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PREFACE TO THE SECOND EDITION

In preparing this second edition the earlier portions of the book
have been partly re-written, while the chapters on recent mathematics
are greatly enlarged and almost wholly new. The desirability of

having a reUable one-volume history for the use of readers who cannot
devote themselves to an intensive study of the history of mathematics
is generally recognized. On the other hand, it is a difhcult task to

give an adequate bird's-eye-view of the development of mathematics
from its earliest beginnings to the present time. In compiling this

history the endeavor has been to use only the most reliable sources.

Nevertheless, in covering such a wide territory, mistakes are sure to

have crept in. References to the sources used in the revision are

given as fully as the limitations of space would permit. These ref-

erences will assist the reader in following into greater detail the his-

tory of any special subject. Frequent use without acknowledgment
has been made of the following publications: Annuario Biografico del

Circolo Matematico di Palermo, 1914; Jahrbuch uher die Fortschritte der

Mathematik, Berhn; /. C. Poggendorfs Biograpkisch-Literarisckes

Handworterbuck, Leipzig; Gedenktagebuch ficr Mathematiker, von Felix

Miiller, 3. Aufl., Leipzig und Berlin, 191 2; Revue SemestrieUe des Pub-

lications Mathematiques, Amsterdam.
The author is indebted to Miss Falka M. Gibson of Oakland, Cal.

for assistance in the reading of the proofs.

Floeian Cajori.

University of California,

March, 1919.
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A HISTORY OF MATHEMATICS

INTRODUCTION

The contemplation of the various steps by which mankind has
come into possession of the vast stock of mathematical knowledge
can hardly fail to interest the mathematician. He takes pride in the
fact that his science, more than any other, is an exact science, and
that hardly anything ever done in mathematics has proved to be use-
less. The chemist smiles at the childish efforts of alchemists, but the
mathematician finds the geometry of the Greeks and the arithmetic
of the Hindus as useful and admirable as any research of to-day. He
is pleased to notice that though, in course of its development, mathe-
matics has had periods of slow growth, yet in the main it has been
pre-eminently a progressive science.

The history of mathematics may be instructive as well as agreeable;
it may not only remind us of what we have, but may also teach us
how to increase our store. Says A. De Morgan, "The early history
of the mind of men with regard to mathematics leads us to point out
our own errors; and in this respect it is well to pay attention to the
history of mathematics." It warns us against hasty conclusions; it

points out the importance of a good notation upon the progress of the

science; it discourages excessive specialisation on the part of investi-

gators, by showing how apparently distinct branches have been found
to possess unexpected connecting links; it saves the student from
wasting time and energy upon problems which were, perhaps, solved

long since; it discourages him from attacking an unsolved problem by
the same method which has led other mathematicians to failure; it

teaches that fortifications can be taken in other ways than by direct

attack, that when repulsed from a direct assault it is well to recon-

noitre and occupy the surrounding ground and to discover the secret

paths by which the apparently unconquerable position can be taken.^

The importance of this strategic rule may be emphasised by citing a

case in which it has been violated. An untold amount of intellectual

energy has been expended on the quadrature of the circle, yet no con-

quest has been made by direct assault. The circle-squarers have
existed in crowds ever since the period of Archimedes. After in-

numerable failures to solve the problem at a time, even, when in-

' S. Gunther, Ziele und ResuUate der neueren Mathematisch-historischen Forschung.

Erlangen, 1876.
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vestigators possessed that most powerful tool, the differential calculus,

persons versed in mathematics dropped the subject, while those who

still persisted were completely ignorant of its history and generally

misunderstood the conditions of the problem. "Our problem," says

A. De Morgan, " is to square the circle with the old allowance of means:

Euclid's postulates and nothing more. We cannot remember an

instance in which a question to be solved by a definite method was

tried by the best heads, and answered at last, by that method, after

thousands of complete failures." But progress was made on this

problem by approaching it from a different direction and by newly

discovered paths. J. H. Lambert proved in 1761 that the ratio of the

circumference of a circle to its diameter is irrational. Some years

ago, F. Lindemann demonstrated that this ratio is also transcendental

and that the quadrature of the circle, by means of the ruler and com-

passes only, is impossible. He thus showed by actual proof that which

keen-minded mathematicians had long suspected; namely, that the

great army of circle-squarers have, for two thousand years, been

assaulting a fortification which is as indestructible as the firmament

of heaven.

Another reason for the desirability of historical study is the value

of historical knowledge to the teacher of mathematics. The interest

which pupils take in their studies may be greatly increased if the

solution of problems and the cold logic of geometrical demonstrations

are interspersed with historical remarks and anecdotes. A class in

arithmetic will be pleased to hear about the Babylonians and Hindus
and their invention of the "Arabic notation"; they will marvel at

the thousands of years which elapsed before people had even thought

of introducing into the numeral notation that Columbus-egg—the

zero; they will find it astounding that it should have taken so long

to invent a notation which they themselves can now learn in a month.
After the pupils have learned how to bisect a given angle, surprise

them by telling of the many futile attempts which have been made
to solve, by elementary geometry, the apparently very simple problem
of the trisection of an angle. When they know how to construct a
square whose area is double the area of a given square, tell them about
the duplication of the cube, of its mythical origin—^how the wrath of

Apollo could be appeased only by the construction of a cubical altar

double the given altar, and how mathematicians long wrestled with
this problem. After the class have exhausted their energies on the

theorem of the right triangle, tell them the legend about its discov-

erer—how Pythagoras, jubilant over his great accomplishment,
sacrificed a hecatomb to the Muses who inspired him. When the

value of mathematical training is called in question, quote the in-

scription over the entrance into the academy of Plato, the philosopher:

"Let no one who is unacquainted with geometry enter here." Students
in analytical geometry should know something of Descartes, and,
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after taking up the differential and integral calculus, they should

become familiar with the parts that Newton, Leibniz, and Lagrange
played in creating that science. In his historical talk it is possible

for the teacher to make it plain to the student that mathematics is

not a dead science, but a living one in which steady progress is made.^

A similar point of view is taken by Henry S. White: ^ "The ac-

cepted truths of to-day, even the commonplace truths of any science,

were the doubtful or the novel theories of yesterday. Some indeed

of prime importance were long esteemed of slight importance and
almost forgotten. The first effect of reading in the history of science

is a naive astonishment at the darkness of past centuries, but the

ultimate effect is a fervent admiration for the progress achieved by
former generations, for the triumphs of persistence and of genius.

The easy credulity with which a young student supposes that of

course every- algebraic equation must have a root gives place finally

to a delight in the slow conquest of the realm of imaginary mmibers,

and in the youthful genius of a Gauss who could demonstrate this

once obscure fundamental proposition."

The history of mathematics is important also as a valuable con-

tribution to the history of civilisation. Human progress is closely

identified with scientific thought. Mathematical and physical re-

searches are a reliable record of intellectual progress. The history

of mathematics is one of the large windows through which the philo-

sophic eye looks into past ages and traces the line of intellectual de-

velopment.

' Cajori, F., The Teaching and History of Mathematics in the United States. Wash-
ington, 1890, p. 236.

^Bull. Am. Math. Soc, Vol. 15, 1909, p. 325.



THE BABYLONIANS

The fertile valley of the Euphrates and Tigris was one of the

primeval seats of human society. Authentic history of the peoples

inhabiting this region begins only with the foundation, in Chaldsea'

and Babylonia, of a united kingdom out of the previously disunited

tribes. Much light has been thrown on their history by the discovery

of the art of reading the cuneiform or wedge-shaped system of writing.

In the study of Babylonian m^athematics we begin with the notation

of numbers. A vertical wedge Y stood for. i, while the characters -^
and Y>- signified lo and loo respectively. Grotefend believes the

character for lo originally to have been the picture of two hands, as

held in prayer, the palms being pressed together, the fingers close to

each other, but the thumbs thrust out. In the Babylonian notation

two principles were employed—the additive and multiplicative. Num-
bers below loo were expressed by symbols whose respective values

had to be added. Thus, Y If
stood for 2, jf ^ f for 3, ^^ for4,^J»

for 23, ^ ^ ^ for 30. Here the symbols of higher order appear

always to the left of those of lower order. In writing the hun-

dreds, on the other hand, a smaller symbol was placed to the left of

100, and was, in that case, to be multiplied by 100. Thus, ^ y ^^
signified 10 times 100, or 1000. But this symbol for 1000 was itself

taken for a new unit, which could take smaller coefficients to its left.

Thus, ^ ^ If
^— denoted, not 20 times 100, but 10 times 1000. Some

of the cuneiform numbers found on tablets in the ancient temple

library at Nippur exceed a million; moreover, some of these Nippur
tablets exhibit the suhtractive principle (20-1), similar to that shown
in the Roman notation, "XIX."

If, as is believed by most specialists, the early Sumerians were the

inventors of the cuneiform writing, then they were, in all probability,

also the inventors of the notation of numbers. Most surprising, in

this connection, is the fact that Sumerian inscriptions disclose the use,

not only of the above decimal system, but also of a sexagesimal one.

The latter was used chiefly in constructing tables for weights and
measures. It is full of historical interest. Its consequential develop-

ment, both for integers and fractions, reveals a high degree of mathe-
matical insight. We possess two Babylonian tablets which exhibit

its use. One of them, probably written between 2300 and 1600 b. c,
contains a table of square numbers up to 60^. The numbers i, 4, 9,

16, 25, 36, 49, are given as the squares of the first seven integers re-

4
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spectively._ We have next 1.4 = 8^ 1.21 = 9^ 1.40= lo^ 2.1= ii^ etc.

This remains unintelligible, unless we assume the sexagesimal scale,
which makes 1.4=60+4, 1.21 = 60+21, 2.1 = 2.60+1. The second
tablet records the magnitude of the illuminated portion of the moon's
disc for every day from new to full moon, the whole disc being assumed
to consist of 240 parts. The illuminated parts during the first five
days are the series 5, 10, 20, 40, 1.20 (=80), which is a geometrical
progression. From here on the series becomes an arithmetical progres-
sion, the numbers from the fifth to the fifteenth day being respectively
1.20, 1.36, 1.52, 2.8, 2.24, 2.40, 2:56, 3.12, 3.28, 3.44, 4. This table
not only exhibits the use of the sexagesimal system, but also indicates
the acquaintance of the Babylonians with progressions. Not to be
overlooked is the fact that in the sexagesimal notation of integers
the "principle of position" was employed. Thus, in 1.4 (=64), the
I is made to stand for 60, the unit of the second order, by virtue of
its position with respect to the 4. The introduction of this principle

at so early a date is the more remarkable, because in the decimal no-
tation it was not regularly introduced till about the ninth century
after Christ. The principle of position, in its general and systematic
application, requires a s)anbol for zero. We ask. Did the Babylonians
possess one? Had they already taken the gigantic step of representing

by a symbol the absence of units? Neither of the above tables answers
this question, for they happen to contain no number in which there

was occasion to use a zero. Babylonian records of many centuries

later—of about 200 B. C.—^give a symbol for zero which denoted the

absence of a figure but apparently was not used in calculation. It

consisted of two angular marks ^ one above the other, roughly re-

sembling two dots, hastily written. About 130 A. D., Ptolemy in

Alexandria used in his Almagest the Babylonian sexagesimal fractions,

and also the omicron o to represent blanks in the sexagesimal numbers.
This o was not used as a regular zero. It appears therefore that the

Babylonians had the principle of local value, and also a symbol for

zero, to indicate the absence of a figure, but did not use this zero in

computation. Their sexagesimal fractions were introduced into India

and with these fractions probably passed the principle of local value

and the restricted use of the zero.

The sexagesimal system was used also in fractions. Thus, in the

Babylonian inscriptions, \ and ^ are designated by 30 and 20, the

rsader being expected, in his mind, to supply the word "sixtieths."

The astronomer Hipparchus, the geometer Hypsicles and the as-

tronomer Ptolemy borrowed the sexagesimal notation of fractions

from the Babylonians and introduced it into Greece. From that time

sexagesimal fractions held almost full sway in astronomical and mathe-

matical calculations until the sixteenth century, when they finally

yielded their place to the decimal fractions. It may be asked. What
led to the invention of the sexagesimal system? Why was it that 60
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parts were selected? To this we have no positive answer. Ten was
chosen, ill the decimal system, because it represents the number of

fingers. But nothing of the human body could have suggested 60.

Did the system have an astronomical origin? It was supposed that

the early Babylonians reckoned the year at 360 days, that this led

to the division of the circle into 360 degrees, each degree representing

the daily amount of the supposed yearly revolution of the sun around
the earth. Now they were, very probably, familiar with the fact

that the radius can be applied to its circumference as a chord 6 times,

and that each of these chords subtends an arc measuring exactly 60
degrees. Fixing their attention upon these degrees, the division into

60 parts may have suggested itself to them. Thus, when greater pre-

cision necessitated a subdivision of the degree, it was partitioned into

60 minutes. In this way the sexagesimal notation was at one time
supposed to have originated. But it now appears that the Babylonians
very early knew that the year exceeded 360 days. Moreover, it is

highly improbable that a higher unit of 360 was chosen first, and a
lower unit of 60 afterward. The normal development of a number
system is from lower to higher units. Another guess is that the
sexagesimal system arose as a mixture of two earlier systems of the

bases 6 and 10.^ Certain it is that the sexagesimal system became
closely interwoven with astronomical and geometrical science. The
division of the day into 24 hours, and of the hour into minutes and
seconds on the scale of 60, is attributed to the Babylonians. There is

strong evidence for the belief that they had also a division of the day
into 60 hours. The employment of a sexagesimal division in numeral
notation, in fractions, in angular as well as in time measurement, in-

dicated a beautiful harmony which was not disturbed for thousands
of years until Hindu and Arabic astronomers began to use sines and
cosines in place of parts of chords, thereby forcing the right angle to
the front as a new angular unit, which, for consistency, should have
been subdivided sexagesimally, but was not actually so divided.

It appears that the people in the Tigro-Euphrates basin had made
very creditable advance in arithmetic. Their knowledge of arith-
metical and geometrical progressions has already been alluded to.
lamblichus attributes to them also a knowledge of proportion and
even the invention of the so-called musical proportion. Though we

1 M. Cantor, Vorlesungen iiber Geschichle der Matkematik, i. Bd., 3. Aufl., Leipzig
i9°7, P- 37- This work has appeared in four large volumes and carries the history
down to 1799. The fourth volume (1908) was written with the cooperation of nine
scholars from Germany, Italy, Russia and the United States. Moritz Cantor (1829-

) ranks as the foremost general writer of the nineteenth century on the history
of mathematics. Born in Mannheim, a student at Heidelberg, at Gottingen under
Gauss and Weber, at Berlin under Dirichlet, he lectured at Heidelberg where in
1877 he became ordinary honorary professor. His first historical article was
brought out in 1856, but not until 1880 did the first volume of his well-known history
appear.
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possess no conclusive proof, we have nevertheless reason to believe
that in practical calculation they used the abacus. Among the races
of middle Asia, even as far as China, the abacus is as old as fable.
Now, Babylon was once a great commercial centre,—the metropolis of
many nations,—and it is, therefore, not unreasonable to suppose that
her merchants employed this most improved aid to calculation.

In 1889 H. V. Hilprecht began to make excavations at Nuffar (the
ancient Nippur) and found brick tablets containing multiplication and
division tables, tables of squares and square roots, a geometric progres-
sion and a few computations. He published an account of his findings
in 1906. "^

The divisions in one tablet contain results like these: "60'' divided
by 2 = 6,480,000 each," "60* divided by 3= 4,320,000 each," and
so on, using the divisors 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18. The very
first division on the tablet is interpreted to be "60^ divided by i>^=
8,640,000." This strange appearance of f as a divisor is difficult to
explain. Perhaps there is here a use of f corresponding to the Egyptian
use of I as found in the Ahmes papyrus at a, perhaps, contemporaneous
period. It is noteworthy that 60*= 12,960,000, which Hilprecht found
in the Nippur brick text-books, is nothing less than the mystic "Platonic
nimiber," the "lord of better and worse births," mentioned in Plato's

Republic. Most probably, Plato received the mmiber from the
Pythagoreans, and the Pythagoreans from the Babylonians.^

In geometry the Babylonians accomplished little. Besides the divi-

sion of the circumference into 6 parts by its radius, and into 360 de-

grees, they had some knowledge of geometrical figures, such as the

triangle and quadrangle, which they used in their auguries. Like the

Hebrews (i Kin. 7:23), they took 7r= 3. Of geometrical demonstra-
tions there is, of course, no trace. "As a rule, in the Oriental mind
the intuitive powers eclipse the severely rational and logical."

Hilprecht concluded from his studies that the Babylonians pos-

sessed the rules for finding the areas of squares, rectangles, right tri-

angles, and trapezoids.

The astronomy of the Babylonians has attracted much attention.

They worshipped the heavenly bodies from the earliest historic times.

When Alexander the Great, after the battle of Arbela (331 b. c), took

possession of Babylon, Callisthenes found there on burned brick as-

tronomical records reaching back as far as 2234 b. c. Porphyrins says

that these were sent to Aristotle. Ptolemy, the Alexandrian astrono-

mer, possessed a Babylonian record of eclipses going back to 747 b. c.

' Mathematical, Metrological and Chronological Tablets from the Temple Library

of Nippur, by H. V. Hilprecht. Vol. XX, part I, Series A, Cuneiform Texts, pub-

lished by the Babylonian Expedition of the University of Pennsylvania, igo6. Con-

sult also D. E. Smith in Bull. Am. Math. Soc, Vol. 13, 1907, p. 392.

2 On the "Platonic number" consult P. Tannery in Revue philosophique. Vol. I,

1876, p. 17°; Vol. XIII, 1881, p. 210; Vol. XV, 1883, p. 573. Also G. Loria in Le

scienze esatte nell'antica grecia, 2, Ed., Milano, 1914, Appendice.
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Epping and Strassmaier ' have thrown considerable hght on Babylon-

ian chronology and astronomy by explaining two calendars of the

years 123 b. c. and in b. c, taken from cuneiform tablets coming,

presumably, from an old observatory. These scholars have succeeded

in giving an account of the Babylonian calculation of the new and
full moon, and have identified by calculations the Babylonian names
of the planets, and of the twelve zodiacal signs and twenty-eight

normal stars which correspond to some extent with the twenty-eight

nakshatras of the Hindus. We append part of an Assyrian astronomical

report, as translated by Oppert:

—

"To the King, my lord, thy faithful servant, Mar-Istar."
"... On the first day, as the new moon's day of the month Thammuz

declined, the moon was again visible over the planet Mercury, as I had
already predicted to my master the King. I erred not."

' Epping, J., Astronomisches aus Babylon. Unter Mitwirkung von P. J. R. Strass-

maier. Freiburg, 1889.



THE EGYPTIANS

Though there is difference of opinion regarding the antiquity of

Egyptian civilisation, yet all authorities agree in the statement that,

however far back they go, they find no uncivilised state of society.

"Menes, the first king, changes the course of the Nile, makes a great
reservoir, and builds the temple of Phthah at Memphis." The Egyp-
tians built the pyramids at a very early period. Surely a people en-

gaging in enterprises of such magnitude must have known something
of mathematics—at least of practical mathematics.

All Greek writers are unanimous in ascribing, without envy, to

Egypt the priority of invention in the mathematical sciences. Plato
in Phcedrus says: "At the Egj^atian city of Naucratis there was a
famous old god whose name was Theuth; the bird which is called the

Ibis was sacred to him, and he was the inventor of many arts, such
as arithmetic and calculation and geometry and astronomy and
draughts and dice, but his great discovery was the use of letters."

Aristotle says that mathematics had its birth in Egypt, because

there the priestly class had the leisure needful for the study of it.

Geometry, in particular, is said by Herodotus, Diodorus, Diogenes
Laertius, lambhchus, and other ancient writers to have originated in

Egypt."^ In Herodotus we find this (II. c. 109): "They said also that

this king [Sesostris] divided the land among all Egyptians so as to

give each one a quadrangle of equal size and to draw from each his

revenues, by imposing a tax to be levied yearly. But every one from

whose part the river tore away anything, had to go to him and notify

what had happened; he then sent the overseers, who had to measure

out by how much the land had become smaller, in order that the

owner might pay on what was left, in proportion to the entire tax

imposed. In this way, it appears to me, geometry originated, which

passed thence to Hellas."

We abstain from introducing additional Greek opinion regarding

Egyptian mathematics, or from indulging in wild conjectures. We
rest our account on documentary evidence. A hieratic papyrus, in-

cluded in the Rhind collection of the British Musevim, was deciphered

by Eisenlohr in 1877, ^'^^ found to be a mathematical manual con-

taining problems in arithmetic and geometry. It was written by
Ahmes some time before 1700 b. c, and was founded on an older work

believed by Birch to date back as far as 3400 b. c! This curious

1 C. A. Bretschneider Die Geometrie und die Geometer vor Euklides. Leipzig, 1870,

pp. 6-8. Carl Anton Bretschneider (1808-1878) was professor at the Realgymna-

siiun at Gotha in Thuringia.

9
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papyrus—the most ancient mathematical handbook known to us

—

puts us at once in contact with, the mathematical thought in Egypt of

three or five thousand years ago. It is entitled "Directions for ob-

taining the Knowledge of all Dark Things." We see from it that the

Egyptians cared but little for theoretical results. Theorems are not
found in it at all. It contains "hardly any general rules of procedure,

but chiefly mere statements of results intended possibly to be ex-

plained by a teacher to his pupils." ^ In geometry the forte of the

Egjrptians lay in making constructions and determining areas. The
area of an isosceles triangle, of which the sides measure lo khets (a

unit of length equal to 16.6 m. by one guess and about thrice that

amount by another guess ^) and the base 4 khets, was erroneously given

as 20 square khets, or half the product of the base by one side. The
area of an isosceles trapezoid is found, similarly, by multiplying half

the sum of the parallel sides by one of the non-parallel sides. The
area of a circle is found by deducting from the diameter I of its length

and squaring the remainder. Here 7r is taken= (-y-)^= 3.1604..., a
very fair approximation. The papyrus explains also such problems
as these,—To mark out in the field a right triangle whose sides are

10 and 4 units; or a trapezoid whose parallel sides are 6 and 4, and
the non-parallel sides each 20 units.

Some problems in this papyrus seem to imply a rudimentary knowl-
edge of proportion.

The base-lines of the pjTamids run north and south, and east and
west, but probably only the lines running north and south were deter-

mined by astronomical observations. This, coupled with the fact

that the word harpedonaptcB, applied to Egyptian geometers, means
"rope-stretchers," would point to the conclusion that the Egyptian,
like the Indian and Chinese geometers, constructed a right triangle

upon a given line, by stretching around three pegs a rope consisting

of three parts in the ratios 3:4:5, and thus forming a right triangle.^

If this explanation is correct, then the Egyptians were familiar, 2000
years B. c, with the well-known property of the right triangle, for

the special case at least when the sides are in the ratio 3: 4: 5.

On the walls of the celebrated temple of Horus at Edfu have been
found hieroglyphics, written about 100 B. c, which enumerate the
pieces of land owned by the priesthood, and give their areas. The
area of any quadrilateral, however irregular, is there found by the
formula -^-.-^-. Thus, for a quadrangle whose opposite sides
are 5 and 8, 20 and 15, is given the area 113I \} The incorrect for-

' James Gow, A Short History of Greek Mathematics. Cambridge, 1884, p. 16.
2 A. Eisenlohr, Ein mathematisches Handbuch der alten Aegypter, 2. Ausgabe, Leip-

zig, 1897, p. 103; F. L. Griffith in Proceedings of the Society of Biblical Archeology,
1891, 1894.

^ M. Cantor, op. cit. Vol. I, 3. Aufl., 1907, p. 105.
* H. Hankel, Zur Geschichte der Mathematik in Alterthum und Mittelalter, Leipzig

1874, p. 86.
' '
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mulas of Ahmes of 3000 years b. c. yield generally closer approxima-
tions than those of the Edfu inscriptions, written 200 years after
Euclid!

The fact that the geometry of the Egyptians consists chiefly of
constructions, goes far to explain certain of its great defects. The
Egyptians failed in two essential points without which a science of
geometry, in the true sense of the word, cannot exist. In the first

place, they failed to construct a rigorously logical system of geometry,
resting upon a few axioms and postulates. A great many of their
rules, especially those in solid geometry, had probably not been proved
at all, but were known to be true merely from observation or as mat-
ters of fact. The second great defect was their inability to bring the
numerous special cases under a more general view, and thereby to
arrive at broader and more fundamental theorems. Some of the
simplest geometrical truths were divided into numberless special cases
of which each was supposed to require»separate treatment.
Some particulars about Egyptian geometry can be mentioned more

advantageously in connection with the early Greek mathematicians
who came to the Egyptian priests for instruction.

An insight into Egyptian methods of numeration was obtained
through the ingenious deciphering of the hieroglyphics by Champol-
lion, Young, and their successors. The symbols used were the fol-

lowing:
I

for I, iPH for ID, (^ for 100, g for 1000, (f for 10,000,^
for 100,000, ^ for 1,000,000, O for 10,000,000.' The symbol for

I represents a vertical staff; that for 10,000 a pointing finger; that

for 100,000 a burbot; that for 1,000,000, a man in astonishment. The
significance of the remaining symbols is very doubtful. The writing

of numbers with these hieroglyphics was very cumbrous. The unit

symbol of each order was repeated as many times as there were units

in that order. The principle employed was the additive. Thus, 23

was written 0111
Besides the hieroglyphics, Eg)qDt possesses the hieratic and demotic

writings, but for want of space we pass them by.

Herodotus makes an important statement concerning the mode of

computing among the Egyptians. He says that they "calculate with

pebbles by moving the hand from right to left, while the Hellenes

move it from left to right." Herein we recognise again that instru-

mental method of figuring so extensively used by peoples of antiquity.

The Egyptians used the decimal scale. Since, in figuring, they moved
their hands horizontally, it seems probable that they used ciphering-

boards with vertical columns. In each column there must have been

not more than nine pebbles, for ten pebbles would be equal to one

pebble in the column next to the left.

' M. Cantor, op. cit. Vol. I, 3. Aufl., 1907, p. 82.
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The Ahmes papyrus contains interesting information on the way
in which the Egyptians employed fractions. Their methods of opera-

tion were, of course, radically different from ours. Fractions were a
subject of very great difficulty with the ancients. Simultaneous

changes in both numerator and denominator were usually avoided.

In manipulating fractions the Babylonians kept the denominators (60)

constant. The Romans likewise kept them constant, but equal to 12.

The Egyptians and Greeks, on the other hand, kept the numerators
constant, and dealt with variable denominators. Ahmes used the

term "fraction" in a restricted sense, for he applied it only to unit-

fractions, or fractions having unity for the numerator. It was desig-

^ nated by writing the denominator and then placing over it a dot.

Fractional values which could not be expressed by any one unit-

fraction were expressed as the sum of two or more of them. Thus, he

wrote 1^ jij in place of |^. While Ahmes knows | to be equal to ~ i, he

curiously allows |- to appear often among the unit-fractions and adopts

a special symbol for it. The first important problem naturally arising

was, how to represent any fractional value as the sum of unit-fractions.

This was solved by aid of a table, given in the papyrus, in which all

2
fractions of the form —j— (where n designates successively all the

2W+ 1
° '

numbers up to 49) are reduced to the sum of unit-fractions. Thus,

y = ^ -^1 -^ = -rF TTff- When, by whom, and how this table was cal-

culated, we do not know. Probably it was compiled empirically at
different times, by different persons. It will be seen that by repeated
application of this table, a fraction whose numerator exceeds two can
be expressed in the desired form, provided that there is a fraction in

the table having the same denominator that it has. Take, for ex-

ample, the problem, to divide 5 by 21. In the first place, 5= i-\-2-\-2.

From the table we get ^^=^^. Then^= ^V+ (tt tV)+ (A tV) =

Tr+ (rr T^) = At T 2 T = T 2T = T TT .T2 •
The papyrus contains prob-

lems in which it is required that fractions be raised by addition or multi-
pHcation to given whole numbers or to other fractions. For example,

it is required to increase \ i Jq ^ -^ to i. The common denominator

taken appears to be 45, for the numbers are stated as iii, 5! ^, 4^^
li, I. The sum of these is 23I. \ |- forty-fifths. Add to this 1 ^, and
the sum is |. Add ^, and we have i. Hence the quantity to be added
to the given fraction is -g- ^ ^V-
Ahmes gives the following example involving an arithmetical

progression: "Divide 100 loaves among 5 persons; 1 of what the first

three get is what the last two get. What is the difference? " Ahmes
gives the solution: "Make the difference 5^; 23, lyi, 12, 6-^, i.

Multiply by i|; 38^, 29^, 20, io| i, i|." How did Ahmes come upon
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5-1? Perhaps thus: ^ Let a and —d be the first term and the differ-

ence in the required arithmetical progression, then ^[a+(a—d)+
{a—2d)]={a—^d)+{a—4d), whence d=si{a—4d), i. e. the dif-

ference d is 5K times the last term. Assuming the last term i, he
gets his first progression. The sum is 60, but should be 100; hence

multiply by i|., for 6oXi|= 100. We have here a method of solution

which appears again later among the Hindus, Arabs and modem
Europeans—the famous method of false position.

Ahmes speaks of a ladder consisting of the numbers 7, 49, 343,
2401, 16807. Adjacent to these powers of 7 are the words picture,

cat, mouse, barley, measure. What is the meaning of these mysterious
data? Upon the consideration of the problem given by Leonardo of

Pisa in hi&-Liber abaci, 3000 years later: "7 old women go to Rome,
each woman has 7 mules, each mule carries 7 sacks, etc.", Moritz
Cantor offers the following solution to the Ahmes riddle: 7 persons

have each 7 cats, each cat eats 7 mice, each mouse eats 7 ears of

barley, from each ear 7 measures of corn may grow. How many
persons, cats, mice, ears of barley, and measures of com, altogether?

Ahmes gives 19607 as the sum of the geometric progression. Thus,
the Ahmes papyrus discloses a knowledge of both arithmetical and
geometrical progression.

Ahmes proceeds to the solution of equations of one unknown quan-
tity. The unknown quantity is called 'hau' or heap. Thus the

problem, "heap, its i, its whole, it makes 19," i. e. —\-x= 19. In

this case, the solution is as follows: — =19; ~=2i|^; x=i()\^. But

in other problems, the solutions are effected by various other methods.

It thus appears that the beginnings of algebra are as ancient as those

of geometry.

That the period of Ahmes was a flowering time for Egyptian mathe-

matics appears from the fact that there exist other papyri (more re-

cently discovered) of the same period. They were found at Kahun,
south of the pyramid of Illahun. These documents bear close re-

semblance to Ahmes. They contain, moreover, examples of quadratic

equations, the eariiest of which we have a record. One of them is:
^

A given svirface of, say, 100 units of area, shall be represented as

the sum of^Cwo squares, whose sides are to each other as i:|-. In

modem symbols, the problem is, to find x and y, such that x^^y'^=

100 and x-.y^i:^. The solution rests upon the method of false

position. Try x=i and 3;= !, then x^+/=^|- and -v/||= |- But

\/ioo= 10 and io-7-|= 8. The rest of the solution cannot be made

1 M. Cantor, op. cit., Vol. I, 3. Aufl., 1907, p. 78.

" Cantor, op. cit. Vol. I, 1907, pp. 95, 96-
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out, but probably was a;=8Xi, 3'=SX|- = 6. This solution leads to

the relation 6^+8^=10^. The symbol P '^s.s used to designate

square root.

In some ways similar to the Ahmes papyrus is also the Akhmim
papyrus,^ written over aooo years later at Akhmim, a city on the

Nile in Upper Egypt. It is in Greek and is supposed to have been

written at some time between 500 and Scxs, A. D. It contains, besides

arithmetical examples, a table for finding "unit-fractions," like that

of Ahmes. Unlike Ahmes, it tells how the table was constructed. The

rule, expressed in modern symbols, is as follows: j- =—t^H—^q—

For z= 2, this formula reproduces part of the table in Ahmes.
The principal defect of Egyptian arithmetic was the lack of a

simple, comprehensive symbolism—a defect which not even the Greeks
were able to remove^
The Ahmes papyrus and the other papyri of the same period repre-

sent the most advanced attainments of the Egj^Dtians in arithmetic

and geomefry. It is remarkable that they should have reached so

great proficiency in mathematics at so remote a period of antiquity.

But strange, , indeed, is the fact that, during the next two thousand
years, they should have made no progress whatsoever in it. The con-

clusion forces itself upon us, that they resemble the Chinese in the

stationary character, not only of their government, but also of their

learning. All the knowledge of geometry which they possessed when
Greek scholars visited them, six centuries b. c, was doubtless known
to them two thousand years earlier, when they built those stupendous
and gigantic structures—the pyramids.

'J. Baillet, "Le papyrus mathematique d'Akhmim," Mimoires publies par les

membres de la mission archiologique franQaise ail, Caire, T. IX, i"' fascicule, Paris,

1892, pp. 1-88. See also Cantor, op. cit. Vol. I, 1907, pp. 67, 504.



THE GREEKS

Greek Geometry

About the seventh centuty b. c. an active commercial intercourse

sprang up between Greece and Egypt. Naturally there arose an
interchange of ideas as well as of merchandise. Greeks, thirsting for

knowledge, sought the Egyptian priests for instruction. Thales,

Pythagoras, CEnopides, Plato, Democritus, Eudoxus, all visited the
land of the pyramids. Egyptian ideas were thus transplanted across

the sea and there stimulated Greek thought, directed it into new lines,

and gave to it a basis to work upon. Greek culture, therefore, is not
primitive. Not only in mathematics, but also in mythology and
art, Hellas owes a debt to older countries. To Egypt Greece is in-

debted, among other things, for its elementary geometry. But this

does not lessen our admiration for the Greek mind. From the mo-
ment that Hellenic philosophers applied themselves to the study of

Egyptian geometry, this science assumed a radically different aspect.

"Whatever we Greeks receive, we improve and perfect," says Plato.

The Egyptians carried geometry no further than was absolutely neces-

sary for their practical wants. The Greeks, on the other hand, had
within them a strong speculative tendency. They felt a craving to

discover the reasons for things. They found pleasure in the con-

templation of ideal relations, and loved science as science.

Our sources of information on the history of Greek geometry before

Euclid consist merely of scattered notices in ancient writeis. The
early mathematicians, Thales and Pythagoras, left behind no written

records of their discoveries.' A full history of Greek geometry and
astronomy during this period, written by Eudemus, a pupil of Aris-

totle, has been lost. It was well known to Proclus, who, in his com-

mentaries on Euclid, gives a brief account of it. This abstract con-

stitutes our most reliable information. We shall quote it frequently

under the name of Eudemian Summary.

The Ionic School

To Thales (640-546 b. c), of Miletus, one of the " seven wise men,"

and the founder of the Ionic school, falls the honor of having intro-

duced the study of geometry into Greece. During middle life he

engaged in commercial pursuits, which took him to Egypt. He is

said to have resided there, and to have studied the physical sciences

and mathematics with the Eg)T)tian priests. Plutarch declares that

Thales soon excelled his masters, and amazed King Amasis by measur-
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ing the heights of the pyramids from their shadows. According to

Plutarch, this was done by considering that the shadow cast by a

vertical staff of known length bears the same ratio to the shadow of

the pyramid as the height of the staff bears to the height of the pyra-

mid. This solution presupposes a knowledge of proportion, and the

Ahmes papyrus actually shows that the rudiments of proportion were

known to the Egyptians. According to Diogenes Laertius, the pyra-

mids were measured by Thales in a different way; viz. by finding the

length of the shadow of the pyramid at the moment when the shadow
of a staff was equal to its own length. Probably both methods were

used.

The Eudemian Summary ascribes to Thales the invention of the

theorems on the equality of vertical angles, the equality of the angles

at the base of an isosceles triangle, the bisection of a circle by any
diameter, and the congruence of two triangles having a side and the two
adjacent angles equal respectively. The last theorem, combined (we

have reason to suspect) with the theorem on similar triangles, he applied

to the measurement of the distances of ships from the shore. Thus
Thales wa's the first to apply theoretical geometry to practical uses.

The theorem that all angles inscribed in a semicircle are right angles

is attributed by some ancient writers to Thales, by others to Pythag-
oras. Thales was doubtless familiar with other theorems, not re-

corded by the ancients. It has been inferred that he knew the sum
of the three angles of a triangle to be equal to two right angles, and
the sides of equiangular triangles to be proportional.^ The Egyptians
must have made use of the above theorems on the straight line, in

some of their constructions found in the Ahmes papyrus, but it was
left for the Greek philosopher to give these truths, which others saw,

but did not formulate into words, an explicit, abstract expression, and
to put into scientific language and subject to proof that which others

merely felt to be true. Thales may be said to have created the geom-
etry of lines, essentially abstract in its character, while the Egyptians
studied only the geometry of surfaces and the rudiments of solid

geometry, empirical in their character. 2

With Thales begins also the study of scientific astronomy. He
acquired great celebrity by the prediction of a solar eclipse in 585 b. c.

Whether he predicted the day of the occurrence, or simply the year,

is not known. It is told of him that while contemplating the stars

during an evening walk, he fell into a ditch. The good old woman
attending him exclaimed, "How canst thou know what is doing in

the heavens, when thou seest not what is at thy feet?"

The two most prominent pupils of Thales were Anaximander (b. 61

1

' G. J. Allman, Greek Geometry from Thales to Etidid. Dublin, 1889, p. 10.

George Johnston Allman (1824-1904) was professor of mathematics at Queen's
College, Galway, Ireland.

2 G. J. Allman, op. cit., p. 15.
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B. c.) and Anaximenes (b. 570 b. c). They studied chiefly astronomy
and physical philosophy. Of Anaxagoras (500-428 b. c), a pupil of
Anaxmienes, and the last philosopher of the Ionic school, we know
httle, except that, while in prison, he passed his time attempting to
square the circle. This is the first time, in the history of mathematics,
that we find mention of the famous problem of the quadrature of the
circle, that rock upon which so many reputations have been destroyed.
It turns upon the determination of the exact value of t. Approxima-
tions to IT had been made by the Chinese, Babylonians, Hebrews, and
Egyptians. But the invention of a method to find its exact value, is

the knotty problem which has engaged the attention of many minds
from the time of Anaxagoras down to our own. Anaxagoras did
not offer any solution of it, and seems to have luckily escaped par-
alogisms. The problem soon attracted popular attention, as appears
from the reference to it made in 414 b. c. by the comic poet Aris-
tophanes in his play, the "Birds." ^

About the time of Anaxagoras, but isolated from the Ionic school,
flourished CEnopides of Chios. Proclus ascribes to him the solution
of the following problems: From a point without, to draw a per-
pendicular to a given line, and to draw an angle on a line equal to a
given angle. That a man could gain a reputation by solving problems
so elementary as these, indicates that geometry was still in its infancy,
and that the Greeks had not yet gotten far beysnd the Egyptian con-
structions.

The Ionic school lasted over one hundred years. The progress of

mathematics during that period was slow, as compared with its

growth in a later epoch of Greek history. A new impetus to its prog-
ress was given by Pythagoras.

The School of Pythagoras

Pythagoras (58o?-5oo? b. c.) was one of those figures which im-

pressed the imagination of succeeding times to such an extent that

their real histories have become difficult to be discerned through the

mythical haze that envelops them. The following account of Pythag-

oras excludes the most doubtful statements. He was a native of

Samos, and was drawn by the fame of Pherecydes to the island of

Syros. He then visited the ancient Thales, who incited him to study

in Egypt. He sojourned in Egj^t many years, and may have visited

Babylon. On his return to Samos, he found it under the tyranny of

Polycrates. Failing in an attempt to found a school there, he quitted

home again and, following the current of civilisation, removed to

Magna Graecia in South Italy. He settled at Croton, and founded

the famous Pythagorean school. This was not merely an academy for

1 F. Rudio in Bibliotheca mathemalica, 3 S., Vol. 8, 1907-8, pp. 13-22.
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the teaching of philosophy, mathematics, and natural science, but it

was a brotherhood, the members of which were united for life. This

brotherhood had observances approaching masonic peculiarity. They
were forbidden to divulge the discoveries and doctrines of their school.

Hence we are obliged to speak of the Pythagoreans as a body, and
find it difiicult to determine to whom each particular discovery is to

be ascribed. The Pythagoreans themselves were in the habit of re-

ferring every discovery back to the great founder of the sect.

This school grew rapidly and gained considerable political ascend-

ency. But the mystic and secret observances, introduced in imitation

of Egyptian usages, and the aristocratic tendencies of the school,

caused it to become an object of suspicion. The democratic party in

Lower Italy revolted and destroyed the buildings of the Pythagorean
school. Pythagoras fled to Tarentum and thence to Metapontum,
where he was murdered.

Pythagoras has left behind no mathematical treatises, and our

sources of information are rather scanty. Certain it is that, in the

Pythagorean school, mathematics was the principal study. Pythag-
oras raised mathematics to the rank of a science. Arithmetic was
courted by him as fervently as geometry. In fact, arithmetic is the

foundation of his philosophic system.

The Eiidemian Summary says that " Pythagoras changed the study
of geometry into the form of a liberal education, for he examined its

principles to the bottom, and investigated its theorems in an imma-
terial and intellectual manner." His geometry was connected closely

with his arithmetic. He was especially fond of those geometrical

relations which admitted of arithmetical expression.

Like Egjrptian geometry, the geometry of the Pythagoreans is much
concerned with areas. To Pythagoras is ascribed the important
theorem that the square on the hypotenuse of a right triangle is

equal to the sum of the squares on the other two sides. He had
probably learned from the Egyptians the truth of the theorem in the
special case when the sides are 3, 4, 5, respectively. The story goes,

that Pythagoras was so jubilant over this discovery that he sacrificed

a hecatomb. Its authenticity is doubted, because the Pythagoreans
believed in the transmigration of the soul and opposed the shedding
of blood. In the later traditions of the Neo-Pythagoreans this ob-
jection is removed by replacing this bloody sacrifice by that of "an
ox made of flour!" The proof of the law of three squares, given in
Euclid's Elements, I. 47, is due to Euclid himself, and not to the
Pythagoreans. What the Pythagorean method of proof was has
been a favorite topic for conjecture.

The theorem on the sum of the three angles of a triangle, presum-
ably known to Thales, was proved by the Pythagoreans after the
manner of Euclid. They demonstrated also that the plane about a
point is completely filled by six equilateral triangles, four squares, or
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three regular hexagons, so that it is possible to divide up a plane into
figures of either kind.

From the equilateral triangle and the square arise the solids, namely,
the tetraedron, octaedron, icosaedron, and the cube. These solids
were, in all probability, known to the Egyptians, excepting, perhaps,
the icosaedron. In Pythagorean philosophy, they represent respec-
tively the four elements of the physical world; namely, fire, air, water,
and earth. Later another regular solid was discovered, namely, the
dodecaedron, which, in absence of a fifth element, was made to repre-
sent the universe itself. lamblichus states that Hippasus, a Pytha-
gorean, perished in the sea, because he boasted that he first divulged
"the sphere with the twelve pentagons." The same story of death at
sea is told of a Pythagorean who disclosed the theory of irrationals.

The star-shaped pentagram was used as a symbol of recognition by
the Pythagoreans, and was called by them Health.

Pythagoras called the sphere the most beautiful of all solids, and
the circle the most beautiful of all plane figures. The treatment, of
the subjects of proportion and of irrational quantities by him and
his school will be taken up under the head of arithmetic.

According to Eudemus, the Pythagoreans invented the problems
concerning the appUcation of areas, including the cases of defect and
excess, as in Euclid, VI. 28, 29.

They were also familiar with the construction of a polygon equal
in area to a given polygon and similar to another given polygon. This
problem depends upon several important and somewhat advanced
theorems, and testifies to the fact that the Pythagoreans made no
mean progress in geometry.

Of the theorems generally ascribed to the Italian school, some
cannot be attributed to Pythagoras himself, nor to his earliest suc-

cessors. The progress from empirical to reasoned solutions must, of

necessity, have been slow. It is worth noticing that on the circle

no theorem of any importance was discovered by this school.

Though politics broke up the Pythagorean fraternity, yet the school

continued to exist at least two centuries longer. Among the later

Pythagoreans, Philolaus and Archytas are the most prominent.

Philolaus wrote a book on the Pythagorean doctrines. By him were
first given to the world the teachings of the Italian school, which had
been kept secret for a whole century. The brilliant Arch5rtas (428-

347 B. c.) of Tarentum, known as a great statesman and general, and
universally admired for his virtues, was the only great geometer

among the Greeks when Plato opened his school. Archytas was the

first to apply geometry to mechanics and to treat the latter subject

methodically. He also found a very ingenious mechanical solution

to the problem of the duplication of the cube. His solution involves

clear notions on the generation of cones and cylinders. This problem

reduces itself to finding two mean proportionals between two given
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lines.. These mean proportionals were obtained by Archytas from

the section of a half-cylinder. The doctrine of proportion was ad-

vanced through him.

There is every reason to believe that the later Pythagoreans exer-

cised a strong influence on the study and development of mathematics

at Athens. The Sophists acquired geometry from Pythagorean

sources. Plato bought the works of Philolaus, and had a warm friend

in Archytas.

The Sophist School

After the defeat of the Persians under Xerxes at the battle of

Salamis, 480 b. c, a league was formed among the Greeks to preserve

the freedom of the now liberated Greek cities on the islands and coast

of the i^gaean Sea. Of this league Athens soon became leader and
dictator. She caused the separate treasury of the league to be merged
into that of Athens, and then spent the money of her allies for her

own aggrandisement. Athens was also a great commercial centre.

Thus she became the richest and most beautiful city of antiquity.

All menial work was performed by slaves. The citizen of Athens was
well-to-do and enjoyed a large amount of leisure. The government
being purely democratic, every citizen was a politician. To make his

influence felt among his fellow-men he must, first of all, be educated.

Thus there arose a demand for teachers. The supply came principally

from Sicily, where Pythagorean doctrines had spread. These teachers

were called Sophists, or "wise men." Unlike the Pythagoreans, they
accepted pay for their teaching. Although rhetoric was the principal

feature of their instruction, they also taught geometry, astronomy,
and philosophy. Athens soon became the headquarters of Grecian
men of letters, and of mathematicians in particular. The home of

mathematics among the Greeks was first in the Ionian Islands, then
in Lower Italy, and during the time now under consideration, at

Athens.

The geometry of the circle, which had been entirely neglected by
the Pythagoreans, was taken up by the Sophists. Nearly all their

discoveries were made in connection with their innumerable attempts
to solve the following three famous problems :

—

(i) To trisect an arc or an angle.

(2) To "double the cube," i. e., to find a cube whose volume is

double that of a given cube.

(3) To "square the circle," i. e. to find a square or some other
rectilinear figure exactly equal in area to a given circle.

These problems have probably been the subject of more discussion

and research than any other problems in mathematics. The bisection

of an angle was one of the easiest problems in geometry. The trisec-

tion of an angle, on the other hand, presented unexpected difficulties.

A right angle had been divided into three equal parts by the Pytha-
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goreans. But the general construction, though easy in appearance,
cannot be effected by the aid only of ruler and compasses. Among
the first to wrestle with it was Hippias of Elis, a contemporary of
Socrates, and born about 460 B. c. Unable to reach a solution by
ruler and compasses only, he and other Greek geometers resorted to
the use of other means. Proclus mentions a man, Hippias, presum-
ably Hippias of Elis, as the inventor of a transcendental curve which
served to divide an angle not only into three, but into any number of
equal parts. This same curve was used later by Dinostratus and
others for the quadrature of the circle. On this account it is called
the quadratrix. The curve may be described thus: The side AB of the
square shown in the figure turns uniformly about A, the point B
moving along the circular arc BED. In the
same time, the side BC moves parallel to it- X
self and uniformly from the position of BC
to that of AD. The locus of intersection of
AB and BC, when thus moving, is the
quadratrix BEG. Its equation we now write

A

TTOC
y=xcot— . The ancients considered only

the part of the curve that lies inside the
quadtant of the circle; they did not know
that x=^i=2r are asymptotes, nor that there

is an infinite number of branches. According to Pappus, Dinostratus
effected the quadrature by establishing the theorem that BED: AD
=AD:AG.
The Pythagoreans had shown that the diagonal of a square is the

side of another square having double the area of the original one.

This probably suggested the problem of the duplication of the cube,

i. e., to find the edge of a cube having double the volume of a given

cube. Eratosthenes ascribes to this problem a different origin. The
Delians were once suffering from a pestilence and were ordered by
the oracle to double a certain cubical altar. Thoughtless workmen
simply constructed a cube with edges twice as long, but brainless

work like that did not pacify the gods. The error being discovered,

Plato was consulted on the matter. He and his disciples searched

eagerly for a solution to this "Delian Problem." An important con-

tribution to this problem was made by Hippocrates of Chios (about

430 B. c). He was a talented mathematician but, having been de-

frauded of his property, he was pronounced slow and stupid. It is

also said of him that he was the first to accept pay for the teaching of

mathematics. He showed that the Delian Problem could be reduced

to finding two mean proportionals between a given line and another

twice as long. Eor, in the proportion a .x= x •.y= y : 2a, since x'^=
ay and y^=2ax and a;^=fflVi we have x'^=2a^x and x' = 2a^ But,
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of course, he failed to find the two mean proportionals by geometric

construction with ruler and compasses. He made himself celebrated

by squaring certain lunes. According to Simplicius, Hippocrates

believed he actually succeeded in applying one of his lune-quadratures

to the quadrature of the circle. That Hippocrates really committed

this fallacy is not generally accepted.

In the first lune which he squared, he took an isosceles triangle

ABC, right-angled at C, and drew a semi-circle on AB as a diameter,

and passing through C. He drew also a semi-circle on AC as a diam-

eter and lying outside the triangle ABC. The lunar area thus formed

is half the area of the triangle ABC. This is the first example of a

curvilinear area which admits of exact quadrature. Hippocrates

squared other lunes, hoping, no doubt, that he might be led to the

quadrature of the circle.^ In 1840 Th. Clausen found other quadrable

lunes, but in 1902 E. Landau of Gottingen pointed out that two of

the four lunes which Clausen supposed to be new, were known to

Hippocrates.^

In his study of the quadrature and duplication-problems, Hip-
pocrates contributed much to the geometry of the circle. He showed
that circles are to each other as the squares of their diameters, that

similar segments in a circle are as the squares of their chords and
contain equal angles, that in a segment less than a semi-circle the

angle is obtuse. Hippocrates contributed vastly to the logic of geom-
etry. His investigations are the oldest "reasoned geometrical proofs

in existence " (Gow) . For the purpose of describing geometrical figures

he used letters, a practice probably introduced by the Pythagoreans.

The subject of similar figures, as developed by Hippocrates, in-

volved the theory of proportion. Proportion had, thus far, been used
by the Greeks only in numbers. They never succeeded in uniting

the notions of numbers and magnitudes. The term "number" was
used by them in a restricted sense. What we call irrational numbers
was not included under this notion. Not even rational fractions

were called numbers. They used the word in the same sense as we
use "positive integers." Hence numbers were conceived as discon-

tinuous, while magnitudes were continuous. The two notions ap-
peared, therefore, entirely distinct. The chasm between them is ex-

posed to full view in the statement of Euclid that "incommensurable
magnitudes do not have the same ratio as numbers." In Euclid's
Elements we find the theory of proportion of magnitudes developed
and treated independent of that of numbers. The transfer of the
theory of proportion from numbers to magnitudes (and to lengths in

particular) was a difficult and important step.

' A full account is given by G. Loria in his Le scienze esatte nell'antica Grecia,
Milano, 2 edition, 1914, pp. 74-94. Loria gives also full bibliographical references
to the extensive literature on Hippocrates.

^E. W. Hobson, Squaring the Circle, Cambridge, 1913, p. 16.
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Hippocrates added to his fame by writing a geometrical text-book,
called the Elements. This publication shows that the Pythagorean
habit of secrecy was being abandoned; secrecy was contrary to the
spirit of Athenian life.

The sophist Antiphon, a contemporary of Hippocrates, introduced
the process of exhaustion for the purpose of solving the problem of
the quadrature. He did himself credit by remarldng that by inscrib-
ing in a circle a square or an equilateral triangle, and on its sides
erecting isosceles triangles with their vertices in the circumference,
and on the sides of these triangles erecting new triangles, etc., one
could obtain a succession of regular polygons, of which each approaches
nearer to the area of the circle than the previous one, until the circle

is finally exhausted. Thus is obtained an inscribed polygon whose
sides coincide with the circumference. Since there can be found
squares equal in area to any polygon, there also can be found a square
equal to the last polygon inscribed, and therefore equal to the circle

itself. Bryson of Heraclea, a contemporary of Antiphon, advanced
the problem of the quadrature considerably by circumscribing poly-
gons at the same time that he inscribed polygons. He erred, however,
in assuming that the area of a circle was the arithmetical mean be-
tween circumscribed and inscribed polygons. Unlike Bryson and
the rest of Greek geometers, Antiphon seems to have believed it

possible, by continually doubling the sides of an inscribed polygon,
to obtain a polygon coinciding with the circle. This question gave
rise to lively disputes in Athens. If a polygon can coincide with the

circle, then, says Simplicius, we must put aside the notion that magni-
tudes are divisible ad infinitum. This difficult philosophical question

led to paradoxies that are difficult to explain and that deterred Greek
mathematicians from introducing ideas of infinity into their geometry;
rigor in geometric proofs demanded the exclusion of obscure concep-

tions. Famous are the arguments against the possibility of motion
that were advanced by Zeno of Elea, the great dialectician (early in

the 5th century b. c). None of Zeno's writings have come down to

us. We know of his tenets only through his critics, Plato, Aristotle,

Simplicius. Aristotle, in his Physics, VI, 9, ascribes to Zeno four

arguments, called "Zeno's paradoxies": (i) The "Dichotomy": You
cannot traverse an infinite number of points in a finite time; you
must traverse the half of a given distance before you traverse the

whole, and the half of that again before you can traverse the whole.

This goes on ad infinitum, so that (if space is made up of points) there

is an infinite number in any given space, and it cannot be traversed

in a finite time. (2) The "Achilles": Achilles cannot overtake a tor-

toise. For, Achilles must first reach the place from which the tortoise

started. By that time the tortoise will have moved on a little way.

Achilles must then traverse that, and still the tortoise will be ahead.

He is always nearer, yet never makes up to it. (3) The "Arrow":
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An arrow in any given moment of its flight must be at rest in some
particular point. (4) The "Stade": Suppose three parallel rows of

points in juxtaposition, as in Fig. i. One of these (B) is immovable,

A . . . . ^A . . . .

B . . . . B . . . .

C . . . . C . . . .-i-

Fig. I Fig. 2

while A and C move in opposite directions with equal velocity, so

as to come into the position in Fig. 2. The movement of C relatively

to A will be double its movement relatively to B, or, in other words,

any given point in C has passed twice as many points in A as it has

in B. It cannot, therefore, be the case that an instant of time corre-

sponds to the passage from one point to another.

Plato says that Zeno's purpose was "to protect the arguments of

Parmenides against those who make fun of him"; Zeno argues that
" there is no many," he " denies pluraUty." That Zeno's reasoning was
wrong has been the view universally held since the time of Aristotle

down to the middle of the nineteenth century. More recently the

opinion has been advanced that Zeno was incompletely and incor-

rectly reported, that his arguments are serious efforts, conducted with

logical rigor. This view has been advanced by Cousin, Grote and P.

Tannery.^ Tannery claims that Zeno did not deny motion, but
wanted to show that motion was impossible under the Pythagorean
conception of space as the sum of points, that the four arguments must
be taken together as constituting a dialogue between Zeno and an
adversary and that the arguments are in the form of a double dilemma
into which Zeno forces his adversary. Zeno's arguments involve con-

cepts of continuity, of the infinite and infinitesimal; they are as much
the subjects of debate now as they were in the time of Aristotle.

Aristotle did not successfully explain Zeno's paradoxes. He gave no
reply to the query arising in the mind of the student, how is it pos-

sible for a variable to reach its limit? Aristotle's continuum was a
sensuous, physical one; he held that, since a line cannot be built up
of points, a line cannot actually be subdivided into points. "The
continued bisection of a quantity is unlimited, so that the unlimited
exists potentially, but is actually never reached." No satisfactory

explanation of Zeno's arguments was given before the creation of

Georg Cantor's continuum and theory of aggregates.

The process of exhaustion due to Antiphon and Bryson gave rise

to the cumbrous but perfectly rigorous "method of exhaustion." In
determining the ratio of the areas between two curvilinear plane
figures, say two circles, geometers first inscribed or circumscribed
similar polygons, and then by increasing indefinitely the number of

' See F. Cajori, "The History of Zeno's Arguments on Motion" in the Americ.
Math. Monthly, Vol. 22, 1915, p. 3.
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sides, nearly exhausted the spaces between the polygons and circum-
ferences. From the theorem that similar polygons inscribed in circles

are to each other as the squares on their diameters, geometers may
have divined the theorem attributed to Hippocrates of Chios that the

circles, which differ but little from the last drawn polygons, must be
to each other as the squares on their diameters. But in order to ex-

clude all vagueness and possibility of doubt, later Greek geometers
applied reasoning Hke that in Euclid, XII, 2, as follows: Let C and c,

D and d be respectively the circles and diameters in question. Then
if the proportion Z)^ : (^-= C : c is not true, suppose that D'^ -.cF^C :c^.

If c^<c, then a polygon p can be inscribed in the circle c which comes
nearer to it in area than does c^. If P be the corresponding polygon
in C, then P :p=D^ :d^-=-C : c^, and P .C= p :c\ Since p>c^, we
have P>C, which is absurd. Next they proved by this same method of

rediictio ad ahsurdum the falsity of the supposition that c^>c. Since

c^ can be neither larger nor smaller than c, it must be equal to it,

Q.E.D. Hankel refers this Method of Exhaustion back to Hippocrates

of Chios, but the reasons for assigning it to this early writer, rather

than to Eudoxus, seem insufficient.

Though progress in geometry at this period is traceable only at

Athens, yet Ionia, Sicily, Abdera in Thrace, and Cyrene produced
mathematicians who made creditable contributions to the science. We
can mention here only Democritus of Abdera (about 460-370 b. c),

a pupil of Anaxagoras, a friend of Philolaus, and an admirer of the

Pythagoreans. He visited Egypt and perhaps even Persia. He was

a successful geometer and wrote on incommensurable lines, on geom-

etry, on numbers, and on perspective. None of these works are extant.

He used to boast that in the construction of plane figures with proof

no one had yet surpassed him, not even the so-called harpedonaptse

("rope-stretchers") of Egypt. By this assertion he pays a flattering

compUment to the skill and abihty of the Egyptians.

The Platonic School

During the Peloponnesian War (431-404 B. c.) the progress of geom-

etry was checked. After the war, Athens sank into the background

as a minor poUtical power, but advanced more and more to the front

as the leader in philosophy, literature, and science. Plato was born

at Athens in 429 b. C, the year of the great plague, and died in 348.

He was a pupil and near friend of Socrates, but it was not from him

that he acquired his taste for mathematics. After the death of

Socrates, Plato travelled extensively. In Cyrene he studied mathe-

matics under Theodorus. He went to Egypt, then to Lower Italy

and Sicily, where he came in contact with the Pythagoreans. Archytas

of Tarentum and Timaeus of Locri became his intimate friends. On

his return to Athens, about 389 b. c, he founded his school in the
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groves of the Academia, and devoted the remainder of his life to teach-

ing and writing.

Plato's physical philosophy is partly based on that of the Pytha-

goreans. Like them, he sought in arithmetic and geometry the key
to the universe. When questioned about the occupation of the Deity,

Plato answered that "He geometrises continually." Accordingly, a

knowledge of geometry is a necessary preparation for the study of

philosophy. To show how great a value he put on mathematics and
how necessary it is for higher speculation, Plato placed the inscrip-

tion over his porch, "Let no one who is unacquainted with geometry

enter here." Xenocrates, a successor of Plato as teacher in the

Academy, followed in his master's footsteps, by decHning to admit a

pupil who had no mathematical training, with the remark, "Depart,

for thou hast not the grip of philosophy." Plato observed that geom-
etry trained the mind for correct and vigorous thinking. Hence it

was that the Eudemian Summary says, "He filled his writings with

mathematical discoveries, and exhibited on every occasion the re-

markable connection between mathematics and philosophy."

With Plato as the head-master, we need not wonder that the Pla-

tonic school produced so large a number of mathematicians. Plato

did little real original work, but he made valuable improvements in

the logic and methods employed in geometry. It is true that the

Sophist geometers of the previous century were fairly rigorous in their

proofs, but as a rule they did not reflect on the inward nature of their

methods. They used the axioms without giving them explicit ex-

pression, and the geometrical concepts, such as the point, line, surface,

etc., without assigning to them formal definitions.^ The Pythagoreans
called a point "unity in position," but this is a statement of a philo-

sophical theory rather than a definition. Plato objected to calling a
point a "geometrical fiction." He defined a point as the "beginning
of a line" or as "an indivisible line," and a line as "length without
breadth." He called the point, line, surface, the "boundaries" of

the line, surface, solid, respectively. Many of the definitions in Euclid
are to be ascribed to the Platonic school. The same is probably true

of Euclid's axioms. Aristotle refers to Plato the axiom that "equals
subtracted from equals leave equals."

One of the greatest achievements of Plato and his school is the in-

vention of analysis as a method of proof. To be sure, this method
had been used unconsciously by Hippocrates and others; but Plato,

like a true philosopher, turned the instinctive logic into a conscious,

legitimate method.

' "If any one scientific invention can claim pre-eminence over all others, I should
be inclined myself to erect a monument to the unknown inventor of the mathe-
matical point, as the supreme type of that process of abstraction which has been
a necessary condition of scientific work from the very beginning." Horace Lamb's
Address, Section A, Brit. Ass'n, 1904.
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The terms synthesis and analysis are used in mathematics in a more
special sense than in logic. In ancient mathematics they had a dif-

ferent meaning from what they now have. The oldest definition of

mathematical analysis as opposed to synthesis is that given in Euclid,

XIII, 5, which in all probability was framed by Eudoxus: "Analysis is

the obtaining of the thing sought by assuming it and so reasoning up
to an admitted truth; synthesis is the obtaining of the thing sought
by reasoning up to the inference and proof of it." The analytic method
is not conclusive, unless all operations involved in it are known to

be reversible. To remove all doubt, the Greeks, as a rule, added to

the analytic process a synthetic one, consisting of a reversion of all

operations occurring in the analysis. Thus the aim of analysis was
to aid in the discovery of synthetic proofs or solutions.

Plato is said to have solved the problem of the duplication of the

cube. But the solution is open to the very same objection which he
made to the solutions by Archytas, Eudoxus, and Menaechmus. He
called their solutions not geometrical, but mechanical, for they re-

quired the use of other instruments than the ruler and compasses.

He said that thereby " the good of geometry is set aside and destroyed,

for we again reduce it to the world of sense, instead of elevating and
imbuing it with the eternal and incorporeal images of thought, even

as it is employed by God, for which reason He always is God." These
objections indicate either that the solution is wrongly attributed to

Plato or that he wished to show how easily non-geometric solutions

of that character can be found. It is now rigorously established that

the duplication problem, as well as the trisection and quadrature

problems, cannot be solved by means of the ruler and compasses

only.

Plato gave a healthful stimulus to the study of stereometry, which

until his time had been entirely neglected by the Greeks. The sphere

and the regular solids have been studied to some extent, but the prism,

pyramid, cylinder, and cone were hardly known to exist. All these

sohds became the subjects of investigation by the Platonic school.

One result of these inquiries was epoch-making. Menaechmus, an

associate of Plato and pupil of Eudoxus, invented the conic sections,

which, in course of only a century, raised geometry to the loftiest height

which it was destined to reach during antiquity. Menaechmus cut

three kinds of cones, the "right-angled," " acute-angled," and " obtuse-

angled," by planes at right angles to a side of the cones, and thus

obtained the three sections which we now call the parabola, ellipse,

and hyperbola. Judging from the two very elegant solutions of the

"Dehan Problem" by means of intersections of these curves, Menaech-

mus must have succeeded well in investigating their properties. In

what manner he carried out the graphic construction of these curves

is not known.
Another great geometer was Dinostratus, the brother of Menffich-
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mus and pupil of Plato. Celebrated is his mechanical solution of the

quadrature of the circle, by means of the quadratrix of Hippias.

Perhaps the most brilliant mathematician of this period was
Eudoxus. He was born at Cnidus about 408 b. c, studied under

Archytas, and later, for two months, under Plato. He was imbued
with a true spirit of scientific inquiry, and has been called the father

of scientific astronomical observation. From the fragmentary notices

of his astronomical researches, found in later writers, Ideler and
Schiaparelli succeeded in reconstructing the system of Eudoxus with

its celebrated representation of planetary motions by "concentric

spheres." Eudoxus had a school at Cyzicus, went with his pupils to

Athens, visiting Plato, and then returned to Cyzicus, where he died

355 B. c. The fame of the academy of Plato is to a large extent due
to Eudoxus's pupils of the school at Cyzicus, among whom are Men-
aschmus, Dinostratus, Athenseus, and Helicon. Diogenes Laertius de-

scribes Eudoxus as astronomer, physician, legislator, as well as geom-
eter. The Eiidemian Summary says that Eudoxus "first increased the

number of general theorems, added to the three proportions three

more, and raised to a considerable quantity the learning, begun by
Plato, on the subject of the section, to which he applied the analytical

method." By this "section" is meant, no doubt, the "golden section"

(secHo aurea), which cuts a line in extreme and mean ratio. The first

five propositions in Euclid XIII relate to lines cut by this section, and
are generally attributed to Eudoxus. Eudoxus added much to the

knowledge of solid geometry. He proved, says Archimedes, that a
pyramid is exactly one-third of a prism, and a cone one-third of a
cylinder, having equal base and altitude. The proof that spheres are

to each other as the cubes of their radii is probably due to him. He
made frequent and skilful use of the method of exhaustion, of which
he was in all probability the inventor. A scholiast on Euclid, thought
to be Proclus, says further that Eudoxus practically invented the
whole of Euclid's fifth book. Eudoxus also found two mean propor-
tionals between two given lines, but the method of solution is not
known.

Plato has been called a maker of mathematicians. Besides the
pupils already named, the Eudemian Summary mentions the following:
Theaetetus of Athens, a man of great natural gifts, to whom, no doubt,
Euchd was greatly indebted in the composition of the loth book,i
treating of incommensurables and of the 13th book; Leodamas of
Thasos; Neocleides and his pupil Leon, who added much to the work
of their predecessors, for Leon wrote an Elements carefully designed,
both in number and utility of its proofs; Theudius of Magnesia, who
composed a very good book of Elements and generalised propositions,
which had been confined to particular cases; Hermotimus of Col-
ophon, who discovered many propositions of the Elements and com-

' G. J. Allman, op. ciL, p. 212.
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posed some on loci; and, finally, the names of Amyclas of Heraclea,
Cyzicenus of Athens, and Philippus of Mende.
A skilful mathematician of whose life and works we have no details

is Aristaeus, the elder, probably a senior contemporary of Euclid. The
fact that he wrote a work on conic sections tends to show that much
progress had been made in their study during the time of Menaschmus.
Aristaeus wrote also on regular solids and cultivated the analytic

method. His works contained probably a summary of the researches

of the Platonic school.^

Aristotle (384-322 B. c), the systematiser of deductive logic, though
not a professed mathematician, promoted the science of geometry by
improving some of the most difficult definitions. His Physics contains

passages with suggestive hints of the principle of virtual velocities.

He gave the best discussion of continuity and of Zeno's arguments
against motion, found in antiquity. About his time there appeared a

work called Mechanica, of which he is regarded by some as the author.

Mechanics was totally neglected by the Platonic school.

The First Alexandrian School

In the previous pages we have seen the birth of geometry in Egypt,

its transference to the Ionian Islands, thence to Lower Italy and to

Athens. We have witnessed its growth in Greece from feeble child-

hood to vigorous manhood, and now we shall see it return to the land

of its birth and there derive new vigor.

During her declining years, immediately following the Pelopon-

nesian War, Athens produced the greatest scientists and philosophers

of antiquity. It was the time of Plato and Aristotle. In 338 b. c, at

the battle of Chaeronea, Athens was beaten by Philip of Macedon,

and her power was broken forever. Soon after, Alexander the Great,

the son of Philip, started out to conquer the world. In eleven years

he built up a great empire which broke to pieces in a day. Egypt

fell to the lot of Ptolemy Soter. Alexander had founded the seaport

of Alexandria, which soon became the "noblest of all cities." Ptolemy

made Alexandria the capital. The history of Egypt during the next

three centuries is mainly the history of Alexandria. Literature,

philosophy, and art were diligently cultivated. Ptolemy created the

university of Alexandria. He founded the great Library and built

laboratories, museums, a zoological garden, and promenades. Alex-

andria soon became the great centre of learning.

Demetrius Phalereus was invited from Athens to take charge of the

Library, and it is probable, says Gow, that Euclid was invited with

him to open the mathematical school. According to the studies of

H. Vogt,^ Euclid was bom about 365 b. c. and wrote his Elements

' G. J. AUman, op. cit., p. 205.

^Bibliotheca malhemalica, 3 S., Vol. 13, 1913, pp. 193-202.
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between 330 and 320 b. c. Of the life of Euclid, little is known, except

what is added by Proclus to the Eudemian Summary. Euclid, says

Proclus, was younger than Plato and older than Eratosthenes and

Archimedes, the "latter of whom mentions him. He was of the Platonic

sect, and well read in its doctrines. He collected the Elements, put

in order much that Eudoxus had prepared, completed many things of

Theffitetus, and was the first who reduced to unobjectionable demon-

stration the imperfect attempts of his predecessors. When Ptolemy

once asked him if geometry could not be mastered by an easier process

than by studying the Elements, Euclid returned the answer, "There

is no royal road to geometry." Pappus states that Euclid was distin-

guished by the fairness and kindness of his disposition, particularly

toward those who could do anything to advance the mathematical

sciences. Pappus is evidently making a contrast to ApoUonius, of

whom he more than insinuates the opposite character.^ A pretty

little story is related by Stobasus: ^ "A youth who had begun to read

geometry with Euclid, when he had learnt the first proposition, in-

quired, 'What do I get by learning these things?' So EucHd called

his slave and said, 'Give him threepence, since he must make gain

out of what he learns.'" These are about all the personal details

preserved by Greek writers. Syrian and Arabian writers claim to

know much more, but they are unreliable. At one time Euclid of

Alexandria was universally confounded with Euclid of Megara, who
lived a century earlier.

The fame of Euclid has at all times rested mainly upon his book on
geometry, called the Elements. This book was so far superior to the

Elements written by Hippocrates, Leon, and Theudius, that the latter

works soon perished in the struggle for existence. The Greeks gave
Euclid the special title of "the author of the Elements." It is a re-

markable fact in the history of geometry, that the Elements of Euclid,

written over two thousand years ago, are still regarded by some as the

best introduction to the mathematical sciences. In England they
were used until the present century extensively as a text-book in

schools. Some editors of Euclid have, however, been inclined to credit

him with more than is his due. They would have us believe that a
finished and unassailable system of geometry sprang at once from the

brain of Euclid, " an armed Minerva from the head of Jupiter." They
fail to mention the earlier eminent mathematicians from whom Euclid
got his material. Comparatively few of the propositions and proofs

in the Elements are his own discoveries. In fact, the proof of the

"Theorem of Pythagoras" is the only one directly ascribed to him.
Allman conjectures that the substance of Books I, II, IV comes from
the Pythagoreans, that the substance of Book VI is due to the Pytha-

1 A. De Morgan, " Eucleides" in Smith's Dictionary of Greek and Roman Biography
and Mythology.

^
J. Gow, op. cit., p. 195.
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goreans and Eudoxus, the latter contributing the doctrine of propor-
tion as applicable to incommensurables and also the Method of Ex-
haustions (Book XII), that Theaetetus contributed much toward
Books X and XIII, that the principal part of the original work of
Euchd himself is to be found in Book X} Euclid was the greatest
systematiser of his time. By careful selection from the material before
him, and by logical arrangement of the propositions selected, he built
up, from a few definitions and axioms, a proud and lofty structure.
It wodd be erroneous to believe that he incorporated into his Elements
all the elementary theorems known at his time. Archimedes, Apol-
lonius, and even he himself refer to theorems not included in his Ele-
ments, as being well-known truths.

The text of the Elements that was commonly used in schools was
Theon's edition. Theon of Alexandria, the father of Hypatia, brought
out an edition, about 700 years after Euclid, with some alterations in

the text. As a consequence, later commentators, especially Robert
Simson, who labored under the idea that Euclid must be absolutely
perfect, made Theon the scapegoat for all the defects which they
thought they could discover in the text as they knew it. But among
the manuscripts sent by Napoleon I from the Vatican to Paris was
found a copy of the Elements believed to be anterior to Theon's recen-
sion. Many variations from Theon's version were noticed therein,

but they were not at all important, and showed that Theon generally

made only verbal changes. The defects in the Elements for which
Theon was blamed must, therefore, be due to Euclid himself. The
Elements used to be considered as offering models of scrupulously
rigorous demonstrations. It is certainly true that in point of rigor

it compares favorably with its modern rivals; but when examined
in the light of strict mathematical logic, it has been pronounced by
C. S. Peirce to.be "riddled with fallacies." The results are correct

only because the writer's experience keeps him on his guard. In
many proofs Euclid relies partly upon intuition.

At the beginning of our editions of the Elements, under the head of

definitions, are given the assumptions of such notions as the point,

line, etc., and some verbal explanations. Then follow three postulates

or demands, and twelve axioms. The term "axiom" was used by
Proclus, but not by Euclid. He speaks, instead, of "common no-

tions"—common either to all men or to all sciences. There has been

much controversy among ancient and modem critics on the postulates

and axioms. An immense preponderance of manuscripts and the

testimony of Proclus place the "axioms" about right angles and
parallels among the postulates.^ This is indeed their proper place,

' G. J. AUman, op. cit., p. 211.

^ A. De Morgan, loc. cit.; H. Hankel, Theorie dcr Complexen Zahlensysteme, Leip-

zig, 1867, p. 52. In the various editions of Euclid's Elements different numbers are

assigned to tlie axioms. Thus the parallel axiom is called by Robert Simson the
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for they are really assumptions, and not common notions or axioms.

The postulate about parallels plays an important role in the history

of non-Euclidean geometry. An important postulate which Euclid

missed was the one of superposition, according to which figures can

be moved about in space without any alteration in form or magnitude.

The Elements contains thirteen books by Euclid, and two, of which
it is supposed that Hypsicles and Damascius are the authors. The
first four books are on plane geometry. The fifth book treats of the

theory of proportion as applied to magnitudes in general. It has been
greatly admired because of its rigor of treatment. Beginners find the

book difficult. Expressed in modern symbols, Euclid's definition of

proportion is thus: Four magnitudes, a, b, c, d, are in proportion, when

for any integers m and n, we have simultaneously ma=nh, and mc

nd. Says T. L. Heath, i "certain it is that there is an exact corre-

spondence, almost coincidence, between Euclid's definition of equal

ratios and the modern theory of irrationals due to Dedekind. H. G.
Zeuthen finds a close resemblance between Euclid's definition and
Weierstrass' definition of equal numbers. The sixth book develops

the geometry of similar figures. Its 27th Proposition is the earliest

maximum theorem known to history. The seventh, eighth, ninth

books are on the theory of numbers, or on arithmetic. According to

P. Tannery, the knowledge of the existence of irrationals must have
greatly affected the mode of writing the Elements. The old naive

theory of proportion being recognized as untenable, proportions

are not used at all in the first four books. The rigorous theory of

Eudoxus was postponed as long as possible, because of its difficulty.

The interpolation of the arithmetical books VII-IX is explained

as a preparation for the fuller treatment of the irrational in book X.
Book VII explains the G. C. D. of two numbers by the process

of division (the so-called "Euclidean method"). The theory of

proportion of (rational) numbers is then developed on the basis of

the definition, "Numbers are proportional when the first is the same
multiple, part, or parts of the second that the third is of the fourth."

This is believed to be the older, Pythagorean theory of proportion.^
The tenth treats of the theory of incommensurables. De Morgan con-
sidered this the most wonderful of all. We give a fuller account of it

under the head of Greek Arithmetic. The next three books are on

12th, by Bolyai the nth, by Clavius the 13th, by F. Peyrard the 5th. It is called
the 5th postulate in old manuscripts, also by Heiberg and Menge in their annotated
edition of Euclid's works, in Greek and Latin, Leipzig, 1883, and by T. L. Heath
in his Thirteen Books of Euclid's Elements, Vols. I-III, Cambridge, igo8. Heath's
is the most recent translation into English and is very fully and ably annotated.

IT. L. Heath, op. cit.. Vol. H, p. 124.
2 Read H. B. Fine, "Ratio, Proportion and Measurement in the Elements of

Euclid," Annals of Mathematics, Vol. XIX, 1917, pp. 70-76.
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stereometry. The eleventh contains its more elementary theorems;
the twelfth, the metrical relations of the pyramid, prism, cone, cylinder,

and sphere. The thirteenth treats of the regular polygons, especially

of the triangle and pentagon, and then uses them as faces of the five

regular solids; namely, the tetraedron, octaedron, icosaedron, cube,

and dodecaedron. The regular solids were studied so extensively by
the Platonists that they received the name of "Platonic figures." The
statement of Proclus that the whole aim of Euclid in writing the Ele-

ments was to arrive at the construction 'of the regular solids, is ob-

viously wrong. The fourteenth and fifteenth books, treating of solid

geometry, are apocryphal. It is interesting to see that to Euclid, and
to Greek mathematicians in general, the existence of areas was evident

from intuition. The notion of non-quadrable areas had not occurred

to them.
A remarkable feature of Euclid's, and of all Greek geometry before

Archimedes is that it eschews mensuration. Thus the theorem that

the area of a triangle equals half the product of its base and its altitude

is foreign to EucUd.
Another extant book of EucHd is the Data. It seems to have been

written for those who, having completed the Elements, wish to acquire

the power of solving new problems proposed to them. The Data is

a course of practice in analysis. It contains little or nothing that an
inteUigent student could not pick up from the Elements itself. Hence
it contributes Uttle to the stock of scientific knowledge. The following

are the other works with texts more or less complete and generally

attributed to Euclid: Phwnomena, a work on spherical geometry and
astronomy; Optics, which develops the hypothesis that light proceeds

from the eye, and not from the object seen; Catoptrica, containing

propositions on reflections from mirrors: De Divisionibus, a treatise on

the division of plane figiures into parts having to one another a given

ratio; 1 Sectio Canonis, a work on musical intervals. His treatise on

Porisms is lost; but much learning has been expended by Robert Sim-

son and M. Chasles in restoring it from numerous notes found in the

writings of Pappus. The term "porism" is vague in meaning. Ac-

cording to Proclus, the aim of a porism is not to state some property

or truth, like a theorem, nor to effect a construction, like a problem,

but to find and bring to view a thing which necessarily exists with

given numbers or a given construction, as, to find the centre of a given

circle, or to find the G. C. D. of two given numbers. Porisms, ac-

cording to Chasles, are incomplete theorems, "expressing certain

relations between things variable according to a common law."

EucUd's other lost works are Fallacies, containing exercises in detec-

tion of fallacies; Conic Sections, in four books, which are the foundation

of a work on the same subject by ApoUonius; and Loci on a Surface,

' A careful restoration was brought out in 1915 by R. C. Archibald of Brown

University.
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the meaning of which title is not understood. Heiberg believes it to

mean "loci which are surfaces."

The immediate successors of Euclid in the mathematical school at

Alexandria were probably Conon, Dositheus, and Zeuxippus, but

little is known of them.

Archimedes (287?-2i2 b. c), the greatest mathematician of an-

tiquity, was born in Syracuse. Plutarch calls him a relation of King
Hieron; but more reliable is the statement of Cicero, who tells us he

was of low birth. Diodorus says he visited Egypt, and, since he was
a great friend of Conon and Eratosthenes, it is highly probable that

he studied in Alexandria. This belief is strengthened by the fact that

he had the most thorough acquaintance with all the work previously

done in mathematics. He returned, however, to Syracuse, where he
made himself useful to his admiring friend and patron. King Hieron,

by applying his extraordinary inventive genius to the construction of

various war-engines, by which he inflicted much loss on the Romans
during the siege of Marcellus. The story that, by the use of mirrors

reflecting the sun's rays, he set on fire the Roman ships, when they
came within bow-shot of the walls, is probably a fiction. The city

was taken at length by the Romans, and Archimedes perished in the

indiscriminate slaughter which followed. According to tradition, he
was, at the time, studying the diagram to some problem drawn in the
sand. As a Roman soldier approached him, he called out, " Don't spoil

my circles." The soldier, feeling insulted, rushed upon him and killed

him. No blame attaches to the Roman general Marcellus, who ad-
mired his genius, and raised in his honor a tomb bearing the figure

of a sphere inscribed in a cylinder. When Cicero was in Syracuse,
he found the tomb buried under rubbish.

Archimedes was admired by his fellow-citizens chiefly for his me-
chanical inventions; he himself prized far more highly his discoveries
in pure science. He declared that "every kind of art which was con-
nected with daily needs was ignoble and vulgar." Some of his works
have been lost. The following are the extant books, arranged ap-
proximately in chronological order: i. Two books on Equiponderance
of Planes or Centres of Plane Gravities, between which is inserted his
treatise on the Qtiadrature of the Parabola; 2. The Method; 3. Two books
on the Sphere and Cylinder; 4. The Measurement of the Circle; 5. On
Spirals; 6. Conoids Sind Spheroids; 7. The Sa7id-Counter; 8. Two books
on Floating Bodies; 9. Fifteen Lemmas.

In the book on the Measurement of the Circle, Archimedes proves
first that the area of a circle is equal to that of a right triangle having
the length of the circumference for its base, and the radius for its

altitude. In this he assumes that there exists a straight line equal in
length to the circumference—an assumption objected to by some
ancient critics, on the ground that it is not evident that a straight
line can equal a curved one. The finding of such a line was the next
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problem. He first finds an upper limit to the ratio of the circumfer-
ence to the diameter, or ir. To do this, he starts with an equilateral
triangle of which the base is a tangent and the vertex is the centre of
the circle. By successively bisecting the angle at the centre, by com-
paring ratios, and by taking the irrational square roots always a little

too small, he finally arrived at the conclusion that 7r<3l. Next he
finds a lower limit by inscribing in the circle regular polygons of 6, 12,

24, 48, 96 sides, finding for each successive polygon its perimeter,
which is, of course, always less than the circumference. Thus he
finally concludes that "the circumference of a circle exceeds three

times its diameter by a part which is less than i but more than ^
of the diameter." This approximation is exact enough for most pur-
poses.

The Quadrature of the Parabola contains two solutions to the prob-
lem—one mechanical, the other geometrical. The method of ex-

haustion is used in both.

It is noteworthy that, perhaps through the influence of Zeno, in-

finitesimals (infinitely small constants) were not used in rigorous

demonstration. In fact, the great geometers of the period now under
consideration resorted to the radical measure of excluding them from
demonstrative geometry by a postulate. This was done by Eudoxus,
Euclid, and Archimedes. In the preface to the Quadrature of the Parab-
ola, occurs the so-called "Archimedean postulate," which Archimedes
himself attributes to Eudoxus: "When two spaces are unequal, it is

possible to add to itself the difference by which the lesser is surpassed

by the greater, so often that every finite space will be exceeded."

Euclid {Elements V, 4) gives the postulate in the form of a definition

:

"Magnitudes are said to have a ratio to one another, when the less

can be multiplied so as to exceed the other." Nevertheless, infinitesi-

mals may have been used in tentative researches. That such was the

case with Archimedes is evident from his book. The Method, formerly

thought to be irretrievably lost, but fortunately discovered by Heiberg
in 1906 in Constantinople. The contents of this book shows that he

considered infinitesimals sufficiently scientific to suggest the truths of

theorems, but not to furnish rigorous proofs. In finding the areas of

parabolic segments, the volumes of spherical segments and other-solids

of revolution, he uses a mechanical process, consisting of the weighing

of infinitesimal elements, which he calls straight lines or plane areas,

but which are really infinitely narrow strips or infinitely thin plane

laminae. '^ The breadth or thickness is regarded as being the same in

the elements weighed at any one time. The Archimedean postulate

did not command the interest of mathematicians until the modern
arithmetic continuum was created. It was O. Stolz that showed that

it was a consequence of Dedekind's postulate relating to "sections."

' T. L. Heath, Method of Archimedes, Cambridge, 191 2, p. 8.
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It would seem that, in his great researches, Archimedes' mode of

procedure was, to start with mechanics (centre of mass of surfaces and
solids) and by his infinitesimal-mechanical method to discover new
results for which later he deduced and published the rigorous proofs.

Archimedes knew the integral ^ fx^dx.

Archimedes studied also the ellipse and accomplished its quadrature,

but to the hyperbola he seems to have paid less attention. It is be-

heved that he wrote a book on conic sections.

Of all his discoveries Archimedes prized most highly those in his

Sphere and Cylinder. In it are proved the new theorems, that the

surface of a sphere is equal to four times a great circle ; that the surface

segment of a sphere is equal to a circle whose radius is the straight

line drawn from the vertex of the segment to the circumference of its

basal circle; that the volume and the surface of a sphere are | of the

volume and surface, respectively, of the cylinder circumscribed about
the sphere. Archimedes desired that the figure to the last proposition

be inscribed on his tomb. This was ordered done by Marcellus.

The spiral now called the "spiral of Archimedes," and described in

the book On Spirals, was discovered by Archimedes, and not, as some
believe, by his friend Conori.^ His treatise thereon is, perhaps, the

most wonderful of all his works. Nowadays, subjects of this kind
are made easy by the use of the infinitesimal calculus. In its stead

the ancients used the method of exhaustion. Nowhere is the fertiUty

of his genius more grandly displayed than in his masterly use of this

method. With Euclid and his predecessors the method of exhaustion

was only the means of proving propositions which must have been
seen and believed before they were proved. But in the hands of

Archimedes this method, perhaps combined with his infinitesimal-

mechanical method, became an instrument of discovery.

By the word "conoid," in his book on Conoids and Spheroids, is

meant the solid produced by the revolution of a parabola or a hyper-
bola about its axis. Spheroids are produced by the revolution of an
ellipse, and are long or flat, according as the ellipse revolves around
the major or minor axis. The book leads up to the cubature of these

sohds. A few constructions of geo-
metric figures were given by Archi-
medes and Appolonius which were
effected by "insertions." In the
following trisection of an angle, at-

tributed by the Arabs to Archi-
medes, the "insertion" is achieved by the aid of a graduated ruler.s

To trisect the angle CAB, draw the arc BCD. Then "insert" the

' H. G. Zeuthen in Bibliolheca mathematica, 3 S., Vol. 7, 1906-7, p. 347.
^ M. Cantor, op. cil.. Vol. I, 3 Aufl., 1907, p. 306.
' F. Enriques, Fragen der Elementargeometrie, deutsche Ausg. v. H. Fleischer, II,

Leipzig, 1907, p. 234.
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distance FE, equal to AB, marked on an edge passing through C
and moved until the points E and F are located as shown in the

figiure. The required angle is EFD.
His arithmetical treatise and problems will be considered later.

We shall now notice his works on mechanics. Archimedes is the

author of the first sound knowledge on this subject. Archytas, Aris-

totle, and others attempted to form the known mechanical truths into

a science, but failed. Aristotle knew the property of the lever, but
could not establish its true mathematical theory. The radical and
fatal defect in the speculations of the Greeks, in the opinion of Whewell,
was "that though they had in their possession facts and ideas, the

ideas were not distinct and appropriate to the facts." For instance,

Aristotle asserted that when a body at the end of a lever is moving,
it may be considered as having two motions; one in the direction of

the tangent and one in the direction of the radius; the former motion
is, he says, according to nature, the latter contrary to nature. These
inappropriate notions of "natural" and "unnatural" motions, to-

gether with the habits of thought which dictated these speculations,

made the perception of the true grounds of mechanical properties

impossible.-"- It seems strange that even after Archimedes had en-

tered upon the right path, this science should have remained ab-

solutely stationary till the time of Galileo—a period of nearly two
thousand years.

The proof of the property of the lever, given in his Equiponderance

of Planes, holds its place in many text-books to this day. Mach ^

criticizes it. "From the mere assumption of the equilibrium of equal

weights at equal distances is derived the inverse proportionality of

weight and lever arm! How is that possible? " Archimedes' estimate

of the eflEiciency of the lever is expressed in the saying attributed to

him, " Give me a fulcrum on which to rest, and I will move the earth."

While the Equiponderance treats of solids, or the equilibrium of

solids, the book on Floating Bodies treats of hydrostatics. His atten-

tion was first drawn to the subject of specific gravity when King Hieron

asked him to test whether a crown, professed by the maker to be pure

gold, was not alloyed with silver. The story goes that our philosopher

was in a bath when the true method of solution flashed on his mind.

He inunediately ran home, naked, shouting, "I have found it!" To
solve the problem, he took a piece of gold and a piece of silver, each

weighing the same as the crown. According to one author, he deter-

mined the volume of water displaced by the gold, silver, and cro-wn

respectively, and calculated from that the amount of gold and silver

1 William Whewell, History of the Inductive Sciences, ird. Ed., New York, 1858,

Vol. I, p. 87. William Whewell (i 794-1866) was Master of Trinity College, Cam-

bridge.
2 E. Mach, The Science of Mechanics, tr. by T. McCormack, Chicago, 1907, p. 14.

Ernst Mach (1838-1916) was professor of the history and theory of the inductive

sciences at the university of Vienna.
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in the crown. According to another writer, he weighed separately

the gold, silver, and crown, while immersed in water, thereby deter-

mining their loss of weight in water. From these data he easily found

the solution. It is possible that Archimedes solved the problem by
both methods.

After examining the writings of Archimedes, one can well under-

stand how, in ancient times, an "Archimedean problem" came to

mean a problem too deep for ordinary minds to solve, and how an
"Archimedean proof" came to be the synonym for unquestionable

certainty. Archimedes wrote on a very wide range of subjects, and
displayed great profundity in each. He is the Newton of antiquity.

Eratosthenes, eleven years younger than Archimedes, was a native

of Cyxene. He was educated in Alexandria under Callimachus the

poet, whom he succeeded as custodian of the Alexandrian Library.

His many-sided activity may be inferred from his works. He wrote

on Good and Evil, Measuretnent of the Earth, Comedy, Geography,

Chronology, Constellations, and the Duplication of the Cube. He was
also a philologian and a poet. He measured the obliquity of the

ecliptic and invented a device for finding prime numbers, to be de-

scribed later. Of his geometrical writings we possess only a letter to

Ptolemy Euergetes, giving a history of the duplication problem and
also the description of a very ingenious mechanical contrivance of his

own to solve it. In his old age he lost his eyesight, and on that account
is said to have committed suicide by voluntary starvation.

About forty years after Archimedes flourished ApoUonius of Perga,
whose genius nearly equalled that of his great predecessor. He incon-

testably occupies the second place in distinction among ancient mathe-
maticians. Apollonius was born in the reign of Ptolemy Euergetes
and died under Ptolemy Philopator, who reigned 222-205 B. C. He
studied at Alexandria under the successors of Euclid, and for some
time, also, at Pergammn, where he made the acquaintance of that

Eudemus to whom he dedicated the first three books of his Conic
Sections. The brilliancy of his great work brought him the title of the
" Great Geometer." This is all that is known of his life.

His Conic Sections were in eight books, of which the first four only
have come down to us in the original Greek. The next three books
were unknown in Europe till the middle of the seventeenth century,
when an Arabic translation, made about 1250, was discovered. The
eighth book has never been found. In 1710 E. Halley of Oxford pub-
lished the Greek text of the first four books and a Latin translation
of the remaining three, together with his conjectural restoration of

the eighth book, founded on the introductory lemmas of Pappus. The
first four books contain little more than the substance of what earher
geometers had done. Eutocius tells us that Heraclides, in his life of
Archimedes, accused Appolonius of having appropriated, in his Conic
Sections, the unpublished discoveries of that great mathematician.
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It is difficult to believe that this charge rests upon good foundation.
Eutocius quotes Geminus as replying that neither Archimedes nor
ApoUonius claimed to have invented the conic sections, but that
ApoUonius had introduced a real improvement. While the first three

or four books were founded on the works of Menaechmus, Aristaeus,

Euclid, and Archimedes, the remaining ones consisted almost entirely

of new matter. The first three books were sent to Eudemus at inter-

vals, the other books (after Eudemus's death) to one Attalus. The
preface of the second book is interesting as showing the mode in

which Greek books were "published" at this time. It reads thus:

"I have sent my son ApoUonius to bring you (Eudemus) the second
book of my Conies. Read it carefully and communicate it to such
others as are worthy of it. If Philonides, the geometer, whom I intro-

duced to you at Ephesus, comes into the neighbourhood of Pergamum,
give it to him also." ^

The first book, says ApoUonius in his preface to it, "contains the
mode of producing the three sections and the conjugate hyperbolas
and their principal characteristics, more fully and generally worked
out than in the writings of other authors." We remember that

Menjechmus, and all his successors do^vn to ApoUonius, considered only
sections of right cones by a plane perpendicular to their sides, and that

the three sections were obtained each from a different cone. Apol-
lonius introduced an important generalisation. He produced all the

sections from one and the same cone, whether right or scalene, and
by sections which may or may not be perpendicular to its sides. The
old names for the three curves were now no longer applicable. Instead

of caUing the three curves, sections of the "acute-angled," "right-

angled," and "obtuse-angled" cone, he called them ellipse, parabola,

and hyperbola, respectively. To be sure, we find the words "parabola "

and "ellipse" in the works of Archimedes, but they are probably only

interpolations. The word "elUpse" was applied because y^Kpx, p
being the parameter; the word "parabola" was introduced because

y^= px, and the term "hj^erbola" because y^>px.
The treatise of ApoUonius rests on a unique property of conic sec-

tions, which is derived directly from the nature of the cone in which
these sections are found. How this property forms the key to the

system of the ancients is told in a masterly way by M. Chasles.^

"Conceive," says he, "an obliciue cone on a circular base; the straight

line drawn from its summit to the centre of the circle forming its base

is called the axis of the cone. The plane passing through the axis,

perpendicular to its base, cuts the cone along two lines and determines

in the circle a diameter; the triangle having this diameter for its base

' H. G. Zeuthen, Die Lelire von den KegelsdniiUen im Allerthum, Kopenhagen,

1886, p. 502.
'^ M. Chasles, Geschichle der Geomelrie. Aus dem Franzosischen iibertragen durch,

Dr. L. A. Sohncke, Halle, 1839, p. 15.
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and the two lines for its sides, is called the triangle through the axis.

In the formation of his conic sections, ApoUonius supposed the cutting

plane to be perpendicular to the plane of the triangle through the

axis. The points in which this plane meets the two sides of this tri-

angle are the vertices of the curve; and the straight line which joins

these two points is a diameter of it. Apollonius called this diameter

latus transversum. At one of the two vertices of the curve erect a per-

pendicular {latus rectum) to the plane of the triangle through the

axis, of a certain length, to be determined as we shall specify later,

and from the extremity of this perpendicular draw a straight line to

the other vertex of the curve; now, through any point whatever of

the diameter of the curve, draw at right angles an ordinate: the square

of this ordinate, comprehended between the diameter and the curve,

will be equal to the rectangle constructed on the portion of the ordinate

comprised between the diameter and the straight line, and the part

of the diameter comprised between the first vertex and the foot of the

ordinate. Such is the characteristic property which Apollonius recog-

nises in his conic sections and which he uses for the purpose of in-

ferring from it, by adroit transformations and deductions, nearly aU
the rest. It plays, as we shall see, in his hands, almost the same role

as the equation of the second degree with two variables (abscissa and
ordinate) in the system of analytic geometry of Descartes." Apol-

lonius made use of co-ordinates as did Menaechmus before hun.'^

Chasles continues:

"It will be observed from this that the diameter of the curve and
the perpendicular erected at one of its extremities suffice to construct

the curve. These are the two elements which the ancients used, with
which to estabhsh their theory of conies. The perpendicular in ques-

tion was called by them latus erectum; the modems changed this name
first to that of latus rectum, and afterwards to that of parameter."

The first book of the Conic Sections of Apollonius is almost wholly
devoted to the generation of the three principal conic sections.

The second book treats mainly of asymptotes, axes, and diameters.

The third book treats of the equality or proportionaUty of triangles,

rectangles, or squares, of which the component parts are determined
by portions of transversals, chords, asymptotes, or tangents, which
are frequently subject to a great number of conditions. It also touches
the subject of foci of the ellipse and hyperbola.

In the fourth book, Apollonius discusses the harmonic division of

straight lines. He also examines a system of two conies, and shows
that they cannot cut each other in more than four points. He inves-
tigates the various possible relative positions of two conies, as, for

instance, when they have one or two points of contact with each other.

The fifth book reveals better than any other the giant intellect of

its author. Difficult questions of maxima and minima, of which few
1 T. L. Heath, Apollonius of Perga, Cambridge, 1896, p. CXV.
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examples are found in earlier works, are here treated most exhaustively.

The subject investigated is, to find the longest and shortest lines that
can be drawn from a given point to a conic. Here are also found the
germs of the subject of evolutes and centres of oscillation.

The sixth book is on the similarity of conies.

The seventh book is on conjugate diameters.

The eighth book, as restored by Halley, continues the subject of

conjugate diameters.

It is worthy of notice that Apollonius nowhere introduces the

notion of directrix for a conic, and that, though he incidentally dis-

covered Xh& focus of an ellipse and hyperbola, he did not discover the

focus of a parabola.^ Conspicuous in his geometry is also the absence
of technical terms and symbols, which renders the proofs long and
cumbrous. R. C. Archibald claims that Apollonius was familiar with
the centres of similitude of circles, usually attributed to Monge.
T. L. Heath ^ comments thus: "The principal machinery used by
Apollonius as weU as by the earlier geometers comes under the head
of what has been not inappropriately called a geometrical algebra."

The discoveries of Archimedes and Apollonius, says M. Chasles,

marked the most brilliant epoch of ancient geometry. Two questions

which have occupied geometers of all periods may be regarded as

having originated with them. The first of these is the quadrature of

curvilinear figures, which gave birth to the infinitesimal calculus. The
second is the theory of conic sections, which was the prelude to the

theory of geometrical curves of all degrees, and to that portion of

geometry which considers only the forms and situations of figures

and uses only the intersection of lines and surfaces and the ratios of

rectilineal distances. These two great divisions of geometry may be

designated by the names of Geometry of Measurements and Geometry

of Forms and Situations, or. Geometry of Archimedes and of Apol-

lonius.

Besides the Conic Sections, Pappus ascribes to Apollonius the fol-

lowing works: On Contacts, Plane Loci, Inclinations, Section of an Area,

Determinate Section, and gives lemmas from which attempts have

been made to restore the lost originals. Two books on De Sectione

Rationis have been found in the Arabic. The book on Contacts, as

restored by F. Vieta, contains the so-called "Apollonian Problem":

Given three circles, to find a fourth which shall touch the three.

Euclid, Archunedes, and Apollonius brought geometry to as high

a state of perfection as it perhaps could be brought without first in-

troducing some more general and more powerful method than the old

method of exhaustion. A briefer symbolism, a Cartesian geometry,

an infinitesimal calculus, were needed. The Greek mind was not

'J. Gow, op. cit., p. 252.
2 T. L. Heath, Apollonius of Perga, edited in modem notation. Cambridge, 1896,

p. ci.
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adapted to the invention of general methods. Instead of a climb to

still loftier heights we observe, therefore, on the part of later Greek

geometers, a descent, during which they paused here and there to look

around for details which had been passed by in the hasty ascent.^

Among the earliest successors of Apollonius was Nicomedes. Noth-
ing definite is known of him, except that he invented the conchoid

("mussel-like"), a curve of the fourth order. He devised a little

machine by which the curve could be easily described. With aid of

the conchoid he duplicated the cube. The curve can also be used for

trisecting angles in a manner resembling that in the eighth lemma of

Archimedes. Proclus ascribes this mode of trisection to Nicomedes,

but Pappus, on the other hand, claims it as his own. The conchoid

was used by Newton in constructing curves of the third degree.

About the time of Nicomedes (say, i8o b. c), flourished also

Diocles, the inventor of the cissoid ("ivy-like"). This curve he used

for finding two mean proportionals between two given straight lines.

The Greeks did not consider the companion-curve to the cissoid;

in fact, they considered only the part of the cissoid proper which
lies inside the circle used in constructing the curve. The part of the

area of the circle left over when the two circular areas on the concave
sides of the branches of the curve are removed, looks somewhat like

an ivy-leaf. Hence, probably, the name of the curve. That the two
branches extend to infinity appears to have been noticed first by G. P.

de Roberal in 1640 and then by R. de Sluse.^

About the life of Perseus we know as little as about that of Nico-
medes and Diocles. He lived some time between 200 and 100 b. c.

From Heron and Geminus we learn that he wrote a work on the spire,

a sort of anchor-ring surface described by Heron as being produced by
the revolution of a circle around one of its chords as an axis. The
sections of this surface yield peculiar curves called spiral sections,

which, according to Geminus, were thought out by Perseus. These
curves appear to be the same as the Hippopede of Eudoxus.

Probably somewhat later than Perseus lived Zenodorus. He wrote
an interesting treatise on a new subject; namely, isoperimetricalfigures.

Fourteen propositions are preserved by Pappus and Theon. Here
are a few of them: Of isoperimetrical, regular polygons, the one having
the largest number of angles has the greatest area; the circle has a
greater area than any regular polygon of equal periphery; of all iso-

perimentrical polygons of n sides, the regular is the greatest; of

all solids having surfaces equal in area, the sphere has the greatest

volume.

Hypsicles (between 200 and 100 b. c.) was supposed to be the
author of both the fourteenth and fifteenth books of Euclid, but recent
critics are of opinion that the fifteenth book was written by an author

' M. Cantor, op. cil., Vol. I, 3 Aufl., 1907, p. 350.
''G. Loria, Ebeiie Curveii, transl. by F. Schiitte, I, igio, p. 37.
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who lived several centuries after Christ. The fourteenth book con-
tains seven elegant theorems on regular solids. A treatise of Hypsicles
on Risings is of interest because it gives the division of the circum-
ference into 360 degrees after the fashion of the Babylonians.
Hipparchus of Niciea in Bithynia was the greatest astronomer of

antiquity. He took astronomical observations between 161 and 127
B. c. He established inductively the famous theory of epicycles and
eccentrics. As might be expected, he was interested in mathematics,
not per se, but only as an aid to astronomical inquiry. No mathe-
matical writings of his are extant, but Theon of Alexandria informs us
that Hipparchus originated the science of trigonometry, and that he
calculated a "table of chords" in twelve books. Such calculations
must have required a ready knowledge of arithmetical and algebraical
operations. He possessed arithmetical and also graphical devices for

solving geometrical problems in a plane and on a sphere. He gives
indication of having seized the idea of co-ordinate representation, found
earlier in ApoUonius.
About 100 B. c. flourished Heron, the Elder of Alexandria. He was

the pupil of Ctesibius, who was celebrated for his ingenious mechanical
inventions, such as the hydraulic organ, the water-clock, and catapult.

It is beheved by some that Heron was a son of Ctesibius. He ex-

hibited talent of the same order as did his master by the invention of

the eolipile and a curious mechanism known as "Heron's fountain."
Great uncertainty exists concerning his writings. Most authorities

believe him to be the author of an important Treatise on the Dioptra,

of which there exist three manuscript copies, quite dissimilar. But
M. Marie ^ thinks that the Dioptra is the work of Heron the Younger,

who lived in the seventh or eighth century after Christ, and that

Geodesy, another book supposed to be by Heron, is only a corrupt and
defective copy of the former work. Dioptra contains the important
formula for finding the area of a triangle expressed in terms of its

sides; its derivation is quite laborious and yet exceedingly ingenious.

"It seems to me difficult to believe," says Chasles, "that so beautiful

a theorem should be found in a work so ancient as that of Heron the

Elder, without that some Greek geometer should have thought to

cite it." Marie lays great stress on this silence of the ancient writers,

and argues from it that the true author must be Heron the Younger
or some writer much more recent than Heron the Elder. But no re-

liable evidence has been found that there actually existed a second

mathematician by the name of Heron. P. Tannery has shown that,

in applying this formula. Heron found the irrational square roots by

A
the approximation, Vyl~|-(a+—), where a^ is the square nearest to

' Maximilien Marie, Ilisioire des sciences malhematiques et physiques. Paris,

Tome I, 1883, p. 178.
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A. When a more accurate value was wanted, Heron took |^(aH—

)

in the place of a in the above formula. Apparently, Heron some-

times found square and cube roots also by the method of "double
- false position."

"Dioptra," says Venturi, were instruments which had great re-

semblance to our modern theodolites. The book Dioptra is a treatise

on geodesy containing solutions, with aid of these instruments, of a

large number of questions in geometry, such as to find the distance

between two points, of which one only is accessible, or between two
points which are visible but both inaccessible; from a given point to

draw a perpendicular to a line which cannot be approached; to find

the difference of level between two points; to measure the area of a

field without entering it.

Heron was a practical surveyor. This may account for the fact

that his writings bear so little resemblance to those of the Greek
authors, who considered it degrading the science to apply geometry to

surveying. The character of his geometry is not Grecian, but de-

cidedly Egyptian. This fact is the more surprising when we consider

that Heron demonstrated his familiarity with Euclid by writing a com-
mentary on the Elements. Some of Heron's formulas point to an old

Egyptian origin. Thus, besides the above exact formula for the area

of a triangle in terms of its sides, Heron gives the formula -^ ^X -,
2 2

which bears a striking likeness to the formula — ^X^ ^ for
2 2

finding the area of a quadrangle, found in the Edfu inscriptions.

There are, moreover, points of resemblance between Heron's writings

and the ancient Ahmes papyrus. Thus Ahmes used unit-fractions

exclusively (except the fraction |-) ; Heron uses them oftener than other

fractions. Like Ahmes and the priests at Edfu, Heron divides com-
plicated figures into simpler ones by drawing auxiliary lines; like them,
he shows, throughout, a special fondness for the isosceles trapezoid.

The writings of Heron satisfied a practical want, and for that reason
were borrowed extensively by other peoples. We find traces of them
in Rome, in the Occident during the Middle Ages, and even in India.

The works attributed to Heron, including the newly discovered
Metrica published in 1903, have been edited by J. H. Heiberg,
H. Schone and W. Schmidt.

Geminus of Rhodes (about 70 b. c.) published an astronomical work
still extant. He wrote also a book, now lost, on the Arrangement oj

Mathematics, which contained many valuable notices of the early

history of Greek mathematics. Proclus and Eutocius quote it fre-

quently. Theodosius is the author of a book of little merit on the
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geometry of the sphere. Investigations due to P. Tannery and A. A.
Bjornbo ^ seem to indicate that the mathematician Theodosius -was
not Theodosius of Tripohs, as formerly supposed, but was a resident
of Bithynia and contemporary of Hipparchus. Dionysodorus of
Amisus in Pontus applied the intersection of a parabola and hyperbola
to the solution of a problem which Archimedes, in his Sphere and
Cylinder, had left incomplete. The problem is "to cut a sphere so
that its segments shall be in a given ratio."

We have now sketched the progress of geometry down to the time
of Christ. Unfortunately, very little is known of the history of geom-
etry between the time of ApoUonius and the beginning of the Christian
era. The names of quite a number of geometers have been mentioned,
but very few of their works are now extant. It is certain, however,
that there were no mathematicians of real genius from ApoUonius to
Ptolemy, excepting Hipparchus and perhaps Heron.

The Second Alexandrian School

The close of the dynasty of the Lagides which ruled Egypt from the
time of Ptolemy Soter, the builder of Alexandria, for 300 years; the
absorption of Egypt into the Roman Empire; the closer commercial
relations between peoples of the East and of the West; the gradual
decline of paganism and spread of Christianity,—these events were
of far-reaching influence on the progress of the sciences, which then
had their home in Alexandria. Alexandria became a commercial and
intellectual emporium. Traders of all nations met in her busy streets,

and in her magnificent Library, museums, lecture-halls, scholars from
the East mingled with those of the West; Greeks began to study older

literatures and to compare them with their own. In consequence of

this interchange of ideas the Greek philosophy became fused with
Oriental philosophy. Neo-Pythagoreanism and Neo-Platonism were
the names of the modified systems. These stood, for a time, in op-

position to Christianity. The study of Platonism and Pythagorean
mysticism led to the revival of the theory of numbers. Perhaps the

dispersion of the Jews and their introduction to Greek learning helped

in bringing about this revival. The theory of numbers became a
favorite study. This new line of mathematical inquiry ushered in

what we may call a new school. There is no doubt that even now
geometry continued to be one of the most important studies in the

Alexandrian course. This Second Alexandrian School may be said to

begin with the Christian era. It was made famous by the names of

Claudius Ptolemaeus, Diophantus, Pappus, Theon of Smyrna, Theon
of Alexandria, lamblichus, Porphyrius, and others.

By the side of these we may place Serenus of Antinoeia, as having

'Axel Anthon Bjornbo (1874-1911) of Copenhagen was a historian of mathe-

matics. See BibUotheca mathemalica, 3 S., Vol. 12, 1911-12, pp. 337-344-
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been connected more or less with this new school. He wrote on sec-

tions of the cone and cylinder, in two books, one of which treated

only of the triangular section of the cone through the apex. He solved

the problem, "given a cone (cylinder), to find a cylinder (cone), so

that the section of both by the same plane gives similar ellipses." Of

particular interest is the following theorem, which is the foundation

of the modern theory of harmonics: If from D we draw DF, cutting

the triangle ABC, and choose H on it, so that DE : DF=EH : HP,
and if we draw the hne AH, then every transversal through D, such

as DG, will be divided by AH so that DK : DG= KJ : JG. Menelaus
of Alexandria (about 98 A. D.) was the author of Spharica, a work

extant in Hebrew and Arabic, but not in Greek. In it he proves the

theorems on the congruence of

spherical triangles, and describes

their properties in much the same
way as Euclid treats plane tri-

-D angles. In it are also found the

theorems that the sum of the three

sides of a spherical triangle is less

than a great circle, and that the

sum of the three angles exceeds two right angles. Celebrated are two
theorems of his on plane and spherical triangles. The one on plane tri-

angles is that, " if the three sides be cut by a straight line, the product of

the three segments which have no common extremity is equal to the

product of the other three." L. N. M. Carnot makes this proposition,

known as the "lemma of Menelaus," the base of his theory of trans-

versals. The corresponding theorem for spherical triangles, the so-

called "regula sex quantitatum," is obtained from the above by
reading "chords of three segments doubled," in place of "three seg-

ments."

Claudius Ptolemy, a celebrated astronomer, was a native of Eg5q3t.

Nothing is known of his personal history except that he flourished in

Alexandria in 139 a. d. and that he made the earliest astronomical

observations recorded in his works, in 125 A. d., the latest in 151 A. d.

The chief of his works are the Syniaxis Maihe?natica (or the Almagest,

as the Arabs call it) and the Geographica, both of which are extant.

The former work is based partly on his own researches, but mainly
on those of Hipparchus. Ptolemy seems to have been not so much of

an independent investigator, as a corrector and improver of the work
of his great predecessors. The Almagest 1 forms the foundation of

all astronomical science down to N. Copernicus. The fundamental
idea of his system, the "Ptolemaic System," is that the earth is in the

centre of the universe, and that the sun and planets revolve around
the earth. Ptolemy did considerable for mathematics. He created,

' On the importance of the Almagest in the history of astronomy, consult P.

Tannery, Recherohes siir I'hisloirc de Vaslronomie, Paris, 1893.
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for astronomical use, a trigonometry remarkably perfect in form. The
foundation of this science was laid by the illustrious Hipparchus.
The Almagest is in 13 books. Chapter 9 of the first book shows how

to calculate tables of chords. The circle is divided into 360 degrees,

each of which is halved. The diameter is divided into 120 divisions;

each of these into 60 parts, which are again subdivided into 60 smaller

parts. In Latin, these parts were called partes minutce primcz and
partes minutm secundce. Hence our names, "minutes" and "seconds."
The sexagesimal method of dividing the circle is of Babylonian origin,

and was known to Geminus and Hipparchus. But Ptolemy's method
of calculating chords seems original with him. He first proved the

proposition, now appended to Euclid VI {D), that "the rectangle

contained by the diagonals of a quadrilateral figure inscribed in a
circle is equal to both the rectangles contained by its opposite sides."

He then shows how to find from the chords of two arcs the chords of

their sum and difference, and from the chord of any arc that of its

half. These theorems he applied to the calculation of his tables of

chords. The proofs of these theorems are very pretty. Ptolemy's
construction of sides of a regular inscribed pentagon and decagon was
given later by C. Clavius and L. Mascheroni, and now is used much
by engineers. Let the radius BD be 1. to ^C,
DE=EC. Make EF=EB, then BF is the side of

the pentagon and DF is the side of the decagon.

Another chapter of the first book in the Alma-
gest is devoted to trigonometry, and to spherical

trigonometry in particular. Ptolemy proved the

"lemma of Menelaus," and also the "regula sex quantitatum."
Upon these propositions he built up his trigonometry. In trigono-

metric computations, the Greeks did not use, as did the Hindus, half

the chord of twice the arc (the "sine"); the Greeks used instead

the whole chord of double the arc. Only in graphic constructions,

referred to again later, did Ptolemy and his predecessors use half the

chord of double the arc. The fundamental theorem of plane trigo-

nometry, that two sides of a triangle are to each other as the chords

of double the arcs measuring the angles opposite the two sides, was
not stated explicitly by Ptolemy, but was contained implicitly in other

theorems. More complete are the propositions in spherical trigo-

nometry.

The fact that trigonometry was cultivated not for its own sake, but

to aid astronomical inquiry, explains the rather startling fact that

spherical trigonometry came to exist in a developed state earlier than

plane trigonometry.

The remaining books of the Almagest are on astronomy. Ptolemy
has written other works which have little or no bearing on mathe-

matics, except one on geometry. Extracts from this book, made by
Proclus, indicate that Ptolemy did not regard the parallel-axiom of
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Euclid as self-evident, and that Ptolemy was the first of the long line

of geometers from ancient time down to our own who toiled in the vain

attempt to prove it. The untenable part of his demonstration is the

assertion that, in case of parallelism, the sum of the interior angles on
one side of a transversal must be the same as their sum on the other

side of the transversal. Before Ptolemy an attempt to improve the

theory of parallels was made by Posidonius (first cent. b. c.) who de-

fined parallel lines as lines that are coplanar and equidistant. From
an Arabic writer, Al-Nirizi (ninth cent.) it appears that Simplicius

brought forward a proof of the sth postulate, based upon this def-

inition, and due to his friend Aganis (Geminus?).^

In the making of maps of the earth's surface and of the celestial

sphere, Ptolemy (following Hipparchus) used stereographic projection.

The eye is imagined to be at one of the poles, the projection being

thrown upon the equatorial plane. He devised an instrument, a form
of astrolabe planisphere, which is a stereographic projection of the

celestial sphere. 2 Ptolemy wrote a monograph on the analemma which
was a figure involving orthographic projections of the celestial sphere
upon three mutually perpendicular planes (the horizontal, meridian
and vertical circles) . The analemma was used in determining positions

of the sun, the rising and setting of the stars. The procedure was
probably known to Hipparchus and the older astronomers. It fur-

nished a graphic method for the solution of spherical triangles and was
used subsequently by the Hindus, the Arabs, and Europeans as late

as the seventeenth century.^

Two prominent mathematicians of this time were Nicomachus and
Theon of Smyrna. Their favorite study was theory of numbers.
The investigations in this science culminated later in the algebra of

Diophantus. But no important geometer appeared after Ptolemy
for 150 years. An occupant of this long gap was Sextus Julius
Africanus, who wrote an unimportant work on geometry applied
to the art of war, entitled Cestes. Another was the sceptic, Sextus
Empiricus (200 a. d.); he endeavored to elucidate Zeno's "Arrow"
by stating another argument equally paradoxical and therefore far
from illuminating: Men never die, for if a man die, it must either
be at a time when he is alive, or at a time when he is not alive;

hence he never dies. Sextus Empiricus advanced also the paradox,
that, when a line rotating in a plane about one of its ends describes
a circle with each of its points, these concentric circles are of un-
equal area, yet each circle must be equal to the neighbouring circle

which it touches.^

1 R. Bonola, Non-EticUdean Geometry, trans, by H. S. Carslaw, Chicago, igi2,
pp. 3-8. Robert Bonola (1875-igii) was professor in Rome.

J^See M. Latham, " The Astrolabe," Am. Math. Monthly, Vol. 24, igiy, p. 162.
^ See A. V. Braunmiihl, Geschichte dcr Trigonomelrie, Leipzig, I, 1900, p. 11.

Alexander von Braunmiihl (1853-1908) was professor at the technical high school
in Munich,
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Pappus, probably born about 340 a. d., in Alexandria, was the
last great mathematician of the Alexandrian school. His genius was
inferior to that of Archimedes, ApoUonius, and Euclid, who flourished
over 500 years earlier. But living, as he did, at a period when interest
in geometry was declining, he towered above his contemporaries "like
the peak of Teneriffa above the Atlantic." He is the author of a
Commentary on the Almagest, a Commentary on Euclid's Elements, a
Commentary on the Analemma of Diodorus,—a writer of whom nothing
is known. All these works are lost. Proclus, probably quoting from
the Commentary on Euclid, says that Pappus objected to the state-

ment that an angle equal to a right angle is always itseH a right
angle.

The only work of Pappus still extant is his Mathematical Collections.

This was originally in eight books, but the first and portions of the
second are now missing. The Mathematical Collections seems to have
been written by Pappus to supply the geometers of his time with a
succinct analysis of the most difficult mathematical works and to

facilitate the study of them by explanatory lemmas. But these

lemmas are selected very freely, and frequently have little or no con-
nection with the subject on hand. However, he gives very accurate
summaries of the works of which he treats. The Mathematical Col-

lections is invaluable to us on account of the rich information it gives

on various treatises by the foremost Greek mathematicians, which
are now lost. Mathematicians of the last century considered it pos-

sible to restore lost work from the resumt by Pappus alone.

We shall now cite the more important of those theorems in the

Mathematical Collections which are supposed to be original with

Pappus. First of all ranks the elegant theorem re-discovered by P.

Guldin, over 1000 years later, that the volume generated by the

revolution of a plane curve which lies wholly on one side of the axis,

equals the area of the curve multiplied by the circumference de-

scribed by its center of gravity. Pappus proved also that the centre

of gravity of a triangle is that of another triangle whose vertices lie

upon the sides of the first and divide its three sides in the same ratio.

In the fourth book are new and brilliant propositions on the quadra-

trix which indicate an intimate acquaintance with curved surfaces.

He generates the quadratrix as follows: Let a spiral line be drawn

upon a right circular cylinder; then the perpendiculars to the axis

of the cylinder drawn from each point of the spiral line form the

surface of a screw. A plane passed through one of these perpendicu-

lars, making any convenient angle with the base of the cylinder, cuts

the screw-surface in a curve, the orthogonal projection of which upon

the base is the quadratrix. A second mode of generation is no less

admirable: If we make the spiral of Archimedes the base of a right

iSee K. Lasswitz, Geschichte der Atomistik, I, Hamburg und Leipzig, 1890,

p. 148.
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cylinder, and imagine a cone of revolution having for its axis the side

of the cylinder passing through the initial point of the spiral, then

this cone cuts the cylinder in a curve of double curvature. The per-

pendiculars to the axis drawn through every point in this curve form
the surface of a screw which Pappus here calls the pledoidal surface.

A plane passed through one of the perpendiculars at any convenient

angle cuts that surface in a curve whose orthogonal projection upon
the plane of the spiral is the required quadratrix. Pappus considers

curves of double curvature still further. He produces a spherical

spiral by a point moving uniformly along the circumference of a

great circle of a sphere, while the great circle itself revolves uniformly

around its diameter. He then finds the area of that portion of the

surface of the sphere determined by the spherical spiral, "a complana-

tion which claims the more lively admiration, if we consider that,

although the entire surface of the sphere was known since Archimedes'

time, to measure portions thereof, such as spherical triangles, was
then and for a long time afterwards an unsolved problem." ^ A
question which was brought into prominence by Descartes and Newton
is the "problem of Pappus." Given several straight lines in a plane,

to find the locus of a point such that when perpendiculars (or, more
generally, straight lines at given angles) are drawn from it to the

given lines, the product of certain ones of them shall be in a given

ratio to the product of the remaining ones. It is worth noticing that

it was Pappus who first found the focus of the parabola and pro-

pounded the theory of the involution of points. He used the directrix

and was the first to put in definite form the definition of the conic

sections as loci of those points whose distances from a fixed point

and from a fixed line are in a constant ratio. He solved the problem
to draw through three points lying in the same straight line, three

straight lines which shall form a triangle inscribed in a given circle.

From the Mathematical Collections many more equally difficult the-

orems might be quoted which are original with Pappus as far as we
know. It ought to be remarked, however, that he has been charged
in three instances with copying theorems without giving due credit,

and that he may have done the same thing in other cases in which
we have no data by which to ascertain the real discoverer.^

About the time of Pappus lived Theon of Alexandria. He brought
out an edition of Euclid's Elements with notes, which he probably
used as a text-book in his classes. His commentary on the Almagest
is valuable for the many historical notices, and especially for the
specimens of Greek arithmetic which it contains. Theon's daughter
Hypatia, a woman celebrated for her beauty and modesty, was the
last Alexandrian teacher of reputation, and is said to have been an

1 M. Cantor, op. cit., Vol. I, 3 Aufl., 1907, p. 451.
2 For a defence of Pappus against these charges, see J. H. Weaver in Bull. Am.

Math. Soc, Vol. 23, 1916, pp. 131-133.
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abler philosopher and mathematician than her father. Her notes on
the works of Diophantus and Apollonius have been lost. Her tragic

death in 415 a. d. is vividly described in Kingsley's Hypatia.
From now on, mathematics ceased to be cultivated in Alexandria.

The leading subject of men's thoughts was Christian theology.
Paganism disappeared, and with it pagan learning. The Neo-Platonic
school at Athens struggled on a century longer. Proclus, Isidorus, and
others kept up the "golden chain of Platonic succession." Proclus,
the successor of Syxianus, at the Athenian school, wrote a commentary
on Euclid's Elements. We possess only that on the first book, which
is valuable for the information it contains on the history of geometry.
Damascius of Damascus, the pupil of Isidorus, is now believed to be
the author of the fifteenth book of Euclid. Another pupil of Isidorus

was Eutocius of Ascalon, the commentator of Apollonius and Archi-

medes. Simplicius wrote a commentary on Aristotle's De Ccelo.

Simplicius reports Zeno as saying: "That which, being added to

another, does not make it greater, and being taken away from another
does not make it less, is nothing." According to this, the denial of

the existence of the infinitesimal goes back to Zeno. This momentous
question presented itself centuries later to Leibniz, who gave different

answers. The report made by Simplicius of the quadratures of Anti-

phon and Hippocrates of Chios is one of the best sources of historical

information on this point.'- In the year 529, Justinian, disapproving

heathen learning, finally closed by imperial edict the schools at

Athens.

As a rule, the geometers of the last 500 years showed a lack of

creative power. They were commentators rather than discoverers.

The principal characteristics of ancient geometry are :

—

(i) A wonderful clearness and definiteness of its concepts and an

almost perfect logical rigor of its conclusions.

(2) A complete want of general principles and methods. Ancient

geometry is decidedly special. Thus the Greeks possessed no general

method of drawing tangents. "The determination of the tangents

to the three conic sections did not furnish any rational assistance for

drawing the tangent to any other new curve, such as the conchoid,

the cissoid, etc." In the demonstration of a theorem, there were, for

the ancient geometers, as many different cases requiring separate

proof as there were different positions for the lines. The greatest

geometers considered it necessary to treat all passible cases inde-

pendently of each other, and to prove each with equal fulness. To
devise methods by which the various cases could all be disposed of

by one stroke, was beyond the power of the ancients. "If we com-

pare a mathematical problem with a huge rock, into the interior of

which we desire to penetrate, then the work of the Greek mathe-

i See F. Rudio in Blbliolheca mathematica, 3 S,, Vol. 3, 1902, pp. 7-62.
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maticians appears to us like that of a vigorous stonecutter who, with

chisel and hammer, begins with indefatigable perseverance, from with-

out, to crumble the rock slowly into fragments; the modern mathe-
matician appears like an excellent miner, who first bores through the

rock some few passages, from which he then bursts it into pieces

with one powerful blast, and brings to light the treasures within." ^

Greek Arithmetic and Algebra

Greek mathematicians were in the habit of discriminating between
the science of numbers and the art of calculation. The former they

called arithmetica, the latter logistica. The drawing of this distinction

between the two was very natural and proper. The difference be-

tween them is as marked as that between theory and practice. Among
the Sophists the art of calculation was a favorite study. Plato, on
the other hand, gave considerable attention to philosophical arith-

metic, but pronounced calculation a vulgar and childish art.

In sketching the history of Greek calculation, we shall first give a
brief account of the Greek mode of counting and of writing numbers.
Like the Egyptians and Eastern nations, the earliest Greeks counted
on their fingers or with pebbles. In case of large numbers, the pebbles

were probably arranged in parallel vertical lines. Pebbles on the

first line represented units, those on the second tens, those on the

third hundreds, and so on. Later, frames came into use, in which
strings or wires took the place of lines. According to tradition,

Pythagoras, who travelled in Egypt and, perhaps, in India, first

introduced this valuable instrument into Greece. The abacus, as it

is called, existed among different peoples and at different times, in

various stages of perfection. An abacus is still employed by the
Chinese under the name of Swan-pan. We possess no specific informa-
tion as to how the Greek abacus looked or how it was used. Boethius
says that the Pythagoreans used with the abacus certain nine signs

called apices, which resembled in form the nine "Arabic numerals."
But the correctness of this assertion is subject to grave doubts.

The oldest Grecian numerical symbols were the so-called Herodianic
signs (after Herodianus, a Byzantine grammarian of about 200 a. d.,

who describes them). These signs occur frequently in Athenian in-

scriptions and are, on that account, now generally called Attic. For
some unknown reason these symbols were afterwards replaced by the
alphabetic numerals, in which the letters of the Greek alphabet were
used, together with three strange and antique letters t„ 9, and TJ),
and the symbol M. This change was decidedly for the worse, for the
old Attic numerals were less burdensome on the memory, inasmuch

1 H. Hankel, Die Entwickehmg der Mathsmalik in den lelzten Jahrhunderten.
Tubingen, 1884, p. 16.
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as they contained fewer symbols and were better adapted to show
forth analogies in numerical operations. The following table shows
the Greek alphabetic numerals and their respective values:

—

a^ySes^iy^t K A, /«, v I o ir 9

^ 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90

p a- T V
<f) X i" '^ "O '" '^ 'V stc.

100 200 300 400 500 600 700 800 900 1000 2000 3000

M M M etc.

10,000 20,000 30,000

It will be noticed that at 1000, the alphabet is begun over again,

but, to prevent confusion, a stroke is now placed before the letter

and generally somewhat below it. A horizontal line drawn over a

number served to distinguish it more readily from words. The co-

efficient for M was sometimes placed before or behind instead of over

the M. Thus 43,678 was written SM,yxorj. It is to be observed that

the Greeks had no zero.

Fractions were denoted by first writing the numerator marked with

an accent, then the denominator marked with two accents and written

twice. Thus, iy'Kd"K9"= ^. In case of fractions having unity for

the numerator, the a' was omitted and the denominator was written

only once. Thus/i8"= -^.

ft

The Greeks had the name epimorion for the ratio -j—. Archytas

proved the theorem that if an epimorion ^ is reduced to its lowest

terms — , then v=/i+i. This theorem is found later in the musical
V

writings of Euclid and of the Roman Boethius. The Euclidean form

of arithmetic, without perhaps the representation of numbers by lines,

existed as early as the time of Archytas.

1

Greek writers seldom refer to calculation with alphabetic numerals.

Addition, subtraction, and even multiplication were probably per-

formed on the abacus. Expert mathematicians may have used the

symbols. Thus Eutocius, a commentator of the sixth century after

Christ, gives a great many multiplications of which the following is

a specimen: ^—
1 P. Tannery in Bihliotheca mathemalica, 3 S., Vol. VT, 1905, p. 228.

2
J. Gow, op. cil., p. 50.
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We judge from fragments in the second book of Pappus that Apol-
lonius proposed an improvement in the Greek method of writing
numbers, but its nature we do not know. Thus we see that the Greeks
never possessed the boon of a clear, comprehensive symbolism. The
honor of giving such to the world was reserved by the irony of fate
for a nameless Indian of an unknown time, and we know not whom to
thank for an invention of such importance to the general progress of

intelligence.!

Passing from the subject of logisHca to that of arithmetica, our at-

tention is first drawn to the science of numbers of Pythagoras. Before
founding his school, Pythagoras studied for many years under the
Egyptian priests and familiarised himself with Egyptian mathematics
and mysticism. If he ever was in Babylon, as some authorities claim,
he may have learned the sexagesimal notation in use there; he may
have picked up considerable knowledge on the theory of proportion,
and may have found a large number of interesting astronomical
observations. Saturated with that speculative spirit then pervading
the Greek mind, he endeavored to discover some principle of homo-
geneity in the universe. Before him, the philosophers of the Ionic
school had sought it in the matter of things; Pythagoras looked for

it in the structure of things. He observed various numerical relations

or analogies between numbers and the phenomena of the universe.

Being convinced that it was in numbers and their relations that he
was to find the foundation to true philosophy, he proceeded to trace

the origin of all things to numbers. Thus he observed that musical
strings of equal length stretched by weights having the proportion of

i-,
-I, |-, produced intervals which were an octave, a fifth, and a fourth.

Harmony, therefore, depends on musical proportion; it is nothing but
a mysterious numerical relation. Where harmony is, there are

numbers. Hence the order and beauty of the universe have their

origin in numbers. There are seven intervals in the musical scale,

and also seven planets crossing the heavens. The same numerical

relations which underlie the former must underlie the latter. But
where numbers are, there is harmony. Hence his spiritual ear dis-

cerned in the planetary motions a wonderful "harmony of the spheres."

The Pythagoreans invested particular numbers with extraordinary

attributes. Thus one is the essence of things; it is an absolute number;
hence the origin of all numbers and so of all things. Four is the most
perfect number, and was in some mystic way conceived to correspond

to the human soul. Philolaus believed that 5 is the cause of color, 6 of

cold, 7 of mind and health and light, 8 of love and friendship. 2 In

Plato's works are evidences of a similar belief in reKgious relations of

numbers. Even Aristotle referred the virtues to numbers.

Enough has been said about these mystic speculations to show
what lively interest in mathematics they must have created and

1
J. Gow, op. cit., p. 63. ^

J. Gow, op. cU., p. 6g.
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maintained. Avenues of mathematical inquiry were opened up by
them which otherwise would probably have remained closed at that

time.

The Pythagoreans classified numbers into odd and even. They
observed that the sum of the series of odd numbers from i to zn+i
was always a complete square, and that by addition of the even num-
bers arises the series 2, 6, 12, 20, in which every number can be de-

composed into two factors differing from each other by unity. Thus,

6=2.3, 12 = 3.4, etc. These latter numbers were considered of

sufficient importance to receive the separate name of heteromecic (not

'yiffT -t- T
)

equilateral). Numbers of the form were called triangular,

because they could always be arranged thus, .•.*/. Numbers which

were equal to the sum of all their possible factors, such as 6, 28, 496,

were called perfect; those exceeding that sum, excessive; and those

which were less, defective. Amicable numbers were those of which
each was the sum of the factors in the other. Much attention was
paid by the Pythagoreans to the subject of proportion. The quan-

tities a, b, c, d were said to be in arithmetical proportion when a— b=
c— d; in geometrical proportion, when a:b = c:d; in harmonic propor-

tion, when a—b:b—c=a:c. It is probable that the Pythagoreans

were also familiar with the musical proportion a: = --.b.
^ '^ 2 a+b

lamblichus says that Pythagoras introduced it from Babylon.

In connection with arithmetic, Pythagoras made extensive investi-

gations into geometry. He believed that an arithmetical fact had
its analogue in geometry, and vice versa. In connection with his

theorem on the right triangle he devised a rule by which integral

numbers could be found, such that the sum of the squares of two of

them equalled the square of the third. Thus, take for one side an odd

^2«-(-l)2—

I

number (2M-t-i); then =2n^-{-2n=ihe other side, and

(2»2-)- 2n-\- 1) = hypotenuse. If 2w+ 1 = 9, then the other two numbers
are 40 and 41. But this rule only applies to cases in which the hy-
potenuse differs from one of the sides by i. In the study of the right

triangle there doubtless arose questions of puzzling subtlety. Thus,
given a number equal to the side of an isosceles right triangle, to find

the number which the hypotenuse is equal to. The side may have

been taken equal to i, 2, I, |-, or any other number, yet in every in-

stance all efforts to find a number exactly equal to the hypotenuse
must have remained fruitless. The JDroblem may have been attacked
again and again, until finally "some rare genius, to whom it is granted,

during some happy moments, to soar with eagle's flight above the

level of human thinking," grasped the happy thought that this prob-
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' lem cannot be solved. In some such manner probably arose the theory
• of irrational quantities, which is attributed by Eudemus to the Pytha-
goreans. It was indeed a thought of extraordinary boldness, to as-

sume that straight lines could exist, differing from one another not
Only in length,—that is, in quantity,—but also in a quality, which,
though real, was absolutely invisible.i Need we wonder that the

Pythagoreans saw in irrationals a deep mystery, a symbol of the un-
speakable? We are told that the one who first divulged the theory of

irrationals, which the Pythagoreans kept secret, perished in conse-

quence in a shipwreck, "for the unspeakable and invisible should
• always be kept secret." Its discovery is ascribed to Pythagoras, but

I

we must remember that all important Pythagorean discoveries were,

I according to Pythagorean custom, referred back to him. The first

xincommensiurable ratio known seems to have been that of the side

of a square to its diagonal, as i :-\/2. Theodorus of Cyrene added to

this the fact that the sides of squares represented in length by 'Vs,

VS, etc., up to V 17, and Theaetetus, that the sides of any square,

represented by a surd, are incommensurable with the linear unit.

