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Despite the obvious advantage of simple life forms capable
of fast replication, different levels of cognitive complexity
have been achieved by living systems in terms of their
potential to cope with environmental uncertainty. Against the
inevitable cost associated with detecting environmental cues
and responding to them in adaptive ways, we conjecture that
the potential for predicting the environment can overcome
the expenses associated with maintaining costly, complex
structures. We present a minimal formal model grounded
in information theory and selection, in which successive
generations of agents are mapped into transmitters and
receivers of a coded message. Our agents are guessing
machines and their capacity to deal with environments of
different complexity defines the conditions to sustain more
complex agents.

1. Introduction
Simple life forms dominate our biosphere [1] and define a lower
bound of embodied, self-replicating systems. But life displays
an enormously broad range of complexity levels, affecting many
different traits of living entities, from their body size to their
cognitive abilities [2]. This creates somewhat a paradox: if larger,
more complex organisms are more costly to grow and maintain,
why is not all life single-celled? Several arguments help provide
a rationale for the emergence and persistence of complex life
forms. As an instance, Gould [1] proposes that complexity is
not a trait explicitly favoured by evolution. A review of fossil
records convinces Gould that, across genera, phyla and the
whole biosphere, we observe the expected random fluctuations
around the more successful adaptation to life. In this big picture,
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Figure 1. Predictive agents and environmental complexity. (a) An agent G interacts with an external environment E that ismodelled as a
string of randombits. These bits take value 0with probability p and value 1 otherwise. The agent tries to guess a sequence ofnbits at some
cost,with a reward bestowed for each correctly guessed bit. The persistence and replication of the agent can only be granted if the balance
between reward and cost is positive (ρG

E > 0). (b) For a machine attempting to guess n bits, an algorithmic description of its behaviour
is shown as a flow graph. Each loop in the computation involves scanning a random subset of the environment B= (b1, . . . , bn)⊂ E
by comparing each bi ∈ B to a proposed guesswi . (c) A mean field approach to a certain kind of 1-guesser (modelled in the text through
equations (1.1)–(1.3)) in environments of infinite size renders a boundary between survival (ρG

E > 0) and death (ρG
E < 0) as a function

of the cost–reward ratio (α) and of relevant parameters for the 1-guesser model (p in this case).

bacteria are the leading life form and the complexity of every other living system is the product of
a random drift. Complex life would never be explicitly favoured, but a complexity wall exists right
below bacteria: simpler forms fail to subsist. Hence, a random fluctuation is more likely to produce more
complex forms, falsely suggesting that evolution promotes complexity.

Major innovations in evolution involve the appearance of new types of agents displaying cooperation
while limiting conflict [3,4]. A specially important innovation involved the rise of cognitive agents,
namely those capable of sensing their environments and reacting to their changes in a highly adaptable
way [5]. These agents were capable of dealing with more complex, non-genetic forms of information.
The advantages of such cognitive complexity become clear when considering their potential to better
predict the environment, thus reducing the average hazards of unexpected fluctuations. As pointed out
by Francois Jacob, an organism is ‘a sort of machine for predicting the future—an automatic forecasting
apparatus’ ([6, p. 9]; see also [7,8]). The main message is that foreseeing the future is a crucial ability to cope
with uncertainty. If the advantages of prediction overcome the problem of maintaining and replicating
the costly structures needed for inference, more complex information-processing mechanisms might be
favoured under the appropriate circumstances.

This kind of problem has been addressed within ecological and evolutionary perspectives. One
particularly interesting problem concerns the potential of some types of organisms to develop cognitive
potential for prediction. Are all living systems capable to develop such feature? What is the limit
of predictive power for a given group, and how is it affected by the lifestyle? Plants, for example,
have no nervous system but exhibit some interesting capacities for decision making, self/non-self
discrimination, or error correction [9]. Studies involving the evolution of prediction in simulated plants
reveal that increased predictability of available resources was achieved by a proper assessment of
environmental variability [10]. Some of the molecular mechanisms that pervade plant responses seem to
deal with switch-like changes triggered by genetic networks [11]. In this case, growth, seed production
or germination correlate with the degree of environmental fluctuations. A key conclusion of relevance to
our paper is that some reproduction strategies are not selected in given environments due to a lack of
predictability.

Here we aim at providing a minimal model that captures these trade-offs. In doing so, we characterize
thoroughly an evolutionary driver that can push towards evermore complex life forms. We adopt
an information theory perspective in which agents are inference devices interacting with a Boolean
environment. For convenience, this environment is represented by a tape with ones and zeros, akin to
non-empty inputs of a Turing machine (figure 1a). The agent G locates itself in a given position and tries
to predict each bit of a given sequence of length n—hence it is dubbed an n-guesser. Each attempt to
predict a bit involves some cost c, while a reward r is received for each successful prediction. 1-guessers
are simple and assume that all bits are uncorrelated, while (n > 1)-guessers find correlations and can get a
larger benefit if some structure happens to be present in the environment. A whole n-bit prediction cycle
can be described as a program (figure 1b). A survival function ρ depends on the number of attempts to
guess bits and the number of correct predictions. Successful guessers have a positive balance between
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reward and prediction cost. They get replicated and pass on their inference abilities. Otherwise, the agent
fails to replicate and eventually dies.

