

.

NAVAL POSTGRADUATE SCHOOL

Monterey , California

THESIS

TESTING, VALIDATION, AND VERIFICATION
OF AN EXPERT SYSTEM ADVISOR FOR AIRCRAFT

MAINTENANCE SCHEDULING (ESAAMS)

by

Christian W. Andrieu

March 1991

Thesis Advisor Martin J. McCaffrey

Approved for public release; distribution is unlimited

T256253

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
form Approved
OMB No 0704 0188

la REPORT SECURITY CLASSIFICATION

UNCLASS IFIED
lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION /DOWNGRADING SCHEDULE

3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
distribution is unlimited.

A PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6o NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

Code AS

7a NAME OF MONIIORING ORGANIZATION

Naval Postgraduate School

6c. ADDRESS {City. State, and ZIP Code)

Monterey, CA 93943-5000

7b ADDRESS {City. State, and ZIP Code)

Monterey, CA 93943-5000

8a NAME OF FUNDING / SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City. State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

11 TITLE (Include Security ClastificaUon) TESTING, VALIDATION, AND VERIFICATION OF AN EXPERT
SYSTEM ADVISOR FOR AIRCRAFT MAINTENANCE SCHEDULING (ESAAMS)

12 PERSONAL AUTHOR(S)

Andrieu, Christian W.
13a TYPE OF REPORT

Master's Thesis
13b TIME COVERED
FROM TO

14 DATE OF REPORT (Year. Month. Day)

1991 March
15 PAGE COUNT

95
i6 supplementary notation The views expressed in this thesis are those of the
author and do not reflect the official policy or position of the Depart-
ment of Defense or the U.S. Government
17 cosati codes

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS {Continue on reverie if necessary and identify by block number)

Expert Systems, Validation Expert Systems,
Testing Expert Systems, Aviation Maintenance

19 ABSTRACT {Continue on reverse if necessary and identify by block number)

Aircraft maintenance control operates in a dynamic, high intensity
environment. Maintenance work priorities are made several times daily
under extremely demanding and time sensitive conditions. The person
responsible for scheduling aircraft, usually the Maintenance Master Chief,
draws upon years of experience when assigning priorities for both
scheduled and unscheduled maintenance. An Expert System Advisor for
Aircraft Maintenance Scheduling (ESAAMS) is being implemented at the
Naval Postgraduate School. This thesis examines what should be included
within an expert system test plan and proposes a prototype test plan
for ESAAMS. Development of ESAAMS will provide valuable insight for
incorporation of a leading edge technology into today's complex military.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT

El UNCLASSIFIED/UNLIMITED D SAME AS RPT DTlC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified
22a NAMi OF RESPONSIBLE INDIVIDUAL
Martin J. McCaffrey

22b TELEPHONE (include Area Code)
(408) 646-2488

22c OFFICE SYMBOL
AS/Mf

DO Form 1473, JUN 86 Previous editions are obsolete.

S/N 0102-LF-014-6603
i

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

#19 (Continued)

The potential improvement in operational readiness, consistent
decision making, and ability to replicate an expert's decision
making process for scheduling aircraft maintenance makes implement-
ing ESAAMS a worthwhile venture.

DD Form 1473. JUN 86 (Reverse) security classification of this page

ii Unclassified

Approved for public release; distribution is unlimited

Testing, Validation, and Verification
of an Expert System Advisor For Aircraft

Maintenance Scheduling (ESAAMS)

by

Christian W. Andrieu
Lieutenant Commander, United States Navy
B.S., University of New Orleans, 1977

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
March 1991

u

ABSTRACT

Aircraft maintenance control operates in a dynamic, high

intensity environment. Maintenance work priorities are made

several times daily under extremely demanding and time

sensitive conditions. The person responsible for scheduling

aircraft, usually the Maintenance Master Chief, draws upon

years of experience when assigning priorities for both

scheduled and unscheduled maintenance. An Expert System

Advisor for Aircraft Maintenance Scheduling (ESAAMS) is being

implemented at the Naval Postgraduate School. This thesis

examines what should be included within an expert system test

plan and proposes a prototype test plan for ESAAMS.

Development of ESAAMS will provide valuable insight for

incorporation of a leading edge technology into today's

complex military. The potential improvement in operational

readiness, consistent decision making, and ability to

replicate an expert's decision making process for scheduling

aircraft maintenance makes implementing ESAAMS a worthwhile

venture

.

IV

TABLE OF CONTENTS

I

.

INTRODUCTION 1

A. BACKGROUND 1

B. PURPOSE 2

C. ESAAMS 3

D. SOFTWARE DEVELOPMENT TOOLS 3

E

.

SCOPE AND LIMITATIONS 3

F

.

ORGANIZATION OF THE STUDY 5

II

.

EXPERT SYSTEMS LIFE CYCLE 6

A. SPIRAL MODEL 7

B. EXPERT SYSTEM LIFE CYCLE 10

1

.

Initiation Phase 12

2

.

Conception Phase 12

3

.

Definition/Design Phase 15

4. Development Phase (Operational Prototype). 18

5

.

Deployment Phase 20

6. Post Deployment Phase 20

C. SUMMARY 21

III. VALIDATION, VERIFICATION AND TESTING OF EXPERT
SYSTEMS 22

A. PURPOSE OF VALIDATION AND VERIFICATION 23

B. VALIDATION OF EXPERT SYSTEMS 25

C. VALIDATION AND VERIFICATION DURING SYSTEM
DEVELOPMENT 26

D. FIRST GENERATION RULE SET 27

V

E. EXPANDING THE KNOWLEDGE BASE AND TESTING 28

1

.

Turing Test 30

2

.

Quantitative Validation 30

F. OPERATIONAL TESTING 31

G. TESTING AND TEST PLANS 32

1. Structural Tests of the Knowledge Base.... 35

2. Content Specific Tests for the Knowledge
Base 35

3

.

Performance Tests 36

4

.

Usability Tests 38

H. INDEPENDENT VALIDATION AND VERIFICATION
(IV&V) 39

I. VALIDATION & VERIFICATION CHECKLIST 40

J. SUMMARY 42

IV. KNOWLEDGE BASE DEBUGGING 43

A. CONSISTENCY CHECKS 43

1

.

Redundant Rules 43

2. Conflicting Rules 44

3

.

Subsumed Rules 45

4

.

Unnecessary IF Conditions 45

5

.

Circular Rules 46

B. COMPLETENESS CHECKS 47

1. Unreferenced Attribute Values 47

2. Illegal Attribute Values 48

3. Unreachable Conclusions 48

4

.

Dead End Goals 49

C. NEXPERT OBJECT 49

VI

1. Rule Network 49

2

.

Syntax Checker 50

3

.

Breakpoints 51

4. Dead End Goals 51

5

.

Summary 52

D. EXTERNAL PROGRAMS 52

1. CHECK 52

2

.

VALIDATOR 53

E

.

SUMMARY 54

V. SOFTWARE TEST PLAN 56

A. SCOPE 56

B. ESAAMS BACKGROUND 56

C. UNIQUE CHARACTERISTICS OF EXPERT SYSTEMS 57

D. DESIGN OF EXPERT SYSTEMS 58

E. CRITERIA 59

F. TESTING STAGES 60

1. Initial Design Testing Stage 60

2 . Development Testing Stage 63

3

.

Operational Testing 75

4

.

Maintainability Testing Stage 76

E. DOCUMENTATION 77

F. SUMMARY 77

VI

.

RECOMMENDATION AND CONCLUSIONS 79

A. RECOMMENDATIONS 79

1

.

Requirements Document 79

2

.

Ensure the Expert is Available 81

vii

3

.

Field Test Early and Often 81

4

.

Keep Conclusions Simple 81

5. Establishment of a Maintenance Plan 82

B. CONCLUSIONS 82

LIST OF REFERENCES 84

INITIAL DISTRIBUTION LIST 86

vm

I . INTRODUCTION

Expert systems are prevalent throughout the commercial

sector of industry. They serve many useful purposes such as

aiding in the troubleshooting of sophisticated electronic

systems, and diagnosing medical ailments. Many expert systems

have resounding success stories, saving corporations which

have employed them millions of dollars.

Expert system development has not been as actively pursued

in the Department of Defense. The lack of funding has often

been cited as the primary reason. Students at the Naval

Postgraduate School are implementing an expert system advisor

for aircraft maintenance scheduling (ESAAMS)

.

This thesis will examine what should be included within an

expert system test plan and proposes a prototype test plan for

ESAAMS. Methods of validating and verifying expert systems

will be discussed extensively.

This chapter discusses the background, purpose, scope, and

limitations of this study. Software used in the thesis is

briefly discussed, followed by a chapter by chapter synopsis

of the study.

A. BACKGROUND

Aircraft maintenance control operates in a dynamic, high

intensity environment. Maintenance work priorities are made

several times daily under extremely demanding and time

1

sensitive conditions. ESAAMS is being developed to assist

maintenance control personnel in the prioritization of repairs

for mission critical aircraft.

A critical aspect of any software life cycle is the

development of a testing and evaluation plan. Proper testing

will provide developers with the limitations of the system.

System evaluations should be conceived, and a comprehensive

test plan written in the earliest phases of design. Planning

tests early in the life cycle forces developers to define

specific objectives the expert system is expected to

accomplish.

For an expert system part of the testing process is the

actual validation and verification of the knowledge base.

Simply running test programs and comparing results to those of

the expert is not enough. Qualitative and quantitative

measures must be developed to accurately measure the

capabilities of the system.

B. PURPOSE

This thesis develops a prototype testing plan to assist in

the development of an aircraft maintenance scheduling system

advisor. Specific testing, validation and verification (V &

V) measures will be examined for expert systems in general,

then applied towards development of a test plan for ESAAMS.

Limitations of the expertise to be developed will be explored,

as well as the required level of response and accuracy

demanded by the user. Without meeting the user's acceptance

2

criteria, support for the development of ESAAMS will likely

disappear rapidly.

C. ESAAMS

ESAAMS is a software program currently under development

by students at the Naval Postgraduate School. Its purpose is

to assist maintenance control personnel within a Navy squadron

in scheduling aircraft for planned and unscheduled mainte-

nance. Using the expertise of maintenance control experts,

advisory decisions on which aircraft to schedule for main-

tenance during a given timeframe will improve squadron

readiness, while assisting maintenance control in making more

consistent scheduling decisions.

D. SOFTWARE DEVELOPMENT TOOLS

Nexpert Object, Version 1.1 (Neuron Data Inc., Palo Alto,

CA) has been chosen as the expert system shell for development

of ESAAMS. Availability, vendor support, and the shell's

ability to represent knowledge in various dimensions were the

primary motivators in selecting NEXPERT OBJECT. Several

testing and debugging tools are available within the software,

and will be explored later in the thesis.

E. SCOPE AND LIMITATIONS

Aircraft maintenance scheduling using expert systems was

determined to be feasible by McCaffrey [Ref . 1] . During the

initial stages of research on this thesis, a fighter/attack

(VFA) squadron from Lemoore NAS, CA V was identified for

3

participation in the development of ESAAMS. The maintenance

control master chief was interviewed on one occasion for the

purpose of gathering knowledge and his 'rules of thumb' for

decision making. Further interviews and initial prototype

development were planned accordingly. Once prototype

development was completed, testing of ESAAMS was to follow.

Due to operational commitments, the VFA squadron unexpectedly

deployed before further development of ESAAMS was possible.

Continued progress on ESAAMS used the aircraft maintenance

experience of the author. A proposed test plan developed for

a generic aircraft squadron has been incorporated within this

study. No actual testing has been completed due to the

development delay of the prototype expert system caused by the

nonavailability of the squadron.

An exhaustive literature review of testing, validation,

and verification of expert systems indicates that little has

been documented in this area. Quantitative measures have not

been formally developed to assist the system designer in

validating and verifying an expert system. However, an

increase in research on this topic is beginning to appear in

the literature. Several software packages are in early phases

of development for testing of expert system knowledge bases

and will be discussed later in the study.

F. ORGANIZATION OF THE STUDY

Chapter II focuses on testing and evaluation within the

life cycle of an expert system. Phases of the life cycle are

described, with prototypes mapped into the life cycle.

Chapter III details the Validation and Verification (V &

V) process and looks into formal testing procedures. An

indepth study of qualitative and quantitative means for

measuring expert system validity is examined.