Euclid (about 300 b. c), in his Elements, X, 9, generalised still further:

Two magnitudes whose squares are (or are not) to one another as a

square number to a square number are commensurable (or incom-

mensurable), and conversely. In the tenth book, he treats of incom-

mensurable quantities at length. He investigates every possible

variety of lines which can be represented by Vva±\/^, a and b

representing two commensurable lines, and obtains 25 species. Every
individual of every species is incommensurable with all the individuals

of every other species. "This book," says De Morgan, "has a com-

pleteness which none of the others (not even the fifth) can boast of;

and we could almost suspect that Euclid, having arranged his ma-
terials in his own mind, and having completely elaborated the tenth

book, wrote the preceding books after it, and did not live to revise

them thoroughly." ^ The theory of incommensurables remained

where EucHd left it, till the fifteenth century.

If it be recalled that the early Egyptians had some familiarity with

quadratic equations, it is not surprising if similar knowledge is dis-

played by Greek writers in the time of Pythagoras. Hippocrates, in

the fifth century b. c, when working on the areas of lunes, assumes

the geometrical equivalent of the solution of the quadratic equation

x'^-\-'\/\ ax=a'^. The complete geometrical solution was given by
Euclid in his Elements, VI, 27-29. He solves certain types of quad-

ratic equations geometrically in Book II, 5, 5, 11.

1 H. Hankel, Zur Geschickte der Malhemalik in Millelalter und AUerthum, 1874,

p. 102.
2 A. De Morgan, "Eucleides" in Smith's Dictionary of Greek and Roman Biog.

and Myth.
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Euclid devotes the seventh, eighth, and ninth books of his Elements

to arithmetic. Exactly how much contained in these books is Euclid's

own invention, and how much is borrowed from his predecessors, we
have no means of knowing. Without doubt, much is original with

Euclid. The seventh book begins with twenty-one definitions. All

except that for "prime" numbers are known to have been given by
the Pythagoreans. Next follows a process for finding the G. C. D.

of two or more numbers. The eighth book deals with numbers in con-

tinued proportion, and with the mutual relations of squares, cubes,

and plane numbers. Thus, XXII, if three numbers are in continued

proportion, and the first is a square, so is the third. In the ninth book,

the same subject is continued. It contains the proposition that the

number of primes is greater than any given number.

After the death of Euclid, the theory of numbers remained almost

stationary for 400 years. Geometry monopolised the attention of all

Greek mathematicians. Only two are known to have done work in

arithmetic worthy of mention. Eratosthenes (2 75-194 B.C.) invented

a "sieve" for finding prime numbers. All composite numbers are

"sifted" out in the following manner: Write down the odd numbers
from 3 up, in succession. By striking out every third number after

the 3, we remove all multiples of 3. By striking out every fifth num-
ber after the 5, we remove all multiples of 5. In this way, by rejecting

multiples of 7, 11, 13, etc., we have left prime numbers only. Hyp-
sicles (between 200 and 100 b. c.) worked at the subjects of polygonal

numbers and arithmetical progressions, which Euclid entirely neg-

lected. In his work on "risings of the stars," he showed (i) that in

an arithmetical series of 2« terms, the sum of the last n terms exceeds

the sum of the first w by a multiple of n'^; (2) that in such a series of

2n-\- 1 terms, the sum of the series is the number of terms multiplied

by the middle term; (3) that in such a series of 2n terms, the sum is

half the number of terms multiplied by the two middle terms. "^

For two centuries after the time of Hypsicles, arithmetic disappears

from history. It is brought to light again about 100 a. d. by Ni-
comachus, a Neo-Pythagorean, who inaugurated the final era of Greek
mathematics. From now on, arithmetic was a favorite study, while

geometry was neglected. Nicomachus wrote a work entitled In-
troductio Arithmetica, which was very famous in its day. The great

number of commentators it has received vouch for its popularity.

Boethius translated it into Latin. Lucian could pay no higher com-
pliment to a calculator than this: "You reckon like Nicomachus of

Gerasa." The Introductio Arithmetica was the first exhaustive work
in which arithmetic was treated quite independently of geometry.

Instead of drawing lines, like Euclid, he illustrates things by real

numbers. To be sure, in his book the old geometrical nomenclature is

retained, but the method is inductive instead of deductive. "Its sole

'
J. Gow, op. cit., p. Sy.
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business is classification, and all its classes are derived from, and
exhibited by_, actual numbers." The work contains few results that
are really original. We mention one important proposition which is

probably the author's own. He states that cubical numbers are al-

ways equal to the sum of successive odd numbers. Thus, &=2^=
3+5) 27= 33=7+9+11, 64= 43=13+15+17+19, and so on. This
theorem was used later for finding the sum of the cubical numbers
themselves. Theon of Smyrna is the author of a treatise on " the
mathematical rules necessary for the study of Plato." The work is

ill arranged and of little merit. Of interest is the theorem, that every
square number, or that number minus i, is divisible by 3 or 4 or both.
A remarkable discovery is a proposition given by lamblichus in his

treatise on Pythagorean philosophy. It is founded on the observation
that the Pythagoreans called i, 10, 100, 1000, units of the first, second,
third, fourth "course" respectively. The theorem is this: If we add
any three consecutive numbers, of which the highest is divisible by 3,

then add the digits of that sum, then, again, the digits of that sum,
and so on, the final sum will be 6. Thus, 61+62+63= 186, 1+8+6 =
IS) 1+5= 6. This discovery was the more remarkable, because the

ordinary Greek numerical symbolism was much less likely to suggest

any, such property of numbers than our "Arabic" notation would
have been.

Hippolytus, who appears to have been bishop at Portus Romae in

Italy in the early part of the third century, must be mentioned for the

giving of "proofs" by casting out the 9's and the 7's.

The works of Nicomachus, Theon of ^Smyrna, Thymaridas, and
others contain at times investigations of subjects which are really

algebraic in their nature. Thymaridas in one place uses the Greek,

word meaning "unknown quantity" in a way which would lead one

to believe that algebra was not far distant. Of interest in tracing the

invention of algebra are the arithmetical epigrams in the Palatine

Anthology, which contain about fifty problems leading to linear equa-

tions. Before the introduction of algebra these problems were pro-

pounded as puzzles. A riddle attributed to Euclid and contained in

the Anthology is to this effect: A mule and a donkey were walking

along, laden with corn. The mule says to the donkey, "If you gave

me one measure, I should carry twice as much as you. If I gave you
one, we should both carry equal burdens. Tell me their burdens, O
most learned master of geometry." 1

It will be allowed, says Gow, that this problem, if authentic, was

not beyond Euclid, and the appeal to geometry smacks of antiquity.

A far more difficult puzzle was the famous "cattle-problem," which

Archimedes propounded to the Alexandrian mathematicians. The
problem is indeterminate, for from only seven equations, eight un-

known quantities in integral numbers are to be found. It may be
"^

J. Gow, op. cit., p. 99.
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stated thus: The sun had a herd of bulls and cows, of different colors.

(i) Of Bulls, the white {W) were, in number, i^+^) of the blue {B)

and yellow (F): the B were (^+1.) of the Y and piebald (P): the P
were (^+4) of the W and Y. (2) Of Cows, which had the same colors

{w, h, y, p),

w=(i+i) {B+h): &=(Hi) (P+^):^=(i + |-)
(F+y):y=(|+i).

Find the number of bulls and cows.^ This leads to high numbers,

but, to add to its complexity, the conditions are superadded that

W-|-B = a square, and P+Y=a triangular number, leading to an in-

determinate equation of the second degree. Another problem in the

Anthology is quite familiar to school-boys: "Of four pipes, one fills the

cistern in one day, the next in two days, the third in three days, the

fourth in four days: if all run together, how soon will they iill the

cistern?" A great many of these problems, puzzling to an arith-

metician, would have been solved easily by an algebraist. They be-

came very popular about the time of Diophantus, and doubtless acted

as a powerful stimulus on his mind.

Diophantus was one of the last and most fertile mathematicians of

the second Alexandrian school. He flourished about 250 a. d. His

age was eighty-four, as is known from an epitaph to this effect: Dio-

phantus passed i of his life in childhood, ~ in youth, and \ more as

a bachelor; five years after his marriage was bom a son who died four

years before his father, at half his father's age. The place of nativity

and parentage of Diophantus are unknown. If his works were not

written in Greek, no one would think for a moment that they were
the product of Greek mind. There is nothing in his works that

reminds us of the classic period of Greek mathematics. His were al-

most entirely new ideas on a new subject. In the circle of Greek
mathematicians he stands alone in his specialty. Except for him,

we should be constrained to say that among the Greeks algebra was
almost an unknown science.

Of his works we have lost the Porisms, but possess a fragment of

Polygonal Numbers, and seven books of his great work on Arithmetica,

said to have been written in 13 books. Recent editions of the Arith-

metica were brought out by the indefatigable historians, P. Tannery
and T. L. Heath, and by G. Wertheim.

If we except the Ahmes papyrus, which contains the first sugges-

tions of algebraic notation, and of the solution of equations, then his

Arithmetica is the earliest treatise on algebra now extant. In this work
is introduced the idea of an algebraic equation expressed in algebraic

symbols. His treatment is purely analytical and completely divorced

from geometrical methods. He states that "a number to be sub-

'
J. Gow, op. cit., p. 99.
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tracted, multiplied by a number to be subtracted, gives a number to

be added." This is applied to the multiplication of differences, such
as (x—i) {x—2). It must be remarked, that Diophantus had no
notion whatever of negative numbers standing by themselves. All

he knew were differences, such as {2X— 10), in which 2x could not be
smaller than 10 without leading to an absurdity. He appears to be
the first who could perform such operations as (x—i)x(x— 2) without
reference to geometry. Such identities as (a +6)2 =a'^+ lab +b^, which
with Euclid appear in the elevated rank of geometric theorems, are

with Diophantus the simplest consequences of the algebraic laws of

operation. His sign for subtraction was 1^, for equality i. For un-
known quantities he had only one symbol, s. He had no sign for

addition except juxtaposition. Diophantus used but few symbols,
and sometimes ignored even these by describing an operation in words
when the symbol would have answered just as well.

In the solution of simultaneous equations Diophantus adroitly

managed with only one symbol for the unknown quantities and ar-

rived at answers, most commonly, by the method of tentative assump-
tion, which consists in assigning to some of the unknown quantities

preliminary values, that satisfy only one or two of the conditions.

These values lead to expressions palpably wrong, but which generally

suggest some stratagem by which values can be secured satisfying

all the conditions of the problem.

Diophantus also solved determinate equations of the second degree.

Such equations were solved geometrically by Euclid and Hippocrates.

Algebraic solutions appear to have been found by Heron of Alexandria,

who gives 8| as an approximate answer to the equation i44a;(i4— x) =

6720. In the Geometry, doubtfully attributed to Heron, the solution of

the equation ^a;2-j--y-x=2i2 is practically stated in the form x =

^ ^—^ -. Diophantus nowhere goes through with the

whole process of solving quadratic equations; he merely states the

result. Thus, "?>^'^-\-'jx = '], whence x is found =i." From partial

explanations found here and there it appears that the quadratic equa-

tion was so written that all terms were positive. Hence, from the point

of view of Diophantus, there were three cases of equations with a

positive root: ax'^-[-bx=c, ax^=bx+c, ax^+c=bx, each case requiring

a rule slightly different from the other two. Notice he gives only one

root. His failure to observe that a quadratic equation has two roots,

even when both roots are positive, rather surprises us. It must be

remembered, however, that this same inability to perceive more than

one out of the several solutions to which a problem may point is com-

mon to all Greek mathematicians. Anothfer point to be observed

is that he never accepts as an answer a quantity which is negative

or irrational.
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Diophantus devotes only the first book of his Arilhmetica to the

solution of determinate equations. The remaining books extant

treat mainly of indeterminate quadratic equations of the form Ax^ +
Bx+C =y^, or of two simultaneous equations of the same form. He
considers several but not all the possible cases which may arise in

these equations. The opinion of Nesselmann on the"method of Dio-

phantus, as stated by Gow, is as follows: " (i) Indeterminate equations

of the second degree are treated completely only when the quadratic

or the absolute term is wanting: his solution of the equations Ax^ +
C =y^ and Ax^+Bx+C =y'^ is in many respects cramped. (2) For
the ' double equation ' of the second degree he has a definite rule only

when the quadratic term is wanting in both expressions: even then

his solution is not general. More complicated expressions occur only

under specially favourable circumstances." Thus, he solves Bx +C^
=y^,Bix+C{^=yiK
The extraordinary ability of Diophantus lies rather in another di-

rection, namely, in his wonderful ingenuity to reduce all sorts of

equations to particular forms which he knows how to solve. Very
great is the variety of problems considered. The 130 problems found
in the great work of Diophantus contain over 50 different classes of

problems, which are strung together without any attempt at classi-

fication. But still more multifarious than the problems are the solu-

tions. General methods are almost unknown to Dipohantus. Each
problem has its own distinct method, which is often useless for the

most closely related problems. "It is, therefore, difficult for a modern,
after studying 100 Diophantine solutions, to solve the loist." This
statement, due to Hankel, is somewhat overdrawn, as is shown by
Heath.i

That which robs his work of much of its scientific value is the

fact that he always feels satisfied with one solution, though his equa-
tion may admit of an indefinite number of values. Another great

defect is the absence of general methods. Modern mathematicians,
such as L. Euler, J. Lagrange, K. F. Gauss, had to begin the study of

indeterminate analysis anew and received no direct aid from Dio-
phantus in the formulation of methods. In spite of these defects

we cannot fail to admire the work for the wonderful ingenuity ex-

hibited therein in the solution of particular equations.

' T. L. Heath, Diophantus of Alexandria, 2 Ed., Cambridge, 1910, pp. 54-97.



THE ROMANS

Nowhere is the contrast between the Greek and Roman minds
shown forth more distinctly than in their attitude toward the mathe-
matical science. The sway of the Greek was a flowering time for

mathematics, but that of the Roman a period of sterility. In philos-

ophy, poetry, and art the Roman was an imitator. But in mathe-
matics he did not even rise to the desire for imitation. The mathe-
matical fruits of Greek genius lay before him untasted. In him a
science which had no direct bearing on practical hfe could awake no
interest. As a consequence, not only the higher geometry of Archi-
medes and ApoUonius, but even the Elements of Euclid, were neglected.

What little mathematics the Romans possessed did not come altogether

from the Greeks, but came in part from more ancient sources. Exactly
where and how some of it originated is a matter of doubt. It seems
most probable that the "Roman notation," as well as the early

practical geometry of the Romans, came from the old Etruscans,

who, at the earliest period to which our knowledge of them extends,

inhabited the district between the Arno and Tiber.

Livy tells us that the Etruscans were in the habit of representing

the number of years elapsed, by driving yearly a nail into the sanc-

tuary of Minerva, and that the Romans continued this practice. A
less primitive mode of designating numbers, presumably of Etruscan

origin, was a notation resembhng the present "Roman notation."

This system is noteworthy from the fact that a principle is involved

in it which is rarely met with in others, namely, the principle of sub-

traction. If a letter be placed before another of greater value, its

value is not to be added to, but subtracted from, that of the greater.

In the designation of large numbers a horizontal bar placed over a

letter was made to increase its value one thousand fold. In fractions

the Romans used the duodecimal system.

Of arithmetical calculations, the Romans employed three different

kinds: Reckoning on the fingers, upon the abacus, and by tables pre-

pared for the purpose.! Finger-symbolism was known as early as the

time of King Numa, for he had erected, says Pliny, a statue of the

double-faced Janus, of which the fingers indicated 365 (355?), the

number of days in a year. Many other passages from Roman authors

point out the use of the fingers as aids to calculation. In fact, a finger-

symbolism of practically the same form was in use not only in Rome,
but also in Greece and throughout the East, certainly as early as the

beginning of the Christian era, and continued to be used in Europe

' M. Cantor, op. cit., Vol. I, 3 Aufl., 1907, p. 526.
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during the Middle Ages. We possess no knowledge as to where or when
it was invented. The second mode of calculation, by the abacus, was

a subject of elementary instruction in Rome. Passages in Roman
writers indicate that the kind of abacus most commonly used was

covered with dust and then divided into columns by drawing straight

lines. Each column was supplied with pebbles (calcuU, whence " cal-

culare" and "calculate") which served for calculation.

The Romans used also another kind of abacus, consisting of a

metallic plate having grooves with movable buttons. By its use all

integers between i and 9,999,999, as well as some fractions, could be

represented. In the two adjoining figures ^ the lines represent grooves

d) o d) (D d) (

if c X T c X I
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and the circles buttons. The Roman numerals indicate the value of

each button in the corresponding groove below, the button in the

shorter groove above having a fivefold value. Thus If =1,000,000;

hence each button in the long left-hand groove, when in use, stands

for 1,000,000, and the button in the short upper groove stands for

5,000,000. The same holds for the other grooves labelled by Roman
numerals. The eighth long groove from the left (having 5 buttons)

represents duodecimal fractions, each button indicating ^, while the

button above the dot means -^. In the ninth column the upper

button represents J^, the middle Jg-, and two lower each ^. Our
first figure represents the positions of the buttons before the operation

begins; our second figure stands for the number 852 -i ^. The eye

has here to distinguish the buttons in use and those left idle. Those
counted are one button above c (=500), and three buttons below

c ( =300) ; one button above x ( = 50) ; two buttons below I ( = 2) ; four

buttons indicating duodecimals ( = ^) ; and the button for ^.
Suppose now that 10,318 | |- J^g. is to be added to 852 -| ^. The

operator could begin with the highest units, or the lowest units, as he
pleased. Naturally the hardest part is the addition of the fractions.

1 G. Friedlein, Die ZaUzeichen und das elementare Rechnen der Griechen mid Romer,
Erlangen, 1869, Fig. 21. Gottfried Friedlein (1828-1875) was "Rektor der Kgl.
Studienanstalt zu Hof" in Bavaria.
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In this case the button for ^^, the button above the dot and three

buttons below the dot were used to indicate the sum | ^-^. The addi-

tion of 8 would bring all the buttons above and below i into play,

making 10 units. Hence, move them all back and move up one button
in the groove below x. Add 10 by moving up another of the buttons
below x; add 300 to 800 by moving back all buttons above and below
c, except one button below, and moving up one button below 1; add
10,000 by moving up one button below x. In subtraction the operation
was similar.

Multiplication could be carried out in several ways. In case of

38 2^ times 25 -^, the abacus may have shown successively the follow-

ing values: 600 (=30.20), 760 ( =6oo-f20.8), 770 (=760-1-^.20),

77oi^ (=770+^ .-20), 920^ (=77o|«+3o,5), 96o|» (=92o||+
8.5), 963 i (=9601^-1-^5), 963!^ (=963^+^-5), 973 i^
(^=963 i ^+i-3o), 976 ^ A (=973 I Tr+8 4), 976 ^ ^ (=976

T2""2T
j

"2 --j)' 976 ^ 2-4 T2" ( =976 ^ Tl'^'S-'n'-^
In division the abacus was used to represent the remainder resulting

from the subtraction from the dividend of the divisor or of a con-
venient multiple of the divisor. The process was compUcated and
difficult. These methods of abacal computation show clearly how
multiplication or division can be carried out by a series of successive

additions or subtractions. In this connection we suspect that recourse

was had to mental operations and to the multipHcation table. Pos-
sibly finger-multipHcation may also have been used. But the multi-

plication of large numbers must, by either method, have been beyond
the power of the ordinary arithmetician. To obviate this difficulty,

the arithmetical tables mentioned above were used, from which the

desired products could be copied at once. Tables of this kind were
prepared by Victorius of Aquitania. His tables contain a pecuUar

notation for fractions, which continued in use throughout the Middle
Ages. Victorius is best known for his canon paschalis, a rule for find-

ing the correct date for Easter, which he pubHshed in 457 a. d.

Payments of interest and problems in interest were very old among
the Romans. The Roman laws of inheritance gave rise to numerous
arithmetical examples. Especially unique is the following: A dying

man wills that, if his wife, being with child, gives birth to a son, the

son shall receive |- and she ^ of his estates; but if a daughter is bom,

she shall receive |- and his wife |^. It happens that twins are born, a

boy and a girl. How shall the estates be divided so as to satisfy the

will? The celebrated Roman jurist, Salvianus Julianus, decided that

the estates shall be divided into seven equal parts of which the son

receives four, the wife two, the daughter one.

We next consider Roman geometry. He who expects to find in

' Friedlein, op. cit., p. 89.
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Rome a science of geometry, with definitions, axioms, theorems, and

proofs arranged in logical order, will be disappointed. The only

geometry known was a practical geometry, which, like the old Egyp-

tian, consisted only of empirical rules. This practical geometry was

employed in surveying. Treatises thereon have come down to us,

compiled by the Roman surveyors, called agrimensores or gromatici.

One would naturally expect rules to be clearly formulated. But no;

they are left to be abstracted by the reader from a mass of numerical

examples. "The total impression is as though the Roman gromatic

were thousands of years older than Greek geometry, and as though

a deluge were lying between the two." Some of their rules were prob-

ably inherited from the Etruscans, but others are identical with those

of Heron. Among the latter is that for finding the area of a triangle

from its sides and the approximate formula, |-|-a^, for the area of

equilateral triangles {a being one of the sides). But the latter area

was also calculated by the formulas Ka^+o) and \a'^, the first of

which was unknown to Heron. Probably the expression |a2 was de-

rived from the Egyptian formula . for the determination of
2 2

the surface of a quadrilateral. This Egyptian formula was used by
the Romans for finding the area, not only of rectangles, but of any
quadrilaterals whatever. Indeed, the gromatici considered it even

sufficiently accurate to determine the areas of cities, laid out irregu-

larly, simply by measuring their circumferences. i Whatever Egyptian
geometry the Romans possessed was transplanted across the Mediter-

ranean at the time of Julius CcBsar, who ordered a survey of the whole
empire to secure an equitable mode of taxation. Caesar also reformed

the calendar, and, for that purpose, drew from Egyptian learning.

He secured the services of the Alexandrian astronomer, Sosigenes.

Two Roman philosophical writers deserve our attention. The
philosophical poet, Titus Lucretius (96P-55 B. c), in his De reruni

natura, entertains conceptions of an infinite multitude and of an in-

finite magnitude which accord with the modern definitions of those

terms as being not variables but constants. However, the Lucretian

infinites are not composed of abstract things, but of material particles.

His infinite multitude is of the denumerable variety; he made use

of the whole-part property of infinite multitudes. ^

Cognate topics are discussed several centuries later by the cele-

brated father of the Latin church, St. Augustine (354-430 a. d.), in

his references to Zeno of Elea. In a dialogue on the question, whether
or not the mind of man moves when the body moves, and travels with
the body, he is led to a definition of motion, in which he displays some
levity. It has been said of scholasticism that it has no sense of humor.

' H. Hankel, op. cit., p. 297.
' C. J. Keyser in Bull. Am. Math. Soc, Vol. 24, 1918, p. 26S, 321.
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Hardly does this apply to St. Augustine. He says: "When this dis-
course was concluded, a boy came running from the house to call us
to dinner.

_
I then remarked that this boy compels us not only to

define motion, but to see it before our very eyes. So let us go, and
pass from this place to another; for that is, if I am not mistaken,
nothing else than motion." St. Augustine deserves the credit of
having accepted the existence of the actually infinite and to have
recognized it as being, not a variable, but a constant. He recognized
all finite positive integers as an infinity of that type. On this point
he occupied a radically different position than his forerunner, the
Greek father of the church, Origen of Alexandria. Origen's arguments
against the actually infinite have been pronounced by Georg Cantor
the profoundest ever advanced against the actually infinite.

In the fifth century, the Western Roman Empire was fast falling

to pieces. Three great branches—Spain, Gaul, and the province of

Africa—broke off from the decaying trunk. In 476, the Western
Empire passed away, and the Visigothic chief, Odoacer, became king.

Soon after, Italy was conquered by the Ostrogoths under Theodoric.
It is remarkable that this very period of political humiliation should'
be the one during which Greek science was studied in Italy most
zealously. School-books began to be compiled from the elements of

Greek authors. These compilations are very deficient, but are of

absorbing interest, from the fact that, down to the twelfth century,

they were the only sources of mathematical knowledge in the Occident.

Foremost among these writers is Boethius (died 524). At first he
was a great favorite of King Theodoric, but later, being charged by
envious courtiers with treason, he was imprisoned, and at last decapi-

tated. While in prisonhe wrote On the Consolations of Fhilosophy. As
a mathematician, Boethius was a Brobdingnagian among Roman
Scholars, but a Liliputian by the side of Greek masters. He wrote

an Institutis Arithmetica, which is essentially a translation of the arith-

metic of Nicomachus, and a Geometry in several books. Some of the

most beautiful results of Nicomachus are omitted in Boethius' arith-

metic. The first book on geometry is an extract from Euclid's Ele-

ments, which contains, in addition to definitions, postulates, and
axioms, the theorems in the first three books, without proofs. How
can this omission of proofs be accounted for? It has been argued by
some that Boethius possessed an incomplete Greek copy of the Ele-

ments; by others, that he had Theon's edition before him, and be-

Heved that only the theorems came from Euclid, while the proofs were

supplied by Theon. The second book, as also other books on geometry

attributed to Boethius, teaches, from numerical examples, the men-

suration of plane figures after the fashion of the agrimensores.

A celebrated portion in the geometry of Boethius is that pertaining

to an abacus, which he attributes to the Pythagoreans. A consider-

able improvement on the old abacus is there introduced. Pebbles
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are discarded, and apices (probably small cones) are used. Upon each

of tKese apices is drawn a numeral giving it some value below lo.

The names of these numerals are pure Arabic, or nearly so, but are

added, apparently, by a later hand. The o is not mentioned by
Boethius in the text. These numerals bear striking resemblance to

the Gubar-numerals of the West-Arabs, which are admittedly of

Indian origin. These facts have given rise to an endless controversy.

Some contended that Pythagoras was in India, and from there brought

the nine numerals to Greece, where the Pythagoreans used them
secretly. This hjrpothesis has been generally abandoned, for it is

not certain that Pythagoras or any disciple of his ever was in India,

nor is there any evidence in any Greek author, that the apices were

known to the Greeks, or that numeral signs of any sort were used by
them with the abacus. It is improbable, moreover, that the Indian

signs, from which the apices are derived, are so old as the time of

Pythagoras. A second theory is that the Geometry attributed to

Boethius is a forgery; that it is not older than the tenth, or possibly

the ninth, century, and that the apices are derived from the Arabs.

But there is an Encyclopsedia written by Cassiodorius (died about

585) in which both the arithmetic and geometry of Boethius are men-
tioned. Some doubt exists as to the proper interpretation of this

passage in the Encyclopaedia. At present the weight of evidence is

that the geometry of Boethius, or at least the part mentioning the

numerals, is spurious. 1 A third theory (Woepcke's) is that the

Alexandrians either directly or indirectly obtained the nine numerals
from the Hindus, about the second century a. d., and gave them to

the Romans on the one hand, and to the Western Arabs on the other.

This explanation is the most plausible.

It is worthy of note that Cassiodorius was the first writer to use
the terms "rational" and "irrational" in the sense now current in

arithmetic and algebra. 2

^A good discussion of this so-called "Boethius question," which has been de-
bated for two centuries, is given by D. E. Smith and L. C. Karpinski in their Hindu-
Arabic Numerals, 191 1, Chap. V.

^ Encydopidie des sciences tnathSmaliques, Tome I, Vol. 2, 1907, p. 2. An il-

luminating article on ancient finger-sjonbolism is L. J. Richardson's " Digital
Reckoning Among the Ancients " in the Am. Math. Monthly, Vol 23, 1816,

PP- 7-13-



THE MAYA

The Maya of Central America and Southern Mexico developed
hieroglyphic writing, as found in inscriptions and codices dating ap-

parently from about the beginning of the Christian era, that ranks
"probably as the foremost intellectual achievement of pre-Columbian
times in the New World." Maya number systems and chronology
are remarkable for the extent of their early development. Perhaps
five or six centuries before the Hindus gave a systematic exposition

of their decimal number system with its zero and principle of local

value, the Maya in the flatlands of Central America had evolved

systematically a vigesimal number system employing a zero and the

principle of local value. In the Maya number system found in the

codices the ratio of increase of successive units was not lo, as in the

Hindu system; it was 20 in all positions except the third. That is,

20 units of the lowest order {kins, or days) make one unit of the next

higher order {uinals, or 20 days), 18 uinals make one unit of the third

order (luit, or 360 days), 20 tuns make one unit of the fourth order

(katun, or 7200 days), 20 katuns make one unit of the fifth order

(cycle, or 144,000 days) and finally, 20 cycles make i great cycle of

2,880,000 days. In Maya codices we find symbols for i to 19, ex-

pressed by bars and dots. Each bar stands for 5 units, each dot for

I unit. For instance,

I 2 4 5 7 II 19

The zero is represented by a symbol that looks roughly like a half-

closed eye. In writing 20 the principle of local value enters. It is

expressed by a dot placed over the symbol for zero. The numbers

are written vertically, the lowest order being assigned the lowest

position. Accordingly, 37 was expressed by the symbols for 17 (three

bars and two dots) in the kin place, and one dot representing 20,

placed above 17 in the uinal place. To write 360 the Maya drew

two zeros, one above the other, with one dot higher up, in third place

(1X18x20-1-0-1-0=360). The highest number found in the codices

is in our decimal notation 12,489,781.

A second numeral system is found on Maya inscriptions. It em-

ploys the zero, but not the principle of local value. Special symbols

are employed to designate the different units. It is as if we were to

write 203 as "2 hundreds, o tens, 3 ones." ^

1 For an account of the Maya number-systems and chronology, see S. G. Morley

An IntrodiKlion to the Study of the Maya Hierogliphs, Government Printing Office,

Washington, 1915.
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The Maya had a sacred year of 260 days, an official year of 360
days and a solar year of 365+ days. The fact that 18X20=360
seems to account for the break in the vigesimal system, making r8

(instead of 20) uinals equal to i tun. The lowest common multiple

of 260 and 365, or 18980, was taken by the Maya as the "calendar
round," a period of 52 years, which is "the most important period in

Maya chronology."

We may add here that the number systems of Indian tribes in North
America, while disclosing no use of the zero nor of the principle of

local value, are of interest as exhibiting not only quinary, decimal, and
vigesimal systems, but also ternary, quarternary, and octonary sys-

tems.^

' See W. C. Eells, "Number Systems of the North American Indians" in Amer-
ican Math. Monthly, Vol. 20, 1913, pp. 26.^-272, 293-299; also Bibliotheca malhe-
matica, 3 S., Vol. 13, 1913, pp. 218-222.
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The oldest extant Chinese work of mathematical interest is an
anonymous publication, called Chou-pei and written before the
second century, A. d., perhaps long before. In one of the dialogues the
Chou-pei is believed to reveal the state of mathematics and astronomy
in_ China as early as iioo b. c. The Pythagorean theorem of the right

triangle appears to have been known at that early date.

Next to the Chou-pei in age is the Chiu-chang Suan-shu ("Arith-
metic in Nine Sections"), commonly called the Chiu-chang, the most
celebrated Chinese Text on arithmetic. Neither its authorship nor
the time of its composition is known definitely. By an edict of the
despotic emperor Shih Hoang-ti of the Ch'in Dynasty "all books were
burned and all scholars were buried in the year 213 b. c." After the

death of this emperor, learning revived again. We are told that a
scholar named Chang T'sang found some old writings, upon which
he based this famous treatise, the Chiu-chang. About a century later

a revision of it was made by Ching Ch'ou-ch'ang; commentaries on
this classic text were made by Liu Hui in 263 a. d. and by Li Ch'un-
feng in the seventh century. How much of the "Arithmetic in Nine
Sections," as it exists to-day, is due to the old records ante-dating

213 B. c, how much to Chang T'sang and how much to Ching Ch'ou-

ch'ang, it has not yet been found possible to determine.

The "Arithmetic in Nine Sections" begins with mensuration; it

gives the area of a triangle as | 6 h, of a trapezoid as § (6 +b')h, of a

circle variously as ^c . \d, \cd, \d- and y 2"'-') where c is the circumference

and d is the diameter. Here tt is taken equal to 3. The area of a

segment of a circle is given as ^(ca+a^), where c is the chord and a

the altitude. Then follow fractions, commercial arithmetic including

percentage and proportion, partnership, and square and cube root of

numbers. Certain parts exhibit a partiality for unit-fractions. Divi-

sion by a fraction is effected by inverting the fraction and multiplying.

The rules of operation are usually stated in obscure language. There

are given rules for finding the volumes of the prism, cylinder, pyramid,

truncated pyramid and cone, tetrahedron and wedge. Then follow

problems in alligation. There are indications of the use of positive

and negative numbers. Of interest is the following problem because

centuries later it is found in a work of the Hindu Brahmagupta:

1 All our information on Chinese mathematics is drawn from Yoshio Mikami's

The Development of Mathemalics in China and Japan, Leipzig, ig 1 2, and from David
Eugene Smith and Yoshio Mikami's History of Japanese Mathemalics, Chicago,

1914.
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There is a bamboo lo ft. high, the upper end of which is broken and
reaches to the ground 3 ft. from the stem. What is the height of the

break? In the solution the height of the break is taken =-V^
—

'

2X10

Here is another: A square town has a gate at the mid-point of each

side. Twenty paces north of the north gate there is a tree which
is visible from a point reached by walking from the south gate 14

paces south and then 1775 paces west. Find the side of the square.

The problem leads to the quadratic equation a;2-|-(2o + i4)x— 2X10X
1775 =5 0. The derivation and solution of this equation are not made
clear in the text. There is an obscure statement to the effect that

the answer is obtained by evolving the root of an expression which

is not monomial but has an additional term [the term of the iirst

degree (20 + 14)*]. It has been surmised that the process here re-

ferred to was evolved more fully later and led to the method closely

resembling Horner's process of approximating to the roots, and that

the process was carried out by the use of calculating boards. Another
problem leads to a quadratic equation, the rule for the solution of

which fits the solution of literal quadratic equations.

We come next to the Sun-Tsu Suan-cking ("Arithmetical Classic

of Sun-Tsu"), which belongs to the first century, a. d. The author,

SuN-Tsu, says: "In making calculations we must first know positions

of numbers. Unity is vertical and ten horizontal; the hundred stands

while the thousand hes; and the thousand and the ten look equally,

and so also the ten thousand and the hundred." This is evidently a
reference to abacal computation, practiced from time immemorial in

China, and carried on by the use of computing rods. These rods,

made of small bamboo or of wood, were in Sun-Tsu's time much longer.

The later rods were about i| inches -long, red and black in color,

representing respectively positive and negative numbers. According
to Sun-Tsu, units are represented by vertical rods, tens by horizontal

rods, hundreds by vertical, and so on; for 5 a single rod suffices. The
numbers 1-9 arerepresented by rods thus:

I, ||, 111, 1|||, |||!|,TT17 HT lilT;

the numbers in the tens column, 10, 20, . . ., 90 are written thus:

— , =, ^, =, =, _|_, J=, ^, =. The number 6728 is designated

by _L IT ^ HT- The rods were placed on a board ruled in columns,

and were rearranged as the computation advanced. The successive

steps in the multiphcation of 321 by 46 must have been about as

follows:

321 321 321
138 1472 14766

46 46 46

The product was placed between the multiplicand and multiplier.

The 46 is multiplied first by 3, then by 2, and last by i, the 46 being
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moved to the right one place at each step. Sun-Tsu does not take up
division, except when the divisor consists of one digit. Square root
is explained more clearly than in the "Arithmetic in Nine Sections."
Algebra is involved in the problem suggested by the reply made by a
woman washing dishes at a river: "I don't know how many guests
there were; but every two used a dish for rice between them; every
three a dish for broth; every four a dish for meat; and there were 65
dishes in all.—Rule: Arrange the 65 dishes, and multiply by 12, when
we get 780. Divide by 13, and thus we obtain the answer."
An indeterminate equation is involved in the following: "There are

certain things whose number is unknown. Repeatedly divide by 3,
the remainder is 2 ; by 5 the remainder is 3 ; and by 7 the remainder is

2. What will be the number?" Only one solution is given, viz. 23.

The Hai-tao Suan-ching ("Sea-island Arithmetical Classic") was
written by Liu Hui, the commentator on the "Arithmetic in Nine'
Sections," during the war-period in the third century, a. d. He gives

complicated problems indicating marked proficiency in algebraic

manipulation. The first problem calls for the determination of the
distance of an island and the height of a peak on the island, when two
rods 30' high and 1000' apart are in hne with the peak, the top of the

peak being in line with the top of the nearer (more remote) rod, when
seen from a point on the level ground 123' (127') behind this nearer

(more remote) rod. The rules given for solving the problem are

equivalent to the expressions obtained from proportions arising from
the similar triangles.

Of the treatises brought forth during the next centuries only a few
are extant. We mention the "Arithmetical Classic of Chang Ch'iu-

chien" of the sixth century which gives problems on proportion, arith-

metical progression and mensuration. He proposes the "problem of

100 hens" which is given again by later Chinese authors: "A cock

"costs 5 pieces of money, a hen 3 pieces, and 3 chickens i piece. If

then we buy with 100 pieces 100 of them, what will be their respective

numbers? "

The early values of tt used in China were 3 and vio- Liu Hui
calculated the perimeters of regular inscribed polygons of 12, 24, 48,

96, 192 sides and arrived at 7r =3.14 -I-. Tsu Ch'ung-chih in the fifth

century took the diameter 10* and obtained as upper and lower limits

for TT 3.1415927 and 3.1415926, and from these the "accurate" and
"inaccurate" values 355/113, 22/7. The value 22/7 is the upper limit

given by Archimedes and is found here for the first time in Chinese

history. The ratio 355/113 became known to the Japanese, but in

the West it was not known until Adriaen Anthonisz, the father of

Adriaen Melius, derived it anew, sometime between 1585 and 1625.

However, M. Curtze's researches would seem to show that it was

known to Valentin Otto as early as 1573.^

1 Bibliolheca mathematica, 3 S., Vol. 13, 1913, p. 264. A neat geometric construe-
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In the first half of the seventh century Wang Hs' iao-t'ung brought

forth a work, the Ch'i-ku Suan-ching, in which numerical cubic equa-

tions appear for the first time in Chinese mathematics. This took

place seven or eight centuries after the first Chinese treatment of

quadratics. Wang Hs'iao-t'ung gives several problems leading to

cubics: "There is a right triangle, the product of whose "two sides is

706 -^j and whose hypotenuse is greater than the first side by 30 ~.
It is required to know the lengths of the three sides." He gives the

answer 14 -^, 49 i, 51 i, and the rule: "The Product (P) being

squared and being divided by twice the Surplus (S), make the result

shih or the constant class. Halve the surplus and make it the lien-fa

or the second degree class. And carry out the operation of evolution

according to the extraction of cube root. The result gives the first

side. Adding the surplus to it, one gets the hypotenuse. Divide the

product with the first side and the quotient is the second side." This

rule leads to the cubic equation x^ +S/2x--~ =0. The mode of solu-

tion is similar to the process of extracting cube roots, but details of

the process are not revealed.

In 1247 Ch'in Chiu-shao wrote the Su-shu Chiu-cJiang ("Nine
Sections of Mathematics") which makes a decided advance on the

solution of numerical equations. At first Ch'in Chiu-shao led a mih-

tary life; he lived at the time of the Mongolian invasion. For ten

years stricken with disease, he recovered and then devoted himself to

study. The following problem led him to an equation of the tenth

degree: There is a circular castle of unknown diameter, having 4
gates. Three miles north of the north gate is a tree which is visible

from a point 9 miles east of the south gate. The unknown diameter

is found to be 9. He passes beyond Sun-Tsu in his ability to solve

indeterminate equations arising for a number which will give the

residues r\, r^, . ., r-a when divided by nii, m^, ., »?„, respectively.

Ch'in Chiu-shao solves the equation —.x^ 4-763200.1;^ — 40642560000
=0 by a process almost identical with Horner's method. However,
the computations were very probably carried out on a computing
board, divided into columns, and by the use of computing rods.

Hence the arrangement of the work must have been different from
that of Horner. But the operations performed were the same. The
first digit in the root being 8, (8 hundreds), a transformation is ef-

fected which yields .x*— 3200.1;' — 30768oo.t^—82688oooox- -1-3820544-

0000=0, the same equation that is obtained by Horner's process.

Then, taking 4 as the second figure in the root, the absolute term
vanishes in the operation, giving the root 840. Thus the Chinese had

tion of the fraction W^ =3 -|-4'-=- (7^-1-8*) is given anonymously in Grimert's ArcMv,

Vol. 12, 1849, p. 98. Using f fl, T. M. P. Hughes gives in Nature, Vol. 93,

1914, p. no, a method of constructing a triangle that gives the area of a given

circle with great accuracy.
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invented Homer's method of solving numerical equations more than
five centuries before Ruffini and Horner. This solution of higher
numerical equations is given later in the writings of Li Yeh and others.

Ch'in Chiu-shao marks an advance over Sun-Tsu in the use of o as a
symbol for zero. Most likely this symbol is an importation from
India. Positive and negative numbers were distinguished by the use
of red and black computing rods. This author gives for the first time
a problem which later became a favorite one among the Chinese; it

involved the trisection of a trapezoidal field under certain restrictions

in the mode of selection of boundaries.

We have already mentioned a contemporary of Ch'in Chiu-shao,

namely, Li Yeh; he lived far apart in a rival monarchy and worked
independently. He was the author of T'se-yuan Hai-ching ("Sea-
Mirror of the Circle-Measurements"), 1248, and of the I-ku Yen-tuan,

1259. He used the symbol o for zero. On account of the inconven-

ience of writing and printing positive and negative numbers in dif-

ferent colors, he designated negative numbers by drawing a cancella-

tion mark across the symbol. Thus _Lo stood for 60, Jio stood for

— 60. The unknown quantity was represented by unity which was
probably represented on the counting board by a rod easily distin-

guished from the other rods. The terms of an equation were written,

not in a horizontal, but in a vertical line. In Li Yeh's work of 1259,

as also in the work of Ch'in Chiu-shao, the absolute term is put in the

top hne; in Li Yeh's work of 1248 the order of the terms is reversed,

so that the absolute term is in the bottom line and the highest power
of the unknown in the top line. In the thirteenth century Chinese

algebra reached a much higher development than formerly. This

science, with its remarkable method (our Horner's) of solving numer-

ical equations, was designated by the Chinese "the celestial element

method."
A third prominent thirteenth century mathematician was Yang

Hui, of whom several books are still extant. They deal with the

summation of arithmetical progressions, of the series i +3 -|-6 -H . . -H

(i+2-f-. . +n) =n{n+i){n+2)^6, \'^+2'^+.
. +n^ =\n{n+^){n + i),

also with proportion, simultaneous linear equations, quadratic and
quartic equations.

Half a century later, Chinese algebra reached its height in the

treatise Suan-hsiao Chi-mtng ("Introduction to Mathematical

Studies"), 1299, and the Szu-yuen Yu-chien ("The Precious Mirror

of the Four Elements"), 1303, which came from the pen of Chu
Shih-Chieh. The first work contains no new results, but exerted a

great stimulus on Japanese mathematics in the seventeenth century.

At one time the book was lost in China, but in 1839 it was restored

by the discovery of a copy of a Korean reprint, made in 1660. The

"Precious Mirror" is a more original work. It treats fully of the

"celestial element method." He gives as an "ancient method" a
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triangle (known in the West as Pascal's arithmetical triangle), dis-

playing the binomial coefficients, which were known to the Arabs in

the eleventh century and were probably imported into China. Chu
shih-Chieh's algebraic notation was altogether different from our

inodern notation. Thus, a -\-b +c +d was written

I

1*1
r

2 2

I O *2o
22 O 2

as shown on the left, except that, in the central position, we employ
an asterisk in place of the Chinese character t'ai (great extreme, ab-

solute term) and that we use the modern numerals in place of the

sangi forms. The square of a -\-b -\-c -\-d, namely, a^ +b''- +c^ +d^ +2ab
+2ac+2ad+2bc+2bd+2cd, is represented as shown on the right.

In further illustration of the Chinese notation, at the time of Chu
Shih-Chieh, we give i

-2 = — 22

= U

*
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of magic squares. Myth tells us that, in early times, the sage Yii,

the enlightened emperor, saw on the calamitous Yellow River a divine

tortoise, whose back was decorated with the figure made up of the
numbers from i to 9, arranged in form of a magic square or lo-shu.

<>p 00000000/
4

3

8
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According to tradition, there existed in Japan in remote times a

system of numeration which extended to high powers of ten and re-

sembled somewhat the sand counter of Archimedes. About 552 A. d.

Buddhism was introduced into Japan. This new movement was
fostered by Prince Shotoku Taishi who was deeply interested in all

learning. Mathematics engaged his attention to such a degree that

he came to be called the father of Japanese mathematics. A little

later the Chinese system of weights and measures was adopted. In

701 a university system was established in which mathematics figured

prominently. Chinese science was imported, special mention being

made in the official Japanese records of nine Chinese texts on mathe-

matics, which include the Chou-pei, the Suan-ching written by Sun-

Tsu and the great arithmetical work, the Chiu-chang. But this eighth

century interest in mathematics was of short duration ; the Chiu-chang

was forgotten and the dark ages returned. Calendar reckoning and
the rudiments of computation are the only signs of mathematical

activity until about the seventeenth century of our era. On account

of the crude numeral systems, devoid of the principal of local value

and of a symbol for zero, mechanical aids of computation became a

necessity. These consisted in Japan, as in China, of some forms of

the abacus. In China there came to be developed an instrument,

called the suan-pan, in Japan it was called the soroban. The importa-

tion of the suan-pan into Japan is usually supposed to have occurred

before the close of the sixteenth century. Bamboo computing rods

were used in Japan in the seventh century. These round pieces were

replaced later by the square prisms {sangi pieces). Numbers were
represented by these rods in the manner practiced by the Chinese.

The numerals were placed inside the squares of a surface ruled like a

chess board. The soroban was simply a more highly developed form
of abacal instrument.

The years 1600 to 1675 mark a period of great mathematical ac-

tivity. It was inaugurated by Mori Kambei Shigeyoshi, who popu-
larized the use of the soroban. His pupil, Yoshida Shichibei Koyu,
is the author of Jinko-ki, 1627, which attained wide popularity and
is the oldest Japanese mathematical work now extant. It explains

operations on the soroban, including square and cube root. In one of

^This account is compiled from David Eugene Smith and Yoshio Mikami's
History of Japanese Mathemalics, Chicago, 1914, from Yoshio Mikami's Develop-

ment of Malhetnalics in China and Japan, Leipzig, 191 2, and from T. Hayashi's
A Brief History of the Japanese Mathemalics, Overgedrukt uit het Nieuw Archief
voor Wiskunde VI, pp. 296-361; VII, pp. 105-161.
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his later editions Yoshida appended a number of advanced problems
to be solved by competitors. This procedure started among the

Japanese the practice of issuing problems, which was kept up until

1813 and helped to stimulate mathematical activity.

Another pupil of Mori was Imamura Chisho who, in 1639, pub-
lished a treatise entitled Jugairoku, written in classical Chinese. He
took up the mensuration of the circle, sphere and cone. Another
author, Isomura Kjttoku, in his Kelsugish'o, 1660 (second edition

1684), when considering problems on mensuration, makes a crude
approach to integration. He gives magic squares, both odd and even
celled, and also magic circles. Such squares and circles became favor-

ite topics among the Japanese. In the 1684 edition, Isomura gives

also magic wheels. Tanaka Kisshin arranges the integers 1-96 in

six 4^-celled magic squares, such that the sum in each row and column
are 194; placing the six squares upon a cube, he obtains his "magic
cube." Tanaka formed also "magic rectangles." ^ Muramatsu in

1663 gives a magic square containing as many as 19^ cells and a magic
circle involving 129 numbers. Muramatsu gives also the famous
"Josephus Problem" in the following form: 'Once upon a time there

lived a wealthy farmer who had thirty children, half being of his first

wife and half of his second one. The latter wished a favorite son to

inherit all the property, and accordingly she asked him one day, say-

ing: Would it not be well to arrange our 30 children on a circle, calling

one of them the first and counting out every tenth one until there

should remain only one, who should be called the heir. The hus-

band assenting, the wife arranged the children . . ; the counting . .

resulted in the elimination of 14 step-children at once, leaving only

one. Thereupon the wife, feeling confident of her success, said, . .

let us reverse the order. . The husband agreed again, and the

counting proceeded in the reverse order, with the unexpected result

that all of the second wife's children were stricken out and there re-

mained only the step-child, and accordingly he inherited the property."

The origin of this problem is not known. It i? found much earher in

the Codex Einsidelensis (Einsideln, Switzerland) of the tenth century,

while a Latin work of Roman times attributes it to Flavins Josephus.

It commonly appears as a problem relating to Turks and Christians,

half of whom must be sacrificed to save a sinking ship. It was very

common in early printed European books on arithmetic and in books

on mathematical recreations.

In 1666 Sato Seiko wrote his Kongenki which, in common with

other works of his day, considers the computation of 7r(=3.i4).

He is the first Japanese to take up the Chinese "celestial element

method " in algebra. He applies it to equations of as high a degree as

the sixth. His successor, Sawaguchi, and a contemporary Nozawa,
give a crude calculus resembling that of Cavalieri. Sawaguchi rises

1 Y. Mikami in Archiv der Mathematik u. Physik, Vol. 20, pp. 183-186.
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above the Chinese masters in recognising the pluraHty of roots, but

he declares problems which yield them to be erroneous in their nature.

Another evidence of a continued Chinese influence is seen in the

Chinese value of tt, ^|, which was made known in Japan by Ikeda.

We come now to Seki Kowa (1642-1708) whom the Japanese con-

sider the greatest mathematician that their country has produced.

The year of his birth was the year in which Galileo died and Newton
was born. Seki was a great teacher who attracted many gifted pupils.

Like Pythagoras, he discouraged divulgence of mathematical dis-

coveries made by himself and his school. For that reason it is difficult

to determine with certainty the exact origin and nature of some of the

discoveries attributed to him. He is said to have left hundreds of

manuscripts; the transcripts of a few of them still remain. He pub-

lished only one book, the Hatsuhi Samp'o, 1674, in which he solved

15 problems issued by a contemporary writer. Seki's explanations

are quite incomplete and obscure. Takebe, one of his pupOs, lays

stress upon Seki's clearness. The inference is that Seki gave his ex-

planations orally, probably using the computing rods or sangi, as he

proceeded. .Noteworthy among his mathematical achievements are

the tenzan method and the yendan method. Both of these refer to

improvements in algebra. The tenzan method is an improvement of

the Chinese "celestial element" method, and has reference to nota-

tion, while the yendan refers to explanations or method of analysis.

The exact nature and value of these two methods are not altogether

clear. By the Chinese "celestial element" method the roots of equa-

tions were computed one digit at a time. Seki removed this limita-

tion. Building on results of his predecessors, Seki gives also rules for

writing down magic squares of (2» -|-i)^ cells. In the case of the more
troublesome even celled squares, Seki first gives a rule for the con-

struction of a magic square of 4^ cells, then of ^{n + iY and 16 n"^ ceUs.

He simplified also the treatment of magic circles. Perhaps the most
original and important work of Seki is the invention of determinants,

sometime before 1683. Leibniz, to whom the first idea of determinants
is usually assigned, made his discovery in 1693 when he stated that

three linear equations in x and y can have the same ratio only when
the determinant arising from the coeflicients vanishes. Seki took n
equations and gave a more general treatment. Seki knew that a
determinant of the n"* order, when expanded, has n'^ terms and that

rows and columns are interchangeable.^ Usually attributed to Seki

is the invention of the yenri or "circle-principle" which, it is claimed,

accomplishes somewhat the same things as the differential and in-

tegral calculus. Neither the exact nature nor the origin of the yenri

is well understood. Doubt exists whether Seki was its' discoverer.

Takebe, a pupil of Seki, used the yenri and may be the chief originator

' For details consult Y. Mikami, "On the Japanese theory of determinants" in

Isis, Vol. II, 1914, pp. 9-36.
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of it, but his explanations are incomplete and obscure. Seki, Takebe
and their co-workers dealt with infinite series, especially in the study
of the circle and of ir. Probably some knowledge of European mathe-
matics found its way into Japan in the seventeenth century. A
Japanese, under the name of Petrus Hartsingius, is known to have
studied at Leyden under Van Schooten, but there is no clear evidence
that he returned to Japan. In 1650 a Portuguese astronomer, whose
real name is not known and whose adopted name was Sawano Chuan,
translated a European astronomical work into Japanese.^
In the eighteenth century the followers of Seki were in control.

Their efforts were expended upon problem-solving, the mensuration
of the circle and the study of infinite series. Of Kueushima Gita,
who died in 1757, fragmentary manuscripts remain, which show a
"magic cube" composed of four 4^-celled magic squares in which the
sums of rows and columns is 130, and the sums of corresponding cells

of the four squares is likewise 130. This "magic cube" is evidently a
different thing from Tanaka's "Magic cube." Near the close of the
eighteenth century, during the waning days of the Seki school, there

arose a bitter controversy between Fujita Sadasuke, then the head
of the Seki school, and Aida Ammei. Of the two, Aida was the younger
and more gifted—an insurgent against the old and involved methods
of exposition. Aida worked on the approximate solution of numerical
equations.^ The most noted work of the time was done by a man
Mving in peaceful seclusion, Ajima Chokuyen of Yedo, who died in

1798. He worked on Diophantine -analysis and on a problem known
in the West as "the Malfatti problem," to inscribe three circles in a
triangle, each tangent to the other two. This problem appeared in

Japan in 1781. MaHatti's publication on it appeared in 1803, but
the special case of the isosceles triangle had been considered by Jakob
BemoulU before 1744. Ajima treats special cases of the problem to

determine the number of figures in the repetend in circulating decimals.

He unproved the yenri and placed mathematics on the highest plane

that it reached in Japan during the eighteenth century.

In the early part of the nineteenth century there was greater in-

filtration of European mathematics. There was considerable activity,

but no noteworthy names appeared, except Wada Nei (1787-1840)

who perfected the yenri stiU further, developing an integral calculus

that served the ordinary purposes of mensuration, and giving reasons

where his predecessors ordinarily gave only rules. He worked par-

ticularly on maxima and minima, and on roulettes. Japanese re-

searches of his day relate to groups of ellipses and other figures which

' Y. Mikami in Annaes da academia polyt. do Porto, Vol. VIII, 1913.
^ Y. Mikami, "On Aida Ammei's solution of an equation" in Annaes da Academia

Polyt. do Porto, Vol. VIII, 1913. This article gives details on the solution of equa-

tions in China and Japan. See also Mikami's article on Miyai Antai in the Tohoku

Math. Journal, Vol. 5, Nos. 3, 4, 1914.
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can be drawn upon a folding fan. Here mathematics finds application

to artistic design.

After the middle of the nineteenth century the native mathematics
of Japan yielded to a strong influx of Western mathematics. The
movement in Japan became a part of the great international advance.

In 191 1 there was started the Tdhoku Mathematical Journal, under
the editorship of T. Hayashi. It is devoted to advanced mathematics,
contains articles in many of our leading modern languages and is quite

international in character.^

Looking back we see that Japan produced some able mathemati-
cians, but on account of her isolation, geographically and socially,

her scientific output did not affect or contribute to the progress of

mathematics in the West. The Babylonians, Hindus, Arabs, and to

some extent even the Chinese through their influence on the Hindus,
contributed to the onward march of mathematics in the West. But
the Japanese stand out in complete isolation.

' G. A. Miller, Historical IntrodMllon to Mathematical Literature, 1916, p. 24.
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After the time of the ancient Greeks, the first people whose re-

searches wielded a wide influence in the world march of mathematics,
belonged, hke the Greeks, to the Aryan race. It was, however, not a
European, but an Asiatic nation, and had its seat in far-off India.

Unlike the Greek, Indian society was fixed into castes. The only
castes enjoying the privilege and leisure for advanced study and
thinking were the Brahmins, whose prime business was religion and
philosophy, and the Kshatriyas, who attended to war and government.
Of the development of Hindu mathematics we know but little. A

few manuscripts bear testimony that the Indians had climbed to a
lofty height, but their path of ascent is no longer traceable. It would
seem that Greek mathematics grew up under more favorable condi-

tions than the Hindu, for in Greece it attained an independent exist-

ence, and was studied for its own sake, while Hindu mathematics
always remained merely a servant to astronomy. Furthermore, in

Greece mathematics was a science of the people, free to be cultivated

by all who had a liking for it; in India, as in Egypt, it was in the

hands chiefly of the priests. Again, the Indians were in the habit of

putting into verse all mathematical results they obtained, and of

clothing them in obscure and mystic language, which, though well

adapted to aid the memory of him who already understood the subject,

was often unintelligible to the uninitiated. Although the great Hindu
mathematicians doubtless reasoned out most or all of their discoveries,

yet they were not in the habit of preserving the proofs, so that the

naked theorems and processes of operation are all that have come
down to our time. Very different in these respects were the Greeks.

Obscurity of language was generally avoided, and proofs belonged

to the stock of knowledge quite as much as the theorems themselves.

Very striking was the difference in the bent of mind of the Hindu and

Greek; for, while the Greek mind was pre-eminently geometrical, the

Indian was first of all arithmetical. The Hindu dealt with number, the

Greek with form. Numerical symbolism, the science of numbers,

and algebra attained in India far greater perfection than they had

previously reached in Greece. On the other hand, Hindu geometry

was merely mensuration, unaccompanied by demonstration. Hindu
trigonometry is meritorious, but rests on arithmetic more than on

geometry.

An interesting but difficult task is the tracing of the relation be-

tween Hindu and Greek mathematics. It is well known that more

or less trade was carried on between Greece and India from early

83
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times. After Egypt had become a Roman province, a more lively

commercial intercourse sprang up between Rome and India, by way
of Alexandria. A priori, it does not seem improbable, that with the

trafi&c of merchandise there should also be an interchange of ideas.

That communications of thought from the Hindus to the Alexandrians

actually did take place, is evident from the fact that certain philo-

sophic and theologic teachings of the Manicheans, Neo-Platonists,

Gnostics, show unmistakable likeness to Indian tenets. Scientific

facts passed also from Alexandria to India. This is shown plainly

by the Greek origin of some of the technical terms used by the Hindus.

Hindu astronomy was influenced by Greek astronomy. A part of

the geometrical knowledge which they possessed is traceable to Alex-

andria, and to the writings of Heron in particular. In algebra there

was, probably, a mutual giving and receiving.

There is evidence also of an intimate connection between Indian

and Chinese mathematics. In the fourth and succeeding centuries of

our era Indian embassies to China and Chinese visits to India are

recorded by Chinese authorities.-^ We shall see that undoubtedly

there was an influx of Chinese mathematics into India.

The history of Hindu mathematics may be resolved into two
periods : First the S'ulvasutra period which terminates not later than
200 A. D., second, the astronomical and mathematical period, extending

from about 400 to 1200 a. d.

The term S'ulvasutra means "the rules of the cord"; it is the name
given to the supplements of the Kalpasutras which explain the con-

struction of sacrificial altars.^ The S'ulvasutras were composed some-
time between 800 b. c. and 200 a. d. They are known to modern
scholars through three quite modern manuscripts. Their aim is

primarily not mathematical, but religious. The mathematical parts

relate to the construction of squares and rectangles. Strange to say,

none of these geometrical constructions occur in later Hindu works;
later Indian mathematics ignores the S'ulvasutras!

The second period of Hindu mathematics probably originated

with an influx from Alexandria of western astronomy. To the fifth

century of our era belongs an anonymous Hindu astronomical work,
called the Surya Siddhanta ("Knowledge from the sun") which came
to be regarded a standard work. In the sixth century a. d., Varaha
Mihira wrote his Pahcha Siddhdntikd which gives a summary of the

SUrya Siddhanta and four other astronomical works then in use; it

contains matters of mathematical interest.

In 188 1 there was found at Bakhshall, in northwest India, buried
in the earth, an anonymous arithmetic, supposed, from the pecuhar-

' G. R. Kaye, Indian Mathematics, Calcutta & Simla, 1915, p. 38. We are draw-
ing heavily upon this book which embodies the results of recent studies of Hindu
mathematics.

* G. R. Kaye, op. cit., p. 3.
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ities of its verses, to date from the third or fourth century after Christ.
The document that was found is of birch bark, and is an incomplete
copy, prepared probably about the eighth century, of an older manu-
script. ^ It contains arithmetical computation.
The noted Hmdu astronomer Aryabhata was bom 476 a. d. at

Pataliputja, on the upper Ganges. His celebrity rests on a work
entitled Aryabhatiya, of which the third chapter is devoted to mathe-
matics. About one hundred years later, mathematics in India reached
the highest mark. At that time flourished Brahmagupta (born 598).
In 628 he wrote his Brahma-sphuta-siddhanta ("The Revised System
of Brahma"), of which the twelfth and eighteenth chapters belong
to mathematics.

Probably to the ninth rentury belongs Mahavira, a Hindu author
on elementary mathematics, whose writings have only recently been
brought to the attention of historians. He is the author of the Ganita-
Sara-Sangraha which throws light upon Hindu geometry and arith-

metic. The following centuries produced only two names of impor-
tance; namely, S'ndhara, who wrote a Ganita-sara ("Quintessence
of Calculation"), and Padmanabha, the author of an algebra. The
science seems to have made but little progress at this time; for a
work entitled Siddhdnta S'iromani ("Diadem of an Astronomical
System"), written by Bhaskara in 1150, stands httle higher than that

of Brahmagupta, written over 500 years earlier. The two most im-

portant mathematical chapters in this work are the Lilavatl ( ="the
beautiful," i. e. the noble science) and Vlja-ganita (=" root-extrac-

tion"), devoted to arithmetic arid algebra. From now on, the Hindus
in the Brahmin schools seemed to content themselves with studying

the masterpieces of their predecessors. Scientific intelligence de-

creases continually, and in more modern times a very deficient Arabic

work of the sixteenth century has been held in great authority.

The mathematical chapters of the Brahma-siddhanta and Siddhdnta

S'iromani were translated into English by H. T. Colebrooke, London,

181 7. The SUrya-siddhanta was translated by E. Burgess, and anno-

tated by W. D. Whitney, New Haven, Conn., i860. Mahavira's

Ganita^Sara-Sangraha was pubhshed in 191 2 in Madras by M. Ranga-
carya.

We begin with geometry, the field in which the Hindus were least

proficient. The S'tdvasUtras indicate that the Hindus, perhaps as

early as 800 b. c, applied geometry in the construction of altars.

Kaye^ states that the mathematical rules found in the S'ulvasUtras
" relate to (i) the construction of squares and rectangles, (2) the rela-

tion of the diagonal to the sides, (3) equivalent rectangles and squares,

(4) equivalent circles and squares." A knowledge of the Pythagorean

1 The BakhshSll Manuscript, edited by Rudolf Hoemly in the Indian Antiquary,

xvii, 33-48 and 275-279, Bombay, 1888.

' G. R. Kaye, op. cit., p. 4.
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theorem is disclosed in such relations as 3^+4^=5^,
15^+36^=39^. There is no evidence that these expressions were

obtained from any general rule. It will be remembered that special

cases of the Pythagorean theorem were known as early as 1000 b. c.

in China and as early as 2000 b. c. in Egypt. A curious expression

for the relation of the diagonal to a square, namely,

V2=i+l-\-Tr,3.4~3.4,.34 )

is explained by Kaye as being "an expression of a direct measure-

ment" which may be obtained by the use of a scale of the kind named
in one of the S'ulvasutra manuscripts, and based upon the change
ratios 3, 4, 34. It is noteworthy that the fractions used are all unit

fractions and that the expression yields a result correct to five decimal

places. The S'ulvasutra rules yield, by the aid of the Pythagorean
theorem, constructions for finding a square equal to the sum or dif-

ference of two squares; they yield a rectangle equal to a given square,

with aVi and 5(1V 2 as the sides of the rectangle; they yield by
geometrical construction a square equal to a given rectangle, and
satisfying the relation ab ={b+[a--b]/2y—l{a-by, corresponding

to Euclid II, 5. In the S'ulvasutras the altar building ritual explains

the construction of a square equal to a circle. Let a be the side of

a square and d the diameter of an equivalent circle, then the given
rules may be expressed thus: ' d=a+{a^^ — a)JT,, a=d— 2d/i^, a =
d{i — l + 8.2

8"~ 8.2^.6 + B.2a.6.8 )- This third expression may be ob-

tained from the first by the aid of the approximation for V 2, given
above. Strange to say, none of these geometrical constructions occur
in later Hindu works; the latter completely ignore the mathematical
contents of the S'ulvasutras. _
During the six centuries from the time of Aryabhata to that of

Bhaskara, Hindu geometry deals mainly with mensuration. The
Hindu gave no definitions, no postulates, no axioms, no logical chain
of reasoning. His knowledge of mensuration was largely borrowed
from the Mediterranean and from China, through imperfect channels of

communication. Aryabhata gives a rule for the area of triangle which
holds only for the isosceles triangle. Brahmagupta distinguishes

between approximate and exact areas, and gives Heron of Alexan-

dria's famous formula for the triangular area, ^ s{s~a){s-b){s—c).
Heron's formula is given also by MahavTra^ who advanced be-
yondjiis predecessors in giving the area of an equilateral triangle as

a-\/3/4. Brahmagupta and MahavTra make a remarkable extension

of Heron's formula by giving ^ (s~a){s— b){s—c){s— d) as the area
of a quadrilateral whose sides are a, b, c, d, and whose semiperimeter
is s. That this formula is true only for quadrilaterals that can be in-

' G. R. Kaye, op. cit., p. 7.

' D. E. Smith, in Isis, Vol. i, 1913, pp. 199, 200.
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scribed in a circle was recognized by Brahmagupta, according to Can-
tor's and Kaye's ^ interpretation of Brahmagupta's obscure ex-
position, but Hindu commentators did not understand the limitation
and Bhaskara finally pronounced the formula unsound. Remarkable
is "Brahmagupta's tlieorem" on cyclic quadrilaterals, x'^=(ad+b)c.
{ac+bd)l{ab+cd) and y^={ab+cd) {ac+bd)/(ad+bc), where x and
y are the diagonals and a, b, c, d, the lengths of the sides; also the the-
orem that, if a"+b'^ = c^ and A^+B'^ = C^, then the quadrilateral
("Brahmagupta's trapezium"), {aC, cB, bC, cA) is cyclic and has its

diagonals at right angles. Kaye says: From the triangles (3, 4, 5)
and (s, 12, 13) a commentator obtains the quadrilateral (39, 60, 52,

25), with diagonals 63 and 56, etc. Brahmagupta (says Kaye) also in-

troduces a proof of Ptolemy's theorem and in doing this follows Dio-
phantus (III, 19) in constructing from right triangles (a, b, c) and
(a, /3, 7) new right triangles {ay, by, cy) and {ac, ffc, yc) and
uses the' actual examples given by Diophantus, namely (39, 52, 65)
and (25, 60, 65). Parallelisms of this sort.show unmistakably Lbat the
Hindus drew from Greek sources.

_ In the mensuration of solids remarkable inaccuracies occur in

Aryabhata. He gives the volume of a pyramid as hdj the product of

the base and the height; the volume of a sphere as tt* r^. Aryab-
hata gives in one place an extremely accurate value for tt, viz. j,-^-^

(= 3.1416), but he himself never utilized it, nor did any other Hindu
mathematician before the twelfth century. A frequent Indian prac-

tice was to take 7r= 3, or Vio. Bhaskara gives two values,—the

above mentioned 'accurate,' fff^, and the 'inaccurate,' Archimedean

value, ^. A commentator on Lildvaii says that these values were

calculated by beginning with a regular inscribed hexagon, and apply-

ing repeatedly the formula AD='V2 — ^ 4—AB'^, wherein AB is the

side of the given polygon, and AD that of one with double the number
of sides. In this way were obtained the perimeters of the inscribed

polygons of 12, 24, 48, 96, 192, 384 sides. Taking the radius = 100, the

perimeter of the last one gives the value which Aryabhata used for tt.

The empirical nature of Hindu geometry is illustrated by Bhaskara's

proof of the Pythagorean theorem.

He draws the right triangle four

times in the square of the hjrpote-

nuse, so that in the middle there re-

mains a square whose side equals

the difference between the two sides

of the right triangle. Arranging this square and the four triangles in

a different way, they are seen, together, to make up the sum of the

square of the two sides. "Behold!" says Bhaskara, without adding
' Cantor, op. cit.. Vol. I, 3rd Ed., 1907, pp. 649-653.
2 G. R. Kaye, op. cit., pp. 20-32.
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another word of explanation. Bretschneider conjectures that the

Pythagorean proof was substantially the same as this. Recently it

has been shown that this interesting proof is not of Hindu origin, but

was given much earlier (early in the Christian era) by the Chinese

writer Chang Chun-Ch'ing, in his commentary upon the ancient treat-

ise, the Chou-pei. ^ In another place, Bhaskara gives a second dem-
onstration of this theorem by drawing from the vertex of the right

angle a perpendicular to the hypotenuse, and comparing the two tri-

angles thus obtained with the given triangle to which they are similar.

This proof was unknown in Europe till Wallis rediscovered it. The
only Indian work that touches the subject of the conic sections is Ma-
havira's book, which gives an inaccurate treatment of the ellipse. It

is readily seen that the Hindus cared Uttle for geometry. Brahma-
gupta's cyclic quadrilaterals constitute the only gem in their geom-
etry.

The grandest achievement of the Hindus and the one which, of all

mathematical inventions, has contributed most to the progress of

intelligence, is the perfecting of the so-called "Arabic Notation."

That this notation did not originate with the Arabs is now admitted

by every one. Until recently the preponderance of authority favored

the hypothesis that our numeral system, with its concept of local

value and our symbol for zero, was wholly of Hindu origin. Now it

appears that the principal of local value was used in the sexagesimal

system found on Babylonian tablets dating from 1600 to 2300 b. c.

and that Babylonian records from the centuries immediately preced-

ing the Christian era contain a symbol for zero which, however, was
not used in computation. These sexagesimal fractions appear in

Ptolemy's Almagest in 130 a. d., where the omicron o is made to des-

ignate blanks in the sexagesimal numbers, but was not used as a reg-

ular zero. The Babylonian origin of the sexagesimal fractions used by
Hindu astronomers is denied by no one. The earliest form of the In-

dian symbol for zero was that of a dot which, according to Biihler,^

was "commonly used in inscriptions and manuscripts in order to

mark a blank." This restricted early use of the symbol for zero re-

sembles somewhat the still earlier use made of it by the Babylonians
and by Ptolemy. It is therefore probable that an imperfect notation

involving the principle of local value and the use of the zero was im^
ported into India, that it was there transferred from the sexagesimal

to the decimal scale and then, in the course of centuries, brought to

final perfection. If these views are found by further research to be
correct, then the name " Babylonic-Hindu " notation will be more
appropriate than either "Arabic" or "Hindu-Arabic." It appears

• Yoshio Mikami, "The Pythagorean Theorem" in Archiv d. Math. u. Physik,

3. S., Vol. 22, 1912, pp. 1-4.

^ Quoted by D. E. Smith and L. C. Karpinski in their Hindu-Arabic Numerals,
Boston and London, 191 1, p. 53.
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that in India various numeral forms were used long before the prin-

ciple of local value and the zero came to be used. Early Hindu numer-
als have been classified under three great groups. Numeral forms of

one of these groups date from the third century b. c.^ and are believed
to be the forms from which our present system developed. That the

nine figures were introduced quite early and that the principle of lo-

"cal value and the zero were incorporated later is a belief which re-

ceives support from the fact that on the island of Ceylon a notation
resembhng the Hindu, but without the zero has been preserved. We
know that Buddhism and Indian culture were transplanted to Ceylon
about the third century after Christ, and that this culture remained
stationary there, while it made progress on the continent. It seems
highly probable, then, that the numerals of Ceylon are the old, im-

perfect numerals of India. In Ceylon, nine figures were used for the

units, nine others for the tens, one for 100, and also one for 1000.

These 20 characters enabled them to write all the numbers up to

9999. Thus, 8725 would have been written with six signs, represent-

ing the following numbers: 8, 1000, 7, 100, 20, 5. These Singhalesian

signs, like the old Hindu numerals, are supposed originally to have
been the initial letters of the corresponding numeral adjectives. There

is a marked resemblance between the notation of Ceylon and the one

used by Aryabhata in the first chapter of his work, and there only.

Although the zero and the principle of position were unknown to the

scholars of Ceylon, they were probably known to Aryabhata; for, in

the second chapter, he gives directidhs for extracting the square and
cube roots, which seem to indicate a knowledge of them. The sym-

bol for zero was called sunya (the void). It is found in the form of a

dot in the Bakhshah arithmetic, the date of which is uncertain. The
earUest undoubted occurrence of our zero in India is in 876 a. d.^

The earUest known mention of Hindu numerals outside of India was

made in 662 a. d. by the S5Tian writer, Severus Sebokht. He speaks

of Hindu computations "which excel the spoken word and . . . are

done with nine symbols." '

There appear to have been several notations in use in different parts

of India, which differed, not in principle, but merely in the forms of

the signs employed. Of interest is also a symbolical system of position,

in which the figures generally were not expressed by numerical adjec-

tives, but by objects suggesting the particular numbers in question.

Thus, for I were used the words moon, Brahma, Creator, or form; for

4, the words Veda, (because it is di\aded into four parts) or ocean, etc.

The following example, taken from the Surya Siddhdnta, illustrates

the idea. The number 1,577,917,828 is expressed from right to left as

' D. E. Smith and L. C. Karpinski, op. cit., p. 22.

^Ibid, p. 52.
' M. F. Nau in Journal Asiatique, S. 10, Vol. 16, 1910; D. E. Smith in Bull. Am.

Math. Soc, Vol. 23, 1917, p. 366.
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follows: Vasu (a class of 8 gods)+two+eight+mountains (the 7 moun-
tain-chains)+form+digits (the 9 digits)+seven+mountains+lunar
days (half of which equal 15). The use of such notations made it pos-

sible to represent a number in several different ways. This greatly

facilitated the framing of verses containing arithmetical rules or sci-

entific constants, which could thus be more easily remembered.

At an early period the Hindus exhibited great skill in calculating,

even with large numbers. Thus, they tell us of an examination to

which Buddha, the reformer of the Indian religion, had to submit,

when a youth, in order to win the maiden he loved. In arithmetic,

after having astonished his examiners by naming all the periods of

numbers up to the 53d, he was asked whether he could determine the

number of primary atoms which, when placed one against the other,

would form a line one mile in length. Buddha found the required an-

swer in this way: 7 primary atoms make a very minute grain of dust,

7 of these rhake a minute grain of dust, 7 of these a grain of dust whirled

up by the wind, and so on. Thus he proceeded, step by step, until he

finally reached the length of a mile. The multiplication of all the fac-

tors gave for the multitude of primary atoms in a mile a number con-

sisting of 15 digits. This problem reminds one of the " Sand-Counter"
of Archimedes.

After the numerical symboHsm had been perfected, figuring was
made much easier. Many of the Indian modes of operation differ

from ours. The Hindus were generally inclined to follow the motion
from left to right, as in writing. Thus, they added the left-hand col-

umns first, and made the necessary corrections as they proceeded.

For instance, they would have added 254 and 663 thus: 2+6=8,
5-|-6= II, which changes 8 into 9, 4+3 = 7. Hence the sum 917. In
subtraction they had two methods. Thus in 821— 348 they would say,

8 from 11 = 3, 4 from 11 = 7, 3 from 7 = 4. Or they would say, 8 from
11 = 3, 5 from 12 = 7, 4 from 8 = 4. In multiplication of a number by
another of only one digit, say 569 by 5, they generally said, 5.5= 25,

5.6 = 30, which changes 25 into 28, 5.9= 45, hence the o must be in-

creased by 4. The product is 2845. In the multiplication with each

other of many-figured numbers, they first multiplied, in the manner
just indicated, with the left-hand digit of the multiplier, which was
written above the multiplicand, and placed the product above the

multipher. On multiplying with the next digit of the multiplier, the

product was not placed in a new row, as with us, but the first product
obtained was corrected, as the process continued, by erasing, when-
ever necessary, the old digits, and replacing them by new ones, until

finally the whole product was obtained. We who possess the modern
luxuries of pencil and paper, would not be likely to fall in love with

this Hindu method. But the Indians wrote "with a cane-pen upon
a small blackboard with a white, thinly liquid paint which made marks
that could be easily erased, or upon a white tablet, less than a foot
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square, strewn with red flour, on which they wrote the figures with a
small stick, so that the figures appeared white on a red ground." ^

Since the digits had to be quite large to be distinctly legible, and
since the boards were small, it was desirable to have a method which
would not require much space. Such a one was the above method
of multiplication. Figures could be easily erased and replaced by
others without sacrificing neatness. But the Hindus had also other

ways of multiplying, of which we mention the following: The tablet

was divided into squares like a chess-board. Diagonals were also

drawn, as seen in the figure. The multiplication of 12X735 = 8820 is

exhibited in the adjoining diagram.^ According to Kaye,^ this mode
of multiplying was not of Hindu origin and was
known earher to the Arabs. The manuscripts
extant give no information of how divisions were
executed.

Hindu mathematicians of the twelfth century
test the correctness of arithmetical computations 8 8 8

by "casting out nines," but this process is not of Hindu origin;

it was known to the Roman bishop Hippolytos in the third cen-

tury.

In the Bakhshali arithmetic a knowledge of the processes of com-
putation is presupposed. In fractions, the numerator is written above
the denominator without a dividing line. Integers are written as

fractions with the denominator i. In mixed expressions the integral

part is written above the fraction. Thus, 1 = i|. In place of our=

they used the word phalam, abbreviated into pha. Addition was in-

dicated by yn, abbreviated from yuta. Numbers to be combined

XXIX
1 X / I

X

X4 Xe Xo

were often enclosed in a rectangle. Thus, pha 1 2
| f
[yu means y-f y

s_i_f _

12. An unknown quantity is sunya, and is designated thus . by a

heavy dot. The word sunya means "empty," and is the word for

zero, which is here likewise represented by a dot. This double use of

the word and dot rested upon the idea that a position is "empty" if

not filled out. It is also to be considered "empty" so long as the num-

ber to be placed there has not been ascertained.*

The Bakhshah arithmetic contains problems of which some are

solved by reduction to unity or by a sort ol false position. Example:

B gives twice as much as A, C three times as much as B, D four times as

much as C; together they give 132 ; how much did A give? Take i for

the unknown {sunya), thenA=i, B = 2, C= 6, D = 24, their sum=

33. Divide 132 by 33, and the quotient 4 is what A gave.

The method of false position we have encountered before among
1 H. Hankel, op. cit., 1874, p. 186.

2M. Cantor, op. cit.. Vol. I, 3 Aufl., 1907, p. 611.

3 G. R. Kaye, op. cit., p. 34.
< Cantor, I, 3 Ed., 1907, pp. 613-618.
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the early Egyptians. With them it was an instinctive procedure;

with the Hindus it had risen to a conscious method. Bhaskara uses

it, but while the Bakhshah document preferably assumes i as the

unknown, Bhaskara is partial to 3. Thus, if a certain" number is

taken five-fold, | of the product be subtracted, the remainder divided

by 10, and |, | and j of the original number added, then 68 is ob-

tained. What is the number? Choose 3, then you get 15, 10, i, and

i+l+l+l= ¥- Then (68-^V-)3 = 48,tlie answer.

We shall now proceed to the consideration of some arithmetical

problems and the Indian modes of solution. A favorite method was
that of inversion. With laconic brevity, Aryabhata describes it thus:
" Multiphcation becomes division, division becomes multiplication;

what was gain becomes loss, what loss, gain; inversion." Quite different

from this quotation in style is the following problem from Aryabhata,

which illustrates the method: "Beautiful maiden with beaming eyes,

tell me, as thou understandst the right method of inversion, which

is the number which multiplied by 3, then increased by f of the prod-

uct, divided by 7, diminished by 5 of the quotient, multiplied by it-

self, diminished by 52, the square root extracted, addition of 8, and
division by 10, gives the number 2?" The process consists in begin-

ning with 2 and working backwards. Thus, (2.10—8)^+52 = 196,

V'i96= 14, and 14.1.7.-7^3 = 28, ^he answer.

Here is another example taken from Llldvati, a chapter in Bhas-

kara's great work: "The square root of half the number of bees in a
swarm has fiown out upon a jessamine-bush, f of the whole swarm
has remained behind; one female bee flies about a male that is buzz-

ing within a lotus-flower into which he was allured in the night by its

sweet odor, but is now imprisoned in it. Tell me the number of bees."

Answer, 72. The pleasing poetic garb in which all arithmetical prob-

lems are clothed is due to the Indian practice of writing all school-books

in verse, and especially to the fact that these problems, propounded
as puzzles, were a favorite social amusement. Says Brahmagupta:
"These problems are proposed simply for pleasure; the wise man can
invent a thousand others, or he can solve the problems of others by
the rules given here. As the sun eclipses the stars by his brilliancy,

so the man of knowledge will eclipse the fame of others in assemblies

of the people if he proposes algebraic problems, and still more if he
solves them."
The Hindus solved problems in interest, discount, partnership,

alligation, summation of arithmetical and geometric series, and de-

vised rules for determining the numbers of combinations and permu-
tations. It may here be added that chess, the profoundest of all

games, had its origin in India. The invention of magic squares is

sometimes erroneously attributed to the Hindus. Among the Chi-

nese and Arabs magic squares appear much earlier. The first occur-

rence of a magic square among the Hindus is at Dudhai, Ihansi, in
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northern India. It is engraved upon a stone found in the ruins of
a temple assigned to the eleventh century, a. d.^ After the time of
Bhaskara magic squares are mentioned by Hindu writers.
The Hindus made frequent use of the " rule of three." Their method

of "false position," is almost identical with that of the "tentative
assumption" of Diophantus. These and other rules were applied to
a large number of problems.

_
Passing now to algebra, we shall first take up the S5mibols of opera-

tion. Addition was indicated simply by juxtaposition as in Diophan-
tine algebra; subtraction, by placing a dot over the subtrahend; mul-
tiplication, by putting after the factors, bha, the abbreviation of the
word bhavlta, "the product"; division, by placing the divisor beneath
the dividend; square-root, by writing ka, from the word karana (irra-

tional), before the quantity. The unknown quantity was called by
Brahmagupta ydvatidvat {quantum tantum). When several unknown
quantities occurred, he gave, unlike Diophantus, to each a distinct

name and symbol. The first unknown was designated by the general
term "unknown quantity." The rest were distinguished by names
of colors, as the black, blue, yellow, red, or green unknown. The ini-

tial syllable of each word constituted the symbol for the respective

unknown quantity. Thus yd meant x; kd (from kdlaka= black) meant

y; yd kd bha, "x times 31"; ka 15 ka 10, " -\/is— \/io."
The Indians were the first to recognize the existence of absolutely

negative quantities. They brought out the difference between posi-

tive and negative quantities by attaching to the one the idea of "pos-
session," to the other that of "debts." The conception also of oppo-

site directions on a line, as an interpretation of + and — quantities,

was not foreign to them. They advanced beyond Diophantus in ob-

serving that a quadratic has always two roots. Thus Bhaskara gives

a;=5o and .r=— 5 for the roots of x^— 45.1-= 250. "But," says he,

"the second value is in this case not to be taken, for it is inadequate;

people do not approve of negative roots." Commentators speak of

this as if negative roots were seen, but not admitted.

Another important generalization, says Hankel, was this, that since

the time of Bhaskara the Hindus never confined their arithmetical

operations to rational numbers. For instance, Bhaskara showed how,

by the formula -v/a+-^l=Al
^+^'^'

^-|--^ ^ "'^^
^ the square

2 2

root of the sum of rational and irrational numbers could be found.

The Hindus never discerned the dividing line between numbers and

magnitudes, set up by the Greeks, which, though the product of a

scientific spirit, greatly retarded the progress of mathematics. They

passed from magnitudes to numbers and from numbers to magnitudes

without anticipating that gap which to a sharply discriminating mind
' Bull. Am. Math. Soc, Vol. 24, 1917, p. 106.
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exists between the continuous and discontinuous. Yet by doing so

the Indians greatly aided the general progress of mathematics. "In-

deed, if one understands by algebra the application of arithmetical

operations to complex magnitudes of all sorts, whether rational or irra-

tional numbers or space-magnitudes, then the learned Brahmins of

Hindostan are the real inventors of algebra." ^

Let us now examine more closely the Indian algebra. In extract-

ing the square and cube roots they used the formulas (a+/')lz=a^+
2ai+&^ and {a-\-by=a^-\-2a^b-\-:^ab^-\-b^. In this connection Aryab-
hata speaks of dividing a number into periods of two and three digits.

From this we infer that the principle of position and the zero in the

numerical notation were already known to him. In figuring with
zeros, a statement of Bhaskara is interesting. A fraction whose de-

nominator is zero, says he, admits of no alteration, though much be

added or subtracted. Indeed, in the same way, no change takes place

in the infinite and immutable Deity when worlds are destroyed or

created, even though numerous orders of beings be taken up or brought
forth. Though in this he apparently evinces clear mathematical no-

tions, yet in other places he makes a complete failure in figuring with

fractions of zero denominator.

In the Hindu solutions of determinate equations, Cantor thinks

he can see traces of Diophantine methods. Some technical terms be-

tray their Greek origin. Even if it be true that the Indians borrowed
from the Greeks, they deserve credit for improving the solutions of

linear and quadratic equations. Recognizing the existence of neg-
ative numbers, Brahmagupta was able to unify the treatment of

the three forms of quadratic equations considered by Diophantus,
viz., ax--\-bx= c, bx-\-c = ax,^ ax'^-\-c= bx, {a, b and c being pos-
itive numbers), by bringing the three under the one general case,

px^-\-qx-\-r= o. To S'ridhara is attributed the "Hindu method"
of completing the square which begins by multiplying both sides

of the equation by 4/». Bhaskara advances beyond the Greeks
and even beyond Brahmagupta when he says that "the square of

a positive, as also of a negative number, is positive; that the square
root of a positive number is twofold, positive and negative. There is

no square root of a negative number, for it is not a square." Kaye
points out, however, that the Hindus were not the first to give double
solutions of quadratic equations." The Arab Al-Khowarizmi of the
ninth century gave both solutions of a;^-t-2i = lox. Of equations of

higher degrees, the Indians succeeded in solving only some special

cases in which both sides of the equation could be made perfect powers
by the addition of certain terms to each.

Incomparably greater progress than in the solution of determinate
equations was made by the Hindus in the treatment of htdeierminate
equations. Indeterminate analysis was a subject to which the Hindu

1 H. Hankel, op. cil., p. ig5. 2 G. R. Kaye, op. cU., p. 34.
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mind showed a happy adaptation. We have seen that this very sub-
ject was a favorite with Diophantus, and that his ingenuity was al-

most inexhaustible in devising solutions for particular cases. But the
glory of having invented general methods in this most subtle branch
of mathematics belongs to the Indians. The Hindu indeterminate
analysis differs from the Greek not only in method, but also in aim.
The object of the former was to find all possible integral solutions.

Greek analysis, on the other hand, demanded not necessarily integral,

but simply rational answers. Diophantus was content with a_single

solution; the Hindus endeavored to find all solutions possible. Aryab-
hata gives solutions in integers to linear equations of the form aa;±
by= c, where a, b, c are integers. The rule employed is called the pul-

verizer. For this, as for most other rules, the Indians giye no proof.

Their solution is essentially the same as the one of Euler. Euler's

process of reducing 7" to a continued fraction amounts to the same as

the Hindu process of finding the greatest common divisor of a and b

by division. This is frequently called the Diophantine method. Han-
kel protests against this name, on the ground that Diophantus not

only never knew the method, but did not even aim at solutions purely

integral.^ These equations probably grew out of problems in astron-

omy. They were applied, for instance, to determine the time when
a certain constellation of the planets would occur in the heavens.

Passing by the subject of linear equations with more than two un-

known quantities, we come to indeterminate quadratic equations. In

the solution of xy=ax-\-by-\-c, they applied the method re-invented

later by Euler, of decomposing {ah-\-c) into the product of two integers

m.n and of placing x=m-\-b and y= n-\-a.

Remarkable is the Hindu solution of the quadratic equation cy'^ =
ax^-\-b. With great keenness of intellect they recognized in the special

case y^= ax^-]-i a fundamental problem in indeterminate quadratics.

They solved it by the cyclic method. "It consists," says De Morgan,
" in a rule for finding an indefinite number of solutions of y"^ — ax^-\- 1

(ff being an integer which is not a square), by means of one solution

given or found, and of feeling for one solution by making a solution

of y'''— ax'^-\-b give a solution of y'^ = ax^-\-b'^. It amounts to the fol-

lowing theorem: If p and q be one set of values of x and y in y'^=ax^-\-b

and p' and q' the same or another set, then qp+pq' and app'-\-qq'

are values of x and y in y^ = ax^-\-b^. From this it is obvious that one

solution of y^= ax^-\-i may be made to give any number, and that if,

taking b at pleasure, y^=ax^+b^ can be solved so that x and y

are divisible by b, then one preliminary solution of /=0x^+1 can be

be found. Another mode of trying for solutions is a combination of

the preceding with the cuttaca (pulverizer)." These calculations were

used in astronomy.
1 H. Hankel, op. oil., p. 196.
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Doubtless this "cyclic method" constitutes the greatest invention

in the theory of numbers before the time of Lagrange. The perver-

sity of fate has willed it, that the equation y=a:K-+i should now be

called Pell's equation; the first incisive work on it is due to Brahmin
scholarship, reinforced, perhaps, by Greek research. It is a problem

that has exercised the highest faculties of some of our greatest modern
analysts. By them the work of the Greeks and Hindus was done over

again; for, unfortunately, only a small portion of the Hindu algebra and
the Hindu manuscripts, which we now possess, were known in the

Occident. Hankel attributed the invention of the "cychc method"
entirely to the Hindus, but later historians, P. Tannery, M. Cantor,

T. Heath, G. R. Kaye favor the hypothesis of ultimate Greek origin.

If the missing parts of Diophantus are ever found, hght wiU probably

be thrown upon this question.

Greater taste than for geometry was shown by the Hindus for trig-

onometry. Interesting passages are found in Varaha Mihira's Pancha
Siddhdniikd of the sixth century a. d.,'^ which, in our notation for

unit radius, gives 7r=Vio, sin 30°=^, sin 6o°=Vi— |, sin^7=
(sin 27)^/4-1- ( I — sin (90°— 27) ]

^/4. This is followed by a table of

24 sines, the angles increasing by intervals of 3°45' (the eighth part

of 30°), obviously taken from Ptolemy's table of chords. However,
instead of dividing the radius into 60 parts in the manner of Ptolemy,

the Hindu astronomer divides it into 120 parts, which device enabled

him to convert Ptolemy's table oi chords into a table of sines without

changing the numerical values. Aryabhata took a still different value

for the radius, namely, 3438, obtained apparently from the relation

2X3.1416;'= 21,600. The Hindus followed the Greeks and Babylo-
nians in the practice of dividing the circle into quadrants, each quad-
rant into 90 degrees and 5400 minutes—thus dividing the whole circle

into 21,600 equal parts. Each quadrant was divided also into 24 equal

parts, so that each part embraced 225 units of the whole circumference,

and corresponded to 3! degrees. Notable is the fact that the Indians

never reckoned, like the Greeks, with the whole chord of double the arc,

but always with the sine (joa) and versed sine. Their mode of calcula-

ting tables was theoretically very simple. The sine of 90° was equal to

the radius, or 3438; the sine of 30° was evidently half that, or 1719.

Applying the formula sin^a+cos^a=r^, they obtained sin 45°=

2431. Substituting for cos a its equal sin (90 — a), and making a= 60°,

they obtained sin 60°=—=2—= 2978. With the sines of 90, 60, 45, and 30

as starting-points, they reckoned the sines of half the angles by the
formula ver sin 2 a=2 sin^o, thus obtaining the sines of 22° 30', 15°,

' G. R. Kaye, op. cil., p. 10.
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II 15') 7° 3o'> 3° 4S'- They now figured out the sines of the complex
ments of these angles, namely, the sines of 86° 15', 82° 30', 78° 45',
75°) 67° 30'; then they calculated the sines of half these angles; then
of their complements; then, again, of half their complements; and so
on. By this very sunple process they got the sines of angles at inter-
vals of 3° 4s'. In this table they discovered the unique law that if

a, h, c be three successive arcs such that a-b = h-c= 2>° 4S'> then

sin a- sin i= (sin b-smc) . This formula was afterwards used
225

whenever a re-calculation of tables had to be made. No Indian trig-

onometrical treatise on the triangle is extant. In astronomy they
solved plane and spherical triangles.^

Now that we have a fairly complete history of Chinese mathematics,
Kaye has been able to point out parallelisms between Hindu and
Chinese mathematics which mdicate that India is indebted to China.
The ^ Chiu-chang Suan-shu ("Arithmetic in Nine Sections") was com-
posed ui Chma at least as early as 200 b. c; the Chinese writer Chang
T'sang wrote a commentary on it in 263 a. d. The "Nine Sections"
gives the approximate area of a segment of a circle= J {c+a)a, where
c is- the chord and a is the perpendicular. This rule occurs in the work
of the later Hindu author Mahavira. Again, the Chinese problem of

the bamboo 10 ft. high, the upper end of which being broken reaches the
ground three feet from the stem; to determine the height of the break

—

occurs in all Hindu books after the sixth century. The Chinese arith-

metical treatise, Sun-Tsu Suan-ching, of about the first century a.

D. has an example asking for a niunber which, divided by 3 yields the
remainder 2, by 5 the remainder 3, and by 7 the remainder 2. Exam-
ples of this type occur in Indian works of the seventh and ninth cen-

turies, particularly in Brahmagupta and Mahavira. On a preceding

page we called attention to the fact that Bhaskara's dissection proof

of the Pythagorean theorem is found much earlier in China. Kaye
gives several other examples of Chinese origin that are found later in

Hindu books.

Notwithstanding the Hindu indebtedness to other nations, it is

remarkable to what extent Indian mathematics enters into the

science of our time. Both the form and the spirit of the arithmetic

and algebra of modem times are essentially Indian. Think of our

notation of numbers, brought to perfection by the Hindus, think of

the Indian arithmetical operations nearly as perfect as our own, think

of their elegant algebraical methods, and then judge whether the

Brahmins on the banks of the Ganges are not entitled to some credit.

Unfortunately, some of the most brilliant results in indeterminate an-

alysis, found in Hindu works, reached Europe too late to exert the in-

' A. Arneth, Geschichte der reinen Mathematik. Stuttgart, 1852, p. 174.
2 G. R. Kaye, op. cit., pp. 38-41.
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fluence they would have exerted, had they come two or three centu-

ries earher.

At the beginning of the twentieth century, mathematical activity

along modern lines sprang up in India. In the year 1907 there was
founded the Indian Mathematical Society; in 1909 there was started

at Madras the Journal of the Indian Mathematical Society}

' (Three recent writers have advanced arguments tending to disprove the Hindu
origin of our numerals. We refer (i) to G. R. Kaye's articles in Scientia, Vol. 24,

1918, pp. 53-55; in Journal Asiatic Soc. Bengal, III, 1907, pp. 475-508, also VII,

igii, pp. 801-816: in Indian Antiquary, iqii, pp. 50-56; (2) to Carra de Vaux's
article in Scientia, Vol. 21, 1917, pp. 273-282; (3) to a Russian book brought out
by Nikol. Bubnow in 1908 and translated into German in 19 14 by Jos. Lezius.

Kaye claims to show that the proofs of the Hindu origin of our numerals are

largely legendary, that the question has been clouded by a confusion between the

words hindi (Indian) and hindasi (measure geometrical), that the symbols are

not modified letters of the alphabet. We must hold our minds in suspense on
this difficult question and await further evidence.)



THE ARABS

After the flight of Mohammed from Mecca to Medina in 622 a. d.,

an obscure people of Semitic race began to play an important part in

the drama of history. Before the lapse of ten years, the scattered

tribes of the Arabian peninsula were fused by the furnace blast of

religious enthusiasm into a powerful nation. With sword in hand the
united Arabs subdued Syria and Mesopotamia. Distant Persia and
the lands beyond, even unto India, were added to the dominions of

the Saracens. They conquered Northern Africa, and nearly the

whole Spanish peninsula, but were finally checked from further prog-
ress in Western Europe by the firm hand of Charles Martel (732 a. d.).

The Moslem dominion extended now from India to Spain; but a war
of succession to the caliphate ensued, and in 755 the Mohammedan
empire was divided,—one cahph reigning at Bagdad, the other at Cor-
dova in Spain. Astounding as was the grand march of conquest by
the Arabs, still more so was the ease with which they put aside their

former nomadic life, adopted a higher civilization, and assumed the

sovereignty over cultivated peoples. Arabic was made the written

language throughout the conquered lands. With the rule of the Abba-
sides in the East began a new period in the history of learning. The
capital, Bagdad, situated on the Euphrates, lay half-way between
two old centres of scientific thought,—India in the East, and Greece

in the West. The Arabs were destined to be the custodians of the

torch of Greek science, to keep it ablaze during the period of confu-

sion and chaos in the Occident, and afterwards to pass it over to the

Europeans. This remark applies in part also to Hindu science. Thus
science passed from Aryan to Semitic races, and then back again to

the Aryan. Formerly it was held that the Arabs added but little to

the knowledge of mathematics; recent studies indicate that they must
be credited with novelties once thought to be of later origin.

The Abbasides at Bagdad encouraged the introduction of the

sciences by inviting able specialists to their court, irrespective of na-

tionality or rehgious beUef. Medicine and astronomy were their fa-

vorite sciences. Thus Harun-al-Rashid, the most distinguished Sara-

cen ruler, drew Indian physicians to Bagdad. In the year 772 there

came to the court of Caliph Almansur a Hindu astronomer with as-

tronomical tables which were ordered to be translated into Arabic.

These tables, known by the Arabs as the Sindhind, and probably taken

from the Brahma-sphuta-siddhdnta of Brahmagupta, stood in great

authority. They contained the important Hindu table of sines.

Doubtless at this time, and along with these astronomical tables,
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the Hindu numerals, with the zero and the principle of position, were
introduced among the Saracens. Before the time of Mohammed the

Arabs had no numerals. Numbers were written out in words. Later,

the numerous computations connected with the financial administra-

tion over the conquered lands made a short symbolism indispensable.

In some localities, the numerals of the more civilized conquered na-

tions were used for a time. Thus, in Syria, the Greek notation was
retained; in Egypt, the Coptic. In some cases, the numeral adjec-

tives may have been abbreviated in writing. The Diwani-numerals,

found in an Arabic-Persian dictionary, are supposed to be such ab-

breviations. Gradually it became the practice to employ the 28 Ara-
bic letters of the alphabet for numerals, in analogy to the Greek sys-

tem. This notation was in turn superseded by the Hindu notation,

which quite early was adopted by merchants, and also by writers on
arithmetic. Its superiority was generally recognized, except in as-

tronomy, where the alphabetic notation continued to be used. Here
the alphabetic notation offered no great disadvantage, since in the

sexagesimal arithmetic, taken from the Almagest, numbers of gen-

erally only one or two places had to be written.-'

As regards the form of the so-called Arabic numerals, the state-

ment of the Arabic writer Al-Birimi (died 1039), who spent many
years in India, is of interest. He says that the shape of the numer-
als, as also of the letters in India, differed in different localities, and
that the Arabs selected from the various forms the most suitable. An
Arabian astronomer says there was among people much difference in

the use of symbols, especially of those for 5, 6, 7, and 8. The symbols
used by the Arabs can be traced back to the tenth century. We find

material differences between those used by the Saracens in the East
and those used in the West. But most surprising is the fact that the

symbols of both the East and of the West Arabs deviate so extraordi-

narily from the Hindu Devanagari numerals ( = divine numerals) of

to-day, and that they resemble much more closely the apices of the

Roman writer Boethius. This strange similarity on the one hand,
and dissimilarity on the other, is difficult to explain. The most plau-

sible theory is the one of Woepcke: (i) that about the second cen-

tury after Christ, before the zero had been invented, the Indian nu-
merals were brought to Alexandria, whence they spread to Rome
and also to West Africa; (2) that in the eighth century, after the no-
tation in India had been already much modified and perfected by the
invention of the zero, the Arabs at Bagdad got it from the Hindus;

(3) that the Arabs of the West borrowed the Columbus-egg, the zero,

from those in the East, but retained the old forms of the nine numer-
als, if for no other reason, simply to be contrary to their political ene-

mies of the East; (4) that the old forms were remembered by the West-
Arabs to be of Indian origin, and were hence called Gubar-numerais

^ H. Hankel, op. cit., p. 255.
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( = dust-numerals, in memory of the Brahmin practice of reckoning

on tablets strewn with dust or sand; (5) that, since the eighth cen-

tury, the numerals in India underwent further changes, and assumed
the greatly modified forms of the modern Devanagari-numerals.^ This
is rather a bold theory, but, whether true or not, it explains better

than any other yet propounded, the relations between the apices, the

Gubar, the East-Arabic, and Devanagari numerals.
It has been mentioned that in 772 the Indian Siddhanta was brought

to Bagdad and there translated into Arabic. There is no evidence that

any intercourse existed between Arabic and Indian astronomers either

before or after this time, excepting the travels of Al-Biruni. But
we should be very slow to deny the probabihty that more extended

communications actually did take place.

Better informed are we regarding the way in which Greek science,

in successive waves, dashed upon and penetrated Arabic soil. In

Syria the sciences, especially philosophy and medicine, were culti-

vated by Greek Christians. Celebrated were the schools at Antioch

and Emesa, and, first of all, the flourishing Nestorian school at Edessa.

From Syria, Greek physicians and scholars were called to Bagdad.

Translations of works from the Greek began to be made. A large

number of Greek manuscripts were secured by Caliph Al-Mamun (813-

833) from the emperor in Constantinople and were turned over to

Syria. The successors of Al-Mamun continued the work so auspi-

ciously begim, until, at the beginning of the tenth century, the more

important philosophic, medical, mathematical, and astronomical

works of the Greeks could all be read in the Arabic tongue. The trans-

lations of mathematical works must have been very deficient at first,

as it was evidently difficult to secure translators who were masters of

both the Greek and Arabic and at the same time proficient in mathe-

matics. The translations had to be revised again and again before

they were satisfactory. The first Greek authors made to speak in

Arabic were Euchd and Ptolemy. This was accomplished during the

reign of the famous Harun-al-Rashid. A revised translation of Eu-

cUd's Elements was ordered by Al-Mamun. As this revision stiU con-

tained numerous errors, a new translation was made, either by the

learned Hunain ibn Ishak, or by his son, Ishak ibn Hunain. The

word " ibn " means " son." To the thirteen books of the Elements were

added the fourteenth, written by Hypsicles, and the fifteenth attrib-

uted by some to Damascius. But it remained for Tabit ibn Korra to

bring forth an Arabic Euclid satisfying every need. Still greater dif-

ficulty was experienced in securing an intelligent translation of the

Almagest. Among other important translations into Arabic were the

works of Apollonius, Archimedes, Heron, and Diophantus. Thus we

see that in the course of one century the Arabs gained access to the

vast treasures of Greek science.

1 M. Cantor, op. cit., Vol. I, 1907, p. 711.
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In astronomy great activity in original research existed as early as

the ninth century. The religious observances demanded by Moham-
medanism presented to astronomers several practical problems. The
Moslem dominions being of such enormous extent, it remained in

some localities for the astronomer to determine which way the "Be-
liever" must turn during prayer that he may be facing Mecca. The
prayers and ablutions had to take place at definite hours during the

day and night. This led to more accurate determinations of time. To
fix the exact date for the Mohammedan feasts it became neces-

sary to observe more closely the motions of the moon. In addition to

all this, the old Oriental superstition that extraordinary occurrences

in the heavens in some mysterious way affect the progress of human
affairs added increased interest to the prediction of eclipses.'-

For these reasons considerable progress was made. Astronomical

tables and instruments were perfected, observatories erected, and a

connected series of observations instituted. This intense love for as-

tronomy and astrology continued during the whole Arabic scientific

period. As in India, so here, we hardly ever find a man exclusively

devoted to pure mathematics. Most of the so-called mathematicians
were first of all astronomers.

The first notable author of mathematical books was Mohammed
ibn Musa Al-Khowarizmi, who lived during the reign of Caliph Al-

Mamun (813-833). Our chief source of information about Al-Khow-
rizmi is the book of chronicles, entitled Kitab Al-Fihrist, written by
Al-Nadim, about 987 A. D., and containing biographies of learned

men. Al-Khowarizmi was engaged by the caliph in making extracts

from the Sindhind, in revising the tablets of Ptolemy, in taking ob-

servations at Bagdad and Damascus, and in measuring a degree of

the earth's meridian. Important to us is his work on algebra and
arithmetic. The portion on arithmetic is not extant in the original,

and it was not till 1857 that a Latin translation of it was found. It

begins thus: "Spoken has Algoritmi. Let us give deserved praise to

God, our leader and defender." Here the name of the author, Al-
Khowarizmi has passed into Algorilmi, from which come our modern
word algorithm, signifying the art of computing in any particular

way, and the obsolete form augrim, used by Chaucer.^ The arith-

metic of Khowarizmi, being based on the principle of position and
the Hindu method of calculation, "excels," says an Arabic writer,

"all others in brevity and easiness, and exhibits the Hindu intellect

and sagacity in the grandest inventions." This book was followed

by a large number of arithmetics by later authors, which differed

from the earlier ones chiefly in the greater variety of methods. Ara-
bian arithmetics generally contained the four operations with inte-

> H. Hankel, op. cit., pp. 226-228.
^ See L. C. Karpinski, "Augrimstones" in Modern Language Notes, Vol. 27,

1912, pp. 206-209.
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gers and fractions, modelled after the Indian processes. They ex-
plained the operation of casting out the q's, also the regula falsa and
the reguia duorum falsorum, sometimes called the rules of "false po-
sition" and of "double position" or "double false position," by which
algebraical examples could be solved without algebra. The regula
falsa or falsa positio was the assigning of an assumed value to the
unknown quantity, which value, if wrong, was corrected by some
process like the "rule of three." It was known to the Hindus and to
the Egyptian Ahmes. Diophantus used a method almost identical
with this. The regula duorum falsorum was as follows:^ To solve an
equation /(a;) = V, assume, for the moment, two values for x; namely,
x=aa.n6.x= h. Then form /(a) = A and /(6) = 5, and determine the

errors V-A = Ea and V-B= Eb, then the required x= ^-^—^^ is

generally a close approximation, but is absolutely accurate whenever
f{x) is a hnear function of x.

We now return to Khowarizmi, and consider the other part of his

work,—the algebra. Thisls'the first book known to contain this word
itself as title. Really the title consists of two words, al-jebr w'almu-
qahala, the nearest EngHsh translation of which is "restoration and
reduction." By "restoration" was meant the transposing of negative
terms to the other side of the equation; by "reduction," the uniting of
similar terms. Thus, x^ — 2x=$x-\-6 passes by al-jebr into x^ = 5x+
2.1-+6; and this, by almuqabala, into x^=7x-|-6. The work on alge-

bra, like the arithmetic, by the same author, contains little that is

original. It explains the elementary operations and the solutions of

linear and quadratic equations. From whom did the author borrow
his knowledge of algebra? That it came entirely from Indian sources

is impossible, for the Hindus had no rules like the "restoration" and
"reduction." They were, for instance, never in the habit of making
all terms in an equation positive, as is done by the process of " restora-

tion." Diophantus gives two rules which resemble somewhat those

of our Arabic author, but the probability that the Arab got all his al-

gebra from Diophantus is lessened by the considerations that he rec-

ognized both roots of a quadratic, while Diophantus noticed only one;

and that the Greek algebraist, unlike the Arab, habitually rejected

irrational solutions. It would seem, therefore, that the algebra of

Al-KhowaHzmi was neither purely Indian nor purely Greek. Al-

Khowarizimi's fame among the Arabs was great. He gave the ex-

amples x^-\-iox= 2,g, a;^+2i = iox, t,x-\-^= x'^ which are used by later

authors, for instance, by the poet and mathematician Omar Khayyam.
"The equation x^-\-iox=2,g runs like a thread of gold through the

algebras of several centuries" (L. C. Karpinski). It appears in the

algebra of Abu Kamil who drew extensively upon the work of Al-

1 H. Hankel, op. cit., p. 259.



104 A HISTORY OF MATHEMATICS

Kiowarizmi. Abu Kamil, in turn, was the source largely drawn upon
by the Italian, Leonardo of Pisa, in his book of 1202.

The algebra of Al-Khowarizmi contains also a few meagre frag-

ments on geometry. He gives the theorem of the right triangle, but

proves it after Hindu fashion and only for the simplest case, when the

right triangle is isosceles. He then calculates the areas of the tri-

angle, parallelogram, and circle. For t he uses the value 3^, and also

the two Indian, t= V io and tt= -||-tff . Strange to say, the last value

was afterwards forgotten by the Arabs, and replaced by others less

accurate. Al-Khowarizmi prepared astronomical tables, which, about
1000 A. D., were revised by Maslama al-Majrltl and are of importance

as containing not only the sine function, but also the tangent function.^

The former is evidently of Hindu origin, the latter may be an addi-

tion made by Maslama and was formerly attributed to Abu'l Wefa.
Next to be noticed are the three sons of Musa Sakir, who lived in

Bagdad at the court of the Caliph Al-Mamun. They wrote several

works, of which we mention a geometry containing the well-known
formula for the area of a triangle expressed in terms of its sides. We
are told that one of the sons travelled to Greece, probably to collect

astronomical and mathematical manuscripts, and that on his way back
he made acquaintance with Tabit ibn Korra. Recognizing in him a
talented and learned astronomer, Mohammed procured for him a place

among the astronomers at the court in Bagdad. Tabit ibn Korra
(836-901) was born at Harran in Mesopotamia. He was proficient

not only in astronomy and mathematics, but also in the Greek, Arabic,

and Syrian languages. His translations of Apollonius, Archimedes,
Euclid, Ptolemy, Theodosius, rank among the best. His dissertation

on amicable numbers (of which each is the sum of the factors of the
other) is the first known specimen of original work in mathematics on
Arabic soil. It shows that he was familiar with the Pythagorean the-

ory of numbers. Tabit invented the following rule for finding amicable
numbers, which is related to Euclid's rule for perfect numbers: If

^ = 3.2" — I, g= 3.2"~'— I, r= 9.2^"—^— I (« being a whole number)
are three primes, then a=2"pq, b=2''r are a pair of amicable numbers.
Thus, if M=2, then p=ii, 9=5, ''=71, and 0=220, 6= 284. Tabit
also trisected an angle.

Tabit ibn Korra is the earliest writer outside of China to discuss

magic squares. Other Arabic tracts on this subject are due to Ibn
Al-Haitam and later writers.^

Foremost among the astronomers of the ninth century ranked Al-

iSee H. Suter, "Die astronomischen Tafeln des Muhammed ibn MUsa Al-
Khwarizmi in der Bearbeitung des Maslama ibn Ahmed AI-Madjriti und der Latein.
Uebersetzung des Athelhard von Bath," in MSmoires de VAcadimie R. des Sciences
et des Leitres de Danemark, Copenhague, 7™"= S., Section des Lettres, t. Ill, no. i,

1914.

^See H. Suter, Die Mathematiker u. Aslronomen der Araber u. ihre Werke, 1900,

PP- 36, 93, 136, 139, 140, 146, 218.
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Battani, called Albategnius by the Latins. Battan in Syria was his
birthplace. His observations were celebrated for great precission.
His work, De scientia stellarum, was translated into Latin by Plato
Tiburtinus, in the tweKth century. Out of this translation sprang the
word "sinus," as the name of a trigonometric function. The Arabic
word for "sine," jiba was derived from the Sanskrit jwa, and resem-
bled the Arabic word jaib, meaning an indentation or gulf. Hence
the Latin "sinus." ^ Al-Battani was a close student of Ptolemy, but
did not follow him altogether. He took an important step for the
better, when he introduced the Indian "sine" or half the chord, in
place of the whole chord of Ptolemy. He was the first to prepare a
table of cotangents. He dealt with horizontal and also vertical sun
dials, and accordingly considered a horizontal shadow (umbra extensa
in Latin translation) and vertical shadow {umbra versa). These de-
noted, respectively, the "cotangent" and "tangent"; the former
came to be called umbra recta by Latin writers. Al-Battani probably
knew the law of sines; that this law was known to Al-Biruni is certain.

Another improvement on Greek trigonometry made by the Arabs
points likewise to Indian influences. Propositions and operations
which were treated by the Greeks geometrically are expressed by the
Arabs algebraically. Thus, Al-Battani at once gets from an equation

a = D, the value of 6 by means of sin 6 = ,

—

r-^o

,

—a process
C0S& -^ Vi+Z)^ ^

unknown to the ancients. He knows all the formulas for spherical

triangles given in the Almagest, but goes further, and adds an impor-
tant one of his own for obUque-angled triangles; namely, cos a= cos b.

cos c-\- sin b sin c cosA

.

At the beginning or the tenth century political troubles arose in the

East, and as a result the house of the Abbasides lost power. One prov-
ince after another was taken, till, in 945, all possessions were wrested
from them. Fortunately, the new rulers at Bagdad, the Persian Buy-
ides, were as much interested in astronomy as their predecessors. The
progress of the sciences was not only unchecked, but the conditions

for it became even more favorable. The Emir Adud-ed-daula (978-

983) gloried in having studied astronomy himself. His son Saraf-ed-

daula erected an observatory in the garden of his palace, and called

thither a whole group of scholars.^ Among them were Abu'l-Wefa,

Al-Kuhi, Al-Sagani.

Abu'l Wefa (940-998) was born at Buzshan in Chorassan, a region

among the Persian mountains, which has brought forth many Arabic

astronomers. He made the brilliant discovery of the variation of the

moon, an inequality usually supposed to have been first discovered by
Tycho Brahe. Abu'l-Wefa translated Diophantus. He is one of the

1 M. Cantor, op. cit., Vol. I, 3 Aufl., 1907, p. 737.
2 H. Hankel, op. cit., p. 242.



io6 A HISTORY OF MATHEMATICS

last Arabic translators and commentators of Greek authors. The fact

that he esteemed the algebra of Mohammed ibn Musa Al-Khowarizimi

worthy of his commentary indicates that thus far algebra had made
little or no progress on Arabic soil. Abu'1-Wefa invented a method for

computing tables of sines which gives the sine of half a degree correct

to nine decimal places. He used the tangent and calculated a table of

tangents. In considering the shadow-triangle of sun-dials he intro-

duced also the secant and cosecant. Unfortunately, these new trigo-

nometric functions and the discovery of the moon's variation ex-

cited apparently no notice among his contemporaries and followers.

A treatise by Abu'1-Wefa on "geometric constructions" indicates that

efforts were being made at that time to improve draughting. It con-

tains a neat construction of the corners of the regular polyedrons on
the circumscribed sphere. Here, for the first time, appears the con-

dition which afterwards became very famous in the Occident, that

the construction be effected with a single opening of the compasses.

Al-Kuhi, the second astronomer at the observatory of the emir at

Bagdad, was a close student of Archimedes and Apollonius. He solved

the problem, to construct a segment of a sphere equal in volume to

a given segment and having a curved surface equal in area to that of

another given segment. He, Al-Sagani, and AI-Biruni made a study
of the trisection of angles. Abu'I Jud, an able geometer, solved the

problem by the intersection of a parabola with an equilateral hyper-

bola.

The Arabs had already discovered the theorem that the sum of two
cubes can never be a cube. This is a special case of the "last theorem
of Fermat." Abu Mohammed Al-Khojandi of Chorassan thought he
had proved this. His proof; now lost, is said to have been defective.

Several centuries later Beha-Eddin declared the impossibiUty of

x^-\-y^= z^. Creditable work in theory of numbers and algebra was
done by Al-Karkhi of Bagdad, who lived at the beginning of the elev-

enth century. His treatise on algebra is the greatest algebraic work
of the Arabs. In it he appears as a disciple of Diophantus. He was
the first to operate with higher roots and to solve equations of the
form x''-"-\-ax"- = h. For the solution of quadratic equations he gives

both arithmetical and geometrical proofs. He was the first Arabic
author to give and prove the theorems on the summation of the se-

ries :

—

Al-Karkhi also busied himself with indeterminate analysis. He
showed skill in handling the methods of Diophantus, but added no-
thing whatever to the stock of knowledge already on hand. Rather
surprising is the fact that Al-Karkhi's algebra shows no traces what-
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ever of Hindu indeterminate analysis. But most astonishing it is,

that an arithmetic by the same author completely excludes the Hindu
numerals. It is constructed wholly after Greek pattern. Abu'1-Wefa,
also, in the second half of the tenth century, wrote an arithmetic in

which Hindu numerals find no place. This practice is the very oppo-
site to that of other Arabian authors. The question, why the Hindu
numerals were ignored by so eminent authors, is certainly a puzzle.
Cantor suggests that at one time there may have been rival schools,
of which one followed almost exclusively Greek mathematics, the
other Indian.

_
The Arabs were familiar with geometric solutions of quadratic equa-

tions. Attempts were now made to solve cubic equations geometri-
cally. They were led to such solutions by the study of questions like

the Archimedean problem, demanding the section of a sphere by a
plane so that the two segments shall be in a prescribed ratio. The
first to state this problem in. form of a cubic equation was Al-Mahani
of Bagdad, while Abu Ja'far Alchazin was the first Arab to solve the
equation by conic sections. Solutions were given also by Al-Kuhi,
Al-Hasan ibn Al-Haitam, and others. Another difficult problem, to

determine the side of a regular heptagon, required the construction of

the side from the equation x^—x^ — 2x-{-i=o. It was attempted by
many and at last solved by Abu'l Jud.
The one who did most to elevate to a method the solution of alge-

braic equations by intersecting conies, was the poet Omar Khayyam
of Chorassan (about 1045-1123). He divides cubics into two classes,

the trinomial and quadrinomial, and each class into families and spe-

cies. Each species is treated separately but according to a general

plan. He beheved that cubics could not be solved by calculation, nor
bi-quadratics by geometry. He rejected negative roots and often

failed to discover all the positive ones. Attempts at bi-quadratic

equations were made by Abu'l-Wefa,^ who solved geometrically x'* = a

and x*-\-ax^= b.

The solution of cubic equations by intersecting conies was the great-

est achievement of the Arabs in algebra. The foundation to this work
had been laid by the Greeks, for it was Mensechmus who first con^
structed the roots of x^— a = o or x^—2a^= o. It was not his aim to

find the number corresponding to *, but simply to determine the side

X of a cube double another cube of side a. The Arabs, on the other

hand, had another object in view: to find the roots of given numerical

equations. In the Occident, the Arabic solutions of cubics remained

unknown until quite recently. Descartes and Thomas Baker invented

these constructions anew. The works of Al-Khayyam, Al-Karkhi,

Abu'l Jud, show how the Arabs departed further and further from

^L. Matthiessen, Grundzuge der Antiken und Modernen Algebra der Lilteralen

Gleichungen, Leipzig, 1878, p. 923. Ludvvig Matthiessen (1830-1906) was professor

of physics at Rostock.
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the Indian methods, and placed themselves more immediately under

Greek influences.

With Al-Karkhi and Omar Khayyam, mathematics among the

Arabs of the East reached flood-mark, and now it begins to ebb. Be-

tween iioo and 1300 a. d. come the crusades with war and bloodshed,

during which European Christians profited much by their contact with

Arabian culture, then far superior to their own. The crusaders were
not the only adversaries of the Arabs. During the first half of the

thirteenth century, they had to encounter the wild Mongolian hordes,

and, in 1256, were conquered by them under the leadership of Hulagu.
The caliphate at Bagdad now ceased to exist. At the close of the four-

teenth century still another empire was formed by Timur or Tamer-
lane, the Tartar. During such sweeping turmoil, it is not surprising

that science dechned. Indeed, it is a marvel that it existed at all.

During the supremacy of Hulagu, lived Nasir-Eddin (1201-1274),
a man of broad culture and an able astronomer. He persuaded Hu-
lagu to build him and his associates a large observatory at Maraga.
Treatises on algebra, geometry, arithmetic, and a translation of Eu-
clid's Elements, were prepared by him. He for the first time elabo-

rated trigonometry independently of astronomy and to such great

perfection that, had his work been known, Europeans of the fifteenth

century might have spared their labors.' He tried his skill at a proof
of the parallel-postulate. His proof assumes that if AB is perpendic-

ular to CD at C, and if another straight line EDF makes an angle

EDC acute, then the perpendiculars to AB, comprehended between
AB and EF, and drawn on the side of CD toward E, are shorter and
shorter, the further they are from CD. His proof, in Latin translation,

was published by Wallis in 1651.^ Even at the court of Tamerlane in

D Samarkand, the sciences were by
no means neglected. A group of

astronomers was drawn to this

court. Uleg Beg (1393-1449), a
C grandson of Tamerlane, was him-

self an astronomer. Most prominent at this time was Al-Kashi, the
author of an arithmetic. Thus, during intervals of peace, science
continued to be cultivated in the East for several centuries. The
last Oriental writer was Beha-Eddin (1547-1622). His Essence of
Arithmetic stands on about the same level as the work of Mohammed
ibn Musa Khowarizmi, written nearly 800 years before.

"Wonderful is the expansive power of Oriental peoples, with which
upon the wings of the wind they conquer half the world, but more
wonderful the energy with which, in less than two generations, they
raise themselves from the lowest stages of cultivation to scientific

' Bibliolheca mathematica (2), 7, 1893, p. 6.

2 R. Bonola, Non-Euclidean Geometry, transl. by H. S. Carslaw, Chicago, 1917,
pp. 10-12.
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efforts." During all these centuries, astronomy and mathematics in

the Orient greatly excel these sciences in the Occident.
Thus far we have spoken only of the Arabs in the East. Between

the Arabs of the East and of the West, which were under separate gov-
ernments, there generally existed considerable political animosity.
In consequence of this, and of the enormous distance between the two
great centres of learning, Bagdad and Cordova, there was less scien-

tific intercourse among them than might be expected to exist between
peoples having the same religion and written language. Thus the
course of science in Spain was quite independent of that in Persia.

While wending our way westward to Cordova, we must stop in Egypt
long enough to observe that there, too, scientific activity was re-

kindled. Not Alexandria, but Cairo with its library and observatory,
was now the home of learning. Foremost among her scientists ranked
Ibn Junos (died 1008), a contemporary of Abu'1-Wefa. He solved
some difficult problems in spherical trigonometry. Another Egyptian
astronomer was Ibn Al-Haitam (died 1038), who computed the vol-

umes of paraboloids formed by revolving a parabola about any diam-
eter or any ordinate; he used the method of exhaustion and gave the

four siunmation formulas for the first four powers of the natural num-
bers.-^ Travelling westward, we meet in Morocco Abu'l Hasan Ali,

whose treatise "on astronomical instruments" discloses a thorough
knowledge of the Conies of Apollonius. Arriving finally in Spain
at the capital, Cordova, we are struck by the magnificent splendor of

her architecture. At this renowned seat of learning, schools and li-

braries were founded during the tenth century.

Little is known of the progress of mathematics in Spain. The ear-

liest name that has come down to us is Al-Majriti (died 1007), the

author of a mystic paper on "amicable numbers." His pupils founded
schools at Cordova, Dania, and Granada. But the only great astron-

omer among the Saracens in Spain is Jabir ibn Afiah of Sevilla, fre-

quently called Geber. He lived in the second half of the eleventh cen-

tury. It was formerly believed that he was the inventor of algebra,

and that the word algebra came from "Jabir" or " Geber." He ranks

among the most eminent astronomers of this time, but, Uke so many
of his contemporaries, his writings contain a great deal of mysticism.

His chief work is an astronomy in nine books, of which the first is de-

voted to trigonometry. In his treatment of spherical trigonometry,

he exercises great independence of thought. He makes war against

the time-honored procedure adopted by Ptolemy of applying "the

rule of six quantities," and gives a new way of his own, based on the
" rule of four quantities." This is: If PPi and QQi be two arcs of great

circles intersecting in A, and if PQ and PiQi be arcs of great circles

drawn perpendicular to QQi, then we have the proportion

sin ^P : sin PQ = sin APi : sin PiQi.
' H. Suter in Bibliotheca mathematica, 3. S., Vol. 12, 1911-12, pp. 320-322.



no A HISTORY OF MATHEMATICS

From this he derives the formulas for spherical right triangles. This

sine-formula was probably known before this to Tabit ibn Korra and
others.^ To the four fundamental formulas already given by Ptolemy,

he added a fifth, discovered by himself. If a, b, c, be the sides, and
A, B, C, the angles of a spherical triangle, right-angled at A, then

cos B = cos b sin C. This is frequently called "Geber's Theorem."

Radical and bold as were his innovations in spherical trigonometry,

in plane trigonometry he followed slavishly the old beaten path of

the Greeks. Not even did he adopt the Indian "sine" and "cosine,"

but still used the Greek "chord of double the angle." So painful was
the departure from old ideas, even to an independent Arab!

It is a remarkable fact that among the early Arabs no trace what-

ever of the use of the abacus can be discovered. At the close of the

thirteenth century, for the first time, do we find an Arabic writer, Ibn
Albanna, who uses processes which are a mixture of abacal and Hindu
computation. Ibn Albanna lived in Bugia, an African seaport, and it

is plain that he came under European influences and thence got a

knowledge of the abacus. Ibn Albanna and Abraham ibn Esra be-

fore him, solved equations of the first degree by the rule of "double
false position." After Ibn Albanna we find it used by Al-Kalsadi

and Beha-Eddin (1547-1622).^ If ax-{-b = o, let m and n be any two
numbers ("double false position"), let also am-\-b = M, an-\-b = N,
then x= {nM~mN)-h{M-N).
Of interest is the appro.ximate solution of the cubic x^-\-Q= Px,

which grew out of the computation of x= sin 1°. The method is

shown only in this one numerical example. It is given in Miram
Chelebi in 1498, in his annotations of certain Arabic astronomical

tables. The solution is attributed to Atabeddin Jamshid} Write
x={Q-\-x'^)^V. If Q^P= a-\-R-^P, then a is the first approxima-
tion, X being snail. We have Q= aP^R, and consequently x= a-\-

{R-\-a'^)-i-P= a-\-b-\-S-i-P, say. Then a-\-b is the second approxima-
tion. We have R = bP+S-a^ and Q={a-{-b)P-{-S-a?. Hence
x= a-\-b-\-{S-a:'^-{a+bf^P= a+h+c+T^P, say. Here a-\-b

-\-c is the third approximation, and so on. In general, the amount of

computation is considerable, though for finding a;=sin 1° the method
answered very well. This example is the only known approximate
arithmetical solution of an affected equation due to Arabic writers.

Nearly three centuries before this, the Italian, Leonardo of Pisa,

carried the solution of a cubic to a high degree of approximation, but
without disclosing his method.
The latest prominent Spanish-Arabic scholar was Al-Kalsadi of

Granada, who died in i486. He wrote the Raising of the Veil of the

Science of Gubar. The word "gubar" meant originally "dust" and

' See Bihliotheca mathemaiica , 2 S., Vol. 7, i8g3, p. 7.

" L. Matthiessen, Griindziige d. Aniikcn u. modcrnen Algebra, Leipzig, 1878, p. 275,
' See Cantor, op. cit. Vol. I, 3rd Ed., 1907, p. 782.
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standshere for written arithmetic with numerals, in contrast to men-
tal arithmetic. In addition, subtraction and multiplication, the
result is written above the other figures. The square root was indi-

cated by the initial Arabic letter of the word "jidre," meaning "root,"
particularly "square root." He had symbols for the unknown and
had, in fact, a considerable amount of algebraic symboHsm. His

approxiniation for the square root Va^+6, namely (4^^+3(16)/ (40^+
b), is believed by S. Giinther to disclose a method of continued frac-

tions, without our modern notation, since (4a'+3a6)/(4a2-fJ) =
a+bl{2a+b/2a). Al-Kalsadi's work excels other Arabic works in
the amount of algebraic symbolism used. Arabic algebra before him
contained much less s)TnboUsm then Hindu algebra. With Nessel-
mann\ we divide algebras, with respect to notation, into three classes:

(i) Rhetorical algebras, in which no symbols are used, everything
being written out in words, (2) Syncopated algebras, in which, as in

the first class, everything is written out in words, except that abbrevia-
tions are used for certain frequently recurring operations and ideas,

(3) Symbolic algebras, in which all forms and operations are repre-

sented by a fully developed algebraic symbolism, as for example,
x^+iox+y. According to this classification, Arabic works (excepting
those of the later western Arabs), the Greek works of lamblichus and
Thymaridas, and the works of the early Italian writers and of Regio-

montanus are rhetorical in form; the works of the later western Aral;s,

of Diophantus and of the later European writers down to about the

middle of the seventeenth century (excepting Vieta's and Oughtred's)

are syncopated in form; the Hindu works and those of Vieta and
Oughtred, and of the Europeans since the middle of the seventeenth
century, are symbolic in form. It is thus seen that the western Arabs
took an advanced position in matters of algebraic notation, and were
inferior to none of their predecessors or contemporaries, except the

Hindus.

In the year in which Columbus discovered America, the Moors
lost their last foot-hold on Spanish soil; the productive period of

Arabic science was passed.

We have witnessed a laudable intellectual activity among the

Arabs. They had the good fortune to possess rulers who, by their

munificence, furthered scientific research. At the courts of the ca-

Uphs, scientists were supplied with libraries and observatories. A
large number of astronomical and mathematical works were written

by Arabic authors. It has been said that the Arabs were learned,

but not original. With our present knowledge of their work, this

dictum needs revision; they have to their credit several substantial

accomplishments. They solved cubic equations by geometric con-

struction, perfected trigonometry to a marked degree and made nu-

1 G. H. F. Nesselmann, Die Algebra der Griechen, Berlin, 1842, pp. 301-306.
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merous smaller advances all along the line of mathematics, physics

and astronomy. Not least of their services to science consists in this,

that they adopted the learning of Greece and India, and kept what
they received with care. When the love for science began to grow
in the Occident, they transmitted to the Europeans the valuable treas-

ures of antiquity. Thus a Semitic race was, during the Dark Ages,

the custodian of the Aryan intellectual possessions.



EUROPE DURING THE MIDDLE AGES

With the third century after Christ begins an era of migration of
hations in Europe. The powerful Goths quit their swamps and forests
in the North and sweep onward in steady southwestern current, dis-

lodging the Vandals, Sueves, and Burgundians, crossing the Roman
territory, and stopping and recoiling only when reaching the shores
of the Mediterranean. From the Ural Mountains wild hordes sweep
down on the Danube. The Roman Empire falls to pieces, and the
Dark Ages begin. But dark though they seem, they are the germinat-
ing season of the institutions and nations of modern Europe. The
Teutonic element, partly pure, partly intermixed with the Celtic and
Latin, produces that strong and luxuriant growth, the modern civili-

zation of Europe. Almost all the various nations of Europe belong
to the Aryan stock. As the Greeks and the Hindus—both Aryan races
—were the great thinkers of antiquity, so the nations north of the Alps
and Italy became the great intellectual leaders of modern times.

Introduction of Roman Mathematics

We shall now consider how these as yet barbaric nations of the
North gradually came in possession of the intellectual treasures of

antiquity. With the spread of Christianity the Latin language was
introduced not only in ecclesiastical but also in scientific and all im-
portant worldly transactions. Naturally the science of the Middle
Ages was drawn largely from Latin sources. In fact, during the earHer

of these ages Roman authors were the only ones read in the Occident.

Though Greek was not wholly unknown, yet before the thirteenth

century not a single Greek scientific work had been read or translated

into Latin. Meagre indeed was the science which could be gotten

from Roman writers, and we must wait several centuries before any
substantial progress is made in mathematics.

