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Logistically demanding and expensive wildlife surveys should
ideally yield defensible estimates. Here, we show how
simulation can be used to evaluate alternative survey designs
for estimating wildlife abundance. Specifically, we evaluate
the potential of instrument-based aerial surveys (combining
infrared imagery with high-resolution digital photography
to detect and identify species) for estimating abundance of
polar bears and seals in the Chukchi Sea. We investigate the
consequences of different levels of survey effort, flight track
allocation and model configuration on bias and precision of
abundance estimators. For bearded seals (0.07 animals km−2)
and ringed seals (1.29 animals km−2), we find that eight flights
traversing ≈7840 km are sufficient to achieve target precision
levels (coefficient of variation (CV) < 20%) for a 2.94 × 105 km2

study area. For polar bears (provisionally, 0.003 animals km−2),
12 flights traversing ≈11 760 km resulted in CVs ranging from
28 to 35%. Estimators were relatively unbiased with similar
precision over different flight track allocation strategies and
estimation models, although some combinations had superior
performance. These findings suggest that instrument-based
aerial surveys may provide a viable means for monitoring
seal and polar bear populations on the surface of the sea ice
over large Arctic regions. More broadly, our simulation-based
approach to evaluating survey designs can serve as a template
for biologists designing their own surveys.
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1. Introduction
Population surveys are an important component of wildlife conservation and management, providing
the data necessary to monitor population trends, inform management strategies, and measure impacts
of management actions and other environmental perturbations. Such surveys can also be logistically
demanding and expensive, particularly when study areas are large or when they are conducted in remote
regions. Ensuring that such surveys yield defensible (i.e. unbiased) and useful (i.e. acceptable precision)
estimates should be a focus of advance planning.

Wildlife surveys historically relied on design-based protocols for developing sampling frames (e.g.
simple, stratified or systematic random sampling; [1]). If a survey can follow such a probabilistic
design, estimators are guaranteed to be unbiased and there are relatively simple variance formulae
for calculating anticipated precision. For instance, in distance sampling studies, pilot data informing
expected encounter rates, detection probability and between-transect variance can be used to express
anticipated precision as a function of survey effort [2].

Our experience with working in large, remote study systems suggests that deviations from pre-
planned survey routes are often to be expected, as weather or logistical considerations often preclude
surveying in predetermined locations. Employing design-based estimators in such cases may lead to bias
and mis-stated precision. Alternatively, model-based approaches to estimation of wildlife parameters
from survey data do not necessarily require strict adherence to a randomized sampling design.
Model-based approaches are also gaining popularity because of the increased potential for assessing
species–habitat relationships and producing maps of species distributions. For example, ecologists are
increasingly fitting spatial models to distance sampling data [3–5], point count data [6,7] and replicated
presence–absence data [8].

For model-based methods, analytical formulae relating survey effort to anticipated precision are
usually unavailable. Further, bias may still result when the distribution of sampling effort is preferential
(i.e. non-random and/or correlated with the distribution of the wildlife parameter of interest; [9,10]).
When modelling quantities such as abundance that are non-negative, positive bias can also result when
data are sparse or there is poor coverage, simply from the process of extrapolating modelled relationships
(e.g. covariate effects or spatial random effects) to unsampled areas [11]. For these reasons, we argue
that simulation studies are a critical first step in evaluating modern population surveys and that these
should be conducted in advance, especially when a model-based approach to estimation is anticipated.
Specifically, one can investigate how different levels of survey effort and effort allocation strategies affect
bias and precision (e.g. [12–15]). Such exercises are especially important when surveys do not follow strict
probability-based survey protocols owing to the potentially biasing effects of intentional or accidental
preferential sampling [9,10].

In this study, we show how simulation can be used to evaluate alternative survey designs in planning
surveys for polar bears (Ursus maritimus), bearded seals (Erignathus barbatus) and ringed seals (Phoca
hispida) in the eastern Chukchi Sea (hereafter, CS). These species and study area exemplify the challenges
of many wildlife surveys, as the study area is large, weather conditions are frequently poor, and there
are only a limited number of air strips from which to conduct surveys. In addition, these species are of
conservation concern. For instance, negative trends in seasonal Arctic sea-ice extent [16] have prompted
concern for the viability of ice-associated marine mammals [17]. Worldwide, climatological projections
suggest a 68% decline in optimal summer polar bear habitat by the end of the twenty-first century
[18]. In two of the 19 recognized polar bear subpopulations [19], studies have linked declining sea-ice
availability to declines in nutritional condition, reproduction, survival or abundance [20–24]. Two of the
primary prey species of polar bears, bearded and ringed seals, also depend on sea ice for moulting,
pupping and rest. Both polar bears and Arctic ringed seals are currently listened as threatened under
the United States (US) Endangered Species Act [25,26]. The listing rationale for Arctic ringed seals was
almost exclusively based on concern for future habitat declines, as current estimates indicate there are
hundreds of thousands of ringed seals in the Bering and Chukchi seas alone [27,28].

Researchers have employed a variety of survey platforms to estimate the abundance and trends of
Arctic marine mammals. Given their relatively low densities, abundance and trends of polar bears have
primarily been estimated using labour intensive, multiyear mark–recapture studies [20,29–31]. Although
distance-sampling aerial surveys are increasingly used to estimate polar bear abundance, such methods
are most effective for subpopulations that spend the summer months on shore where they occur at
higher densities and are relatively easy to sight [32,33]. By contrast, distance sampling surveys may
be impractical over a substantial portion of the species’ range where polar bears spend the entire year on
sea ice (but see [34]).
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Aerial surveys of basking seals have been the primary tool for estimating phocid seal density over

large spatial domains, often with corrections for imperfect detection and availability less than 1.0
[27,28,35,36]. Historically, aerial seal surveys were flown with on-board observers who counted and
determined the species of detected seals. However, such surveys must be flown at relatively low speeds
and altitudes, limiting the effective range of aircraft and potentially inducing escape behaviour that
negatively biases abundance estimates [37]. Recent developments in instrument-based surveys (IBSs)
that automate data collection (e.g. combining thermal video and high-resolution photography obtained
from conventional fixed wing aircraft; [28,38]) appear to be a promising alternative for increasing survey
efficiency and range, decreasing disturbance of animals, and reducing error relative to surveys with
human observers. Given these improvements, an IBS may also have potential for monitoring polar bears,
either complementing existing mark–recapture efforts or extending inference to populations that are less
intensively studied.

