the centers of two spheres of 
radii r and r' is d. State the condition under which the 
spheres intersect. 
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Proposition 3. Pole of a Great Circle 

463. Theorem. A point on a sphere which is at the 

distance of a quadrant from each of two other points 

on the sphere^ not the ends of a diametery is a pole of the 

great circle passing through these points. 

Given the point P on the sphere s\ the quadrants PA, PB; 
and ABCy the great O passing through A and B. 

Prove that Pis a pole of the Q ABC. 

Proof. From O, the common center of the great ©PA, 
PB, APC(§ 450), draw OA, OB, OP. 

Since arcs PA and P'B are fourths of great ®, §458 

then AAOP and BOP are rt. A. §171 

Hence OP is ± to the plane of Q) ABC, §320 

and P is a pole of the QABC. §455 

« Why may not the two points be the ends of a diameter ? 

464. Spherical Angle. When two great-circle arcs inter¬ 
sect they are said to form a spherical angle. A spherical 
angle is considered as equal to the plane angle formed by 
the tangents to the arcs at their point of intersection. 
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Proposition 4. Tangent Plane 

465. Theorem. If a plane is perpendicular to a radius 

at its end on the sphere^ the plane is tangent to the sphere. 

Given the sphere s with the plane nz J_ to the radius OP at P. 

Prove that m is tangent to s. 

Proof. Let A be any point except P in m, and draw OA. 

Then, since OA > OP (§ 326,1), A is outside s. § 448, 3 

Then every point in m, except P, is outside s. 

Hence m is tangent to s. § 459 

466. Corollary. If a plane is tangent to a sphere, it is 
perpendicular to the radius drawn to the point of contact. 

467. Inscribed Sphere. If a sphere is tangent to all the 
faces of a polyhedron, the sphere is said to be inscribed in 
the polyhedron, and the polyhedron is said to be circum¬ 
scribed about the sphere. 

468. Circumscribed Sphere. If all the vertices of a poly¬ 
hedron lie on a sphere, the sphere is said to be circum¬ 
scribed about the polyhedron, and the polyhedron is said to 
be inscribed in the sphere. 
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Proposition 5. Tetrahedron and Inscribed Sphere 

469. Theorem. A sphere can he inscribed in any given 

tetrahedron. 

Given the tetrahedron ABCD. 

Prove that a sphere can he inscribed in ABCD. 

Proof. The face A of the dihedral A can be bisected. § 103 
These bisectors and the corresponding edges of the 

dihedral A determine planes. §314,1 
These planes bisect the dihedral A (§ 349), and are the 

loci of points equidistant from the faces. . § 359 
Any two of these bisecting planes, as ABQ and ADQ, 

intersect in a st. line AQ. § 315 
This line AQ cuts another bisecting plane, as CDP, in 

some point 0. 
Hence O, the common intersection of the three bisecting 

planes, is equidistant from the four faces of ABCD. 
Since the A from 0 upon the faces are equal, the faces 

of ABCD are tangent to a sphere with center 0. § § 446,465 

Hence a sphere can be inscribed in ABCD. § 467 
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Proposition 6. Tetrahedron and Circumscribed Sphere 

470. Theorem. A sphere can he circumscribed about 
any given tetrahedron. 

Given the tetrahedron ABCD. 

Prove that a sphere can be circumscribed about ABCD. 

Proof. Let P be the center of the O circumscribed about 
face ABC, and Q the center of the O about face ABD. § 188 

Let PR be J_ to face ABC, and QS to face ABD. § 324 
ThenPJ^ is the locus of points equidistant from A, B, C; 

and QS, of points equidistant from A, B, D. § 328 
Now PR and QS both lie in the plane _L to AB at its mid¬ 

point (§ 329). If QS is II to PR, it is ± to face ABC (§ 331). 
But this is impossible, since QS is _L to face ABD which 
intersects face ABC. Hence PR and QS intersect, as at 0. 

Since O is equidistant from A, B, C, D, 

then A, B, C, D lie on a sphere. § 446 

Hence a sphere can be circumscribed about ABCD. § 468 

471. Corollary. Through four points not in the same plane 
one and only one sphere can pass. 
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Exercises. Review 

1. The intersection of two spheres is a circle whose plane 
is perpendicular to the line which joins the centers of the 
spheres and whose center is on that line. 

2. The four perpendiculars erected at the centers of 
the circles circumscribed about the faces of a tetrahedron 
intersect in the same point. 

3. The six planes perpendicular to the edges of a tetra¬ 
hedron at their midpoints intersect in the same point. 

4. The six planes which bisect the six dihedral angles 
of a tetrahedron intersect in the same point. 

5. Circles on the same sphere which have equal polar 
distances are equal. 

6. Equal circles on the same sphere have equal polar 
distances. 

7. Find the locus of points in a plane at a given distance 
from a given point. Also find the locus of such points in a 
three-dimensional space. 

8. A line tangent to a great circle of a sphere lies in the 
plane tangent to the sphere at the point of contact. 

9. Any line in a tangent plane drawn through the point 
of contact is tangent to the sphere at that point. 

10. Through a given point on a given sphere one and 
only one plane can be passed tangent to the sphere. 

11. Find a point in a plane equidistant from two inter¬ 
secting lines in the plane, and at a given distance from a 
given point not in the plane. Discuss the solution for all 
types of cases. 

12. How many points determine a straight line ? a circle ? 
a sphere ? Prove that two spheres coincide if they have 
this last number of points in common. 
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Proposition 7. Measure of a Spherical Angle 

472. Theorem. A spherical angle is measured hy the 
arc of the great circle which has the vertex of the angle 
as pole and is included between the arms of the angle. 

Given PA, PB, arcs of great © of the sphere s intersecting at 
P; PA', PB', the tangents to these arcs at P; and the arc AB, 
included between PA and PB, of the great O with P as pole. 

Prove that the spherical A APB is measured by arc AB. 

Proof. Let the planes of the great © PA, PB, AB intersect 
in PO, AO, BO respectively. 

Then PB'is ± to PO, §147 

and OB is J_ to PO. §171 

Hence PB' ' is II to OP (§ 57), and similarly PA' is II to OA. 

.*. ZA'PB' = ZAOB. §343 

Since Z A OP is measured by arc AB, §171 

then ZA'PB' is measured by arc AP. Ax. 5 

Z APB is measured by arc.AP. §464 

473. Corollary. A spherical angle has the same measure 

as the dihedral angle formed by the planes of the two circles. 
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Exercises. Review 

1. If an arc of a great circle passes through the pole of 
another great circle, the two circles are perpendicular to 
each other. 

2. If two great circles are perpendicular to each other, 
each passes through the poles of the other. 

3. If the first of two great circles passes through the 
poles of the second, then the second passes through the 
poles of the first. 

4. If three lines form a triangle, it is possible (§§193,194) 
to construct four circles tangent to all three lines. Consider 
the analogous case for spheres and for the four planes which 
form a tetrahedron. 

5. All straight lines at a given distance from a given 
point are tangent to a certain sphere. 

6. If two planes which intersect in the line AB touch a 
sphere at the points C and D respectively, the line CD is 
_L to AB in the sense mentioned in § 335; that is, a plane 
can be passed through CD _L to AB. 

7. If two unequal spheres intersect, are the tangents 
to the larger sphere from any point in the plane of their 
common circle shorter than the tangents from that point 
to the smaller sphere ? State the proposition in correct form 
and then prove it. 

8. Given that the two points P, P' are 16 cm. apart, find 
the locus of points that are 10 cm. from P and 12 cm. 
from P'. 

9. If the edges of a tetrahedron are tangent to a sphere, 
the sum of any pair of opposite edges is equal to the sum 
of any other pair. 

Compare this with Ex. 6, page 119. 
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11. Spherical Polygons 

474. spherical Polygon. A portion of a sphere bounded 

by three or more arcs of great circles is called a spherical 
polygon. 

The difference between the general nature of a spherical polygon 

and that of a plane polygon is that the former lies on a spherical surface 

and has arcs of great circles as its sides, while the latter lies on a plane 

surface and has segments of straight lines as its sides. 

The terms sides, angles, vertices, diagonal, convex, concave, and con¬ 

gruent are used as with plane polygons. 

475. Spherical Triangle. A spherical polygon of three sides 

is called a spherical triangle. 

A spherical triangle may be right, obtuse, or acute, and may also be 

equilateral, isosceles, or scalene. 

The terms spheric polygon and spheric triangle are also used. 

476. Relation of Polygons to Polyhedral Angles. The planes 

of the sides of a spherical polygon form a polyhedral angle 

whose vertex is the center of the sphere, whose face angles 

are measured by the sides of the polygon, 

and whose dihedral angles have the same 

numerical measure as the angles of the 

polygon. 

Thus, the planes of the sides of the polygon ABCD 

here shown form the polyhedral Z 0-ABCD. The 

face A BOA, COB, • • • are measured by the sides BA, 

CB, • • • of the polygon. The dihedral angle whose edge is OA has the 

same measure as the spherical Z BAD, and so on. 

Hence from any property of polyhedral angles, we may 

infer an analogous property of spherical polygons, and 

conversely. 
Since we have considered only convex polyhedral angles in the 

preceding work, we shal^ consider only convex spherical polygons. 

Because of the relation between polyhedral angles and spherical 

polygons, we shall first consider the former. 
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Proposition 8. Two Face Angles 

477. Theorem. The sum of any two face angles of a 
trihedral angle is greater than the third face angle. 

Given the trihedral Z V-XYZ with face Z XVZ > face Z XVY 
or face ZFFZ. 

Prove that ZXFF+ Z YVZ > ZXVZ. 

Proof. In the plane XVZ let ZXVW=ZXVY, and 

through any point D of VW draw a line cutting VX in 

A and VF in C. On FFtake VB=VD. 

Then A, B, C determine a plane. § 314,1 

Since AV=AV, VB = VD, and ZAVB = ZAVD, then 

AAVB is congruent to ZAVD (§ 40), and AB = AD{% 38). 

Now AB + BC>AD-\-DC. Post. 3 

.\BC>DC. Ax. 7 

Then since VB=VD, and VC = VC, 

ZBVOZDVC. §127 

Then ZAVB + ZBVOZAVD + ZDVC. Ax. 7 

Hence ZAVB + ZBVOZ AVC; Ax. 5 

at is. ZXVY+Z YVZ >ZXVZ. 
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Proposition 9. Sum of Face Angles 

478. Theorem. The sum of the face angles of a poly¬ 

hedral angle is less than four right angles. 

Given the polyhedral ZF with the face Aa^ by c, , 

Prove that a + 6 + c H— • < 4 rt Z. 

Proof. Let a plane cut all the edges of ZF, thus forming 

the polygon ABC • • •, and let P be any point within ABC • • •. 

Drawing PA, PB, PC, • • •, there are as many ^(PAB, 
PBC, • • •) as there are faces {VAB, VBC, • • •)• 

Hence the sum of the A of all the A with vertex V is 

equal to the sum of the A with vertex P, § 65, Ax. 1 

Now AEAV-\-ABAV>ZBAE, 

ZVBA-\-ACBV>ZCBA,-§477 

Hence the sum of the A at the bases of the A with 

vertex V is greater than the sum of the A at the bases of 

the A with vertex P. Ax. 8 

.*. a + 64-c+ • • • <ZAPB+ZBPC-\-ACPD-\- • • •, Ax.8 

or a + 6 + c H— • < 4 rt. Z. § 13 
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Proposition 10. Side of a Triangle 

479. Theorem. Any side of a spherical triangle is less 

than the sum of the other two sides. 

Given the spherical l\ABC, 

Prove that CA < AB -f BC. 

Proof. Let 0-ABC be the corresponding trihedral Z. 

Then Z CO A < Z BOA + Z COB. § 477 

.\CA<AB + BC. §476 

Exercises. Spherical Triangles 

1. Explain how you could proceed to bisect a given 
great-circle arc. 

2. Explain how you could determine the arc that bisects 
a given spherical angle. 

3. Draw a sphere and upon it draw freehand a spherical 
A ARC. With A, R, C as poles draw freehand three great 
circles and show that these circles divide the sphere into 
eight triangles. 

Assume that the center, diameter, and radius are given. ’ 

4. Make a drawing of a sphere and on the sphere show 
an equilateral spherical triangle, each side of which is 90°. 
Then draw a triangle with the three vertices as poles. 
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Proposition 11. Sum of Sides 

480. Theorem. The sum of the sides of a spherical 
polygon is less than 360°, 

Given the spherical polygon ABCD, 

Prove that AB^BCCD-\-DA< 360°. 

Proof. Let 0-ABCD be the corresponding polyhedral Z. 

Then Z5OA-[-ZCO5-bZZ)OC+ZZ)OA<360°. §478 

.-. AB-^BC+CD + DA<m\ § 476 

481. Polar Triangle. The triangle formed by the arcs of 

great circles of which the vertices of a given triangle are 
poles is called the polar triangle of the 

given triangle. 

Thus, if A is the pole of the great circle of 
which a' is an arc, B is the pole of the great circle 
of which b' is an arc, and C is the pole of the great 
circle of which c' is an arc, then AA'B'C' is the 
polar triangle of A ABC. 

If, with A, B, C as poles, entire great circles are drawn, these circles 
divide the sphere into eight spherical triangles. Of these eight tri¬ 
angles, that one is the polar of A ABC whose vertex A\ corresponding 
to A, lies on the same side of BC as the vertex A\ and similarly for 

the other vertices. 
While it is desirable to have a spherical blackboard on which the 

student can draw figures, any small ball will serve the purpose. 
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Proposition 12. Reciprocal Polar Triangles 

482. Theorem. If one spherical triangle is the polar 

triangle of another^ then the second is the polar tri¬ 

angle of the first. 

Given ARC, a spherical A, and A'R^C', its polar A. 

Prove that ABC is the polar A of A'B'C'. 

Proof. Since A is the pole of arc B'C\ 

and C is the pole of arc A'B\ § 481 

then R' is at the distance of a quadrant from A and C. § 462 

.'. R' is the pole of arc AC. § 463 

Similarly, A' is the pole of arc RC, 

and C' is the pole of arc AB. 

ABC is the polar A of A'B'C'. § 481 

The student should notice that we may just as well start with ABC 

as the polar triangle of A'B'C', and then prove that AR'C' is the polar 

triangle of ABC. 

It should also be noticed that it is not necessary that either of the 

triangles should be wholly within the other. For example, if we draw 

the figures freehand, taking AB as about 100°, AC as about 100°, and 

BC as about 30°, one triangle will overlap the other. 
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Proposition 13. Angle and Side Supplementary 

483. Theorem. Any angle of either of two 'polar tri¬ 
angles is the supple'ment of the opposite side of the other. 

Given the polar A ABC and 

Prove that A A and a'\ /-B and b'; /LCand c'; ZA' and a; 
^B' and b; Z.C' and c are respectively supplementary. 

Proof. Let arcsA^ and AC produced meet arc^'C' at 

D and E respectively. 

Since B' is the pole of arc AE, 

arc5'£' = 90". §462 

Similarly, arc DC'= 90®. 

Hence arc B'D-\- arc DE + arc DC = 180°, Ax. 1 

or arc DE^a' = 180°. Ax. 5 

But arc DE is the measure of Z A. § 472 

ZA + a' = 180°. Ax. 5 

Similarly, Z5+6'=180°, and ZC+c=180°; henceZAand 
a'; ZB and b'; ZC and c’ are respectively supplementary. 

In a similar way, by considering the angles of A A'R'C' and producing 
the sides of A ABC, the other relations can be proved. 

PS 
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Proposition 14. Sum of the Angles of a Triangle 

484. Theorem. The sum of the angles of a spherical 

triangle is greater than 180° and less than 5U0°, 

Given the spherical A ABC. 

Prove that 180° < ZA + Z B + ZC < 540°. 

Proof. Let A'B'C' be the polar A of ABC, with the sides 
of both A lettered as usual. 

Then ZA+a'= 180°, ZB+6'= 180°, ZC+c =180°. §483 
. . Z A -f~ Z B -}- Z C d — 540 , Ax.l 
ZA + ZB+ZC = 540°- (a'+ b'-\- d). Ax. 2 

Now a'+6'+c'<360°. 
ZA + ZB + ZC>180°. 

§480 

Also, a'A b'-{- c' ^ 0 . 
ZA + ZB + ZC<540°. 

485. Triangles classified as to Right Angles. Since (§ 484) 
a spherical triangle may have two or even three right 
angles, and two or even three obtuse angles, we find it 
convenient to speak of a spherical triangle which has two 
right angles as birectangular, and one which has three right 
angles as trirectangular. 
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Exercises. Spherical Polygons 

1. Two sides of a spherical triangle are respectively 
83“ 48' and 64° 59'. What is known concerning the number 
of degrees in the third side ? 

2. Three sides of a spherical quadrilateral are respect¬ 
ively 87° 39', 74° 48', and 68° 56'. What is known (§ 480) con¬ 
cerning the number of degrees in the fourth side ? 

3. If two sides of a spherical triangle are quadrants, the 
third side measures the opposite angle. 

4. In a birectangular spherical triangle the sides oppo¬ 
site the right angles are quadrants, and the side opposite 
the third angle measures that angle. 

Since the angles are right angles, what two planes are perpendicular 
to a third plane ? What two arcs must therefore pass through the pole 
of a third arc ? Then what two arcs are quadrants ? How is the third 
angle measured ? 

5. Each side of a trirectangular spherical triangle is a 
quadrant. 

6. Three planes passed through the 
center of a sphere, each perpendicular to 
the other two, divide the spherical sur¬ 
face into eight congruent trirectangular 

triangles. 

Find the number of degrees in the sides of a spherical 
triangle, given the angles of its polar triangle as follows: 

7. 83°; 78°; 64°. 8. 84°50'; 49°38'; 104°40'. 

Find the number of degrees in the angles of a spherical 
triangle, given the sides of its polar triangle as follows: 

9. 69° 42'38"; 93° 48'8"; 38° 36'15". 

10. 72° 48' 26"; 104° 38' 43"; 90°. 
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486. Symmetric Spherical Triangles. If through the center 

0 of a sphere the diameters AA\ BB\ CC' are drawn, and 

the points A, B, C and also the points A', 
B\ C' are joined by arcs of great circles, 

the spherical A ABC and A'B'C' are called 

symmetric spherical triangles. 
In the same way we may form two symmetric 

polygons of any number of sides. We may then 

place the symmetric polygons thus formed in any 

position we choose upon the sphere. 

487. Relation of Symmetric Triangles. Two symmetric tri¬ 

angles are mutually equilateral and mutually equiangular; 

but in general they are not congruent, since they cannot be 

made to coincide by superposition. Thus, in the above figure, 

if the A ABC is made to slide on the sphere until the vertex 

A falls on A\ it is evident that the two triangles cannot be 

made to coincide since, looked at from the point O, the 

corresponding parts of the triangles occur in reverse order. 

The relation of two symmetric spherical triangles, which is similar 

to that of a pair of gloves, may be illustrated by cutting the triangles 

out of the peel of an orange. 

488. Symmetric Isosceles Triangles. Consider, however, 

the case of the symmetric A ABC and A'B'C' in which 

AB = ACy and A'B' = A'C'; that is, 

the two symmetric triangles are 

isosceles. Then because AB, AC, 
A'B', and A'C' are all equal, and 

the A A and A' are equal since they 

were originally formed by vertical 

dihedral angles (§ 486), the two triangles can be made to 

coincide. 

If two symmetric spherical triangles are isosceles, they are 
§uperposable and hence are congruent. 
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Proposition 15. Symmetric Triangles 

489. Theorem. Two symmetric spherical triangles are 
equivalent. 

Given the symmetric spherical A ARC and A'B'C, 

Prove that A ABC is equivalent to AA’B'C'. 

Proof. Let the A ABC and A'B'C' be placed with their 
corresponding vertices opposite each to each with respect 

to the center of the sphere. Post. 5 

Let P be the pole of the small O through A, B, C\ P\ 
the pole of the small G through A\B\C'; and PA, PP, PC, 

P'A\ P'B\ P'C\ the arcs of great ©. 

Now A PC A and P'C'A' are symmetric. § 486 

Also, arc PA = arc PB = arc PC, 

and arc P'A' = arc P'B' = arc P'C'. § 461 

Then APCA is congruent to AP'C'A' (§ 488), and, similarly, 

APAB, P'A’B' and APBC, P'P'C'are respectively congruent. 

Now A APC = APCA + APAB A APBC, 
and AA'B'C' = AP'C'A’ A-AP'A'B' -\-AP'B'C\ Ax. 10 

.*. A ABC is equivalent to AA'P'C'. Ax. 5 

If the pole Plies outside A ABC, then P'lies outside A A'B'C', and 
each triangle is equivalent to the sum of two symmetric isosceles tri¬ 

angles diminished by a third. Hence the result is the same as before. 
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490. Congruent and Symmetric Triangles. In Book I we 

studied the congruence of triangles because upon these 

relations the whole structure of plane geometry is built. 

There are corresponding propositions relating to spherical 

triangles and to trihedral angles, but we do not need them 

for the work in the measurement of the sphere. They will 

therefore be omitted at this point, but will be considered 

in §§ 535-538, where they may be studied if the opportunity 

permits. 

Exercises. Review 

1. If two great-circle arcs intersect, the vertical angles 

are equal. 

2. Every point lying on a great circle which bisects a 

given arc of another great circle at right angles is equi¬ 

distant (§ 456) from the ends of the given arc. 

3. From the center of a sphere three radii, each perpen¬ 

dicular to the other two, are drawn. Find the number of 

degrees in the sides and angles of the spherical triangle 

determined by the ends of the radii. 

4. Is it possible to have a spherical triangle with angles 

of 75°, 80°, and 120°? with angles of 82°, 96°, and 2°? with 

angles of 110°, 80°, and 5° ? with angles of 200°, 150°, and 

190° ? with angles of 188°, 206°, and 250° ? State the reason 
in each case. 

5. The face angles of a polyhedral angle are 90°, 90°, and 

90°. State all that you can with respect to the sides 'and 

angles of the corresponding spherical triangle. 

6. Of what kind of spherical triangle can it be said that 
the triangle is its own polar triangle ? 

7. Draw freehand a spherical triangle with angles of 
200°, 90°, and 90°. 
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III. Mensuration 

491. Important Measurements. In measuring small tracts 

of land it is customary to consider the earth as flat, since 

the results are sufficiently close for practical purposes. 

When, however, we have to measure large areas, like states 

or countries, it is necessary to make allowance for the fact 

that the earth is a sphere. 

The most important measurements that we need to con¬ 

sider for such purposes are the lengths of lines on a sphere 

and the areas of spherical polygons. We also need to know 

that a great-circle arc is the shortest line on a sphere from 

one point to another, and to know how to find areas. 

For the study of mechanical and astronomical problems 

we need to be able to make a few other measurements, 

including that of the volume of a sphere. 

492. Area of a Sphere. Two formulas relating to the sphere 

are often learned in arithmetic or in algebra. One is the 

formula for the area; namely, 

A =4: tttI 

Since is the area of a great circle on a sphere of 

radius r, this formula states the remarkable fact that the 

area of the sphere is four times the area of a great circle; 

that is, that the area of a certain curve surface is exactly 

that of a certain plane surface. We shall later prove that 

this formula is correct. 

493. Volume of a Sphere. The second formula that may 

already be familiar to the student relates to the volume 

of a sphere; namely, y_4^^3^ 

It is impossible to give a satisfactory explanation of this 

formula in arithmetic or in algebra, but we shall now be 

able to give one that is fairly so. 
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Proposition 16. Shortest Path between Points 

494. Theorem. The shortest path on a sphere between 

two points is the arc, less than a semicircle^ of the great 

circle joining the two points. 

Given AB^ the arc, less than a semicircle, of the great O 

joining the points A and B on the sphere 5. 

Prove that AB is the shortest path on the sphere between 
A and B. 

Proof. Let C be any point on arc AB, and let XCY and 

RCQ be arcs of the small © which have A and B respec¬ 

tively as poles. 

Then if Y is any point except C on arc XCY, and if A F 

and BY are arcs of great ®, we have 

AY=AC. §461 

Now AYA-BY>AC^-BC. §479 

Taking away A Y from the left member of the inequality 

and AC, its equal, from the right member, we have 

BY>BC. 

BC = BQ. 

.-. BY>BQ. 

Now 

Ax. 7 

§461 

Ax. 5 
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Hence Y lies outside the O whose pole is B, § 134, 6 

Then, since Y is any point except C on arc XCY, the arcs 
XCY and RCQ have only the point C in common. 

Now let AXRB be any line, which does not pass through 
C, from A to 5 on the sphere. 

This line cuts the arcs XCY and RCQ in the separate 
points X and R; and if we revolve the line AX about A as 
a fixed point until X coincides with C, we shall have a line 
from AtoC equal to the line AX. 

In like manner, we can have a line from BtoC equal to 
the line BR. 

Hence we can have a line from A to B through C that 
is equal to the sum of the lines AX and BR. 

But such a line is less than the line AXRB by the line XR. 
Hence no line which does not pass through C can be the 

shortest line from AtoB; that is, the shortest path from 
A to 5 is through C. 

But C is any point on the arc AB. 

Hence the shortest line from AtoB passes through every 
point of the arc AB, and consequently coincides with the 
arc AB. 

That is, the shortest path from A to 5 is the arc AB of the 
great O through A and B. 

This fact is of great importance in navigation. 

495. Geodetic Line. Just as we use straight lines in meas¬ 
uring distances on a plane, we use great-circle arcs in 
measuring distances on a sphere. Since these arcs are 
used in geodesy, the science of measuring the earth's sur¬ 
face, they are called geodetic lines. 