After the time of Boethius and Cassiodorius mathematical activity

in Italy died out. The first slender blossom of science among tribes

that came from the North was an encyclopedia entitled Origenes,

written by Isidorus (died 636 as bishop of Seville). This work is

modelled after the Roman encyclopaedias of Martianus CapeUa of

Carthage and of Cassiodorius. Part of it is devoted to the quadrivium,

arithmetic, music, geometry, and astronomy. He gives definitions

and grammatical explications of technical terms, but does not de-

scribe the modes of computation then in vogue. After Isidorus there

follows a century of darkness which is at last dissipated by the appear-

113
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ance of Bede the Venerable (672-735), the most learned man of his

time. He was a native of Wearmouth, in England. His works con-

tain treatises on the Computus, or the computation of Easter-time,

and on finger-reckoning. It appears that a finger-symbolism was then

widely used for calculation. The correct determination of the time

of Easter was a problem which in those days greatly agitated the

Church. It became desirable to have at least one monk at each mon-
astery who could determine the day of rehgious festivals and could

compute the calendar. Such determinations required some knowledge
of arithmetic. Hence we find that the art of calculating always found

some little corner in the curriculum for the education of monks.
The year in which Bede died is also the year in which Alcuin (735-

804) was born. Alcuin was educated in Ireland, and was called to the

court of Charlemagne to direct the progress of education in the great

Frankish Empire. Charlemagne was a great patron of learning and
of learned men. In the great sees and monasteries he founded schools

in which were taught the psalms, writing, singing, computation {corn-

putus), and grammar. By computus was here meant, probably, not
merely the determination of Easter-time, but the art of computation
in general. Exactly what modes of reckoning were then employed
we have no means of knowing. It is not likely that Alcuin was familiar

with the apices of Boethius or with the Roman method of reckoning

on the abacus. He belongs to that long list of scholars who dragged
the theory of numbers into theology. Thus the number of beings

created by God, who created all things well, is 6, because 6 is a perfect

number (the sum of its divisors being 1+2+3 = 6); 8, on the other

hand, is an imperfect number (i+2+4<8); hence the second origin

of mankind emanated from the number 8, which is the number of souls

said to have been in Noah's ark.

There is a collection of "Problems for Quickening the Mind" (prop-

ositiones ad acuendos iuvenes), which are certainly as old as 1000 a. d.

and possibly older. Cantor is of the opinion that they were written

much earher and by Alcuin. The foUowing is a specimen of these

"Problems": A dog chasing a rabbit, which has a start of 150 feet,

jumps 9 feet every time the rabbit jumps 7. In order to determine in

how many leaps the dog overtakes the rabbit, 150 is to be divided by 2.

In this collection of problems, the areas of triangular and quadrangular
pieces of land are found by the same formulas of approximation as

those used by the Egyptians and given by Boethius in his geometry.
An old problem is the "cistern-problem" (given the time in which
several pipes can fill a cistern singly, to find the time in which they
fill it jointly), which has been found previously in Heron, in the Greek
Anthology, and in Hindu works. Many of the problems show that
the collection was compiled chiefly from Roman sources. The prob-
lem which, on account of its uniqueness, gives the most positive testi-

mony regarding the Roman origin is that on the interpretation of a
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will in a case where twins are born. The problem is identical with the
Roman, except that different ratios are chosen. Of the exercises for

recreation, we mention the one of the wolf, goat, and cabbage, to be
rowed across a river in a boat holding only one besides the ferry-man.
Query: How must he carry them across so that the goat shall not eat
the cabbage, nor the wolf the goat? ^ The solutions of the "problems
for quickening the mind" require no further knowledge than the recol-

lection of some few formulas used in surveying, the ability to solve
linear equations and to perform the four fundamental operations with
integers. Extraction of roots was nowhere demanded ; fractions hardly
ever occur. ^

The great empire of Charlemagne tottered and fell almost imme-
diately after his death. War and confusion ensued. Scientific pur-
suits were abandoned, not to be resumed until the close of the tenth

century, when under Saxon -rule in Germany and Capetian in France,

more peaceful times began. The thick gloom of ignorance commenced
to disappear. The zeal with which the study of mathematics was now
taken up by the monks is due principally to the energy and influence

of one man,

—

Gerbert. He was born in Aurillac in Auvergne. After

receiving a monastic education, he engaged in study, chiefly of mathe-
matics, in Spain. On his return he taught school at Rheims for ten

years and became distinguished for his profound scholarship. By
King Otto I, and his successors Gerbert was held in highest esteem.

He was elected bishop of Rheims, then of Ravenna, and finally was
made Pope under the name of Sylvester II, by his former Emperor
Otho III. He died in 1003, after a life intricately involved in many
political and ecclesiastical quarrels. Such was the career of the great-

est mathematician of the tenth century in Europe. By his contem-

poraries his mathematical knowledge was considered wonderful.

Many even accused him of criminal intercourse with evil spirits.

Gerbert enlarged the stock of his knowledge by procuring copies

of rare books. Thus in Mantua he found the geometry of Boethius.

Though this is of small scientific value, yet it is of great importance

in history. It was at that time the principal book from which Euro-

pean scholars could learn the elements of geometry. Gerbert studied

it with zeal, and is generally believed himself to be the author of a ge-

ometry. H. Weissenborn denied his authorship, and claimed that the

book in question consists of three parts which cannot come from one

and the same author. More recent study favors the conclusion that

Gerbert is the author and that he compiled it from different sources.'

This geometry contains little more than the one of Boethius, but the

fact that occasional errors in the latter are herein corrected shows that

' S. Giinther, GeschicUe des mathem. Unterrichts im deulschen Mittelalter. Berlin,

1887, p. 32-

^M. Cantor, op. cil., Vol. I, 3. Aufl., 1907, p. 839.
' S. Giinther, Geschichte der Malhemalik, i. Teil, Leipzig, 1908, p. 249.
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the author had mastered the subject. " The first mathematical paper

of the Middle Ages which deserves this name," says Hankel, "is a

letter of Gerbert to Adalbold, bishop of Utrecht," in which is explained

the reason why the area of a triangle, obtained "geometrically" by
taking the product of the base by half its altitude, differs from the

area calculated "arithmetically," according to the formula |a(a+i),

used by surveyors, where a stands for a side of an equilateral triangle.

He gives the correct explanation that in the latter formula all the

small squares, in which the triangle is supposed to be divided, are

counted in wholly, even though parts of them project beyond it.

D. E. Smith ^ calls attention to a great medieval number game, called

rithmomachia, claimed by some to be of Greek origin. It was played

as late as the skteenth century. It called for considerable arithmeti-

cal abihty, and was known to Gerbert, Oronce Fine, Thomas Brad-

wardine and others. A board resembling a chess board was used. Re-

lations like 8i = 72-t-| of 72, 42 = 36-1-5 of 36 were involved.

Gerbert made a careful study of the arithmetical works of Boethius.

He himself published the first, perhaps both, of the following two
works,

—

A Small Book on the Division of Numbers, and Ride of Compu-
tation on the Abacus. They give an insight into the methods of calcu-

lation practised in Europe before the introduction of the Hindu nu-

merals. Gerbert used the abacus, which was probably unknown to

Alcuin. Bernelinus, a pupil of Gerbert, describes it as consisting of

a smooth board upon which geometricians were accustomed to strew

blue sand, and then to draw their diagrams. For arithmetical pur-

poses the board was divided into 30 columns, of which 3 were reserved

for fractions, while the remaining 27 were divided into groups with

3 columns in each. In every group the columns were marked respec-

tively by the letters C {centum), D (decem), and S (singularis) or

M imonas). Bernelinus gives the nine numerals used, which are the

apices of Boethius, and then remarks that the Greek letters may be
used in their place. By the use of these columns any number can be
written without introducing a zero, and all operations in arithmetic

can be performed in the same way as we execute ours without the col-

umns, but with the symbol for zero. Indeed, the methods of adding,

subtracting, and multiplying in vogue among the abacists agree sub-

stantially with those of to-day. But in a division there is very great

difference. The early rules for division appear to have been framed
to satisfy the following three conditions: (i) The use of the multipli-

cation table shall be restricted as far as possible; at least, it shall never
be required to multiply mentally a figure of two digits by another of

one digit. (2) Subtractions shall be avoided as much as possible and
replaced by additions. (3) The operation shall proceed in a purely
mechanical way, without requiring trials.^ That it should be neces-

sary to make such conditions seems strange to us; but it must be re.

* Am. Math. Monthly, Vol. 28, igii, pp. 73-80. ^ H. Hankel, op. cit., p. 318.
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remembered that the monks of the Middle Ages did not attend school
during childhood and learn the multipHcation table while the memory
was fresh. Gerbert's rules for division are the oldest extant. They
are so brief as to be very obscure to the uninitiated. They were prob-
ably intended simply to aid the memory by calling to mind the suc-
cessive steps in the work. In later manuscripts they are stated more
fully.

_
In dividing any number by another of one digit, say 668 by 6,

the divisor was first increased to 10 by adding 4. The process is ex-

hibited in the adjoining figure. ^ As it continues, we must imagine the
digits which are crossed out, to be erased and then replaced by the
ones beneath. It is as follows: 600-7- 10= 60, but, to rectify the error,

4X60, or 240, must be added; 200-Mo =20, but 4X20, or 80, must
be added. We now write for 60+40+80, its sum 180, and continue
thus: 100-7-10=10; the correction necessary is 4X10, or 40, which,
added to 80, gives 120. Now looH- 10= 10, and the correction 4X 10,

together with the 20, gives 60. Proceeding as before, 6o-Hio=6; the

correction is 4X 6= 24. Now 20-Mo = 2 , the correction being 4X 2 = 8.

In the column of units we have now 8+4+8, or 20. As before, 20-7-

10= 2 ; the correction is 2X 4= 8, which is not divisible by 10, but only
by 6, giving the quotient i and the remainder 2. All the partial quo-
tients taken together give 60+20+10+10+6+2+2+1 = 111, and
the remainder 2.

Similar but more compHcated, is the process when the divisor con-

tains two or more digits. Were the divisor 27, then the next higher

multiple of 10, or 30, would be taken for the divisor, but corrections

would be required for the 3. He who has the patience to carry such

a division through to the end, will understand why it has been said of

Gerbert that "Regulas dedit, quae a sudantibus abacistis vix intelli-

guntur." He will also perceive why the Arabic method of division,

when first introduced, was called the dimsio aurea, but the one on the

abacus, the divisio ferrea.

In his book on the abacus, Bernelinus devotes a chapter to fractions.

These are, of course, the duodecimals, first used by the Romans. For
want of a suitable notation, calculation with them was exceedingly

difiicult. It would be so even to us, were we accustomed, like the

early abacists, to express them, not by a numerator or denominator,

butby the appUcation of names, such as uncia for jij, quincunx for /^,
dodrans for i\.

In the tenth century, Gerbert was the central figure among the

learned. In his tim.e the Occident came into secure possession of all

mathematical knowledge of the Romans. During the eleventh cen-

tury it was studied assiduously. Though numerous works were

written on arithmetic and geometry, mathematical knowledge in the

Occident was still very insignificant. Scanty indeed were the mathe-

matical treasures obtained from Roman sources.

' M. Cantor, op. cit., Vol. I, 3. Aufl., 1907, p. 882.
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Translation of Arabic Manuscripts

By his great erudition and phenomenal activity, Gerbert infused

new Kfe into the study not only of mathematics, but also of philosophy.

Pupils from France, Germany, and Italy gathered at Rheims to enjoy

his instruction. When they themselves became teachers, they taught

of course not only the use of the abacus and geometry, but also what
they had learned of the philosophy of Aristotle. His philosophy was
known, at first, only through the writings of Boethius. But the grow-
ing enthusiasm for it created a demand for his complete works. Greek
texts were wanting. But the Latins heard that the Arabs, too, were
great admirers of Peripatetism, and that they possessed translations

of Aristotle's works and commentaries thereon. This led them finally

to search for and translate Arabic manuscripts. During this seardi,-

mathematical works also came to their notice, and were translated

into Latin. Though some few unimportant works may have been
translated earlier, yet the period of greatest activity began about iioo.

The zeal displayed in acquiring the Mohammedan treasures of knowl-
edge excelled even that of the Arabs themselves, when, in the eighth

century, they plundered the rich coffers of Greek and Hindu science.

Among the earliest scholars engaged in translating manuscripts into

Latin was Athelard of Bath. The period of his activity is the first

quarter of the twelfth century. He travelled extensively in Asia
Minor, Egypt, perhaps also in Spain, and braved a thousand perils,

that he might acquire the language and science of the Mohammedans.
He made one of the earliest translations, from the Arabic, of Euclid's

Elements. He translated the astronomical tables of Al-Khowarizmi.
In 1857, a manuscript was found in the library at Cambridge, which
proved to be the arithmetic by Al-Khowarizmi in Latin. This trans-

lation also is very probably due to Athelard.

At about the same time flourished Plato of Tivoli or Plato Tiburtinus.

He efi'ected a translation of the astronomy of Al-Battani and of the
Spharica of Theodosius.

About the middle of the twelfth century there was a group of Chris-

tian scholars busily at work at Toledo, under the leadership of Ray-
mond, then archbishop of Toledo. Among those who worked under
his direction, John of Seville was most prominent. He translated

works chiefly on Aristotelian philosophy. Of importance to us is a
liber alghoarismi, compiled by him from Arabic authors. The rule for

the division of one fraction by another is proved as follows: ~-¥ - =
ad be ad ^. .

, ,. . . , , , . ° ,

7-7-^7-7=7-- I his same e.xplanation is given by the thirteenth cen-

tury German writer, Jordanus Nemorarius. On comparing works
like this with those of the abacists, we notice at once the most strikin<r

difference, which shows that the two parties drew from independent
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sources. It is argued by some that Gerbert got his apices and his arith-
metical knowledge, not from Boethius, but from the Arabs in Spain,
and that part or the whole of the geometry of Boethius is a forgery,
dating from the time of Gerbert. If this were the case, then the writ-
ings of Gerbert would betray Arabic sources, as do those of John of
Seville. But no points of resemblance are found. Gerbert could not
have learned from the Arabs the use of the abacus, because all evidence
we have goes to show that they did not employ it. Nor is it probable
that he borrowed from the Arabs the apices, because they were never
used in Europe except on the abacus. In illustrating an example in

" division, mathematicians of the tenth and eleventh centuries state
an example in Roman numerals, then draw an abacus and insert in it

the necessary numbers with the apices. Hence it seems probable that
the abacus and apices were borrowed from the same source. The
contrast between authors like John of Seville, drawing from Arabic
works, and the abacists, consists in this, that, unlike the latter, the
former mention the Hindus, use the term algorism, calculate with the_

^ero^and do not employ the abacus. The former teadTtHeextfaction
of roots, the abacists do not; they teach the sexagesimal fractions used
by the Arabs, while the abacists employ the duodecimals of the Ro-
mans. ^

A Uttle later than John of Seville flourished Gerard of Cremona in

Lombardy. Being desirous to gain possession of the Almagest, he
went to Toledo, and there, in 1175, translated this great work of Ptol-

emy. Inspired by the richness of Mohammedan literature, he gave
himself up to its study. He translated into Latin over 70 Arabic works.
Of mathematical treatises, there were among these, besides the Al-
magest, the 15 books of Euclid, the Sphcerica of Theodosius, a work of

Menelaus, the algebra of Al-Khowarizmi, the astronomy of Jabir ibn
Aflah, and others less important. Through Gerard of Cremona the

term sinus was introduced into trigonometry. Al-Khawarizmi's al-

gebra was translated also by Robert of Chester; his translation prob-

ably antedated Cremona's.

In the thirteenth century, the zeal for the acquisition of Arabic

learning continued. Foremost among the patrons of science at this

time ranked Emperor Frederick II of Hohenstaufen (died 1250).

Through frequent contact with Mohammedan scholars, he became
familiar with Arabic science. He employed a number of scholars in

translating Arabic manuscripts, and it was through him that we came
in possession of a new translation of the Almagest. Another royal

head deserving mention as a zealous promoter of Arabic science was
Alfonso X of Castile (died 1284). He gathered around him a number
of Jewish and Christian scholars, who translated and compiled astro-

nomical works from Arabic sources. Astronomical tables prepared

by two Jews spread rapidly in the Occident, and constituted the basis

' M. Cantor, op. cit.. Vol. I, 3. Aufl., 1907, p. 879, chapter 40.
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of all astronomical calculation till the sixteenth century. The num-
ber of Scholars who aided in transplanting Arabic science upon Chris-

tian soil was large. But we mention only one, Giovanni Campano of

Novara (about 1260), who brought out a new translation of Euclid,

which drove the earlier ones from the field, and which formed the

basis of the printed editions.

'

At the middle of the twelfth century, the Occident was in possession

of the so-called Arabic notation. At the close of the century, the

Hindu methods of calculation began to supersede the cumbrous meth-

ods inherited from Rome. Algebra, with its rules for solving hnear

and quadratic equations, had been made accessible to the Latins. The
geometry of Euclid, the Sph/rrica of Theodosius, the astronomy of

Ptolemy, and other works were now accessible in the Latin tongue.

Thus a great amount of new scientific material had come into the

hands of the Christians. The talent necessary to digest this hetero-

geneous mass of knowledge was not wanting. The figure of Leonardo

of Pisa adorns the vestibule of the thirteenth century.

It is important to notice that no work either on mathematics or

astronomy was translated directly from the Greek previous to the

fifteenth century.

The First Awakening and its Sequel

Thus far, France and the British Isles have been the headquarters

of mathematics in Christian Europe. But at the beginning of the

thirteenth century the talent and activity of one man was sufficient to

assign the mathematical science a new home in Italy. This man was
not a monk, like Bede, Alcuin, or Gerbert, but a layman who found
time for scientific study. Leonardo of Pisa is the man to whom we
owe the first renaissance of mathematics on Christian soil. He is also

called Fibonacci, i.e. son of Bonaccio. His father was secretary at one of

the numerous factories erected on the south and east coast of the Med-
iterranean by the enterprising merchants of Pisa. He made Leonardo,
when a boy, learn the use of the abacus. The boy acquired a strong

taste for mathematics, and, in later years, during extensive travels in

Egypt, Syria, Greece, and Sicily, collected from the various peoples

all the knowledge he could get on this subject. Of all the methods of

calculation, he found the Hindu to be unquestionably the best. Re-
turning to Pisa, he published, in 1202, his great work, the Liber Abaci.

A revised edition of this appeared in 1228. This work contains the

knowledge the Arabs possessed in arithmetic and algebra, and treats

the subject in a free and independent way. This, together with the

other books of Leonardo, shows that he was not merely a compiler,

nor, like other writers of the Middle Ages, a slavish imitator of the

form in which the subject had been previously presented. The extent

iH. Hankel, op. cit., pp. 338, 339.
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of his originality is not definitely known, since the sources from which
he drew have not all been ascertained. Karpinski has shown that
Leonardo drew extensively from Abu Kamil's algebra. Leonardo's
Practica geometricB is partly drawn from the Liber embadorum of Sav-

'

asorda, a learned Jew of Barcelona and a co-worker of Plato of

Tivoli.

Leonardo was the first great mathematician to advocate the adop-
tion of the "Arabic notation." The calculation with the zero was the
portion of Arabic mathematics earliest adopted by the Christians.

The minds of men had been prepared for the reception of this by the

use of the abacus and the apices. The reckoning with columns was
gradually abandoned, and the very word abacus changed its meaning
and became a synonym for algorism. For the zero, the Latins adopted
the name zephirum, from the Arabic sifr («/m= empty); hence our

English word cipher. The new notation was accepted readily by the

enhghtened masses, but, at first, rejected by the learned circles. The
merchants of Italy used it as early as the thirteenth century, while

the monks in the monasteries adhered to the old forms. In 1299,
nearly 100 years after the publication of Leonardo's Liber Abaci, the

Florentine merchants were forbidden the use of the Arabic numeral
in book-keeping, and ordered either to employ the Roman numerals

or to write the numeral adjectives out in full. This decree is probably

due to the variety of forms of certain digits and the consequent am-
biguity, misunderstanding and fraud. Some interest attaches to the

earliest dates indicating the use of Hindu-Arabic numerals in the Oc-

cident. Many erroneous or doubtful early dates have been given by
writers inexperienced in the reading of manuscripts and inscriptions.

The numerals are first found in manuscripts of the tenth century, but

they were not well known until the beginning of the thirteenth cen-

tury.^ About 1275 they began to be widely used. The earliest Arabic

manuscripts containing the numerals are of 874 and 888 a. d. They
Appear in a work written at Shiraz in Persia in 970 a. d. A church-

pillar not far from the Jeremias Monastery in Egypt has the date 349
A. H. (=961 A. D.) The oldest definitely dated European manuscript

known to contain the numerals is the Codex Vigilanus, written in the

Albelda Cloister in Spain in 976 A. d. The nine characters without

the zero are given, as an addition, in a Spanish copy of the Origines

by Isidorus of Seville, 992 a. d. A tenth century manuscript with

forms differing materially from those in the Codex Vigilanus was found

in the St. Gall manuscript now in the University Library at Ziirich.

The numerals are contained in a Vatican manuscript of 1077, a Sicilian

coin of 1138, a Regensburg (Bavaria) chronicle of 1197. The earliest

manuscript in French giving the numerals dates about 1275. In the

' G. F. Hill, Ths Development of Arabic Numerals in Europe, Oxford, igi5, p. 11.

Our dates are taken from this book and from D. E. Smith and L. C. Karpinski's

Hinda-Arabic Numerals, Boston and London, 191 1, pp. 133-146.



122 A HISTORY OF MATHEMATICS

British Museum one English manuscript is of about 1230-50, another

is of 1246. The earHest undoubted Arabic numerals on a gravestone

are at Pforzheim in Baden of 1371 and one at Ulm of 1388. The
earUest coins dated in the Arabic numerals are as follows: Swiss 1424,

Austrian 1484, French 1485, German 1489, Scotch 1539, EngUsh 1551.

The earhest calendar with Arabic figures is that of Kobel, 1518. The
forms of the numerals varied considerably. The 5 was the most

freakish. An upright 7 was rare in the earher centuries.

In the fifteenth century the abacus with its counters ceased to be

used in Spain and Italy. In France it was used later, and it did not

disappear in England and Germany before the middle of the seven-

teenth century.^ The method of abacal computation is found in the

English exchequer for the last time in 1676. In the reign of Henry I

the exchequer was distinctly organized as a court of law, but the finan-

cial business of the crown was also carried on there. The term "ex-

chequer" is derived from the chequered cloth which covered the table

at which the accounts were made up. Suppose the sheriff was sum-
moned to answer for the full annual dues "in money or in tallies."

"The liabihties and the actual payments of the sheriff were balanced

by means of counters placed upon the squares of the chequered table,

those on the one side of the table representing the value of the tallies,

warrants and specie presented by the sheriff, and those on the other

the amount for which he was liable," so that it was easy to see whether
the sheriff had met his obligations or not. In Tudor times "pen and
ink dots" took the place of counters. These dots were used as late as

1676.^ The "tally" upon which accounts were kept was a peeled

wooden rod split in such a way as to divide certain notches previously

cut in it. One piece of the tally was given to the payer; the other piece

was kept by the exchequer. The transaction could be verified easily

by fitting the two halves together and noticing whether the notches
" talhed " or nor. Such tallies remained in use as late as 1783.

In the Winter's Tale (IV. 3), Shakespeare lets the clown be embar-
rassed by a problem which he could not do without counters. lago (in

Othello, i, i) expresses his contempt for Michael Cassio, "forsooth a
great mathematician," by calling him a "counter-caster." ' So gen-
eral, indeed, says Peacock, appears to have been the practice of this

species of arithmetic, that its rules and principles form an essential

part of the arithmetical treatises of that day. The real fact seems to

be that the old methods were used long after the Hindu numerals were

' George Peacock, "Arithmetic" in the Encyclopedia of Pure Mathematics,
London, 1847, p. 408.

2 Article "Exchequer" in Palgrave's Dictionary of Political Economy, London,
1894.

^ For additional information, consult F. P. Barnard, The Casting-Counter and
the Counting-Board, Oxford, 1Q16. He gives a list of 159 extracts from English
inventories referring to counting boards and also photographs of reckoning tables
at Basel and Niirnberg, of reckoning cloths at Munich, etc.
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in common and general use. With such dogged persistency does man
chng to the old

!

The Liber Abaci was, for centuries, one of the storehouses from
which authors got material for works on arithmetic and algebra. In
it are set forth the most perfect methods of calculation with integers
and fractions, known at that time; the square and cube root are ex-

plained, cube root nor having been considered in the Christian Occi-

dent before; equations of the first and second degree leading to prob-
lems, either determinate or indeterminate, are solved by the methods
of " single " or " double position," and also by real algebra. He recog-

nized that the quadratic x'''-\-c=bx may be satisfied by two values of x.

He took no cognizance of negative and imaginary roots. The book
contains a large number of problems. The following was proposed to

Leonardo of Pisa by a magister in Constantinople, as a difficult prob-
lem: If A gets from B 7 denare, then A's sum is five-fold B's; if B gets

from A 5 denare, then B's sum is seven-fold A's. How much has each?
The Liber Abaci contains another problem, which is of historical in-

terest, because it was given with some variations by Ahmes, 3000 years
earlier: 7 old women go to Rome; each woman has 7 mules, each mule
carries 7 sacks, each sack contains 7 loaves, with each loaf are 7 knives,

each knife is put up in 7 sheaths. What is the sum total of all named?
Ans. 137,256.^ Following the practice of Arabic and of Greek and
Egyptian writers, Leonardo frequently uses unit fractions. This was
done also by other European writers of the Middle Ages. He ex-

plained how to resolve a fraction into the sum of unit fractions. He
was one of the first to separate the numerator from the denominator
by a fractional line. Before his time, when fractions were written in

Hindu-Arabic numerals, the denominator was written beneath the

numerator, without any sign of separation.

In 1220, Leonardo of Pisa published his Praciica Geometrice, which
contains all the knowledge of geometry and trigonometry transmitted

to him. The writings of Euclid and of some other Greek masters were
known to him, either from Arabic manuscripts directly or from the

translations made by his countrymen, Gerard of Cremona and Plato

of Tivoli. As previously stated, a principal source of his geometrical

knowledge was Plato of Tivolis' translation in 11 16, from the Hebrew
into Latin, of the Liber embadorum of Abraham Savasorda.^ Leo-

nardo's Geometry contains an elegant geometrical demonstration of

Heron's formula for the area of a triangle, as a function of its three

sides; the proof resembles Heron's. Leonardo treats the rich material

before him with skill, some originality and Euclidean rigor.

Of still greater interest than the preceding works are those contain-

' M. Cantor, op. cit.. Vol. II, 2. Aufl., igoo, p. 26. See a problem in the Ahmes
papyrus believed to be of the same type as this.

^ See M. Curtze, Urkunden zur Geschichle der Malhematik, I Theil, Leipzig, 1902,

PS-
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ing Fibonacci's more original investigations. We must here preface

that after the pubHcation of the Liber Abaci, Leonardo was presented

by the astronomer Dominicus to Emperor Frederick II of Hohen-
staufen. On that occasion, John of Palermo, an imperial notary,

proposed several problems, which Leonardo solved promptly. The
first (probably an old famOiar problem to him) was to find a number x,

such that x^+s and x^—e, are each square numbers. The answer is

X= 3t5j; for (3-i\)^+ s = (4-IV)^ (Sit)^- S= (21^)^- His masterly so-

lution of this is given in his liber quadratorum, a manuscript which was
not printed, but to which reference is made in the second edition of

his Liber Abaci. The problem was not original with John of Palermo,

since the Arabs had already solved similar ones. Some parts of Leo-
nardo's solution may have been borrowed from the Arabs, but the

method which he employed of building squares by the summation of

odd numbers is original with him.

The second problem proposed to Leonardo at the famous scientific

tournament which accompanied the presentation of this celebrated al-

gebraist to that great patron of learning. Emperor Frederick II, was
the solving of the equation x^-\- 2x^-\- iox= 20. As yet cubic equations

had not been solved algebraically. Instead of brooding stubbornly
over this knotty problem, and after many failures still entertaining

new hopes of success, he changed his method of inquiry and showed
by clear and rigorous demonstration that the roots of this equation
could not be represented by the Euchdean irrational quantities, or, in

other words, that they could not be constructed with the ruler and
compass only. He contented himself with finding a very close ap-

proximation to the required root. His work on this cubic is found in

the Flos, together with the solution of the following third problem
given him by John of Palermo: Three men possess in common an un-

known sum of money t; the share of the first is -; that of the second, -

;

t

^ ^

that of the third, -. Desirous of depositing the sum at a safer place,

each takes at hazard a certain amount; the first takes x, but deposits

only -; the second carries y, but deposits only -; the third takes z, and

deposits -. Of the amount deposited each one must receive exactly |,

in order to possess his share of the whole sum. Find x,y,z. Leonardo
shows the problem to be indeterminate. Assuming 7 for the sum
drawn by each from the deposit, he finds ^= 47, a:= 33, y=i3, z=i.
One would have thought that after so brilliant a beginning, the

sciences transplanted from Mohammedan to Christian soil would
have enjoyed a steady and vigorous development. But this was not
the case. During the fourteenth and fifteenth centuries, the mathe-
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matical science was almost stationary. Long wars absorbed the ener-
gies of the people and thereby kept back the growth of the sciences.

The death of Frederick II in 1254 was followed by a period of con-
fusion in Germany. The German emperors and the popes were con-
tinually quarreUing, and Italy was inevitably drawn into the struggles

between the Guelphs and the Ghibellines. France and England were
engaged in the Hundred Years' War (1338-1453). Then followed in

England the Wars of the Roses. The growth of science was retarded
not only by war, but also by the injurious influence of scholastic phi-

losophy. The intellectual leaders of those times quarrelled over subtle
siibjects in metaphysics and theology. Frivolous questions, such as
"How many angels can stand on the point of a needle? " were discussed
with great interest. Indistinctness and confusion of ideas charac-
terized the reasoning during this period. The writers on mathematics
during this period were not few in number, but their scientific efforts

were vitiated by the method of scholastic thinking. Though they
possessed the Elements of Euclid, yet the true nature of a mathematical
proof was so little understood, that Hankel believes it no exaggeration

to say that "since Fibonacci, not a single proof, not borrowed from
Euclid, can be found in the whole literature of these ages, which fulfils

all necessary conditions."

The only noticeable advance is a simplification of numerical opera-

tions and a more extended application of them. Among the ItaHans
are evidences of an early maturity of arithmetic. Peacock ^ says:

The Tuscans generally, and the Florentines in particular, whose city

was the cradle of the literature and arts of the thirteenth and four-

teenth centuries, were celebrated for their knowledge of arithmetic

and book-keeping, which were so necessary for their extensive com-
merce; the ItaUans were in familiar possession of commercial arith-

metic long before the other nations of Europe; to them we are indebted

for the formal introduction into books of arithmetic, under distinct

heads, of questions in the single and double rule of three, loss and gain,

fellowship, exchange, simple and compound interest, discount, and
so on.

There was also a slow improvement in the algebraic notation. The
Hindu algebra possessed a tolerable symbolic notation, which was,

however, completely ignored by the Mohammedans. In this respect,

Arabic algebra approached much more closely to that of Diophantus,

which can scarcely be said to employ symbols in a systematic way.

Leonardo of Pisa possessed no algebraic symboUsm. Like the early

Arabs, he expressed the relations of magnitudes to each other by lines

or in words. But in the mathematical writings of Chuquet (1484), of

Widmann (1489) and of the monk Ltica Pacioli (also called Lucas de

Burgo sepulchri) symbols began to appear. Pascioli's consisted merely

1 G. Peacock, op. cit., 1847, p. 429.
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in abbreviations of Italian words, such as p for pin (more), m for men^
(less), CO for cosa (tlie unknown x), ce for censo (x^), cece for censocenso

(x^), "Our present notation has arisen by almost insensible degrees

as convenience suggested different marks of abbreviation to different

authors; and that perfect symbolic language which addresses itself

solely to the eye, and enables us to take in at a glance the most com-
plicated relations of quantity, is the result of a large series of small im-

provements." ^

We shall now mention a few authors who lived during the thirteenth

and fourteenth and the first half of the fifteenth centuries.

We begin with the philosophic writings of Thomas Aquinas (1225-

1274), the great Italian philosopher of the Middle Ages, who gave in

the completest form the ideas of Origen on infinity. Aquinas' notion

of a continuum, particularly a linear continuum, made it potentially

divisible to infinity, since practically the divisions could not be carried

out to infinity. There was, therefore, no minimum line. On the other

hand, the point is not a constituent part of the line, since it does not

possess the property of infinite divisibility that parts of a line possess,

nor can the continuum be constructed out of points. However, a

point by its motion has the capacity of generating a line. - This con-

tinuum held a firm ascendancy over the ancient atomistic doctrine

which assumed matter to be composed of ver}' small, indivisible par-

ticles. No continuum superior to this was created before the nine-

teenth century. Aquinas explains Zeno's arguments against motion,

as they are given by Aristotle, but hardly presents any new point of

view. The Englishman, Roger Bacon. [i2i4(?)-i294] likewise argued
against a continuum of indivisible parts different from points. Re-
newing arguments presented by the Greeks and early Arabs, he held

that the doctrine of indivisible parts of uniform size would make the

diagonal of a square commensurable with a side. Likewise, if through
the ends of an indivisible arc of a circle radii are drawn, these radii

intercept an arc on a concentric circle of smaller radius; from this it

would follow that the inner circle is of the same length as tire outer

circle, which is impossible. Bacon argued against infinity. If time

were infinite, the absurdity would follow that the part is equal to the

whole. Bacon's views were made known more widely through Duns
Scotus (1265-130S), the theological and philosophical opponent of

Thomas Aquinas. However, both argued against the existence of

indivisible parts (points). Duns Scotus wrote on Zeno's paradoxies,

but without reaching new points of view. His commentaries were
annotated later by the Italian theologian, Franciscus de Pitigianis,

who expressed himself in favor of the admission of the actual infinity

to explain the "Dichotomy" and the "Achilles," but fails to ade-

quately elaborate the subject. Scholastic ideas on infinity and the

'J. F. W. Herschel, "Mathematics" in Edinburgh Encydopcedia.
' C. R. Wallner, in Bibliotheca matkemaiica, 3. F., Bd. IV, 1903, pp. 29, 30.
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continuum find expression in the writings of Bradwardine, the Eng-
lish doctor profundis}
About the time of Leonardo of Pisa (1200 a. d.), Hved the German

monlc Jordanus Nemorarius (?-i237), who wrote a once famous worlc

on the properties of numbers, printed in 1496 and modelled after the
arithmetic of Boethius. The most trifling numeral properties are

treated with nauseating pedantry and prolixity. A practical arith-

metic based on the Hindu notation was also written by him. John
Halifax (Sacro Bosco, died 1256) taught in Paris and made an extract

from the Almagest containing only the most elementary parts of that
work. This extract was for nearly 400 years a work of great popular-
ity and standard authority, as was also his arithmetical work, the

Tradatiis de arte numeraiidi. Other prominent writers are Albertus
Magnus (ii93?-i2So) and Georg Peurbach (1423-1461) in Ger-
many. It appears that here and there some of our modern ideas were
anticipated by writers of the Middle Ages. Thus, Nicole Oresme
(about 1323-1382), a bishop in Normandy, first conceived the notion of

fractional powers, afterwards rediscovered by Stevin, and suggested a
notation. Since 4^=64, and 64^ = 8, Oresme concluded that 41^ = 8.

In his notation, 4^^^ is expressed, ip.| 4, or j^ 4. Some of the

mathematicians of the Middle Ages possessed some idea of a function.

Oresme even attempted a graphic representation. But of a numeric
dependance of one quantity upon another, as found in Descartes,

there is no trace among them.^

In an unpublished manuscript Oresme found the sum of the infinite

series ^^+1+1+ ]'*b+ 3%+ • in inf. Such recurrent infinite series were

formerly supposed to have made their first appearance in the eight-

eenth century. The use of infinite series is explained also in the Liber

de triplici motu, by the Portuguese mathematician Alvarus Thomas,^

in 1509. He gives the division of a line-segment into parts represent-

ing the terms of a convergent geometric series; that is, a segment AB
is divided into parts such that yl5 :PiB = PiB -.PiB^ . . =P\B :Pi+i

B= . . Such a division of a line-segment occurs later in Napier's

kinematical discussion of logarithms.

Thomas Bradwardine (about 1 290-1349), archbishop of Canter-

bury, studied star-polygons. The first appearance of such polygons was
with Pythagoras and his school. We next meet with such polygons

in the geometry of Boethius and also in the translation of Euclid from

the Arabic by Athelard of Bath. To England falls the honor of hav-

ing produced the earliest European writers on trigonometry. The

' F. Cajori, Americ. Math. Monthly, Vol. 22, igis, pp. 45-47.

^H. Wieleitner in Bibliolkeca malhemalica, 3. S., Vol. 13, 1913, pp. 115-145.

'See Eludes sur Leonard da Vinci, Vol. Ill, Paris, 1913, pp. 393, 540, 541, by
Pierre Duhem (1861-1916) of the University of Bordeaux; see also Wieleitner in

Bibliolheca malhemalica, Vol. 14, 1914, pp. 150-168.
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writings of Bradwardine, of Richard of Wallingford, and John Maud-
ith, both professors at Oxford, and of Simon Bredon of Winchecombe,
contain trigonometry drawn from Arabic sources.

The works of the Greek monk Maximus Planudes (about 1260-

1310), are of interest only as showing that the Hindu numerals were

then known in Greece. A writer belonging, hke Planudes, to the By-

zantine school, was Manuel Moschopulus who lived in Constantino-

ple in the early part of the fourteenth century. To him appears to be

due the introduction into Europe of magic squares. He wrote a treatise

on this subject. Magic squares were known before this to the Arabs

and Japanese; they originated with the Chinese. Mediseval astrol-

ogers and physicians believed them to possess mystical properties and
to be a charm against plague, when engraved on silver plate.

Recently there has been printed a Hebrew arithmetical work by
the French Jew, Levi ben Gerson, written in 1321,'- and handed down
in several manuscripts. It contains formulas for the number of per-

mutations and combinations of n things taken ^ at a time. It is worthy
of note that the earliest practical arithmetic known to have been

brought out in print appeared anonymously in Treviso, Italy, in 1478,

and is referred to as the "Treviso arithmetic." Four years later, in

1482, came out at Bamberg the first printed German arithmetic. It

is by Ulrich Wagner, a teacher of arithmetic at Niirnberg. It was
printed on parchment, but only fragments of one copy are now extant.^

According to Enestrom, Ph. Calandri's De arithmelrica opusculum,

Florence, 1491, is the first printed treatise containing the word "zero";

it is found in some fourteenth century manuscripts.

In 1494 was printed the Summa de Arithmeiica, Geometria, Propor-

tione et Proportionalita, written by the Tuscan monk Luca Pacioli

(1445-15 14?), who, as we remarked, introduced several symbols in

algebra. This contains all the knowledge of his day on arithmetic,

algebra, and trigonometry, and is the first comprehensive work which
appeared after the Liber Abaci of Fibonacci. It contains httle of im-

portance which cannot be found in Fibonacci's great work, published

three centuries earher. Pacioli came in personal touch with two ar-

tists who were also mathematicians, Leonardo da Vinci ' (1452-1519)
and Pier delta Francesca (1416-1492). Da Vinci inscribed regular

polygons in circles, but did not distinguish between accurate and ap-
proximate constructions. It is interesting to note that da Vinci was
familiar with the Greek text of Archimedes on the measurement of

the circle. Pier della Francesca advanced the theory of perspective,

and left a manuscript on regular soHds which was published by

' Bihliotheca mathemaiica, 3. S., Vol. 14, 1916, p. 261.
^ See D. E. Smith, Rara ariihmctica, Boston and London, 1908, pp. 3, 12, 15;

F. Unger, Methodik der Praktischen Arilhmetik in Hislorischer Entwickelung, Leip-
zig, 1888, p. 39.

' Consult P. Duhem's Etudes sur Leonard de Vinci, Paris, 1909.
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Pacioli in 1509 as his own work, in a book entitled, Divina pro-

pnrtione.

Perhaps the greatest result of the influx of Arabic learning was the

establishment of universities. What was their attitude toward mathe-
matics? The University of Paris, so famous at the beginning of the

twelfth century under the teachings of Abelard paid but little atten-

tion to this science during the Middle Ages. Geometry was neglected,

and Aristotle's logic was the favorite study. In 1336, a rule was in-

troduced that no student should take a degree without attending lec-

tures on mathematics, and from a commentary on the first six books
of Euclid, dated 1536, it appears that candidates for the degree of

A. M. had to give an oath that they had attended lectures on these

books.^ Examinations, when held at all, probably did not extend be-

yond the first book, as is shown by the nickname "magister mathe-
seos," applied to the Theorem of Pythagoras, the last in the first book.

More attention was paid to mathematics at the University of Prague,

founded 1384. For the Baccalaureate degree, students were required

to take lectures on Sacro Bosco's famous work on astronomy. Of can-

didates for the A.M. were required not only the six books of Euclid,

but an additional knowledge of applied mathematics. Lectures were
given on the Almagest. At the University of Leipzig, the daughter of

Prague, and at Cologne, less work was required, and, as late as the

sixteenth century, the same requirements were made at these as at

Prague in the fourteenth. The universities of Bologna, Padua, Pisa,

occupied similar positions to the ones in Germany, only that purely

astrological lectures were given in place of lectures on the Almagest.

At Oxford, in the middle of the fifteenth century, the first two books

of Euclid were read.^

Thus it will be seen that the study of mathematics was maintained

at the universities only in a half-hearted manner. No great mathe-

matician and teacher appeared, to inspire the students. The best

energies of the schoolmen were expended upon the stupid subtleties of

their philosophy. The genius of Leonardo of Pisa left no permanent
impress upon the age, and another Renaissance of mathematics was
wanted.

'H. Hankel, op. cil., p. 355. ^J. Gow, op. cit., p. 207.



EUROPE DURING THE SIXTEENTH, SEVENTEENTH
AND EIGHTEENTH CENTURIES

We find it convenient to choose the time of the capture of Constan-

tinople by the Turks as the date at which the Middle Ages ended and
Modern Times began. In 1453, the Turks battered the walls of this

celebrated metropolis with cannon, and finally captured the city; the

Byzantine Empire fell, to rise no more. Calamitous as was this event

to the East, it acted favorably upon the progress of learning in the

West. A great number of learned Greeks fled into Italy, bringing with

them precious manuscripts of Greek literature. This contributed

vastly to the reviving of classic learning. Up to this time, Greek mas-
ters were known only through the often very corrupt Arabic manu-
scripts, but now they began to be studied from original sources and
in their own language. The first English translation of Euclid was
made in 1570 from the Greek by Sir Henry Billingsley, assisted by
John Dee} About the middle of the fifteenth century, printing was
invented; books became cheap and plentiful; the printing-press trans-

formed Europe into an audience-room. Near the close of the fifteenth

century, America was discovered, and, soon after, the earth was cir-

cumnavigated. The pulse and pace of the world began to quicken.

Men's minds became less servile; they became clearer and stronger.

The indistinctness of thought, which was the characteristic feature of

medieval learning, began to be remedied chiefly by the steady cultiva-

tion of Pure Mathematics and Astronomy. Dogmatism was attacked;

there arose a long struggle with the authority of the Church and the

estabhshed schools of philosophy. The Copernican System was set

up in opposition to the time-honored Ptolemaic System. The long

and eager contest between the two culminated in a crisis at the time
of Galileo, and resulted in the victory of the new system. Thus, by
slow degrees, the minds of men were cut adrift from their old scholastic

moorings and sent forth on the wide sea of scientific inquiry, to dis-

cover new islands and continents of truth.

The Renaissance

With the sixteenth century began a period of increased intellectual

activity. The human mind made a vast effort to achieve its freedom.
Attempts at its emancipation from Church authority had been made
before, but they were stifled and rendered abortive. The first great
and successful revolt against ecclesiastical authority was made in

1 G. B. Halsted in Am. Jour, of Malh., Vol. II, 1879.
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Germany. The new desire for judging freely and Independently in
matters of religion was preceded and accompanied by a growing spirit
of scientific inquiry. Thus it was that, for a time, Germany led the
van in science. She produced Regionionlanus , Copernicus, Rlialicus
and Kepler, at a period when France and England had, as yet, brought
forth hardly any great scientific thinkers. This remarkable scientific

productiveness was no doubt due, to a great extenj;, to the commercial
prosperity of Germany. Material prosperity is an essential condition
for the progress of knowledge. As long as every individual is obhged
to collect the necessaries for his subsistence, there can be no leisure

for higher pursuits. At this time, Germany had accumulated con-
siderable wealth. The Hanseatic League commanded the trade of
the North. Close commercial relations existed between Germany and
Italy. Italy, too, excelled in commercial activity and enterprise.

We need only mention Venice, whose glory began with the crusades,
and Florence, with her bankers and her manufacturers of silk and wool.
These two cities became great intellectual centres. Thus, Italy, too,

produced men in art, literature, and science, who shone forth in fullest

splendor. In fact, Italy was the fatherland of what is termed the Re-
naissance.

For the first great contributions to the mathematical sciences we
must, therefore, look to Italy and Germany. In Italy brilliant acces-

sions were made to algebra, in Germany progress was made in astron-

omy and trigonometry.

On the threshold of this new era we meet in Germany with the figure

of John Mueller, more generally called Regiomontanus (1436-1476).
Chiefly to him we owe the revival of trigonometry. He studied as-

tronomy and trigonometry at Vienna under the celebrated George
Peurbach. The latter perceived that the existing Latin translations

of the Almagest were full of errors, and that Arabic authors had not

remained true to the Greek original. Peurbach therefore began to

make a translation directly from the Greek. But he did not live to

finish it. His work was continued by Regiomontanus, who went be-

yond his master. Regiomontanus learned the Greek language from
Cardinal Bessarion, whom he followed to Italy, where he remained

eight years collecting manuscripts from Greeks who had fled thither

from the Turks. In addition to the translation of and the commen-
tary on the Almagest, he prepared translations of the Conies of Apol-

lonius, of Archimedes, and of the mechanical works of Heron. Regio-

montanus and Peurbach adopted the Hindu sine in place of the Greek
chord of double the arc. The Greeks and afterwards the Arabs divided

the radius into 60 equal parts, and each of these again into 60 smaller

ones. The Hindu expressed the length of the radius by parts of the

circumference, saying that of the 21,600 equal divisions of the latter,

it took 3438 to measure the radius. Regiomontanus, to secure greater

precision, constructed one table of sines on a radius divided into
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600,000 parts, and another on a radius divided decimally into

10,000,000 divisions. He emphasized the use of the tangent in trigo-

nometry. Following out some ideas of his master, he calculated a

table of tangents. German mathematicians were not the first Euro-

peans to use this function. In England it was known a century earlier

to Bradwardine, who speaks of tangent (umbra versa) and cotangent

{umbra recta), and to John Maudith. Even earUer, in the twelfth

century, the umbra versa and umbra recta are used in a translation from

Arabic into Latin, effected by Gerard of Cremona, of the Toledian

Tables of Al-Zarkali, who lived in Toledo about 1080. Regiomontanus
was the author of an arithmetic and also of a complete treatise on
trigonometry, containing solutions of both plane and spherical tri-

angles. Some innovations in trigonometry, formerly attributed to

Regiomontanus, are now known to have been introduced by the Arabs
before him. Nevertheless, much credit is due to him. His complete

mastery of astronomy and mathematics, and his enthusiasm for them,

were of far-reaching influence throughout Germany. So great was his

reputation, that Pope Sixtus IV called him to Italy to improve the

calendar. Regiomontanus left his beloved city of Niirnberg for Rome,
where he died in the following year.

After the time of Peurbach and Regiomontanus, trigonometry and
especially the calculation of tables continued to occupy German schol-

ars. More refined astronomical instruments were made, which gave
observations of greater precision; but these would have been useless

without trigonometrical tables of corresponding accuracy. Of the sev-

eral tables calculated, that by Georg Joachim of Feldkirch in Tyrol, gen-

erally called Rhseticus (1514-1567) deserves special mention. He cal-

culated a table of sines with the radius =10,000,000,000 and from 10"

to 10"; and, later on, another with the radius =1,000,000,000,000,000,

and proceeding from 10" to 10". He began also the construction of

tables of tangents and secants, to be carried to the same degree of

accuracy; but he died before finishing them. For twelve years he had
had in continual employment several calculators. The work was com-
pleted in 1596 by his pupil, Valentine Otho (i55o?-i6os). This was
indeed a gigantic work,—a monument of German diligence and inde-

fatigable perseverance. The tables were repubhshed in 1613 by Bar-
tholomaus Pitiscus (1561-1613) of Heidelberg, who spared no pains

to free them of errors. Pitiscus was perhaps the first to use the word
"trigonometry." Astronomical tables of so great a degree of accu-

racy had never been dreamed of by the Greeks, Hindus, or Arabs.
That Rhseticus was not a ready calculator only, is indicated by his

views on trigonometrical lines. Up to his time, the trigonometric

functions had been considered always with relation to the arc; he was
the first to construct the right triangle and to make them depend di-

rectly upon its angles. It was from the right triangle that Rha?ticus

got his idea of calculating the hypotenuse; i. e. he was the first to plan
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a table of secants. Good work in trigonometry was done also by Vieta"

and Romanus.
We shall now leave the subject of trigonometry to witness the prog-

ress in the solution of algebraical equations. To do so, we must quit

Germany for Italy. The first comprehensive algebra printed was that

of Luca Pacioli. He closes his book by saying that the solution of the

equations x^-^mx= n, x^-\-n= mx is as impossible at the present state

of science as the quadrature of the circle. This remark doubtless stipi-

ulated thought. The first step in the algebraic solution of cubics was
taken by Scipione del Ferro (1465-1526), a professor of mathematics
at Bologna, who solved the equation x^-\-mx==n. He imparted it to

his pupil, Floridas, in 1505, but did not pubHsh it. It was the practice

in those days and for two centuries afterwards to keep discoveries

secret, in order to secure by that means an advantage over rivals by
proposing problems beyond their reach. This practice gave rise to

numberless disputes regarding the priority of inventions. A second
solution of cubics was given by Nicolo of Brescia [i499(?)-iSS7].
When a boy of six, Nicolo was so badly cut by a French soldier that

he never again gained the free use of his tongue. Hence he was called

Tartaglia, i. e. the stammerer. His widowed mother being too poor to

pay his tuition in school, he learned to read and picked up a knowledge
of Latin, Greek, and mathematics by himself. Possessing a mind of

extraordinary power, he was able to appear as teacher of mathematics
at an early age. He taught in Venice, then in Brescia, and later again

in Venice. In 1530, one CoUa proposed him several problems, one

leading to the equation x^-^-px^'— q. Tartaglia found an imperfect

method for solving this, but kept it secret. He spoke about his secret

in public and thus caused Del Ferro's pupil, Floridas, to proclaim his

own knowledge of the form x^-\-mx= n. Tartaglia, believing him to

be a mediocrist and braggart, challenged him to a public discussion, to

take place on the 2 2d of FelDruary, 1535. Hearing, meanwhile, that

his rival had gotten the method from a deceased master, and fearing

that he would be beaten in the contest, Tartaglia put in all the zeal,

industry, and skill to find the rule for the equations, and he succeeded

in it ten days before the appointed date, as he himself modestly says.

'

The most difficult step was, no doubt, the passing from quadratic ir-

ratioiials, used in operating from time of old, to cubic irrationals.

Placing x=-\/l—\/u, Tartaglia perceived that the irrationals dis-

appeared from the equation x^ = mx—n, making n= t—u. But this

last equality, together with {\mY= tu, gives at once

^
ln\ ^

, lm\ ^
, n ln\ ^

, (m\ ^ n

This is TartagUa's solution of x^-\-mx=^n. On the 13th of February,

he found a similar solution for x^— mx-\-n. The contest began on the

1 H. Hankel, op. cil., p. 362.
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2 2d. Each contestant proposed thirty problems. The one who could

solve the greatest number within fifty days should be the victor. Tar-

taglia solved the thirty problems proposed by Floridas in two hours;

Floridas could not solve any of Tartaglia's. From now on, Tartaglia

studied cubic equations with a will. In 1541 he discovered a general

solution for the cubic x^^ px^ = ='=?, by transforming it into the form
x^^=mx=^=}i. The news of Tartaglia's victory spread all over Italy.

Tartaglia was entreated to make known his method, but he declined

to do so, saying that after his completion of the translation from the

Greek of Euclid and Archimedes, he would publish a large algebra

containing his method. But a scholar from Milan, named Hieronimo
Cardano (1501-1576), after many soHcitations, and after giving the

most solemn and sacred promises of secrecy, succeeded in obtaining

from Tartaglia a knowledge of his rules. Cardan was a singular mix-

ture of genius, folly, self-conceit and mysticism. He was successively

professor of mathematics and medicine at Milan, Pavia and Bologna,

In 1570 he was imprisoned for debt. Later he went to Rome, was
admitted to the college of physicians and was pensioned by the pope.

At this time Cardan was writing his Ars Magna, and he knew no
better way to crown his work than by inserting the much sought for

rules for solving cubics. Thus Cardan broke his most solemn vows,

and published in 1545 in his Ars Magna Tartaglia's solution of cubics.

However, Cardan did credit "his friend Tartaglia" with the discovery

of the rule. Nevertheless, Tartaglia became desperate. His most
cherished hope, of giving to the world an immortal work which should

be the monument of his deep learning and power for original research,

was suddenly destroyed; for the crown intended for his work had
been snatched away. His first step was to write a history of his in-

vention; but, to completely annihilate his enemies, he challenged

Cardan and his pupil Lodovico Ferrari to a contest: each party
should propose thirty-one questions to be solved by the other within
fifteen days. Tartagha solved most questions in seveit days, but the

other party did not send in their solutions before the expiration of the

fifth month; moreover, all their solutions except one were wrong. A
replication and a rejoinder followed. Endless were the problems pro-

posed and solved on both sides. The dispute produced much chagrin
and heart-burnings to the parties, and to Tartaglia especially, who
met with many other disappointments. After having recovered him-
self again, Tartaglia began, in 1556, the publication of the work which
he had had in his mind for so long; but he died before he reached the
consideration of cubic equations. Thus the fondest wish of his life re-

mained unfulfilled. How much credit for the algebraic solution of the
general cubic is due to Tartaglia and how much to Del Ferro it is now
impossible to ascertain definitely. Del Ferro's researches were never
published and were lost. We know of them only through the remarks
of Cardan and his pupil L. Ferrari who say that Del Ferro's and Tar-
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taglia's methods were alike. Certain it is that the customary desig-
nation, "Cardan's solution of the cubic" ascribes to Cardan what
belongs to one or the other of his predecessors.
Remarkable is the great interest that the solution of cubics excited

throughout Italy. It is but natural that after this great conquest
mathematicians should attack bi-quadratic equations. As in the case
of cubics, so here, the first impulse was given by CoUa, who, in 1540,
proposed for solution the equation «^+ 6^:^+36 = 60a;. To be sure,
Cardan had studied particular cases as early as 1539. Thus he solved
the equation i3.T^= a;*+2a,-'+2.T+i by a process similar to that em-
ployed by Diophantus and the Hindus; namely, by adding to both
sides ^x^ and thereby rendering both numbers complete squares. But
Cardan failed to find a general solution; it remained for his pupil
Lodovico Ferrari (1522-1565) of Bologna to make the brilliant dis-

covery of the general solution of bi-quadratic equations. Ferrari re-

duced Colla's equation to the form (a:^+6)^=6ox-+6x^ In order to
give also the right member the form of a complete square he added to
both members the expression 2(x'^-\-6)y-\-y^, containing a new un-
known quantity y. This gave him (.x^-|-6-(-y)^= (6+2y).T^+6ox:+
(i2y-\-y^). The condition that the right member be a complete square
is expressed by the cubic equation (2y+6) {i2y-\-y^) = goo. Extract-

ing the square root of the bi-quadratic, he got x'^-\-6-\-y=x^ 2y-{-6

-• Solving the cubic for y and substituting, it remained
^2^-1-

6

only to determine x from the resulting quadratic. L. Ferrari pursued
a similar method with other numerical bi-quadratic equations. ^ Car-
dan had the pleasure of publishing this discovery in his Ars Magna
in 1545. Ferrari's solution is sometimes ascribed to R. Bombelli, but
he is no more the discoverer of it than Cardan is of the solution called

by his name.
To Cardan algebra is much indebted. In his Ars Magna he takes

notice of negative roots of an equation, calling them fictitious, while

the positive roots are called real. He paid some attention to compu-
tations involving the square root of negative numbers, but faUed
to recognize imaginary roots. Cardan also observed the difficulty

in the irreducible case in the cubics, which, like the quadrature of the

circle, has since "so much tormented the perverse ingenuity of mathe-
maticians." But he did not understand its nature. It remained for

Raphael Bombelli of Bologna, who published in 1572 an algebra of

great merit, to point out the reality of the apparently imaginary ex-

pression which a root assumes, also to assign its value, when rational,

and thus to lay the foundation of a more intimate knowledge of imagi-

nary quantities. Cardan was an inveterate gambler. In r663 there

was published posthumously his gambler's manual, De ludo alea,

' H. Hankel, op. cit., p. 368.
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which contains discussions relating to the chances favorable for throw-

ing a particular number with two dice and also with three dice. Car-

dan considered another problem in probabilities. Stated in general

terms, the problem is: What is the proper division of a stake between
two players, if the game is interrupted and one player has taken Si

points, the other 52 points, 5 points being required to win.'^ Cardan
gives the ratio (i-|-2-|- . . -|-[5— 52])/(i-t-2-f- . . +b— ^J), Tartaglia

gives (i-l-.si—i2)/('y+'y2—'yi)- Both of these answers are wrong. Car-

dan considered also what later became known as the "Petersburg
problem."

After the brilhant success in solving equations of the third and
fourth degrees, there was probably no one who doubted, that with

aid of irrationals of higher degrees, the solution of equations of any
degree whatever could be found. But all attempts at the algebraic

solution of the quintic were fruitless, and, finally, Abel demonstrated
that all hopes of finding algebraic solutions to equations of higher

than the fourth degree were purely Utopian.

Since no solution by radicals of equations of higher degrees could

be found, there remained nothing else to be done than the devising of

processes by which the real roots of numerical equations could be
found by approximation. The Chinese method used by them as early

as the thirteenth century was unknown in the Occident. We have
seen that in the early part of the thirteenth century Leonardo of Pisa

solved a cubic to a high degree of approximation, but we are ignorant

of his method. The earliest known process in the Occident of ap-

proaching to a root of an affected numerical equation was invented by
Nicolas Chuquet, who, in 1484 at Lyons, wrote a work of high rank,

entitled Le triparty en la science des nombres. It was not printed until

1880.^ If ->x<-, then Chuquet takes the intermediate value —;—

;

c a ^
c-\-d

as a closer approximation to the root x. He finds a series of successive

intermediate values. We stated earlier that in 1498 the Arabic writer

Miram Chelebi gave a method of solving x^-\-Q=Px which he attrib-

utes to Atabeddin Jamshid. This cubic arose in the computation of

a;=sin 1°.

The earUest printed method of approximation to the roots of af-

fected equations is that of Cardan, who gave it in the Ars Magna,
1545, under the title of regida aurea. It is a skUful application of

the rule of "false position," and is applicable to equations of any de-

gree. This mode of approximation was exceedingly rough, yet this

fact hardly explains why Clavius, Stevin and Vieta did not refer to it.

' M. Cantor, IT, 2 Aufl., 1900, pp. 501, 520, 537.
^ Printed in the Bulletino Boncompagni, T xiii, 1880; see pp. 653-654. See also

F. Cajori, "A History of tlie Aritiimetical Methods of Approximation to the
Roots of Numerical Equations of one Unknown Quantity" in Colorado College
Publication, General Series Nos. 51 and 52, 1910.
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Processes of approximation were given by the Frenchman J. Peletier

(1554), the Italian R. Bombelli (1572), the German R. Ursus (1601),
the Swiss Joost Biirgi, the German Pitiscus (1612), and the Belgian
Simon Stevin. But far more important than the processes of these
men was that of the Frenchman, Francis Vieta (1540-1603), which
initiates a new era. It is contained in a work published at Paris in

1600 by Marino Ghetaldi as editor, with Vieta's consent, under the
title: De numerosa protestatum purarum atque adfedarum ad exegesin
resolutione tractatus. His method is not of tlie nature of the rule of
"double false position," used by Cardan and Biirgi, but resembles
the method of ordinary root-extraction. Taking f{x) = k, where k is

taken positive, Vieta separates the required root from the rest, then
substitutes an approximate value for it and shows that another figure
of the root can be obtained by division. A repetition of this process
gives the next figure, and so on. Thus, in x^—5r''+ 500^=7905504,
he takes r=2o, then computes 7905504 -r^+5r^— 5oof and divides
the result by a value which in our modern notation takes the form
\{f{r+s^) -/(V))| -5i", where n is the degree of the equation and si is

a unit of the denomination of the digit next to be found. Thus, if the
required root is 243, and r has been taken to be 200, then si is 10; but
if r is taken as 240, then 5i is i. In our example, where r=2o, the
divisor is 878295, and the quotient yields the next digit of the root
equal to 4. We obtain «= 20+4= 24, the required root. Vieta's

procedure was greatly admired by his contemporaries, particularly

the Enghshmen, T. Harriot, W. Oughtred and J. WaUis, each of whom
introduced some minor improvements.
We pause a moment to sketch the life of Vieta, the most eminent

French mathematician of the sixteenth century. He was born in

Poitou and died at Paris. He was employed throughout life in the

service of the state, under Henry III. and Henry IV. He was, there-

fore, not a mathematician by profession, but his love for the science

was so great that he remained in his chamber studying, sometimes
several days in succession, without eating and sleeping more than was
necessary to sustain himself. So great devotion to abstract science

is the more remarkable, because he lived at a time of incessant po-

litical and religious turmoil. During the war against Spain, Vieta

rendered service to Henry IV by deciphering intercepted letters writ-

ten in a species of cipher, and addressed by the Spanish Court to their

governor of Netherlands. The Spaniards attributed the discovery of

the key to magic.

In 1579 Vieta published his Canon mathematicus seu ad triangula

cum appendicibus, which contains very remarkable contributions to

trigonometry. It gives the first systematic elaboration in the Occn-

dent of the methods of computing plane and spherical Jiiangfes ISy'

the aid of the six trigonometric functions. "^ He paid s^aal^tteiition

'A. V. BraunmuM, Geschichte dsr Trigonometry, I,-*§i^jg, igoo, p. 160.
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also to goniometry, developing such relations as sin a= sin (6o°+ a)

— sin (6o°— a), esc a-\-ctn a =ctn—, —rf»a+wca = tan— , with the
2 2

aid of which he could compute from the functions of angles below
30° or 45°, the functions of the remaining angles below 90°, essentially

by addition and subtraction alone. Vieta is the first to apply alge-

braic transformation to trigonometry, particularly to the multisection

of angles. Letting 2 cosa=a;, he expresses cos «a as a function of x
for all integers w<ii; letting 2 sma=x and 2 sin 2a=y, he expresses

2.T''~^sin na in terms of x and y. Vieta exclaims: "Thus the analysis

of angular sections involves geometric and arithmetic secrets which
hitherto have been penetrated by no one."

An ambassador from Netherlands once told Henry IV that France
did not possess a single geometer capable of solving a problem pro-

pounded to geometers by a Belgian mathematician, Adrianus Ro-
manus. It was the solution of the equation of the forty-fifth degree:

—

45^-3795/+ 95634)'^- • .+94Sy'-45/^+3'"=C.
Henry IV called Vieta, who, having already pursued similar investi-

gations, saw at once that this awe-inspiring problem was simply the

equation by which C=2 sin
(f)
was expressed in termsof 7=2 sin-j^g-

(f>;

that, since 45=3.3-S) it was necessary only to divide an angle once
into 5 equal parts, and then twice into 3,—a division which could be
effected by corresponding equations of the fifth and third degrees.

Brilliant was the discovery by Vieta of 23 roots to this equation, in-

stead of only one. The reason why he did not find 45 solutions, is

that the remaining ones involve negative sines, which were unintel-

hgible to him. Detailed investigations on the famous old problem
of the section of an angle into an odd number of equal parts, led Vieta
to the discovery of a trigonometrical solution of Cardan's irreducible

case in cubics. He apphed the equation (2 cos f </))^— 3( 2 cos-</)) =

2 cos^ to the solution of .x'— 3a^a;=a^6, when a>ib, by placing x=
2a cos^(j), and determining ^from 6 = 2a cos</).

The main principle employed by him in the solution of equations
is that of reduction. He solves the quadratic by making a suitable
substitution which will remove the term containing x to the first de-
gree. Like Cardan, he reduces the general expression of the cubic to
the form x^+mx+n=o; then, assuming x={\a—z'^)^z and substi-

tuting, he gets z^-hz^-^-^a^=o. Putting z^=y, he has a quadratic.
In the solution of bi-quadratics, Vieta still remains true to his prmciple
of reduction. This gives him the well-known cubic resolvent. He
thus adheres throughout to his favorite principle, and thereby in-

troduces into algebra a uniformity of method which claims our lively
admiration. In Vieta's algebra We discover a partial knowledge of

the relations existing between the coefficients and the roots of an equa-
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tion. He shows that if the coefficient of the second term in an equa-
tion of the second degree is minus the sum of two numbers whose
product is the third term, then the two numbers are roots of the equa-
tion.^ Vieta rejected all except positive roots; hence it was impossible
for him to fully perceive the relations in question.
The most epoch-making innovation in algebra due to Vieta is the

denoting of general or indefinite quantities by letters of the alphabet.
To be sure, Regiomontanus and Stifel in Germany, and Cardan in

Italy, used letters before him, but Vieta extended the idea and first

made it an essential part of algebra. The new algebra was called by
him logistica speciosa in distinction to the old logistica numerosa.
Vieta's formalism differed considerably from that of to-day. The
equation a^-\-2,a%+T,ah'^+b^={a-\-hY was written by him "as cubus

-\-h in a quadr. 3-1-a in b quadr. 3-I-6 cubo Kquaha a+b cubo." In
numerical equations the unknown quantity was denoted by N, its

square by Q, and its cube by C. Thus the equation x^— 2>x^+i6x=4.o

was written i C— 8Q-I-16 N aqual. 40. Vieta used the term "co-

efficient," but it was little used before the close of the seventeenth

century. "^ Sometimes he uses also the term "polynomial." Observe
that exponents and our symbol ( = ) for equality were not yet in use;

but that Vieta employed the Maltese cross (-I-) as the short-hand

symbol for addition, and the (— ) for subtraction. These two char-

acters had not been in very general use before the time of Vieta. " It

is very singular," says Hallam, " that discoveries of the greatest con-

venience, and, apparently, not above the ingenuity of a village school-

master, should have been overlooked by men of extraordinary acute-

ness like Tartagha, Cardan, and L. Ferrari; and, hardly less so that, by
dint of that acuteness, they dispensed with the aid of these contriv-

ances in which we suppose that so much of the utility of algebraic ex-

pression consists." Even after improvements in notation were once

proposed, it was with extreme slowness that they were admitted into

general use. They were made oftener by accident than design, and
their authors had little notion of the effect of the change which they

were making. The introduction of the + and — symbols seems to be

due to the Germans, who, although they did not enrich algebra dur-

ing the Renaissance with great inventions, as did the Italians, still cul-

tivated it with great zeal. The arithmetic of John Widmaim, brought

out in 1489 in Leipzig, is the earliest printed book in which thej;^nd
—symbols have been found. The + sign is not restricted by him to

ordinary addition; it has the more general meaning "et" or "and"
as in the heading, "regula augmenti -|- decrements" The — sign is

used to indicate subtraction, but not regularly so. The word "plus"

does not occur in Widmann's text; the word "minus" is used only two

or three times. The symbols + and — are used regularly for addi-

' Encyclopedic dcs sciences maihematiques , Tome I, Vol. 2, 1907, p. 2.
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tion and subtraction, in 1521,^ in the arithmetic of Grammateus,
(Heinrich Schreiber, died 1525) a teacher at the University of Vienna.

His pupil, Christofif Rudolff , the writer of the first text-book on algebra

in the German language (printed in 1525), employs these symbols also.

So did Stifel, who brought out a second edition of Rudolff's Coss in

1553. Thus, by slow degrees, their adoption became universal. Sev-

eral independent paleographic studies of Latin manuscripts of the

fourteenth and fifteenth centuries make it almost certain that the

sign + comes from the Latin et, as it was cursively written in manu-
scripts just before the time of the invention of printing.^ The ori-

gin of the sign — is still uncertain. There is another short-hand

symbol of which we owe the origin to the Germans. In a manu-
script pubhshed sometime in the fifteenth century, a dot placed

before a number is made to signify the extraction of a root of

that number. This dot is the embryo of our present symbol for the

square root. Christoff Rudolff, in his algebra, remarks that "the
radix quadrata is, for brevity, designated in his algorithm with the

character V, as V4." Here the dot has grown into a symbol much
like our own. This same^symbol was used by Michael Stifel. Our
sign of equahty is due to Robert Recorde (1510-1558), the author of

The Whetstone of Witte (1557), which is the first English treatise on
algebra. He selected this symbol because no two things could be
more equal than two parallel lines =. The sign -7- for division was
first used by Johann Heinrich Rahn, a Swiss, in his Teutsche Algebra,

Zurich, 1659, and was introduced in England through Thomas
Brancker's translation of Rahn's book, London, 1668.

Michael Stifel (1486?-! 567), the greatest German algebraist of the
sixteenth century, was born in Esslingen, and died in Jena. He was
educated in the monastery of his native place, and afterwards be-

came Protestant minister. The study of the significance of mystic
numbers in Revelation and in Daniel drew him to mathematics. He
studied German and Italian works, and published in 1544, in Latin,

a book entitled Arithmetica integra. Melanchthon wrote a preface to

it. Its three parts treat respectively of rational numbers, irrational

numbers, and algebra. Stifel gives a table containing the numerical
values of the binomial coefficients for powers below the i8th. He ob-
serves an advantage in letting a geometric progression correspond to

an arithmetical progression, and arrives at the designation of integral

powers by numbers. Here are the germs of the theory of exponents
and of logarithms. In 1545 Stifel published an arithmetic in German.
His edition of RudoLff's Coss contains rules for solving cubic equations,
derived from the writings of Cardan.

1 G. Enestrom in Bibliotheca mathenialka, 3. S., Vol. g, 1908-09, pp. 155-157;
Vol. 14, 1914, p. 278.

'For references see M. Cantor, op. cU., Vol. II, 2. Ed., 1900, p. 231; J. Tropfke,
op. cit., Vol. I, 1902, pp. 133, 134.
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We remarked above that Vieta discarded negative roots of equa-
tions. Indeed, we find few algebraists before and during the Renais-
sance who understood the significance even of negative quantities.

Fibonacci seldom uses them. Pacioli states the rule that " minus times
minus gives plus," but applies it really only to the development of the
product of {a—b) (c—d); purely negative quantities do not appear
in his work. The German "Cossist" (algebraist), Michael SHfel,

speaks as early as 1544 of numbers which are "absurd" or "fictitious

below zero," and which arise when "real numbers above zero" are
subtracted from zero. Cardan, at last, speaks of a "pure minus";
"but these ideas," says H. Hankel, "remained sparsely, and until

the beginning of the seventeenth century, mathematicians dealt ex-

clusively with absolute positive quantities." One of the first alge-

braists who occasionally place a purely negative quantity by itself on
one side of an equation, is T. Harriot in England. As regards the rec-

ognition of negative roots. Cardan and Bombelli were far in advance
of all writers of the Renaissance, including Vieta. Yet even they
mentioned these so-called false or fictitious roots only in passing, and
without grasping their real significance and importance. On this

subject Cardan and BombeUi had advanced to about the same point

as had the Hindu Bhaskara, who saw negative roots, but did not ap-

prove of them. The generalization of the conception of quantity so

as to include the negative, was an exceedingly slow and difficult process

in the development of algebra.

We shall now consider the history of geometry during the Renais-

sance. UnUke algebra, it made hardly any progress. The greatest

gain was a more intimate knowledge of Greek geometry. No essen-

tial progress was made before the time of Descartes. Regiomontanus,

Xylander (WiUiekn Holzmann, 153 2-1 5 76) of Augsburg, Tartaglia,

Federigo Commandino (1509-1575) of Urbino in Italy, Maurolycus

and others, made translations of geometrical works from the Greek.

The description and instrumental construction of a new curve, the

epicycloid, is explained by Albrecht Diirer (1471-1528), the celebrated

painter and sculptor of Niirnberg, in a book, Underweysung der Mes-

sung mil dem Zyrkel und rychtscheyd, 1525. The idea of such a curve

goes back at least as far as Hipparchus who used it in his astronomical

theory of epicycles. The epicycloid does not again appear in history

until the time of G. Desargues and P. La Hire. Diirer is the earHest

writer in the Occident to call attention to magic squares. A simple

magic square appears in his celebrated painting called "Melancholia."

Johannes Werner (1468-1528) of Niirnberg published in 1522 the

first work on conies which appeared in Christian Europe. Unlike the

geometers of old, he studied the sections in relation with the cone, and

derived their properties directly from it. This mode of studying the

conies was followed by Franciscus Maurolycus (1494-1575) of Mes-

sina. The latter is, doubtless, the greatest geometer of the sixteenth
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century. From the notes of Pappus, he attempted to restore the miss-

ing fifth book of Apollonius on maxima and minima. His chief work is

his masterly and original treatment of the conic sections, wherein he

discusses tangents and asymptotes more fully than Apollonius had
done, and applies them to various physical and astronomical problems.

To Maurolycus has been ascribed also the discovery of the inference

by mathematical induction.^ It occurs in his introduction to his Opus-

cula mathematica, Venice, 1575. Later, mathematical induction was
used by Pascal in his Traite du triangle arithmi,iique (1662). Processes

' akin to mathematical induction, some of which would yield the mod-
ern mathematical induction by introducing some sUght change in the

mode of presentation or in the point of view, were given before Mau-
rolycus. Giovanni Campano (latinized form, Campanus) of Novara
in Italy, in his edition of Euclid (1260), proves the irrationality of the

golden section by a recurrent mode of inference resulting in a reductio

ad absurdum. But he does not descend by a regular progression from n
ton— I, n— 2, etc., but leaps irregularly over, perhaps, several integers.

Campano's process was used later by Fermat. A recurrent mode of

inference is found in Bhaskara's "cyclic method" of solving inde-

.

terminate equations, in Theon of Smyrna (about 130 a. d.) and in

Proclus's process for finding numbers representing the sides and di-

agonals of squares; it is found in Euclid's proof {Elements IX, 20) that

the number of primes is infinite.

The foremost geometrician of Portugal was Pedro Nunes ^ (1502-

1578) or Nonius. He showed that a ship sailing so as to make equal

angles with the meridians does not travel in a straight line, nor usually

along the arc of a great circle, but describes a path called the loxo-

dromic curve. Nunes invented the "nonius" and described it in

his De crepusculis, Lisbon, 1542. It consists in the juxtaposition of

equal arcs, one arc divided into m equal parts and the other into in+i
equal parts. Nonius took m=8g. The instrument is also called

a "vernier," after the Frenchman Pierre Vernier, who re-invented it

in 1 63 1. The foremost French mathematician before Vieta was Peter
Ramus (1515-1572), who perished in the massacre of St. Bartholomew.
Vieta possessed great familiarity with ancient geometry. The new
form which he gave to algebra, by representing general quantities by
letters, enabled him to point out more easily how the construction of

the roots of cubics depended upon the celebrated ancient problems of

the duplication of the cube and the trisection of an angle. He reached
the interesting conclusion that the former problem includes the solu-

tions of all cubics in which the radical in Tartaglia's formula is real,

but that the latter problem includes only those leading to the irredu-

cible case.

' G. Vacca in Bulletin Am. Math. Society, 2. S., Vol. 16, 1909, p. 70. See also

F. Cajori in Vol. 15, pp. 407-409.
^See R. Guimaraes, Pedro Nunes, Coimpre, 1915.
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The problem of the quadrature of the circle was revived in this age,
and was zealously studied even by men of eminence and mathematical
abiHty. The army of circle-squarers became most formidable during
the seventeenth century. Among the first to revive this problem was
the German Cardinal Nicolaus Cusanus (1401-1464), who had the
reputation of being a great logician. His fallacies were exposed to
full view by Regiomontanus. As in this case, so in others, every quad-
rator of note raised up an opposing mathematician: Oronce Fine was
met by Jean Buteo (c. 1492-1572) and P. Nunes; Joseph Scaliger by
Vieta, Adrianus Romanus, and Clavius; a Quercu by Adriaen An-
thonisz (1527-1607). Two mathematicians of Netherlands, Adrianus
Romanus (1561-1615) and Ludolph van Ceulen (1540-1610), occu-
pied themselves with approximating to the ratio between the circumfer-
ence and the diameter. The former carried the value 7r to 15, the lat-

ter to 35, places. The value of tt is therefore often named "Ludolph's
number." His performance was considered so extraordinary, that the
numbers were cut on his tomb-stone (now lost) in St. Peter's church-
yard, at Leyden. These men had used the Archimedian method of

in- and circum-scribed potygons, a method refined in 162 1 by Wille-

hrord Snellius (1580-1626) who showed how narrower limits may be
obtained for tt without increasing the number of sides of the poly-

gons. Snellius used two theorems equivalent to \ (2 sin Q tan 6) Z dZ.

3/(2 c5cd+cot6). The greatest refinements in the use of the geo-

metrical method of Archimedes were reached by C. Huyghens in his

De circuli magnitudine inventa, 1654, and by James Gregory (1638-

1675), professor at St. Andrews and Edinburgh, in his Exercitationes

geometries, 1668, and Vera circuli et hyperbolae quadratura, 1667.

Gregory gave several formulas for approximating to , w and in the

second of these publications boldly attempted to prove by the Ar-

chimedean algorithm that the quadrature of the circle is impossible.

Huyghens showed that Gregory's proof is not conclusive, although

he himself beheved that the quadrature is impossible. Other attempts

to prove this impossibility were made by Thomas Fautat De Lagny
(1660-1734) of Paris, in 1727, Joseph Saurin (1659-1737) in 1720,

Isaac Newton in his Principia I, 6, lemma 28, E. Waring, L. Euler,

1771.

That these proofs would lack rigor was almost to be expected, as

long as no distinction was made between algebraical and transcen-

dental numbers.

The earliest explicit expression for tt by an infinite number of op-

erations was found by Vieta. Considering regular polygons of 4, 8,

16, . . - sides, inscribed in a circle of unit radius, he found that the

area of the circle is

^W-2+\n\h+Wh+h^2
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from which, we obtain

^_ _ ^
, which may be derived from Euler's formula ^

e= , '"I? J, ,
(^Ztt), by taking e=7r/2.

COS^/2 cos"/! COS^/8 ...

As mentioned earlier,it was Adrianus Romanus (1561-1615) of Lou-
vainwho propounded for solution that equation of the forty-fifth degree

solved by Vieta. On receiving Vieta's solution, he at once departed for

Paris, to make his acquaintance with so great a master. Vieta proposed

to him the Apollonian problem, to draw a circle touching three given

circles. "Adrianus Romanus solved the problem by the intersection of

two hyperbolas; but this solution did not possess the rigor of the ancient

geometry. Vieta caused him to see this, and then, in his turn, pre-

sented a solution which had all the rigor desirable." ^ Romanus
did much toward simplifying spherical trigonometry by reducing, by
means of certain projections, the 28 cases in triangles then considered

to only six.

Mention must here be made of the improvements of the Julian

calendar. The yearly determination of the movable feasts had for

a long time been connected with an untold amount of confusion. The
rapid progress of astronomy led to the consideration of this subject,

and many new calendars were proposed. Pope Gregory XIII con-

voked a large number of mathematicians, astronomers, and prelates,

who decided upon the adoption of the calendar proposed by the Jesuit

Christophorus Clavius (1537-1612) of Rome. To rectify the errors of

the Julian calendar it was agreed to write in the new calendar the 15th

of October immediately after the 4th of October of the year 1582.

The Gregorian calendar met with a great deal of opposition both
among scientists and among Protestants. Clavius, who ranked high

as a geometer, met the objections of the former most ably and effec-

tively; the prejudices of the latter passed away with time.

The passion for the study of mystical properties of numbers de-

scended from the ancients to the moderns. Much was written on
numerical mysticism even by such eminent men as Pacioli and Stifel.

The Numerorum Hysteria of Peter Bungus covered 700 quarto pages.

He worked with great industry and satisfaction on 666, which is the
number of the beast in Revelation (xiii, 18), the symbol of Antichrist.

He reduced the name of the "impious " Martin Luther to a form which
may express this formidable number. Placing fl=i, b = 2, etc., yfe=io,

/= 20, etc., he finds, after misspelling the name, that M(3o)A(i)R(8o)T(ioo)

I(9)N(40)L(2o)V(2oo)T(ioo)E(s)R(8o)A(i) constitutes the number required.

These attacks on the great reformer were not unprovoked, for his

^ E. W. Hobson, Squaring the Circle, Cambridge, 1913, pp. 26, 27, 31.
' A. Quetelet, Hisloire des Sciences mathematiques el physiques chez les Beiges.

Bruxelles, 1864, p. 137.
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friend, Michael Stifel, the most acute and original of the early mathe-
maticians of Germany, exercised an equal ingenuity in showing that
the above number referred to Pope Leo X,—a demonstration which
gave Stifel unspeakable comfort.'

Astrology also was still a favorite study. It is well known that Car-
dan, Maurolycus, Regiomontanus, and many other eminent scientists
who lived at a period even later than this, engaged in deep astrological
study; but it is not so generally known that besides the occult sciences
already named, men engaged in the mystic study of star-polygons
and magic squares. "The pentagramma gives you pain," says Faust
to Mephistopheles. It is of deep psychological interest to see scientists,
like the great Kepler, demonstrate on one page a theorem on star-

polygons, with strict geometric rigor, while on the next page, perhaps,
he explains their use as amulets or in conjurations. Playfair, speaking
of Cardan as an astrologer, calls him "a melancholy proof that there
is no foUy or weakness too great to be united to high intellectual at-

tainments." ^ Let our judgment not be too harsh. The period under
consideration is too near the Middle Ages to admit of complete eman-
cipation from mysticism even among scientists. Scholars like Kepler,
Napier, Albrecht Diirer, while in the van of progress and planting
one foot upon the firm ground of truly scientific inquiry, were still

resting with the other foot upon the scholastic ideas of preceding ages.

Vieta to Descartes

The ecclesiastical power, which in the ignorant ages was an unmixed
benefit, in more enUghtened ages became a serious evil. Thus, in

France, during the reigns preceding that of Henry IV, the theological

spirit predominated. This is painfully shown by the massacres of

Vassy and of St. Bartholomew. Being engaged in religious disputes,

people had no leisure for science and for secular literature. Hence,

down to the time of Henry IV, the French "had not put forth a single

work, the destruction of which would now be a loss to Europe." In
England, on the other hand, no religious wars were waged. The people

were comparatively indifferent about religious strifes; they concen-

trated their ability upon secular matters, and acquired, in the six-

teenth century, a literature which is immortalized by the genius of

Shakespeare and Spenser. This great literary age in England was
followed by a great scientific age. At the close of the sixteenth cen-

tury, the shackles of ecclesiastical authority were thrown off by France.

The ascension of Henry IV to the throne was followed in 1598 by the

Edict of Nantes, granting freedom of worship to the Huguenots, and
thereby terminating religious wars. The genius of the French nation

1 G. Peacock, op. cit., p. 424.

"John Playfair, "Progress of the Mathematical and Physical Sciences" in En-
cyclopcedia Britannica, 7th ed., continued in 8th Ed., by Sir John Leslie.
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now began to blossom. Cardinal Richelieu, during the reign of Louis

XIII, pursued the broad policy of not favoring the opinions of any
sect, but of promoting the interests of the nation. His age was re-

markable for the progress of knowledge. It produced that great secu-

lar literature, the counterpart of which was found in England in the

sixteenth century. The seventeenth century was made illustrious

also by the great French mathematicians, Roberval, Descartes, Des-
argues, Fermat, and Pascal.

More gloomy is the picture in Germany. The great changes which
revolutionized the world in the sixteenth century, and which led Eng-,

land to national greatness, led Germany to degradation. The first

effects of the Reformation there were salutary. At the close of the

fifteenth and during the sixteenth century, Germany had been con-

spicuous for her scientific pursuits. She had .been a leader in as-

tronomy and trigonometry. Algebra also, excepting for the discoveries

in cubic equations, was, before the time of Vieta, in a more advanced
state there than elsewhere. But at the beginning of the seventeenth

century, when the sun of science began to rise in France, it set in Ger-

many. Theologic disputes and religious strife ensued. The Thirty
Years' War (1618-164S) proved ruinous. The German empire was
shattered, and became a mere lax confederation of petty despotisms.

Commerce was destroyed; national feeling died out. Art disappeared,

and in literature there was only a slavish imitation of French arti-

ficiality. Nor did Germany recover from this low state for 200 years;

for in 1756 began another struggle, the Seven Years' War, which
turned Prussia into a wasted land. Thus it followed that at the be-

ginning of the seventeenth century, the great Kepler was the only

German mathematician of eminence, and that in the interval of 200

years between Kepler and Gauss, there arose no great mathematician
in Germany excepting Leibniz.

Up to the seventeenth century, mathematics was cultivated but little

in Great Britain. During the sixteenth century, she brought forth

no mathematician comparable with Vieta, Stifel, or Tartaglia. But
with the time of Recorde, the English became conspicuous for numeri-
cal skill. The first important arithmetical work of English authorship

was pubhshed in Latin in 1522 by Cuthbert TonstaU (1474-1559). He
had studied at Oxford, Cambridge, and Padua, and drew freely from
the works of Pacioli and Regiomontanus. Reprints of his arithmetic

appeared in England and France. After Recorde the higher branches

of mathematics began to be studied. Later, Scotland brought forth

John Napier, the inventor of logarithms. The instantaneous appre-

ciation of their value is doubtless the result of superiority in calcula-

tion. In Italy, and especially in France, geometry, which for a long

time had been an almost stationary science, began to be studied with
success. Galileo, Torricelli, Roberval, Fermat, Desargues, Pascal,

Descartes, and the English Wallis are the great revolutioners of this
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science. Theoretical mechanics began to be studied. The foundations
were laid by Fermat and Pascal for the theory of numbers and the

theory of probability.

We shall first consider the improvements made in the art of calcu-

lating. The nations of antiquity experimented thousands of years

upon numeral notations before they happened to strike upon the so-

called "Arabic notation." In the simple expedient of the cipher,

which was permanently introduced by the Hindus, mathematics re-

ceived one of the most powerful impulses. It would seem that after

the "Arabic notation" was once thoroughly understood, decimal

fractions would occur at once as an obvious extension of it. But "it

is curious to think how much science had attempted in physical re-

search and how deeply numbers had been pondered, before it was per-

ceived that the all-powerful simplicity of the 'Arabic notation' was as

valuable and as manageable in an infinitely descending as in an in-

finitely ascending progression." ^ Simple as decimal fractions ap-

pear to us, the invention of them is not the result of one mind or even

of one age. They came into use by almost imperceptible degrees. The
first mathematicians identified with their history did not perceive

their true nature and importance, and failed to invent a suitable no-

tation. The idea of decimal fractions makes its first appearance in

methods for approximating to the square roots of numbers. Thus
John of SevUle, presumably in imitation of Hindu rules, adds 2n ci-

phers to the number, then finds the square root, and takes this as the

numerator of a fraction whose denominator is i followed by n ciphers.

The same method was followed by Cardan, but it failed to be generally

adopted even by his Italian contemporaries; for otherwise it would

certainly have been at least mentioned by Pietro Calaldi (died 1626)

in a work devoted exclusively to the extraction of roots. Cataldi,

and before him Bombelli in 1572, find the square root by means of

continued fractions—a method ingenious and novel, but for practical

purposes inferior to Cardan's. Oronce Fine (1494-1555) in France

(called also Orontius Finaeus), and William Buckley (died about

1550) in England extracted the square root in the same way as

Cardan and John of Seville. The invention of decimals has been

frequently attributed to Regiomontanus, on the ground that in-

stead of placing the sinus totus, in trigonometry, equal to a multiple

of 60, like the Greeks, he put it =100,000. But here the trigonomet-

rical lines were expressed in integers, and not in fractions. Though

he adopted a decimal division of the radius, he and his successors

did not apply the idea outside of trigonometry and, indeed, had no

notion whatever of decimal fractions. To Simon Stevin (1548-

1620) of Bruges in Belgium, a man who did a great deal of work in

most diverse fields of science, we owe the first systematic treatment of

decimal fractions. In his La Disme (1585) he describes in very express

' Mark Napier, Memoirs of John Napier of Merchislon. Edinburgh, 1834.
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terms the advantages, not only of decimal fractions, but also of the

decimal division in systems of weights and measures. Stevin applied

the new fractions "to all the operations of ordinary arithmetic."^

What he lacked was a suitable notation. In place of our decimal point,

he used a cipher; to each place in the fraction was attached the cor-

responding index. Thus, in his notation, the number 5.912 would be
0123
5912 or S®9®i@2©. These indices, though cumbrous in practice, are

of interest, because they embody the notion of powers of numbers.

Stevin considered also fractional powers. He says that "|" placed

within a circle would mean x'!', but he does not actually use his nota-

tion. This notion had been advanced much earher by Oresme, but

it had remained unnoticed. Stevin found the greatest common di-

visor of x^+x^ and x'^+jx+6 by the process of continual division,

thereby applying to polynomials Euclid's mode of finding the greatest

common divisor of numbers, as explained in Book VII of his Elements.

Stevin was enthusiastic not only over decimal fractions, but also over

the decimal division of weights and measures. He considered it the

duty of governments to establish the latter. He advocated the deci-

mal subdivision of the degree. No improvement was made in the

notation of decimals till the beginning of the seventeenth century.

After Stevin, decimals were used by Joost Biirgi (1552-1632), a Swiss

by birth, who prepared a manuscript on arithmetic soon after 1592, and
by Johann Hartmann Beyer, who assumes the invention as his own.
In 1603, he published at Frankfurt on the Main a Logistica Decimalis.

Historians of mathematics do not yet agree to whom the first intro-

duction of the decimal point or comma should be ascribed. Among
the candidates for the honor are Pellos (1492), Biirgi (1592), Pitiscus

(1608, 1612), Kepler (1616), Napier (1616, 1617). This divergence

of opinion is due mainly to different standards of judgment. If the

requirement made of candidates is not only that the decimal point or

comma was actually used by them, but that they must give evidence

that the numbers used were actually decimal fractions, that the point

or comma was with them not merely a general symbol to indicate

a separation, that they must actually use the decimal point in opera-

tions including multiplication or division of decimal fractions, then
it would seem that the honor falls to John Napier, who exhibits such
use in his Rabdologia, 1617. Perhaps Napier received the suggestion

for this notation from Pitiscus who, according to G. Enestrom,^ uses

the point in his Trigonometria of 1608 and 161 2, not as a regular deci-

mal point, but as a more general sign of separation. Napier's decimal
point did not meet with immediate adoption. W. Oughtred in 1631
designates the fraction .56 thus, o|s6. Albert Girard, a pupil of Stevin,

in 1629 uses the point on one occasion. John WaUis in 1657 writes

' A. Quetelet, op. cit., p. 158.

^BiUiotheca mathematica, 3. S., Vol. 6, 1905, p. 109.
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12I345, but afterwards in his algebra adopts the usual point. A. De
Morgan says that "to the first quarter of the eighteenth century we
must refer not only the complete and final victory of the decimal point,

but also that of the now universal method of performing the operations
of division and extraction of the square root." ^ We have dwelt at
some length on the progress of the decimal notation, because "the
history of language ... is of the highest order of interest, as well as

utility: its suggestions are the best lesson for the future which a reflect-

ing mind can have."

The miraculous powers of modern calculation are due to three in-

ventions: the Arabic Notation, Decimal Fractions, and Logarithms.
The invention of logarithms in the first quarter of the seventeenth

century was admirably timed, for Kepler was then examining plane-

tary orbits, and Galileo had just turned the telescope to the stars.

During the Renaissance German mathematicians had constructed

trigonometrical tables of great accuracy, but its greater precision

enormously increased the work of the calculator. It is no exaggera-

tion to say that the invention of logarithms "by shortening the labors

doubled the life of the astronomer." Logarithms were invented by
John Napier (1550-1617), Baron of Merchiston, in Scotland. It is

one of the greatest curiosities of the history of science that Napier

constructed logarithms before exponents were used. To be sure,

Stifel and Stevin made some attempts to denote powers by indices,

but this notation was not generally known,—not even to T. Harriot,

whose algebra appeared long after Napier's death. That logarithms

flow naturally from the exponential symbol was not observed until

much later. What, then, was Napier's Hne of thought?

Let ABhe. & definite hne, DE a line extending from D indefinitely.

Imagine two points starting at the same moment; the one movingAC 5 '

1
I

D F E

from A toward B, the other from D toward E. Let the velocity during

the first moment be the same for both: let that of the point on line DE
be uniform; but the velocity of the point on AB decreasing in such

a way that when it arrives at any point C, its velocity is proportional

to the remaining distance BC. While the first point moves over a dis-

tance AC, the second one moves over a distance DF. Napier calls

DF the logarithm of BC.
He first sought the logarithms only of sines; the Hne AB was the

sme of 90° and was taken =10''; BC was the sine of the arc, and

1 A. De Morgan, Arithmetical Books from the Invention of Printing to the Present

Time, London, 1847, p. xxvii.
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DF its logarithm. We notice that as the motion proceeds, BC
decreases in geometrical progression, while DF increases in arith-

metical progression. Let AB=a^io'', let x=DF, y=BC, then

AC=a~y. The velocity of the point C is ^^y/ this gives

— nat.log y=t-\-c. When t=o, then y = a and c= -nat. log a. Again,

let -^=a be the velocity of the point F, then x=at. Substituting for

t and c their values and remembering that a=io'' and that by defini-

tion a:=Nap. log y, we get

Nap. log y=io' nat. log —

.

It is evident from this formula that Napier's logarithms are not the

same as the natural logarithms. Napier's logarithms increase as the

number itself decreases. He took the logarithm of sin 90°=o; i. e.

the logarithm of io'=o. The logarithm of sin a increased from zero

as a decreased from 90°. Napier's genesis of logarithms from the con-

ception of two flowing points reminds us of Newton's doctrine of

fluxions. The relation between geometric and arithmetical progres-

sions, so skilfully utilized by Napier, had been observed by Archi-

medes, Stifel, and others. What was the base of Napier's system of

logarithms? To this we reply that not only did the notion of a

"base" never suggest itself to him, but it is inapplicable to his

system. This notion demands that zero be the logarithm of i; in

Napier's system, zero is the logarithm of 10'. Napier's great in-

vention was given to the world in 1614 in a work entitled Mirifici

logarithmorum canonis descripiio. In it he explained the nature of

his logarithms, and gave a logarithmic table of the natural sines of

a quadrant from minute to minute. In 1619 appeared Napier's

Mirifici logarithmorum canonis consiruciio, as a posthumous work, in

which his method of calculating logarithms is explained. An English

translation of the Consiruciio, by W. R. Macdonald, appeared in

Edinburgh, in 1S89.

Henry Briggs (i556-i63i),Jn Napier's time professor of geometry
at Gresham College, London, and afterwards professor at Oxford,

was so struck with admiration of Napier's book, that he left his studies

in London to do homage to the Scottish philosopher. Briggs was de-

layed in his journey, and Napier complained to a common friend, "Ah,
John, Mr. Briggs will not come." At that very moment knocks were
heard at the gate, and Briggs was brought into the lord's chamber.
Almost one-quarter of an hour was spent, each beholding the other

without speaking a word. At last Briggs began: "My lord, I have
undertaken this long journey purposely to see your person, and to

know by what engine of wit or ingenuity you came first to think of
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this most excellent help in astronomy, viz. the logarithms; but, my
lord, being by you found out, I wonder nobody found it out before,
when now known it is so easy." Briggs suggested to Napier the ad-
vantage that would result from retaining zero for the logarithm of the
whole sine, but choosing 10,000,000,000 for the logarithm of the loth
part of that same sine, i. e. of 5° 44' 22". Napier said that he had al-

ready thought of the change, and he pointed out a slight improvement
on Briggs' idea; viz. that zero should be the logarithm of i, and
10,000,000,000 that of the whole sine, thereby making the character-
istic of numbers greater than unity positive and not negative, as sug-
gestedby Briggs. Briggs admitted this to be more convenient. The
invention of "Briggian logarithms" occurred, therefore, to Briggs
and Napier independently. The great practical advantage of the new
system was that its fundamental progression was accommodated to
the base, 10, of our numerical scale. Briggs devoted all his energies
to the construction of tables upon the new plan. Napier died in 1617,
with the satisfaction of having found in Briggs an able friend to bring
to completion his unfinished plans. In 1624 Briggs pubhshed his

Arithmetica logarithmica, containing the logarithms to 14 places of

numbers, from i to 20,000 and from 90,000 to 100,000. The gap from
20,000 to 90,000 was filled up by that illustrious successor of Napier
and Briggs, Adrian Vlacq (i6oo?-i667). He was born at Gouda in

Holland and lived ten years in London as a bookseller and pubhsher.
Being driven out by London bookdealers, he settled in Paris where he
met opposition again, for selling foreign books. He died at The Hague.
John Milton, in his Defensio secunda, published an abuse of him.
Vlacq pubhshed in 1628 a table of logarithms from i to 100,000, of

which 70,000 were calculated by himself. The first publication of

Briggian logarithms of trigonometric functions was made in 1620 by
Edmund Gunter (1581-1626) of London, a colleague of Briggs, who
found the logarithmic sines and tangents for every minute to seven

places. Gunter was the inventor of the words cosine and cotangent

(1620).

The word cosine was an abbreviation of complemental sine. The
invention of the words tangent and secant is due to the physician and
mathematician, Thomas Finck, a native of Flensburg, who used them
in his Geometria rotundi, Basel, 1583. Gunter is known to engineers

for his "Gunter's chain." It is told of him that "When he was a stu-

dent at Christ College, it fell to his lot to preach the Passion sermon,

which some old divines that I knew did hear, but they said that it

was said of him then in the University that our Savior never suffered

so much since his passion as in that sermon, it was such a lamented
one." ' Briggs devoted the last years of his life to calculating more
extensive Briggian logarithms of trigonometric functions, but he died

in 1631, leaving his work unfinished. It was carried on by Henry Gel-
' Aubrey's Brief Lives, Edition A. Clark, 1898, Vol. I, p. 276.
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librand (1597-1637) of Gresham College in London, and then pub-
lished by Vlacq at his own expense. Briggs divided a degree into

100 parts, as was done also by N. Roe in 1633, W. Oughtred in 1657,

John Newton in 1658, but owing to the pubHcation by Vlacq of trigo-

nometrical tables constructed on the old sexagesimal division, Briggs'

innovation did not prevail. Briggs and Vlacq published four funda-

mental works, the results of which have not been superseded by any
subsequent calculations until very recently.

The word "characteristic," as used in logarithms, first occurs in

Briggs' Arithmetica logarithmica, 1624; the word "mantissa" was in-

troduced by John Walhs in the Latin edition of his Algebra, 1693,

p. 41, and was used by L. Euler in his Introductio in analysin in 1748,

p. 85.

The only rival of John Napier in the invention of logarithms was the

Swiss Joost Biirgi (1552-1632). He pubhshed a table of logarithms,

Arithmetische und Geometrische Progresstahulen, Prague, 1620, but he

conceived the idea and constructed his table independently of Napier.

He neglected to have it published until Napier's logarithms were
known and admired throughout Europe.

Among the various inventions of Napier to assist the memory of

the student or calculator, is "Napier's rule of circular parts" for the

solution of spherical right triangles. It is, perhaps, " the happiest

example of artificial memory that is known." Napier gives in the

Descriptio a proof of his rule; proofs were given later by Johann
Heinrich Lambert (1765) and Leslie EUis (1863).'- Of the four for-

mulas for oblique spherical triangles which are sometimes called "Na-
pier's Analogies," only two are due to Napier himself; they are given

in his Constructio. The other two were added by Briggs in his an-

notations to the Constructio.

A modification of Napier's logarithms was made by John Speidell,

a teacher of mathematics in London, who published the New Loga-
ritkmes, London, 1619, containing the logarithms of sines, tangents

and secants. Speidell did not advance a new theory. He simply

aimed to improve on Napier's tables by making all logarithms posi-

tive. To achieve this end he subtracted Napier's logarithmic numbers
from 10* and then discarded the last two digits. Napier gave log sin

3o'=474i3852. Subtracting this from 10* leaves 52586148. Speidell

wrote log sin 3o' = 52586i. It has been said that Speidell's logarithms

of 1619 are logarithms to the natural base e. This is not quite true,

on account of complications arising from the fact that the logarithms

in Speidell's table appear as integral numbers and that the natural

trigonometric values (not printed in Speidell's tables) are likewise

written as integral numbers. If the last five figures in Speidell's log-

arithms are taken as decimals (mantissas), then the logarithms are

the natural logarithms (with 10 added to every negative character-
' R. Mortiz, Am. Math. Monthly, Vol. 22, 1915, p. 221.
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istic) of the trigonometric values, provided the latter are expressed
decimally as ratios. For instance, Napier gives sin 3o'=8726s, the

radius being 10'. In reality, sin 30'=.0087265. The natural log-

arithm of this fraction is approximately 5.25861. Adding 10 gives

5.25861. As seen above, Speidell writes log sin 30'= 525861. The
relation between the natural logarithms and the logarithms in Spei-

dell's trigonometric tables is shown by the formula, Sp. log x=io^

( lo+loge -—5). For secants and the latter half of the tangents the

addition of 10 is omitted. In Speidell's table, log tan 89°=4048i2, the

natural logarithm of tan 89° being 4.04812. In the 1622 edition of his

New Logarithmes, Speidell included also a table of logarithms of the

numbers i-iooo. Except for the omission of the decimal point, the loga-

rithms in this table are genuinely natural logarithms. Thus, he gives log

10=2302584; in modern notation, ?ogeio= 2.302584. J. W. L. Glaisher

has pointed out ^ that these are not the earliest natural logarithms. The
second (1618) edition of Edward Wright's translation of Napier's De-
scriptio contains an anonymous Appendix, very probably written by
William Oughtred, describing a process of interpolation with the aid

of a small table containing the logarithms of 72 sines. The latter

are natural logarithms with the decimal point omitted. Thus, log

10=2302584, log 50=3911021. This Appendix is noteworthy also as

containing the earliest account of the radix method of computing log-

arithms. After the time of Speidell no tables of natural logarithms

were published until 1770, when J. H. Lambert inserted a seven place

table of natural logarithms of the numbers i-ioo in his Zusatze iu den

Logarithmischen und Trigonometrischen Tabellen. Most of the early

methods of computing logarithms originated in England. Napier

begins the computations of his logarithms of 1614 by forming a geo-

metric progression of loi terms, the first term being 10^ and the com-

mon ratio! I jland the last term 9,999,900.0004950. This progres-

sion constitutes the "First Table" given in his Constructio. Omitting

the decimal part of the last term, he takes 9,999,900 as the second

term of a new progression of 51 terms whose first term is 10'', the com-

mon ratio being (
i 5) and the last term 9,995,001.222927 (should

be 9,995001.224804). A third geometric progression of 21 terms has
10'' as its first term, 9,995000 for its second term, the common ratio

(
I-—^) and 9,900,473.57808 as its last term. This progression of

\ 2000/

21 terms constitutes the first of 69 columns of numbers in Napier's

1 Quarterly Jour, of Pure 6- Appl. Math., Vol. 46, 1915, p. 145.
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"Third Table." Each column is a geometric progression of 21 terms

with (
I

) as the common ratio. The 5q first or top numbers in
\ 2000/

the 69 columns themselves constitute a geometric progression having

the ratio! i
)

, the first top number being 10', the second 9900000,
\ 100/

and so on. The last number in the 69th column is 4998609.4034.
Thus this "Third Table" gives a series of numbers very nearly, but
not exactly in geometrical progression, and lying between 10^ and
very nearly |.io''. Says Hutton, these tables were "found in the

most simple manner, by httle more than easy subtractions." The
numbers are taken as the sines of angles between 90° and 30°. Kine-

matical considerations yield him an upper and a lower limit for the

logarithm of a given sine. By these limits he obtains the logarithm

of each mmiber in his "Third Table." To obtain the logarithms of

sines between 0° and 30° Napier indicates two methods. By one of

them he computes log sin ^, is°< 6<so°, by the aid of his "Third
Table" and the formula sin 26—2 sin sin(90°— 6). A repetition

of this process gives the logarithms of sines down to ^=7° 30', and
so on.

Biirgi's method of computation was more primitive than Napier's.

In his table the logarithms were printed in red and were called "red
numbers"; the antilogarithms were in black. The expressions rn=io«,

bn=bn—i ( iH 4), where ro=o, Jo =100,000,000, and n=i, 2, 3, ...
,

indicate the mode of computation. Any term ba of the geometric

series is obtained by adding to the preceding term &n— i, the —jth part

of that term. Proceeding thus Biirgi arrives at >*= 230,270,022 and
6=1,000,000,000, this last pair of numbers being obtained by inter-

polation.

In the Appendix to the Construdio there are described three meth-
ods of computing logarithms which are probably the result of the

joint labors of Napier and Briggs. The first method rests on the
successive extractions of fifth roots. The second calls for square
roots only. Taking log 1=0 and log 10=10^°, find the logarithm

of the mean proportion between i and 10. There follows log s/i xio
=log 3.16227766017 = 1 (10^°); then log V 10x3. 162 27766017 =log
5.62341325191 = 1 (10^°), and so on. Substantially this method was
used by Kepler in his book on logarithms of 1624 and by Vlacq. The
third method in the Appendix to the Constructio lets log 1=0, log 10=
10^", and takes 2 as a factor 10^" times, yielding a number composed
of 301029996 figures; hence log 2 = 0,301029996.
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A famous method of computing logarithms is the so-called "radix
method." It requires the aid of a table of radices or numbers of the

form i=t

—

-^ with their logarithms. The logarithm of a number is

found by resolving the number into factors of the form i±— and
10

then adding the logarithms of the factors. The earhest appearance
of this method is in the anonymous "Appendix" (very probably due
to Oughtred) to Edward Wright's 1618 edition of Napier's Descriptio}

It is fully developed by Briggs who, in his Arithmetica logarithmica,

1624, gives a table of radices. The method has been frequently re-

discovered and given in various forms. ^ A slight simplification of

Briggs' process was given as one of three methods by Robert Flower in

a tract, The Radix a new way of making Logarithms, London, 1771.

He divides a given number by a power of loand a single digit, so as

to reduce the first figure to .9, and then multiplies by a procession of

radices until all the digits become nines. The radix method was re-

discovered in 1786 by George Atwood (1746-1807), the inventor of

"Atwood's machine," in An essay on the Arithmetic of Factors, and
again by Zecchini Leonelli in 1802, by Thomas Manning (1772-1840),

scholar of Caius College, Cambridge, in 1806, by Thomas Weddle in

1845, Hearn in 1847 and Orchard in 1848. Extensions and variations

of the radix method have been published by Peter Gray (i8o7?-i887),

a writer on life contingencies, Thoman, A. J. Ellis (1814-1890), and
others. The three distinct methods of its application are due to Briggs,

Flower and Weddle.
Another method of computing common logarithms is by the re-

peated formation of geometric means. If A = i, B=io, then C=
^7^-8=3. 162278 has the logarithm .5, Z'='\ABC= 5.623413 has the

logarithm .75, etc. Perhaps suggested by Napier's remarks in the

Constructio, this method was developed by French writers, of whom
Jacques Ozanam (1640-1717) in 1670 was perhaps the first.' Ozanam
is best known for his Recreations mathematiques et physiques, 1694.

Still different devices for the computation of logarithms were in-

vented by Brook Taylor (1717), John Long (1714), William Jones,

Roger Cotes (1722), Andrew Reid (1767), James Dodson (1742), Abel

Biirja (1786), and others.
"*

1
J. W. L. Glaisher, in Quarterly Jour, of Math's, Vol. 46, igis, p. 125.

2 For the detailed history of this method consult also A. J. Ellis in Proceedings

of the Royal Society (London), Vol. 31, 1881, pp. 398-413; S. Lupton, Mathematical

Gazette, Vol. 7, 1913, pp. 147-150, 170-173; Ch. Button's Introduction to his

Mathematical Tables.
' See J. W. L. Glaisher in Quarterly Journal of Pure and Appl. Math's, Vol. 47,

1916, pp. 249-301.
• For details see Ch. Hutton's Introduction to his Mathematical Tables, also the

Encydofedie des sciences mathematiques, 190S; I, 2^,, "Tables de logarithmes."
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After the labor of computing logarithms was practically over, the

facile methods of computing by infinite series came to be discovered.

James Gregory, Lord William Brounker (1620-1684), Nicholas Mer-
cator (1620-1687), John Walhs and Edmund Halley are the pioneer

workers. Mercator in 1668 derived what amounts to the infinite

series for log (i+a). Transformations of this series yielded rapidly

converging results. Wallis in 1695 obtained | log (i+z)/log (1—2) =

z+l z^+J z^+ . . . . G. Vega in his Thesaurus of 1794 lets z= i/(2y^— i).

The theoretic view point of the logarithm was broadened somewhat
during the seventeenth century by the graphic representation, both
in rectangular and polar coordinates, of a variable and its variable

logarithm. Thus were invented the logarithmic curve and the loga-

rithmic spiral. It has been thought that the earliest reference to the

logarithmic curve was made by the Italian Evangelista Torricelh in

a letter of the year 1644, but Paul Tannery made it practically certain

that Descartes knew the curve in 1639.-' Descartes described the log-

arithmic spiral in 1638 in a letter to P. Mersenne, but does not give its

equation, nor connect it with logarithms. He describes itas the curve

which makes equal angles with all the radii drawn through the origin.

The name "logarithmic spiral" was coined by Pierre Varignon in a
paper presented to the Paris academy in 1704 and published in 1722.^

The most brilliant conquest in algebra during the sbiteenth century

had been the solution of cubic and biquadratic equations. All at-

tempts at solving algebraically equations of higher degrees remaining
fruitless, a new line of inquiry—the properties of equations and their

roots—was gradually opened up. We have seen that Vieta had at-

tained a partial knowledge of the relations between roots and co-

efficients. Jacques Peletier (1517-1582), a French man of letters, poet

and mathematician, had observed as early as 1558, that the root of

an equation is a divisor of the last term. In passing he writes equa-

tions with all terms on one side, and equated to zero. This was done
also by Buteo and Harriot. One who extended the theory of equa-

tions somewhat further than Vieta, was Albert Girard (iS9o?-i633?),

a mathematician of Lorraine. Like Vieta, this ingenious author ap-

phed algebra to geometry, and was the first who understood the use

of negative roots in the solution of geometric problems. He spoke of

imaginary quantities, inferred by induction that every equation has
as many roots as there are units in the number expressing its degree,

and first showed how to express the sums of their powers in terms of

the coefficients. Another algebraist of considerable power was the

English Thomas Harriot (1560-1621). He accompanied the first

colony sent out by Sir Walter Raleigh to Virginia. After having sur-

^ See G. Loria, Bihliotheca math., 3. S., Vol. i, 1900, p. 75; L'intermSdiaire des
mathematiciens, Vol. 7, 1900, p. 95.

^ For details and references, see F. Cajori, "History of the Exponential and
Logarithmic Concepts," Am. Math. Monthly, Vol. 20, 1913, pp. 10, 11.
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veyed that country he returned to England. As a mathematician, he
was the boast of his country. He brought the theory of equations
under one comprehensive point of view by grasping that truth in its

full extent to which Vieta and Girard only approximated; viz. that

in an equation in its simplest form, the coefficient of the second term
with its sign changed is equal to the sum of the roots; the coefficient

of the third is equal to the sum of the products of every two of the

roots, etc. He was the first to decompose equations into their simple
factors; but, since he failed to recognize imaginary and even negative
roots, he failed also to prove that every equation could be thus de-

composed. Harriot made some changes in algebraic notation, adopt-
ing small letters of the alphabet in place of the capitals used by Vieta.

The symbols of inequality > and < were introduced by him. The
signs ^ and ^ were first used about a century later by the Parisian

hydrographer, Pierre Bouguer.^ Harriot's work, Artis Analyticce praxis,

was published in 163 1, ten years after his death. WiUiam Oughtred
(1574-1660) contributed vastly to the propagation of mathematical
knowledge in England by his treatises, the Clavis malhematiccR, 163

1

(later Latin editions, 1648, 1652, 1667, 1693; Enghsh editions, 1647,

1694), Circles of Proportion, 1632, Trigonometrie, 1657.^ Oughtred
was an episcopal minister at Albury, near London, and gave private

lessons, free of charge, to pupils interested in mathematics. Among
his most noted pupils are the mathematician John Wallis and the

astronomer Seth Ward. Oughtred laid extraordinary emphasis upon
the use of mathematical symbols; altogether he used over 150 of them.

Only three have come down to modern times, namely X as the symbol
of multiplication, :: as that of proportion, and -^^ as that for "differ-

ence." The symbol X occurs in the Clavis, but the letter X which

closely resembles it, occurs as a sign of multiplication in the anony-

mous "Appendix to the Logarithmes" in Edward Wright's transla-

tion of Napier's Descriptio, pubhshed in 1618.^ This appendix was
most probably written by Oughtred. A proportion A:B =C:D he

wrote A' B :: C- D. Oughtred's notation for ratio and proportion was
widely used in England and on the Continent, but as early as 165

1

the English astronomer Vincent Wing began to use (:) for ratio, ^ a

notation which gained ground and freed the dot (.) for use as the sym-

bol of separation in decimal fractions. It is interesting to note the

attitude of Leibniz toward some of these symbols. On July 29, 1698,

he wrote in a letter to John BemoulU: "I do not like X as a symbol

for multiphcation, as it is easily confounded with x; . . . often I simply

relate two quantities by an interposed dot and indicate multiplication

' P. H. Fuss, Corresp. math, phys., I, 1843, p. 304; Encydopedie des sciences malhe-

maliques, T. I, Vol. I, 1904, p. 23.

2 See F. Cajori, William Oughtred, Chicago and London, 1916.

= F. Cajori, in Nature, Vol. XCIV, 1914, p. 363.

* Ibid., p. 477-
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by ZC • LM. Hence in designating ratio I use not one point but two
points, which I use, at the same time, for division; thus, for your

dy.xwdt.a I write dy:x=dt:a; for, y is to a as dt is to a, is indeed the

same as, dy divided by x is equal to dt divided by a. From this equa-

tion follow then all the rules of proportion." This conception of

ratio and proportion was far in advance of that in contemporary

arithmetics. Through the aid of Christian Wolf the dot was generally

adopted in the eighteenth century as a symbol of multiplication.

Presumably Leibniz had no knowledge that Harriot in his Artis

analytica praxis, 163 1, used a dot for multiphcation, as in aaa—^,.

bba= + 2.ccc. Harriot's dot received no attention, not even from Walhs.

Oughtred and some of his English contemporaries, Richard Nor-

wood, John Speidell and others were prominent in intpoducing abbre-

viations for the trigonometric functions: s, si, or sin for sine; s co or

si CO for "sine complement" or cosine; se for secant, etc. Oughtred
did not use parentheses. Terms to be aggregated were enclosed be-

tween double colons. He wrote -^{A+E) thus, -^q-.A+E: The two
dots at the end were sometimes omitted. Thus, CA.+B—E meant
{A+B—E).^ Before Oughtred the use of parentheses had been sug-

gested by Clavius in 1608 and Girard in 1629. In fact, as early as

1556 Tartaglia wrote VV28— Vio thus R v. (R28 men Rio), where

R V. means "radix universaUs," but he did not use parentheses in in-

dicating the product of two expressions.^ Parentheses were used by
I. Errard de Bar-le-Duc (1619), Jacobo de Billy (1643), Richard
Norwood (1631), Samuel Foster (1659); nevertheless parentheses did

not become popular in algebra before the time of Leibniz and the

BernouUis.

It is noteworthy that Oughtred denotes 3^ and f f f , the approxi-

mate ratios of the circumference to the diameter, by the symbol -^; it

occurs in the 1647 edition and in the later editions of his Clavis mathe-

maticcB. Oughtred's notation was adopted and used extensively by
Isaac Barrow. It was the forerunner of the notation ^=3.14159 . . .

,

first used by William Jones in 1706 in his Synopsis palmariorum ma-
Iheseos, London, 1706, p. 263. L. Euler first used 7r=3.i4i59 ... in

1737. In his time, the symbol met with general adoption.

Oughtred stands out prominently as the inventor of the circular

and the rectihnear slide rules. The circular slide rule was described

in print in his book, the Circles of Proportion, 1632. His rectilinear

slide rule was described in 1633 in an Addition to the above work.
But Oughtred was not the first to describe the circular sUde rule in

print; this was done by one of his pupils, Richard Delamain, in 1630,
in a booklet, entitled Grammelogia} A bitter controversy arose be-

1 G. Enestrom in Bihliotheca mathematica, 3. S., Vol. 7, p. 296.
2 See F. Cajori, William Oughtred, Chicago and London, 1916, p. 46.
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tween Delamain and Oughtred. Each accused the other of having
stolen the invention from him. Most probably each was an in-

dependent inventor. To the invention of the rectiHnear slide rule

Oughtred has a clear title. He states that he designed his slide rules

as early as 1621. The sHde rule was improved in England during the
seventeenth and eighteenth centuries and was used quite extensively.^

Some of the stories told about Oughtred are doubtless apocryphal,
as for instance, that his economical wife denied him the use of a candle
for study in the evening, and that he died of joy at the Restoration,
after drinking "a glass of sack" to his Majesty's health. De Morgan
humorously remarks, "It should be added, by way of excuse, that he
was eighty-six years old."

Algebra was now in a state of sufBcient perfection to enable Des-
cartes and others to take that important step which forms one of the

grand epochs in the history of mathematics,—the application of alge-

braic analysis to define the nature and investigate the properties of

algebraic curves.

In geometry, the determination of the areas of curvilinear figures

was diligently studied at this period. Paul Guldin (1577-1643), a

Swiss mathematician of considerable note, rediscovered the following

theorem, pubhshed in his Centroharyca, which has been named after

him, though first found in the Mathematical Collections of Pappus:
The volume of a solid of revolution is equal to the area of the generat-

ing figure, multiplied by the circumference described by the centre of

gravity. We shall see that this method excels that of Kepler and
Cavalieri in following a more exact and natural course; but it has the

disadvantage of necessitating the determination of the centre of grav-

ity, which in itself may be a more difficult problem than the original

one of finding the volume. Guldin made some attempts to prove his

theorem, but Cavalieri pointed out the weakness of his demonstration.

Johannes Kepler (1571-1630) was a native of Wiirtemberg and im-

bibed Copernican principles while at the University of Tubingen. His

pursuit of science was repeatedly interrupted by war, rehgious perse-

cution, pecuniary embarrassments, frequent changes of residence,

and family troubles. In 1600 he became for one year assistant to the

Danish astronomer, Tycho Brahe, in the observatory near Prague.

The relation between the two great astronomers was not always of an

agreeable character. Kepler's publications are voluminous. His first at-

tempt to explain the solar system was made in 1596, when he thought

he had discovered a curious relation between the five regular soKds

and the number and distance of the planets. The publication of this

pseudo-discovery brought him much fame. At one time he tried to

represent the orbit of Mars by the oval curve which we now write in

polar coordinates, p=2r cos^ 9. Maturer reflection and intercourse

with Tycho Brahe and Galileo led him to investigations and results

I See F. Cajori, History of the Logarithmic Slide Rule, New York, igog.
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worthy of his genius
—"Kepler's laws." He enriched pure mathe-

matics as well as astronomy. It is not strange that he was interested

in the mathematical science which had done him so much service; for

"if the Greeks had not cultivated conic sections, Kepler could not

have superseded Ptolemy." ^ The Greeks never dreamed that these

curves would ever be of practical use; AristEeus and Apollonius

studied them merely to satisfy their intellectual cravings after the

ideal; yet the conic sections assisted Kepler in tracing the march of

the planets in their elliptic orbits. Kepler made also extended use of

logarithms and decimal fractions, and was enthusiastic in diffusing

a knowledge of them. At one time, while purchasing wine, he was
struck by the inaccuracy of the ordinary modes of determining the

contents of kegs. This led him to the study of the volumes of soUds

of revolution and to the publication of the Stereometria Doliorum in

1615. In it he deals first with the sohds known to Archimedes and
then takes up others. Kepler made wide apphcation of an old but
neglected idea, that of infinitely great and infinitely small quantities.

Greek mathematicians usually shunned this notion, but with it modern
mathematicians completely revolutionized the science. In comparing
rectihnear figures, the method of superposition was employed by the

ancients, but in comparing rectilinear and curvilinear figures with

each other, this method failed because no addition or subtraction of

rectilinear figures could ever produce curvilinear ones. To meet this

case, they devised the Method of Exhaustion, which wis long and
diSicult; it was purely sjmthetical, and in general required that the

conclusion should be known at the outset. The new notion of infinity

led gradually to the invention of methods immeasurably more power-
ful. Kepler conceived the circle to be composed of an infinite number
of triangles having their common vertices at the centre, and their

bases in the circumference; and the sphere to consist of an infinite

number of pyramids. He applied conceptions of this kind to the de-

termination of the areas and volumes of figures generated by curves
revolving about any line as axis, but succeeded in solving only a few
of the simplest out of the 84 problems which he proposed for investi-

gation in his Stereometria.

Other points of mathematical interest in Kepler's works are (i) the
assertion that the circumference of an ellipse, whose axes are 2a and
26, is nearly tt (a+b); (2) a passage from which it has been inferred

that Kepler knew the variation of a function near its maximum value
to disappear; (3) the assumption of the principle of continuity (which
differentiates modern from ancient geometry), when he shows that
a parabola has a focus at infinity, that lines radiating from this " caecus

focus" are parallel and have no other point at infinity.

The Stereometria led Cavalieri, an Italian Jesuit, to the consideration

1 William Whewell, History of the IndiMtive Sciences, 3rd Ed., New York, 1858,
Vol. I, p. 311.
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of infinitely small quantities. Bonaventtira Cavalieri (1598-1647),
a pupil of Galileo and professor at Bologna, is celebrated for his Geo-
metria indivisibilibus continuorum nova quadam ratione promota, 1635.
This work expounds his method of Indivisibles, which occupies an
intermediate place between the method of exhaustion of the Greeks
and the methods of Newton and Leibniz. "Indivisibles" were dis-

cussed by Aristotle and the scholastic philosophers. They commanded
the attention of Gahleo. Cavalieri does not define the term. He
borrows the concept from the scholastic philosophy of Bradwardine
and Thomas Aquinas, in which a point is the indivisible of a line, a hne
the indivisible of a surface, etc. Each indivisible is capable of gener-
ating the next higher continuum by motion; a moving point generates
a Hne, etc. The relative magnitude of two solids or surfaces could
then be found simply by the summation of series of planes or lines.

For example, Cavalieri finds the sum of the squares of all lines making
up a triangle equal to one-third the sum of the squares of all lines of

a parallelogram of equal base and altitude; for if in a triangle, the first

hne at the apex be i, then the second is 2, the third is 3, and so on;
and the sum of their squares is

1^+2^+^'^+
. . . +n^=n{n+i) (2»-|-i)-e-6.

In the parallelogram, each of the lines is n and their number is n; hence
the total stun of their squares is n^. The ratio between the two sums
is therefore

n(n+i) {2n+i)-i-6n^=^,

since n is infinite. From this he concludes that the pyramid or cone is

respectively § of a prism or cylinder of equal base and altitude, since

the polygons or circles composing the former decrease from the base

to the apex in the same way as the squares of the lines parallel to the

base in a triangle decrease from base to apex. By the Method of In-

divisibles, Cavalieri solved the majority of the problems proposed by
Kepler. Though expeditious and yielding correct results, Cavalieri's

method lacks a scientific foundation. If a line has absolutely no width,

then the addition of no number, however great, of lines can ever yield

an area; if a plane has no thickness whatever, then even an infinite

number of planes cannot form a solid. Though unphilosophical,

Cavalieri's method was used for fifty years as a sort of integral

calculus. It yielded solutions to some difficult problems. Guldin

made a severe attack on Cavalieri and his method. The latter

published in 1647, after the death of Guldin, a treatise entitled

Exercitationes geometries sex, in which he replied to the objections

of his opponent and attempted to give a clearer explanation of his

method. Guldin had never been able to demonstrate the theorem

named after him, except by metaphysical reasoning, but Cavalieri

proved it by the method of indivisibles. A revised edition of the

Geometria appeared in 1653.
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There is an important curve, not known to the ancients, which now
began to be studied with great zeal. Roberval gave it the name of

"trochoid," Pascal the name of "roulette," Gahleo the name of "cy-

cloid." The invention of this curve seems to be due to Charles Bou-
velles who in a geometry pubHshed in Paris in 1501 refers to this curve

in connection with the problem of the squaring of the circle. Galileo

valued it for the graceful form it would give to arches in architecture.

He ascertained its area by weighing paper figures of the cycloid against

that of the generating circle, and found thereby the first area to be

nearly but not exactly thrice the latter. A mathematical determina-

tion was made by his pupil, Evangelista Torricelli (1608-1647), who
is more widely known as a physicist than as a mathematician.

By the Method of Indivisibles he demonstrated its area to be triple

that of the revolving circle, and pubUshed his solution. This same
quadrature had been effected a few years earlier (about 1636) by
Roberval in France, but his solution was not known to the Italians.

Roberval, being a man of irritable and violent disposition, unjustly

accused the mild and amiable Torricelli of stealing the proof. This

accusation of plagiarism created so much chagrin with Torricelli that

it is considered to have been the cause of his early death. Vincenzo
Viviani (1622-1703), another prominent pupil of Galileo, determined
the tangent to the cycloid. This was accompHshed in France by
Descartes and Fermat.
In France, where geometry began to be cultivated with greatest

success, Roberval, Fermat, Pascal, employed the Method of Indivis-

ibles and made new improvements in it. Giles Persone de Roberval
(1602-1675), for forty years professor of mathematics at the College

of France in Paris, claimed for himself the invention of the Method of

Indivisibles. Since his complete works were not published until after

his death, it is difficult to settle questions of priority. Montucla and
Chasles are of the opinion that he invented the method independently
of and earUer than the Italian geometer, though the work of the latter

was pubHshed much earlier than Roberval's. Marie finds it difficult

to beHeve that the Frenchman borrowed nothing whatever from the

Italian, for both could not have hit independently upon the word
Indivisibles, which is applicable to infinitely small quantities, as con-

ceived by Cavalieri, but not as conceived by Roberval. Roberval
and Pascal improved the rational basis of the Method of Indivisibles,

by considering an area as made up of an indefinite number of rectangles

instead of lines, and a solid as composed of indefinitely small sohds
instead of surfaces. Roberval applied the method to the finding of

areas, volumes, and centres of gravity. He effected the quadrature
of a parabola of any degree y^=a!^'~^x, and also of a parabola j'™=
a™""%°. We have already mentioned his quadrature of the cycloid.

Roberval is best known for his method of drawing tangents, which,

however, was invented at the same time, if not earlier, by Torricelli.
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Torricelli's appeared in 1644 under the title Opera geometrica. Rober-
val gives the fuller exposition of it. Some of his special applications
were published at Paris as early as 1644 in Mersenne's Cogitata pkysico-
mathemalica. Roberval presented the full development of the sub-
ject to the French Academy of Sciences in 1668 which published it

in its M'emoires. This academy had grown out of scientific meetings
held with Mersenne at Paris. It was founded by Minister Richelieu
in 1635 and reorganized by Minister Colbert in 1666. Marin Mersenne
(1588-1648) rendered great services to science. His polite and en-
gaging manners procured him many friends, including Descartes and
Fermat. He encouraged scientific research, carried on an extensive
correspondence, and thereby was the medium for the intercommunica-
tion of scientific intelligence.

Roberval's method of drawing tangents is allied to Newton's prin-

ciple of fluxions. Archimedes conceived his spiral to be generated by
a double motion. This idea Roberval extended to all curves. Plane
curves, as for instance the conic sections, may be generated by a point
acted upon by two forces, and are the resultant of two motions. If

at any point of the curve the resultant be resolved into its components,
then the diagonal of the parallelogram determined by them is the tan-

gent to the curve at that point. The greatest difficulty connected
with this ingenious method consisted in resolving the resultant into

components having the proper lengths and directions. Roberval did

not always succeed in doing this, yet his new idea was a great step in

advance. He broke off from the ancient definition of a tangent as

a straight line having only one point in common with a curve,—a defi-

nition which by the methods then available was not adapted to bring

out the properties of tangents to curves of higher degrees, nor even of

curves of the second degree and the parts they may be made to play

in the generation of the curves. The subject of tangents received

special attention also from Fermat, Descartes, and Barrow, and
reached its highest development after the invention of the differential

calculus. Fermat and Descartes defined tangents as secants whose
two points of intersection with the curve coincide; Barrow considered

a curve a polygon, and called one of its sides produced a tangent.

A profound scholar in all branches of learning and a mathematician

of exceptional powers was Pierre de Fermat (1601-1665). He studied

law at Toulouse, and in 1631 was made councillor for the parliament

of Toulouse. His leisure time was mostly devoted to mathematics,

which he studied with irresistible passion. Unlike Descartes and
Pascal, he led a quiet and unaggressive life. Fermat has left the im-

press of his genius upon all branches of mathematics then known.

A great contribution to geometry was his De maximis et minimis.

About twenty years earlier, Kepler had first observed that the incre-

ment of a variable, as, for instance, the ordinate of a curve, is evan-

escent for values very near a maximum or a minimum value of the
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variable. Developing this idea, Fermat obtained his 'rule for maxima
and minima. He substituted x+e for x in the given function of x and
then equated to each other the two consecutive values of the function

and divided the equation by e. If e be taken o, then the roots of this

equation are the values of x, making the function a maximum or a

minimum. Fermat was in, possession of this rule in 1629. The main
difference between it and the rule of the differential calculus is that it

introduces the indefinite quantity e instead of the infinitely small dx.

Fermat made it the basis for his method of drawing tangents, which
involved the determination of the length of the subtangent for a given

point of a curve.

Owing to a want of explicitness in statement. Format's method of

maxima and minima, and of tangents, was severely attacked by his

great contemporary, Descartes, who could never be brought to render

due justice to his merit. In the ensuing dispute, Fermat found two
zealous defenders in Roberval and Pascal, the father; while C. My-
dorge, G. Desargues, and Claude Hardy supported Descartes.

Since Fermat introduced the conception of infinitely small differ-

ences between consecutive values of a function and arrived at the

principle for finding the maxima and minima, it was maintained by
Lagrange, Laplace, and Fourier, that Fermat may be regarded as the

first inventor of the differential calculus. This point is not well taken,

as will be seen from the words of Poisson, himself a Frenchman, who
rightly says that the differential calculus "consists in a system of rules

proper for finding the differentials of all functions, rather than in the

use which may be made of these infinitely small variations in the so-

lution of one or two isolated problems.")

A contemporary mathematician, whose genius perhaps equalled that

of the great Fermat, was Blaise Pascal (1623-1662). He was born at

Clermont in Auvergne. In 1626 his father retired to Paris, where he
devoted himself to teaching his son, for he would not trust his educa-

tion to others. Blaise Pascal's genius for geometry showed itself when
he was but twelve years old. His father was well skilled in mathe-
matics, but did not wish his son to study it until he was perfectly

acquainted with Latin and Greek. All mathematical books were
hidden out of his sight. The boy once asked his father what mathe-
matics treated of, and was answered, in general, "that it was the

method of making figures with exactness, and of finding out what
proportions they relatively had to one another." He was at the same
time forbidden to talk any more about it, or ever to think of it. But
his genius could not submit to be confined within these bounds. Start-

ing with the bare fact that mathematics taught the means of making
figures infallibly exact, he employed his thoughts about it and with
a piece of charcoal drew figures upon the tiles of the pavement, trying

the methods of drawing, for example, an exact circle or equilateral

triangle. He gave names of his own to these figures and then formed
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axioms, and, in short, came to make demonstrations. In this way he
is reported to have arrived unaided at the theorem that the sum of

the three angles of a triangle is equal to two right angles. His father
caught him in the act of studying this theorem, and was so astonished
at the sublimity and force of his genius as to weep for joy. The father
now gave him Euchd's Elements, which he, without assistance, mas-
tered easily. His regular studies being languages, the boy employed
only his hours of amusement on the study of geometry, yet he had so
ready and lively a penetration that, at the age of sixteen, he wrote
a treatise upon conies, which passed for such a surprising effort of

genius, that it was said nothing equal to it in strength had been pro-

duced since the time of Archimedes. Descartes refused to believe

that it was written by one so young as Pascal. This treatise was never
published, and is now lost. Leibniz saw it in Paris and reported on
a portion of its contents. The precocious youth made vast progress

in all the sciences, but the constant application at so tender an age
greatly impaired his health. Yet he continued working, and at nine-

teen invented his famous machine for performing arithmetical opera-

tions mechanically. This continued strain from overwork resulted in

a permanent indisposition, and he would sometimes say that from the

time he was eighteen, he never passed a day free from pain. At the

age of twenty-four he resolved to lay aside the, study of the human
sciences and to consecrate his talents to religion. His Provincial

Letters against the Jesuits are celebrated. But at times he returned

to the favorite study of his youth. Being kept awake one night by
a toothache, some thoughts undesignedly came into his head concern-

ing the roulette or cycloid; one idea followed another; and he thus

discovered properties of this curve even to demonstration. A corre-

spondence between him and Fermat on certain problems was the

beginning of the theory of probability. Pascal's illness increased, and
he died at Paris at the early age of thirty-nine years. By him the

answer to the objection to Cavalieri's Method of Indivisibles was put

in clearer form. Like Roberval, he explained " the sum of right lines
"

to mean "the sum of infinitely small rectangles." Pascal greatly ad-

vanced the knowledge of the cycloid. He determined the area of a

section produced by any line parallel to the base; the volume gener-

ated by it revolving around its base or around the axis; and, finally,

the centres of gravity of these volumes, and also of half these volumes

cut by planes of sjmimetry. Before pubhshing his results, he sent,

in 1658, to all mathematicians that famous challenge offering prizes

for the first two solutions of these problems. Only Wallis and A. La
Louvere competed for them. The latter was quite unequal to the task

;

the former, being pressed for time, made numerous mistakes: neither

got a prize. Pascal then published his own solutions, which produced

a great sensation among scientific men. Wallis, too, published his,

with the errors corrected. Though not competing for the prizes,
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Huygens, Wren, and Fermat solved some of the questions. The chief

discoveries of Christopher Wren (1632-1723), the celebrated architect

of St. Paul's Cathedral in London, were the rectification of a cycloidal

arc and the determination of its centre of gravity. Fermat found the

area generated by an arc of the cycloid. Huygens invented the cy-

cloidal pendulum.
The beginning of the seventeenth century witnessed also a revival of

synthetic geometry. One who treated conies stiU by ancient methods,

but who succeeded in greatly simplifying many prolix proofs of ApoUo-
nius, was Claude Mydorge (1585-1647), in Paris, a friend of Descartes.