As a simple illustration of our approach, consider a 1-guesser living in an infinitely large environment
E where uncorrelated bits take value 1 with probability p, and 0 with probability 1 − p. The average
performance of a guesser G when trying to infer bits from E is given by p̄G

E ; this is, the likelihood of
emitting a correct guess:

p̄G
E = pG(1)p + pG(0)(1 − p), (1.1)

where pG(k) is the frequency with which the guesser emits the bit value k ∈ {0, 1}. The best strategy
possible is to emit always the most abundant bit in the environment. Then

p̄G
E = max{p, 1 − p}. (1.2)

Without loss of generality, let’s assume 1 is the most common bit. Then the average reward minus cost
obtained by such a guesser reads:

ρG
E = pr − c = (p − α)r. (1.3)

This curve trivially dictates the average survival or extinction of the optimal 1-guessers in infinite,
unstructured environments as a function of the cost–reward ratio α ≡ c/r (grey area subtended by the
solid diagonal line in figure 1c). Note that this parameter α encodes the severity of the environment—
i.e. how much does a reward pay off given the investment needed to obtain it. Further, note that any
more complex guessers (like the ones described in successive sections) would always fare worst in this
case: they would potentially pay a larger cost to infer some structure where there is none. This results
in narrower survival areas qualitatively represented by shades of grey subtended by the discontinuous
lines in figure 1c. Again, these reduced niches for more complex bit-guessers would come along because
there is not structure to be inferred; but that can change if correlations across environmental bits appear,
as will be seen below.

The idea of autonomy and the fact that predicting the future implies performing some sort of
computation suggests that a parsimonious theory of life’s complexity needs to incorporate reproducing
individuals (and eventually populations) and information (they must be capable of predicting future
environmental states). These two components define a conflict and an evolutionary trade-off. Being too
simple means that the external world is perceived as a source of noise. Unexpected fluctuations can
be harmful, and useful structure cannot be harnessed in your benefit. Becoming more complex (hence
able to infer larger structures, if they exist) implies a risk of not being able to gather enough energy to
support and replicate the mechanisms for inference. As will be shown below, it is possible to derive the
critical conditions to survive as a function of the agent’s complexity and to connect these conditions to
information theory. As advanced above, this allows us to characterize mathematically a scenario in which
a guesser’s complexity is explicitly selected for. Actual living beings will embody the necessary inference
mechanisms in their morphology, or in their genetic or neural networks. Instead of developing specific
models for each of these alternative implementations, we resort to mathematical abstractions based on
bit-strings, whose conclusions will be general and apply broadly to any chosen strategy.

2. Evolution and information theory
Key aspects of information theory relate deeply to formulations in statistical physics [12–14] and there
have been several calls to further integrate information theory in biological research [15–23]. This
theory shall play important roles in population or ecosystems dynamics, in regulatory genomics, and
in chemical signal processing among others [7,24–41], but a unifying approach is far from complete.
Given its generality and power, information theory has also been used to address problems that connect
Darwinian evolution and far from equilibrium thermodynamics [42–46]. In its original formulation,
Shannon’s information theory [47,48] considers symbols being conveyed from a transmitter to a receiver
through a channel. Shannon only deals with the efficiency of the channel (related to its noise or reliability)
and the entropy of the source. This theory ignores the content of the emitted symbols, despite the
limitations of such an assumption [18,49].

A satisfactory connection between natural selection and information theory can be obtained by
mapping our survival function ρ into Shannon’s transmitter–receiver scheme. To do so, we consider
replicators at an arbitrary generation T attempting to ‘send’ a message to (i.e. getting replicated into)
a later generation T + 1. Hence, the older generation acts as a transmitter, the newer one becomes a
receiver, and the environment and its contingencies constitute the channel through which the embodied
message must be conveyed (figure 2a). From a more biological perspective, we can think of a genotype as
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Figure 2. Information and evolution through natural selection. (a) The propagation of a successful replicator can be understood in terms
of a Shannon-like transmission process from one generation to the next inwhich older generations play the role of a transmitter, younger
generations that of a receiver and the environment constitutes a noisy channel. (b) A simple diagram of the underlying evolution of a
population of bit-guessers. The survival and replication of a given agentG is indicated by branching,whereas failure to survive is indicated
with an empty circle as an endpoint.

a generative model (the instructions in an algorithm) that produces a message that must be transmitted.
That message would be embodied by a phenotype and it includes every physical process and
structure dictated by the generative model. As discussed by von Neuman & Burks [50], any replicating
machine must pass on a physically embodied copy of its instructions—hence the phenotype must also
include a physical realization of the algorithm encoded by the genotype.1 Finally, any evolutionary
pressure (including the interaction with other replicating signals) can be included as contrivances of
the channel.

Following a similar idea of messages being passed from one generation to the next one, Maynard-
Smith [18] proposes that the replicated genetic message carries meaningful information that must be
protected against the channel contingencies. Let us instead depart from a replicating message devoid
of meaning. We realize that the channel itself would convey more reliably those messages embodied by a
phenotype that better deals with the environmental (i.e. channel) conditions. Dysfunctional messages are
removed due to natural selection. Efficient signals get more space in successive generations (figure 2b).
Through this process, meaningful bits of environmental information are pumped into the replicating
signals, such that the information in future messages will anticipate those channel contingencies. In our
picture, meaningful information is not protected against the channel conditions (including noise), but
emerges naturally from them.

2.1. Messages, channels and bit-guessers
Let us first introduce our implementation of environments (channels), messages and the replicating
agents. The latter will be dubbed bit-guessers because efficient transmission will be equivalent to
accurately predicting channel conditions—i.e. to correctly guessing as many bits about the environment
as possible. The notation that follows may seem arid, so it is good to retain a central picture (figure 3):
guessers G possess a generative model Γ G that must produce messages that fare well in an environment

1Note that many of the phenotypic structures built in order to get replicated are later dismissed (think e.g. about the germ versus
somatic cell lines). We present a clear division between genotype and phenotype for sake of illustration. We are aware of the murky
frontier between these concepts.
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Figure 3. From a generative model to inference about the world. A diagrammatic representation of the algorithmic logic of the bit
guessing machine. Our n-guesser contains a generative model (represented by a pool of words) from which it draws guesses about the
environment. If a bit is successfully inferred, the chosen conjecture is pursued further by comparing a new bit. Otherwise, the inference
is reset.