Chapter IV describes software debugging techniques for

expert system knowledge bases. Testing and debugging tools

within NEXPERT OBJECT are described. Finally, specific

software available for testing expert systems is examined.

Chapter V contains a proposed testing plan to be

incorporated within the life cycle of ESAAMS.

Chapter VI summarizes the research and makes several

recommendations based upon the research findings.

II. EXPERT SYSTEMS LIFE CYCLE

Expert systems have been one of the most emphasized areas

in Artificial Intelligence, with research producing scores of

applications for industry and some initial applications for

the Department of Defense (hence, development of ESAAMS for

military aircraft scheduling) . Feigenbaum defines an expert

system as: "an intelligent computer program that uses

knowledge and inference procedures to solve problems that are

difficult enough to require significant human expertise for

their solution." [Ref. 2: p. 1] It is the very nature of the

expert system, that of representing human knowledge, as well

as dealing with uncertainties that makes expert systems

different from conventional software, and inherently more

difficult to test, verify and validate.

An expert system differs from more conventional software

programs in several important respects. Duda observes that in

an expert system," . . . there is a clear separation of

general knowledge about the problem (the rules forming a

knowledge base) and methods for applying the general knowledge

to the problem (the rule interpreter)." [Ref. 2:p. 6] In a

conventional computer program, knowledge pertinent to the

problem and methods for utilizing the knowledge are all

intermixed, making it difficult to change the program. In an

expert system, "... the program itself is only an

interpreter (or general reasoning mechanism) and (ideally) the

system can be changed by simply adding or subtracting rules in

the knowledge base." [Ref. 2: p. 6]

Although easy enough to do (add or subtract rules in the

knowledge base) , consequences may be disastrous. Reasoning

throughout the program is altered when a single rule is fired

incorrectly, or not fired (or is missing altogether)

.

Thorough testing is required to detect adverse changes to the

system, or in the case of correct knowledge, prove the system

correct.

The goal of the software life cycle model is to ensure

development of a structurally sound, viable, and usable

software package within time and budgetary constraints. This

chapter discusses the spiral model used for expert system

software development and testing within the expert system life

cycle.

A. SPIRAL MODEL

Validation methods for software are difficult, time

consuming, and expensive. Correctness is not a sure thing, as

evidenced by errors found after software is released,

requiring the necessity of continued maintenance. Traditional

software validation is represented by the waterfall model,

[Ref. 3], where the life cycle evolves from the requirements

stage and leads into specification, design, and coding. This

methodology is not oriented towards the incremental develop-

ment method typical of knowledge based systems.

7

The spiral model, Figure 1, adapted from Boehm, [Ref. 4]

most closely approximates an appropriate developmental

approach for a new technology addressing ill defined problems,

where heuristics have a dominant role.

The radial dimension represents cumulative cost and the

angular dimensions represent progress made in completing each

cycle of the spiral. Starting in the innermost spiral, and

radiating outward in a clockwise fashion, each new cycle

begins by defining risk analysis, development of a prototype,

testing, verification, and planning for the next phases.

8

/\

Determine
objectives,

alternatives,

constraints

'I

Plan next

phases

Pivqimi ttvu
Evaluate

alternatives,

identify, resolve

risks

Develop, verify

next level

prototype

Figure 1 (Boehm, 1988)
Spiral software development model

Characteristics such as performance, functionality, and

flexibility are defined in each cycle. Boehm [Ref. 4:p. 65]

describes the next steps:

The next step is to evaluate the alternatives relative
to the objectives and constraints. Frequently, this
process will identify areas of uncertainty that are
significant sources of project risk. If so, the next

step should involve the formulation of a cost-effective
strategy for resolving the sources of risks. This may
involve prototyping, simulation, benchmarking, reference
checking, administering user questionnaires, analytic
modeling, or combinations of these and other risk-
resolution techniques.

Once the risks are evaluated, the next step is
determined by the relative remaining risks. If
performance or user-interface risks strongly dominate
program development, or internal interface-control
risks, the next step may be an evolutionary development
one: a minimal effort to specify the overall nature of
the product, a plan for the next level of prototyping,
and the development of a more detailed prototype to
continue to resolve the major risk issues.

If this prototype is operationally useful and robust
enough to serve as a low-risk base for further product
evolution, the subsequent risk-driven steps would be the
evolving series of evolutionary prototypes going toward
the right in [Figure 6]. In this case the option of
writing specifications would be addressed but not
exercised. Thus, risk considerations can lead to a
project implementing only a subset of all the potential
steps of a model.

Noteworthy is that in each cycle the software is

thoroughly analyzed and tested prior to further development.

This technique of advancing more functionally complete

prototypes supported by the spiral model reduces the risk

associated with development of ill defined systems and

promotes a product high in user confidence.

B. EXPERT SYSTEM LIFE CYCLE

The RAND Corporation [Ref . 5: p. 12] has proposed an expert

system life cycle based upon the spiral model described

earlier. Figure 2, adapted from Kameny et al, [Ref. 5:p. 12]

describes a model of this life cycle.

10

Initiation

Phase

1

Concept
Phase

Concept
Prototype

1

Definition and
Design Phase <— Demonstration and

Testbed Prototypes

1

Development
Phase ^— Operational

Prototype

I

Deployment
Phase

I

Post Deployment
Phase

Figure 2
Expert, system life cycle

This expert system development process is configured into the

following phases:

- Initiation Phase

- Concept Phase (Concept Prototype)

- Definition/Design Phase (Demonstration Prototype and
Testbed Prototype)

- Development Phase (Operational Prototype)

11

Deployment Phase

- Post Deployment Phase

The expert system life cycle defined by this model

involves four stages of prototyping: the concept (initial)

prototype, demonstration prototype, testbed prototype, and

operational prototype, to be discussed in the following

sections.

1. Initiation Phase

This phase determines 'what is wanted' by both upper

management and the user in the context of an expert system.

The process begins with an initial screening to determine if

the problem is suitable for development into an expert system.

Once the initial screening has been completed, a more detailed

analysis is accomplished.

2. Conception Phase

This phase decides how the problem is to be solved.

A deeper understanding of the problem is learned through

further research and development of a conceptual prototype, a

first prototype in its roughest form. One of the most

critical aspects of this phase is development of the initial

test and evaluation plan, which will be used during the

Definition/Design, Development, Deployment, and Post Deploy-

ment phases. The test and evaluation plan will need further

refinement during the subsequent stages of the life cycle.

During initial development of the test and evaluation

plan, test cases statistically representative of the problem

12

categories must be defined. These test cases must cover the

spectrum of problems envisioned by the user, and be

representative of all known categories in the expert's domain.

Enough test cases must be available for testing from the

initial prototype through acceptance testing by the user. The

initial set of test cases developed must be extensive enough

to cover the entire testing cycle. During subsequent

prototype testing results are compared to those obtained after

initial prototype testing, in an effort to determine what

effect the new knowledge has within the expert system. This

is not to preclude new tests from being added to the test case

data bank as new knowledge is added. Rather, these new test

cases will supplement those initial cases used throughout the

life cycle.

The test and evaluation plan must also involve end-

user participation at critical points throughout the process.

These end-users must be identified early and be separate from

those users working closely with the development team. The

knowledge engineer needs to work closely with the end-users to

develop evaluation techniques which determine how much benefit

will be derived by the organization after implementation of

the expert system. Acceptance testing must be defined in the

initial test and evaluation report and used as a determinant

as to whether further development in future stages should

proceed (acceptable) or if refinement is required (not

acceptable)

.

13

Timeliness measures, system correctness, and

acceptable levels of degradation as the system grows in

complexity, are tests for acceptance. Timeliness measures

determine how long the user is required to input information

in the system before a conclusion is reached. If the expert

system requires more time to analyze the problem domain and

search through the network than what the user is willing to

allow, then the system will be doomed to failure. The user

will determine it is easier to use conventional methods to

reach a conclusion and not employ the expert system.

System correctness determines the level of accept-

ability from both the expert and user's viewpoint.

Remembering that the expert is not always completely accurate,

a determination must be made as to the level of accuracy of

the expert system response. A certain level of accuracy must

be acceptable to both the expert and the users.

Degradation measures how well the expert system

responds after it has been running for a period of time and

many user inputs have been introduced. Degradation may

require a review of heuristics, redesign of the knowledge

base, or a different selection of tools.

Testing and evaluation methodologies and results must

be accurately recorded throughout the entire life cycle, then

delivered to the maintenance organization during the post

deployment phase. An accurate track history of system

development, with test case results annotated in detail, will

14

greatly assist those responsible for maintaining the expert

system.

In addition to preparing the test and evaluation plan,

preliminary training is provided for the expert, selected end-

users, and staff involved in development. Training should

consist of, at a minimum, explaining the technology, providing

on line experience with a fully functional system, and

creation of a very small rule based system for demonstration

purposes. This will encourage familiarity and reduce the

perceived threat normally felt when acquiring new technology.

Once the initial prototype has been evaluated by the

expert and determined to be satisfactory given the defined

limits of acceptance, the project team is ready to move into

the Definition/Design phase.

3. Definition/Design Phase

This phase consists of two prototyping efforts, the

demonstration prototype and the testbed prototype. The

demonstration prototype is the second of four prototypes

developed during the expert system life cycle. Development of

the prototype is accomplished with an expert system tool

selected for its flexibility during design. The first step in

the technical process of building the prototype is that of

defining the technical plan. This effort includes describing

the functionality of the prototype, which particular tests

will apply from the test and evaluation plan, and obtaining

commitments from the experts and selected end-users for

15

testing. Once testing begins, a predefined objective must be

attained through each iteration. Required results, if not

attained, force the knowledge engineer to reexamine the

knowledge base, consult with the expert, and retest until

satisfactory results are attained. The final testing of the

prototype involves evaluation by a small group of users not

directly involved in the prototyping effort.

Test cases should be evaluated by experts independent

of the expert system development effort. Additional qualified

experts should be made available to review testing results at

the end of every iteration. The credibility of the experts

used to evaluate test results adds to the credibility of the

expert system.

The testbed prototype, the third of four prototypes,

differs from the demonstration prototype in that the completed

version will result in a stand alone system. Testbed

implementation will actually use the expert system tool that

will be used in the operational prototype phase. Application

needs will be stressed rather than flexibility of the tool.

Experience from building the earlier prototype is used. The

purpose of the testbed prototype is to build upon the previous

iterations and develop an expert system more meaningful to the

user. Each iteration has a well defined objective. Testing

of the prototype is similar to that of previous phases. The

measure of the actual validity of the prototype, and the

expert system itself, is in essence how well it captures the

16

knowledge of the expert and how well the system can explain

its reasoning. There will be four sets of tests: [Ref. 5:p.

86]

1. Test cases from previous test and evaluation runs
(including Demonstration Prototype test and evaluation
runs) will be rerun to establish the fact that the new
expert system supports the established test and evalua-
tion baseline. It is possible that a major change will
induce some test cases to fail (e.g., if a category has
been removed) . Any failures should be individually
addressed by the knowledge engineer and expert.

2. New test cases will be run by the test and evaluation
team (with the help of technical team members if
necessary) and the responses recorded and analyzed with
respect to the criteria. Special tests may need to be
run to demonstrate the ability of the expert system to
meet the performance requirements.

3. New test cases will be run by the expert and responses
recorded and analyzed by the expert with respect to the
criteria. If the rationale has not been provided, then
the expert should judge how well the expert system
handled the reasoning behind the response.

4. End-users will use the system to handle selected cases
with technical staff help if necessary. Their perform-
ances will be monitored and reported by the test and
evaluation staff. After using the system, the end-users
will be interviewed about the problems they have and
their suggestions for improvements. If possible, the
end-user tests should be recorded using audiovisual
equipment.

The test and evaluation sessions should be reported in

a progress notebook. Updates for the test and evaluation plan

need to be introduced. Updates include such things as new

test cases or modifications of test cases already intro-duced

with new values. Experiences from developing the testbed

prototype may indicate a need for better criteria or for

changes in the design or numbers of test cases. Sufficient

test cases may have already been provided. However, unlike a

17

conventional system, where a correct answer exists for test

cases, an expert system response may be considered adequate

for each test case. The more varied the test cases are, the

better the expert system can cover the entire problem domain,

testing for resiliency at the edges. Test cases will cover

those values frequently seen in the problem domain, those on

the "boundary edge" which are infrequently used, and those

values whose usage is never expected, in a determination of

where the system will fail.