But it remained for Girard Desargues (1593-1662) of Lyons, and for

Pascal, to leave the beaten track and cut out fresh paths. They intro-

duced the important method of Perspective. All conies on a cone with

circular base appear circular to an eye at the apex. Hence Desargues
and Pascal conceived the treatment of the conic sections as projections

of circles. Two important and beautiful theorems were given by Des-
argues: The one is on the "involution of the six points," in which a

transversal meets a conic and an inscribed quadrangle; the other is

that, if the vertices of two triangles, situated either in space or in

a plane, lie on three hnes meeting in a point, then their sides meet in

three points lying on a line; and conversely. This last theorem has
been employed in recent times by Brianchon, C. Sturm, Gergonne,
and Poncelet. Poncelet made it the basis of his beautiful theory of

homological figures. We owe to Desargues the theory of involution

and of transversals; also the beautiful conception that the two ex-

tremities of a straight line may be considered as meeting at infinity,

and that parallels differ from other pairs of lines only in having their

points of intersection at infinity. He re-invented the epicycloid and
showed its application to the construction of gear teeth, a subject

elaborated more fully later by La Hire. Pascal greatly admired
Desargues' results, saying (in his Essais pour les Coniques), "I wish to

acknowledge that I owe the little that I have discovered on this sub-

ject, to his writings." Pascal's and Desargues' writings contained

some of the fundamental ideas of modern synthetic geometry. In
Pascal's wonderful work on conies, written at the age of sixteen and
now lost, were given the theorem on the anharmonic ratio, first found
in Pappus, and also that celebrated proposition on the mystic hexagon,
known as "Pascal's theorem," viz. that the opposite sides of a hexa-

gon inscribed in a conic intersect in three points which are coUinear.

This theorem formed the keystone to his theory. He himself said

that from this alone he deduced over 400 corollaries, embracing the

conies of Apollonius and many other results. Less gifted than Des-
argues and Pascal was Philippe de la Hire (1640-1718). At first

active as a painter, he afterwards devoted himself to astronomy and
mathematics, and became professor of the College de France in Paris.

He wrote three works on conic sections, published in 1673, 1679 and
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1685. The last of these, the Sectiones Conicae, was best known. La
Hire gave the polar properties of circles, and, by projection, transferred
his polar theory from the circle to the conic sections. In the construc-
tion of maps De la Hire used "globular" projection in which the eye
is npt at the pole of the sphere, as in the Ptolemaic stereographic pro-
jection, but on the radius produced through the pole at a distance
r sin 45° outside the sphere. Globular projection has the advantage
that everywhere on the map there is approximately the same degree
of exaggeration of distances. This mode of projection was modified
by his countryman A. Parent. De la Hire wrote on roulettes, on
graphic methods, epicycloids, conchoids, and on magic squares. The
labors of De la Hire, the genius of Desargues and Pascal, uncovered
several of the rich treasures of modern synthetic geometry; but owing
to the absorbing interest taken in the analytical geometry of Descartes
and later in the differential calculus, the subject was almost entirely

neglected until the nineteenth century.

In the theory of numbers no new results of scientific value had been
reached for over 1000 years, extending from the times of Diophantus
and the Hindus until the beginning of the seventeenth century. But
the illustrious period we are now considering produced men who
rescued this science from the realm of mysticism and superstition,

in which it had been so long imprisoned; the properties of numbers
began again to be studied scientifically. Not being in possession of

the Hindu indeterminate analysis, many beautiful results of the

Brahmins had to be re-discovered by the Europeans. Thus a solution

in integers of linear indeterminate equations was re-discovered by the

Frenchman Bachet de Meziriac (1581-1638), who was the earliest

noteworthy European Diophantist. In 1612 he published Problemes

plaisants et delectables qui se font par les nombres, and in 1621 a Greek
edition of Diophantus with notes. An interest in prime numbers is

disclosed in the so-called "Mersenne's numbers," of the form Mp=
2P— I, with p prime. Marin Mersenne asserted in the preface to his

Cogitata Physico-Mathematica, 1644, that the only values of p not

greater than 257 which make Mp a prime are i, 2, 3, 5, 7, 13, 17, 19,

31, 67, 127, and 257. Four mistakes have now been detected in

Mersenne's classification, viz., Mer is composite; Mei, Msg and M107

are prime. Misi has been found to be composite. Mersenne gave in

1644 also the first eight perfect numbers 6, 28, 496, 8128, 23550336,

8589869056, 137438691328, 2305843008139952128. In Euclid's Ele-

ments, Bk. 9, Prop. 36, is given the formula for perfect numbers
2P—1(2?— i), where 2p~^— i is prime. The above eight perfect numbers

are reproduced by taking p = 2, 3, 5, 7, 13, 17, 19, 31. A ninth perfect

number was found in 1885 by P. Seelhoff, for which ^=61, a tenth

in 191 2 by R. E. Powers, for which p=8g. The father of the modern

theory of numbers is Fermat. He was so uncommunicative in dis-

position, that he generally concealed his methods and made known
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his results only. In some cases later analysts have been greatly

puzzled in the attempt of supplying the proofs. Fermat owned a copy
of Bachet's Diophantus, in which he entered numerous marginal notes.

In 1670 these notes were incorporated in a new edition of Diophantus,

brought out by his son. Other theorems on numbers, due to Fermat,

were pubhshed in his Opera varia (edited by his son) and in Wallis's

Commercium epistolicum of 1658. Of the following theorems, the

first seven are found in the marginal notes: ^

—

(i) x^-{-y^=z" is impossible for integral values of x, y, and z, when
n> 2.

This famous theorem was appended by Fermat to the problem of

Diophantus II, 8 :
" To divide a given square number into two squares."

Fermat's marginal note is as follows: "On the other hand it is im-

possible to separate a cube into two cubes, or a biquadrate into two
biquadrates, or generally any power except a square into two powers
with the same exponent. I have discovered a truly marvelous proof

of this, which however the margin is not large enough to contain."

That Fermat actually possessed a proof is doubtful. No general

proof has yet been published. Euler proved the theorem for w=3
and w=4; Dirichlet for «=5 and w=i4, G. Lame for »=7 and Kum-
mer for many other values. Repeatedly was the theorem made the

prize question of learned societies, by the Academy of Sciences in

Paris in 1823 and 1850, by the Academy of Brussels in 1883. The
recent history of the theorem follows later.

(2) A prime of the form 4W+1 is only once the hypothenuse of a

right triangle; its square is twice; its cube is three times, etc. Ex-
ample: 52=32+42; 252=152+202=72+242; 1252=752+1002=352+
1202=442+1172.

(3) A prime of the form 4«+i can be expressed once, and only

once, as the sum of two squares. Proved by Euler.

(4) A number composed of two cubes can be resolved into two
other cubes in an infinite multiplicity of ways.

(5) Every number is either a triangular number or the sum of two
or three triangular numbers; either a square or the sum of two, three,

or four squares; either a pentagonal number or the sum of two, three,

four, or five pentagonal numbers; similarly for polygonal numbers
in general. The proof of this and other theorems is promised by
Fermat in a future work which never appeared. This theorem is

also given, with others, in a letter of 1637 (?) addressed to Pater
Mersenne.

(6) As many numbers as you please may be found, such that the

square of each remains a square on the addition to or subtraction from
it of the sum of all the numbers.

' For a fuller historical account of Fermat's Diophantine theorems and prob-
lems, see T. L. Heath, Diophantus of Alexandria, 2. Ed., 1910, pp. 267-328. See
also Annals oj Mathematics, 2. S., Vol. 18, 1917, pp. 161-187.
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(7) x^+y*=z^ is impossible.

(8) In a letter of 1640 he gives the celebrated theorem generally
known as "Fermat's theorem," which we state in Gauss's notation:
If p is prime, and a is prime to p, then a^~^=i (mod p). It was proved
by Leibniz and by Euler.

(9) Fermat died with the belief that he had found a long-sought-for
law of prime numbers in the formula 22^+1 = a prime, but he admitted
that he was unable to prove it rigorously. The law is not true, as was
pointed out by Euler in the example 22^+1 = 4,294,967,297 = 6,700,417
times 641. The American lightning calculator Zerah Colburn, when
a boy, readily found the factors, but was unable to explain the method
by which he made his marvellous mental computation.

(10) An odd prime number can be expressed as the difference of

two squares in one, and only one, way. This theorem, given in the

Relation, was used by Fermat for the decomposition of large numbers
into prime factors.

(11) If the integers a, b, c represent the sides of a right triangle,

then its area cannot be a square number. This was proved by La-
grange.

(12) Fermat's solution of ax^+i=y^, where a is integral but not

a square, has come down in only the broadest outline, as given in the

Relation. He proposed the problem to the Frenchman, Bernhard

Frenicle de Bessy, and in 1657 to all living mathematicians. In Eng-
land, Wallis and Lord Brouncker conjointly found a laborious solution,

which was pubUshed in 1658, and also in 1668 in Thomas Brancker's

translation of Rahn's Algebra, "altered and augmented" by John
Pell (1610-1685). The first solution was given by the Hindus.

Though Pell had no other connection with the problem, it went by
the name of " Pell's problem." Pell held at one time the mathematical

chair at Amsterdam. In a controversy with Longomontanus who
claimed to have effected the quadrature of the circle, Pell first used

the now famihar trigonometric formula tan2^ = 2tan^/(i— tan^^).

We are not sure that Fermat subjected all his theorems to rigorous

proof. His methods of proof were entirely lost until 1879, when a

document was found buried among the manuscripts of Huygens in

the library of Leyden, entitled Relation des dicouvertes en la science des

nombres. It appears from it that he used an inductive method, called

by him la descente infinie ou indefinie. He says that this was particu-

larly applicable in proving the impossibility of certain relations, as,

for instance. Theorem 11, given above, but that he succeeded in using

the method also in proving affirmative statements. Thus he proved

Theorem 3 by showing that if we suppose there be a prime 4W+1

which does not possess this property, then there will be a smaller

prime of the form 4»-|-i not possessing it; and a third one smaller

than the second, not possessing it; and so on. Thus descending in-

definitely, he arrives at the number 5, which is the smallest prime
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factor of the form 4»+i. From the above supposition it would follow

that 5 is not the sum of two squares—a conclusion contrary to fact.

Hence the supposition is false, and the theorem is established. Fermat
applied this method of descent with success in a large number of

theorems. By this method L. Euler, A. M. Legendre, P. G. L. Dirich-

let, proved several of his enunciations and many other numerical

propositions.

Fermat was interested in magic squares. These squares, to which
the Chinese and Arabs were so partial, reached the Occident not later

than the fifteenth century. A magic square of 25 cells was found by
M. Curtze in a German manuscript of that time. The artist, Albrecht

Diirer, exhibits one of 16 cells in 15 14 in his painting called "Melan-
cholie." The above-named Bernhard Frenicle de Bessy (about 1602-

1675) brought out the fact that the number of magic squares increased

enormously with the order by writing down 880 magic squares of

the order four. Fermat gave a general rule for finding the number of

magic squares of the order n, such that, for «=8, this number was

1,004,144,995,344; but he seems to have recognized the falsity of his

rule. Bachet de Meziriac, in his Problhnes plaisants et delectahles,

Lyon, 1612, gave a rule "des terrasses" for writing down magic
squares of odd order. Frenicle de Bessy gave a process for those of

even order. In the seventeenth century magic squares were studied '

by Antoine Arnauld, Jean Prestet, J. Ozanam; in the eighteenth cen-

tury by Poignard, De la Hire, J. Sauveur, L. L. Pajot, J. J. Rallier

des Ourmes, L. Euler and Benjamin Franklin. In a letter B. Franklin

said of his magic square of 16^ cells, "I make no question, but you
will readily allow the square of 16 to be the most magically magical

of any magic square ever made by any magician."

A correspondence between B. Pascal and P. Fermat relating to a
certain game of chance was the germ of the theory of probabilities,

of which some anticipations are found in Cardan, Tartaglia, J. Kepler

and Galileo. Chevalier de Mere proposed to B. Pascal the funda-

mental "Problem of Points,"^ to determine the probability which
each player has, at any given stage of the game, of winning the game.
Pascal and Fermat supposed that the players have equal chances of

winning a single point.

The former communicated this problem to Fermat, who studied

it with lively interest and solved it by the theory of combinations, a
theory which was diligently studied both by him and Pascal. The
calculus of probabilities engaged the attention also of C. Huygens.
The most important theorem reached by him was that, if A has p
chances of winning a sum a, and q chances of winning a sum b, then

^ Encyclopedic des sciences math's, T. I, Vol. 3, 1906, p. 66.

'^Oenvres completes de Blaise Pascal, T. I, Paris, 1866, pp. 220-237. See also I.

Todhunter, History of the Mathematical Theory of Probability, Cambridge and
London, 1865, Chapter II.
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he may expect to win the sum ~—i. Huygens gave his results in

a treatise on probabihty (1657), which was the best account of the
subject until the appearance of Jakob Bernoulli's Ars conjedandi
which contained a reprint of Huygens' treatise. An absurd abuse of

mathematics in connection with the probability of testimony was
made by John Craig who in 1699 concluded that faith in the Gospel
so far as it depended bn oral tradition expired about the year 800,
and so far as it depended on written tradition it would expire in the
year 3150.

Connected with the theory of probability were the investigations

on mortality and insurance. The use of tables of mortahty does not
seem to have been altogether unknown to the ancients, but the first

name usually mentioned in this connection is Captain John Graunt
who pubhshed at London in 1662 his Natural and Political Observa-

tions . . . made upon the hills of mortality, basing his deductions upon
records of deaths which began to be kept in London in 1592 and were
first intended to make known the progress of the plague. Graunt was
careful to publish the actual figures on which he based his conclusions,

comparing himself, when so doing, to a "silly schoolboy, coming to

say his lessons to the world (that peevish and tetchie master), who
brings a bundle of rods, wherewith to be whipped for every mistake

he has committed." ^ Nothing of marked importance was done after

Graunt until 1693 when Edmund Halley ^ published in the Philo-

sophical Transactions (London) his celebrated memoir on the Degrees

of Mortality of Mankind . . . with an Attempt to ascertain the Price of

Annuities upon Lives. To find the value of an annuity, multiply the

chance that the individual concerned will be alive after n years by
the present value of the annual payment due at the end of n years;

then sum the results thus obtained for all values of n from i to the

extreme possible age for the life of that individual. Halley considers

also annuities on joint lives.

Among the ancients, Archimedes was the only one who attained

clear and correct notions on theoretical statics. He had acquired

firm possession of the idea of pressure, which lies at the root of me-

chanical science. But his ideas slept nearly twenty centuries, until

the time of S. Stevin and Galileo Galilei (1564-1642). Stevin deter-

mined accurately the force necessary to sustain a body on a plane

inclined at any angle to the horizon. He was in possession of a com-

plete doctrine of equilibrium. While Stevin investigated statics,

Galileo pursued principally dynamics. Galileo was the first to abandon

the idea usually attributed to Aristotle that bodies descend more

quickly in proportion as they are heavier; he established the first law

of motion; determined the laws of falling bodies; and, having obtained

1 1. Todhunter, History of the Theory of Probability, pp. 38, 42.
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a clear notion of acceleration and of the independence of different

motions, was able to prove that projectiles move in parabolic curves.

Up to his time it was believed that a cannon-ball moved forward at

first in a straight line and then suddenly fell vertically to the ground.

Galileo had an understanding of centrifugal forces, and gave a correct

definition of momentum. Though he formulated the fundamental

principle of statics, known as the parallelogram of forces, yet he did

not fully recognize its scope. The principle of virtual velocities was
partly conceived by Guido TIbaldo (died 1607), and afterwards more
fully by Galileo.

Galileo is the founder of the science of dynamics. Among his con-

temporaries it was chiefly the novelties he detected in the sky that

made him celebrated, but J. Lagrange claims that his astronomical

discoveries required only a telescope and perseverance, while it took

an extraordinary genius to discover laws from phenomena, which we
see constantly and of which the true explanation escaped all earlier

philosophers. Galileo's dialogues on mechanics, the Discorsi e demos-

Irazioni malematiche, 1638, touch also the subject of infinite aggregates.

The-author displays a keenness of vision and an originality which

was not equalled before the time of Dedekind and Georg Cantor.

Salviati, who in general represents Galileo's own ideas in these dia-

logues, says,-' "infinity and indivisibihty are in their very nature in-

comprehensible to us." Simplicio, who is the spokesman of Aris-

totelian scholastic philosophy, remarks that "the infinity of points

in the long line is greater than the infinity of points in the short line."

Then come the remarkable words of Salviati: "This is one of the

difficulties which arise when we attempt, with our finite minds, to

discuss the infinite, assigning to it those properties which we give to

the finite and unlimited;, but this I think is wrong, for we cannot
speak of infinite quantities as being the one greater or less than or

equal to another. . . . We can only infer that the totality of all

numbers is infinite, and that the number of squares is infinite, and
that the number of the roots is infinite; neither is the number of squares

less than the totality of all numbers, nor the latter greater than the

former; and finally the attributes 'equal,' 'greater,' and 'less' are

not applicable to infinite, but only to finite quantities. . . . One
line does not contain more or less or just as many points as another,

but . . . each line contains an infinite number." From the time of

Galileo and Descartes to Sir William Hamilton, there was held the

doctrine of the finitude of the human mind and its consequent in-

ability to conceive the infinite. A. De Morgan ridiculed this, saying,

the argument amounts to this, "who drives fat oxen should himself

be fat."

Infinite series, which sprang into prominence at the time of the

1 See Galileo's Dialogues concerning two new Sciences, translated by Henry Crew
and Alfonso de Salvio, New York, 1914, "First Day," pp. 30-32.
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invention of the differential and integral calculus, were used by a few
writers before that time. Pietro Mengoli (i 626-1 686) of Bologna ^

treats them in a book, Novcb quadralurce arithmeticm, of 1650. He
proves the divergence of the harmonic series by dividing its terms
into an infinite number of groups, such that the sum of the terms in

each group is greater than i. The first proof of this was formerly
attributed to Jakob Bernoulli, 1689. Mengoli showed the conver-
gence of the reciprocals of the triangular numbers, a result formerly
supposed to have been first reached by C. Huygens, G. W. Leibniz,
or Jakob Bernoulli. MengoH reached creditable results on the sum-
mation of infinite series.

Descartes to Newton

Among the earliest thinkers of the seventeenth and eighteenth
centuries, who employed their mental powers toward the destruction

of old ideas and the up-building of new ones, ranks Rene Descartes
(1596-1650). Though he professed orthodoxy in faith all his life,

yet in science he was a profound sceptic. He found that the world's

brightest thinkers had been long exercised in metaphysics, yet they

had discovered nothing certain; nay, had even flatly contradicted each

other. This led him to the gigantic resolution of taking nothing
whatever on authority, but of subjecting everything to scrutinous

examination, according to new methods of inquiry. The certainty of

the conclusions in geometry and arithmetic brought out in his mind
the contrast between the true and false ways of seeking the truth.

He thereupon attempted to apply mathematical reasoning to all

sciences. "Comparing the mysteries of nature with the laws of

mathematics, he dared to hope that the secrets of both could be un-

locked with the same key." Thus he built up a system of philosophy

called Cartesianism.

Great as was Descartes' celebrity as a metaphysician, it may be

fairly questioned whether his claim to be remembered by posterity

as a mathematician is not greater. His philosophy has long since

bejen superseded by other systems, but the analytical geometry of

Descartes will remain a valuable possession forever. At the age of

twenty-one, Descartes enlisted in the army of Prince Maurice of

Orange. His years of soldiering were years of leisure, in which he had

time to pursue his studies. At that time mathematics was his favorite

science. But in 1625 he ceased to devote himself to pure mathe-

matics. Sir William Hamilton ^ is in error when he states that

^ See G. Enestrom in Bibliotheca mathemalica, 3. S., Vol. 12, igii-12, pp. 135-148.
2 Sir William Hamilton, the metaphysician, made a famous attack upon the

study of mathematics as a training of the mind, which appeared in the Edinburgh

Review of 1836. It was shown by A. T. Bledsoe in the Southern Review for July,

1877, that Hamilton misrepresented the sentiments held by Descartes and other

scientists. See also J. S. Mill's Examination of Sir William Hamilton's Philosophy;



174 A HISTORY OF MATHEMATICS

Descartes considered mathematical studies absolutely pernicious as a
means of internal culture. In a letter to Mersenne, Descartes says:

"M. Desargues puts me under obligations on account of the pains

that it has pleased him to have in me, in that he shows that he is

sorry that I do not wish to study more in geometry, but I have re-

solved to quit only abstract geometry, that is to say, the consideration

of questions which serve only to exercise the mind, and this, in order to

study another kind of geometry, which has for its object the explana-

tion of the phenomena of nature. . . . You know that all my physics

is nothing else than geometry." The years between 1629 and 1649
were passed by him in Holland in the study, principally, of physics

and metaphysics. His residence in Holland was during the most
brilliant days of the Dutch state. In 1637 he published his Discours

de la Methode, containing among others an essay of 106 pages on
geometry. His Geometrie is not easy reading. An edition appeared
subsequently with notes by his friend De Beaune, which were intended

to remove the difficulties. The Geomttrie of Descartes is of epoch-

making importance; nevertheless we cannot accept Michel Chasles'

statement that this work is proles sine matre creata—a child brought
into being without a mother. In part, Descartes' ideas are found in

ApoUonius; the application of algebra to geometry is found in Vieta,

Ghetaldi, Oughtred, and even among the Arabs. Fermat, Descartes'

contemporary, advanced ideas on analytical geometry akin to his

own in a treatise entitled Ad locos pianos et solidos isagoge, which,

however, was not published until 1679 in Fermat's Varia opera. In
Descartes' Geometrie there is no systematic development of the

method of analytics. The method must be constructed from isolated

statements occurring in different parts of the treatise. In the 32
geometric drawings illustrating the text the axes of coordinates are

in no case explicitly set forth. The treatise consists of three "books."

The first deals with "problems which can be constructed by the aid

of the circle and straight line only." The second book is "on the

nature of curved lines." The third book treats of the "construction

of problems solid and more than solid." In the first book it is made
clear, that if a problem has a finite number of solutions, the final

equation obtained will have only one unknown, that if the final

equation has two or more unknowns, the problem "is not wholly
determined." ' If the final equation has two unknowns "then since

there is always an infinity of different points which satisfy the de-

mand, it is therefore required to recognize and trace the line on which
all of them must be located" (p. 9). To accomplish this Descartes

C. J. Keyser, Mathematics, 1907, pp. 20-44; F. Cajori in Popular Science Monthly,
igi2, pp. 360-372.

' Descartes' Geometrie, ed. 1886, p. 4. We are here guided by G. Enestrom in

Bibliolheca mathemalica, 3. S., Vol. 11, pp. 240-243; Vol. 12, pp. 273, 274; Vol. 14,

p. 357, and by H. Wieleitner in Vol. 14, pp. 241-243, 329, 330.
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selects a straight line which he sometimes calls a "diameter" (p. 31)
and associates each of its points with a point sought in such a way that
the latter can be constructed when the former point is assumed as
known. Thus, on p. 18 he says, " Je choises une ligne droite comme
AB, pour rapporter 4 ses divers points tous ceux de cette ligne courbe
EC." Here IDescartes follows Apollonius who related the points of
a conic to the points of a diameter, by distances (ordinates) which
make a constant angle with the diameter and are determined in length
by the position of the point on the diameter. This constant angle is

with Descartes usually a right angle. The new feature introduced by
Descartes was the use of an equation with more than one unknown, so
that (in case of two unknowns) for any value of one unknown (ab-

scissa), the length of the other (ordinate) could be computed. He
uses the letters x and y for the abscissa and ordinate. He makes it

plain that the x and y may be represented by other distances than the

ones selected by him (p. 10), that, for instance, the angle formed by
X and y need not be a right angle. It is noteworthy that Descartes
and Fermat, and their successors down to the middle of the eighteenth

century, used oblique coordinates more frequently than did later

analysts. It is also noteworthy that Descartes does not formally

introduce a second axis, our y-axis. Such formal introduction is found
in G. Cramer's Introduction d Vanalyse des lignes courbcs algtbriques,

1750; earlier publications by de Gua, L. Euler, W. Murdoch and others

contain only occasional references to a y-axis. The words "abscissa,"

"ordinate" were not used by Descartes. In the strictly technical

sense of analytics as one of the coordinates of a point, the word
"ordinate" was used by Leibniz in 1694, but in a less restricted sense

such expressions as "ordinatim applicatae" occur much earlier in

F. Commandinus and others. The technical use of "abscissa" is

observed in the eighteenth century by C. Wolf and others. In the

more general sense of a "distance" it was used carher by B. Cavalieri

in his Indivisibles, by Stefano degli Angeli (1623-1697), a professor

of mathematics in Rome, and by others. Leibniz introduced the word

" coordinatae " in 1692. To guard against certain current historical

errors we -quote the following from P. Tannery: "One frequently

attributes wrongly to Descartes the introduction of the convention

of reckoning coordinates positively and negatively, in the sense in

which we start them from the origin. The truth is that in this respect

the Geometrie of 1637 contains only certain remarks touching the

interpretation of real or false (positive or negative) roots of equations.

"
. . . If then we examine with care the rules given by Descartes in

his Geomttrie, as well as his application of them, we notice that he

adopts as a principle that an equation of a geometric locus is not

vahd except for the angle of the coordinates (quadrant) in which it

was established, and all his contemporaries do likewise. The extension

of an equation to other angles (quadrants) was freely made in particu-
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lar cases for the interpretation of the negative roots of equations;

but while it served particular conventions (for example for reckoning

distances as positive and negative), it was in reality quite long in

completely establishing itself, and one cannot attribute the honor for

it to any particular geometer."

Descartes' geometry was called "analytical geometry," partly

because, unlike the synthetic geometry of the ancients, it is actually

analytical, in the sense that the word is used in logic; and partly be-

cause the practice had then already arisen, of designating by the term

analysis the calculus with general quantities.

The first important example solved by Descartes in his geometry

is the "problem of Pappus"; viz. "Given several straight lines in a

plane, to find the locus of a point such that the perpendiculars, or more
generally,, straight lines at given angles, drawn from the point to the

given lines, shall satisfy the condition that the product of certain of

them shall be in a given ratio to the product of the rest." Of this

celebrated problem, the Greeks solved only the special case when the

number of given lines is four, in which case the locus of the point

turns out to be a conic section. By Descartes it was solved com-
pletely, and it afforded an excellent example of the use which can be

made of his analytical method in the study of loci. Another solution

was given later by Newton in the Principia. Descartes illustrates

his analytical method also by the ovals, now named after him, "cer-

taines ovales que vous verrez etre tres-utiles pour la theorie de la

catoptrique." These curves were studied by Descartes, probably, as

early as 1629; they were intended by him to serve in the construction

of converging lenses, but yielded no results of practical value. In

the nineteenth century they received much attention.^

The power of Descartes' analytical method in geometry has been
vividly set forth recently by L. Boltzmann in the remark that the

formula appears at times cleverer than the man who invented it. Of
all the problems which he solved by his geometry, none gave him as

great pleasure as his mode of constructing tangents. It was published

earlier than the methods of Fermat and Roberval which were noticed

on a preceding page.

Descartes' method consisted in first finding the normal. Through
a given point x, y of the curve he drew a circle which had its centre

at the intersection of the normal and the x-axis. Then he imposed
the condition that the circle cut the curve in two coincident points

X, y. In 1638 Descartes indicated in a letter that, in place of the

circle, a straight line may be used. This idea is elaborated by Flori-

mond de Beaune in his notes to the 1649 edition of Descartes' Geometrie.

In finding the point of intersection of the normal and x-axis, Descartes
used the method of Indeterminate Coefficients, of which he bears the

honor of invention. Indeterminate coefficients were employed by
' See G. Loria Ebene Curven (F. Schiitte), I, igio, p. 174.
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him also in solving biquadratic equations. Descartes' method of

tangents is profound, but operose, and inferior to Fermat's method.
In the third book of his GeoniUrie he points out that if a cubic equation
(with rational coefficients) has a rational root, then it can be factored
and the cubic can be solved geometrically by the use of ruler and
cornpasses only. He derives the cubic 2^=32—9 as the equation upon
which the trisection of an angle depends. He effects a trisection by the
aid of a parabola and circle, but does not consider the reducibility of

the equation. Hence he left the question of the " insolvability " of

the problem untouched. Not till the nineteenth century were con-
clusive proofs advanced of the impossibility of trisecting any angle
and of duplicating a cube, culminating at last in the clear and simple
proofs given by F. Klein in 1895 in his Ausgewahlte Fragen der Elemen-
iargeometrie, translated into English in 1897 by W. W. Beman and
D. E. Smith. Descartes proved that every geometric problem giving

rise to a cubic equation can be reduced either to the duplication of a
cube or to the trisection of an angle. This fact had been previously

recognized by Vieta.

The essays of Descartes on dioptrics and geometry were sharply
criticised by Fermat, who wrote objections to the former, and sent

his own treatise on "maxima and minima" to show that there were
omissions in the geometry. Descartes thereupon made an attack on
Fermat's method of tangents. Descartes was in the wrong in this

attack, yet he continued the controversy with obstinacy. In a letter

of 1638, addressed to Mersenne and to be transmitted to Fermat,
Descartes gives x^+y^=axy, now known as the "folium of Descartes,"

as representing a curve to which Fermat's method of tangents would
not apply. -"^ The curve is accompanied by a figure which shows that

Descartes did not then know the shape of the curve. At that time

the fundamental agreement about algebraic signs of coordinates had
not yet been hit upon ; only finite values of variables were used. Hence
the infinite branches of the curve remained unnoticed; some investi-

gators thought there were four leaves instead of only one. C. Huygens
in 1692 gave the correct shape and the asymptote of the curve.

Parabolas of higher order, y"=p"^^x, are mentioned by Descartes

in a letter of July 13, 1638, in which the centre of mass and the volume
obtained by revolution are considered. Cognate considerations are

due to G. P. Roberval, P. Fermat and B. Cavalieri. Apparently, the

shapes of these curves were not studied, and it remained for C. Mac-
laurin (1748) and G. F. A. I'Hospital (1770) to remark that they

have wholly different shapes, according to whether n is a positive or

a negative integer.

Descartes had a controversy with G. P. Roberval on the cycloid.

This curve has been called the "Helen of geometers," on account

^Oeiivres de Descartes (Tannery et Adam), i8g7, I, 4go; II, 316. See also G.

Loria, Ebene Curven (F. Schiitte), I, 1910, p. 54.



1 78 A HISTORY OF MATHEMATICS

of its beautiful properties and the controversies which their discovery

occasioned. Its quadrature by Roberval was generally considered a

brilliant achievement, but Descartes commented on it by saying that

any one moderately well versed in geometry might have done this.

He then sent a short demonstration of his own. On Roberval 's in-

timating that he had been assisted by a knowledge of the solution,

Descartes constructed the tangent to the curve, and challenged

Roberval and Fermat to do the same. Fermat accomplished it, but

Roberval never succeeded in solving this problem, which had cost

the genius of Descartes but a moderate degree of attention.

The application of algebra to the doctrine of curved lines reacted

favorably upon algebra. As an abstract science, Descartes improved

it by the introduction of the modern exponential notation. In his

Geometrie, 1637, he writes " aa ou a^ pour multiplier a par soimeme;

et o^ pour le multiplier encore une fois par a, et ainsi a I'infini."

Thus, while F. Vieta represented A^ by "A cubus" and Stevin x^

by a figure 3 within a small circle, Descartes wrote a^. In his G'eovielrie

he does not use negative and fractional exponents, nor literal ex-

ponents. His notation was the outgrowth and an improvement of

notations employed by writers before him. Nicolas Chuquet's manu-
script work, Le Tiiparty en la science des nomhres,^ 1484, gives laa;^

and lox*, and their product i20.r*, by the symbols 12^, 16^, 120*,

respectively. Chuquet goes even further and writes 12.11;° and •]x~^

thus 12°, 7^™; he represents the product of 8x^ and 'jx~^ by 56^. J.

Biirgi, Reymer and J. Kepler use Roman numerals for the exponen-

tial symbol. J. Biirgi writes i6x^ thus ~^ Thomas Harriot simply

repeats the letters; he writes in his Artis analytica praxis (1631),

a''— 10240^-1-62540, thus: aaaa— io24aa-|-6254fl.

• Descartes' exponential notation spread rapidly; about 1660 or

1670 the positive integral exponent had won an undisputed place in

algebraic notation. In 1656 J. Wallis speaks of negative and fractional

"indices," in his Arithmelica infinitorum, but he does not actually

I ._
write a~^ for ~, or a'/' for v a^. It was I. Newton who, in his famous

letter to H. Oldenburg, dated June 13, 1676, and containing his an-

nouncement of the binomial theorem, first uses negative and fractional

exponents.

With Descartes a letter represented always only a positive number.
It was Johann Hudde who in 1659 first let a letter stand for negative
as well as positive values.

Descartes also established some theorems on the theory of equa-
tions. Celebrated is his "rule of signs" for determining the number

' Chuquet's "Le Triparty," BuUettino Boncompagni, Vol. 13, 1880, p. 740.
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of positive and negative roots. He gives the rule after pointing out
the roots 2, 3, 4, —5 and the corresponding binomial factors of the
equation a;^—4x^—i9a;2+io6.x— 120=0. His exact words are as
follows:

"On connoit aussi de ceci combien il pent y avoir de vraies racines
et combien de fausses en chaque equation: a savoir il y en peut avoir
autant de vraies que las signes + et — s'y trouvent de fois etre

changes, et autant de fausses qu'il s'y trouve de fois deux signes +
ou deux signes — qui s'entre-suivent. Comme en la derniere, a cause
qu'apres +x* il y a — 4.v•^ qui est un changement du signe + en —

,

et apres — igx^ il y a +io6x, et apres +106.V- il y a —120, qui sont
encore deux autres changements, ou connoit qu'il y a trois vraies

racines; et une fausse, a cause que les deux signes — de 4:c^ et 19^;^

s'entre-suivent."

This statement lacks completeness. For this reason he has been
frequently criticized, j. Wallis claimed that Descartes failed to

notice that the rule breaks down in case of imaginary roots, but
Descartes does not say that the equation always has, but that it may
have, so many roots. Did Descartes receive any suggestion of his

rule from earlier writers? He might have received a hint from H.
Cardan, whose remarks on this subject have been summarized by
G. Enestrom ^ as follows: If in an equation of the second, third or

fourth degree, (i) the last term is negative, then one variation of sign

signifies one and only one positive root, (2) the last term is positive,

then two variations indicate either several positive roots or none.

Cardan does not consider equations having more than two variations.

G. W. Leibniz was the first to erroneously attribute the rule of signs

to T. Harriot. Descartes was charged by J. Wallis with availing

himself, without acknowledgment, of Harriot's theory of equations,

particularly his mode of generating equations; but there seems to be
no good ground for the charge.

In mechanics, Descartes can hardly be said to have advanced be-

yond Galileo. The latter had overthrown the ideas of Aristotle on
this subject, and Descartes simply "threw himself upon the enemy"
that had already been "put to the rout." His statement of the first

and second laws of motion was an improvement in form, but his third

law is false in substance. The motions of bodies in their direct impact

was imperfectly understood by Galileo, erroneously given by Descartes,

and first correctly stated by C. Wren, J. Wallis, and C. Huygens.

One of the most devoted pupils of Descartes was the learned

Princess Elizabeth, daughter of Frederick V. She applied the new
analytical geometry to the solution of the "Apollonian problem."

His second royal follower was Queen Christina, the daughter of Gus-

tavus Adolphus. She urged upon Descartes to come to the Swedish

court. After much hesitation he accepted the invitation in 1649.

^ Bibliotheca mathematica, 3rd S., Vol. 7, 1906-7, p. 293.
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He died at Stockholm one year later. His life had been one long war-

fare against the prejudices of men.

It is most remarkable that the mathematics and philosophy of

Descartes should at first have been appreciated less by his country-

men than by foreigners. The indiscreet temper of Descartes alienated

the great contemporary French mathematicians, Roberval, Fermat,

Pascal. They continued in investigations of their own, and on some
points strongly opposed Descartes. The universities of France were
under strict ecclesiastical control and did nothing to introduce his

mathematics and philosophy. It was in the youthful universities of

Holland that the effect of Cartesian teachings was most immediate
and strongest.

The only prominent Frenchman who immediately followed in the

footsteps of the great master was Florimond de Beaune (1601-1652).

He was one of the first to point out that the properties of a curve

can be deduced from the properties of its tangent. This mode of

inquiry has been called the inverse method of tangents. He contributed

to the theory of equations by considering for the first time the upper
and lower limits of the roots of numerical equations.

In the Netherlands a large number of distinguished mathematicians
were at once struck with admiration for the Cartesian geometry.

Foremost among these are van Schooten, John de Witt, van Heuraet,

Sluze, and Hudde. Franciscus van Schooten (died 1660), professor

of mathematics at Leyden, brought out an edition of Descartes'

geometry, together with the notes thereon by De Beaune. His chief

work is his Exercitationes Mathematicce, 1657, in which he applies the

analytical geometry to the solution of many interesting and difficult

problems. The noble-hearted Johann de Witt (162 5-1 67 2), grand-

pensioner of Holland, celebrated as a statesman and for his tragical

end, was an ardent geometrician. He conceived a new and ingenious

way of generating conies, which is essentially the same as that by
projective pencils of rays in modern synthetic geometry. He treated

the subject not synthetically, but with aid of the Cartesian analysis.

Rene Franeois de Sluse (1622-1685) and Johann Hudde (1633-
1704) made some improvements on Descartes' and Fermat's methods
of drawing tangents, and on the theory of maxima and minima. With
Hudde, we find the first use of three variables in analytical geometry.
He is the author of an ingenious rule for finding equal roots. We
illustrate it by the equation x^— .t^— 8x-f 12=0. Taking an arith-

metical progression 3, 2, i, o, of which the highest term is equal to

the degree of the equation, and multiplying each term of the equation
respectively by the corresponding term of the progression, we get
3.1;^— 2.x^— 8.x=o, or 3.T^— 2.T— 8=0. This last equation is by one
degree lower than the original one. Find the G.C.D. of the two
equations. This is x— 2; hence 2 is one of the two equal roots. Had
there been no common divisor, then the original equation would not
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have possessed equal roots. Hudde gave a demonstration for this

rule.

'

Heinrich van Heuraet must be mentioned as one of the earliest

geometers who occupied themselves with success in the rectification

of curves. He observed in a general way that the two problems of

quadrature and of rectification are really identical, and that the one
can be reduced to the other. Thus he carried the rectification of the
hyperbola back to the quadrature of the hyperbola. The curve which
John Wallis named the "semi-cubical parabola," y^=ax^, was the

first curve to be rectified absolutely. This appears to have been
accomplished independently by P. Fermat in France, Van Heuraet
in Holland and by William Neil (1637-1670) in England. According
to J. Wallis the priority belongs to Neil. Soon after, the cycloid was
rectified by C. Wren and Fermat.
A mathematician of no mean ability was Gregory St. Vincent

(1584-1667), a Belgian, who studied under C. Clavius in Rome and
was two years professor at Prague, where, during war time, his manu-
script volume on geometry and statics was lost in a fire. Other papers
of his were saved but carried about for ten years before they came
again into his possession, at his home in Ghent. They became the

groundwork of his great book, the Opus geometricum quadratures

circuli et seclionum coni, Antwerp, 1647. li consists of 1225 folio

pages, divided into ten books. St. Vincent proposes four methods for

squaring the circle, but does not actually carry them out. The work
was attacked by R. Descartes, M. Mersenne and G. P. Roberval,

and defended by the Jesuit Alf.ons Anton de Sarasa and others.

Though erroneous on the possibility of squaring the circle, the Opus
contains solid achievements, which were the more remarkable, because

at that time only four of the seven books of the conies of Apollonius

of Perga were known in the Occident. St. Vincent deals with conies,

surfaces and solids from a new point of view, employing infinitesimals

in a way perhaps less objectionable than in B. Cavalieri's book. St.

Vincent was probably the first to use the word exkaurire in a geo-

metrical sense. From this word arose the name of "method of ex-

haustion," as applied to the method of Euchd and Archimedes. St.

Vincent used a method of transformation of one conic into another,

called per subtendas (by chords), which contains germs of analytic

geometry. He created another special method which he called Ductus

plani in planum and used in the study of solids.^ Unlike Archimedes

who kept on dividing distances, only until a certain degree of small-

ness was reached, St. Vincent permitted the subdivisions to continue

• Heinrich Suter, Geschichte der Mathemalischen Wissenschaflen Zurich, 2. Theil,

1875, p. 25.
2 See M. Marie, Histoire dcs sciences math., Vol. 3, 1884, pp. i86-ig3; Karl Bopp,

Kegelschnille des Gregorius a St. Vincento in Abhandl. z. Gesch. d. math. Wissensch.,

XX Heft, 1907, pp. 83-314.
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ad infinitum and obtained a geometric series that was infinite. How-
ever, infinite series had been obtained before him by Alvarus Thomas,

a native of Lisbon, in a work. Liber de Iriplici motu, 1509,' and possibly

by others. But St. Vincent was the first to apply geometric series to

the "Achilles" and to look upon the paradox as a question in the

summation of an infinite series. Moreover, St. Vincent was the first

to state the exact time and place of overtaking the tortoise. He
spoke of the limit as an obstacle against further advance, similar to

a rigid wall. Apparently he was not troubled by the fact that in his

theory, the variable does not reach its limit. His exposition of the

"Achilles" was favorably received by G. W. Leibniz and by writers

over a century afterward. The fullest account and discussion of

Zeno's arguments on motion that was published before the nineteenth

century was given by the noted French skeptical philosopher, Pierre

Bayle, in an article "Zenon d'Elee" in his Dictionnaire historique et

critique, 1696.^

The prince of philosophers in Holland, and one of the greatest

scientists of the seventeenth century, was Christian Huygens (1629-

1695), a native of The Hague. Eminent as a physicist and astronomer,

as well as mathematician, he was a worthy predecessor of Sir Isaac

Newton. He studied at Leyden under Frans Van Schooien. The
perusal of some of his earliest theorems led R. Descartes to predict

his future greatness. In 1651 Huygens wrote a treatise in which he
pointed out the fallacies of Gregory St. Vincent on the subject of

quadratures. He himself gave a remarkably close and convenient
approximation to the length of a circular arc. In 1660 and 1663 he
went to Paris and to London. In i665 he was appointed by Louis
XIV member of the French Academy of Sciences. He was induced
to remain in Paris from that time until 1681, when he returned to his

native city, partly for consideration of his health and partly on ac-

count of the revocation of the Edict of Nantes.

The majority of his profound discoveries were made with aid of the

ancient geometry, though at times he used the geometry of R. Des-
cartes or of B. Cavalieri and P. Fermat. Thus, like his illustrious

friend. Sir Isaac Newton, he always showed partiaUty for the Greek
geometry. Newton and Huygens were kindred minds, and had the
greatest admiration for each other. Newton always speaks of him
as the "Summus Hugenius."
To the two curves (cubical parabola and cycloid) previously recti-

fied he added a third,—the cissoid. A French physician, Claudius
Perrault, proposed the question, to determine the path in a fixed plane
of a heavy point attached to one end of a taut string whose other end
moves along a straight fine in that plane. Huygens and G. W. Leibniz
studied this problem in 1693, generalized it, and thus worked out the

'H. Wieleitner, in Bibliolheca mathematica, 3. F., Bd. 1914, 14, p. 152.
''See F. Cajori in Atn. Math. Monthly, Vol. 22, 1915, pp. 109-112.
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geometry of the "tractrix." ' Huygens solved the problem of the

catenary, determined the surface of the parabolic and hyperboUc
conoid, and discovered the properties of the logarithmic curve and
the solids generated by it. Huygens' De horologio oscillatorio (Paris,

1673) is a work that ranks second only to the Principia of Newton
and constitutes historically a necessary introduction to it. The book
opens with a description of pendulum clocks, of which Huygens is the

inventor. Then follows a treatment of accelerated motion of bodies

falling free, or sliding on inclined planes, or on given curves,—cul-

minating in the brilUant discovery that the cycloid is the tautochronous

curve. To the theory of curves he added the important theory of

"evolutes." After explaining that the tangent of the evolute is

normal to the involute, he appKed the theory to the cycloid, and
showed by simple reasoning that the evolute of this curve is an equal

cycloid. Then comes the complete general discussion of the centre

of oscillation. This subject had been proposed for investigation by
M. Mersenne and discussed by R. Descartes and G. P. Roberval.

In Huygens' assumption that the common centre of gravity of a

group of bodies, oscillating about a horizontal axis, rises to its original

height, but no higher, is expressed for the first time one of the most
beautiful principles of dynamics, afterwards called the principle of

the conservation of vis viva. The thirteen theorems at the close of

the work relate to the theory of centrifugal force in circular motion.

This theory aided Newton in discovering the law of gravitation.^

Huygens wrote the first formal treatise on probabiUty. He pro-

posed the wave-theory of light and with great skill apphed geometry

to its development. This theory was long neglected, but was revived

and elaborated by Thomas Young and A. J. Fresnel a century later.

Huygens and his brother improved the telescope by devising a better

way of grinding and polishing lenses. With more efficient instru-

ments he determined the nature of Saturn's appendage and solved

other astronomical questions. Huygens' Opuscula posthuma appeared

in 1703.

The theory of combinations, the primitive notions of which go

back to ancient Greece, received the attention of William Buckley

of King's College, Cambridge (died 1550), and especially of Blaise

Pascal who treats of it in his Arithmetical Triangle. Before Pascal,

this Triangle had been constructed by N. TartagHa and M. Stifel.

Fermat apphed combinations to the study of probability. The earliest

mathematical work of Leibniz was his De arte comhinatoria. The

subject was treated by John Wallis in his Algebra.

John Wallis (i6i6-i703),was one of the most original mathemati-

cians of his day. He was educated for the Church at Cambridge and en-

1 G. Loria, Ebene Carven (F. Schutte) 11, igii, p. 188.

2 E. Diihring, Kritische Geschichte der AUgemeinen Principien der Mechanik.

Leipzig, 1887, p. 135-
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tered Holy Orders. But his genius was employed chiefly in the study of

mathematics. In 1649 he was appointed Savilian professor of geometry
at Oxford. He was one of the original members of the Royal Society,

which was founded in 1663. He ranks as one of the world's greatest de-

cipherers of cryptic writing.^ Wallis thoroughly grasped the mathemat-
ical methods both of B. Cavalieri and R. Descartes. His Conic Sections

is the earliest work in which these curves are no longer considered as

sections of a cone, but as curves of the second degree, and are treated

analytically by the Cartesian method of co-ordinates. In this work
Wallis speaks of Descartes in the highest terms, but in his Algebra

(1685, Latin edition 1693), he, without good reason, accuses Descartes

of plagiarizing from T. Harriot. It is interesting to observe that, in

his Algebra, WaUis discusses the possibility of a fourth dimension.

Whereas nature, says Wallis, "doth not admit of more than three

(local) dimensions ... it may justly seem very improper to talk of

asohd . . . drawn into a fourth, fifth, sixth, or further dimension. . ..

Nor can our fansie imagine how there should be a fourth local dimen-
sion beyond these three." ^ The first to busy himself with the number
of dimensions of space was Ptolemy. Wallis felt the need of a method
of representing imaginaries graphicallj', but he failed to discover a
general and consistent representation.^ He published Nasir-Eddin's
proof of the parallel postulate and, abandoning the idea of equi-

distance that had been employed without success by F. Commandino,
C. S. Clavio, P. A. Cataldi and G. A. Borelli, gave a proof of his own
based on the axiom that, to every figure there exists a similar figure

of arbitrary magnitude.* The existence of similar triangles was as-

sumed 1000 years before Wallis by Aganis, who was probably a
teacher of Simplicius. We have already mentioned elsewhere Wallis's

solution of the prize questions on the cycloid, which were proposed by
Pascal.

The Arithmetica infinitorum, published in 1655, is his greatest work.
By the application of analysis to the Method of Indivisibles, he greatly

increased the power of this instrument for effecting quadratures. He
created the arithmetical conception of a limit by considering the
successive values of a fraction, formed in the study of certain ratios;

these fractional values steadily approach a limiting value, so that
the difference becomes less than any assignable one and vanishes
when the process is carried to infinity. He advanced beyond J. Kepler
by making more extended use of the "law of continuity" and placing

' D. E. Smith in Bull. Am. Math. Soc, Vol. 24, 1917, p. 82.
' G. Enestrom in Bibliothcca malhematica, 3. S., Vol. 12, igii-12, p. 88.
' See Wallis' Algebra, 1685, pp. 264-273; see also Enestrom in Bibliotheca mathe-

matica, 3. S., Vol. 7, pp. 263-269.

•R. Bonola, op. cil., pp. 12-17. See also F. Engel u. P. Stackel, Theorie der
Parallellinien von Euclid bis auf Gauss, Leipzig, 1895, pp. 21-36. This treatise

gives translations into German of Saccheri, also the essays of Lambert and Taurinus,
and letters of Gauss.
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full reliance in it. By this law he was led to regard the denominators
of fractions as powers with negative exponents. Thus, the descending

geometrical progression x^, x'-, x^, x", if continued, gives x~\ x~^, yr^,

etc.; which is the same thing as -, — , —^. The exponents of this geo-

metric series are in continued arithmetical progression, 3, 2, i, o,

— I, —2, —3. However, Wallis does not actually use here the no-

tation x~^, x~^, etc.; he merely speaks of negative exponents. He
also used fractional exponents, which, like the negative, had been
invented long before, but had failed to be generally introduced. The
symbol 00 for infinity is due to him. Wallis introduces the name,
" hypergeometric series" for a series different from a, ah, ab"^, . . .

;

he did not look upon this new series as a power-series nor as a function

of X.

B. Cavalieri and the French geometers had ascertained the formula
for squaring the parabola of any degree, y=x"^, m being a positive

integer. By the summation of the powers of the terms of infinite

arithmetical series, it was found that the curve y=x"' is to the area

of the parallelogram having the same base and altitude as i is to

m-\-\. Aided by the law of continuity, Wallis arrived at the result

that this formula holds true not only when m is positive and integral,

but also when it is fractional or negative. Thus, in the parabola

y=y/px, m=\; hence the area of the parabolic segment is to that

of the circumscribed rectangle as i : x\, or as 2 : 3. Again, suppose

that in y=x™, ot=— |; then the curve is a kind of hyperbola referred

to its asymptotes, and the hyperbolic space between the curve and
its asymptotes is to the corresponding parallelogram as i : |. If m=
— I, as in the common equilateral hyperbola y=x~^ or xy=-i, then

this ratio is i : — i-M, or 1:0, showing that its asymptotic space

is infinite. But in the case when m is greater than unity and negative,

Walhs was unable to interpret correctly his results. For example,

if m= — -^, then the ratio becomes i :
— 2, or as unity to a negative

number. What is the meaning of this? Wallis reasoned thus: If the

denominator is only zero, then the area is already infinite; but if it is

less than zero, then the area must be more than infinite. It was

'

pointed out later by P. Varignon, that this space, supposed to exceed

infinity, is really finite, but taken negatively; that is, measured in a

contrary direction.^ The method of Wallis was easily extended to

m p

cases such as y-^axlt+bxi by performing the quadrature for each term

separately, and then adding the results.

The manner in which Wallis studied the quadrature of the circle

and arrived at his expression for the value of tv is extraordinary. He
foimd that the areas comprised between the axes, the ordinate cor-

'
J. F. Montucla, Histoire des mathAmatiques , Paris, Tome 2, An VII, p. 350.
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responding to x, and the curves represented by the equations v-
(i— x^)", y={i—x^)^, y={i—x^y, y={i—x^y, etc., are expressed in

functions of the circumscribed rectangles having x and y for their

sides, -by the quantities forming the series

x—^x^,
x-lx^+^x^,
x—^x^+^x^—^x', etc.

When x=i, these values become respectively i, |, -j^j, ^^, etc. Now
since the ordinate of the circle is y={i~x^p, the exponent of which is

I or the mean value between o and i, the question of this quadrature

reduced itself to this: If o, i, 2, 3, etc., operated upon by a certain law,

give I, I, ^\, iYj, what will -j give, when operated upon by the same
law? He attempted to solve this by interpolation, a method first

brought into prominence by him, and arrived by a highly complicated

and difi&cult analysis at the following very remarkable expression:

•n"_2. 2.4.4.6.6.8.8. . .

2 i,3-3-5-5-7-7-9---

He did not succeed in making the interpolation itself, because he

did not employ literal or general exponents, and could not conceive a

series with more than one term and less than two, which it seemed
to him the interpolated series must have. The consideration of this

difficulty led I. Newton to the discovery of the Binomial Theorem.
This is the best place to speak of that discovery. Newton virtually

assumed that the same conditions which underlie the general ex-

pressions for the areas given above must also hold for the expression

to be interpolated. In the first place, he observed that in each ex-

pression the first term is x, that x increases in odd powers, that the

signs alternate -t- and — , and that the second terms ^x^, \x^, |x^, fx^,

are in arithmetical progression. Hence the first two terms of the

interpolated series must be x—-— . He,next considered that the de-

nominators I, 3, 5, 7, etc., are in arithmetical progression, and that

the coefficients in the numerators in each expression are the digits

of some power of the number 11; namely, for the first expression, 11"

or i; for the second, 11^ or i, i; for the third, 11^ or i, 2, i; for the
fourth, 11' or i, 3, 3, i; etc. He then discovered that, having given
the second digit (call it m), the remaining digits can be found by con-

tinual multiplication of the terms of the series . . .

I 2 3

. etc. Thus, if w=4, then 4 . gives 6; 6 . gives 4;
4 23
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4 • gives I. Applying this rule to the required series, since the

second term is ^^—, we have w=|, and then get for the succeeding

coefficients in the numerators respectively —J, — iV, — if-j, etc.;

hence the required area for the circular segment is .t— ^ —

etc. Thus he found the interpolated expression to be an infinite series,

instead of one having more than one term and less than two, as Wallis
believed it must be. This interpolation suggested to Newton a mode
of expanding (i— .t-)^, or, more generally, (i — x-^)", into a series. He
observed that he had only to omit from the expression just found the

denominators i, 3, 5, 7, etc., and to lower each power of x by unity,

and he had the desired expression. In a letter to H. Oldenburg
(June 13, 1676), Newton states the theorem as follows: The extraction

of roots is much shortened by the theorem

(P+P0^=p"+^^C+^^^*£C+^^C()+etc.,

m
where A means the first term, P», B the second term, C the third

term, etc. He verified it by actual multiphcation, but gave no regular

proof of it. He gave it for any exponent whatever, but made no dis-

tinction between the case when the exponent is positive and integral,

and the others.

It should here be mentioned that very rude beginnings of the bi-

nomial theorem are found very early. The Hindus and Arabs used

the expansions of (a+b)^ and (a+by for extracting roots; Vieta knew
the expansion of (a-Ffi)*; but these were the results of simple multi-

plication without the discovery of any law. The binomial coefiicients

for positive whole exponents were known to some Arabic and Euro-

pean mathematicians. B. Pascal derived the coefficients from the

method of what is called the "arithmetical triangle." Lucas de

Burgo, M. Stifel, S. Stevinus, H. Briggs, and others, all possessed

something ftom which one would think the binomial theorem could

have been gotten with a little attention, "if we did not know that

such simple relations were difficult to discover."

Though Wallis had obtained an entirely new expression for tt, he

was not satisfied with it; for instead of a finite number of terms yield-

ing an absolute value, it contained an infinite number, approaching

nearer and nearer to that value. He therefore induced his friend. Lord
Brouncker, the first president of the Royal Society, to investigate

this subject. Of course Lord Brouncker did not find what they were

after, but he obtained the following beautiful equality:

—
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7r=

i+-
I

25
2+ - ^

2+ etc.

Continued fractions, both ascending and descending, appear to have
been known already to the Greeks and Hindus, though not in our

present notation. Brouncker's expression gave birth to the theory of

continued fractions.

Wallis' method of quadratures was diligently studied by his dis-

ciples. Lord Brouncker obtained the first infinite series for the area

of the equilateral hyperbola xy = -i between one of its asymptotes and

the ordinates for x=\ and x=2; viz. the area 1 1

—-+ . . . The
1.2 3.4 5.6

Logarithmolechnia (London, 1668) of Nicolaus Mercator is often said

to contain the series log (i+a) = a H ... In reality it con-

tains the numerical values of the first few terms of that series, tak-

ing a=.i, also ffl = .2i. He adhered to the mode of exposition which
favored the concrete special case to the general formula. Wallis was
the first to state Mercator's logarithmic series in general symbols.

Mercator deduced his results from the grand property of the hyper-

bola deduced by Gregory St. Vincent in Book VII of his Opus geo-

metricum, Antwerp, 1647: If parallels to one asymptote are drawn
between the hyperbola and the other asymptote, so that the successive

areas of the mixtilinear quadrilaterals thus formed are equal, then
the lengths of the parallels form a geometric progression. Apparently
the first writer to state this theorem in the language of logarithms

was the Belgian Jesuit Alfons Anton de Sarasa, who defended Gregory
St. Vincent against attacks made by Mersenne. Mercator showed
how the construction of logarithmic tables could be reduced to the

quadrature of hyperbolic spaces. Following up some suggestions of

Wallis, William Neil succeeded in rectifying the cubical parabola, and
C. Wren in rectifying any cycloidal arc. Gregory St. Vincent, in

Part X of his Opus describes the construction of certain quartic curves,

often called virtual parabolas of St. Vincent, one of which has a shape
much like a lemniscate and in Cartesian co-ordinates is d^{y^—x^)=y^.
Curves of this type are mentioned in the correspondence of C. Huy-
gens with R. de Sluse, and with G. W. Leibniz.

A prominent English mathematician and contemporary of Wallis
was Isaac Barrow (1630-1677). He was professor of mathematics
in London, and then in Cambridge, but in 1669 he resigned his chair
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to his illustrious pupil, Isaac Newton, and renounced the study of

mathematics for that of divinity. As a mathematician, he is most
celebrated for his method of tangents. He simplified the method of

P. Fermat by introducing two infinitesimals instead of one, and ap-
proximated to the course of reasoning afterwards followed by Newton
in his doctrine on Ultimate Ratios. The following books are Barrow's

:

Lectiones geometricm (1670), Lectiones mathematiccs (1683-1685).
He considered the infinitesimal right triangle ABB' having for its

sides the difference between two successive ordinates, the distance
between them, and the portion of the curve intercepted by them.
This triangle is similar to BPT, formed by the ordinate, the tangent,
and the sub-tangent. Hence, if we
know the ratio of B'A to BA, then
we know the ratio of the ordinate

and the sub-tangent, and the tangent
can be constructed at once. For any
curve, say y^=px, the ratio of B'A to

BA is determined from its equation
as follows : If x receives an infinitesi-

mal increment PP'=e, then y receives

an increment B'A =a, and the equation for the ordinate B'P' becomes
y^+2ay+a'^= px+pe. Since y^=px, we get 2ay+a'^=pe; neglecting

higher powers of the infinitesimals, we have 2ay=pe, which gives

a:e=p: 2y=p: 2\fpx.

But a: e=the ordinate: the sub-tangent; hence

p : 2 y/px= -s/px : sub-tangent,

giving 2x for the value of the sub-tangent. This method differs from
that of the differential calculus chiefly in notation. In fact, a recent

investigator asserts, "Isaac Barrow was the first inventor of the in-

finitesimal calculus." ^

Of the integrations that were performed before the Integral Calculus

was invented, one of the most diSicult grew out of a practical problem
of navigation in connection with Gerardus Mercator's map. In 1599
Edward Wright published a table of latitudes giving numbers express-

ing the length of an arc of the nautical meridian. The table was com-
puted by the continued addition of the secants of i", 2", 3", etc. In

re
modern symbols this amounts to r / seed d d=r log tan (90°— d)l2.

It was Henry Bond who noticed by inspection about 1645 that

Wright's table was a table of logarithmic tangents. Actual demon-

strations of this, thereby really estabhshing the above definite integral,

were given by James Gregory in 1668, Isaac Barrow in 1670, John

'
J. M. Child, The Geomelrical Lectures of Isaac Barrow, Chicago and London,

igi6, preface.
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Wallis in 1685, and Edmund Halley in 1698.^ James Gregory and

Barrow gave also the integral / tan d d 0=log sec d; B. Cavalieri in

1647 established the integral of I x" dx. Similar results were obtained

by E. Torricelli, Gregory St. Vincent, P. Fermat, G. P. Roberval and
B. Pascal. 2

Newton to Euler

It has been seen that in France prodigious scientific progress was
made during the beginning and middle of the seventeenth century.

The toleration which marked the reign of Henry IV and Louis XIII
was accompanied by intense intellectual activity. Extraordinary con-

fidence came to be placed in the power of the human mind. The bold

intellectual conquests of R. Descartes, P. Fermat, and B. Pascal en-

riched mathematics with imperishable treasures. During the early

part of the reign of Louis XIV we behold the sunset splendor of this

glorious period. Then followed a night of mental effeminacy. This

lack of great scientific thinkers during the reign of Louis XIV may be
due to the simple fact that no great minds were born; but, according

to Buckle, it was due to the paternalism, to the spirit of dependence
and subordination, and to the lack of toleration, which marked the

policy of Louis XIV.
In the absence of great French thinkers, Louis XIV surrounded

himself by eminent foreigners. O. Romer from Denmark, C. Huygens
from Holland, Dominic Cassini from Italy, were the mathematicians
and astronomers adorning his court. They were in possession of a
brilliant reputation before going to Paris. Simply because they per-

formed scientific work in Paris, that work belongs no more to France
than the discoveries of R. Descartes belong to Holland, or those of

J. Lagrange to Germany, or those of L. Euler and J. V. Poncelet to

Russia. We must look to other countries than France for the great

scientific men of the latter part of the seventeenth century.

About the time when Louis XIV assumed the direction of the
French government Charles II became king of England. At this

time England was extending her commerce and navigation, and ad-
vancing considerably in material prosperity. A strong intellectual

movement took place, which was unwittingly supported by the king.

The age of poetry was soon followed by an age of science and philos-

ophy. In two successive centuries England produced Shakespeare
and I. Newton!

' See F. Cajori in Bihliotheca mathemalica, 3. S., Vol. 14, igis, pp. 312-319.
^H. G. Zeuthen, Geschichte der Malh. (deutsch v. R. Meyer), Leipzig, 1903,

pp. 256 ff.
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Germany still continued in a state of national degradation. The
Thirty Years' War had dismembered the empire and brutalized the
people. Yet this darkest period of Germany's history produced G. W.
Leibniz, one of the greatest geniuses of modern times.

There are certain focal points in history toward which the lines of
past progress converge, and from which radiate the advances of the
future. Such was the age of Newton and Leibniz in the history of
mathematics. During fifty years preceding this era several of the
brightest and acutest mathematicians bent the force of their genius
in a direction which finally led to the discovery of the infinitesimal

calculus by Newton and Leibniz. B. Cavalieri, G. P. Roberval, P.
Fermat, R. Descartes, J. Wallis, and others had each contributed to
the new geometry. So great was the advance made, and so near was
their approach toward the invention of the infinitesimal analysis, that
both J. Lagrange and P. S. Laplace pronounced their countryman,
P. Fermat, to be the first inventor of it. The differential calculus,

therefore, was not so much an individual discovery as the grand result
of a succession of discoveries by different minds. Indeed, no great
discovery ever flashed upon the mind at once, and though those of

Newton will influence mankind to the end of the world, yet it must be
admitted that Pope's lines are only a "poetic fancy":

—

"Nature and Nature's laws lay hid in night;

God said, 'Let Newton be,' and all was light."

Isaac Newton (1642-1727) was bom at Woolsthorpe, in Lincoln-
shire, the same year in which Galileo died. At his birth he was so
small and weak that his life was despaired of. His mother sent him
at an early age to a village school, and in his twelfth year to the public

school at Grantham. At first he seems to have been very inattentive

to his studies and very low in the school; but when, one day, the little

Isaac received a severe kick upon his stomach from a boy who was
above him, he labored hard till he ranked higher in school than his

antagonist. From that time he continued to rise until he was the

head boy.-^ At Grantham, Isaac showed a decided taste for mechan-
ical inventions. He constructed a water-clock, a wind-mill, a carriage

moved by the person who sat in it, and other toys. When he had at-

tained his fifteenth year his mother took him home to assist her in

the management of the farm, but his great dislike for farmwork and
his irresistible passion for study, induced her to send him back to

Grantham, where he remained till his eighteenth year, when he en-

tered Trinity College, Cambridge (1660). Cambridge was the real

birthplace of Newton's genius. Some idea of his strong intuitive

powers may be drawn from the fact that he regarded the theorems of

ancient geometry as self-evident truths, and that, without any pre-

liminary study, he made himself master of Descartes' Geometry. He
1 D. Brewster, The Memoirs of Newton, Edinburgh, Vol. I, 1855, p. 8.
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afterwards regarded this neglect of elementary geometry a mistake

in his mathematical studies, and he expressed to Dr. H. Pemberton

his regret that "he had applied himself to the works of Descartes and

other algebraic writers before he had considered the Elements of Euclid

with that attention which so excellent a writer deserves." Besides R.

Descartes' Geometry, he studied W. Oughtred's Clavis, J. Kepler's

Optics, the works of F. Vieta, van Schooten's Miscellanies, I. Barrow's

Lectures, and the works of J. Wallis. He was particularly deUghted

with WaUis' Arithmetic of Infinites, a treatise fraught with rich and

varied suggestions. Newton had the good fortune of having for a

teacher and fast friend the celebrated Dr. Barrow, who had been

elected professor of Greek in 1660, and was made Lucasian professor

of mathematics in 1663. The mathematics of Barrow and of Wallis

were the starting-points from which Newton, with a higher power

than his masters', moved onward into wider fields. Wallis had ef-

fected the quadrature of curves whose ordinates are expressed by any
integral and positive power of (i—x-). We have seen how Wallis

attempted but failed to interpolate between the areas thus calculated,

the areas of other curves, such as that of the circle; how Newton at-

tacked the problem, effected the interpolation, and discovered the

Binomial Theorem, which afforded a much easier and direct access to

the quadrature of curves than did the method of interpolation; for

even though the binomial expression for the ordinate be raised to a

fractional or negative power, the binomial could at once be expanded
into a series, and the quadrature of each separate term of that series

could be effected by the method of Wallis. Newton introduced the

system of hteral indices.

Newton's study of quadratures soon led him to another and most
profound invention. He himself says that in 1665 and 1666 he con-

ceived the method of fluxions and applied them to the quadrature of

curves. Newton did not communicate the invention to any of his

friends till 1669, when he placed in the hands of Barrow a tract, en-

titled De Analyst per Mquationes Numero Terminorum Infinitas, which
was sent by Barrow to John Collins, who greatly admired it. In

this treatise the principle of fluxions, though distinctly pointed out,

is only partially developed and explained. Supposing the abscissa to

increase uniformly in proportion to the time, he looked upon the area

of a curve as a nascent quantity increasing by continued fluxion in

the proportion of the length of the ordinate. The expression which
was obtained for the fluxion he expanded into a finite or infinite series

of monomial terms, to which Wallis' rule was applicable. Barrow
urged Newton to publish this treatise; " but the modesty of the author,

of which the excess, if not culpable, was certainly in the present in-

stance very unfortunate, prevented his compliance." ^ Had this tract

• John Playfair, "Progress of the Mathematical and Physical Sciences" in En-
I xdopmdia Brilannica, 7th Edition.
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been published then, instead of forty-two years later, there probably
would have been no occasion for that long and deplorable controversy
between Newton and Leibniz.

For a long time Newton's method remained unknown, except to his

friends and their correspondents. In a letter to Collins, dated De-
cember loth, 1672, Newton states the fact of his invention with one
example, and then says: "This is one particular, or rather corollary,

of a general method, which exteads itself, without any troublesome
calculation, not only to the drawing of tangents to any curve lines,

whether geometrical or mechanical, or anyhow respecting right lines

or other curves, but also to the resolving other abstruser kinds of

problems about the crookedness, areas, lengths, centres of gravity of

curves, etc. ; nor is it (as Hudde's method of Maximis and Minimis)
limited to equations which are free from surd quantities. This method
I have interwoven with that other of working in equations, by reducing

them to infinite series."

These last words relate to a treatise he composed in the year 1671,

entitled Method of Fluxions, in which he aimed to represent his method
as an independent calculus and as a complete system. This tract was
intended as an introduction to an edition of Kinckhuysen's Algebra,

which he had undertaken to pubUsh. " But the fear of being involved

in disputes about this new discovery, or perhaps the wish to render

it more complete, or to have the sole advantage of employing it in his

physical researches, induced him to abandon this design." ^

Excepting two papers on optics, all of his works appear to have

been published only after the most pressing solicitations of his friends

and against his own wishes. His researches on light were severely

criticised, and he wrote in 1675: "I was so persecuted with discussions

arising out of my theory of light that I blamed my own imprudence

for parting with so substantial a blessing as my quiet to run after a

shadow."
The Method of Fluxions, translated by J. Colson from Newton's

Latin, was first pubhshed in 1736, or sixty-five years after it was

written. In it he explains first the expansion into series of fractional

and irrational quantities,—a subject which, in his first years of study,

received the most careful attention. He then proceeds to the solution

of the two following mechanical problems, which constitute the pillars,

so to speak, of the abstract calculus:

—

"I. The length of the space described being continually {i. e. at

all times) given; to find the velocity of the motion at any time pro-

posed.
"11. The velocity of the motion being continually given; to find

the length of the space described at any time proposed."

Preparatory to the solution, Newton says: "Thus, in the equation

y=x^, if y represents the length of the space at any time described,

1 D. Brewster, op. cil., Vol. 2, 1855, p. 15.
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which (time) another space x, by increasing with an uniform celerity

X, measures and exhibits as described: then 2xx will represent the

celerity by which the space y, at the same moment of time, proceeds

to be described; and contrarywise."

"But whereas we need not consider the time here, any farther than

it is expounded and measured by an equable local motion; and be-

sides, whereas only quantities of the same kind can be compared to-

gether, and also their velocities of increase and decrease; therefore, in

what follows I shall have no regard to time formally considered, but

I shall suppose some one of the quantities proposed, being of the same
kind, to be increased by an equable fluxion, to which the rest may be

referred, as it were to time; and, therefore, by way of analogy, it

may not improperly receive the name of time." In this statement of

Newton there is contained his answer to the objection which has been

raised against his method, that it introduces into analysis the foreign

idea of motion. A quantity thus increasing by uniform fluxion, is

what we now call an independent variable.

Newton continues: "Now those quantities which I consider as

gradually and indefinitely increasing, I shall hereafter call fluents, or

flowing quantities, and shall represent them by the final letters of the

alphabet, v, x, y, and z; . . . and the velocities by which every fluent

is increased by its generating motion (which I may call fluxions, or

simply velocities, or celerities), I shall represent by the same letters

pointed, thus, i), x, y, z. That is, for the celerity of the quantity v

I shall put 1), and so for the celerities of the other quantities x, y, and
z, I shall put X, y, and z, respectively." It must here be observed that

Newton does not take the fluxions themselves infinitely small. The
"moments of fluxions," a term introduced further on, are infinitely

small quantities. These "moments," as defined and used in the

Method of Fluxions, are substantially the differentials of Leibniz. De
Morgan points out that no small amount of confusion has arisen from
the use of the woidfluxion and the notation x by all the English writers

previous to 1704, excepting Newton and George Cheyne, in the sense

of an infinitely small increment. " Strange to say, even in the Com-
mercium epistolicum the words moment scnA fluxion appear to be used
as synonymous.

After showing by examples how to solve the first problem, Newton
proceeds to the demonstration of his solution:

—

"The moments of flowing quantities (that is, their indefinitely

small parts, by the accession of which, in infinitely small portions of

time, they are continually increased) are as the velocities of their

flowing or increasing.

"Wherefore, if the moment of any one (as x) be represented by the

product of its celerity x into an infinitely small quantity o {i. e. by
' A. De Morgan, "On the Early History of Infinitesimals," in Philosophical

Magazme., November, 1S52.
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xo), the moments of the others, v, y, z, will be represented by vo, yo,
20; because vo, xo, yo, and zo are to each other as v, x, y, and z.

"Now since the moments, as xo and yo, are the indefinitely little

accessions of the flowing quantities x and y, by which those quantities
are increased through the several indefinitely little intervals of time,
it follows that those quantities, x and y, after any indefinitely small
interval of time, become x+xo and y+yo, and therefore the equation,
whichat all times indifferently expresses the relation of the flowing
quantities, will as well express the relation between x+'xo and y+yo,
as between x and y; so that x+xo and y+yo may be substituted in
the same equation for those quantities, instead of x and y. Thus let

any equation x^— ax'^+axy~y^=o be given, and substitute x+xo for

X, and y+yo for y, and there will arise

x^+2,x'^xo +2,xxoxo+x^o^
—ax'^—2axxo— axoxo
+axy+ayxo +axoyo ) =0.

+axyo
—y^ —7,y-yo ~ 7,yyoyo—y^o^

"Now, by supposition, x^ - ax'^+axy— y^=o, which therefore, being
expunged and the remaining terms being divided by o, there wiU
remain

2,x-x— 2axx+ayx+axy— ^y^y+^xxxo— axxo+axyo - 3yyyo
+x^oo—y^oo=o.

But whereas zero is supposed to be infinitely little, that it may repre-

sent the moments of quantities, the terms that are multiphed by it

will be nothing in respect of the rest (termini in earn ducti pro nihilo

possunt haberi cum aliis collati); therefore I reject them, and there

remains

2,x'^x— 2axx+ayx+axy— sy^y= o,

as above in Example I." Newton here uses infinitesimals.

Much greater than in the first problem were the difficulties en-

countered in the solution of the second problem, involving, as it does,

inverse operations which have been taxing the skill of the best ana-

lysts since his time. Newton gives first a special solution to the second

problem in which he resorts to a rule for which he has given no proof.

In the general solution of his second problem, Newton assumed
homogeneity with respect to the fluxions and then considered three

cases: (i) when the equation contains two fluxions of quantities and
but one of the fluents; (2) when the equation involves both the fluents

as well as both the fluxions; (3) when the equation contains the flu-

ents and the fluxions of three or more quantities. The first case is the

dv
easiest since it requires simply the integration of -i-=f{x), to which
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his "special solution" is applicable. The second case demanded
nothing less than the general solution of a differential equation of the

first order. Those who know what efforts were afterwards needed

for the complete exploration of this field in analysis, will not depre-

ciate Newton's work even though he resorted to solutions in form of

infinite series. Newton's third case comes now under the solution of

partial differential equations. He took the equation 2x—z+xy=o
and succeeded in finding a particular integral of it.

The rest of the treatise is devoted to the determination of maxima
and minima, the radius of curvature of curves, and other geometrical

apphcations of his fluxionary calculus. All this was done previous

to the year 1672.

It must be observed that in the Method of Fluxions (as well as in

his De Analyst and all earher papers) the method employed by New-
ton is strictly infinitesimal, and in substance like that of Leibniz.

Thus, the original conception of the calculus in England, as well as

on the Continent, was based on infinitesimals. The fundamental

principles of the fluxionary calculus were first given to the world in

the Principia; but its peculiar notation did not appear until pubhshed
in the second volume of WaUis' Algebra in 1693. The exposition

given in the Algebra was a contribution of Newton; it rests on in-

finitesimals. In the first edition of the Principia (1687) the descrip-

tion of fluxions is likewise founded on infinitesimals, but in the second

(1713) the foundation is somewhat altered. In Book II, Lemma II,

of the first edition we read: "Cave tamen intellexeris particulas

finitas. Momenta quam primum finitce sunt magnitudinis, desinunt

esse momenta. Finiri enim repugnat aliquatenus perpetuo eorum
incremento vel decremento.' Intelligenda sunt principia jamjam nas-

centia finitarum magnitudinum." In the second edition the two
sentences which we print in italics are replaced by the following:

"Particulae finitae non sunt momenta sed quantitates ipsae ex mo-
mentis genitae." Through the difficulty of the phrases in both ex-

tracts, this much distinctly appears, that in the first, moments are

infinitely small quantities. What else they are in the second is not
clear. ^ In the Quadrature of Curves of 1704, the infinitely small

quantity is completely abandoned. It has been shown that in the

Method of Fluxions Newton rejected terms involving the quantity o,

because they are infinitely small compared with other terms. This
reasoning is unsatisfactory; for as long as o is a quantity, though
ever so smaU, this rejection cannot be made without affecting the

result. Newton seems to have felt this, for in the Quadrature of Curves

he remarked that "in mathematics the minutest errors are not to be
neglected" (errores quam minimi in rebus mathematicis non sunt

contemnendi).

The early distinction between the system of Newton and Leibniz
' A. De Morgan, loc.cit., 1852.
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lies in this, tliat Newton, holding to the conception of velocity or

fluxion, used the infinitely small increment as a means of determining
it, while with Leibniz the relation of the infinitely small increments

is itself the object of determination. The difference between the two
rests mainly upon a difference in the mode of generating quantities.

We give Newton's statement of the method of fluxions or rates, as

given in the introduction to his Quadrature of Curves. "I consider

mathematical quantities in this place not as consisting of very small

parts, but as described by a continued motion. Lines are described,

and thereby generated, not by the apposition of parts, but by the

continued motion of points; superficies by the motion of lines; solids

by the motion of superficies; angles by the rotation of the sides;

portions of time by continual flux: and so on in other quantities.

These geneses really take place in the nature of things, and are daily

seen in the motion of bodies. . . .

"Fluxions are, as near as we please {quam proxime), as the incre-

ments of fluents generated in times, equal and as small as possible,

and to speak accurately, they are in the prime ratio of nascent in-

crements; yet they can be expressed by any lines whatever, which are

proportional to them."
Newton exemplifies this last assertion by the problem of tangency:

Let AB be the abscissa, BC the ordinate, VCH the tangent, Ec the

increment of the ordinate, which produced meets VH at T, and Cc
the increment of the curve. The right line Cc being produced to K,
there are formed three small triangles, the rectilinear CEc, the mix-

tihnear CEc, and the rectilinear CET. Of these, the first is evidently

the smallest, and the last the greatest. Now suppose the ordinate be

to move into the place BC, so that the point c exactly coincides with

the point C; CK, and
therefore the curve Cc,

is coincident with the tan-

gent CH, Ec is absolutely

equal to ET, and the

mbctilinear evanescent tri-

angle CEc is, in the last

form, similar to the tri-

angle CET; and its eva-

nescent sides CE, Ec, Cc,

will be proportional to

CE, ET, and CT, the

sides of the triangle CET.
Hence it follows that the fluxions of the lines AB, BC, AC, being in

the last ratio of their evanescent increments, are proportional to the

sides of the triangle GET, or, which is all one, of the triangle VBC
similar thereunto. As long as the points C and c are distant from

each other by an interval, however small, the line CK will stand
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apart by a small angle from the tangent CH. But when CK co-

incides with CH, and the lines CE, Ec, cC reach their ultimate

ratios, then the points C and c accurately coincide and are one

and the same. Newton then adds that "in mathematics the

minutest errors are not to be neglected." This is plainly a re-

jection of the postulates of Leibniz. The doctrine of infinitely

small quantities is here renounced in a manner which would lead

one to suppose that Newton had never held it himself. Thus it

appears that Newton's doctrine was different in different periods.

Though, in the above reasoning, the Charybdis of infinitesimals is

safely avoided, the dangers of a Scylla stare us in the face. We are

required to believe that a point may be considered a triangle, or that

a triangle can be inscribed in a point; nay, that three dissimilar tri-

angles become similar and equal when they have reached their ulti-

mate form in one and the same point.

In the introduction to the Quadrature of Curves the fluxion of a;"

is determined as follows:

—

"In the same time that x, by flowing, becomes x+o, the power
X" becomes (x-t-o)", i. e. by the method of infinite series

n^—n ,
x"-|-»o.\;'' 'H 0"a;" ^-i-etc,

2

and the increments

o and woa;""'-!
'—o^»""*-l-etc.,
2

are to one another as

n'^—n
1 to nx" 'H ox" --|-etc.

2

"Let now the increments vanish, and their last proportion will be
I to wx""': hence the fluxion of the quantity x is to the fluxion of the

quantity x" as i: wx"~'.

"The fluxion of lines, straight or curved, in all cases whatever, as

also the fluxions of superficies, angles, and other quantities, can be
obtained in the same manner by the method of prime and ultimate

ratios. But to estabhsh in this way the analysis of infinite quantities,

and to investigate prime and ultimate ratios of finite quantities, nas-

cent or evanescent, is in harmony with the geometry of the ancients;

and I have endeavored to show that, in the method of fluxions, it is

not necessary to introduce into geometry infinitely small quantities."

This mode of differentiating does not remove all the difficulties con-

nected with the subject. When o becomes nothing, then we get the

ratio -=nx"~'^, which needs further elucidation. Indeed, the method

of Newton, as delivered by himself, is encumbered with difficulties



NEWTON TO EULER 199

and objections. Later we shall state Bishop Berkeley's objection to

this reasoning. Even among the ablest admirers of Newton, there

have been obstinate disputes respecting his explanation of his method
of "prime and ultimate ratios."

The so-called "method of hmits" is frequently attributed to New-
ton, but the pure method of limits was never adopted by him as his

method of constructing the calculus. All he did was to estabUsh in

his Principia certain principles which are apphcable to that method,
but which he used for a different purpose. The first lemma of the
first book has been made the foundation of the method of hmits:

—

"Quantities and the ratios of quantities, which in any finite time
converge continually to equahty, and before the end of that time ap-
proach nearer the one to the other than by any given difference, be-

come ultimately equal."

In this, as well as in the lemmas following this, there are obscurities

and difficulties. Newton appears to teach that a variable quantity
and its limit will ultimately coincide and be equal.

The full title of Newton's Principia is Philosophic Naturdis Prin-

cipia Mathematica. It was printed in 1687 under the direction, and
at the expense, of Edmund Halley. A second edition was brought
out in 1 7 13 with many alterations and improvements, and accom-
panied by a preface from Roger Cotes. It was sold out in a few
months, but a pirated edition published in Amsterdam supplied the

demand. The third and last edition which appeared in England during

Newton's lifetime was published in 1726 by Henry Pemberton. The
Principia consists of three books, of which the first two, constituting

the great bulk of the work, treat of the mathematical principles of

natural philosophy, namely, the laws and conditions of motions and
forces. In the third book is drawn up the constitution of the universe

as deduced from the foregoing principles. The great principle under-

lying this memorable work is that of universal gravitation. The first

book was completed on April 28, 1686. After the remarkably short

period of three months, the second book was finished. The third book
is the result of the next nine or ten months' labors. It is only a sketch

of a much more extended elaboration of the subject which he had
planned, but which was never brought to completion.

The law of gravitation is enunciated in the first book. Its discovery

envelops the name of Newton in a halo of perpetual glory. The cur-

rent version of the discovery is as follows: it was conjectured by
Robert Hooke (1635-1703), C. Huygens, E. Halley, C. Wren, I. New-
ton, and others, that, if J. Kepler's third law was true (its absolute

accuracy was doubted at that time), then the attraction between the

earth and other members of the solar system varied inversely as the

square of the distance. But the proof of the truth or falsity of the

guess was wanting. In 1666 Newton reasoned, in substance, that if

g represent the acceleration of gravity on the surface of the earth, r
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be the earth's radius, R the distance of the moon from the earth, T
the time of lunar revolution, and a a degree at the equator, then, if

the law is true,

r'- ,i? 4-^/RY „?^2=4'ry2, or
g=Y2[-)

^^°'^-

The data at Newton's command gave R=6o.4.r, r= 2,360,628 seconds,

but a only 60 instead of 69! EngUsh miles. This wrong value of a

rendered the calculated value of g smaller than its true value, as

known from actual measurement. It looked as though the law of

inverse squares were not the true law, and Newton laid the calculation

aside. In 1684 he casually ascertained at a meeting of the Royal
Society that Jean Picard had measured an arc of the meridian, and
obtained a more accurate value for the earth's radius. Taking the

corrected value for a, he found a figure for g which corresponded to

the known value. Thus the law of inverse squares was verified. In a

scholium in the Principia, Newton acknowledged his indebtedness to

Huygens for the laws on centrifugal force employed in his calculation.

The perusal by the astronomer Adams of a great mass of unpub-
lished letters and manuscripts of Newton forming the Portsmouth
collection (which remained private property until 1872, when its

owner placed it in the hands of the University of Cambridge) seems to

indicate that the difBculties encountered by Newton in the above
calculation were of a different nature. According to Adams, Newton's
numerical verification was fairly complete in 1666, but Newton had
not been able to determine what the attraction of a spherical shell

upon an external point would be. His letters to E. Halley show
that he did not suppose the earth to attract as though all its mass
were concentrated into a point at the centre. He could not have
asserted, therefore, that the assumed law of gravity was verified by
the figures, though for long distances he might have claimed that it

yielded close approximations. When Halley visited Newton in 1684,

he requested Newton to determine what the orbit of a planet would
be if the law of attraction were that of inverse squares. Newton had
solved a similar problem for R. Hooke in 1679, a^nd replied at once
that it was an ellipse. After Halley's visit, Newton, with Picard's

new value for the earth's radius, reviewed his early calculation, and
was able to show that if the distances between the bodies in the solar

system were so great that the bodies might be considered as points,

then their motions were in accordance with the assumed law of gravi-

tation. In 1685 he completed his discovery by showing that a sphere
whose density at any point depends only on the distance from the
centre attracts an external point as though its whole mass were con-
centrated at the centre.

Newton's unpublished manuscripts in the Portsmouth collection

show that he had worked out, by means of fluxions and fluents, his
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lunar calculations to a higher degree of approximation than that given
in the Principia, but that he was unable to interpret his results geo-
metrically. The papers in that collection throw light upon the mode
by which Newton arrived at some of the results in the Principia, as,

for instance, the famous solution in Book II, Prop. 35, Scholium, of

the problem of the solid of revolution which moves through a resisting

medium with the least resistance. The solution is unproved in tlje

Principia, but is demonstrated by Newton in the draft of a letter to

David Gregory of Oxford, found in the Portsmouth collection.^

Itis chiefly upon the Principia that the fame of Newton rests.

David Brewster calls it " the brightest page in the records of human
reason." Let us listen, for a moment, to the comments of P. S. La-
place, the foremost among those followers of Newton who grappled
with the subtle problems of the motions of planets under the influence

of gravitation: "Newton has well established the existence of the
principle which he had the merit of discovering, but the development
of its consequences and advantages has been the worlc of the successors
of this great mathematician. The imperfection of the infinitesimal

calculus, when first discovered, did not allow him completely to re-

solve the difficult problems which the theory of the universe offers;

and he was oftentimes forced to give mere hints, which were always
uncertain till confirmed by rigorous analysis. Notwithstanding these

unavoidable defects, the importance and the generality of his dis-

coveries respecting the S3^stem of the universe, and the most interesting

points of natural philosophy, the great number of profound and orig-

inal views, which have been the origin of the most brilliant discoveries

of the mathematicians of the last century, which were all presented

with much elegance, will insure to the Principia a lasting pre-eminence

over all other productions of the human mind."
Newton's Arithmetica universalis, consisting of algebraical lectures

delivered by him during the first nine years he was professor at Cam-
bridge, were published in 1707, or more than thirty years after they

were written. This work was published by William Whiston (1667-

1752). We are not accurately informed how Whiston came in pos-

session of it, but according to some authorities its publication was a

breach of confidence on his part. He succeeded Newton in the

Lucasian professorship at Cambridge.
The Arithmetica universalis contains new and important results on

the theory of equations. Newton states Descartes' rule of signs in

accurate form and gives formulae expressing the sum of the powers

of the roots up to the sixth power and by an "and so on" makes it

evident that they can be extended to any higher power. Newton's

formulas take the impUcit form, while similar formulas given earlier

'O. Bolza, in Bibliolheca malhematica, 3. S., Vol. 13, 1913, pp. 146-149. For

a bibliography of this "problem o£ Newton" on the surface of least resistance, see

VlntermHiaire dss malhemaliciens. Vol. 23, 1916, pp. 81-84.



202 A HISTORY OF MATHEMATICS

by Albert Girard take the explicit form, as do also the general formulje

derived later by E. Waring. Newton uses his formulae for fixing an

upper limit of real roots; the sum of any even power of all the roots

must exceed the same even power of any one of the roots. He estab-

lished also another limit: A number is an upper hmit, if, when sub-

stituted for X, it gives to J{x) and to all its derivatives the same sign.

In 1748 Colin Maclaurin proved that an upper Hmit is obtained by
adding unity to the absolute value of the largest negative coefficient

of the equation. Newton showed that in equations with real co-

efficients, imaginary roots always occur in pairs. His inventive genius

is grandly displayed in his rule for determining the inferior limit of the

number of imaginary roots, and the superior limits for the number
of positive and negative roots. Though less expeditious than Des-

cartes', Newton's rule always gives as close, and generally closer,

limits to the number of positive and negative roots. Newton did

not prove his rule.

Some light was thrown upon it by George Campbell and Colin

Maclaurin, in the Philosophical Transactions , of the years 1728 and

1729. But no complete demonstration was found for a century and a

half, until, at last, Sylvester established a remarkable general theorem

which includes Newton's rule as a special case. Not without interest

is Newton's suggestion that the conchoid be admitted as a curve to

be used in geometric constructions, along with the straight line and
circle, since the conchoid can be used for the duplication of a cube and
trisection of an angle—to one or the other of which every problem
involving curves of the third or fourth degree can be reduced.

The treatise on Method of Fluxions contains Newton's method of

approximating to the roots of numerical equations. Substantially

the same explanation is given in his De analyst per mquationes numero
terminorum infinitas. He explains it by working one example, namely
the now famous cubic ^ y^— 2^-5 = 0. The earliest printed account

appeared in Wallis' Algebra, 1685, chapter 94. Newton assumes that

an approximate value is already known, which differs from the true

value by less than one-tenth of that value. He takes y = 2 and sub-

stitutes y=2+p in the equation, which becomes ^'-|-6^^-|-io^— 1 = 0.

Neglecting the higher powers of p, he gets 10^—1=0. Taking
p=.i+q, he gets g'-|-6.3g^-fii.23g+.o6i = o. From ii.235+.o6i=o
he gets g= — .oo54-|->', and by the same process, r= —.00004853.
Finally y = 2-f.i - .0054- .00004853 = 2.09455147. Newton arranges

his work in a paradigm. He seems quite aware that his method may
fail. If there is doubt, he says, whether p = .i is sufficiently close to

the truth, find p from 6p^+iop — i = o. He does not show that even
this latter method will always answer. By the same mode of pro-

' For quotations from Newton, see F. Cajori, "Historical Note on the Newton-
Raphson Method of Approximation," Amer. Math. Monthly, Vol. 18, 1911, pp. 29-

ii-



NEWTON TO EULER 203

cedure, Newton finds, by a rapidly converging series, the value of y
in terms of a and .t, in the equation y^^axy+aay-x'' — 20,^=0.

In 1690, Joseph Raphson (1648-1715), a fellow of the Royal Society
of London, published a tract. Analysis cBqualiotium universalis. His
method closely resembles that of Newton. The only difference is

this, that Newton derives each successive step, p, q, r, of approach to
the root, from a new equation, while Raphson finds it each time by
substitution in the original equation. In Newton's cubic, Raphson
would not find the second correction by the use of a;^H-6x^+iox- 1=0,
but would substitute 2.1+q in the original equation, finding q=
- .0054. He would then substitute 2.0946+r in the original equation,
finding y= — .00004853, and so on. Raphson does not mention
Newton; he evidently considered the difference sufficient for his

method to be classed independently. To be emphasized is the fact

that the process which in modern texts goes by the name of "New-
ton's method of approximation," is really not Newton's method, but

Raphson's modification of it. The form now so familiar, a——4- was

not used by Newton, but was used by Raphson. To be sure, Raphson
does not use this notation; he writes /(a) and /'(a) out in full as poly-

nomials. It is doubtful, whether this method should be named after

Newton alone. Though not identical with Vieta's process, it re-

sembles Vieta's. The chief difference lies in the divisor used. The
divisor f'(a) is much simpler, and easier to compute than Vieta's

divisor. Raphson's version of the process represents what J. Lagrange
recognized as an advance on the scheme of Newton. The method is

"plus simple que celle de Newton." ^ Perhaps the name "Newton-
Raphson method" would be a designation more nearly representing

the facts of history. We may add that the solution of numerical
equations was considered geometrically by Thomas Baker in 1684
and Edmund Halley in 1687, but in 1694 Halley "had a very great

desire of doing the same in numbers." The only difference between
Halley's and Newton's own method is that Halley solves a quadratic

equation at each step, Newton a linear equation. Halley modified

also certain algebraic expressions yielding approximate cube and
fifth roots, given in 1692 by the Frenchman, Thomas Fantet de Lagny
(1660-1734). In 1705 and i7o6Lagny outlines a method of differences;

such a method, less systematically developed, had been previously

explained in England by John Collins. By this method, if a, 6, c, . . .

are in arithmetical progression, then a root may be found approxi-

mately from the first, second, and higher differences of /(a), f{b),

Ac), . . .

Newton's Method of Fluxions contains also "Newton's parallelo-

gram," which enabled him, in an equation, /(x, y)=o, to find a series

' Lagrange, Resolution des equal, num., 1798, Note V, p. 138.
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in powers of x equal to the variable y. The great utility of this rule

lay in its determining the/orw of the series; for, as soon as the law was
known by which the exponents in the series vary, then the expansion

could be effected by the method of indeterminate coefficients. The
rule is stiU used in determining the infinite branches to curves, or their

figure at multiple points. Newton gave no proof for it, nor any clue

as to how he discovered it. The proof was supplied half a century

later, by A. G. Kastner and G. Cramer, independently.-^

In 1704 was published, as an appendix to the Opticks, the Enu-
meratio linearum tertii ordinis, which contains theorems on the theory

of curves. Newton divides cubics into seventy-two species, arranged

in larger groups, for which his commentators have supplied the names
"genera" and "classes," recognizing fourteen of the former and seven

(or four) of the latter. He overlooked six species demanded by his

principles of classification, and afterwards added by J. Stirling, Wil-

liam Murdoch (1754-1839), and G. Cramer. He enunciates the re-

markable theorem that the five species which he names "divergent

parabolas" give by their projection every cubic curve whatever. As
a rule, the tract contains no proofs. It has been the subject of frequent

conjecture how Newton deduced his results. Recently we have gotten

at the facts, since much of the analysis used by Newton and a few
additional theorems have been discovered among the Portsmouth
papers. An account of the four holograph manuscripts on this sub-

ject has been published by W. W. Rouse Ball, in the Transactions of

the London Mathematical Society (vol. xx, pp. 104-143). It is inter-

esting to observe how Newton begins his research on the classification

of cubic curves by the algebraic method, but, finding it laborious,

attacks the problem geometrically, and afterwards returns again to

analysis.

Space does not permit us to do more than merely mention Newton's
prolonged researches in other departments of science. He conducted
a long series of experiments in optics and is the author of the corpus-
cular theory of light. The last of a number of papers on optics,

which he contributed to the Royal Society, 1687, elaborates the theory
of "fits." He explained the decomposition of light and the theory
of the rainbow. By him were invented the reflecting telescope and
the sextant (afterwards re-invented by Thomas Godfrey of Phila-

delphia ^ and by John Hadley). He deduced a theoretical expression
for the velocity of sound in air, engaged in experiments on chemistry,
elasticity, magnetism, and the law of coohng, and entered upon geo-

logical speculations.

During the two years following the close of 1692, Newton suffered

' S. Giinther, Vermischte Unlersuchimgen zur Geschiclik d. math. Wiss., Leipzig'

1876, pp. 136-187.
^ F. Cajori, Teaching and History of Mathematics in the U. S., Washington, 1890,

p. 42.
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from insomnia and nervous irritability. Some thought that he la-

bored under temporary mental aberration. Though he recovered his

tranquillity and strength of mind, the time of great discoveries was
over; he would study out questions propounded to him, but no longer
did he by his own accord enter upon new fields of research. The
most noted investigation after his sickness was the testing of his lunar

theory by the observations of Flamsteed, the astronomer royal. In

1695 he was appointed warden, and in 1699 master of the mint, which
office he held until his death. His body was interred in Westminster
Abbey, where in 1731 a magnificent monument was erected, bearing

an inscription ending with, " Sibi gratulentur mortales tale tantumque
exstitisse humani generis decus." It is not true that the Binomial
Theorem is also engraved on it.

We pass to Leibniz, the second and independent inventor of the

calculus. Gottfried Wilhelm Leibniz (1646-1716) was born in Leip-

zig. No period in the history of any civilized nation could have been
less favorable for literary and scientific pursuits than the middle of

the seventeenth century in Germany. Yet circumstances seem to

have happily combined to bestow on the youthful genius an education

hardly otherwise obtainable during this darkest period of German
history. He was brought early in contact with the best of the culture

then existing. In his fifteenth year he entered the University of

Leipzig. Though law was his principal study, he applied himself

with great diligence to every branch of knowledge. Instruction in

German universities was then very low. The higher mathematics

was not taught at all. We are told that a certain John Kuhn lectured

on Euclid's Elements, but that his lectures were so obscure that none

except Leibniz could understand them. Later on, Leibniz attended,

for a half-year, at Jena, the lectures of Erhard Weigel, a philosopher

and mathematician of local reputation. In i656 Leibniz published

a treatise, De Arte Combinatoria, in which he does not pass beyond
the rudiments of mathematics, but which contains remarkable plans

for a theory of mathematical logic, a symbolic method with fofmal

rules obviating the necessity of thinking. Vaguely such plans had

been previously suggested by R. Descartes and Pierre Herigone. In

manuscripts which Leibniz left unpubHshed he enunciated the princi-

pal properties of what is now called logical multiplication, addition,

negation, identity, class-induction and the null-class.^ Other theses

written by him at this time were metaphysical and juristical in char-

acter. A fortunate circumstance led Leibniz abroad. In 1672 he was

sent by Baron Boineburg on a political mission to Paris. He there

formed the acquaintance of the most distinguished men of the age.

Among these was C. Huygens, who presented a copy of his work on

the oscillation of the pendulum to Leibniz, and first led the gifted

young German to the study of higher mathematics. In 1673 Leibniz

' See Philip E. B. Jourdain in Quarterly Jour, of Math., Vol. 41, 1910, p. 329.



2o6 A HISTORY OF MATHEMATICS

went to London, and remained there from January till March. He
there became incidentally acquainted with the mathematician John
Pell, to whom he explained a method he had found on the summation
of series of numbers by their differences. Pell told him that a similar

formula had been pubUshed by Gabriel Mouton (1618-1694) as

early as 1670, and then called his attention to N. Mercator's work
on the rectification of the parabola. While in London, Leibniz ex-

hibited to the Royal Society his arithmetical machine, which was
similar to B. Pascal's, but more efficient and perfect. After his re-

turn to Paris, he had the leisure to study mathematics more system-

atically. With indomitable energy he set about removing his igno-

rance of higher mathematics. C. Huygens was his principal master.

He studied the geometric works of R. Descartes, Honorarius Fabri,

Gregory St. Vincent, and B. Pascal. A careful study of infinite

series led him to the discovery of the following expression for the

ratio of the circumference to the diameter of the circle, previously

discovered by James Gregory:

—

- = i-i+l-T+l-etc.
4

This elegant series was found in the same way as N. Mercator's on
the hyperbola. C. Huygens was highly pleased with it and urged
him on to new investigations. In 1673 Leibniz derived the series

arc tan .x=.'B — fic^-l-g-x'^— . - .
,

from which most of the practical methods of computing tt have been
obtained. This series had been previously discovered by James
Gregory, and was used by Abraham Sharp (1651-1742) under in-

structions from E. Halley for calculating tt to 72 places. In 1706
John Machin (1680-1751), professor of astronomy at Gresham Col-

lege in London, obtained 100 places by using an expression that is

obtained from the relation

— =4 arc tan 3-— arc tan -^-^g,

4

by substituting Gregory's infinite series for

arc tan ^ and arc tan -2^9

.

Machin's formula was used in 1874 by William Shanks (1812-1882)

for computing vr to 707 places.

Leibniz entered into a detailed study of the quadrature of curves

and thereby became intimately acquainted with the higher math-
ematics. Among the papers of Leibniz is still found a manuscript
on quadratures, written before he left Paris in 1676, but which was
never printed by him. The more important parts of it were embodied
in articles published later in the Acta eruditorum.

In the study of Cartesian geometry the attention of Leibniz was
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drawn early to the direct and inverse problems of tangents. The
direct problem had been solved by Descartes for the simplest curves
only; while the inverse had completely transcended the power of his

analysis. Leibniz investigated both problems for any curve; he
constructed what he called the triangulum characteristicum—an
infinitely small triangle between the infinitely small part of the curve
coinciding with the tangent, and the differences of the ordinates and
abscissas. A curve is here considered to be a polygon. The triangulum
characteristicum is similar to the triangle formed by the tangent, the

ordinate of the point of contact, and the sub-tangent, as well as to

that between the ordinate, normal, and sub-normal. It was employed
by I. Barrow in England, but Leibniz states that he obtained it from
Pascal. From it Leibniz observed the connection existing between the

direct and inverse problems of tangents. He saw also that the latter

could be carried back to the quadrature of curves. All these results

are contained in a manuscript of Leibniz, written in 1673. One mode
used by him in effecting quadratures was as follows: The rectangle

formed by a sub-normal p and an element a {i. e. infinitely small part

of the abscissa) is equal to the rectangle formed by the ordinate y
and the element I of that ordinate; or in symbols, pa=yl. But the

summation of these rectangles from zero on gives a right triangle

equal to half the square of the ordinate. Thus, using Cavalieri's no-

tation, he gets

omn. />a=omn. yl='^ {omn. meaning omnia, all).

But y=omn. I; hence

, I omn. h
omn. omn. l-= .

a 2a

This equation is especially interesting, since it is here that Leibniz

first introduces a new notation. He says: "It will be useful to write

/ for omn., as I I for omn. I, that is, the sum of the Z's"; he then

writes the equation thus:

—

Z-II'r2a

From this he deduced the simplest integrals, such as

/a:=Y> J {x+y)=j x+Jy.

Since the symbol of summation I raises the dimensions, he con-

cluded that the opposite calculus, or that of differences d, would
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lower them. Thus, if I l=ya, then 1 =^. The symbol d was at

first placed by Leibniz in the denominator, because the lowering of

the power of a term was brought about in ordinary calculation by
division. The manuscript giving the above is dated October 29th,

1675.^ This, then, was the memorable day on which the notation

of the new calculus came to be,—a notation which contributed enor-

mously to the rapid growth and perfect development of the calculus.

Leibniz proceeded to apply his new calculus to the solution of

certain problems then grouped together under the name of the In-

verse Problems of Tangents. He found the cubical parabola to be
the solution to the following: To find the curve in which the sub-

normal is reciprocally proportional to the ordinate. The correctness

of his solution was tested by him by applying to the result the method
of tangents of Baron Rene Franfois de Sluse (162 2-1685) ^.nd reason-

ing backwards to the original supposition. In the solution of the

X
third problem he changes his notation from - to the now usual nota-

tion dx. It is worthy of remark that in these investigations, Leibniz

nowhere explains the significance of dx and dy, except at one place

in a marginal note: "Idem est dx et -, id est, differentia inter duas
d

X proximas." Nor does he use the term differential, but always differ-

ence. Not till ten years later, in the Acta eruditorum, did he give

further explanations of these symbols. What he aimed at principally

was to determine the change an expression undergoes when the sym-

1 or (i is placed before it. It may be a consolation to students

wrestling with the elements of the differential calculus to know that
it required Leibniz considerable thought and attention ^ to determine

whether dx dy is the same as dixy), and -r- the same as d-. After
ay y

considering these questions at the close of one of his manuscripts, he
concluded that the expressions were not the same, though he could
not give the true value for each. Ten days later, in a manuscript

dated November 21, 1675, he found the equation ydx =dxy—xdy,
giving an expression for d^xy), which he observed to be true for all

curves. He succeeded also in eliminating dx from a differential

equation, so that it contained only dy, and thereby led to the solution

of the problem under consideration. "Behold, a most elegant way

' C. J. Gerhardt, Entdeckung der hoheren Analysis. Halle, 1855, p. 125.
- C. J. Gerhardt, Entdeckung der Differenzialrechnung durch Leibniz, Halle, 1848,

pp. 25, 41.

bol
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by which the problems of the inverse method of tangents are solved,

or at least are reduced to quadratures!" Thus he saw clearly that
the inverse problems of tangents could be solved by quadratures, or,

in other words, by the integral calculus. In course of a half-year he
discovered that the direct problem of tangents, too, yielded to the
power of his new calculus, and that thereby a more general solution
than that of R. Descartes could be obtained. He succeeded in solving
all the special problems of this kind, which had been left unsolved
by Descartes. Of these we mention only the celebrated problem
proposed to Descartes by F. de Beaune, viz. to find the curve whose
ordinate i^ to its sub-tangent as a given line is to that part of the
ordinate which lies between the curve and a line drawn from the
vertex of the curve at a given inclination to the axis.

Such was, in brief, the progress in the evolution of the new calculus

made by Leibniz during his stay in Paris. Before his departure, in

October, 1676, he found himself in possession of the most elementary
rules and formulas of the infinitesimal calculus.

From Paris, Leibniz returned to Hanover by way of London and
Amsterdam. In London he met John Collins, who showed him a
part of his scientific correspondence. Of this we shall speak later.

In Amsterdam he discussed mathematics with R. F. de Sluse, and
became satisfied that his own method of constructing tangents not
only accomplished all that Sluse's did, but even more, since it could

be extended to three variables, by which tangent planes to surfaces

could be found; and especially, since neither irrationals nor fractions

prevented the immediate application of his method.
In a paper of July 11, 1677, Leibniz gave correct rules for the dif-

ferentiation of sums, products, quotients, powers, and roots. He had
given the differentials of a few negative and fractional powers, as

early as November, 1676, but had made some mistakes. For dy/

x

he had given the erroneous value —7=, and in another place the value
y/x

—\x~^\ for (f-j occurs in one place the wrong value, ji while a few
^2.

2
lines lower is given —3, its correct value.

X

In 1682 was founded in Berlin the Acta eniditorum, a journal

sometimes known by the name of Leipzig Acts. It was a partial imi-

tation of the French Journal des Savans (founded in 1665), and the

literary and scientific review published in Germany. Leibniz was a

frequent contributor. E. W. Tschirnhausen, who had studied mathe-

matics in Paris with Leibniz, and who was familiar with the new
analysis of Leibniz, published in the Acta eruditorum a paper on quad-

ratures, which consists principally of subject-matter communicated
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by Leibniz to Tschirnhausen during a controversy which they had
had on this subject. Fearing that Tschirnhausen might claim as his

own and publish the notation and rules of the differential calculus,

Leibniz decided, at last, to make public the fruits of his inventions.

In 1684, or nine years after the new calculus first dawned upon the

mind of Leibniz, and nineteen years after Newton first worked at

fluxions, and three years before the publication of Newton's Principia,

Leibniz published, in the Acta erudilorum, his first paper on the differ-

ential calculus. He was unwilling to give to the world all his treasures,

but chose those parts of his work which were most abstruse and least

perspicuous. This epoch-making paper of only six pages bears the

title: "Nova methodus pro maximis et minimis, itemque tangentibus,

quK nee fractas nee irrationales quantitates moratur, et singulare

pro illis calculi genus." The rules of calculation are briefly stated

without proof, and the meaning of dx and dy is not made clear.

Printer's errors increased the difficulty of comprehending the subject.

It has been inferred from this that Leibniz himself had no definite

and settled ideas on this subject. Are dy and dx finite or infinitesimal

quantities? At first they appear, indeed, to have been taken as finite,

when he says: "We now call any line selected at random dx, then

we designate the line which is to dx as y is to the sub-tangent, by dy,

which is the diff'erence of y." Leibniz then ascertains, by his calculus,

in what way a ray of light passing through two differently refracting

media, can travel easiest from one point to another; and then closes

his article by giving his solution, in a few words, of F. de Beaune's
problem. Two years later (1686) Leibniz published in the Acta
erudiiorum a paper containing the rudiments of the integral calculus.

The quantities dx and dy are there treated as infinitely small. He
showed that by the use of his notation, the properties of curves could

be fully expressed by equations. Thus the equation

y=V'2x~x'^+ f / „-J \/2X— X''

characterizes the cycloid.^

The great invention of Leibniz, now made public by his articles in

the Ada erudilorum, made little impression upon the mass of mathe-
maticians. In Germany no one comprehended the new calculus

except Tschirnhausen, who remained indifferent to it. The author's

statements were too short and succinct to make the calculus generaUy
understood. The first to take up the study of it were two foreigners,

—

the Scotchman John Craig, and the Swiss Jakob {James) Bernoulli.

The latter wrote Leibniz a letter in 1687, wishing to be initiated into

the mysteries of the new analysis. Leibniz was then travelling abroad,

so that this letter remained unanswered till 1690. James Bernoulli

' C. J. Gerhardt, Gcschichle der Malhcmalik in DeiUschland, Munchen, 1877,

P- 159-
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succeeded, meanwhile, by close application, in uncovering the secrets

of the differential calculus without assistance. He and his brother
John proved to be mathematicians of exceptional power. They applied
themselves to the new science with a success and to an extent which
made Leibniz declare that it was as much theirs as his. Leibniz
carried on an extensive correspondence with them, as well as with other
mathematicians. In a letter to John Bernoulli he suggests, among
other things, that the integral calculus be improved by reducing in-

tegrals back to certain fundamental irreducible forms. The integra-

tion of logarithmic expressions was then studied. The writings of

Leibniz contain many innovations, and anticipations of since prom-
nent methods. Thus he made use of variable parameters, laid the

foundation of analysis in situ, introduced in a manuscript of 1678 the

notion of determinants (previously used by the Japanese), in his

effort to simplify the expression arising in the elimination of the un-

known quantities from a set of linear equations. He resorted to the

device of breaking up certain fractions into the sum of other fractions

for the purpose of easier integration; he explicitly assumed the prin-

ciple of continuity; he gave the first instance of a "singular solution,"

and laid the foundation to the theory of envelopes in two papers, one
of which contains for the first time the terms co-ordinate and axes of

co-ordinates. He wrote on osculating curves, but his paper contained

the error (pointed out by John Bernoulli, but not admitted by Leibniz)

that an osculating circle will necessarily cut a curve in four consecutive

points. Well known is his theorem on the »th differential coefficient

of the product of two functions of a variable. Of his many papers on
mechanics, some are valuable, while others contain grave errors.

Leibniz introduced in 1694 the use of the -word function, but not in

the modern sense. Later in that year Jakob Bernoulli used the word,

in the Leibnizian sense. In the appendix to a letter to Leibniz, dated

July 5, 1698, John Bernoulli uses the word in a more nearly modern
sense: "earum [applicatarum] quascunque functiones per alias appli-

catas PZ express^." In 1718 John Bernoulli arrives at the definition

of function as a " quantity composed in any manner of a variable and
any constants." (On appelle ici fonction d'une grandeur variable,

une quantite composee de quelque maniere que ce soit de cette gran-

deur variable et de constantes.) '

Leibniz made important contributions to the notation of mathe-
matics. Not only is our notation of the differential and integral

calculus due to him, but he used the sign of equality in writing pro-

portions, thus a:b = c:d. In Leibnizian manuscripts occurs ~ for

"similar" and ~ for "equal and similar" or "congruent." ^ Says

^See M. Cantor, op. cil.. Vol. Ill, 2 Ed., 1901, pp. 215, 216, 456, 457; Encyclo-

peiie des sciences mathemaliques, Tome II, Vol. I, pp. 3-5.
2 Leibniz, Werke Ed. Gerhardt, 3. Folge, Bd. V, p. 153. See also J. Tropfke,

op. oil., Vol. IT, 1903, p. 12.
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P. E. B. Jourdain,' "Leibniz himself attributed all of his mathe-
matical discoveries to his improvements in notation."

Before tracing the further development of the calculus we shall

sketch the history of that long and bitter controversy between English

and Continental mathematicians on the invention of the calculus.

The question was, did Leibniz invent it independently of Newton, or

was he a plagiarist?

We must begin with the early correspondence between the parties

appearing in this dispute. Newton had begun using his notation of

fluxions in 1665.^ In 1669 I. Barrow sent John Collins Newton's
tract, De Analyst per equationes, etc.

The first visit of Leibniz to London extended from the nth of Jan-
uary until March, 1673. He was in the habit of committing to writing

important scientific communications received from others. In 1890
C. J. Gerhardt discovered in the royal library at Hanover a sheet of

manuscript with notes taken by Leibniz during this journey.^ They
are headed "Observata Philosophica in itinere Anglicano sub initium

anni 1673." The sheet is divided by horizontal lines into sections.

The sections given to Chymica, Mechanica, Magnetica, Botanica,

Anatomica, Medica, Miscellanea, contain extensive memoranda, while

those devoted to mathematics have very few notes. Under Geo-
metrica he says only this: "Tangentes omnium figurarum. Figurarum
geometricarum explicatio per motum puncti in moto lati." We sus-

pect from this that Leibniz had read Isaac Barrow's lectures. Newton
is referred to only under Optica. Evidently Leibniz did not obtain a
knowledge of fluxions during this visit to London, nor is it claimed
that he did by his opponents.

Various letters of I. Newton, J. Collins, and others, up to the be-

ginning of 1676, state that Newton invented a method by which tan-

gents could be drawn without the necessity of freeing their equations

from irrational terms. Leibniz announced in 1674 to H. Oldenburg,
then secretary of the Royal Society, that he possessed very general

analytical methods, by which he had found theorems of great im-
portance on the quadrature of the circle by means of series. In answer,
Oldenburg stated Newton and James Gregory had also discovered
methods of quadratures, which extended to the circle. Leibniz de-

sired to have these methods communicated to him; and Newton, at
the request of Oldenburg and Collins, wrote to the former the cele-

brated letters of June 13 and October 24, 1676. The first contained
the Binomial Theorem and a variety of other matters relating to

infinite series and quadratures; but nothing directly on the method of

' P. E. B. Jourdain, The Nature of Mathematics, London, p. 71.
^
J. Edleston, Correspondence of Sir Isaac Newton and Professor Cotes, London,

1850, p. xxi; A. De Morgan, "Fluxions" and "Commercium Epistoljcum" in
the Penny Cyclopwdia.

^ C. J. Gerhardt, "Leibniz in London" in Sitzungsberichle der K. Preussischcn
Academic d. Wissensch. zu Berlin, Feb., 1891.
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fluxions. Leibniz in reply speaks in the highest terms of what Newton
had done, and requests further explanation. Newton in his second
letter just mentioned explains the way in which he fo.und the Binomial
Theorem, and also communicates his method of fluxions and fluents
in form of an anagram in which all the letters in the sentence com-
municated were placed in alphabetical order. Thus Newton says
that his method of drawing tangents was

6accd(B i^eff -ji 3Z gn 40 4qrr 4s gt I2W.

The sentence was, "Data aequatione quotcunque fluentes quantitates
involvente fluxiones invenire, et vice versa." ("Having any given
equation involving never so many flowing quantities, to find the
fluxions, and vice versa.") Surely this anagram afforded no hint.

Leibniz wrote a reply to John Collins, in which, without any desire
of concealment, he explained the principle, notation, and the use of

the differential calculus.

The death of Oldenburg brought this correspondence to a close.

Nothing material happened till 1684, when Leibniz published his

first paper on the differential calculus in the Acta eruditorum, so that
while Newton's claim to the priority of invention must be admitted
by all, it must also be granted that Leibniz was the first to give the
full benefit of the calculus to the world. Thus, while Newton's in-

vention remained a secret, communicated only to a few friends, the

calculus of Leibniz was spreading over the Continent. No rivalry or

hostility existed, as yet, between the illustrious scientists. Newton
expressed a very favorable opinion of Leibniz's inventions, known to

him through the above correspondence with Oldenburg, in the follow-

ing celebrated scholium {Frincipia, first edition, 1687, Book II,

Prop. 7, scholium):

—

"In letters which went between me and that most excellent geom-
eter, G. G. Leibniz, ten years ago, when I signified that I was in the

knowledge of a method of determining maxima and minima, of draw-

ing tangents, and the like, and when I concealed it in transposed Jetters

involving this sentence (Data jequatione, etc., above cited), that most
distinguished man wrote back that he had also fallen upon a method
of the same kind, and communicated his method, which hardly dif-

fered from mine, except in his forms of words and symbols."

As regards this passage, we shall see that Newton was afterwards

weak enough, as De Morgan says: "First, to deny the plain and ob-

vious meaning, and secondly, to omit it entirely from the third edition

of the Principia." On the Continent, great progress was made in

the calculus by Leibniz and his coadjutors, the brothers James and

John Bernoulli, and Marquis de I'Hospital. In 1695 John Wallis in-

formed Newton by letter that "he had heard that his notions of

fluxions passed in Holland with great applause by the name of 'Leib-

niz's Calculus Differentialis.'" Accordingly Wallis stated in the pref-
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ace to a volume of his works that the calculus differentialis was New-
ton's method of fluxions which had been communicated to Leibniz

in the Oldenburg letters. A review of Wallis' works, in the Acta

eruditorum for i6g6, reminded the reader of Newton's own admission

in the scholium above cited.

For fifteen years Leibniz had enjoyed unchallenged the honor of

being the inventor of his calculus. But in 1699 Fatio de Duillier

(1664-1753), a Swiss, who had settled in England, stated in a mathe-

matical paper, presented to the Royal Society, his conviction that

I. Newton was the first inventor; adding that, whether Leibniz, the

second inventor, had borrowed anything from the other, he would
leave to the judgment of those who had seen the letters and manu-
scripts of Newton. This was the first distinct insinuation of plagiar-

ism. It would seem that the English mathematicians had for some
time been cherishing suspicions unfavorable to Leibniz. A feeling

had doubtless long prevailed that Leibniz, during his second visit to

London in 1676, had or might have seen among the papers of John
Collins, Newton's Analysis per cequationes, etc., which contained ap-

plications of the fluxionary method, but no systematic development

or explanation of it. Leibniz certainly did see at least part of this

tract. During the week spent in London, he took note of whatever
interested him among the letters and papers of Collins. His memo-
randa discovered by C. J. Gerhardt in 1849 in the Hanover library

fill two sheets.^ The one bearing on our question is headed "Excerpta
ex tractatu Newtoni Msc. de Analysi per aequationes numero ter-

minorum infinitas." The notes are very brief, excepting those De
resolulione aqualionum affedarum, of which there is an almost com-
plete copy. This part was evidently new to him. If he examined
Newton's entire tract, the other parts did not particularly impress

him. From it he seems to have gained nothing pertaining to the in-

finitesimal calculus. By the previous introduction of his own al-

gorithm he had made greater progress than by what came to his

knowledge in London. Nothing mathematical that he had received

engaged his thoughts in the immediate future, for on his way back
to Holland he composed a lengthy dialogue on mechanical subjects.

Fatio de Duillier's insinuations lighted up a flame of discord which
a whole century was hardly sufficient to extinguish. Leibniz, who
had never contested the priority of Newton's discovery, and who
appeared to be quite satisfied with Newton's admission in his scholium,

now appears for the first time in the controversy. He made an ani-

mated reply in the Acta eruditorum and complained to the Royal
Society of the injustice done him.

Here the affair rested for some time. In the Quadrature of Curves,

pubhshed 1704, for the first time, a formal exposition of the method
and notation of fluxions was made public. In 1705 appeared an un-

' C. J. Gerhardt, "Leibniz in London," loc. oil.
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favorable review of this in the Ada eruditorum, stating that Newton
uses and always has used fluxions for the differences of Leibniz. This
was considered by Newton's friends an imputation of plagiarism on
the part of their chief, but this interpretation was always strenuously
resisted by Leibniz. John Keill (1671-1721), professor of astronomy
at Oxford, undertook with more zeal than judgment the defence of

Newton. In a paper inserted in the Philosophical Transactions of

1708, he claimed that Newton was the first inventor of fluxions and
"that the same calculus was afterward published by Leibniz, the
name and the mode of notation being changed." Leibniz complained
to the secretary of the Royal Society of bad treatment and requested
the interference of that body to induce Keill to disavow the intention
of imputing fraud. John KeiU was not made to retract his accusation;
on the contrary, was authorized by Newton and the Royal Society
to explain and defend his statement. This he did in a long letter.

Leibniz thereupon complained that the charge was now more open
than before, and appealed for justice to the Royal Society and to

Newton himself. The Royal Society, thus appealed to as a judge,

appointed a committee which collected and reported upon a large

mass of documents—mostly letters from and to Newton, Leibniz,

Wallis, Collins, etc. This report, called the Commercium epistolicum,

appeared in the year 171 2 and again in 1722 and 1725, with a Recensio
prefixed, and additional notes by Keill. The final conclusion in the

Commercium epistolicum was that Newton was "the first inventor."

But this was not to the point. The question was not whether Newton
was the first inventor, but whether Leibniz had stolen the method.
The committee had not formally ventured to assert their belief that

Leibniz was a plagiarist. In the following sentence they insinuated

that Leibniz did take or might have taken, his method from that of

Newton: "And we find no mention of his (Leibniz's) having any other

Differential Method than Mouton's before his Letter of 21st of June,

1677, which was a year after a Copy of Mr. Newton's Letter, of the

loth of December, 1672, had been sent to Paris to be communicated
to him; and about four years after Mr. Collins began to communicate
that Letter to his Correspondents; in which Letter the Method of

Fluxions was sufficiently describ'd to any intelligent Person."

About 1850 it was shown that what H. Oldenburg sent to Leibniz

was not Newton's letter of Dec. 10, 1672, but only excerpts from it

which omitted Newton's method of drawing tangents and could not

possibly convey an idea of fluxions. Oldenburg's letter was found

among the Leibniz manuscripts in the Royal Library at Hanover, and

was published by C. J. Gerhardt in 1846, 1848, 1849 and 1855,^ and

again later.

' See Essays on the Life and Work of Newton by Augustus De Morgan, edited, with

notes and appendices, by Philip E. B. Jourdain, Chicago and London, igi4. Jour-

dain gives on p. 102 the bibliography of the publications of Newton and Leibniz.
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Moreover, when J. Edleston in 1850 published the Correspondence

oj Sir Isaac Newton and Professor Cotes, it became known that the

Royal Society in 171 2 had not one, but two, parcels of Collins. One
parcel contained letters of James Gregory, and Isaac Newton's letter

of Dec. 10, 1672, in full; the other parcel, which was marked "To
Leibnitz, the 14th of June, 1676 About Mr. Gregories remains,"

contained an abridgment of a part of the contents of the first parcel,

with nothing but an allusion to Newton's method described in his

letter of Dec. 10, 1672. In the Commercium epistolicum Newton's
letter was printed in full and no mention was made of the existence

of the second parcel that was marked "To Leibnitz. . .
." Thus the

Commercium epistolicum conveyed the impression that Newton's un-

curtailed letter of Dec. 10, 1672, had reached Leibniz in which fluxions

"was sufficiently described to any intelligent person," while as a

matter of fact the method is not described at all in the letter which
Leibniz received.

Leibniz protested only in private letters against the proceeding of

the Royal Society, declaring that he would not answer an argument
so weak. John Bernoulli, in a letter to Leibniz, which was published

later in an anonymous tract, is as decidedly unfair towards Newton
as the friends of the latter had been towards Leibniz. John Keill

replied, and then Newton and Leibniz appear as mutual accusers in

several letters addressed to third parties. In a letter dated April g,

1716, and sent to Antonio Schinella Conti (1677-1749), an Italian

priest then residing in London, Leibniz again reminded Newton of

the admission he had made in the schohum, which he was now desirous

of disavowing; Leibniz also states that he always believed Newton,
but that, seeing him connive at accusations which he must have
known to be false, it was natural that he (Leibniz) should begin to

doubt. Newton did not reply to this letter, but circulated some re-

marks among his friends which he published immediately after hearing
of the death of Leibniz, November 14, 1716. This paper of Newton
gives the following explanation pertaining to the scholium in question:

"He [Leibniz] pretends that in my book of principles I allowed him
the invention of the calculus differentialis, independently of my own;
and that to attribute this invention to myself is contrary to my
knowledge there avowed. But in the paragraph there referred unto
I do not find one word to this purpose." In the third edition of the

Principia, 1726, Newton omitted the scholium and substituted in its

place another, in which the name of Leibniz does not appear.

National pride and party feeling long prevented the adoption of

impartial opinions in England, but now it is generally admitted by

We recommend J. B. Biot and F. Lefort's edition of the Commercium epistolicum^

Paris, 1856, which exhibits all the alterations made in the different reprints of this

publication and reproduces also H. Oldenburg's letter to Leibniz of July 26, 1676,
and other important documents bearing on the controversy.
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nearly all familiar with the matter, that Leibniz really was an inde-
pendent inventor. Perhaps the most telling evidence to show that
Leibniz was an independent inventor is found in the study of his
mathematical papers (collected and edited by C. J. Gerhardt, in seven
volumes, Berlin, 1849-1863), which point out a gradual and natural
evolution of the rules of the calculus in his own mind. "There was
throughout the whole dispute," says De Morgan, "a confusion be-
tween the knowledge of fluxions or differentials and that of a calculus
of fluxions or differentials; that is, a digested method with general
rules."

This controversy is to be regretted on account of the long and bitter
alienation which it produced between EngHsh and Continental
mathematicians. It stopped almost completely all interchange of

ideas on scientific subjects. The English adhered closely to Newton's
methods and, until about 1820, remained, in most cases, ignorant of

the brilhant mathematical discoveries that were being made on the
Continent. The loss in point of- scientific advantage was almost
entirely on the side of Britain. The only way in which this dispute
may be said, in a small measure, to have furthered the progress of

mathematics, is through the challenge problems by which each side

attempted to annoy its adversaries.

The recurring practice of issuing challenge problems was inaugurated
at this time by Leibniz. They were, at first, not intended as defiances,

but merely as exercises in the new calculus. Such was the problem
of the isochronous curve (to find the curve along which a body falls

with uniform velocity), proposed by him to the Cartesians in 1687, and
solved by Jakob Bernoulli, himself, and Johann Bernoulli. Jakob Ber-
noulli proposed in the Acta eruditorum of 1690 the question to find the

curve (the catenary) formed by a chain of uniform weight suspended
freely from its ends. It was resolved by C. Huygens, G. W. Leibniz,

Johann Bernoulli, and Jakob Bernoulli himself; the properties of the

catenary were worked out methodically by David Gregory ^ of Oxford
and himself. In 1696 Johann Bernoulli challenged the best mathemati-
cians in Europe to solve the difficult problem, to find the curve (the

cycloid) along which a body falls from one point to another in the

shortest possible time. Leibniz solved it the day he received it.

Newton, de I'Hospital, and the two BernouUis gave solutions. New-
ton's appeared anonymously in the Philosophical Transactions, but

Johann Bernoulli recognized in it his powerful mind, "tanquam," he

says, "ex ungue leonem." The problem of orthogonal trajectories (a

system of curves described by a known law being given, to describe

a curve which shall cut them- all at right angles) was proposed by
Johann Bernoulli in a letter to G. W. Leibniz in 1694. Later it was

long printed in the Acta eruditorum, but failed at first to receive much

1 Phil. Trans., London, 1697.
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attention. It was again proposed in 1716 by Leibniz, to feel the pulse

of the English mathematicians.

This may be considered as the first defiance problem professedly

aimed at the English. Newton solved it the same evening on which

it was delivered to him, although he was much fatigued by the day's

work at the mint. His solution, as published, was a general plan of

an investigation rather than an actual solution, and was, on that

account, criticised by Johann BernoulH as being of no value. Brook

Taylor undertook the defence of it, but ended by using very repre-

hensible language. Johann Bernoulli was not to be outdone in in-

civility, and made a bitter reply. Not long afterwards Taylor sent

an open defiance to Continental mathematicians of a problem on the

integration of a fluxion of complicated form which was known to

very few geometers in England and supposed to be beyond the power
of their adversaries. The selection was injudicious, for Johann
Bernoulli had long before explained the method of this and similar

integrations. It served only to display the skill and augment the

triumph of the followers of Leibniz. The last and most unskilful

challenge was by John Keill. The problem was to find the path of a

projectile in a medium which resists proportionally to the square of

the velocity. Without first making sure that he himself could solve

it, Keill boldly challenged Johann Bernoulli to produce a solution.

The latter resolved the question in very short time, not only for a

resistance proportional to the square, but to any power of the velocity.

Suspecting the weakness of the adversary, he repeatedly offered to

send his solution to a confidential person in London, provided Keill

would do the same. Keill never made a reply, and Johann Bernoulli

abused him and cruelly exulted over him.'

The explanations of the fundamental principles of the calculus, as

given by Newton and Leibniz, lacked clearness and rigor. For that

reason it met with opposition from several quarters. In 1694 Bernhard
Nieuwentijt (1654-1718) of Holland denied the existence of differentials

of higher orders and objected to the practice of neglecting infinitely

small quantities. These objections Leibniz was not able to meet

satisfactorily. In his reply he said the value of -~~ in geometry could

be expressed as the ratio of finite quantities. In the interpretation

of dx and dy Leibniz vacillated.^ At one time they appear in his

writings as finite lines; then they are called infinitely small quantities,

and again, quantitates inassignabiles , which spring from quanlitates

assignabiles by the law of continuity. In this last presentation Leibniz

approached nearest to Newton.

'John Playfair, "Progress of the Mathematical and Physical Sciences" in

Encyclopccdia Britannica, 7th Ed., continued in the 8th Ed. by Sir John Leslie.
2 Consult G. Vivanti, II concelto d'lnfiniksimo. Saggio slorico. Nuova edizione.

Napoli, 1901.
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In England the principles of fluxions were boldly attacked by
Bishop George Berkeley (1685-1753), the eminent metaphysician, in

a pubUcation called the Analyst (1734). He argued with great acute-
ness, contending, among other things, that the fundamental idea of

supposing a finite ratio to exist between terms absolutely evanescent

—

" the ghosts of departed quantities," as he called them—was absurd
and unintelligible. Berkeley claimed that the second and third

fluxions were even more mysterious than the first fluxion. His con-
tention that no geometrical quantity can be exhausted by division is

in consonance with the claim made by Zeno in his "dichotomy,"
and the claim that the actual infinite cannot be realized. Most modern
readers recognize these contentions as untenable. Berkeley declared

as axiomatic a lemma involving the shifting of the hypothesis: If x
receives an increment i, where i is expressly supposed to be some
quantity, then the increment of x"-, divided by i, is found to be nx"~ '+

w(«— 1)/2 x''~-i+ ... If now you take i=o, the hypothesis is shifted

and there is a manifest sophism in retaining any result that was ob-

tained on the supposition that i is not zero. Berkeley's lemma found
no favor among English mathematicians until 1803 when Robert
Woodhouse openly accepted it. The fact that correct results are

obtained in the differential calculus by incorrect reasoning is explained

by Berkeley on the theory of " a compensation of errors." This theory

was later advanced also by Lagrange and L. N. M. Carnot. The
publication of Berkeley's Analyst was the most spectacular mathe-
matical event of the eighteenth century in England. Practically all

British discussions of fluxional concepts of that time involve issues

raised by Berkeley. Berkeley's object in writing the Analyst was to

show that the principles of fluxions are no clearer than those of Chris-

tianity. He referred to an " infidel,m ithematician " (Edmund Halley)

,

of whom the story is told ^ that, when he jested concerning theological

questions, he was repulsed by Newton with the remark, "I have

studied these things; you have not." A friend of Berkeley, when on a

bed of sickness, refused spiritual consolation, because the great

mathematician Halley had convinced him of the inconceivability of

the doctrines of Christianity. This induced Berkeley to write the

Analyst.

Replies to the Analyst were published by James Jurin (1684-1750)

of Trinity College, Cambridge under the pseudonym of "PhOalethes

Cantabrigiensis " and by John Walton of Dublin. There followed

several rejoinders. Jurin's defence of Newton's fluxions did not meet

the approval of the mathematician, Benjamin Robins (1707-1751).