In this study, we use simulation to assess the utility of an IBS for estimating the abundance of bearded
seals, ringed seals and polar bears, using the eastern CS as an example study system. Populations of all
three species in this area are subjects of conservation concern because of climatic warming [17], increased
human activity [39], hydrocarbon exploration and development [40], and other factors.

This paper is organized as follows. First, we describe the proposed study area and technical
specifications of the aerial survey platform. Next, we describe our simulation study in greater detail. Each
simulation involves a number of steps, including: (i) using best available knowledge of species density
and habitat preferences to simulate virtual populations, (ii) simulating application of alternative survey
designs, and (iii) estimating animal abundance from simulated count data. After describing results of this
study, we conclude with a discussion addressing the potential usefulness of our simulation approach.
Specifically, we discuss the use of the IBS platform for surveying polar bears and seals in the CS and
beyond. More broadly, we discuss the essential components of simulation studies when used as an
omnibus procedure for evaluating efficacy of wildlife survey designs.

2. Material and methods
2.1. Study area
We consider a potential application of an IBS in the eastern portion of the CS that occurs within US
airspace (figure 1). This large study area (≈294 000 km2, or 21% larger than Great Britain) is equipped
with two serviceable airports for prosecuting surveys (Barrow, AK, USA and Kotzebue, AK, USA), with
several additional primitive airstrips available for emergency landings. Our objective will be to design
surveys that permit reliable abundance estimation for focal species in this area during April and May.
This timeframe is when ringed and bearded seals are engaged in ice-obligate behaviours such as pupping
and moulting, and thus have the greatest probability of being hauled out on ice. Satellite tagging data
suggest it is also before seals from the Bering Sea migrate northwards as sea ice retreats (J. London 2015,
unpublished data).

2.2. Survey platform
We assumed that CS surveys would use similar technical specifications as a previous IBS of ice-associated
seals in the Bering Sea [28]. In particular, we assumed that a DeHavilland DHC-6 Twin Otter aircraft
would be equipped with three long wavelength infrared (LWIR) thermal cameras (FLIR SC645) and
three high-resolution digital single-lens reflex (SLR) cameras (Canon 1Ds Mark III) mounted through
its bellyport (figure 2). The thermal and SLR cameras would be equipped with 25 mm and 100 mm
lenses, respectively, producing a thermal swath width of 470 m when flying at a target altitude of 300 m.
Automated to take pictures every 1–1.4 s, digital photographs would cover 84% of the thermal swath
(figure 2), and provide an estimated ground resolution of approximately 2 cm pixel−1. When the Twin
Otter aircraft is equipped with an extra fuel tank, effective range given flight speed, altitude and safety
considerations is roughly 900–1200 km, depending on the distance of a planned flight track to alternate
(emergency) landing strips.

A previous double sampling experiment [28] indicated that seal detections with thermal cameras is
quite high, with a detection rate of close to 94% (see ‘Estimating animal abundance’) for seals hauled out
on ice. Non-detections were due mainly to human error, though seals recently emerged from water were
also missed owing to reduced thermal radiation. Early investigations into infrared detection of polar
bears on ice indicated that detecting wavelengths in the 8–14 µm band (LWIR) was a promising approach
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Figure 1. Potential study area for Arctic marine mammal surveys in the eastern Chukchi Sea off the coast of northwestern Alaska, USA.
The study area is discretized into 625 km2 grid cells on a Polar Stereophonic projection (grey lines), commensurate with the resolution of
prospective sea-ice covariate data. The boundaries of the study area are determined by the Bering Strait to the south, the US Exclusive
Economic Zone to thewest andnorth (yellowandblack dashed line), and the 156◦ Wlongitude line to thewest (red line). Land is indicated
in black, with Alaska-based landing strips indicated as red circles. Water depths of more than 500 m are indicated in purple, while waters
less than 500 m are light blue. Also shown are the 10 nearshore (yellow shading) and two offshore (green shading) strata used in previous
seal surveys in this area [27].

warranting further investigation [41]. Recent advances in LWIR detection technology and the software
available to digitally interpret thermal data have led to improvements in polar bear detections. Anecdotal
reports and recent research (e.g. [42]) confirm that even relatively affordable LWIR microbolometers have
adequate sensitivity to detect polar bears on the ice despite the low emissivity [43] of polar bear hairs.

2.3. Data
Rather than viewing terabytes of video and images manually, researchers review time series of maximum
pixel temperatures and associated thermal video frames to identify ‘hot spots’, or heat signatures
demonstrating a detectable difference in apparent temperature between an object and its background.
Coordinated review of digital photographs with matching time stamps can provide information on
species identity (figure 3).

2.4. Simulation study
We conducted a simulation study to examine the effectiveness of the IBS platform and associated
hierarchical modelling framework for estimating abundance. Owing to long computing times for each
individual model (see ‘Performance metrics and computing’), we limited this study to analysis of 100
hypothetical virtual populations. For each of these n = 100 replicates, we (i) simulated the abundance and
distribution of virtual populations of seals and polar bears, (ii) simulated datasets reflecting nine choices



5

rsos.royalsocietypublishing.org
R.Soc.opensci.3:150561

................................................