The final test and evaluation using the testbed

prototype takes users unfamiliar with the project, gives them

some end-user training, and haves them solve a set of problems

using the expert system. Evaluation criteria must be

reestablished beforehand. Results are diligently recorded,

adding to the lessons learned in previous iterations and

phases.

4. Development Phase (Operational Prototype)

The operational prototype, the last of the four pro-

totypes developed, is a stand alone program using the actual

expert system tools to be incorporated in the final system.

The end product should meet all requirements expected of the

fully developed expert system. Speed, robustness, clarity,

the ability to explain its reasoning, and correctness are the

performance requirements given detailed examination. A

friendly user interface as determined by the user is

18

evaluated. Degradation must be examined after the system has

been operating continuously for a long period of time.

Specific testing procedures are required of the

operational prototype before a fully capable expert system can

be deployed. Test cases run during testbed prototyping should

be run again, with differences compared. Additionally, more

complex cases than those used during earlier testing should be

run. Correctness and timeliness of performance are evaluated.

Actual data from a current case in the real world is

then tested on the operational prototype. Once again,

correctness and timeliness of responses are evaluated by the

reviewing experts. Recoverability is important. Failure can

be introduced in many ways, and the system must be able to

fully recover and function as before. Physical tests on the

system include power outages and specific equipment failures.

Errors introduced which the system needs to recognize and

overcome include entering wrong data values, duplicating data,

or intentionally leaving data out. Full testing and

evaluation follows each malfunction, with results meticulously

recorded by the knowledge engineer.

Testing for robustness involves leaving the prototype

running for an extensive period of several days. Experts and

end-users test the system exhaustively to determine if any

degradation is existent and the extent of recovery. The

purpose of this phase is to take the testbed prototype and

incorporate it into an operational environment.

19

Once exhaustive testing of the operational prototype

is complete, the expert system life cycle moves into the

deployment phase.

5. Deployment Phase

During this phase the Operational Prototype developed

in the previous phase is tested by the users at the user's

sites. Training is conducted and the prototype is used under

realistic conditions by all operators. This process of moving

from the prototype version to the real life system may be a

simple maneuver of changing a few parameters, to a more

complex modification.

Deficiencies requiring extensive modifications

discovered during operational prototype testing may cause the

entire project to revert back to the testbed prototyping

stage. Further development, testing and evaluation will be

required before the deployment phase is reached again. The

operational system, once completed beyond the prototype stage,

is released to the user.

6. Post Deployment Phase

This phase takes place after the expert system has

been turned over to the support organization during the

Deployment phase. During it's first six months of operation,

the expert system must be updated as necessary and observed

for any degeneracy in results. A maintenance team will track

the system, adding updates as required, and reporting to the

expert system developers any problems encountered. Beyond the

20

six month post deployment phase, the expert system is normally

turned over to the maintenance team for any upgrades required

in the future.

C. SUMMARY

The spiral model, as developed by Boehm, has proven useful

in expert system development. Its design is based on the

incremental development method typical of knowledge based

systems

.

The expert system development process consists of several

phases: the initiation phase, concept phase, defini-

tion/design phase, development phase, deployment phase, and

the post deployment phase.

Chapter III examines the validation, verification, and

testing procedures used for development of expert system

testing plan.

21

III. VALIDATION, VERIFICATION AND TESTING
OF EXPERT SYSTEMS

Validation, verification, and testing (W&T) are formal

methods used to determine both the correctness of a program

and whether the program will satisfy user requirements. A

shortfall of W&T requirements reduces the likelihood of

acceptance by users. Several questions may be raised. How is

the user to know when the expert system is correct? What are

the experts acceptability standards for the expert system? Is

the proper advice offered?

Testing and validation methods for conventional software

are time consuming, difficult, and not always correct.

Correctness in this case refers to desired software specifica-

tions being included, as opposed to correctness with no chance

of error. Traditional software validation is incorporated

into usage of the waterfall model, until recently the most

prevalent model of software development. It involves the

entire software life cycle, and is not oriented towards the

incremental prototype stages of knowledge based systems

development. Conventional software projects have precise,

rigid requirements for development, whereas knowledge based

systems, by their nature, often have less precise design

specifications, especially during early development. This can

be overcome by incorporation of the Boehm spiral model of

rapid prototyping as described in Chapter II. Newer

22

specifications are added as the prototype evolves from

simplistic to more complex.

Knowledge based systems are non-procedural, not containing

modules analogous to those in conventional software. Inputs

are not necessarily mapped to specific outputs. Combined with

less than precise design requirements, testing of a knowledge

based system becomes inherently more difficult.

To date, research on testing methodologies for knowledge

based systems has not approached that of conventional software

systems

.

This chapter will discuss validation and verification

(V&V) techniques for expert system development. V&V in the

first generation rule set will be examined, followed by

further V&V procedures as incremental prototypes are

developed. Finally, testing of the entire expert system prior

to final delivery is discussed. Quantitative and qualitative

measures are introduced, with the final sections of the

chapter discussing development of a successful test plan for

expert systems.

A. PURPOSE OF VALIDATION AND VERIFICATION

Validation refers to the process of determining whether

the expert system is 'correct'; that is, whether it meets the

level of accuracy as required by an acceptable set of

standards. Validation substantiates whether the right system

has been built [Ref. 6:p. 29]. It may be considered a "live

23

activity" in which the software is tested under both

laboratory and operational conditions.

The verification process determines whether the completed

system has been correctly implemented according to

predeveloped specifications. Often, verification is nothing

more than a paper drill, where specifications are read,

compared, and cross referenced. This research has found a

paucity of literature and an indication of limited use of V&V

in expert systems development.

Green and Keyes [Ref . 7: p. 39] list the following benefits

if V & V were applied to expert system development:

- Expert systems would be fielded with less risk of
software failure. This would promote the use of expert
systems technology in mission critical systems.

- Organizations wary of expert systems because of the lack
of V & V would be more inclined to employ this new and
desirable technology.

Experimental application of V & V to expert systems would
permit the development of effective V&V methodologies
for expert systems.

What is needed is a way to make progress towards

developing an effective V&V methodology. First and

foremost, a specifications document must be written and

maintained throughout the development of the expert system.

The expert system developer must have a clear idea of what

the expert system is expected to accomplish. Once these

expectations are defined in the specifications document,

design, testing, and V&V for the expert system commence.

24

B. VALIDATION OF EXPERT SYSTEMS

To a large extent, the quality of the expert system is

determined by validation of the software. Quality is

predefined in the specifications document. Accuracy of the

final recommendation, time required to reach this recommenda-

tion, and possible system degradation are all measures of

quality. The expert system must be tested exhaustively prior

to being put into operation by the end user. Validation is

not to be considered a once and for all check of the system to

see if it meets a given specification. Specifications may

change during the evolutionary cycle of the expert system

development. Validation must follow each of the specification

changes

.

Defining the quality of an expert system, and thereby the

criteria by which it is to be judged, is taken into account

when drawing up system specifications. For instance, in the

development of ESAAMS, how is the new knowledge to be added

and the old knowledge maintained? Can the new knowledge be

linked to the old knowledge in a consistent fashion recogniz-

able by the expert system? During various stages of the

development cycle, the following factors should be considered

[Ref. 8:pp. 174-175].

1. The degree of correctness of the system's conclusion .

Was its advice good or not? Acceptable is a reasonable
response, one that may not be entirely correct, but is
certainly not wrong.

2. Sensitivity . To what extent is the correctness and/or
precision of the outputs affected by the precision of
the input information?

25

3. The precision and correctness of anv intermediate
conclusions . Intermediate conclusions are necessary for
tracing the logic used within the network. Accuracy of
these intermediate conclusions determine how precise the
final conclusion will be.

4. The precision and economy with which the reasoning is
carried out . This includes the number of steps to reach
the conclusion and the amount of data required as
opposed to that required by the human expert, and other
factors that bear upon acceptability of the system.

5. Response time . This is the total time taken by the
system in giving its conclusion.

6. Robustness . Resilience under variations in such factors
as the environment and the quality of the users.

Once these factors are incorporated into the specifica-

tions document, verification of the expert system is straight-

forward. Correctness of intermediate and final conclusions,

sensitivity, response time, and robustness are measured

against the predetermined measurement. When specification

requirements are not achieved, further incremental development

and testing is necessary for deliverance of an acceptable

product

.

C. VALIDATION AND VERIFICATION DURING SYSTEM DEVELOPMENT

Prerau [Ref. 9: p. 312] describes the knowledge acquisi-

tion cycles as Elicit-Document-Implement-Test. Repeated

validation testings occur in the life cycle of the evolving

expert system. During the testing stage, deficiencies in the

expert systems knowledge base are detected by comparing

results of a test case against either documented knowledge or

the human expert. Each time the test case is run, the new

incorporated knowledge is tested with other previously tested

26

knowledge. Should the program abort, a major error is

suspect. When the program runs to completion, but results

disagree with those of the expert, the new knowledge, as

defined by rules, is suspect.

D. FIRST GENERATION RULE SET

The first generation rule set will typically consist of a

few dozen rules. Main objectives of this early prototype are

to "reexamine the original objectives and more precisely

determine the problem domain, and establish the degree of

detail desired in the system." [Ref. 10: p. 44]

Accuracy of the system is quantitatively measured by

comparing the number of correct predictions with known data.

Statistical inferences may then be drawn using accumulated

data. Percentages of correct answers should approach those of

the human expert. A simple percentage of right/total may be

sufficient. An alternative method would be to weight certain

conditions which are more important to the expert system

developer. For example, certain test cases more representa-

tive of the expert system environment are given layer relative

weights than others. Statistical inferences measuring all

system responses favor the test cases using the largest

relative weights.

The degree of precision required is another issue during

the initial testing stage. "Precision may be measured as the

capacity of the knowledge base to predict, diagnose, classify,

27

or monitor within a specified statistical confidence

internal." [Ref. 10: p. 44]

Once the prototype has been tested, the resultant rule set

must meet certain specification criteria predetermined in the

test plan. As rules are expanded or modified within the

knowledge base, performance standards are brought in focus and

described, in preparation for development of future proto-

types.

E. EXPANDING THE KNOWLEDGE BA8E AND TE8TING

Once a prototype has been deemed successful by meeting

preestablished criteria, the knowledge engineer extends the

knowledge base creating yet another prototype. The knowledge

engineer selects some tests cases with a predetermined

solution as determined by the expert, and checks for further

consistency in the knowledge base.

Old test cases used during initial prototype development

plus additional test cases tailored to the new prototype are

introduced into the testing cycle. This process of saving old

test cases and introducing new test cases continues throughout

each prototype iteration. If the test cases give rise to

problems, the knowledge engineer analyzes the new rule set

with the expert in order to locate the difficulty. Modifica-

tions are made, and the knowledge engineer continues to test

the system until the expert is confident the predetermined

accuracy level has been reached. If no more problems are

28

located from the set of trial runs, then the current edit or

extension of the knowledge base is deemed successful.

This process of rapid prototyping, testing and editing

continues until the full expert system has been developed.

Once complete, the expert system is delivered to the user, and

operational testing begins.

After development is complete, the expert system must be

validated against the outside world. In the case of absolute

validation, correctness is easy to measure. A variety of

actual test cases are run, then measured against the known

response

.

When absolute certainty to an answer is not known, an

expert or team of experts must generally agree on the

correctness or optimality of a result. When no clear notion

of a perfectly correct solution exists (such as prioritizing

an aircraft maintenance schedule) , then the experts must

generally agree on whether a decision is optimum, reasonable,

or at least acceptable. When experts strongly disagree as to

what the results should be, then the expertise of a single

expert or small group of experts are used as a baseline to

measure results against.

Validating the expert system using an expert or group of

experts not used during the developmental stages has the

benefit of removing possible biases. Subtle variances in

reasoning may also be detected. Once results are accepted by

29

the outside group of experts, a great deal of credibility is

added to the expert system.

Two testing methodologies, qualitative (Turing test) and

quantitative (paired t-tests) are available to assist the

knowledge engineer in determining the accuracy of the expert

system.