In a Journal, called the Republick of Letters (London) and later in

the Works of the Learned, a long and acrimonious controversy was

carried on between Jurin and Robins, and later between Jurin and

Henry Pemberton (1694-1771), the editor of the third edition of

1 Mach Mechanics, 1907, pp. 448-449.
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Newton's Principia. The question at issue was the precise meaning
of certain passages in the writings of Newton: Did Newton hold that

there are variables which reach their limits? Jurin answered "Yes";
Robins and Pemberton answered "No." The debate between Jurin

and Robins is important in the history of the theory of limits. Though
holding a narrow view of the concept of a limit Robins deserves credit

for rejecting all infinitely small quantities and giving a logically quite

coherent presentation of fluxions in a pamphlet, called A Discourse

concerning the Nature and Certainty of Sir Isaac Newton's Methods of

Fluxions, 1735. This and Maclaurin's Fluxions, 1742, mark the top-

notch of mathematical rigor, reached during the eighteenth century

in the exposition of the calculus. Both before and after the period

of eight years, 1834-1842, there existed during the eighteenth century

in Great Britain a mixture of Continental and British conceptions of

the new calculus, a superposition of British symbols and phraseology

upon the older Continental concepts. Newton's notation was poor and
Leibniz's philosophy of the calculus was poor. The mixture repre-

sented the temporary survival of the least fit of both systems. The
subsequent course of events was a superposition of the Leibnizian

notation and phraseology upon the limit-concept as developed by
Newton, Jurin, Robins, Maclaurin, D'Alembert and later writers.

In France Michel Rolle for a time rejected the differential calculus

and had a controversy with P. Varignon on the subject. Perhaps the

most powerful argument in favor of the new calculus was the con-

sistency of the results to which it led. Famous is D'Alemhert's advice

to young students: "AUez en avant, et la foi vous viendra."

Among the most vigorous promoters of the calculus on the Conti-

nent were the BernouUis. They and Euler made Basel in Switzerland

famous as the cradle of great mathematicians. The family of Ber-
nouUis furnished in course of a century eight members who distin-

guished themselves in mathematics. We subjoin the following genea-

logical table:

—

Nicolaus Bernoulli, the Father

Jakob, 1654-1705 Nicolaus Johann, 1667-1748

I

Nicolaus, 1695-1721

Daniel, 1 700-1 782

Johann, 17 10-1790

Nicolaus, 1687-1759 Nicolaus, 1695-1726
Daniel, 1 700-1 782

Daniel Johatin, 1744-1807 Jakob, 1759-1789

Most celebrated were the two brothers Jakob (James) and Johann
(John), and Daniel, the son of John. Jakob and Johann were staunch
friends of G. W. Leibniz and worked hand in hand with him. Jakob
(James) Bernoulli (1654-1705) was born in Basel. Becoming inter-
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ested in the calculus, he mastered it without aid from a teacher.

From 1687 until his death he occupied the mathematical chair at the

University of Basel. He was the first to give a solution to Leibniz's

problem of the isochronous curve. In his solution, published in the

Acta eruditorum, 1690, we meet for the first time with the word
integral. Leibniz had called the integral calculus calculus summatorius,
but in 1696 the term calculus integralis was agreed upon between
Leibniz and Johann Bernoulli. Jakob Bernoulli gave in 1694 in the

Acta eruditorum the formula for the radius of curvature in rectangular

co-ordinates. At the same time he gave the formula also in polar co-

ordinates. He was one of the first to use polar co-ordinates in a gen-

eral manner and not simply for spiral shaped curves.^ Jakob proposed
the problem of the catenary, then proved the correctness of Leibniz's

construction of this curve, and solved the more complicated problems,

supposing the string to be (i) of variably density, (2) extensible,

(3) acted upon at each point by a force directed to a fixed centre. Of
these problems he published answers without explanations, while his

brother Johann gave in addition their theory. He determined the

shape of the "elastic curve" formed by an elastic plate or rod fixed

at one end and bent by a weight applied to the other end; of the

"lintearia," a flexible rectangular plate with two sides fixed hori-

zontally at the same height, filled with a liquid; of the "velaria," a

rectangular sail filled with wind. In the Acta eruditorum of 1694 he
makes reference to the lemniscate, a curve which "formam refert

jacentis notte octonarii 00, seu complicitas in nodum fascise, sive

lemnisci." That this curve is a special case of Cassini's oval remained

long unnoticed and was first pointed out by Pietro Ferroni in 1782

and G. Saladini in 1806. Jakob, Bernoulli studied the loxodromic and
logarithmic spirals, in the last of which he took particular delight

from its remarkable property of reproducing itseh under a variety of

conditions. Following the example of Archimedes, he willed that the

curve be engraved upon his tombstone with the inscription "eadem

mutata resurgo." In 1696 he proposed the famous problem of isoper-

imetrical figures, and in 1701 published his own solution. He wrote

a work on Ars Conjectandi, published in 17 13, eight years after his

death. It consists of four parts. The first contains Huygens' treatise

on probabihty, with a valuable commentary. The second part is on

permutations and combinations, which he uses in a proof of the bi-

nomial theorem for the case of positive integral exponents; it contains

a formula for the sum of the r"" powers of the first n integers, which in-

volves the so-called "numbers of Bernoulli." He could boast that

by means of it he calculated intra semi-quadrantem horae the sum of

the loth powers of the first thousand integers. The third part con-

tains solutions of problems on probability. The fourth part is the

most important, even though left incomplete. It contains "Ber-

' G. Enestrom in Bibliotheca mathematica, 3. S., Vol. 13, 1912, p. 76.
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noulli's theorem": If (r+s)"', where the letters are integers and
/ = r+5, is expanded by the binomial theorem, then by taking n large

enough the ratio of u (denoting the sum of the greatest term and the

71 preceding terms and the n following terms) to the sum of the re-

maining terms may be made as great as we please. Letting r and s

be proportional to the probability of the happening and failing of an

event in a single trial, then u corresponds to the probabihty that in nt

trials the number of times the event happens will lie between n{r— i)

and »(;'+i), both inclusive. Bernoulli's theorem "will ensure him a

permanent place in the history of the theory of probability." ^ Prom-
inent contemporary workers on probability were Montihort in France

and De Moivre in England. In December, 1913, the Academy of

Sciences of Petrograd celebrated the bicentenary of the "law of large

numbers," Jakob 'Bernoulli's Ars conjectandi having been published

at Basel in 1713. Of his collected works, in three volumes, one was
printed in 17 13, the other two in 1744.

Johana (John) Bernoulli (1667-1748) was initiated into mathe-
matics by his brother. He afterwards visited France, where he met
Nicolas Malebranche, Giovanni Domenico Cassini, P. de Lahire, P.

Varignon, and G. F. de I'Hospital. For ten years he occupied the

mathematical chair at Groningen and then succeeded his brother at

Basel. He was one of the most enthusiastic teachers and most suc-

cessful original investigators of his time. He was a member of almost
every learned society in Europe. His controversies were almost as

numerous as his discoveries. He was ardent in his friendships, but
unfair, mean, and violent toward all who incurred his dislike—even
his own brother and son. He had a bitter dispute with Jakob on the

isoperimetrical problem. Jakob convicted him of several paralogisms.

After his brother's death he attempted to substitute a disguised solu-

tion of the former for an incorrect one of his own. Johann admired
the merits of G. W. Leibniz and L. Euler, but was blind to those of

I. Newton. He immensely enriched the integral calculus by his labors.

Among his discoveries are^ the exponential calculus, the line of swiftest

descent, and its beautiful relation to the path described by a ray
passing through strata of variable density. In 1694 he explained in

a letter to I'Hospital the method of evaluating the indeterminate

form -. He treated trigonometry by the analytical method, studied
o

caustic curves and trajectories. Several times he was given prizes

by the Academy of Science in Paris.

Of his sons, Nicolaus and Daniel were appointed professors of

mathematics at the same time in the Academy of St. Petersburg. The
former soon died in the prime of life; the latter returned to Basel in

1733, where he assumed the chair of experimental philosophy. His

' 1. Todhunter, History of Theor. of Prob., p. 77.
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first mathematical publication was the solution of a differential equa-
tion proposed by J. F. Riccati. He wrote a work on hydrodynamics.
He was the first to use a suitable notation for inverse trigonometric
functions; in 1729 he used AS. to represent arcsine; L. Euler in 1736
used At for arctangent.^ Daniel Bernoulli's investigations on prob-
ability are remarkable for their boldness and originality. He pro-
posed the theory of moral expectation, which he thought would give
results more in accordance with our ordinary notions than the theory
of mathematical probability. He applies his moral expectation to the
so-called "Petersburg problem": A throws a coin in the air; if head
appears at the first throw he is to receive a shilling from B, if head
does not appear until the second throw he is to receive 2 shillings, if

head does not appear until the third throw he is to receive 4 shillings,

and so on: required the expectation of A. By the mathematical
theory, A's expectation is infinite, a paradoxical result. A given sum
of money not being of equal importance to every man, account should
be taken of relative values. Suppose A starts with a sum a, then the
moral expectation in the Petersburg problem is finite, according to

Daniel BernoulH, when a is finite; it is 2 when 0=0, about 3 when
a= ID, about 6 when a= 1000.^ The Petersburg problem was discussed
by P. S. Laplace, S. D. Poisson and G. Cramer. Daniel BernoulU's
"moral expectation" has become classic, but no one ever makes use
of it. He applies the theory of probability to insurance; to determine
the mortality caused by small-pox at various stages of life; to deter-

mine the number of survivors at a given age from a given number of

births; to determine how much inoculation lengthens the average
duration of life. He showed how the differential calculus could be
used in the theory of probabiUty. He and L. Euler enjoyed the honor
of having gained or shared no less than ten prizes from the Academy
of Sciences in Paris. Once, while travelling with a learned stranger

who asked his name, he said, "I am Daniel Bernoulli." The stranger

could not believe that his companion actually was that great celebrity,

and replied "I am Isaac Newton."
Johann Bernoulli (born 17 10) succeeded his father in the professor-

ship of mathematics at Basel. He captured three prizes (on the cap-

stan, the propagation of light, and the magnet) from the Academy of

Sciences at Paris. Nicolaus Bernoulli (born 1687) held for a time the

mathematical chair at Padua which Galileo had once filled. He proved
.

9^A S^A
in 1742 that -—=

. Johann Bernoulli (born 1744) at the age
awM 9m9c

of nineteen was appointed astronomer royal at Berlin, and after-

wards director of the mathematical department of the Academy. His
brother Jakob took upon himself the duties of the chair of experi-

' G. Enestroin in Bibliotheca mathemaUca, Vol. 6, pp. 319-321; Vol. 14, p. 78.
^ I. Todhunter, Hist, of the Theor. of Prob., p. 220.
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mental physics at Basel, previously perfonned by his uncle Jakob,
and later was appointed mathematical professor in the Academy at

St. Petersburg.

Brief mention will now be made of some other mathematicians
belonging to the period of Newton, Leibniz, and the elder BernouUis.

Guillaume Franfois Antoine I'Hospital (1661-1704), a pupil of

Johann Bernoulli, has already been mentioned as taking part in the

challenges issued by Leibniz and the BernouUis. He helped power-
fully in making the calculus of Leibniz better known to the mass of

mathematicians by the publication of a treatise thereon, the Analyse

des infiniment petiis, Paris, 1696. This contains the method of finding

the limiting value of a fraction whose two terms tend toward zero

at the same time, due to Johann Bernoulli.

Another zealous French advocate of the calculus was Pierre Varig-

non (1654-1722). In Mem. de Paris, Annee MDCCIV, Paris, 1722, he
follows Ja. Bernoulli in the use of polar co-ordinates, p and w. Letting

x= p and y=l(j}, the equations thus changed represent wholly different

curves. For instance, the parabolas x^=a'"~^y become Fermatian
spirals. Joseph Saurin (1659-1737) solved the delicate problem of

how to determine the tangents at the multiple points of algebraic

curves. Francois Nicole (1683-1758) in 1717 issued an elementary

treatise on finite differences, in which he finds the sums of a consider-

able number of interesting series. He wrote also on roulettes, particu-

larly spherical epicycloids, and their rectification. Also interested in

finite differences was Pierre Raymond de Montmort (1678-1719).
His chief writings, on the theory of probability, served to stimulate

his more distinguished successor, De Moivre. Montmort gave the

first general solution of the Problem of Points. Jean Paul de Gua
(1713-1785) gave the demonstration of Descartes' rule of signs, now
given in books. This skilful geometer wrote in 1740 a work on analyt-

ical geometry, the object of which was to show that most investiga-

tions on curves could be carried on with the analysis of Descartes quite

as easily as with the calculus. He shows how to find the tangents,

asymptotes, and various singular points of curves of all degrees, and
proves by perspective that several of these points can be at infinity.

Michel RoUe (1652-1719) is the author of a theorem named after him.
That theorem is not found in his Traite d'algebre of 1690, but occurs

in his Methode pour resoudre les egalitez, Paris, 1691.^ The name
"RoUe's theorem" was first used by M. W. Drobisch (1802-1896) of

Leipzig in 1834 and by Giusto Bellavitis in 1846. His Algehre contains

his "method of cascades." In an equation in v which he has trans-

formed so that its signs become alternately plus and minus, he puts
v=x+z and arranges the result according to the descending powers
of X. The coefificients of x", x""', . . ., when equated to zero, are

' See F. Cajori on the history of RoUe's Theorem in Biblioiheca mathematica,
3rd S., Vol. II, 1911, pp. 300-313.
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called "cascades." They are the successive derivatives of the original

equation in v, each put equal to zero. Now comes a theorem which
in modern version is: Between two successive real roots of /'(j))=o

there cannot be more than one real root of f{v)=o. To ascertain the
root-hmits of a given equation, Rolle begins with the cascade of lowest
degree and ascends, solving each as he proceeds. This process is very-

laborious.

Of Itahan mathematicians, Riccati and Fagnano must not remain
unmentioned. Jacopo Francesco, Count Riccati (1676-1754) is best
known in connection with his problem, called Riccati's equation,
pubhshed in the Acta eruditorum in 1724. He succeeded in integrating
this differential equation for some special cases. Long before this

Jakob BernoulU had made attempts to solve this equation, but with-
out success. A geometrician of remarkable power was Giulio Carlo,
Count de Fagnano (1682-1766). He discovered the following for-

mula, 7r=2'j log ;, in which he anticipated L. Euler in the use of

imaginary exponents and logarithms. His studies on the rectification

of the ellipse and hyperbola are the starting-points of the theory of

elliptic functions. He showed, for instance, that two arcs of an ellipse

can be found in an indefinite number of ways, whose difference is

expressible by a right line. In the rectification of the lemniscate he
reached results which connect with elliptic functions; he showed that

its arc can be divided geometrically in n equal parts, if « is 2 • 2™,

3 2™, or 5 • 2™. He gave expert advice to Pope Benedict XIV re-

garding the safety of the cupola of St. Peter's at Rome. In return

the Pope promised to publish his mathematical productions. For
some reason the promise was not fulfilled and they were not published

until 1750. Fagnano's mathematical works were re-published in 19 11

and 19 1 2 by the Italian Society for the Advancement of Science.

In Germany the only noted contemporary of Leibniz is Ehrenfried
Walter Tschimhausen (i651-1708), who discovered the caustic of

reflection, experimented on metallic reflectors and large burning-

glasses, and gave a method of transforming equations named after

him. He endeavored to solve equations of any degree by removing
all the terms except the first and last. This procedure had been tried

before him by the Frenchman Franqois Dulaurens and by the Scotch-

man James Gregory.'- Gregory's Vera circuli et hyperholcR quadralura

(Patavii, 1667) is noteworthy as containing a novel attempt, namely,

to prove that the quadrature of the circle cannot be effected by the

aid of algebra. His ideas were not understood in his day, not even by
C. Huygens with whom he had a controversy on this subject. James
Gregory's proof could not now be considered binding. Believing that

the most simple methods (hke those of the ancients) are the most

1 G. Enestrom in Bibliotheca maihematica, 3. S., Vol. 9, 1908-9, pp. 258, 259.
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correct, Tschirnhausen concluded that in the researches relating to

the properties of curves the calculus might as well be dispensed with.

After the death of Leibniz there was in Germany not a single mathe-
matician of note. Christian Wolf (1679-1754), professor at Halle,

was ambitious to figure as successor of Leibniz, but he "forced the

ingenious ideas of Leibniz into a pedantic scholasticism, and had the

unenviable reputation of having presented the elements of the arith-

metic, algebra, and analysis developed since the time of the Renais-

sance in the form of Euclid,—of course only in outward form, for into

the spirit of them he was quite unable to penetrate" (H. Hankel).
The contemporaries and immediate successors of Newton in Great

Britain were men of no mean merit. We have reference to R. Cotes,

B. Taylor, L. Maclaurin, and A. de Moivre. We are told that at the

death of Roger Cotes (1682-1716), Newton exclaimed, "If Cotes had
lived, we might have known something." It was at the request of

Dr. Bentley that R. Cotes undertook the publication of the second

edition of Newton's Principia. His mathematical papers were pub-
lished after his death by Robert Smith, his successor in the Plumbian
professorship at Trinity College. The title of the work, Harmonia
Mensurarum, was suggested by the following theorem contained in it:

If on each radius vector, through a fixed point O, there be taken a

point R, such that the reciprocal of OR be the arithmetic mean of the

reciprocals of 07?i, Oi?2, • • . Oi?,^, then the locus of i? will be a straight

line. In this work progress was made in the application of logarithms

and the properties of the circle to the calculus of fluents. To Cotes

we owe a theorem in trigonometry which depends on the forming of

factors of x"— !. In the Philosophical Transactions of London, pub-
lished 1 7 14, he develops an important formula, reprinted in his Har-
monia Mensurarum, which in modern notation is i (f>=\og {cos(j)+i.

sincf).) Usually this formula is attributed to L. Euler. Cotes studied

the curve p^d=a^, to which he gave the name "lituus." Chief among
the admirers of Newton were B. Taylor and C. Maclaurin. The quar-

rel between English and Continental mathematicians caused them to

work quite independently of their great contemporaries across the

Channel.

Brook Taylor (1685-1731) was interested in many branches of

learning, and in the latter part of his life engaged mainly in religious

and philosophic speculations. His principal work, Methodus incre-

mentorum directa et inversa, London, 17 15-17 17, added a new branch
to mathematics, now called "finite difi'erences," of which he was the

inventor. He made many important applications of it, particularly

to the study of the form of movement of vibrating strings, the reduc-

tion of which to mechanical principles was first attempted by him.
This work contains also "Taylor's theorem," and, as a special case

of it, what is now called "Maclaurin's Theorem." Taylor discovered

his theorem at least three years before its appearance in print. He
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gaveitinalettertoJohnMachin, dated July 26, 1712. Its importance
was not recognized by analysts for over fifty years, until J. Lagrange
pointed out its power. His proof of it does not consider the question
of convergency, and is quite worthless. The first more rigorous proof
was given a century later by A. L. Cauchy. Taylor gave a singular
solution of a differential equation and the method of finding that
solution by differentiation of the differential equation. Taylor's
work contains the first correct explanation of astronomical refraction.

He wrote also a work on linear perspective, a treatise which, like his
other writings, suffers for want of fulness and clearness of expression.
At the age of twenty-three he gave a remarkable solution of the prob-
lem of the centre of oscillation, published in 17 14. His claim to
priority was unjustly disputed by Johann Bernoulli. In the Philo-
sophical Transactions, Vol. 30, 17 17, Taylor applies "Taylor's series"
to the solution of numerical equations. He assumes that a rough
approximation, a, to a root of/(x) = o has been found. Let/(a) = /fe,

f'(a) = k', f"(a) = k", and x=a+s. He expands o=f(a+s) by his

theorem, discards all powers of 5 above the second, substitutes the
values of k, k', k", and then solves for s. By a repetition of this

process, close approximations are secured. He makes the important
observation that his method solves also equations involving radicals

and transcendental functions. The first application of the Newton-
Raphson process to the solution of transcendental equations was
made by Thomas Simpson in his Essays . . . on Mathematicks,
London, 1740.

The earliest to suggest the method of recurring series for finding

roots was Daniel Bernoulli (1700-1782) who in 1728 brought the

quartic to the form i = ax-\-bx'^-\-cx^-'rex'^, then selected arbitrarily

four numbers A, B,C, D, and a fifth, E, thus, E=aD-\-hC+cB+eA,
also a sixth by the same recursion formula F=aE+bD+cC+eB,
and so on. If the last two numbers thus found are M and TV, then
x=M-i-N is an approximate root. Daniel Bernoulli gives no proof,

but is aware that there is not always convergence to the root. This
method was perfected by Leonhard Euler in his Introductio in analysin

infinitorum, 1748, Vol. I, Chap. 17, and by Joseph Lagrange in Note
VI of his Resolution des equations numeriques.

Brook Taylor in 17 17 expressed a root of a quadratic equation in

the form of an infinite series; for the cubic Frangois Nicole did simi-

larly in 1738 and Clairaut in 1746. A. C. Clairaut inserted the process

in his Elements d'algebre. Thomas Simpson determined roots by re-

version of series in 1743 and by infinite series in 1745. Marquis de

Courtivron (1715-1785) also expressed the roots in the form of in-

finite series, while L. Euler devoted several articles to this topic'

At this time the matter of convergence of the series did not receive

' For references see F. Cajori, in Colorado College Publication, General Series 5 1

,

p. 212.
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proper attention, except in some rare instances. James Gregory of

Edinburgh, in his Vera circuit et hyperbolce quadratura (1667), first

used the terms "convergent" and "divergent" series, while WilHam
Brouncker gave an argument which amounted to a proof of the con-

vergence of his series, noted above.

Colin Maclaurin (1698-1746) was elected professor of mathematics
at Aberdeen at the age of nineteen by competitive examination, and
in 1725 succeeded James Gregory at the University of Edinburgh.

He enjoyed the friendship of Newton, and, inspired by Newton's
discoveries, he published in 1719 his Geometria Organica, containing

a new and remarkable mode of generating conies, known by his name,
and referring to the fact which became known later as "Cramer's

paradox," that a curve of the n"^ order is not always determined by
|w(w+3) points, that the number may be less. A second tract, De
Linearum geometricarum proprietatihus, 1720, is remarkable for the

elegance of its demonstrations. It is based upon two theorems: the

first is the theorem of Cotes; the second is Maclaurin's: If through

any point a line be drawn meeting the curve in n points, and at

these points tangents be drawn, and if any other line through O cut

the curve in Ri, R2, etc., and the system of n tangents in ri, r^, etc.,

then 2k^=2;^. This and Cotes' theorem are generalizations of
OR Or

theorems of Newton. Maclaurin uses these in his treatment of curves

of the second and third degree, culminating in the remarkable theorem
that if a quadrangle has its vertices and the two points of intersection

of its opposite sides upon a curve of the third degree, then the tangents

drawn at two opposite vertices cut each other on the curve. He de-

duced independently B. Pascal's theorem on the hexagram. Some
of his geometrical results were reached independently by William
Braikenridge (about 1700—after 1759), a clergyman in Edinburgh.
The following is known as the "Braikenridge-Maclaurin theorem":
If the sides of a polygon are restricted to pass through fixed points

while all the vertices but one lie on fixed straight lines, the free vertex

describes a conic section or a straight line. Maclaurin's more general

statement {Phil. Trans., 1735) is thus: If a polygon move so that each
of its sides passes through a fixed point, and if all its summits except

one describe curves of the degrees m, n, p, etc., respectively, then the

free summit moves on a curve of the degree 2 mnp . . ., which reduces

to mnp . . . when the fixed points all lie on a straight line. Mac-
laurin was the first to write on "pedal curves," a name due to Olry
Terquem (1782-1862). Maclaurin is the author of an Algebra. The
object of his treatise on Fluxions was to found the doctrine of fluxions

on geometric demonstrations after the manner of the ancients, and
thus, by rigorous exposition, answer such attacks as Berkeley's that

the doctrine rested on false reasoning. The Fluxions contained for
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the first time the correct way of distinguishing between maxima and
minima, and explained their use in the theory of multiple points.

"Maclaurin's theorem" was previously given by B. Taylor and James
Stirling, and is but a particular case of " Taylor's theorem." Maclaurin
invented the trisectrix, x{x^+y'^)=a{y^— 2X^), which is akin to the
Folium of Descartes. Appended to the treatise on Fluxions is the
solution of a number of beautiful geometric, mechanical, and as-

tronomical problems, in which he employs ancient methods with
such consummate skill as to induce A. C. Clairaut to abandon analytic

methods and to attack the problem of the figure of the earth by pure
geometry. His solutions commanded the Kvehest admiration of J.
Lagrange. Maclaurin investigated the attraction of the ellipsoid of

revolution, and showed that a homogeneous liquid mass revolving

uniformly around an axis under the action of gravity must assume
the form of an eUipsoid of revolution. Newton had given this theorem
without proof. Notwithstanding the genius of Maclaurin, his in-

fluence on the progress of mathematics in Great Britain was unfortu-

nate; for, by his example, he induced his countrymen to neglect

analysis and to be indifferent to the wonderful progress in the higher

analysis made on the Continent.

James Stirling (1692-1770), whom we have mentioned in connec-

tion with C. Maclaurin's theorem and Newton's enumeration of 72

forms of cubic curves (to which Stirling added 4 forms),was educated at

Glasgow and Oxford. He was expelled from Oxford for corresponding

with Jacobites. For ten years he studied in Venice. He enjoyed the

friendship of Newton. His Methodus differentialis appeared in 1730.

It remams for us to speak of Abraham de Moivre (1667-1754),

who was of French descent, but was compelled to leave France at

the age of eighteen, on the Revocation of the Edict of Nantes. He
settled in London, where he gave lessons in mathematics. He ranked

high as a mathematician. Newton himself, in the later years of his

life, used to reply to inquirers respecting mathematics, even respecting

his Principia: "Go to Mr. De Moivre; he knows these things better

than I do." He hved to the advanced age of eighty-seven and sank

into a state of almost total lethargy. His subsistence was latterly

dependent on the solution of questions on games of chance and

problems on probabihties, which he was in the habit of giving at a

tavern in St. Martin's Lane. Shortly before his death he declared

that it was necessary for him to sleep ten or twenty minutes longer

every day. The day after he had reached the total of over twenty-

three hours, he slept exactly twenty-four hours and then passed away

in his sleep. De Moivre enjoyed the friendship of Newton and Halley.

His power as a mathematician lay in analytic rather than geometric

investigation. He revolutionized higher trigonometry by the dis-

covery of the theorem known by his name and by extending the

theorems on the multiplication and division of sectors from the circle
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to the hyperbola. His work on the theory of probabihty surpasses

anything done by any other mathematician except P. S. Laplace.

His principal contributions are his investigations respecting the

Duration of Play, his Theory of Recurring Series, and his extension

of the value of Daniel Bernoulli's theorem by the aid of Stirling's

theorem.^ His chief works are the Doctrine of Chances, 1716, the

Miscellanea Analytica, 1730, and his papers in the Philosophical

Transactions. Unfortunately he did not publish the proofs of his

results in the doctrine of chances, and J. Lagrange more than fifty

years later found a good exercise for his skill in supplying the proofs.

A generaUzation of a problem first stated by C. Huygens has re-

ceived the name of "De Moivre's Problem:" Given n dice, each

having / faces, determine the chances of throwing any given number
of points. It was solved by A. de Moivre, P. R. de Montmort, P. S.

Laplace and others. De Moivre also generalized the Problem on the

Duration of Play, so that it reads as follows: Suppose A has m counters,

and B has n counters; let their chances of winning in a single game be
as a to b; the loser in each game is to give a counter to his adversary:

required the probability that when or before a certain number of games
has been played, one of the players will have won all the counters of

his adversary. De Moivre's solution of this problem constitutes his

most substantial achievement in the theory of chances. He employed
in his researches the method of ordinary finite differences, or as he
called it, the method of recurrent series.

A famous theory involving the notion of inverse probability was
advanced by Thomas Bayes. It was published in the London Philo-

sophical Transactions, Vols. 53 and 54 for the years 1763 and 1764,
after the death of Bayes, which occurred in 1761. These researches

originated the discussion of the probabilities of causes as inferred

from observed effects, a subject developed more fully by P. S. Laplace.

Using modern symbols, Bayes' fundamental theorem may be stated

thus: ^ If an event has happened p times and failed q times, the

probability that its chance at a single trial lies between a and b is

/xP (i -x)'' dx^ j xP (i — x)» dx.
a 00

A memoir of John Michell "On the probable Parallax, and Magni-
tude of the fixed Stars" in the London Philosophical Transactions,

Vol. 57 I, for the year 1767, contains the famous argument for the

existence of design drawn from the fact of the closeness of certain

stars, like the Pleiades. "We may take the six brightest of the

Pleiades, and, supposing the whole number of those stars, which are

equal in splendor to the faintest of these, to be about 1500, we shall

' I. Todhunter, A History of the Mathematical Theory of Probability, Cambridge
and London, 1865, pp. 135-193.

^ I. Todhunter, op. cit., p. 295.
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find the odds to be near 500,000 to i, that no six stars, out of that
number, scattered at random, in the whole heavens, would be within
so small a distance from each other, as the Pleiades are."

Euler, Lagrange, and Laplace

In the rapid development of mathematics during the eighteenth
century the leading part was taken, not by the universities, but by
the academies. Particularly prominent were the academies at Berlin

and Petrograd. This fact is the more singular, because at that time
Germany and Russia did not produce great mathematicians. The
academies received their adornment mainly from the Swiss and
French. It was after the French Revolution that schools gained their

ascendancy over academies.

During the period from 1730 to 1820 Switzerland had her L. Euler;

France, her J. Lagrange, P. S. Laplace, A. M. Legendre, and G. Monge.
The mediocrity of French mathematics which marked the time of

Louis XIV was now followed by one of the very brightest periods of

all history. England, on the other hand, which during the unpro-

ductive period in France had her Newton, could now boast of no great

mathematician. Except young Gauss, Germany had no great name.
France now waved the mathematical sceptre. Mathematical studies

among the English and German people had sunk to the lowest ebb.

Among them the direction of original research was ill chosen. The
former adhered with excessive partiality to ancient geometrical

methods; the latter produced the combinatorial school, which brought

forth nothing of great value.

The labors of L. Euler, J. Lagrange, and P. S. Laplace lay in higher

analysis, and this they developed to a wonderful degree. By them

analysis came to be completely severed from geometry. During the

preceding period the effort of mathematicians not only in England,

but, to some extent, even on the continent, had been directed toward

the solution of problems clothed in geometric garb, and the results of

calculation were usually reduced to geometric form. A change now
took place. Euler brought about an emancipation of the analytical

calculus from geometry and established it as an independent science.

Lagrange and Laplace scrupulously adhered to this separation.

Building on the broad foundation laid for higher analysis and me-

chanics by Newton and Leibniz, Euler, with matchless fertility of

mind, erected an elaborate structure. There are few great ideas pur-

sued by succeeding analysts which were not suggested by L. Euler,

or of which he did not share the honor of invention. With, perhaps,

less exuberance of invention, but with more comprehensive genius and

profounder reasoning, J. Lagrange developed the infinitesimal calculus

and put analytical mechanics into the form in which we now know it.

P. S. Laplace applied the calculus and mechanics to the elaboration
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of the theory of universal gravitation, and thus, largely extending and

supplementing the labors of Newton, gave a full analytical discussion

of the solar system. He also wrote an epoch-marking work on Prob-

abihty. Among the analytical branches created during this period

are the calculus of Variations by Euler and Lagrange, Spherical Har-

monics by Legendre and Laplace, and Elliptic Integrals by Legendre.

Comparing the growth of analysis at this time with the growth

during the time of K. F. Gauss, A. L. Cauchy, and recent mathe-

maticians, we observe an important difference. During the former

period we witness mainly a development with reference to form. Plac-

ing almost implicit coniidence in results of calculation, mathemati-

cians did not always pause to discover rigorous proofs, and were thus

led to general propositions, some of which have since been found to

be true in only special cases. The Combinatorial School in Germany
carried this tendency to the greatest extreme; they worshipped

formalism and paid no attention to the actual contents of formulae.

But in recent times there has been added to the dexterity in the formal

treatment of problems, a much-needed rigor of demonstration. A
good example of this increased rigor is seen in the present use of in-

finite series as compared to that of Euler, and of Lagrange in his earher

works.

The ostracism of geometry, brought about by the master-minds of

this period, could not last permanently. Indeed, a new geometric

school sprang into existence in France before the close of this period.

J. Lagrange would not permit a single diagram to appear in his

Mecanique analytique, but thirteen years before his death, G. Monge
published his epoch-making Geometrie descriptive.

Leonhard Euler (1707-1783) was born in Basel. His father, a
minister, gave him his first instruction in mathematics and then sent

him to the University of Basel, where he became a favorite pupil of

Johann BernouUi. In his nineteenth year he composed a dissertation

on the masting of ships, which received the second prize from the

French Academy of Sciences. When Johann Bernoulh's two sons,

Daniel and Nicolaus, went to Russia, they induced Catharine I, in

1727, to invite their friend L. Euler to St. Petersburg, where Daniel,

in 1733, was assigned to the chair of mathematics. In 1735 the solving

of an astronomical problem, proposed by the Academy, for which
several eminent mathematicians had demanded some months' time,

was achieved in three days by Euler with aid of improved methods of

his own. But the effort threw him into a fever and deprived him of

the use of his right eye. With still superior methods this same problem
was solved later by K. F. Gauss in one hour! ^ The despotism of

Anne I caused the gentle Euler to shrink from public affairs and to

devote all his time to science. After his call to Berlin by Frederick the

' W. Sartorius Waltershausen, Gauss, zum Ceddchiniss, Leipzig, 1856.



EULER, LAGRANGE AND LAPLACE 233

Great in 1741, the queen of Prussia, who received him kindly, won-
dered how so distinguished a scholar should be so timid and reticent.

Euler naively replied, "Madam, it is because I come from a country
where, when one speaks, one is hanged." It was on the recommenda-
tion of D'Alembert that Frederick the Great had invited Euler to
Berhn. Frederick was no admirer of mathematicians and, in a letter

to Voltaire, spoke of Euler derisively as " un gros cyclope de geometre."
In 1766 Euler with difficulty obtained permission to depart from Berhn
to accept a call by Catharine II to St. Petersburg. Soon after his

return to Russia he became blind, but this did not stop his wonderful
literary productiveness, which continued for seventeen years, until

the day of his death. He dictated to his servant his Anleitung zur
Algebra, 1770, which, though purely elementary, is meritorious as
one of the earhest attempts to put the fundamental processes on a
sound basis.

The story goes that when the French philosopher Denis Diderot
paid a visit to the Russian Court, he conversed very freely and gave
the younger members of the Court circle a good deal of lively atheism.

Thereupon Diderot was informed that a learned mathematician was
in possession of an algebraical demonstration of the existence of God,
and -would give it to him before all the Court, if he desired to hear it.

Diderot consented. Then Euler advanced toward Diderot, and said

gravely, and in a tone of perfect conviction: Monsieur, {a+b"-)l„=x,

done Dieu existe; rSpondez! Diderot, to whom algebra was Hebrew,
was embarrassed and disconcerted, while peals of laughter rose on all

sides. He asked permission to return to France at once, which was
granted. "^

Euler was such a prohfic writer that only in the present century

have plans been brought to maturity for a complete edition of his

works. In 1909 the Swiss Natural Science Association voted to publish

Euler's works in their original language. The task is being carried on
with the financial assistance of German, French, American and other

mathematical organizations and of many individual donors. The
expense of publication will greatly exceed the original estimate of

406,000 francs, owing to a mass of new manuscripts recently found in

Petrograd.

The following are his chief works: ^ Introductio in analysin in-

finitorum, 1748, a work that caused a revolution in analytical mathe-

matics, a subject which had hitherto never been presented in so general

and systematic manner; Instituliones calculi differentialis , 1755, and
Institutiones calculi integralis, 1768-1770, which were the most com-

plete and accurate works on the calculus of that time, and contained

not only a full summary of everything then known on this subject,

1 From De Morgan's Budget of Paradoxes, 2. Ed., Chicago, 1915, Vol. II, p. 4.

" See G. Enestrom, Verzeichniss der Sohriflen Leonhard Eiders, i.Lieterung, 1910,

2. Lieferung, 1913, Leipzig.
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but also the Beta and Gamma Functions and other original investi-

gations; Methodus inveniendi lineas curvas maximi minimive proprietate

gaudentes, 1744, which, displaying an amount of mathematical genius

seldom rivalled, contained his researches on the calculus of variations

to the invention of which Euler was led by the study of the researches

of Johann and Jakob Bernoulli. One of the earliest problems bearing

on this subject was Newton's solid of revolution, of least resistance,

reduced by him in 1686 to a differential equation. {Principia, Bk. II,

Sec. VII, Prop. XXXIV, Scholium.) Johann Bernoulli's problem of

the brachistochrone, solved by him in 1697, ^iid. by his brother Jakob
in the same year, stimulated Euler. The study of isoperimetrical

curves, the brachistochrone in a resisting medium and the theory of

geodesies, previously treated by the elder BernouUis and others, led

to the creation of this new branch of mathematics, the Calculus of

Variations. His method was essentially geometrical, which makes
the solution of the simpler problems very clear. Euler's Theoria

motuum planetarum et cometarum, 1744, Theoria motus lunce, 1753,
Theoria moimm lunce., 1772, are his chief works on astronomy; Ses

lettres a une princesse d'Allemagne sur quelques sujets de Physique et de

Philosophie, 1770, was a work which enjoyed great popularity.

We proceed to mention the principal innovations and inventions

of Euler. In his Introductio (1748) every "analytical expression" in

X, i. e. every expression made up of powers, logarithms, trigonometric

functions, etc., is called a "function" of x. Sometimes Euler used
another definition of "function," namely, the relation between y
and X expressed in the x-y plane by any curve drawn freehand, " libero

manus ductu." ^ In modified form, these two rival definitions are

traceable in all later history. Thus Lagrange proceeded on the idea

involved in the first definition, Fourier on the idea involved in the

second.

Euler treated trigonometry as a branch of analysis and consistently

treated trigonometric values as ratios. The term "trigonometric
function" was introduced in 1770 by Georg Simon Klugel (1739-1812)
of Halle, the author of a mathematical dictionary.^ Euler developed
and systematized the mode of writing trigonometric formulas, taking,

for instance, the sinus totus equal to i. He simphfied formulas by
the simple expedient of designating the angles of a triangle by A, B, C,
and the opposite sides by a, b, c, respectively. Only once before have
we encountered this simple device. It was used in a pamphlet pre-

pared by Ri. Rawlinson at Oxford sometime between 1655 and 1668.^

This notation was re-introduced simultaneously with Euler by Thomas
Simpson in England. We may add here that in 1734 Euler used the
notation /(.x) to indicate "function of x," that the use of e as the

^ F. Klein, Elementarmathematik v. hsh. Statidpunkie aus., I, Leipzig, 1908, p. 438.
^M. Cantor, op. cit., Vol. IV, 1908, p. 413.
' See F. Cajori in Nature, Vol. 94, 1915, p. 642.
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S3mibol for the natural base of logarithms was introduced by him in

1728/ that in 1750 he used 5 to denote the half-sum of the sides of a
triangle, that in 1755 he introduced 2 to signify "summation," that
in 1777 he used i for V - 1, a notation used later by K. F. Gauss.
We pause to remark that in Euler's time Thomas Simpson (1710-

1761), an able and self-taught English mathematician, for many years
professor at the Royal Military Academy at Woolwich, and author of

several text-books, was active in perfecting trigonometry as a science.

His Trigonometry, London, 1748, contains elegant proofs of two
formulas for plane triangles, {a+b) :c=cos ^{A - B) : sin^C and (a-b):
c=sin ^{A—B): cosfC, which have been ascribed to the German as-

tronomer Karl Brandan Mollweide (1774-1825), who developed them
much later. The first formula was given in different notation by I.

Newton in his Universal Ariihmetique; both formulas are given by
Friedrich Wilhelm Oppel in 1746.^

Euler laid down the rules for the transformation of co-ordinates in

space, gave a methodic analytic treatment of plane curves and of

surfaces of the second order. He was the iirst to discuss the equation
of the second degree in three variables, and to classify the surfaces

represented by it. By criteria analogous to those used in the classi-

fication of conies he obtained five species. He devised a method of

solving biquadratic equations by assuming x=-\/p+'\/q+-\/f, with
the hope that it would lead him to a general solution of algebraic

equations. The method of elimination by solving a series of linear

equations (invented independently by E. Bezout) and the method of

elimination by S5nnmetric functions, are due to him. Far reaching

are Euler's researches on logarithms. Euler defined logarithms as

exponents,^ thus abandoning the old view of logarithms as terms of

an arithmetic series in one-to-one correspondence with terms of a

geometric series. This union between the exponential and logarithmic

concepts had taken place somewhat earlier. The possibility of de-

fining logarithms as exponents had been recognized by John Wallis

in 1685, by Johann Bernoulli in 1694, but not till 1742 do we find a
systematic exposition of logarithms, based on this idea. It is given

in the introduction to Gardiner's Tables of Logarithms, London, 1742.

This introduction is "collected wholly from the papers" of WiUiam
Jones. Euler's influence caused the ready adoption of the new defini-

tion. That this view of logarithms was in every way a step in advance

has been doubted by some writers. Certain it is that it involves in-

ternal difficulties of a serious nature. Euler threw a stream of light

upon the subtle subject of the logarithms of negative and imaginary

niunbers. In 171 2 and 17 13 this subject had been discussed in a

^ G. Enestrom, Bibliotheca maihemalica. Vol. 14, 1913-1914, p. 81.

^A. V. Braunmuhl, op. cit., 2. Teil, 1903, p. 93; H. Wieleitner in Bibliotheca

tnathematica, 3. S., Vol. 14, pp. 348, 349.
^ See. L. Euler, Introduclio, 1748, Chap. VI, § 102.
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correspondence between G. W. Leibniz and Johann Bernoulli.' Leib-

niz maintained that since a positive logarithm corresponds to a number
larger than unity, and a negative logarithm to a positive number less

than unity, the logarithm of - i was not really true, but imaginary;

hence the ratio -i-j-i, having no logarithm, is itself imaginary.

Moreover, if there really existed a logarithm of - 1, then half of it

would be the logarithm of a/^T, a conclusion which he considered

absurd. The statements of Leibniz involve a double use of the term

imaginary: (i) in the sense of non-existent, (2) in the sense of a number
of the type \^^i. Johann Bernoulli maintained that — i has a

logarithm. Since dxix^-dx: —x, there results by integration

log (.i;) = log (
— -t); the logarithmic curve y=log x has therefore two

branches, symmetrical to the y=axis, as has the hyperbola. The corre-

spondence between Leibniz and Johann Bernoulli was first published

in 1745. In 1714 Roger Cotes developed in the Philosophical Trans-

actions an important theorem which was republished in his Harmonia
mensurarum (1722). In modern notation it is i<j)=\og {cos (j)+i sin <j)).

In the exponential form it was discovered again by Euler in 1748.

Cotes was aware of the periodicity of the trigonometric functions.

Had he applied this idea to his formula, he might have anticipated

Euler by many years in showing that the logarithm of a number has

an infinite number of different values. A second discussion of the

logarithms of negative numbers took place in a correspondence be-

tween young Euler and his revered teacher, Johann Bernoulli, in the

years 1727-1731.^ Bernoulli argued, as before, that log x=log {—x).

Euler uncovered the difiiculties and inconsistencies of his own and
Bernoulli's views, without, at that time, being able to advance a
satisfactory theory. He showed that Johaim BernouUi's expression

2 los ( — 1}
for the area of a circular sector becomes for a quadrant .

—

,

4 V -I

which is incompatible with Bernoulli's claim that log (— i)=o. Be-
tween 1 73 1 and 1747 Euler made steady progress in the mastery of

relations involving imaginaries. In a letter of Oct. 18, 1740, to

Johann BernouUi, he stated that y=2 cos x and y=e^^~^+e-^^~',

were both integrals of the differential equation ;t4+3'=° ^-nd were

equal to each other. Euler knew the corresponding expression for

sin X. Both expressions are given by him in the Miscellanea Berolinen-

sia, 1743, and again in his Introduciio , 1748, Vol. I, 104. He gave the

value V^i =012078795763 as early as 1746, in a letter to Chris-

tian Goldbach (1690-1764), but makes no reference here to the in-

' See F. Cajori, "History of the Exponential and Logarithmic Concepts," Amer-
ican Malh. Monthly, Vol. 20, 19 13, pp. 39-42.

^ See F. Cajori in Am. Math. Monthly, Vol. 20, 1913, pp. 44-46,
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finitely many values of this imaginary expression.' The creative work
on this topic appears to have been done in 1747. During that year
and the year following Euler debated this subject with D'Alembert
in a correspondence of which only a few letters of Euler are extant.^
In a letter of April 15, 1747, Euler disproves the conclusion upheld by
D'Alembert, that log (— i)=o, and states his own results indicating
that now he had penetrated the subject; log n has an infinite number
of values which are all imaginary, except when w is a positive number,
in which case one logarithm out of this infinite number is real. On
Aug. 19, 1747, he said that he had sent an article to the Berlin Acad-
emy; this is no doubt the article published in 1862 under the title, Sur
les logarithmes des nombres negatifs et imaginaires. The reason why
Euler did not publish it at the time when it was written can only be
conjectured. Our guess is that Euler became dissatisfied with the

article. At any rate, he wrote a new one in 1749, De la controverse

entre Mrs. Leibnitz et Bernoulli sur les logarithmes negatifs et imaginaires.

In 1747 he based the proof that a number has an infinity of logarithms
on the relation i(p=log{cos(p+i sifKp); in 1749 on the assumption
log{i+cS) = 0}, CO being infinitely small. He developed the theory of

logarithms of complex numbers a third time in a paper of- 1749 on
Recherches sur les racines imaginaires des equations. The two papers
of 1749 were published in 1751 in the Berlin Memoirs. The latter

primarily aims to prove that every equation has a root; it was dis-

cussed in 1799 by K. F. Gauss in his inaugural dissertation.

Euler's papers were not fully understood and did not carry convic-

tion. D'Alembert still felt that the question was not settled, and ad-

vanced arguments of metaphysical, analytical and geometrical nature

which shrouded the subject into denser haze and helped to prolong

the controversy to the end of the century. In 1759 Daviet de Foncenex

(i 734-1 799), a young friend of J. Lagrange, wrote on this subject.

In 1768 W. J. G. Karsten (1732-1787), professor at Biitzow, later at

Halle, wrote a long treatise which contains an interesting graphic

representation of imaginary logarithms.^ The debate on Euler's

results was carried on with much warmth by the Itahan mathemati-

cians.

The subject of infinite series received new life from him. To his

researches on series we owe the creation of the theory of definite in-

tegrals by the development of the so-called Eulerian integrals. He
warns his readers occasionally against the use of divergent series, but

is nevertheless very careless himself. The rigid treatment to which
infinite series are subjected now was then undreamed of. No clear

notions existed as to what constitutes a convergent series. Neither

1 P. H. Fuss, Corresp. math, et phys. de quelqiies Ulehres geomeires du xmii
"

Steele, I, 1843, p. 383.
2 See F. Cajori, Am. Math. Monthly, Vol. 20, 1913, pp. 76-79.

'Am. Math. Monthly, Vol. 20, 1913, p. iii.
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G. W. Leibniz nor Jakob and Johann Bernoulli had entertained any
serious doubt of the correctness of the expression |=i— i+i— 1+ • •

Guido Grandi (1671-1742) of Pisa went so far as to conclude from
this that 1 =0+0+0+ ... In the treatment of series Leibniz ad-

vanced a metaphysical method of proof which held sway over the

minds of the elder BernouUis, and even of Euler.'^ The tendency of

that reasoning was to justify results which seem highly absurd to

followers of Abel and Cauchy. The looseness of treatment can

best be seen from examples. The very paper in which Euler cautions

against divergent series contains the proof that

. . .-5H

—

\-i+n+n'^+. . .=0 as follows:
n'' n nil n

,
!+-+- + . . .

=
;i—n n n- n—

1

these added give zero. Euler has no hesitation to write 1—3+5— 7

+ . . .=0, and no one objected to such results excepting Nicolaus

Bernoulli, the nephew of Johann and Jakob. Strange to say, Euler

finally succeeded in converting Nicolaus Bernoulli to his own erroneous

views. At the present time it is difficult to believe that Euler should

have confidently written sin <^— 2 sin 2(^+3 sin s4>~4 sin 4</)+. . .

= 0, but such examples afford striking illustrations of the want of

scientific basis of certain parts of analysis at that time. Euler's proof

of the binomial formula for negative and fractional exponents, which
was widely reproduced in elementary text-books of the nineteenth

century, is faulty. A remarkable development, due to Euler, is what
he named the hypergeometric series, the summation of which he

observed to be dependent upon the integration of a linear differential

equation of the second order, but it remained for K. F. Gauss to point

out that for special values of its letters, this series represented nearly

all functions then known.
Euler gave in 1779 a series for arc tan x, different from the series of

James Gregory, which he applied to the formula 7r=2o arc tan 4+
8 arc tan 7*9 used for computing tt. The series was published in 1798.

Euler reached remarkable results on the summation of the reciprocal

powers of the natural numbers. In 1736 he had found the sum of the

reciprocal squares to be 7r^/6, and of the reciprocal fourth powers to

be 7r*/9o. In an article of 1743 which until recently has been gen-

erally overlooked,^ Euler finds the sums of the reciprocal even powers
of the natural numbers up to and including the 26th power. Later
he showed the connection of coefficients occurring in these sums with
the "Bernoullian numbers" due to Jakob Bernoulli.

Euler developed the calculus of finite differences in the first chapters

' R. Reiff, Geschichle dcr Uncndlichen Reihen, Tubingen, 1889, p. 68.
2 P. Stackel in Bihliolheca mathemaiica, 3. S., Vol. 8, 1907-8, pp. 37-60.
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of his Institutiones calculi differentialis, and then deduced the differen-

tial calculus from it. He established a theorem on homogeneous func-

tions, kno^n by his name, and contributed largely to the theory of

differential equations, a subject which had received the attention of

I. Newton, G. W. Leibniz, and the Bernoullis, but was still unde-
veloped. A. C. Clairaut, Alexis Fontaine des Bertins (1705-1771),
and L. Euler about the same time observed criteria of integrability,

but Euler in addition showed how to employ them to determine in-

tegrating factors. The principles on which the criteria rested involved
some degree of obscurity. Euler was the first to make a systematic
study of singular solutions of differential equations of the first order.

In 1736, 1756 and 1768 he considered the two paradoxes which had
puzzled A. C. Clairaut: The first, that a solution may be reached by
differentiation instead of integration; the second, that a singular

solution is not contained in the general solution. Euler tried to es-

tablish an a priori rule for determining whether a solution is contained

in the general solution or not. Stimulated by researches of Count
de Fagnano on elliptic integrals, Euler established the celebrated

addition-theorem for these integrals. He invented a new algorithm

for continued fractions, which he employed in the solution of the

indeterminate equation ax+by=c. We now know that substantially

the same solution of this equation was given 1000 years earlier, by
the Hindus. Euler gave 62 pairs of amicable numbers, of which 3
pairs were previously known: one pair had been di3covered by the

Pythagoreans, another by Fermat and a third by Descartes.'- By
giving the factors of the number 2^''-|-i when »=S, he pointed out

that this expression did not always represent primes, as was supposed

by P. Fermat. He first suppHed the proof to "Fermat's theorem,"

and to a second theorem of Fermat, which states that every prime

of the form 4n+ 1 is expressible as the sum of two squares in one and

only one way. A third theorem, "Fermat's last theorem," that

x«-|-y«=z", has no integral solution for values of n greater than 2,

was proved by Euler to be correct when «=4 and »=3. Euler dis-

covered four theorems which taken together make out the great law

of quadratic reciprocity, a law independently discovered by A. M.
Legendre.^

In 1737 Euler showed that the sum of the reciprocals of all prime

numbers is loge (loge«3), thereby initiating a line of research on the

distribution of primes which is usually not carried back further than

to A. M. Legendre.'

In 1741 he wrote on partitions of numbers ("partitio numerorum").

In 1782 he published a discussion of the problem of 36 officers of six

different grades and from six different regiments, who are to be placed

1 See Bibliolheca mathemalica, 3. S., Vol. g, p. 263; Vol. 14, pp. 3Si-354._
2 Oswald Baumgart, Ueber das Qiiadralische RcciprocUatsgeselz. Leipzig, 1885.

* G. Enestrom in Bibliolheca mathemalica, 3. S., Vol. 13, 1912, p. 81.
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in a square in such a way that in each row and column there are six

officers, all of different grades as well as of different regiments. Euler

thinks that no solution is obtainable when the order of the square is

of the form 2 mod. 4. Arthur Cayley in 1890 reviewed what had been

written; P. A. MacMahon solved it in 1915. It is called the problem

of the "Latin squares," because Euler, in his notation, used "« lettres

latines." Euler enunciated and proved a well-known theorem, giving

the relation between the number of vertices, faces, and edges of cer-

tain polyhedra, which, however, was known to R. Descartes. The
powers of Euler were directed also towards the fascinating subject

of the theory of probability, in which he solved some difficult

problems.

Of no Uttle importance are Euler's labors in analytical mechanics.

Says Whewell: "The person who did most to give to analysis the

generality and symmetry which are now its pride, was also the person

who made mechanics analytical; I mean Euler." ^ He worked out

the theory of the rotation of a body around a fixed point, established

the general equations of motion of a free body, and the general equation

of hydrodynamics. He solved an immense number and variety of

mechanical problems, which arose in his mind on all occasions. Thus,
on reading Virgil's hues, "The anchor drops, the rushing keel is staid,"

he could not help inquiring what would be the ship's motion in such

a case. About the same time as Daniel Bernoulli he published the

Principle of the Conservation of Areas and defended the principle of

"least action," advanced by P. Maupertius. He wrote also on tides

and on sound.

Astronomy owes to Euler the method of the variation of arbitrary

constants. By it he attacked the problem of perturbations, explain-

ing, in case of two planets, the secular variations of eccentricities,

nodes, etc. He was one of the first to take up with success the theory
of the moon's motion by giving approximate solutions to the "problem
of three bodies." He laid a sound basis for the calculation of tables

of the moon. These researches on the moon's motion, which captured
two prizes, were carried on while he was blind, with the assistance of

his sons and two of his pupils. His Mechanica sive motus scientia

analytice exposita, Vol. I, 1736, Vol. II, 1742, is, in the language of

Lagrange, "the first great work in which analysis is applied to the

science of movement."
Prophetic was his study of the movements of the earth's pole. He

showed that if the axis around which the earth rotates is not coincident

with the axis of figure, the axis of rotation will revolve about the axis

of figure in a predictable period. On the assumption that the earth
is perfectly rigid he showed that the period is 305 days. The earth
is now known to be elastic. From observations taken in 1884-5,

' W. Whewell, History of the Inductive Sciences, 3rd Ed., Vol. 1, New York,
1858, p. 363.
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S. C. Chandler of Harvard found the period to be 428 days.' For
an earth of steel the time has been computed to be 441 days.

Euler in his Introductio in analysin (1748) had undertaken a classi-

fication of quartic curves, as had also a mathematician of Geneva,
Gabriel Cramer (1704-1752), in his Introduction a Vanalyse des lignes

courbes algebraiques, Geneva, 1750. Both based their classifications

on the behavior of the curves at infinity, obtaining thereby eight
classes which were divided into a considerable number of species.

Another classification was made by E. Waring, in his Miscellanea
analytica, 1792, which yielded 12 main divisions and 84551 species.

These classifications rest upon ideas hardly in harmony with the
more recent projective methods, and have been abandoned. Cramer
studied the quartic y'^— x'^+ay'^+bx'^=o which later received the at-

tention of F. Moigno (1840), Charles Briot and Jean Claude Bouquet,
and B. A. Nievenglowski (1895), ^"d because of its peculiar form was
called by the French "courbe du diable." Cramer gave also a classi-

fication of quintic curves.

Most of Euler's memoirs are contained in the transactions of the

Academy of Sciences at St. Petersburg, and in those of the Academy
at Berlin. From 1728 to 1783 a large portion of the Petropolitan

transactions were filled by his writings. He had engaged to furnish

the Petersburg Academy with memoirs in sufficient number to enrich

its acts for twenty years—a promise more than fulfilled, for down to

1818 the volumes usually contained one or more papers of his, and
numerous papers are still unpublished. His mode of working was,

first to concentrate his powers upon a special problem, then to solve

separately all problems growing out of the first. No one excelled

him in dexterity of accommodating methods to special problems. It

is easy to see that mathematicians could not long continue in Euler's

habit of writing and publishing. The material would soon grow to

such enormous proportions as to be unmanageable. We are not sur-

prised to see almost the opposite in J. Lagrange, his great successor.

The great Frenchman delighted in the general and abstract, rather

than, like Euler, in the special and concrete. His writings are con-

densed and give in a nutshell what Euler narrates at great length.

Jean-le-Rond D'Alembert (1717-1783) was exposed, when an in-

fant, by his mother in a market by the church of St. Jean-le-Rond,

near the Notre-Dame in Paris, from which he derived his Christian

name. He was brought up by the wife of a poor glazier. It is said

that when he began to show signs of great talent, his mother sent for

him, but received the reply, "You are only my step-mother; the

glazier's wife is my mother." His father provided him with a yearly

income. D'Alembert entered upon the study of law, but such was his

love for mathematics, that law was soon abandoned. At the age of

twenty-four his reputation as a mathematician secured for him ad-

1 For details see Nature, Vol. 97, 1916, p. 530.
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mission to the Academy of Sciences. In 1754 he was made permanent
secretary of the French Academy. During the last years of his Kfe

he was mainly occupied with the great French encyclopaedia, which

was begun by Denis Diderot and himself. D'Alembert declined, in

1762, an invitation of Catharine II to undertake the education of her

son. Frederick the Great pressed him to go to Berlin. He made a

visit, but declined a permanent residence there. In 1743 appeared
his Traite de dynamique, founded upon the important general principle

bearing his name: The impressed forces are equivalent to the effective

forces. D'Alembert's principle seems to have been recognized before

him by A. Fontaine, and in some measure by Johann Bernoulli and
I. Newton. D'Alembert gave it a clear mathematical form and made
numerous applications of it. It enabled the laws of motion and the

reasonings depending on them to be represented in the most general

form, in analytical language. D'Alembert applied it in 1744 in a
treatise on the equihbrium and motion of fluids, in 1746 to a treatise

on the general causes of winds, which obtained a prize from the Berlin

Academy. In both these treatises, as also in one of 1747, discussing

the famous problem of vibrating chords, he was led to partial differ-

ential equations. He was a leader among the pioneers in the study of

such equations. To the equation —^ = a^ ~^, arising in the problem

of vibrating chords, he gave as the general solution,

y=f{x+at)+<p{x—at),

and showed that there is only one arbitrary function, if y be supposed
to vanish for x=o and x=l. Daniel Bernoulli, starting with a par-

ticular integral given by Brook Taylor, showed that this differential

equation is satisfied by the trigonometric series

. TTX irt ^ . 27rx 2Trt
y= asm -j- . cos -r—|- p sm —r— . cos —r- + . . .,

and claimed this expression to be the most general solution. Thus
Daniel BernoulH was the first to introduce "Fourier's series" into

physics. He claimed that his solution, being compounded of an in-

finite number of tones and overtones of all possible intensities, was
a general solution of the problem. Euler denied its generality, on
the ground that, if true, the doubtful conclusion would follow that
the above series represents any arbitrary function of a variable.

These doubts were dispelled by J. Fourier. J. Lagrange proceeded to

find the sum of the above series, but D'Alembert objected to his

process, on the ground that it involved divergent series.^

A most beautiful result reached by D'Alembert, with aid of his

principle, was the complete solution of the problem of the precession
of the equinoxes, which had baffled the talents of the best minds.

' R. Reiff, op. cit., II. Abschnitt.
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He sent to the French Academy in 1747, on the same day with A. C.

Clairaut, a solution of the problem of three bodies. This had become
a question of universal interest to mathematicians, in which each
vied^ to outdo all others. The problem of two bodies, requiring the

determination of their motion when they attract each other with
forces inversely proportional to the square of the distance between
them, had been completely solved by I. Newton. The "problem of

three bodies" asks for the motion of three bodies attracting each

other according to the law of gravitation. Thus far, the complete
solution of this has transcended the power of analysis. The general

differential equations of motion were stated by P. S. Laplace, but
the difficulty arises in their integration. The "solutions" given at

that time are merely convenient methods of approximation in special

cases when one body is the sun, disturbing the motion of the moon
around the earth, or where a planet moves under the influence of the

sun and another planet. The most important eighteenth century

researches on the problem of three bodies are due to J. Lagrange. In

1772 a prize was awarded him by the Paris Academy for his Essai

sur le probleme des trois corps. He shows that a complete solution of

the problem requires only that we know every moment the sides of

the triangle formed by the three bodies, the solution of the triangle

depending upon two differential equations of the second order and

one differential equation of the third. He found particular solutions

when the triangles remain all similar.

In the discussion of the meaning of negative quantities, of the

fundamental processes of the calculus, of the logarithms of complex

numbers, and of the theory of probability, D'Alembert paid some
attention to the philosophy of mathematics. In the calculus he

favored the theory of limits. He looked upon infinity as nothing but

a Umit which the finite approaches without ever reaching it. His

criticisms were not always happy. When students were halted by

the logical difiiculties of the calculus, D'Alembert would say, "Allez

en avant, et la foi vous viendra." He argued that when the prob-

ability of an event is very small, it ought to be taken o. A coin is to

be tossed 100 times and if head appear at the last trial, and not before,

A shall pay B 2^°" crowns. By the ordinary theory B should give A
1 crown at the start, which should not be, argues D'Alembert, be-

cause B will certainly lose. This view was taken also by Count de

Buffon. D'Alembert raised other objections to the principles of

probability.

The naturalist, Comte de Buffon (1707-1788), wrote an Essai

d'arithmetique morale, iTTj. In the study of the Petersburg problem,

he let a child toss a coin 2084 times, which produced 10057 crowns;

there were 1061 games which produced i crown, 494 which produced

2 crowns and so on.^ He was one of the first to emphasize the desir-

1 For references, see I. Todhunter, History of Theory of Probability, p. 346.
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ability of verifying the theory by actual trial. He also introduced

what is called "local probability" by the consideration of problems

that require the aid of geometry. Some studies along this line had
been carried on earher by John Arbuthnot (1658-1735) and Thomas
Simpson in England. Count de Buffon derived the probability that

a needle dropped upon a plane, ruled with equidistant, parallel lines,

will fall across one of the lines.

The probability of the correctness of judgments determined by a

majority of votes was examined mathematically by Jean-Antoine-
Nicolas Caritat de Condorcet (i 743-1 794). His general conclusions

are not of great importance; they are that voters must be enlightened

men in order to ensure our confidence in their decisions.'- He held

that capital punishment ought to be abolished, on the ground that,

however large the probability of the correctness of a single decision,

there will be a large probability that in the course of many decisions

some innocent person will be condemned. '^

Alexis Claude Clairaut (1713-1765) was a youthful prodigy. He
read G. F. de I'Hospital's works on the iniinitesimal calculus and on
conic sections at the age of ten. In 1731 was published his Recherches

sur les courbes a double courbure, which he had ready for the press

when he was sixteen. It was a work of remarkable elegance and se-

cured his admission to the Academy of Sciences when still under legal

age. In 1731 he gave a proof of the theorem enunciated by I. Newton,
that every cubic is a projection of one of five divergent parabolas.

Clairaut formed the acquaintance of Pierre Louis Moreau de Mauper-
tius (1698-1759), whom he accompanied on an expedition to Lapland
to measure the length of a degree of the meridian. At that time the

shape of the earth was a subject of serious disagreement. I. Newton
and C. Huygens had concluded from theory that the earth was flat-

tened at the poles. About 1712 Jean-Dominique Cassini (1625-1712)
and his son Jacques Cassini (1677-1756) measured an arc extending
from Dunkirk to Perpignan and arrived at the startling result that

the earth is elongated at the poles. To decide between the confhcting

opinions, measurements were renewed. Maupertius earned by his

work in Lapland the title of "earth flattener" by disproving the

Cassinian tenet that the earth was elongated at the poles, and showing
that Newton was right. On his return, in 1743, Clairaut published
a work, Theorie de la figure de la Terre, which was based on the results

of C. Maclaurin on homogeneous ellipsoids. It contains a remarkable
theorem, named after Clairaut, that the sum of the fractions ex-

pressing the ellipticity and the increase of gravity at the pole is equal
to 25 times the fraction expressing the centrifugal force at the equator,
the unit of force being represented by the force of gravity at the
equator. This theorem is independent of any hypothesis with respect

to the law of densities of the successive strata of the earth. It em-
' I. Todhunter, History of Theory of Prob., Chapter 17.



EULER, LAGRANGE AND LAPLACE 24S

bodies most of Clairaut's researches. I. Todhunter says that "in

the figure of the earth no other person has accomplished so much as

Clairaut, and the subject remains at present substantially as he left

it, though the form is different. The splendid analysis which Laplace

supplied, adorned but did not really alter the theory which started

from the creative hands of Clairaut."

In 1752 he gained a prize of the St. Petersburg Academy for his

paper on Theorie de la Lune, in which for the first time modern analysis

is applied to lunar motion. This contained the explanation of the

motion of the lunar apsides. This motion, left unexplained by I.

Newton, seemed to him at first inexplicable by Newton's -law, and
he was on the point of advancing a new hypothesis regarding gravi-

tation, when, taking the precaution to carry his calculation to a higher

degree of approximation, he reached results agreeing with observation.

The motion of the moon was studied about the same time by L. Euler

and D'Alembert. Clairaut predicted that "Halley's Comet," then

expected to return, would arrive at its nearest point to the sun on
April 13, 1759, a date which turned out to be one month too late.

He applied the process of differentiation to the differential equation

now known by his name and detected its singular solution. The same
process had been used earlier by Brook Taylor.

In their scientific labors there was between Clairaut and D'Alembert
great rivalry, often far from friendly. The growing ambition of

Clairaut to shine in society, where he was a great favorite, hindered

his scientific work in the latter part of his life.

The astronomer Jean-Dominique Cassini, whom we mentioned

above, is the inventor of a quartic curve which was published in his

son's Elements d'astronomic, 1749. The curve bears the name of

"Cassini's oval" or "general lemniscate." It grew out of the study

of a problem in astronomy.^ Its equation is (ai^-l-y^)^— 2a^(x^— /)-[-

a''— c*=o.

Johann Heinrich. Lambert (1728-1777), bom at Miihlhausen in

Alsace, was the son of a poor tailor. While working at his father's

trade, he acquired through his own unaided efforts a knowledge of

elementary mathematics. At the age of thirty he became tutor in a

Swiss family and secured leisure to continue his studies. In his

travels with his pupils through Europe he became acquainted with

the leading mathematicians. In 1764 he settled in Berlin, where he

became member of the Academy, and enjoyed the society of L. Euler

and J. Lagrange. He received a small pension, and later became

editor of the Berlin Ephemeris. His many-sided scholarship reminds

one of Leibniz. It cannot be said that he was overburdened with

modesty. When Frederick the Great asked him in their first inter-

view, which science he was most proficient in, he replied curtly, "All."

1 G. Loria, Ebene Curven (F. Schiitte), I, 1910, p. 208.
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To the emperor's further question, how he attained this mastery, he

said, "Like the celebrated Pascal, by my own self."

In his Cosmological Letters he made some remarkable prophecies

regarding the stellar system. He entered upon plans for a mathe-

matical symboHc logic of the nature once outhned by G. W. Leibniz.

In mathematics he made several discoveries which were extended

and overshadowed by his great contemporaries. His first research

on pure mathematics developed in an infinite series the root x of the

equation x™+px=q. Since each equation of the form ax'+hoi^=d

can be reduced to x^+px=q in two ways, one or the other of the two
resulting series was always found to be convergent, and to give a

value of X. Lambert's results stimulated L. Euler, who extended the

method to an equation of four terms, and particularly J. Lagrange,

who found that a function of a root of a—x+4>{x) = o can be expressed
^

by the series bearing his name. In 1761 Lambert communicated to

the BerUn Academy a memoir (published 1768), in which he proves

rigorously that tt is irrational. It is given in simplified form in Note IV
of A. M. Legendre's Geometrie, where the proof is extended to tt^.

Lambert proved that if x is rational, but not zero, then neither e-'

nor tan x can be a rational number; since tan 7r/4=i, it follows that

7r— or TT cannot be rational. Lambert's proofs rest on the expression

for e as a continued fraction given by L. Euler ^ who in 1737 had sub-

stantially shown the irrationality of e and e^. There were at this

time so many circle squarers that in 1775 the Paris Academy found it

necessary to pass a resolution that no more solutions on the quadrature
of the circle should be examined by its officials. This resolution ap-

plied also to solutions of the duplication of the cube and the trisection

of an angle. The conviction had been growing that the solution of

the squaring of the circle was impossible, but an irrefutable proof

was not discovered untU over a century later. Lambert's Freye Per-

spective, 1759 and 1773, contains, researches on descriptive geometry,

and entitle him to the honor of being the forerunner of Monge. In
his effort to simplify the calculation of cometary orbits, he was led

geometrically to some remarkable theorems on conies, for instance

this: "If in two ellipses having a common major axis we take two
such arcs that their chords are equal, and that also the sums of the

radii vectores, drawn respectively from the foci to the extremities of

these arcs, are equal to each other, then the sectors forrned in each
ellipse by the arc and the two radii vectores are to each other as the

square roots of the parameters of the ellipses."
^

Lambert elaborated the subject of hyperbolic functions which he
designated by sink x, cosh x, etc. He was, however, not the first to

1 R. C. Archibald in Am. Math. Monthly, Vol. 21, 1914, p. 253.
^ M. Chasles, Geschichte der Geometrie, 1839, p. 183.
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introduce them into trigonometry. That honor falls upon Vincenzo
Riccati (1707-1775), a son of Jacopo Riccati.^

In 1770 Lambert published a 7-place table of natural logarithms
for numbers i-ioo. In 1778 one of his pupils, Johann Karl Schulze,

pubHshed extensive tables which included the 48-place table of nat-

ural logarithms of primes and many other numbers up to 10,009,
which had been computed by the Dutch artUlery officer. Wolfram.
A feat even more remarkable than Wolfram's, was the computation
of the common logarithms of numbers r-ioo and of all prunes from
100 to iioo, to 61 places, by Abraham Sharp of Yorkshire, who was
some time assistant to Flamsteed at the Enghsh Royal Observatory.
They were published in Sharp's Geometry Improv'd, 1717.

John Landen (1719-1790) was an English mathematician whose
writings served as the starting-point of investigations by L. Euler,

J. Lagrange, and A. M. Legendre. Landen's capital discovery, con-
tained in a memoir of 1755, was that every arc of the hyperbola is

immediately rectified by means of two arcs of an ellipse. In his

"residual analysis" he attempted to obviate the metaphysical diffi-

culties of fluxions by adopting a purely algebraic method. J. La-
grange's Calcul des Fonctions is based upon this idea. Landen showed
how the algebraic expression for the roots of a cubic equation could

be derived by application of the differential and integral calculus.

Most of the time of this suggestive writer was spent in the pursuits

of active life.

Of influence in the teaching of mathematics in England was Charles

Hutton (1737-1823), for many years professor at the Royal Military

Academy of Woolwich. In 1785 he published his Mathematical Tables,

and in 1795 his Mathematical and Philosophical Dictionary, the best

work of its kind that has appeared in the English language. His

Elements of Conic Sections, 1789, is remarkable as being the first work
in which each equation is rendered conspicuous by being printed in

a separate line by itself.^

It is well known that the Newton-Raphson method of approxima-

tion to the roots of numerical equations, as it was handed down from

the seventeenth century, labored under the defect of insecurity in

the process, so that the successive corrections did not always yield

results converging to the true value of the root sought. The removal

of this defect is usually attributed to J. Fourier, but he was anticipated

half a century by /. Raym. Mourraille in his Traite de la resolution

des equations en general, MarseiUe et Paris, 1768. Mourraille was for

fourteen years secretary of the academy of sciences in Marseille ; later

he became mayor of the city. Unlike I. Newton and J. Lagrange,

Mourraille and J. Fourier introduced also geometrical considerations.

Mourraille concluded that security is insured if the first approximation

1 M. Cantor, op. oil., Vol. IV, 1908, p. 411.
2 M. Cantor, op. cit., Vol. IV, 1908, p. 465.
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a is so selected that the curve is convex toward the axis of x for the

interval between a and the root. He shows that this condition is

sufficient, but not necessary.'^

In the eighteenth century proofs were given of Descartes' Rule of

Signs which its discoverer had enunciated without demonstration.

G. W. Leibniz had pointed out a line of proof, but did not actually

give it. In 1675 Jean Prestet (1648-1690) published at Paris in his

Elemens des mathematiques a proof which he afterwards acknowledged

to be insufficient. In 1728 Johann Andreas Segner (1704-1777) pub-
lished at Jena a correct proof for equations having only real roots.

In 1756 he gave a general demonstration, based on the consideration

that multiplying a polynomial by (x— a) increases the number of

variations by at least one. Other proofs were given by Jean Paul de

Gua de Halves (1741), Isaac Milner (1778), Friedrich Wilhelm Stubner,

Abraham Golihelf Kdstner (1745), Edward Waring (1782), /. A.

Gnmert (1827), K. F. Gauss (1828). Gauss showed that, if the num-
ber of positive roots falls short of the number of variations, it does so

by an even number. E. Laguerre later extended the rule to poly-

nomials with fractional and incommensurable exponents, and to in-

finite series.^ It was established by De Gua de Malves that the

absence of 2m successive terms indicates 2m imaginary roots, while

the absence of 2m+i successive terms indicates 2;«-|-2 or 2m imagin-

ary roots, according as the two terms between which the deficiency

occurs have like or unlike signs.

Edward Waring (i 734-1 798) was born in Shrewsbury, studied at

Magdalene College, Cambridge, was senior wrangler in 1757, and
Lucasian professor of mathematics since 1760. He published Mis-
cellanea analytica in 1762, Meditationes algebraicce in 1770, Proprietatis

algebraicarum curvarum in 1772, and Meditationes analyticcB in 1776.

These works contain many new results, but are difficult of compre-
hension on account of his brevity and obscurity of exposition. He is

said not to have lectured at Cambridge, his researches being thought
unsuited for presentation in the form of lectures. He admitted that

he never heard of any one in England, outside of Cambridge, who had
read and understood his researches.

In his Meditationes algebraiccB are some new theorems on number.
Foremost among these is a theorem discovered by his friend John
Wilson (1741-1793) and universally known as "Wilson's theorem."
Waring gives the theorem, known as " Waring's theorem," that every
integer is either a cube or the sum of 2, 3, 4, 5, 6, 7, 8 or 9 cubes, either

a fourth power or the sum of 2, 3 . . or 19 fourth powers; this has
never yet been fully demonstrated. Also without proof is given the

theorem that every even integer is the sum of two primes and every

^ See F. Cajori in Bihliolhcca maihemalica, 3rd S., Vol. 11, 1911, pp. 132-137.
^ For references to the publications of these writers, see F. Cajori in Colorado

College Publication, General Series No. 51, 1910, pp. 186, 187.
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odd integer is a prime or the sum of three primes. The part relating

to even integers is generally known as "Goldbach's theorem," but
was first published by Waring. Christian Goldbach communicated
the theorem to L. Euler in a letter of June 30, 1742, but the letter

was not published until 1843 {Corr. math., P. H. Fuss).

Waring held advanced views on the convergence of series.^ He

taught that i-{—^H

—

--\—~+. . . converges when n>i and diverges

when n<i. He gave the well-known test for convergence and
divergence which is often ascribed to A. L. Cauchy, in which the

limit of the ratio of the (m+i)"» to the «'* term is considered. As
early as 1757 he had found the necessary and suflScient relations which
must exist between the coefficients of a quartic and quintic equation,

for two and for four imaginary roots. These criteria were obtained

by a new transformation, namely the one which yields an equation

whose roots are the squares of the differences of the roots of the given

equation. To solve the important problem of the separation of the

roots Waring transforms a numerical equation into one whose roots

are reciprocals of the differences of the roots of the given equation.

The reciprocal of the largest of the roots of the transformed equation

is less than the smallest difference D, between any two roots of the

given equation. If M is an upper limit of the roots of the given equa-

tion, then the subtraction of D, 2D, 3Z), etc., from M will give values

which separate all the real roots. In the Meditationes algebraica of

1770, Waring gives for the first time a process for the approximation

to the values of imaginary roots. If x is approximately a+ib, sub-

stitute x=a-\-a'+{h-\-b')i, expand and reject higher powers of a' and
b' . Equating real numbers to each other and imaginary numbers to

each other, two equations are obtained which yield values of a' and b'

.

Etierme Bezout (1730-1783) was a French writer of popular mathe-

matical school-books. In his Theorie generale des Equations Alge-

briques; 1779, he gave the method of elimination by linear equations

(invented also by L. Euler). This method was first published by him
in a memoir of 1764, in which he uses determinants, without, however,

entering upon their theory. A beautiful theorem as to the degree of

the resultant goes by his name. He and L. Euler both gave the degree

as in general m . n, the product of the orders of the intersecting loci,

and both proved the theorem by reducing the problem to one of

elimination from an auxiliary set of linear equations. The determi-

nant resulting from Bezout's method is what J. J. Sylvester and later

writers call the Bezoutiant. Bezout fixed the degree of the eliminant

also for a large number of particular cases. "One may say that he

determined the number of finite intersections of algebraic loci, not

only when all the intersections are finite, but also when singular

1 M. Cantor, op. cit., Vol. IV, 1908, p. 275.
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points, or singular lines, planes, etc., at infinity occasion the with-

drawal to infinity of certain of the intersection points; and this at a

time when the nature of such singularities had not been developed." ^

Louis Arbogaste (1759-1803) of Alsace was professor of mathe-

matics at Strasburg. His chief work, the Calcul des Derivations, 1800,

gives the method known by his name, by which the successive coeffi-

cients of a development are derived from one another when the ex-

pression is complicated. A. De Morgan has pointed out that the

true nature of derivation is differentiation accompanied by integration.

In this book for the first time are the symbols of operation separated

d-v
from those of quantity. The notation D^y for

-f-
is due to him.

Maria Gaetana Agnesi (17 18-1799) of Milan, distinguished as a

hnguist, mathematician, and philosopher, filled the mathematical
chair at the University of Bologna during her father's sickness.

Agnesi was a somnambulist. Several times it happened to her that

she went to her study, while in the somnambulist state, made a hght,

and solved some problem she had left incomplete when awake. In
the morning she was surprised to find the solution carefully worked
out on paper.^ In 1748 she published her Instituzioni Analiticke,

which was translated into English in 1801. The "witch of Agnesi"
or "Versiera" is a cubic curve x^y=a^(a

—

y) treated in Agnesi's In-

stituzioni, but given earlier by P. Fermat in the form (a^ — x^) y=c?.

The curve was discussed by Guido Grandi in his Quadratura circuli

et hyperholcR, Pisa, 1703 and 1710.' In two letters from Grandi to

Leibniz, in 1713, curves resembling flowers are discussed; in 1728
Grandi published at Florence his Flores geomelrici. He considered

curves in a plane, of the typep=r sinww, and also curves on a sphere.

Recent studies along this line are due to Eodo Habenicht (1895),

E. W. Hyde (1875), H. Wieleitner (1906).

The leading eighteenth century historian of mathematics was Jean
Etienne Montucla (i 725-1799) who published a Histoire des mathe-
matiques, in two volumes, Paris, 1758. A second edition of these two
volumes appeared in 1799. A third volume, written by Montucla,
was partly printed when he died; the rest of it was seen through the

press by the astronomer Joseph. Jerome le Francois de Lalande
(1732-1807), who prepared a fourth volume, mainly on the history of

astronomy.*

Joseph Louis Lagrange (1736-1813), one of the greatest mathe-
maticians of all times, was born at Turin and died at Paris. He was
of French extraction. His father, who had charge of the Sardinian

' H. S. White in Bull. Am. Math. Soc, Vol. 15, 1909, p. 331.
^ L'lnlermediaire des mathSmaticiens, Vol. 22, 1915, p. 241.
' G. Loria, Ebene Cnrven (F. Schutte), I, 1910, p. 79.

For details on other mathematical historians, see S. Giinther's chapter in

Cantor, op. cit., Vol. IV, 1908, pp. 1-36.
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military chest, was once wealthy, but lost all he had in speculation.
Lagrange considered this loss his good fortune, for otherwise he might
not have made mathematics the pursuit of his life. While at the
college in Turin his genius did not at once take its true bent. Cicero
and Virgil at first attracted him more than Archimedes and Newton.
He soon came to admire the geometry of the ancients, but the perusal
of a tract of E. Halley roused his enthusiasm for the analytical method,
in the development of which he was destined to reap undying glory.

He now applied himself to mathematics, and in his seventeenth year
he became professor of mathematics in the royal mihtary academy at

Turin. Without assistance or guidance he entered upon a course of

study which in two years placed him on a level with the greatest of

his contemporaries. With aid of his pupils he estabhshed a society

which subsequently developed into the Turin Academy. In the first

five volumes of its transactions appear most of his earlier papers.

At the age of nineteen he communicated to L. Euler a general method
of dealing with " isoperimetrical problems," known now as the Cal-

culus of Variations. This commanded Euler's Hvely admiration, and
he courteously withheld for a time from publication some researches

of his own on this subject, so that the youthful Lagrange might com-
plete his investigations and claim the invention. Lagrange did quite

as much as Euler towards the creation of the Calculus of Variations.

As it came from Euler it lacked an analytic foundation, and this

Lagrange supplied. He separated the principles of this calculus from
geometric considerations by which his predecessor had derived them.

Euler had assumed as fixed the limits of the integral, i. e. the extrem-

ities of the curve to be determined, but Lagrange removed this re-

striction and allowed aU co-ordinates of the curve to vary at the same
time. Euler introduced in 1766 the name "calculus of variations,"

and did much to improve this science along the lines marked out by
Lagrange. Lagrange's investigations on the calculus of variations .

were published in 1762, 1771, 1788, 1797, 1806.

Another subject engaging the attention of Lagrange at Turin was
the propagation of sound. In his papers on this subject in the Mis-

cellanea Taurinensia, the young mathematician appears as the critic

of I. Newton, and the arbiter between Euler and D'Alembert. By
considering only the particles which are in a straight line, he reduced

the problem to the same partial differential equation that represents

the motions of vibrating strings.

Vibrating strings had been discussed by Brook Taylor, Johann
Bernoulli and his son Daniel, by D'Alembert and L. Euler. In solving

the partial differential equations, D'Alembert restricted himself to

'functions which can be expanded by Taylor's series, while Euler

thought that no restriction was necessary, that they could be arbi-

trary, discontinuous. The problem was taken up with great skill by
Lagrange who introduced new points of view, but decided in favor of
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Euler. Later, de Condorcet and P. S. Laplace stood on the side of

D'Alembert since in their judgment some restriction upon the arbi-

trary functions was necessary. From the modern point of view,

neither D'Alembert nor Euler was wholly in the right: D'Alembert

insisted upon the needless restriction to functions with a limitless

number of derivatives, while Euler assumed that the differential and
integral calculus could be applied to any arbitrary function.'

It now appears that Daniel Bernoulli's claim that his solution was
a general one (a claim disputed by D'Alembert, J. Lagrange and L.

Euler) was fully justified. The problem of vibrating strings stimu-

lated the growth of the theory of expansions according to trigonometric

functions of multiples of the argument. H. Burkhardt has pointed

out that there was also another line of growth of this subject, namely
the growth in connection with the problem of perturbations, where
L. Euler started out with the development of the reciprocal distance

of two planets according to the cosine of multiples of the angle be-

tween their radii vectoris.

By constant application during nine years, Lagrange, at the age

of twenty-six, stood at the summit of European fame. But his intense

studies had seriously weakened a constitution never robust, and though
his physicians induced him to' take rest and exercise, his nervous

system never fully recovered its tone, and he was thenceforth subject

to fits of melancholy.

In 1764 the French Academy proposed as the subject of a prize

the theory of the libration of the moon. It demanded an explanation,

on the principle of universal gravitation, why the moon always turns,

with but slight variations, the same phase to the earth. Lagrange
secured the prize. This success encouraged the Academy to propose

for a prize the theory of the four satellites of Jupiter,—a problem of

six bodies, more difficult than the one of three bodies previously

. treated by A. C. Clairaut, D'Alembert, and L. Euler. Lagrange over-

came the difficulties by methods of approximation. Twenty-four
years afterwards this subject was carried further by P. S. Laplace.

Later astronomical investigations of Lagrange are on cometary per-

turbations (1778 and 1783), and on Kepler's problem. His researches

on the problem of three bodies has been referred to previously.

Being anxious to make the personal acquaintance of leading mathe-
maticians, Lagrange visited Paris, where he enjoyed the stimulating

delight of conversing with A. C. Clairaut, D'Alembert, de Condorcet,
the Abbe Marie, and others. He had planned a visit to London, but
he fell dangerously ill after a dinner in Paris, and was compelled to

return to Turin. In 1766 L. Euler left Berlin for St. Petersburg, and
he pointed out Lagrange as the only man capable of filling the place.

'For details see H. Burkhardt's Entwicklungen nach oscillirenden Funktionen
und Integration der Dijerentialgleichungen dcr mathematischen Physik. Leipzig,

1908, p. iS. This is an exhaustive and valuable history of this topic.
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D'Alembert recommended him at the same time. Frederick the Great
thereupon sent a message to Turin, expressing the wish of "the great-

est king of Europe" to have "the greatest mathematician" at his

court. Lagrange went to BerUn, and staid there twenty years. Find-
ing all his colleagues married, and being assured by their wives that
the marital state alone is happy, he married. The union was not a
happy one. His wife soon died. Frederick the Great held him in

high esteem, and frequently conversed with him on the advantages
of perfect regularity of life. This led Lagrange to cultivate regular

habits. He worked no longer each day than experience taught him
he could without breaking down. His papers were carefully thought
out before he began writing, and when he wrote he did so without a
single correction.

During the twenty years in Berhn he crowded the transactions of

the BerUn Academy with memoirs, and wrote also the epoch-making
work caUed the Mecanique Analytique. He enriched algebra by re-

searches on the solution of equations. There are two methods of

solving directly algebraic equations,—that of substitution and that

of combination. The former method was developed by L. Ferrari,

F. Vieta, E. W. Tchirnhausen, L. Euler, E. Bezout, and Lagrange;
the latter by C. A. Vandermonde and Lagrange. "^ In the method of

substitution the original forms are so transformed that the determina-
tion of the roots is made to depend upon simpler functions (resolvents).

In the method of combination auxiliary quantities are substituted

for certain simple combinations ("types") of the unknown roots of

the equation, and auxiliary equations (resolvents) are obtained for

these Quantities with aid of the coefficients of the given equation. In
his Reflexions sur la resolution algebrique des equations, published in

Memoirs of the Berlin Academy for the years 1770 and 1771, Lagrange
traced all known algebraic solutions of equations to the uniform prin-

ciple consisting in the formation and solution of equations of lower

degree whose roots are hnear functions of the required roots, and of

the roots of unity. He showed that the quintic cannot be reduced in

this way, its resolvent being of the sixth degree. In this connection

Lagrange had occasion to consider the number of values a rational

function can assume when its variables are permuted in every possible

way. In these studies we see the beginnings of the theory of groups.

The theorem, that the order of a subgroup is a divisor of the order

of the group is practically established, and is known now as "La-

grange's theorem," although its complete proof was first given about

thirty years later by Pietro Abbati (1768-1842) of Modena in Italy.

Lagrange's researches on the theory of equations were continued after

he left Berlin. In the Resolution des equations numeriques (1798) he

gave among other things, a proof that every equation must have a

root,—a theorem which before this usually had been considered

' L. Matthiessen, op. cit., pp. 80-84.
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self-evident. Other proofs of this were given by J. R. Argand, K. F.

Gauss, and A. L. Cauchy. In a note to the above work Lagrange uses

Fermat's theorem and certain suggestions of Gauss in effecting a com-

plete algebraic solution of any binomial equation.

In the BerUn Memoires for the year 1767 Lagrange contributed a

paper, Sur la resolution des equations numeriques. He explains the

separation of the real roots by substituting for x the terms of the

progression, 0, D, 2D, . . ., where D must be less than the least dif-

ference between the roots. Lagrange suggested three ways of com-

puting D: One way in 1767, another in 1795 and a third in 1798. The
first depends upon the equation of the squared differences of the roots

of the given equation. E. Waring before this had derived this im-

portant equation, but in 1767 Lagrange had not yet seen Waring's

writings. Lagrange finds equal roots by computing the highest com-

mon factor between f{x) and f'{x). He proceeds to develop a new
mode of approximation, that by continued fractions. P. A. Cataldi

had used these fractions in extracting square roots. Lagrange enters

upon greater details in his Additions to his paper of 1767. Unlike

the older methods of approximation, Lagrange's has no cases of

failure. "Cette methode ne laisse, ce me semble, rien a desirer," yet,

though theoretically perfect, it yields the root in the form of a con-

tinued fraction which is undesirable in practice.

While in Berlin Lagrange published several papers on the theory

of numbers. In 1769 he gave a solution in integers of indeterminate

equations of the second degree, which resembles the Hindu cyclic

method; he was the first to prove, in 1771, "Wilson's theorem," enun-

ciated by an Englishman, John Wilson, and first published by E.

Waring in his Meditationes Algebraica; he investigated in 1775 under

what conditions ± 2 and ± 5 (— i and ±3 having been discussed by
L. Euler) are quadratic residues, or non-residues of odd prime num-
bers, q; he proved in 1770 Bachet de Meziriac's theorem that every

integer is equal to the sum of four, or a less number, of squares. He
proved Fermat's theorem on x'^+y"- = z"-, for the case ra=4, also Fer-

mat's theorem that, if a^+b'^=c'^, then ab is not a square.

In his memoir on Pyramids, 1773, Lagrange made considerable use

of determinants of the third order, and demonstrated that the square

of a determinant is itself a determinant. He never, however, dealt

explicitly and directly with determinants; he simply obtained acci-

dentally identities which are now recognized as relations between
determinants.

Lagrange wrote much on differential equations. Though the sub-

ject of contemplation by the greatest mathematicians (L. Euler,

D'Alembert, A. C. Clairaut, J. Lagrange, P. S. Laplace), yet more
than other branches of mathematics do they resist the systematic

application of fixed methods and principles. The subject of singular

solutions, which had been taken up by P. S. Laplace in 1771 and 1774,
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was investigated by Lagrange who gave the derivation of a singular

solution from the general solution as well as from the differential

equation itself. Lagrange brought to view the relation of singular

solutions to envelopes. Nevertheless, he failed to remove all mystery-
surrounding this subtle subject. An inconsistency in his theorems
caused about 1870 a complete reconsideration of the entire theory of

singular solutions. Lagrange's treatment is given in his Calcul des

Fonclions, Lessons 14-17. He generalized Euler's researches on total

differential equations of two variables, and of the ninth order; he
gave a solution of partial differential equations of the first order {Berlin

Memoirs, 1772 and 1774), and spoke of their singular solutions, ex-

tending their solution in Memoirs of 1779 and 1785 to equations of

any number of variables. The Memoirs of 1772 and 1774 were refined

in certain points by a young mathematician Paul Charpit (?-i784)

whose method of solution was first printed in LacroLx's Traits du
calcul, 2. Ed., Paris, 1814, T. II, p. 548. The discussion on partial

differential equations of the second order, carried on by D'Alembert,
Euler, and Lagrange, has already been referred to in our account of

D'Alembert.
While in Berlin, Lagrange wrote the "Mccanique Analytique," the

greatest of his works (Paris, 1788). From the principle of virtual

velocities he deduced, with aid of the calculus of variations, the whole
system of mechanics so elegantly and harmoniously that it may fitly

be called, in Sir William Rowan Hamilton's words, "a kind of scien-

tific poem." It is a most consummate example of analytic generality.

Geometrical figures are nowhere allowed. "On ne trouvera point de
figures dans cet ouvrage" (Preface). The two divisions of mechanics
—statics and dynamics—are in the first four sections of each carried

out analogously, and each is prefaced by a historic sketch of principles.

Lagrange formulated the principle of least action. In their original

form, the equations of motion involve the co-ordinates x, y, z, of the

different particles m or dm of the system. But x, y, z, are in general

not independent, and Lagrange introduced in place of them any
variables I, i/',

(l>, whatever, determining the position of the point at

the time. These "generalized co-ordinates" may be taken to be inde-

pendent. The equations of motion may now assume the form

d dT dT „
dtW~di'^ '

or when H, 1/', <^, . . . are the partial differential coefficients with

respect toijij/, <!>, of one and the same function V, then the form

ddJl_dT dV^
dtdi' d$'^d$'°'

The latter is par excellence the Lagrangian form of the equations of

motion. With Lagrange originated the remark that mechanics may
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be regarded as a geometry of four dimensions. To him falls the honor
of the introduction of the potential into dynamics. Lagrange was
anxious to have his Mecanique Analytique pubhshed in Paris. The
work was ready for print in 1786, but not till 1788 could he find a
publisher, and then only with the condition that after a few years

he ivould purchase all the unsold copies. The work was edited by
A. M. Legendre.

After the death of Frederick the Great, men of science were no
longer respected in Germany, and Lagrange accepted an invitation

of Louis XVI to migrate to Paris. The French queen treated him
with regard, and lodging was procured for him in the Louvre. But
he was seized with a long attack of melancholy which destroyed his

taste for mathematics. For two years his printed copy of the Me-
canique, fresh from the press,—the work of a quarter of a century,

—

lay unopened on his desk. Through A. L. Lavoisier he became in-

terested in chemistry, which he found "as easy as algebra." The
disastrous crisis of the French Revolution aroused him again to ac-

tivity. About this time the young and accomplished daughter of the

astronomer P. C. Lemonnier took compassion on the sad, lonely

Lagrange, and insisted upon marrying him. Her devotion to him
constituted the one tie to life which at the approach of death he found
it hard to break.

He was made one of the commissioners to estabhsh weights and
measures having units founded on nature. Lagrange strongly favored

the decimal subdivision. Such was the moderation of Lagrange's

character, and such the universal respect for him, that he was retained

as president of the commission on weights and measures even after

it had been purified by the Jacobins by striking out the names of A. L.

Lavoisier, P. S. Laplace, and others. Lagrange took alarm at the

fate of Lavoisier, and planned to return to Berlin, but at the estab-

lishment of the Ecole Normale in 1795 in Paris, he was induced to

accept a professorship. Scarcely had he time to elucidate the founda-

tions of arithmetic and algebra to young pupils, when the school was
closed. His additions to the algebra of L. Euler were prepared at

this time. In 1797 the Ecole Polytechnique was founded, with Lagrange
as one of the professors. The earliest triumph of this institution was
the restoration of Lagrange to analysis. His mathematical activity

burst out anew. He brought forth the Theorie des fonctions analytiques

(1797), Leqons sur le calcul des fonctions, a treatise on the same liaes

as the preceding (1801), and the Resolution des equations numeriques

(1798), which includes papers pubhshed much earlier; his memoir,
Nouvelle methode pour resoudre les equations litterales par le moyen des

series, published 1770, gives the notation xp' for -j-, which occurs

however much earlier in a part of a memoir by Franjois Daviet de
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Foncenex in the Miscellanea Taurinensia for 1759, believed to iiave

been written for Foncenex by Lagrange himself.^ In 1810 he began
a thorough revision of his Mecanique analytique, but he died before
its completion.

The Theorie des fonctions, the germ of which is found in a memoir
of his of 1772, aimed to place the principles of the calculus upon a
sound foundation by relieving the mind of the difficult conception of

a limit. John Landen's residual calculus, professing a similar object,

was unknown to him. In a letter to L. Euler of Nov. 24, 1759, La-
grange says that he believed he had developed the' true metaphysics
of the calculus; at that time he seems to have been convinced that
the use of infinitesimals was rigorous. He " used both the infinitesimal

method and the method of derived functions side by side during his

whole life" (Jourdain). Lagrange attempted to prove Taylor's

theorem (the power of which he was the first to point out) by simple
algebra, and then to develop the entire calculus from that theorem.
The principles of the calculus were in his day involved in philosophic

difficulties of a serious nature. The infinitesimals of G. W. Leibniz

had no satisfactory metaphysical basis. In the differential calculus

of L. Euler they were treated as absolute zeros. In I. Newton's limit-

ing ratio, the magnitudes of which it is the ratio cannot be found,

for at the moment when they should be caught and equated, there is

neither arc nor chord. The chord and arc were not taken by Newton
as equal before vanishing, nor after vanishing, but when they vanish.

"That method," said Lagrange, "has the great inconvenience of con-

sidering quantities in the state in which they cease, so to speak, to be
quantities; for though we can always well conceive the ratios of two
quantities, as long as they remain finite, that ratio offers to the mind
no clear and precise idea, as soon as its terms become both nothing

at the same time." D'Alembert's method of limits was much the

same as the method of prime and ultimate ratios. When Lagrange

endeavored to free the calculus of its metaphysical difficulties, by
resorting to common algebra, he avoided the whirlpool of Charybdis

only to suffer wreck against the rocks of Scylla. The algebra of his

day, as handed down to him by L. Euler, was founded on a false

view of infinity. No rigorous theory of infinite series had then been

established. Lagrange proposed to define the differential coefficient

of f(x) with respect to x as the coefficient of h in the expansion of

f(x+h) by Taylor's theorem, and thus to avoid all reference to limits.

But he used infinite series without ascertaining carefully that they

were convergent, and his proof tha.tf{x+h) can always be expanded

in a series of ascending powers of h, labors under serious defects.

Though Lagrange's method of developing the calculus was at first

greatly applauded, its defects were fatal, and to-day his "method of

1 Philip E. B. Jourdain in Proceed, sth Intern. Congress, Cambridge, 1Q12, Cam-
bridge, 19 13, Vol. II, p. 540.
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derivatives," as it was called, has been generally abandoned. He
introduced a notation of his own, but it was inconvenient, and was
abandoned by him in the second edition of his Mecanique, in which

he used infinitesimals. The primary object of the Theorie des fonctions

was not attained, but its secondary results were far-reaching. It

was a purely abstract mode of regarding functions, apart from geo-

metrical or mechanical considerations. In the further development

of higher analysis a function became the leading idea, and Lagrange's

work may be regarded as the starting-point of the theory of functions

as developed by A. L. Cauchy, G. F. B. Riemann, K. Weierstrass,

and others.

The first to doubt the rigor of Lagrange's exposition of the calculus

were Abel Burja (1752-1816)01 Berhn, the two Polish mathematicians

H. Wronski and J. B. Sniadecki (1756-1830), and the Bohemian
B. Bolzano, who were all men of limited acquaintance and influence.

It remained for A. L. Cauchy really to initiate the period of greater

rigor.

Instructive is C. E. Picard's characterization of the time of La-

grange: "In all this period, especially in the second half of the eight-

eenth century, what strikes us with admiration and is also somewhat
confusing, is the extreme importance of the applications realized,

while the pure theory appeared still so ill assured. One perceives it

when certain questions are raised like the degree of arbitrariness in

the integral of vibrating chords, which gives place to an interminable

and inconclusive discussion. Lagrange appreciated these insufficiencies

when he published his theory of analytic functions, where he strove

to give a precise foundation to analysis. One cannot too much
admire the marvellous presentiment he had of the role which the

functions, which with him we call analytic, were to play; but we may
confess that we stand astonished before the demonstration he be-

lieved to have given of the possibihty of the development of a function

in Taylor's series."
'

In the treatment of infinite series Lagrange displayed in his earlier

writings that laxity common to all mathematicians of his time, ex-

cepting Nicolaus Bernoulli II and D'Alembert. But his later articles

mark the beginning of a period of greater rigor. Thus, in the Calcul des

fonctions he gives his theorem on the limits of Taylor's theorem. La-
grange's mathematical researches extended to subjects which have
not been mentioned here—such as probabilities, finite differences,

ascending continued fractions, elliptic integrals. Everywhere his

wonderful powers of generalization and abstraction are made manifest.

In that respect he stood without a peer, but his great contemporary,

P. S. Laplace, surpassed him in practical sagacity. Lagrange was
content to leave the application of his general results to others, and
some of the most important researches of Laplace (particularly those

' Congress 0} Arts and Science, St. Louis, 1904, Vol. 1, p. 503.
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on the velocity of sound and on the secular acceleration of the moon)
are implicitly contained in Lagrange's works.
Lagrange was an extremely modest man, eager to avoid contro-

versy,^ and even timid in conversation. He spoke in tones of doubt,
and his first words generally were, " Je ne sais pas." He would never
allow his portrait to be taken, and the only ones that were secured
were sketched without his knowledge by persons attending the meet-
ings of the Institute.

Pierre Simon Laplace (i 749-1827) was born at Beaumont-en-Auge
in Normandy. Very Uttle is known of his early life. When at the

height of his fame he was loath to speak of his boyhood, spent in

poverty. His father was a small farmer. Some rich neighbors who
recognized the boy's talent assisted him in securing an education.

As an extern he attended the military school in Beaumont, where at

an early age he became teacher of mathematics. At eighteen he went
to Paris, armed with letters of recommendation to D'Alembert, who
was then at the height of his fame. The letters remained unnoticed,

but young Laplace, undaunted, wrote the great geometer a letter on
the principles of mechanics, which brought the following enthusiastic

response: "You needed no introduction; you have recommended your-

self; my support is your due." D'Alembert secured him a position

at the Ecole Militaire of Paris as professor of mathematics. His future

was now assured, and he entered upon those profound researches

which brought him the title of "the Newton of France." With
wonderful mastery of analysis, Laplace attacked the pending problems

in the apphcation of the law of gravitation to celestial motions. Dur-
ing the succeeding fifteen years appeared most of his original contri-

butions to astronomy. His career was one of almost uninterrupted

prosperity. In 1784 he succeeded E. Bezout as examiner to the royal

artillery, and the following year he became member of the Academy
of Sciences. He was made president of the Bureau of Longitude; he

aided in the introduction of the decimal system, and taught, with

J. Lagrange, mathematics in the Ecole Normale. When, during the

Revolution, there arose a cry for the reform of everything, even of

the calendar, Laplace suggested the adoption of an era beginning with

the year 1250, when, according to his calculation, the major axis of

the earth's orbit had been perpendicular to the equinoctial line. The
year was to begin with the vernal equinox, and the zero meridian was
to be located east of Paris by 185.30 degrees of the centesimal division

of the quadrant, for by this meridian the beginning of his proposed

era fell at midnight. But the revolutionists rejected this scheme, and

made the start of the new era coincide with the beginning of the

glorious French Republic.'-

Laplace was justly admired throughout Europe as a most sagacious

1 Rudolf Wolf, Geschkhte der Aslronomie, Munchen, 1877, p. 334.
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and profound scientist, but, unhappily for his reputation, he strove

not only after greatness in science, but also after political honors.

The political career of this eminent scientist was stained by servility

and suppleness. After the i8th of Brumaire, the day when Napoleon
was made emperor, Laplace's ardor for republican principles suddenly

gave way to a great devotion to the emperor. Napoleon rewarded

this devotion by giving him the post of minister of the interior, but

dismissed him after six months for incapacity. Said Napoleon, "La-
place ne saisissait aucune question sous son veritable point de vue; il

cherchait des subtilites partout, n'avait que des idees problematiques,

et portait eniin I'esprit des infiniment petits jusque dans I'administra-

tion." Desirous to retain his allegiance. Napoleon elevated him to

the Senate and bestowed various other honors upon him. Neverthe-

less, he cheerfully gave his voice in 1814 to the dethronement of his

patron and hastened to tender his services to the Bourbons, thereby

earning the title of marquis. This pettiness of his character is seen

in his writings. The first edition of the Systeme du monde was dedi-

cated to the Council of Five Hundred. To the third volume of the

Mecanique Celeste is prefixed a note that of all the truths contained

in the book, the one most precious to the author was the declaration he

thus made of gratitude and devotion to the peace-maker of Europe.
After this outburst of affection, we are surprised to find in the editions

of the Theorie analytique des probabilites, which appeared after the

Restoration, that the original dedication to the emperor is suppressed.

Though supple and servile in politics, it must be said that in religion

and science Laplace never misrepresented or concealed his own con-

victions however distasteful they might be to others. In mathematics
and astronomy his genius shines with a lustre excelled by few. Three
great works did he give to the scientific world,—the Mecanique Celeste,

the Exposition du systeme du monde, and the Theorie analytique des

probabilites. Besides these he contributed important memoirs to the

French Academy.
We first pass in brief review his astronomical researches. In 1773

he brought out a paper in which he proved that the mean motions
or mean distances of planets are invariable or merely subject to small

periodic changes. This was the first and most important step in his

attempt to establish the stability of the solar system. "^ To I. Newton
and also to L. Euler it had seemed doubtful whether forces so numer-
ous, so variable in position, so different in intensity, as those in the

solar system, could be capable of maintaining permanently a condition

of equilibrium. Newton was of the opinion that a powerful hand
must intervene from time to time to repair the derangements occa-

sioned by the mutual action of the different bodies. This paper was
the beginning of a series of profound researches by J. Lagrange and

' D. F. J. Arago, "Eulogy on Laplace," translated by B. Powell, Smithsonian
Report, 1874.
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Laplace on the limits of variation of the various elements of planetary
orbits, in which the two great mathematicians alternately surpassed
and supplemented each other. Laplace's first paper really grew out
of researches on the theory of Jupiter and Saturn. The behavior of

these planets had been studied by L. Euler and J. Lagrange without
receiving satisfactory explanation. Observation revealed the ex-

istence of a steady acceleration of the mean motions of our moon and
of Jupiter and an equally strange diminution of the mean motion of

Saturn. It looked as though Saturn might eventually leave the
planetary system, while Jupiter would fall into the sun, and the moon
upon the earth. Laplace finally succeeded in showing, in a paper of

1784-1786, that these variations (called the "great inequality") be-

longed to the class of ordinary periodic perturbations, depending upon
the law of attraction. The cause of so influential a perturbation was
found in the commensurability of the mean motion of the two planets.

In the study of the Jovian system, Laplace was enabled to deter-

mine the masses of the moons. He also discovered certain very
remarkable, simple relations between the movements of those bodies,

known as "Laws of Laplace." His theory of these bodies was com-
pleted in papers of 1788 and 1789. These, as well as the other papers

here mentioned, were published in the Memoirs presentes par divers

savans. The year 1787 was made memorable by Laplace's announce-
ment that the lunar acceleration depended upon the secular changes

in the eccentricity of the earth's orbit. This removed all doubt then

existing as to the stability of the solar system. The universal validity

of the law of gravitation to explain all motion in the solar system
seemed established. That system, as then known, was at last found

to be a complete machine.

In 1796 Laplace published his Exposition, du systeme du monde,

a non-mathematical popular treatise on astronomy, ending with a

sketch of the history of the science. In this work he enunciates for

the first time his celebrated nebular hypothesis. A similar theory

had been previously proposed by I. Kant in 1755, and by E. Sweden-

borg; but Laplace does not appear to have been aware of this.

Laplace conceived the idea of writing a work which should contain

a complete analytical solution of the mechanical problem presented by

the solar system, without deriving from observation any but indis-

pensable data. The result was the Mccanique Celeste, which is a

systematic presentation embracing all the discoveries of I. Newton,

A. C. Clairaut, D'Alembert, L. Euler, J. Lagrange, and of Laplace

himself, on celestial mechanics. The first and second volumes of this

work were published in 1799; the third appeared in 1802, the fourth

in 1805. Of the fifth volume. Books XI and XII were pubhshed in

1823; Books XIII, XIV, XV in 1824, and Book XVI in 1825. The

first two volumes contain the general theory of the motions and figure

of celestial bodies. The third and fourth volumes give special theories
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of celestial motions,—treating particularly of motions of comets, of

our moon, and of other satellites. The fifth volume opens with a

brief history of celestial mechanics, and then gives in appendices the

results of the author's later researches. The Mecanique Celeste was
such a master-piece, and so complete, that Laplace's immediate suc-

cessors were able to add comparatively Uttle. The general part of

the work was translated into German by Johann Karl Burkhardt

(1773-1825), and appeared in Berlin, 1800-1802. Nathaniel Bowditch

(1773-1838) brought out an edition in English, with an extensive com-
mentary, in Boston, 1829-1839. The Mecanique Celeste is not easy

reading. The difficulties lie, as a rule, not so much in the subject

itself as in the want of verbal explanation. A complicated chain of

reasoning receives often no explanation whatever. J. B. Biot, who
assisted Laplace in revising the work for the press, tells that he once

asked Laplace some explanation of a passage in the book which had
been written not long before, and that Laplace spent an hour endeavor-

ing to recover the reasoning which had been carelessly suppressed

with the remark, "II est facile de voir." Notwithstanding the impor-

tant researches in the work, which are due to Laplace himself, it

naturally contains a great deal that is drawn from his predecessors.

It is, in fact, the organized result of a century of patient toil. But
Laplace frequently neglects properly to acknowledge the source from
which he draws, and lets the reader infer that theorems and formula
due to a predecessor are really his own.
We are told that when Laplace presented Napoleon with a copy

of the Mecanique Celeste, the latter made the remark, "M. Laplace,

they tell me you have written this large book on the system of the

universe, and have never even mentioned its Creator." Laplace is

said to have replied bluntly, "Je n'avais pas besoin de cette hy-
pothese-la." This assertion, taken literally, is impious, but may it

not have been intended to convey a meaning somewhat different

from its literal one? I. Newton was not able to explain by his law of

gravitation all questions arising in the mechanics of the heavens.
Thus, being unable to show that the solar system was stable, and
suspecting in fact that it was unstable, Newton expressed the opinion

that the special intervention, from time to time, of a powerful hand
was necessary to preserve order. Now Laplace thought that he had
proved by the law of gravitation that the solar system is stable, and
in that sense may be said to have felt no necessity for reference to the

Almighty.

We now proceed to researches which belong more properly to pure
mathematics. Of these the most conspicuous are on the theory of

probability. Laplace has done more towards advancing this subject

than any one other investigator. He published a series of papers,

the main results of which were collected in his Theorie analytique des

probabilites, 181 2. The third edition (1820) consists of an introduction
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and two books. The introduction was published separately under
the title, Essai philosophique sur les probabilites, and is an admirable
and masterly exposition without the aid of analytical formulae of the
principles and applications of the science. The first book contains
the theory of generating functions, which are applied, in the second
book, to the theory of j)robability. Laplace gives in his work on
probability his method of approximation to the values of definite

integrals. The solution of linear differential equations was reduced
by him to definite integrals. The use of partial difference equations
was introduced into the study of probability by him about the same
time as by J. Lagrange. One of the most important parts of the

work is the application of probabiUty to the method of least squares,

which is shown to give the most probable as well as the most conven-
ient results.

Laplace's work on probability is very dificult reading, particularly

the part on the method of least squares. The analytical processes

are by no means clearly established or free from error. " No one was
more sure of giving the result of analytical processes correctly, and
no one ever took so little care to point out the various small con-

siderations on which correctness depends" (De Morgan). Laplace's

comprehensive work contains all of his own researches and much
derived from other writers. He gives masterly expositions of the

Problem of Points, of Jakob Bernoulli's theorem, of the problems taken

from Bayes and Count de Buffon. In this work as in his Mecanique
Celeste, Laplace is not in the habit of giving due credit to writers that

preceded him. A. De Morgan^ says of Laplace: "There is enough
originating from himself to make any reader wonder that one who
could so well afford to state what he had taken from others, should

have set an example so dangerous to his own claims."

Of Laplace's papers on the attraction of ellipsoids, the most im-

portant is the one pubHshed in 1785, and to a great extent reprinted

in the third volume of the Mecanique Celeste. It gives an exhaustive

treatment of the general problem of attraction of any ellipsoid upon
a particle situated outside or upon its surface. Spherical harmonics,

or the so-called "Laplace's coefiicients," constitute a powerful analytic

engine in the theory of attraction, in electricity, and magnetism. The
theory of spherical harmonics for two dimensions had been previously

given by A. M. Legendre. Laplace failed to make due acknowledg-

ment of this, and there existed, in consequence, between the two

great men, "a feeling more than coldness." The potential function,

V, is much used by Laplace, and is shown by him to satisfy the partial

5^F 3^F a^F
differential equation —^-\ 5-I

—

t=°- This is known as Laplace's^ hx^ by iiz'

1 A. De Morgan, An Essay on Probabilities, London, 1838 (date of Preface)

p. II of Appendix I.
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equation, and was first given by him in the more complicated form
which it assumes in polar co-ordinates. The notion of potential was,

however, not introduced into analysis by Laplace. The honor of

that achievement belongs to J. Lagrange.

Regarding Laplace's equation, P. E. Picard said in 1904: "Few
equations have been the object of so many, works as this celebrated

equation. The conditions at the limits may be of divers forms. The
simplest case is that of the calorific equilibrium of a body of which
we maintain the elements of the surface at given temperatures; from
the physical point of view, it may be regarded as evident that the

temperature, continuous within the interior since no source of heat

is there, is determined when it is given at the surface. A more general

case is that where . . . the temperature may be given on one portion,

while there is radiation on another portion. These questions . . .

have greatly contributed to the orientation of the theory of partial

differential equations. They have called attention to types of deter-

minations of integrals, which would not have presented themselves

in remaining at a point of view purely abstract." '

Among the minor discoveries of Laplace are his method of solving

equations of the second, third, and fourth degrees, his memoir on
singular solutions of differential equations, his researches in finite

differences and in determinants, the establishment of the expansion

theorem in determinants which had been previously given by A. T.

Vandermonde for a special case, the determination of the complete
integral of the linear differential equation of the second order. In
the Mecanique Celeste he made a generalization of Lagrange's theorem
on the development of functions in series known as Laplace's theorem.

Laplace's investigations in physics were quite extensive. We men-
tion here his correction of Newton's formula on the velocity of sound
in gases by taking into account the changes of elasticity due to the

heat of compression and cold of rarefaction; his researches on the

theory of tides; his mathematical theory of capillarity; his explanation

of astronomical refraction; his formulae for measuring heights by the

barometer.

Laplace's writings stand out in bold contrast to those of J. Lagrange
in their lack of elegance and symmetry. Laplace looked upon mathe-
matics as the tool for the solution of physical problems. The true

result being once reached, he devoted little time to explaining the

various steps of his analysis, or in polishing his work. The last years

of his hfe were spent mostly at Arcueil in peaceful retirement on a

country-place, where he pursued his studies with his usual vigor

until his death. He was a great admirer of L. Euler, and would often

say, "Lisez Euler, lisez Euler, c'est notre maitre a tous."

The latter part of the eighteenth century brought forth researches

on the graphic representation of imaginaries, all of which remained
' Congress of Arts and Science, St. Louis, 1904, Vol. I, p. 506.
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quite unnoticed at that time. During the time of R. Descartes, I.

Newton and L. Euler, the negative and the imaginary came to be
accepted as numbers, but the latter was still regarded as an algebraic
fiction. A little over a hundred years after J. Wallis's unsuccessful
efforts along the line of graphic representation of imaginaries, "a
modest scientist," Henri Dominique Truel, pictured imaginaries upon
a hne that was perpendicular to the line representing real numbers.
So far as known, Truel published nothing, nor are his manuscripts
extant. All we know about him is a brief reference to him made by
A. L. Cauchy,! who says that Truel had his graphic scheme as early
as 1786, and about 1810 turned his manuscripts over to Augustin
Normauf , a ship builder in Havre. W. J. G. Karsten's graphic scheme
of 1768 was confined to imaginary logarithms. The earliest printed

graphic representation of V — i and a+J V — i was given in an " Essay
on the Analytic Representation of Direction, with Applications in

Particular to the Determination of Plane and Spherical Polygons"
presented in 1797 by Caspar Wessel (1745-1818) to the Royal Academy
of Sciences and Letters of Denmark and published in Vol. V of its

Memoirs in 1799. Wessel was born in Jonsrud, in Norway. For
many years he was in the employ of the Danish Academy of Sciences

as a surveyor. His paper lay buried in the Transactions of the Danish
Academy for nearly a century. In 1897 a French translation was
brought out by the Danish Academy.^ Another noteworthy publica-

tion which remained unknown for many years is an Essay ' published
in 1806 by Jean Robert Argand (1768-1822) of Geneva, containing a

geometric representation of a+^ — ih. Some parts of his paper are

less rigorous than the corresponding parts of Wessel. Argand gave
some remarkable applications to trigonometry, geometry and algebra.

The word "modulus," to represent the length of the vector a+ib,

is due to Argand. The writings of Wessel and Argand being little

noticed, it remained for K. F. Gauss to break down the last opposition

to the imaginary. Gauss seems to have been in possession of a graphic

scheme as early as 1799, but its fuller exposition was deferred until

1831.

During the French Revolution the metric system was introduced.

The general idea of decimal subdivision was obtained from a work of

Thomas Williams, London, 1788. On April 14, 1790, Mathurin
Jacques Brisson (1723-1806) proposed before the Paris Academy the

establishment of a system resting on a natural unit of length. A
scheme was elaborated which originally included the decimal sub-

division of the quadrant of a circle, as is shown by the report made to

1 Cauchy, Exercices d'Analyse el de phys. math., T. IV, 1847, p. 157.
2 See also an address on Wessel by W. W. Beman in the Proceedings of the Am.

Ass'n Adv. of Science, Vol. 46, 1897.
' Imaginary Quantities. Their Geometrical Interpretation. Translated from the

French .ef M. Argand by A. S. Hardy, New York, 1881.
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the Academy of Sciences on March 19, 1791, by a committee con-

sisting of J. C. Borda, J. Lagrange, P. S. Laplace, G. Monge, de Con-
dorcet. This subdivision is found in the Franqois Callet (1744-1798)
logarithmic tables of 1795, and other tables pubHshed in France and
Germany. Nevertheless the decimal subdivision of the quadrant did

not then prevail. '^ The commission composed of Borda, Lagrange,

Laplace, Monge and Condorcet decided upon the ten-mUlionth part

of the earth's quadrant as the primitive unit of length. The length

of the second's pendulum had been under consideration, but was
finally rejected, because it rested upon two dissimilar elements,

gravity and time. In 1799 the measurement of the earth's quadrant
was completed and the meter established as the natural unit of length.

Alexandre-Theophile Vandermonde (1735-1796) studied music
during his youth in Paris and advocated the theory that all art rested

upon one general law, through which any one could become a com-
poser with the aid of mathematics. He was the first to give a con-

nected and logical exposition of the theory of determinants, and may,
therefore, almost be regarded as the founder of that theory. He and J.

Lagrange originated the method of combinations in solving equations.

Adrien Marie Legendre (1752-1833) was educated at the College

Mazarin in Paris, where he began the study of mathematics under
Abbe Joseph Franjois Marie (i 738-1801). His mathematical genius

secured for him the position of professor of mathematics at the mili-

tary school of Paris. While there he prepared an essay on the curve
described by projectiles thrown into resisting media (ballistic curve),

which captured a prize offered by the Royal Academy of Berhn. In
1780 he resigned his position in order to reserve more time for the

study of higher mathematics. He was then made member of several

pubhc commissions. In 1795 he was elected professor at the Normal
School and later was appointed to some minor government positions.

Owing to his timidity and to Laplace's unfriendliness toward him, but
few important public offices commensurate with his abiUty were
tendered to him.

As an analyst, second only to P. S. Laplace and J. Lagrange, Legen-
dre enriched mathematics by important contributions, mainly on
elliptic integrals, theory of numbers, attraction of ellipsoids, and least

squares. The most important of Legendre's works is his Fonctions

elliptiques, issued in two volumes in 1825 and 1826. He took up the

subject where L. Euler, John Landen, and J. Lagrange had left it,

and for forty years was the only one to cultivate this new branch of

analysis, until at last C. G. J. Jacobi and N. H. Abel stepped in with
admirable new discoveries.^ Legendre imparted to the subject that

' For details, see R. Mehmke in Jahresb. d. d. Math. Vereinigimg, Leipzig, 1900,
pp. 138-163.

2 M . Elie de Beaumont, " Memoir of Legendre." Translated by C. A, Alexander,
Smithsonian Report, 1867.
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connection and arrangement which belongs to an independent science.

Starting with an integral depending upon the square root of a poly-

nomial of the fourth degree in x, he showed that such integrals can be
brought back to three canonical forms, designated by F{4>),E{4>), and

n((^), the radical being expressed in the form A((^) = -\/i — ^^ sin^</).

He also undertook the prodigious task of calculating tables of

arcs of the ellipse for different degrees of amplitude and eccentricity,

which supply the means of integrating a large number of differentials.

An earlier publication which contained part of his researches on
elliptic functions was his Calcul integral in three volumes (181 1, 1816,

1817), in which he treats also at length of the two classes of definite

integrals named by him Eulerian. He tabulated the values of log

r(^) for values of p between i and 2.

One of the earliest subjects of research was the attraction of sphe-

roids, which suggested to Legendre the function P„, named after him.

His memoir was presented to the Academy of Sciences in 1783. The
researches of C. Maclaurin and J. Lagrange suppose the point at-

tracted by a spheroid to be at the surface or within the spheroid, but

Legendre showed that in order to determine the attraction of a

spheroid on any external point it sufl&ces to cause the surface of another

spheroid described upon the same foci to pass through that point.

Other memoirs on ellipsoids appeared later.

In a paper of 1788 Legendre published criteria for distinguishing

between maxima and minima in the calculus of variations, which were

shown by J. Lagrange in 1797 to be insufiScient; this matter was set

right by C. G. J. Jacobi in 1836.

The two household gods to which Legendre sacrificed with ever-

renewed pleasure in the silence of his closet were the elliptic functions

and the theory of numbers. His researches on the latter subject,

together with the numerous scattered fragments on the theory of

numbers due to his predecessors in this line, were arranged as far

as possible into a systematic whole, and published in two large quarto

volumes, entitled Thcorie des nombres, 1830. Before the publication

of this work Legendre had issued at divers times preliminary articles.

Its crowning pinnacle is the theorem of quadratic reciprocity, pre-

viously indistinctly given by L. Euler without proof, but for the first

time clearly enunciated and partly proved by Legendre.^

While acting as one of the commissioners to connect Greenwich

and Paris geodetically, Legendre calculated the geodetic triangles in

France. This furnished the occasion of establishing formulae and

theorems on geodesies, on the treatment of the spherical triangle as

if it were a plane triangle, by applying certain corrections to the

angles, and on the method of least squares, pubhshed for the first

time by him without demonstration in 1806.

1 O. Baumgart, Ueber das Quadraiische Reciprocii'dtsgesdz, Leipzig, 1885.
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Legendre wrote an Elements de Geometrie, 1794, which enjoyed

great popularity, being generally adopted on the Continent and in

the United States as a substitute for Euclid. This great modern rival

of EucUd passed through numerous editions; some containing the

elements of trigonometry and a proof of the irrationality of tt and tt^.

With prophetic vision Legendre remarks: "II est meme probable que
le nombre tt n'est pas meme compris dans les irrationelles algebriques,

c'est-a-dire qu'il ne pent pas etre la racin'e 'dune equation algebrique

d'un nombre fini de termes dont les coeiScients sont rationels."

Much attention was given bjt Legendre to the subject of parallel lines.

In the earlier editions of th^ Elements, he made direct appeal to the

senses for the correctness of the "parallel-axiom." He then attempted
to demonstrate that "axiom," but his proofs did not satisfy even

himself. In Vol. XII of the Memoirs of the Institute is a paper by
Legendre, containing his last attempt at a solution of the problem.

Assuming space to be infinite, he proved satisfactorily that it is im-

possible for the sum of the three angles of a triangle to exceed two
right angles; and that if there be any triangle the sum of whose angles

is two right angles, then the same must be true of all triangles. But
in the next step, to show that this sum cannot be less than two right

angles, his demonstration necessarily failed. If it could be granted

that the sum of the three angles is always equal to two right angles,

then the theory of parallels could be strictly deduced.

Another author who made contributions to elementary geometry
was the Italian Lorenzo Mascheroni (1750-1800). He published his

Geometria del compasso (Pavia, 1797, Palermo, 1903; ^ French editions

by A. M. Carette appeared in 1798 and 1825, a German edition by

J. P. Griison in 1825). All constructions are made with a pair of

compasses, but without restriction to a fixed radius. He proved that

all constructions possible with ruler and compasses are possible with
compasses alone. It was J. V. Poncelet who proved in 1822 that all

such construction are possible with ruler alone, if we are given a fixed

circle with its centre in the plane of construction; A. Adler of Vienna
proved in 1890 that these constructions are possible with ruler alone

whose edges are parallel, or whose edges converge in a point. Masch-
eroni claimed that constructions with compasses are more accurate

than those with a ruler. Napoleon proposed to the French mathe-
maticians the problem, to divide the circumference of a circle into

four equal parts by the compasses only. Mascheroni does this by
applying the radius three times to the circumference; he obtains the

arcs A B, B C, C D; then A D is a diameter; the rest is obvious.

E. W. Hobson {Math. Gazelle, March i, 1913) and others have shown
that all Euclidean constructions can be carried out by the use of

compasses alone.

' A list of Mascheroni's writings is given in L'lntermgdiaire des maMmaticiens,
Vol. 19, 19 1 2, p. 92.
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In 1790 Mascheroni published annotations to Euler's Integral
Calculus. D'Alembert had argued "le calcul en defaut" by declaring
that the astroid xi+yi=i yielded o as the length of the arc from
x=-i to*=i,y being taken positive. To this Mascheroni added in

his annotations another paradox, by the contention that, for x>i,
the curve is imaginary, yet has a real length of arc."^ These paradoxes
found no adequate explanation at the time, due to an inadequate
fixing of the region of variability.

Joseph Fourier (1768-1830) was born at Auxerre, in central France.
He became an orphan in his eighth year. Through the influence of

friends he was admitted into the mihtary school in his native place,

then conducted by the Benedictines of the Convent of St. Mark. He
there prosecuted his studies, particularly mathematics, with sur-

prising success. He wished to enter the artillery, but, being of low
birth (the son of a tailor), his application was answered thus: "Fourier,

not being noble, could not enter the artillery, although he were a

second Newton." ^ He was soon appointed to the mathematical
chair in the military school. At the age of twenty-one he went to

Paris to read before the Academy of Sciences a memoir on the reso-

lution of numerical equations, which was an improvement on Newton's
method of approximation. This investigation of his early youth he
never lost sight of. He lectured upon it in the Polytechnic School;

he developed it on the banks of the Nile; it constituted a part of a
work entitled Atialyse des equationes determines (183 1), which was
in press when death overtook him. This work contained "Fourier's

theorem" on the number of real roots between two chosen limits.

The French physician F. D. Budan had published a theorem nearly

identical in principle, although different in statement, as early as

1807, but in 1807 Budan had not only not proved the theorem known
by his name, but had not yet satisfied himself that it was really true.

He gave a proof in 181 1, which was printed in 1822. Fourier taught

his theorem to his pupils in the Polytechnic School in 1796, 1797 and

1803; he first printed the theorem and its proof in 1820. His priority

over Budan is firmly established.

Fourier was anticipated in two of his important results. His im-

provement on the Newton-Raphson method of approximation, render-

ing the process applicable without the possibility of failure, was given

earlier by Mourraille, as was also Fourier's method of settling the

question whether two roots near the border line of equality are really

equal, or perhaps slightly different, or perhaps imaginary. These
theorems were eclipsed by that of Sturm, published in 1835.

About this time new upper and lower limits of the real roots were
discovered. In 1815 Jean Jacques Bret (1781-?) professor in Grenoble,

printed three theorems, of which the following is best known: If frac-

' M. Cantor, op. cit., Vol. IV, igo8, p. 485.
2 D. F. J. Arago, "Joseph Fourier," Smithsonian Report, 1871.
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tions are formed by giving each fraction a negative coefficient in an
equation for its numerator, taken positively, and for its denominator
the sum of the positive coefficients preceding it, if moreover unity is

added to each fraction thus formed, then the largest number thus

obtainable is larger than any root of the equation. In 1822 A. A.

Vene, a French officer of engineers, showed: If P is the largest negative

coefficient, and if 5 be the greatest coefficient among the positive

terms which precede the first negative term, then will P-^S+i be a

superior limit.

Fourier took a prominent part at his home in promoting the Revo-
lution. Under the French Revolution the arts and sciences seemed for

a time to flourish. The reformation of the weights and measures was
planned with grandeur of conception. The Normal School was
created in 1795, of which Fourier became at first pupil, then lecturer.

His brilliant success secured him a chair in the Polytechnic School,

the duties of which he afterwards quitted, along with G. Monge and
C. L. Berthollet, to accompany Napoleon on his campaign to 'Egypt.

Napoleon founded the Institute of Egypt, of which J. Fourier became
secretary. In Egypt he engaged not only in scientific work, but dis-

charged important political functions. After his return to France he
held for fourteen years the prefecture of Grenoble. During this

period he carried on his elaborate investigations on the propagation of

heat in sohd bodies, published in 1822 in his work entitled La Theorie

Analytique de la Chaleur. This work marks an epoch in the history of

both pure and applied mathematics. It is the source of all modern
methods in mathematical physics involving the integration of partial

differential equations in problems where the boundary values are

fixed ("boundary-value problems"). Problems of this tjrpe involve

L. Euler's second definition of a "function" in which the relation is

not necessarily capable of being expressed analytically. This concept
of a function greatly influenced P. G. L. Dirichlet. The gem of

Fourier's great book is "Fourier's series." By this research a long
controversy was brought to a close, and the fact recognized that any
arbitrary function {i. e. any graphically given function) of a real

variable can be represented by a trigonometric series. The first

announcement of this great discovery was made by Fourier in 1807,

n =00

before the French Academy. The trigonometric series 2 {('n sin nx->r
n =0

bn COS nx) represents the function (j}(x) for every value of x, if the

I r ^

coefficients a„=~ I (f){x) sin nxdx, and 6„ be equal to a similar in-
irj -TV

tegral. The weak point in Fourier's analysis lies in his failure to

prove generally that the trigonometric series actually converges to
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the value of the function. WiUiam Thomson (later Lord Kelvin)
says that on May i, 1840 (when he was only sixteen), "I took Fourier
out of the University Library; and in a fortnight I had mastered it

—

gone right through it." Kelvin's whole career was influenced by
Fourier's work on heat, of which, he said, "it is difiScult to say whether
their uniquely original quality, or their transcendant interest, or their

perennially important instructiveness for physical science, is most
to be praised." ^ Clerk Maxwell pronounced it a great mathematical
poem. In 1827 Fourier succeeded P. S. Laplace as president of the
council of the Polytechnic School.

About the time of Budan and Fourier, important devices were
invented in Italy and England for the solution of numerical equations.
The Italian scientific society in 1802 offered a gold medal for improve-
ments in the solution of such equations; it was awarded in 1804 to

Paolo Ruffini. With aid of the calculus he develops the theory of

transforming one equation into another whose roots are all diminished
by a certain constant.^ Then follows the mechanism for the practical

computer, and here Ruffini has a device which is simpler than Homer's
scheme of 1819 and practically identical with what is now known as

Homer's procedure. Horner had no knowledge of Ruffini's memoir.
Nor did either Homer or Ruffini know that their method had been
given by the Chinese as early as the thirteenth century. Horner's
first paper was read before the Royal Society, July i, 1819, and pub-
lished in the Philosophical Transactions for 1819. Horner uses L. F. A.
Arbogast's derivatives. The modern reader is surprised to find that

Homer's exposition involves very intricate reasoning which is in

marked contrast with the simple and elementary explanations found
in modern texts. Perhaps this was fortunate; a simpler treatment

might have prevented publication in the Philosophical Transactions.

As it was, much demur was made to the insertion of the paper. "The
elementary character of the subject," said T. S. Davies, "was the

professed objection; his recondite mode of treating it was the professed

passport for its admission." A second article of Horner on his method
was refused publication in the Philosophical Transactions, and ap-

peared in 1765 in the Mathematician, after the death of Homer; a

third article was printed in 1830. Both Horner and Ruffini explained

their methods at first by higher analysis and later by elementary

algebra; both offered their methods as substitutes for the old process

of root-extraction of numbers. Ruffini's paper was neglected and

forgotten. Horner was fortunate in finding two influential champions

of his method—John Radford Young (1799-1885) of Belfast and A.