100

50

0

–50

–100

im
ag

e 
le

ng
th

 (
m

et
re

s)

image width (metres)

–150

–200

left centre right

–250 –200 –150 –100 –50 0 50 100 150 200 250

(c)

(b)(a)

Figure 2. Equipment and camera specification for potential instrument-based surveys for polar bears and seals in the eastern Chukchi
Sea. As with previous IBS surveys in the Bering Sea, a DeHavilland DHC-6 Twin Otter aircraft (a) would be equipped with three long
wavelength infrared (LWIR) thermal cameras (FLIR SC645) and three high-resolution digital single-lens reflex (SLR) cameras (Canon 1Ds
Mark III) mounted through its bellyport (b). Blue lines (c) indicate thermal camera swath width for each camera, while red and green
polygons represent the expected footprint of SLR photographs. Flying at a target altitude of 300 m, this configuration results in a thermal
swath width of 470 m of which automated digital photographs cover ca 84%.

for survey effort and track allocation, and (iii) fit models with different combinations of explanatory
variables for each dataset.

2.4.1. Generating virtual populations

The best available data on seal abundance in the CS comes from aerial surveys flown in late May and
early June in 1999 and 2000 [27], with density estimates available for 12 different spatial strata. Ringed
seals had higher densities in nearshore fast and pack ice, with lower densities offshore, and were more
common in the southern portions of the CS near Kotzebue Bay, AK, USA. Bearded seals had highest
densities offshore in the southern portions of the study area [27], but had lower overall apparent density
than ringed seals.

To generate virtual seal populations, we start by discretizing the study area into J = 505 survey units,
each of which is approximately 625 km2, the same resolution as commonly available sea-ice imagery
(figure 1). We used strata-specific density estimates to define an initial density value for each cell, dj.
In particular, we set dj equal to seal density associated with the centroid of sample unit j (determined by
locating the centroid of j on the density map generated by Bengtson et al. [27]). For survey units beyond
the study area boundary used by Bengtson et al. [27], we applied density estimates from the nearest
located strata.

Unlike seals, polar bear densities in the CS are largely unknown. Belikov [44] suggested that there
were 2000–5000 polar bears in the CS region based on extrapolation of den surveys conducted on Wrangel
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Figure 3. Adepiction of the processwithwhich animals are detected and counted using a coordination of thermal and SLR imagery. First,
a time series of maximum pixel temperatures from thermal cameras are used to locate temperature peaks (a). Next, individual thermal
video frames are reviewed to determinewhether each peak is associated with a thermal signature of the size and shape thatmight be an
animal (yellow circle in (b)). Such prospective ‘hot spots’ are denoted with a green ‘o’ in (a); pixel temperature peaks that did not meet
this criterion are labelled with an ‘x.’ Finally, digital photographs with time stamps that match prospective hot spots are examined to
confirm animal presence and determine species identity (b).

Island. This estimate was later revised to 2000 by the Polar Bear Specialist Group of the International
Union for the Conservation of Nature, based on expert opinion and concerns about the potential effects
of habitat loss and human-caused mortality [45]. Given that the current IBS survey area covers roughly
half of the CS polar bear subpopulation area, we considered N = 1000 polar bears to be a reasonable
approximation for simulation studies. We derived the relative probability of use wj for each survey unit
using scale-integrated resource selection functions for late April calculated from radiotelemetry data for
polar bears over the period 2009–2012 [40]. We then determined the value of a fixed constant c such
that E(N) = ∑

j E(Nj) = ∑
j cwj = 1000, so that total expected (uncorrected) abundance (E(N)) was 1000

individuals. We then calculated dj for polar bears as dj = cwj/625.
For seals, initial density values (dj) often included large differences in abundance between

neighbouring survey units owing to the stark boundaries between survey strata in [27]. To make for
a more continuous, biologically plausible expected density map, we smoothed initial density values by
multiplying them by a (J × J) smoothing transition matrix, W. Elements of W, wab, were determined as
follows. First, diagonal elements waa were set to 2.0. Second, for all neighbours (i.e. when survey units
a and b are adjacent to one another), wab was set to 1.0. All other entries of W were set to 0.0. Finally,
elements of W were standardized to have each row of W sum to 1.0. A smoothed vector of densities
D∗ = {d∗

1, d∗
2, . . . , d∗

K} was then computed as D∗ = WD, where D = {d1, d2, . . . , dK}.
In order to generate meaningful differences in abundance among simulation replicates, we next

introduced stochasticity in expected abundance (λj). Our approach was to include moderate levels of
extra-Poisson error and spatial autocorrelation to allow for simulated populations that were patchily
distributed and overdispersed relative to the Poisson distribution, as is typical in many animal
populations. Specifically, we calculated

λj = aj exp(log(d∗
j ) + ηj + εj),

where aj gives the effective area of survey unit j, ηj denotes a mean zero, spatially autocorrelated
random effect, and εj ∼N (0, 0.1) represents independent and identically distributed (iid) Gaussian
error. We generated η = {η1, η2, . . . , ηK} using an RSR-ICAR(τη = 5) distribution [28]. We set aj = 625Rj,
where 625 (km2) was the area of each survey unit, and Rj gives the proportion of j that is composed
of saltwater habitat. Over the course of n = 100 simulation replicates, this approach yielded average
expected population-level abundance of approximately 19 800 bearded seals, 380 000 ringed seals and
930 polar bears in surveyable portions of the study area.
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Figure 4. A collection of nine hypothetical aerial transect designs over the eastern Chukchi Sea, differing by: (i) number of flights (4, 8
or 12; displayed on columns), and (ii) the spatial distribution of tracks. The first row includes scenarios where only ‘long’ tracks are flown,
trying to achieve more or less even coverage across the study area, while subsequent rows have an increasingly greater number of short
tracks flown near the coast to target areas of higher seal densities.

2.4.2. Simulating surveys

We considered nine different possible aerial transect configurations that varied by total effort as well as
effort allocation (figure 4). In particular, we included three different levels of effort: four flights, eight
flights or 12 flights. Within each category, several different configurations were possible, allowing for
relatively even coverage of the study area, or allowing for higher density of transects in areas of higher
seal abundance. There is a theoretical basis for believing that the effort allocation will affect estimator
performance. For instance, in the context of geostatistical models, relatively even coverage (spatial
balance) tends to result in estimators with low bias and high precision [46,47]. However, in stratified
random sampling [1] increases in estimator precision can be achieved by allocating more effort in high
abundance strata. Stated another way, there may be little to be gained by allocating as much survey
effort in places where focal taxa have low densities. By considering a range of effort allocation strategies,
we hoped to examine whether a particular effort allocation strategy was advantageous over a range of
estimation models (see ‘Estimating animal abundance’).