If we examine the map on a globe, we see that the geodetic line 
from New York to Plymouth, England, goes much farther north than 
we should think if we looked only at a flat map. 
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Proposition 17. Surface Generated by a Line 

496. Theorem. If a straight-line segment revolves about 

an axis in its plane, the area of the surface generated is 

the product of the projection of the line segment on the 

axis and the circumference of the circle whose radius is 

the perpendicular to the line segment at its midpoint 

included between this point and the axis. 

Given AB, a segment revolving about an axis XY in the 

same plane; CD, the projection of ARon-YF; M, the midpoint 

of AB; MR, the -L to AB at M\ and S, the area generated by AB, 

Prove that S=CD • 2 irMR. 

Proof. Let ATO be _L to XY. 

1. If AB is II to XY, CD — AB, MR coincides with MO, and a rt. cylin¬ 
der is generated. Hence S=AB • 2 7rMO= CD • 2TrMR (§ 424). 

2. If AB is not II to XY and does not cut XY, let AE be II to XY. 
In the similar AMOR, AEB (§ 210), MO: AE=MR: AB (§ 205); whence 
AB • MO = AE • MR = CD • MR (§ 198,1). Then, since AB generates a 
frustum of a cone of revolution, S=AB • 27rMO= CD • 2 7rMR <§ 442). 

3. If A lies on XY, CD = AD. In the similar AADB, MOR (§ 210), 
AB:MR = AD:MO (§205); whence AB ’ MO = AD - MR = CD ' MR 
(§ 198,1). Now MO = \BD (§ 87). Then, since AB generates a cone of 
revolution, S = ^ AB • 2 irBD = AB • 2 ttMO = CD • 2 ttMR (§ 438). 

The student should give the proof of each case in complete form. 
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Proposition 18. Area of a Sphere 

497. Theorem. The area of a sphere of radius r is 4= irr’^. 

Given a sphere of radius r and area S. 

Prove that 8=4 7^r^ 

Proof. Let the sphere be generated by the revolution of 

the semicircle APB about AB, let AMPNB be a regular 

inscribed semipolygon oi 2 n sides, and let Js from the 

center O be constructed to the equal chords AM, MP, • • *. 

Then these Js bisect the chords (§ 141) and are equal (§ 150). 

Let r' be the length of each of these equal Js, and let MM' 
and NN' be J. to AB, 

Since arc AP= arc BP{^ 140), PO also is J_ to AB, 

Then the area generated by AM is AM' \2 ttt', 

the area generated by MP is M'O • 2 irr', * • *. § 496 

Letting 8' represent the area of the surface generated 

by AMPNB, we have 8' =AB-2 ttt'. Ax. 1 

Now if the number of sides is indefinitely increased, 

rWr, §303,3 

and hence AB • 2 irr'—^ AB • 2 ttt. § 301,1 

But, always, 8' = AB' 2'Trr' = 4irrr', § 496 

and obviously 8'^8. 
8=47rr\ § 301,2 
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498. Spherical Degree. Just as we take a unit of length, 
commonly 1°, in measuring an arc, so we take a unit of 
area in measuring a spherical figure. This 
unit, called a spherical degree, is a spherical 
triangle of which two sides are quadrants 
and the third side is an arc of 1°. Since 
the triangle is evidently of a hemi¬ 
sphere, we see that 

A spherical degree is of a sphere. 
The angles of the unit triangle are evidently angles of 90°, 90°, and 1° 

499. Lune. A portion of a sphere bounded by the halves 
of two great circles is called a lune. p 

A lune is therefore part of a spherical surface. It 

may, by extending the definition of polygon, be con¬ 

sidered as a polygon of two sides. 

Since the two angles formed by the sides of a lune 

are equal, either angle may be taken as the angle 

of the lune. In this figure, ZAPB may be taken as 

the angle of the lune PAP'B. 

500. Area of a Lune. Since the area of a lune whose 
angle is 1° is twice a spherical degree, and the area of a 
lune increases at the same rate as the angle, we see that 

The number of spherical degrees in the area of a lune is 
twice the number of degrees in the angle of the lune. 

501. Spherical Excess. The number of degrees by which 
the sum of the angles of a spherical polygon of n sides ex¬ 
ceeds (n—2)180 is the spherical excess of the polygon. 

In a spherical triangle, we have n — 2 = 3 — 2 = 1. Hence the spherical 

excess of a triangle is the number of degrees by which the sum of its 

angles exceeds 180. 

For example, if the angles of a spherical triangle are 80°, 90°, and 

100°, the spherical excess of the triangle is 90. If the angles of a 

spherical polygon are 150°, 155°, 90°, 55°, 100°, the spherical excess is 

150 -h 155 4- 90 4- 55 -h 100 - (5 - 2) 180, or 550 - 540, or 10. 
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Exercises. Areas 

1. The area of a sphere is the product of the diameter 
and the circumference of a great circle. 

2. The areas of two spheres are to each other as the squares 
of their radii, or as the squares of their diameters. 

3. The area of a sphere is 72 sq. in. Find the area of a 
lune whose angle is 10°. 

It is evidently of the area of the sphere. 

4. The area of a sphere is 1440 sq. in. Find the number 
of square inches in a spherical degree. 

5. If the number of square inches in a spherical de¬ 
gree is 15, what is the area of the sphere ? 

6. The area of a lune is 10 sq. cm. and the angle of the 
lune is 36°. Find the area of the sphere. 

7. The area of a lune is two spherical degrees. Find 
the angle of the lune. 

8. The angle of a lune is 15° 30'. Find the area of the 
lune in spherical degrees. 

9. A lune with an angle of 20° is on a sphere which has 
a radius of 7 in. Find the number of square inches in the 
area of the lune. 

In this and the following exercises, take 7r= 3}. 

Find the areas of spheres with radii as follows: 

10. 4.9 in. 11. 3.5 in. 12. 2 ft. 4 in. 13. 6 ft. 5 in. 

Find the areas of spheres with diameters as follows: 

14. 42 in. 15. 5.6 in. 16. 6.3 in. 17. 4 ft. 8 in. 

Find the radii of spheres with areas as follows: 

18. 616 sq. in. 19. 2464 sq. in. 20. 15,400 sq. mm. 
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Proposition 19. Area of a Triangle 

502. Theorem. The area of a triangle of spherical 

excess E on a sphere of radius r is 

Given ARC, a A on a sphere of radius r; R, the spherical 
excess of the A; and S, the area of the A. 

Prove that S = lio EttP, 

Proof. Let the sides of the A ABC be produced to form 
great ©, and let AA’, BB\ CC’ be diameters. 

Then AAB'C' and A'BC are symmetric. § 486 

AAB'C' is equivalent to A A'BC. § 489 

Hence we have 

R + AAB'C' = lune of ZA = 2A spherical degrees, 
S-h AAR'C= lune of ZR = 2R spherical degrees, 

S-\-AAC'B = lune of Z C = 2C spherical degrees. § 500 
.*. 2 5+J sphere = 2 (A+R+C) spherical degrees. Ax. 1 

or 28 + 360 spherical degrees = 2(A+R+C); Ax.5 

whence 8=A+R+C—180. Ax. 4 

Hence the area of A ABC in spherical degrees is E. § 501 

But each spherical degree is o of 4 irp. § 498 

Hence S = E • 4 irP = yEttP. 
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503. Corollary. A spherical triangle is equivalent to a lune 
whose angle is half the spherical excess of the triangle. 

In the proof of §502 we showed that C—180, and the 

number of spherical degrees in the area of a lune is twice the number 
of degrees in the angle of the lune (§ 500). 

504. Corollary. In a polygon of area S and spherical excess 
E on a sphere of radius r, 

S = -i\^Ei7r\ 
In the spherical polygon here shown, by drawing all the diagonals 

from any vertex, we have a A with each of the sides as base except 

the two which meet at the vertex; that is, there are (n —2)A. 
Since (§ 502) the area of each A is times the 

excess of the number of degrees in each A over 180, the 

sum of the areas of the A is times the excess 

of the sum of all the A over {n — 2)180. 

But (§ 501) the spherical excess of the polygon is the 

sum of the A less {n — 2) 180, and hence 

505. Corollary. A spherical polygon is equivalent to a 
lune whose angle is half the spherical excess of the polygon. 

This follows from §§ 503 and 504. 

506. Significance of the Formula of § 504. It should be 
noticed that E in the formula of § 504 depends upon the 
number of sides in the polygon, since it is always the num¬ 
ber of degrees in the sum of the angles minus (n —2)180. 

In the case of a lune there are two sides, and hence 
{n — 2) 180 = 0. Thus the spherical excess is simply the sum 
of the two equal angles, or twice the angle of the lune. 

Hence in a lune of ZL, we have if^Z/7rr^= 
If L = 360°, that is, if the lune covers the entire sphere, 

= 4 7rr^ as found in § 497. 
The advantage in using §§ 502 and 504 instead of §§ 503 and 505 is 

apparent, since in the former we have a single formula for the area 

without reference to the lune. 
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Exercises. Areas of Spherical Polygons 

1. Find the area of a triangle with angles of 110°, 100°, 
and 95° on a sphere with a radius of 6 in. 

We have £■=110 +100 + 95 -180 = 125, 

and S=jIo i. 6 • 6 =78f. 

Hence, the area of the triangle is 78.57 sq. in. 

In all cases take 3y, or for ir except when otherwise directed. 

2. Find the area of a polygon with angles of 100°, 110°, 
120°, and 170°, on a sphere with a radius of 63 in. 

In this case £'=100+110 + 120+170 - 2 X180 =140, 

and S= ’ ¥- • 63 • 63 = 9702. 

Hence the area of the polygon is 9702 sq. in. 

3. Taking the radius of the earth as 4000 mi., find the 
area of the earth. 

4. A triangle on the earth ^s surface has one vertex at 
the north pole and the others on the equator, one at 30° W. 
and the other at 20° E. Considering the earth as a sphere 
with a radius of 4000 mi., find the area of the triangle. 

5. In making a survey of part of a continent a triangle 
was laid out with angles of 60°, 100°, and 20° 6'. Find the 
area of the triangle to the nearest 1000 sq. mi. 

Find the areas of triangles with angles as follows on 
spheres of the given radii: 

6. 130°, 100°, 95°; r = 7 in. 7. 110°, 100°, 40°; r = 35 in. 

Taking ir = 3.1J^16, find the areas of spherical polygons 
with angles as follows on spheres of the given radii: 

8. 136°, 154°, 70°, 90°; r = 16 in. 

9. 145°, 150°, 90°, 100°, 130°; r = 30in. 

10. 175°, 168°, 88°, 142°, 100°, 90°; r = 40in. 
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507. Zone. A portion of a sphere included between two 
parallel planes is called a zone. 

If a great circle revolves about its diameter as an axis, 
any arc of the circle generates a zone. 

It must be remembered that sphere means the same as spherical 
surface, so that a zone, like ^ lune, is a surface. Thus on the earth we 
have the torrid zone, which is that part of the earth’s 
surface included between the planes of the tropics 
of Cancer and Capricorn. 

The circles made by the planes are called the 
bases of the zone, and the distance between the 
planes is called the altitude of the zone. 

If one of the planes is tangent to the sphere 
and the other plane cuts the sphere, the zone is 

called a zone of one base. If both planes are tangent to the sphere, 
the zone is a complete sphere. 

P 

508. Corollary. In a zone of area S and altitude h on a 
sphere of radius r, 

S = 2 irrh. 

If we apply the reasoning of § 497 to the zone generated by the 
revolution of arc PN, we have p 

S = ON'x27rr. 

But ON' is the altitude h. 

Hence S=27rrh. 

For example, if the radius is 14 in. and the altitude of the zone is 5 in., 

S=2 TTvh = 2 • •14-5 sq. in. = 440 sq. in. 

509. Areas on a Sphere. The most important formulas for 
the areas on a sphere may be summarized as follows: 

Sphere, 

Triangle, 

Polygon, 

Lune of ZL, 

Zone, 

S=4 7rZ. 

= li'o Eirr^. 

S=^hE'jrr\ 

S = qV Lirr^. 

S=2 irrh. 
PS 
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Exercises. Areas 

1. The area of a zone of one base is equivalent to the 
area of the circle whose radius is the chord of the gener¬ 
ating arc. 

2. Two zones on the same sphere are to each other as 
their altitudes. 

3. If the earth's radius is 4000 mi., and the altitude of 
the torrid zone is 3200 mi., what is the area of this zone ? 

On a sphere whose radius is IJf in.,, find the areas of lunes 
whose angles are as follows: 

4. 60°. 5. 90°. 6. 42° 30'. 7. 32° 20'. 

8. Find the area of a lune whose angle is 40° on a sphere 
with a radius of 28 in. 

9. Find the area of a lune whose angle is 85° on a sphere 
with a diameter of 21 in. 

Taking 'Tr = Y^ fi'^d the areas of spherical polygons with 
angles as follows on spheres of the given diameters: 

10. 140°, 90°, 60°, 120°; d = 20 in. 

11. 170°, 160°, 95°, 30°, 100°; d = 32in. 

Taking 'rr = 3.1J^16, find the areas of spherical polygons 
with angles as follows on spheres of the given circumferences: 

12. 140°, 120°, 100°, 130°, 100°; C= 6.2832 in. 

13. 120°, 140°, 130°, 80°, 160°, 135°; C = 18.8496 in. 

Taking tt = S.H, find the areas of spherical polygons with 
angles as follows on spheres of the given areas: 

14. 70°, 160°, 90°, 120°; S = 600 sq. in. 

15. 65° 30', 140° 50', 95° 34', 138° 50'; S = 600 sq. in. 
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510. Sphere Inscribed in a Cube. It is readily seen that 
the lines joining the centers of the opposite faces of a cube 
are each equal to an edge of the cube, 
that they all intersect in one point, 
and that this point is equidistant 
from all six faces. It therefore seems 
obvious that a sphere can be in¬ 
scribed in a cube. 

The formal proof of this fact can easily 
be given, but the student will probably 
see that its truth is so evident as to render a proof unnecessary. 

Similarly, we speak of a sphere as inscribed in a cylinder, but no 
formal definition is necessary. 

511. Volume of a Sphere. The volume inclosed by a sphere 
is called the volume of the sphere. 

512. Sphere as a Limit. Suppose that a plane is tangent 
to a sphere at the point on the sphere determined by the line 
joining any vertex of the circumscribed cube to the center 
of the sphere. It is then apparent that since some of the 
cube has been cut off, the volume of the circumscribed 
polyhedron thus formed is nearer than that of the cube to 
the volume of the sphere. 

This process may be continued for all the vertices of 
the cube, repeated for all the vertices of the circumscribed 
polyhedron thus formed, again repeated, and so on indefi¬ 
nitely. The volume of the circumscribed polyhedron thus 
approaches the volume of the sphere. That is, if V is the 
volume of the sphere, and V' is the volume of the circum¬ 
scribed polyhedron of n faces, as described above, then 
V' V as ^ 00. 

Similarly, if A is the area of the polyhedron of n faces, 
as described above, and S is the area of the sphere, then 
A-^S as n—yoo. 
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Proposition 20. Volume of a Sphere 

513. Theorem. The volume of a sphere of radius r is 

I Trrl 

Given a sphere of radius r and volume V, 

Prove that V = 17rrl 

Proof. Let the sphere be inscribed in a cube (§ 510) whose 
edge is 2 r. Then the lines joining the center to the vertices 
of the cube are the edges of six pyramids of altitude r 
whose bases are the faces of the cube. 

One such pyramid is shown in the figure. 

The volume of each pyramid is a face of the cube multi¬ 
plied by ir (§407), and the volume of the six pyramids, or 
of the whole cube, is the area of the surface of the cube 
multiplied by Jr (Ax. 1). 

Now let planes be tangent to the sphere at the points 
where the edges of the pyramids cut the sphere. 

One such plane is shown in the figure. 

We then have a circumscribed solid whose volume V', 
although greater than the volume V of the sphere, is nearer 
V than is the volume of the circumscribed cube. 
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Also the area A of the circumscribed solid is nearer the 
area S of the sphere than is the area of the cube. 

Proceeding as before, let the center of the sphere be 
connected with the vertices of the new polyhedron. These 
connecting lines are the edges of pyramids of altitude r 

whose bases are the faces of the polyhedron. 
Then the sum of the volumes of these pyramids is the 

area of the circumscribed polyhedron multiplied by ^r; 
that is, as before, 

V'=A-ir. 

If we continue to increase indefinitely the number of 
faces of the circumscribed polyhedron, we see that 

y'^Uand A-^S. §512 

.\V=S^lr. § 301,2 

But S —4: irr^. §497 

Hence y= 47rr^ • \r, Ax. 5 

or y= I 7rf\ 

Exercises. Volume of a Sphere 

1. The volume of a sphere is the product of the area of 

its surface and one third of its radius. 

2. The volume of a sphere of diameter d is \ ttcZI 

3. The volumes of two spheres are to each other as the cubes 

of their radii or as the cubes of their diameters. 

4. If the radius of the earth is 4000 mi., and if the atmos¬ 
phere extends 50 mi. above the surface of the earth, what 
is the volume of the atmosphere ? 

5. If a solid iron ball 4 in. in diameter weighs 9 lb., what 
is the weight of a spherical iron shell which is 2 in. thick 
and has an external diameter of 20 in. ? 
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Exercises. Area and Volume of a Sphere 

1. How many square feet of lead are needed to cover a 
hemispherical dome which is 66 ft. in circumference ? 

The student should always use as the value of tt, unless other¬ 

wise directed. 

2. A hollow ball 8 ft. in diameter surmounts the dome 
of a church. Making no allowance for the support, how 
much will it cost to gild the surface of the ball at 10<f per 
square inch ? 

3. Taking the circumference of the earth as 25,000 mi., 
find the area of the surface to the nearest million square 
miles. 

Find the volumes of spheres whose radii are : 

4. 4.2 in. 6. Tin. 8. 3|-in. 10. 5.6 ft. 

5. 6.3 in. 7. 14 in. 9. 10|-in. 11. 4 ft. 1 in. 

12. The diameter of a spherical basket ball is 10 in. 
Allowing 50 sq. in. for waste, how many square inches of 
leather are needed to cover it ? 

13. The distance across the top of a bowl in the shape 
of a portion of a sphere is 14 in. and the greatest depth 
is 7 in. Allowing gal. to the cubic foot, how many pints 
of water does the bowl hold? 

14. If the numbers expressing the area and the vol¬ 
ume of a sphere are the same and the units of measure are 
the square inch and the cubic inch respectively, what is the 
diameter of the sphere ? 

15. The weights of two spheres are in the ratio 2: 5 and 
the weights of 1 cu. in. of each of the substances of which 
they are composed are in the ratio 7 : 2. Find the ratio of 
the diameters. 
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IV. General Review 

Exercises. Polyhedrons 

1. The lines drawn from each vertex of a tetrahedron 
to the point of intersection of the medians of the opposite 
face meet in a point P which divides each line so that the 
ratio of the shorter segment to the whole line is 1:4. 

The point P is called the center of gravity of the tetrahedron. 

2. In Ex. 1, the lines which join the midpoints of the 
opposite edges of the tetrahedron are each bisected by the 
center of gravity. 

3. The plane which bisects a dihedral angle of a tetra¬ 
hedron divides the opposite edge into segments proportional 
to the areas of the faces including the dihedral angle. 

4. Show how to cut a cube by a plane so that the section 
shall be a regular hexagon. 

5. If the face angles at the vertex of a triangular pyra¬ 
mid are all right angles, if the areas of the lateral faces 
are A, B, and C respectively, and if the area of the base 
is P>, then D\ 

6. Show how to cut a tetrahedron by a plane so that the 
section shall be a parallelogram. 

7. The altitude of a regular tetrahedron is equal to the 
sum of the four perpendiculars drawn from any point 
within the tetrahedron to the four faces. 

8. Draw figures to show how to cut a cube so as to have 
a section of three sides; of four sides; of five sides; of as 
many more sides as possible. 

9. The . section of a regular octahedron made by a plane 
parallel to and midway between any pair of opposite faces 
is a regular hexagon. 
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Exercises. Formulas Relating to the Sphere 

Deduce formulas for the following: 

1. The area of a zone of height \r on a sphere of 
radius r. 

In the exercises upon this page, and in similar cases, the unit of 

area is the square of the unit of length, and the unit of volume is the 

cube of the unit of length. That is, if we think of r as feet, then S will 

be square feet and V will be cubic feet. 

2. The volume F of a sphere in terms of C, the circum¬ 
ference ; in terms of S, the area of the sphere. 

3. The radius r of a sphere in terms of V, the volume. 

4. The area S of the zone, on a sphere of radius r, which 
is illuminated by an electric light at the height h above 
the surface. 

5. The diameter d of a sphere in terms of S, the area of 
the sphere. 

6. The altitude of a zone of area 5 on a sphere of 
volume V. 

7. The volume of the metal in a spherical iron shell of 
which the internal radius is r, and the thickness of the 
metal is t. 

8. The weight of a spherical metal shell in which the 
inside radius is r, the thickness of the metal is t, and the 
weight of a cubic unit of the metal is w. 

9. The diameter of the sphere upon which a zone of 
area S has an altitude h. 

10. The area 5' of a zone of altitude h upon a sphere 
of area S. 

11. Hr and r are the radii of the spheres circumscribed 
about and inscribed in a regular tetrahedron of edge 2 a, 
then = 3 r = 2 aV6. 
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Exercises. Cylinders 

1. The volume of a right circular cylinder is the product 
of the lateral area and half the radius. 

2. The volume of a right circular cylinder is the product 
of the area of the rectangle, which generates the cylinder 
by revolving about one of its sides, multiplied by the cir¬ 
cumference of the circle generated by the point of inter¬ 
section of the diagonals of the rectangle. 

3. If the altitude of a right circular cylinder is equal to 
the diameter of the base, the volume is the product of the 
total area and one third the radius. 

4. By what number must the dimensions of a cylinder 
of revolution be multiplied to obtain a similar cylinder 
of revolution (Ex. 9, page 358) whose entire surface area is 
twice the first ? n times the first ? 

5. What is the multiplier in Ex. 4 if the volume of the 
second cylinder is to be twice that of the first ? is to be n 

times that of the first ? 

6. Compare the volumes of the solids generated by the 
successive revolution of a rectangle of base h and altitude 
h about two adjacent sides. 

7. Find the radius of a right circular cylinder in which 
the number of cubic units of volume is equal to the number 
of square units of the area of the entire surface. 

8. Find to the nearest square centimeter the area of the 
total surface of a cylinder whose altitude is 7.6 cm. and the 
diameter of whose base is 4.2 cm. 

9. Find to the nearest cubic centimeter the volume of 
a cylinder whose altitude is 6 cm. and which fits- exactly 
into a right prism whose base is a square that is 1.8 cm. 
on a side. 
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Exercises. Cones and Pyramids 

1. The altitude of a cone of revolution is 24 in. and the 
radius of the base is 10 in. Find the radius of the sector of 
paper which, when rolled up, will just cover the convex 
surface of the cone. Find also the number of degrees in 
the angle of this sector. 

The second result may be expressed either in degrees with a decimal 

fraction, or in degrees, minutes, and seconds. 

2. The volume of a regular pyramid is the product of 
one third its lateral area and the perpendicular distance 
from the center of the base to any lateral face. 

3. Find the volume of a pyramid whose base is 30 sq. in. 
and one of whose lateral edges, which makes an angle of 
45° with the plane of the base, is 5 in. long. 

4. A pyramid is cut by a plane parallel to the base and 
bisecting the altitude. What is the ratio of the volume of 
the pyramid cut off to that of the entire pyramid ? 

5. Consider Ex. 4 for the case of a cone. 

6. The height of a regular hexagonal pyramid is 6 in. 
and one edge of the base is 1 in. Find the volume and also 
find the volume of the pyramid cut off by a plane 4 in. 
from the base and parallel to it. 

7. One of the lateral edges of a regular hexagonal pyr¬ 
amid is 6 in., and the radius of the circle circumscribed 
about the base is 1 in. Find the altitude, the volume, the 
lateral area, and the area of the total surface. 

8. If a right triangle of hypotenuse h and sides a and h 

revolves about h as an axis, what is the volume of the 
solid thus generated ? 

9. If the radius of the base of a right circular cone is r 
and the angle at the vertex is 120°, what is the volume ? 
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Exercises. Spheres, Cylinders, and Cones 

1. The area of a sphere is two thirds the area of the total 
surface of the circumscribed cylinder, 

2. The volume of a sphere is two thirds the volume of the 
circumscribed cylinder. 

Exs. 1 and 2 were discovered by Archimedes, one of the greatest 

mathematicians of Greece, about 250 b.c. 

3. A sphere of radius 6 in. and a right circular cone of the 
same radius stand on a plane. If the. height of the cone is 
equal to the diameter of the sphere, find the position of 
the plane that cuts the two solids in equal circular sections. 

4. In a cylindric jar 8 in. in diameter, water is standing 
to a depth of 6 in. If an iron ball 4 in. in diameter is dropped 
into the jar, what is then the depth of the water ? 

5. On the base of a right circular cone a hemisphere is 
constructed outside the cone. Given that the area of the 
hemisphere is equal to that of the cone, and that the radius 
is r, find the slant height of the cone, the inclination of the 
slant height to the base, and the volume of the entire solid. 