E. Both these messages and the environments are modelled as strings of bits. What follows is a rigorous
mathematical characterization of how the different bit sequences are produced.

Let us consider m-environments, strings made up of m sorted random bits. We might consider
one single such m-environment—i.e. one realization E of m sorted random bits (ei ∈ E, i = 1, . . . , m;
ei ∈ {0, 1}). Alternatively, we might work with the ensemble Em of all m-environments—i.e. all possible
environments of the same size (ei,l ∈ El, i = 1, . . . , m; where El ∈ Em, l = 1, . . . , 2m)—or we might work
with a sample Êm of this ensemble (El ∈ Êm, l = 1, . . . , ||Êm||; where Êm ⊂ Em). We might evaluate the
performance of our bit-guessers in single m-environments, in a whole ensemble, or in a sample of it.

These m-environments model the channels of our information theory approach. Attempting to
transmit a message through this channel will be implemented by trying to guess n-sized words from
within the corresponding m-environment. More precisely, given an n-bit message W (with n < m) which
an agent tries to transmit, we extract an n-sized word (B ⊂ E) from the corresponding m-environment.
Therefore, we choose a bit at a random position in E and the successive n − 1 bits. These make up the
bi ∈ B, which are compared with the wi ∈ W. Each wi is successfully transmitted through the channel
if wi = bi. Hence attempting to transmit messages effectively becomes an inference task: if a guesser can
anticipate the bits that follow, it has a greater chance of sending messages through. Messages transmitted
equal bits copied into a later generation, hence increasing the fitness of the agent.

In this paper, we allow bit-guessers a minimal ability to react to the environment. Hence, instead of
attempting to transmit a fixed word W, they are endowed with a generative model Γ G. This mechanism
(explained below) builds the message W as a function of the broadcast history:

wi = wi(w1, . . . , wi−1; b1, . . . , bi−1).

Hence, the fitness of a generative model is rather based on the ensemble of messages that it can produce.2

To evaluate this, our guessers attempt to transmit n-bit words many (Ng) times through a same channel.

2There is a compromise worth investigating between the fidelity of the message that an agent tries to convey and its ability to react
to environmental conditions in real time. Exploring this trade-off is left for future work. By now, the reaction capabilities of our
bit-guessers will be kept to a minimum.
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For each one of these broadcasts, a new n-sized word Bj ⊂ E (with bj

i ∈ Bj for j = 1, . . . , Ng and i = 1, . . . , n)
is extracted from the same m-environment; and the corresponding Wj are generated, each based on the
broadcast history as dictated by the generative model (see below).

We can calculate different frequencies with which the guessers or the environments present bits with
value k, k′ ∈ {0, 1}:

pG(k; i) = 1
Ng

Ng∑
j=1

δ(wj
i, k), (2.1)

pE(k′; i) = 1
Ng

Ng∑
j=1

δ(bj
i, k′), (2.2)

pG,E(k, k′; i) = 1
Ng

Ng∑
j=1

δ(wj
i, k)δ(bj

i, k′), (2.3)

pG
E (i) = 1

Ng

Ng∑
j=1

δ(wj
i, bj

i) ⇒ (2.4)

and ⇒ p̄G
E = 1

n

n∑
i=1

pG
E (i); (2.5)

with δ(x, y) being Dirac’s delta. Note that pG(k; i) has a subtle dependency on the environment (because
G may react to it) and that p̄G

E indicates the average probability that guesser G successfully transmits a
bit through channel E.

Thanks to these equations we can connect with the cost and reward functions introduced before. For
every bit that attempts to be transmitted, a cost c is paid. A reward r = c/α is cashed in only if that bit is
successfully received. α is a parameter that controls the pay-off. The survival function reads

ρG
E (α) = (p̄G

E − α)r (2.6)

and p̄G
E can be read from equation (2.5). As a rule of thumb, if p̄G

E > α the given guesser fares well enough
in the proposed environment.

It is useful to quantify the entropy per bit of the messages produced by G:

H(G) = − 1
n

n∑
i=1

∑
k

pG(k; i) log(pG(k; i)) (2.7)

and the mutual information between the messages and the environment:

I(G : E) = 1
n

n∑
i=1

∑
k,k′

pG,E(k, k′; i) × log
(

pG,E(k, k′; i)
pG(k; i)pE(k′; i)

)
. (2.8)

To evaluate the performance of a guesser over an ensemble Êm of environments (instead of over
single environments), we attempt Ng broadcasts over each of Ne different environments (El ∈ Êm, l =
1, . . . , Ne ≡ ‖Êm‖) of a given size. For simplicity, instead of labeling bj

i,l, we stack together all Ng × Ne n-

sized words Wj and Bj. This way bj
i ∈ Bj and wj

i ∈ Wj for i = 1, . . . , n and j = 1, . . . , NgNe. We have pG(k; i),
pÊm (k′; i), pG,Êm (k, k′; i), pG

Êm
(i) and p̄G

Êm
defined just as in equations (2.2)–(2.5), only with j running through

j = 1, . . . , NgNe. Also as before, we average the pay-off across environments to determine whether a
guesser’s messages get successfully transmitted or not given α and the length m of the environments
in the ensemble