For each combination of virtual population (n = 100) and survey allocation strategy (n = 9), we
simulated an IBS dataset. To begin, we calculated the proportion of area (Aj) covered by digital
photographs in each sampled survey unit j. Next, we generated the total number of animals of species s
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associated with the area surveyed in survey unit j as

njs ∼ Poisson(Ajλjs).

Not all animals are detected in the surveyed area, however, owing to incomplete detection. As such, we
generate the number of animals that are detected in digital photographs as

Cjs ∼ Binomial(njs, pjs),

where pjs reflects incomplete detection of species s in survey unit j. To generate data, we used a single
value for pjs = ajsps for each species. Overall detectability, pjs, is a product of both availability (the
proportion of animals on ice while surveys are conducted) and detection probability of thermal cameras
(the probability an animal is detected given that it is on ice and appears in digital photographs; ps).
For bearded seals, we based availability, ajs, on predicted haul-out probabilities estimated from satellite
tagging records from bearded seals tagged in the CS (P. Conn 2014, unpublished data). Specifically, we
set ajs = 0.48, which corresponds to predicted proportion hauled out on 8th May at 23.00 GMT (14.00
Alaska time). Surveys of seals in the CS would probably need to be prosecuted in early May, when a
higher proportion of seals are available due to moulting and pupping, but before a large influx of seals
into the study area from the Bering Sea occurs as seasonal ice melts. We do not currently have access
to detailed telemetry records for ringed seals, and instead set ast = 0.65 based on analyses reported by
Bengtson et al. [27]. For polar bears, we set ast = 1.0. Although some polar bears may be in the water at
the time of surveys, this is not thought to be a large proportion and few data exist to further quantify this
number. For polar bears and seals, we then applied a point estimate of ps = 0.94, the point estimate of
thermal detection probability from a double sampling study of seal photographs [28]. Note that this value
implicitly includes different causes for non-detections (e.g. detection error, animals recently emerged
from cold water, etc.). In absence of further information, we used this same value for polar bears.

2.4.3. Estimating animal abundance

We used a hierarchical, Bayesian modelling framework to estimate animal abundance for each dataset.
This was not strictly necessary, as other modelling approaches (e.g. generalized linear [48] or generalized
additive [49] models) could have been used here. However, a Bayesian approach to estimation allows
for straightforward modelling of spatial autocorrelation and provides a cohesive way to propagate
uncertainty attributable to incomplete detection of animals.

The hierarchical modelling framework articulated here differs from that of Conn et al. [28], who
modelled the latent species identity associated with each hot spot. This allowed them to model species
for hot spots that did not have accompanying photographs and to account for species misclassification.
However, this framework is extremely computationally intensive and is thus ill suited to large-
scale simulation studies. In addition, several of these modelling features do not appear as useful for
anticipated Chukchi IBS data, since (i) recent work on seal identification from digital SLR images
indicates minimal misidentification between bearded and ringed seals [50], and (ii) limiting analysis
to photographed animals will only require eliminating ≈20% of hot spot records. We thus adopted a
simpler formulation for CS simulation analyses using aggregated count data that led to execution times
roughly 100 times faster than those those reported in [28].

Following [28], variation in animal abundance is described using a spatial regression model. We start
by writing a species-specific vector of expected abundances for all J survey units as

λs = R exp(Xsβs + ηs + εs),

where R is a vector giving the proportion of each survey unit that is composed of suitable habitat
(i.e. that does not include land), Xs is a design matrix (e.g. [51]) that includes an intercept and desired
covariates, βs is a vector of fixed effect regression parameters, ηs is a vector of spatially autocorrelated
random effects and εs denotes a vector of independent, Gaussian errors. In the following simulation
study, we use a reduced rank version of the intrinsic conditionally autoregressive prior [52] to impart
spatial autocorrelation (see [28] for more information).

Of course, we do not observe true abundance for each survey unit. Survey units are not sampled in
their entirety, nor do we necessarily observe all individuals in the sampled region. For this reason, the
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count of species s in survey unit j, Cjs, is conceptualized as arising according to a thinned Poisson process,
where

Cjs ∼ Poisson(Ajpjsλjs),

as in the previous section.
Unlike the data generating procedure where point estimates were used to generate count data, we

wished to propagate uncertainty in detectability parameters when estimating abundance. One strategy
for doing this is to specify informative prior distributions for detection parameters when conducting
Bayesian inference. We employed the following procedure to generate prior distributions for pjs. First,
for all three species, we used data from a double sampling experiment [28] to produce a prior distribution
for ps. This experiment yielded 70 seal detections using independent searches of photographs. Of these,
66 were detected using thermal cameras from the same target altitude as planned for CS surveys. We
used these data to specify a Beta prior distribution for ps for all three species:

ps ∼ Beta(71, 5).

Next, for bearded seals, we generated a prior distribution for ajs from previously analysed satellite
telemetry records, using the same procedure as described in [28]. For purposes of this analysis, we used
the predicted proportion of bearded seals hauled out on 8th May at 23.00 GMT (14.00 Alaska time) (the
same date and time used for point estimates when generating IBS data). For ringed seals, this distribution
was rescaled to have a mean of 0.65, effectively assuming similar uncertainty about predicted proportions
hauled out between the two species. For polar bears, we simply set ajs to 1.0, thus assuming that polar
bears spend a negligible portion of time in the water and underwater, and are effectively always available
to be detected. Finally, we generated a simple Monte Carlo sample of 1000 from the prior distribution of
pjs, [pjs], by independently sampling from the independent distributions [ajs] and [ps] and multiplying
each replicates values together. These samples were used as the prior distribution for pjs.