6. Find the area of a sphere inscribed in a cylinder of 
volume i TTcZ®, where d is the diameter of the sphere. 

7. Find the volume of a sphere inscribed in a cylinder 
of area ird{2 -\-d). 

8. A sphere of radius r is inscribed in a cylinder. Find 
the volume of the cylinder not occupied by the sphere. 

9. A cylinder is circumscribed about a hemisphere, and 
a cone is inscribed in the cylinder so as to have its vertex 
on the upper base and to have its base in common with 
the lower base of the cylinder. Prove that the volumes of 
the cone, the hemisphere, and the cylinder are proportional 

to 1, 2, 3. 
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Exercises. Portions of the Surface of a Sphere 

1. If the altitude of the north temperate zone is 1800 mi., 
what is the area of the zone ? 

In Exs. 1-7 take 4000 mi. as the radius of the earth. 

2. How far in one direction can a man see from an 
ocean steamer if his eye is 50 ft. above the water ? 

3. How many square miles of the earth's surface can 
be seen from an airplane at an elevation of 10,000 ft. ? 

4. At what height above the earth must a man be in 
order to see one eighth of the surface ? 

5. What fractional part of the earth’s surface could be 
seen if an observer were at the height of the earth’s radius 
above the sea ? 

6. If the ocean area is three fourths of the earth’s sur¬ 
face and the average depth of the water is 2 mi., what is 
the volume of water in the oceans ? 

7. In a lighthouse on an isolated rock the light is placed 
168 ft. above the surface of the sea and can be seen from 
any point within a circle reaching to the horizon. Find the 
number of square miles of the earth’s surface inclosed by 
this circle. 

Find the areas of triangles with angles as follows on 
spheres of the given radii: 

8. 120°, 110°, 90°; r = 7 in. 10. 120°, 95°, 90°; r = 14 in. 

9. 105°, 105°, 80°; r = 7 in. 11. 90°, 90°, 90°; r = 91 in. 

Find the areas of polygons with angles as follows on 
spheres of the given radii: 

12. 140°, 150°, 80°, 80°; r = 14 in. 

13. 120°, 100°, 185°, 80°, 100°; r = 21 in. 
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Exercises. Spherical Polygons and Polyhedral Angles 

1. The planes which are perpendicular to the three 

faces of a trihedral angle and bisect the face angles meet 

in a straight line. After proving the proposition state the 

corresponding one relating to a spherical triangle. 

It is unnecessary to prove the latter, since it follows by § 476. 

2. The planes passing through the edges of a trihedral 

angle and perpendicular to the opposite faces meet in a 

straight line. Consider also, as in Ex. 1, the corresponding 

proposition relating to a spherical triangle. 

3. Find the area of a spherical triangle, given that the 

perimeter of its polar triangle is 297° and that the radius 

of the sphere is 10 in. 

4. Find the spherical excess of a spherical triangle 

whose angles are 87°, 92°, and 106°; of a spherical quadri¬ 

lateral whose angles are 145°, 92°, 75°, and 125°. 

5. If the two polygons of Ex. 4 are both on a sphere of 

radius 10 in., what is the area of each ? 

On a sphere of radius 7 in.y find the areas of spherical 

triangles with angles as follows: 

6. 92°, 93°, 94°. 8. 100°, 100°, 100°. 10. 32°, 48°, 130°. 

7. 98°, 102°, 116°. 9. 98°, 102°, 120°. 11. 68°, 37°, 140°. 

On a sphere of radius U in., find the areas of spherical 

polygons with angles as follows: 

12. 80°, 90°, 100°, 110°. 14. 96°, 72°, 116°, 130°. 

13. 72°, 88°, 110°, 120°. 15. 100°, 100°, 100°, 100°. 

16. Discuss the case of the area of a spherical triangle 

whose angles are 200°, 280°, and 60° on a sphere whose 

radius is 10 in. 
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Exercises. Miscellaneous Exercises 

1. If a cube and a sphere have equal volumes, what is 
the ratio of the radius of the sphere to the edge of the cube ? 

2. Given that the diagonal of a cube is 4 \/3 in., find the 
radius of the sphere whose area is equal to that of the cube. 

3. The radius of the base of a right circular cylinder is r 
and the altitude of the cylinder is h. Find the radius and 
the volume of a sphere whose area is equivalent to the 
lateral surface of the cylinder. 

4. If the area of a zone of one base is n times the area 
of the circle which forms this base, the altitude of the zone 
is equal to the diameter of the sphere multiplied by (n—l)/n. 
Discuss the special case in which n = l. 

5. Find to the nearest 0.1 in. how far from the center of 
a sphere of radius 8 in. a plane should be passed so as to 
cut from the sphere a circle 154 sq. in. in area. 

6. Find the ratio of the volume of a sphere to the volume 
of the inscribed cube. 

7. Consider Ex. 6 for the circumscribed cube. 

8. Find the ratio of the volume of the cube inscribed in 
a sphere to that of the cube circumscribed about the sphere. 

9. Find the difference between the volumes of two 
cubes, one inscribed in a sphere of radius 1 in. and the 
other circumscribed about it. 

10. Find the difference between the volume of a frustum 
of a pyramid and the volume of a prism each 20 ft. high, 
given that the bases of the frustum are squares 20 ft. and 
12 ft. respectively on a side, and the base of the prism is the 
section of the frustum parallel to the bases and midway 
between them. 

Omit Ex. 10 if § 408 was not taken. 
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11. In certain parts of the United States, stacks of hay 
are shaped roughly like a barn, as shown in this figure. 
The farmers use this rule for finding the approximate num¬ 
ber of tons: Take the "'overthrow'^ (the length ABODE)] 
subtract the width; divide by 2, 
and call the result the height. 
Multiply this height by the prod¬ 
uct of the length and width, and 
call the result the cubic contents. 
Divide this by 412 to find the num¬ 
ber of tons of wild hay; by 450 for timothy; and by 512 
for alfalfa or clover. Consider the accuracy of the rule for 
finding the volume in the case here shown. 

12. Using the rule and the dimensions of the figure in 
Ex. 11, find the approximate number of tons in a stack of 
wild hay; of timothy ; of clover. 

13. The square of the diagonal of a cube is how many 
times the square of an edge ? 

14. Find the ratio of the sum of the squares of all the 
edges of a cube to the sum of the squares of all the diag¬ 
onals of the faces; of all the diagonals of the cube itself. 

15. Find the length of the perpendicular from a vertex 
of a regular octahedron of edge e to the plane determined 
by the four adjacent vertices. 

16. The shortest distance between two opposite edges 
of a regular tetrahedron is equal to half the diagonal of 
the square constructed on an edge. 

17. The sum of the squares of the edges of any tetra¬ 
hedron is four times the sum of the squares of all the lines 
joining the midpoints of opposite sides. 

18. Find the volume of the regular tetrahedron of which 
the sum of the areas of the faces is 4/. 
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19. The six planes that pass through the six edges of 
a tetrahedron and bisect the respective opposite edges 
meet in a point. 

20. A cubic foot of copper is drawn into a wire 2000 ft. 
long. Find the diameter of the wire. 

21. Find the volume of a pyramid with equal lateral 
edges e and a base which is an equilateral triangle of side s. 

22. Consider Ex. 21 for the case in which the base is a 
regular octagon of side s. 

23. The base of a regular pyramid of volume V and 
height /i is a square. Find the length of a lateral edge. 

24. In a cube a plane passes through the midpoints of 
three edges that meet in the same vertex. Given that the 
volume of the cube is i, find the volume of the tetrahedron 
thus cut off. 

25. An iron casting is in the form of a right circular cone 
upon the base of which is a hemisphere of the same radius 
outside the cone. If the casting, which is 7 in. in diameter 
and in. long, is placed in a cylindric can 8f in. in diam¬ 
eter and 10 in. high, filled with water, how much water 
remains in the can? 

26. Water is flowing into a tank through a pipe 2.1 in. in 
diameter at the rate of 3 ft. (linear) per second. Allowing 
231 cu. in. to a gallon, how much water will flow into the 
tank in 1 hr. ? 

27. If the centers of two intersecting spheres are 5 in. 
apart, and the radii of the spheres are 3 in. and 4 in. re¬ 
spectively, what is the area of the circle formed by their 
intersection ? 

28. A sphere 1 ft. in diameter is cut from a cube of lead 
1 ft. on an edge. If the pieces cut off are melted and cast 
into another sphere, what is the diameter of this sphere ? 



SUPPLEMENT 

I. Incommensurable Cases 

514. Subjects Treated. In the study of geometry there 
are many topics that might be taken in addition to those 
found in any textbook. The theorems and problems already 
given in this text are standard propositions which are 
looked upon as fundamental, and are usually required as 
preliminary to more advanced work. These propositions and 
a reasonable number of originals selected from the exer¬ 
cises, will be all that most classes have time to consider. 
It occasionally happens, however, that a class is able to do 
more than this, and then more exercises may be selected 
from the large number supplied, and a few additional 
topics may be studied. For this latter purpose the supple¬ 
mentary work is added, but its study should not be under¬ 
taken at the expense of the fundamental propositions and 
exercises. The work on practical mensuration (§§ 543-550), 
however, may be taken with advantage in place of some 
of the less important propositions in the text. 

The subjects treated in the following pages include the 
incommensurable cases of certain propositions, additional 
propositions in the mensuration of solids, a few general 
theorems relating to similar polyhedrons, and some work on 
congruent spherical triangles and on practical mensuration. 
There are also added a few of those recreations of geom¬ 
etry that add a peculiar interest to the subject, and a brief 
sketch of the history of geometry, which all students are 
advised to read as a matter of general information. 

425 PS 



426 INCOMMENSURABLE CASES supplement 

515. Central Angles. In § 170 it was proved for the com¬ 
mensurable case that central angles have the same ratio 
as their arcs. We shall now prove the theorem for the 
incommensurable case. 

That is, in the figure here shown in which the AAOB 
and BOC and their arcs AB and BC are incommensurable, 
we have to prove that 

A BOC _ arc BC 
AAOB arcA5 

Divide AAOB into any number of 
equal parts and apply one of these 
parts, as AAOM, to A BOC as many 
times as possible. Since the angles are incommensurable, 
there is a remainder, AXOC, less than one of the parts. 

If we increase the number of parts into which AAOB is 
divided, the size of a part can be decreased indefinitely. 

That is, 

and hence 

Then 

and 

Since 

then 

ZAOM-vO, 

AXOC^O, 

ABOX-^ABOC 

arc BX arc BC. 

AAOB and arc AR are constants, 

ABOX ^ABOC^ 
AAOB AAOB' 

and 

But 

slycBX ^ slycBC 

wccAB 2iYQ,AB 

ABOX _2iYcBX 

AAOB 2iXQ,AB 

ABOC_2iYQ,BC 

AAOB arcAR 

§ 301,1 

§170 

§ 301, 2 

That is, the central angles have the same ratio as their 
arcs, even though the angles are incommensurable. 
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516. Sides of a Triangle. In § 201 it was proved for the 
commensurable case that a line parallel to one side of a 
triangle divides the other sides proportionally. We shall 
now prove the theorem for the 
incommensurable case. 

Divide CD into any number of 
equal parts and apply one of 
these parts, as CM, to DA as 
many times as possible. Since 
CD and DA are incommensurable, there is a remainder, such 
as XA, which is less than one of the parts. 

Construct XYII to AB. § 107 

Then DX_EY 
CD CE' 

§201 

If we increase the number of parts into which CD is 
divided, the length of a part can be decreased indefinitely. 

That is. CM- -^0, 
and hence XA- -^0, 
and YB- ->0. 

Then DX -^DA, 

and EY -^EB, 

Now 
DX _^DA 

cd' CD 

and 
EY § 301,1 
CE ce' 

But 
DX EY Proved 
CD ce' 

. DA _EB § 301, 2 
* * CD ce' 

That is, the sides are divided proportionally, even though 
their segments are incommensurable. 
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517. Volume of a Rectangular Parallelepiped. Referring to 
the case discussed in § 391, let us suppose that the edges of 
the rectangular parallelepiped are all incommensurable. 

Let Uy in the figure below, be the unit of volume and 
let u be the unit of length. Then if u is applied to AB as 
many times as possible, there is a remainder ri less than u. 
Similarly, there is a remainder 
on the width BE, and a remainder 
rg on the height AD. 

Now if we let the unit U decrease 
indefinitely, and also de¬ 
crease indefinitely; that is, as U^O, 
then u-^0, n—>0, and 
n-^0. 

Since r^, and all approach zero as a limit, we see that 
BZ^l, BW-^w, and BX-^h, as U is taken continually 
smaller and smaller. 

Let P be the volume of the rectangular parallelepiped 
with the dimensions I, w, h, and let P' be the volume of the 
one with the dimensions BZ, BW, BX. 

Now, as C/->0, 
P'-^P. 

From previous discussions of limits we shall assume, as 
seems evidently to be the case, that 

BZ-BW‘BX-^lwh. 
But P' = BZBWBX. §391 

.\P = lwh. §301,2 
No proof of this case is satisfactory for a textbook of this type. If 

rigorous, the proof is too difficult for an elementary class; if simple, 

it lacks scientific accuracy. The fact that the elementary proofs often 

given are open to serious scientific criticism has led most careful writers 

to outline merely the general nature of the proof as has been done 

above. Teachers are advised to require only that the above discussion 

be read understandingly. 
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11. Polyhedrons 

Proposition 1. The Polyhedron Theorem 

518. Theorem. In a polyhedron the number of edges 

increased by two is equal to the number of vertices in¬ 

creased by the number of faces. 

Given AG^ a polyhedron; c, the number of edges; v, the 
number of vertices; and /, the number of faces. 

Prove that e-\-2 = v +/. 

Proof. For one face, as BCGF, e = v. 
Adding a second face, as ABCD, there is formed a surface 

of two faces which has one edge (BCX and two vertices 
{B and C), common to the two faces.* 

Hence for two faces, e = v-{-l. 

Adding a third face ABFE, adjoining each of the first 
two, this face will have two edges {AB, BF) and three ver¬ 
tices (A, B, F) in common with the surface of two faces. 

Hence for three faces, e = v-\-2. 
Similarly, for four faces, e = + 3, and so on. 

Hence for (/— 1) faces, e = v +(/— 1)— 1. 

Now the addition of the next face, which is the last one, 
will not increase the number of edges or vertices. 

Hence for / faces, e = v +/— 2, or e + 2 = +/. 
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Proposition 2. Truncated Triangular Prism 

519. Theorem. A truncated triangular prism is equiva¬ 

lent to the sum of three pyramids whose common base is 

the base of the prism and whose vertices are the three 

vertices of the inclined section. 

Given the truncated triangular prism with base ABC and 
inclined section DEFy and divided into the three pyramids 
D-ABCy E-ABCy and F-ABC. 

Prove that ABC-DEF is equivalent to the sum of the three 
pyramids D-ABC, E-ABC, and F-ABC. 

Proof. Dividing the truncated prism ABC-DEF into the 
pyramids E-ACD, E-ABC, E-CFD, as shown in the second 
group of figures, we shall now show that these pyramids 
are equivalent to those in the first group. 
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Now pyramid£7-ACD = pyramidR-ACA §407 
because they have the common base ACD and equal altitudes, since 

the vertices Band B lie on EB which isWto the plane ACD. 

But the pyramid B-ACD may be regarded as having the 
base ABC and the vertex D; that is, as pyramid D-ABC. 

pyramid E-ACD = pyramid D-ABC. 

The pyramids E-ABC are the same in each division of 
the prism; that is, they have the base ABC and the vertex E. • 

Now A CFD = A CFA, § 245 
because they have the common base CF and equal altitudes, 

since their vertices lie on AD which is II to CF. 

Then pyramid E-CFD = pyramid B-CFA, § 407 
because they have equivalent bases {the A CFD and CFA) and 

equal altitudes, since EB is lUo the plane ACFD. 

But the pyramid B-CFA may be regarded as having the 
base ABC and the vertex F; that is, as pyramid F-ABC. 

pyramid E-CFD = pyramid F-ABC. 

Hence the truncated triangular prism ABC-DEF is equiva¬ 
lent to the sum of the three pyramids whose common base 
is ABC and whose vertices are D, E, and F. 

520. Corollary. The volume of a truncated right triangular 
prism is one third the product of the base 
and the sum of the lateral edges. 

Since the lateral edges DA, EB, FC are ± to 

the base ABC, they are the altitudes of the three 

pyramids whose sum is equivalent to ABC-DEF. 

It is interesting to consider the special case in 

which ADEF is II to A ABC. 

521. Similar Polyhedrons. Polyhedrons which have the 
same number of faces, respectively similar and similarly 
placed, and which have their corresponding polyhedral 
angles equal, are called similar polyhedrons. 



432 POLYHEDRONS SUPPLEMENT 

Proposition 3. Similar Polyhedrons 

522. Theorem. Two similar polyhedrons can he sepa¬ 
rated into the same number of tetrahedrons^ similar each 
to each and similarly placed. 

B' C B C 

Given the similar polyhedrons P and P'. 

Prove that P and P' can he separated into the same number 

of tetrahedrons^ similar each to each and similarly placed. 

Proof. Let E and E' be corresponding vertices. 

By drawing corresponding diagonals, as AC, A'C\ let all 

the faces of P and P\ except those which include the AE 

and E\ be divided into corresponding A. 

Also, let a plane, as EAC, pass through E and each 

diagonal of the faces of P, and a plane, as E'A'C\ through 

E' and each corresponding diagonal of P'. 

Any two corresponding tetrahedronsP-APC and E'-A'B'C' 

have the faces ABC, EAB, EBC similar respectively to the 

faces A'B’C', E'A’B’, E'B’C\ §225 

§205 

face EAC is similar to face E'A'C'. then §214 
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Then the corresponding trihedral A of the tetrahedrons 
are equal. § 367 

Hence E-ABC is similar to E'-A'B'C\ § 521 

If E-ABC and E'-A'B’C’ are removed, the polyhedrons 
which are left remain similar; for the new faces EAC and 
E'A'C' have just been proved similar, the modified faces 
AED and A'E'D\ ECF and E'C'F\ are similar (§225), and 
the modified polyhedral AE and E\ A and A', C and C' 
remain equal each to each, since the corresponding parts 
taken from these A are equal. This process of removing 
similar tetrahedrons can be continued as necessary. 

Hence P and P' can be separated into the same number of 
tetrahedrons, similar each to each and similarly placed. 

523. Corollary. The corresponding edges of similar poly¬ 
hedrons are proportional. 

This follows from the definitions of §§ 521 and 205. 

524. Corollary. Any two corresponding lines in two similar 
polyhedrons have the same ratio as any two corresponding 
edges. 

For these lines may be shown to be sides of similar polygons. 

525. Corollary. Two corresponding faces of similar poly¬ 
hedrons are proportional to the squares of any two corre¬ 
sponding edges. 

This follows from §§ 521 and 251. 

526. Corollary. The areas of the entire surfaces of two 
similar polyhedrons are proportional to the squares of any 
two corresponding edges. 

527. Corollary. The areas of two similar cylinders, or of 
two similar cones, are proportional to the squares of any 
two corresponding lines. 

Consider limits, and apply § 526. 
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Proposition 4. Ratio of Tetrahedrons 

528. Theorem. The volumes of two tetrahedrons which 

have a trihedral angle of one equal to a trihedral angle 

of the other are to each other as the products of the three 

edges of these trihedral angles. 

Given S-ABC and S'-A’B'C'y two tetrahedrons with trihedral 
ZS = trihedral Z.S'; andF andF', the volumes. 

Prove that V _ SA-SB-SC 
V S'A’ • S'B' • S'C ’ 

Proof. Place tetrahedron S’-A'B'C' upon S-ABC so that 
trihedral ZS shall coincide with its equal, ZS'. 

Let CD and C'D' be Js to the plane SAB, and let the plane 
of CD and C'D' intersect SAB in SD'D. 

The faces SAB and SA'B' may be taken as the bases and 
CD and C'D' as the altitudes of the triangular pyramids 
C-SAB and C'-SA'B' respectively. 

Then _SAB CD 
V iSA'B' • C'D' SA'B'' C'D' * 

§406 

But SAB 
SA'B' ■ 

= ^(1249), and = 205). 

. V _ SA-SB-SC _ SA^SB^SC 
*‘F' SA'-SB'-SC S'A'-S'B'-S'C' 

Ax. 5 
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Proposition 5. Ratio of Tetrahedrons 

529. Theorem. The volumes of two similar tetrahedrons 

are to each other as the cubes of any two corresponding 

edges. 

Given P-ABC and P^-A'B'C'y two similar tetrahedrons; Vand 

V'f the volumes; and PB and P'5', two corresponding edges. 

Prove that F. 

v 
PB 

Fb'^ 

Proof. Since P-ABC is similar to P'-A'B'C', 

the corresponding polyhedral A are equal. 

Hence 

or 

But 

V PB PC- PA 
r P'B'‘ P'C •P'A'' 

V _ PB PC PA 
V’ P'B'' P'C ' P'A' 

PB - PC __ PA 
P'B' P'C' P'A' 

Substituting for its equals, we have 

V PB PB PB 
r 

or 

P'B' P'B' P'B' 

V _pF 

V' Fb'"^ 

Given 

§521 

§528 

§523 

Ax. 5 
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Proposition 6. Ratio of Polyhedrons 

530. Theorem. The volumes of two similar polyhedrons 

are to each other as the cubes of any two corresponding 

edges. 

Given P and P'^ two similar polyhedrons; V and the vol¬ 
umes; and EB and E'B', any two corresponding edges. 

Prove that V:V' = ^’': Wb'\ 

Proof. Let P and P' be separated into tetrahedrons 
similar each to each and similarly placed (§ 522), and let 

their respective volumes be Vi, Fg, Fg, • • Vi Vi Fg, • • •. 

Then : Vi = eS‘ : Wb'^, 

V^:Vi = EB^:E'B'^, and so on. § 529 

.■.V,+V^+V,+ ---:Vi+Vi+Vi+---^W-.WB'\ §198,8 

But Fx+y,+V3+ • • • = F, andVi+Vi+Vi+ ■■■=¥'. 

V:V’= ^":Wb'\ Ax. 5 

531. Corollary. The volumes of two similar cylinders^ or 
of two similar cones, are proportional to the cubes of any 
two corresponding lines. 

Consider limits, and apply § 530. 
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532. Cavalieri’s Theorem. In connection with the work 

in mensuration it is desirable to call attention to a theo¬ 

rem which was set forth by an Italian mathematician, 

Bonaventura Cavalieri (1598-1647), nearly three centuries 

ago. Since a complete proof requires some knowledge of 

the calculus, the theorem is here treated informally. 

Theorem. If two solids lie between parallel planes^ 

and if sections made by any plane parallel to the given 
planes are equivalent^ the 

solids are equivalent. 

That is, if the two solids 

S and S\ lie between the 

parallel planes m and n, 
and if the planes x, y, • — 
cut the solids S and S' so 

that A = A'jB=B','"y the solids and S' are equivalent. 
Let P and P' be the portions lying between x and 

and let the altitude of P and P' be one nth. of the altitude h 
of S and S', On the bases A, A'; n\ 
By B'] ''' suppose right cylinders 

or prisms C and C' to stand, each t Jl 

with the altitude h/n. Then C=C', for any value of n. 
As 7^-^oo we see that the sum of the C's approaches S 

and the sum of the C'^s approaches S', Since each C is 

always equivalent to each C', we may assume that <8 = S'. 

533. Prismoid. A polyhedron which has for its bases two 

polygons in parallel planes, and for its lateral faces triangles 

or trapezoids with one side common to one base and the 

opposite vertex or side common to the other base, is called 

a prismoid. 
The midsection of such a polyhedron is the section which is parallel 

to the base and bisects the altitude. 
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Proposition 7. Prismoid Formula 

534. Theorem. The volume of a prismoid is the product 

of one sixth the altitude hy the sum of the bases and four 

times the midsection. 

Given CDE • • • -XY• • •, a prismoid; F, the volume; B, and 

ilf, the areas of the bases and midsection; and /i, the altitude. 

Prove that V=^h{B + B'+AM). 

Proof. If any lateral face is a trapezoid, let it be divided 

into two A by a diagonal, as EY. 
Let any point P in the midsection be joined to the ver¬ 

tices of the polyhedron and of the midsection, thus separat¬ 

ing the prismoid into pyramids which have their vertices at 

P, and which have as their respective bases the lower base, 

the upper base, and the lateral faces of the prismoid. 

The pyramid P-XCD, which we may call a lateral pyra¬ 

mid of volume Vp, is composed of the pyramids P-XQR, 
P-QDR, P-QCD of volumes Vj, V^, respectively. 

Now P-XQR may be regarded as having the vertex X 
and base PQR, and P-QDR the vertex D and base PQR. 
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Then in P-XQR V^=\h' PQR, 

and in P-QDR PQR. § 406 

The pyramids P-QCD and P-QDR have the same vertex 
P, but, since the base CD of AQCD is twice the base QR of 
AQDR (§ 87), and these A have the same altitude (§ 533), 
the base QCD is twice the base QDR (§ 246). 