ρG
Êm (α) = (p̄G

Êm − α)r. (2.9)

Note that

I(G : Êm) = 1
n

n∑
i=1

∑
k,k′

pG,Êm (k, k′; i) × log

(
pG,Êm (k, k′; i)

pG(k; i)pÊm (k′; i)

)
(2.10)
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is different from

〈I(G : E)〉Êm = 1
Ne

Ne∑
l=1

I(G : El). (2.11)

We use 〈·〉Êm to indicate averages across environments of an ensemble Êm.
Finally, we discuss the generative models at the core of our bit-guessers. These are mechanisms that

produce n-sized strings of bits, partly as a reaction to contingencies of the environment. Such message-
generating processes Γ G could be implemented in different ways, including artificial neural networks
(ANNs) [51], spiking neurons [52], Bayesian networks [53,54], Turing machines [55], Markovian chains
[56], ε-machines [57], random Boolean networks (RBNs) [58], among others. These devices elaborate their
guesses through a series of algorithms (e.g. back-propagation, message passing or Hebbian learning)
provided they have access to a sample of their environment.

In the real world, trial and error and evolution through natural selection would be the algorithm
wiring the Γ G (or, in a more biological language, a genotype) into our agents. The dynamics of such
evolutionary process are very interesting. However, in this paper, we aim at understanding the limits
imposed by a channel’s complexity and the cost of inference, not the dynamics of how those limits
may be reached. Therefore, we assume that our agents perform an almost perfect inference given the
environment where they live. This best inference will be hard-wired in the guesser’s generative model
Γ G as explained right ahead.

A guesser’s generative model usually depends on the environment where it is deployed, so we note
Γ G ≡ Γ G

E . This Γ G
E will consist of a pool of bits gi ∈ Γ G

E (figure 3) and a series of rules dictating how to
emit those bits: either in a predetermined order or as a response to the channel’s changing conditions.
Whenever we pick up an environment E = {ei, i = 1, . . . , m}, the best first guess possible will be the bit
(0 or 1) that shows up with more frequency. Hence

Γ G
E (1) ≡ g1 = max

k′
{pE(k′; 1)}. (2.12)

If both 0 and 1 appear equally often we choose 1 without loss of generality. If the agent succeeds in its
first guess, its safest next bet is to emit the bit (0 or 1) that more frequently follows g1 in the environment.
We proceed similarly if the first two bits have been correctly guessed, if the first three bits have been
correctly guessed, etc. We define pB|Γ (k; i) as the probability of finding k = {0, 1} at the ith position of the
Bj word extracted from the environment, provided that the guess so far is correct:

pB|Γ (k′; i) = 1
Z(i)

m∑
j=1

δ(bj
i, k′)

i−1∏
i′=1

δ(bj
i′ , gi′ ). (2.13)

The index j, in this case, labels all n-sized words within the environment (bj
i ∈ Bj) ⊂ E and Z(i) is a

normalization constant that depends on how many words in the environment match Γ G
E up to the

(i − 1)th bit:

Z(i) =
m∑

j=1

i−1∏
i′=1

δ(bj
i′ , gi′ ). (2.14)

It follows

Γ G
E (i = 2, . . . , n) ≡ gi = max

k′
{pB|Γ (k′; i)}. (2.15)

Note that the pool of bits in Γ G
E consists of an n-sized word, which is what they try to emit through

(i.e. it constitutes the guess about) the channel. If a guesser would not be able to react to environmental
conditions, the word W that is actually generated at every emission would be the same in every case and

wj
i = gi always; but we allow our guessers a minimal reaction if one of the bits fails to get through (i.e. if

one of the guesses is not correct). This minimal reaction capacity by our guessers results in:

wj
i = Γ G

E (i − l) = gi−l, (2.16)

where l is the largest i at which wj
i 
= bj

i. This means that a guesser restarts the broadcast of Γ G
E whenever

it makes a mistake.3

3Note that more elaborated guessers would not only reset their guess. They might browse through a tree with conditional instructions
at every point. Besides an extended memory to store the growing number of branches, they would also require nested if–else
instructions. On the other hand, ANNs or Bayesian networks might implement such tree-browsing without excessive if–else costs.
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Altogether, our guesser consists of a generative model Γ G that contains a pool of bits and a simple

conditional instruction. This is reflected in the flow chart in figure 3.
We have made a series of choices regarding how to implement environmental conditions. These

choices affect how some randomness enters the model (reflected in the fact that, given an environment
E, a guesser might come across different words Bj ⊂ E) and also how we implement our guessers
(including their minimal adaptability to wrong guesses). We came up with a scheme that codes guessers,
environments (or channels), and messages as bit-strings. This allows us a direct measurement of
information-theoretical features which are suitable for our discussion, but the conclusions at which we
arrive should be general. Survival will depend on an agent’s ability to embody meaningful information
about its environment. This will ultimately be controlled by the underlying cost–efficiency trade-off.

Because of the minimal implementation discussed, all bit-guessers of the same size are equal.
Environmental ensembles of a given size are also considered equivalent. Hence, the notation is not
affected if we identify guessers and environments by their sizes. Accordingly, in the following we
substitute the labels G and E by the more informative ones n and m respectively. Hence ρG

Em
(α) becomes

ρn
m(α), p̄G

E becomes p̄n
m, etc.

3. Results
The question that motivates this paper relates to the trade-off between fast replication versus the cost
of complex inference mechanisms. To tackle this we report a series of numerical experiments. Some of
them deal with guessers in environment ensembles of fixed size, others allow guessers to switch between
environment sizes to find a place where to thrive.