Conducting a Bayesian analysis requires a method for summarizing the posterior distribution of
model parameters, where the posterior distribution is proportional to the prior distribution times the
likelihood. This is difficult to do directly, so practitioners have developed simulation-based approaches
such as Markov chain Monte Carlo (MCMC) to sample the posterior. Here we used a variant of MCMC,
namely Metropolis-within-Gibbs sampling [53] to summarize the posterior by cyclically drawing from
each parameter’s so-called full conditional distribution. In particular, we used the same Metropolis-
within-Gibbs sampling procedure as specified by Conn et al. [28] (omitting updates for true species,
species misclassification parameters, and individual covariate distributions). This procedure required us
to specify prior distributions for several additional sets of parameters. We chose the same set of vague
priors as implemented by Conn et al. [28], namely:

[βs] =MVN (0, (0.01X′
sXs)−1),

[τη] = Gamma(1.0, 0.01) and

[τε] = Gamma(1.0, 0.01).

The prior for regression parameters, [βs], is a diffuse multivariate normal distribution scaled so that the
effect of the prior is similar regardless of the absolute value of the covariates used in the analysis. The
parameters τη and τε represent precision for spatial random effects (when modelled), and extra-Poisson
error, respectively. Small values of precision (e.g. 0.1) result in high levels of spatial autocorrelation
or overdispersion (for τη and τε , respectively), while large values (e.g. 100) represent low spatial
autocorrelation or overdispersion. Our gamma prior (i) puts substantial mass on all reasonable parameter
values, and (ii) has roughly uniform mass near the origin, which helps prevent pathological behaviour
exhibited by other commonly used gamma priors (e.g. [54]).

To emulate realistic analyses performed on IBS data, we compiled a number of geographical
covariates that might be useful predictors of animal abundance, including: (i) distance from each survey
unit to the mainland of Alaska, USA (‘dist.land’), (ii) vertical distance along the survey grid (‘northing’),
and (iii) horizontal distance along the survey grid (‘easting’). These covariates were intended to capture
large-scale spatial trends in abundance via a response surface; note that in future analyses with real
data it would probably be beneficial to consider additional ecologically relevant covariates (e.g. sea ice
concentration, distance from ice edge, bathymetry). All geographical covariates were computed relative
to the centroid of each 25 × 25 km survey unit on a Polar Stereographic projection. When modelled, we
included linear effects of all geographical covariates, as well as a square root transform of ‘dist.land’ and
an easting × northing interaction. In several estimation models, we also used the 12 strata employed
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by Bengtson et al. [27] as a post hoc categorical variable (‘strata’; figure 1). Finally, we computed a
covariate that summarized the relative density of survey effort across the survey area (‘samp.dens’).
Recent investigations have indicated potential for bias in model-based analyses when survey effort is
not randomized [9], but controlling for the relative density of survey effort has been shown to mitigate
bias in some applications [10]. To compute the effort covariate, we first summarized total survey effort
(i.e. area sampled) by survey unit. Next, we used the function ‘KernSur’ in the GenKern R library (with
default bandwidths), to compute a two-dimensional kernel density estimate (KDE) of observed effort at
each of the survey unit centroids. We then standardized each KDE by dividing by its mean to produce
the ‘samp.dens’ covariate.

We examined trace plots and standard MCMC diagnostics (e.g. Gelman-Rubin diagnostics; [53]) for
several representative model runs to help guide the length of MCMC chains used in the simulation
study. In particular, these diagnostics helped us to ensure that MCMC chains had reached their stationary
distribution and provided guidance on sample sizes needed to ensure reasonable inference. Each MCMC
run began with 3000 iterations used to help tune MCMC updates to achieve target acceptance rates
between 30 and 40%, as suggested by Gelman et al. [53]. For both seal species, an additional 60 000
MCMC iterations were performed, with the first 10 000 discarded as a burn in. Saving every 25th
iteration to reduce disc storage resulted in 2000 samples from the joint posterior distribution for each
model. Owing to considerably sparser data, polar bear models were run for much longer. Following the
initial 3000 iteration adapt phase, polar bear models were run for 450 000 iterations, with the first 50 000
iterations discarded as a burn in. We saved data from every 200 iterations to once again arrive at 2000
posterior samples.

We initially attempted to fit a total of 12 models to each seal count dataset and eight models to
each polar bear dataset. However, issues with numerical overflows and lack of parameter identifiability
prevented us from fitting all models to all datasets (table 1). For instance, owing to the small number
of encounters, polar bear models were often unstable when only four flights were conducted or when
spatial random effects were employed. We did not perform any simulations at these design points. An
example of a single simulation replicate is provided in figure 5.

2.4.4. Performance metrics and computing

For each model fit to count data, we computed proportional bias, precision (coefficient of variation;
CV), root mean square error (RMSE) and 90% credible interval coverage (CIcov). Bias, CV and RMSE
were calculated relative to the posterior predictive mean for total abundance. We report median values
(over all n = 100 simulation replicates) for bias and CV to lessen the impact of outliers. For instance,
several simulations for polar bears with low effort and higher levels of model complexity resulted in
clearly unrealistic estimates in the tens of thousands. Basing model performance statistics on the median
reduced the influence of outliers that represented particularly poor estimation. To calculate CIcov, we
determined the proportion of simulations for which the true value for total abundance (N) was between
the 5th and 95th posterior quantiles of estimated abundance.

We performed all analyses in the R programming environment [55], and developed an R package,
ChukchiPower, to house all simulation and analysis code. This package has been published online [56]
and is also available on github at https://github.com/pconn/ChukchiPower.

Requisite computing time for each MCMC run varied depending on the amount of data, model input
configuration and species (with polar bears requiring a greater number of MCMC iterations). With fewer
data (e.g. four flights) and a simpler model structure (e.g. no spatial random effects), a single MCMC run
for a seal species could be accomplished in less than a minute on a Dell Precision laptop with 3.0 GHz
processors. With 12 flights and models with spatial random effects, individual simulations took up to
14 min. In total, 17 800 analyses of simulated datasets were conducted, requiring approximately 100 CPU-
days of computing time.