Hence the pyramid P-QCD is equivalent to twice the 
pyramid P-QDR; or, in pyramid P-QCD, 

V^=lh-PQR. Ax.3 

Hence in pyramid P-XCD, which is composed of P-XQR, 
P-QDR, and P-QCD, 

Vp=lh‘PQR, Ax.l 

Similarly, the volume of each lateral pyramid is | /i times 
the area of that part of the midsection included within it; 
and hence for the sum of all the lateral pyramids, 

Vp=lh’M. Ax.l 

The volume of the pyramid with base CDE • • • is | hB, and 
that of the pyramid with base XY • • • is ^ hB'. § 406 

.\V=ih{B-^B'+4:M). Ax.l 

Exercises. The Prismoid 

Deduce the following formulas as cases of a prismoid: 

1. Cube, 3. Pyramid, F= ^ P/i. 

2. Prism, U=P/^. 4. Parallelepiped, F= P/i. 

5. Frustum of a pyramid, V=\h{B-\-B'-\-y/BB'). 

6. The area of the upper base of a prismoid is 5 sq. in.; 
of the lower base, 9 sq. in.; of the midsection, 7sq. in.; and 
the altitude is 4 im Find the volume. 

7. Consider Ex. 6 when each measurement is doubled. 
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Exercises. Review 

1. Given that the base of a regular pyramid is an equi¬ 
lateral triangle of side s and that the slant height is I, find 
the altitude and the volume of the pyramid. 

2. Consider Ex. 1 when the base is a square of side s. 

3. Given that the base of a regular pyramid is a square 
of side s and that the area of each lateral face is A, find 
the volume of the pyramid. 

4. Find the volume of a truncated right triangular prism 
whose base has an area of 7 sq. in., and whose lateral edges 
are ijin., l| in., and 2f in. respectively. 

5. In two tetrahedrons which have a trihedral angle of 
one equal to a trihedral angle of the other, the edges of 
this trihedral angle in the first are 3 in., 4 in., and 5 in. 
respectively, and those of the corresponding angle of the 
other are 5 in., 6 in., and 7 in. respectively. Find the ratio 
of the volumes of the tetrahedrons. 

6. How many faces are there in a crystal which has 
five vertices and nine edges ? 

7. What part of a cube is cut off by a plane’passing 
through the vertex B' in the upper base and the diagonal AC 
in the lower base ? 

8. Two similar polyhedrons have the edges e, and of 
the first corresponding to e[ and e' of the second. If = 4 in., 
^2=7 in., and e[ = 5.6 in., how long is e' ? 

9. By the aid of Cavalieri^s Theorem, prove § 405. 

10. A wedge has for its base a rectangle I inches long 
and w inches wide. The cutting edge is e inches long, and 
is parallel to the base. The distance from e to the base is 
d inches. Write a formula for the volume of the wedge. 
Apply this formula to the case of Z = 5,21; = 2, e = 3, d = 4. 
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III. Spherical Triangles 

Proposition 8. Two Sides and Included Angle 

535. Theorem. If two triangles on the same sphere or 
on equal spheres have two sides and the included angle 
of one equal respectively to the corresponding parts of the 
other, the triangles are either congruent or symmetric. 

Given ABC and two A on the same sphere or on 
equal spheres, with AB = A'B', AC=A'C', Z.A = AA\ and 
similarly arranged; and the A ABC and A'B'X with AB — A^B\ 
AC = A'Xy AA = AA', and arranged in reverse order. 

Prove that A ABC is congruent to AA'B'C\ 

and that A ABC is symmetric with respect to AA'B'X, 

Proof. Place A ABC upon A A'B'C'. Post. 5 
By a proof similar to that of the corresponding case in plane geom- 

try (§ 40), show that AABC is congruent to AA'B'C'. 

Let A A'B'C' be symmetric with respect to AA'B'X Now show that 

AA'B'X and A'B'C' have A'B'=A'B', A'X= A'C', ZXA'B'= Z C'A'B', 

and are arranged in reverse order (§ 487), and hence that AABC and 

A'B'C' have AB = A'B', AC = A'C', ZA = ZC'A'B'(Ax. 5), and are 

similarly arranged. Then show that A ABC and A'B'C' are congruent, 

as above, and hence that AABC and A'B'X are symmetric (Ax. 5). 
PS 
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Proposition 9. Two Angles and Included Side 

536. Theorem. If two triangles on the same sphere or 
on equal spheres have two angles and the included side 
of one equal respectively to the corresponding parts of the 
otherj the triangles are either congruent or symmetric. 

Given ABC and A'R'C', two A on the same sphere or on equal 
spheres, with ZA = ZA', ZC=ZC', AC=A'C', and simi¬ 
larly arranged; and the A ARC and A'B'X with ZA = ZA', 
ZC=ZA', AC = A'X, and arranged in reverse order. 

Prove that A ABC is congruent to AA'B'C'y 

and that A ABC is symmetric with respect to A A'B 'X. 

Proof. Place AARC upon AA'R'C'. Post. 5 
By a proof similar to the corresponding case in plane geometry (§ 44), 

show that AABC is congruent to AA'B'C'. 

Let AA'B'C' he symmetric with respect to AA'B'X. 

Now show that AA'BX and A'B'C' have ZXA'B' = ZC A B', 
ZX = ZC\ AX = A'C', and are arranged in reverse order (§ 487), and 
hence that AABC and A'B'C' have AA = ZC'A'B', ZC = ZC', and 
AC = A'C' (Ax. 5), and are similarly arranged. Then show that AABC 
and A'B'C' are congruent, as proved above, and hence that AARC is 
symmetric with respect to AA'B'X (Ax. 5). 
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Proposition 10. Mutually Equilateral Triangles 

537. Theorem. If two triangles on the same sphere or 
on equal spheres are mutually equilateral, they are mutu¬ 
ally equiangular and are either congruent or symmetric. 

Given ABC, two A on the same sphere or on equal 

spheres,'with. AB = A^B\ BC = B'C% and CA = C^A\ 

Prove that ZA = ZA', ZC = ZC', and that 
A ABC and A'B'C' are either congruent or symmetric. 

Proof. Let O and O' be the centers of the spheres, and let 
a plane pass through each pair of vertices of each A and 

the center of its sphere. 
Then in the trihedral Z at O and O' the corresponding 

face A are respectively equal. § 137 
Then the trihedral Z O and O' are equal (§ 367), and hence 

the corresponding dihedral Z are respectively equal (§ 364). 

ZA = ZA', AB = AB', AC=AC', §473 

Hence the A are either congruent or symmetric. § 536 

In the above figure the parts are arranged in the same order, so that 
the triangles are congruent. The parts might be arranged in reverse 
order, as in the A ARC and A'B'X in the figure of § 536, in which case 

the A ARC and A'B'C' would be symmetric. 
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Proposition 11. Mutually Equiangular Triangles 

538. Theorem. If two triangles on the same sphere or on 
equal spheres are mutually equiangular, they are mutu¬ 
ally equilateral, and are either congruent or symmetric. 

Given T and T', two mutually equiangular A on the same 
sphere or on equal spheres. 

Prove that T and T' are mutually equilateral, and that 
they are either congruent or symmetric. 

Proof. Let AP be the polar A of AT, and let AP' be the 
polar A of AT'. 

Since AT and T' are mutually equiangular, Given 

the polar A P and P' are mutually equilateral. § 483 

Hence the polar APandP'are mutually equiangular. § 537 

Now A T and T'are the polar A of A P and P'. §482 

Hence AT and T' are mutually equilateral. § 483 

.‘.AT and T' are either congruent or symmetric. § 537 

The statement that mutually equiangular spherical triangles are 
mutually equilateral, and are either congruent or symmetric, is true 
only when they are on the same sphere or on equal spheres. When 
the spheres are unequal, the spherical triangles are unequal. 



§§ 538, 539 ISOSCELES TRIANGLE 445 

Proposition 12. Isosceles Triangle 

539. Theorem. In an isosceles spherical triangle the 

angles opposite the equal sides are equal; and conversely, 

if two angles of a spherical triangle are equal, the sides 

opposite these angles are equal. 

1. Given the isosceles spherical A ABC with AC=:AB. 

Prove that Z.B =/I C. 

Proof. Let AD be the arc of a great O which bisects Z.A. 

Then AB — AC, Given 

AD=AD, Iden. 

and ZBAD=Z CAD. Const. 

Hence ABDA and CD A are symmetric. § 535 

.\Z.B=^Z.C. §487 

2. Given the spherical AABC with = Z.C. 

Prove that AC = AB. 

Proof. Let AA'B'C' be the polar A of AABC. 
Then A'C'+Z5 = 180° and A= 180°. § 483 

.*. A'C' = A'B\ Axs. 5, 2 

ZB' = ZC’. 
AC = AB. 

Then, by 1, 
§ 483, Ax. 5 
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Proposition 13. Unequal Parts 

540. Theorem. If two angles of a spherical triangle 

are unequal, the sides opposite these angles are unequal, 

and the side opposite the greater angle is the greater; 

and conversely, if two sides are unequal, the angles oppo¬ 

site these sides are unequal, and the angle opposite the 

greater side is the greater. 

1. Given the spherical /\ABC with Z.OZ.B. 

Prove that AB^AC. 

Proof. Let CD, the arc of a great O, make ADCB = Z.B. 

Then DB = DC. §539,2 

Now AD-\-DC>AC. §479 

.*. AD-\-DB>AC, or AB> AC. Ax. 5 

2. Given the spherical A ABC with AB>AC. 

Prove that /.C>Z.B. 

Proof. Using the indirect method, if ZC = Z5, then 

AB = AC(^ 539, 2), which is impossible, since AB>AC', and 

if ZC<Z5, then, by 1, AB<AC, which is also impossible. 

.*. ZOZB. 
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Exercises. Review 

1. P'ind the volume of a truncated right triangular prism 

whose lateral edges are 1 in., 1| in., and 2^ in. respectively, 

and whose base is an equilateral triangle 3 sq. in. in area. 

2. The volume of any truncated triangular prism is one 

third the product of a right section and the sum of the 

lateral edges. 

3. In two tetrahedrons which have a trihedral angle of 

one equal to a trihedral angle of the other, the edges of 

these angles are 2 in., 2j in., 3 in. in the first tetrahedron 

and 3 in., 3^- in., ij in. in the second. Find the ratio of the 

volumes of the tetrahedrons. 

4. A polyhedron of eight faces and six vertices has how 

many edges ? 

5. Consider the possibility of a crystal with four faces 

and two edges; with six faces and four edges. 

6. Consider the possibility of a four-edged polyhedron. 

7. The volume of the first of two similar tetrahedrons 

is 32 cu. in., and to an edge 2 in. long in the first there 

corresponds an edge 2|in. long in the second. Find the 

volume of the second tetrahedron. 

8. Given that the volumes of two similar polyhedrons 

are in the ratio 1: 8, find the length of the edge of the 

first that corresponds to one 3 in. long in the second. 

9. Find the volume of a prismoid in which the areas of 

the bases are 7 sq. in. and 4 sq. in. respectively, the area 

of the midsection is 5 sq. in., and the height is 8 in. 

10. Show that the formula for the volume of a prismoid 

also applies to the cylinder and the cone. 

11. Sketch the figure and state the proposition relating 

to trihedral angles that follows from each of §§ 535-539. 
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541. spherical Segment. If a sphere is cut by two parallel 
planes, the solid thus formed between the planes is called 
a spherical segment. 

The parallel sections are called the bases. 
The formula for the volume F of a segment is 

V=i7rhi3r^+Sr'^+h^), 

where r and r' are the radii of the bases and h is 

the altitude of the segment. This formula is given 

here only for reference, as its proof is too difficult. 

If one of the parallel planes is tangent to the sphere, the segment 

is called a spherical segment of one base. 

542. Spherical Sector. The solid generated by the revo¬ 
lution of a sector of a circle about a diameter of the circle 
as an axis is called a spherical sector. 

In this figure the solid is generated by the revo¬ 

lution of the sector AOB about the diameter PP'. 
The zone generated by the arc AB is called the base 
of the spherical sector. 

The formula for the volume V of such a solid is 

V=lrS, 

where S is the area of the base, and r is the radius of the sphere. 

Exercises. Spherical Segments and Sectors 

1. Find the volume of a spherical segment whose bases 
are 6 in. and 8 in. in diameter, and whose altitude is 2 in. 

2. If the diameter of a sphere is 14 in. and the altitude 
of the zone forming the base of a spherical sector is 3 in., 
what is the volume of the sector ? 

3. By regarding a spherical segment of one base as the 
difference between a spherical sector (whose base is a zone 
of one base) and a cone, show that the formula for the 
volume \s>V=\irh^(2>r — h), where r is the radius of the 
sphere and h is the altitude of the segment. 



§§ 541-543 PRACTICAL MENSURATION 449 

IV. Practical Mensuration 

543. Nature of the Work. In this country the demand for 
supplementary exercises in practical mensuration is in¬ 
creasing. The work which is required is based not merely 
upon the demonstrative geometry of the plane and of the 
simpler solids as set forth in this text, but also upon the 
actual measurements of lines and upon the trigonometry 
of the right triangle as it is now taught in connection with 
algebra in many schools. Material of this kind may safely 
replace certain of the propositions of plane geometry, such 
as those which involve inequalities, certain theorems in rela¬ 
tion to the circle, and certain parts of Book IV, and it may 
also take the place of various propositions in Book VI. It is 
here offered as optional work for the use of those teachers 
who wish to modify the standard course in demonstrative 
geometry, as given in this text, by the introduction of a 
moderate amount of work in advanced mensuration. 

No attempt has been made to include any exercises on 
the mensuration of the conic sections, which is more advan¬ 
tageously treated in the calculus or in connection with the 
propositions of analytic geometry. Furthermore, such work 
is not so practical for the general student as that which 
relates to the more common plane and solid figures. 

As giving proper training in space perception, without 
involving the logic of demonstration, it is believed that 
teachers will find this material of great value. It is gener¬ 
ally conceded that plane geometry furnishes a sufficient 
amount of training in deductive reasoning for an initial 
course, and that the value of solid geometry lies chiefly in 
its presentation of spatial relations. Such a presentation 
is made more vital by work of the nature and extent set 

forth in the following pages. 
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544. Symbols and Formulas of Plane Geometry. The fol¬ 

lowing symbols and formulas are needed in the exercises: 

Symbols 

a = apothem A = area r = radius 

b = base C = circumference s = side 

d = diameter Z A = angle of polygon tt = 3.1416 

h = altitude ZO = central angle I/tt = 0.3183 

Primes indicate that there are two parts of the same name, such 

as the bases h and h' of a trapezoid. 

Formulas to be Memorized 

Parallelogram, A = bh Trapezoid, A = ^h(b-\-b') 
Triangle, A — \bh Circumference, C = 2 7rr = ttc^ 

Area of a circle, A = = \ ird^ 

Formulas for Reference 

Chord AB, Cj = 2 r sin J 0 

Chord ACy C2 = 2 r sin | ^ 

Arc ACB, i (8 C2 — Cl) ^ 

The result by this formula is approximate. 

Sector OACBy A = irr^d 

Equilateral triangle, A = 0.4330 

ZA = 60° ZO = 120° r = 0.5774 s 

Regular pentagon, A = 1.7205 

ZA = 108° ZO = 72° r = 0.8506 s 

Regular hexagon, A = 2.5980 

ZA = 120° ZO = 60° r = s 

Regular octagon, A = 4.8284 

ZA = 135° ZO = 45° r = 1.3065 s 

a = 0.2887 s 

a = 0.6882 s 

a = 0.8660 s 

a = 1.2071 s 
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Simpson's Rule for Areas 

To find the area between the x axis and a continuous 

curve, Simpson^s Rule^ which is 

named for its inventor, is often used. 

In the figure here shown the base 

line AB {x axis) is divided into an 

even number of equal parts so that 

there is an odd number of ordinates 

Viy 2/2» Vzy- "f Vn. The approximate area is then found by 

the following formula: 

^ = J^[(2/1 4"2/w)+2(2/3+2/54-2/7+ * * ■) +4(2/2 + 2/4 +2/6+ * * *)] 

This formula may be expressed in words as follows: 

To find the approximate area between a continuous curve 
and the x axis, add the extreme ordinates, twice the sum of 
the other odd ordinates, and four times the sum of the even 
ordinates, and then multiply the result by one third the com¬ 
mon distance between the successive ordinates. 

The approximation is closer if the curve is undulating (wave-like) 

as in the figure shown above. The formula and rule need not be 

memorized. 

In the work in practical mensuration the symbols (') and (") are 

used for feet and inches respectively. 

The application of the rule may be illustrated by the 

case of a curve which has the ordinates 16.5', 21', 24', 25', 

29.5', 33', 30', 28.5', 28.5', 29', 30', 25.5', 21.5', 20', 20.5', and a 

common distance {h) between the ordinates of 7.68'. 

We then have 2/1 + 2/n = 16.5' -f 20.5' = 37'. 

2 (2/3 -f 2/5 + 2/7 +•••) = 2 (24' + 29.5' + 30' + 28.5' + 30' + 21.5') 

= 327'. 

4 (2/2 + 2/4 + 2/6 +•••)= 4 (21' + 25' 4 33' + 28.5' + 29' + 25.5' -|- 20') 

= 728'. 

Hence A = ^ X 7.68 (37 -f- 327 + 728) sq. ft. 

= 2795.52 sq. ft. 
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545. Symbols and Formulas of Solid Geometry. In addition 
to the symbols and formulas given in § 544, the following 

are needed in the exercises: 

Symbols 

V = volume S = area of curve surface 

B = area of base I = slant height 

E = spherical excess of a polygon 

In the case of cylinders and cones, only cylinders and cones of revo¬ 

lution are considered. 

Formulas to be Memorized 

Cone, S=Trrl V=i-irr^h 

Cylinder, S = 2 Trrh V^'Kr% 

Sphere, S = 47rr" F=|7rr’ 

Zone, S = 2Trrh 
Spherical polygon. '^tlsETrr^ 

Prism or cylinder. V^Bh 

Pyramid or cone. V=\Bh 
It is unnecessary to give formulas for the lateral area of a prism 

and for the area of the total surface of a cone or a cylinder, as these 

areas can be found by taking the sum of other known areas. 

Formulas for Reference 

Frustum of a pyramid, V = \ h{BB'BB') 

Frustum of a cone, S = ttZ (r + r') 

V==lh{B+B'+yfm') = lirh(r‘+r'^-\-rr') 

Spherical sector, V = ^ rS 

Here S' is the area of the zone forming the base of the sector. 

Spherical segment of one base, U = i 'n-h^ (3 r — /t) 

Instead of using this formula the student may consider the spherical 

segment as the difference between a spherical sector and a cone. 
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546. Trigonometry Presupposed. The exercises assume a 
knowledge of four functions of an 
angle and the ability to use these func¬ 
tions in solving the right triangle. 

The four functions which are 
needed are as follows: 

/i opposite side a ^ • 
sm A = --7-= -; whence a = c sin A 

hypotenuse c 

COSA = adjacent side ^6. ^ ^ ^ 
hypotenuse c 

tan A = opposite side ^ a. « = 5 tan A 
adjacent side b 

cot A = adjacent side ^ b ^ ^ ^ 
opposite side a 

Tables of these functions are given on pages 454-461. 

547. Trigonometric Formulas. The following formulas are 
inserted for reference: 

sin A + cos^ A = 

sin A tan A = - 1 
cos A cot A 

sin A = Vl— cos^A 

sin A tan A 

548. Use of the Tables. In the tables on pages 454-461 the 
functions are given for every 0.1°, or for every 6'. In the 
columns of differences the difference for every 1' is given. 
For example, to find sin 55° 20', find sin 55° 18' on page 455, 
and to it add 3 (for 0.0003) found under 2'; that is, 

sin 55° 20'= 0.8221-f 0.0003 = 0.8224 

In finding cos 35° 45', for example, since the cosine de¬ 
creases as the angle increases, we subtract the difference 
(indicated in the table as a minus difference). Hence 

cos 35° 45'= 0.8121-0.0005 = 0.8116 
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0 0.0° 0.1° 

IS 0.3° 0.5° 0.6° 0.7° 
s 0.9° +Differences 

0' 6' 12' 18' 24' 30' 36' 42' 48' 64' 1' 2' 3' 4' 5' 

0 .0000 .0017 .0035 .0052 .0070 .0087 .0105 .0122 .0140 .0157 3 6 9 12 TF 
1 .0175 .0192 .0209 .0227 .0244 .0262 .0279 .0297 .0314 .0332 3 6 9 12 15 
2 .0349 .0366 .0384 .0401 .0419 .0436 .0454 .0471 .0488 .0506 3 6 9 12 15 
3 .0523 .0541 .0558 .0576 .0593 .0610 .0628 .0645 .0663 .0680 3 6 9 12 15 
4 .0698 .0715 .0732 .0750 .0767 .0785 .0802 .0819 .0837 .0854 3 6 9 12 14 

5 .0872 .0889 .0906 .0924 .0941 .0958 .0976 .0993 .1011 .1028 3 6 9 12 14 
6 .1045 .1063 .1080 .1097 .1115 .1132 .1149 .1167 .1184 .1201 3 6 9 12 14 
7 .1219 .1236 .1253 .1271 .1288 .1305 .1323 .1340 .1357 .1374 3 6 9 12 14 
8 .1392 .1409 .1426 .1444 .1461 .1478 .1495 .1513 .1530 .1547 3 6 9 12 14 
9 .1564 .1582 .1599 .1616 .1633 .1650 .1668 .1685 .1702 .1719 3 6 9 12 14 

10 .1736 .1754 .1771 .1788 .1805 .1822 .1840 .1857 .1874 .1891 3 6 9 11 14 
11 .1908 .1925 .1942 .1959 .1977 .1994 .2011 .2028 .2045 .2062 3 6 9 11 14 
12 .2079 .2096 .2113 .2130 .2147 .2164 .2181 .2198 .2215 .2233 3 6 9 11 14 
13 .2250 .2267 .2284 .2300 .2317 .2334 .2351 .2368 .2385 .2402 3 6 8 11 14 
14 .2419 .2436 .2453 .2470 .2487 .2504 .2521 .2538 .2554 .2571 3 6 8 11 14 

16 .2588 .2605 .2622 .2639 .2656 .2672 .2689 .2706 .2723 .2740 3 6 8 11 14 
16 .2756 .2773 .2790 .2807 .2823 .2840 .2857 .2874 .2890 .2907 3 6 8 11 14 
17 .2924 .2940 .2957 .2974 .2990 .3007 .3024 .3040 .3057 .3074 3 6 8 11 14 
18 .3090 .3107 .3123 .3140 .3156 .3173 .3190 .3206 .3223 .3239 3 6 8 11 14 
19 .3256 .3272 .3289 .3305 .3322 .3338 .3355 .3371 .3387 .3404 3 5 8 11 14 

20 .3420 .3437 .3453 .3469 .3486 .3502 .3518 .3535 .3551 .3567 3 5 8 11 14 
21 .3584 .3600 .3616 .3633 .3649 .3665 .3681 .3697 .3714 .3730 3 5 8 11 14 
22 .3746 .3762 .3778 .3795 .3811 .3827 .3843 .3859 .3875 .3891 3 5 8 11 14 
23 .3907 .3923 .3939 .3955 .3971 .3987 .4003 .4019 .4035 .4051 3 5 8 11 14 
24 .4067 .4083 .4099 .4115 .4131 .4147 .4163 .4179 .4195 .4210 3 5 8 11 13 

25 .4226 .4242 .4258 .4274 .4289 .4305 .4321 .4337 .4352 .4368 3 5 8 11 13 
26 .4384 .4399 .4415 .4431 .4446 .4462 .4478 .4493 .4509 .4524 3 5 8 10 13 
27 .4540 .4555 .4571 .4586 .4602 .4617 .4633 .4648 .4664 .4679 3 5 8 10 13 
28 .4695 .4710 .4726 .4741 .4756 .4772 .4787 .4802 .4818 .4833 3 5 8 10 13 
29 .4848 .4863 .4879 .4894 .4909 .4924 .4939 .4955 .4970 .4985 3 5 8 10 13 

30 .5000 .5015 .5030 .5045 .5060 .5075 .5090 .5105 .5120 .5135 3 5 8 10 13 
31 .5150 .5165 .5180 .5195 .5210 .5225 .5240 .5255 .5270 .5284 2 5 7 10 12 
32 .5299 .5314 .5329 .5344 .5358 .5373 .5388 .5402 .5417 .5432 2 5 7 10 12 
33 .5446 .5461 .5476 .5490 .5505 .5519 .5534 .5548 .5563 .5577 2 5 7 10 12 
34 .5592 .5606 .5621 .5635 .5650 .5664 .5678 .5693 .5707 .5721 2 5 7 10 12 

36 .5736 .5750 .5764 .5779 .5793 .5807 .5821 .5835 .5850 .5864 2 5 7 9 12 
36 .5878 .5892 .5906 .5920 .5934 .5948 .5962 .5976 .5990 .6004 2 5 7 9 12 
37 .6018 .6032 .6046 .6060 .6074 .6088 .6101 .6115 .6129 .6143 2 5 7 9 12 
38 .6157 .6170 .6184 .6198 .6211 .6225 .6239 .6252 .6266 .6280 2 5 7 9 11 
39 .6293 .6307 .6320 .6334 .6347 .6361 .6374 .6388 .6401 .6414 2 4 7 9 11 

40 .6428 .6441 .6455 .6468 .6481 .6494 .6508 .6521 .6534 .6547 2 4 7 9 11 
41 .6561 .6574 .6587 .6600 .6613 .6626 .6639 .6652 .6665 .6678 2 4 7 9 11 
42 .6691 .6704 .6717 .6730 .6743 .6756 .6769 .6782 .6794 .6807 2 4 6 9 11 
43 .6820 .6833 .6845 .6858 .6871 .6884 .6896 .6909 .6921 .6934 2 4 6 8 11 
44 .6947 .6959 .6972 .6984 .6997 .7009 .7022 .7034 .7046 .7059 2 4 6 8 10 