1. Turing Test

An effective testing methodology used to assess the

validity of correctness is to use the Turing test. Turing

tests validate expert systems by evaluating human expert

performance and system performance without knowing the subject

performers identity. [Ref. 11 :p. 86] A user, or another

expert, is shown results from questions posed to either an

expert or an expert system, without revealing the identity of

the answering mechanism. When the expert or user assessing

the solution cannot distinguish between the expert and the

machine, then the validity of the program is deemed acceptable

as to how an expert would answer the question.

2. Quantitative Validation

Quantitative validation employs statistical techniques

to compare expert system performance against either test cases

or human performance [Ref. ll:p. 87]. A quantitative method

applied to measure the consistency of responses between the

machine and the expert is the paired t-test.

A confidence interval for one or more measures is

established, where results are compared against an acceptable

30

performance range, or a formal hypothesis test is used. The

hypothesis test criteria are: [Ref. 11 :p. 87]

H
Q

: The expert system is valid for the acceptable
performance range under the prescribed input domain.

H
1

: The expert system is invalid for the acceptable
performance range under the prescribed input domain.

O'Keefe [Ref. 11: p. 87] proposes using paired t-tests

to compare the difference between observed test results.

Differences (D.) are measured between results gathered from

the expert system's performance against those of the human

expert or known results. Once rated, a difference between the

two is recorded where D,. = X,- - Y
i
.

X
{
are the expert system's results, and Y, are either

known results or results from human expert performance. For

n test cases, there will be n observed differences, D. to D
n

.

For these differences, the following confidence interval is

produced:

5 * Vl. a/2
S
d / J"*"

where d is the mean difference, S
d
the standard deviation, and

^n-1 a/2
the value from the t distribution with n degrees of

freedom. When zero lies within the confidence interval, the

system's performance, H , is deemed acceptable.

F. OPERATIONAL TESTING

The final part of validating the system consists of

operational testing. Operational tests are an important part

of the total evaluation process. Successful results will

31

almost certainly convince potential users of the merit of the

system, providing sound reasoning for continued development

and successful deployment.

Users should be properly trained in operating the expert

system, understand its functionality, and be able to use its

results correctly with a minimum of effort. One of the most

crucial aspects of development of the expert system is

providing a user friendly interface. Only through thorough

operational testing, observation, and careful recording of

data is this certified.

The remaining sections of this chapter discuss what is to

be included in a test plan, followed by a checklist of

recommended procedures for testing an expert system.

G. TESTING AND TEST PLANS

The purpose of testing is to ensure that the expert system

can accurately solve the particular problem or class of

problems for which it was designed. Crucial to acceptance by

the user community is for the system to "prove itself," i.e.,

to be beneficial for the purposes intended. Experts are

chosen to solve particular problems because they have a track

record of known successes. They have proven that they can be

trusted with the decision making requirements. Conversely, an

expert system also needs to prove that it can be trusted. A

comprehensive and multifaceted test plan with a rigorous set

of specifications ensures the confidence level required by the

end-user. It is impossible to test every possible case.

32

There are 2
n power different paths a system may take when

exploring all possibilities in a network. This number grows

exponentially larger as more knowledge is added to the system

or the number of rules increases.

Values within, at the boundary edge, and outside the set

of constraints and capabilities built into the system need to

be checked. Valid input should lead to an expected conclusion

acceptable to the expert. Values "on the edge" are checked to

determine if the expert system will fail, producing an

unreasonable conclusion, or if the expert system will request

more information from the user. One thing the expert system

must do is immediately reject invalid inputs. Errors spotted

must result in notification of the user.

Knowing what the input is and what the expected outputs

should be is a fundamental concept in software testing.

Expert systems differ from conventional systems in that

mistakes are made by the expert system as well as the expert.

Test cases are selected based upon known output values.

Successful testing is accomplished when the expert agrees with

the solutions reached by the expert system.

A difficult question often posed during expert system

testing is, "How much testing is enough?" Unfortunately, no

simple answer exists. The test and evaluation plan developed

during the earliest development phases must address this

topic.

33

For example, a determination as to how many test cases

must be developed, and how many variations of each test case

are to be used should be provided. A recommendation for

development of ESAAMS is that test cases be derived from

actual maintenance forms processed over a one week period.

Once the maintenance actions have been identified, variations

of the test cases are identified and tested. Further

discussion is included in Chapter V. It is envisioned that a

relatively small number of test cases will be executed in

proportion to the number of variations possible. Having a

sound testing plan in place before actual testing begins is a

key to successfully developing an expert system.

Different aspects of the system as discussed in the

following sections, must be tested and weighed accordingly.

The evaluation criteria must be measurable. It may be either

objective or subjective.

Objective criteria are easily measurable. A known answer

exists and results from test cases are identified as either

right or wrong. Subjective criteria measurements are more

difficult to judge. The experts or users are asked to decide

the quality of a facet of the expert system based on their

opinion. Opinions may vary widely on how correct a conclusion

may be, or how friendly an interface is. The following are a

list of recommended tests [Ref. 12:p. 6].

34

1. Structural Tests of the Knowledge Base

These tests are concerned with the underlying

structure of the knowledge base. Structure deals with how

rules and facts are assimilated within the knowledge base.

The logical consistency and functional completeness of the

rule base will be checked. Tests for logical consistency are

aimed at finding and correcting redundant rules, subsumed

rules, conflicting rules, and unnecessary if conditions.

Tests for logical completeness are used to find unreferenced

attribute values, illegal attribute values, unreachable

conclusions, and deadends in the knowledge base. Explanations

and examples of these terms are discussed in Chapter IV.

2. Content Specific Tests for the Knowledge Base

In this second type of testing, the expert or team of

experts evaluate the accuracy of the embedded knowledge within

the expert system. The domain expert assesses the adequacy of

the facts in the knowledge base, the adequacy of the actual

rules, accuracy of the knowledge representation, and

assessments of modifications made to the knowledge base.

An important criterion for judging the expert system

is its accuracy. When expert systems are to be used as

experts, or expert advisors, then they should be expected to

perform at the same level or greater than the expert. Just as

the expert may be infallible with regards to accuracy, so may

be the expert system.

35

To overcome this shortfall, when testing the expert

system for completeness of results, the system developer, with

the help of the expert, should first define the level of

desired performance criteria. Enough sample cases must be run

to test whether the system meets the minimal performance

criteria.

Associated with the level of accuracy required is the

issue of completeness (i.e., containing the same level of

knowledge as the expert) . As the expert system grows in size,

the more complex it will become, with the chance for errors

growing proportionally. Since the expert system may never be

complete, a better strategy is to define completeness required

at the onset of the developmental process acceptable to the

user. The developer sets a carefully predetermined figure for

what is expected of the system, then measures the developed

system against this figure.

Completeness is a difficult topic to address, as the

expert system may never be totally complete. There will

always be room for more knowledge, more facts and heuristics

from the expert. Using the predetermined figure of what is

expected of the system, once a specific knowledge level as

determined by the specifications document is reached within

the expert system, the system is considered complete.

3. Performance Tests

Performance tests, the third set of tests, determine

how well the system carries out its designated function.

36

Tests may be divided between those where a known answer

exists, or those where judgment of the experts is the best

indicator of the most correct solution. Quantitative

analysis, as described earlier, is the best measurement of

performance. Run time efficiency is assessed after other

critical elements, such as correctness of advice given, have

been tested and validated. The user may elect not to use the

system because it is either too slow to be effective, asks too

many repetitive questions of the user and thereby delays the

response time for the advice, or the system cannot interact

effectively when accessing an external database.

Fortunately, solutions do exist to remedy these

problems. Hardware configurations, such as adding additional

RAM or increasing CPU speed, is possible to increase response

time.

Large expert systems such as Neuron Data's Nexpert

Object operate most efficiently on a 386 based machine with 4

megs of RAM. Although smaller machines operating with a 286

microchip can handle some expert systems, delays while the

expert system searches the network attempting to reach an

intermediate or final conclusion may seem excessive to the

user. Design specifications, whereby the most frequently

accessed information is stored in the expert system itself,

will increase the speed of the system.

37

4. Usability Tests

User friendliness is often a key factor in the success

of an expert system. No matter how accurate performance

measures are, how consistent or complete the system may be, or

how reliable the expert system is, all development may be in

vain if the system cannot be easily accessed or convey its

knowledge or expertise effectively. Information must be

clear, understandable, and easy to follow, with user input and

output adapted to the skill level of the user. There are two

types of user friendliness testing: subjective and objective.

Subjective tests involve direct query of the user, normally by

questionnaire. Users are asked such questions as the

following: [Ref. 13 :p. 227]

1. Was the recommendation correct?

2. Was the response format acceptable and efficient?

3. Were the system recommendations clear and useful?

4. Was the reasoning explained at a level that you could
easily understand?

Objective usability testing does not query the user directly,

but rather involves close observation of the participant as he

interacts with the expert system. Certain measurable factors

may be obtained, such as:

response time to answer a question;

number of keystrokes used to enter a response;

number of times explanation of reasoning was used or a
help facility invoked;

degree of immediate productivity perceived on the part of
the user after a consultation.

38

The above tests, structural tests of the knowledge

base, content specific tests for the knowledge base,

performance tests, and usability tests, cover the complete

range of testing an expert system.

Independent testers both within and outside of the

organization play a key role in validating some expert

systems

.

H. INDEPENDENT VALIDATION AND VERIFICATION (IV&V)

Most expert systems are rather small in nature (< 500

rules) , with V&V accomplished by the knowledge engineer and

expert. Some large organizations may have separate IV&V teams

available for the testing of expert systems.

Many larger expert systems subcontracted out by the

Department of Defense (DOD) may require the services of an

IV&V team. Some of these expert systems offer advice for

weapons systems. Incorrect advice offered during a crisis

situation may prove catastrophic. The level of IV&V conducted

should be consistent with the amount of risk taken in using

the expert system. Normally independent IV&V should not

duplicate original V&V.

The United States Army has an IV&V team for testing expert

systems at the Electronic Proving Ground, Fort Huachuca, AZ

85613-7110 (Attn: STEEP-ET-S) . Their IV&V team consists of

four members responsible for testing Artificial Intelligence

and knowledge based systems throughout the Army. Primary

testing is accomplished on site. Testing the resiliency of

39

the software, accuracy of advice offered, user-friendliness,

and the user interface are the major areas examined. As

expert systems become more prominent throughout DOD, it is

expected more IV&V teams will be necessary.

The next section presents a checklist of key points for

validating and verifying expert systems.

I. VALIDATION & VERIFICATION CHECKLIST

Using a checklist for evaluating an expert system ensures

that all key points are covered. One of the best examples of

a checklist for testing and evaluating an expert system is

found in Prerau [Ref. 9:pp. 312-313] and is provided below:

- Use the cycle of Elicit-Document-Implement-Test not only
for knowledge acquisition but also as a way to test the
evolving expert system program continually. .

In a domain where the correctness of an expert system's
results can be determined absolutely, measure the
competence of the system by the degree of its agreement
with the known correct results. To determine the
overall worth of the system, this measured competence
should be compared, in most cases, not against a
standard of perfection but against the proficiency of
typical domain practitioners.

In a domain where experts usually agree, evaluate the
system by comparison against human experts.

- In a domain where experts often disagree strongly and
irreconcilably, compare the expert system's results
against the results of the project's expert (s) and be
happy with a system that has expertise close to that of
the project expert (s)

.

- When the domain allows, utilize for system evaluation an
expert or experts not associated with the project, as
long as the gains in impartiality of evaluation and
credibility of result outweigh any difficulties and
costs.

40

If the domain allows, use multiple experts for system
evaluation when the gains in credibility of result
outweigh the problems that occur when the evaluating
experts disagree.

Use meetings with consulting experts to evaluate system
results and also to evaluate the detailed reasoning and
internal processes of the system.

When domain and organizational conditions permit, test
the expert system in the field. Set up a field trial to
evaluate the expert system's performance under actual
operational conditions, or test the system during its
initial routine production use.

If live field testing cannot be performed, consider
running a parallel field trial, where the system is run
on real data but in a nonoperational setting that
parallels actual operation.

Control field testing carefully to ensure that
procedures are followed correctly and that field
personnel understand the expert system and know how to
use it. Try to ensure that no factors unrelated to the
expert system's competence can be the cause of poor
results.