De Morgan. The Ruffini-Horner process has been used widely in

England and the United States, less widely in Germany, Austria and

1 S. P. Thompson Life of William Thomson, London, 1910, pp. 14, 689.

2 See F. Cajori, "Homer's method of approximation anticipated by Ruffini," Btdl.

Am. Math. Sac. 2d S., Vol. 17, 1911, pp. 409-414.
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Italy, and not at all in France. In France the Newton-Raphson
method has held almost undisputed sway.'-

Before proceeding to the origin of modern geometry we shall speak
briefly of the introduction of higher analysis into Great Britain. This
took place during the first quarter of the last century. The British

began to deplore the very small progress that science was making in

England as compared with its racing progress on the Continent. The
first Enghshman to urge the study of continental writers was Robert

Woodhouse (1773-1827) of Caius College, Cambridge. In 1813 the

"Analytical Society" was formed at Cambridge. This was a small

club established by George Peacock, John Herschel, Charles Babbage,
and a few other Cambridge students, to promote, as it was humorously
expressed by Babbage, the principles of pure "Z)-ism," that is, the

Leibnizian notation in the calculus against those of "dot-age," or'

of the Newtonian notation. This struggle ended in the introduction

dv
into Cambridge of the notation -—, to the exclusion of the fluxional

notation y. This was a great step in advance, not on account of any
great superiority of the Leibnizian over the Newtonian notation, but
because the adoption of the former opened up to English students

the vast storehouses of continental discoveries. Sir William Thom-
son, P. G. Tait, and some other modern writers find it frequently con-

venient to use both notations. Herschel, Peacock, and Babbage
translated, in 1816, from the French, S. F. Lacroix's briefer treatise

on the differential and integral calculus, and added in 1820 two
volumes of examples. Lacroix's larger work, the Traits du calctd

dijferentiel et integral, first contained the term "differential coefficient"

and definitions of "definite" and "indefinite" integrals. It was one
of the best and most extensive works on the calculus of that time.

Of the three founders of the "Analytical Society," Peacock afterwards

did most work in pure mathematics. Babbage became famous for

his invention of a calculating engine superior to Pascal's. It was
never finished, owing to a misunderstanding with the government,
and a consequent failure to secure funds. John Herschel, the eminent
astronomer, displayed his mastery over higher analysis in memoirs
communicated to the Royal Society on new applications of mathe-
matical analysis, and in articles contributed to cyclopaedias on light,

on meteorology, and on the history of mathematics. In the Philo-

sophical Transactions of 1813 he introduced the notation sin~^x,

tan~^x, ... for arcsin x, arctan x, . . . He wrote also log'x, cos'^x, . .

.

for log {log x), cos {cos x), . . ., but in this notation he was anticipated

by Heinrich Burmann (?-i8i7) of Mannheim, a partisan of the com-
binatory analysis of C. F. Hindenburg in Germany.

' For references and further detail, see Colorado College Publication, General Series

52, 1910.
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George Peacock (1791-1858) was educated at Trinity College,

Cambridge, became Lowndean professor there, and later, dean of

Ely. His chief publications are his Algebra, 1830 and 1842, and his

Report on Recent Progress in Analysis, which was the first of several

valuable summaries of scientific progress printed in the volumes of

the British Association. He was one of the first to study seriously

the fundamental principles of algebra, and to recognize fully its purely
symbolic character. He advances, though somewhat imperfectly,

the "principle of the permanence of equivalent forms." It assumes
that the rules applying to the symbols of arithmetical algebra apply
also in symbolical algebra. About this time Duncan Farquharson
Gregory (1813-1844), fellow of Trinity College, Cambridge, wrote
a paper "on the real nature of symbolical algebra," which brought
out clearly the commutative and distributive laws. These laws had
been noticed years before by the inventors of symbolic methods in

the calculus. It was F. Servois who introduced the names commutative

and distributive in Gergonne's Annates, Vol. 5, 1814-15, p. 93. The
term associative seems to be due to W. R. Hamilton. Peacock's

investigations on the foundation of algebra were considerably ad-

vanced by A. De Morgan and H. Hankel.

James Ivory (1765-1842) was a Scotch mathematician who for

twelve years, beginning in 1804, held the mathematical chair in the

Royal Military College at Marlow (now at Sandhurst). He was
essentially a self-trained mathematician, and almost the only one in

Great Britain previous to the organization of the Analytical Society

who was well versed in continental mathematics. Of importance is

his memoir (Phil. Trans., 1809) in which the problem of the attraction

of a homogeneous ellipsoid upon an external point is reduced to the

simpler problem of the attraction of a related ellipsoid upon a corre-

sponding point interior to it. This is known as "Ivory's theorem."

He criticised with undue severity Laplace's solution of the method
of least squares, and gave three proofs of the principle without re-

course to probability; but they are far from being satisfactory.

About this time began the aggressive investigation of "curves of

pursuit." The Italian painter Leonardo da Vinci seems to be the

first to have directed attention to such curves. They were first

investigated by Pierre Bouguer of Paris in 1732, then by the French

collector of customs, Dubois-Ayme {Corresp. sur I'ecole polyt. II, 1811,

p. 27s) who stimulated researches carried on by Thomas de St. Laurent,

Ch. Sturm, Jean Joseph Querret and Tedenat (Ann. de Mathem., Vol. 13,

1822-1823).

By the researches of R. Descartes and the invention of the calculus,

the analytical treatment of geometry was brought into great prom-

inence for over a century. Notwithstanding the efforts to revive

synthetic methods made by G. Desargues, B. Pascal, De Lahire,

I. Newton, and C. Maclaurin, the analytical method retained almost
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undisputed supremacy. It was reserved for the genius of G. Monge
to bring synthetic geometry in the foreground, and to open up new
avenues of progress. His Geometrie descriptive marks the beginning

of a wonderful development of modern geometry.

Of the two leading problems of descriptive geometry, the one—to

represent by drawings geometrical magnitudes—was brought to a
high degree of perfection before the time of Monge; the other—to

solve problems on figures in space by constructions in a plane—had
received considerable attention before his time. His most noteworthy
predecessor in descriptive geometry was the Frenchman Amedee
Franfois Frezier (1682-1773). But it remained for Monge to create

descriptive geometry as a distinct branch of science by imparting to

it geometric generality and elegance. All problems previously treated

in a special and uncertain manner were referred back to a few general

principles. He introduced the line of intersection of the horizontal

and the vertical plane as the axis of projection. By revolving one
plane into the other around this axis or ground-line, many advantages

were gained.^

Gaspard Monge (1746-1818) was born at Beaune. The construc-

tion of a plan of his native town brought the boy under the notice of

a colonel of engineers, who procured for him an appointment in the

college of engineers at Mezieres. Being of low birth, he could not
receive a commission in the army, but he was permitted to enter the

annex of the school, where surveying and drawing were taught. Ob-
serving that all the operations connected with the construction of

plans of fortification were conducted by long arithmetical processes,

he substituted a geometrical method, which the commandant at first

refused even to look at; so short was the time in which it could be
practised that, when once examined, it was received with avidity.

Monge developed these methods further and thus created his descrip-

tive geometry. Owing to the rivalry between the French military

schools of that time, he was not permitted to divulge his new methods
to any one outside of this institution. In 1 768 he was made professor of

mathematics at Mezieres. In 1780, when conversing with two of his

pupils, S. F. Lacroix and S. F. Gay de Vernon in Paris, he was obliged

to say, "All that I have here done by calculation, I could have done
with the ruler and compasses, but I am not allowed to reveal these

secrets to you." But Lacroix set himself to examine what the secret

could be, discovered the processes, and published them in 1795. The
method was published by Monge himself in the same year, first in

the form in which the shorthand writers took down his lessons given
at the Normal School, where he had been elected professor, and then
again, in revised form, in the Journal des ecotes normales. The next
edition occurred in 1 798-1 799. After an ephemeral existence of only
four months the Normal School was closed in 1795. In the same year

' Christian Wiener, Lehrbuch der Darstellenden Geometric, Leipzig, 1884, p. 26.
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the Polytechnic School was opened, in the establishing of which
Monge took active part. He taught there descriptive geometry until

his departure from France to accompany Napoleon on the Egyptian
campaign. He was the first president of the Institute of Egjrpt.

Monge was a zealous partisan of Napoleon and was, for that reason,

deprived of all his honors by Louis XVIII. This and the destruction
of the Polytechnic School preyed heavily upon his mind. He did not
long survive this insult.

Monge's numerous papers were by no means confined to descriptive
geometry. His analytical discoveries are hardly less remarkable. He
introduced into analytic geometry the methodic use of the equation
of a line. He made important contributions to surfaces of the second
degree (previously studied by C. Wren and L. Euler) and discovered
between the theory of surfaces and the integration of partial differ-

ential equations, a hidden relation which threw new hght upon both
subjects. He gave the differential of curves of curvature, estabhshed
a general theory of curvature, and applied it to the ellipsoid. He
found that the validity of solutions was not impaired when imaginaries

are involved among subsidiary quantities. Usually attributed to

Monge are the centres of similitude of circles and certain theorems,
which were, however, probably known to ApoUonius of Perga. ^ Monge
pubUshed the following books: Statics, 1786; Applications de I'algebre

a la geometrie, 1805; Application de I'analyse a la geometrie. The last

two contain most of his miscellaneous papers.

Monge was an inspiring teacher, and he gathered around him a
large circle of pupils, among which were C. Dupin, F. Servois, C. J.

Brianchon, Hachette, J. B. Biot, and J. V. Poncelet. Jean Baptiste

Biol (1774-1862), professor at the College de France in Paris, came in

contact as a young man with Laplace, Lagrange, and Monge. In

1804 he ascended with Gay-Lussac in a balloon. They proved that

the earth's magnetism is not appreciably reduced in intensity in

regions above the earth's surface. Biot wrote a popular book on
analytical geometry and was active in mathematical physics and
geodesy. He had a controversy with Arago who championed A. J.

Fresnel's wave theory of Hght. Biot was a man of strong individuality

and great influence.

Charles Dupin (i 784-1873), for many years professor of mechanics

in the Conservatoire des Arts et Metiers in Paris, published in 1813

an important work on Developpements de geometiie, in which is intro-

duced the conception of conjugate tangents of a point of a surface,

and of the indicatrix.^ It contains also the theorem known as "Du-
pin's theorem." Surfaces of the second degree and descriptive geom-

' R. C. Archibald in Am. Math. Monthly, Vol. 22, 1915, pp. 6-12; Vol. 23, pp. 159-

161.
^ Gino Loria, Die Hauptsachlisten Theorien der Geometrie (F. Schiitte), Leipzig,

1888, p. 49-
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etry were successfully studied by Jean Nicolas Pierre HachHte (1769-

1834), who became professor of descriptive geometry at the Poly-

technic School after the departure of Monge for Rome and Egypt.

In 1822 he pubHshed his Traite de geomitrie descriptive.

Descriptive geometry, which arose, as we have seen, in technical

schools in France, was transferred to Germany at the foundation of

technical schools there. G. Schreiber (1799-1871), professor in Karls-

ruhe, was the first to spread Monge's geometry in Germany by the

publication of a work thereon in 1828-1829.'- In the United States

descriptive geometry was introduced in 1816 at the Military Academy
in West Point by Claude Crozet, once a pupil at the Polytechnic

School in Paris. Crozet wrote the first English work on the subject.^

Lazare Nicholas Marguerite Camot (1753-1823) was born at

Nolay in Burgundy, and educated in his native province. He entered

the army, but continued his mathematical studies, and wrote in 1784
a work on machines, containing the earliest proof that kinetic energy

is lost in collisions of bodies. With the advent of the Revolution he

threw himself into politics, and when coalesced Europe, in 1793,
launched against France a million soldiers, the gigantic task of or-

ganizing fourteen armies to meet the enemy was achieved by him.

He was banished in 1796 for opposing Napoleon's coup d'etat. The
refugee went to Geneva, where he issued, in 1797, a work still fre-

quently quoted, entitled. Reflexions sur la Metaphysique du Calcul

Infinitesimal. He declared himself as an "irreconcilable enemy of

kings." After the Russian campaign he offered to fight for France,

though not for the empire. On the restoration he was exiled. He
died in Magdeburg. His Geometrie de position, 1803, and his Essay on
Transversals, 1806, are important contributions to modern geometry.

While G. Monge revelled mainly in three-dimensional geometry,

Camot confined himself to that of two. By his effort to explain the

meaning of the negative sign in geometry he established a "geometry
of position," which, however, is different from the "Geometrie der

Lage" of to-day. He invented a class of general theorems on pro-

jective properties of figures, which have since been pushed to great

extent by J. V. Poncelet, Michel Chasles, and others.

Thanks to Carnot's researches, says J. G. Darboux,^ "the con-

ceptions of the inventors of analytic geometry, Descartes and Fermat,
retook alongside the infinitesimal calculus of Leibniz and Newton
the place they had lost, yet should never have ceased to occupy. With
his geometry, said Lagrange, speaking of Monge, this demon of a man
will make himself immortal."

While in France the school of G. Monge was creating modern

• C. Wiener, op. oil. p. 36.
^ F. Cajori, Teaching and History of Mathematics in U. S., Washington, 1890,

pp. 114, 117-
^ Congress of Arts and Science, St. Louis, 1904, Vol. i, p. 535.
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geometry, efforts were made in England to revive Greek geometry by
Robert Simson (1687-1768) and Matthew Stewart (1717-1785).
Stewart was a pupil of Simson and C. Maclaurin, and succeeded tlie

latter in the chair at Edinburgh. During the eighteenth century he
and Maclaurin were the only prominent mathematicians in Great
Britain. His genius was ill-directed by the fashion then prevalent in

England to ignore higher analysis. In his Four Tracts, Physical and
Mathematical, 1761, he applied geometry to the solution of difficult

astronomical problems, which on the Continent were approached
analytically with greater success. He published, in 1746, General

Theorems, and in 1763, his Propositiones geometries more veterum de-

monstratce. The former work contains sixty-nine theorems, of which
only five are accompanied by demonstrations. It gives many inter-

esting new results on the circle and the straight line. Stewart ex-

tended some theorems on transversals due to Giovanni Ceva (1647-

1734), ^.n Italian, who published in 1678 at Mediolani a work, De
lineis rectis se invicem secantibus, containing the theorem now known
by his name.



THE NINETEENTH AND TWENTIETH CENTURIES

Introduction

Never more zealously and successfully has mathematics been

cultivated than during the nineteenth and the present centuries. Nor
has progress, as in previous periods, been confined to one or two
countries. While the French and Swiss, who during the preceding

epoch carried the torch of progress, have continued to develop mathe-

matics with great success, from other countries whole armies of en-

thusiastic workers have wheeled into the front rank. Germany awoke
from her lethargy by bringing forward K. F. Gauss, C. G. J. Jacobi,

P. G. L. Dirichiet, and hosts of more recent men; Great Britain

produced her A. De Morgan, G. Boole, W. R. Hamilton, A. Cayley,

J. J. Sylvester, besides champions who are still living; Russia entered

the arena with her N. I. Lobachevski; Norway with N. H. Abel;

Italy with L. Cremona; Hungary with her two Bolyais; the United

States with Benjamin Peirce and J. Willard Gibbs.

H. S. White of Vassar College estimated the annual rate of increase

in mathematical publication from 1870 to 1909, and ascertained the

periods between these years when different subjects of research re-

ceived the greatest emphasis.'- Taking the Jahrbuch iiber die Fort-

schritte der Mathemaiik, published since 1871 (founded by Carl Ohrt-

mann (1839-1885) of the Konigliche Realschule in Berlin and since

1885 under the chief editorship of EmU Lampe of the technische

Hochschule in Berlin), and also the Revue Semestrielle, published since

1893 (under the auspices of the Mathematical Society of Amsterdam),
he counted the number of titles, and in some cases also the number of

pages filled by the reviews of books and articles devoted to a certain

subject of research, and reached the following approximate results:

(i) The total annual publication doubled during the forty years;

(2) During these forty years, 30% of the publication was on applied

mathematics, 25% on geometry, 20% on analysis, 18% on algebra,

7% on history and philosophy; (3) Geometry, dominated by "Pliicker,

his brilliant pupil Klein, Clifford, and Cayley," doubled its rate of

production from 1870 to 1890, then fell off a third, to regain most of

its loss after 1899; Synthetic geometry reached its maximum in 1887
and then declined during the following twenty years; the amount of

analytic geometry always exceeded that of synthetic geometry, the

1 H. S. White, "Forty Years' Fluctuations in Mathematical Research," Science,

N. S., Vol. 42, 1915, pp. 105-113.
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excess being most pronounced since 1887; (4) Analysis, "which takes

its rise equally from calculus, from the algebra of imaginaries, from
the intuitions and the critically refined developments of geometry, and
from abstract logic: the common servant and chief ruler of the other

branches of mathematics," shows a trebUng in forty years, reaching

its first maximum in 1890, "probably the culmination of waves set

in motion by Weierstrass and Fuchs in Berlin, by Riemann in Got-
tingen, by Hermite in Paris, Mittag-Leffler in Stockholm, Dini and
Brioschi in Italy;" before 1887 much of the growth of analysis is due
to the theory of functions which reaches a maximum about 1887,

with a sweep of the curve upward again after 1900, due to the theory

of integral equations and iJie influence of Hilbert; (5) Algebra, in-

cluding series and groups, experienced during the forty years a steady

gain to 2J times its original output; the part of algebra relating to

algebraic forms, invariants, etc., reached its acme before 1890 and
then declined most surprisingly; (6) Differential equations increased

in amount slowly but steadily from 1870, "under the combined in-

fluence of Weierstrass, Darboux and Lie," showing a slight dechne

in 1886, but "followed by a marked recovery and advance during the

publication of lectures by Forsyth, Picard, Goursat and Painleve;"

(7) The mathematical theory of electricity and magnetism remained

less than one-fourth of the whole applied mathematics, but rose after

1873 steadily toward one-fourth, by the labors of Clerk Maxwell,

W. Thomson (Lord Kelvin) and P. G. Tait; (8) The constant shifting

of mathematical investigation is due partly to fashion.

The progress of mathematics has been greatly accelerated by the

organization of mathematical societies issuing regular periodicals.

The leading societies are as follows: London Malhemalical Society

organized in 1865, La societe matkematique de France organized in

1872, Edinburgh Mathematical Society organized 1883, Circolo male-

matico di Palermo organized in 1884, American Mathematical Society

organized in 1888 under the name of New York Mathematical Society

and changed to its present name in 1894,^ Deutsche Mathematiker-

Vereinigung organized in 1890, Indian Mathematical Society organized

in 1907, Sociedad Metematica Espahola organized in 191 1, Mathematical

Association of America organized in 1915.

The number of mathematical periodicals has enormously increased

during the passed century. According to Felix Miiller ^ there were,

up to 1700, only 17 periodicals containing mathematical articles;

there were, in the eighteenth century, 210 such periodicals, in the

nineteenth century 950 of them.

1 Consult Thomas S. Fiske's address in Bull. Am. Math. Soc, Vol. 11, 1905, p. 238.

Dr. Fiske himself was a leader in the organization of the Society.

^Jahresb. d. deutsch. Malhem. Vereinigung, Vol. 12, 1903, p. 439. See also G. A.

Miller in Historical Introdmtion to Mathematical Literature, New York, 1916,

Chaps. I, II.
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A great stimulus toward mathematical progress have been the

international congresses of mathematicians. In 1889 there was held

in Paris a Congres international de bibliographie des sciences mathe-
matiques. In 1893, during the Columbian Exposition, there was held

in Chicago an International Mathematical Congress. But, by com-
mon agreement, the gathering held in 1897 at Zurich, Switzerland, is

called the "first international mathematical congress." The second

was held in 1900 at Paris, the third in 1904 at Heidelberg, the fourth

in 1908 at Rome, the fifth in 1912 at Cambridge in England. The
object of these congresses has been to promote friendly relations, to

give reviews of the progress and present state of different branches of

mathematics, and to discuss matters of terminology and bibliography.

One of the great co-operative enterprises intended to bring the

results of modern research in digested form before the technical reader

is the Encyklop'adie der Mathematischen Wissenschaflen, the publica-

tion of which was begun in 1898 under the editorship of Wilhelm Franz

Meyer of Konigsberg. Prominent as joint editor was Heinrich Burk-

hardl (1861-1914) of Zurich, later of Munich. In 1904 was begun the

publication of the French revised and enlarged edition under the

editorship of Jules Molk (1857-1914) of the University of Nancy.
As regards the productiveness of modern writers, Arthur Cayley

said in 1883: ^ "It is difficult to give an idea of the vast extent of

modern mathematics. This word ' extent ' is not the right one: I mean
extent crowded with beautiful detail,—not an extent of mere uni-

formity such as an objectless plain, but of a tract of beautiful country

seen at first in the distance, but which will bear to be rambled through
and studied in every detail of hillside and valley, stream, rock, wood,
and flower." It is pleasant to the mathematician to think that in his,

as in no other science, the achievements of every age remain posses-

sions forever; new discoveries seldom disprove older tenets; seldom
is anything lost or wasted.

If it be asked wherein the utility of some modern extensions of

mathematics lies, it must be acknowledged that it is at present difficult

to see how some of them are ever to become applicable to questions

of common life or physical science. But our inability to do this should

not be urged as an argument against the pursuit of such studies. In
the first place, we know neither the day nor the hour when these

abstract developments will find application in the mechanic arts, in

physical science, or in other branches of mathematics. For example,

the whole subject of graphical statics, so useful to the practical en-

gineer, was made to rest upon von Staudt's Geometric der Lage; W. R.
Hamilton's "principle of varying action" has its use in astronomy;
complex quantities, general integrals, and general theorems in inte-

gration offer advantages in the study of electricity and magnetism.

^ Arthur Cayley, Inaugural Address before the British Association, 1883, Re-
port, p. 25.
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"The utility of such researches," said Spottiswoode in 1878/ "can
in no case be discounted, or even imagined beforehand. Who, for

instance, would have supposed that the calculus of forms or the theory
of substitutions would have thrown much light upon ordinary equa-
tions; or that Abelian functions and hyperelliptic transcendents would
have told us anything about the properties of curves; or that the

calculus of operations would have helped us in any way towards the

figure of the earth?"

As a matter of fact in the nineteenth century, as in all centuries,

practical questions have been controlling factors in the growth of

mathematics. Says C. E. Picard: "The influence of physical theories

has been exercised not only on the general nature of the problems to

be solved, but even in the details of the analytic transformations.

Thus is currently designated in recent memoirs on partial differential

equations under the name of Green's formula, a formula inspired by
the primitive formula of the English physicist. The theory of dynamic
electricity and that of magnetism, with Ampere and Gauss, have been
the origin of important progress; the study of curvilinear integrals

and that of the integrals of surfaces have taken thence all their de-

velopments, and formulas, such as that of Stokes which might also

be called Ampere's formula, have appeared for the first time in mem-
oirs on physics. The equations on the propagation of electricity, to

which are attached the names of Ohm and Kirchhoff, while presenting

a great analogy with those of heat, offer often conditions at the limits

a little different; we know all that telegraphy by cables owes to the

profound discussion of a Fourier's equation carried over into elec-

tricity. The equations long ago written of hydrodynamics, the

equations of the theory of electricity, those of Maxwell and of Hertz

in electromagnetism, have offered problems analogous to those re-

called above, but under conditions still more varied." ^

Along similar lines are the remarks of A. R. Forsyth. In 1905 he

said: ^ "The last feature of the century that will be mentioned has

been the increase in the number of subjects, apparently dissimilar

from one another, which are now being made to use mathematics to

some extent. Perhaps the most surprising is the application of mathe-

matics to the domain of pure thought; this was effected by George

Boole in his treatise 'Laws of Thought,' published in 1854; and though

the developments have passed considerably beyond Boole's researches,

his work is one of those classics that mark a new departure. Political

economy, on the initiative of Cournot and Jevons, has begun to employ

symbols and to develop the graphical methods; but there the present

use seems to be one of suggestive record and expression, rather than

1 William Spottiswoode, Inaugural Address before British Association, 1878,

Report, p. 25.

'Congress of Arts and Science, St. Louis, 1904, Vol. I, pp. 507-508.
' Report oj the British Ass'n (South Africa), 1905, London, 1906, p. 317.
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of positive construction. Chemistry, in a modern spirit, is stretching

out into mathematical theories; Willard Gibbs, in his memoir on the

equihbrium of chemical systems, has led the way; and, though his

way is a path which chemists iind strewn with the thorns of analysis,

his work has rendered, incidentally, a real service in co-ordinating

experimental results belonging to physics and to chemistry. A new
and generalized theory of statistics is being constructed ; and a school

has grown up which is applying them to biological phenomena. Its

activity, however, has not yet met with the sympathetic goodwill of

all the pure biologists; and those who remember the quality of the

discussion that took place last year at Cambridge between the biome-

tricians and some of the biologists will agree that, if the new school

should languish, it will not be for want of the tonic of criticism."

The great characteristic of modern mathematics is its generalizing

tendency. Nowadays little weight is given to isolated theorems,

says J. J. Sylvester, "except as affording hints of an unsuspected new
sphere of thought, like meteorites detached from some undiscovered

planetary orb of speculation." In mathematics, as in all true sciences,

no subject is considered in itself alone, but always as related to, or

an outgrowth of, other things. The development of the notion of

continuity plays a leading part in modern research. In geometry
the principle of continuity, the idea of correspondence, and the theory

of projection constitute the fundamental modern notions. Continuity

asserts itself in a most striking way in relation to the circular points

at infinity in a plane. In algebra the modern idea finds expression

in the theory of linear transformations and invariants, and in the

recognition of the value of homogeneity and symmetry.
H. F. Baker ' said in 19x3 that, with the aid of groups "a complete

theory of equations which are soluble algebraically can be given. . . .

But the theory of groups has other applications. . . . The group of

interchanges among four quantities which leave unaltered the product
of their six differences is exactly similar to the group of rotations of a
regular tetrahedron whose centre is fixed, when its corners are inter-

changed among themselves. Then I mention the historical fact that

the problem of ascertaining when that well-known differential equa-
tion called the hypergeometric equation has all its solutions expressible

in finite terms as algebraic functions, was first solved in connection

with a group of similar kind. For any linear differential equation it is

of primary importance to consider the group of interchanges of its

solutions when the independent variable, starting from an arbitrary

point, makes all possible excursions, returning to its initial value. . . .

There is, however, a theory of groups different from those so far

referred to, in which the variables can change continuously; this alone

is most extensive, as may be judged from one of its lesser applications,

the familiar theory of the invariants of quantics. Moreover, perhaps
^ Report British Ass'n (Birmingham), 1913, London, 1914, p. 371.
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the most masterly of the analytical discussions of the theory of

geometry has been carried through as a particular application of the

theory of such groups."

"If the theory of groups illustrates how a unifying plan works in

mathematics beneath the bewildering detail, the next matter I refer

to well shows what a wealth, what a grandeur, of thought may spring

from what seem slight beginnings. Our ordinary integral calculus is

well-nigh powerless when the result of integration is not expressible

by algebraic or logarithmic functions. The attempt to extend the

possibilities of integration to the case when the function to be inte-

grated involves the square root of a polynomial of the fourth order,

led first, after many efforts, ... to the theory of doubly-periodic

functions. To-day this is much simpler than ordinary trigonometry,

and, even apart from its applications, it is quite incredible that it

should ever again pass from being among the treasures of civilized

man. Then, at first in uncouth form, but now clothed with delicate

beauty, came the theory of general algebraical integrals, of which the

influence is spread far and wide; and with it all that is systematic

in the theory of plane curves, and all that is associated with the con-

ception of a Riemann surface. After this came the theory of multiply-

periodic functions of any number of variables, which, though still

very far indeed from being complete, has, I have always felt, a majesty

of conception which is unique. Quite recently the ideas evolved in

the previous history have prompted a vast general theory of the

classification of algebraical surfaces according to their essential prop-;

erties, which is opening endless new vistas of thought."

The nineteenth century and the beginning of the twentieth century

constitute a period when the very foundations of mathematics have

been re-examined and when fundamental principles have been worked

but anew. Says H. F. Baker: '- "It is a constantly recurring need of

science to reconsidpr the exact implication of the terms employed;

and as numbers and functions are inevitable in all measurement, the

precise meaning of number, of continuity, of infinity, of limit, and

so on, are fundamental questions. . . . These notions have many
pitfalls I may cite. . . . the construction of a function which is

continuous at all points of a range, yet possesses no definite differential

coefficient at any point. Are we sure that human nature is the only

continuous variable in the concrete world, assuming it be continuous,

which can possess such a vacillating character? . . . We could take

out of our life all the moments at which we can say that our age is a

certain number of years, and days, and fractions of day, and still

have appreciably as long to Uve; this would be true, however often,

to whatever exactness, we named our age, provided we were quick

enough in naming it. . . . These inquiries . . . have been associated

also with the theory of those series which Fourier used so boldly, and

1 H. F. Baker, loc. cil., p. 369.
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so wickedly, for the conduction of heat. Like all discoverers, he took

much for granted. Precisely how much is the problem. This problem

has led to the precision of what is meant by a function of real variables,

to the question of the uniform convergence of an infinite series, as

you may see in early papers of Stokes, to new formulation of the

conditions of integration and of the properties of multiple integrals,

and so on. And it remains still incompletely solved.

"Another case in which the suggestions of physics have caused

grave disquiet to the mathematicians is the problem of the variation

of a definite integral. No one is likely to underrate the grandeur of

the aim of those who would deduce the whole physical history of the

world from the single principle of least action. Everyone must be

interested in the theorem that a potential function, with a given

value at the boundary of a volume, is such as to render a certain in-

tegral, representing, say, the energy, a minimum. But in that pro-

portion one desires to be sure that the logical processes employed are

free from objection. And, alas! to deal only with one of the earliest

problems of the subject, though the finally suflicient conditions for

a minimum of a simple integral seemed settled long ago, and could

be applied, for example, to Newton's celebrated problem of the

soHd of least resistance, it has since been shown to be a general fact

that such a problem cannot have any definite solution at all. And,
although the principle of Thomson and Dirichlet, which relates to

the potential problem referred to, was expounded by Gauss, and
accepted by Riemann, and remains to-day in our standard treatise

on Natural Philosophy, there can be no doubt that, in the form in

which it was originally stated, it proves just nothing. Thus a new
investigation has been necessary into the foundations of the principle.

There is another problem, closely connected with this subject, to

which I would allude: the stability of the solar system. For those

who can make pronouncements in regard to this I have a feeling of

envy; for their methods, as yet, I have a quite other feeling. The
interest of this problem alone is sufficient to justify the craving of

the Pure Mathematician for powerful methods and unexceptionable

rigour."

There are others who view this struggle for absolute rigor from a
different angle. Horace Lamb in 1904 spoke as follows: ^ "a traveller

who refuses to pass over a bridge until he has personally tested the

soundness of every part of it is not likely to go very far; something
must be risked, even in Mathematics. It is notorious that even in

this realm of 'exact' thought, discovery has often been in advance of

strict logic, as in the theory of imaginaries, for example, and in the

whole province of analysis of which Fourier's theorem is a type."

Says Maxime Bocher: ^ "There is what may perhaps be called the

' Address before Section A, British Ass'n, in Cambridge, 1904.
' Maxime Bdciier in Cmigress of Arts and Science, St. Louis, 1904, Vol. I, p. 472.
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method of optimism, which leads us either willfully or instinctively

to shut our eyes to the possibility of evil. Thus the optimist who
treats a problem in algebra or analytic geometry will say, if he stops
to reflect on what he is doing: 'I know that I have no right to divide

by zero; but there are so many other values which the expression by
which I am dividing might have that I will assume that the Evil

One has not thrown a zero in my denominator this time.' This
method . . . has been of great service in the rapid development of

many branches of mathematics."

Definitions of Mathematics

One of the phases of the quest for rigor has been the re-defining of

mathematics. "Mathematics, the science of quantity" is an old idea

which goes back to Aristotle. A modified form of this old definition

is due to Auguste Comte (1798-1857), the French philosopher and
mathematician, the founder of positivism. Since the most striking

measurements are not direct, but are indirect, as the determination

of distances and sizes of the planets, or of the atoms, he defined mathe-
matics "the science of indirect measurement." These definitions

have been abandoned for the reason that several modern branches of

mathematics, such as the theory of groups, analysis situs, projective

geometry, theory of numbers and the algebra of logic, have no relation

to quantity and measurement. "For one thing," says C. J. Keyser,'-

"the notion of the continuum—the 'Grand Continuum' as Sylvester

called it—that central supporting pillar of modern Analysis, has been

constructed by K. Weierstrass, R. Dedekind, Georg Cantor and
others, without any reference whatever to quantity, so that number
and magnitude are not only independent, they are essentially dis-

parate." Or, if we prefer to go back a few centuries and refer to a

single theorem, we may quote G. Desargues as saying that if the

vertices of two triangles lie in three lines meeting in a point, then their

sides meet in three points lying on a line. This beautiful theorem

has nothing to do with measurement.

In 1870 Benjamin Peirce wrote in his Linear Associative Algebra

that "mathematics is the science which draws necessary conclusions."

This definition has been regarded as including too much and also as

in need of elucidation as to what constitutes a "necessary" conclusion.

Reasoning which seemed absolutely conclusive to one generation no

longer satisfies the next. According to present standards no reasoning

which claims to be exact can make any use of intuition, but must
proceed from definitely and completely stated premises according to

certain principles of formal logic. ^ Mathematical logicians from

George Boole to C. S. Peirce, E. Schroder, and G. Peano have pre-

pared the field so well that of late years Peano and his followers, and
' C. J. Keyser, The Human Worth of Rigorous Thinking, t^Sew York, 1916, p. 277.
' Maxime B6cher, loc. cit., Vol. I, p. 459.
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independently G. Frege, "have been able to make a rather short

list of logical conceptions and principles upon which it would seem
that all exact reasoning depends." But the validity of logical prin-

ciples must stand the test of use, and on this point we may never be
sure. Frege and Bertrand Russell independently built up a theory of

arithmetic, each starting with apparently self-evident logical prin-

ciples. Then Russell discovers that his principles, applied to a very
general kind of logical class, lead to an absurdity. There is evident

need of reconstruction somewhere. After all, are we merely making
successive approximations to absolute rigor?

A. B. Kempe's definition is as follows: ^ "Mathematics is the

science by which we investigate those characteristics of any subject-

matter of thought which are due to the conception that it consists

of a number of differing and non-differing individuals and pluralities."

Ten years later Maxime B6cher modified Kempe's definition thus: ^

"If we have a certain class of objects and a certain class of relations,

and if the only questions which we investigate are whether ordered

groups of those objects do or do not satisfy the relations, the results

of the investigation are called mathematics." Bocher remarks that

if we restrict ourselves to exact or deductive mathematics, then

Kempe's definition becomes coextensive with B. Peirce's.

Bertrand Russell, in his Principles of Mathematics, Cambridge,

1903, regards pure mathematics as consisting exclusively of deduc-
tions "by logical principles from logical principles." Another def-

inition given by Russell sounds paradoxical, but really expresses the

extreme generality and extreme subtleness of certain parts of modern
mathematics: "Mathematics is the subject in which we never know
what we are talking about nor whether what we are saying is true." ^

Other definitions along similar lines are due to E. Papperitz (1892),

G. Itelson (1904), and L. Couturat (1908).

Synthetic Geometry

The conflict between synthetic and analytic methods in geometry
which arose near the close of the eighteenth century and the beginning

of the nineteenth has now come to an end. Neither side has come
out victorious. The greatest strength is found to lie, not in the sup-

pression of either, but in the friendly rivalry between the two, and in

the stimulating influence of the one upon the other. Lagrange prided

himself that in his Mecanique Analytique he had succeeded in avoiding

all figures; but since his time mechanics has received much help from
geometry.

Modern synthetic geometry was created by several investigators

about the same time. It seemed to be the outgrowth of a desire for

' Proceed. London Math. Soc, Vol. 26, i8g4, p. 15.

2 M. B6cher, op. cit., p. 466.
' B. Russell in International Monthly, Vol. 4, 1901, p. 84.
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general methods which should serve as threads of Ariadne to guide
the student through the labyrinth of theorems, corollaries, porisms,
and problems. Synthetic geometry was first cultivated by G. Monge,
L. N. M. Carnot, and J. V. Poncelet in France; it then bore rich fruits

at the hands of A. F. Mobius and Jakob Steiner in Germany and
Switzerland, and was finally developed to still higher perfection by
M. Chasles in France, von Staudt in Germany, and L. Cremona in

Italy.

Jean Victor Poncelet (i 788-1867), a native of Metz, took part in

the Russian campaign, was abandoned as dead on the bloody field

of Krasnoi, and taken prisoner to Saratoff. Deprived there of all

books, and reduced to the remembrance of what he had learned at

the Lyceum at Metz and the Polytechnic School, where he had studied

with predilection the works of G. Monge, L. N. M. Carnot, and C. J.
Brianchon, he began to study mathematics from its elements. He
entered upon original researches which afterwards made him illus-

trious. While in prison he did for mathematics what Bunyan did for

Uterature,—produced a much-read work, which has remained of great

value down to the present time. He returned to France in 18 14, and
in 1822 pubUshed the work in question, entitled, Traite des Proprietes

projectives des figures. In it he investigated the properties of figures

which remain unaltered by projection of the figures. The projection

is not effected here by parallel rays of prescribed direction, as with

G. Monge, but by central projection. Thus perspective projection,

used before him by G. Desargues, B. Pascal, I. Newton, and J. H.
Lambert, was elevated by him into a fruitful geometric method.

Poncelet formulated the so-called principle of continuity, which asserts

that properties of a figure which hold when the figure varies according

to definite laws will hold also when the figure assumes some limiting

position.

"Poncelet," says J. G. Darboux,^ "could not content himself with

the insufficient resources furnished by the method of projections; to

attain imaginaries he created that famous principle of continuity

which gave birth to such long discussions between him and A. L.

Cauchy. Suitably enunciated, this principle is excellent and can

render great service. Poncelet was wrong in refusing to present it

as a simple consequence of analysis; and Cauchy, on the other hand,

was not willing to recognize that his own objections, appHcable with-

out doubt to certain transcendent figures, were without force in the

applications made by the author of the Traite des proprietes projec-

tives." J. D. Gergonne characterized the principle as a valuable

instrument for the discovery of new truths, which nevertheless did

not make stringent proofs superfluous.^ By this principle of geometric

' Congress of Arts and Science, St. Louis, 1904, Vol. I, p. 539.
2 E. Kotter, Die Entwickelung der synihetischen Geomelrie von Monge bis auf

Slavdl, Leipzig, 1901, p. 123.
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continuity Poncelet was led to the consideration of points and lines

which vanish at infinity or become imaginary. The inclusion of such
ideal points and lines was a gift which pure geometry received from
analysis, where imaginary quantities behave much in the same way
as real ones. Poncelet elaborated some ideas of De Lahire, F. Servois,

and J. D. Gergonne into a regular method—the method of "recipro-

cal polars." To him we owe the Principle of Duality as a consequence
of reciprocal polars. As an independent principle it is due to Gergonne.

Darboux says that the significance of the principle of duahty which
was "a Httle vague at first, was sufiiciently cleared up by the dis-

cussions which took place on this subject between J. D. Gergonne,

J. V. Poncelet and J. Plucker." It had the advantage of making
correspond to a proposition another proposition of wholly different

aspect. "This was a fact essentially new. To put it in evidence,

Gergonne invented the system, which since has had so much success,

of memoirs printed in double columns with correlative propositions

in juxtaposition" (Darboux).

Joseph Diaz Gergonne (1771-1859) was an officer of artillery, then
professor of mathematics at the lyceum in Nimes and later professor

at Montpellier. He solved the Apollonian Problem and claimed
superiority of analytic methods over the synthetic. Thereupon
Poncelet published a purely geometric solution. Gergonne and Ponce-
let carried on an intense controversy on the priority of discovering

the principle of duality. No doubt, Poncelet entered this field earlier,

while Gergonne had a deeper grasp of the principle. Some geometers,

particularly C. J. Brianchon, entertained doubts on the general valid-

ity of the principle. The controversy led to one new result, namely,
Gergonne's considerations of the class of a curve or surface, as well

as its order} Poncelet wrote much on applied mechanics. In 1838
the Faculty of Sciences was enlarged by his election to the chair of

mechanics.

J. G. Darboux says that, "presented in opposition to analytic

geometry, the methods of Poncelet were not favorably received by
the French analysts. But such were their importance and their

novelty, that without delay they aroused, from divers sides, the

most profound researches." Many of these appeared in the Annates
de mathematiques, published by J. D. Gergonne at Nimes from 1810
to 1831. During over fifteen years this was the only journal in the
world devoted exclusively to mathematical researches. Gergonne
"collaborated, often against their will, with the authors of the memoirs
sent him, rewrote them, and sometimes made them say more or less

than they would have wished. . . . Gergonne, having become rector

of the Academy of Montpellier, was forced to suspend in 1831 the
publication of his journal. But the success it had obtained, the taste

for research it had contributed to develop, had commenced to bear
^ E. Kotter, op. cit., pp. 160-164.
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their fruit. L. A. J. Quetelet had established in Belgium the Corre-
spondance mathematique et physique. A. L. Crelle, from 1826, brought
out at BerUn the first sheets of his celebrated journal, where he pub-
lished the memoirs of N. H. Abel, of C. G. J. Jacobi, of J. Steiner"
(Darboux).

Contemporaneous with J. V. Poncelet was the German geometer,
Augustus Ferdinand Mobius (1790-1868), a native of Schulpforta in
Prussia. He studied at Gottingen under K. F. Gauss, also at Leipzig
and Halle. In Leipzig he became, in 1815, privat-docent, the next
year extraordinary professor of astronomy, and in 1844 ordinary
professor. This position he held till his death. The most important
of his researches are on geometry. They appeared in Crelle's Journal,
and in his celebrated work entitled Der Barycentrische Calcul, Leipzig,

1827, "a work truly original, remarkable for the profundity of its

conceptions, the elegance and the rigor of its exposition" (Darboux).
As the name indicates, this calculus is based upon properties of the
centre of gravity.^ Thus, that the point S is the centre of gravity of

weights a, b, c, d placed at the points A, B, C, D respectively, is ex-

pressed by the equation

{a+b+c+d)S=aA+bB+cC+dD.
His calculus is the beginning of a quadruple algebra, and contains

the germs of Grassmann's marvellous system. In designating seg-

ments of Unes we find throughout this work for the first time con-
sistency in the distinction of positive and negative by the order of

letters AB, BA. Similarly for triangles and tetrahedra. The remark
that it is always possible to give three points A, B, C such weights

a, 13, y that any fourth point M in their plane will become a centre of

mass, led Mobius to a new system of co-ordinates in which the position

of a point was indicated by an equation, and that of a line by co-

ordinates. By this algorithm he found by algebra many geometric

theorems expressing mainly invariantal properties,—for example, the

theorems on the anharmonic relation. Mobius wrote also on statics

and astronomy. He generalized spherical trigonometry by letting

the sides or angles of triangles exceed 180'^.

Not only Mobius but also H. G. Grassmann discarded the usual

co-ordinate systems, and used algebraic analysis. Later in the nine-

teenth century and at the opening of the twentieth century, these

ideas were made use of, notably by Cyparissos Stephanos (1857-1917)

of the National University of Athens, H. Wiener, C. Segre, G. Peano,

F. Aschieri, E, Study, C. Burali-Forti and Hermann Grassmann
(1859- ), a son of H. G. Grassmann. Their researches, covering

the fields of binary and ternary linear transformations, were brought

together by the younger Grassmann into a treatise, Projekiive Geonie-

trie der Ebene unter Benutzung der Punktrechnung dargeslelU, 1909.
ij. W. Gibbs, "Multiple Algebra," Proceedings Am. Ass'n for the Aivanc. oj

Science, i8S6.
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Jakob Steiner (1796-1863), "the greatest geometrician since the

time of Euclid," was born in Utzendorf in the Canton of Bern. He
did not learn to write till he was fourteen. At eighteen he became a

pupil of Pestalozzi. Later he studied at Heidelberg and Berlin.

When A. L. Crelle started, in 1826, the celebrated mathematical

journal bearing his name, Steiner and Abel became leading con-

tributors. Through the influence of C. G. J. Jacobi and others, the

chair of geometry was founded for him at Berlin in 1834. This posi-

tion he occupied until his death, which occurred after years of bad
health.

In 1832 Steiner published his Systematische Entwickelung der Ab-
h'dngigkeit geometrischer Gestalten von einander, "in which is uncovered

the organism by which the most diverse phenomena (Erscheinungen)

in the world of space are united to each other." Here for the first

time, is the principle of duality introduced at the outset. This book
and von Staudt's lay the foundation on which synthetic geometry in

its later form rested. The researches of French mathematicians, cul-

minating in the remarkable creations of G. Monge, J. V. Poncelet

and J. D. Gergonne, suggested a unification of geometric processes.

This work of "uncovering the organism by which the most different

forms in the world of space are connected with each other," this ex-

posing of "a small number of very simple fundamental relations in

which the scheme reveals itself, by which the whole body of theorems

can be logically and easily developed" was the task which Steiner

assumed. Says H. Hankel: "^ "In the beautiful theorem that a conic

section can be generated by the intersection of two projective pencils

(and the dually correlated theorem referring to projective ranges),

J. Steiner recognized the fundamental principle out of which the

innumerable properties of these remarkable curves follow, as it were,

automatically with playful ease." Not only did he fairly complete
the theory of curves and surfaces of the second degree, but he made
great advances in the theory of those of higher degrees.

In the Systematische Entwickelungen (1832) Steiner directed atten-

tion to the complete figure obtained- by joining in every possible way
SIX points on a conic and showed that in this hexagrammum mysticum
the 60 "Pascal lines" pass three by three through 20 points ("Steiner

points") which lie four by four upon 15 straight lines ("Pliicker lines").

J. Pliicker had sharply criticized Steiner for an error that had crept

into an earlier statement (1828) of the last theorem. Now, Steiner

gave the correct statement, but without acknowledgment to Pliicker.

Further properties of the hexagrammum mysticum are due to T. P.

Kirkman, A. Cayley and G. Salmon. The Pascal lines of three hexa-

gons concur in a new point ("Kirkman point"). There are 60 Kirk-

man points. Corresponding to three Pascal lines which concur in a
Steiner point, there are three Kirkman points which lie upon a straight

^ H. Hankel, Elemente der Projeciivischen Geometrie, 1875, p. 26.
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line ("Cayley line")- There are 20 Cayley lines which pass four by
four through 15 " Salmon points." Other new properties of the mystic
hexagon were obtained in 1877 by G. Veronese and L. Cremona.*

In Steiner's hands synthetic geometry made prodigious progress.

New discoveries followed each other so rapidly that he often did not
take time to record their demonstrations. In an article in Crelle's

Journal on Allgemeine Eigenschaflen Algebraischer Curven he gives
without proof theorems which were declared by L. 0. Hesse to be
"like Fermat's theorems, riddles to the present and future genera-
tions." Analytical proofs of some of them have been given since by
others, but L. Cremona finally proved them all by a synthetic method.
Steiner discovered synthetically the two prominent properties of a
surface of the third order; viz. that it contains twenty-seven straight

lines and a pentahedron which has the double points for its vertices

and the lines of the Hessian of the given surface for its edges. This
subject will be discussed more fully later. Steiner made investigations

by synthetic methods on maxima and minima, and arrived at the
solution of problems which at that time surpassed the analytic power
of the calculus of variations. It will appear later that his reasoning
on this topic is not always free from criticism.

Steiner generalized Malfatti's problem.^ Giovanni Francesco Mal-
fatti (1731-1807) of the university of Ferrara, in 1803, proposed the

problem, to cut three cylindrical holes out of a three-sided prism in

such a way that the cylinders and the prism have the same altitude

and that the volume of the cylinders be a maximum. This problem
was reduced to another, now generally known as Malfatti's problem:
to inscribe three circles in a triangle so that each circle will be tangent to

two sides of the triangle and to the other two circles. Malfatti gave an
analytical solution, but Steiner gave without proof a construction,

remarked that there were thirty-two solutions, generalized the problem
by replacing the three lines by three circles, and solved the analogous

problem for three dimensions. This general problem was solved

analytically by C. H. Schellbach (1809-1892) and A. Cayley and by
R. F. A. Clebsch with the aid of the addition theorem of elliptic

functions.' A simple proof of Steiner's construction was given by
A. S. Hart of Trinity College, Dublin, in 1856.

Of interest is Steiner's paper, Ueber die geometrischen Constructionen,

ausgefiihrt mittels der geraden Linie und eines festen Kreises (1833),

in which he shows that all quadratic constructions can be effected

with the aid of only a ruler, provided that a fixed circle is drawn once

for all. It was generally known that all linear constructions could be

effected by the ruler, without other aids of any kind. The case of

' G. Salmon, Conic Sections, 6th Ed., 187Q, Notes, p. 382.
' Karl Fink, A Brief History of Mathematics, transl. by W. W. Beman and D. E. .

Smith, Chicago, 1900, p. 256.

' A. Wittstein, zur Geschichle des Matfattfschen Problems, Nordlingen, 1878.
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cubic constructions, calling for the determination of three unknown
elements (points) was worked out in 1868 by Ludwig Hermann Kor-

tum (1836-1904) of Bonn, and Stephen Smith of Oxford in two re-

searches which received the Steiner prize of the Berlin Academy; it

was shown that if a conic (not a circle) is given to start with, then all

such constructions can be done with a ruler and compasses. Franz
London (1863-1917) of Breslau demonstrated in 1895 that these cubic

constructions can be effected with a ruler only, as soon as a fixed

cubic curve is once drawn. '^

F. Biitzberger ^ has recently pointed out that in an unpublished

manuscript, Steiner disclosed a knowledge of the principle of inver-

sion as early as 1824. In 1847 Liouville called it the transformation

by reciprocal radii. After Steiner this transformation was found
independently by J. Bellavitis in 1836, J. W. Stubbs and J. R. Ingram
in 1842 and 1843, and by William Thomson (Lord Kelvin) in 1845.

Steiner's researches are confined to synthetic geometry. He hated

analysis as thoroughly as J. Lagrange disliked geometry. Steiner's

Gesammelte Werke were published in Berlin in 1881 and 1882.

Michel Chasles (1793-1880) was born at Epernon, entered the Poly-

technic School of Paris in 1812, engaged afterwards in business, which
he later gave up that he might devote all his time to scientific pursuits.

In 1 84 1 he became professor of geodesy and mechanics at the Ecole

polytechnique; later, "Professeur de Geometrie superieure a la Faculte

des Sciences de Paris." He was a voluminous writer on geometrical

subjects. In 1837 he published his admirable Aperqu historique sur

Vorigine et le developpement des methodes en geometrie, containing a
history of geometry and, as an appendix, a treatise "sur deux principes

generaux de la Science." The Aper^u historique is still a standard

historical work; the appendix contains the general theory of Homog-
raphy (CoUineation) and of duality (Reciprocity). The name duality

is due to J. D. Gergonne. Chasles introduced the term anharmonic
ratio, corresponding to the German Doppelverhdltniss and to Clifford's

cross-ratio. Chasles and J. Steiner elaborated independently the

modern synthetic or projective geometry. Numerous original memoirs
of Chasles were published later in the Journal de VEcole Polytechnique.

He gave a reduction of cubics, different from Newton's in this, that

the five curves from which all others can be projected are symmetrical
with respect to a centre. In 1864 he began the publication, in the

Comptes rendus, of articles in which he solves by his "method of

characteristics" and the "principle of correspondence" an immense
number of problems. He determined, for instance, the number of

intersections of two curves in a plane. The method of characteristics

contains the basis of enumerative geometry.

As regards Chasles' use of imaginaries, J. G. Darboux says: "Here,

' Jahresh. d. d. Math. Vereinigung. Vol. 4, p. 163.
^ Bull. Am. Math. Soc, Vol. 20, 1914, p. 414.
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his method was really new. . . . But Chasles introduced imaginaries

only by their symmetric functions, and consequently would not have
been able to define the cross-ratio of four elements when these ceased

to be real in whole or in part. If Chasles had been able to establish

the notion of the cross-ratio of imaginary elements, a formula he
gives in the Geomelrie superieure (p. 118 of the new edition) would
have immediately furnished him that beautiful definition of angle as

logarithm of a cross-ratio which enabled E. Laguerre, our regretted

confrere, to give the complete solution, sought so long, of the problem
of the transformation of relations which contain at the same time angles

and segments in homography and correlation." The appUcation of

the principle of correspondence was extended by A. Cayley, A. Brill,

H. G. Zeutheri, H. A. Schwarz, G. H. Halphen, and others. The full

value of these principles of Chasles was not brought out until the

appearance, in 1879, of the Kalkul der Ahzahlenden Geomelrie by
Hermann Schubert (1848-1911) of Hamburg. This work contains

a masterly discussion of the problem of enumerative geometry, viz.

to determine the number of points, lines, curves, etc., of a system
which fulfil certain conditions. Schubert extended his enumerative

geometry to ^-dimensional space.' The fundamental principle of

enumerative geometry is the law of the "preservation of the number,"
which, as stated by Schubert, was found by E. Study and by G. Kohn
in 1903 to be not always valid. The particular problem examined

by Study and later also by F. Severi, considers the number of pro-

jectivities of a line which transform into itself a given group of four

points. If the cross-ratio of the group is not a cube root of — i, the

number of projectivities is 4, otherwise there are more. A recent

book on this subject is H. G. Zeuthen's Abzdhlende Methoden der

Geometric, 19 14.

To Chasles we owe the introduction into projective geometry of

non-projective properties of figures by means of the infinitely distant

imaginary sphero-circle.^ Remarkable is his complete solution, in

1846, by synthetic geometry, of the difiScult question of the attrac-

tion of an ellipsoid on an external point. This celebrated problem

was treated alternately by synthetic and by analytic methods. CoHn
Maclaurin's results, obtained synthetically, had created a sensation.

Nevertheless, both A. M. Legendre and S. D. Poisson expressed the

opinion that the resources of the synthetic method were easily ex-

hausted. Poisson solved it analytically in 1835. Then Chasles sur-

prised every one by his synthetic investigations, based on the con-

sideration of confocal surfaces. Poinsot reported on the memoir and

remarked on the analytic and synthetic methods: "It is certain that

one cannot afiford to neglect either."

1 Gino Loria, Die Hauplsdchlichsten Theoricn der Geomelrie, 1888, p. 124.

2 F. Klein, Vergleichende Belrachtungen ilber neuere gcomelrische Forsclmnger,

Eriangen, 1872, p. 12.
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The labors of Chasles and Steiner raised synthetic geometry to an

honored and respected position by the side of analysis.

Karl Georg Christian von Staudt (1798-1867) was born in Rothen-

burg on the Tauber, and at his death, was professor in Erlangen. His

great works are the Geometric der Lage, Niirnberg, 1847, and his

Beitrdge zur Geometrie der Lage, 1856-1860. The author cut loose

from algebraic formulas and from metrical relations, particularly the

anharmonic ratio of J. Steiner and M. Chasles, and then created a

geometry of position, which is a complete science in itself, independent

of all measurements. He shows that projective properties of figures

have no dependence whatever on measurements, and can be estab-

lished without any mention of them. In his theory of "throws" or

"Wiirfe," he even gives a geometrical definition of a number in its

relation to geometry as determining the position of a point. Gustav

Kohn of the University of Vienna about 1894 introduced the throw

as a fundamental concept underlying the projective properties of a

geometric configuration, such that, according to a principle of duality

of this geometry, throws of figures appear in pairs of reciprocal throws;

figures of reciprocal throws form a complete analogy to figures of

equal throws. Referring to Von Staudt's numerical co-ordinates,

defined without introducing distance as a fundamental idea, A. N.
Whitehead said in 1906: "The establishment of this result is one of

the triumphs of modern mathematical thought."

The Beitrdge contains the first complete and general theory of

imaginary points, lines, and planes in projective geometry. Repre-
sentation of an imaginary point is sought in the combination of an
involution with a determinate direction, both on the real line through
the point. While purely projective, von Staudt's method is inti-

mately related to the problem of representing by actual points and
lines the imaginaries of analytical geometry. Says Kotter: ^ Staudt
was the first who succeeded "in subjecting the imaginary elements to

the fundamental theorem of projective geometry, thus returning to

analytical geometry the present which, in the hands of geometri-

cians, had led to the most beautiful results." Von Staudt's geometry
of position was for a long time disregarded, mainly, no doubt, because
his book is extremely condensed. An impulse to the study of this

subject was given by Culmann, who rests his graphical statics upon
the work of von Staudt. An interpreter of von Staudt was at last

found in Theodor Reye of Strassburg, who wrote a Geometrie der

Lage in 1868.

The graphic representation of the imaginaries of analytical geom-
etry was systematically undertaken by C. F. Maximilien Marie (1819-

1891), who worked, however, on entirely different lines from those

of von Staudt. Another independent attempt was made in 1893 by
F. H. Loud of Colorado College.

^ E. Kotter, op. cit., p. 123.
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Synthetic geometry was studied with much success by Luigi Cre-
mona (1830-1903), who was born in Pavia and became in i860 pro-
fessor of higher geometry in Bologna, in i865 professor of geometry and
graphical statics in Milan, in 1873 professor of higher mathematics
and director of the engineering school at Rome. He was influenced
by the writings of M. Chasles, later he recognized von Staudt as the
true founder of pure geometry. A memoir of 1866 on cubic surfaces
secured half of the Steiner prize from Berhn, the other half being
awarded to Rudolf Sturm, then of Bromberg. Cremona used the
method of enumeration with great effect. He wrote on plane curves,
on surfaces, on birational transformations of plane and solid space.
The birational transformations, the simplest class of which is now
called the "Cremona transformation," proved of importance, not
only in geometry, but in the analytical theory of algebraic functions
and integrals. It was developed more fully by M. Nother and others.

H. S. White comments on this subject as follows: ^ "Beyond the
linear or projective transformations of the plane there were known
the quadric inversions of Ludwig Immanuel Magnus (i 790-1861) of

Berlin, changing lines into conies through three fundamental points
and those exceptional points into singular lines, to be discarded.

Cremona described at once the highest generalization of these trans-

formations, one-to-one for all points of the plane except a finite set

of fundamental points. He found that it must be mediated by a

net of rational curves; any two intersecting in one variable point,

and in fixed points, ordinary or multiple, which are the fundamental
points and which are themselves tranformed into singular rational

curves of the same orders as the indices of multiplicity of the
points. When the fundamental points are enumerated by classes

according to their several indices, the set of class numbers for the in-

verse transformation is found to be the same as for the direct, but
usually related to different indices. Tables of such rational nets of

low orders were made out by L. Cremona and A. Cayley, and a
wide new vista seemed opening (such indeed it was and is) when si-

multaneously three investigators announced that the most general

Cremona transformation is equivalent to a succession of quadric

transformations of Magnus's type. This seemed a climax, and a

set-back to certain expectations." Cremona's theory of the trans-

formation of curves and of the correspondence of points on curves

was extended by him to three dimensions. There he showed how a

great variety of particular transformations can be constructed, "but
anything like a general theory is still in the future." Ruled surfaces,

surfaces of the second order, space-curves of the third order, and
the general theory of surfaces received much attention at his hands.

He was interested in map-drawing, which had engaged the attention

of R. Hooke, G. Mercator, J. Lagrange, K. F. Gauss and others. For
' Bull. Am. Math. Soc, Vol. 24, igi8, p. 242.
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a one-one correspondence the surface must be unicursal, and this is

sufficient. L. Cremona is associated with A. Cayley, R. F. A. Clebsch,

M. Mother and others in the development of this theory.^ Cremona's
writings were translated into German by Maximilian Curtze (1837-

1903), professor at the gymnasium in Thorn. The Opera matematiche

di Luigi Cremona were brought at Milan in 1914 and 1915.

One of the pupils of Cremona was Giovanni Battista Guccia (1855-

19 14). He was born in Palermo and studied at Rome under Cremona.
In 1889 he became extraordinary professor at the University of Pal-

ermo, in 1894 ordinary professor. He gave much attention to the

study of curves and surfaces. He is best known as the founder in

1884 of the Circolo matematico di Palermo, and director of its Rendi-

conti. The society has become international and has been a powerful

stimulus for mathematical research in Italy.

Karl Cubnann (1821-1881), professor at the Polytechnicum in Zu-

rich, published an epoch-making work on Die graphische Statik, Zurich,

1864, which has rendered graphical statics a great rival of analytical

statics. Before Culmann, Barthelemy-Edouard Cousinery (1790-1851)

a civil engineer at Paris, had turned his attention to the graphical

calculus, but he made use of perspective, and not of modem geometry.^

Culmann is the first to undertake to present the graphical calculus

as a symmetrical whole, holding the same relation to the new geom-
etry that analytical mechanics does to higher analysis. He makes
use of the polar theory of reciprocal figures as expressing the relation

between the force and the funicular polygons. He deduces this rela-

tion without leaving the plane of the two figures. But if the polygons

be regarded as projections of lines in space, these lines may be treated

as reciprocal elements of a "Nullsystem." This was done by Clerk

Maxwell in 1864, and elaborated further by L. Cremona. The graphi-

cal calculus has been apphed by 0. Mohr of Dresden to the elastic

line for continuous spans. Henry T. Eddy (1844- ), then of the

Rose Polytechnic Institute, now of the University of Minnesota, gives

graphical solutions of problems on the maximum stresses in bridges

under concentrated loads, with aid of what he calls "reaction poly-

gons." A standard work, La Statique graphique, 1874, was issued by
Maurice Levy of Paris.

Descriptive geometry [reduced to a science by G. Monge in France,

and elaborated further by his successors, /. N. P. Hachette, C. Dupin,

Theodore Olivier (1793-1853) of Paris, Jules de la Gournerie of Paris]

was soon studied also in other countries. The French directed their

'

attention mainly to the theory of surfaces and their curvature; the

Germans and Swiss, through Guido Schreiber (1799-1871) of Karls-

1 Proceedings of the Roy. Soc. of London, Vol. 75, London, 1905, pp. 277-

279.
^ A. Jay du Bois, Graphical Statics, New York, 1875, p. xxxii; M. d'Ocagne, Traile

de Nomographie, Paris, 1899, p. 5.
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ruhe, Karl Pohlke (1810-1877) of Berlin/ Josef Schlesinger (1831-
1901) of Vienna, and particularly W. Fiedler, interwove projective
and descriptive geometry.
Wilhelm Fiedler (1832-1912), the son of a shoe-maker in Chemnitz,

Saxony, taught mathematics and mechanics in a technical school of

Chemnitz, 1853 to 1864, and studied meanwhile the works of M.
Chasles, G. Lame, B. de St.-Venant, J. V. Poncelet, J. Steiner, J.
Pliicker, von Staudt, G. Salmon, A. Cayley, J. J. Sylvester. He was
self-taught. On the recommendation of A. F. Mobius he was awarded
in 1859 the degree of doctor of philosophy by the University of Leipsic
for a dissertation on central projection. At this time Fiedler made
arrangements with Salmon for a German elaborated edition of Sal-

mon's Conic Sections; it appeared in i860. In the same way were
brought out by Friedler Salmon's Higher Algebra in 1863, Salmon's
Geometry of Three Dimensions in 1862, Salmon's Higher Plane Curves
in 1873. In 1864 Fiedler became professor at the technical high school
in Prag, and in 1867 at the Polytechnic School in Zurich, where he
was active until his retirement in 1907. The emphasis of Fiedler's

activity was placed upon descriptive geometry. His Darstellende

Geometric, 1871, was brought, in the third edition, in organic connec-
tion with V. Staudt's geometry of position. Especially after the death
of Cuknann in 1881, Fiedler was criticised on pedagogic grounds for

excessive emphasis upon geometric construction. A harmonizing
effort was the text on descriptive geometry by Christian Wiener
(1826-1896) of the Polytechnic School in Karlsruhe. Of interest is

Fiedler's recognition in 1870 of homogeneous co-ordinates as cross-

ratios, invariant in all linear transformations; this idea had been ad-

vanced in 1827 by A. F. Mobius, but had remained unnoticed.^ Fied-

ler's Zyklographie, 1882, contained constructions of problems on circles

and spheres.

The interweaving of projective and descriptive geometry was
carried on in Italy by G. Bellavitis. The theory of shades and shadows
was first investigated by the French writers quoted above, and in Ger-

many treated most exhaustively by Ludwig Burmester of Munich.

Elementary Geometry of the Triangle and Circle

It is truly astonishing that during the nineteenth century new
theorems should have been found relating to such simple figures as

the triangle and circle, which had been subjected to such close exam-

ination by the Greeks and the long line of geometers which followed.

It was L. Euler who proved in 1765 that the orthocenter, circumcenter

^ F. J. Obenrauch, Geschichte der darstdlenden und projecliven Geometric, Briinn

S97, I

2 A.

p. 107

1S97, pp. 35°) 3.';2.

2 A. Voss, "Wilhelm Fiedler," Jahresb. d. d. Malh. Vereinigung, Vol. 22, 1913,
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and centroid of a triangle are coUinear, lying on the "Euler line."

H. C. Gossard of the University of Oklahoma showed in 1916 that

the three Euler lines of the triangles formed by the Euler line and the

sides, taken by twos, of a given triangle, form a triangle triply per-

spective with the giveil triangle and having the same Euler line. Con-
spicuous among the new developments is the "nine-point circle," the

discovery of which has been erroneously ascribed to Euler. Among
the several independent discoverers is the Englishman, Benjamin
Bevati (?-i838) who proposed in Leybourn's Mathematical Repository,

I, 18, 1804, a theorem for proof which practically gives us the nine-

point circle. The proof was supplied to the Repository, I, Part i,

p. 143, by John Bidterworth, who also proposed a problem, solved by
himself and John Whitley, from the general tenor of which it appears

that they knew the circle in question to pass through all nine points.

These nine points are explicitly mentioned by C. J. Brianchon and

J. V. Poncelet in Gergonne's Annates of 1821. In 1822, Karl Wilhelm
Feuerbach (1800-1834), professor at the gymnasium in Erlangen,

published a pamphlet in which he arrives at the nine-point circle,

and proves the theorem known by his name, that this circle touches

the incircle and the three excircles. The Germans call it " Feuerbach's
Circle." The last independent discoverer of this remarkable circle, so

far as known, is T. S. Davies, in an article of 1827 in the Philosophical

Magazine, II, 29-31. Feuerbach's theorem was extended by Andrew
Searle Hart (1811-1890), fellow of Trinity College, Dublin, who
showed that the circles which touch three given circles can be dis-

tributed into sets of four all touched by the same circle.

In 1816 August Leopold Crelle published in Berlin a paper dealing

with certain properties of plane triangles. He showed how to deter-

mine a point n inside a triangle, so that the

angles (taken in the same order) formed by
the lines joining it to the vertices are equal.

In the adjoining figure the three marked angles

are equal. If the construction is made so that

angle n'AC = n'CB = a'BA, then a second point

O' is obtained. The study of these new
angles and new points led Crelle to exclaim:

"It is indeed wonderful that so simple a figure as the triangle is

so inexhaustible in properties. How many as yet unknown proper-

ties of other figures may there not be!" Investigations were made
also by Karl Friedrich Andreas Jacobi (1795-1855) of Pforta and,

some of his pupils, but after his death, in 1855, the whole

matter was forgotten. In 1875 the subject was again brought before

the mathematical public by Henri Brocard (1845- ) whose re-

searches were followed up by a large number of investigators in France,

England and Germany. Unfortunately, the names of geometricians

which have been attached to certain remarkable points, lines and
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circles are not always the names of the men who first studied their

properties. Thus, we speak of "Brocard points" and "Brocard
angles," but historical research brought out the fact, in 1884 and 1886,

that these were the points and fines which had been studied by A. L.

Crelle and K. F. A. Jacobi. The "Brocard Circle" is Brocard's own
creation. In the triangle ABC, let CI and O' be the first and second
"Brocard point." Let A' be the intersection of BO and CO'; B' of

An' and Cfi; C of BO' and AO. The circle passing through A',

B', C is the "Brocard circle." A'B'C is "Brocard's first triangle."

Another like triangle, A"B"C" is called "Brocard's second triangle."

The points A", B", C", together with O, O', and two other points,

lie in the circumference of the "Brocard circle."

In 1873 fimile Lemoine (1840-1912), the editor oi l'Intermediaire

des mathematiciens , called attention to a particular point within a plane

triangle which has been variously called the "Lemoine point," " sym-

median point," and " Grebe point," named after Ernsi Wilhelm Grebe

(1804-1874) of Kassel. If CD is so drawn

as to make angles a and b equal, then one

of the two lines AB and CD is the anti-

parallel of the other, with reference to

the angle 0. Now OE, the bisector of

AB, is the median and OF, the bisector of

the anti-parallel of AB, is called the sym-

median (abbreviated from symetrique de la

mediane) . The point of concurrence of the

three symmedians in a triangle is called,

after Robert Tucker (1832-1905) of University College School in Lon-

don, the " symmedian point." John Sturgeon Mackay (1843-1914) of

Edinburgh has pointed out that some of the properties of this point,

brought to light since 1873, were first discovered previously to that
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date. The anti-parallels of a triangle which pass through its sym-
median point, meet its sides in six points which lie on a circle, called

the "second Lemoine circle." The "first Lemoine circle" is a special

case of a "Tucker circle" and concentric with the "Brocard circle."

The "Tucker circles" may be thus defined. Let DF'=FE'=ED';
let, moreover, the following pairs of lines be anti-parallels to each

other: AB and ED', BC and FE', CA and DF'; then the six points

D, D', E, E', F, F', he on a "Tucker
circle." Vary the length of the equal

anti-parallels, and a family of "Tucker
circles" is obtained. Allied to these

are the "Taylor circles," due to H. M.
Taylor of Trinity College, Cambridge.

Still different types are the "Mackay
circles," and the "Neuberg circles"

due to Joseph Neuberg (1840- ) of

Luxemburg. A systematic treatise on
this topic. Die Brocardschen Gehilde, was

written by Albrecht Emmerich, Berhn, 1891. Of the almost in-

numerable mass of new theorems on the triangle and circle, a great

number is given in the Treatise on the Circle and tite Sphere, Oxford,

1916, written by J. L. CooUdge of Harvard University.

Since 1888 E. Lemoine of Paris developed a system, called geomet-
rographics, for the purpose of numerically comparing geometric con-

structions with respect to their simplicity. Coolidge calls these

"the best known and least undesirable tests for the simplicity

of a geometrical construction"; A. Emch declares that "they are

hardly of any practical value, in so far as they do not indicate how to

simplify a construction or how to make it more accurate."

A new theorem upon the circumscribed tetraedron was propounded
in 1897 by A. S. Bang and proved by Joh. Gehrke. The theorem is:

Opposite edges of a circumscribed tetraedron subtend equal angles at

the points of contact of the faces which contain them. It has been
.the starting-point for extended developments by Franz Meyer, J.

keuberg and H. S. White. ^

Link-motion

The generation of rectilinear motion first arose as a practical prob-

lem in the design of steam engines. A close approximation to such

motion is the "parallel motion" designed by James Watt in 1784:

In a freely jointed quadrilateral ABCD, with the side AD fixed, a

point M on the side BC moves in nearly a straight line. The equa-

tion of the curve traced by M, sometimes called "Watt's curve,"

was first derived by the French engineer, Francois Marie de Prony

' Bull. Am. Math. Soc, Vol. 14, 1908, p. 220.
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(17SS71839); the curve is of the sixth order and was studied by Dar-
boux in 1879. A generalization of this curve is the " three-bar curve"
studied hy Samuel Roberts in 1876 and Reinhold Muller in 1902.1
A beautiful discovery in Unk-motion which came to attract a great

deal of attention was made by A. Peaucellier, Capitaine du genie a
Nice; in 1864 he proposed in the Nouvelles annates the problem of
devising compound compasses for the generation of a straight line

and also a conic. It is evident from his remarks that he himself had a
solution. In 1873 he published his solution in the same journal.
When PeauceUier's cell came to be appreciated, he was awarded the
great mechanical prize of the Institute of France, the "Prix Montyou."
The generation of exact rectilinear motion had long been beheved im-
possible. Only recently has it been pointed out that straight-line
motion had been invented before Peaucellier by another Frenchman,
P. F. Sarrus of Strasbourg. He presented an article and a model to
the Paris Academy of Sciences; the article, without any figure, was
pubhshed in 1853 in the Comptes Rendus ^ of the academy, and reported
on by Poncelet. The paper was entirely forgotten until attention was
called to it in 1905 by G. T. Bennett of Emmanuel College, Cambridge.'
The pieces ARSB and ATUB are

each hinged by three parallel hori-

zontal hinges, the two sets of hinges

having different directions. Con-
nected thus with B, A has a recti-

linear movement, up and down. In
one respect Sarrus's solution of

the problem of rectihnear motion is

more complete than that of Peau-
cellier; for, while the Peaucellier cell

gives rectUinear motion only to a

single point, Sarrus's apparatus gives rectilinear motion to the whole
piece A. It was re-invented in 1880 by H. M. Brunei and in 1891

by Archibald Barr. Yet to this day Sarrus's device appears to re-

main practically unknown.
While Sarrus's device is three-dimensional, that of Peaucellier is

two-dimensional. An independent solution of straight-hne motion
was given in 1871 by the Russian Lipkin, a pupil of P. Chebichev of

the University of Petrograd. In 1874 J. J. Sylvester became interested

in link-motion, and lectured on it at the Royal Institution. Dur-
ing the next few years several mathematicians worked on linkages.

H. Hart of Woolwich reduced PeauceUier's seven links to four links.

A new device by Sylvester has been called "Sylvester's linkage."

' G. Loria, Ebene Curven (F. Schiitte), Vol. I, igro, pp. 274-279.
'Comptes Rendus, Vol. 36, pp. 1036, 1125. The author's name is here spelled

"Sarrut," but R. C. Archibald has pointed out that this is a misprint.
' See PhUosoph. Magaz., 6. S., Vol. 9, 1905, p. 803.
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The barrister at law, Alfred Bray Kempe of London showed in 1876
that a link-motion can be found to describe any given algebraic curve;

he is the author of a popular booklet, How to draw a Straight Line,

London, 1877. Other articles of note on this subject were prepared

by Samuel Roberts, Arthur Cayley, W. Woolsey Johnson, V. Liguine

of the University of Odessa, and G. P. X. Kcenigs of the Ecole Poly-

technique in Paris. The determination of the linkage with minimum
number of pieces by which a given curve can be described is still an
unsolved problem.

Parallel Lines, Non-Euclidean Geometry and Geometry of n Dimensions

During the nineteenth century very remarkable generalizations were
made, which reach to the very root of two of the oldest branches

of mathematics,—elementary algebra and geometry. In geometry
the axioms have been searched to the bottom, and the con-

clusion has been reached that the space defined by Euchd's axioms
is not the only possible non-contradictory space. Euclid proved
(I, 27) that "if a straight line falling on two other straight lines make
the alternate angels equal to one another, the two straight lines shall

be parallel to one another." Being unable to prove that in every

other case the two lines are not parallel, he assigned this to be true in

what is now generally called the ^th "axiom," by some the nth or

the 12th "axiom."
Simpler and more obvious axioms have been advanced as sub-

stitutes. As early as 1663, John WaUis of Oxford recommended: "To
any triangle another triangle, as large as you please, can be drawn,
which is similar to the given triangle." G. Saccheri assumed the ex-

istence of two similar, unequal triangles. Postulates similar to Wallis'

have been proposed also by J. H. Lambert, L. Carnot, P. S. Laplace,

J. Delboeuf. A. C. Clairaut assumes the existence of a rectangle;

W. Bolyai postulated that a circle can be passed through any three

points not in the same straight line, A. M. Legendre that there existed a
finite triangle whose angle-sum is two right angles, J. F. Lorenz and
Legendre that through every point within an angle a line can be
drawn interescting both sides, C. L. Dodgson that in any circle the

inscribed equilateral quadrangle is greater than any one of the seg-

ments which lie outside it. But probably the simplest is the assump-
tion made by Joseph Fenn in his edition of Euchd's Elements, Dub-
lin, 1769, and again sixteen years later by WilliamLudlam (1718-1788),
vicar of Norton, and adopted by John Playfair: "Two straight lines

which cut one another can not both be parallel to the same straight

line." It is noteworthy ^ that this axiom is distinctly stated in

Proclus's note to Euclid, I, 31.

But the most numerous efforts to remove the supposed defect in

' T. L. Heath, The Thirteen Books of Euclid's Elements, Vol. I, p. 220.
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Euclid were attempts to prove the parallel postulate. After centuries
of desperate but fruitless endeavor, the bold idea dawned upon the
minds of several mathematicians that a geometry might be built up
without assuming the parallel-axiom. While A. M. Legendre still

endeavored to estabHsh the axiom by rigid proof, Lobachevski brought
out a publication which assumed the contradictory of that axiom,
and which was the first of a series of articles destined to clear up ob-
scurities in the fundamental concepts, and greatly to extend the field

of geometry.

Nicholaus Ivanovich Lobachevski (1793-1856) was born at Ma-
karief, in Nizhni-Novgorod, Russia, studied at Kasan, and from 1827
to 1846 was professor and rector of the University of Kasan. His views
on the foundation of geometry were first set forth in a paper laid before
the physico-mathematical department of the University of Kasan in

February, 1826. This paper was never printed and was lost. His
earliest pubUcation was in the Kasan Messenger for 1829, and then in

the Gelehrte Schriften der UniversWdt Kasan, 1836-1838, under the
title, "New Elements of Geometry, with a complete theory of Par-
allels." Being in the Russian language, the work remained unknown to

foreigners, but even at home it attracted no notice. In 1840 he pub-
lished a brief statement of his researches in Berlin, under the title,

Geometrische Untersuchungen zur Theorie der Parallellinien. Loba-
chevski constructed an "imaginary geometry," as he called it, which
has been described by W. K. Chfford as "quite simple, merely Euslid
without the vicious assumption." A remarkable part of this geometry
is this, that through a point an indefinite number of lines can be drawn
in a plane, none of which cut a given line in the same plane. A similar

system of geometry was deduced independently by the Bolyais in

Hungary, who called it "absolute geometry."

Wolfgang Bolyai de Bolya (1775-1856) was born in Szekler-Land,

Transylvania. After studying at Jena, he went to Gottingen, where
he became intimate with K. F. Gauss, then nineteen years old. Gauss
used to say that Bolyai was the only man who fully understood his

views on the metaphysics of mathematics. Bolyai became professor

at the Reformed College of Maros-Vasarhely, where for forty-seven

years he had for his pupils most of the later professors of Transyl-

vania. The first publications of this remarkable genius were dramas
and poetry. Clad in old-time planter's garb, he was truly original in

his private life as well as in his mode of thinking. He was extremely

modest. No monument, said he, should stand over his grave, only an
apple-tree, in memory of the three apples; the two of Eve and Paris,

which made hell out of earth, and that of I. Newton, which elevated

the earth again into the circle of heavenly bodies.^ His son, Johann.

IF. Schmidt, "Aus dem Leben zweier ungarischer Mathematiker Johann und
Wolfgang Bolyai von Bolya," Grunert's Archiv, 48:2, 1868. Franz Schmidt (1827-

1901) was an architect in Budapest.
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Bolyai (1802-1860), was educated for the army, and distinguished

himself as a profound mathematician, an impassioned viohn-player,

and an expert fencer. He once accepted the challenge of thirteen

officers on condition that after each duel he might play a piece on his

violin, and he vanquished them all.

The chief mathematical work of Wolfgang Bolyai appeared in

two volumes, 1832-1833, entitled Tentamen juventutem studiosam in

elementa maiheseos purm . . . introducendi. It is followed by an ap-

pendix composed by his son Johann. Its twenty-six pages make the

name of Johann Bolyai immortal. He published nothing else, but he

left behind one thousand pages of manuscript.

While Lobachevski enjoys priority of publication, it may be that

Bolyai developed his system somewhat earUer. Bolyai satisfied him-

self of the non-contradictory character of his new geometry on or be-

fore 182^; there is some doubt whether Lobachevski had reached this

point in 1826. Johann Bolyai's father seems to have been the only

person in Hungary who really appreciated the merits of his son's

work. For thirty-five years this appendix, as also Lobachevskj's

researches, remained in almost entire obUvion. Finally Richard
Baltzer of the University of Giessen, in 1867, called attention to the

wonderful researches.

In 1866 J. Hoiiel translated Lobachevski's Geometrische Unter-

suchungen into French. In 1867 appeared a French translation of

Johann Bolyai's Appendix. In iSgi George Bruce Halsted, then of

the University of Texas, rendered these treatises easily accessible to

American readers by translations brought out under the titles of

J. Bolyai's The Science Absolute of Space and N. Lobachevski's Geo-

metrical Researches on the Theory of Parallels of 1840.

The Russian and Hungarian mathematicians were not the only

ones to whom pangeometry suggested itself. A copy of the Tentamen
reached K. F. Gauss, the elder Bolyai's former roommate at Gottingen,

and this Nestor of German mathematicians was surprised to discover

in it worked out what he himself had begun long before, only to leave

it after him in his papers. As early as 1792 he had started on researches

of that character. His letters show that in 1799 he was trying to prove
a priori the reality of Euclid's system; but some time within the next
thirty years he arrived at the conclusion reached by Lobachevski
and Bolyai. In 1829 he wrote to F. W. Bessel, stating that his "con-
viction that we cannot found geometry completely a priori has be-

come, if possible, still firmer," and that "if number is merely a product
of our mind, space has also a reality beyond our mind of which we
cannot fully foreordain the laws a priori." The term non-Euclidean

geometry is due to Gauss. It is surprising that the first glimpses of

non-Euclidean geometry were had in the eighteenth century. Geron-

nimo Sacckeri (1667-1733), a Jesuit father of Milan, in 1733 wrote
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Eudides ah omni naevo vindicakis^ (Euclid vindicated from every
flaw). Starting with two equal lines AC and BD, drawn perpendicu-
lar to a line AB and on the same side of it, and joining C and D, he
proves that the angles at C and D are equal. These angles must be
either right, or obtuse or acute. The hypothesis of an obtuse angle
is demolished by showing that it leads to results in conflict with
Euclid I, 17: Any two angles of a triangle are together less than two
right angles. The hypothesis of the acute angle leads to a long pro-
cession of theorems, of which the one declaring that two lines which
meet in a point at infinity can be perpendicular at that point to the
same straight line, is considered contrary to the nature of the straight

line; hence the hypothesis of the acute angle is destroyed. Though
not altogether satisfied with his proof, he declared Euclid "vindi-
cated." Another early writer was J. H. Lambert who in 1766 wrote
a paper "Zur Theorie der Paralleflinien," published in the Leipziger

Magazinfiir reine und angewandte Mathematik, 1786, in which: (i) The
failure of the parallel-axiom in surface-spherics gives a geometry with
angle-sum >2 right angles; (2) In order to make intuitive a geometry
with angle-sum < 2 right angles we need the aid of an "imaginary
sphere" (pseudo-sphere); (3) In a space with the angle-sum differing

from 2 right angles, there is an absolute measure (Bolyai's natural

unit for length). Lambert arrived at no definite conclusion on the
validity of the hypotheses of the obtuse and acute angles.

Among the contemporaries and pupils of K. F. Gauss, three deserve
mention as writers on the theory of parallels, Ferdinand Karl Schwei-
kart (1780-1859), professor of law in Marburg, Franz Adolf Taurinus
(i 794-1874), a nephew of Schweikart, and Friedrich Ltidwig Wachter
(i792-i8i7),apupilof Gauss in 1809 and professor atDantzig. Schwei-

kart sent Gauss in i8l8 a manuscript on "Astral Geometry" which
he never published, in which the angle-sum of a triangle is less than
two right angles and there is an absolute unit of length. He induced
Taurinus to study this subject. Taurinus published in 1825 his Theorie

der Farallellinien, in which he took the position of Saccheri and Lam-
bert, and in 1826 his Geometria prima elementa, in an appendix of

which he gives important trigonometrical formulae for non-Euclidean
geometry by using the formulae of spherical geometry with an imag-

inary radius. His Elementa attracted no attention. In disgust he

burned the remainder of his edition. Wachter 's results are contained

in a letter of 1816 to Gauss and in his Demonstratio axiomatis geo-

metrici in Eudideis undecimi, 1817. He showed that the geometry
on a sphere becomes identical with the geometry of Euclid when the

radius is infinitely increased, though it is distinctly shown that the

limiting surface is not a plane. ^ Elsewhere we have mentioned the

1 See English translation by G. B. Halsted in Am. Math. Monthly, Vols. 1-5, 1894-

1898.
2 D. M. Y. Sommerville, Elem. of Non-Euclidean Geometry, London, 1914, p. 15.
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contemporary researches on parallel lines due to A. M. Legendre in

France.

The researches of K. F. Gauss, N. I. Lobachevski and J. Bolyai

have been considered by F. Klein as constituting the first period in

the history of non-Euclidean geometry. It is a period in which the

synthetic methods of elementary geometry were in vogue. The
second period embraces the researches of G. F. B. Riemann, H. Helm-
holtz, S. Lie and E. Beltrami, and employs the methods of differential

geometry. It was in 1854 that Gauss heard from his pupil, Riemann,
a marvellous dissertation which considered the foundations of geome-
try from a new point of view. Riemann was not familiar with Lo-
bachevski and Bolyai. He developed the notion of w-ply extended

magnitude, and the measure-relations of which a manifoldness of n
dimensions is capable, on the assumption that every line may be
measured by every other. Riemann applied his ideas to space. He
taught us to distinguish between " unboundedness " and "infinite

extent." According to him we have in our mind a more general notion

of space, i. e. a notion of non-Euclidean space; but we learn by expe-

rience that our physical space is, if not exactly, at least to a high degree

of approximation, Euclidean space. Riemann's profound dissertation

was not published until 1867, when it appeared in the Gottingen Ah-
handlungen. Before this the idea of n dimensions had suggested itself

under various aspects to Ptolemy, J. Wallis, D'Alembert, J. Lagrange,

J. Pliicker, and H. G. Grassmann. The idea of time as a fourth di-

mension had occurred to D'Alembert and Lagrange. About the same
time with Riemann's paper, others were published from the pens of

H. HelmhoUz and E. Beltrami. This period marks the beginning

of lively discussions upon this subject. Some writers—^J.
Bellavitis,

for example—were able to see in non-Euclidean geometry and n-

dimensional space nothing but huge caricatures, or diseased out-

growths of mathematics. H. Helmholtz's article was entitled That-

sachen, welche der Geometrie zu Griinde liegen, 1868, and contained

many of the ideas of Riemann. Helmholtz popularized the subject in

lectures, and in articles for various magazines. Starting with the

idea of congruence, and assuming the free mobility of a rigid body and
the return unchanged to its original position after rotation about an
axis, he proves that the square of the line-element is a homogeneous
function of the second degree in the differentials. ' Helmholtz's

investigations were carefully examined by S. Lie who reduced the

Riemann-Helmholtz problem to the following form: To determine

all the continuous groups in space which, in a bounded region, have
the property of displacements. There arose three types of groups,

Sommerville is the author of a Bihlingraphy of nan-Euclidean geometry including

the theory of parallels, the foundations of geometry, and space of n dimensions, London,
igii.

' D. M. Y. Sommerville, op. cit., p. 195.
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which characterize the three geometries of EucUd, of N. I. Lobachev-
ski and J. Bolyai, and of F. G. B. Riemann.^
Eugenic Beltrami (1835-1900), born at Cremona, was a pupil of

F. Brioschi. He was professor at Bologna as a colleague of L. Cremona,
at Pisa as an associate of E. Betti, at Pavia as a co-worker with F.

Casorati, and since i8gi at Rome where he spent the last years of

his career, "uno degli illustri maestri dell' anaUsi in Italia." Beltrami
wrote in 1868 a classical paper, Saggio di interpretazione delta geometria

non-euclidea {Giorn. di Matem., 6), which is analytical (and, like

several other papers, should be mentioned elsewhere were we to adhere
to a strict separation between synthesis and analysis). He reached
the brilliant and surprising conclusion that in part the theorems of

non-Euclidean geometry find their realization upon surfaces of con-

stant negative curvature. He studied, also, surfaces of constant
positive curvature, and ended with the interesting theorem that

the space of constant positive curvature is contained in the space

of constant negative curvature. These researches of Beltrami, H.
Helmholtz, and G. F. B. Riemann culminated in the conclusion that

on surfaces of constant curvature we may have three geometries,

—

the non-Euclidean on a surface of constant negative curvature,

the spherical on a surface of constant positive curvature, and the

EucUdean geometry on a surface of zero curvature. The three ge-

ometries do not contradict each other, but are members of a system,

—

a geometrical trinity. The ideas of hjrper-space were brilliantly ex-

pounded and popularised in England by Clifford.

William Kingdon Clifford (1845-1879) was bom at Exeter, edu-

cated at Trinity College, Cambridge, and from 1871 until his death
professor of applied mathematics in University College, London. His
premature death left incomplete several brilliant researches which
he had entered upon. Among these are his paper On Classification

of Loci and his Theory of Graphs. He wrote articles On the Canonical

Form and Dissection of a Riemann's Surface, on Biquaternions , and
an incomplete work on the Elements of Dynamic. He gave exact

meaning in d5mamics to such familiar words as "spin," "twist,"

"squirt," "wHrl." The theory of polars of curves and surfaces was
generalized by him and by Reye. His classification of loci, 1878,

being a general study of curves, was an introduction to the study

of ^-dimensional space in a direction mainly projective. This study

has been continued since chiefly by G. Veronese of Padua, C. Segre

of Turin, E. Bertini, F. Aschieri, P. Del Pezzo of Naples.

Beltrami's researches on non-Euclidean geometry were followed,

in 1871, by important investigations of Felix Klein, resting upon
Cayley's Sixth Memoir on Quantics, 1859. The development of geom-

etry in the first half of the nineteenth century had led to the separation

'Lie, Theorie der Transformaiionsgruppen, Bd. Ill, Leipzig, 1893, pp. 437-543;
Bonola, op. cit., p. 154.
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of this science into two parts: the geometry of position or descriptive

geometry which dealt with properties that are unaffected by projec-

tion, and the geometry of measurement in which the fundamental

notions of distance, angle, etc., are changed by projection. Cayley's

Sixth Memoir brought these strictly segregated parts together again

by his definition of distance between two points. The question

whether it is not possible so to express the metrical properties of

figures that they will not vary by projection (or linear transformation)

had been solved for special projections by M. Chasles, J. V. Poncelet,

and E. Laguerre, but it remained for A. Cayley to give a general

solution by defining the distance between two points as an arbitrary

constant multiplied by the logarithm of the anharmonic ratio in which
the line joining the two points is divided by the fundamental quadric.

These researches, applying the principles of pure projective geometry,

mark the third period in the development of non-Euclidean geometry.

Enlarging upon this notion, F. Klein showed the independefice of

projective geometry from the parallel-axiom, and by properly choosing

the law of the measurement of distance deduced from projective

geometry the spherical, Euclidean, and pseudospherical geometries,

named by him respectively the elliptic, parabolic, and hyperbolic

geometries. This suggestive investigation was followed up by numer-
ous writers, particularly by G. Battaglini of Naples, E. d'Ovidio of

Turin, R. de Paolis of Pisa, F. Aschieri, A. Cayley, F. Lindemann of

Munich, E. Sobering of Gottingen, W. Story of Clark University,

H. Stahl of Tiibingen, A. Voss of Munich, Homersham Cox, A. Buch-
heim.^ The notion of parallelism applicable to hyperbolic space was
the only extension of Euclid's notion of parallelism until Clifford dis-

covered in elliptic space straight lines which possess most of the prop-

erties of Euclidean parallels, but differ from them in being skew. Two
lines are right (or left) parallel, if they cut the same right (or left)

generators of the absolute. Later F. Klein and R. S. Ball made
extensive contributions to the knowledge of these lines. More re-

cently E. Study of Bonn, J. L. Coolidge of Harvard University, W.
Vogt of Heidelberg and others have been studying this subject. The
methods employed have been those of analytic and synthetic geometry
as well as those of differential geometry and vectorial analysis.^ The
geometry of n dimensions was studied along a line mainly metrical

by a host of writers, among whom may be mentioned Simon Newcomb
of the Johns Hopkins University, L. Schlafli of Bern, W. I. Stringham

(1847-1909) of the University of California, W. Killing of Miinster,

T. Craig of the Johns Hopkins, Rudolf Lipschitz (1832-1903) of Bonn.
R. S. Heath of Birmingham and W. Killing investigated the kinematics

and mechanics of such a space. Regular solids in «-dimensipnal space

were studied by Stringham, EUery W. Davis (1857-1918) of the

' G. Loria, Die hauptsachlichslcn Theorien der Geometrie, 1888, p. 102.
^ Bull. Am. Malh. Soc, Vol. 17, 1911, p. 315.



ANALYTIC GEOMETRY 309

University of Nebraska, Reinhold Hoppe (1816-1900) of Berlin, and
others. Stringham gave pictures of projections upon our space of

regular solids in four dimensions, and V. Schlegel at Hagen constructed

models of such projections. These are among the most curious of a
series of models published by L. Brill in Darmstadt. It has been
pointed out that if a fourth dimension existed, certain motions could

take place which we hold to be impossible. Thus S. Newcomb showed
the possibility of turning a closed material shell inside out by simple

flexure without either stretching or tearing; F. Klein pointed out tliat

knots could not be tied; G. Veronese showed that a body could be
removed from a closed room without breaking the walls; C. S. Peirce

proved that a body in four-fold space either rotates about two axes

at once, or cannot rotate without losing one of its dimensions.

A fourth period in the history of non-Euclidean geometry, intro-

duced by the researches of Moritz Pasch, Giuseppe Peano, Mario
Pieri, David Hilbert, Oswald Veblen, concerns itself with the logical

grounding of geometry (including non-Euclidean forms) upon sets

of axioms.

The geometry of hyperspace was exploited by spiritualists and
mediums, of whom Henry Slade was the most notorious. He con-

verted to spirituaHsm the German scientist F. ZoUner and his coterie,

to whom he gave a spiritual demonstration of the existence of a fourth

dimension of space. These events contributed to the severity with

which the philosopher R. H. Lotze, in his Metaphysik, 1879, criticised

the mathematical theories of hyperspace and non-EucUdean geometry.

Analytic Geometry

In the preceding chapter we endeavored to give a flashlight view

of the rapid advance of synthetic geometry. In some cases we also

mentioned analytical treatises. Modern synthetic and modern
analytical geometry have much in common, and may be grouped to-

gether under the common name "projective geometry." Each has

advantages over the other. The continual direct viewing of figures

as existing in space adds exceptional charm to the study of the former,

but the latter has the advantage in this, that a well-established routine

in a certain degree may outrun thought itself, and thereby aid original

research. While in Germany J. Steiner and von Staudt developed

synthetic geometry, Pliicker laid the foundation of modern analytic

geometry.

Julius Pliicker (1801-1868) was born at Elberfeld, in Prussia. After

studying at Bonn, Berlin, and Heidelberg, he spent a short time in

Paris attending lectures of G. Monge and his pupils. Between 1826

and 1836 he held positions successively at Bonn, Berlin, and Halle.

He then became professor of physics at Bonn. Until 1846 his original

researches were on geometry. In 1828 and in 1831 he pubHshed his



3IO A HISTORY OF MATHEMATICS

Analytisch-Geometrische Entwicklungen in two volumes. Therein he
adopted the abbreviated notation [used before him in a more restricted

way by Etienne BobiUier (1797-1832), professor of mechanics at

Chalons-sur-Marne], and avoided the tedious process of algebraic

elimination by a geometric consideration. In the second volume the

principle of duality is formulated analytically. With him duality and
homogeneity found expression already in his system of co-ordinates.

The homogenous or trilinear system used by him is much the same as

the co-ordinates of A. F. Mobius. In the identity of analytical opera-

tion and geometric construction Pliicker looked for the source of his

proofs. The System der Analytischen Geometrie, 1835, contains a
complete classification of plane curves of the third order, based on the

nature of the points at infinity. The Tkeorie der Algehraischen Curven,

1839, contains, besides an enumeration of curves of the fourth order,

the analytic relations between the ordinary singularities of plane

curves known as "Pliicker's equations," by which he was able to

explain "Poncelet's paradox." The discovery of these relations is,

says A. Cayley, "the most important one beyond all comparison in

the entire subject of modern geometry." The four Pliicker equa-

tions have been expressed in different forms. Cayley studied higher

singularities of plane curves. M. W. Haskell of the University of

California, in 1914, showed from the Pliicker equations that the

maximiun number of cusps possible for a curve of order m is the

greatest integer in m (w— 2)73 (except when w is 4 and 6, in which
case the maximum number is 3 and 9), and that there is always a
self-dual curve with this maximum number of cusps.

Certain interrelations of the various geometrical researches of the

first half and middle of the nineteenth century are brought out by

J. G. Darboux in the following passage: ^ "While M. Chasles, J.

Steiner, and, later, . . . von Staudt, were intent on constituting a
rival doctrine to analysis and set in some sort altar against altar,

J. D. Gergonne, E. Bobilher, C. Sturm, and above all J. Pliicker, per-

fected the geometry of R. Descartes and constituted an analytic sys-

tem in a manner adequate to the discoveries of the geometers. It is

to E. Bobilher and to J. Pliicker that we owe the method called

abridged notation. Bobilher consecrated to it some pages truly new
in the last volumes of the Annates of Gergonne. Pliicker commenced
to develop it in his first work, soon followed by a series of works where
are established in a fully conscious manner the foundations of the

modem analytic geometry. It is to him that we owe tangential co-

ordinates, trilinear co-ordinates, employed with homogeneous equa-
tions, and finally the emplojmient of canonical forms whose validity

was recognized by the method, so deceptive sometimes, but so fruit-

ful, called the enumeration of constants."

In Germany J. Pliicker's researches met with no favor. His method
' Congress of Arts and Science, St. Louis, 1904, Vol. 1, pp. 541, 542.
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was declared to be unproductive as compared with tlie synthetic
method of J. Steiner and J. V. Poncelet! His relations with C. G. J.
Jacobi were not altogether friendly. Steiner once declared that he
would stop writing for Crelle's Journal if Pliicker continued to con-
tribute to it.^ The result was that many of Pliicker's researches were-
pubUshed in foreign journals, and that his work came to be better
known in France and England than in his native country. The charge
was also brought against Pliicker that, though occupying the chair

of physics, he was no physicist. This induced him to relinquish

mathematics, and for nearly twenty years to devote his energies to

physics. Important discoveries on Fresnel's wave-surface, magnetism,
spectrum-analysis were made by him. But towards the close of his

life he returned to his first love,—mathematics,—and enriched it with
new discoveries. By considering space as made up of hues he created

a "new geometry of space." Regarding a right line as a curve in-

volving four arbitrary parameters, one has the whole system of Unes
in space. By connecting them by a single relation, he got a " complex "

of lines; by connecting them with a twofold relation, he got a "con-
gruency" of lines. His first researches on this subject were laid before

the Royal Society in 1865. His further investigations thereon ap-

peared in 1868 in a posthumous work entitled Nene Geometrie des

Raumes gegrwidet auf die Betrachtung der geraden Linie als Raumele-
ment, edited by Felix Klein. Pliicker's analysis lacks the elegance

found in J. Lagrange, C. G. J. Jacobi, L. O. Hesse, and R. F. A.

Clebsch. For many years he had not kept up with the progress of

geometry, so that many investigations in his last work had already

received more general treatment on the part of others. The work
contained, nevertheless, much that was fresh and original. The theory

of complexes of the second degree, left unfinished by Pliicker, was
continued by Felix Klein, who greatly extended and supplemented
the ideas of his master.

Ludwig Otto Hesse (1811-1874) was born at Konigsberg, and
studied at the university of his native place under F. W. Bessel, C.G.J.
Jacobi, F. J. Richelot, and F. Neumann. Having taken the doctor's

degree in 1840, he became docent at Konigsberg, and in 1845 extraor-

dinary professor there. Among his pupils at that time were Heinrich

Durege (1821-1893) of Prague, Carl Neumann, R. F. A. Clebsch,

G. R. Kirchhoff. The Konigsberg period was one of great activity

for Hesse. Every new discovery increased his zeal for still greater

achievement. His earliest researches were on surfaces of the second

order, and were partly synthetic. He solved the problem to construct

any tenth point of such a surface when nine points are given. The
analogous problem for a conic had been solved by Pascal by means
of the hexagram. A difiScult problem confronting mathematicians

of this time was that of elimination. J. Pliicker had seen that the

' Ad. Dronke, Julius Pliicker, Bonn, 1871.
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main advantage of his special method in analytic geometry lay in

the avoidance of algebraic elimination. Hesse, however, showed how
by determinants to make algebraic elimination easy. In his earlier

results he was anticipated by J. J. Sylvester, who published his dialytic

method of elimination in 1840. These advances in algebra Hesse
applied to the analytic study of curves of the third order. By linear

substitutions, he reduced a form of the third degree in three variables

to one of only four terms, and was led to an important determinant

involving the second differential coefficient of a form of the third

degree, called the "Hessian." The "Hessian" plays a leading part

in the theory of invariants, a subject first studied by A. Cayley.

Hesse showed that his determinant gives for every curve another

curve, such that the double points of the first are points on the second,

or "Hessian." Similarly for surfaces (Crelle, 1844). Many of the

most important theorems on curves of the third order are due to

Hesse. He determined the curve of the 14th order, which passes

through the 56 points of contact of the 28 bi-tangents of a curve of

the fourth order. His great memoir on this subject (Crelle, 1855)
was published at the same time as was a paper by J. Steiner treating

of the same subject.

Hesse's income at Konigsberg had not kept pace with his growing
reputation. Hardly was he able to support himself and family. In

1855 he accepted a more lucrative position at Halle, and in 1856 one
at Heidelberg. Here he remained until 1868, when he accepted a

position at a technic school in Munich.' At Heidelberg he revised

and enlarged upon his previous researches, and published in 1861 his

Vorlesungen iiber die Analytische Geometrie des Raumes, insbesondere

uber Fl'dchen. 2. Ordnung. More elementary works soon followed.

While in Heidelberg he elaborated a principle, his " Uebertragungs-

princip." According to this, there corresponds to every point in a

plane a pair of points in a line, and the projective geometry of the

plane can be carried back to the geometry of points in a fine.

The researches of Pliicker and Hesse were continued in England
by A. Cayley, G. Salmon, and J. J. Sylvester. It may be premised
here that among the early writers on analytical geometry in England
was Jaxnes Booth (1806-1878), whose chief results are embodied in his

Treatise on Some New Geometrical Methods; and James MacCuUagh
(1809-1846), who was professor of natural philosophy at Dubhn,
and made some valuable discoveries on the theory of quadrics. The
influence of these men on the progress of geometry was insignificant,

for the interchange of scientific results between different nations was
not so complete at that time as might have been desired. In further

illustration of this, we mention that M. Chasles in France elaborated

subjects which had previously been disposed of by J. Steiner in Ger-

many, and Steiner published researches which had been given by
' Gustav Bauer, Ged'dchtnissrcde aiif Otto Hesse, Munchen, 1882.
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Cayley, Sylvester, and Salmon nearly five years earlier. Cayley and
Salmon in 1849 determined the straight lines in a cubic surface, and
studied its principal properties, while Sylvester in 1851 discovered

the pentahedron of such a surface. Cayley extended Pliicker's equa-
tions to curves of higher singularities. Cayley's own investigations,

and those of Max Nother (1844- ) of Erlangen, G. H. Halphen,

Jules R. M. de la Gournerie (1814-1883) of Paris, A. Brill of Tiibin-

gen, lead to the conclusion that each higher singularity of a curve is

equivalent to a certain number of simple singularities,—the node, the

ordinary cusp, the double tangent, and the inflection. Sylvester

studied the "twisted Cartesian," a curve of the fourth order. Georges-
Henri Halphen (1844-1889) was born at Rouen, studied at the ficole

Polytechnique in Paris, took part in the Franco-Prussian war, then

became repetiteur and examinateur at the Ecole Polytechnique. His
investigations touched mainly the geometry of algebraic curves and
surfaces, differential invariants, the theory of E. Laguerre's invariants,

elliptic functions and their applications. A British geometrician,

Salmon, helped powerfully towards the spreading of a knowledge of

the new algebraic and geometric methods by the publication of an
excellent series of text-books (Conic Sections, Modern Higher Algebra,

Higher Plane Curves, Analytic Geometry of Three Dimensions), which
have been placed within easy reach of German readers by a free trans-

lation, with additions, made by Wilhelm Fiedler of the Polytechnicum

in Zurich. Salmon's Geometry of Three Dimensions was brought out

in the fifth and sixth editions, with much new matter, by Reginald

A. P. Rogers of Trinity College, Dublin, in 1912-1915. The next great

worker in the field of analytic geometry was Clebsch.

Rudolf Friedrich Alfred Clebsch (1833-1872) was bom at Konigs-

berg in Prussia, studied at the university of that place under L. 0.

Hesse, F. J. Richelot, F. Neumann. From 1858 to 1C63 he held the

chair of theoretical mechanics at the Polytechnicum in Carlsruhe.

The study of Salmon's works led him into algebra and geometry. In

1863 he accepted a position at the University of Giesen, where he

worked in conjunction with Paul Gordan of Erlangen. In 1868

Clebsch went to Gottingen, and remained there until his death. He
worked successively at the following subjects: Mathematical physics,

the calculus of variations and partial differential equations of the first

order, the general theory of curves and surfaces, Abehan functions

and their use in geometry, the theory of invariants, and "Flachen-

abbildung." ^ He proved theorems on the pentahedron enunciated

by J. J. Sylvester and J. Steiner; he made systematic use of "defi-

ciency" (Geschlechi) as a fundamental principle in the classification

of algebraic curves. The notion of deficiency was known before him

to N. H. Abel and G. F. B. Riemann. At the beginning of his career,

' Alfred Clebsch, Versuch einer Darlegung und Wiirdigung seiner wissensrhafllichen

Leistungen von einigen seiner Freunde, Leipzig, 1873.
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Clebsch had shown how elliptic functions could be advantageously
applied to Malfatti's problem. The idea involved therein, viz. the use

of higher transcendentals in the study of geometry, led him to his great-

est discoveries. Not only did he apply Abelian functions to geometry,

but conversely, he drew geometry into the service of Abelian functions.

Clebsch made liberal use of determinants. His study of curves and
surfaces began with the determination of the points of contact of lines

which meet a surface in four consecutive points. G. Salmon had
proved that these points lie on the intersection of the surface with a

derived surface of the degree iiw— 24, but his solution was given in

inconvenient form. Clebsch's investigation thereon is a most beautiful

piece of analysis.

The representation of one surface upon another (Flachenabbildung)

,

so that they have a (i, i) correspondence, was thoroughly studied for

the first time by Clebsch. The representation of a sphere on a plane

is an old problem which drew the attention of Ptolemy, Gerard Mer-
cator, J. H. Lambert, K. F. Gauss, J. L. Lagrange. Its importance in

the construction of maps is obvious. Gauss was the first to represent

a surface upon another with a view of rhore easily arriving at its

properties. J. Pliicker, M. Chasles, A. Cayley, thus represented on a
plane the geometry of quadric surfaces; Clebsch and L. Cremona, that

of cubic surfaces. Other surfaces have been studied in the same way
by recent writers, particularly Max Nother of Erlangen, Angela
Arnienante (1844-1878) of Rome, Felix Klein, Georg H. L. Korndorfer,

Ettore Caporali (1855-1886) of Naples, H. G. Zeuthen of Copenhagen.
A fundamental question which has as yet received only a partial an-

swer is this: What surfaces can be represented by a (i, i) correspond-

ence upon a given surface? This and the analogous question for

curves was studied by Clebsch. Higher correspondences between
surfaces have been investigated by A. Cayley and M. Nother. Im-
portant bearings upon geometry has Riemann's theory of birational

transformations. The theory of surfaces has been studied by Joseph
Alfred Serret (i8i9-i885)_ professor at the Sorbonne in Paris, Jean
Gaston Darboux of Paris, John Casey (1820-1891) of Dublin, William
Roberts (181 7-1883) of Dublin, Heinrich Schroter (1829-1892) of

Breslau, Elwin Bruno Christoffel (1829-1900), professor at Zurich,

later at Strassburg. Christoffel wrote on the theory of potential, on
minimal surfaces, on the so-called transformation of Christoffel, of

isothermic surfaces, on the general theory of curved surfaces. His
researches on surfaces were extended by Julius Weingarten (1836-1910)
of the University of Freiburg and Hans von Mangoldt of Aachen, in

1882. As we shall see more fully later, surfaces of the fourth order

were investigated by E. E. Kummer, and Fresnel's wave-surface,

studied by W. R. Hamilton, is a particular case of Kummer's quartic

surface, with sixteen double points and sixteen singular tangent planes.^

' A. Cayley, Inaugural Address, 1883.
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Prominent in these geometric researches was Jean Gaston Dar-
boux (1842-1917). He was born at Nimes, founded in 1870, with the
collaboration of Guillaume Jules Hoilel (1823-1886) of Bordeaux and
Jules Tannery, the Bulletin des sciences mathematiques et astronomiques,

and was for half a century conspicuous as a teacher. In 1900 he
became permanent secretary of the Paris Academy of Sciences, in

which position he was succeeded after his death by Emil Picard. By
his researches, Darboux enriched the synthetic, analytic and infin-

itesimal geometries, as well as rational mechanics and analysis. He
wrote Leqons sur la theorie generale des surfaces et les applications

geometriques du calcul infinitesimal, Paris, 1887-1896, and Leqons sur

les systemes orihogonaux et les coordonnees curvilignes, Paris, 1898. He
investigated triply orthogonal systems of surfaces, the deformation
of surfaces and rolling of applicable surfaces, infinitesimal deforma-
tion, spherical representation of surfaces, the development of the

moving axes of co-ordinates, the use of imaginary geometric elements,

the use of isotropic cylinders and developables; ^ he introduced

pentaspherical coordinates.

Eisenhart says: "Darboux was a strong advocate of the use of

imaginary elements in the study of geometry. He believed that their

use was as necessary in geometry as in analysis. He has been im-

pressed by the success with which they have been employed in the

solution of the problem of minimal surfaces. From the very beginning

he made use in his papers of the isotropic line, the null sphere (the

isotropic cone) and the general isotropic developable. In his first

memoir on orthogonal systems of surfaces he showed that the envelope

of the surfaces of such a system, when defined by a single equation,

is an isotropic developable. . . . Darboux gives to Edouard Com-
bescure (1819-?) the credit of being the first to apply the considera-

tions of kinematics to the study of the theory of surfaces with the

consequent use of moving co-ordinate axes. But to Darboux we ars

indebted for a realization of the power of this method, and for its

systematic development and exposition. . . . Darboux's ability was
based on a rare combination of geometrical fancy and analytical

power. He did not S3anpathize with those who use only geometrical

reasoning in attacking geometrical problems, nor with those who feel

that there is a certain virtue in adhering strictly to analytical proc-

esses. ... In common with Monge he was not content with dis-

coveries, but felt that it was equally important to make disciples.

Like this distinguished predecessor he developed a large group of

geometers, including C. Guichard, G. Koenigs, E. Cosserat, A. De-

moulin, G. Tzitzeica, and G. Demartres. Their brilliant researches

are the best tribute to his teaching."

Proceeding to the fuller consideration of recent developments, we

^ Am. Math. Monthly, Vol. 24, 1017, p. 354. See L. P. Eisenhart's "Darboux's

Contribution to Geometry" in Bull. Am. Math. Soc, Vol. 24, 1918, p. 227.
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quote from H. F. Baker's address before the International Congress

held at Cambridge in 191 2.
•
^ "The general theory of Higher Plane

Curves . . . would be impossible without the notion of the genus of a
curve. The investigation of Abel of the number of independent in-

tegrals in terms of which his integral sums can be expressed may thus

be held to be of paramount importance for the general theory. This

was further emphasized by G. F. B. Riemann's consideration of the no-

tion of birational transformation as a fundamental principle. After

this two streams of thought were to be seen. First R. F. A. Clebsch

remarked on the existence of invariants for surfaces, analogous to the

genus of a plane curve. This number he defined by a double integral;

it was to be unaltered by birational transformation of the surface.

Clebsch's idea was carried on and developed by M. Noether. But
also A. Brill and Noether elaborated in a geometrical form the

results for plane curves which had been obtained with transcen-

dental considerations by N. H. Abel and G. F. B. Riemann. Then
the geometers of Italy took up Noether's work with very remark-
able genius, and carried it to a high pitch of perfection and clear-

ness as a geometrical theory. In connection therewith there arose

the important fact, which does not occur in Noether's papers, that

it is necessary to consider a surface as possessing two genera; and
the names of A. Cayley and H. G. Zeuthen should be referred to at

this stage. But at this time another stream was running in France.

E. Picard was developing the theory of Riemann integrals—single

integrals, not double integrals—upon a surface. How long and
laborious was the task may be judged from the fact that the publica-

tion of Picard's book occupied ten years—and may even then have
seemed to many to be an artificial and unproductive imitation of

the theory of algebraic integrals for a curve. In the light of subse-

quent events, Picard's book appears likely to remain a permanent
landmark in the history of geometry. For now the two streams,

the purely geometrical in Italy, the transcendental in France, have
united. The results appear to me at least to be of the greatest im-

portance." The work of E. Picard in question is the Theorie des

fonctions algebriques de deux variables itidependantes, which was brought
out in conjunction with Georges Simart between the years 1897 and
1906.

"

H. F. Baker proceeds to the enumeration of some individual re-

sults: Guido Castelnuovo of Rome has shown that the deficiency of

the characteristic series of a linear system of curves upon a surface can-

not exceed the difference of the two genera of the surface. Federigo
Enriques of Bologna has completed this result by showing that for an
algebraic system of curves the characteristic series is complete. Upon
this result, and upon E. Picard's theory of integrals of the second

1 Proceed, of the jth Inkrn. Congress, Vol. I, Cambridge, 1913, p. 49. For more
detail, consult H. B. Baker in the Proceed, of the London Math. Soc, Vol. 12, 1912.
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kind Francesco Severi of Padua has constructed a proof that the

number of Picard integrals of the first kind upon a surface is equal to

the difference of the genera. The names of M. G. Humbert of Paris

and of G. Castelnuovo also arise here. Picard's theory of integrals of

the third kind has given rise in F. Severi's hands to the expression of

any curve lying on a surface hnearly in terms of a finite niunber of

fundamental curves. Enriques showed that the system of curves cut
upon a plane by adjoint surfaces of order »— 3, when n is the order of

the fundamental surface, if not complete, has a deficiency not ex-

ceeding the difference of the genera of the surface. Severi has given
a geometrical proof that this deficiency is equal to the difference of

the genera, a result previously deduced by E. Picard, with transcen-

dental considerations, from the assumption of the number of Picard
integrals of the first kind. F. Enriques and G. Castlenuovo have shown
that a surface which possesses a system of curves for which what may
be called the canonical number, 2 tt — 2 - «, where tt is the genus of the

curve and n the number of intersections of two curves of the system,

is negative, can be transformed bi rationally to a ruled surface. On
the analogy of the case of plane curves, and of surfaces in three di-

mensions, it appears very natural to conclude that if a rational re-

lation, connecting, say, m-\-\ variables, can be resolved by substi-

tuting for the variables rational functions of m others, then these m
others can be so chosen as to be rational functions of the m-F i original

variables. F. Enriques has recently given a case, with m=3, for

which this is not so. To this summary of results, given by H. F.

Baker, should be added that he himself has made contributions,

particvilarly on a cubic surface and the curves which lie thereon.

In reducing singularities, the Italians and French use methods of

projecting from space of higher dimension which were perhaps first

used in 1887 by W. K. Clifford.

A pubUcation of wide scope on collineations and correlations is

Die Lehre von den geometrischen Verwandtsckafien, in four volumes,

igo8—?, being written by Rudolf Sturm (1841—) of the University

of Breslau.

The theory of straight lines upon a cubic surface was first studied

by A. Cayley and G. Salmon ^ in 1849. Cayley pointed out that there

was a definite niunber of such lines, while Salmon found that there

were exactly 27 of them. "Surely with as good reason," says J. J.

. Sylvester, " as had Archimedes to have the cylinder, cone and sphere

engraved on his tombstone might our distinguished countr)mien leave

testamentary directions for the cubic eikosiheptagram to be engraved

on theirs." Nor would such engraving be impossible, for in 1869

Christian Wiener made a model of a cubic surface showing 27 real

lines lying upon it. J. Steiner, in 1856, studied the purely geometric

" These historic data are taken from A. Henderson, The Twenty-seven Lines upon

he Cubic Surface, Cambridge, 1911, which gives bibliography and details.
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theory of cubic surfaces. This was done later also by L. Cremona and
R. Sturm, between whom in 1866 the "Steiner prize" was divided.

An elegant notation was invented by Andrew Hart, but the notation

which has met with general adoption was advanced by L. Schlafli of

Bern in 1858 ; it is that of the double six. Schlafli's double six theorem,

proved by him and by many others since, is as follows: "Given five

lines a, b, c, d, e which meet the same straight line X; then may any
four of the five lines be intersected by another line. Suppose that

A, B, C, D, E are the other lines intersecting {b, c, d, e), (c, d, e, a),

(d, e, a, b), (e, a, b, c), and {a, b, c, d) respectively. Then A, B, C, D, E
will all be met by one other straight line x."

L. Schlafli first considered a division of the cubic surfaces into

species, in regard to the reality of the 27 lines. His final classification

was adopted by A. Cayley. In 1872 R. F. A. Clebsch constructed a
model of the diagonal surface with 27 real lines, while F. Klein "es-

tablished the fact that by the principle of continuity all forms of real

surfaces of the third order can be derived from the particular surface

having four conical points;" he exhibited a complete set of models

of cubic surfaces at the World's Fair in Chicago in 1894. In 1869

C. F. Geiser showed that " the projection of a cubic surface from a point

upon it, on a plane of projection parallel to the tangent plane at that

point, is a quartic curve; and that every quartic curve can be generated

in this way." "The theory of varieties of the third order," says A.

Henderson, "that is to say, curved geometric forms of three dimen-
sions contained in a space of four dimensions, has been the subject

of a profound memoir by Corrado Segre (1887) of Turin. The depth
and fecundity of this paper is evinced by the fact that a large pro-

portion of the propositions upon the plane quartic and its bitangents,

Pascal's theorem, the cubic surface and its 27 lines, Rummer's sur-

face and its configuration of sixteen singular points and planes, and on
the connection between these figures, are derivable from propositions

relating to Segre's cubic variety, and the figure of six points or spaces

from which it springs. Other investigators into the properties of this

beautiful and important locus in space of four dimensions and some of

its consequences are G. Castelnuovo and H. W. Richmond."
In 1869 C. Jordan first proved "that the group of the problem of

the trisection of hyperelliptic functions of the first order is isomorphic

with the group of the equation of the 27th degree, on which the 27
lines of the general surface of the third degree depend." In 1887 F.

Klein sketched the effective reduction of the one problem to the other,

while H. Maschke, H. Burkhardt, and A. Witting completed the work
outlined by Klein. The Galois group of the equation of the 27 lines

was investigated also by L. E. Dickson, F. Kuhnen, H. Weber, E.

Pascal, E. Kasner and E. H. Moore.
Surfaces of the fourth order have been studied less thoroughly than

those of the third. J. Steiner worked out properties of a surface of the
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fourth order in 1844 when he was on a journey to Italy; that surface
bears this name, and later received the attention of E. E. Kummer.
In 1850 Thomas Weddle "• remarked that the locus of the vertex of a
quadric cone passing through six given points is a quartic surface

and not a twisted cubic as M. Chasles had once stated. A. Cayley
gave a symmetric equation of the surface in 186 1. Thereupon Chasles
in 186 1 showed that the locus of the vertex of a cone which divides

six given segments harmonically is also a quartic surface; this more
general surface was identified by Cayley with the Jacobian of four

quadrics, the Weddle surface corresponding to the case in which the
four quadrics have six common points. Properties of the Weddle sur-

face were studied also by H. Bateman (1905). The plane section of a
Weddle surface is not an arbitrary quartic curve, but one for which an
invariant vanishes. Frank Morley proved that the curve contains an
infinity of configurations B^, where it is cut by the lines on the sur-

face.

In 1863 and 1864, E. E. Kummer entered upon an intensive study
of surfaces of the fourth order. Noted is the surface named after him
which has 16 nodes. The various shapes it can assume have been
studied by Karl Rohn of Leipzig. It has received the attention of

many mathematicians, including A. Cayley, J. G. Darboux, F. Klein,

H. W. Richmond, O. Bolza, H. F. Baker, and J. I. Hutchinson.^ It has
been known for some time that Fresnel's wave surface is a case of

Kummer's sixteen nodal quartic surface; also it is known that the

surface of a dynamical medium possessing certain general properties

is a type of Rummer's surface which can he derived from Fresnel's

surface by means of a homogeneous strain. Rummer's quartic surface

as a wave surface is treated by H. Bateman (1909). The general

Rummer's surface appears to be the wave surface for a medium of a
purely ideal character.

F. R. Sharpe atid C. F. Craig of Cornell University have studied

birational transformations which leave the Kummer and Weddle
surfaces invariant, by the apphcation of a theory due to F. Severi

(1906).

Quintic surfaces have been investigated at intervals, since 1862,

principally by L. Cremona, H. A. Schwarz, A. Clebsch, M. Noether,

R. Sturm, J. G. Darboux, E. Caporali, A. Del Re, E. Pascal, John E.

Hill and A. B. Basset. No serious attempt has been made to enumer-
ate the different forms of these surfaces.

Ruled surfaces with isotropic generators have been considered by
G. Monge, J. A. Serret, S. Lie and others. L. P. Eisenhart of Princeton

determines such a surface by the curve in which it is cut by a plane

and the directions of the projections on the plane of the generators

' Camb. 6° Dublin Malh. Jour., Vol. s, 1850, p. 69.
'' Consult R. W. H. T. Hudson (1876-1904), Kummer's Quartic Surface, Cam-

bridge, 1905.
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of the surface. In this way a ruled surface of this type is determined

by a set of Hneal elements, in a plane, depending on one parameter.

While the classification of cubic curves was given by I. Newton
and their general theory was well under way two centuries ago, the

theory of quartic curves was not pursued vigorously until the time

of J. Steiner and L. O. Hesse. Neglecting the classification of quartic

curves due to L. Euler, G. Cramer and E. Waring, new classifications

have been made, either according to their genus (Geschlecht) 3, 2, 1,0,

or according to topologic considerations studied by A. Cayley in

1865, H. G. Zeuthen (1873), Christian Crone (1877) and others.

J. Steiner in 1855 and L. O. Hesse began researches on the 28 double

tangents of a general quartic; 24 inflections were found, of which

G. Salmon conjectured and H. G. Zeuthen proved that at most 8 are

real. An enumeration (containing nearly 200 graphs) of the funda-

mental forms of quartic curves "when projected so as to cut the line

infinity the least possible number of times " was given in 1896 by Ruth
Gentry (1862-1917), then of Bryn Mawr College.

Curves of the fourth order have received attention for many years.

More recently a good deal has been written on special curves of the

fifth order by Frank Morley, Alfred B. Basset, VirgU Snyder, Peter

Field, and others.

Gino Loria of the University of Genoa, who has written extensively

on the history of geometry, and the history of curves in particular,

has advanced a theory of panalgebraic curves, which are in general

transcendental curves. By definition, a panalgebraic curve must
satisfy a certain differential equation. A book of reference on curves

was pubhshed by Gomes Teixeita in 1905 at Madrid under the title

Tratado de las curvas especiales notables.

The infinitesimal calculus was first applied to the determination
of the measure of curvature of surfaces by J. Lagrange, L. Euler, and
Jean Baptiste Marie Meusnier (1754-1793) of Paris, noted for his

military as well as scientific career. Meusnier's theorem, relating to

curves drawn on an arbitrary surface, was extended by S. Lie and in

1908 by E. Kasner. The researches of G. Monge and E. P. C. Dupin
were eclipsed by the work of K. F. Gauss, who disposed of this difificult

subject in a way that opened new vistas to geometricians. His treat-

ment is embodied in the Disquisitiones generates circa superficies curvas

(1827) and Untersuchungen iiber Gegenstdnde der hbheren Geod'dsie of

1843 and 1846. In 1827 he established the idea of curvature as it is

understood to-day. Both before and after the time of Gauss various

definitions of curvature of a surface had been advanced by L. Euler,

Meusnier, Monge, and Dupin, but these did not meet with general

adoption. From Gauss' measure of curvature flows the theorem of

Johann August Grunert (1797-1872), professor in Greifswald, and
founder in 1841 of the Archiv der Mathematik und Physik, that the

arithmetical mean of the radii of curvature of all normal sections



ANALYTIC GEOMETRY 321

through a point is the radius of a sphere which has the same measure
of curvature as has the surface at that point. Gauss's deduction of
the formula of curvature was simplified through the use of deter-
minants hy Heinrich Richard Baltzer (1818-1887) of Giessen.^ Gauss
obtained an interesting theorem that if one surface be developed
{abgewickelt) upon another, the measure of curvature remains un-
altered at each point. The question whether two surfaces having
the same curvature in corresponding points can be unwound, one
upon the other, was answered by F. Minding in the affirmative only
when the curvature is constant. Surfaces of constant and negative
curvature were called pseudo-spherical surfaces by E. Beltrami in

1868, in order, as he says, "to avoid circumlocution." The case of

variable curvature is difficult, and was studied by F. Minding, Joseph
Liouville (1809-1882) of the Polytechnic School in Paris, Ossian
Bonnet (1819-1892) of Paris. Gauss's measure of curvature, expressed
as a function of curvilinear co-ordinates, gave an impetus to the study
of differential-invariants, or differential-parameters, which have been
investigated by C. G. J. Jacobi, C. Neumann, Sir James Cockle
(1819-1895) of London, G. H. Halphen, and elaborated into a general

theory by E. Beltrami, S. Lie, and others. Beltrami showed also the

connection between the measure of curvature and the geometric axioms.
In 1899 Claude Gtdchard of Rennes announced two theorems relating

to a quadric of revolution which marked a new epoch in the theory
of deformation, of surfaces. Researches along this line by Guichard
and Luigi Bianchi of Pisa are embodied in the second edition of

Bianchi's Lezioni di geometria differenziale, Pisa, 1902. Another
treatise on metric differential geometry was brought out in 1908 by
Reinhold v. Lilienthal of the University of Munster. Not only does
he give geometric interpretations of the first and second derivatives

by means of the tangent and the circle of curvature, but he revives

a notion due to Abel Transon (1805-1876) of Paris which gives a

geometric interpretation of the third derivative in terms of the ab-

berancy of a curve and the axis of abberancy. A still later work is the

Treatise on Differential Geometry of Curves and Surfaces (1909) by
L. P. Eisenhart of Princeton which possesses the interesting feature

of movable axes (the so-called "moving trOiedrals" used extensively

by J. G. Darboux), applied to twisted curves as well as surfaces; he

gives the four transformations of surfaces of constant curvature,

due to N. Hatzidakis of Athens, L. Bianchi of Pisa, A. V. Backlund
of Lund, and S. Lie. Eisenhart developed a theory of transformations

of a conjugate system of curves on any surface into conjugate systems

on other surfaces, and also of transformations of conjugate nets on

two-dimensional spreads in space of any order.
^

' August Haas, Versuch einer Darstellung aer Geschickte des KrUmmnngsmasses,
Tubingen, 1881.

2 Bull. Am. Math. Soc, Vol. 24, 1917, p. 68.
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The metric part of differential geometry occupied the attention

of mathematicians since the time of G. Monge and K. F. Gauss, and
has reached a high degree of perfection. Less attention has been
given until recently to projective differential geometry, particularly

to the differential geometry of surfaces. G. H. Halphen started with
the equation y=f{x) of a curve and determined functions of y, dy/dx,

d^yldx^, etc., which are left invariant when x and y are subjected to

a general projective transformation. His early formulation of the

problem is unsymmetrical and unhomogeneous. Using a certain

system of partial differential equations and the geometrical theory

of semi-covariants, E. J. Wilczynski obtained homogeneous forms,

such forms being deduced later also by Halphen. '^ Wilczynski treats

of the projective differential geometry of curves and ruled surfaces,

these surfaces being prerequisite for his theory of space curves. Wil-

czynski treated ruled surfaces by a system of two linear homogeneous
differential equations of the second order. The method was extended

to five-dimensional space by E. B. Stouffer of the University of Kan-
sas.^ Developable surfaces were studied by W. W. Denton of the

University of Illinois. Belonging to projective differential geometry
are J. G. Darboux's conjugate triple systems which are generalized

notions of the orthogonal triple systems. The projective differential

geometry of triple systems of surfaces, of one-parameter families of

space curves and conjugate nets on a curved surface, and allied topics,

were studied by Gabriel Marcus Greea (1891-1919), of Harvard
University.

Differential projective geometry of hj^erspace was greatly advanced
by C. Guichard who introduced two elements depending on two va-

riables; they are the reseau and the congruence. Differential geometry
of hyperspace was greatly enriched since 1906 by Corrado Segre of

Turin, and by other geometers of Italy, particularly Gino Fano of

Turin and Federigo Enriques of Bologna; ^ also by A. Ranum of

Cornell, C. H. Sisam then of Illinois and C. L. E. Moore of the Massa-
chusetts Institute of Technology.

The use of vector analysis in differential geometry goes back to

H. G. Grassmann and W. R. Hamilton, to their successors P. G. Tait,

C. Maxwell, C. Burali-Forti, R. Rothe and others. These men have
introduced the terms "grad," "div," "rot." A geometric study of

trajectories with the aid of analytic and chiefly contact transforma-

tions was made by Edward Kasner of Columbia University in his

Princeton Colloquium lectures of 1909 on the "differential-geometric

aspects of dynamics."

' See E. J. Wilczynski in New Haven Colloquium, igo6. New Haven, igio, p. 156;
also his Projective Dijfcrenlial Geometry of Curves and Ruled Surfaces, Leipzig, 1906.

2 Bull. Am. Math. Soc, Vol. 18, p. 444.
' See Enrico Bompiani in Proceed, jth Intern. Congress, Cambridge, Cambridge,

1913, Vol. II, p. 22.
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Andysis Situs

Various researches have been brought under the head of "analysis
situs." The subject was first investigated by G. W. Leibniz, and
was later treated by L. Euler who was interested in the problem to
cross all of the seven bridges over the y^
Pregel river at Konigsberg without passing ^^'dJL ^^
twice over any one, then by K. F. Gauss, —^C r--=Cr
whose theory of knots (Verschlingungen) ^JC^I—^Il^/C;^^
has been employed more recently by Jo-
hann Benedict Listing (1808-188 2) of Gottingen, Oskar Simony
of Vienna, F. Dingeldey of Darmstadt, and others in their " topologic
studies." P. G. Tait was led to the study of knots by Sir William
Thomson's theory of vortex atoms. Through Rev. T. P. Kirkman
who 'had studied the properties of polyhedra, Tait was led to study
knots also by the polyhedral method; he gave the number of forms
of knots of the first ten orders of knottiness. Higher orders were
treated by Kirkman and C. N. Little. Thomas Penyngton Kirkman ^

(1806-1895) was born at Bolton, near Manchester. During boyhood
he was forced to follow his father's business as dealer in cotton and
cotton waste. Later he tore away, entered the University of Dublin,
then became vicar of a parish in Lancashire. As a mathematician
he was almost entirely self-taught. He wrote on pluquaternions in-

volving more imaginaries than i, j, k, on group theory, on mathe-
matical mnemonics producing what De Morgan called "the most
curious crocket I ever saw," on the problem of the "fifteen school

girls " who walk out three abreast for seven days, where it is required

to arrange them daily so that no two shall walk abreast more than
once. This problem was studied also by A. Cayley and Sylvester,

and is related to researches of J. Steiner.

Another unique problem was the one on the coloring of maps, first

mentioned by A. F. Mobius in 1840 and first seriously considered by
Francis Guthrie and A. De Morgan. How many colors are necessary

to draw any map so that no two countries having a line of boundary
in common shall appear in the same color? Four different colors

are found experimentally to be necessary and sufficient, but the proof

is difficult. A. Cayley in 1878 declared that he had not succeeded

in obtaining a general proof. Nor have the later demonstrations by
A. B. Kempe, P. G. Tait, P. J. Heawood of the University of Durham,
W. E. Story of Clark University, and J. Peterson of Copenhagen

removed the difficulty.^ Tait's proof leads to the interesting con-

clusion that four colors may not be sufficient for a map drawn on a

multiply-connected surface like that of an anchor ring. Further

studies of maps on such surfaces, and of the problem in general, are

' A. Macfarlane, Ten British Mathematicians, 1916, p. 122.

2 W. Ahrens, Unterhallungen und Spiele, 1901, p. 340.
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due to 0. Veblen (1912) and G. D. Birkhoff (1913). On a surface of

genus zero "it is not known whether or not only four colors always
suffice." A similar question considers the maximum possible number
of countries, when every country touches every other along a line.

Lothar Heliter wrote on this conundrum, in iSgi and again in later

articles, as did also A. B. Kempe and others. In the hands of Riemann
the analysis situs had for its object the determination of what remains

unchanged under transformations brought about by a combination

of infinitesimal distortions. In continuation of his work, Walter Dyck
of Munich wrote on the analysis situs of three-dimensional spaces.

Researches of this sort have important bearings in modern mathe-
matics, particularly in connection with correspondences and differ-

ential equations.^

Intrinsic Co-ordinates

As a reaction against the use of the arbitrary Cartesian and polar

co-ordinates there came the suggestion from the philosophers K. C. F.

Krause (1781-1832), A. Peters (1803-1S76) that magnitudes inherent

to a curve be used, such as s, the length of arc measured from a fixed

point, and (p, the angle which the tangent at the end of 5 makes with

a fixed tangent. William Wkewell (1794-1S66) of Cambridge, the

author of the History of the Inductive Sciences, 183 7-1838, introduced in

1S49 the name "intrinsic equation" and pointed out its use in study-

ing successive evolutes and involutes. The method was used by Wil-

liam Walton (1813-1901) of Cambridge, J. J. Sylvester in 1868, J.