3. Results and discussion
We evaluated the impact of alternative study designs on bias and precision of model-based abundance
estimators. Simulations revealed that four flights are too few to produce viable estimates of abundance
for the three species studied, as median absolute proportional bias for seals was frequently >0.1 and as
high as 0.59, depending on the estimation model (table 1). CV was also greater than our target of 0.2 for
bearded seals (table 2).

https://github.com/pconn/ChukchiPower
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Table 1. Proportion relative bias for the total abundance estimator (N̂), as estimated from different models (indicated on rows), and as a
function of different transect configurations (columns). (Each value representsmedianproportional bias ofn= 100 simulation replicates,
where the posterior predictive mean of N̂ is used as a point estimator. Models could include landscape-level covariates (collectively
referred to as ‘covs’), geographical stratum (‘stratum’), a measure of sampling intensity (intended as a potential fix for preferential
sampling; ‘samp.dens’) and spatially autocorrelated ‘RE’. Different flight configurations are displayed in figure 4; the first arabic symbol
in the flight name relates to the number of flights (4, 8 or 12 flights), while the second reflects the amount of effort devoted to nearshore
surveys (1= no coastal surveys, 2= 2 coastal surveys, 3= 4 coastal surveys, 4= 6 coastal surveys). Blank entries indicate cases where
estimates were numerically unstable or models were otherwise overparametrized.)

4 flights 8 flights 12 flights

model A1 A2 B1 B2 B3 C1 C2 C3 C4

(a) bearded seals
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs −0.03 0.54 −0.04 0.03 0.08 −0.00 0.06 0.07 −0.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs+ samp.dens 0.18 0.15 −0.05 −0.08 −0.07 −0.06 −0.04 −0.02 −0.10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum −0.07 −0.05 −0.05 −0.05 −0.05 −0.04 −0.05 −0.06
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs+ stratum 0.14 −0.04 −0.07 −0.04 −0.05 −0.04 −0.03 −0.07
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum+ samp.dens −0.07 −0.04 −0.07 −0.04 −0.06 −0.06 −0.01 −0.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs+ stratum+ samp.dens 0.12 −0.03 −0.04 0.01 −0.03 −0.05 −0.01 −0.07
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs+ RE −0.03 0.59 −0.03 0.01 0.04 −0.03 −0.01 0.01 −0.02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum+ RE −0.07 −0.06 −0.07 −0.05 −0.09 −0.05 −0.05 −0.07
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum+ samp.dens+ RE −0.08 −0.05 −0.06 −0.03 −0.06 −0.05 −0.02 −0.10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) ringed seals
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs −0.01 0.19 0.04 0.09 0.13 0.04 0.06 0.10 0.07
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs+ samp.dens 0.14 0.21 0.04 −0.00 −0.01 0.02 0.02 0.00 −0.02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum 0.09 −0.00 0.03 0.05 −0.02 −0.01 0.03 0.02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs+ stratum 0.10 −0.01 0.01 0.03 −0.00 0.00 0.02 0.00
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum+ samp.dens 0.05 −0.00 −0.01 −0.03 −0.02 −0.02 −0.01 −0.03
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs+ stratum+ samp.dens 0.10 −0.00 −0.02 −0.01 −0.01 −0.01 −0.01 −0.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs+ RE −0.02 0.13 −0.00 0.01 0.04 −0.01 −0.00 0.01 −0.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum+ RE 0.09 −0.00 0.03 0.06 −0.02 −0.00 0.02 0.02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum+ samp.dens+ RE 0.05 0.00 −0.02 −0.03 −0.02 −0.02 −0.01 −0.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) polar bears
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs 0.01 −0.11 0.07 −0.04 −0.09 −0.05 −0.07
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs+ samp.dens 0.02 0.02 −0.08 −0.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum −0.11 −0.07 0.19 −0.08 −0.07 −0.05 0.11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum+ samp.dens 0.38 −0.05 0.04 −0.04 −0.01 −0.04 0.07
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Eight flights produced CV values for both seal species that were all less than 20%, although CV
for polar bears was much higher (35% < CV < 106%; table 2) and with biases that were of concerning
magnitude (e.g. up to 0.38; table 1). Going to 12 flights improved precision even further with CV < 15%
for both seal species for all flight combinations and estimation models considered, and reduced CV for
polar bears to a level with more applied value (e.g. 28% < CV < 35%; table 2).

Limiting simulations to those with eight or more flights, proportional bias was often slightly negative
for bearded seals, roughly zero for ringed seals, and mixed for polar bears (table 1). For the 12 flight
scenarios, biases were typically less in scenarios C1–C3 than for C4, indicating that C4 may be a poor
effort allocation strategy. Evidently, moderately elevating levels of effort in nearshore strata does not
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Figure 5. Visualization of a single simulation replicate of instrumental-based surveys for seals and polar bears in the Chukchi Sea. First,
a realization of abundance (N) is simulated for each species (a). Next, virtual transect surveys are conducted, yielding counts for each
species (b). Note that grey cells are unsurveyed. Finally, abundance is estimated (N̂; c), and compared to simulated abundance to tabulate
performance metrics.

greatly help or hurt abundance estimation, but too much effort in nearshore strata can hurt the quality
of inference (C4 has the highest levels of effort allocation to nearshore strata; figure 4).

The model used for estimation did have some impact on estimates. In general, simple models
including only landscape covariates tended to produce estimates with higher bias than more complex
models. For bearded seals, including the sampling density as a predictive covariate (via ‘samp.dens’) did
not appear to be a useful strategy for reducing bias associated with preferential sampling. For polar bears,
models with sampling density often performed better than those without; absolute bias was reduced
considerably for seven out of eight flight combinations (table 1). Including such a variable is important if
flight tracks are placed so that they either over- or under-sample polar bears relative to unsurveyed cells
with similar predictive covariates.

RMSE is viewed by some as the most useful descriptor of estimator performance as it combines
notions of bias and precision. Of eight-flight scenarios B1–B3, B1 had better overall RMSE scores for
seals than the other options (electronic supplementary material, table S1). For the 12-flight scenarios,
performance was not as clear cut, with C1–C3 clearly having lower (better) RMSE scores than C4, but the
superiority of RMSE scores among C1–C3 depended on species and estimation model.