Give careful consideration to the types of data that
will be collected during a field test. They should
accurately reflect the performance and other important
factors related to the expert system and should be
convincing to others.

Set up mechanisms that allow the gathering of the
accurate field test data while imposing as little burden
as possible on users.

Verify that the program accurately implements the
acquired expert knowledge. The knowledge acquisition
process by its nature will likely result in a final
expert system program that agrees very well with the
knowledge documentation.

Verify that the implemented expert knowledge contains no
internal errors (independent of the completeness or
correctness of the knowledge itself) , such as redundant
rules, sets of circular rules, and illegal slot values.
Utilize automated checking systems if available.

Verify that the base program that implements the
knowledge engineering paradigms operates correctly.
This aspect of verification may be minimized if the

41

project is utilizing a standard, commercial software
tool in wide use.

Put the amount of effort into system evaluation that the
particular system warrants. Invest substantial effort
in a large-scale evaluation if errors by the expert
system would be disastrous or if knowledge of the exact
competence level of the system is critical. Invest less
evaluation effort if system errors are not crucial and
any performance close to an expert's is valuable.

Set standards of evaluation for the expert system based
on domain requirements. In critical applications,
standards should be very high. When errors are not
costly, consider using lower standards to gauge success.

J. SUMMARY

This chapter has discussed the V&V of expert systems in

detail. V&V of an expert system is difficult. Certain steps

must be taken to ensure accurate system development. First,

a specifications document describing exactly what the expert

system is expected to accomplish must be completed. Then a

testing and evaluation plan must be conceived. Results from

testing the expert system must be meticulously recorded in the

progress notebook.

A testing plan must be designed early in the expert system

life cycle. Enough test cases must be available for testing

each prototype iteration. As system development progresses,

test cases used in previous prototype testing will be rerun to

determine what effect changes to the knowledge base have

caused.

A checklist for testing and evaluating expert systems

summarizes key points listed in the chapter. The following

chapter will discuss knowledge base debugging methodologies.

42

IV. KNOWLEDGE BASE DEBUGGING

This chapter describes procedures for debugging the

knowledge base of the expert system. Neuron Data's Nexpert

Object is examined, followed by a description of two external

programs useful as debugging tools for expert systems.

Knowledge base debugging tests the rules in the knowledge

base for consistency and completeness. Consistency checks

determine whether there are any redundant rules, conflicting

rules, subsumed rules, unnecessary IF conditions, or if any

circular rule chains are present. Completeness checks look

for unreferenced or illegal attribute values, dead end goals,

unreachable conclusions and dead end goals.

Some expert system shells only have syntax checkers built

in, while more complex shells like Neuron Data's Nexpert

Object offer a wider range of debugging tools. Two external

programs, VALIDATOR and CHECK, have been developed as

debugging tools to assist in checking expert system shells for

knowledge base errors.

A. CONSISTENCY CHECKS

The following are several types of inconsistencies which

may be found in a knowledge based system.

1. Redundant Rules

This situation is encountered when two rules succeed

in the same situation and give the same results. It happens

43

when the IF parts of two rules are equivalent, and one or more

conclusions are also equivalent. The IF parts of both rules

must have the same number of conditions, and the condition in

one rule is equivalent to the condition in the other rule.

For example [Ref. 14 :p. 71]

a. IF X has a hoarse cough, AND

X has difficulty breathing

THEN type-of-disease is CROUP.

b. IF Y has difficulty breathing AND

Y has a hoarse cough

THEN type-of-disease of Y is CROUP.

X and Y represent variables that will be attached to a

person in the database. The rules would be redundant no

matter what the order of the IF conditions. Differing

variables make no difference.

Logic may not be affected in the knowledge base, but

redundant rules may hinder the efficiency of the system,

slowing it down as it searches for the optimal solution.

2. Conflicting Rules

Two rules are conflicting when they succeed under the

same set of circumstances yet reach different results. The IF

part of the two rules must be equivalent, yet results are

contradictory

.

For example: [Ref. 14: p. 71]

a. IF X has a hoarse cough, AND

X has difficulty breathing

44

THEN type-of-disease of X is CROUP,

b. IF X has a hoarse cough, AND

X has difficulty breathing

THEN type-of-disease of X is BRONCHITIS.

Results may be disastrous. Given a similar set of

circumstances, the expert system may give conflicting advice.

3. Subsumed Rules

One rule is subsumed by another if the two rules have

the same conclusion, but one contains additional constraints

for the situations in which it will succeed. For equivalent

conclusions, one IF statement must contain more conditions to

succeed than the other.

For example [Ref. 14: p. 71]

a. IF X has flat pink spots on his skin AND

X has a fever

THEN type-of-disease of X is MEASLES.

b. IF X has flat pink spots on his skin

THEN type-of-disease of X is MEASLES.

Whenever the more extensive IF statement in one rule

succeeds, the other rule will automatically succeed. This

produces a redundancy in the system.

4. Unnecessary IF Conditions

Two rules contain unnecessary IF conditions if the

rules have the same conclusions, an IF condition in one rule

is in conflict with an IF condition in the other rule, and all

other IF conditions in the two rules are equivalent.

45

For example: [Ref. 14: p. 72]

a. IF X has flat pink spots on his skin, AND

X has a fever

THEN type-of-disease of X is MEASLES.

b. IF X has flat pink spots on his skin, AND

X does not have a fever

THEN type-of-disease of X is MEASLES.

Since both IF statement constraints conflict, yet

reach the same conclusion, the unnecessary portion of both IF

statements must be removed.

5. Circular Rules

Circular rules exist when a cyclical pattern forms

when certain rules are chained together.

For example: [Ref. 14 :p. 72]

a. IF temperature of X > 100 (in Fahrenheit)

THEN X has a fever.

b. IF X has a fever, AND

X has flat pink spots on his skin

THEN type-of-disease of X is MEASLES.

c. IF type-of-disease of X is MEASLES

THEN temperature of X > 100 (in Fahrenheit) given

a goal of:

type-of-disease of patient is measles.

This set of rules sets up an infinite loop. System

efficiency is degraded, and dependent on the type of circular

loop imposed, may eventually lock up. This type of logical

46

error is most difficult to detect and remove, and requires

careful analysis of the knowledge base by the designer and

expert.

B. COMPLETENESS CHECKS

The second test of rules in a knowledge base deal with

completeness. A theoretically complete system captures all of

the experts knowledge within a narrow domain. Limitations of

the experts time, size of the rule base, and cost

considerations preclude obtaining this knowledge. Given

predetermined specifications describing the knowledge to be

captured, completeness is still difficult to achieve. This

happens because the knowledge acquisition process often leaves

gaps in the knowledge base between the expert and the

knowledge engineer attempting to capture his expertise.

Additionally, as the knowledge base grows larger, it becomes

impossible to check every possible combination of rules to

ensure completeness. Below are four cases of attribute values

which must be removed to reduce complexity within the

knowledge base.

1. Unreferenced Attribute Values

This condition occurs when attribute values in the

knowledge base are not covered by any IF conditions in the set

of all possible rules. For example [Ref. 14:p. 72], suppose

the attribute TEMPERATURE has the following range of values

{high, normal, low}. If "high" and "normal" are specified by

47

IF conditions in the rule base, but no condition for "low" is

made, then that value is considered unreferenced.

The knowledge engineer must then determine if a rule

is missing which would include the "low" value, or if the

"low" value should be removed from the set of values in the

knowledge base.

2. Illegal Attribute Values

An illegal attribute value is similar to an unrefer-

enced attribute value. It refers to an attribute value that

is not in the set of legal values in the knowledge base.

Quite often, a spelling error is the culprit. However,

attribute values may be named differently, causing the

problem.

For example [Ref. 14: p. 72]:

Suppose as before, TEMPERATURE has the values {high,

normal, low}. If the rule is written as:

IF temperature of X is very high . . . or . . .

THEN temperatures of X is medium.

Both "very high" and "medium" are illegal attribute

values, unrecognizable by the system.

3. Unreachable Conclusions

In a forward or backward chaining expert system, the

conclusion of one rule should either attain a goal or lead

directly to an IF statement in another rule.

For example [Ref. 14:p. 72]:

IF temperature of X > 100 (in Fahrenheit)

48

THEN X has a fever.

Should the condition of X not reach a conclusion or

lead directly into another rule, then the conclusion of the

rule is unreachable.

4. Dead End Goals

To achieve a goal (or subgoal) in a goal driven

system, either the attributes of the goal must be askable

(user provides needed information) , or the goal must be

matched by a conclusion of one of the rules in the rule sets

applying to the goal [Ref. 14:p. 73]. Should neither

requirement be met, a dead end goal has been reached.

C. NEXPERT OBJECT

The ESAAMS project initial prototype is using Nexpert

Object. Nexpert Object has several facilities for detecting

errors in the knowledge base. A rule network navigates the

knowledge base, assisting the system designer in locating

inconsistencies. A strong syntax checker has an automatic

format checking mechanism which prevents the developer from

saving (compiling) a rule with a wrong format in the system

(missing arguments, wrong type of arguments, etc.). Naviga-

tion breakpoints allow the system to stop at each defined

point and evaluate the reasoning process used. A short

discussion follows of its W&T attributes.

1. Rule Network

Nexpert Object's rule format is very powerful. Rules

are not defined as "forward" or "backward", but depending on

49

the application when the rule base is consulted, the given

rule may be processed (fired) from either direction. Thus,

during a given session, a rule may be fired either forwards or

backwards

.

Links between the rules describe the structural

relationships of the knowledge. With multiple rules creating

a very complex knowledge base, NEXPERT OBJECT'S NETWORKS gives

the designer visual access to the interrelationships among the

rules and objects. When the designer wishes to inspect a

specific rule, object, or relationship, he need only "click"

on the desired item in the network using the mouse pointer,

then begin navigating through the different levels. Examining

items on the microscopic level allows the designer to

concentrate on a given topic of interest without losing the

global, overall picture.

Networks are the fundamental tools for checking and

discovering inference and inheritance inconsistencies by means

of visual representation.

2. Syntax Checker

Nexpert Object's syntax checker determines if static

errors are present. A rule editor screen provides a visual

environment for the knowledge engineer to input domain

information. A format checking mechanism prevents the

developer from saving a rule with a wrong format (i.e.,

missing arguments, wrong type of arguments, etc.) . The system

will not allow compilation of an incorrectly formatted rule.

50

When the incorrect or incomplete rule is entered into the

system, the incorrect box is identified for the developer to

take corrective action.

3 . Breakpoints

Visual breakpoints allow the inference engine to stop

at certain points of evaluation (after firing a rule, after

evaluation of a condition) , allowing the developer to study

the particular state within a reasoning process. Breakpoints

are used to evaluate rules, hypotheses, conditions, actions,

objects as they change, classes, slot values, properties, and

methods

.

Breakpoints, when combined with the network feature,

assist the developer in locating redundant rules. When

searching for conflicting rules and unnecessary IF conditions,

all rules will fire until the stated constraints are found.

The system will stop until these conditions are removed.

4. Dead End Goals

Dead end goals are virtually impossible not to notice.

Every left hand side (LHS) condition is executed. When a

necessary value is not found, the system attempts to inherit

it from the parent. The next step is to backward chain, then

reattempt to inherit a value from the parent. If this fails,

the system will ask for a value from the child. Finally, the

system will simply request a value for the goal from the user.

Obviously, this situation creates excessive solution process-

ing and must be avoided.

51

5 . Summary

NEXPERT OBJECT, using the NETWORKS and BREAKPOINTS

features, assists the knowledge engineer in locating redundant

and subsumed rules. However, this is a trial and error

methodology which may not locate all of the above mentioned

defects in the network. Conflicting rules and unnecessary IF

conditions will cause a system stoppage when invoked.

Circular rules will cause the system to enter an infinite

loop. The knowledge engineer then begins a search of the

rulebase in an effort to discover the defective rule(s)

.

NEXPERT OBJECT'S syntax checker does not allow for

static error inputs. Erroneous inputs are flagged during rule

insertion, allowing the knowledge engineer a chance to

reinsert them correctly. Once the syntax checker allows a

value to be input, NEXPERT OBJECT has no capabilities for

conducting completeness checks.