All the above sines are less than 1, 
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o 0.0° 0.1° 

o CO 
O

 O
 o 

0.6° 0.6° o
 o 0.9° -{-Differences 

0' 6' 12' 18' 24' 

b
 

CO 36' 42' 

00 64' 1' 2' 3' 4' 5' 

45 .7071 .7083 .7096 .7108 .7120 .7133 .7145 .7157 .7169 .7181 2 4 6 8 10 
46 .7193 .7206 .7218 .7230 .7242 .7254 .7266 .7278 .7290 .7302 2 4 6 8 10 
47 .7314 .7325 .7337 .7349 .7361 .7373 .7385 .7396 .7408 .7420 2 4 6 8 10 
48 .7431 .7443 .7455 .7466 .7478 .7490 .7501 .7513 .7524 .7536 2 4 6 8 10 
49 .7547 .7559 .7570 .7581 .7593 .7604 ,7615 .7627 .7638 .7649 2 4 6 8 9 

50 .7660 .7672 .7683 .7694 .7705 .7716 .7727 .7738 .7749 .7760 2 4 6 7 9 
51 .7771 .7782 .7793 .7804 .7815 .7826 .7837 .7848 .7859 .7869 2 4 5 7 9 
52 .7880 .7891 .7902 .7912 .7923 .7934 .7944 .7955 .7965 .7976 2 4 5 7 9 
53 .7986 .7997 .8007 .8018 .8028 .8039 .8049 .8059 .8070 .8080 2 3 5 7 9 
54 .8090 .8100 .8111 .8121 .8131 .8141 .8151 .8161 .8171 .8181 2 3 5 7 8 

55 .8192 .8202 .8211 .8221 .8231 .8241 .8251 .8261 .8271 .8281 2 3 5 7 8 
56 .8290 .8300 .8310 .8320 .8329 .8339 .8348 .8358 .8368 .8377 2 3 5 6 8 
57 .8387 .8396 .8406 .8415 .8425 .8434 .8443 .8453 .8462 .8471 2 3 5 6 8 
58 .8480 .8490 .8499 .8508 .8517 .8526 .8536 .8545 .8554 .8563 2 3 5 6 8 
59 .8572 .8581 .8590 .8599 .8607 .8616 .8625 .8634 ,8643 .8652 1 3 4 6 7 

60 .8660 .8669 .8678 .8686 .8695 .8704 .8712 .8721 .8729 .8738 1 3 4 6 7 
61 .8746 .8755 .8763 .8771 .8780 .8788 .8796 .8805 .8813 .8821 1 3 4 6 7 
62 .8829 .8838 .8846 .8854 .8862 .8870 .8878 .8886 .8894 .8902 1 3 4 5 7 
63 .8910 .8918 .8926 .8934 .8942 .8949 .8957 .8965 .8973 .8980 1 3 4 5 6 
64 .8988 .8996 .9003 .9011 .9018 .9026 .9033 .9041 .9048 .9056 1 3 4 5 6 

65 .9063 .9070 .9078 .9085 .9092 .9100 .9107 .9114 .9121 .9128 1 2 4 5 6 
66 .9135 .9143 .9150 .9157 .9164 .9171 .9178 .9184 .9191 .9198 1 2 3 5 6 

67 .9205 .9212 .9219 .9225 .9232 .9239 .9245 .9252 .9259 .9265 1 2 3 4 6 

68 .9272 .9278 .9285 .9291 .9298 .9304 .9311 .9317 .9323 .9330 1 2 3 4 5 

69 .9336 .9342 .9348 .9354 .9361 .9367 .9373 .9379 .9385 .9391 1 2 3 4 5 

70 .9397 .9403 .9409 .9415 .9421 .9426 .9432 .9438 .9444 .9449 1 2 3 4 5 
71 .9455 .9461 .9466 .9472 .9478 .9483 .9489 .9494 .9500 .9505 1 2 3 4 5 
72 .9511 .9516 .9521 .9527 .9532 .9537 .9542 .9548 .9553 .9558 1 2 3 4 4 
73 .9563 .9568 .9573 .9578 .9583 .9588 .9593 .9598 .9603 .9608 1 2 2 3 4 
74 .9613 .9617 .9622 .9627 .9632 .9636 .9641 .9646 .9650 .9655 1 2 2 3 4 

75 .9659 .9664 .9668 .9673 .9677 .9681 .9686 .9690 .9694 .9699 1 1 2 3 4 

76 .9703 .9707 .9711 .9715 .9720 .9724 .9728 .9732 .9736 .9740 1 1 2 3 3 

77 .9744 .9748 .9751 .9755 .9759 .9763 .9767 .9770 .9774 .9778 1 1 2 3 3 

78 .9781 .9785 .9789 .9792 .9796 .9799 .9803 .9806 .9810 .9813 1 1 2 2 3 

79 .9816 .9820 .9823 .9826 .9829 .9833 .9836 .9839 .9842 .9845 1 1 2 2 3 

80 .9848 .9851 .9854 .9857 .9860 .9863 .9866 .9869 .9871 .9874 0 1 1 2 2 

81 .9877 .9880 .9882 .9885 .9888 .9890 .9893 .9895 .9898 .9900 0 1 1 2 2 

82 .9903 .9905 .9907 .9910 .9912 .9914 .9917 .9919 .9921 .9923 0 1 1 2 2 

83 .9925 .9928 .9930 .9932 .9934 .9936 .9938 .9940 .9942 .9943 0 1 1 1 2 

84 .9945 .9947 .9949 .9951 .9952 .9954 .9956 .9957 .9959 .9960 0 1 1 1 1 

85 .9962 .9963 .9965 .9966 .9968 .9969 .9971 .9972 .9973 .9974 0 0 1 1 1 

86 .9976 .9977 .9978 .9979 .9980 .9981 .9982 .9983 .9984 .9985 0 0 1 1 1 

87 .9986 .9987 .9988 .9989 .9990 .9990 .9991 .9992 .9993 .9993 0 0 0 1 1 

88 .9994 .9995 .9995 .9996 .9996 .9997 .9997 .9997 .9998 .9998 0 0 0 0 0 

89 .9998 .9999 .9999 .9999 .9999 1.000 1.000 1.000 1.000 1.000 0 0 0 0 0 

The precise value of all sines except sin 90° is less than 1. 
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o 
0.0° 0.1° 

2
 

2
 0.5° 0.6° 0.7° 0.8° 0.9° •— Differences 

0' 6' 12' 18' 24' 30' 36' 42' 00
 

54' 1' r 3' 4' 5' 

0 1.000 1.000 1.000 1.000 1.000 1.000 .9999 .9999 .9999 .9999 0 0 0 0 0 
1 .9998 .9998 .9998 .9997 .9997 .9997 .9996 .9996 .9995 .9995 0 0 0 0 0 
2 .9994 .9993 .9993 .9992 .9991 .9990 .9990 .9989 .9988 .9987 0 0 0 0 0 
3 .9986 .9985 .9984 .9983 .9982 .9981 .9980 .9979 .9978 .9977 0 0 1 1 1 
4 .9976 .9974 .9973 .9972 .9971 .9969 .9968 .9966 .9965 .9963 0 0 1 1 1 

6 .9962 .9960 .9959 .9957 .9956 .9954 .9952 .9951 .9949 .9947 0 1 1 1 1 
6 .9945 .9943 .9942 .9940 .9938 .9936 .9934 .9932 .9930 .9928 0 1 1 1 2 
7 .9925 .9923 .9921 .9919 .9917 .9914 .9912 .9910 .9907 .9905 0 1 1 2 2 
8 .9903 .9900 .9898 .9895 .9893 .9890 .9888 .9885 .9882 .9880 0 1 1 2 2 
9 .9877 .9874 .9871 .9869 .9866 .9863 .9860 .9857 .9854 .9851 0 1 1 2 2 

10 .9848 .9845 .9842 .9839 .9836 .9833 .9829 .9826 .9823 .9820 1 1 2 2 3 
11 .9816 .9813 .9810 .9806 .9803 .9799 .9796 .9792 .9789 .9785 1 1 2 2 3 
12 .9781 .9778 .9774 .9770 .9767 .9763 .9759 .9755 .9751 .9748 1 1 2 3 3 
13 .9744 .9740 .9736 .9732 .9728 .9724 .9720 .9715 .9711 .9707 1 1 2 3 3 
14 .9703 .9699 .9694 .9690 .9686 .9681 .9677 .9673 .9668 .9664 1 1 2 3 4 

15 .9659 .9655 .9650 .9646 .9641 .9636 .9632 .9627 .9622 .9617 1 2 2 3 4 
16 .9613 .9608 .9603 .9598 .9593 .9588 .9583 .9578 .9573 .9568 1 2 2 3 4 
17 .9563 .9558 .9553 .9548 .9542 .9537 .9532 .9527 .9521 .9516 1 2 3 4 4 
18 .9511 .9505 .9500 .9494 .9489 .9483 .9478 .9472 .9466 .9461 1 2 3 4 5 
19 .9455 .9449 .9444 .9438 .9432 .9426 .9421 .9415 .9409 .9403 1 2 3 4 5 

20 .9397 .9391 .9385 .9379 .9373 .9367 .9361 .9354 .9348 .9342 1 2 3 4 5 
21 .9336 .9330 .9323 .9317 .9311 .9304 .9298 .9291 .9285 .9278 1 2 3 4 5 
22 .9272 .9265 .9259 .9252 .9245 .9239 .9232 .9225 .9219 .9212 1 2 3 4 6 
23 .9205 .9198 .9191 .9184 .9178 .9171 .9164 .9157 .9150 .9143 1 2 3 5 6 
24 .9135 .9128 .9121 .9114 .9107 .9100 .9092 .9085 .9078 .9070 1 2 4 5 6 

25 .9063 .9056 .9048 .9041 .9033 .9026 .9018 .9011 .9003 .8996 1 3 4 5 6 
26 .8988 .8980 .8973 .8965 .8957 .8949 .8942 .8934 .8926 .8918 1 3 4 5 6 
27 .8910 .8902 .8894 .8886 .8878 .8870 .8862 .8854 .8846 .8838 1 3 4 5 7 
28 .8829 .8821 .8813 .8805 .8796 .8788 .8780 .8771 .8763 .8755 1 3 4 6 7 
29 .8746 .8738 .8729 .8721 .8712 .8704 .8695 .8686 .8678 .8669 1 3 4 6 7 

30 .8660 .8652 .8643 .8634 .8625 .8616 .8607 .8599 .8590 .8581 1 3 4 6 7 
31 .8572 .8563 .8554 .8545 .8536 .8526 .8517 .8508 .8499 .8490 2 3 5 6 8 
32 .8480 .8471 .8462 .8453 .8443 .8434 .8425 .8415 .8406 .8396 2 3 5 6 8 
33 .8387 .8377 .8368 .8358 .8348 .8339 .8329 .8320 .8310 .8300 2 3 5 6 8 . 
34 .8290 .8281 .8271 .8261 .8251 .8241 .8231 .8221 .8211 .8202 2 3 5 7 8 

35 .8192 .8181 .8171 .8161 .8151 .8141 .8131 .8121 .8111 .8100 2 3 5 7 8 
36 .8090 .8080 .8070 .8059 .8049 .8039 .8028 .8018 .8007 .7997 2 3 5 7 9 
37 .7986 .7976 .7965 .7955 .7944 .7934 .7923 .7912 .7902 .7891 2 4 5 7 9 
38 .7880 .7869 .7859 .7848 .7837 .7826 .7815 .7804 .7793 .7782 2 4 5 7 9 
39 .7771 .7760 .7749 .7738 .7727 .7716 .7705 .7694 .7683 .7672 2 4 6 7 9 

40 .7660 .7649 .7638 .7627 .7615 .7604 .7593 .7581 .7570 .7559 2 4 6 8 9 
41 .7547 .7536 .7524 .7513 .7501 .7490 .7478 .7466 .7455 .7443 2 4 6 8 10 
42 .7431 .7420 .7408 .7396 .7385 .7373 .7361 .7349 .7337 .7325 2 4 6 8 10 
43 .7314 .7302 .7290 .7278 .7266 .7254 .7242 .7230 .7218 .7206 2 4 6 8 10 
44 .7193 .7181 .7169 .7157 .7145 .7133 .7120 .7108 .7096 .7083 2 4 6 8 10 

The precise value of all cosines except cos 0° is less than 1, 



§548 NATURAL COSINES. 45°-90" 457 

o 
0.0° S 0.2° 0.3° I

 

0.5° 0.6° o
 o 

0.9° — Differences 

0' 6' 12' 18' 24' 30' 36' 42' 48' 54' 1' 2' 3' 4' 5' 

45 .7071 .7059 .7046 .7034 .7022 .7009 .6997 .6984 .6972 .6959 2 4 6 8 10 
46 .6947 .6934 .6921 .6909 .6896 .6884 .6871 .6858 .6845 .6833 2 4 6 8 11 
47 .6820 .6807 .6794 .6782 .6769 .6756 .6743 .6730 .6717 .6704 2 4 6 9 11 
48 .6691 .6678 .6665 .6652 .6639 .6626 .6613 .6600 .6587 .6574 2 4 7 9 11 
49 .6561 .6547 .6534 .6521 .6508 .6494 .6481 .6468 .6455 .6441 2 4 7 9 11 

60 .6428 .6414 .6401 .6388 .6374 .6361 .6347 .6334 .6320 .6307 2 4 7 9 11 
51 .6293 .6280 .6266 .6252 .6239 .6225 .6211 .6198 .6184 .6170 2 5 7 9 11 
52 .6157 .6143 .6129 .6115 .6101 .6088 .6074 .6060 .6046 .6032 2 5 7 9 12 
53 .6018 .6004 .5990 .5976 .5962 .5948 .5934 .5920 .5906 .5892 2 5 7 9 12 
54 .5878 .5864 .5850 .5835 .5821 .5807 .5793 .5779 .5764 .5750 2 5 7 9 12 

65 .5736 .5721 .5707 .5693 .5678 .5664 .5650 .5635 .5621 .5606 2 5 7 10 12 
56 .5592 .5577 .5563 .5548 .5534 .5519 .5505 .5490 .5476 .5461 2 5 7 10 12 
57 .5446 .5432 .5417 .5402 .5388 .5373 .5358 .5344 .5329 .5314 2 5 7 10 12 
58 .5299 .5284 .5270 .5255 .5240 .5225 .5210 .5195 .5180 .5165 2 5 7 10 12 
59 .5150 .5135 .5120 .5105 .5090 .5075 .5060 .5045 .5030 .5015 3 5 8 10 13 

60 .5000 .4985 .4970 .4955 .4939 .4924 .4909 .4894 .4879 .4863 3 5 8 10 13 
61 .4848 .4833 .4818 .4802 .4787 .4772 .4756 .4741 .4726 .4710 3 5 8 10 13 
62 .4695 .4679 .4664 .4648 .4633 .4617 .4602 .4586 .4571 .4555 3 5 8 10 13 
63 .4540 .4524 .4509 .4493 .4478 .4462 .4446 .4431 .4415 .4399 3 5 8 10 13 
64 .4384 .4368 .4352 .4337 .4321 .4305 .4289 .4274 .4258 .4242 3 5 8 11 13 

65 .4226 .4210 .4195 .4179 .4163 .4147 .4131 .4115 .4099 .4083 3 5 8 11 13 
66 .4067 .4051 .4035 .4019 .4003 .3987 .3971 .3955 .3939 .3923 3 5 8 11 13 
67 .3907 .3891 .3875 .3859 .3843 .3827 .3811 .3795 .3778 .3762 3 5 8 11 13 
68 .3746 .3730 .3714 .3697 .3681 .3665 .3649 .3633 .3616 .3600 3 5 8 11 14 
69 .3584 .3567 .3551 .3535 .3518 .3502 .3486 .3469 .3453 .3437 3 5 8 11 14 

70 .3420 .3404 .3387 .3371 .3355 .3338 .3322 .3305 .3289 .3272 3 5 8 11 14 
71 .3256 .3239 .3223 .3206 .3190 .3173 .3156 .3140 .3123 .3107 3 6 8 11 14 
72 .3090 .3074 .3057 .3040 .3024 .3007 .2990 .2974 .2957 .2940 3 6 8 11 14 
73 .2924 .2907 .2890 .2874 .2857 .2840 .2823 .2807 .2790 .2773 3 6 8 11 14 
74 .2756 .2740 .2723 .2706 .2689 .2672 .2656 .2639 .2622 .2605 3 6 8 11 14 

75 .2588 .2571 .2554 .2538 .2521 .2504 .2487 .2470 .2453 .2436 3 6 8 11 14 
76 .2419 .2402 .2385 .2368 .2351 .2334 .2317 .2300 .2284 .2267 3 6 8 11 14 
77 .2250 .2233 .2215 .2198 .2181 .2164 .2147 .2130 .2113 .2096 3 6 9 11 14 
78 .2079 .2062 .2045 .2028 .2011 .1994 .1977 .1959 .1942 .1925 3 6 9 11 14 
79 .1908 .1891 .1874 .1857 .1840 .1822 .1805 .1788 .1771 .1754 3 6 9 11 14 

80 .1736 .1719 .1702 .1685 .1668 .1650 .1633 .1616 .1599 .1582 3 6 9 11 14 
81 .1564 .1547 .1530 .1513 .1495 .1478 .1461 .1444 .1426 .1409 3 6 9 12 14 
82 .1392 .1374 .1357 .1340 .1323 .1305 .1288 .1271 .1253 .1236 3 6 9 12 14 
83 .1219 .1201 .1184 .1167 .1149 .1132 .1115 .1097 .1080 .1063 3 6 9 12 14 
84 .1045 .1028 .1011 .0993 .0976 .0958 .0941 .0924 .0906 .0889 3 6 9 12 14 

85 .0872 .0854 .0837 .0819 .0802 .0785 .0767 .0750 .0732 .0715 3 6 9 12 14 
86 .0698 .0680 .0663 .0645 .0628 .0610 .0593 .0576 .0558 .0541 3 6 9 12 15 
87 .0523 .0506 .0488 .0471 .0454 .0436 .0419 .0401 .0384 .0366 3 6 9 12 15 
88 .0349 .0332 .0314 .0297 .0279 .0262 .0244 .0227 .0209 .0192 3 6 9 12 15 
89 .0175 .0157 .0140 .0122 .0105 .0087 .0070 .0052 .0035 .0017 3 6 9 12 1 15 

1*6 
All the above cosines are less than 1. 



458 NATURAL TANGENTS. 0°-45® supplement 

o p
 

b
 o 0.1° 0.2° 

o C
O

 

b
 o

 o 0.5° 0.6° O
 0 

i 0.9° -h Differences 

0' 6' 12' 18' 24' 30' 36' 42' 48' 54' 1' 2' 3' 4' 6' 

0 0.0000 .0017 .0035 .0052 .0070 .0087 .0105 .0122 .0140 .0157 3 6 9 12 15 
1 0.0175 .0192 .0209 .0227 .0244 .0262 .0279 .0297 .0314 .0332 3 6 9 12 15 
2 0.0349 .0367 .0384 .0402 .0419 .0437 .0454 .0472 .0489 .0507 3 6 9 12 15 
3 0.0524 .0542 .0559 .0577 .0594 .0612 .0629 .0647 .0664 .0682 3 6 9 12 15 
4 0.0699 .0717 .0734 .0752 .0769 .0787 .0805 .0822 .0840 .0857 3 6 9 12 15 

5 0.0875 .0892 .0910 .0928 .0945 .0963 .0981 .0998 .1016 .1033 3 6 9 12 15 
6 0.1051 .1069 .1086 .1104 .1122 .1139 .1157 .1175 .1192 .1210 3 6 9 12 15 
7 0.1228 .1246 .1263 .1281 .1299 .1317 .1334 .1352 .1370 .1388 3 6 9 12 15 
8 0.1405 .1423 .1441 .1459 .1477 .1495 .1512 .1530 .1548 .1566 3 6 9 12 15 
9 0.1584 .1602 .1620 .1638 .1655 .1673 .1691 .1709 .1727 .1745 3 6 9 12 15 

10 0.1763 .1781 .1799 .1817 .1835 .1853 .1871 .1890 .1908 .1926 3 6 9 12 15 
11 0.1944 .1962 .1980 .1998 .2016 .2035 .2053 .2071 .2089 .2107 3 6 9 12 15 
12 0.2126 .2144 .2162 .2180 .2199 .2217 .2235 .2254 .2272 .2290 3 6 9 12 15 
13 0.2309 .2327 .2345 .2364 .2382 .2401 .2419 .2438 .2456 .2475 3 6 9 12 15 
14 0.2493 .2512 .2530 .2549 .2568 .2586 .2605 .2623 .2642 .2661 3 6 9 12 16 

15 0.2679 .2698 .2717 .2736 .2754 .2773 .2792 .2811 .2830 .2849 3 6 9 13 16 
16 0.2867 .2886 .2905 .2924 .2943 .2962 .2981 .3000 .3019 .3038 3 6 9 13 16 
17 0.3057 .3076 .3096 .3115 .3134 .3153 .3172 .3191 .3211 .3230 3 6 10 13 16 
18 0.3249 .3269 .3288 .3307 .3327 .3346 .3365 .3385 .3404 .3424 3 6 10 13 16 
19 0.3443 .3463 .3482 .3502 .3522 .3541 .3561 .3581 .3600 .3620 3 7 10 13 16 

20 0.3640 .3659 .3679 .3699 .3719 .3739 .3759 .3779 .3799 .3819 3 7 10 13 17 
21 0.3839 .3859 .3879 .3899 .3919 .3939 .3959 .3979 .4000 .4020 3 7 10 13 17 
22 0.4040 .4061 .4081 .4101 .4122 .4142 .4163 .4183 .4204 .4224 3 7 10 14 17 
23 0.4245 .4265 .4286 .4307 .4327 .4348 .4369 .4390 .4411 .4431 3 7 10 14 17 
24 0.4452 .4473 .4494 .4515 .4536 .4557 .4578 .4599 .4621 .4642 4 7 11 14 18 

25 0.4663 .4684 .4706 .4727 .4748 .4770 .4791 .4813 .4834 .4856 4 7 11 14 18 
26 0.4877 .4899 .4921 .4942 .4964 .4986 .5008 .5029 .5051 .5073 4 7 11 15 18 
27 0.5095 .5117 .5139 .5161 .5184 .5206 .5228 .5250 .5272 .5295 4 7 11 15 18 
28 0.5317 .5340 .5362 .5384 .5407 .5430 .5452 .5475 .5498 .5520 4 8 11 15 19 
29 0.5543 .5566 .5589 .5612 .5635 .5658 .5681 .5704 .5727 .5750 4 8 12 15 19 

30 0.5774 .5797 .5820 .5844 .5867 .5890 .5914 .5938 .5961 .5985 4 8 12 16 20 
31 0.6009 .6032 .6056 .6080 .6104 .6128 .6152 .6176 .6200 .6224 4 8 12 16 20 
32 0.6249 .6273 .6297 .6322 .6346 .6371 .6395 .6420 .6445 .6469 4 8 12 16 20 
33 0.6494 .6519 .6544 .6569 .6594 .6619 .6644 .6669 .6694 .6720 4 8 13 17 21 
34 0.6745 .6771 .6796 .6822 .6847 .6873 .6899 .6924 .6950 .6976 4 9 13 17 21 

35 0.7002 .7028 .7054 .7080 .7107 .7133 .7159 .7186 .7212 .7239 4 9 13 18 22 
36 0.7265 .7292 .7319 .7346 .7373 .7400 .7427 .7454 .7481 .7508 5 9 14 18 23 
37 0.7536 .7563 .7590 .7618 .7646 .7673 .7701 .7729 .7757 .7785 5 9 14 18 23 
38 0.7813 .7841 .7869 .7898 .7926 .7954 .7983 .8012 .8040 .8069 5 9 14 19 24 
39 0.8098 .8127 .8156 .8185 .8214 .8243 .8273 .8302 .8332 .8361 5 10 15 20 24 

40 0.8391 .8421 .8451 .8481 .8511 .8541 .8571 .8601 .8632 .8662 5 10 15 20 25 
41 0.8693 .8724 .8754 .8785 .8816 .8847 .8878 .8910 .8941 .8972 5 10 16 21 26 
42 0.9004 .9036 .9067 .9099 .9131 .9163 .9195 .9228 .9260 .9293 5 11 16 21 27 
43 0.9325 .9358 .9391 .9424 .9457 .9490 .9523 .9556 .9590 .9623 6 11 17 22 28 
44 0.9657 .9691 .9725 .9759 .9793 .9827 .9861 .9896 .9930 .9965 6 11 17 23 29 

All tangents of angles less than 45° are less than 1 



§548 NATURAL TANGENTS. 45°-90' 459 

o 

b
 

d
 0.1° 0.3° o

 o 0.6° 

o CO 
d

 o
 o 1 0.9° + Differences 

0' 6' 12' 00
 

to
 b

 
CO 36' 42' 48' 54' 1' 2' 3' 4' 5' 

45 1.0000 .0035 .0070 .0105 .0141 .0176 .0212 .0247 .0283 .0319 6 12 18 24 30 
46 1.0355 .0392 .0428 .0464 .0501 .0538 .0575 .0612 .0649 .0686 6 12 18 25 31 
47 1.0724 .0761 .0799 .0837 .0875 .0913 .0951 .0990 .1028 .1067 6 13 19 25 32 
48 1.1106 .1145 .1184 .1224 .1263 .1303 .1343 .1383 .1423 .1463 7 13 20 26 33 
49 1.1504 .1544 .1585 .1626 .1667 .1708 .1750 .1792 .1833 .1875 7 14 21 28 34 