Our core finding is that the complexity of the guessers that can populate a given environment is
determined by the complexity of the latter. (In information-theoretical terms, the complexity of the most
efficiently replicated message follows from the predictability of the channel.) Back to the fast replication
versus complexity question, we find environments for which simple guessers die off, but in which
more complex life flourishes—thus offering a quantifiable model for real-life excursions in biological
complexity.

Besides verifying mathematically that the conditions for complex life exist, our model allows us to
explore and quantify when and how guessers may be pushed to m-environments of one size or another.
We expect to use this model to investigate this question in future papers. As neat examples, at the end of
this paper we report (i) the evolutionary dynamics established when guessers are forced to compete with
each other and (ii) how the fast replication versus complexity trade-off is altered when resources can be
exhausted. These are two possible evolutionary drivers of complex life, as our numerical experiments
show.

3.1. Numerical limits of guesser complexity
Figure 4 shows p̄n

m, the average probability that n-guessers correctly guess 1 bit in m-environments. The
1-guesser (that lives off maximally decorrelated bits given the environment) establishes a lower bound.
More complex machines will guess more bits on average, except for infinite environment size m → ∞,
at which point all guessers have equivalent predictive power.

As m grows, environments get less and less predictable. Importantly, the predictability of shorter
words decays faster than that of larger ones, thus enabling guessers with larger n to survive where others
would perish. There are 2n possible n-words, of which m are realized in each m-environment. When
m  2n, the environment implements an efficient, ergodic sampling of all n-words—thus making them
maximally unpredictable. When n � m < 2n the sampling of n-sized words is far from ergodic and a
non-trivial structure is induced in the environment because the symmetry between n-sized words is
broken—they cannot be equally represented due to finite size sampling effects.

This allows that complex guessers (those with the ability to contemplate larger words, keep them
in memory and make choices regarding information encoded in larger strings) can guess more bits,
on average, than simpler agents. In terms of messages crossing the channel, while shorter words are
meaningless and basically get transmitted (i.e. are correctly guessed) by chance alone, larger words might
contain meaningful, non-trivial information that get successfully transmitted because they cope with
the environment in an adequate way.

Note that this symmetry breaking to favour predictability of larger words is just a mechanism that
allows us to introduce correlations in a controlled and measurable way. In the real world, this mechanism
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Figure 4. Probability of correctly guessing a bit in environment ensembles of constant size. p̄nm, average probability that n-guessers
correctly guess 1 bit in m-environments for different n values. Here p̄1m can be computed analytically (solid line in the main plot) and
marks an average, lower predictability boundary for all guessers. In the inset, the data have been smoothed and compared with a given
value ofα (represented by a horizontal line). At the intersection between this line and p̄nm we find m̄

n(α), the environment size at which
n-sized agents guess just enough bits to survive givenα. Note that n-guessers are evaluated only in environments of sizem≥ n.

might correspond to asymmetries between dynamical systems in temporal or spatial scales. Although
our implementation is rather ad hoc (suitable to our computational and conceptual needs), we propose
that similar mechanisms might play important roles in shaping life and endowing the universe with
meaningful information. Indeed, it might be extremely rare to find a kind of environment in which words
of all sizes become non-informative simultaneously.

The mutual information between a guesser’s response and the environment (i.e. between broadcast
messages and channel conditions) further characterizes the advantages of more complex replicators.
Figure 5a shows I(G : Em) and 〈I(G : E)〉Em . As we noted above, these quantities are not the same. Let us
focus on 1-guessers for a moment to clarify what these quantities encode.

Given an m-environment, 1-guessers have got just one bit that they try to emit repeatedly. They do not
react to the environment—there is not room for any reaction within one bit, so their guess is persistently
the same. The mutual information between the emitted bit and the arbitrary words B ⊂ E that 1-guessers
come across is precisely zero, as shown in the inset of figure 5a. Hence, 〈I(G : E)〉Em captures the mutual
information due to the slight reaction capabilities of guessers to the environmental conditions.

While the bits emitted by 1-guessers do not correlate with B ⊂ E, they do correlate with each given E
as they represent the most frequent bit in the environment. Accordingly, the mutual information between
a 1-guesser and the aggregated environments (reflected by I(G : Em)) is different from zero (main panel of
figure 5a). To this quantity contribute both the reaction capability of guessers and the fact that they have
hard-wired a near-optimal guess in Γ G

E , as explained in §2.1.
We take the size of a guesser n as a crude characterization of its complexity. This is justified because

larger guessers can store more complex patterns. 〈H(G)〉Em indicates that more complex guessers look
more entropic than less complex ones (figure 5b). Larger guessers come closer to the entropy level
of the environment (black thick line in figure 5b), which itself tends rapidly to log(2) per bit. Better
performing guessers appear more disordered to an external observer even if they are better predictors
when considered within their context. Note that 〈H(G)〉Em is built based on the bits actually emitted by
the guessers. In biological terms, this would mean that this quantity correlates with the complexity of the
phenotype. For guessers of fixed size n, we observe a slight decay of 〈H(G)〉 >Em as we proceed to larger
environments.