A formal methodology is required to ensure consistency

and completeness within the knowledge base.

D. EXTERNAL PROGRAMS

Two knowledge base programs for assisting the developer

have recently entered the marketplace. These programs, CHECK

and VALIDATOR, will briefly be discussed below.

1. CHECK

CHECK is a program designed to check a knowledge base

for consistency and completeness. It was built for the

Lockheed Expert System shell (LES) , (Lockheed Research and

52

Development, Palo Alto, CA) but may be applied to many rule

based systems [Ref. 14:p. 69].

CHECK identifies inconsistencies in the knowledge base

by searching for redundant rules, conflicting rules, subsumed

rules, unnecessary IF conditions, and circular rule chains.

Checking for completeness is done by looking for unreferenced

attribute values, illegal attribute values, dead end IF

conditions, dead end goals, and unreachable conclusions. Gaps

in the knowledge base which may have been overlooked by the

expert and knowledge engineer may also be identified. CHECK

also generates a dependency chart which shows the dependencies

between rules and goals.

2 . VALIDATOR

VALIDATOR (BICS, 1622 W. Monten Egro, Tucson, AZ

85704) checks for syntax and semantics errors, alerting the

knowledge engineer. It consists of six modules; a pre-

processor, syntax analyzer, syntactic error checker, debugger,

chaining thread tracer, and knowledge base completeness

module.

Tested on 67 various expert systems, VALIDATOR flagged

many inconsistencies. Potential mistakes flagged by VALIDATOR

fell into nine categories: illegal use of reserved words;

rules that could never fire (both backward and forward rules)

;

unused facts; unused questions; unused legal values; repeated

questions; multiple methods (including expressions that appear

in questions and facts, questions and conclusions, and facts

53

and conclusions) ; rules using illegal values; and incorrect

instantiations. [Ref. 15: p. 48]

VALIDATOR was designed to make the task of testing

expert systems easier while building confidence in the expert

system design. Both have been accomplished.

E. SUMMARY

We have looked at several methodologies and tools for

debugging a knowledge base in this chapter. Knowledge base

debugging emphasizes checks for completeness and consistency.

Consistency checks search for redundant rules, conflicting

rules, subsumed rules, unnecessary IF conditions and circular

rules. Completeness checks search for unreferenced attribute

values, illegal attribute values, unreachable conclusions, and

dead end goals.

Neuron Data's Nexpert Object has several key features for

debugging its knowledge base: a rule network, syntax checker,

and breakpoints.

Two external programs for debugging knowledge bases are

available: CHECK and VALIDATOR. Each program described

searches for inconsistencies in the knowledge base and flags

them for corrective action by the knowledge engineer.

Techniques for debugging knowledge bases discussed within

this chapter are focused on rule based systems. There was

nothing found in the literature review that specifically

discussed testing the unique aspects of alternative knowledge

representation methods (i.e., inheritance properties in frame

54

based reasoning) . Continued research is necessary for the

successful development of expert systems employing specialized

knowledge representation.

The next chapter proposes a testing plan for ESAAMS.

55

V. SOFTWARE TEST PLAN

A prototype test plan for validating and verifying the

ESAAMS project is described within this chapter. Specific

criteria which must be met by ESAAMS for the system to become

operationally suitable are discussed. Finally, a user

interface test for users of ESAAMS is described.

A. SCOPE

This Software Test Plan establishes a methodology for

testing the Expert System Advisor for Aircraft Maintenance

Scheduling (ESAAMS) . ESAAMS is an expert system currently

under development by students at the Naval Postgraduate

School. Unique about this test plan is its actual development

during the software life cycle's earliest stages.

B. ESAAMS BACKGROUND

The purpose of ESAAMS is to provide a prioritized listing

of aircraft maintenance discrepancies given a wide range of

determining factors and constraints. These factors range from

skilled personnel available to conduct maintenance, to

available parts, hanger space (if required) /deck space,

special tools and testing equipment, to critical ity of the

asset based on the readiness of the squadron.

Aircraft maintenance control operates in a dynamic, high

intensity environment. Maintenance work priorities are made

56

several times daily, often reordering as circumstances

dictate. These decisions are frequently made under extremely

demanding and time sensitive conditions. ESAAMS will assist

a maintenance control chief in the prioritization of repairs

of all aircraft, both in planned and unscheduled maintenance.

ESAAMS is not designed to replace the expert maintenance

scheduler but rather serve as an advisor and to reduce the

time necessary to perform this task. Rapid turnover of

military personnel, changing policies of maintenance officers,

the commanding officer and higher authority, preclude ESAAMS

from ever becoming a stand alone system. As mentioned, ESAAMS

is intended to be an advisor, a tool to assist a knowledgeable

scheduler in making a rational decision by using information

captured within the knowledge base. ESAAMS will also provide

this advisory service to maintenance personnel familiar with

aircraft maintenance scheduling, but not necessarily experts.

C. UNIQUE CHARACTERISTICS OF EXPERT SYSTEMS

Expert systems differ from conventional software in that

they attempt to reproduce the mental procedures of a human

expert while performing some task, as opposed to manipulating

numbers as in conventional software. They are also able to

deal with uncertainty and incomplete information. Due to its

increased sophistication and ability to handle a different

range of problems from conventional software, unique testing

and evaluation procedures are required during the expert

system software life cycle.

57

D. DESIGN OF EXPERT SYSTEMS

Testing and evaluation of expert systems, when done

properly, starts early and continues throughout the entire

design phase, user acceptance phase, and ultimately throughout

the maintenance stage. System users are involved early on and

are used throughout the testing cycle. In traditional system

design, the developer begins with a written system requirement

of what the system is supposed to accomplish, and designs

accordingly. This set of standards is the basic functional

foundation on which the developer depends.

The intent of the expert system developer is to reproduce

the expert's mental procedures used when solving a problem.

This includes the heuristics or "rules of thumb" developed

through years of experience in a very narrow domain.

Most frequently the process is initiated by the knowledge

engineer interviewing the expert. The expert's knowledge

(heuristics) are translated step by step into a set of

procedures used to solve a problem. A major complicating

factor is that the experts may not be completely aware of why

they do what they do. They have a difficult time translating

the complete decision process of the human expert's knowledge

into a set of procedures completely describing the process.

Error is almost a certainty. The knowledge engineer and

expert together analyze the procedures for correctness. After

the expert has determined the translation is accurate, the

58

knowledge engineer inputs the set of procedures into a

knowledge base as a set of rules or knowledge.

The initial prototype is now ready for testing. The

expert system's built in syntax and rule checker first check

for syntax errors and possible insertion errors. Then the

system is ready for design testing, whereby the system's

results are verified by the expert. Once test results are

deemed acceptable, design work begins on the next iterative

prototype

.

Prototype testing and development continue until the

system designer determines that the final prototype is fully

tested in accordance with the specifications document.

Operational testing begins with users testing the

prototype in the actual working environment. Testing

continues until the designer, expert, and users are satisfied

that the expert system meets their expectations and system

specifications. The expert system is then ready for actual

deployment.

The next section lists specifications which must be met if

ESAAMS is to be considered successful.

E. CRITERIA

The following specific criteria must be met by ESAAMS for

the system to be operationally suitable:

ESAAMS must be capable of scheduling various quantities
of aircraft (at least eight)

.

ESAAMS must recommend the correct scheduling priorities
with an accuracy acceptable by the expert.

59

ESAAMS must recommend a scheduling process which can be
performed by personnel having only a basic knowledge of
maintenance scheduling procedures.

ESAAMS must provide clear instructions. A self
explanatory reasoning facility for leading personnel
through scheduling procedures must be available.

ESAAMS must complete a scheduling recommendation more
quickly than would the user. Normally 15 minutes or
less.

After it has been determined what ESAAMS is expected to

accomplish, development of a testing plan defining all testing

stages commences.

F. TESTING STAGES

Meister [Ref. 16 :p. iii] categorizes testing of expert

systems into three basic stages:

1. Initial design testing stage

2. Developmental testing stage

3

.

Operational testing stage

I have added a fourth stage, described as the:

4. Maintainability testing stage

These stages will be applied to ESAAMS for incorporation into

the test plan.

1. Initial Design Testing Stage

The initial design testing stage consists of two

parts: testing the knowledge base with the expert and

debugging the software.

a. Knowledge Base Testing

Initial steps in the design of ESAAMS include the

gathering of known data for the knowledge base, and

60

interviewing the maintenance scheduler (Maintenance Master

Chief) for development of the heuristics used to manipulate

information in the data store (inference engine) . Recording

the experts thought process is difficult, and must be reviewed

thoroughly for accuracy.

Testing of known facts is the first step. Facts

in the knowledge base must be verified through publications,

local procedures, or any combination thereof. Examples of

questions include:

- When a specific aircraft part is required, does supply
normally carry it in stock?

Is special test equipment required to perform a
maintenance procedure?

Does the aircraft require a hangar and/or electrical
power for the repair work?

The second, and most difficult part of the

evaluation, occurs when interviewing the expert for deter-

mining which heuristics are used to manipulate data in the

knowledge base. It is not uncommon for the knowledge engineer

to experience difficulties in expressing these rules of thumb

accurately. A question that must be answered during

evaluation is: Does the heuristic truthfully represent the

process actually employed by the expert to manipulate the data

store? [Ref. 16:p. 5]

Why did the maintenance scheduler pick one aircraft with
a longer fix time over the "quick fix" aircraft?

Why did the maintenance scheduler prioritize the daily
work schedule in this particular order?

61

- Why did the maintenance scheduler decide to take parts
from the "hangar queen", rather than going through supply
for the parts?

- What decision making process does the maintenance
scheduler go through when determining which aircraft to
work on next?

Once the interview (s) are complete, the knowledge

engineer translates the data into a symbolic form recognizable

by the computer. Once translation has occurred, an evaluation

test is performed by returning to the expert, presenting him

with the revised procedures, and determining if the new

procedures match what was documented in previous interviews.

This type of testing may continue for several iterations until

a satisfactory match is found between the expert and knowledge

engineer.

Unfortunately, there are no objective measures

available for determining levels of success when performing

this evaluation. The maintenance scheduler alone must

determine whether he feels there is an accurate translation of

his heuristics into a set of rules.

b. Software Testing

Software testing of the knowledge base in Nexpert

Object is conducted using the rule network, syntax checker,

and breakpoints as described in Chapter IV. Thorough

evaluation is required each time new rules are added for

consistency and completeness. When the designer and expert,

after thorough review, believe most errors have been removed

from the ESAAMS knowledge base, developmental testing begins.

62

2. Developmental Testing Stage

Following initial testing, developmental testing uses

the computer and screen to improve the design of the expert

system. Once the software is in place and been checked for

syntax, the program now requires that the designer present the

new prototype with a problem to solve. Initially the designer

should present the system with simplistic problems, those with

objective answers within predefined parameters. Certain

nonsensical or contradictory answers are likely to appear,

especially as segments of the system are linked together. The

intent in developmental testing is not to determine the degree

of system efficiency, but rather to ensure that apparently

reasonable responses are secured from the software (no self

contradiction, no obviously nonsensical outputs) . [Ref . 16: p.

7]

a. Performance Effectiveness Testing

Performance effectiveness determines just how well

the system performs during initial prototype testing and for

each prototype developed thereafter. Does the prototype

produce reasonable if not entirely correct answers? Will it

do what it was designed to do? During this phase of testing,

an expert needs to be available for judging the accuracy of

results.

ESAAMS prioritizes maintenance work schedules for

squadron aircraft. Maintenance scheduling is partially

subjective, whereby entirely correct answers may not be known

63

and opinions may vary between experts as to which are correct

answers. The following steps are proposed for conducting

performance effectiveness training during the initial and

later prototype development of ESAAMS:

1. Ensure both the expert (s) and an intended user

are available for testing. Additional experts may be

available from other squadrons in the air wing.

2. Gather maintenance action forms (MAF's) from

a five day period. These MAF's will provide a wide range of

possible test cases.

3. For testing purposes of the initial prototype,

five sets of objects will be tested:

- Aircraft downing discrepancy (Is the aircraft fully
mission capable with the discrepancy?)

Parts availability (Are parts readily available from
supply, or must they be robbed?)

- Skilled personnel to conduct maintenance (Are personnel
of the proper rating available to work on the aircraft?)