50 1.1918 .1960 .2002 .2045 .2088 .2131 .2174 .2218 .2261 .2305 7 14 22 29 36 
51 1.2349 .2393 .2437 .2482 .2527 .2572 .2617 .2662 .2708 .2753 8 15 23 30 38 
52 1.2799 .2846 .2892 .2938 .2985 .3032 .3079 .3127 .3175 .3222 8 16 24 31 39 
53 1.3270 .3319 .3367 .3416 .3465 .3514 .3564 .3613 .3663 .3713 8 16 25 33 41 
54 1.3764 .3814 .3865 .3916 .3968 .4019 .4071 .4124 .4176 .4229 9 17 26 34 43 

55 1.4281 .4335 .4388 .4442 .4496 .4550 .4605 .4659 .4715 .4770 9 18 27 36 45 
56 1.4826 .4882 .4938 .4994 .5051 .5108 .5166 .5224 .5282 .5340 10 19 29 38 48 
57 1.5399 .5458 .5517 .5577 .5637 .5697 .5757 .5818 .5880 .5941 10 20 30 40 50 
58 1.6003 .6066 .6128 .6191 .6255 .6319 .6383 .6447 .6512 .6577 11 21 32 43 53 
59 1.6643 .6709 .6775 .6842 .6909 .6977 .7045 .7113 .7182 .7251 11 23 34 45 56 

60 1.7321 .7391 .7461 .7532 .7603 .7675 .7747 .7820 .7893 .7966 12 24 36 48 60 
61 1.8040 .8115 .8190 .8265 .8341 .8418 .8495 .8572 .8650 .8728 13 26 38 51 64 
62 1.8807 .8887 .8967 .9047 .9128 .9210 .9292 .9375 .9458 .9542 14 27 41 55 68 
63 1.9626 .9711 .9797 .9883 .9970 .0057 .0145 .0233 .0323 .0413 15 29 44 58 73 
64 2.0503 .0594 .0686 .0778 .0872 .0965 .1060 .1155 .1251 .1348 16 31 47 63 78 

65 2.1445 .1543 .1642 .1742 .1842 .1943 .2045 .2148 .2251 .2355 17 34 51 68 85 
66 2.2460 .2566 .2673 .2781 .2889 .2998 .3109 .3220 .3332 .3445 18 37 55 73 92 
67 2.3559 .3673 .3789 .3906 .4023 .4142 .4262 .4383 .4504 .4627 20 40 60 79 99 
68 2.4751 .4876 .5002 .5129 .5257 .5386 .5517 .5649 .5782 .5916 22 43 65 87 108 
69 2.6051 .6187 .6325 .6464 .6605 .6746 .6889 .7034 .7179 .7326 24 47 71 95 119 

70 2.7475 .7625 .7776 .7929 .8083 .8239 .8397 .8556 .8716 .8878 26 52 78 104 130 
71 2.9042 .9208 .9375 .9544 .9714 .9887 .0061 .0237 .0415 .0595 29 58 87 116 144 
72 3.0777 .0961 .1146 .1334 .1524 .1716 .1910 .2106 .2305 .2506 32 64 96 129 161 
73 3.2709 .2914 .3122 .3332 .3544 .3759 .3977 .4197 .4420 .4646 36 72 108 144 180 
74 3.4874 .5105 .5339 .5576 .5816 .6059 .6305 .6554 .6806 .7062 41 81 122 1631204 

75 3.7321 .7583 .7848 .8118 .8391 .8667 .8947 .9232 .9520 .9812 
76 4.0108 .0408 .0713 .1022 .1335 .1653 .1976 .2303 .2635 .2972 
77 4.3315 .3662 .4015 .4373 .4737 .5107 .5483 .5864 .6252 .6646 
78 4.7046 .7453 .7867 .8288 .8716 .9152 .9594 .0045 .0504 .0970 Use ordinary 
79 5.1446 .1929 .2422 .2924 .3435 .3955 .4486 .5026 .5578 .6140 interpolation. 

80 5.6713 .7297 .7894 .8502 .9124 .9758 .0405 .1066 .1742 .2432 
81 6.3138 .3859 .4596 .5350 .6122 .6912 .7720 .8548 .9395 .0264 
82 7.1154 .2066 .3002 .3962 .4947 .5958 .6996 .8062 .9158 .0285 
83 8.1443 .2636 .3863 .5126 .6427 .7769 .9152 .0579 .2052 .3572 
84 9.5144 .6768 .8448 .0187 .1988 .3854 .5789 .7797 .9882 .2048 

85 11.430 11.66 11.91 12.16 12.43 12.71 13.00 13.30 13.62 13.95 
86 14.301 14.67 15.06 15.46 15.89 16.35 16.83 17.34 17.89 18.46 
87 19.081 19.74 20.45 21.20 22.02 22.90 23.86 24.90 26.03 27.27 
88 28.636 30.14 31.82 33.69 35.80 38.19 40.92 44.07 47.74 52.08 
89 57.290 63.66 71.62 81.85 95.49 114.6 143.2 191.0 286.5 573.0 

lESH 

Heavy-face type indicates that the integral part is to be increased by 1, 



460 NATURAL COTANGENTS. 0°-45° supplement 

o 

o O
 

d
 0.2° 0.3° 0.4° 0.5° 0.6° 3

 

0.8° 0.9° — Differences 

0' 6' 12' 18' 24' 
d

 
CO 36' 42' 48' 54' 1' 2' 3' 1 4' 1 

0 00 573.0 286.5 191.0 143.2 114.6 95.49 81.85 71.62 63.66 
1 57.290 52.08 47.74 44.07 40.92 38.19 35.80 33.69 31.82 30.14 
2 28.636 27.27 26.03 24.90 23.86 22.90 22.02 21.20 20.45 19.74 
3 19.081 18.46 17.89 17.34 16.83 16.35 15.89 15.46 15.06 14.67 
4 14.301 13.95 13.62 13.30 13.00 12.71 12.43 12.16 11.91 11.66 u se orainary 

interpolation. 
6 11.430 .2048 .9882 .7797 .5789 .3854 .1988 .0187 .8448 .6768 
6 9.5144 .3572 .2052 .0579 .9152 .7769 .6427 .5126 .3863 .2636 
7 8.1443 .0285 .9158 .8062 .6996 .5958 .4947 .3962 .3002 .2066 
8 7.1154 .0264 .9395 .8548 .7720 .6912 .6122 .5350 .4596 .3859 
9 6.3138 .2432 .1742 .1066 .0405 .9758 .9124 .8502 .7894 .7297 

10 5.6713 .6140 .5578 .5026 .4486 .3955 .3435 .2924 .2422 .1929 
11 5.1446 .0970 .0504 .0045 .9594 .9152 .8716 .8288 .7867 .7453 
12 4.7046 .6646 .6252 .5864 .5483 .5107 .4737 .4373 .4015 .3662 
13 4.3315 .2972 .2635 .2303 .1976 .1653 .1335 .1022 .0713 .0408 
14 4.0108 .9812 .9520 .9232 .8947 .8667 .8391 .8118 .7848 .7583 

16 3.7321 .7062 .6806 .6554 .6305 .6059 .5816 .5576 .5339 .5105 41 81 122 163 203 
16 3.4874 .4646 .4420 .4197 .3977 .3759 .3544 .3332 .3122 .2914 36 72 108 144 180 
17 3.2709 .2506 .2305 .2106 .1910 .1716 .1524 .1334 .1146 .0961 32 64 96 129 161 
18 3.0777 .0595 .0415 .0237 .0061 .9887 .9714 .9544 .9375 .9208 29 58 87 116 144 
19 2.9042 .8878 .8716 .8556 .8397 .8239 .8083 .7929 .7776 .7625 26 52 78 104 130 

20 2.7475 .7326 .7179 .7034 .6889 .6746 .6605 .6464 .6325 .6187 24 47 71 95 119 
21 2.6051 .5916 .5782 .5649 .5517 .5386 .5257 .5129 .5002 .4876 22 43 65 87 108 
22 2.4751 .4627 .4504 .4383 .4262 .4142 .4023 .3906 .3789 .3673 20 40 60 79 99 
23 2.3559 .3445 .3332 .3220 .3109 .2998 .2889 .2781 .2673 .2566 18 37 55 73 92 
24 2.2460 .2355 .2251 .2148 .2045 .1943 .1842 .1742 .1642 .1543 17 34 51 68 85 

25 2.1445 .1348 .1251 .1155 .1060 .0965 .0872 .0778 .0686 .0594 16 31 47 63 78 
26 2.0503 .0413 .0323 .0233 .0145 .0057 .9970 .9883 .9797 .9711 15 29 44 58 73 
27 1.9626 .9542 .9458 .9375 .9292 .9210 .9128 .9047 .8967 .8887 14 27 41 55 68 
28 1.8807 .8728 .8650 .8572 .8495 .8418 .8341 .8265 .8190 .8115 13 26 38 51 64 
29 1.8040 .7966 .7893 .7820 .7747 .7675 .7603 .7532 .7461 .7391 12 24 36 48 60 

30 1.7321 .7251 .7182 .7113 .7045 .6977 .6909 .6842 .6775 .6709 11 23 34 45 56 
31 1.6643 .6577 .6512 .6447 .6383 .6319 .6255 .6191 .6128 .6066 11 21 32 43 53 
32 1.6003 .5941 .5880 .5818 .5757 .5697 .5637 .5577 .5517 .5458 10 20 30 40 50 
33 1.5399 .5340 .5282 .5224 .5166 .5108 .5051 .4994 .4938 .4882 10 19 29 38 48 
34 1.4826 .4770 .4715 .4659 .4605 .4550 .4496 .4442 .4388 .4335 9 18 27 36 45 

35 1.4281 .4229 .4176 .4124 .4071 .4019 .3968 .3916 .3865 .3814 9 17 26 34 43 
36 1.3764 .3713 .3663 .3613 .3564 .3514 .3465 .3416 .3367 .3319 8 16 25 33 41 
37 1.3270 .3222 .3175 .3127 .3079 .3032 .2985 .2938 .2892 .2846 8 16 24 31 39 
38 1.2799 .2753 .2708 .2662 .2617 .2572 .2527 .2482 .2437 .2393 8 15 23 30 38 
39 1.2349 .2305 .2261 .2218 .2174 .2131 .2088 .2045 .2002 .1960 7 14 22 29 36 

40 1.1918 .1875 .1833 .1792 .1750 .1708 .1667 .1626 .1585 .1544 7 14 21 28 34 
41 1.1504 .1463 .1423 .1383 .1343 .1303 .1263 .1224 .1184 .1145 7 13 20 26 33 
42 1.1106 .1067 .1028 .0990 .0951 .0913 .0875 .0837 .0799 .0761 6 13 19 25 32 
43 1.0724 .0686 .0649 .0612 .0575 .0538 .0501 .0464 .0428 .0392 6 12 18 25 31 
44 1.0355 .0319 .0283 .0247 .0212 .0176 .0141 .0105 .0070 .0035 6 12 18 24 30 

Heavy-face type indicates that the integral part is to be decreased by 1 



§548 NATURAL COTANGENTS. 4*5°-90' 461 

o 0.1° 0.2° 0.3° o
 

• 
o

 

0.5° 0.6° 0.7° 0.8° 0.9° - Differences 

0' 6' 12' 18' 24' 30' 36' 42' 48' 54' V 2' 3' 4' 5' 

45 1.0000 .9965 .9930 .9896 .9861 .9827 .9793 .9759 .9725 .9691 6 11 17 23 29 
46 0.9657 .9623 .9590 .9556 .9523 .9490 .9457 .9424 .9391 .9358 6 11 17 22 28 
47 0.9325 .9293 .9260 .9228 .9195 .9163 .9131 .9099 .9067 .9036 5 11 16 21 27 
48 0.9004 .8972 .8941 .8910 .8878 .8847 .8816 .8785 .8754 .8724 5 10 16 21 26 
49 0.8693 .8662 .8632 .8601 .8571 .8541 .8511 .8481 .8451 .8421 5 10 15 20 25 

50 0.8391 .8361 .8332 .8302 .8273 .8243 .8214 .8185 .8156 .8127 5 10 15 20 24 
51 0.8098 .8069 .8040 .8012 .7983 .7954 .7926 .7898 .7869 .7841 5 9 14 19 24 
52 0.7813 .7785 .7757 .7729 .7701 .7673 .7646 .7618 .7590 .7563 5 9 14 18 23 
53 0.7536 .7508 .7481 .7454 .7427 .7400 .7373 .7346 .7319 .7292 5 9 14 18 23 
54 0.7265 .7239 .7212 .7186 .7159 .7133 .7107 .7080 .7054 .7028 4 9 13 18 22 

55 0.7002 .6976 .6950 .6924 .6899 .6873 .6847 .6822 .6796 .6771 4 9 13 17 21 
56 0.6745 .6720 .6694 .6669 .6644 .6619 .6594 .6569 .6544 .6519 4 8 13 17 21 
57 0.6494 .6469 .6445 .6420 .6395 .6371 .6346 .6322 .6297 .6273 4 8 12 16 20 
58 0.6249 .6224 .6200 .6176 .6152 .6128 .6104 .6080 .6056 .6032 4 8 12 16 20 
59 0.6009 .5985 .5961 .5938 .5914 .5890 .5867 .5844 .5820 .5797 4 8 12 16 20 

60 0.5774 .5750 .5727 .5704 .5681 .5658 .5635 .5612 .5589 .5566 4 8 12 15 19 
61 0.5543 .5520 .5498 .5475 .5452 .5430 .5407 .5384 .5362 .5340 4 8 11 15 19 
62 0.5317 .5295 .5272 .5250 .5228 .5206 .5184 .5161 .5139 .5117 4 7 11 15 18 
63 0.5095 .5073 .5051 .5029 .5008 .4986 .4964 .4942 .4921 .4899 4 7 11 15 18 
64 0.4877 .4856 .4834 .4813 .4791 .4770 .4748 .4727 .4706 .4684 4 7 11 14 18 

65 0.4663 .4642 .4621 .4599 .4578 .4557 .4536 .4515 .4494 .4473 4 7 11 14 18 
66 0.4452 .4431 .4411 .4390 .4369 .4348 .4327 .4307 .4286 .4265 3 7 10 14 17 
67 0.4245 .4224 .4204 .4183 .4163 .4142 .4122 .4101 .4081 .4061 3 7 10 14 17 
68 0.4040 .4020 .4000 .3979 .3959 .3939 .3919 .3899 .3879 .3859 3 7 10 13 17 
69 0.3839 .3819 .3799 .3779 .3759 .3739 .3719 .3699 .3679 .3659 3 7 10 13 17 

70 0.3640 .3620 .3600 .3581 .3561 .3541 .3522 .3502 .3482 .3463 3 7 10 13 16 
71 0.3443 .3424 .3404 .3385 .3365 .3346 .3327 .3307 .3288 .3269 3 6 10 13 16 
72 0.3249 .3230 .3211 .3191 .3172 .3153 .3134 .3115 .3096 .3076 3 6 10 13 16 
73 0.3057 .3038 .3019 .3000 .2981 .2962 .2943 .2924 .2905 .2886 3 6 9 13 16 
74 0.2867 .2849 .2830 .2811 .2792 .2773 .2754 .2736 .2717 .2698 3 6 9 13 16 

75 0.2679 .2661 .2642 .2623 .2605 .2586 .2568 .2549 .2530 .2512 3 6 9 12 16 
76 0.2493 .2475 .2456 .2438 .2419 .2401 .2382 .2364 .2345 .2327 3 6 9 12 15 
77 0.2309 .2290 .2272 .2254 .2235 .2217 .2199 .2180 .2162 .2144 3 6 9 12 15 
78 0.2126 .2107 .2089 .2071 .2053 .2035 .2016 .1998 .1980 .1962 3 6 9 12 15 
79 0.1944 .1926 .1908 .1890 .1871 .1853 .1835 .1817 .1799 .1781 3 6 9 12 15 

80 0.1763 .1745 .1727 .1709 .1691 .1673 .1655 .1638 .1620 .1602 3 6 9 12 15 
81 0.1584 .1566 .1548 .1530 .1512 .1495 .1477 .1459 .1441 .1423 3 6 9 12 15 
82 0.1405 .1388 .1370 .1352 .1334 .1317 .1299 .1281 .1263 .1246 3 6 9 12 15 
83 0.1228 .1210 .1192 .1175 ;il57 .1139 .1122 .1104 .1086 .1069 3 6 9 12 15 
84 0.1051 .1033 .1016 .0998 .0981 .0963 .0945 .0928 .0910 .0892 3 6 9 12 15 

85 0.0875 .0857 .0840 .0822 .0805 .0787 .0769 .0752 .0734 .0717 3 6 9 12 15 

86 0.0699 .0682 .0664 .0647 .0629 .0612 .0594 .0577 .0559 .0542 3 6 9 12 15 

87 0.0524 .0507 .0489 .0472 .0454 .0437 .0419 .0402 .0384 .0367 3 6 9 12 15 

88 0.0349 .0332 .0314 .0297 .0279 .0262 .0244 .0227 .0209 .0192 3 6 9 12 15 

89 0.0175 .0157 .0140 .0122 .0105 .0087 .0070 .0052 .0035 .0017 3 6 9 12 15 

All cotangents of angles greater than 45° are less than 1. 
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Powers and Roots 

No. Squares Cubes 
Square 
Roots 

Cube 
Roots 

No. Squares Cubes 
Square 
Roots 

Cube 
Roots 

1 1 1 1.000 1.000 61 2 601 132 651 7.141 3.708 
2 4 8 1.414 1.260 52 2 704 140 608 7.211 3.733 
3 9 27 1.732 1.442 53 2 809 148 877 7.280 3.756 
4 16 64 2.000 1.587 54 2 916 157 464 7.348 3.780 

■ 5 25 125 2.236 1.710 55 3 025 166 375 7.416 3.803 
6 36 216 2.449 1.817 56 3 136 175 616 7.483 3.826 
7 49 343 2.646 1.913 57 3 249 185 193 7.550 3.849 
8 64 512 2.828 2.000 58 3 364 195 112 7.616 3.871 
9 81 729 3.000 2.080 59 3 481 205 379 7.681 3.893 

10 100 1 000 3.162 2.154 60 3 600 216 000 7.746 3.915 
11 121 1331 3.317 2.224 61 3 721 226 981 7.810 3.936 
12 144 1 728 3.464 2.289 62 3 844 238 328 7.874 3.958 
13 169 2 197 3.606 2.351 63 3 969 250 047 7.937 3.979 
14 196 2 744 3.742 2.410 64 4 096 262 144 8.000 4.000 
IS 225 3 375 3.873 2.466 65 4 225 274 625 8.062 4.021 
16 256 4 096 4.000 2.520 66 4 356 287 496 8.124 4.041 
17 289 4 913 4.123 2.571 67 4 489 300 763 8.185 4.062 
18 324 5 832 4.243 2.621 68 4 624 314 432 8.246 4.082 
19 361 6 859 4.359 2.668 69 4 761 328 509 8.307 4.102 

20 400 8 000 4.472 2.714 70 4 900 343 000 8.367 4.121 
21 441 9 261 4.583 2.759 71 5 041 357 911 8.426 4.141 
22 484 10 648 4.690 2.802 72 5 184 373 248 8.485 4.160 
23 529 12 167 4.796 2.844 73 5 329 389 017 8.544 4.179 
24 576 13 824 4.899 2.884 74 5 476 405 224 8.602 4.198 
25 625 15 625 5.000 2.924 75 5 625 421 875 8.660 4.217 
26 676 17 576 5.099 2.962 76 5 776 438 976 8.718 4.236 
27 729 19 683 5.196 3.000 77 5 929 456 533 8.775 4.254 
28 784 21 952 5.292 3.037 78 6 084 474 552 8.832 4.273 
29 841 24 389 5.385 3.072 79 6 241 493 039 8.888 4.291 

30 900 27 000 5.477 3.107 80 6 400 512 000 8.944 4.309 
31 961 29 791 5.568 3.141 81 6 561 531 441 9.000 4.327 
32 1024 32 768 5.657 3.175 82 6 724 551 368 9.055 4.344 
33 1 089 35 937 5.745 3.208 83 6 889 571 787 9.110 4.362 
34 1 156 39 304 5.831 3.240 84 7 056 592 704 9.165 4.380 
35 1225 42 875 5.916 3.271 85 7 225 614 125 9.220 4.397 
36 1 296 46 656 6.000 3.302 86 7 396 636 056 9.274 4.414 
37 1369 SO 653 6.083 3.332 87 7 569 658 503 9.327 4.431 
38 1444 54 872 6.164 3.362 88 7 744 681 472 9.381 4.448 
39 1 521 59 319 6.245 3.391 89 7 921 704 969 9.434 4.465 

40 1 600 64 000 6.325 3.420 90 8 100 729 000 9.487 4.481 
41 1 681 68 921 6.403 3.448 91 8 281 753 571 9.539 4.498 
42 1 764 74 088 6.481 3.476 92 8 464 778 688 9.592 4.514 
43 1 849 79 507 6.557 3.503 93 8 649 804 357 9.644 4.531 
44 1 936 85 184 6.633 3.530 94 8 836 830 584 9.695 4.547 
45 2 025 91 125 6.708 3.557 95 9 025 857 375 9.747 4.563 
46 2 116 97 336 6.782 3.583 96 9 216' 884 736 9.798 4.579 
47 2 209 103 823 6.856 3.609 97 9 409 912 673 9.849 4.595 
48 2 304 110 592 6.928 3.634 98 9 604 941 192 9.899 4.610 
49 2 401 117 649 7.000 3.659 99 9 801 970 299 9.950 4.626 

60 2 500 125 000 7.071 3.684 100 10 000 1 000 000 10.000 4.642 
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Exercises. Mensuration of Plane Figures 

1. Construct a triangle with sides of 2.3'V 3.2", and 3.8" 
respectively. Measure any altitude and find the area of the 
triangle. Check the work by using another altitude. 

In measuring line segments use a pair of dividers to transfer the 

lengths to a graduated ruler. 

2. Draw a circle with a radius of 4.8", take a point 8" 
from the center, and from this point draw a tangent. Find 
the length of the tangent by measuring and check it by § 222. 

3. Construct an equilateral triangle which shall have an 
area of 3 sq. in. Check the work by measuring the base and 
the altitude and finding the area from these results. 

4. If a phonograph record 10" in diameter costs $1.25, and 
if the price is based upon the total area of the disk, how 
much should a record 12" in diameter cost ? 

5. Find the area of a parallelogram of which two sides 
are 2" and 3" respectively, and the included angle is 52° 30'. 
Check the result by measuring an altitude. 

6. Two sides of a parallelogram are 10' and 12' respec¬ 
tively and the included angle is 45°. Find the area and the 
length of each diagonal. 

7. If the diagonal of the □ ABCD is 3.2" and ABAC — 32°, 
what is the area of the rectangle? Check the result by 
drawing the figure and measuring the sides. 

8. The diagonals of a rhombus are 50" and 34" respec¬ 
tively. Find the length of each side, the size of each angle, 
and the area. 

In finding the size of one angle, we have tan a; = f f = 1.4706. Looking 

for 1.4706 in the table of tangents, we find on page 459 that 1.4706 lies 

between 1.4659 and 1.4715, the tangents of 55.7° and 55.8° respectively. 

Since accuracy to the nearest 0.1° is sufficient and 1.4706 is nearer 1.4715 

than it is 1.4659, we see that x = 55.8°. 
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9. Within a square which is 2" on a side inscribe the 
largest possible equilateral triangle and find its area. 

The vertices of the triangle must lie on the sides of the square. 

10. Express the results of § 234 and § 235 trigonometri¬ 
cally without using 6'. 

By the aid of Simpson*s Rule find the area between the 
curve and the x axis in Exs. 11 and 12: 

11. Ordinates: 14', 16', 17', 15', 13', 12', 14'; common dis¬ 
tance between the successive ordinates, 4'. 

12. Ordinates: 0", 1.3", 2.4", 3.5", 4.6", 5.7", 6.8", 5.07", 
4.06", 3.05", 2.04"; common distance between the successive 
ordinates, 2.4". 

13. Show that the distance m in miles to the horizon 
from a point f feet above the surface of the sea is given 
approximately by the formula m = ^ 

Use § 253 and take the radius of the earth as 4000 mi. 

14. If the top of a ship’s mast is 60'above the sea, how 
far must the ship sail before it disappears below the 
horizon ? 

15. A sign painter who is laying out a clock face wishes 
to show the time as 8 18. Draw a circle with a radius of 
2" and show accurately the position of the hands. 

16. A hexagonal nut ABCDEF is f" on a side. Find the 
distance across the fiats ” (that is, from AB to DE), and 

the '' distance across the corners ” (that is, AD). 
The quoted terms are used by machinists. 

17. The approximate area A of a segment of a circle 
which is cut off by a chord c and which has a height h 
is given by the formula A = ^hc-\- h^/2 c. What is the 
approximate cross-section area of water flowing through 
a horizontal pipe, when c = 26" and h = 12.5" ? 
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549. Drawing of Solid Figures. The student is expected 
to draw the necessary figures with the help of ruler, com¬ 
passes, and protractor. The measurement of line segments 
is allowed in all cases. 

Solids are represented as if projected upon a plane. We 
may conveniently imagine the projections as shadows cast 
by wire models of the solids, as in the following figures: 

We may think of the shadow as cast by the sun’s rays, which for 

practical purposes are considered parallel. If the rays are perpendic¬ 

ular to the plane of projection, the projection is known as orthogonal 

projection^ the word '' orthogonal ” meaning right-angled. 