Casey in 1866, and others. Instead of using s and (p, other writers

have introduced the radius of curvature p, and have used either s

and p, or f and p. The co-ordinates {(f, p) were employed by
L. Euler and several nineteenth century mathematicians, but alto-

gether the co-ordinates (s, p) have been used most. The latter were
used by L. Euler in 1741, by Sylvestre Franfois Lacroix (1765-1843),
by Thomas Hill (18 18-189 1, 'who was at one time president of Harvard
College), and in recent years especially by Ernesto Cesaro of the

University of Naples who published in 1896 his Geometria intrinseca

which was translated into German in 1901 by G. Kowalewski under

the title, Vorlesungen ilber naturliche Geometrie} Researches along

this line are due also to Amedee Mannheim (1831-1906) of Paris, the

designer of a well-known slide rule.

The application of intrinsic or natural co-ordinates to surfaces is

less common. Edward Kasner ^ said in 1904 that in the "theory of

surfaces, natural co-ordinates may be introduced so as to fit into the

' See J. Hadamard, Four Lectures on Mathematics delivered at Columbia University

in iQii, New York, igis, Lecture III.

^Our information is drawn from E. Wol Ding's article on "NatUrliche Koor-
dinaten" in Biblioihcca mathcmatica, 3. S., Vol. I, 1900, pp. 142-159.

^ Bidl. Am. Math. Soc, Vol. 11, 1905, p. 303.



ANALYTIC GEOMETRY 325

so-called geometry of a flexible but inextensible surface, originated by
K. F. Gauss, in which the criterion of equivalence is apphcability or,

according to the more accurate phraseology of A. Voss, isometry.

Intrinsic co-ordinates must then be invariant with respect to bend-
ing. . . . The simplest example of a complete isometric group is

the group typified by the plane, consisting of all the developable sur-

faces. In this case the equations of the group may be obtained ex-

plicitly, in terms of eliminations, differentiations and quadratures. . . .

Until the year 1866, not a single case analogous to that of the de-

velopable surfaces was discovered. Julius Weingarten, by means of

his theory of evolutes, then succeeded in determining the complete
group of the catenoid and of the paraboloid of revolution, and, some
twenty years later, a fourth group defined in terms of minimal sur-

faces. During the past decade, the French geometers have concen-

trated their efforts in this field mainly on the arbitrary paraboloid

(and to some extent on the arbitrary quadric). The difficulties even
in this extremely restricted and apparently simple case are great,

and are only gradually being conquered by the use of almost the whole
wealth of modern analysis and the invention of new methods which
undoubtedly have wider fields of application. The results obtained

exhibit, for example, connections with the theories of surfaces of

constant curvature, isometric surfaces, Backlund transformations,

and motions with two degrees of freedom. The principal workers

are J. G. Darboux, E. J. B. Goursat, L. Bianchi, A. L. Thybaut, E.

Cosserat, M. G. Servant, C. Guichard, and L. Raffy."

Definition of a Curve

The theory of sets of points, originated by G. Cantor, has given

rise to new views on the theory of curves and on the meaning of con-

tent. What is a curve? Camille Jordan in his Cours d'analyse defined

it tentatively as a "continuous line." W. H. Young and Grace

Chisholm Young in their Theory of Sets of Points, 1906, p. 222, define

a "Jordan curve" as "a plane set of points which can be brought into

continuous (i, i) correspondence with the points of a closed segment

(a, z) of a straight line." A circle is a closed Jordan curve. Jordan

asked the question, whether it was possible for a curve to fill up a

space. G. Peano answered that a "continuous line" may do so and

constructed in Math. Annalen, Vol. 36, 1890, the so-called "space-

filling curve" (the "Peano curve") to fortify his assertion. His mode
of construction has been modified in several ways since. The most

noted of these are due to E. H. Moore ^ and D. Hilbert. In 1916 R. L.

Moore of the University of Pennsylvania proved that every two points

of a continuous curve, no matter how crinkly, can be joined by a

simple continuous arc that lies wholly in the curve. As it does not

1 Trans. Am. Math. Soc, Vol. I, igoc, pp. 72-90.
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seem desirable to depart from our empirical notions so far as to allow

the term curve to be applied to a region, more restricted definitions

of it become necessary. C. Jordan demanded that a curve x=<p{t),

y=i'{t) should have no double points in the interval a^t<b. Schon-

flies regards a curve as the frontier of a region. O. Veblen defines it

in terms of order and linear continuity. W. H. Young and Grace C.

Young in their Theory of Sets of Points define a curve as a plane set

of points, dense nowhere in the plane and bearing other restrictions,

yet such that it may consist of a net-work of arcs of Jordan curves.

Other curves of previously unheard of properties were created as

the result of the generaUzation of the function concept. The con-
re=O0

tinuous curve represented by 31= 2 ^" cos 7r(a"a;), where a is an even
n =0

integer > i, 6 a real positive number <i, was shown by Weierstrass ^

to possess no tangents at any of its points when the product ab exceeds

a certain limit; that is, we have here the startling phenomenon of a
continuous function which has no derivative. As Christian Wiener
explained in 1881, this curve has countless oscillations within every

finite interval. An intuitively simpler curve was invented by Helge
V. Koch of the University of Stockholm in 1904 {Acta math., Vol. 30,

1906, p. 145) which is constructed by elementary geometry, is con-

tinuous, yet has no tangent at any of its points; the arc between any
two of its points is infinite in length. While this curve has been repre-

sented analytically, no such representation has yet been foimd for

the so-called H-curve of Ludwig Boltzmann (1844-1906) of Vienna,

in Math. Annalen, Vol. 50, 1898, which is continuous, yet tangentless.

The adjoining figure shows its construction. Boltzmann used it to

visualize theorems in the theory of gases.

Fundamental Postulates

The foundations of mathematics, and of geometry in particular,

received marked attention in Italy. In 1889 G. Peano took the novel

' P. du Bois-Reymond " Versuch einer Klassification der willkurlichen Funk-
tionen reeller Argumente," Crelle, Vol. 74, 1874, p. 29.
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view that geometric elements are mere things, and laid down the
principle that there should be as few undefined symbols as possible.

In 1897-9- his pupil Mario Fieri (1860-1904) of Catania used only two
undefined symbols for projective geometry and but two for metric

geometry. In 1894 Peano considered the independence of axioms.
By 1897 the Italian mathematicians had gone so far as to make it a
postulate that points are classes. These fundamental features elab-

orated by the Italian school were embodied by David Hilbert of

Gottingen, along with important novel considerations of his own, in

his famous Grundlagen der Geometric, 1899. A fourth enlarged edition

of this appeared in 1913. E. B. Wilson says in praise of Hilbert: "The
archimedean axiom, the theorems of B. Pascal and G. Desargues, the

analysis of segments and areas, and a host of things are treated either

for the fi.rst time or in a new way, and with consummate skill. We
should say that it was in the technique rather than in the philosophy

of geometry that Hilbert created an epoch." ^ In Hilbert's space of

1899 are not all the points which are in our space, but only those that,

starting from, two given points, can be constructed with ruler and
compasses. In his space, remarks Poincare, there is no angle of 10°.

So in the second edition of the Grundlagen, Hilbert introduced the

assumption of completeness, which renders his space and ours the

same. Interesting is Hilbert's treatment of non-Archimedean geom-
etry where all his assumptions remain true save that of Archimedes,

and for which he created a system of non-Archimedean numbers.
This non-Archimedean geometry was first conceived by Giuseppe

Veronese (1854-1917), professor of geometry at the University of

Padua. Our common space is only a part of non-Archimedean
space. Non-Archimedean theories of proportion were given in 1902 by
A. Kneser of Breslau and in 1904 by P. J. Mollerup of Copenhagen.

Hilbert devoted in his Grundlagen a chapter to Desargues' theorem.

In 1902 F. R. Moulton of Chicago outlined a simple non-Desarguesian

plane geometry.

In the United States, George Bruce Halsted based his Rational

Geometry, 1904, upon Hilbert's foundations. A second, revised edition

appeared in 1907. One of Hilbert's pupils, Max W. Dehn, showed

that the omission of the axiom of Archimedes (Eudoxus) gives rise

to a semi-Euclidean geometry in which similar triangles exist and their

sum is two right angles, yet an infinity of parallels to any straight

Une may be drawn through any given point.

Systems of axioms upon which to build projective geometry were

first studied more particularly by the Italian school—G. Peano, M.
Fieri, Gino Fano of Turin. This subject received the attention also

of Theodor Vahlen of Vienna and Friedrich Schur of Strassburg.

Axioms of descriptive geometry have been considered mainly by

1 Bull. Am. Math. Soc, Vol. 11, 1904, p. 77. Our remarks on the Italian school

are drawn from Wilson's article.
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Italian and American mathematicians, and by D. Hilbert. The
introduction of order was achieved by G. Peano by taking the class

of points which lie between any two points as the fundamental idea,

by G. Vailati and later by B. Russell, on the fundamental conception

of a class of relations or class of points on a straight line, by O. Veblen

(1904) on the study of the properties of one single three-term relation

of order. A. N. Whitehead^ refers to 0. Veblen's method: "This
method of conceiving the sybject results in a notable simplification,

and combines advantages from the two previous methods." While
D. Hilbert has six undefined terms (point, straight line, plane, between,

parallel, congruent) and twenty-one assumptions, Veblen gives only

two undefined terms (point, between) and only twelve assumptions.

However, the derivation of fundamental theorems is somewhat
harder by Veblen's axioms. R. L. Moore showed that any plane

satisfying Veblen's axioms I-VIII, XI is a number-plane and con-

tains a system' of continuous curves such that, with reference to these

curves regarded as straight lines, the plane is an ordinary Euclidean

plane.

In 1907, Oswald Veblen and J. W. Young gave a completely in-

dependent set of assumptions for projective geometry, in which points

and undefined classes of points called lines have been taken as the

undefined elements. Eight of these assumptions characterize general

projective spaces; the addition of a ninth assumption yields properly

projective spaces.^

Axioms for line geometry based upon the "line" as an undefined

element and "intersection" as an undefined relation between un-

ordered pairs of elements, were given in 1901 by M. Fieri of Catania,

and in simpler form, in 1914 by E. R. Hedrick and L. Ingold of the

University of Missouri.

Text-books built upon some such system of axioms and possessing

great generality and scientific interest have been written by Federigo
Enriques of the University of Bologna in 1898, and by 0. Veblen
and J. W. Young in 1910.

Geometric Models

Geometrical models for advanced students began to be manu-
factured about 1879 by the firm of L. Brill in Darmstadt. Many
of the early models, such as Kummer's surface, twisted cubics, the

tractrix of revolution, were made under the direction of F. Klein and
Alexander von Brill. Since about 1890 this firm developed into that

of Martin Schilling (1866-1908) of Leipzig. The catalogue of the

firm for 191 1 described some 400 models. Since 1905 the firm of

B. G. Teubner in Leipzig has offered models designed by Hermann

' The Axioms of Descriptive Gcomelry, Cambridge, 1907, p. 2.

^ BtUl. Am. Math. Sac, Vol. 14, 1908, p. 251.
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Wiener, many of which are intended for secondary instruction. Val-
uable in this connection is the Katalog mathemaiischer und mathe-
matisch-physikalischer Modelle, Apparale und Instrumente by Walter
V. Dyck, professor in Munich. At the Napier tercentenary celebra-

tion in Edinburgh, in 19 14, Crum Brown exhibited models of various
sorts, including models of cubic and quartic surfaces, interlacing sur-

faces, regular soUds and related forms, and thermodynamic models;
D. M. Y. Sommerville displayed models of the projection, on three-

dimensional space, of a four-dimensional figure; Lord Kelvin's tide-

calculating machine illustrated the combination of simple harmonic
motions.^

Algebra

• The progress of algebra in recent times may be considered under
three principal heads: the study of fundamental laws and the birth

of new algebras, the growth of the theory of equations, and the de-

velopment of what is called modern higher algebra.

The general theory of a*, where both a and b are complex numbers,
was outlined by L. Euler in 1749 in his paper, Recherches sur les racines

imaginaries des equations, but it failed to command attention. At
the beginning of the nineteenth century the theory of the general

power was elaborated in Germany, England, France and the Nether-

lands. In the early history of logarithms of positive numbers it was
found surprising that logarithms were defined independently of ex-

ponents. Now we meet a second surprise in finding that the theory

of a* is made to depend upon logarithms. Historically the logarithmic

concept is the more primitive. The general theory of a* was developed

by Martin Ohm (1792-1872), professor in Berlin and a brother of

the physicist to whom we owe "Ohm's law." Martin Ohm is the

author of a much criticised series of books, Versuch eines voUkommen
consequenten Systems der Mathematik, Niirnberg, 1822-1852. Our
topic was treated in the second volume, dated 1823, second edition

1829. After having developed the Eulerian theory of logarithms Ohm
takes up a^, where a=p+qi, x= a+^i. Assuming e" as always single-

valued and letting v=\/^^+?^, log a=Lv+{±2mir+(p)i, he takes

gZ^giloga^gaLy— ^ (zfc 2m7r-|-0).
{ cos [/3. Lv+ a (±2 m 7r-f-(^)]+«'.

sin [/3iv-l-a(± 2mTr+4>)] f , where m=o, +i, +2, . . . and L. signifies

the tabular logarithm. Thus the general power has an infinite number

of values, but all are of the form a+bi. Ohm shows (i) that all of the

values (infinite in number) are equal when x is an integer, (2) that there

are n distinct values when a; is a real, rational fraction, (3) that some of

the values are equal, though the number of distinct values is infinite,

when X is real but irrational, (4) that the values are all distinct when x is

imaginary. He inquires next, how the formulas (A) a^.a''=a*+^, (B)a^

1 Consult E. M. Horsburgh Handbook of the Exhibition of Napier relics, etc., 1914,

p. 302-



330 A HISTORY OF MATHEMATICS

-i-av^a^-y, (C) a='.b^ = {aby, (D) a^-4-J^ = (a^-J)^, (E) {a^)y=a''v apply

to the general exponent a^, and finds that (A), (B) and (E) are incom-

plete equations, since the left members have "many, many more"
values than the right members, although the right-hand values (infinite

in number) are all found among the "infinite times infinite" values on
the left; that (C) and (D) are complete equations for the general case.

A failure to recognize that equation E is incomplete led Thomas
Clausen (1S01-1885) of Altona to a paradox {Crelle's Journal, Vol. 2,

1827, p. 286) which was stated by E. Catalan in 1869 in more con-

densed form, thusT e?^»=e2«'^', where m and n are distinct integers.

Raising both sides to the power ^, there results the absurdity,

e-m?r=g— Kir. Ohm introduced a notation to designate some particular

value of a^, but he did not introduce especially the particular value

which is now called the "principal value." Otherwise his treatment

of the general power is mainly that of the present time, except, of

course, in the explanation of the irrational. From the general power
Ohm proceeds to the general logarithm, having a complex number
as its base. It is seen that the Eulerian logarithms served as a step-

ladder leading to the theory of the general power; the theory of the

general power, in turn, led to a more general theory of logarithms

having a complex base.

The Philosophical Transactions (London, 1829) contain two articles

on general powers and logarithms—one by John Graves, the other

by John Warren of Cambridge. Graves, then a young man of 23,

was a class-fellow of William Rowan Hamilton in Dublin. Graves
became a noted jurist. Hamilton states that reflecting on Graves's

ideas on imaginaries led him to the invention of quaternions. Graves
obtains log i = (2w'7rj)/(i-|-2w7rj). Thus Graves claimed that gen-

eral logarithms involve two arbitrary integers, m and m' , instead

of simply one, as given by Euler. Lack of explicitness involved

Graves in a discussion with A. De Morgan and G. Peacock, the out-

come of which was that Graves withdrew the statement contained

in the title of his paper and implying an error in the Eulerian theory,

whUe De Morgan admitted that if Graves desired to extend the idea

of a logarithm so as to use the base e'^+^mvi^ there was no error in-

volved in the process. Similar researches were carried on by A. J. H.
Vincent at Lille, D. F. Gregory, De Morgan, W. R. Hamilton and
G. M. Pagani (1796-1855), but their general logarithmic systems,

involving complex numbers as bases, failed of recognition as useful

mathematical inventions.^ We pause to sketch the life of De Morgan.
Augustus De Morgan (1806-1871) was born at Madura (Madras),

and educated at Trinity College, Cambridge. For the determination

of the year of his birth (assumed to be in the nineteenth century) he

proposed the conundrum, "I was x years of age in the year x^." His

' For references and fuller details see F. Cajori in Am. Math. Monlhly, Vol. 20,

1913) PP- 175-182.
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scruples about the doctrines of the established church prevented him
from proceeding to the M. A. degree, and from sitting for a fellowship.

It is said of him, "he never voted at an election, and he never visited

the House of Commons, or the Tower, or Westminster Abbey." In
1828 he became professor at the newly established University of

London, and taught there until 1867, except for five years, from 1831-
1835. He was the first president of the London Mathematical Society
which was founded in 1866. De Morgan was a unique, manly char-

acter, and pre-eminent as a teacher. The value of his original work lies

not so much in increasing our stock of mathematical knowledge as in

putting it all upon a more logical basis. He felt keenly the lack of close

reasoning in matheir.atics as he received it. He said once: "We know
that mathematicians care no more for logic than logicians for mathe-
matics. The two eyes of exact science are mathematics and logic:

the mathematical sect puts out the logical eye, the logical sect puts
out the mathematical eye; each believing that it can see better with
one eye than with two." De Morgan analyzed logic mathematically,
and studied the logical analysis of the laws, symbols, and operations
of mathematics; he wrote a Formal Logic as well as a Double Algebra,

and corresponded both with Sir WiUiam Hamilton, the metaphysician,

and Sir William Rowan Hamilton, the mathematician. Few con-

temporaries were as profoundly read in the history of mathematics
as was De Morgan. No subject was too insignificant to receive his

attention. The authorship of "Cocker's Arithmetic" and the work
of circle-squarers was investigated as minutely as was the history of

the calculus. Numerous articles of his lie scattered in the volumes of

the Penny and English Cyclopcedias. In the article
'

' Induction (Mathe-
matics)," first printed in 1838, occurs, apparently for the first time,

the name "mathematical induction"; it was adopted and popularized

by I. Todhunter, in his Algebra. The term "induction" had been used

by John Wallis in 1656, in his Arithmetica infinitorum; he used the

"induction" known to natural science. In 1686 Jacob BernouUi
criticised him for using a process which was not binding logically and
then advanced in place of it the proof from nton+i. This is one of the

several origins of the process of mathematical induction. From Wallis

to De Morgan, the term "induction" was used occasionally in mathe-
matics, and in a double sense, (i) to indicate incomplete inductions of

the kind known in natural science, (2) for the proof from n to n+i. De
Morgan's "mathematical induction" assigns a distinct name for the

latter process. The Germans employ more commonly the name " voU-

standige Induktion," which became current among them after the use

of it by R. Dedekind in his Was sind und was sollen die Zahlen, 1887.

De Morgan's Differential Calculus, 1842, is still a standard work, and
contains much that is original with the author. For the Encyclopedia

Metropolitana he wrote on the Calculus of Functions (giving principles

of symbolic reasoning) and on the theory of probability. In the Cal-
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cuius of Functions he proposes the use of the slant line or "solidus"

for printing fractions in the text ; this proposal \;zs adopted by G. G.

Stokes in 1880.^ Cayley wrote Stockes, "I think the 'solidus' looks

very well indeed . . . ;
it would give you a strong claim to be President

of a Society for the prevention of Cruelty to Printers." ^

Celebrated is De Morgan's Budget of Paradoxes, London, 1S72, a

second edition of which was edited by David Eugene Smith in 1915.

De Morgan pubUshed memoirs "On the Foundation of Algebra"

in the Trans, of the Cambridge Phil. Soc, 1841, 1842, 1844 and 1847.

The ideas of George Peacock and De Morgan recognise the possi-

bihty of algebras which differ from ordinary algebra. Such algebras

were indeed not slow in forthcoming, but, like non-Euclidean geometry,

some of them were slow in finding recognition. This is true of H. G.

Grassmann's, G. Bellavitis's, and B. Peirce's discoveries, but W. R.

Hamilton's quaternions met with immediate appreciation in England.

These algebras offer a geometrical interpretation of imaginaries.

William Rowan Haniiltoii (1805-1865) was born of Scotch parents

in Dublin. His early education, carried on at home, was mainly in

languages. At the age of thirteen he is said to have been familiar with

as many languages as he had lived years. About this time he came
across a copy of I. Newton's Universal Arithmetic. After reading that,

he took up successively analytical geometry, the calculus, Newton's
Principia, Laplace's Mccanique Celeste. At the age of eighteen he pub-
lished a paper correcting a mistake in Laplace's work. In 1824 he
entered Trinity College, Dublin, and in 1827, while he was still an
undergraduate, he was appointed to the chair of astronomy. C. G. J.

Jacobi met Hamilton at the meeting of the British Association at

Manchester in 1842 and, addressing Section A, called Hamilton "le

Lagrange de votre pays." Hamilton's early papers were on optics.

In 1832 he predicted conical refraction, a discovery by aid of mathe-
matics which ranks with the discovery of Neptune by U. J. J. Le
Verrier and J. C. Adams. Then followed papers on the Principle of
Varying Action (1827) and a general method of dynamics (1834-1835).
He wrote also on the solution of equations of the fifth degree, the

hodograph, fluctuating functions, the numerical solution of differential

equations.

The capital discovery of Hamilton is his quaternions, in which his

study of algebra culminated. In 1835 he published in the Transactions

of the Royal Irish Academy his Theory of Algebraic Couples. He re-

garded algebra "as being no mere art, nor language, nor primarily

' G. G. Stokes, Math, and Phys. Papers, Vol. I, Cambridge, 1880, p. vii; see also

J. Larraor, Memoir and Scie. Corr. of G. G. Stokes, Vol. I, 1907, p. 397.
" An earlier use of the solidus in designating tractions occurs in one of the very

first text books published in California, viz., the Definicion de las principales

operaciones de arismelica by Henri Cambuston, 26 pages printed at Monterey in

1843. The solidus appears slightly curved.
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a science of quantity, but rather as the science of order of progres-
sion." Time appeared to him as the picture of such a progression.

Hence his definition of algebra as "the science of pure time." It was
the subject of years' meditation for him to determine what he should
regard as the product of each pair of a system of perpendicular directed
lines. At last, on the i6th of October, 1843, while walking with his

wife one evening, along the Royal Canal in Dublin, the discovery of

quaternions flashed upon him, and he then engraved with his knife

on a stone in Brougham Bridge the fundamental formula i^=f==P=
ijk=—i. At the general meeting of the Irish Academy, a month
later, he made the first communication on quaternions. An account
of the discovery was given the following year in the Philosophical

Magazine. Hamilton displayed wonderful fertility in their develop-
ment. His Lectures on Quaternions, delivered in Dublin, were printed
in 1852.

In 1858 P. G. Tait was introduced to Hamilton and a correspond-

ence was carried on between them which brought Hamilton back to

the further development of quaternions along the lines of quaternion
difi'erentials, the linear vector function and A. Fresnel's wave surface,

and led him to prepare the Elements of Quaternions, 1866, which he
did not live to complete. Only 500 copies were printed. A new
edition has been published recently by Charles Jasper Joly (1864-

1906), his successor in Dunsink Observatory. Tait's own Elementary

Treatise on Quaternions was projected in 1859, but was withheld from
publication until Hamilton's work should appear; it was finally pub-
lished in 1S67. P. G. Tait's chief accomplishment was the develop-

ment of the operator v, which was done in the later, greatly enlarged

editions.-"^ Tait submitted his quaternionic theorems to the judgment
of Clerk Maxwell, and Maxwell came to recognize the power of the

quaternion calculus in dealing with physical problems. "Tait brought

out the real physical significance of the quantities Svo", Vv"", Vm.
Maxwell's expressive names, Convergence (or Divergence) and Curl,

have sunk into the very heart of electromagnetic theory." ^ In 1913

J. B. Shaw generaUzed the Hamiltonian v for space of n dimensions,

which may be either flat or curved. Related memoirs are due to G.

Ricci (1892), T. Levi-Civita (1900), H. Maschke, and L. Ingold (1910).

Quaternions were greatly admired in England from the start, but on
the Continent they received less attention. P. G. Tait's Elementary

Treatise helped powerfully to spread a knowledge of them in England.

A. Cayley, W. K. Clifford, and Tait advanced the subject somewhat

by original contributions. But there has been little progress in recent

years, except that made by J. j. Sylvester ift the solution of quaternion

equations, nor has the application of quaternions to physics been as

1 C. G. Knott, Life and Scientific Work of Peter Guthrie Tait, Cambridge, 1911,

pp. 143, 148-
2 C. G. Knott, op. cil., p. 167.
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extended as was predicted. The change in notation made in France
by Jules Hoiiel and by C. A. Laisant has been considered in England
as a wrong step, but the true cause for the lack of progress is perhaps
more deep-seated. There is indeed great doubt as to whether the

quaternionic product can claim a necessary and fundamental place

in a system of vector analysis. Physicists claim that there is a loss

of naturalness in taking the square of a vector to be negative.

Widely different opinions have been expressed on the value of

quaternions. While P. G. Tait was an enthusiastic champion of this

science, his great friend, William Thomson (Lord Kelvin), declared

that they, "though beautifully ingenious, have been an unmixed
evil to those who have touched them in any way, including Clerk

Maxwell." ^ A. Cayley, writing to Tait in 1874, said, "I admire the

equation dcr=uqdpq~^ extremely—it- is a grand example of the pocket

map." Cayley admitted the conciseness of quaternion formulas, but
they had to be unfolded into Cartesian form before they could be

made use of or even understood. Cayley wrote a paper "On Co-or-

dinates versus Quaternions" in the Proceedings of the Royal Society

of Edinburgh, Vol. 20, to which Tait replied "On the Intrinsic Nature
of the Quaternion Method."

In order to meet more adequately the wants of physicists, /. W.
Gibbs and A. Macfarlane have each suggested an algebra of vectors

with a new notation. Each gives a definition of his own for the

product of two vectors, but in such a way that the square of a vector

is positive. A third system of vector analysis has been used by Oliver

Heaviside in his electrical researches.

What constitutes the most desirable notation in vector analysis

is still a matter of dispute. Chief, among the various suggestions, are

those of the American school, started by J. W. Gibbs and those of the

German-Italian school. The cleavage is not altogether along lines

of nationahty. L. Prandl of Hanover said in 1904: "After long delib-

eration I have adopted the notation of Gibbs, writing a . b for the

inner (scalar), and axb for the outer (vector) product. If one ob-

serves the rule that in a multiple product the outer product must be
taken before the inner, the inner product before the scalar, then one
can write with Gibbs a . bxc and ab. c without giving rise to doubt
as to the meaning." ^

In the following we give German-Italian notations first, the equiv-

alent American notation (Gibbs') second. Inner product a
{
b, a. b;

vector-product |ab,axb; alsoabc, a.bxc; ab
|
c, (axb)xc; ab

|
cd,

(axb).(cxd); ab^ (axb)^; ab.cd, (axb)x(cxd). R. Mehmke
said in 1904: "The notation of the German-Italian school is far pref-

erable to that of Gibbs not only in logical and methodical, but also

in practical respects."

' S. p. Thompson, Life of Lord Kelvin, igio, p. 1138.

^Jahrcsb. d. d. Math. Vereinig., Vol. 13, p. 39.
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In 1895 P. Molenbroek of The Hague and S. Kimura, then at Yale
University, took the first steps in the organization of an International
Association for Promoting the Study of Quaternions and Allied

Systems of Mathematics. P. G. Tait was elected the first president,
but could not accept on account of failing health. Alexander Mac-
farlane (1851-1913) of the University of Edinburgh, later of the
University of Texas and of Lehigh University, served as secretary of

the Association and was its president at the time of his death.
At the international congress held in Rome in 1908 a committee

was appointed on the unification of vectorial notations but at the
time of the congress held in Cambridge in 19 12 no definite conclusions
had been reached.

Vectorial notations were subjects of extended discussion in L'En-
seignement mathematique, Vols. 11-14, 1909-1912, between C. Burali-
Forti of Turin, R. Marcolongo of Naples, G. Comberiac of Bourges,
H. C. F. Timerding of Strassburg, F. Klein of Gottingen, E. B.
Wilson of Boston, G. Peano of Turin, C. G. Knott of Edinburgh,
Alexander Macfarlane of Chatham in Canada, E. Car\'allo of Paris,

and E. Jahnke of Berlin. In America the relative values of notations

were discussed in 1916 by E. B. Wilson and V. C. Poor.

We mention two topics outside of ordinary physics in which vector
analysis has figured. The generalization of A. Einstein, known as

the principle of relativity, and its interpretation by H. Minkowski,
have opened new points of view. Some of the queer consequences of

this theory disappear when kinematics is regarded as identical with
the geometry of four-dimensional space. H. Minkowski and, following

him, Max Abraham, used vector analysis in a hmited degree, Min-
kowski usually preferring the matrix calculus of A. Cayley. A more
extended use of vector analysis was made by Gilbert N. Lewis of the

University of California who introduced in his extension to four di-

mensions some of the original features of H. G. Grassmann's system.

A "dyname" is, according to J. Plucker (and others) a system of

forces appUed to a rigid body. The English and French call it a

"torsor." In 1899 this subject was treated by the Russian A. P.

Kotjelnikoff under the name of projective theory of vectors. In 1903
E. Study of Greifswald brought out his book, Geometrie der Dynamen,
in which a line-geometry and kinematics are elaborated, partly by
the use of group theory, which are carried over to non-Euclidean

spaces; Study claims for his system somewhat greater generality

than is found in Hamilton's quaternions and W. K. Clifford's bi-

quarternions.

Hennann Giinther Grassmann (1809-1877) was born at Stettin,

attended a gymnasium at his native place (where his father was
teacher of mathematics and physics), and studied theology in Berlin

for three years. His intellectual interests were very broad. He started

as a theologian, wrote on physics, composed texts for the study of
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German, Latin, and mathematics, edited a political paper and a mis-

sionary paper, investigated phonetic laws, wrote a dictionary to the

Rig-Veda, translated the Rig-Veda in verse, harmonized folk songs

in three voices, carried on successfully the regular work of a teacher

and brought up nine of his eleven children—all this in addition to the

great mathematical creations which we are about to describe. In

1834 he succeeded J. Steiner as teacher of mathematics in an industrial

school in Berlin, but returned to Stettin in 1836 to assume the duties

of teacher of mathematics, the sciences, and of rehgion in a school

there. ^ Up to this time his knowledge of mathematics was pretty

much confined to what he had learned from his father, who had
written two books on "Raumlehre" and " Grossenlehre." But now
he made his acquaintance with the works of S. F. Lacroix, J. L. La-
grange, and P. S. Laplace. He noticed that Laplace's residts could

be reached in a shorter way by some new ideas advanced in his father's

books, and he proceeded to elaborate this abridged method, and to

apply it in the study of tides. He was thus led to a new geometric

analysis. In 1840 he had made considerable progress in its develop-

ment, but a new book of Schleiermacher drew him again to theology.

In 1842 he resumed mathematical research, and becoming thoroughly

convinced of the importance of his new analysis, decided to devote
himself to it. It now became his ambition to secure a mathematical
chair at a university, but in this he never succeeded. In 1844 ap-

peared his great classical work, the Lineale Ausdehnungslehre, which
was full of new and strange matter, and so general, abstract, and out

of fashion in its mode of exposition, that it could hardly have had
less influence on European mathematics during its first twenty years,

had it been published in China. K. F. Gauss, J. A. Grunert, and A. F.

Mobius glanced over it, praised it, but complained of the strange

terminology and its " philosophische Allgemeinheit." Eight years

afterwards, C. A. Bretschneider of Gotha was said to be the only

man who had read it through. An article in Crelle's Journal, in

which Grassmann eclipsed the geometers of that time by constructing,

with aid of his method, geometrically any algebraic curve, remained
again unnoticed. Need we marvel if Grassmann turned his attention

to other subjects,—to Schleiermacher's philosophy, to politics, to

philology? Still, articles by him continued to appear in Crelle's

Journal, and in 1862 came out the second part of his Ausdehnungslehre.

It was intended to show better than the first part the broad scope of

the Ausdehnungslehre, by considering not only geometric applica-

tions, but by treating also of algebraic functions, infinite series, and
the differential and integral calculus. But the second part was no
more appreciated than the first. At the age of fifty-three, this won-
derful man, with heavy heart, gave up mathematics, and directed his

energies to the study of Sanskrit, achieving in philology results which
' Victor Schlegel, Hertnann Grassmann, Leipzig, 1878.
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were better appreciated, and which vie in splendor with those in

mathematics.
Common to the Ausdehnungslehre and to quaternions are geometric

addition, the function of two vectors represented in quaternions by
Sa^ and V a^, and the linear vector functions. The quaternion is

peculiar to W. R. Hamilton, while with Grassmann we find in addition
to the algebra of vectors a geometrical algebra of wide application,

and resembling A. F. Mobius's Barycentrische Calcul, in which the

point is the fundamental element. Grassmann developed the idea

of the "external product," the "internal product," and the "open
product." The last we now call a matrix. His Ausdehnungslehre
has very great extension, having no limitation to any particular

number of dimensions. Only in recent years has the wonderful rich-

ness of his discoveries begun to be appreciated. A second edition of

the Ausdehnungslehre of 1844 was printed in 1877. C. S. Peirce gave
a representation of Grassmann's system in the logical notation, and
E. W. Hyde of the University of Cincinnati wrote the first text-book

on Grassmann's calculus in the English language.

Discoveries of less value, which in part covered those of Grassmann
and Hamilton, were made by Barre de Saint-Venant (1797-1886),
who described the multipUcation of vectors, and the addition of vectors

and oriented areas; hy A. L. Caucky, whose "clefs algebriques" were
units subject to combinatorial multiplication, and were applied by
the author to the theory of elimination in the same way as had been

done earlier by Grassmann; by Giusto Bellavitis (1803-1880), who
pubhshed in 1835 and 1837 in the Annali delle Scienze his calculus of

aequipollences. Bellavitis, for many years professor at Padua, was
a self-taught mathematician of much power, who in his thirty-eighth

year laid down a city office in his native place, Bassano, that he

might give his time to science.

The first impression of H. G. Grassmann's ideas is marked in the

writings of Hetmann Hankel, who published in 1867 his Vorlesungen

iiber die Complexen Zahlen. Hankel, then docent in Leipzig, had

been in correspondence with Grassmann. The "alternate numbers"

of Hankel are subject to his law of combinatorial multiplication. In

considering the foundations of Algebra Hankel affirms the principle of

the permanence of formal laws previously enunciated incompletely

by G. Peacock. His Complexe Zahlen was at first little read, and we
must turn to Victor Schlegel (1843-1905) of Hagen as the successful

interpreter of Grassmann. Schlegel was at one time a young col-

league of Grassmann at the Marienstifts-Gymnasium in Stettin. En-

couraged by R. F. A. Clebsch, Schlegel wrote a System der Raumlehre,

1872-1875, which explained the essential conceptions and operations

of the Ausdehnungslehre.

Grassmann's ideas spread slowly. In 1878 Clerk Maxwell wrote

P. G. Tait: "Do you know Grassmann's Ausdehnungslehre? Spottis-
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woode spoke of it in Dublin as something above and beyond 4nions.

I have not seen it, but Sir W. Hamilton of Edinburgh used to say

that the greater the extension the smaller the intention."

Multiple algebra was powerfully advanced by B. Peirce, whose
theory is not geometrical, as are those of W. R. Hamilton and H. G.

Grassmann. Benjamin Peirce (1809-1880) was born at Salem, Mass.,

and graduated at Harvard College, having as undergraduate carried

the study of mathematics far beyond the limits of the college course.

When N. Bowditch was preparing his translation and commentary
of the Mecanique Celeste, young Peirce helped in reading the proof-

sheets. He was made professor at Harvard in 1833, a position which
he retained until his death. For some years he was in charge of the

Nautical Almanac and superintendent of the United States Coast
Survey. He published a series of college text-books on mathematics,

an Analytical Mechanics, 1855, and calculated, together with Sears

C. Walker of Washington, the orbit of Neptune. Profound are his

researches on Linear Associative Algebra. The first of several papers

thereon was read at the first meeting of the American Association

for the Advancement of Science in 1864. Lithographed copies of a
memoir were distributed among friends in 1870, but so small seemed
to be the interest taken in this subject that the memoir was not
printed until 1881 [Am. Jour. Math., Vol. IV, No. 2). Peirce works
out the multiplication tables, first of single algebras, then of double

algebras, and so on up to sextuple, making in all 162 algebras, which
he shows to be possible on the consideration of symbols A, B, etc.,

which are linear functions of a determinate number of letters or units

i, j, k, I, etc., with coefficients which are ordinary analytical magni-
tudes, real or imaginary,—the letters i,j, etc., being such that every
binary combination i''^, ij, ji, etc., is equal to a linear function of the

letters, but under the restriction of satisfying the associative law.^

Charles S. Peirce, a son of Benjamin Peirce, and one of the foremost
writers on mathematical logic, showed that these algebras were all

defective forms of quadrate algebras which he had previously dis-

covered by logical analysis, and for which he had devised a simple
notation. Of these quadrate algebras quaternions is a simple example;
nonions is another. C. S. Peirce showed that of all linear associative

algebras there are only three in which division is unambiguous. These
are ordinary single algebra, ordinary double algebra, and quaternions,

from which the imaginary scalar is excluded. He showed that his

father's algebras are operational and matricular. Lectures on multiple
algebra were delivered by J. J. Sylvester at the Johns Hopkins Uni-
versity, and published in various journals. They treat largely of the
algebra of matrices.

While' Benjamin Peirce's comparative anatomy of linear algebras

was favorably received in England, it was criticised in Germany as
' A. Cayley, Address before British Association, 1883.
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being vague and based on arbitrary principles of classification. Ger-
man writers along this line are Eduard Study and Georg W. Scheffers.

An estimate of B. Peirce's linear associative algebra was given in

1902 by H. E. Hawkes/ who extends Peirce's method and shows its

full power. In 1898 Elie Cartan of the University of Lyon used the

characteristic equation to develop several general theorems; he ex-

hibits the semi-simple, or Dedekind, and the pseudo-nul, or nilpotent,

sub-algebras; he shows that the structure of every algebra may be
represented by the use of double units, the first factor being quad-
rate, the second non-quadrate. Extensions of B. Peirce's results were
made also by Henry Taber. Olive C. Hazlett gave a classification of

nilpotent alegbras.

As shown above, C. S. Peirce advanced this algebra by using the

matrix theory. Papers along this Une are due to F. G. Frobenius and

J. B. Shaw. The latter "shows that the equation of an algebra de-

termines its quadrate units, and certain of the direct units; that the

other units form a nilpotent system which with the quadrates may
be reduced to certain canonical forms. The algebra is thus made a

sub-algebra under the algebra of the associative units used in these

canonical forms. Frobenius proves that every algebra has a Dede-
kind sub-algebra, whose equation contains all factors in the equation

of the algebra. This is the semi-simple algebra of Cartan. He also

showed that the remaining units form a nilpotent algebra whose units

may be regularized" (J. B. Shaw). More recently, J. B. Shaw has

extended tie general theorems of linear associative algebras to such

algebras as have an infinite number of units.

Besides the matrix theory, the theory of continuous groups has been

used in the study of linear associative algebra. This isomorphism

was first pointed out by H. Poincare (1884) ; the method was followed

by Georg W. Scheffers who classified algebras as quatemionic and
non-quatemionic and worked out complete lists of all algebras to

order five. Theodor MoHen, in. 1893, then in Dorpat, demonstrated

"that quaternionic algebras contain independent quadrates, and that

quaternionic algebras can be classified according to non-quaternionic

t)7pes " (J. B. Shaw) . An elementary exposition of the relation between

linear algebras and continuous groups was given by L. E. Dickson ^ of

Chicago. This relation "enables us to translate the concepts and

theorems of the one subject into the language of the other subject.

It not only doubles our total knowledge, but gives us a better insight

into either subject by exhibiting it from a new point of view." The
theory of matrices was developed as early as 1858 by A. Cayley in an

important memoir which, in the opinion of J. J. Sylvester, ushered in

1 H. E. Hawkes in Am. Jour. Math., Vol. 24, 1902, p. 87. We are using also

J. B. Shaw's Synopsis of Linear Associalive Algebra, Washington, D. C, 1Q07,

Introduction. Shaw gives bibliography.

^Bull. Am. Math. Soc, Vol. 22, 1915, p. 53.
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the reign of Algebra the Second. W. K. Chfford, Sylvester, H. Taber,

C. H. Chapman, carried the investigations much further. The origi-

nator of matrices is really W. R. Hamilton, but his theory, published

in his Lectures on Quaternions, is less general than that of Cayley.

The latter makes no reference to Hamilton.

The theory of determinants ^ was studied by Hoene Wronski (1778-

1853), a poor Polish enthusiast, living most the time in France, whose
egotism and wearisome style tended to attract few followers, but who
made some incisive criticisms bearing on the philosophy of mathe-

matics.^ He studied four special forms of determinants, which were

extended by Heinrich Ferdinand Scherk (1798-1885) of Bremen and
Ferdinand Schweins (1780-1856) of Heidelberg. In 1838 Liouville

demonstrated a property of the special forms which were called

"wronskians" by Thomas Muir in 1881. Determinants received the

attention of Jacques P. M. Binet (1786-1856) of Paris, but the great

master of this subject was A. L. Cauchy. In a paper {Jour, de I'ecole

Polyt., IX., 16) Cauchy developed several general theorems. He in-

troduced the name determinant, a term used by K.. F. Gauss in 1801 in

the functions considered by him. In 1826 C. G. J. Jacobi began using

this calculus, and he gave brilliant proof of its power. In 1841 he

wrote extended memoirs on determinants in Crelle's Journal, which
rendered the theory easily accessible. In England the study of Unear

transformations of quantics gave a powerful impulse. A. Cayley de-

veloped skew-determinants and Pfafifians, and introduced the use of

determinant brackets, or the famihar pair of upright lines. The more
general consideration of determinants whose elements are formed from
the elements of given determinants was taken up by J. J. Sylvester

(185 1) and especially by L. Kronecker who gave an elegant theorem
known by his name.' Orthogonal determinants received the atten-

tion of A. Cayley in 1846, in the study of n^ elements related to each

other by |«(w-|-i) equations, also of L. Kronecker, F. Brioschi and
others. Maximal values of determinants received the attention of

J. J. Sylvester (1867), and especially of J. Hadamard (1893) who
proved that the square of a determinant is never greater than the

norm-product of the lines.

Anton Puchta (1851-1903) of Czernowitz in 1878 and M. Noether
in 1S80 showed that a symmetric determinant may be expressed as

the product of a certain number of factors, linear in the elements.

Determinants which are formed from the minors of a determinant

were investigated by J. J. Sylvester in 1851, to whom we owe the

' Thomas Muir, Tke Theory of Determinants in the Historical Order of Develop-

ment [Vol. I], 2nd Ed., London, 1906; Vol. II, Period 1841 to i860, London, 1911.

Muir was Superintendent-General of Education in Cape Colony.
^ On Wronski, see J. Bertrand in Journal des Savants, 1897, and in Revue des

Deux-Mondes, Feb., 1897. See also L'Intermediaire des Malh&maticiens, Vol. 23,

1916, pp. 113, 164-167, 181-183.
^ E. Pascal, Die Delerminanten, transl. by H. Leitzmann, 1900, p. 107.
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"umbral notation," by W. Spottiswoode in 1856, and later by G.
Janni, M. Reiss (1805-1869), E. d'Ovidio, H. Picquet, E. Hunyadi
(1838-1889) E. Barbier, C. A. Van Velzer, E. Netto, G. Frobenius,
and others. Many researches on determinants appertain to special

forms. "Continuants" are due to J. J. Sylvester; "alternants," origi-

nated by A. L. Cauchy, have been developed by C. G. J. Jacobi,
Nicold Trudi (1811-1884) of Naples, H. Nagelsbach, and G. Garbieri;
" axisymmetric determinants," first used by Jacobi, have been studied
by V. A. Lebesgue, J. J. Sylvester, and L. O. Hesse; "circulants" are

du ; to Eugene Charles Catalan (1814-1894) of Liege, William Spottis-

woode (1825-1883) of Oxford, J. W. L. Glaisher, and R. F. Scott;

for " centro-symmetric determinants" we are indebted to G. Zehfuss
of Heidelberg. V. Nachreiner and S. Giinther, both of Munich,
pointed out relations between determinants and continued fractions;

R. F. Scott uses H. Hankel's alternate numbers in his treatise. A
class of determinants which have the same importance in linear inte-

gral equations as do ordinary determinants for linear equations with
n unknowns was worked out by E. Fredholm {Acta math., 1903) and
again by D. Hilbert who reaches them as limiting expressions of or-

dinary determinants.

An achievement of considerable significance was the introduction

in i860 of infinite determinants by Eduard Furstenau in a method
of approximation to the roots of algebraic equations. Determinants of

an inlinite order were used by Theodor Kotteritzsch of Grimma in

Saxony, in two papers on the solution of an infinite system of linear

equations (Zeitsch.f. Math. u. Physik, Vol. 14, 1870). Independently,

infinite determinants were introduced in 1877 by George William
HiU of Washington in an astronomical paper {Collected Works, Vol.

I, 1905, p. 243). In 1884 and 1885 H. Poincare called attention to

these determinants as developed by Hill and investigated them further.

Their theory was elaborated later by Helge von Koch and Erhard
Schmidt (1908).

In recent years the theory of the solution of a system of linear

equations has been presented in an elegant form by means of what
is known as the rank of a determinant. In particular, G. A. Miller

has thus developed a necessary and sufficient condition that a given

unknown in a consistent system of linear equations have only one

value while some of the other unknowns may assume an infinite

number of values.^

Text-books on determinants were written by W. Spottiswoode

(1851), F. Brioschi (1854), R. Baltzer (1857), S. Giinther (1875),

G. J. Dostor (1877), R. F. Scott (1880), T. Muir (1882), P. H. Hanus
(1886), G. W. H. Kowalewski (1909).

The symbol n! for "factorial n," now universally used in algebra,

is due to Christian Kramp (1760-1826) of Strassburg, who used it in

' Am. Math. Monthly, Vol. 17, igio, p. 137.
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1808. The symbol = to express identity was first used by G. F. B.

Riemann.^
Modern higher algebra is especially occupied with the theory of

linear transformations. Its development is mainly the work of A.

Cayley and J. J. Sylvester.

Arthur Cayley (1821-1895), born at Richmond, in Surrey, was
educated at Trinity College, Cambridge. He came out Senior Wrang-
ler in 1842. He then devoted some years to the study and practice

of law. While a student at the bar he went to Dublin and, alongside

of G. Salmon, heard W. R. Hamilton's lectures on quaternions. On
the foundation of the Sadlerian professorship at Cambridge, he ac-

cepted the offer of that chair, thus giving up a profession promising

wealth for a very modest provision, but which would enable him to give

all his time to mathematics. Cayley began his mathematical publica-

tions in the Cambridge Mathematical Journal while he was still an
undergraduate. Some of his most brilliant discoveries were made
during the time of his legal practice. There is hardly any subject

in pure mathematics which the genius of Cayley has not enriched, but
most important is his creation of a new branch of analysis by his

theory of invariants. Germs of the principle of invariants are found
in the writings of J. L. Lagrange, K. F. Gauss, and particularly of

G. Boole, who showed, in 1841, that invariance is a property of dis-

criminants generally, and who applied it to the theory of orthogonal

substitution. Cayley set himself the problem to determine a priori

what functions of the coefficients of a given equation possess this prop-

erty of invariance, and found, to begin with, in 1845, that the so-

called "hyper-determinants" possessed it. G. Boole made a number
of additional discoveries. Then J. J. Sylvester began his papers in the

Cambridge and Dublin Mathematical Journal on the Calculus of Forms.
After this, discoveries followed in rapid succession. At that time Cay-
ley and Sylvester were both residents of London, and they stimulated

each other by frequent oral communications. It has often been dif-

ficult to determine how much really belongs to each. In 1882, when
Sylvester was professor at the Johns Hopkins University, Cayley
lectured there on Abelian and theta functions.

Of interest is Cayley's method of work. A. R. Forsyth describes it

thus: "When Cayley had reached his most advanced generalizations

he proceeded to establish them directly by some method or other,

though he seldom gave the clue by which they had first been obtained:

a proceeding which does not tend to make his papers easy reading. . . .

His literary style is direct, simple and clear. His legal training had
an influence, not merely upon his mode of arrangement but also upon
his expression; the result is that his papers are severe and present a
curious contrast to the luxuriant enthusiasm which pervades so many

' L. Kronecker, Vorlesungen iiber Zahlenlheorie, 1901, p. 86.
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of Sylvester's papers." ^ Curiously, Cayley took little interest in

quaternions.

James Joseph Sylvester (1814-1897) was born in London. His
father's name was Abraham Joseph; his eldest brother assumed in

America the name of Sylvester,' and he adopted this name too. About
the age of 16 he was awarded a prize of $500 for solving a question

in arrangements for contractors of lotteries in the United States.^

In 183 1 he entered St. John's College, Cambridge, and came out
Second Wrangler in 1837, George Green being fourth. Sylvester's

Jewish origin incapacitated him from taking a degree. From 1838 to

1840 he was professor of natural philosophy at what is now University

College, London; in 1841 he became professor of mathematics at the

University of Virginia. In a quarrel with two of his students he slightly

wounded one of them with a metal pointed cane, whereupon he re-

turned hurriedly, to England. In 1844 he served as an actuary; in

1846 he became a student at the Inner Temple and was called to the

bar in 1850. In 1846 he became associated with A. Cayley; often

they walked round the Courts of Lincoln's Inn, perhaps discussing

the theory of invariants, and Cayley (says Sylvester) "habitually

discoursing pearls and rubies." Sylvester resumed mathematical

research. He, Cayley and WilHam Rowan Hamilton entered upon
discoveries in pure mathematics that are unequalled in Great Britain

since the time of I. Newton. Sylvester made the friendship of G. Sal-

mon whose books contributed greatly to bring the results of Cayley
and Sylvester within easier reach of the mathematical public. From

185s to 1870 Sylvester was professor at the Royal Military Academy
at Woolwich, but showed no great efficiency as an elementary teacher.

There are stories of his housekeeper pursuing him from home carrying

his collar and necktie. From 1876 to 1883, he was professor at the

Johns Hopkins University, where he was happy in being free to teach

whatever he wished in the way he thought best. He became the first

editor of the American Journal of Mathematics in 1S78. In 1884 he

was elected to succeed H. J. S. Smith in the chair of Savilian professor

of geometry at Oxford, a chair once occupied by Henry Briggs, John
Walhs and Edmund Halley.

Sylvester sometimes amused himself writing poetry. His Laws of

Verse is a curious booklet. At the reading, at the Peabody Institute

in Baltimore, of his Rosalind poem, consisting of about 400 lines all

rhyming with "Rosalind," he first read all his explanatory footnotes,

so as not to interrupt the poem ; these took one hour and a-half . Then
he read the poem itself to the remnant of his audience.

1 Proceed. Loixdon Royal Society, Vol. 58, i8gs, pp. 23, 24.

" H. F. Baker's Biographical Notice in The Collected Math. Papers of J. J. Syl-

vester, Vol. IV, Cambridge, 1912. We have used also P. A. MacMahon's notipe in

Proceed. Royal Soc. of London, Vol. 63, i8g8, p. ix. For Sylvester's activities in

Baltimore, see Fabian Franklin in Johns Hopkins Univ. Circulars, June, 1897; F.
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Sylvester's first papers were on Fresnel's optic theory, 1837. Two
. years later he wrote on C. Sturm's memorable theorem. Sturm
once told him that the theorem originated in the theory of the com-
pound pendulum. Stimulated by A. Cayley he made important in-

vestigations on modern algebra. He wrote on elimination, on trans-

formation and canonical forms, in which the expression of a cubic

surface by five cubes is given, on the relation between the minor de-

terminants of linearly equivalent quadratic functions, in which the

notion of invariant factors is imphcit, while in 1852 appeared the

first of his papers on the principles of the calculus of forms. In a
reply that he made in 1869 to Huxley who had claimed that mathe-
matics was a science that knows nothing of observation, induction,

invention and experimental verification, Sylvester narrated his per-

sonal experience: "I discovered and developed the whole theory of

canonical binary forms for odd degrees, and, as far as yet made out,

for even degrees too, at one evening sitting, with a decanter of port

wine to sustain nature's flagging energies, in a back office in Lincoln's

Inn Fields. The work was done, and well done, but at the usual

cost of racking thought—a brain on fire, and feet feeKng, or feehngless,

as if plunged in an ice-pail. That night we slept no more." His reply

to Huxley is interesting reading and bears strongly on the qualities

of mental activity involved in mathematical research. In 1859 he
gave lectures on partitions, not published until 1897. He wrote on
partitions again in Baltimore. In 1864 followed his famous proof

of Newton's rule. A certain fundamental theorem in invariants

which had formed the basis of an important section of A. Cayley's

work, but had resisted proof for a quarter of a century was demon-
strated by Sylvester in Baltimore. Noteworthy are his memoirs on
Chebichev's method concerning the totality of prime numbers within

certain limits, and his latent roots of matrices. His researches on
invariants, theory of equations, multiple algebra, theory of numbers,
linkages, probability, constitute important contributions to mathe-
matics. His final studies, entered upon after his return to Oxford,

were on reciprocants or functions of differential coefficients whose
form is unaltered by certain linear transformations of the variables,

and a generalization of the theory of concomitants. In 1911, G.
Greenhill told reminiscently ^ how Sylvester got everybody interested

in reciprocants, "now clean forgotten"; "One day after, Sylvester

was noticed walking alone, addressing the sky, asking it: 'Are Recipro-

cants Bosh? Berry of King's says the Reciprocant is all Bosh!'

There was no reply, and Sylvester himself was tiring of the subject,

and so Berry escaped a castigation. But recently I had occasion

from the Aeronautical point of view to work out the theory of a Vortex

Cajori, Teaching and History of Mathematics in the United States, Washington, 1890,

pp. 261-272.
' Mathematical Gazette, Vol. 6, 1912, p. 108.
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inside a Polygon, an eddy whirlwind such as Chavez had to encounter
in the angle of the precipices, flying over the Simplon Pass. The
analysis in some cases seemed strangely famiUar, and at last I recog-

nized the familiar Reciprocant. . . . Difference in Similarity and
Similarity in Difference has been called the motto of our science." ^

In the American Journal of Mathematics are memoirs on binary and
ternary quantics, elaborated partly with aid of F. Franklin, then
professor at theJohns Hopkins University. The theory of reciprocants

is more general than one on differential invariants by G. H. Halphen
(1878), and has been developed further by J. Hammond of Cambridge,
P. A. McMahon of Woolwich, A. R. Forsyth now of London, and
others. Sylvester playfully lays claim to the appellation of the Mathe-
matical Adam, for the many names he has introduced into mathe-
matics. Thus the terms invariant, discriminant, Hessian, Jacobian,

are his. That not only elementary pupils, but highly trained math-
ematicians as well, may be attracted or repelled by the kind of symbols
used, is illustrated by the experience of K. Weierstrass who related

that he followed Sylvester's papers on the theory of algebraic forms

very attentively until Sylvester began to employ Hebrew characters. ,

That was more than he could stand and after that he quit him.^

The great theory of invariants, developed in England mainly by
A. Cayley and J. J. Sylvester, came to be studied earnestly in Ger-

many, France, and Italy. Ch. Hermite discovered evectants, and
the theorem of reciprocity named after him, whereby " to every covari-

ant of degree n in the coefficients of the quantic of order m, there

corresponds a covariant of degree m in the coefficients of a quantic of

order n. He discovered the skew invariant of the quintic, which was
the first example of any skew invariant. He discovered the linear co-

variants belonging to quantics of odd order greater than 3, and he ap-

plied them to obtain the typical expression of the quantic in which the

coefficients are invariants. He also invented the associated covariants

of a quantic; these constitute the simplest set of algebraically complete

systems as distinguished from systems that are linearly complete." ^

In Italy, F. Brioschi of Milan and Fad de Bruno (1825-1888) con-

tributed to the theory of invariants, the latter writing a text-book

on binary forms (1876), which ranks by the side of G. Salmon's treatise

and those of R. F. A. Clebsch and P. Gordan.

Francesco Brioschi (1824-1897) in 1852 became professor of apphed

mathematics at the University of Pavia and in 1862 was commissioned

by the government to organize the Instituto tecnico superiore at

Milan, where he filled until his death the chair of hydrauUcs and

1 Mathematical Gazette, Vol. 6, igi2, p. 108.

^E. Lampe (1840-1918), in Naturwissenschajtliche Rundschau, Bd. 12, 1897,

p. 361; quoted by R. E. Moritz, Memorabilia Mathemaiica, 1914, p. 180.

' Proceed, of the Roy. Soc. of London, Vol. 45, 1905, p. 144. Obituary notice of

Hermite by A. R. Forsyth.
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analysis. With Abbe Barnaba Tortolini (1808-1874) he founded in

1858 the Annali di matematica pura ed applicata. Among his pupils

at Pavia were L. Cremona and E. Beltrami. V. Volterra narrates '

how F. Brioschi in 1858, with two other young Italians, Enrico Betti

(1823-1892), later professor at the University of Pisa, and Felice

Casorati (183 5-1 890), later professor at the University of Pavia,

started on a journey to enter into relations with the foremost mathe-

maticians of France and Germany. "The scientific existence of Italy

as a nation" dates from this journey. "It is to the teaching, labors,

and devotion of these three, to their influence in the organization of

advanced studies, to the friendly scientific relations that they insti-

tuted between Italy and foreign countries, that the existence of a

school of analysts in Italy is due."

In Germany the early theory of invariants, as developed by Cayley,

Sylvester, and Salmon in England, Hermite in France and F. Brioschi

in Italy, did not draw attention until 1858 when Siegfried Heinrich
Aronhold (1819-1884) of the technical high school in Berlin pointed

out that Hesse's theory of ternary cubic forms of 1844 involved in-

variants by which that theory could be rounded out. F. G. Eisenstein

and J. Steiner had also given early publication to isolated develop-

ments involving the invariantal idea. In 1863 Aronhold gave a
systematic and general exposition of invariant theory (Crelle, 62).

He and Clebsch used a notation of their own, the symbolical notation,

different from Cayley's, which was used in the further developments
of the theory in Germany. Great developments were started about

1868, when R. F. A. Clebsch and P. Gordan wrote on types of binary

forms, L. Kronecker and E. B. Christoffel on bilinear forms, F. Klein

and S. Lie on the invariant theory connected with any group of linear

substitutions. Paul Gordan (1837-1912) was born at Erlangen and
became professor there. He produced papers on finite groups, par-

ticularly on the simple group of order 168 and its associated curve

yh+z^x+x^y=o. His best known achievement is the proof of the

existence of a complete system of concomitants for any given binary

form.^ While Clebsch aimed in his researches to devise methods by
which he could study the relationships between invariantal forms
(Formenverwandtschaft), the chief aim of Aronhold was to examine
the equivalence or the linear transformation of one form into another.*

Investigations along this Une are due to E. B. Christoffel, who showed
that the number of arbitrary parameters contained in the substitution

coefficients equals that of the absolute invariants of the form, K.
Weierstrass who gave a general treatment of the equivalence of two

' Butt. Am. Math. Soc, Vol. 7, 1900, p. 60.

^Nature, Vol. 90, 1913, p. 597.
^ We are using Franz Meyer, " Bericht fiber den gegenwartigen Stand der Tn-

variantentheorie " in the Jahresb. d. d. Math. Vereinigung, Vol. I, 1890-gi,

pp. 79-292. See p. 99.
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linear systems of bilinear and quadratic forms, L. Kronecker who ex-

tended the researches of Weierstrass and had a controversy with C.

Jordan on certain discordant results, J. G. Darboux who in 1874 gave
a general and elegant derivation of theorems due to K. Weierstrass
and L. Kronecker, G. Frobenius who appUed the transformation of

bihnear forms to "Pfaff's problem": To determine when two given
linear differential expressions of n terms can be converted one into

the other by subjecting the variables to general point transformations.

The study of invariance of quadratic and bilinear forms from the

stand-point of group theory was pursued by H. Werner (1889), S.

Lie (1885) and W. Killing (1890). Finite binary groups were exam-
ined by H. A. Schwarz (1871), and Felix Klein. Schwarz is led to the

problem, to find "all spherical triangles whose symmetric repetitions

on the surface of a sphere give rise to a finite number of spherical

triangles differing in position," and deduces the forms belonging

thereto. Without a knowledge of what Schwarz and W. R. Hamilton
had done, Klein was led to a determination of the finite binary linear

groups and their forms. Representing transformations as motions
and adopting Riemarui's interpretation of a complex variable on a
spherical surface, F. Klein sets up the groups of those rotations which
bring the five regular solids into coincidence with themselves, and the

accompanying forms. The tetrahedron, octahedron and icosahedron

lead respectively to 12, 24 and 60 rotations; the groups in question

were studied by Klein. The icosahedral group led to an icosahedral

equation which stands in intimate relation with the general equation

of the fifth degree. Klein made the icosahedron the centre of his theory

of the quintic as given in his Vorlesungen ilber das Ikosaeder mid die

Auflosung der Gleichungen funften Grades, Leipzig, 1884.

Finite substitution groups and their forms, as related to linear

differential equations, were investigated by R. Fuchs {Crelle, 66, 68)

in 1866 and later. If the equation has only algebraic integrals, then

the group is finite, and conversely. Fuchs's researches on this topic

were continued' by C. Jordan, F. Klein, and F. Brioschi. Finite ternary

and higher groups have been studied in connection with invariants by
F. Klein who in 1887 made two such groups the basis for the solution

of general equations of the sixth and seventh degrees. In 1886 F. N.
Cole, under the guidance of Klein, had treated the sextic equation in

the Am. Jour, of Math., Vol. 8. The second group used by Klein was
studied with reference to the 140 lines in space, to which it leads, by
H. Maschke in 1890.

The relationship of invariantal forms, the study of which was
initiated by A. Cayley and J. J. Sylvester, received since 1868 em-

phasis in the writings of R. F. A. Clebsch and P. Gordan. Gordan
proved in Crelle, Vol. 69, the finiteness of the system for a single

binary form. This is known as "Gordan's theorem." Even in the

later simplified forms the proof of it is involved, but the theorem
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yields practical methods to determine the existing systems. G.

Peano in 1881 generalized the theorem and applied it to the "cor-

respondences" represented by certain double-binary forms. In 1890

D. Hilbert, by using only rational processes, demonstrated the finite-

ness of the system of invariants arising from a given series of any forms

in n variables. A modification of this proof which has some advantages

was given by W. E. Story of Clarke University. Hilbert's research

bears on the number of relations called syzygies, a subject treated be-

fore this time by A. Cayley, C. Hermite, F. Brioschi, C. Stephanos

of Athens, J. Hammond, E. Stroh, and P. A. MacMahon.
The symboHc notation in the theory of invariants, introduced by

S. H. Aronhold and R. F. A. Clebsch, was developed further by P. Gor-

dan, E. Stroh, and E. Study in Germany. English writers endeavored

to make the expressions in the theory of forms intuitively evident by
graphic representation, as when Sylvester in 1878 uses the atomic

theory, an idea applied further by W. K. Clifford. The symbolic

method in the theory of invariants has been used by P. A. MacMahon
in the article "Algebra" in the eleventh edition of the Encyclopedia

Britannica, and by J. H. Grace and A. Young in their Algebra of In-

variants, Cambridge, 1903. Using a method in C. Jordan's great

memoirs on invariants, these authors are led to novel results, notably

to "an exact formula for the maximum order of an irreducible co-

variant of a system of binary forms." A complete syzygetic theory

of the absolute orthogonal concomitants of binary quantics was con-

structed by Edwin B. Elliott of Oxford by a method that is not sym-
bolic, while P. A. MacMahon in 1905 employs a symbolic calculus in-

volving imaginary umbrae for similar purposes. While the theory

of invariants has played an important role in modern algebra and
analytic projective geometry, attention has been directed also to its

employment in the theory of numbers. Along this hne are the re-

searches of L. E. Dickson in the Madison Colloquium of 1913.

The establishment of criteria by means of which the irreducibihty

of expressions in a given domain may be ascertained has been inves-

tigated by F. T. V. Schubert (1793), K. F. Gauss, L. Kronecker, F. W.
P. Schonemann, F. G. M. Eisenstein, R. Dedekind, G. Floquet, L.

Konigsberger, E. Netto, O. Perron, M. Bauer, W. Dumas and H.
Blumberg. The theorem of Schonemann and Eisenstein declares that

if the polynomial x"--\-c\ «""'-!-
. . . +Cn with integral coefiicients is

such that a prime p divides every coefficient c\, . . , c„, but p^ does

not go into c„, then the polynomial is irreducible in the domain of

rational numbers. This theorem may be regarded as the nucleus of

the work of the later authors. Floquet and Konigsberger do not
limit themselves to polynomials, but consider also linear homogeneous
differential expressions. Blumberg gives a general theorem which
practically includes all earlier results as special cases.^

' For bibliography see Trans. Am. Math. Soc, Vol. 17, 1916, pp. 517-544.
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Theory of Equations and Theory of Groups

_A notable event was the reduction of the quintic equation to the
trinomial form, effected by George Birch Jerrard ( ?-i863) in his

Mathematical Researches (1832-1835). Jerrard graduated B. A. at
Trinity College, Dublin, in 1827. It was not until 1861 that it became
generally known that this reduction had been effected as early as

1786 by Erland Samuel Bring (i 736-1 798), a Swede, and brought
out in a publication of the University of Lund. Both Bring and Jer-
rard used the method of E. W. Tschimhausen. Bring never claimed
that his transformation led to the general algebraic solution of the

quintic, but Jerrard persisted in making such a claim even after

N. H. Abel and others had offered proofs establishing the impossibility

of a general solution. In 1836, William R. Hamilton made a report

on the validity of Jerrard's method, and showed that by his process

the quintic could be transformed to any one of the four trinomial

forms. Hamilton defined the limits of its applicability to higher equa-
tions. J. J. Sylvester investigated this question. What is the lowest

degree an equation can have in order that it may admit of being
deprived of i consecutive terms by aid of equations not higher than
ith degree. He carried the investigation as far as «=8, and was led

to a series of numbers which he named "Hamilton's numbers." A
transformation of equal importance to Jerrard's is that of Sylvester,

who expressed the quintic as the sum of three fifth-powers. The
covariants and invariants of higher equations have been studied

much in recent years.

In the theory of equations J. L. Lagrange, J. R. Argand, and K. F.

Gauss furnished proof to the important theorem that every algebraic

equation has a real or a complex root. N. H. Abel proved rigorously

that the general algebraic equation of the fifth or of higher degrees

cannot be solved by radicals (Crelle, I, 1826). Before Abel, an Italian

physician, Paolo Ruffini (1765-1822), had printed a proof of the in-

solvabihty. It appears in his book, Teoria generate delle equazioni,

Bologna, 1799, and in later articles on this subject. Ruffini's proof

was criticised by his countryman, G. F. Malfatti. L. N. M. Carnot,

A. M. Legendre, and S. D. Poisson, in a report of 1813 on a paper of

A. L. Cauchy, had occasion to refer to Ruffini's proof as "fondee sur

des raisonnemens trop vagues, et n'ait pas ete generalement admise." '

N. H. Abel remarked that Ruffini's reasoning did not always seem

rigorous. But Cauchy in 182 1 wrote to Ruffini that he had "demontre
completement Finsolubilite algebrique des equations generales d' un
degre superieur au quatrieme." ^

J. Hecker showed in 1886 that

Ruffini's proof was sound in general outline, but faulty in some of

the detail.' E. Bortolotti in 1902 stated that Ruffini's proof, as given

' E. Bortolotti, Carteggio di Paolo Ruffini, Roma, 1906, p. 32.

^ E. Bortolotti, Influenza deW opera mat. di P. Ruffini, 1902, p. 34.

'J. Hecker, Ueber Ruffini's Beweis (Dissertation), Bonn, 1886.
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in 1 8 13 in his book Reflessioni intorno alia soluzione dell' equazioni

algebraiche, was substantially the same as that given later by Pierre

Laurent Wantzel ^ (1814-1848), but only the second part of Wantzel's

simplified proof resembles RuiHni's; the first part is modelled after

Abel's. Wantzel, by the way, deserves credit for having given the

first rigorous proofs {Liouville, Vol. 2, 1837, p. 366.) of the im-

possibility of the trisection of any given angle by means of ruler and
compasses, and of avoiding the "irreducible case" in the algebraic

solution of irreducible cubic equations. Wantzel was repetiteur at

the Polytechnic School in Paris. As a student he excelled both in

mathematics and languages. Saint-Venant said of him: "Ordinarily

he worked evenings, not lying down until late; then he read, and took

only a few hours of troubled sleep, making alternately wrong use of

coffee and opium, and taking his meals at irregular hours until he
was married. He put unlimited trust in his constitution, very strong

by nature, which he taunted at pleasure by all sorts of abuse. He
brought sadness to those who mourn his premature death."

Ruffini's researches on equations are remarkable as containing

anticipations of the algebraic theory of groups.^ Ruffini's "per-

mutation" corresponds to our term "group." He divided groups into

"simple" and "complex," and the latter into intransitive, transitive

imprimitive, and transitive primitive groups. He established the

important theorem for which the name "Ruffini's theorem" has
been suggested,' that a group does not necessarily have a subgroup
whose order is an arbitrary divisor of the order of the group. The
collected works of Ruffini are published under the auspices of the
Circolo Matematico di Palermo; the first volume appeared in 1915
with notes by Ettore Bortolotti of Bologna. A transcendental solu-

tion of the quintic involving elliptic integrals was given by Ch. Her-
mite (Compt. Reiid., 1858, 1865, 1866). After Hermite's first publica-
tion, L. Kronecker, in 1858, in a letter to Hermite, gave a second
solution in which was obtained a simple resolvent of the sixth degree.

Abel's proof that higher equations cannot always be solved alge-

braically led to the inquiry as to what equations of a given degree
can be solved by radicals. Such equations are the ones discussed by
K. F. Gauss in considering the division of the circle. Abel advanced
one step further by proving that an irreducible equation can always
be solved in radicals, if, of two of its roots, the one can be expressed
rationally in terms of the other, provided that the degree of the equa-
tion is prime; if it is not prime, then the solution depends upon that
of equations of lower degree. Through geometrical considerations,

1 E. Bortolotti, Influenza, etc., 1902, p. 26. Wantzel's proof is given in Nouvelles
Annates Matkemaliques, Vol. 4, 1845, pp. 57-65. See also Vol. 2, pp. 117-127. The
second part of Wantzel's proof, involving substitution-theory, is reproduced in J. A.
Serret's Algebre superietire.

^H. Burkhardt, in Zeitschr.f. Malhemaiik u. Physik, Suppl., 1892.
' G. A. Miller, in Bibliolhcca malhematiea, 3. F. Vol. 10, 1909-1910, p. 318.
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L. O. Hesse came upon algebraically solvable equations of the ninth
degree, not included in the previous groups. The subject was power-
fully advanced in Paris by the youthful Evariste Galois (1811-1832).*
He was born at Bourg-la-Reine, near Paris. He began to exhibit
most extraordinary mathematical genius after his fifteenth year.
His was a short,^ sad and pestered life. He was twice refused ad-
mittance to the Ecole Polytechnique, on account of inability to meet
the (to him) trivial demands of examiners who failed to recognize
his genius. He entered the Ecole Normale in 1829, then an inferior

school. Proud and arrogant, and unable to see the need of the cus-
tomary detailed explanations, his career in that school was not smooth.
Drawn into the turmoil of the revolution of 1830, he was forced to

leave the Ecole Normale. After several months spent in prison, he
was killed in a duel over a love affair. Ordinary text-books he dis-

posed of as rapidly as one would a novel. He read J. L. Lagrange's
memoirs on equations, also writings of A. M. Legendre, C. G. J.

Jacobi, and N. H. Abel. As early as the seventeenth year he reached
results of the highest importance. Two memoirs presented to the
Academy of Sciences were lost. A brief paper on equations in the
Bulletin de Ferussac, 1830, Vol. XIII, p. 428, gives results which seem
to be applications of a general theory. The night before the duel he
wrote his scientific testament in the form of a letter to Augusta Cheva-
lier, containing a statement of the mathematical results he had reached
and asking that the letter be published, that "Jacobi or Gauss pass

judgment, not on their correctness, but on their importance." Two
memoirs found among his papers were published by J. Liouville in

1846. Further manuscripts were published by J. Tannery at Paris

in 1908. As a rule Galois did not fully prove his theorems. It was
only with difficulty that Liouville was able to penetrate into Galois'

ideas. Several commentators worked on the task of filling out the

lacunas in Galois' exposition. Galois was the first to use the word
"group" in a technical sense, in 1830. He divided groups into simple

and compound, and observed that there is no simple group of any
composite order less than 60. The word "group" was used by A.

Cayley in 1854, by T. F. Kirkman and J. J. Sylvester in 1860.^ Galois

proved the important theorem that every invariant subgroup gives

rise to a quotient group which exhibits many fundamental properties

of the group. He showed that to each algebraic equation corresponds

a group of substitutions which reflects the essential character of the

equation. In a paper published in 1846 he established the beautiful

theorem: In order that an irreducible equation of prime degree be

solvable by radicals, it is necessary and sufficient that all its roots be

I See life by Paul Dupuy in Annales de I'icole normale superieure, 3. S., Vol. XIIT,

1896. See also E. Picard, Oeuvre.s math, d' S,variste Galois, Paris, 1897; J. Pierpont,

Bulletin Am. Math. Soc, 2. S., Vol. IV, 1898, pp. 332-340.
^ G. A. Miller in Am. Math. Monthly, Vol. XX, 1913, p. 18.
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rational in any two of them. Galois' use of substitution groups to

determine the algebraic solvability of equations, and N. H. Abel's

somewhat earlier use of these groups to prove that general equations

of degrees higher than the fourth cannot be solved by radicals, fur-

nished strong incentives to the vigorous cultivation of group theory.

It was A. L. Cauchy who entered this field next. To Galois are due

also some valuable results in relation to another get of equations,

presenting themselves in the theory of elhptic functions, viz., the

modular equations. To Cauchy has been given the credit of being

the founder of the theory of groups of finite order, ^ even though funda-

mental results had been previously reached by J. L. Lagrange, Pietro

Abbati (1786-1842), P. Ruffini, N. H. Abel, and Galois. Cauchy's

first publication was in 18 15, when he proved the theorem that the

number of distinct values of a non-symmetric fimction of degree n
cannot be less than the largest prime that divides n, without becom-

ing equal to 2. Cauchy's great researches on groups appeared in his

Exercises d'analyse et de physique mathematique, 1844, and in articles

in the Paris Comptes Rendiis, 1845-1846. He did not use the term

"group," but he uses (x y z u v w) and other devices to denote sub-

stitutions, uses the terms "cyclic substitution," "order of a substitu-

tion," "identical substitution," "transposition," "transitive," "in-

transitive." In 1844 he proved the fundamental theorem (stated

but not proved by E. Galois) which is known as " Cauchy's theorem "

:

Every group whose order is divisible by a given prime number p must
contain at least one subgroup of order p. This theorem was later

extended by L. Sylow. A. L. Cauchy was the first to enumerate the

orders of the possible groups whose degrees do not exceed six, but this

enumeration was incomplete. At times he fixed attention on prop-

erties of groups without immediate concern as regards applications,

and thereby took the first steps toward the consideration of abstract

groups. In 1846 J. Liouville made E. Galois' researches better known
by publication of two manuscripts. At least as early as 1848 J. A.
Serret taught group theory in Paris. In 1852, Enrico Betti of the

University of Pisa published in the Annali of B. Tortohni the first

rigorous exposition of Galois' theory of equations that made the

theory intelligible to the general public. The first account of it given

in a text-book on algebra is in the third edition of J. A. Serret's Alge-

bre, 1866.

In England the earliest studies in group theory are due to Arthur
Cayley and William R. Hamilton. In 1854 A. Cayley published a
paper in the Philosophical Magazine which . is usually accepted as
founding the theory of abstract groups, although the idea of abstract

groups occurs earlier in the papers of A. L. Cauchy, and Cayley's

1 Our account of Cauchy's researches on groups is drawn from the article of G. A.
Miller in Bibliolhcca Mathemalica, Vol. X, 190Q-1910, pp. 317-329, and that of
Josephine E. Burns in Am. Math. Monthly, Vol. XX, 19 13, pp. 141-148.
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article is not entirely abstract. Formal definitions of abstract groups
were not given until later, by L. Kronecker (1870), H. Weber (1882),
and G. Frobenius (1887). The transition from substitution groups
to abstract groups was gradual.-' It may be recalled here that, before

1854, there were two sources from which the theory of groups of finite

order originated. In the writings of J. Lagrange, P. Ruffini, N. H.
Abel, and E. Galois it sprang from the theory of algebraic equations.
A second source is the theory of numbers; the group concept is funda-
mental in some of L. Euler's work on power residues and in some of

the early work of K. F. Gauss. It has been pointed out more recently

that the group idea really underlies geometric transformations and
is implied in Euclid's demonstrations.^ Abstract groups are con-
sidered apart from any of their applications.

A. Cayley illustrates his paper of 1854 by means of the laws of

combination of quaternion imaginaries, quaternions having been
invented by WLUiam R. Hamilton eleven years previously. In 1859
Cayley pointed out that the quaternion units constitute a group of

order 8, now known as the quaternion group, when they are multiplied

together.' William R. Hamilton, without using the technical lan-

guage of group theory, developed in 1856, in his study of a new system
of roots of unity, the properties of the groups of the regular sohds,

as generated by two operators or elements, and he proved that these

groups may be completely defined by the orders of their two generating

operators and the order of their product.

E. Picard puts the matter thus: "A regular polyhedron, say an
icosahedron, is on the one hand the solid that all the world knows; it

is also, for the analyst, a group of finite order, corresponding to the

divers ways of making the polyhedron coincide with itself. The in-

vestigation of all the types of groups of motion of finite order interests

not alone the geometers, but also the crystallographers; it goes back
essentially to the study of groups of ternary linear substitutions of

determinant +1, and leads to the thirty-two systems of symmetry
of the crystallographers for the particular complex."

In 1858 the Institute of France offered a prize for a research on

group theory which, though not awarded, stimulated research. In

1859 Emile Leonard Mathieu (1835-1890) of the University of Nancy
wrote a thesis on substitution groups, while in i860 Camille Jordan

(1838- ) of the Ecole Polytechnique in Paris contributed the first

of a series of papers which culminated in his great Traite des substitu-

tions, 1870. Jordan received his doctorate in 1861 in Paris; he is editor

of the Journal de mathSmatiques pures et appliquees. His first paper

on groups gives the fundamental theorem that the total number of

' G. A. Miller, in Bibliotheca Malhemalka, 3. Ed., Vol. XX, 1909-1910, p. 326.

We are making much use of Miller's historical sketch.

'H. Poincar^ in Monist, Vol. 9, 1898, p. 34.
' G. A. Miller in Bibliotheca Malhemalica, Vol. XI, 1910-1911, pp. 314-315.
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substitutions of n letters which are commutative with every substitu-

tion of a regular group G on the same n letters constitute a group
which is similar to G. To Jordan is due the fundamental concept of

class of a substitution group and he proved the constancy of the

factors of composition. He also proved that there is a finite number
of primitive groups whose class is a given number greater than 3,

and that the necessary and sufficient condition that a group be solvable

is that its factors of composition are prime numbers.^ Prominent
among C. Jordan's pupils is Edmont Maillet (1865- ), editor of

L'Intermediaire des mathematiciens , who has made extensive contribu-

tions.

In Germany L. Kronecker and R. Dedekind were the earhest to

become acquainted with the Galois theory. Kronecker refers to it

in an article published in 1853 in the Berichte of the Berlin Academy.
Dedekind lectured on it in Gottingen in 1858. In 1879-1880 E. Netto
gave lectures in Strassburg. His Substitutionstheorie, 1882, was trans-

lated into Italian in 1S85 by Giuseppe BattagUni (1826-1894) of the

University of Rome, and into English in 1892 by F. N . Cole, then at

Ann Arbor. The book placed the subject within easier reach of the

mathematical public.

In 1862-1863 Ludwig Sylow (1832-1918) gave lectures on substitu-

tion groups in Christiania, Norway, which were attended by Sophus
Lie. Extending a theorem given nearly thirty years earlier by A. L.

Cauchy, Sylow obtained the theorem known as "Sylow's theorem":
Every group whose order is divisible by p"<-, but not by ^'"+% p being a
prime number, contains i+kp subgroups of order p^. About twenty
years later this theorem was extended still further by Georg Frobenius

(1849-1917) of the University of Berhn, to the effect that the number
of subgroups is kp+i, k being an integer, even when the order of the
group is divisible by a higher power of p than p"^. Sophus Lie took
a very important step by the explicit application of the group concept
to new domains and the creation of the theory of continuous groups.

Marius Sophus Lie (1842-1899) ^ was born in Nordfjordeide in Nor-
way. In 1859 he entered the University of Christiania, but not until

1868 did this slowly developing youth display marked interest in

mathematics. The writings of J. V. Poncelet and J. Plucker awakened
his genius. In the winter of 1869-1870 he met Felix Klein in Berhn
and they published some papers of joint authorship. The summer of

1870 they were together in Paris where they were in close touch with
C. Jordan and J. G. Darboux. It was then that Lie discovered his

contact-transformation which changes the straight lines of ordinary
space over into spheres. This led him to a general theory of trans-

formation. At the outbreak of the Franco-Prussian war, F. Klein

^ G. A. Miller in Bibliolheca maihemalica, 3. S., Vol. X, 1909-1910, p. 323.
^ F. Engel m Biblinthcca maihemalica, 3. S., Vol. I, 1900, pp. 166-204; M. Nother

in Malh. Annalen, Vol. 53, pp. 1-41.
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left Paris; S. Lie started to travel afoot through France into Italy,

but was arrested as a spy and imprisoned for a month until Darboux
was able to secure his release. In 1872 he was elected professor at the

University of Christiania, with all his time available for research. In
1871-1872 he entered upon the study of partial differential equations
of the first order, and in 1873 he arrived at the theory of transforma-
tion groups, according to which finite continuous groups are applied

to infinitesimal transformations. He considered a very general and
important kind of transformations called contact-transformations,

and their application in the theory of partial differential equations
of the first and second orders. As his group theory and theories of

integration met with no appreciation, he returned in 1876 to the study
of geometry—minimal surfaces, the classification of surfaces according
to the transformation grou^ of their geodetic lines. The starting of

a new journal, the Archiv for Mathematik og Naturvidenskab , in 1876,

enabled him to publish his results promptly. G. H. Halphen's pub-
lications of 1882 on differential invariants induced Lie to direct at-

tention to his own earUer researches and their greater generality. In

1884 Friedrich Engel was induced by F. Klein and A. Mayer to go to

Christiania to assist Lie in the preparation of a treatise, the Theorie

der Transformationsgruppen, 1888-1893. Lie accepted in 1886 a

professorship at the University of Leipzig. In 1889-1890 over-work

led to insomnia and depression of spirits. While he soon recovered

his power for work, he ever afterwards was over-sensitive and mis-

trustful of his best friends. With the aid of Engel he pubUshed in

1891 a memoir on the theory of infinite continuous transformation

groups. In 1898 he returned to Norway where he died the following

year. Lie's lectures on Differentialgleickungen, given in Leipzig, were

brought out in book form by his pupil, Georg Scheffers, in 189 1. In

1895 F. Klein declared that Lie and H. Poincare were the two most
active mathematical investigators of the day. The following quota-

tion from an article written by Lie in 1895 indicates how his whole

soul was permeated by the group concept: ^ "In this century the

concepts known as substitution and substitution group, transforma-

tion and transformation group, operation and operation group,'

invariant, differential invariant, and differential parameter, appear

continually more clearly as the most important concepts of mathe-

matics. While the curve as the representation of a function of a

single variable has been the most important object of mathematical

investigation for nearly two centuries from Descartes, while on the

other hand, the concept of transformation first appeared in this

century as an expedient in the study of curves and surfaces, there

has gradually developed in the last decades a general theory of trans-

formations whose elements are represented by the transformation

1 Berickle d. Koenigl. Saechs. GeselUchaJt, 1895; translated by G. A. Miller in Am.
Math. Monthly, Vol. Ill, 1896, p. 296.
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itself while the series of transformations, in particular the transforma-

tion groups, constitute the object."

In close association with S. Lie in the advancement of group theory

and its apphcations was Felix Klein (1849- )• He was born at

Diisseldorf in Prussia and secured his doctorate at Bonn in 1868. After

studying in Paris, he became privat-docent at Gottingen in 1871,

professor at Erlangen in 1S72, at the Technical High School in Mu-
nich in 1875, at Leipzig in 1880 and at Gottingen in 1886. He has been
active not only in the advancement of various branches of mathemat-
ics, but also in work of organization. Famous for laying out hnes of

research is his Erlangen paper of 1872, Vergleichende Betrachtungen

ilber neuere geometrische Forschungen. He became member of the com-
mission on the publication of the Encyklopadie der mathematischen

Wissensckaften and editor of the fourth volume on mechanics, also

editor of Mathematische Annalen, 1877, and in 1908 president of the

International Commission on the Teaching of Mathematics. As an
inspiring lecturer on mathematics he has wielded a wide influence

upon German and American students. About 191 2 he was forced by
ill-health to discontinue his lectures at Gottingen, but in 1914 the ex-

citement of the war roused him to activity, much as J. Lagrange was
aroused at the outbreak of the French Revolution, and Klein resumed
lecturing. He has constantly emphasized the importance of both
schools of mathematical thought, namely, the intuitional school, and
the school that rests everything on abstract logic. In his opinion,

"the intuitive grasp and the logical treatment should not exclude,

but should supplement each other."

S. Lie's method of treating differential invariants was further in-

vestigated by K. Zorawski in Acta Math., Vol. XVI, 1892-1893. In
1902 C. N. Haskins determined the number of functionally independ-
ent invariants of any order, while A. R. Forsyth obtained the invariants

for ordinary Euclidean space. Differential parameters have been
investigated by J. Edmund Wright of Bryn Mawr College.^ Lie's

theory of invariants of finite continuous groups was attacked on logi-

cal grounds by E. Study of Bonn, in 1908. The validity of this criti-

cism was partly admitted by F. Engel.

Another method of treating differential invariants, originally due
to E. B. Christoffel, has been called by G. Ricci and T. Levi-Civita
of Padua "covariant derivation," (Mathematische Annalen, Vol. 54,
1901). A third method was introduced by H. Maschke ^ who used a
symbolism similar to that for algebraic invariants.

Henry W. Stager published m igiG A Sylow Factor Table for the first
Twelve Thousand Numbers: For every number up to 1200 the divisors
of the form p{kp+i) are given, where p is a. prime greater than 2 and

1 We are using J. E. Wright's Invariants 0/ Quadratic Differential Forms, 1908,
pp. s-8.

^ Trans. Am. Math. Soc, Vol. i, igco, pp. 197-204.
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^ is a positive integer. These divisors aid in the determination of

the number of Sylow subgroups.

Solvable (H. Weber's " metacyclic ") groups have been studied by
G. Frobenius who proved that every group of composite order that

is not divisible by the square of a prime number must be compound,
and that all these groups are solvable, for the orders of their self-

conjugate subgroups and of their quotient groups cannot be divisible

by the square of a prime number.'- The study of solvable groups has
been pursued also by I^. Sylow, W. Burnside, R. Dedekind (who inves-

tigated what he called the Hamiltonian group), and G. A. Miller who
with Frobenius developed about 1893-1896 elegant methods for prov-
ing the solvability of a given group. In 1895 O. Holder enumerated all

the insolvable groups whose order does not exceed 479. In 1898 G. A.

Miller gave the numbers of all primitive solvable groups whose degree

is .less than 25, also the number of insolvable groups which may be
represented as substitution groups whose degree is less than 12. G. A.

Miller (1899) and Umberto Scarpio (1901) of Verona considered

properties of commutators and commutator subgroups, and proved
that the question of solvabiUty can be decided by means of commuta-
tor subgroups.^ Commutator groups have been studied also by W. B.

Fite and Ernst Wendt. The characteristics of non-abelian groups were
investigated since 1896 by G. Frobenius in Berhn, the characteristics

of abeUan groups having been already employed by J. Lagrange and
P. Dirichlet. Characteristics of solvable groups were studied in

1901 by Frobenius. An enumeration of abstract groups was made in

1901 by R. P. Le Vavasseur of Toulouse. The Hst of intransitive

substitution groups of degree eleven was shown by G. A. Miller and

G. H. Ling in 1901 to include 1492 distinct substitution groups,

which is about 500 more than the number of degree ten. H. L. Rietz

proved that a primitive group of degree n and order g contains more
than gix +1 substitutions of degree less than n, x being the number of

transitive constituents in a maximal subgroup of degree w— i. This

result is closely related to investigations of C. Jordan, A. Bochert,

and E. Maillet on the class of a primitive group.

^

The definition of a group was simplified in 1902 by E. V. Huntington

of Harvard University. He pointed out that the usual definition,

as given for instance in H. Weber's Algebra, contains several redun-

dancies, that only three postulates (four for finite groups) are neces-

sary, the independence of which he established.^ Later discussions of

definitions are due to Huntington and E. H. Moore.

1 See G. A. Miller's "Report of Recent Progress in the Theory of Groups of a

Finite Order" in Bidl. Am. Math. Soc, Vol. 5, 1899, pp. 227-249, which we are

using.
2 G. A. Miller, "Second Report on Recent Progress in the Theory of Groups of

Finite Order" in Bull. Am. Math. Soc, Vol. 9, 1902, p. 108.

' Loc. cit., p. ir8.
• Bull. Am. Math. Soc, Vol. 8, 1902, p. 296.
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L. E. Dickson^ said in 1900: "When a problem has been exhibited

in group phraseology, the possibility of a solution of a certain char-

acter or the exact nature of its inherent difficulties is determined by a

study of the group of the problem. ... As the chemist analyzes

a compound to determine the ultimate elements composing it, so the

group-theorist decomposes the group of a given problem into a chain

of simple groups. . . . Much labor has been expended in the de-

termination of simple groups. For continuous groups of a finite

number of parameters, the problem has been completely solved by
W. Killing and E. J. Cartan (1894), with the result that all such simple

groups, aside from five isolated ones, belong to the systems investi-

gated by Sophus Lie, viz., the general projective group, the pro-

jective group of a linear complex, and the projective group leaving

invariant a non-degenerate surface of the second order. The cor-

responding problem for infinite continuous groups remains to be
solved. With regard to finite simple groups, the problem has been
attacked in two directions. 0. Holder,^ F. N. Cole,^ W. Bumside,*
G. H. Ling, and G. A. Miller have shown that the only simple groups

of composite orders less than 2000 are the previously known simple

groups of orders 60, 168, 360, 504, 660, 1092. On the other hand,
various infinite systems of finite simple groups have been determined.

The cyclic groups of prime orders and the alternating group of n
letters («>4) have long been recognized as simple groups. The other

known systems of finite simple groups have been discovered in the

study of linear groups. Four systems were found by C. Jordan,
{Traitc ties stibsiituiions) in his study of the general linear, the abelian,

and the two hypoabelian groups, the field of reference being the set

of residues of integers with respect to a prime modulus p. Generaliza-

tions may be made by employing the Galois field of order p" (desig-

nated GF Ip"]), composed of the p'^ Galois complexes formed with a
root of a congruence of degree « irreducible modulo p. Groups of

hnear substitutions in a Galois field were studied by E. Betti, E.
Mathieu, and C. Jordan; but the structure of such groups has been
determined only in the past decade. The simplicity of the group of

unary linear fractional substitutions in a Galois field was first proved
by E. H. Moore (Bulletin Am. Math. Soc, Dec, 1893) and shortly

afterward by W. Burnside. The complete generalization of C. Jor-
dan's four systems of simple groups and the determination of three

new triply-infinite systems have been made by the writer" (f. e. by

> See L. E. Dickson in Compte vendu du II. Congr. intern., Paris, igoo. Paris,

It)02, pp. 225, 226.

2 0. Holder proved in Math. Annalen, 1892, that there are only two simple groups
of composite order less than 200, viz., those of order 60 and 168.

' F. N. Cole in Am. Jonr. Math., 1893 found that there could be only three such
groups between orders 200 and 661, viz., of orders 360, 504, 660.

* W. Burnside showed that there was only one simple group of composite order
between 661 and 1092.
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L. E. Dickson in 1896). Aside from the cyclic and alternating groups,

the known sj'stems of finite simple groups have been derived as quo-
tient-groups in the series of composition of certain linear groups.

Miss I. M. Schottenfels of Chicago showed that it is possible to con-

struct two simple groups of the same order.

The determination of the smallest degree (the "class") of any of the

non-identical substitutions of primitive groups which do not include

the alternating group was taken up by C. Jordan and has been called

"Jordan's problem." It was continued by Alfred Bochert of Breslau
,and E. Maillet. Bochert proved in 1892: If a substitution group of

degree n does not include the alternating group and is more than
simply transitive, its class exceeds \n~i, if it is more than doubly
transitive its class exceeds \n — i, and if it is more than triply transi-

tive its class is not less than ^i—i. E. Maillet showed that when
the degree of a primitive group is less than 202 its class cannot be ob-

tained by diminishing the degree by unity unless the degree is a power
of a prime number. In 1900 W. Burnside proved that every transitive

permutation group in p symbols, p being prime, is either solvable

or doubly transitive.

As regards Unear groups, G. A. Miller wrote in 1899 as follows:

"The linear groups are of extreme importance on account of their

numerous direct applications. Every group of a finite order can
clearly be represented in many ways as a linear substitution group
since the ordinary substitution (permutation) groups are merely

very special cases of the linear groups. The general question of rep-

resenting such a group with the least number of variables seems to

be far from a complete solution. It is closely related to that of de-

termining all the linear groups of a finite order that can be represented

with a small number of variables. Klein was the first to determine all

the finite binary groups (in 1875) while the ternary ones were con-

sidered independently by C. Jordan (1880) and H. Valentiner (1889).

The latter discovered the important group of order 360 which was
omitted by Jordan and has recently been proved (by A. Wiman of

Lund) simply isomorphic to the alternating group of degree 6. H.
Maschke has considered many quaternary groups and established,

in particular, a complete form system of the quaternary group of

51840 linear substitutions." Heinrich Maschke (1853-1908) was born

in Breslau, studied in Berlin under K. Weierstrass, E. E. Kummer,
and L. Kronecker, later in Gottingen under H. A. Schwarz, J. B.

Listing, and F. Klein. He entered upon the study of group theory

under Klein. In 1891 he came to the United States, worked a year

with the Weston Electric Co., then accepted a place at the University

of Chicago.

Linear groups of finite order, first treated by Felix Klein, were

later used by^him in the extension of the Galois theory of algebraic

equations, as seen in his Ikosaeder. As stated above, Klein's de-
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termination of the linear groups in two variables was followed by
groups in three variables, developed by C. Jordan and H. Valentiner

(1889), and by groups of any number of variables, treated by C.

Jordan. Special linear groups in four variables were discussed by E.

Goursat (1889) and G. Bagnera of Palermo (1905). The complete

determination of the groups in four variables, aside from intransitive

and monomial types, was carried through by H. F. Blichfeldt of Le-

land Stanford University.^ Says Blichfeldt: "There are, in the main,

four distinct principles employed in the determination of the groups

in 2, 3 or 4 variables: (a) the original geometrical process of Klein . . .
;

(b) the processes leading to a diophantine equation, which may be

approached analytically (C. Jordan . . .), or geometrically (H. Valen-

tiner, G. Bagnera, H. H. Mitchell); (c) a process involving the relative

geometrical properties of transformations which represent ' homologies

'

and Uke forms (H. Valentiner, G. Bagnera, H. H. Mitchell ...
;
(d)

a process developed from the properties of the multipliers of the trans-

formations, which are roots of unity (H. F. Blichfeldt). A new prin-

ciple has been added recently by L. Bieberbach, though it had already

been used by H. Valentiner in a certain form. . . . Independent of

these principles stands the theory of group characteristics, of which
G. Frobenius is the discoverer."

There is a marked difference between finite groups of even and of

odd order.^ As W. Bumside points out, the latter admit no self-

inverse irreducible representation, except the identical one; all irre-

ducible groups of odd order in 3, 5 or 7 symbols are soluble. G. A.
Miller proved in 1901 that no group of odd order with a conjugate
set of operations containing fewer than 50 members could be simple.

W. Burnside proved in 1901 that transitive groups of odd order whose
degree is less than 100 are soluble. H. L. Rietz in 1904 extended this

last result to groups whose degrees are less than 243. W. Burnside
has shown that the number of prime factors in the order of a simple
group of odd order cannot be less than 7 and that 40,000 is a lower
limit for the order of a group of odd degree, if simple. These results

suggest that, perhaps, simple groups of odd order do not exist. Recent
researches on groups, mainly abstract groups, are due to L. E. Dickson,
Le Vavasseur, M. Potron, L. I. Neikirk, G. Frobenius, H. Hilton,
A. Wiman, J. A. de Seguier, H. W. Kuhn, A. Loewy, H. F. Bhchfeldt,^

W. A. Manning, and many others. Extensive researches on abstract
groups have been carried on by G. A. Miller of the University of

Illinois. In 1914 he showed, for instance, that a non-abelian group
can have an abelian group of isomorphisms by proving the existence

1 We are using H. F. Blichfeldt's Finile Collineation Groups, Chicago, 1917,
pp. 174-177.

2 W. Burnside, Theory of Groups of Finile Order, 2. Ed., Cambridge, 1911, p. 503.
» Consult G. A. Miller's "Third Report on Recent Progress in the Theory of

Groups of Finite Order" in Bull. Am. Math. Soc, Vol. 14, 1907, p. 124.
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01 this relation in a group of order 64. He proved the existence of a
group of order p^, p being any prime number whatever, whose group
of isomorphisms has an order which is a power ^ of p. He proved also

the existence of a group G of order 128 which admits of an outer
isomorphism which changes each conjugate set of operations into

itself. Among other results due to G. A. Miller are these: The number
of independent generators of every prime power group is an invariant

of the group; a necessary -and sufficient condition that a solvable

group is a direct product of a Sylow subgroup and anotjier subgroup
is that its group of inner isomorphisms involves the corresponding
Sylow subgroup as a factor of a direct product, whenever it involves

such a subgroup.^

A work which embodied modem researches in algebra was the
Lehrbuch der Algebra, issued by H. Weber in 1895-1896 in two volumes,
and in three volumes in the revised edition of i8g8 and 1899. Hein-
rich Weber (1842-1913) was born in Heidelberg and studied at
Heidelberg, Leipzig, and Konigsberg. Since 1869 he was successively

professor at Heidelberg, Konigsberg, Berlin, Marburg, Gottingen
and (since 1895) at Strassburg. He was editor of Riemann's Collected

Works (1876; 2. ed. 1892). He carried on researches in algebra, theory
of numbers, theory of functions, mechanics and mathematical physics.

In 1911 he mourned the loss of a gifted daughter who had trans-

lated Poincare's Valeur de la science and other French books into

German.
The symmetric functions of the sums of powers of the roots of an

equation, studied by I. Newton and E. Waring, was considered more
recently by K. F. Gauss, A. Cayley, J. J. Sylvester, and F. Brioschi.

Cayley gives rules for the "weight" and "order" of symmetric func-

tions.

The theory of elimination was greatly advanced by J. J. Sylvester,

A. Cayley, G. Salmon, C. G. J. Jacobi, L. O. Hesse, A. L. Cauchy,
E. Brioschi, and P. Gordan. Sylvester gave the dialytic method
{Philosophical Magazine, 1840), and in 1852 established a theorem
relating to the expression of an eliminant as a determinant. A. Cayley
made a new statement of Bezout's method of elimination and estab-

lished a general theory of elimination (1852).

Contributions to the theory of equations, based on Descartes' rule

of signs and especially on its application to infinite series were made
by Edmond Laguerre (1834-1886), professor in the College de France

in Paris. An upper limit for the number of real roots of a polynomial

with real coefficients, fix), in an interval {0, a) results from the ap-

plication of the rule of signs to a product A (a;) =/i (a;) f{x) developed

in a power series which converges for
|

x \<a, but diverges for x=a.

In particular, he proved that if z in e^^f{x) is taken sufficiently large,

1 Bull. Am. Math. Soc, Vol. 20, 1914, pp. 310, 311.

'Ibid, Vol. 18, 191 2, p. 440.
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then the exact number of positive roots is ascertainable from the

variations of sign in the series. Michel Fekete and Georg Polya,

both of Budapest, use /(a;) /(i— a;)" for the same purpose.'

The theory of equations commanded the attention of Leopold
Kronecker (1823-1891). He was born in Liegnitz near Breslau,

studied at the gymnasium of his native town under Kummer, later

in Berlin under C. G. J. Jacobi, J. Steiner, and P. Dirichlet, then in

Breslau again under E. E. Kummer. Though for eleven years after

1844 engaged in business and the care of his estates, he did not neglect

mathematics, and his fame grew apace. In 1855 he went to Berlin

where he began to lecture at the University in 1861. He was a very
stimulating and interesting lecturer. Kummer, K. Weierstrass, and
L. Kronecker constitute the triumvirate of the second mathematical
school in Berlin. This school emphasized severe rigor in demonstra-
tions. L. Kronecker dwelt intensely upon arithmetization which
repressed as far as possible all space representations and rested solely

upon the concept of number, particularly the positive integer. He
displayed manysided talent and extraordinary ability to penetrate

new fields of thought. "But," says G. Frobenius," "conspicuous as

his achievements are in the different fields of number research, he
does not quite reach up to A. L. Cauchy and C. G. J. Jacobi in analy-

sis, nor to B. Riemann and Weierstrass in function-theory, nor to

Dirichlet and Kummer in nmnber-theory." Kronecker's papers on
algebra, the theory of equations and elliptic functions proved to be
difiicult reading. A more complete and simplified exposition of his

results was given by R. Dedekind and H. Weber. "Among the finest

of Kronecker's achievements," says Fine,^ "were the connections

which he established among the various disciplines in which he worked:
notably that between the theory of quadratic forms of negative deter-

minant and elliptic functions, through the singular moduli which give

rise to the complex multiplication of the elliptic functions, and that

between the theory of numbers and algebra, by his arithmetical

theory of the algebraic equation." He held to the view that the theory
of fractional and irrational numbers could be built upon the integral

numbers alone. "Die ganze zahl," said he, "schuf der liebe Gott,
alles Uebrige ist Menschenwerk." Later he even denied the existence

of irrational numbers. He once paradoxically remarked to Linde-
mann: "Of what use is your beautiful research on the number tf?

Why cogitate over such problems, when really there are no irrational

numbers whatever? "

In 1890-1891 L. Kronecker developed a theory of the algebraic equa-
tion with numerical coefficients, which he did not live to publish.
From notes of Kronecker's lectures, H. B. Fine of Princeton prepared

' Bull. Am.. Malh. Soc, Vol. 20, 1913, p. 20.

' G. Frobenius, Ged'dchlnissrede aiif Leopold Kronecker, Berlin, 1893, p. i.

' Bull. Am. Malh. Soc, Vol. I, 1892, p. 175.
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an address in 1913 giving Kronecker's unpublished results.^ "All
who have read Kronecker's later writings," says Fine, "are familiar
with his contention that the theory of the algebraic equation in its

final form must be based solely on the rational integer, algebraic
numbers being excluded and only such relations and operations being
admitted as can be expressed in finite terms by means of rational
numbers and therefore ultimately by means of integers. These lec-

tures of 1890-91 are chiefly concerned with the development of such
a theory, and in particular with the proof of two theorems which
therein take the place of the fundamental theorem of algebra as
commonly stated."

Solution of Numerical Equations

Jacques Charles Franqois Sturm (1803-1855), a native of Geneva,
Switzerland, and the successor of Poisson in the chair of mechanics
at the Sorbonne, published in 1829 his celebrated theorem determining
the number and situation of real roots of an equation comprised
between given limits. De Morgan has said that this theorem " is the
complete theoretical solution of a difficulty upon which energies of
every order have been employed since the time of Descartes." Sturm
explains in that article that he enjoyed the privilege of reading Four-
ier's researches while they were still in manuscript and that his own
discovery was the result of the close study of the principles set forth

by Fourier. In 1829 Sturm published no proof. Proofs were given
in 1830 by Andreas von Ettinghausen (1796-1878) of Vienna, in

1832 by Charles Choquet et Mathias Mayer in their Algebre, and in

1835 by Sturm himself. According to J. M. C. Duhamel, Sturm's
discovery was not the result of observation, but of a well-ordered

hne of thought as to the kind of function that would meet the re-

quirements. According to J. J. Sylvester, the theorem "stared him
(Sturm) in the face in the midst of some mechanical investigations

connected with the motion of compound pendulums." Duhamel and
Sylvester both state that they received their information from Sturm
directly. Yet their statements do not agree. Perhaps both statements

are correct, but represent different stages in the evolution of the dis-

covery in Sturm's mind.^

By the theorem of Sturm one can ascertain the number of complex
roots, but not their location. That limitation was removed in a iDril-

liant research by another great Frenchman, A. L. Cauchy. He dis-

covered in 183 1 a general theorem which reveals the number of roots,

whether real or complex, which lie within a given contour. This
theorem makes heavier demands upon the mathematical attainments

' Bull. Am. Math. Soc, Vol. 20, igui, p. 339.
2 Consult also M. B6cher, "The published and unpublished Work of Charles

Sturm on algebraic and differential Equations" in Bull. Am. Math. Soc, Vol. 18,

1912, pp. 1-18.
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of the reader, and for that reason has not the celebrity of Sturm's

theorem. But it enHsted the lively interest of men like Sturm, J.

Liouville, and F. Moigno.
A remarkable article was published in 1826 by Germinal Dandelin

(1794-1847) in the memoirs of the Academy of Sciences of Brussels.

He gave the conditions under which the Newton-Raphson method of

approximation can be used with security. In this part of his research

he was anticipated by both Mourraille and J. Fourier. In another

part of his paper (the second supplement) he is more fortunate; there

he describes a new and masterly device for approximating to the roots

of an equation, which constitutes an anticipation of the famous
method of C. H. Graffe. We must add here that the fundamental
idea of Graffe's method is found even earlier, in the Miscellanea

analytica, 1762, of Edward Waring. If a root lies between a and h,

a~b<i, and a is on the convex side of the curve, then Dandelin
puts x=a+y and transforms the equation into one whose root y is

small. He then multiplies f{y) by /( — y) and obtains, upon writing

y^=z, an equation of the same degree as the original one, but whose
roots are the squares of the roots of the equation /(y) =0. He remarks
that this transformation may be repeated, so as to get the fourth,

eighth, and higher powers, whereby the moduli of the powers of the

roots diverge sufficiently to make the transformed equation separable

into as-many polygons as there are roots of distinct moduli. He ex-

plains how the real and imaginary roots can be obtained. Dandelin's

research had the misfortune of being buried in the ponderous tomes
of a royal academy. Only accidentally did we come upon this antici-

pation of the method of C. H. Graffe. Later the Academy of Sciences

of Berlin offered a prize for the invention of a practical method of

computing imaginary roots. The prize was awarded to Carl Heinrich'
Grafife (1799-1873), professor of mathematics in Zurich, for his paper,

published in 1837 in Zurich, entitled. Die Aufl'dsung der hdheren
numerischen Gleichungen. This contains the famous " Graffe method,"
to which reference has been made. Graffe proceeds from the same
principle as did Moritz Abraham Stern (1807-1894), of Gottingen in

the method of recurrent series, and as did Dandelin. By the process
of involution to higher and higher powers, the smaller roots are caused
to vanish in comparison to the larger. The law by which the new
equations are constructed is exceedingly simple. If, for example,
the coefficient of the fourth term of the given equation is as, then
the corresponding coefficient of the first transformed equation is

al—2a2ai+2aia-„—2ai. In the computation of the new coefficients,

Graffe uses logarithms. By this remarkable method all the roots,

both real and imaginary, are found simultaneously, without the
necessity of determining beforehand the number of real roots and
the location of each root. The discussion of the case of equal imaginary
roots, omitted by Graffe, was taken up by the astronomer J. F. Encke
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in 184 1. A simplified exposition of the Dandelin-Graffe method was
given by Emmanuel Carvallo in 1896; it resembles in some parts that

of Dandelin, although Carvallo had not seen Dandelin's paper. For
didactic purposes, an able explanation is given in Gustav Bauer's
Vorlesungen iiber Algebra, 1903.
In i860 E. Fiirstenau expressed any definite real root of an alge-

braic equation with numerical or Hteral coefficients, in terms of its

coefficients, through the aid of infinite determinants, a kind of de-

terminant then used for the first time. In 1867 he extended his results

to imaginary roots. The approximation is made to depend upon the

fact used by Daniel Bernoulli, L. Euler, J. Fourier, M. A. Stern, G.
Dandelin, and C. H. Graffe, that high powers of the smaller roots are

negligible in comparison with high powers of the greater roots. E.

Fiirstenau's process was elaborated by E. Schroder (1870), Siegmund
Giinther, (1874), and Hans Naegelsbach (1876).

Worthy of notice is "Weddle's method" of solving numerical

equations, devised by Thomas Weddle (1817-1853) of Newcastle in

England, in 1842. It is kindred to that of W. G. Homer. The suc-

cessive approximations are effected by multiplications instead of

additions. The method is advantageous when the degree of the

equation is high and some of the terms are missing. It has received

some attention in Italy and Germany. In 1851 Simon Spitzer ex-

tended it to the computation of complex roots.

The solution of equations by infinite series which was a favorite

subject of research during the eighteenth century (Thomas Simpson,

L. Euler, J. Lagrange, and others), received considerable attention

during the nineteenth. Among the early workers were C. G. J.

Jacobi (1830), W. S. B. Woolhouse (1868), O. Schlomilch (1849),

but none of their devices were satisfactory to the practical computer.

Later writers aimed at the simultaneous calculation of all the roots

by infinite series. This was achieved for a three-term equation by
R. Dietrich in 1883 and by P. Nekrasoff in 1887. For the general

equation it was accompHshed in 1895 by Emory McClintock (1840-

1916), an actuary in New York, who was president of the American
Mathematical Society from 1890 to 1894. He used a series derived

by his Calculus of Enlargement, but which may be derived also by
applying "Lagrange's series." A prominent part in McClintock's

treatment is his theory of "dominant" coefficients, which theory lacks

precision, inasmuch as no criterion is given to ascertain whether a

coefficient is dominant or not, which is both necessary and sufficient.

Preston A. Lambert of Lehigh University used Maclaurin's series in

1903; in 1908 he paid special attention to convergency conditions,

pointing out that the conditions for a t-term equation can be set up
when those of a {t— i)-term equation are known. In Italy Lambert's

papers were studied in 1906 by C. Rossi and in 1907 by Alfredo

Capelli (1855-1910) of Naples. These recent researches of American
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and Italian mathematicians have placed the determination of real

and imaginary roots of numerical equations by the method of infinite

series within reach of the practical computer. The methods them-
selves indicate the number of real and imaginary roots, so that one
can dispense with the application of Sturm's theorem here just as

easily as one can in the Dandelin-Graffe method. Considerable at-

tention has been given to the solution of special types—trinomial

equations—by G. Dandelin (1826), K. F. Gauss (1840, 1843), J.

Bellavitis (1846), Lord John M'Laren (1890). The last three used

logarithms of sums and differences, which were first suggested by
G. Z. Leonelh in 1802 and are often called "Gaussian logarithms."

The extension of the Gaussian method to quadrinomials was under-

taken by S. Gundelfinger in 1884 and 1885, Carl Faerber in 1889, and
Alfred Wiener in 1886. The extension of the Gaussian method to

any equation was taken up by R. Mehmke, professor in Darmstadt,
who published in 1889 a logarithmic-graphic method of solving nu-

merical equations, and in 1891 a more nearly arithmetical method of

solution by logarithms. The method is essentially a mixture of the

Newton-Raphson method and the regula falsi, as regards its theoretical

basis. Well known is R. Mehmke's article on methods of computation
in the Encyklop'ddie der mathematischen Wissenschaften, Vol. i, p. 938.

Magic Squares and Combinatory Analysis

The latter part of the nineteenth century witnesses a revival of

interest in methods of constructing magic squares. Chief among the
writers on this subject are J. Horner (1871), S. M. Drach (1873),
Th. Harmuth (1881), W. W. R. Ball (1893); E. Maillet (1894), E. M.
Laquiere (1880), E. Lucas (1882), E. McClintock (1897).! Magic
squares of the "diabolic" type, as Lucas calls them, are designated
"pandiagonal" by McClintock. These and similar forms are called

"Nasik squares" by A. H. Frost. An interesting book, Magic Squares
and Cubes, Chicago, 1908, was prepared by the American electrical

engineer, W. S. Andrews. Still more recent is the Combinatory Anal-
ysis, Vol. I, Cambridge, 1915, Vol. II, i9r6, by P. A. MacMahon,
which touches the subject of magic squares. Says MacMahon: "In
fact, the whole subject of Magic Squares and connected arrange-
ments of numbers appears at first sight to occupy a position which is

completely isolated from other departments of pure mathematics.
The object of Chapters II and III is to establish connecting links

where none previously existed. This is accomplished by selecting

a certain differential operation and a certain algebraical function,"

I, p. VIII.

"The 'Probleme des Rencontres' . . . can be discussed in the same
manner. The reader will be familiar with the old question of the

1 Encychpidic des sciences malMm. T. I, Vol. 2, igo6, pp. 67-75.
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letters and envelopes. A given number of letters are written to dif-

ferent persons and the envelopes correctly addressed but the letters

are placed at random in the envelopes. The question is to find the
probability that not one letter is put into the right envelope. The
enumeration connected with this probability question is the first

step that must be taken in the solution of the famous problem of the
Latin Square," I, p. IX.
The problem of the Latin Square: "The question is to place n dif-

ferent letters a, b, c, . . . in each row of a square of n^ compartments
in such wise that, one letter being in each compartment, each column
involves the whole of the letters. The number of arrangements is

required. The question is famous because, from the time of Euler
to that of Cayley inclusive, its solution was regarded as being beyond
the powers of mathematical analysis. It is solved without difiSculty

by the method of differential operators of which we are speaking.
In fact it is one of the simplest examples of the method which is shewn
to be capable of solving questions of a much more recondite charac-
ter." 1

The extension of the principle of magic squares of the plane to three-

dimensional space has commanded the attention of many. Most
successful in this field were the Austrian Jesuit Adam Adamandus
Kochansky (1686), the Frenchman Josef Sauveur (17 10), the Germans
Th. Hugel, (1859) and Hermann ScheflSer (1882).

In Vol. II, Major MacMahon gives a remarkable group of identities

discovered by S. Ramanujan of Cambridge which have applications

in the partitions of numbers, but have not yet been established by
rigorous demonstration.

Analysis

Under this head we find it convenient to consider the subjects of

the differential and integral calculus, the calculus of variations, in-

finite series, probability, differential equations and integral equations.

An early representative of the critical and philosophical school of

mathematicians of the nineteenth century was Bernard Bolzano
(1781-1848), professor of the philosophy of religion at Prague. In

1816 he gave a proof of the binomial formula and exhibited clear

notions on the convergence of series. He held advanced views on
variables, continuity and limits. He was a forerunner of G. Cantor.

Noteworthy is his posthumous tract, Paradoxien des Unendlichen

(Preface, 1850) , edited by his pupil, Fr. Pfihonsky. Bolzano's writings

were overlooked by mathematicians until H. Hankel called attention

to them. "He has everything," says Hankel, "that can place him
in this respect [notions on infinite series] on the same level with Cauchy,

only not the art peculiar to the French of refining their ideas and
communicating them in the most appropriate and taking manner.

' P. A. MacMahon, Comhinatoty Analysis, Vol. I, Cambridge, 1915, p. ix.
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So it came about that Bolzano remained unknown and was soon for-

gotten." H. A. Schwarz in 1872 looked upon Bolzano as the inventor

of a line of reasoning further developed by K. Weierstrass. In 1881

O. Stolz declared that all of Bolzano's writings are remarkable

"inasmuch as they start with an unbiassed and acute criticism of the

contributions of the older literature."
^

A reformer of our science who was eminently successful in reaching

the ear of his contemporaries was Cauchy.
Augustin-Louis Cauchy^ (1789-1857) was bom in Paris, and re-

ceived his early education from his father. J. Lagrange and P. S.

Laplace, with whom the father came in frequent contact, foretold

the future greatness of the young boy. At the ficole Centrale du
Pantheon he excelled in ancient classical studies. In 1805 he entered

the Ecole Polytechnique, and two years later the Ecole des Ponts et

Chaussees. Cauchy left for Cherbourg in 18 10, in the capacity of

engineer. Laplace's Mecanique Celeste and Lagrange's Fonctions

Analytiques were among his book companions there. Considerations

of health induced him to return to Paris after three years. Yielding

to the persuasions of Lagrange and Laplace, he renounced engineering

in favor of pure science. We find him next holding a professorship at

the Ecole Polytechnique. On the expulsion of Charles X, and the

accession to the throne of Louis Philippe in 1830, Cauchy, being

exceedingly conscientious, found himself unable to take the oath de-

manded of him. Being, in consequence, deprived of his positions, he
went into voluntary exile. At Fribourg in Switzerland, Cauchy re-

sumed his studies, and in 1831 was induced by the king of Piedmont
to accept the chair of mathematical physics, especially created for him
at the University of Turin. In 1833 he obeyed the call of his exiled

king, Charles X, to undertake the education of a grandson, the Duke
of Bordeaux. This gave Cauchy an opportunity to visit various parts

of Europe, and to learn how extensively his works were being read.

Charles X bestowed upon him the title of Baron. On his return to

Paris in 1838, a chair in the College de France was offered to him,
but the oath demanded of him prevented his acceptance. He was
nominated member of the Bureau of Longitude, but declared ineligible

by the ruling power. During the political events of 1848 the oath was
suspended, and Cauchy at last became professor at the Polytechnic
School. On the establishment of the second empire, the oath was re-

instated, but Cauchy and D. F. J. Arago were exempt from it. Cauchy
was a man of great piety, and in two of his publications staunchly de-

fended the Jesuits.

Cauchy was a prolific and profound mathematician. By a prompt
pubhcation of his results, and the preparation of standard text-books,

he exercised a more immediate and beneficial influence upon the great

1 Consult H. Bergman, Das Philosophische Werk Bernard Bohanos, Halle, 1909.
^ C. A. Valson, La Vie et ks Iravaux du Baron Cauchy, Paris, 1868.
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mass of mathematicians than any contemporary writer. He was one
of the leaders in infusing rigor into analysis. His researches extended
over the field of series, of imaginaries, theory of numbers, differential

equations, theory of substitutions, theory of functions, determinants,

mathematical astronomy, light, elasticity, etc.,—covering pretty
much the whole realm of mathematics, pure and applied.

Encouraged by P. S. Laplace and S. D. Poisson, Cauchy published in

1821 his Cours d'Analyse de I'Ecole Royale Polytechnique, a work of

great merit. Had it been studied more diligently by writers of text-

books, many a lax and loose method of analysis long prevalent in ele-

mentary text-books would have been discarded half a century earlier.

With him begins the process of "arithmetization." He made the

first serious attempt to give a rigorous proof of Taylor's theorem.
He greatly improved the exposition of fundamental principles of the

differential calculus by his mode of considering limits and his new
theory on the continuity of functions. Before him, the limit concept
had been emphasized in France by D'Alembert, in England by I.

Newton, J. Jurin, B. Robins, and C. Maclaurin. The method of

Cauchy was accepted with favor by J. M. C. Duhamel, G. J. Houel,
and others. In England special attention to the clear exposition of

fundamental principles was given by A. De Morgan Cauchy re-

introduced the concept of an integral of a function as the limit of a
sum, a concept originally due to G. W. Leibniz, but for a time dis-

placed by L. Euler's integral defined as the result of reversing differen-

tiation.

Calculus of Variations

A. L. Cauchy made some researches on the calculus of variations.

This subject had long remained in its essential principles the same as

when it came from the hands of J. Lagrange. More recent studies per-

tain to the variation of a double integral when the limits are also vari-

able, and to variations of multiple integrals in general. Memoirs were
pubhshed by K. F. Gauss in 1829, S. D. Poisson in 1831, and Michel

Ostrogradski (1801-1861) of St. Petersburg in 1834, without, however,

determining in a general manner the number and form of the equations

which must subsist at the limits in case of a double or triple integral.

In 1837 C. G. J. Jacobi published a memoir, showing that the difficult

integrations demanded by the discussion of the second variation, by
which the existence of a maximum or minimum can be ascertained,

are included in the integrations of the first variation, and thus are

superfluous. This important theorem, presented with great brevity

by C. G. J. Jacobi, was elucidated and extended by V. A. Lebesgue,

C. E. Delaunay, Friedrich Eisenlohr (1831-1904), Simon Spitzer (1826-

1887) of Vienna, L. O. Hesse, and R. F. A. Clebsch. A memoir by
Pierre Frederic Sarrus (1798-1861) of the University of Strasbourg on

the question of determining the limiting equations which must be com-
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bined with the indefinite equations in order to determine completely

the maxima and minima of multiple integrals, was awarded a prize by
the French Academy in 1845, honorable mention being made of a

paper by C. E. Delaunay. P. F. Sarrus's method was simplified by

A. L. Cauchy. In 1852 Gaspare Mainardi (1800-1879) of Pavia at-

tempted to exhibit a new method of discriminating maxima and

minima, and extended C. G. J. Jacobi's theorem to double integrals.

Mainardi and F. Brioschi showed the value of determinants in ex-

hibiting the terms of the second variation. In 1861 Isaac Todhunter

(1820-1884) of St. John's College, Cambridge, published his valuable

work on the History of the Progress of the Calculus of Variations, which

contains researches of his own. In 1866 he published a most important

research, developing the theory of discontinuous solutions (discussed

in particular cases by A. M. Legendre), and doing for this subject what
P. F. Sarrus had done for multiple integrals.

The following are the more important older authors of systematic

treatises on the calculus of variations, and the dates of publication:

Robert Woodhouse, Fellow of Caius College, Cambridge, 1810;

Richard Abbatt in London, 1837; John Hewitt Jellett (1817-1888),

once Provost of Trinity College, Dublin, 1850; Georg Wilhelm Strauch

(1811-1868), of Aargau in Switzerland, 1849; Franjois Moigno (1804-

1884) of Paris, and Lorentz Leonard Lindelof (1827-1908) of the

University of Helsingfors, in 1861; Lewis Buffett Carll in 1881.

Carll (1844-1918), was a blind mathematician, graduated at Co-
lumbia College in 1870 and in 1891-189 2 was assistant in mathematics
there.

That, of all plane curves of given length, the circle includes a maxi-
mum area, and of all closed surfaces of given area, the sphere encloses

a maximum volume, are theorems considered by Archimedes and
Zenodorus, but not proved rigorously for two thousand years until

K. Weierstrass and H. A. Schwarz. Jakob Steiner thought he had
proved the theorem for the circle. On a closed plane curve different

from a circle four non-cyclic points can be selected. The quadrilateral

obtained by successively joining the sides has its area increased when
it is so deformed (the lunes being kept rigid) that its vertices are

cyclic. Hence the total area is increased, and the circle has the maxi-
mum area. Oskar Perron of Tubingen pointed out in 1913 by an ex-

ample the fallacy of this proof: Let us "prove" that i is the largest of

all positive integers. No such integer larger than i can be the maxi-
mum, for the reason that its square is larger than itself. Hence, i

must be the maximum. Steiner's "proof" does not prove that among
all closed plane curves of given length there exists one whose area is a
maximum. '^ K. Weierstrass gave a simple general existence theorem
applicable to the extremes of continuous (stetige) functions. The max-
imal property of the sphere was first proved rigorously in 1884 by

' See W. Blaschke in Jahresb. d. deutsch. Math. Vereinig., Vol. 24, 1915, p. 195.
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H. A. Schwarz by the aid of results reached by K. Weierstrass in the
calculus of variations. Another proof, based on geometrical theorems,
was given in 1901 by Hermann Minkowski.
The subject of minimal surfaces, which had received the attention of

J. Lagrange, A. M. Legendre, K. F. Gauss and G. Monge, in later

time commanded the special attention of H. A. Schwarz. The blind
physicist of the University of Gand, Joseph Plateau (1801-1883), in

1873 described a way of presenting these surfaces to the eye by means
of soap bubbles made of glycerine water. Soap bubbles tend to be-
come as thick as possible at every point of their surface, hence to make
their surfaces as small as possible. More recent papers on minimal
surfaces are by Harris Hancock of the University of Cincinnati.

Ernst Pascal of the University of Pavia expressed himself in 1897
on the calculus of variations as follows:^ "It may be said that this de-

velopment [the finding of the differential equatio-.s which the unknown
functions in a problem must satisfy] closes with J. Lagrange, for the
later analysts turned their attention chiefly to the other, more dif-

ficult problems of this calculus. The problem is finally disposed of,

if one considers the simplicity of the formulas which arise; wholly dif-

ferent is this matter, if one considers the subject from the standpoint
of rigor of derivation of the formulas and the extension of the domain
of the problems to which these formulas are applicable. This last

is what has been done for some years. It has been found necessary to

prove certain theorems which underlie those formulas and which the

first workers looked upon as axioms, v/hich they are not." This new
field was first entered by I. Todhunter, M. Ostrogradski, C. G. J.

Jacobi, J. Bertrand, P. du Bois-Reymond, G. Erdmann, R. F. A.
Clebsch, but the incisive researches which mark a turning-point in the

history of the subject are due to K. Weierstrass. As an illustration

of Weierstrass's method of communicatiing many of his mathematical
results to others, we quote the following from O. Bolza: ^ "Unfortu-
nately they [results on the calculus of variations] were given by Weier-

strass only in his lectures [since 1872], and thus became known only

very slowly to the general mathematical public. . . . Weierstrass's

results and methods may at present be considered as generally known,
partly through dissertations and other publications of his pupils,

partly through A. Kneser's Lehrhuch der Variationsrechnung (Braun-

schweig, 1900), partly through sets of notes ('Ausarbeitungen') of

which a great number are in circulation and copies of which are ac-

cessible to every one in the library of the Mathematische Verein

at Berlin, and in the Mathematische Lesezimmer at Gottingen.

Under these circumstances I have not hesitated to make use of Weier-

strass's lectures just as if they had been published in print." Weier-

strass applied modern requirements of rigor to the calculus of varia-

1 E. Pascal, Die Variationsrechnung, fibers, v. A. Schepp, Leipzig, 1899; p. 5

2 O. Bolza, Lectures on the Calculus of Variations, Chicago, 1904, pp. ix, xi.
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tions in the study of the first and second variation. Not only did he

give rigorous proofs for the first three necessary conditions and for the

sufficiency of these conditions for the so-called "weak" extremum,

but he also extended the theory of the first and second variation to

the case where the curves under consideration are given in parameter

representation. He discovered the fourth necessary condition and a

sufficiency proof for a so-called "strong" extremum, which gave for

the first time a complete solution by means of a new method, based on

the so-called " Weierstrass's construction." '- Under the stimulus of

Weierstrass, new developments, were made by A. Kneser, then of

Dorpat, whose theory is based on the extension of certain theorems

on geodesies to extremals in general, and by David Hilbert of Got-

tingen, who gave an "a priori existence proof for an extremum of a

definite integral—a discovery of far-reaching importance, not only for

the Calculus of Variations, but also for the theory of differential

equations and the theory of functions " (O. Bolza). In 190Q Bolza

published an enlarged German edition of his calculus of variations,

including the results of Gustav v. Escherich of Vienna, the Hilbert

method of proving Lagrange's rule of multipliers (multiplikator-regel),

and the J. W. Lindeberg of Helsingfors treatment of the isoperimetric

problem. About the same time appeared J. Hadamard's Calcul des

variations recuellies par M. Frcchet, Paris, igio. Jacques Hadamard
(1865- ) was born at Versailles, is editor of the Annates scientifiques

de Vccole normale superieure. ^In 1912 he was appointed professor of

mathematical analysis at the Ecole Polytechnique of Paris as successor

to Camille Jordan. In the above mentioned book he regards the cal-

culus of variations as a part of a new and broader "functional calculus,"

along the lines followed also by V. Volterra in his functions of fines.

This functional calculus was initiated by Maurice Frechet of the Uni-

versity of Poitiers in France. The authors include also researches by
W. F. Osgood. Other prominent researches on the calculus of varia-

tions are due to J. G. Darboixx, E. Goursat, E. Zermelo, H. A. Schwarz,

H. Hahn, and to the Americans H. Hancock, G. A. Bhss, E. R. Hedrick,

A. L. Underbill, Max Mason. Bfiss and Mason systematically ex-

tended the Weierstrassian theory of the calculus of variations to

problems in space.

In 1858 David Bierens de Haan (1822-1895) of Leiden published his

Tables d'Integrales Vefinies. A revision and the consideration of the

underlying theory appeared in 1862. It contained 8339 formulas.

A critical examination of the latter, made by E. W. Sheldon in 1912,

showed that it was "remarkably free from error when one imposes
proper limitations upon constants and functions, not stated by Haan.
The lectures on definite integrals, deUvered by P. G. L. Dirichlet

in 1858, were elaborated into a standard work in 1871 by Gustav
Ferdinand Meyer of Munich.

' This summary is taken from O. Bolza, op. cit., Preface.
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Convergence of Series

The history of mfinite series illustrates vividly the salient feature
of the new era which analysis entered upon during the first quarter
of this century. I. Newton and G. W. Leibniz felt the necessity of

inquiring into the convergence of infinite series, but they had no
proper criteria, excepting the test advanced by Leibniz for alternating
series. By L. Euler and his contemporaries the formal treatment of

series was greatly extended, while the necessity for determining the
convergence was generally lost sight of. L. Euler reached some very
pretty results on infinite series, now well known, and also some very
absurd results, now quite forgotten. The faults of his time found
their culmination in the Combinatorial School in Germany, which
has now passed into oblivion. This combinatorial school was founded
by Carl Friedrich Hindenburg (i 741-1808) of Leipzig whose pupils

filled many of the German University chairs during the first decennium
of the nineteenth century. The first important and strictly rigorous

investigation of infinite series was made by K. F. Gauss in connection

with the hypergeometric series. This series, thus named by J. WalUs,
had been treated by L. Euler in 1769 and 1778 from the triple stand-

point of a power-series, of the integral of a certain linear difierential

equation of the second order, and of a definite integral. The criterion

dsveloped by K. F. Gauss settles the question of convergence of the

hypergeometric series in every case which it is intended to cover, and
thus bears the stamp of generality so characteristic of Gauss's writings.

Owing to the strangeness of treatment and unusual rigor. Gauss's

paper excited little interest among the mathematicians of that time.

More fortunate in reaching the public was A. L. Cauchy, whose
Analyse Algebrique of 1821 contains a rigorous treatment of series.

All series whose sum does not approach a fixed limit as the number
of terms increases indefinitely are called divergent. Like Gauss, he

institutes comparisons with geometric series, and finds that series

with positive terms are convergent or not, according as the nth root

of the Mth term, or the ratio of the («+i)th term and the «th term,

is ultimately less or greater than unity. To reach some of the cases

where these expressions become ultimately unity and fail, Cauchy
established two other tests. He showed that series with negative

terms converge when the absolute values of the terms converge, and

then deduces G. W. Leibniz's test for alternating series. The product

of two convergent series was not found to be necessarily convergent.

Cauchy's theorem that the product of two absolutely convergent

series converges to the product of the sums of the two series was

shown half a century later by F. Mertens of Graz to be still true if,

of the two convergent series to be multiplied together, only one is

absolutely convergent.

The most outspoken critic of the old methods in series was N. H.
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Abel. His letter to his friend B. M. Holmboe (1826) contains severe

criticisms. It is very interesting reading, even to modem students.

In his demonstration of the binomial theorem he established the

theorem that if two series and their product series are all convergent,

then the product series will converge towards the product of the

sums of the two given series. This remarkable result would dispose

of the whole problem of multiplication of series if we had a imiversal

practical criterion of convergency for semi-convergent series. Since

we do not possess such a criterion, theorems have been recently es-

tablished by A. Pringsheim of Munich and A. Voss now of Munich
which remove in certain cases the necessity of applying tests of con-

vergency to the product series by the application of tests to easier

related expressions. A. Pringsheim reaches the following interesting

conclusions: The product of two conditionally convergent series can

never converge absolutely, but a conditionally convergent series, or

even a divergent series, multiplied by an absolutely convergent series,

may yield an absolutely convergent product.

The researches of N. H. Abel and A. L. Cauchy caused a considerable

stir. We are told that after a scientific meeting in which Cauchy
had presented his first researches on series, P. S. Laplace hastened

home and remained there in seclusion until he had examined the

series in his Mecanique Celeste. Luckily, every one was found to be
convergent! We must not conclude, however, that the new ideas

at once displaced the old. On the contrary, the new views were
generally accepted only after a long struggle. As late as 1844 A. De
Morgan began a paper on "divergent series" in this style: "I beheve
it will be generally admitted that the heading of this paper describes

the only subject yet remaining, of an elementary character, on which
a serious schism exists among mathematicians as to the absolute

correctness or incorrectness of results."