Credible interval coverage was greater than nominal for bearded and ringed seals, and close to
nominal for polar bears (electronic supplementary material, table S2). For seals, this was probably an
artefact of us using a point estimate for availability when simulating data, but assuming increased
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Table 2. CV for the total abundance estimator (ŜE(N̂)/N̂), as estimated from different models (indicated on rows), and as a function of
different transect configurations (columns). (Each value represents themedianCVovern= 100 simulation replicates,where theposterior
predictive mean of N̂ is used as a point estimator. Models could include landscape-level covariates (collectively referred to as ‘covs’),
geographical stratum (‘stratum’), ameasure of sampling intensity (intended as a potential fix for preferential sampling; ‘samp.dens’) and
spatially autocorrelated ‘RE’. Different flight configurations are displayed in figure 4. Blank entries indicate cases where estimates were
numerically unstable or models were otherwise overparametrized.)

4 flights 8 flights 12 flights

model A1 A2 B1 B2 B3 C1 C2 C3 C4

(a) bearded seals
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs 0.21 0.28 0.16 0.16 0.17 0.13 0.14 0.15 0.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs+ samp.dens 0.33 0.27 0.16 0.16 0.18 0.13 0.13 0.15 0.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum 0.19 0.15 0.15 0.16 0.13 0.13 0.14 0.14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs+ stratum 0.34 0.15 0.15 0.16 0.13 0.13 0.14 0.14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum+ samp.dens 0.19 0.15 0.15 0.17 0.13 0.13 0.14 0.14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs+ stratum+ samp.dens 0.39 0.16 0.16 0.18 0.13 0.13 0.15 0.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs+ RE 0.21 0.31 0.15 0.16 0.18 0.13 0.13 0.14 0.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum+ RE 0.19 0.15 0.15 0.16 0.13 0.13 0.14 0.14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum+ samp.dens+ RE 0.20 0.16 0.16 0.18 0.13 0.13 0.14 0.14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) ringed seals
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs 0.11 0.12 0.10 0.10 0.10 0.10 0.10 0.10 0.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs+ samp.dens 0.14 0.13 0.11 0.10 0.10 0.10 0.09 0.10 0.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum 0.11 0.10 0.09 0.10 0.09 0.09 0.09 0.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs+ stratum 0.12 0.10 0.10 0.10 0.09 0.09 0.09 0.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum+ samp.dens 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs+ stratum+ samp.dens 0.12 0.10 0.10 0.10 0.10 0.09 0.09 0.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs+ RE 0.11 0.12 0.10 0.10 0.10 0.09 0.09 0.09 0.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum+ RE 0.11 0.10 0.10 0.10 0.09 0.09 0.09 0.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum+ samp.dens+ RE 0.11 0.10 0.10 0.10 0.09 0.09 0.09 0.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) polar bears
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs 0.40 0.41 0.39 0.31 0.30 0.32 0.30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covs+ samp.dens 0.35 0.35 0.35 0.32
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum 0.38 0.37 0.35 0.30 0.28 0.30 0.30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stratum+ samp.dens 0.97 0.42 0.42 0.35 0.34 0.35 0.32
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

uncertainty about its value during estimation. Thus, we think estimated precision levels are probably
accurate (i.e. CIcov greater than nominal is not necessarily indicative of estimated variances that are too
high).

To compare CV from our study with other published field efforts, we used the approximate
relationship CV ≈ (High − Low)/(4N̂) to calculate CV for studies where only confidence or credible
intervals were reported. Here, ‘High’ and ‘Low’ give higher and lower 95% confidence/credible interval
limits, respectively. For ringed seals, previous fixed-wing aerial distance sampling surveys in the CS [27]
reported CVs of 0.19 and 0.12, which is similar or worse precision than we projected in our simulation
study. In an IBS aerial survey in the eastern Bering Sea, Conn et al. [28] achieved a CV of close to
0.10 for bearded seals using 10 flights of similar range to those considered here. This is slightly more
precise than projected for bearded seals in the CS. By contrast, Ver Hoef et al. [36] obtained a model-
based CV for bearded seals of 0.55 in the Bering Sea using distance-sampling helicopter surveys, which
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is substantially worse precision than obtained here. This difference probably results from a number of
factors, including: (i) lower coverage of helicopter surveys, (ii) additional variance from estimating the
detection function in distance sampling surveys, and (iii) an attempt being made in [36] to account for
changing sea ice conditions.

Previous surveys for polar bears have yielded much better CV values than the CVs projected in this
paper. For instance, Bromaghin et al. [29] obtained an abundance estimate for the Southern Beaufort
Sea subpopulation in 2010 with a CV of 0.17, but this required data from a 10-year, intensive mark–
recapture study. Also, estimates of abundance from open-population mark–recapture studies apply to
the ‘superpopulation’ (i.e. the group of animals with a non-negligible probability of moving through the
sampling area), which can be difficult to define and may be different from the population of interest
from a biological or management perspective [24]. By contrast, aerial surveys permit estimation of the
population of animals located within the study area while the survey is being conducted.