Electrical power/air (Is electrical power/air a require-
ment to fix the discrepancy?)

- Hangar/Deck (Is hangar space/deck space necessary to work
on the aircraft?)

b. Test Cases

(1) First Test Case. For the first test case,

enter all values into ESAAMS as TRUE. Does ESAAMS recommend

that the aircraft be scheduled for maintenance now? Does the

expert agree with ESAAMS?

(2) Second Test Case. Enter all values as FALSE.

How does ESAAMS handle this problem? When does it recommend

64

the aircraft be scheduled for maintenance? Does the expert

agree with the solution?

(3) Third Test Case. Enter all values as

UNKNOWN. How does ESAAMS handle this unique case? What type

of response appears? Does ESAAMS lock up?

(4) Fourth Test Case. Select the first actual

MAF. Input all values. Does ESAAMS recommend starting

maintenance on that particular aircraft? What does the expert

recommend? Follow the networking procedure within NEXPERT

OBJECT (trace facility) of the ESAAMS prototype to determine

what logic was used to arrive at the solution.

(5) Additional Testing. Use the Turing test.

Have ESAAMS produce a set of recommended maintenance

priorities. Compare these against the experts. Compare

differences to determine an accuracy level. Then determine if

the expert will accept the prioritized maintenance actions

recommended by ESAAMS.

As development of ESAAMS continues through

successive generations of prototypes, values will be attached

to objects included in the knowledge base. For example,

values for estimated time to fix maintenance discrepancies are

entered. ESAAMS must be able to handle these values,

producing correct results when they are introduced. Initially

values within the normal domain of values are used. Sensible

answers validated by the expert are necessary. Then values

outside the prescribed domain are added to determine how

65

ESAAMS reacts. Finally, values at the "boundary edge" are

tested. ESAAMS should also handle these values smoothly.

Continue testing the prototype throughout the

entire range of MAF's, comparing ESAAMS results against actual

maintenance actions taken. Does the expert feel the answers

produced by ESAAMS are reliable? What does the expert feel is

an acceptable range of differing recommendations from his own?

For example, is he willing to accept a 75% figure of answers

which match his own. Remember, the expert may not be accurate

100% of the time.

Throughout testing, the user should be

involved early on. User acceptance will be critical to

acceptance of ESAAMS as an advisory tool. ESAAMS must meet

user needs on human factors and usability issues, as well as

knowledge based issues. This topic will be discussed in the

following section.

As development of ESAAMS proceeds, maintain

a database within NEXPERT OBJECT of common cases that were

previously tested. These same test cases are to be used as

new knowledge is added to the system.

Check to see what differences have occurred

since the new knowledge has been added. What new rules have

fired? Is the maintenance priority still sensible? AS ESAAMS

grows, this testing responsibility becomes an essential part

of the prototyping process, and reduces the requirement for

the expert to be present during all testing.

66

Testing should be conducted as often as

possible. Each time a new object or variable is added to

ESAAMS, thorough testing is to be conducted. The test should

be run again to determine what effect the new value will have.

The expert should validate the results for correctness. Using

earlier, documented test cases will ensure a smoother

transition between prototypes, while freeing up the expert.

c. Attribute Testing

Attribute testing prioritizes a listing of factors

which determine how useful the system is in terms of certain

characteristics. Sizemore [Ref. 17 :p. 35] presents a listing

of eleven software quality factors. These factors range from

performance (efficiency, integrity, reliability, and

usability) , to design of the system (correctness, maintain-

ability, and testability) to adaptability (flexibility,

interoperability, portability, and reusability) . These

subfactors are described in Figure 3.

Reliability, the ability to perform with correct

(or acceptable) and consistent results, is the key ingredient

looked for in ESAAMS. All responses by ESAAMS must be accept-

able by the expert in terms of scheduling priorities.

67

PERFORMANCE

EFFICIENCY The ability of a software
system to perform its
required functions with
minimum consumption of
computer time and storage
resources.

How well does
it ut i 1 i z e
resources?

INTEGRITY The ability of a software
system to control
unauthorized access to or
modification of system
software or data.

How
it?

secure is

RELIABILITY The ability of a software
system to perform its
required functions with
correct and consistent
results.

What confidence
can be placed
in what it
does?

USABILITY The ability of a software
system to be easily
learned and used.

How easy is it
to use?

DESIGN

CORRECTNESS

MAINTAINABILITY

TESTABILITY

The extent to which the
software satisfies its
specification and
fulfills the user
requirements

.

The ability of a software
system to be easily
corrected when errors are
discovered.

The ability of a software
system to be easily and
thoroughly tested.

How well does
it conform to
the require-
ments?

How easy is it
to repair?

How easy is it
to verify its
performance?

Figure 3

Software Quality Factors

68

ADAPTABILITY

FLEXIBILITY

INTEROPER-
ABILITY

PORTABILITY

REUSABILITY

The ability of a software
system to be easily
modified to meet new
requirements

.

The ability of a software
system to effectively
exchange information with
other software systems.

The ability of a software
system to be easily
modified to operate in
more than one environ-
ment.

The ability of a software
system or parts of a
system to be used in
multiple applications.

How easy is it
to change?

How easy is it
to interface
with another
system?

How easy is it
to transport?

How easy is it
to convert for
use in another
application?

Figure 3 (Continued)

Usability is important for user acceptance, and

rates high on ESAAMS desirable features. Personnel must feel

comfortable with ESAAMS for the system to gain wide

acceptance. Does ESAAMS save the user time?

Correctness, or the extent to which ESAAMS ful-

fills the user requirements and expectations is necessary for

acceptance. Does ESAAMS produce a usable schedule? Does the

schedule make sense?

Flexibility and maintainability are important

issues within ESAAMS. ESAAMS must have the ability for

upgrade as requirements and knowledge change; e.g., the number

69

of aircraft in the squadron change, or priority changes as

dictated by the commanding officer or maintenance officer.

Testability ranks high on a listing of desired

features. What can be tested within ESAAMS as well as what

cannot be tested, is important. In testing ESAAMS, the expert

may not always be right. Additional experts are brought in to

determine accuracy.

d. Acceptability Testing

Acceptability testing determines whether the end

user will actually employ or use the system once it becomes

available. The system must possess those attributes the user

deems most important, and be able to deliver that attribute in

a fashion that will enhance usage. The user evaluates the

system attributes as described in the previous section, in a

determination of what improvements or changes are necessary.

The following user interface questionnaire will

give the designer a reasonable idea of how the user feels

about ESAAMS, whether it meets their expectations, and the

likelihood of further usage.

70

USER INTERFACE TEST

Instructions

In Section I., enter the time started when you turn on the
computer. After being led through the procedures, enter time
completed. After this process, advance to Section II.

I.

DATE:

TIME STARTED:

TIME COMPLETE:

II.

1. HAVE YOU EVER USED THE ESAAMS SYSTEM BEFORE?

YES NO

2. A. HOW MANY HOURS OF TRAINING DID YOU RECEIVE ON ESAAMS
BEFORE OPERATING THE SYSTEM?

B. DO YOU FEEL THAT YOU HAD ADEQUATE TRAINING?

YES NO

C. HOW MUCH MORE TRAINING WOULD YOU HAVE LIKED?

D. WHAT AREAS OF TRAINING NEED TO BE INCREASED?

E. LIST ANY TRAINING NOT PROVIDED THAT SHOULD BE
INCLUDED.

71

A. DID YOU READ THE ESAAMS USERS MANUAL (IF DEVELOPED)?

YES NO

B. IF YES, HOW WOULD YOU RATE THE MANUAL?

VERY GOOD GOOD POOR VERY POOR

C. COULD YOU FIND WHAT YOU NEEDED TO KNOW TO USE THE
SYSTEM? YES NO

D. HOW WOULD YOU IMPROVE THE MANUAL?

4. A. HOW WOULD YOU RATE THE ESAAMS SOFTWARE ON EASE OF
USE?

VERY EASY EASY DIFFICULT VERY DIFFICULT

B. WHAT WOULD YOU LIKE TO SEE CHANGED, IF ANYTHING?

5 . HOW WOULD YOU RATE ESAAMS ON USER FRIENDLINESS I.E.,
LEADING YOU THROUGH THE PROCESS YOU SELECTED?

VERY GOOD GOOD POOR VERY POOR

6. A. HOW WOULD YOU RATE ESAAMS ON LINE HELP FACILITY?

VERY GOOD GOOD POOR VERY POOR

B. WHAT ADDITIONAL ON LINE HELP FEATURES WOULD YOU
RECOMMEND?

7. A. HOW WOULD YOU RATE ESAAMS PERFORMANCE REGARDING THE
TIME TO MAKE A SCHEDULING DECISION?

VERY GOOD GOOD POOR VERY POOR

B. WHAT ARE YOUR PERFORMANCE EXPECTATIONS WITH REGARD TO
TIME IN MAKING A SCHEDULING DECISION?

72

8. A. WHAT IS THE QUALITY OF ANSWERS PRODUCED BY ESAAMS?

VERY GOOD GOOD POOR VERY POOR

B. WHAT ARE YOUR EXPECTATIONS FOR THE QUALITY
(CORRECTNESS) OF ANSWERS PRODUCED BY ESAAMS?

9. A. HOW CONFIDENT ARE YOU IN THE QUALITY OF ANSWERS
PRODUCED BY ESAAMS?

VERY HIGH HIGH AVERAGE LOW VERY LOW

10. A. HOW CONFUSED WERE YOU WHEN THE SOFTWARE WAS ASKING
YOU TO INPUT OR SELECT SOMETHING?

NOT CONFUSED AT ALL CONFUSED VERY CONFUSED

B. WHAT WAS CONFUSING?

11. A. HOW MUCH TROUBLE DID YOU HAVE SELECTING THE CORRECT
KEYS TO PRESS TO DO WHAT YOU WANTED TO DO?

NONE AT ALL A LITTLE BIT QUITE A BIT

B. IF YOU HAD TROUBLE, WHAT WERE YOU ATTEMPTING TO DO?

12. A. DID THE SOFTWARE FAIL AT ANY POINT? YES NO
(IF NO, SKIP TO 13.)

B. DESCRIBE THE FAILURE?

13. A. DID THE SYSTEM PROVIDE CORRECT AND TIMELY
INFORMATION FOR YOU TO USE IN SCHEDULING THE
AIRCRAFT FOR MAINTENANCE? YES NO

73

B. AT ANY POINT DID YOU HAVE TO REQUEST HELP FROM YOUR
SUPERVISOR?

YES NO (IF NO, SKIP TO 14.)

C. WHAT ASSISTANCE DID YOU REQUEST OF HIM/HER?

14. DID THE SYSTEM (IN YOUR OPINION) RECOMMEND THE PROPER
SCHEDULING?

YES NO

15. ESAAMS IS A GREAT TIME SAVER OVER THE CURRENT SCHEDULING
METHODOLOGY

.

STRONGLY AGREE AGREE DISAGREE STRONGLY DISAGREE

IF YOU DISAGREE, PLEASE EXPLAIN:

16. WOULD YOU PREFER USING THIS SYSTEM OVER THE CURRENT
METHOD? YES NO

17. WOULD YOU RECOMMEND THIS SOFTWARE FOR THE NAVY?

YES NO

18. OTHER COMMENTS: (PLEASE LIST ANY OTHER ITEM OF INTEREST)

74

3. Operational Testing

Operational testing takes place when ESAAMS is

considered complete by its developers and ready to be turned

over to the users. Training on the system is the same as that

to be given to the ultimate users.

Maintenance scheduling is to be performed by the users

both with and without ESAAMS, for purposes of comparison.

Differences, with ESAAMS hopefully documenting an increase in

performance and efficiency, will significantly increase the

value of the expert system.

Another comparative measure is to have the users of

ESAAMS compare their performance to that of the expert. If

expert status is attained by the user, or an approximation of

expert status, ESAAMS will be validated as a useful tool.

a. Plan for Conducting Operational Testing

ESAAMS is being tested in an operational environ-

ment to determine if it can assist the user in reaching the

same levels of expertise as the maintenance scheduler.

ESAAMS will be used to solve a variety of

scheduling problems, all new and independent from previously

used test cases. Results will be documented. The degree of

"expertness" achieved by the user will be measured by the

actual expert to determine the usefulness of ESAAMS.