The key question is whether the pay-off may be favourable for more complex guessers provided that
they need a more costly machinery in order to get successfully reproduced. As discussed above, if we
would use e.g. ANN or Bayesian inference graphs to model our guessers, a cost could be introduced for
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Figure 5. Mutual information and entropy. Guessers with n= 1 (crosses), n= 2 (squares), n= 5 (pluses) and n= 10 (triangles) are
presented. (a) I(G : Em) and 〈I(G : E)〉Em (inset) quantify the different sources of information that allowmore complex guessers to thrive in
environments inwhich simpler life is not possible. (b) The entropy of a guesser’smessage given its environment seems roughly constant in
these experiments despite the growing environment size. This suggests an intrinsic measure of complexity for guessers. Larger guessers
look more random even if they might carry more meaningful information about their environment. The thick black line represents
the average entropy of the environments (which approaches log(2)) against which the entropy of the guessers can be compared.

the number of units, nodes or hidden variables. These questions might be worth studying somewhere
else. Here we are interested in the mathematical existence of such favourable trade-off for more complex
life. To keep the discussion simple, bit-guessers incur only in a cost proportional to the number of bits
that they try to transmit. Note that we do not lose generality, because such limit cost shall always exist.
Equation (2.9) captures all the forces involved: the cost of transmitting longer messages versus the reward
of a successful transmission.

Guessers of a given size survive in an environment ensemble if, on average, they can guess enough
bits of the environment or, using the information theory picture, if they can convey enough bits through
the channel (in any case, they survive if p̄n

m > α, which implies ρn
m > 0). Setting a fixed value of α we

find out graphically m̄n(α), the largest environment at which n-guessers survive (figure 4, inset). Because
m-environments look more predictable to more complex guessers we have that m̄n(α) > m̄n′

(α) if n > n′.
This guarantees that for α > 0.5 there always exist m-environments from which simple life is banned
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while more complex life can thrive—i.e. situations in which environmental complexity is an explicit
driver towards more complex life forms.

This is the result that we sought. The current model allows us to illustrate mathematically that limit
conditions exist under which more complex and costly inference abilities can overcome the pressure
for fast and cheaper replication. Also, the model allows for explicit, information-theoretically based
quantification of such a limit.

3.2. Evolutionary drivers
Despite its laborious mathematical formulation, we think that our bit-guesser model is very simple and
versatile. We think that it can easily capture fundamental information-theoretical aspects of biological
systems. In future papers, we intend to use it to further explore relationships between guessers and
environments, within ecological communities, or in more simple symbiotic or parasitic situations. To
illustrate how this could work out, we present now some minimal examples.

Let us first explore some dynamics in which guessers are encouraged to explore more complex
environments, but this same complexity can become a burden. As before, let us evaluate an n-guesser
Ng · Ne times in a sample of the m-environment ensemble. Let us also look at ρ̂n

m(α, Ng, Ne), the
accumulated reward after these Ng · Ne evaluations—note that ρ̂n

m is an empirical random variable now.
If ρ̂n

m(α, Ng, Ne) > 0, the n-guesser fares well enough in this m-environment and it is encouraged to
explore a more complex one. As a consequence, the guesser is promoted to an (m + 1)-environment,
where it is evaluated again. If ρ̂n

m(α, Ng, Ne) < 0, this m-environment is excessively challenging for this
n-guesser, and it is demoted to an (m − 1)-environment. Note that the n-guesser itself remains with a
fixed size throughout. It is the complexity of the environment that changes depending on the reward
accumulated.

As we repeatedly evaluate the n-guesser, some dynamics are established which let the guesser explore
more or less complex environments. The steady state of these dynamics is characterized by a distribution
Pn(m, α). This tells us the frequency with which n-guessers are found in environments of a given size
(figure 6a). Each n-guesser has its own distribution that captures the environmental complexity that the
guesser deals more comfortably with. The overlaps and gaps between Pn(m, α) for different n suggest
that: (i) some guessers would engage in harsh competition if they needed to share environments of a
given kind and (ii) there is room for different guessers to get segregated into environments of increasing
complexity.

The average

m̂n(α) =
∑

m
mPn(m, α) (3.1)

should converge to m̂n(α) � m̄n(α) under the appropriate limit. This is, if we evaluate the guessers
numerically enough times, the empirical value m̂n(α) should converge to the mean field value m̄n(α)
shown in the inset of figure 4. Figure 6b shows dynamically derived averages m̂n(α) and some deviations
around them as a function of α.

It is easily justified that guessers drop to simpler environments if they cannot cope with a large
complexity. It is less clear why they should seek more complicated environments if they thrive in a
given one. This might happen if some external force drives them; for example, if simpler guessers (which
might be more efficient in simpler environments) have already crowded the place. Let us remind, from
figure 4, how given an environment size more complex guessers can always accumulate a larger reward.
This might suggest that complex guessers always pay off, but the additional complexity might become
a burden in energetic terms—consider, e.g. the exaggerated metabolic cost of mammal brains. It is non-
trivial how competition dynamics between guessers of different size can play out. Let us gain some
insights by looking at a simple model.

n-guessers with n = 0, 1, 2, 3 and 4 were randomly distributed occupying 100 environments, all
of them with fixed size m. These guessers were assigned an initial ρ̂i(t = 0) = nρ0. Here, i = 1, . . . , 100
labels each one of the 100 available guessers. Larger guessers start out with larger ρ̂i(t = 0) representing
that they come into being with a larger metabolic load satisfied. A 0-guesser represents an unoccupied
environment. New empty environments might appear only if actual (n 
= 0) guessers die, as we explain
below. We tracked the population using Pm(n, t), the proportion of 0-, 1-, 2-, 3- and 4-guessers through
time.4

4These experiments were the more computationally demanding, that is why we took n = 1, 2, 3, 4 instead of the values n = 1, 2, 5, 10
used throughout the paper. The insights gained from the simulations do not depend on the actual values of n.
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Figure 6. Dynamics around m̄n(α). Again, guessers with n= 1 (solid line), n= 2 (dashed line), n= 5 (dotted line) and n= 10 (dot-
dashed line). (a) Pn(m,α) tells us how often we find n-guessers inm-environments when they are allowed to roam constrained only by
their survival functionρn

m. The central value m̂
n of Pn(m,α) must converge to m̄n(α) and oscillations around it depend (through Ng and

Ne) on how often we evaluate the guessers in each environment. (b) Average m̂n for n= 1, 2, 5, 10 and standard deviation of Pn(m,α)
for n= 1, 10. Deviations are not presented for n= 2, 5 for clarity. The inset represents a zoom-in into the main plot.