The first figure above shows the orthogonal projection of a quadri¬ 

lateral, the second that of a tetrahedron, and the third that of a cube. 

550. Oblique Projection. If the rays which cast the shadows 
are oblique to the plane of projection, the figure formed is 
said to be in oblique projection. 

A convenient method of representing figures in oblique 
projection is illustrated by the cube here shown. In this 
case the rear and front faces (AR^'A'and 
DCC'D') are squares, the lines DA, CB, C'B\ 
D'A’ are parallel, AD'C'B' = 45°, and C'B' is 
half of C'D'. All angles in such a projec¬ 
tion are therefore 45°, 90°, or 135°- 

This type of oblique projection, sometimes called 

cabinet projection, will be used in the exercises which follow. The 

student is expected to be able to reproduce the figures and to draw 

others of the same general nature. 

It is sometimes convenient to take Z.DCB as 30° or as 60°, and to take 

B'C' as three fourths of C'D', but this is not often necessary. 

DL 

0 
\d 

B 

z 

C 

B 
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Exercises. Mensuration of Solids 

1. This figure shows the orthogonal projection upon a 
parallel plane of a rhombus forming the base of a given 
right parallelepiped. It therefore 
shows the base in correct pro¬ 
portions. Measure A BAD with 
the protractor and measure the 
side AB. From these measure¬ 
ments compute the length of each B 

diagonal, and check the results by actual measurement. 

If ZRAZ) = 60° and AR = 0.75", we have ABAC = ZCAD = and 

BD=AB = 0.75". Then, since Z AOB = 90°, we have AO cos 30° 

= 0.75" X 0.8660. Hence AC = 1.5 X 0.8660" = 1.299", or 1.3". 

2. In the figure of Ex. 1 if AB = 14.5" and ZlBAD = 56°, 
what are the lengths of AC and BD^l 

The student should reproduce the figure of Ex. 1 for these propor¬ 

tions. In most exercises it will be sufficient to compute dimensions to 

the nearest 0.1" and angles to the nearest 0.1°. 

3. This figure shows the right parallelepiped of Ex. 1 
projected as described in § 550. 
If the lateral edge AA' is 17.8” 
and the base has the dimensions 
given in Ex. 2, what is the area 
of the total surface of the paral¬ 
lelepiped ? 

The student should draw the figure 

for these dimensions, and similarly in 

each of the exercises where new dimen¬ 

sions are given. 

4. In Ex. 3 compute the length of the longest diagonal of 
the parallelepiped; of the shortest diagonal. 

5. In Ex. 3 compute the volume of the parallelepiped. 
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6. This figure shows one of the triangular prisms formed 

by passing planes through the diagonals 

of the figure of Ex. 3. Using the measure¬ 

ments given in Exs. 2 and 3, compute the 

area of the total surface of the prism. 

By referring to the figure of Ex. 1 it is seen 

that ZBOC = 90°. In this and all similar exercises, 

any results obtained in a previous exercise may be 

used in the solution. 

7. This figure shows the triangular prism of Ex. 6 cut 

by a plane through BO and a point Q on 

CC\ Given that ZCOQ = 30°, compute b' 

the area of AOCQ. 

Since, as in all figures in these exercises, the 

projection used is that of § 550, the student will 

find that the AOCQ appears in correct proportions. 

Now, using the length of OC found in Ex. 2, we 

have CQ = OC tan COQ. 

8. In Ex. 7 find the areas of ABQO and BCQ, and the 

area of the total surface of the tetrahedron Q-BCO. 

It will be helpful to draw ABQO and BCQ in correct proportions. 

It is not necessary to draw ABCO since this triangle appears in 

correct proportions in the figure drawn for Ex. 2. 

9. In Ex. 7 find the area of the total surface of the 

truncated prism B'C'O'-BQO. 

10. Show that the area of ABCO in Ex. 8 is equal to the 

area of ABQO multiplied by cos COQ, 

First show that O C = OQ cos COQ, and then use this value in finding 

the area of ABCO. 

11. In the figure of Ex. 7 given that OC = 12.4" and 

CQ = 10.4", find the angle which the plane BQO makes with 

the base. 
Since OB is ± to OC, ZCOQ is the plane angle of ZC-BO-Q. 
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12. This figure shows the prism A'-ABO formed by 
passing planes through the diagonals of the figure of Ex. 3. 
In this prism a plane is passed through AB ^ n! 
and a point R on 00'. Also, 05 is J_ to AB 
so that /LOSR is the plane angle of the 
dihedral Z.O-BA-R. Given that the prism 
has the same dimensions as in Exs. 2 and 3 
(that is, that A5=14.5", Z5A0 = 28°, and 
AA'= 17.8"), and that /lOSR = 45°, find the 
lengths of OS and OR, 

Draw the AARO in correct proportions and construct OS X to AB, 
as shown in this figure. Then, using the length ^ ^ 

of OA found in Ex. 2, we have 05= OA sin RAO. 

Hence the length of 05 can be found. Then, since 

Z OSR = 45°, we have OR = 0S. 

13. In Ex. 12 find the areas of A A OR, ARR, and BOR. 
Draw the AABR and BOR in correct proportions. 

14. In Ex. 12 find Z OBR and the length of BR; find 
/lOAR and the length of AR. 

15. In Ex. 13 show that the area of AABO is equal to the 
area of AABR multiplied by cos 05R. 

16. In Ex. 12 find the volume of the tetrahedron R-ABO 
and the volume of the truncated prism A'R'O'-ARR. 

Ex. 5 may be used in finding the volume of the prism A'-ABO. 

17. In Ex. 12, suppose that ZO5R = 30°, and find the 
lengths of 05 and OR. 

In this case 05 and OR are not equal. 

18. Consider Ex. 13 for the case of Ex. 17. 

19. Consider Ex. 14 for the case of Ex. 17. 

20. Consider Ex. 12, letting Z.BAO = I Z OSR = 15°. 

21. Consider Ex. 13 for the case of Ex. 20. 

22. Consider Ex. 14 for the case of Ex. 20. 
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23. This figure shows the orthogonal projection of a 
regular pyramid with a square base ^ 
upon a plane parallel to the base. 
Given that AB = 24", compute the 
lengths of the diagonals AC and BD, 
and the lengths of the Js OX and OY 
upon AB and BC respectively. 

The student should notice that in this 

projection the vertex V of the pyramid coin- A 
cides with O, the center of the base. 

24. This figure shows the regular pyramid of Ex. 23 
projected as described in § 550. 
Given that the altitude of the 
pyramid is 20.8”, compute the 
volume. 

25. In Ex. 24 compute the 
length of a lateral edge BV of 
the pyramid, and the AVBO 
which this edge makes with 
the base. 

Draw in correct proportions the triangle made by passing a plane 

through VO and the vertex B. 

26. This figure shows the pyramid cut 
from the figure of Ex. 24 by passing planes 
through VO and OX, and through VO and 
OY. Compute the length of the lateral 
edge VY and the ZVYO which VY makes 
with the base. 

27. In Ex. 24 compute the area of the 
total surface of the original pyramid, and 
show that the area of the base is equal to the lateral area 
multiplied by cos VYO. 

The edge VY in Ex. 26 is the slant height of the prigiual pyramid. 

V 
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28. This figure shows the base of a regular pyramid 
projected orthogonally upon a par¬ 
allel plane. In the figure, AX, BY, 
and CZ are the altitudes from the 
vertices A, B, and C respectively. If 
AB = 10", what is the area of the 
base of the pyramid? 

The special formula of § 544 for the area 

of an equilateral triangle should be used. 

29. This figure shows the pyramid of Ex. 28 projected 
as described in § 550. If the lateral 
edges make an angle of 45° with the 
base (that is, ZORU= 45°), what is 
the altitude of the pyramid ? 

Draw the A BOV in correct proportions. 

Remember that the medians of a triangle 

meet in a point two thirds of the distance 

from the vertex to the opposite side. 

30. In Ex. 29 compute the volume of the pyramid. 

31. In Ex. 29 compute the slant height VZ and the angle 
made by the lateral faces with the base. 

32. This figure shows the pyramid formed 
by passing planes through VO and OC and 
VO and OF in the figure of Ex. 29. Com¬ 
pute the area of the total surface. 

33. In Ex. 29 how far from the vertex V will a plane 
parallel to the base cut off a pyramid of half the volume ? 

Since the volumes of two similar solids are proportional to the 

cubes of any two corresponding lines, what relation exists between 

the altitude of the small pyramid and that of the original pyramid ? 

34. If the pyramid in Ex. 29 weighs 20 oz., how far from 
the vertex V should a plane parallel to the base be passed 
so as to cut off a small pyramid which shall weigh 5 oz. ? 
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35. This figure shows the orthogonal projection of a 
frustum of a regular pyramid with D,_ 
a square base upon a plane parallel 
to the bases. In the figure, O'X' 
and O'Y' are J_ to A'B' and B'C' 
respectively. Given that AB = 14" 
and A'B' = T\ find the areas of 
the upper and lower bases of the 
frustum. 

36. This figure shows the frustum of Ex. 35 projected 
as described in § 550. Given 
that the lateral faces make an 
angle of 60° with the base, 
compute the altitude 00' and 
the slant height YY', 

In the figure the section OYY'O' 
appears in correct proportions. 

37. In Ex. 36 compute the volume of the frustum by 
the formula given in §545. 

38. In Ex. 36 find the area of the 
total surface of the frustum. 

Draw the face ABBA' in correct propor¬ 

tions as here shown. 

39. In Ex. 36 compute the length of BB' and the angles 
which the lateral edges make with the 
lower base and with the upper base. 

Draw the section OBB'O' in correct proportions 

as here shown. 
B" 

40. Draw the figure and compute the 
area of the total surface of the solid formed by passing 
planes through 00' and OX and through 00' and OY in 

the figure of Ex. 36. 
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41. This figure shows the orthogonal projection of a 
frustum of a regular hexagonal pyramid upon a plane 
parallel to the bases. Given that 
O'Z' is _L to A'B\ AR = 20", and 

= find the areas of the 
upper and lower bases. 

The student should use the special 

formula of § 544 for the area of a 

regular hexagon. After finding the 

area of the upper base, that of the 

lower base can be found by an easy 

multiplication. 

42. This figure shows the frustum of Ex. 41 projected 
as described in § 550. If the lat¬ 
eral edges make an angle of 45° 
with the lower base, what is the 
altitude of the frustum ? 

43. In Ex. 42 compute the 
volume of the frustum. 

The student should use the formula in § 545 and the results of Ex. 41. 

44. In Ex. 42 compute the slant height of the frustum 
and the angles which the lateral faces make O!_Y' 
with the upper and lower bases. 

Draw the section OYY'O' in correct proportions _ 

as here shown. ^ Y" 

45. In Ex. 42 find the number of degrees in each angle 
of a lateral face. 

Draw the face ABB'A' in correct proportions. 

46. In Ex. 42 compute the area of the total surface of 
the frustum. 

47. Draw the figure and compute the area of the total 
surface of the solid formed by passing planes through 00' 
and OX and 00' and 00 in the figure of Ex. 42. 
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48. This figure shows the base of a cylinder of revolution 
projected orthogonally upon a parallel 
plane. Given that the diameter of the 
cylinder is 2.8", compute the circumfer¬ 
ence and the area of the base. 

The tangent lines are helpful in drawing the 

projection of the base, as explained in Ex. 49. 

49. This figure shows the cylinder of Ex. 48 projected 
as described in § 544. If the altitude 
of the cylinder is 3.5", what is the 
volume ? 

It should be noticed that the projections of 

the upper and lower bases are ellipses. In draw¬ 

ing the figure for Ex. 49, the student should draw 

these ellipses freehand. 

50. In Ex. 49 compute the area of the 
curve surface; of the total surface. 

51. This figure shows one fourth of the cylinder of 
Ex. 49, formed by passing planes through 
00' and OB and 00' and OC. Compute the 
area of the total surface of this part of the 
cylinder. 

The difficulties of measuring the complete cylinder 

in projection can usually be avoided by taking one 

fourth of the cylinder as here shown. 

52. The locus of 'points at a distance rfro'm 

a given straight line is the curve surface of a cylinder of rev¬ 

olution which has the radius r and the given line as axis, 

53. The locus of points whose distances from a given plane 

and a given line perpendicular to that plane are in a fixed 

ratio is the curve surface of a cone of revolution which has 

the given line for its axis and the point of intersection of 

the line and the plane for its vertex. 
PS 
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54. This figure shows the section of the figure of 
made by a plane passed through OB at an angle 
with the base of the cylinder and cutting the 
element CC' at P. Find the area of the sec¬ 
tion OBP. 

Since OB is ± to the section OCC'O', the dihedral 

angle between the plane OBP and the base is meas¬ 

ured by Z COP. In Ex. 9 we proved that, in the figure 

of Ex. 7, ABCO = ABQO ' cos COQ, and hence we 

may legitimately assume that a similar relation holds 

for this figure. Then since ZCOP and the area of BCO are 

the area of OBP can be found. 

known, 

55. In Ex. 54 compute the area of the curve surface BCP 

and of the entire surface of the solid POBC, 
By analogy to the diagonals of a parallelogram, BP bisects the 

cylindric surface which has the radius OC and the height CP. 

56. This figure shows the intersection of a fourth of a 
cylindric surface and an eighth of a sphere whose center O 

is on the axis of the cylindric sur¬ 
face. If the radius of the cylindric 
surface is half the radius of the 
sphere, the height of the cylindric 
surface is what part of the radius of 
the sphere ? 

Since OP = ^ OP', what is the size of 

ZP'OP^. 

57. Assuming the figure of Ex. 56 completed to show 
the entire hemisphere and the cylindric surface, find the 
ratio of the area of the cylindric surface to the area of 
the hemisphere. 

58. In the figure of Ex. 57 given that the radius of the 
sphere is 4.2”, find the area of the zone whose upper 
base is the intersection of the cylindric surface and the 
hemisphere. 
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59. This figure shows the intersection of a fourth of a 
cone of revolution whose vertex is at 0 with an eighth 
of a sphere of center O. Given that the 
radius of the sphere is 6.3" and that 
ZQOO' = 50°, find the radius of the 
circular section made by the conic sur¬ 
face on the sphere. 

60. Assuming the figure of Ex. 59 
completed to show the entire hemi- 5“ 
sphere and the cone, find the ratio of the volume of the 
cone to that of the hemisphere. 

61. In Ex. 60 find the volume of the spherical segment 
which lies above the intersection of the conic surface and 
the hemisphere. 

62. The figure below shows one fourth of a cone of rev¬ 
olution. Given that the radius of the base is 3.5" and that 
ZO VC =30°, compute the altitude of the 
cone and the angle which an element makes 
with the base. 

63. In Ex. 62 compute the volume of 
the entire cone and the area of the curve 
surface. 

64. In Ex. 62 how far from the vertex 
of the cone must the plane B'C'O' be 
passed in order to bisect the volume of the entire cone ? 

65. In Ex. 64 compute the volume of the frustum by the 
formula in § 545 and check by taking half the first result 
of Ex. 63. 

66. Consider Ex. 64, supposing that the plane B'C'O' is 
to cut off a frustum equivalent to one third the cone. 

67. In Ex. 66 compute the volume of the frustum and 
check as in Ex. 65. 
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68. This figure shows a cube 18" on an edge projected 
as described in § 550. The midpoint V 

of C'B' is the vertex of an inscribed 
pyramid. Compute the volume and the ^ 

lateral edges of this pyramid. 

Draw the orthogonal projection of the face 

A'B'C'D' as in Ex. 23, and then draw the 

^A'VA in correct proportions. 

69. In Ex. 68 draw each face of the pyramid in correct 
proportions, and compute the altitude of each one. 

70. In Ex. 68 compute the area of the total surface of 
the pyramid. 

71. In Ex. 68 compute the size of each angle of l\VAD\ 

of AUDC; of ARAB. 

72. In Ex. 68 suppose that a plane bisecting the cube is 
passed parallel to the base ABCD, thus cutting off a frustum 
of the pyramid. Draw the figure and compute the volume 
and the area of the total surface of the frustum. 

73. If another pyramid with the base BCC'B and the 
vertex A is inscribed in the cube of Ex. 68, how does its 
volume compare with that of the pyramid V-ABCD ? 

In each case, state the locus of points in space which satisfy 

the following conditions, and draw the figure: 

74. Equidistant from two intersecting planes, and at a 
distance r from a fixed point O. 

75. At a distance d from a line through two fixed points 
A and 0, and at a distance r greater than d from O. 

76. Equidistant from two planes which intersect in the 
line AB and at a distance r from AB. 

77. At a distance D from a given plane m and at a dis¬ 
tance r from a line PQ which is perpendicular to m. 
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78. A regular pyramid with a square base 8" on a side 
has an altitude of 10". Compute the volume of the solid 
and the area of the total surface. 

79., Consider Ex. 78 for a regular pentagonal pyramid 
with the same side and altitude. 

80. Consider Ex. 78 for a regular hexagonal pyramid 
with the same side and altitude. 

81. Consider Ex. 78 for a regular octagonal pyramid 
with the same side and altitude. 

82. The lower base of a frustum of a regular pyramid 
is a square 6" on a side, the altitude of the frustum is 8", 
and the side of the upper base is half that of the lower 
base. Compute the volume of the frustum. 

83. In Ex. 82 compute the area of the total surface. 

84. Consider Exs. 82 and 83 for a frustum of a regular 
pentagonal pyramid with the same dimensions. 

85. Consider Exs. 82 and 83 for a frustum of a regular 
hexagonal pyramid with the same dimensions. 

86. Consider Exs. 82 and 83 for a frustum of a regular 
octagonal pyramid with the same dimensions. 

87. A water tank open at the top is to be built of sheet 
iron in the form of a frustum of a cone. The diameter of 
the lower base is to be 14', that of the upper base 10|', and 
the tank is to contain 1500 cu. ft. If an additional 15% 
of the surface area is allowed for waste and overlapping, 
how many square feet of sheet iron are required to build 
the tank ? 

88. A steel container is in the form of a cylinder with a 
hemispherical top. If the inside length of the cylinder is 
4' and the diameter is 1'6", what is the volume ? 

89. In Ex. 88 find the area of the entire inside surface. 
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90. A cylindric silo 30' in diameter is covered by the roof 
shown in this figure. The lower part of the roof is in the 
form of a frustum of a cone whose upper base 
has a diameter of 15' and whose sloping sides 
make an angle of 45° with the lower base. The 
upper part is a conic surface which makes an angle of 10° 
with the upper base of the frustum. Making an allowance 
of 20% for waste, compute the number of square feet of 
material required to cover this roof. 

91. Find the diameter of a solid sphere formed by melting 
and recasting the metal in two solid spheres of lead which 
are 2" and 3" respectively in diameter. 

92. If a spherical drop of water is vaporized into a spray 
of 1000 equal spheres, but the total volume of water is un¬ 
changed, by what per cent is the total surface increased ? 

93. A cross section of a hollow cast-iron pillar 10' long is 
a triangle whose sides are 6", 8", and 10", and the thickness 
of the metal is 1". If cast iron weighs 450 lb. per cubic foot, 
how much does the pillar weigh ? 

94. A cubic foot of brass is drawn out into a wire 0.1" in 
diameter. Find the length of the wire. 

95. During a rainfall of 0.5", to what depth will a circular 
well 5' 6" in diameter be filled by the drainage from a 
rectangular asphalted court which is 30'6"X26'5"? 

96. If a plane cuts the axis of a right circular cylinder 
which is 14" in diameter at an angle of 45°, what is the 
area of the section thus formed ? 

If A is the area, then A cos 45° is equal to what area (Ex. 54)? 

97. A hole 1" square is cut horizontally and synmietrically 
through a vertical wooden cylinder which is V2 inches in 
diameter. Find the approximate amount of wood removed 
in cutting the hole. 
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98. The radii of the bases of a frustum of a right cir¬ 
cular cone are 11" and 12.5" respectively, and the height 
of the,frustum is 5". In the original cone, find the area of 
the curve surface, the area of the total surface, the altitude, 
and the volume. 

99. The area of the total surface of a polyhedron weigh¬ 
ing 64 lb. is 340 sq. in. Find the surface of a similar poly¬ 
hedron made of the same material and weighing 1000 lb. 

100. The bottom and top diameters of a tub are to be 24" 
and 30" respectively. What depth should be allowed so that 
the tub shall hold just 30 gal. (1 gal. = 231 cu. in.)? 

101. A pump has a cylindric barrel 4" in diameter, and 
the volume of water in 1' of the length is pumped at each 
stroke. Find the number of strokes necessary to fill a tub 
in the form of a frustum of a cone 3' in diameter at the 
bottom, 4' in diameter at the top, and 1'6" high. 

102. It is desired to double the capacity of a cylindric 
boiler, but to keep the diameter and height in the same 
ratio. By what per cent will the total area be increased ? 

103. If the area of the surface of a spherical balloon is 
doubled, by what per cent is the circumference increased? 
the diameter ? the volume ? the radius ? 

104. Find the least amount of wood which it is necessary 
to waste in cutting a cube out of a wooden sphere 4" in 
diameter. 

105. Find the volume of the largest sphere that can be 
cut from a cone of revolution 14" high and 12" in diameter. 

106. The specifications for a brass sphere 1" in diameter 
require that the alloy contain one part of zinc to two parts 
of copper by volume. Given that 1 cu. ft. of copper weighs 
550 lb. and that 1 cu. ft. of zinc weighs 428 lb., find the 
weight of the sphere. 
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107. The wooden part of a top consists of a conic frus¬ 
tum with a hemispherical end. The greatest and least 
diameters of the frustum are 3.5” and 0.5”, and the slant 
height is 3.5”. Find the total volume. 

108. If an iron sphere 4” in diameter is placed in a 
conic vessel which is full of water and whose altitude and 
diameter are each 5”, how much water will run over ? 

109. Find the volume of the largest sphere that can be 
cut from a metal cone whose base has a diameter of 7” 
and whose slant height is 7”. 

110. If a circular hole 1” in diameter is bored through 
a sphere 2” in diameter and the axis of the hole passes 
through the center of the sphere, what is the volume of 
the part of the sphere that is left ? 

111. A cylinder which is 24” in diameter and 16” in 
height is inscribed in a sphere. Find the area and the 
volume of the sphere. 

112. Prove that the volume of a regular octahedron is 
0.47 approximately, and that the area of the total sur¬ 
face is 3.46 approximately, where s is an edge of the 
solid. From these results find the area and the volume of 
a regular octahedron 3” on an edge. 

113. A stone post is to be surmounted by a sphere 14” 
in diameter, and in order to give the sphere a base upon 
which to stand a segment of one base 2” high is cut from 
the sphere. Find the volume of the segment of the sphere 
that is placed on the post. 

114. If the exposed surface of the segment of the sphere 
in Ex. 113 is polished, how many square inches are polished ? 

115. Find the volume of a spherical sector of a sphere 
of radius r, given that the area of the zone which forms 
the base of the spherical sector is 4 vrrl Draw the figure. 
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V. Recreations 

551. Fallacies. Below are given a few curious problems 
and interesting fallacies, generally based upon incorrect 

constructions or statements, which should be undertaken, 

if time allows, simply as recreations. 

1. Any point on a line bisects it. 
In the figure below let BC he any line and P any 
Construct an isosceles AABC upon BC as base, 

and draw AP. 

Since AB = ZCy 
AB = AC, 

and AP = AP, 

then AABP is congruent to AACP. 
Hence BP=PC, B-- 

or any point on a line bisects it. 

2. Every triangle is isosceles. 

Let ABC be any A in which AC is not equal to BC. 
Bisect Z C and construct the ± bisector of AB, letting it meet the 

bisector of ZC at P. They must meet, for if they were II, the bisector 
of Z C would be _L to AB and hence would bisect 
it, thus coinciding with the ± bisector MP. This 
would be possible only if AC = BC, which is con¬ 
trary to what is assumed above. 

Draw PD JL to AC and PE ± to BC. 
Then, since CP bisects ZC, we have PD = PE', 

and since MP is the _L bisector of AB, then AP=BP. 
Then AAPD is congruent to ABPE, and hence AD = BE. 
Similarly, APDC is congruent to APEC, and hence DC = EC. 
Adding, AD + DC = BE + EC, or AC = BC. 
Hence every A is isosceles. 

3. Find the area of this triangle to the nearest 0.1 sq. ft. 

You may use the formula in Ex. 1, page 194, even 
though you have not proved it. If you prefer, draw 
the figure to scale, measure the altitude, and then 

apply § 244. 

point on it. 

A 

148' 
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4. li A>B and B>C, then it follows that A = B=C. 

In this figure the arcs of the (D are all tangent to PT at P. Then, if 

A=ZXPT,B=ZYPT, and C = ZZPT, 

A>B> a 

Now the Z between two (D is defined 

as the Z between their tangents at a 

common point (see page 261). 

But the Z between the tangents at P of any two of these © is 0, 

and hence 

5. Construct a triangle such that the sum of the interior 

angles is less than 180°. 
The three © of which the arcs are here shown 

are tangent at A, B, C. 
Then, as in Ex. 4, the Z between the tangents 

at a common point of any two © is 0. 

Hence the sum of the A of the A formed by the 

tangents at A, B, C is 0. 

6. All circles, however large, have equal circumferences. 

Let two © of unequal radii 

AP and AQ be fastened to¬ 

gether, and let them roll 

along from A to A'. 
Then P reaches P' when Q 

reaches Q'. 
Since the © have rolled along equal distances, their circumferences 

must be equal. 