Criteria for acceptance:

ESAAMS must prioritize aircraft scheduled for main-
tenance at the same speed or faster than the user could
do alone.

75

ESAAMS must assist the user in producing a maintenance
schedule deemed acceptable by the experts.

All experts participating must agree on a common solution
to a scheduling problem. System performance must meet
standards set by the experts.

b. Acceptance of ESAAMS

ESAAMS will be considered acceptable when:

The expert system equals or achieves the performance
level of the expert.

- When left on line for an extended period of time, 48
hours, there are no system failures.

- When the user is able to follow the system prompts, and
reach a solution, without added assistance from the
system developers.

When the users have complete confidence in the system and
feel ESAAMS is a helpful tool (as annotated in
questionnaires)

.

- Reasonable output is attained, given reasonable input.

4. Maintainability Testing Stage

Planned maintenance of ESAAMS is a difficult issue.

Failure to address this topic may have dire consequences.

Using obsolete information, or wrong information, will lose

some hard won confidence that may be difficult to regain.

It is expected that the knowledge in ESAAMS will

remain relatively stable. New systems added to the aircraft

or new prioritization procedures put in place will affect this

stability.

Recommended is that a "valid until date" be placed

within ESAAMS on the opening screen, when ESAAMS is first

brought on line. Beyond this date the system must be examined

76

for changing knowledge. A one year validation date seems

appropriate.

ESAAMS is to be maintained by the Naval Aircraft

Maintenance Office (NAMO) . Additions, deletions, or

modification of knowledge will only be accomplished by an

expert system developer familiar with ESAAMS. It is hoped

that as expert systems become more visible throughout the

Navy, personnel experienced in their development will become

available.

Testing is accomplished in exactly the same manner as

was accomplished during development. Test cases will be run,

with results verified against an experts judgment. Approval

of multiple test cases will validate change to ESAAMS.

E . DOCUMENTATION

A progress notebook is to be maintained throughout the

entire life cycle of ESAAMS, with testing results meticulously

recorded by the development team. Results are to be compared

against previous test case results, to determine where errors

may have occurred. The progress notebook will be stored at

NAMO, and used for updates of ESAAMS.

F. SUMMARY

This chapter has presented a formal approach to testing an

ESAAMS prototype. Specific criteria have been annotated to

assist in the development of ESAAMS. Four testing stages are

described: the initial design testing stage, the developmental

77

testing stage, the operational testing stage, and the

maintainability testing stage.

A user interface test to be completed by users of ESAAMS

has been included. Finally, a short discussion on maintenance

and documentation of ESAAMS concludes the chapter.

The next chapter will focus on recommendations and con-

clusions from this thesis for a successful development of the

ESAAMS project.

78

VI. RECOMMENDATIONS AND CONCLUSIONS

The size and complexity of the decision domain to be

incorporated into ESAAMS presents tremendous challenges to the

developers. Below are recommendations and conclusions based

on this specific research effort.

A. RECOMMENDATIONS

This study has focused on the validation, verification,

and testing of expert systems, with a proposed test plan for

ESAAMS included. Much work remains before ESAAMS will be

available for testing in an operational squadron. The

following lessons learned are a result of this thesis.

1. Requirements Document

Development of a sound, well thought out requirements

document is the next and most crucial step for the successful

deployment of ESAAMS. Future designers must pinpoint exactly

what is expected of ESAAMS and how it will schedule main-

tenance. Specifications for ESAAMS must be developed. The

requirements need to be thoroughly reviewed by both developers

and users for accuracy and attainability. Iterative knowledge

base developments and requirements refinement will follow.

Some specifications are inclusive in the ESAAMS test plan, but

further refinement is necessary. Figure 4 [Ref. 12: p. 17]

lists a requirements generation process useful for ESAAMS.

79

DEVELOPERS USERS

PRIORITIZE PERFORMANCES-
CRITERIA. RECOGNIZE THAT IT

HAY BE NECESSARY TO MAKE
TRADEOFFS; MORE ON ONE
CRITERION MAY MEAN LESS ON

ANOTHER CRITERION

1
PANEL MEETING

SPONSORS

1
IDENTIFY THE PROBLEM-

I
IDENTIFY THE END USERS.
DEFINE THEIR ROLE IN

DEVELOPMENT AND TESTING

1
IDENTIFY THE EXPERTS.
ASSESS THEIR AVAILABILITY.
DEFINE THEIR ROLE IN

DEVELOPMENT AND TESTING

1IZECHARACTERIZE THE TYPES OF
PROBLEMS THE SYSTEM SHOULD
HANDLE & THE TYPES IT CAN'T

I
IDENTIFY RANGE OF INPUTS &
EXPECTED OUTPUTS

1
IDENTIFY SOURCE FOR TEST
CASES. WILL THE EXPERTS BE

NEEDED? DOES ACTUAL DATA
EXIST? WILL A SIMULATION BE

REQUIRED? WITHHOLD A SAMPLE
OF TEST CASES FROM
DEVELOPMENT (TO BE USED IN

TESTING)

i
IDENTIFY CRITERIA TO JUDGE
SYSTEM PERFORMANCE

i
DEFINE MINIMUM COMPETENCY
REQUIREMENTS FOR PERFORMANCE
CRITERIA

-^IF THE SYSTEM WERE IN PLACE
TODAY, HOW WOULD IT BE

TESTED? r
DRAW/OUTLINE THE EXISTING
PROCEDURE OR METHOD FOR

SOLVING THE PROBLEM

IDENTIFY THE DIFFICULT
AREAS, TIME CONSUMING AREAS,
OR BOTTLENECKS IN THE

EXISTING PROCESS

IDENTIFY THE ROUTINE OR EASY
ASPECTS OF THE PROBLEM

INITIALLY, SELECT ONE

DIFFICULT AREA & SEVERAL
EASY OR ROUTINE AREAS

I
EXAMINE ALTERNATIVE
SOLUTIONS. DETERMINE IF

BENEFITS OF PURSUING AN AI

APPROACH OUTWEIGH COSTS

I
EXAMINE IF IT IS APPROPRIATE
TO USE A SHELL (NEXPERT
OBJECT)

DEFINE GOALS FOR PERFORMANCE
CRITERIA

;
ESTABLISH INTERMEDIATE
PRODUCTS ALONG DEVELOPMENT
PATH & WHICH ATTRIBUTES
SHOULD BE EMPHASIZED FOR

TESTING

Figure 4

Requirements Generation Process

80

2. Ensure the Expert is Available

Initially, the Maintenance Master Chief from the VFA

squadron selected for development of ESAAMs was always

available. However, due to world crisis, the squadron

unexpectedly deployed, forcing system designers to rely on

their own expertise in aircraft maintenance for development

and testing of ESAAMS.

3. Field Test Early and Often

Expert system testing cannot be confined to those

tests performed by the developers alone. Testing must sample

the outside population, using ESAAMS under real world condi-

tions.

4. Keep Conclusions Simple

When writing the rules for the knowledge base, keep

them as simple and concise as possible. Firing of a rule

should lead to a conclusion which instantiates only one

attribute. Pedersen [Ref. 18: p. 24] provides an example of a

well structured relationship among rules and attributes. One

or more rules are responsible for concluding any one

attribute:

RULES ATTRIBUTES

Rule 1 ^ Engine sound

Rule 2 ^ lights

Rule 3< — y battery

Rule 4 > alternator

Rule 5 ^starter

Rule 6 ...

81

Conversely, a poorly structured relationship is

defined as follows:

RULES ATTRIBUTES

-^•Engine sound

lights

Conceptualization of how different rules interact in

a network and which conclusions are triggered by rule firings

becomes excessively difficult as more rules are added to the

knowledge base. Therefore, keep conclusions simple.

5. Establishment of a Maintenance Plan

The question of who will maintain ESAAMS is an

important one. Usage of the expert system after knowledge

obsolescence will cause users to lose confidence in the tool.

How quickly the knowledge changes and what new knowledge is

desirable are features necessary for a sound maintenance plan.

A well thought out plan of who will maintain ESAAMS is

necessary before actual deployment of the expert system.

B. CONCLUSIONS

Further refinement of the testing plan will be necessary

once the requirements document is complete. Aviation officers

attending the Naval Postgraduate School, and especially those

82

with aviation maintenance experience, should be encouraged to

conduct follow on thesis research in the development of

ESAAMS. However, this is not to suggest excluding those

students interested in designing an expert system with no

prior background in aviation.

Additionally, academia will benefit by maintaining an

interest in expert systems development. New shells are

becoming ever more available, technology is advancing at a

rapid speed, and development of expert systems is expected to

rise exponentially over the next decade. Development of

ESAAMS will provide valuable insight for incorporation of a

leading edge technology into today's complex military environ-

ment.

ESAAMS is an ambitious project which has never been

attempted before. Once accomplished, it is expected that

future expert systems of a significant nature will be

realized.

83

LIST OF REFERENCES

1. McCaffrey, M. J., The Feasibility of Implementing An
Expert System For Aircraft Maintenance Scheduling With
The Naval Aviation Logistics Command Management
Information System fNALCOMIS) . Thesis, Naval
Postgraduate School, September 1985.

2. Walker, T. C. , and Miller, R. C. , Expert Systems
Handbook, The Fairmont Press, 1990.

3. Royce, W. W. , "Managing the Development of Large Software
Systems: Concepts & Techniques," Proceedings WESCON,
August 1970.

4. Boehm, B. W. , "A Spiral Model of Software Development and
Enhancement," Computer, Vol. 21, No. 5, May 1988, pp. 61-
72.

5. Kameny, I., Khan, U. , Paul, J., and Taylor, D. , Guide for
the Management of Expert Systems Development . The Rand
Corporation, July 1989.

6. AIRMICS, "Expert Systems Evaluation Methodology," July
1989.

7. Greene, C. , and Keyes, M. , "Verification and Validation
of Expert Systems," IEEE, 1987.

8. Bonnet, A., Haton, J-P, and Truong-Ngoc, J. M. , Expert
Systems: Principle and Practice . Prentice Hall, 1988.

9. Prerau, D. S., Developing and Managing Expert Systems .

Addison-Wesley Publishing Co., Inc., 1990.

10. Marcot, B. , "Testing Your Knowledge Base," AI Expert,
July - August 1987.

11. O'Keefe, R. , "Validating Expert System Performance, " IEEE
Expert, Winter 1987.

84

12. Constantine, M. , and Ulivla, J., "Knowledge Based Systems
In The Army: The State Of the Practice and Lessons
Learned, With Implications For Testing," Decision Science
Consortium, 1990.

13. Bielawski, L. , and Lewand, R. , Expert Systems
Development; Building PC Based Applications . QED
Information Science, Inc., 1988.

14. Ngugen, T. , Perkins, W. A., Laffey, T. , and Pecora, D.

,

"Knowledge Base Verification," AI Expert, Summer 1987.

15. Kang, Y., and Bahill, T. A., "A Tool For Detecting Expert
System Errors," AI Expert, February, 1990.

16. Meister, D. D. , "Behavioral Test And Evaluation Of Expert
Systems," Navy Personnel Research and Development Center,
San Diego, 22 September 1987.

17. Sizemore, N. L. , "Test Techniques for Knowledge-Based
Systems," ITEA Journal, Vol. XI, No. 2, 1990, pp. 34-43.

18. Pedersen, K. , Expert Systems Programming; Practical
Techniques For Rule Based Systems . John Wiley & Sons,
1989.

85

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52
Naval Postgraduate School
Monterey, California 93943-5000

3. Prof. Martin J. McCaffrey (Code AS/Mf)
Naval Postgraduate School
Monterey, California 93943-5000

4. Prof. Tung X. Bui (Code AS/Bd)
Naval Postgraduate School
Monterey, California 93943-5000

5. Mr. Robert Harder
STEEP-ET-S
Ft. Huachuca, Arizona 85613-7110

6. CDR Tom J. Hoskins (Code 37)
Naval Postgraduate School
Monterey, California 93943-5000

7. LCDR Christian W. Andrieu
VQ-4
NAS Patuxent River, Maryland 20670

86

Thesis

A5345 Andrieu
c.l Testing, validation, and

verification of an expert

system advisor for air-
craft maintenance schedu-
ling (ESAAMS)

.