At each iteration, a guesser (say the ith one) was chosen randomly and evaluated with respect to its
environment. Then the wasted environment was replaced by a new, random one with the same size. We
ensured that every guesser attempts to guess the same amount of bits on average. This means e.g. that
1-guessers are tested twice as often as 2-guessers, etc. If after the evaluation we found that ρ̂i(t + �t) < 0,
then the guesser died and it was substituted by a new one. The n of the new guesser was chosen randomly
after the current distribution Pm(n, t). If ρ̂i(t + �t) > 2nρ0, the guesser got replicated and shared its ρ̂i with
its daughter, who overrode another randomly chosen guesser. This replication at 2nρ0 represents that,
before creating a similar agent, parents must satisfy a metabolic load that grows with their size. There is
a range (0 < ρ̂i < 2nρ0) within which guessers are alive but do not replicate.

Of course, this minimal model is just a proxy and softer constraints could be placed. These could
allow e.g. for random replication depending on the accumulated ρ̂i(t + �t), or for larger progeny if ρ̂i(t +
�t) >> 2nρ0. These are interesting variations that might be worth exploring. There are also some insights
to be gained from the simple set-up considered here. We expect that more complex models will largely
inherit the exploratory results that follow.

Figure 7a,b shows Pm(n, t = 10 000) with α = 0.6 and 0.65. Note that for large environments all
guessers combined do not add up to 100. Indeed, they fall short of that number—i.e. mostly empty
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Figure 7. Evolutionary drivers: competition. Coexisting replicators will affect each other’s environments in non-trivial ways which
may often result in competition. We implement a dynamics in which 1-, 2-, 3- and 4-guessers exclusively occupy a finite number of
environments of a given size (fixedm). The 100 available slots are randomly occupied at t = 0 and granted to the best replicators as the
dynamics proceed. We show Pm(n, t = 10 000) for m= 5, . . . , 39 and α = 0.6 (a) and α = 0.65 (b). The most abundant guesser at
t = 10 000 is shown for α ∈ (0.5, 1) (c) and α ∈ (0.6, 0.7) (d). Once m is fixed, there is an upper value of α above which no guesser
survives and all 100 available slots remain empty. Competition and the replication-predictability trade-off segregate guessers according
to the complexity of the environment—i.e. of the transmission channel. Coexistence of different guessers seems possible (e.g.m= 15
in b), but it cannot be guaranteed that the dynamics have converged to a steady distribution.

slots remain. The most abundant guesser after 10 000 iterations is shown in figure 7c as a function of
m and α.

These plots show how guessers naturally segregate in environments depending on their complexity,
with simpler guessers crowding simpler environments as suggested above. In such simple environments,
the extra reward earned by more complex guessers does not suffice to overcome their energetic cost and
they lose in this direct competition. They are, hence, pushed to more complex environments where their
costly inference machinery pays off.

After 10 000 iterations, we also observe cases in which different guessers coexist. This means that the
mathematical limits imposed by this naive model do not imply an immediate, absolute dominance of
the fittest guesser. Interesting temporal dynamics might arise and offer the possibility to model complex
ecological interactions.

So far, our guessers only interacted with the environment in a passive way, by receiving the reward
that the corresponding m-environment dictates. But living systems also shape their niche in return. Such
interplay can become very complicated and we think that our model offers a powerful exploratory tool.
Let us study a very simple case in which the actions of the guessers (i.e. their correctly guessing a bit
or not) affect the reward that an environment can offer.

To do so, we rethink the bits in an environment as resources that can not only be exhausted if correctly
guessed, but also replenished after enough time has elapsed. Alternatively, thinking from the message
broadcasting perspective, a spot on the channel might appear crowded if it is engaged in a successful
transmission. Assume that every time that a bit is correctly guessed it gets exhausted (or gets crowded)
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Figure 8. Evolutionary drivers: exhausted resources. Rather than monopolizing channel slots (as in figure 5), we can also conceive
individual bits as valuable, finite resources that get exhausted whenever they are correctly guessed. Then a successful replicator can spoil
its own environment and new conditionsmight apply towhere life is possible. (a) Average reward obtained by 1-, 2-, 5- and 10-guessers in
environments of different sizeswhen bits get exhaustedwith efficiencyβ = 1whenever they are correctly guessed. (b) Givenα = 0.575
and α = 0.59, 1- and 2-guessers can survive within upper and lower environment sizes. If the environment is too small, resources get
consumed quickly and cannot sustain the replicators. In message transmission language, the guessers crowd their own channel. If the
environment is too large, unpredictability takes over for these simple replicators and they perish.

with an efficiency β so that on average each bit cannot contribute any reward β(p̄n
m/m) of the time. The

average reward extracted by a guesser from an ensemble becomes

r̃n
m =

(
1 − β

p̄n
m

m

)
p̄n

mr, (3.2)

which is plotted for 1-, 2-, 5- and 10-guessers and β = 1 in figure 8.
Smaller guessers living in very small environments quickly crowd their channels (alternatively,

exhaust the resources they depend on). In figure 8b (still with β = 1) given some α, 1- and 2-guessers
can only survive within some lower and upper limits. Furthermore, the slope of the curves around these
limits also tell us important information. If these guessers dwell in environments around the lower limit
(i.e. near the smallest m-environment where they can persist), then moving to larger environments will
always report larger rewards. But if they dwell close to the upper limit, moving to larger environments
will always be detrimental. In other words, dynamics such as the one introduced at the beginning of this
section (illustrated in figure 6a) would have, respectively, unstable and stable fixed points in the upper
and lower limits of persistence.