Using helicopter-based distance sampling surveys, Aars et al. [34] obtained a CV of 0.16 for the Barents
Sea polar bear subpopulation. However, they flew almost double the length of transects than considered
here (20 975 km compared to 11 760 km in our 12 flight scenario) and surveyed a much denser population.
For instance, Aars et al. [34] encountered a total of 263 bears, while we estimated that we would probably
encounter just 20–30 bears in our surveys. Similarly, Stapleton et al. [32] obtained a CV of 0.16 for
the Western Hudson Bay subpopulation; however, this survey was conducted in the ice-free summer
period when the population had moved exclusively onto land and were therefore more congregated and
visible. Applying similar survey methods in the CS could be expected to result in substantially lower
precision. In addition, the reduction in speed, altitude and range required for using distance sampling
from helicopters would probably make this sampling approach infeasible for the CS subpopulation. In a
simulation study specifically evaluating distance sampling from two helicopters based on an ice breaker
to estimate polar bear abundance in the CS, Nielsen et al. [13] found that for a population of N = 2000,
distance sampling abundance estimators had moderate (≈10%) positive bias and a CV of 25–40%. On
the surface, this estimate looks promising. However, in addition to a high projected cost (1.6–3.0 million
USD), this study used the same set of resource selection function (RSF) estimates in two ways: once to
generate polar bear locations, and a second time to extrapolate estimates to unsurveyed locations. Such
a double use of data may have led to overly optimistic estimates, as it suggests analysts have precise
knowledge of the process by which bears distribute themselves along the sea ice. By contrast, we made
no such assumption in this study, as the RSF estimates we used to help generate bear locations were not
included as explanatory covariates within estimation models.

4. Conclusion
For seals and polar bears, IBS surveys appear a promising avenue for monitoring or supplementing
other research on population abundance. For bearded and ringed seals, eight IBS flights over the eastern
CS appear sufficient for estimating abundance with a low degree of bias and high degree of precision
(CV < 20% for both species). This is encouraging, as precise estimates of seal abundance and distribution
will be important for gauging the ultimate effects of climate change and other human influences on seal
populations and for evaluating recent threatened species protections (e.g. [26]).

For polar bears, 12 flights would probably lead to a CV between 28 and 35%, which would provide
more information on population size than is currently available and could help complement multiyear
surveys that provide more detailed information on population ecology and demography (e.g. mark–
recapture or telemetry surveys) but do not provide useful estimates of abundance. Estimates of absolute
abundance are directly relevant to some management questions (e.g. estimation of sustainable harvest
levels), and can help anchor integrated population models for bear populations that combine data from
disparate sources [57], improving the quality of inference. Despite the relatively low precision compared
with other published aerial survey estimates, we are encouraged by our results, especially because
(i) polar bear densities for the eastern CS are much lower than other locations where distance sampling
surveys have been conducted, and (ii) the range, speed and altitude of the IBS surveys proposed in this
paper allow for more extensive coverage of the survey area than do helicopter-based distance sampling
surveys (e.g. [32,34]).

Our approach in this paper was to use relatively simple models for animal abundance which included
the capacity for overdispersion (relative to the Poisson) but did not include possible zero inflation.
This may be an important consideration for more abundant species (e.g. ringed seals), and would
serve to decrease precision relative to what has been presented in this paper. Owing to differences in
performance among estimation models, it may also be important to include model uncertainty through
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model averaging, which also would probably decrease precision on resultant estimators. Similarly, our
simulation design allowed for a moderate level of patchiness in abundance through spatial random
effects but did not consider higher levels of patchiness. Thus, estimates of precision obtained in this
paper should be interpreted conservatively.

The study area evaluated in this paper consisted of the eastern (US) portion of the CS, which is only
a portion of the Chukchi region relevant to management and conservation of Arctic marine mammals.
Although not described here, a similar IBS survey of the western (Russian) portion of the CS is also
being planned, with both surveys (east and west) set to commence in April 2016. Applying similar
levels of survey effort and track distribution to the western CS should allow for viable abundance
estimates and maps for the CS as a whole. More broadly, we are optimistic that IBS surveys will
be useful for quantifying the abundance of Arctic marine mammals in sea-ice environments. These
surveys may complement existing efforts in intensively studied populations or may allow investigators
to extend the spatial scope of inferences being made to populations that are more difficult to survey
owing to logistical limitations. To obtain robust estimates from such surveys, future effort should
be devoted to estimating components of detection for polar bears, such as availability and detection
probabilities from thermal cameras. The latter could be accomplished through experimental trials where
the aerial survey platform is flown over polar bears on ice that are detected visually. Measuring
separate detection rates for polar bears is especially important given that polar bear hair masks their
heat signature more than other species [43]. Reductions in detection rates and increases in uncertainty
associated with detection from the nominal values assumed in this paper would decrease precision of
abundance estimates.

We suggest that analyses presented here serve as a template for evaluating the potential for IBS
surveys to estimate abundance of other Arctic marine mammal populations. More broadly, our general
three-step approach of simulating virtual populations, simulating surveys and estimating animal
population parameters can be used to help compare alternative survey designs in other settings.
To employ this three-step approach, several basics are required. First, investigators need to have a
reasonable map of species density. It need not be exact; expert opinion can often be used in this step if
no other data are available, or several such maps can be created that embody alternative states of nature.
Second, alternative survey specifications (or computer code for generating surveys) must be available
and georectified. Finally, landscape-level covariates are useful for formulating estimation models that
embody different levels of complexity. With these three elements in hand, construction of a simulation
analysis is conceptually straightforward, although some expertise with geospatial analysis and computer
coding will usually be needed (e.g. to intersect surveys with virtual animal populations and to loop over
simulation replicates).

Several elements of our study should routinely be included in similar simulation analyses. First,
inclusion of spatial random effects when simulating virtual populations can emulate the patchiness that
is typical of animal populations; ignoring this effect will tend to lead to estimates of survey efficiency
that are too optimistic. Second, considering a suite of estimation models can help investigators decide
on a realistic level of model complexity. Models that are too simplistic will do a poor job at describing
variation in animal abundance across a landscape; models that are too complex will have lower
precision and may suffer from inaccurate and biased extrapolations of abundance to unsampled areas
[11]. Third, we suggest using different mechanisms for generating virtual populations and estimating
animal abundance. Including the same covariates or functional forms in the data-generating and
estimation models will probably paint an overly optimistic picture of estimator performance. Finally,
we encourage analysts to incorporate sound design-based principals into their study design whenever
possible. Although it may be possible to detect and correct for preferential sampling as part of the
modelling process (e.g. using a covariate reflecting density of sampling), such models can sometimes
be unstable and design-based principles such as randomization can help avoid preferential sampling in
the first place. More sophisticated approaches for modelling preferential sampling effects is a focus of
current research.
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