7. Two coins A and B of the same size are placed upon 
a table so that A is tangent to B. If B is kept fixed and A 
is rolled around R, always remaining tangent to R, how 
many revolutions does A make in rolling once around B ? 

Play fairly; give your answer and reason for it before experimenting. 

8. A man who had a window 2 ft. wide and 4 ft. high 
wished to double its area. He did so, and still the window 
was only 2 ft. wide and 4 ft. high. How was this possible ? 
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9. The sum of the parallel sides of a trapezoid is zero. 

In the figure below let ABCD be the trapezoid with bases AB (or h) 
and CD (or a). 

Now let DC be produced to and BA to P so that CS=b and AP = a. 

Then 

and 

APAQ is similar to ASCQ, 

ACDR is similar to AABR. 

z 
Hence 

a _ X 

h y + z X- 

Then * = * 9 
2: x + y 

, x — z z 
whence -=- 

z — x x-\-y 

^ , x—z ^ 
But -= —1. P^ 

z — x 

Then, by substitution. 

or, multiplying by 6, a=— 6; 

whence we have (X -j- 6 = 0. 

10. Any number, however large, is equal to zero. 

On a piece of squared paper mark out a square which shall be 8 
by 8, and then draw lines dividing it into three parts A, B, C, as shown. 

Then mark out 

a □ which shall 
be 5 by 13, and di¬ 
vide it into three 
parts such that 

A'= A, B'= B, and 

C' = C, as shown. 

The number of 

✓ 

A -in B 

A 
c 

B 
9 

small squares in the large square is 8 x 8, or 64, and the number of 

small squares in the □ is 5 X 13, or 65. 

Hence 65 = 64, 

or 1 = 0. 

Multiplying these equals by any number, say 25, we have 

25 = 0, 

any number is equal to zero. and hence 
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11. From any point outside a line two perpendiculars can 
be constructed to the line. 

Let AB be any line and P any point not on 
AB, and draw PA, PB. I 

With PA and PB as diameters construct © A^ 
intersecting AB at Y and X respectively, and 
draw PX, PE. 

- 

; 

xyx 

Then 

and 

Hence 

ZPXA = 90y 

ZBYP= 90°. 

both PX and PY are ± to AB. 

§173 

§173 

12. The whole of a line is equal to one of its parts. 

In this A, CP is _L to AB, and CX 
is drawn so as to make ZACX=ZB. 

Then AAXC is similar to AACB. 
Hence these A are proportional to 

the squares of corresponding sides, and, 
since they have equal altitudes, to their 
bases also. _ 

AACB B^ 

cx‘" 

X P 

Then 

and hence 

AAXC 

mj' 

AB 
ax' 

Then 

AB 

AC'' + AB^-2AB-AP 

AX ‘ 

ac^'yax'^- 

250, 246 

198,4 

2AX-AP 

or 

whence 

AC^ 
AB 

AB 

+AB- 

A^ 
AB 

AX 
234 

AC^ 
2AP; 

AX= 
AC‘ 

AB, 

or 

AX 

AC^'-AB^AX AC^'-AB^AX 

Hence § 198,2 
AB AX 

AB = AX, 

or the whole of a line is equal to one of its parts. 

13. Show how to arrange six matches so that each match 
shall touch four others. 
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VI. History of Geometry 

552. Ancient Geometry. The geometry of very ancient 
peoples was largely the mensuration of simple areas and 
volumes such as is taught to children in elementary arith¬ 
metic today. They learned how to find the area of a rec¬ 
tangle, and in the oldest mathematical records that we 
have there is some discussion of triangles and of the 
volumes of solids. 

Our earliest documents relating to geometry have come 
to us from Babylon and Egypt. Those from Babylon were 
written, about 2000 B.C., on small clay tablets (some of them 
about the size of the hand) which were afterwards baked 
in the sun. They show that the Babylonians of that period 
knew something of land measures and perhaps had advanced 
far enough to compute the area of a trapezoid. For the 
mensuration of the circle they later used, as did the early 
Hebrews, the value tt = 3. 

The first definite knowledge that we have of Egyptian 
mathematics comes to us from two manuscripts copied on 
papyrus, a kind of paper used in the countries about the 
Mediterranean in early times. One of these manuscripts 
was made by one Aah-mesu (the Moon-born), commonly 
called Ahmes, who fiourished probably about 1550 B.c. The 
original from which he copied, written about 2000 B.c., has 
been lost, but the papyrus of Ahmes, written over three 
thousand years ago, is still preserved and is now in the 
British Museum. In this manuscript, which is devoted 
chiefly to fractions and to a crude algebra, is found some 
work on mensuration. While there is some doubt as to 
the translation of some of the statements, apparently the 
curious rules given include the ones that the area of an 
isosceles triangle is half the product of the base and one of 
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the equal sides, and that the area of a trapezoid with bases 
b, b’ and nonparallel sides each equal to a is ia(b-\-b'). 
One noteworthy advance appears, however, where Ahmes 
gives a rule for finding the area of a circle, substantially 
as follows: Multiply the square on the radius by 

Part of the Ahmes Papyrus 

The oldest extensive book on mathematics in the world, a papyrus roll 
written by Ahmes about 1550 B.C. 

This is equivalent to taking for tt the value 3.1605, and is 
the earliest known case of so close an approximation. 

The second ancient Egyptian manuscript, which may 
have antedated slightly the work of Ahmes, is now in 
Russia. It is on mensuration and apparently contains one 
interesting case of the mensuration of a solid. 
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553. Early Greek Geometry. From Egypt, and possibly 
from Babylon, geometry passed to the shores of Asia Minor 
and Greece. The scientific study of the subject begins with 
Thales, one of the Seven Wise Men of the early Greek 
civilization. Born at Miletus about 624 B.C., he died there 
about 548 B.c. He founded at Miletus a school of mathe¬ 
matics and philosophy, known as the Ionic School. How 
elementary the knowledge of geometry was at that time 
may be understood from the fact that tra¬ 
dition attributes to Thales only about four 
propositions. 

The greatest pupil of Thales, and one of 
the most remarkable men of antiquity, was 
Pythagoras, born probably on the island 
of Samos, just off the coast of Asia Minor, 
about the year 580 B.c. Pythagoras set 
forth as a young man to travel. He went 
to Miletus and studied under Thales, prob¬ 
ably spent several years in Egypt, and very 
likely went to Babylon. He then founded a school at 
Crotona, in Italy. He is said to have been the first to 
demonstrate the proposition in geometry that the square 
on the hypotenuse of a right triangle is equivalent to the 
sum of the squares on the other two sides. 

554. Euclid. The first great textbook on geometry, and 
the most famous one that has ever appeared, was written 
by Euclid, who taught mathematics in the great university 
at Alexandria, Egypt, about 300 B.C. Alexandria, named in 
honor of Alexander the Great, was then practically a Greek 
city, as it was ruled by the Greeks. 

Euclid's work is known as the Elements, and, in com¬ 
mon with all ancient works, the leading divisions were 
called "'books," as is seen in the Bible and in the works 

Pythagoras 

A coin of Samos, one 
of the oldest known 
portrait medals of a 

mathematician 
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of such Latin writers as Csesar and Vergil. This is why 
we speak today of the various books of geometry. In 
this work Euclid placed all the leading propositions of 
plane geometry that were then known, and arranged them 

‘Ifbudanirunaa liber donaitoiom fEoctidis perlpi/ 
CddT^tn arttm/beomorie indpit qpifodiciliiM: 

Qnccuo ett ruiue ps no dl.G inra dl 
logirado fine lantudmccui'’qutcic(7/ 
trcnittateo ft duo pucta. G jlinca rccca 
i ab vno puctoadaliii b:eutl1ima qnc/ 
lio i crtranitaKs foae vcniq.ico:^ red 
picn0.G0upfidea c q tosim'diiie r lati 
nidine nh bycui^termi qiiide fu t lincc. 
G0upf>dc6 plana c ab vna Itnca ada/ 
Itaertelio icytrcnntatcafuaercdpira 
Gt^nguluaplanuac Diiaru lincarii al/ 

_rernus ptaau8;qiiap crpafio e lap fup/ 
hcic applicanoq, no oireaa. G jQuado aiit anguium ptinct Due 
linecrecterectiline’angiiluonoiaf. Q fi3nrcaalincafuprcaa 
Oetent onoq} angnli vtrobiqj fucrit cqlceco?: vtcrq j rcct^ait 
ciincaq} llnec lupftasa cnHui?ftat ppcndicuUris vocaf .Gan 
gulue VO qiii recto maio: e obnilne Oicit.Gangul^vo mtnoJ re 
etc acur’appdlaf ■GZemnn‘’c qo vniulcoinfq j nma e.G^'igura 
t q tniiiio vl termia pnncf-.GiOrcul‘’c figura plana vna qocm li/ 
nea ptetat qcircufcrpioa noiaf :m cui'^nicdio pucT’c: a quo'oee 
lince reae ad arcuferctiJ creuiee fibiiuicejlu t equalce. i£t bic 
quidepuct^cctru circnli ot.OtOiametCT circuit c linea recta que 
liip ci'^ enpp trulicne c)Trcimtatclq3 fuas circO ferctic applicana 
circulu i DUO media Dinidit.GScmicircnlua c fignra plana Dia/ 
metro arculi i mcdictate orcufCTenticpttnta.Q 1(i>o:no circn / 
It c ftgura plana recta lina i parte cirrii ferene pteta; Icminrcn / 
lo qnidc ant maio: aut minoj. G TRecnlmce figure lut q recne Iw 
iicio corinent quaru qneda trilatae q tnb‘>ecn£i imeta: quedd 
quadniatereq qtuoirectialineie.qdamlhlaterc qua plunbua 
qtqnaroojrecnalineiacontindit.G ■^-Igurarii trilatcraru;alia 
eft tnanguluabneiria latcra cqnaha.3Ua mangulus duo brio 
eqlialatCTa.aiiamanguluomu incqualiom latari. IDapitenl 
alia eft ottbogoniu'.vnu.I rectumanguluin babcno.SItacam' 
bligomnm aliqucm obtulum angnlum habene.3lia eft opgoiii 
nm-.m qua treeangali Innt acun G'Siguraru aute quadrilatcrap 
3 iia eft iidratum quod eft cqmlatcru atq> reaangulu. 3lia el I 
tctTagon^ong’tqtft figura rectangula: led equilataa non eft. 
3Ua eft bdmua^-m; que ell cquilatera: led rectangula non eft. 

JX prinapfis pie nonrepmo ce DlRin^ 
nonibuoearandem. 

Ori|bn>M 

I i^raru* 

First Page of Euclid’s Elements 

From the first printed edition, Venice, 1482 

in a logical order. Most geometries of any importance 
since his time have been based upon this great work of 
Euclid, and improvements in the sequence, symbols, and 
wording have been made as occasion demanded. 
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555. Geometry in the East. The East did little for geom¬ 

etry, although contributing considerably to algebra. The 

first great Hindu writer was Aryabhatta, who was born in 

476 A. D. He gave the very close approximation for tt which 

we express in modern notation as 3.1416. The Arabs, about 

the time of the Arabian Nights tales (800 A.D.), did much 

for mathematics by translating the Greek authors into 

their own language and by bringing learning from India. 

Indeed, it is to the Arab mathematicians of the ninth and 

tenth centuries that modern Europe owes its first knowledge 

of the Elements of Euclid. The Arabs, however, contrib¬ 

uted nothing of importance to geometry. 

556. Geometry in Europe. In the twelfth century Euclid 

was translated from the Arabic into Latin, since Greek 

manuscripts were not then at hand, or were neglected 

because of ignorance of the language. The leading trans¬ 

lators were Adelard of Bath (1120), an English monk who 

had learned Arabic in Spain or in Egypt; Gherardo of 

Cremona, an Italian monk of the twelfth century; and Jo¬ 

hannes Campanus (about 1250), chaplain to Pope Urban IV. 

In the Middle Ages in Europe nothing worthy of note 

was added to the geometry of the Greeks. The first Latin 

edition of Euclid's Elements was printed in 1482, and the 

first English edition in 1570. 

557. Important Propositions. A few facts concerning some 

of the important propositions will be found of interest. 

The theorem which asserts that the base angles of an 

isosceles triangle are equal is said to have been first proved 

by Thales, about 575 B.C. This theorem represented the 

usual limit of instruction in geometry in the Middle Ages, 

and probably on this account was called the pons asino- 

Tum (the bridge of fools); that is, it formed a kind of 

bridge across which fools could not pass. Roger Bacon, 
PS 



490 HISTORY OF GEOMETRY SUPPLEMENT 

about 1250, called it the fuga miserorum (the flight of the 
miserable ones) because they fled at the sight of it. 

The second of the congruence theorems is also attributed 
to Thales, who is said to have used it in measuring the 
distance from the shore to a ship. 

The proposition which relates to the sum of the angles 
of a triangle is referred to by one of the later Greek writers 
in these words: ''The ancients investigated the theorem 
of the two right angles in each individual species of tri¬ 
angle, — first in the equilateral, again in the isosceles, and 
afterwards in the scalene triangle.’’ It is interesting to 
see that we do not have to take this long method of prov¬ 
ing this simple proposition today. It is said that one of 
the earlier writers, Eudemus, who lived about 335 B.C., 

attributed the theorem to the Pythagoreans. 
Perhaps the earliest records of the Pythagorean Theo¬ 

rem are found in Egyptian and Chinese works which are 
of uncertain dates, but were apparently written before 
1000 B.C., or long before Pythagoras lived. In the Chinese 
work the statement reads: " Square the first side and the 
second side and add them together; then the square root 
is the hypotenuse.” The theorem, however, was not proved 
in either of these works. 

558. The Three Famous Problems. The Greeks very early 
found three problems which they could not solve. The first 
was that of trisecting any given angle,—the trisection 
problem; the second was that of constructing a square 
equivalent to a given circle,—the quadrature problem; 
and the third was that of constructing a cube that should 
have a volume twice that of a given cube,—the duplication 
problem. All three are easily solved if we allow other instru¬ 
ments than the ruler and compasses, but they cannot be 
solved by the use of these two instruments alone. 
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VII. Suggestions to Teachers 

559. Difficulties of the Student. Among the difficulties and 
failures which are encountered by the student, the follow¬ 
ing demand special attention: 

1. Failure to comprehend the purpose of geometry. At 
the beginning of Book I a special effort should be made to 
have the student appreciate the pleasure of' ^ standing upon 
the vantage ground of truth'' and the meaning of a real, 
deductive, scientific proof of a statement. A reasonable 
number of references to geometric forms found in the 
schoolroom, the use of such genuine applications of geo¬ 
metric forms as are within the ability of the student to 
comprehend, and the transfer of the method of geometric 
reasoning to simple problems of life will be found helpful. 
On the other hand, much time can be wasted by dwelling 
upon forms which, while interesting'pictorially, have no 
significant relation to demonstrative geometry and are of 
no particular value as constructions. 

2. Failure to comprehend the technical language. Stu¬ 
dents are often discouraged because they do not clearly 
see the meaning of such terms as median, isosceles, hexa¬ 
gon, and rhombus. This difficulty is easily removed, when 
it is met, by substituting for the term itself a statement of 
its meaning. In general, the teacher should use as simple 
terms as possible, particularly in the first part of the work. 
On this account it is better to use a familiar term such as 

corresponding" instead of ^'homologous," to speak of 
"what is given" rather than of the "hypothesis," and to 
speak of "what is to be proved" rather than of the "con¬ 
clusion," especially as this last term is applied to a state¬ 
ment at the beginning rather than at the end of a proof. 
Simplicity of language and of symbols is a great asset. 
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3. The idea that geometry is to be memorized. This diffi¬ 
culty can be best overcome by paying particular attention 
to the first few propositions. The teacher should develop 
these propositions carefully by questioning the class before 
the theorems are given, and thus lead the students to feel 
that they are discovering the proofs for themselves. The 
students will then come to prefer independent work and 
will thereafter read the proof in the text as a model of 
style rather than as a necessary aid. A second valuable aid 
is the introduction of a number of simple exercises with 
each of the first few propositions. Several of these may 
be given as sight work, with rapid demonstration by the 
student at the blackboard. In this way it will be found 
unnecessary to resort to such a doubtful device as that of 
changing the letters or figures from those which have 
been carefully worked out for the text. 

4. Failure to follow a proof given at the blackboard. A 
prominent cause for this failure is the habit which stu¬ 
dents often form of reading lines and angles by their 
letters without pointing to the figures at the same time. 
No one can follow with ease a demonstration filled with 
expressions like ""AAOB—APRX.** It is much better to 
say angle m and point to it, and it is still better to point 
to a line segment and say '"this line segment ” instead of 
using letters to represent it. Letters are more helpful in 
written work than in oral explanation. Teachers who rec¬ 
ognize this fact will not be disturbed by such convenient 
lettering as ABC and A'B'C'. 

It is also helpful to a class if the student who is demon¬ 
strating a proposition begins his proof by saying, "'The 
general plan of the proof is • • •'' and states the plan. For 
example, he may say, ^'The general plan of this proof is 
to show that this triangle is congruent to that one.’^ This 
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method is beneficial not only to the class but to the one 
who is giving the proof. The statement of the plan of the 
proof has been given in the fundamental propositions in 
Books I and II, and after this the student is supposed to 
state the plan in each case for himself, 

5. Failure to state with precision what is given and what 
is to he proved. Time devoted to this difficulty is well spent 
if it leads the student to acquire the habit of precise state¬ 
ment of these parts of a proof in the first exercises which 
he meets. A considerable part of the student's difficulty 
lies in the failure to acquire this habit, and it must be 
acquired early if at all. 

6. Failure to draw the figure when the statement is read. 
It is always a great aid to draw the figure with reasonable 
neatness, and in as general a form as the circumstances 
require, while the theorem, problem, corollary, or exercise 
is being read. Such a habit tends to make the statement 
clear at once and to emphasize precisely what is given and 
precisely what is required. 

560. Methods of Attack. A great deal has been written 
upon the methods of attacking an exercise or a proposition. 
For a beginner, however, it is desirable to keep prominently 
in mind only two methods: 

1. Analysis. The student should early acquire the habit 
of saying, ''I can prove this if I can prove that; I can prove 
that if I can prove this third fact," and so on until he 
reaches some statement which he can prove. He should 
then reverse his reasoning and give the proof step by step 
in proper geometric form. 

2. Indirect Method. In case the analysis does not lead to 
the proof the student should say, "Suppose that the fact 
I am to prove is not true, what follows?" thus taking the 
indirect method described in § 56. 
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561. Great Basal Propositions. The teacher will find it 
helpful to call attention from time to time, and especially 
at the close of each book, to the great basal propositions of 
geometry as emphasized in this text. Geometry is peculiar 
among all branches of mathematics, and indeed among all 
the sciences, in its dependence upon a strong chain of truths 
and upon the deductive reasoning which results therefrom. 
The great basal propositions, the links in this chain, should 
therefore be thoroughly mastered. 

562. Language and Symbolism. Teachers are advised not 
only to use as simple language as possible, as already men¬ 
tioned, but to avoid new and unusual terms, especially those 
which do not have general international sanction. In the 
same way it is desirable to avoid local or personal preju¬ 
dices in favor of symbols which are not generally recog¬ 
nized. Such symbols are easily created, and they have 
some advantage as pieces of shorthand; but it should be 
remembered that students are being prepared to read 
general mathematical works, and that for this purpose 
they can best be helped by using only recognized language 
and symbols. Such symbolism as s, a. s. for 'Hwo sides 
and the included angle soon runs into the ridiculous, since 
such forms are neither necessary nor generally helpful. 

It is well to remember, too, that there is considerable 
advantage in lettering and in reading a figure counter¬ 
clockwise, particularly when a refiex angle is met; but this 
is not an arbitrary rule to be followed in all cases. If two 
figures are symmetrically arranged like the triangles in 
§ 47, it is much clearer to read the corresponding letters 
in the same order, as ABC and A'B'C', even though in one 
case they are read clockwise. In other words, any such 
arbitrary rule should be broken without hesitation if there 
is a decided gain in so doing. 
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In the matter of symbolism the teacher will find it much 
better to use Z A, or simply a, instead of Z2. The use of the 
numeral is unnecessary, and there is always some confusion 
in seeming to give a num^ical value to an angle which prob¬ 
ably has an entirely different value from the one stated. 

In general, the teacher will find it helpful to letter figures 
systematically, as has been done in the text. For example, 
on account of the ease with which corresponding parts may 
be recognized, it is more helpful to letter two congruent 
triangles as ABC and A'B'C’ than as DPX and LSV, par¬ 
ticularly as it is neither necessary nor desirable to use the 
letters in giving oral proofs. 

563. Discussions. One of the most valuable features in 
the solution of a problem is the discussion of special cases. 
This is, in general, left for the teacher to initiate. Nearly 
every problem has some special case of interest which 
often leads to the discovery that the solution is impossible 
under certain circumstances. No text can reasonably be 
expected to discuss all these special cases, but the class 
should be encouraged to discover the most interesting ones. 

In particular, it is highly desirable to generalize each 
figure under discussion by studying the various shapes 
assumed when some point or some line of the figure is 
moved about in a plane. 

564. Role of Postulates. The teacher will recognize that 
it is possible to reduce the number of postulates in any 
school geometry. This, however, is not desirable. The 
question to be answered in this connection is. What is 
best for the student at his stage of mental development ? 
In general, within reason, a statement that seems obvious 
to a student may safely, at first reading, be taken as a 
postulate, but it should be proved when the feeling of the 
need for demonstration arises. 
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565. Solid Geometry. The introduction to solid geometry 
should be made slowly. Since the student has been accus¬ 
tomed to seeing only plane figures, the drawing of a solid 
figure in the fiat is confusing at first. The best way for the 
teacher to anticipate this difficulty is to have a few pieces 
of cardboard, a few knitting needles filed to sharp points, 
a pine board about a foot square, and some small corks. 
The cardboard can be used to illustrate planes, and can be 
arranged to show parallel planes, perpendicular planes, or 
planes intersecting obliquely. The knitting needles may 
be stuck into the board to illustrate lines perpendicular or 
oblique to a plane. If two or more lines are to meet in a 
point, the needles may be held together by sticking them 
into one of the small corks. The figures given in the text 
can also be illustrated in this manner. Such homely appa¬ 
ratus, which costs almost nothing and is put together in 
class, seems much more real and is usually more satisfac¬ 
tory than the models which are sold by dealers. 

To have a model for each proposition, or even to have 
a photograph or a stereoscopic picture, is, however, a poor 
educational policy. The pupil must learn very early to 
visualize a solid from the flat figure in outline, just as a 
builder or a mechanic learns to read his working drawings. 
The drawing of the different projections of a solid as 
required in connection with the work on practical mensu¬ 
ration (§§ 543-550) is particularly helpful in this respect. 

The logical processes used in solid geometry do not differ 
essentially from those used in plane geometry, and for this 
reason the treatment of the subject is less extended than 
that found in Books I-V. For beginners it is the custom 
to increase somewhat the number of assumptions and to 
reduce the number of propositions, as compared with the 
work in plane geometry. 
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VIII. Important Formulas 

566. Notation. The following notation is used in the for¬ 
mulas of plane geometry: 

a = apothem 

A = area 
а, b,c= sides of AABC 
б, b' = bases 
C = circumference 
d = diameter 

h = height, altitude 
p = perimeter 
r = radius 
s = semiperimeter of AABC; 

that is, s = ^ (a H- 6 + c) 

7r = 3i V-, 3.14, or 3.1416. 

567. Formulas for Lines. The following are important: 

Right triangle, §§218,252 

Circle, C=27rr 

C = 7rd §307 

Radius of circle. r = -^ 
2ir 

Equilateral triangle. 
Side of square. b = y/A 

568. Areas of Plane Figures. The following are important: 

Rectangle, A=bh §241 

Parallelogram, A=bh §243 

Triangle, A = jbh §,244 

A = y/s(s — a)(s — 6) (s — c) p. 194 

Equilateral triangle. II 

Trapezoid, A = j h{b -\-b') §^47 

Regular polygon. A=^ap §282 

Circle, A = ^rC §308 

A = 7rr^ §309 
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569. Notation. In addition to that of § 566, the following 
notation is used in the formulas of solid geometry: 

area of base 

e = element, lateral edge 

E= spherical excess 

I = slant height 

L — lateral area 

M = area of midsection 

S = area of curve surface 

V = volume 

570. Areas of Solid Figures. The following are important: 

Prism, L = ep § 376 

Regular pyramid, L=\lp § 401 
Frustum of regular pyramid, L = \l{p-\-p') §402 

Cylinder of revolution, S=2irrh § 424 

Cone of revolution, S=llC §438 

S = irrl § 439 
Frustum of cone of revolution, s=^l{C+C') § 441 

Sphere, =4 ttt^ § 497 
Spherical polygon, S=i\oE7r7^ §504 
Zone, S=2irrh § 508 

571. Volumes. The following are important: 

Parallelepiped, V=Bh § 393 

Prism or cylinder, V=Bh §§ 395,425 

Cylinder of revolution, V = § 426 

Pyramid or cone, v=lBh § § 407, 443 

Cone of revolution, V=l Trr^h _ § 444 

Frustum of pyramid or cone, V—\h{B-\-B'-\-^BB') § 408 

Frustum of cone of revolution, F= J tt/i(r^H- r'^+ rr') § 445 

Prismoid, V4M) § 534 

Sphere, F=i § 513 

V=\ird^ 
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