This simple model illustrates how scarcity of resources (and, more generally, other kinds of guesser–
environment interactions) might play an important role as evolutionary drivers towards more complex
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life. This does not intend to be an exhaustive nor a definitive model, just an illustration of the versatility
of the bit-guessers and environments introduced in this paper.

4. Discussion
In this paper, we have considered a fundamental question related to the emergence of complexity in
living systems. The problem being addressed here is whether the mathematical conditions exist such that
more complex organisms can overcome the cost of their complexity by developing a higher potential
to predict the external environment. As suggested by several authors [6–8], the behavioural plasticity
provided by the exploratory behaviour of living systems can be understood in terms of their ability to
deal with environmental information [59].

Our models make an explicit approach by considering a replication–predictability trade-off under
very general assumptions, namely: (i) more complex environments look more unpredictable to simpler
replicators and (ii) agents that can keep a larger memory and make inferences based on more elaborated
information can extract enough valuable bits from the environment so as to survive in those more
challenging situations. Despite the inevitable cost inherent to the cognitive machinery, a selection process
towards more complex life is shown to exist. This paves the way for explicit evolutionary pressures
towards more complex life forms.

In our study we identify a transmitter (replicators at a given generation), a receiver (replicators at
the next generation) and a channel (any environmental conditions) through which a message (ideally
instructions about how to build newer replicators) is passed on. Darwinian evolution follows naturally
as effective replicators transit a channel faster and more reliably thus getting more and more space in
successive generations. The inference task is implicit as the environment itself codes for meaningful bits
of information that, if picked up by the replicators, boost the fitness of the phenotypes embodied by the
successful messages.

This view is directly inspired by a qualitative earlier picture introduced by Maynard-Smith [18].
That metaphor assigned to the DNA some external meaning that had to be preserved against the
environmental noise. Contrary to this, we propose that, as messages attempt to travel from a generation
to the next one, all channel conditions (including noise) pump relevant bits into the transmitted strings—
hence there is no need to protect meaning against the channel because, indeed, meaningful information
emerges out of the replicator’s interaction with such channel contingencies.

The way that we introduce correlations in our scheme (through a symmetry breaking between the
information borne by short and larger words due to finite size effects) is compatible with this view.
However, interestingly, it also suggests that meaningful information might arise naturally even in highly
unstructured environments when different spatial and temporal scales play a relevant role. Note that
our findings imply that environmental complexity is a driver of life complexity, but a question shall
remain: ‘where did all that environmental complexity arise from in the first place?’ The way in which
we link complexity and environmental size suggests an answer: that real living systems have an option
to wander in ever larger environments (which, by sheer size, will be more complex than smaller ones).
This is similar in spirit to the simulations illustrated in figure 6. Another possibility is that living systems
themselves shall modify their environment.

This way of integrating information theory and Darwinian evolution is convenient to analyse the
questions at hand that concern the emergence of complex life forms. But it also suggests further research
lines. As discussed at the beginning of the paper, guessers and their transmissible messages might and
should shape the transmission channel (e.g. by crowding it, as explored briefly in §3.2). What possible
co-evolutionary dynamics between guessers and channels can be established? Are there stable ones,
others leading to extinction, etc.? Do some of them, perhaps, imply open-ended evolution? Which ones?
These are questions that relate tightly to the phenomenon of niche construction, and that hinge on
the question posed in the previous paragraph regarding the many possible origins of environmental
complexity. We propose that they can be easily modelled within the bit-guesser paradigm that we
introduced in this paper. Further exploring the versatility of the model, a guesser’s transmitted message
might be considered an environment in itself; thus opening the door to ecosystem modelling based on
bare information theory. It also suggests the exploration of different symbiotic relationships from this
perspective and how they might affect coevolution.

An important question was left aside that concerns the memory versus adaptability trade-off of bit-
guessers. Here we studied guessers with a minimal adaptability to focus on the emerging hierarchy
of complexity. Adaptability at faster (e.g. at behavioural) temporal scales is linked to more complex



16

rsos.royalsocietypublishing.org
R.Soc.opensci.5:172221

................................................
inferences with richer dynamics. This brings in new dilemmas as to how to weight the different building
blocks of complex inference—e.g. how do we compare memory and if–else or while instructions? These
and other questions are left for exploration in future research.

Finally, it is interesting to contextualize our results along with two recent papers published after
this work was concluded. On the one hand, Boyd et al. [60] discuss how a system can behave as a
thermodynamic engine that produces work with environmental correlations as fuel. This is, we believe,
a very relevant discussion for the thermodynamic limits of biophysical systems that could bring explicit
meaning to our abstract costs and rewards. On the other hand, Marzen & DeDeo [34] study the
relationship between an environment and the resources devoted to sensory perception. They use a
utilitarian approach to discover two regimes: one in which the cost of sensory perception grows with
environmental complexity, and another one in which this cost remains broadly independent of the
complexity of the environment. The authors say then that lossy compression allows living systems to
survive without keeping exhaustive track of all the information in the environment. In these two papers,
replication and the pressure of Darwinian selection are not so explicitly discussed as in our research, but
both works bring in interesting elements that can enrich the bit-guesser framework.
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