First in time in the evolution of more delicate criteria of convergence
and divergence come the researches of Josef Ludwig Raabe (1801-

1859) of Zurich, in Crelle, Vol. IX; then follow those of A. De Morgan
as given in his calculus. A. De Morgan established the logarithmic
criteria which were discovered in part independently by J. Bertrand.
The forms of these criteria, as given by J. Bertrand and by Ossian
Bonnet, are more convenient than De Morgan's. It appears from
N. H. Abel's posthumous papers that he had anticipated the above-
named writers in establishing logarithmic criteria. It was the opin-
ion of Bonnet that the logarithmic criteria never fail; but P. Du
Bois-Reymond and A. Pringsheim have each discovered series demon-
strably convergent in which these criteria fail to determine the con-
vergence. The criteria thus far alluded to have been called by Pring-
sheim special criteria, because they all depend upon a comparison of

the «th term of the series with special functions a", w^, w(log nY, etc.

Among the first to suggest general criteria, and to consider the subject
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from a still wider point of view, cvJminating in a regular mathematical
theory, was E. E. Kummer. He established a theorem yielding a test

consisting of two parts, the first part of which was afterwards found
to be superfluous. The study of general criteria was continued by
Ulisse Dini (1845-1918) of Pisa, P. Du Bois-Reymond, G. Kohn of

Vienna, and A. Pringsheim. Du Bois-Reymond divides criteria into

two classes: criteria of the first kind and criteria of the second kind, ac-

cording as the general wth term, or the ratio of the (w+i)th term and
the »th term, is made the basis of research. E. E. Kummer's is a
criterion of the second kind. A criterion of the first kind, analogous
to this, was invented by A. Pringsheim. From the general criteria

established by Du Bois-Reymond and Pringsheim respectively, all

the special criteria can be derived. The theory of Pringsheim is very
complete, and offers, in addition to the criteria of the first kind and
second kind, entirely new criteria of a third kind, and also generalized

criteria of the second kind, which apply, however, only to series with
never increasing terms. Those of the third kind rest mainly on the

consideration of the Umit of the difference either of consecutive terms
or of their reciprocals. In the generalized criteria of the second kind
he does not consider the ratio of two consecutive terms, but the ratio

of any two terms however far apart, and deduces, among others, two
criteria previously given by Gustav Kohn and W. Ermakoff respec-

tively.

It is a strange vicissitude that divergent series, which early in the

nineteenth century were supposed to have been banished once for

all from rigorous mathematics, should at its close be invited to return.

In 1886 T. J. Stieltjes and H. Poincare showed the importance to

analysis of the asymptotic series, at that time employed in astronomy
alone. In other fields of research G. H. Halphen, E. N. Laguerre, and
T. J. Stieltjes have encountered particular examples in which, a whole

series being divergent, the corresponding continued fraction was
convergent. In 1894 H. Pade now of Bordeaux, established the possi-

bihty of defining, in certain cases, a function by an entire divergent

series. This subject was taken up also by J. Hadamard in 1892,

C. E. Fabry in 1896 and M. Servant in 1899. Researches on divergent

series have been carried on also by H. Poincare, E. Borel, T. J. Stieltjes,

E. Cesaro, W. B. Ford of Michigan and R. D. Carmichael of Illi-

nois. Thomas-Jean Stieltjes (1856-1894) was born in Zwolle in

Holland, came in 1882 under the influence of Ch. Hermite, became a

French citizen, and later received a professorship at the University

of Toulouse. Stieltjes was interested not only in divergent and con-

ditionally convergent series, but also in G. F. B. Riemann's t, function

and the theory of numbers.

Difficult questions arose in the study of Fourier's series.^ A. L.

' Arnold Sachse, Vcrsuch einer Geschichic dcr Darslellung willkiirlicher Funk-

lionen einer variablen durch Uigonometrische Reihen, Gottingen, 1879.
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Cauchy was the first who felt the necessity of inquiring into its con-

vergence. But his mode of proceeding was found by P. G. L. Dirichlet

to be unsatisfactory. Dirichlet made the first thorough researches

on this subject {Crelle, Vol. IV). They culminate in the result that

whenever the function does not become infinite, does not have an
infinite number of discontinuities, and does not possess an infinite

number of maxima and minima, then Fourier's series converges toward
the value of that function at all places, except points of discontinuity,

and there it converges toward the mean of the two boundary values.

L. Schlafli of Bern and P. Du Bois-Reymond expressed doubts as to

the correctness of the mean value, which were, however, not well

founded. Dirichlet's conditions are sufficient, but not necessary.

Rudolf Lipschitz (1832-1903), of Bonn, proved that Fourier's series

still represents the function when the number of discontinuities is

infinite, and established a condition on which it represents a function

having an infinite number of maxima and minima. Dirichlet's belief

that all continuous functions can be represented by Fourier's series

at all points was shared by G. F. B. Riemann and H. Hankel, but
was proved to be false by Du Bois-Reymond and H. A. Schwarz.

A. Hurwitz showed how to express the product of two ordinary Fourier

series in the form of another Fourier series. W. W. Kiistermann
solved the analogous problem for double Fourier series in which a
relation involving Fourier constants figures vitally. For functions

of a single variable an analogous relation is due to M. A. Parseval
and was proved by him under certain restrictions on the nature of

convergence of the Fourier series involved. In 1893 de la Vallee

Poussin gave a proof requiring merely that the function and its square
be integrable. A. Hurwitz in 1903 gave further developments. More
recently the subject has commanded general interest through the re-

searches of Frigyes Riesz and Ernst Fischer (Riesz-Fischer theorem).'-

Riemann inquired what properties a function must have, so that
there may be a trigonometric series which, whenever it is convergent,
converges toward the value of the function. He found necessary
and sufficient conditions for this. They do not decide, however,
whether such a series actually represents the function or not. Rie-
mann rejected Cauchy's definition of a definite integral on account of
its arbitrariness, gave a new definition, and then inquired when a
function has an integral. His researches brought to light the fact
that continuous functions need not always have a differential coeffi-

cient. But this property, which was shown by K. Weierstrass to be-
long to large classes of functions, was not found necessarily to exclude
them from being represented by Fourier's series. Doubts on some of
the conclusions about Fourier's series were thrown by the observation,
made by Weierstrass, that the integral of an infinite series can be
shown to be equal to the sum of the integrals of the separate terms

' Summary taken from Bull. Am. Math. Soc, Vol. 22, 1915, p. 6.
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only when the series converges uniformly within the region in question.

The subject of uniform convergence was first investigated in 1847 by
G. G. Stolses of Cambridge and in 1848 by Pkilipp Ludwig v. Seidel

(1821-1896). Seidel had studied under F. W. Bessel, C. G. J. Jacobi,

J. F. Encke, and P. G. L. Dirichlet. He became professor at the

University of Munich in 1855. Later his lecturing and scientij^p

activity were stopped by a disease of his eyes. Uniform convergence
assumed great importance in K. Weierstrass' theory of functions. It

became necessary to prove that a trigonometric series representing

a continuous function converges uniformly. This was done by Hein-
rich Eduard Heine (1821-1881), of Halle. Later researches on Four-
ier's series were Inade by G. Cantor and Paul Du Bois-Reymond
( 1831-1889), professor at the technical high school in Charlottenburg.

Less stringent than that of uniform convergence is U. Dini's def-

inition '^ of "simple uniform convergence," which is as follows: The
series is said to be simply uniformly convergent in the interval (a, b)

when corresponding to every arbitrarily chosen positive number a
as small as we please and to every integer m' , only one or several

integers m exist which are not less than m' , and are such that, for all

the values of x in the interval (a, h), the
|
i?,„(x)

|
are <5. Still another

kind of convergence, the "uniform convergence by segments," some-

times called "sub-uniform convergence," was introduced in 1883 by
Cesare Arzela (1847-1912) of the University of Bologna. He advanced
the theory of functions of real variables and generalized a theorem of

U. Dini on the necessary and suiScient conditions for the continuity

of the sum of a convergent series of continuous functions.

Probability and Statistics

As compared with the vast development of other mathematical

branches, the theory of probabiHty has made insignificant progress

since the time of P. S. LaplaCe. Jakob Bernoulli's Theorem which

had received the careful attention of De Moivre, J. Stirhng, C. Ma-
claurin, and L. Euler, was considered especially by P. S. Laplace who
made an inverse apphcation of it-, assuming that an event had been

observed to happen m times and to fail n times in n trials, and then

deducing the initially unknown probability of its happening at each

trial. The result thus obtained did not agree accurately with the

results gotten by the use of Bayes' Theorem. The subject was in-

vestigated by S. D. Poisson in his Recherches sur la probabilite, Paris,

1837, who obtained consonant results after carrying the approxima-

tions, in the use of Bayes' Theorem, to a higher degree. An endeavor

to remove the obscurities in which Bayes' Theorem seemed involved

was made by Poisson, and by A. De Morgan in his Theory of Probabil-

1 Grundlagen f. e. Theorie der Functionen, by J. Liiroth u. A. Schepp, Leipzig,

1892, p. 137.
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ities,^ through the use of illustrations with urns that were exactly

aUke and contained black and white balls in different numbers and
different ratios, the observed event being the drawing of a white ball

from any one of the urns. For the same purpose Johannes von Kries,

in his Prinzipien der Wahrscheinlichkeitsrechnung, Freiburg i. B., 1886,

used as an illustration six equal cubes, of which one had the + sign

on one side, another had it on two sides, a third on three sides and
finally the sixth on all six sides. All other sides were marked with a o.

Nevertheless, objections to certain applications by Bayes' Theorem
have been raised by the Danish actuary J. Bing in the Tidsskrift for

Matematik, 1879, by Joseph Bertrand in his Calcul des probabiliics,

Paris, 1889, by Thorwald Nicolai Thiele (1838-1910) of the observa-

tory at Copenhagen in a work published at Copenhagen in 1889 (an

English edition of which appeared under the title Theory of Observa-

tions, London, 1903) by George Chrystal (1851-1911) of the Univer-

sity of Edinburgh, and others.^ As recently as 1908 the Danish
philosophic writer Kroman has come out in defence of Bayes. Thus
it appears that, as yet, no unanimity of judgment has been reached

in this matter. In determining the probability of alternative causes

deduced from observed events there is often need of evidence other

than that which is afforded by the observed event. By inverse prob-
ability some logicians have explained induction. For example, if a
man, who has never heard of the tides, were to go to the shore of the

Atlantic Ocean and witness on m successive days the rise of the sea,

then, says Adolphe Quetelet of the observatory at Brussels, he would

yyi-l- T

be entitled to conclude that there was a probability equal to

that the sea would rise next day. Putting m=o, it is seen that this

view rests upon the unwarrantable assumption that the probabiUty
of a totally unknown event is |, or that of all theories proposed for

investigation one-half are true. William Stanley Jevons (1835-1882)
in his Principles of Science founds induction upon the theory of inverse
probabiUty, and F. Y. Edgeworth also accepts it in his Mathematical
Psychics. Daniel Bernoulli's "moral expectation," which was elab-

orated also by Laplace, has received little attention from more recent
French writers. Bertrand emphasizes its impracticability; Poincare,
in his Calcul des probabilites, Paris, 1896, disposes of it in a few words.*
The only noteworthy recent addition to probability is the subject

of "local probability," developed by several English and a few Amer-
ican and French mathematicians. G. L. L. Buffon's needle problem
is the earliest important problem on local probability; it received the

^ Encydoptedia Metrop. II, 1845.
2 We are using Emanuel Czuber's Eniwkkelung der Wahrscheinlichkeiislheorie in

the Jahresb. d. de.utsch. Malhemalikcr-Vereiiiigung, 1899, pp. 93-105; also Arne
Fisher, The Maihemalieal Theory of Probabilities, New York, 1915, pp. 54-56.

' E. Czuber, op. cil., p. 121.
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consideration of P. S. Laplace, of Emile Barbier in the years i860
and 1882, of Morgan W. Crofton (1826-1915) of the mihtary school

at Woolwich, who in 1868 contributed a paper to the London Phil-

osophical Transactions, Vol. 158, and in 1885 wrote the article "Prob-
ability" in the Encyclopedia Brittannica, ninth edition. The name
"local probability" is due to Crofton. Through considerations of

local probability he was led to the evaluation of certain definite in-

tegrals.

Noteworthy is J. J. Sylvester's four point problem: To find the
probability that four points taken at random within a given boundary,
shall form a re-entrant quadrilateral. Local probability was studied
in England also by A. R. Clarke, H. McColl, S. Watson, J. Wolsten-
holme, W. S. Woolhouse; in France also by C. Jordan and E. Lemoine;
in America by E. B. Seitz. Rich collections of problems on local prob-
ability have been published by Emanuel Czuber of Vienna in his

Geometrische Wahrscheinlichkeikn und MUtelwerte, Leipzig, 1884, and
by G. B. M. Zerr in the Educational Times, Vol. 55, 1891, pp. 137-

192. The fundamental concepts of local probability have received the

special attention of Ernesto Cesaro (1859-1906) of Naples.^

Criticisms occasionally passed upon the principles of probability

and lack of confidence in theoretical results have induced several

scientists to take up the experimental side, which had been emphasized
by G. L. L. Buffon. Trials of this sort were made by A. De Morgan,
W. S. Jevons, L. A. J. Quetelet, E. Czuber, R. Wolf, and showed a
remarkably close agreement with theory. In Buffon's needle prob-

lem, the theoretical probability involves tt. This and similar expres-

sions ^ have been used for the empirical determination of x. Attempts
to place the theory of probability on a purely empirical basis were
made by John Stuart Mill (1806-1873), John Venn (1834- ) and
G. Chrystal. Mill's induction method was put on a sounder basis

by A. A. Chuprofi in a brochure. Die Statistik als Wissenschaft. Em-
pirical methods have commanded the attention of another Russian,

V. Bortkievicz.

In 183s and 1836 the Paris Academy was led by S. D. Poisson's

researches to discuss the topic, whether questions of morality could be

treated by the theory of probability. M. H. Navier argued on the

afhrmative, while L. Poinsot and Ch. Dupin denied the applicability

as "une sorte d'aberration de I'esprit;" they declared the theory

applicable only to cases where a separation and counting of the cases

or events was possible. John Stuart Mill opposed it; Joseph L. F.

Bertrand (1822-1900), professor at the College de France in Paris

and J. V. Kries are among more recent writers on this topic*

1 See Encyclopeiie des sciences math. I, 20 (1906), p. 23.

2 E. Czuber, op. cit., pp. 88-91.
* Consult E. Czuber, op. cit., p. 141; J. S. Mill, System of Logic, New York, 8th

Ed., 1884, Chap. 18, pp. 379-387; J- V. Kries, op. cit., pp. 253-259.
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Among the various applications of probability the one relating to

verdicts of juries, decisions of courts and results of elections is specially

interesting. This subject was studied by Marquis de Condorcet,

P. S. Laplace, and S. D. Poisson. To exhibit Laplace's method of

determining the worth of candidates by combining the votes, M. W.
Crofton employs the fortuitous division of a straight line. This in-

volves, however, an a priori distribution of values covering evenly

the whole range from o to 100. Experience shows that the normal
law of error exhibits a more correct distribution. On this point Karl

Pearson produced a most important research.-"^ He took a random
sample of n individuals from a population of N members and derived

an expression for the average difference in character between the ^th
and the {p+i)i\i individual when the sample is arranged in order of

magnitude of the character. H. L. Moore of Columbia University

has attempted to trace Pearson's theory in the statistics relating to

the efficiency of wages {Economic Journal, Dec, 1907).

Early statistical study was carried on under the name of "political

arithmetic" by such writers as Captain John Graunt of London (1662)

and J. P. Siissmilch, a Prussian clergyman (1788). Application of the

theory of probability to statistics was made by Edmund Halley,

Jakob Bernoulli, A. De Moivre, L. Euler, P. S. Laplace, and S. D.
Poisson. The establishment of official statistical societies and statis-

tical offices was largely due to the influence of the Belgian astronomer
and statistician, Adolphe Quetelet (i 796-1874) of the observatory

at Brussels, "the founder of modern statistics." Quetelet's "average
man" in whom "all processes correspond to the average results

obtained for society," who "could be considered as a type of the

beautiful," has given rise to much critical discussion by Harold
Westergaard (1890), J. Bertillon (1896), A. de Foville in has "homo
medius" of 1907, Joseph Jacobs in his "the Middle American"
and "the Mean EngUshman." ^ Quetelet's visit in England led

to the organization, in 1833, of the statistical section of the British

Association for the Advancement of Science, and in 1835 of the Statis-

tical Society of London. Soon after, in 1839, was formed the Amer-
ican Statistical Society. Quetelet's best researches on the application

of probability to the physical and social sciences are given in a series

of letters to the duke of Saxe-Coburg and Gotha, Lettres sur la theorie

des probabilites, Brussels, 1846. He laid emphasis on the "law of

large numbers," which was advanced also by the Frenchman S. D.
Poisson and discussed by the German W. Lexis (1877), the Scandi-
navians H. Westergaard and Carl Charlier, and the Russian Pafnuti
Liwowich Chebichev (1821-1894) of the University of Petrograd. To
Chebichev we owe also an interesting problem : A proper fraction being

' "Note on Francis Gallon's Problem," Biomctrica, Vol. I, pp. sgo-sgg.
- See Franz Zizek's Statistical Averages, transl. by W. M. Persons, New York,

iQiS, P- 374-
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chosen at random, what is the probability that it is in its lowest
terms?

Of the different kinds of averages, A. De Morgan concluded that

the arithmetic mean represents a priori the most probable values.

J. W. L. Glaisher took exception to this. G. T. Fechner investigated

the cases where the "median" (which has the central position in a

series of items arranged according to size) may be used profitably.

The "mode," an average introduced by K. Pearson in 1895, and
used by G. Udny Yule, has been applied in Germany and Austria
to the fixing of workingmen's insurance. The theory of averages has
been studied by the aid of the calculus of probabilities by W. Lexis,

F. Y. Edgeworth of Oxford, H. Westergaard, L. von Bortkewich, G.
T. Fechner, J. von Kries, E. Czuber of Vienna, E. Blaschke, F. Galton,

K. Pearson, G. U. Yule, and A. L. Bowley of London. A few
writers take the ground that it is not only unnecessary to employ prob-
ability in founding statistical theory, but that it is inadvisable to do so.

Among such %vriters are G. F. Knapp and A. M. Guerry.^ The Russian
actuary Jastremski in 191 2 applied the Lexian dispersion theory to the

testing of the influence of medical selection in life insurance. Other
recent publications of note are by Lexis' pupil L. von Bortkewich and
by Harold Westergaard of Copenhagen. Early theories of popula-

tion were involved in much confusion. E. Halley and some eighteenth

century writers proceeded on the assumption of a stationary popu-
lation. L. Euler adopted the hjrpothesis that the yearly births

progress in a geometric series. This was combatted in 1839 by L.

Moser, while G. F. Knapp in 1868 represented the number of births

and deaths as a continuous fimction of the time and of the age, re-

spectively. He made use of graphic representation. G. Zeimer in

1869 introduced additional geometric and analytic aids. In 1874
Knapp made still further modifications, allowing for discontinuous

changes, such as were studied also by W. Lexis, in his Theorie der

Bevolkerungsstatistik, Strassburg, 1875. Formal theories of popula-

tion and the determination of mortality were investigated also by
K. Becker in 1867 and 1874, and by Th. Wittstein, about 1881. In

1877 W. Lexis introduced the idea of " dispersion "and "normal dis-

persion." Wilhelm Lexis (1837-1914) became in 1872 professor at

Strassburg, in 1884 at Breslau and in 1887 at Gottingen. In 1893 he

was drawn into the service for the German government.

The application of statistical method to biology was begun by
Sir Francis Galton (1822-1911), "a bom statistician." Important

is his Natural Inheritance, 1889, in which he uses the method of per-

centiles, with the quartile deviation as the measure of dispersion.^

Two other Englishmen entered this field of research, Karl Pearson

of University College and W. F. R. Weldon. Pearson developed

' Encyklopddie d. Math. Wissensch, I D 4a, p. 822.

2 G, Udny Yule, Theory of Statistics, 2. Ed., London, 1912, p. 154.



382 A HISTORY OF MATHEMATICS

general and adequate mathematical methods for the analysis of

biological statistics. To him are due the terms "mode," "standard
deviation" and "coefficient of variation." Before him the "normal
curve" of errors had been used exclusively to describe the distribution

of chance events. This curve is symmetrical, but natural phenomena
sometimes indicate an asymmetrical distribution. Accordingly

Pearson, in his Contributions to the Theory of Evolution, 1899, de-

veloped skew frequency curves. About 1S90 the Georg Mendel law

of inheritance became generally known and caused some modification

in the application of statistics to heredity. Such a readjustment was
effected by the Danish botanist W. Johannsen.^

The first study of the most advantageous combinations of data

of observation is due to Roger Cotes, in the appendix to his Harmonia
mensurarum, 1722, where he assigns weights to the observations.

The use of the arithmetic mean was advocated by Thomas Simpson
in a paper "An attempt to show the advantage arising by taking the

mean of a number of observations, in practical astronomy," ^ also by

J. Lagrange in 1773 and by Daniel Bernoulli in 1778. The first

printed statement of the principle of least squares was made in 1806

by A. M. Legendre, without demonstration. K. F. Gauss had used

it still earlier, but did not publish it until 1809. The first deduction

of the law of probability of error that appeared in print was given in

180S by Robert Adrain in the Analyst, a journal published by himself

in Philadelphia. Of the earlier proofs given of this law, perhaps the

most satisfactory is that of P. S. Laplace. K. F. Gauss gave two
proofs. The first rests upon the assumption that the arithmetic

mean of the observations is the most probable value. Attempts to

prove this assumption have been made by Laplace, J. F. Encke (1831),

A. De Morgan (1864), G. V. SchiapareUi, E. J. Stone (1873), and A.
Ferrero (1876). Valid criticisms upon some of these investigations were
passed by J. W. L. Glaisher.^ The founding of the Gaussian proba-
bility law upon the nature of the observed errors was attempted by
F. W. Bessel (1838), G. H. L. Hagen (1837), J. F. Encke (1853), P. G.
Tait (1867), and M. W. Crofton (1870). That the arithmetic mean,
taken as the most probable value, is not under all circumstances
compatible with the Gaussian probabilty law has been shown by
Joseph Bertrand in his Calcul des probabilites (1889), and by others.*

The development of the theory of least squares along practical lines

is due mainly to K. F. Gauss, J. F. Encke, P. A. Hansen, Th. Gallo-

way, J. Bienayme, J. Bertrand, A. Ferrero, P. Pizzetti.^ Simon
' Quart. Pub. Am. Stat. Ass'n, N. S., Vol. XIV, 1914, p. 45.
"Miscellaneous Tracts, London, 1757.
' Lond. Astr. Soc. Mem. 39, 1872, p. 75; for further references, see Cyklopadie d.

Math. Wiss., I D2, p. 772.
• Consult E. L. Dodd, "Probability of the Arithmetic Mean, etc.," Annals of

Mathematics, 2. S., Vol. 14, 1913, p. 186.
' E. Czuber, op. cit., p. 179.
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Newcomb of Washington advanced a "generalized theory of the
combination of observations so as to obtain the best result," * when
large errors arise more frequently than is allowed by the Gaussian
probability law. The same subject was treated by R. Lehmann-
Filhes in Astronomische Nackrickten, 1887.

A criterion for the rejection of doubtful observations ^ was given
by Benjamin Peirce of Harvard. It was accepted by the American
astronomers B. A. Gould (1824-1896), W. Chauvenet (1820-1870),
and J. Winlock (1826-1875), but was criticised by the English as-

tronomer G. B. Airy. The prevailing feeling has been that there

exists no theoretical basis upon which such criterion can be rightly

established.

The application of probability to epidemiology was first considered

by Daniel Bernoulli and has more recently commanded the atten-

tion of the English statisticians William Farr (1807-1883), John
Brownlee, Karl Pearson, and Sir Ronald Ross. Pearson studied

normal and abnormal frequency curves. Such curves have been
fitted to epidemics by J. Brownlee in 1906, S. M. Greenwood in 191

1

and 1913, and Sir Ronald Ross in 1916.^

Some interest attaches to the discussion of whist from the stand-

point of the theory of probability, as is contained in William Pole's

Philosophy of Whist, New York and London, 1883. The problem
is a generalization of the game of "treize" or "recontre," treated

by Pierre R. de Montmort in 1708.

Differential Equations. Difference Equations

Criteria for distinguishing between singular solutions and particular

solutions of differential equations of the first order were advanced

by A. M. Legendre, S. D. Poisson, S. F. Lacroix, A. L. Cauchy, and

G. Boole. After J. Lagrange, the c-discriminant relation commanded
the attention of Jean Marie Constant Duhamel (1797-1872) of Paris,

C. L. M. H. Navier, and others. But the entire theory of singular

solutions was re-investigated about 1870 along new paths by J. G.

Darboux, A. Cayley, E. C. Catalan, F. Casorati, and others. The
geometric side of the subject was considered more minutely and the

cases were explained in which Lagrange's method does not yield

singular solutions. Even these researches were not altogether satis-

factory as they did not furnish necessary and sufhcient conditions

for singular solutions which depend on the differential equation alone

and not in anyway upon the general solution. Returning to more

purely analytical considerations and building on work of Ch. Briot

and J. C. Bouquet of 1856, Carl Schmidt of Giessen in 1884, H. B.

Fine of Princeton in 1890, and Meyer Hamburger (1838-1903) of

1 Am. Jour. Math., Vol. 8, 1886, p. 343.
•^ Gould Astr. Jour., II, 1852.
' Nature, Vol. 97, 1916, p. 243.
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Berlin brought the problem to final solutions. Active in this line

were also John Muller Hill and A. R. Forsyth.^

The first scientific treatment of partial differential equations was
given by J. Lagrange and P. S. Laplace. These equations were in-

vestigated in more recent time by G. Monge, J. F. Pfaff, C. G. J.

Jacobi, Emile Bour (1831-1866) of Paris, A. Weiler, R. F. A. Clebsch,

A. N. Korkine of St. Petersburg, G. Boole, A. Meyer, A. L. Cauchy,

J. A. Serret, Sophus Lie, and others. In 1873 their reseaches, on
partial difi'erential equations of the first order, were presented in

text-book form by Paul Mansion, of the University of Gand. Pro-

ceeding to the consideration of some detail, we remark that the keen

researches of Johann Friedrich Pfaff (i 765-1825) marked a decided

advance. He was an intimate friend of K. F. Gauss at Gottingen.

Afterwards he was with the astronomer J. E. Bode. Later he became
professor at Helmstadt, then at Halle. By a peculiar method, Pfaff

found the general integration of partial differential equations of the

first order for any number of variables. Starting from the theory of

ordinary differential equations of the first order in n variables, he
gives first their general integration, and then considers the integra-

tion of the partial differential equations as a particular case of the

former, assuming, however, as known, the general integration of

differential equations of any order between two variables. His re-

searches led C. G. J. Jacobi to introduce the name "Pfaffian prob-

lem." From the connection, observed by W. R. Hamilton, between
a system of ordinary differential equations (in analytical mechanics)

and a partial differential equation, C. G. J. Jacobi drew the conclu-

sion that, of the series of systems whose successive integration Pfaff's

method demanded, all but the first system were entirely superfluous.

R. F. A. Clebsch considered Pfaff's problem from a new point of view,

and reduced it to systems of simultaneous linear partial differential

equations, which can be established independently of each other with-

out any integration. Jacobi materially advanced the theory of dif-

ferential equations of the first order. The problem to determine un-
known functions in such a way that an integral containing these func-

tions and their differential coefficients, in a prescribed manner, shall

reach a maximum or minimum value, demands, in the first place,

the vanishing of the first variation of the integral. This condition

leads to differential equations, the integration of which determines the

functions. To ascertain whether the value is a maximum or a mini-

mum, the second variation must be examined. This leads to new and
difficult differential equations, the integration of which, for the simpler

cases, was ingeniously deduced by C. G. J. Jacobi from the integra-

tion of the difi'erential equations of the first variation. Jacobi's

solution was perfected by L. 0. Hesse, while R. F. A. Clebsch extended

'We have used S. RothenberR, "Gcscliichte . . . der singularen Losungen" in

Abh. z. Gesch. d. Math. Wissenscli. (M. Cantor), Heft XX, 3. Leipzig, 1908.
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to the general case Jacobi's results on the second variation. A. L.

Cauchy gave a method of solving partial differential equations of the
first order having any number of variables, which was corrected and
extended by J. A. Serret, J. Bertrand,,0. Bonnet in France, and
Wassih Grigorjewich Imshenetski (1832-1892) of the University of

Charkow in Russia. Fundamental is the proposition of Cauchy that
every ordinary differential equation admits in the vicinity of any non-
singular point of an integral, which is synectic within a certain circle

of convergence, and is developable by Taylor's theorem. Allied to the
point of view indicated by this theorem is that of G. F. B. Riemann,
who regards a function of a single variable as defined by the position

and nature of its singularities, and who has applied this conception
to that linear differential equation of the second order, which is satis-

fied by the hypergeometric series. This equation was studied also

by K. F. Gauss and E. E. Kummer. Its general theory, when no re-

striction is imposed upon the value of the variable, has been considered

by J. Tannery, of Paris, who employed L. Fuchs' method of hnear
differential equations and found all of Kummer's twenty-four inte-

grals of this equation. This study has been continued by Edouard
Goursat (1858- ), professor of mathematical analysis in the Uni-

versity of Paris. His activities have been in the theory of functions,

pseudo- and hjrper-elliptic integrals, differential equations, invariants

and surfaces. Jules Tannery (1848-1910) became professor of me-
chanics at the Sorbonne in 1875, and sub-director at the Ecole Normale
in Paris in 1884. His researches have been in the field of analysis and
the theory of functions.

As outlined by A. R. Forsyth ^ in 1908, the status of partial differen-

tial equations is briefly as follows: Since the posthumous publication,

in 1862, of C. G. J. Jacobi's treatment of partial differential equations

of the first order involving only one dependent variable, or a system

of such equations, it may be said that we have a complete method
of formal integration of such equations. In the formal integration of a

partial differential equation of the second or higher orders new dif-

ficulties are encountered. Only in rare instances is direct integration

possible. The known normal types of integrals even for such equa-

tions of only the second order are few in number. The primitive may
be given by means of a single relation between the variables, or by
means of a number of equations involving eliminable parameters (such

as the customary forms, due to A. M. Legendre, G. Monge, or K.

Weierstrass, of the primitive of minimal surfaces), or by means of a

relation involving definite integrals arising in problems in physics.

"With all these types of primitives," says A. R. Forsyth,^ "it being

assumed that unmediate and direct integration is impossible— , a

' A. R. Forsyth in AUi. del IV. Congr. Intern., Roma, 1008. Vol. I, Roma, igog,

p. go.
2 A. R. Forsyth, loc. cU., p. 90. We are summarizing part of this article.
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primitive is obtained by the use of processes, that sometimes are frag-

mentary in theory, usually are tentative in practice and nearly always
are indirect in the sense that they are compounded of a number of

formal operations having no organic relation with the primitive.

In such circumstances ... is the primitive completely comprehen-
sive of all the integrals belonging to the equation? " A. M. Ampere in

1815 propounded a broad definition of a general integral—one in

which the only relations, which subsist among the variables and the

derivatives of the dependent variable and which are free from the

arbitrary elements in the integral, are constituted by the differential

equation itself and by equations deduced from it by differentiation.

This definition is incomplete on various grounds. E. Goursat gave in

1898 a simple instance to show that an integral satisfying all of Am-
pere's requirements was not general. A second definition of a general

integral was given in 1889 by J. G. Darboux, based on A. L. Cauchy's
existence-theorem : An integral is general when the arbitrary ele-

ments which it contains can be specialized in such a way as to provide

the integral established in that theorem. This definition, according

to A. R. Forsyth, calls for a more careful discussion of obvious and
latent singularities.

There are three principal methods of proceeding to the construc-

tion of an integral of partial differential equations of the second order,

which lead to success in special cases. One method given by P. S.

Laplace in 1777 applies to linear equations with two independent
variables. It can be used for equations of order higher than the

second. It has been developed by J. G. Darboux and V. G. Imshenet-
ski, 1872. A second method, originated by A. M. Ampere, while

general in spirit and in form, depends upon individual skill unassisted

by critical tests. Later researches along this line are due to E. Borel

(1895) and E. T. Whittaker (1903). A third method is due to J. G.
Darboux and includes, according to A. R. Forsyth's classification,

the earher work of Monge and G. Boole. As first given by J. G. Dar-
boux in 1870, it applied only to the case of two independent variables,

but it has been extended to equations of more than two independent
variables and orders higher than the second; it is not universally

effective. "Such then," says Forsyth, "are the principal methods
hitherto devised for the formal integration of partial equations of the

second order. They have been discussed by many mathematicians
and they have been subjected to frequent modifications in details:

but the substance of the processes remains unaltered."

Instances are known in ordinary linear equations when the primitives

can be expressed by definite integrals or by means of asymptotic
expansions, the theory of which owes much to H. Poincare. Such
instances within the region of partial equations are due to E. Borel.

G. F. B. Riemann had remarked in 1857 that functions expressed
by K. F. Gauss' hypergeometric series F (a, fi, y, x), which satisfy
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a homogeneous linear differential equation of the second order with
rational coefficients, might be utilized in the solution of any linear dif-

ferential equation.^ Another mode of solving such equations was due
to Cauchy and was extended by C. A. A. Briot and J. C. Bouquet) and
consisted in the development into power series. The fertility of the
conceptions of G. F. B. Riemann and A. L. Cauchy with regard to
differential equations is attested by the researches to which they have
given rise on the part of Lazarus Fuchs (1833-1902) of Berlin. Fuchs
was born in Moschin, near Posen, and became professor at the Uni-
versity of Berlin in 1884. In 1865 L. Fuchs combined the two methods
in the study of linear differential equations: One method using power-
series, as elaborated by A. L. Cauchy, C. A. A. Briot, and J. C. Bou-
quet; the other method using the hj^ergeometric series as had been -

done by G. F. B. Riemann. By this union Fuchs initiated a new
theory of linear differential equations.^ Cauchy's development into
power-series together with the calcul des limites, afforded existence
theorems which are essentially the same in nature as those relating to
differential equations in general. The singular points of the linear

differential equation received attention also from G. Frobenius in

1874, G. Peano in 1889, M. Bocher in 1901. A second approach to

existence theorems was by successive approximation, first used in

1864 by J. Caque, then by L. Fuchs in 1870, and later by H. Poin-
care and G. Peano. A third line, by interpolation, is originally due to

A. L. Cauchy and received special attention from V. Volterra in 1887.
The general theory of linear differential equations received the atten-

tion of L. Fuchs, and of a large mmiber of workers, including C. Jordan,
V. Volterra, and L. Schlesinger. Singular places where the solutions

are not indeterminate were investigated by J. Tannery, L. Schlesinger,

G. J. Wallenberg, and many others. Ludwig Wilhelm Thome (1841-

1910) of the University of Greifswald, discovered in 1877 what he
called normal integrals. Divergent series which formally satisfy dif-

ferential equations, first noticed by C. A. A. Briot and J. C. Bouquet
in 1856, were first seriously considered by H. Poincare in 1885 who
pointed out that such series may represent certain solutions asymp-
totically. Asymptotic representations have been examined by A.
Kneser (1896), E. Picard (1896), J. Horn (1897), and A. Hamburger
(1905). A special t3^e of linear differential equation, the "Fuchsian
type," with coefficients that are single-valued (eindeutig), and the

solutions of which have no points of indeterminateness, was investi-

gated by Fuchs, and it was found that the coefficients of such an equa-

tion are rational functions of x. Studies based on analogies of linear

differential equations with algebraic equations, first undertaken by

' We are using L. Schlesmger, Entwickelung d. Theorie d. linearen Differential-

gleichimgen seil 1865, Leipzig and Berlin, 1909.
' We are using here a report by L. Schlesinger in Jahresb. d. d. Math. Vere.inigung,

Vol. 18, 1909, pp. 133-260.
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N. H. Abel, J. Liouville and C. G. J. Jacobi, were pursued later by P.

Appell (1880), by E. Picard who worked under the influence of S.

Lie's theory of transformation groups, and by an army of workers in

France, England, Germany, and the United States. The consideration

of differential invariants enters here. Lame's differential equation,

considered by him in 1857, was taken up by Ch. Hermite in 1877 and

soon after in still more generalized form by L. Fuchs, F. Brioschi,

E. Picard, G. M. Mittag-Leffler and F. Klem.
The analogies of linear differential equations with algebraic func-

tions, problems of inversion and uniformization, as well as questions

involving group theory received the attention of the analysts of the

second half of the century.

The theory of invariants associated with linear differential equations

as developed by Halphen and by A. R. Forsyth is closely connected

with the theory of functions and of groups. Endeavors have thus

been made to determine the nature of the fimction defined by a dif-

ferential equation from the differential equation itself, and not from
any analytical expression of the function, obtained first by solving

the differential equation. Instead of studying the properties of the

integrals of a differential equation for all the values of the variable,

investigators at first contented themselves with the study of the prop-

erties in the vicinity of a given point. The nature of the integrals

at singular points and at ordinary points is entirely different. Charles

Auguste Albert Briot (181 7-1882) 2,n6.Jean Claude Bouquet (1819-1885)
both of Paris, studied the case when, near a singular point, the dif-

ferential equations take the form {x—X(s)-j-= j (xy). L. Fuchs gave

the development in series of the integrals for the particular case of

linear equations. H. Poincare did the same for the case when the

equations are not linear, as also for partial differential equations of

the first order. The developments for ordinary points were given

by A. L. Cauchy and Sophie Kovalevski (1850-1891). Madame
Kovalevski was born at Moscow, was a pupil of K. Weierstrass and
became professor of Analysis at Stockholm.
Henri Poincare (1854-1912) was born at Nancy and commenced

his studies at the Lycee there. While taking high rank as a student,

he did not display exceptional precocity. He attended the Ecole
Polytechnique and the Ecole Nationale Superieure des Mines in Paris,

receiving his doctorate from the University of Paris in 1879. He be-

came instructor in mathematical analysis at the University of Caen.

In 188 1 he occupied the chair of physical and experimental mechanics
at the Sorbonne, later the chair of mathematical physics and, after

the death of F. Tisserand, the chair of mathematical astronomy and
celestial mechanics. Although he did not reach old age, he published
numerous books and more than 1500 memoirs. Probably neither
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A. L. Cauchy nor even L. Euler equalled him in the quantity of scien-

tific productions. P. Painleve said that everyone of his many papers
carried the mark of a lion. Poincare wrote on mathematics, physics,

astronomy, and philosophy. No other scientist of his day was able to

work in such a wide range of subjects. Many consider him the great-

est mathematiciaji of his time. Each year he lectured on a different

subject; these lectinres were reported and published by his former
students. In this manner were brought out works on capillarity,

elasticity, Newtonian potential, vortices, the propagation of heat,

thermodynamics, light, electric oscillations, electricity and optics,

Hertzian oscillations, mathematical electricity, kinematics, equiH-

briiun of fluid masses, celestial mechanics, general astronomy, prob-
ability. His popular works on the philosophy of science. La science et

Vhypothese (1902), La valeur de la science (1905), Science et metkode

(1908) have been translated into German, in part also into Spanish,

Hungarian, and Japanese. An English translation by George Bruce
Halsted appeared in one volume in 1913.

Our numerous references to Poincare will indicate that he wrote
on nearly every branch of pure mathematics. Says F. R. Moulton :

^

"The importance of his papers can be inferred from the enormous
number of references to his theorems in all modern treatises, espe-

cially on the various branches of analysis. The emphasis on analysis

does not mean that he neglected geometry, analysis situs, groups,

number theory, or the foundations of mathematics, for he illimiinated

all these subjects-and others; but it is placed there because this do-

main includes his researches on differential equations, dating from his

doctor's dissertation to very recent times, his contributions to the

theory of functions, and his discovery of fuchsian and theta-fuchsian

functions. His command of the powerful methods of modern analysis

was positively dazzling." As to his method of work E. Borel says:

"The -method of Poincare is essentially active and constructive. He
approaches a question, acquaints himself with its present condition

without being much concerned about its history, finds out immediately

the new analytical formulas by which the question can be advanced,

deduces hastily the essential results, and then passes to another ques-

tion. After having finished the writing of a memoir, he is sure to

pause for a while, and to think out how the exposition could be im-

proved; but he would not, for a single instance, indulge in the idea of

devoting several days to didactic work. Those days could be better

utilized in exploring new regions." Poincare tells how he came to

make his first mathematical discoveries: "For a fortnight I labored

to demonstrate that there could exist no function analogous to those

that I have since called the fuchsian functions. I was then very ig-

^ Popular Astronomy, Vol. 20, 191 2. We are using also Ernest Lebon, Henri

Poincare, Biographie, Paris, 1909; "Jules Henri Poincar6" in Nature, Vol. 90,

London, 1912, p. 353; George Sarton, "Henri Poincar^"' in Ciel et Terre, 1913.
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norant. Every day I seated myself at my work table and spent an

hour or two there, trying a great many combinations, but I arrived at

no result. One night when, contrary to my custom, I had taken black

coffee and I could not sleep, ideas surged up in crowds. I felt them as

they struck against one another until two of them stuck together, so

to speak, to form a stable combination. By morning I had established

the existence of a class of fuchsian functions, those which are derived

from the hypergeometric series. I had merely to put the results in

shape, which only took a few hours." ^

Poincare enriched the theory of integrals. The attempt to express

integrals by developments that are always convergent and not limited

to particular points in a plane necessitates the introduction of new
transcendents, for the old functions permit the integration of only a

small number of differential equations. H. Poincare tried this plan

with linear equations, which were then the best known, having been

studied in the vicinity of given points by L. Fuchs, L. W. Thome, G.

Frobenius, H. A. Schwarz, F. Klein, and G. H. Halphen. Confining

himself to those with rational algebraical coefficients, H. Poincare was
able to integrate them by the use of functions named by him Fuch-

sians} He divided these equations into "families." If the integral

of such an equation be subjected to a certain transformation, the

result will be the integral of an equation belonging to the same family.

The new transcendents have a great analogy to elliptic functions;

while the region of the latter may be divided into parallelograms, each

representing a group, the former may be divided into curvilinear

polygons, so that the knowledge of the function inside of one polygon
carries with it the knowledge of it inside the others. Thus H. Poin-

care arrives at what he calls Fuchsian groups. He found, moreover,
that Fuchsian functions can be expressed as the ratio of two trans-

cendents (theta-fuchsians) in the same way that elliptic functions can
be. If, instead of linear substitutions with real coefficients, as em-
ployed in the above groups, imaginary coefficients be used, then dis-

continuous groups are obtained, which he called Kleinians. The ex-

tension to non-linear equations of the method thus applied to linear

equations was begun by L. Fuchs and H. Poincare.

Much interest attaches to the determination of those linear differ-

ential equations which can be integrated by simpler functions, such
as algebraic, elliptic, or Abelian. This has been studied by C. Jordan,
P. Appell of Paris, and H. Poincare.

Paul Appell (1855- ) was born in Strassburg. After the an-

nexation of Alsace to Germany in 1871, he emigrated to Nancy to

escape German citizenship. Later he studied in Paris and in 18S6

' H. PoincarS, The Foundations of Science, transl. by G. B. Halsted, The Science
Press, New York and Garrison, N. Y., 1913, p. 387.

2 Henri Poincare, Notice siir Ics Travaiix Scienlifiques de Henri Poincare, Paris,
1886, p. 9.
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became professor of mechanics there. His researches are in analysis,
function theory, infinitesimal geometry and rational mechanics.
Whether an ordinary differential equation has one or more solutions

which satisfy certain terminal or boundary conditions, and, if so, what
the character of these solutions is, has received renewed attention
the last quarter century by the consideration of finer and more remote
questions.^ Existence theorems, oscillation properties, asymptotic
expressions, development theorems have been studied by David Hil-
bert of Gottingen, Maxune Bocher of Harvard, Max Mason of the
University of Wisconsin, Mauro Picone of Turin, R. M. E. Mises of

Strassburg, H. Weyl of Gottingen and especially by George D. Birk-
hoff of Harvard. Integral equations have been used to some extent
in boundary problems of one dimension; "this method would seem,
however, to be chiefly valuable in the cases of two or more dimensions
where many of the simplest questions are still to be treated."

A standard text-book on Differential Equations, including original

matter on integrating factors, singular solutions, and especially on
symbolical methods, was prepared in 1859 by G. Boole.

A Treatise on Linear Differential Equations (1889) was brought out
by Thomas Craig of the Johns Hopkins University. He chose the

algebraic method of presentation followed by Ch. Hermite and H.
Poincare, instead of the geometric method preferred by F. Klein and
H. A. Schwarz. A notable work, the Traite d'Analyse, 1891-1896,
was published by Emile Picard of Paris, the interest of which was made
to centre in the subject of differential equations. A second edition

has appeared.

Simple difference equations or "finite differences" were studied by
eighteenth century mathematicians. When in 1882 H. Poincare de-

veloped the novel notion of asymptotic representation, he applied it

to linear difference equations. In recent years a new type of problem
has arisen in connection with them. It looks now as if the continuity

of nature, which has been for so long assumed to exist, were a fiction

and as if discontinuities represented the realities. "It seems almost

certain that electricity is done up in pellets, to which we have given

the name of electrons. That heat comes in quanta also seems prob-

able." ^ Much of theory based on the assumption of continuity may
be found to be mere approximation. Homogeneous linear difference

equations, not intimately bound up with continuity, were taken up in-

dependently by investigators widely apart. In 1909 Niels Erik Nor-

lund of the University of Lund in Sweden, Henri Galbrun of I'Ecole

Normale in Paris and, in 1911, R. D. Carmichael of the University of

Illinois entered this field of research. Carmichael used a method of

successive approximation and an extension of a contour integral due to

1 See a historical summary by Maxime B6cher in Proceed, of the ^tn. intern. Con-

gress, Cambridge, 1912, Vol. I, Cambridge, 1913, p. 163.

2 R. D. Carmichael in Science, N. S. Vol. 45, 1917, p. 472.
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C. Guichard. G. D. Birkhoff of Harvard made important contribu-

tions showing the existence of certain intermediate solutions and of the

principal solutions. The asymptotic form of these solutions is de-

termined by him throughout the complex plane. The extension to

non-homogeneous equations of results reached for homogeneous ones

has been made by K. P. Williams of the University of Indiana.^

Integral Equations, Integro-differential Equations, General Analysis,

Functional Calculus

The mathematical perplexities which led to the invention of integral

equations were stated by J. Hadamard ^ in 191 1 as follows: "Those
problems (such as Dirichlet's) exercised the sagacity of geometricians

and were the object of a great deal of important and well-known work
through the whole of the nineteenth century. The very variety of

ingenious methods applied showed that the question did not cease to

preserve its rather mysterious character. Only in the last years of

the century were we able to treat it with some clearness and under-

stand its true nature. . . . Let us therefore inquire by what device

this new view of Dirichlet's problem was obtained. Its peculiar and
most remarkable feature consists in the fact that the partial differential

equation is put aside and replaced by a new sort of equation, namely,
the integral equation. This new method makes the matter as clear

as it was formerly obscure. In many circumstances in modern analysis,

contrary to the usual point of view, the operation of integration proves
a much simpler one than the operation of derivation. An example of

this is given by integral equations where the unknown function is

written under such signs of integration and not of difTerentiation. The
type of equation which is thus obtained is much easier to treat than
the partial differential equation. The type of integral equations
corresponding to the plane Dirichlet problem is

(i) 0(.t)- xjVcy) K {x,y) dy=f{x),

where is the unknown function of x in the interval (A, B),/and K
are known functions, and X is a known parameter. The equations
of the elliptic type in many-dimensional space give similar integral

equations, containing however multiple integrals and several inde-

pendent variables. Before the introduction of equations of the above
type, each step in the study of elliptic partial differential equations
seemed to bring with it new difficulties. . . . [But] an equation such
as (i) . . . gives all the required results at once and for all the pos-
sible types of such problems. . . . Previously, in the calculation of

^ Trans. Am. Math. Soc, Vol. 14, 1913, p. 209.
' J. Hadamard, Four Lectures on Malhemalics delivered at Columbia University in

igji, New York, 1915, pp. 12-15.
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the resonance of a room filled with air, the shape of the resonator

had to be quite simple, which requirement is not a necessary one for

the case where integral equations are employed. We need only make
the elementary calculation of the function K and apply to the function
so calculated the general method of resolution of integral equations."

The new departure in analysis was made in 1900 by Eric Ivar
Fredholm (1866- ), a native of Stockholm, who in 1898 was docent
at the University of Stockholm and later became connected with the

imperial bureau of insurance. In a paper,^ " Sur une nouvelle methode
pour la resolution du probleme de Dirichlet," 1900, he studied an
integral equation from the point of view of an immediate generaliza-

tion of a system of linear equations. Integral equations bear the

same relation to the integral calculus as differential equations do to

the differential calculus. Before this time certain integral equations

had.received the attention of N. H. Abel, J. LiouviUe, and Eugene
Rouche (1S32-1910) of "Paris, but were quite neglected.

Abel had in 1823 proposed a generalization of the tautochrone

problem, the solution of which involved an integral equation that

has since been designated as of the first kind. Liouville in 1837
showed that a particular solution of a linear differential equation of

the second order could be found by solving an integral equation,

now designated as of the second kind. A method of solving integral

equations of the second kind was given by C. Neumann (1887). The
term "integral equation" is due to P. du Bois-Reymond (Crelle,

Vol. 103, 1888, p. 228) who exemplified the danger of making pre-

dictions by the declaration that "the treatment of such equations

seems to present insuperable difficulties to the analysis of to-day."

The recent theory of integral equations owes its origin to specific

problems in mechanics and mathematical physics. Since 1900 these

equations have been used in the study of existence theorems in the

theory of potential; they were employed in 1904 by W. A. Stekloff

and D. Hilbert in the consideration of boundary values and in matters

relating to Fourier series, by Henri Poincare in the study of tides and

Hertzian waves. Linear integral equations present many analogies

with linear algebraic equations. While E. I. Fredholm used the theory

of algebraic equations merely to suggest theorems on integral equa-

tions, which were proved independently, D. Hilbert in his early work

on this subject followed the process of taking limits in the results of

algebraic theory. Hilbert has introduced the term "kernel" of linear

integral equations of the first and second kind. The theory of integral

equations has been advanced by Erhard^ Schmidt of Breslau and

Vito Volterra of Rome. Systematic treatises on integral equations

have been prepared by Maxune Bocher of Harvard (1909), Gerhard

Kowalewski of Prag (1909), Adolf Kneser of Breslau (1911), T.

Lalesco of Paris (1912), H. B. Heywood, and M. Frechet (1912).

^OJversigt af akademiens forhandlingar $t, Stockholm, 1900.
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Maxime Bocher (1867-1918) was born in Boston and graduated

at Harvard in 1888. After three years of study at Gottingen he re-

turned to Harvard where he was successively instructor, assistant-

professor and professor of mathematics. He was president of the

American Mathematical Society in 1909-1910. Among his works are

Reihenentwickelungen der Poieniial-iheorie, 1891, enlarged in 1894, and

Legons sur les Melhodes de Sturm, containing the author's lectures de-

livered at the Sorbonne in 1913-1914.

A. Voss in 1913 stresses the value of integral equations thus:

'

"In the last ten years ... the theory of integral equations has

attained extraordinary importance, because through them problems

in the theory of differential equations may be solved which previously

could be disposed of only in special cases. We abstain from sketching

their theory, which makes use of infiaite determinants that belong

to linear equations with an infinite number of unknowns, of quadratic

forms with infinitely many variables, and which has succeeded in

throwing new light upon the great problems of pure and applied

mathematics, especially of mathematical physics."

Important advances along the line of a "general analysis" and its

application to a generalization of the theory of linear integral equa-

tions have been made since 1906 by E. H. Moore of the University

of Chicago.^ From the existence of analogies in different theories he
infers the existence of a general theory comprising the analogous

theories as special cases. He proceeds to a "unification," resulting,

first, from the recent generalization of the concept of independent
variable effected by passing from the consideration of variables defined

for all points in a given interval to that of variables defined for all

points in any given set of points lying in the range of the variable,

secondly, from the consideration of functions of an infinite as well

as a finite number of variables, and, thirdly, from a still fmther gen-
eralization which leads him to functions of a "general variable."

E. H. Moore's general theory includes as special cases the theories of

E. I. Fredholm, D. Hilbert, and E. Schmidt. G. D. Birkhoff in 1911
presented the following birds'-eye view of recent movements: ' "Since
the researches of G. W. Hill, V. Volterra, and E. I. Fredholm in the
direction of extended linear systems of equations, mathematics has
been in the way of great development. That attitude of mind which
conceives of the function as a generalized point, of the method of
successive approximation as a Taylor's expansion in a function va-
riable, of the calculus of variations as a limiting form of the ordinary
algebraic problem of maxima and minima is now crystallizing into a
new branch of mathematics xmder the leadership of S. Pincherle, J.

1 A. Voss, Ucber das Wesen d. Math., 1913, p. 63.
2 See Proceed. 5th Intern. Congress of Mathematicians, Cambridge, 1913, Vol. I,

p. 230.
' Bull. Am. Math. Soc, Vol. 17, 1911, p. 415.
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Hadamard, D. Hilbert, E. H. Moore, and others. For this field

Professor Moore proposes the term 'General Analysis,' defined as

'the theory of systems of classes of functions, functional operations,

etc., involving at least one general variable on a general range.' He
has fixed attention on the most abstract aspect of this field by con-

sidering functions of an absolutely general variable. The nearest

approach to a similar investigation is due to M. Frechet (Paris thesis,

1906), who restricts himself to variables for which the notion of a

limiting value is valid." Researches along the line of E. H. Moore's
"General Analysis" are due to A. D. Pitcher of Adelbert College and
E. W. Chittenden of the University of Illinois. In his "General
Analysis" Moore defines "complete independence" of postulates

which has received the further attention of E. V. Huntington, R. D.
Beetle, L. L. Dines, and M. G. Gaba.

V. Volterra discusses integro-differential equations which involve

not only the unknown fimctions under signs of integration but also

the imknown functions themselves and their derivatives, and shows
their use in mathematical physics. G. C. Evans of the Rice Institute

extended A. L. Cauchy's existence theorem for partial differential

equations to integro-differential equations of the "static type" in

which the variables of differentiation are different from those of in-

tegration. Mixed linear integral equations have been discussed by
W. A. Hurwitz of Cornell University.

The study of integral equations and the theory of point sets has led

to the development of a body of theory called functional calculus.

One part of this is the theory of the functions of a line. As early as

1887 Vito Volterra of the University of Rome developed the funda-

mental theory of what he called functions depending on other func-

tions and functions of curves: Any quantity which depends for its

value on the arc of a curve as a whole is called a function of the line.

The relationships of functions depending on other functions are

called " fonctionelles " by J. Hadamard in his Leqons sur le calcul des

variations, 1910, and " functionals " by English writers. Functional

equations and systems of frmctional equations have received the atten-

tion of Griffith C. Evans of the Rice Institute, Luigi Sinigallia of

Pavia, Giovanni L. T. C. Giorgi of Rome, A. R. Schweitzer of Chicago,

Eric H. Neville of Cambridge, and others. Neville solves the race-

course puzzle of covering a circle by a set of five circular discs. Says

G. B. Mathews: ^ "We must express our regret that English math-

ematics is so predominantly analytical. Cannot some one, for in-

stance, give us a truly geometrical theory of J. V. Poncelet's poristic

polygons, or of von Staudt's thread-constructions for conicoids? " In

the theory of functional equations, "a single equation or a system of

equations expressing some property is taken as the definition of a

class of functions whose characteristics, particular as well as collective,

1 Nature, Vol. 97, 1916, p. 398.
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are to be developed as an outcome of the equations" (E. B. Van
Vleck).

An important generalization of Fourier series has been made,

"and we have a great class of expansions in the so-called orthogonal

and biorthogonal functions arising in the study of differential and

integral equations. In the field of differential equations the most

important class of these functions was first defined in a general and

exphcit manner (in 1907) by . . . G. D. Birkhoff of Harvard Univer-

sity; and their leading fundamental properties were developed by
him." ^ In boundary value problems of differential equations which

are not self-adjoint, biorthogonal systems of functions play the same

role as the orthogonal systems do in the self-adjoint case. Anna J.

Pell established theorems for biorthogonal systems analogous to those

of F. Riesz and E. Fischer for orthogonal systems.

Theories of Irrationals and Theory of Aggregates

The new non-metrical theories of the jrrational were called forth

by the demands for greater rigor. The use of the word "quantity"

as a geometrical magnitude without reference to number and also

as a number which measures some magnitude was disconcerting, es-

pecially as there existed no safe ground for the assumption that the

same rules of operation applied to both. The metrical view of number
involved the entire theory of measurement which assumed greater

difficulties with the advent of the non-Euclidean geometries. In at-

tempts to construct arithmetical theories of number, irrational nimi-

bers were a source of trouble. It was not satisfactory to operate with
irrational numbers as if they were rational. What are irrational

numbers? Considerable attention was paid to the definition of them
as limits of certain sequences of rational numbers. A. L. Cauchy in

his Cours d'Analyse, 1821, p. 4, says "an irrational number is the

limit of diverse fractions which furnish more and more approximate
values of it." Probably Cauchy was satisfied of the existence of

irrationals on geometric grounds. If not, his exposition was a rea-

soning in a circle. To make this plain, suppose we have a develop-

ment of rational numbers and we desire to define limit and also irra-

tional number. With Cauchy we may say that "when the successive

values attributed to a variable approach a fixed value indefinitely

so as to end by differing from it as little as is wished, this fixed value
is called the limit of all the others." Since we are still confined to

the field of rational numbers, this limit, if not rational, is non-existent

and fictitious. If now we endeavor to define irrational number as a
limit, we encounter a break-down in our logical development. It

became desirable to define irrational number arithmetically without
reference to limits. This was achieved independently and at almost

^R. D. Carmichael in Science, N. S., Vol. 45, 1917, p. 471.
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the same time by four men, Charles Meray (1835-1911), K. Weier-
strass, R. Dedekind, and Georg Cantor. Meray 's first publication was
in the Revue des societes savantes: sc. math'. (2) 4, 1869, p. 284; his later

pubHcations were in 1872, 1887, 1894. Meray was born at Chalons
in France and was professor at the University of Dijon. The earliest

publication of K. Weierstrass's presentation was made by H. Kossak
in 1872. In the same year it was published in Crelle's Journal; Vol. 74,

p. 174, "by E. Heine who had received it from Weierstrass by oral

communication. R. Dedekind's publication is Stetigkeit und irra-

tionale Zahlen, Braunschweig, 1872. In 1888 appeared his Was sind

und was sollen die Zahlen? Richard Dedekind (1831-1916) was bom
in Braunschweig, studied at Gottingen and in 1854 became privat-

docent there. From 1858 to 1862 he was professor at the Polytech-

nicum in Zurich as the successor of J. L. Raabe, and from 1863 to

1894 professor at the Technical High School in Braunschweig. He
worked on the theory of numbers. The substance of his Stetigkeit und
Irrationale Zahlen, was worked out by him before he left Zurich. He
worked also in function theory. Georg Cantor's first printed statement

was in Mathem. Annalen, Vol. 5, 1872, p. 123.^ Georg Cantor (1845-

1918) was bom at Petrograd, lived from 1856 to 1863 in South Ger-

many, studied from 1863 to 1869 at Berlin where he came under the

influence of Weierstrass. While in Berlin he once defended the re-

markable thesis: In mathematics the art of properly stating a question

is more important than the solving of it (In re mathematica ars pro-

ponendi quaestionem pluris facienda est quam solvendi). He became
privatdocent at Halle in 1869, extraordinary professor in 1872 and
ordinary professor in 1879. In recent years he has suffered from ill

health, taking the form of mental disturbances. When emerging

from such attacks, his mind is said to be most productive of scientific

results. Nearly all his papers are on the development of the theory

of aggregates. It had been planned to hold on March 3, 1915, an

international celebration of his seventieth birthday, but on account

of the war, only a few German friends gathered at Halle to do him

honor.

In the theories of Ch. Meray and G. Cantor the irrational number

is obtained by an endless sequence of rational numbers ai, ai, 03, . . .

which have the property
|
a„—am

I
<e, provided n and m. are sufficiently

great. The method of K. Weierstrass is a special case of this. R.

Dedekind defined every "cut" in the system of rational munbers to

be a number, the "open cuts" constituting the irrational numbers.

To G. Cantor and Dedekind we owe the important theory of the linear

continuum which represents the culmination of efforts which go back

to the church fathers of the Middle Ages and the writings of Aristotle.

By this modem continuimx, "the notion of number, integral or frac-

1 For details see EncyclopHie des sciences mathSmaliques , Tome I, Vol. I, 19041

§§6-8, pp. 147-155-
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tional, has been placed upon a basis entirely independent of measur-

able magnitude, and pure analysis is regarded as a scheme which deals

with number only, and has, per se, no concern with measurable quan-

tity. Analysis thus placed upon an arithmetical basis is characterized

by the rejection of all appeals to our special intuitions of space, time

and motion, in support of the possibility of its operations" (E. W.
Hobson). The arithmetization of mathematics, which was in progress

during the entire nineteenth century, but mainly during the time of

Ch. Meray, L, Kronecker, and K. Weierstrass, was characterized by
E. W. Hobson in 1902 in the following terms: ^ "In some of the text-

books in common use in this country, the symbol 00 is still used as if

it denoted a number, and one in all respects on a par with the finite

numbers. The foundations of the integral calculus are treated as if

Riemann had never lived and worked. The order in which double

limits are taken is treated as immaterial, and in many other respects

the critical results of the last century are ignored. . . .

"The theory of exact measurement in the domain of the ideal ob-

jects of abstract geometry is not immediately derivable from intuition,

but is now usually regarded as requiring for its development a previous

independent investigation of the nature and relations of number.
The relations of number having been developed on an independent

basis, the scheme is applied by the help of the principle of congruency,

or other equivalent principle, to the representation of extensive or

intensive magnitude. . . . This complete separation of the notion

of number, especially fractional niunber, from that of magnitude,
involves, no doubt, a reversal of the historical and psychological

orders. . . . The extreme arithmetizing school, of which, perhaps,

L. Kronecker was the founder, ascribes reality, whatever that may
mean, to integral numbers only, and regards fractional numbers as

possessing only a derivative character, and as being introduced only

for convenience of notation. The ideal of this school is that every
theorem of analysis should be interpretable as giving a relation be-

tween integral numbers only. . . .

"The true ground of the difficulties of the older analysis as regards

the existence of limits, and in relation to the application to measur-
able quantity, lies in its inadequate conception of the domain of

number, in accordance with which the only numbers really defined

were rational numbers. This inadequacy has now been removed by
means of a purely arithmetical definition of irrational numbers, by
means of which the continuum of real numbers has been set up as

the domain of the independent variable in ordinary analysis. This
definition has been given in the main in three forms—one by E. Heine
and G. Cantor, the second by R. Dedekind, and the third by K. Weier-
strass. Of these the first two are the simplest for working purposes,
and are essentially equivalent to one another; the difference between

^Proceed. London Math. Soc, Vol. 35, 1902, pp. 117-139; see p. 118.
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them is that, while Dedekind defines an irrational number by means
of a section of all the rational numbers, in the Heine-Cantor form of

definition a selected convergent aggregate of such numbers is em-
ployed. The essential change introduced by this definition of irra-

tional numbers is that, for the scheme of rational numbers, a new
scheme of numbers is substituted, in which each number, rational or

irrational, is defined and can be exhibited in an indefinitely great

number of ways, by means of a convergent aggregate of rational

numbers. ... By this conception of the domain of number the root

difficulty of the older analysis as to the existence of a limit is turned,

each number of the continuum being really defined in such a way that

it itself exhibits the limit of certain classes of convergent sequences. . .

.

It should be observed that the criterion for the convergence of an
aggregate is of such a character that no use is made in it of infinitesi-

mals, definite finite nimibers alone being used in the tests. The old

attempts to prove the existence of limits of convergent aggregates

were, in default of a previous arithmetical definition of irrational

number, doomed to inevitable failure. ... In such applications of

analysis—as, for example, the rectification of a curve—the length of

the curve is defined by the aggregate formed by the lengths of a proper

sequence of inscribed polygons. ... In case the aggregate is not

convergent, the curve is regarded as not rectifiable. . . .

"It has in fact been shown that many of the properties of functions,

such as continuity, differentiability, are capable of precise definition

when the domain of the variable ts not a continuum, provided, how-
ever, that domain is perfect; this has appeared clearly in the course

of recent investigations of the properties of non-dense perfect aggre-

gates, and of functions of a variable whose domain is such an aggre-

gate."

In igi2 PhilipE. B. Jourdain of Fleet, near London, characterized

theories of the irrational substantially as follows: ^ "Dedekind's

theory had not for its object to prove the existence of irrationals:

it showed the necessity, as Dedekind thought, for the mathematician

to create them. In the idea of the creation of numbers, Dedekind

was followed by O. Stolz; but H. Weber and M. Pasch showed how
the supposition of this creation could be avoided: H. Weber defined

real numbers as sections {Schnitte) in the series of rationals; M. Pasch

(like B. Russell) as the segments which generate these sections. In

K. Weierstrass' theory, irrationals were defined as classes of rationals.

Hence B. Russell's objections (stated in his Principles of Mathematics,

Cambridge, 1903, p. 282) do not hold against it, nor does Russell

seem to credit Weierstrass and Cantor with the avoidance of quite

the contradiction that they did avoid. The real objection to Weier-

strass' theory, and one of the objections to G. Cantor's theory, is

' P. E. B. Jourdain, "On Isoid Relations and Theories of Irrational Number" in

International Congress of Mathematicians, Cambridge, 1912,
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that equality has to be re-defined. In the various arithmetical theories

of irrational numbers there are three tendencies: (a) the nuinber is

defined as a logical entity—a class or an operation— , as with K.

Weierstrass, H. Weber, M. Pasch, B. Russell, M. Fieri; (b) it is

"created," or, more frankly, postulated, as with R. Dedekind, 0.

Stolz, G. Peano, and Ch. Meray; (c) it is defined as a sign (for what,

is left indeterminate), as with E. Heine, G. Cantor, H. Thomae, A.

Pringsheim. ... In the geometrical theories, as with Paul du Bois-

Reymond, a real number is a sign for a length. In B. Russell's theory

it appears to be equally legitimate to define a real number in various

ways."
The theory of aggregates (Mengenlehre, theorie des ensembles,

theory of sets) owes its development to the endeavor to clarify the

concepts of independent variable and of function. Formerly the

notion of an independent variable rested on the naive concept of the

geometric continuum. Now the independent variable is restricted

to some aggregate of values or points selected out of the continuum.

The term function was destined to receive various definitions. J.

Fourier advanced the theorem that an arbitrary function can be

represented by a trigonometric series. P. G. L. Dirichlet looked upon
the general functional concept as equivalent to any arbitrary table of

values. When G. F. B. Riemann gave an example of a function ex-

pressed analytically which was discontinuous at each rational point,

the need of a more comprehensive theory became evident. The first

attempts to meet the new needs were made by Hermann Hankel and
Paul du Bois-Reymond. The Allgemeine Funktionentheorie of du
Bois-Reymond brilliantly sets forth the problems in philosophical

form, but it remained for Georg Cantor to advance and develop the

necessary ideas, involving a treatment of infinite aggregates. Even
though the infinite had been the subject of philosophic contemplation

for more than two thousand years, G. Cantor hesitated for ten years

before placing his ideas before the mathematical public. The theory

of aggregates sprang into being, as a science, when G. Cantor intro-

duced the notion of "enumerable" aggregates.-' G. Cantor began his

publications in 1870; in 1883 he published his Grundlagen einer all-

gemeinen Mannichjaltigkeitslehre. In 1895 and 1897 appeared in

Mathematische Annalen his Beitrdge zur Begriindung der transjiniten

Mengenlehre} These researches have played a most conspicuous role

not only in the march of mathematics toward logical exactitude, but
also in the realm of philosophy.

G. Cantor's theory of the continuum was used by P. Tannery in

1885 in the search for a profounder view of Zeno's arguments against

' A. Schoenflies, Enlwickelung der Mengenlehre und ihrer Anwetidungen, gemeinsam
mil Hans Halm hcrausgegeben, Leipzig u. Berlin, 19 13, p. 2.

, ^Translated into English by Philip E. B. Jourdain and published by the Open
Court Publ. Co., Chicago, 1915.
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motion. Paul Tannery (1843-1904), a brother of Jules Tannery,
attended the ficole Polytechnique in Paris and then entered the state

corps of manufacturing engineers. He devoted his days to business
and his evenings to the study of the history of science. From 1892
to 1896 he held the chair of Greek and Latin philosophy at the College
de France, but later he failed to receive the appointment to the chair
of the history of the sciences, although he was the foremost French
historian of his day. He was a deep student of Greek scientists, par-
ticularly of Diophantus. Other historical periods were taken up after-

wards, particularly that of R. Descartes and P. Fermat. His re-

searches, consisting mostly of separate articles, are being republished
in collected form.

In 1883 G. Cantor stated that every set and in particular the con-
tinuum can be well-ordered. In 1904 and 1907 E. Zermelo gave
proofs of this theorem, but they have not been generally accepted and
have given rise to much discussion. G. Peano objected to Zermelo's
proof because it rests on a postulate (" Zermelo's principle ") expressing

a property of the continuum. In 1907 E. Zermelo formulated that

postulate thus: "A set S which is divided into subsets A, B, C, . . .,

each containing at least one element, but containing no elements in

common, contains at least one subset S, which has just one element in

common with each of the subsets A, B, C, . .
." {Math. Ann., Vol.

56, p. no). To this G. Peano objects that one may not apply an
infinite number of times an arbitrary law by virtue of which one cor-

relates to a class some member of that class. E. B. Wilson comments
on this: "Here are two postulates by two different authorities; th^

postulates are contradictory, and each thinker is at liberty to adopt

whichever appears to him the more convenient." Zermelo's postulate,

before it had been formulated, was tacitly assumed in the researches

of R. Dedekind, G. Cantor, F. Bernstein, A. Schonflies, J. Konig, and
others. Zermelo's proof was rejected by H. Poincare, E. Borel, R.

Baire, V. A. Lebesgue.^ A third proof that every set can be well-

ordered was given in 1915 by Friedrich M. Hartogs of Munich. P.

E. B. Jourdain of Fleet did not consider this proof altogether satis-

factory. In 1918 he gave one of his own {Mind, 27, 386-388) and
declared, " thus any aggregate can be well ordered, Zermelo's ' axiom '

can be proved quite generally, and Hartog's work is completed."

In 1897 Cesare BuraH-Forti of Turin pointed out the following para-

dox: The series of ordinal numbers, which is well-ordered, must have

the greatest of all ordinal numbers as its order type. Yet the type of

the above series of ordinal numbers, when followed by its type, must

be a greater ordinal number, for /3-|-i is greater than ^. Therefore, a

well-ordered series of ordinal numbers containing all ordinal numbers

itself defines a new ordinal number not included in the original series.

Another paradox, due to Jules Antoine Richard of Chateauroux
1 See Bulletin Am. Math. Soc, Vol. 14, p. 438.
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in 1906, relates to the aggregate of decimal fractions between o and i

which can be defined by a finite number of words; a new decimal frac-

tion can be defined, which is not included in the previous ones.

Bertrand Russell discovered another paradox, given in his Prin-

ciples of Mathematics, 1903, pp. 364-368, 101-107), which is stated by-

Philip E. B. Jourdain thus: "If w is the class of all those terms x such

that X is not a member of x, then, if w is a member of w, it is plain that

w is not a member of w; while if w is not a member of w, it is equally

plain that w is a member of w." ^ These paradoxes are closely allied

to the "Epimenides puzzle": Epimenides was a Cretan who said that

all Cretans were liars. Hence, if his statement was true he was a liar.

H. Poincare and B. Russell attribute the paradoxes to the open and

clandestine use of the word "all." The difficulty lies in the definition

of the word "Menge."
Noteworthy among the attempts to place the theory of aggregates

upon a foundation that will exclude the paradoxes and antinomies that

had arisen, was the formulation in 1907 of seven restricting axioms

by E. Zermelo in Math. Annalen, 65, p. 261.

Julius Krniig (1849-1913), the Hungarian mathematician, in his

Neue Grwtdlagen der Logik, Arithmetik und Mengenlehre, 1914, speaks

of E. Zermelo's axiom of selection (Auswahlaxiom) as being really

a logical assumption, not an axiom in the old sense, whose freedom

from contradiction must be demonstrated along with the other

axioms. He takes pains to steer clear of the antinomies of B. Russell

and C. Burali-Forti. For a discussion of the logical and philosophical

questions involved in the theory of aggregates, consult the second

edition of E. Borel's Leqons sur la theorie des Jonctions, Paris, 1914,

note IV, which gives letters written by J. Hadamard, E. Borel, H.
Lebesgue, R. Baire, touching the validity of Zermelo's demonstration

that the linear continuum is well-ordered. A set of axioms of ordinal

magnitude was given by A. B. Frizell in 1912 at the Cambridge
Congress.

In the treatment of the infinite there are two schools. Georg Cantor
proved that the continuum is not denumerable; J. A. Richard, con-

tending that no mathematical entity exists that is not definable in a

finite number of words, argued that the continuum is denumerable.
H. Poincare claimed that this contradiction is not real, since J. A.
Richard employs a non-predicative definition.^ H. Poincare,^ in

discussing the logic of the infinite, states that, according to the first

school, the pragmatists, the infinite flows out of the finite; there is an
infinite, because there is an infinity of possible finite things. Accord-
ing to the second school, the Cantorians, the infinite precedes the

finite; the finite is obtained by cutting oft" a small piece of the infinite.

1 P. E. B. Jourdain, Conirihiitions, Chicago, 1915, p. 206.

''Bull. Am. Malh. Soc, Vol. 17, 1911, p. 193.
' Scienlia, Vol. 12, 1912, pp. i-ii.
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For pragmatists a theorem has no meaning unless it can be verified;

they reject indirect proofs of existence; hence they reply to E. Zermelo
who proves that space can be converted into a well-ordered aggregate
(wohlgeordnete Menge): Fine, convert it! We cannot carry out this

transformation because the number of operators is infinite. For
Cantorians mathematical things exist independently of man who may
think about them; for them cardinal number is no mystery. On the

other hand, pragmatists are not sure that any aggregate has a cardinal

number, and when they say that the Machtigkeit of the continuum
is not that of the whole numbers, they mean simply that it is im-

possible to set up a correspondence between these two aggregates,

which could not be destroyed by the creation of new points in space.

If mathematicians are ordinarily agreed among themselves, it is

because of confirmations which pass final judgment. In the logic of

infinity there are no confirmations.

L. E. J. Brouwer of the University of Amsterdam, expressing views

of G. Mannoury, said in 19 12 that to the psychologist belongs the

task of explaining "why we are averse to the so-called contradictory

systems in which the negative as well as the positive of certain propo-

sitions are valid," that "the intuitionist recognizes only the existence

of denumerable sets" and "can never feel assured of the exactness of

mathematical theory by such guarantees as the proof of its being

non-contradictory, the possibility of defining its concepts by a finite

number of words, or the practical certainty that it will never lead to

misunderstanding in himaan relations." ^ A. B. Frizell showed in

1914 that the field of denumerably infinite processes is not a closed

domain—a concept which the intuitionist refuses to recognize, but

which "need not disturb an intuitionist who cuts loose from the prin-

cipiimi contradictionis." More recent tendencies of research in this

field are described by E. H. Moore: ^ "From the linear continuum
'

with its infinite variety of functions and corresponding singularities

G. Cantor developed his theory of classes of points {Punktmengenlehre)

with the notions: limit-point, derived class, closed class, perfect class,

etc., and his theory of classes in general (allgemeine Mengenlehre) with

the notions: cardinal number, ordinal number, order-type, etc. These

theories of G. Cantor are permeating Modern Mathematics. Thus

there is a theory of functions on point-sets, in particular, on perfect

point-sets, and on more general order-types, while the arithmetic

of cardinal numbers and the algebra and function theory of ordinal

nvimbers are under development.

"Less technical generalizations or analogues of functions of the

continuous real variable occur throughout the various doctrines and

applications of analysis. A function of several variables is a function

of a single multipartite variable; a distribution of potential or a field

1 L. E. J. Brouwer in Bull. Am. Math. Soc, Vol. 20, 1913, pp. 84, 86.

2 New Haven Colloquium, igo6, New Haven, 1910, p. 2-4.
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of force is a function of position on a cuve or surface or region; the

value of the definite integral of the Calculus of Variations is a func-

tion of the variable function entering the definite integral; a curvilinear

integral is a function of the path of integration ; a functional operation

is a function of the argument function or functions; etc., etc.

"A multipartite variable itself is a function of the variable index

of the part. Thus a finite sequence: xi; . . .;»;», of real numbers is a

function x of the index i, viz., x{i) = Xi (i=i; . . .; n). Similarly,

an infinite sequence: xi; . . .;x„; . . ., of real numbers is a function x

of the index w, viz., .t(w)=.t„ (»=i; 2; . . .). Accordingly, «-fold

algebra and the theory of sequences and of series are embraced in

the theory of functions.

"As apart from the determination and extension of notions and
theories in analogy with simpler notions and theories, there is the

extension by direct generalization. The Cantor movement is in this

direction. Finite generalization, from the case n=i to the case n=n,
occurs throughout Analysis, as, for instance, in the theory of func-

tions of several independent variables. The theory of functions of a

denumerable infinity of variables is another step in this direction.^

We notice a more general theory dating from the year 1906. Recog-
nizing the fundamental role played by the notion limit-element (num-
ber, point, function, curve, etc.) in the various special doctrines, M.
Frechet has given, with extensive applications, an abstract generaliza-

tion of a considerable part of Cantor's theory of classes of points and
of the theory of continuous functions on classes of points. Frechet

considers a general class P of elements p with the notion limit defined

for sequences of elements. The nature of the elements p is not speci-

fied; the notion limit is not explicitly defined; it is postulated as de-

fined subject to specified conditions. For particular applications

explicit definitions satisfying the conditions are given. . . . The
functions considered are either functions jj, of variables p of specified

character or functions n on ranges P with postulated features: e. g.

limit; distance; element of condensation; connection, of specified char-

acter." E. H. Moore's own form of general analysis of 1906 considers

functions /j. of a general variable p on a general range P, where this

general embraces every well-defined particular case of variable and
range.

Early in the development of the theory of point sets it was pro-

posed to associate with them numbers that are analogous to those
representing lengths, areas, volumes.^ On account of the great arbi-

trariness of this procedure, several different definitions of such num-
bers have been given. The earliest were given in 1882 by H. Hankel
and A. Harnack. Another definition due to G. Cantor (1884) was
generalized by H. Minkowski in 1900. More precise measures were

'D. Hilbert, 1906, 1909.
' Ettcyclopidie des sciences mathenmliqiies, Tome II, Vol. i, 1912, p. 150.
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assigned in 1893 by C. Jordan in his Cours d'analyse, which, for plane
sets, was as follows: If the plane is divided up into squares whose
sides are 5 and if 5 is the sum of the squares all interior points of which
belong to the set P, if, moreover, 5+5' is the sum of aU squares which
contain points of P, then, as 5 approaches zero, S and S+S' converge
to limits I and A, called the "interior" and "exterior" areas. If

I=A, then P is said to be "measurable." Examples of plane curves

whose exterior areas were not zero were given in 1903 by W. F. Osgood
and H. Lebesgue. Another definition, given by E. Borel, was gen-

eralized by H. Lebesgue so as to present fewer inconveniences than

the older ones. The existence of non-measurable sets, according to

Lebesgue's definition, was proved by G. Vitali and Lebesgue himself;

the proofs assume E. Zermelo's axiom.

Instead of sets of points, E. Borel in 1903 began to study sets of

lines or planes; G. Ascoli considered sets of curves. M. Frechet in

1906 proposed a generalization by establishing general properties

without specifying the nature of the elements, and was led to the

so-called "calcul fonctionnel," to which attention has been called

before.

Functional equations, in which the unknown elements are one or

more functions, have received renewed attention in recent years. In

the eighteenth century certain tjrpes of them were treated by D'Alem-
bert, L. Euler, J. Lagrange, and P. S. Laplace.'- Later came the

"calculus of functions," studied chiefly by C. Babbage, J. F. W.
Herschel, and A. De Morgan, which was a theory of the solution of

functional equations by means of known functions or symbols. A. M.
Legendre and A. L. Cauchy studied the functional equation /(a;-|-y) =

f(x)+f(y); which recently has been investigated by R. Volpi, G.

Hamel, and R. Schimmack. Other equations, f{x+y)=f{x).f(y),

f{xy)=f(x).f(y), and (p(y+x)+(p(y — x) = 2<p{x).(p{y), the last being

D'Alembert's, were treated by A. L. Cauchy, R. Schimmack, and

J. Andrade. The names of Ch. Babbage, N. H. Abel, E. Schroder, J.

Farkas, P. Appell, and E. B. Van Vleck are associated with this subject.

Said S. Pincherele of Bologna in 191 2: "The study of certain classes

of functional equations has given rise to some of the most important

chapters of analysis. It suffices to cite the theory of differential or

partial differential equations. . . . The theory of equations of finite

differences, simple or partial, . . . the calculus of variations, the

theory of integral equations . . . the integrodifferential equations

recently considered by V. Volterra, are as many chapters of mathe-

matics devoted to the study of functional equations."

The theory of point sets led in 1902 to a generalization of G. F. B.

Riemann's definition of a definite integral by Henri Lebesgue of

Paris. E. B. Van Vleck describes the need of this change: ^ "This

1 EncydopMie des sciences mathematiques , Tome II, Vol. 5, 19 12, p. 46.

2 Bull. Am. Math. Soc, Vol. 23, 1916, pp. 6, 7.
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(Riemann's integral) admits a finite number of discontinuities but

an infinite number only under certain narrow restrictions. A totally

discontinuous function—for example, one equal to zero in the rational

points w|iicii are everywhere dense in the interval of integration,

and equal to i in the rational points which are likewise everywhere

dense—is not integrable a la Riemann. The restriction became a

very hampering one when mathematicians began to realize that the

analytic world in which theorems are deducible does not consist

merely of highly civilized and continuous functions. In 1902 Lebesgue

with great penetration framed a new integral which is identical with

the integral of Riemann when the latter is applicable but is immeasur-

ably more comprehensive. It will, for instance, include the totally

discontinuous function above mentioned. This new integral of

Lebesgue is proving itself a wonderful tool. I might compare it with

a modem Krupp gun, so easily does it penetrate barriers which before

were impregnable." Instructive is also the description of this move-
ment, as given by G. A. Bliss: ^ "Volterra has pointed out, in the

introductory chapter of his Leqons sur les fonctions des lignes (1913),

the rapid development which is taking place in our notions of infinite

processes, examples of which are the definite integral limit, the solu-

tion of integral equations, and the transition from functions of a
finite number of variables to functions of lines. In the field of in-

tegration the classical integral of Riemann, perfected by Darboux,
was such a convenient and perfect instrument that it impressed itself

for a long time upon the mathematical public as being something
unique and final. The advent of the integrals of T. J. Stieltjes and H.
Lebesgue has shaken the complacency of mathematicians in this

respect, and, with the theory of linear integral equations, has given
the signal for a re-examination and extension of many of the types of

processes which Volterra calls passing from the finite to the infinite.

It should be noted that the Lebesgue integral is only one of the evi-

dences of this restlessness in the particular domain of the integration

theory. Other new definitions of an integral have been devised by
Stieltjes, W. H. Young, J. Pierpont, E. Hellinger, J. Radon, M.
Frechet, E. H. Moore, and others. The definitions of Lebesgue,
Young, and Pierpont, and those of Stieltjes and Hellinger, form two
rather well defined and distinct types, while that of Radon is a gen-
eralization of the integrals of both Lebesgue and Stieltjes. The
efforts of Frechet and Moore have been directed toward definitions

valid on more general ranges than sets of points of a line or higher
spaces, and which include the others for special cases of these ranges.
Lebesgue and H. Hahn, with the help of somewhat complicated
transformations, have shown that the integrals of Stieltjes and Hel-

^ G. A. Bliss, "Integrals of Lebesgue," Bull. Am. Math. Soc, Vol. 24, 1917, pp. i-
47. See also T. H. Hildebrandt, loc. cit., Vol. 24, pp. 1 13-144, who gives bibliogra-
phy.
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linger are expressible as Lebesgue integrals. . . . Van Vleck has . . .

remarked that a Lebesgue integral is expressible as one of Stieltjes

by a transformation much simpler than that used by Lebesgue for

the opposite purpose, and the Stieltjes integral so obtained is readily

expressible in terms of a Riemann integral. . . . Furthermore the
Stieltjes integral seems distinctly better suited than that of Lebesgue
to certain types of questions, as is well indicated by the original

'problem of moments' of Stieltjes, or by a generalization of it which
F. Riesz has made. . . . The conclusion then seems to be that one
should reserve judgment, for the present at least, as to the final form
or forms which the integration theory is to take."

Mathematical Logic

Summarizing the history of mathematical logic, P. E. B. Jourdain
says: "^ "In somewhat close connection with the work of Leibniz . . .

stands the work of Johann Heinrich Lambert, who sought—not very
successfully—to develop the logic of relations. Toward the middle
of the nineteenth century George Boole independently worked out
and published his famous calculus of logic. . . . Independently of

him or anybody else, Augustus De Morgan began to work out logic

as a calculus, and later on, taking as his guide the maxim that logic

should not consider merely certain kinds of deduction but deduction

quite generally, founded all the essential parts of the logic of relations.

WUliam Stanley Jevons criticised and popularized Boole's work; and
Charles S. Peirce (1839-1914), Mrs. Christine Ladd-Franklin, Richard
Dedekind, Ernst Schroder (1841-1902), Hermann G. and Robert
Grassmann, Hugh MacCoU, John Venn, and many others, either

developed the work of G. Boole and A. De Morgan or built up systems

of calculative logic in modes which were largely independent of the

work of others. But it was in the work of Gottlob F'rege, Guiseppe

Peano, Bertrand Russell, and Alfred North Whitehead, that we find

a closer approach to the lingua characteristica dreamed of by Leibniz."

We proceed to a few details.

"Pure mathematics," says B. Russell,^ "was discovered by Boole

in a work which he called The Laws of Thought (1854). . . . His

work was concerned with formal logic, and this is the same thing as

mathematics." George Boole (1815-1864) became in 1849 professor

in Queen's College, Cork, Ireland. He was a native of Lincoln, and

a self-educated mathematician of great power. In his boyhood he

studied, unaided, the classical languages.' While teaching school he

pursued modem languages and entered upon the study of J. Lagrange

1 The Monist, Vol. 26, 1916, p. 522.

^International Monthly, 1901, p. 83.

^ See A. Macfarlane, Ten British Mathematicians, New York, 1916. Boole's

Laws of Thought was republished in 1917 by the Open Court Publ. Co., under the

editorship of P. E. B. Jourdain.



4oS A HISTORY OF MATHEMATICS

and P. S. Laplace. His treatises on Differential Equations (1859), and
Finite Differences (i860) are works of merit.

A point of view different from that of G. Boole was taken by Hugh
MacColl (1837-1909) who was led to his system of symbolic logic by
researches on the theory of probability. While Boole used letters to

represent the times during which certain propositions are true, Mac-
CoU employed the proposition as the real unit in symbolic reasoning.^

When the variables in the Boolean algebra are interpreted as proposi-

tions, C. I. Lewis of the University of California worked out a matrix
algebra for implications.

When the investigation of the principles of mathematics became
the chief task of logical symbolism, the aspect of symbolic logic as a
calculus ceased to be of such importance. Friedricti Ludwig Gottlob
Frege (1S48- ) of the University of Jena entered this field. Con-
sidering the foundations of arithmetic he inquired how far one could

go by conclusions which rest merely on the laws of general logic.

Ordinary language was found to be unequal to the accuracy required.

So knowing nothing of the work of his predecessors, except G. W.
Leibniz, he devised a symbolism and in 1879 published his Begriffs-

schrijt, and in 1893 his Grundgesetze der Arithmetik. Says P. E. B.

Jourdain: "Frege criticised the notion which mathematicians denote
by the word 'aggregate' (Menge), and particularly the views of

Dedekind and Schroder. Neither of these authors distinguished the
subordination of a concept under a concept from the falling of an
object under a concept; a distinction upon which Peano rightly laid so

much stress, and which is, indeed, one of the most characteristic

features of Peano's system of ideography." Ernst Schroder of Karls-
ruhe had published in 1877 his Algebra der Logik and John Venn his

Symbolic Logic in 1881.

"Peano's first publication on mathematical logic followed the
lines of Schroder's work of 1877 very closely. An excellent exposition

in Peano's Calcolo geometrico secondo VAusdehnungslehre di H. Grass-
mann, Turin, 1888, of the geometrical calculus of A. F. Mobius, H. G.
Grassmann, and others was preceded by an introduction treating of
the operations of deductive logic, which are very analogous to those
of ordinary algebra and of the geometrical calculus. The signs of
logic were sometimes used in the later parts of the book, though this

was not done systematically, as it was in many of Peano's later works "

(Jourdain). In 1891 appeared under G. Peano's editorship, the first

volume of the Rivista di Matematica which contains articles on mathe-
matical logic and its apphcations, but this kind of work was carried
on more fully in the Formtdaire de mathematiques of which the first

volume was published in 1895. This was projected to be a classified

collection of mathematical truths, written wholly in Peano's symbols:

1 For details see Philip E. B. Jourdain in Quarterly Joii/r. of Math., Vol. 4-?, 1912,
p. 219.
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it was prepared by Peano and his collaborators, C. Burali-Forti, G.
Viviania, R. Bettazzi, F. Giudice, F. Castellano, and G. Fano. "In
the later editions of the Formulaire," says P. E. B. Jourdain, "Peano
gave up all attempts to work out which are the primitive propositions
of logic; and the logical principles or theorems which are used in the

various branches of mathematics were merely collected together in

as small a space as possible. In the last edition (v., 1905), logic only
occupied 16 pages, while mathematical theories—a fairly complete
collection—occupied 463 pages. On the other hand, in the works of

Frege and B. Russell the exact enumeration of the primitive proposi-

tions of logic was always one of the most important problems." In
England mathematical logic has been strongly emphasized by Ber-
trand Russell who in 1903 published his Principles of Mathematics
and in 1910, in conjimction with A. N. Whitehead, brought out the

first volume of the Principia mathematica, a remarkable work. Rus-
sell and Whitehead follow in the main Peano in matters of notation,

Frege in matters of logical analysis, G. Cantor in the treatment of

arithmetic, and v. Staudt, M. Pasch, G. Peano, M. Fieri, and O. Veblen
in the discussion of geometry. By their theory of logical types they
solve the paradoxes of C. Burali-Forti, B. Russell, J. Konig, J. A.
Richard, and others. Certain points in the logic of relations as given

in the Principia mathematica have been simplified by Norbert Wiener
in 1914 and 1915.

In France this subject has been cultivated chiefly by Louis Couturat
(1868-1914), who, at the time of his death in an automobile accident

in Paris, held high rank in the philosophy of mathematics and of

language. He wrote La logique de Leibniz and Les principes des mathe-

matiques, Paris, 1905. Sets of postulates for the Boolean algebra of

logic were given by A. N. Whitehead, which were simplified in 1904
by E. V. Huntington of Harvard and B. A. Bernstein of California.

Says P. E. B. Jourdain: "Frege's symbolism, though far better for

logical analysis than Peano's, for instance, is far inferior to Peano's

—

a symbolism in which the merits of intemationality and power of

expressing mathematical theorems are very satisfactorily attained

—

in practical convenience. B. Russell, especially in the later works,

used the ideas of Frege, many of which he discovered subsequently

to, but independently of Frege, and modified the symbolism of Peano

as little as possible. Still, the complications thus introduced take

away that simple character which seems necessary to a calculus, and

which Boole and others reached by passing over certain distinctions

which a subtler logic has shown us must be made." ^

In 1886 A. B. Kempe discussed the fundamental conceptions both

of symbolic logic and of geometry. Later he developed this subject

further in the study of the relations between the logical theory of

1 Philip E. B. Jourdain in Quart. Jour, of Math., Vol. 41, igio, p. 331.
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classes and the geometrical theory of points. This topic received a
re-statement and an extension in 1905 from the pen of Josiah Royce

(1855-1916), professor of philosophy at Harvard University. Royce
contends that "the entire system of the relationships of the exact

sciences stands in a much closer connection with the simple principles

of symbolic logic than has thus far been generally recognized."

There exists divergence of opinion on the value of the notation of

the calculus of logic. Says A. Voss: ' "As far as I am able to survey

the practical results of mathematical logic, they run aground at every

real application, on account of the extreme complexity of its formulas;

by a comparatively large expenditure of effort they yield almost

trivial results, which, however, can be read off with absolute certainty.

Only in the discussion of purely mathematical questions, i. e. relations

between numbers, does it, in Peano's Formulaire . . ., prove itself

to be a real power, probably replaceable by no other mode of ex-

pression. By some even this is called into question."

Alessandro Padoa of the Royal Technical Institute of Genoa said

in 1912 :
^ "I do not hope to suggest to you the sympathetic and touch-

ing optimism of Leibniz, who, prophesying the triumphal success of

these researches, affirmed: 'I dare say that this is the last effort of

the human mind, and, when this project shall have been carried out,

all that men will have to do will be to be happy, since they will have
an instrument that will serve to exalt the intellect not less than the

telescope serves to perfect their vision.' Although for some fifteen

years I have given myself up to these studies, I have not a hope so

hyperbolic; but I delight in recalling the candor of this master who,
absorbed in scientific and philosophic investigations, forgot that the

majority of men sought and continue to seek happiness in the feverish

conquest of pleasure, money, and honors. Meanwhile we should
avoid an excessive scepticism, because always and everywhere, there

has been an elite—to-day less restricted than in the past—^which was
charmed by, and delights now in, all that raises one above the con-
fused troubles of the passions, into the imperturbable immensity of

knowledge, whose horizons become the more vast as the wings of

thought become more powerful and rapid."

In 1 914 an international congress of mathematical philosophers was
held in Paris, with Emil Boutroux as president. Unfortunately the
great war nipped this promising new movement in the bud. Recent
books on the philosophy of mathematics are M. Winter's La methode
dans la philosophic des mathematics, Paris, 1911, Leon Brunschvicg's
Les eiapes de la philosophie mathematique, Paris, 19 12, and J. B.
Shaw's Lectures on the Philosophy of Mathematics, Chicago and Lon-
don, 1918.

'A. Voss, Ueher das Wesender Mathematik, Leipzig u. Berlin, 2. Aufl., 19 13,
p. 28.

2 Bull. Am. Math. Soc, Vol. 20, 1913, p. 98.
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Theory of Functions

We begin our sketch of the vast progress in the theory of functions

by considering investigations which center about the special class

called elliptic functions. These were richly developed by N. H. Abel
and C. G. J. Jacobi.

Niels Henrik Abel (1802-1829) was born at Findoe in Norway, and
was prepared for the university at the cathedral school in Christiania.

He exhibited no interest in mathematics until 1818, when B. Hobnboe
became lecturer there, and aroused Abel's interest by assigning original

problems to the class. Like C. G. J. Jacobi and many other young
men who became eminent mathematicians, Abel found the first exer-

cise of his talent in the attempt to solve by algebra the general equa-
tion of the fifth degree. In 182 1 he entered the University in Chris-

tiania. The works of L. Euler, J. Lagrange, and A. M. Legendre
were closely studied by him. The idea of the inversion of elUptic

functions dates back to this time. His extraordinary success in

mathematical study led to the offer of a stipend by the government,
that he might continue his studies in Germany and France. Leaving
Norway in 1825, Abel visited the astronomer, H. C. Schumacher, in

Hamburg, and spent six months in Berlin, where he became intimate

with August Leopold Crelle (1780-1855), and met J. Steiner. En-
couraged by Abel and J. Steiner, Crelle started his journal in 1826.

Abel began to put some of his work in shape for print. His proof

of the impossibility of solving the general equation of the fifth degree

by radicals,—first printed in 1824 in a very concise form, and difi&cult

of apprehension,—was elaborated in greater detail, and pubhshed in

the first volume. He investigated also the question, what equations

are solvable by algebra and deduced important general theorems

thereon. These results were published after his death. Meanwhile
E. Galois traversed this field anew. Abel first used the expression,

now called the "Galois resolvent"; Galois himself attributed the idea

of it to Abel. Abel showed how to solve the class of equations, now
called "Abehan." He entered also upon the subject of infinite series

(particularly the binomial theorem, of which he gave in Crelle's

Journal a rigid general investigation), the study of functions, and of

the integral calculus. The obscurities everywhere encountered by him
owing to the prevailing loose methods of analysis he endeavored to

clear up. For a short time he left Berlin for Freiberg, where he had
fewer interruptions to work, and it was there that he made researches

on hypereUiptic and Abelian functions. In July, 1826, Abel left

Germany for Paris without having met K. F. Gauss ! Abel had sent

to Gauss his proof of 1824 of the impossibility of solving equations of

the fifth degree, to which Gauss never paid any attention. This slight,

and a haughtiness of spirit which he associated with Gauss, prevented

the genial Abel from going to Gottingen. A similar feeUng was enter-
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tained by hirii later against A. L. Cauchy. Abel remained ten months
in Paris. He met there P. G. L. Dirichlet, A. M. Legendre, A. L.

Cauchy, and others, but was little appreciated. He had already pub-
lished several important memoirs in Crelle's Journal, but by the

French this new periodical was as yet hardly known to exist, and
Abel was too modest to speak of his own work. Pecuniary embarrass-

ments induced him to return home after a second short stay in Berlin.

At Christiania he for some time gave private lessons, and served as

docent. Crelle secured at last an appointment for him at Berlin;

but the news of it did not reach Norway until after the death of

Abel at Froland.' Ch. Hermite is said to have remarked: "Abel a

laisse aux mathematiciens de quoi travailler pendant cent cinquante

ans."

At nearly the same time with Abel, C. G. J. Jacobi pubhshed articles

on elliptic functions. A. M. Legendre's favorite subject, so long

neglected, was at last to be enriched by some extraordinary discov-

eries. The advantage. to be derived by inverting the elliptic integral

of the first kind and treating it as a function of its amplitude (now
called elhptic function) was recognized by Abel, and a few months
later also by Jacobi. A second fruitful idea, also arrived at inde-

pendently by both, is the introduction of imaginaries leading to the

observation that the new functions simulated at once trigonometric

and exponential functions. For it was shown that while trigonometric

functions had only a real period, and exponential only an imaginary,

elliptic functions had both sorts of periods. These two discoveries

were the foundations upon which Abel and Jacobi, each in his own
way, erected beautiful new structures. Abel developed the curious

expressions representing elliptic functions by infinite series or quo-
tients of infinite products. Great as were the achievements of Abel
in elhptic functions, they were eclipsed by his researches on what are

now called Abelian functions. Abel's theorem on these functions was
given by him in several forms, the most general of these being that
in his Memoire sur une propriete generate d'une classe tres-etendue de

fonclions transcendenles (1826). The history of this memoir is inter-

esting. A few months after his arrival in Paris, Abel submitted it to

the French Academy. A. L. Cauchy and A. M. Legendre were ap-
pointed to examine it; but said nothing about it until after Abel's
death. In a brief statement of the discoveries in question, pubhshed
by Abel in Crelle's Journal, 1829, reference is made to that memoir.
This led C. G. J. Jacobi to inquire of Legendre what had become of it.

Legendre says that the manuscript was so badly written as to be
illegible, and that Abel was asked to hand in a better copy, which he

' C. A. Bjerknes, Niels-Henrik Abel, Tableau de sa vie el de son action scientifique,
Paris, 1885. See also Ahel (N. H.) Memorial publie d Voccasion du ccnlenaire de sa
naissance. Kristiania [1902]; also N. H. Abel. Sa vie el son Oeuwe, par Ch. Lucas de
Peslouan, Paris, 1906.
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neglected to do. Others have attributed this failure to appreciate
Abel's paper to the fact that the French academicians were then in-

terested chiefly in applied mathematics—heat, elasticity, electricity.

S. D. Poisson having in a report on C. G. J. Jacobi's Fundamenta nova
recalled the reproach made by J. Fourier to Abel and Jacobi of not
having occupied themselves preferably with the movement of heat,

Jacobi wrote to Legendre: "It is true that Monsieur Fourier held the

view that the principal aim of mathematics was public utility, and
the explanation of natural phenomena; but a philosopher such as he
should have known that the unique aim of science is the honor of the

human spirit, and that from this point of view a question about
numbers is as important as a question about the system of the world."

In 1823 Abel published a paper ^ in which he is led, by a mechanical
question including as a special case the problem of the tautochrone,

to what is now called an integral equation, on the solution of which
the solution of the problem depends. His problem was, to determine
the curve for which the time of descent is a given function of the ver-

tical height. In view of the recent developments in integral equa-

tions, Abel's problem is of great historical interest. Independently
of Abel, researches along this line were published in 1832, 1837, and

1839 by J. Liouville, who in 1837 showed that a particular solution of

a certain differential equation can be obtained by the aid of an in-

tegral equation of " the second kind," somewhat different from Abel's

equation "of the first kind."

Abel's Mcmoire of 1826 remained in A. L. Cauchy's hands. It was
not published until 1841. By a singular mishap, the manuscript was
lost before the proof-sheets were read.

In its form, the contents of the memoir belongs to the integral

calculus. Abelian integrals depend upon an irrational function y
which is connected with x by an algebraic equation F{x, y)=o. Abel's

theorem asserts that a sum of such integrals can be expressed by a

definite number p of similar integrals, where p depends merely on the

properties of the equation F{x, y)=o. It was shown later that p is the

deficiency of the curve F{x, y)=o. The addition theorems of elliptic

integrals are deducible from Abel's theorem. The hyperelliptic in-

tegrals introduced by Abel, and proved by him to possess multiple

periodicity, are special cases of Abelian integrals whenever p=or >3.

The reduction of Abelian to elliptic integrals has been studied mainlyby

C. G. J. Jacobi, Ch. Hermite, Leo Konigsberger, F. Brioschi, E. Gour-

sat, E. Picard, and 0. Bolza, then of the University of Chicago. Abel's

theorem was pronounced by Jacobi the greatest discovery of our cen-

tury on the integral calculus. The aged Legendre, who greatly ad-

mired Abel's genius, called it "monumentum aere perennius." Some
cases of Abel's theorem were investigated independently by William

Henry Fox Talbot (1800-187 7), the EngHsh pioneer of photography,

1 N. H. Abel, Oeuvres completes, 1881, Vol. i, p. 11. See also p. 97.-
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who showed that the theorem is deducible from symmetric functions

of the roots of equations and partial fractions.^

Two editions of Abel's works have been published: the first by
Berndt Michael Hohnboe (1795-1850) of Christiania in 1839, and the

second by L. Sylow and S. Lie in 1881. During the few years of work
allotted to the young Norwegian, he penetrated new fields of research.

Abel's published papers stimulated researches containing certain

results previously reached by Abel himself in his then unpubHshed
Parisian memoir. We refer to papers of Christian Jiirgensen (1805-

1861) of Copenhagen, Ole Jacob Broch (1818-1889) of Christiania,

Ferdinand Adolf Minding (1806-1885) of Dorpat, and G. Rosenhain.

Some of the discoveries of Abel and Jacobi were anticipated by
K. F. Gauss. In the Disquisitiones ArithmeticoR he observed that

the principles which he used in the division of the circle were ap-

plicable to many other functions, besides the circular, and particularly

r dx
to the transcendents dependent on the integral / — . r . From this

J \/i—x
Jacobi - concluded that Gauss had thirty years earlier considered the

nature and properties of elliptic functions and had discovered their

double periodicity. The papers in the collected works of Gauss con-

firm this conclusion.

Carl Gustav Jacob Jacobi (1804-185 1) was born of Jewish parents
at Potsdam. Like many other mathematicians he was initiated into

mathematics by reading L. Euler. At the University of Berlin, where
he pursued his mathematical studies independently of the lecture

courses, he took the degree of Ph.D. in 1825. After giving lectures

in Berlin for two years, he was elected extraordinary professor at

Konigsberg, and two years later to the ordinary professorship there.

After the publication of his Fundamenta Nova in 1829 he spent some
time in travel, meeting Gauss in Gottingen, and A. M. Legendre,

J. Fourier, S. D. Poisson, in Paris. In 1842 he and his colleague,

F. W. Bessel, attended the meetings of the British Association, where
they made the acquaintance of English mathematicians. Jacobi
was a great teacher. "In this respect he was the very opposite of his

great contemporary Gauss, who disUked to teach, and who was any-
thing but inspiring."

Jacobi's early researches were on Gauss' approximation to the
value of definite integrals, partial differential equations, Legendre's
coefl&cients, and cubic residues. He read Legendre's Exercises, which
give an account of elliptic integrals. When he returned the book to
the library, he was depressed in spirits and said that important books
generally excited in him new ideas, but that this time he had not
been led to a single original thought. Though slow at first, his ideas

' G. B. Mathews in Nature, Vol. 95, 1915, p. 219.
' R. Tucker, " Carl Friedrich Gauss," Nature, April, 1877.



THEORY OF FUNCTIONS 415

flowed all the richer afterwards. Many of his discoveries in elliptic

functions were made independently by Abel. Jacobi communicated
his first researches to Crelle's Journal. In 1829, at the age of twenty-
five, he published his Fuiidamenta Nova Theories Functionum Ellip-

ticarum, which contains in condensed form the main results in elhptic

functions. This work at once secured for him a wide reputation. He
then made a closer study of theta-functions and lectured to his pupils

on a new theory of elliptic functions based on the theta-functions. He
developed a theory of transformation which led him to a multitude
of formulae containing 5, a transcendental function of the modulus,

defined by the equation q=e~'^^ 1^. He was also led by it to consider

the two new functions H and 0, which taken each separately with
two different arguments are the four (single) theta-functions desig-

nated by the 0i, 02, 03, 04.^ In a short but very important memoir
of 1832, he shows that for the hypereUiptic integral of any class the

direct functions to which Abel's theorem has reference are not func-

tions of a single variable, such as the elliptic sn, en, dn, but functions

of p variables. "^ Thus in the case p=2, which Jacobi especially con-

siders, it is shown that Abel's theorem has reference to two functions

X(m, v), \i(u, v), each of two variables, and gives in effect an addition-

theorem for the expression of the functions \{u+u', v+v'), \i(u+u',
v+v') algebraically in terms of the functions X(m, v), Xi(u, v), \{u' , v'),

Xi(m', v'). By the memoirs of N. H. Abel and Jacobi it may be con-

sidered that the notion of the Abelian function of p variables was
established and the addition-theorem for these functions given. Re-

cent studies touching Abelian functions have been made by K. Weier-

strass, E. Picard, Madame Kovalevski, and H. Poincare. Jacobi's

work on differential equations, determinants, dynamics, and the

theory of numbers is mentioned elsewhere.

In 1842 C. G. J. Jacobi visited Italy for a few months to recuperate

his health. At this time the Prussian government gave him a pension,

and he moved to Berlin, where the last years of his life were spent.

Among those who greatly extended the researches on functions

mentioned thus far was Charles Bermite (1822-igoi), who was born

at Dieuze in Lorraine.^ He early manifested extraordinary talent for

mathematics. Neglecting the regular courses of study, he read in

Paris with greatest ardor the masterpieces of L. Euler, J. Lagrange,

K. F. Gauss, and C. G. J. Jacobi. In 1842 he entered the Ecole Poly-

technique. From birth he had suffered from an infirmity of the right

leg and had to use a cane. On this account he was declared ineligible

to any government position given to graduates of the Ecole. Hermite,

therefore, left at the end of the first year. A letter to Jacobi displayed

his mathematical genius, but the necessity of taking examinations

which he held en horreur compelled him to descend from his lofty

' Arthur Cayley, Inaugural Address before the British Association, 1883.

2 Bull. Am. Math. Soc, Vol. 13, 1907, p. 182.
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mathematical specula'tions and take up the irksome details prepara-

tory to examinations. In 1848^ he became examinateur d'admission

and repetiteur d'analyse at the Ecole Polytechnique. In that position

he succeeded P. L. Wantzel. That year he married a sister of his

friend, Joseph Bertrand. In 1869, at the age of forty-seven, he became
professor and at length reached a position befitting his talents. At
the Sorbonne he succeeded J. M. .C. Duhamel as professor of higher

algebra. He occupied the chair at the Ecole Polytechnique until

1876, at the Sorbonne until 1897. For many years he had been re-

garded as the venerated chief among French mathematicians. Hermite
had no fondness for geometry. His researches are confined to algebra

and analysis. He wrote on the theory of numbers, invariants and
covariants, definite integrals, theory of equations, elliptic functions

and the theory of functions. Of his collected works, or Oeuvres,

Vol. Ill appeared in 1912, edited by E. Picard. In the theory of

functions he was the foremost French writer of his day, since A. L.

Cauchy. He has given an entirely new significance to the use of

definite integrals in the theory of functions: we name the develop-

ments of the properties of the gamma-function which have been thus

initiated.

Elliptic functions, considered on the Jacobian rather than on the

Weierstrassian basis, was a favorite study of Hermite. "To him is

due the reduction of an elliptic integral to its canonical form by means
of the syzygy among the concomitants of a binary quartic. His in-

vestigations on modular functions and modular equations are of the

highest importance. It was Hermite who discovered pseudo-periodic

functions of the second kind, and developed their properties. In a
memoir that may be fairly described as classical, ' Sur quelques appli-

cations des fonctions elliptiques' in the Comptes Reiidus, 1877-1882,
he applied these functions to the integration of the unspecialized form
of Lame's differential equation; and elliptic functions generally were
applied in that memoir to obtain the solution of a number of physical

problems" (A. R. Forsyth).

In 185S Hermite introduced in place of the variable q of Jacobi a

new variable u> connected with it by the equation g=e"^", so that u>=

ik' Ik, and was led to consider the functions <^(<«), <f'{(^), xC"')-''

Henry Smith regarded a theta-function with the argument equal to

zero, as a function of m. This he called an omega-function, while
the three functions <#>(«), </'(«), xC"*); ^-^e his modular functions.

Researches on theta-functions with respect to real and imaginary
arguments have been made by Ernst Meissel (1826-1895) of Kiel,

J. Thomae of Jena, Alfred Enneper (1830-1885) of Gottingen. A
general formula for the product of two theta-functions was given in

1854 by H. Schroter (1829-1892) of Breslau. These functions have

' Arthur Cayley, Inaugural Address, 1883.
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been studied also by Cauchy, Konigsberger of Heidelberg (born 1837),
Friedrich Julius Richelot (1808-1875) of Konigsberg, Johann Georg
Rosenhain (1816-1887) oi Konigsberg, Ludwig Schlafli (1814-1895)
of Bern.i

A. M. Legendre's method of reducing an elliptic differential to its

normal form has called forth many investigations, most important
of which are those of F. J. Richelot and of K. Weierstrass of Berlin.

The algebraic transformations of eUiptic functions involve a relation

between the old modulus and the new one which C. G. J. Jacobi ex-

pressed by a differential equation of the third order, and also by an
algebraic equation, called by him "modular equation." The notion

of modular equations was famihar to Abel, but the development of

this subject devolved upon later investigators. These equations

have become of importance in the theory of algebraic equations, and
have been studied by Ludwig Adolph Sohncke (1807-1853) of Halle,

E. Mathieu, L. Konigsberger, E. Betti of Pisa, Ch. Hermite of Paris,

P. Joubert of Angers, Francesco Brioschi of Milan, L. Schlafli, H.
Schroter, C. Gudermann of Cleve, Carl Eduard Giitzlaff (1805-?) of

Marienwerder in Prussia.

Felix Klein of Gottingen has made an extensive study of modular
functions, dealing with a t)?pe of operations lying between the two
extreme types, known as the theory of substitutions and the theory

of invariants and covariants. Klein's theory has been presented in

book-form by his pupil, Robert Fricke. The bolder features of it

were first pubUshed in his Ikosaeder, 1884. His researches embrace

the theory of modular functions as a specific class of elliptic functions,

the statement of a more general problem as based on the doctrine

of groups of operations, and the further development of the subject

in connection with a class of Riemann's surfaces.

The elliptic functions were expressed by N. H. Abel as quotients

of doubly infinite products. He did not, however, inquire rigorously

into the convergency of the products. In 1845 A. Cayley studied

these products, and found for them a complete theory, based in part

upon geometrical interpretation, which he made the basis of the whole

theory of elliptic functions. F. G. Eisenstein discussed by purely

analytical methods the general doubly infinite product, and arrived

at results which have been greatly simplified in form by the theory of

primary factors, due to K. Weierstrass. A certain function involving

a doubly infinite product has been called by Weierstrass the sigma-

function, and is the basis of his beautiful theory of elliptic functions.

The first systematic presentation of Weierstrass' theory of elliptic

functions was published in 1886 by G. H. Halphen in his Theorie des

fonctions elliptiques et des leurs applications. Applications of these

functions have been given also by A. G. Greenhill of London. Gener-

1 Alfred Enneper, EUiptische Funktionen, Theorie und Geschichk, Halle a/S, 1876.
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alizations analogous to those of Weierstrass on elliptic functions have
• been made by Felix Klein on hyperelliptic functions.

Standard works on elUptic functions have been published by C. A.
A. Briot and /. C. Bouquet (1859), by L. Konigsherger, A. Cayley,

Heinrich Durege (1821-1893) of Prague, and others.

Jacobi's work on Abehan and theta-functions was greatly extended

by Adolph Gopel (i8i2)-i847), professor in a gymnasium near Pots-

dam, and Johaixn Georg Rosenhain (1816-1887) of Konigsberg.

Gopel in his Theories transcendentium primi ordinis adumbratio levis

(Crelle, 35, 1847) and Rosenhain in several memoirs established each

independently, on the analogy of the single theta-functions, the func-

tions of two variables, called double theta-functions, and worked out

in connection with them the theory of the Abelian functions of two
variables. The theta-relations established by Gopel and Rosenhain
received for thirty years no further development, notwithstanding

the fact that the double theta series came to be of increasing impor-

tance in analytical, geometrical, and mechanical problems, and that

Ch. Hermite and L. Konigsberger had considered the subject of trans-

formation. Finally, the investigations of C. W. Borchardt, treating

of the representation of Kummer's surface by Gopel's biquadratic

relation between four theta-functions of two variables, and researches

of H. H. Weber, F. Prym, Adolf Krazer, and Martin Krause of Dres-

den led to broader views. Carl Wilhelm Borchardt (1817-1880) was
born in Berlin, studied under P. G. L. Dirichlet and C. G. J. Jacobi
in Germany, and under Ch. Hermite, M. Chasles, and J. Liouville

in France. He became professor in Berlin and succeeded A. L. Crelle

as editor of the Journal fur Mathematik. Much of his time was given

to the applications of determinants in mathematical research.

Friedrich Prym (1841-1915) studied at Berlin, Gottingen, and Hei-
delberg. He became professor at the Polytechnicum in Zurich, then at

Wiirzburg. His interest lay in the theory of functions. Researches
on double theta-functions, made by A. Cayley, were extended to

quadruple theta-functions by Thomas Craig (1855-1900), professor

at the Johns Hopkins University. He was a pupil of J. J. Sylvester.

While lecturing at the University he was during 1879-1881 connected
with the United States Coast and Geodetic Survey. For many years
he was an editor of the American Journal of Mathematics.

Starting with the integrals of the most general form and considering
the inverse functions corresponding to these integrals (the Abelian
functions of p variables), G. F. B. Riemann defined the theta-functions

of p variables as the sum of a /)-tuply infinite series of exponentials,

the general term depending on p variables. Riemann shows that the
Abelian functions are algebraically connected with theta-functions of

the proper arguments, and presents the theory in the broadest form.^

1 Arthur Cayley, Inaugural Address, 1883.
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He rests the theory of the multiple theta-functions upon the general
principles of the theory of functions of a complex variable.

Through the researches of A. Brill of Tubingen, M. Nother of

Erlangen, and Ferdinand Lindemann of Munich, made in connection
with Riemann-Roch's theorem and the theory of residuation, there
has grown out of the theory of Abelian functions a theory of algebraic

functions.and point-groups on algebraic curves.

General Theory of Functions

The history of the general theory of functions begins with the
adoption of new definitions of a function. As an inheritance from the
eighteenth century, y was called a function of x, if there existed an
equation between these variables which made it possible to calculate

y for any given value of x lying anjnvhere between — 00 and + 00

.

We have seen that L. Euler sometimes used a second, more general,

definition, which was adopted by J. Fourier and which was translated

by P. G. L. Dirichlet into the language of analysis thus: y is called a
function of x, if y possess one or more definite values for each of cer-

tain values that x is assimied to take in an interval xo to xi. In func-

tions thus defined, there need be no analytical connection between

y and x, and it becomes necessary to look for possible discontinuities.

This definition was still further emphasized and generalized later,

after the introduction of the theory of aggregates. There a function

need not be defined for each point in the continuum embracing all

real and complex numbers, nor for each point in an interval, but only

for the points x in some particular set of points. Thus, y is a function

of x, if for each point or number in any set of points or numbers x,

there corresponds a point or number in a set y.

P. G. L. Dirichlet lectured on the theory of the potential and thereby

made this theory more generally known in Germany. In 1839 K. F.

Gauss had made researches on the potential; in England George
Green had issued his fundamental memoir as early as 1828. Dir-

ichlet's lectures on the potential became known to G. F. B. Riemann
who made it of fundamental importance for the whole of mathe-
matics. Before considering Riemann we must take up A. L.

Cauchy.

J. Fourier's declaration that any given arbitrary function can be

represented by a trigonometric series led Cauchy to a new formulation

of the concepts " continuous," " limiting value " and " function." In his

Cours d'Analyse, 1821, he says: "The function f(x) is continuous

between two given limits, if for each value of x that lies between

these Hmits, the numerical value of the difference f{x+ a) -f{x) di-

minishes with a in such a way as to become less than every finite

number " (Chap. II, § 2). With S. F. Lacroix and A. L. Cauchy there

are indications of a tendency to free the functional concept from an ac-
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tual representation.^ Although in his earlier writings slow to recognize

the importance of imaginary variables, Cauchy later entered deeply

into the treatment of functions of complex variables, not in a geometri-

cal form as found in C. Wessel, J. R. Argand, and K. F. Gauss, but

rather in analytical form. He carried on integrations through imag-

inary fields. While L. Euler and P. S. Laplace had declared the order

of integration in double integrals to be immaterial, A. L. Cauchy
showed that this was true only when the expression to be integrated

does not become indeterminate in the interval {Memoire sur la theorie

des integrales definics, read 1814, printed 1825).

If between two paths of integration, in the complex plane, there

lies a pole, then the difference between the respective integrals can be

represented by means of a "residu de la fonction" (1826), a concept of

undoubted importance known as the calculus of residues. In 1846

he showed that if X and V are continuous functions of x and y within

a closed area, then I (Xdx+Ydy) =±
j j

( —jdxdy, where

the left integral extends over the boundary and the right integral

over the inner area of the complex plane; he considers integration

along a closed path surrounding a "pole," and later along a closed

path surrounding a line on which the function is discontinuous, as

for instance log x for x<o when the function changes by 2 iri in crossing

the »-axis. The fundamental theorem of Cauchy's theory of series

was given in 1837 :"A function can be expanded in an ascending power
series in x, as long as the modulus of x is less than that for which the

function ceases to be finite and continuous." In 1840 the proof of this

theorem is made to rest on the theorem of mean value. Cauchy,

J. C. F. Sturm, and J. Liouville had carried on discussions as to

whether the continuity of a function was sufficient to insure its ex-

pandability or whether that of its derivative must be demanded as well.

In 1 85 1 Cauchy concluded that the continuity of the derivative must
be demanded. A function /(s) , which is single-valued for z=x+iy
was called by Cauchy "monotypique," later "monodrome," by Briot

and Bouquet "monotrope," by Hermite "imiforme," by the Germans
"eindeutig." Cauchy called a function "monogen" when for every

z in a region it had only one derivative value, "synectique" if it is

monodromic and monogenic and does not become infinite. Instead

of "synectique," C. A. A. Briot and J. C. Bouquet, and later French
writers say "holomorph," also "meromorph" when the function has
"poles" in the region.

Some parts of Cauchy's theory of functions were elaborated by
P. M. H. Laurent and Victor Alexandre Puiseux (1820-1883), both

'A. Brill und M. Noether, "Entwicklung der Theorie der algebraischen Func-
tionen in alterer und neuerer Zeit," Jahresb. d. d. Math. Vereinig., Vol. 3, 1892-1893,
p. 162, We are making extensive use of this historical monograph.
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of Paris. Laurent pointed out the advantage resulting in certain

cases from a mixed expansion in ascending and descending powers of a
variable, while Puiseux demonstrated the advantage that may be
gained by the use of series involving fractional powers of the variable.

Puiseux examined many-valued algebraic functions of a complex va-
riable, their branch-points and moduli of periodicity.

We proceed to investigations made in Germany by G. F. B.
Riemann.
Georg Friedrich Bemhard Riemann (1826-1866) was born at

Breselenz in Hanover. His father wished him to study theology, and
he accordingly entered upon philological and theological studies at

Gottingen. He attended also some lectures on mathematics. Such
was his predilection for this science that he abandoned theology.

After studying for a time under K. F. Gauss and M. A. Stern, he
was drawn, in 1847, to Berlin by a galaxy of mathematicians, in

which shone P. G. L. Dirichlet, C. G. J. Jacobi, J. Steiner, and F. G.

Eisenstein. Returning to Gottingen in 1850, he studied physics under
W. Weber, and obtained the doctorate the following year. The thesis

presented on that occasion, Grundlagen fur eine allgemeine Theorie der

Funktionen einer verdnderlichen complexen Grosse, excited the admira-

tion of K. F. Gauss to a very unusual degree, as did also Riemann'?
trial lecture, Ueber die Hypothesen welche der Geometrie zu Grunde
liegen. Influenced by Gauss and W. Weber, physical views were the

mainspring of his purely mathematical investigations. Riemann's
HabOitationsschrift (1854, published 1867) was on the Representa-

tion of a Function by means of a Trigonometric Series, in which he

advanced materially beyond the position of Dirichlet. A. L. Cauchy
had set up criteria for the existence of a deiinite integral defined as

the limit of a sum, and had stated that such a limit always exists

when the function is continuous. Riemann made a startling extension

by pointing out that the existence of such a limit is not confined to

cases of continuity. Riemann's new criterion placed the definite

integral upon a foundation wholly independent of the differential

calculus and the existence of a derivative. It led to the consideration

of areas and lengths of arcs which may transcend all geometric figures

within the reach of our intuitions. Half a century later the concept

of a definite integral was still further extended by H. Lebesgue of

Paris and others. Our hearts are drawn to Riemann, an extraordina-

rily gifted but shy genius, when we read of the timidity and nervousness

displayed when he began to lecture at Gottingen, and of his jubilation

over the unexpectedly large audience of eight students at his first

lecture on differential equations.

Later he lectured on Abelian functions to a class of three only,

E. C. J. Schering, Bjerknes, and Dedekind. K. F. Gauss died in 1855,

and was succeeded by P. G. L. Dirichlet. On the death of the latter,

in 1859, Riemann was made ordinary professor. In i860 he visited
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Paris, where he made the acquaintance of French mathematicians.
The dehcate state of his health induced him to go to Italy three times.

He died on his last trip at Selasca, and was buried at Biganzolo.

Like all of Riemann's researches, those on functions were profound
and far-reaching. A decidedly modern tendency was his mode of in-

vestigating functions. In the words of E. B. Van Vleck: ^ "He [Rie-

mann] presents a strange antithesis to his contemporary countryman,
Weierstrass. Riemann bases the function theory upon a property

rather than upon an algorism—to wit, the possession of a differential

coefficient by the function in the complex plane. Thus at a stroke

it is freed from dependence upon a particular process like the power
series of Taylor. His celebrated memoir upon the P-function is a
characteristic development of a whole Schar (family) of functions

from their mutual relations."

G. F. B. Riemann laid the foundation for a general theory of func-

tions of a complex variable. The theory of potential, which up to

that time had been used only in mathematical physics, was applied

by him in pure mathematics. He accordingly based his theory

of functions on the partial differential equation,
;

—

^-\ 5=Am=o,

which must hold for the analytical function w^u+iv of z=x+iy.
It had been proved by P. G. L. Dirichlet that (for a plane) there is

always one, and only one, function of x and y, which satisfies Am=o,
and which, together with its differential quotients of the first two
orders, is for all values of x and y within a given area one-valued and
continuous, and which has for points on the boundary of the area
arbitrarily given values.^ Riemann called this " Dirichlet's principle,"

but the same theorem was stated by Green and proved analytically by
Sir William Thomson. It follows then that w is uniquely determined
for all points within a closed surface, if u is arbitrarily given for all

points on the curve, whilst v is given for one point within the curve.
In order to treat the more complicated case where w has n values for

one value of z, and to observe the conditions about continuity, Rie-
mann invented the celebrated surfaces, known as "Riemann's sur-

faces," consisting of n coincident planes or sheets, such that the pas-
sage from one sheet to another is made at the branch-points, and that
the n sheets form together a multiply-connected surface, which can
be dissected by cross-cuts into a singly-connected surface. The n-
valued function w becomes thus a one-valued function. Aided by
researches of Jacob Liiroth (1844-1910) of Freiburg and of R. F. A.
Clebsch, W. K. Clifford brought Riemann's surface for algebraic func-
tions to a canonical form, in which only the last two of the n leaves
are multiply-connected, and then transformed the surface into the

1 Bull. Am. Math. Soc, Vol. 23, 1916, p. 8.

2 0. Henrici "Theory of Functions," Nature, Vol. 43, 1891, p. 322.
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surface of a solid with p holes. This surface with p holes had been
considered before Cliiford by A. Tonelli, and was probably used by
Riemann himself.^ A. Hurwitz of Zurich discussed the question, how
far a Riemann's surface is determinate by the assignment of its number
of sheets, its branch-points and branch-lines.

Riemann's theory ascertains the criteria which will determine an
analytical function by aid of its discontinuities and boundary condi-
tions, and thus defines a function independently of a mathematical
expression. In order to show that two different expressions are

identical, it is not necessary to transform one into the other, but it is

sufficient to prove the agreement to a far less extent, merely in certain

critical points.

Riemann's theory, as based on Dirichlet's principle (Thomson's
theorem), is not free from objections which have been raised by L.

Kronecker, K. Weierstrass, and others. In consequence of this,

attempts have been made to graft Riemann's speculations on the

more strongly rooted methods of K. Weierstrass. The latter developed

a theory of functions by starting, not with the theory of potential,

but with analytical expressions and operations. Both applied their

theories to Abelian functions, but there Riemann's work is more
general.^

Following a suggestion found in Riemann's Habilitationsschrift, H.
Hankel prepared a tract, Unendlich oft oscillirende und unstetige Funk-
tionen, Tubingen, 1870, giving functions which admit of an integral,

but where the existence of a differential coefficient remains doubtful.

He supposed continuous curves generated by the motion of a point

to and fro with infinitely numerous and infinitely small oscillations,

thus presenting "a condensation of singularities" at every point, but

possessing no definite direction nor differential coefficient. These
novel ideas were severely criticised, but were finally cleared up by
K. Weierstrass' well-known rigorous example of a continuous curve

totally bereft of derivatives. Hermann Hankel (1839-1873) satisfied

at Leipzig the gymnasium requirements in ancient languages by read-

ing the ancient mathematicians in the original. He studied at Leipzig

under A. F. Mobius, at Gottingen under G. F. B. Riemann, at Berlin

under K. Weierstrass and L. Kronecker. He became professor at

Erlangen and Tiibingen. The interest of his lej:tures was enhanced

by his emphasis upon the history of his subject. In 1867 appeared his

Theorie der Complexen Zahlensysteme. His brilliant Geschichte der

Mathematik in Alterthum und Mittelalter came out in 1874 as a post-

humous pubUcation.

Karl Weierstrass (1815-1897) was born in Ostenfelde, a village in

Westphalia. He attended a gymnasium at Paderborn where he became
interested in the geometric researches of J. Steiner. He entered the

' Math. Annalen. Vol. 45, p. 142.

2 O. Henrici, Nature, Vol. 43, 1891, p. 323.
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University of Bonn as a student in law but all by himself he studied

also mathematics, particularly P. S. Laplace. Wilhelm Diesterweg

and J. Pliicker, who lectured in Bonn, did not influence him. Seeing

in a student note-book a transcript of Christof Gudermann's lectures

on elliptic transcendents, Weierstrass went in 1839 to Miinster, where

he was during one semester the only student to attend Gudermann's
lectures on this topic and on analytical spherics. Christof Gudermann
(i 798-1851) whose researches on hyperbolic functions led to a func-

tion tan~^ {sink x), called the " Gudermannian," was a favorite teacher

of Weierstrass. Then he became a gymnasium teacher at Miinster,

then at Deutsch-Krone in western Prussia where he taught science,

also gymnastics and writing, and finally at Braunsberg where he

entered upon the study of Abelian functions. It is told that he missed

one morning an eight-o'clock class. The director of the gymnasium
went to his room to ascertain the cause, and found him working

zealously at a research which he had begun the evening before and
continued through the night, being unconscious that morning had
come. He asked the director to excuse his lack of punctuality to

his class, for he hoped soon to surprise the world by an important

discovery. While at Braunsberg he received an honorary doctorate

from Konigsberg for scientific papers he had published. In 1855 E. E.

Kummer went from Breslau to Berlin; he expressed it as his opinion

that the paper on Abelian functions was not sufficient guarantee that

Weierstrass was the proper man to train young mathematicians at

Breslau. So Ferdinand Joachimsthal (1818-1861) was appointed

there, but Kummer secured for Weierstrass in 1856 a position at the

Gewerbeakademie in Berlin and at the same time an Extraordinariat

at the University. The former he held until 1864 when he received an
Ordinariat at the University as successor to the aged Martin Ohm.
In that year E. E. Kummer and Weierstrass organized an official

mathematical seminar, P. G. L. Dirichlet having held before this a
private seminar. It is noteworthy that Weierstrass did not begin his

university career as a professor until his forty-ninth year, a time when
many scientists cease their creative work. K. Weierstrass, E. E.

Kummer, and L. Kronecker added lustre to the University of BerUn
which previously had been made famous by the researches of P. G. L.
Dirichlet, J. Steiner, and C. G. J. Jacobi. Especially through Weier-
strass unprecedented stress came to be put upon rigor of demon-
stration. The movement toward arithmetization of mathematics re-

ceived through Kronecker and Weierstrass its greatest emphasis. The
number-concept, especially that of the positive integer, was to become
the sole foundation, and the space-concept was to be rejected as a
primary concept.

As early as 1849 Weierstrass began to investigate and write on
Abelian integrals. In 1863 and 1866 he lectured on the theory of

Abelian functions and Abelian transcendents. No authorized publi-
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cation of these lectures was made in his lifetime, but they became
known in part through researches based upon them that were written

by some of his pupils, E. Netto, F. Schottky, Georg Valentin, F.

Kotter, Georg Hettner (1854-1914), and Johannes Knoblauch (1855-

1915). Hettner and Knoblauch prepared Weierstrass' lectures on the

theory of Abelian transcendents for the fourth volume of his collected

works. In 1915 appeared the fifth volume, on elliptic functions, edited

by Knoblauch. Weierstrass had selected Hettner to edit the works of

C. W. Borchardt (1888), also the last two volumes of Jacobi's works.

Knoblauch lectured at the University of Berlin since 1889, his chief

field of activity being differential geometry. Another prominent pupil

of Weierstrass was Otto Stolz (1S42-1905) of the University of Inns-

bruck. The difficulty which was experienced for many years in as-

certaining what were the methods and results of Weierstrass, was
set forth by Adolf Mayer (1839-1908) of Leipzig who at one time had
put at his disposal the manuscript notes of a lecture for only twenty-

four hours. Mayer worked on differential equations, the calculus of

variations and mechanics.

In 1 861 Weierstrass made the extraordinary discovery of a function

which is continuous over an interval and does not possess a derivative

at any point on this interval. The function was published by P. du
Bois Reymond in Crelle's Journal, Vol. 79, 1874, p. 29. In 1835 N. I.

Lobachevski had shown in a memoir the necessity of distinguishing

between continuity and differentiability.^ Nevertheless, the mathe-
matical world received a great shock when Weierstrass brought forth

that discovery, "and H. Hankel and G. Cantor by means of their

principle of condensation of singularities could construct analytical

expressions for functions having in any interval, however small, an

infinity of points of oscillation, an infinity of points in which the dif-

ferential coefficient is altogether indeterminate, or an infinity of points

of discontinuity" (J. Pierpont). J. G. Darboux gave new examples of

continuous functions having no derivatives. Formerly it had been

generally assumed that every function had a derivative. A. M. Am-
pere was the first who attempted to prove analytically (1806) the

existence of a derivative, but the demonstration is not valid. In

treating of discontinuous functions, J. G. Darboux established rigor-

ously the necessary and sufficient condition that a continuous or dis-

continuous function be susceptible of integration. He gave fresh

evidence of the care that must be exercised in the use of series by giv-

ing an example of a series always convergent and continuous, such

that the series formed by the integrals of the terms is always con-

vergent, and yet does not represent the integral of the first series.^

Central in Weierstrass' view-point is the concept of the "analytic

function." The name, "general theory of analytic functions," says

1 G. B. Halsted's transl. of A. Vasiliev's Address on Lobachevski, p. 23.

2 Notice sur les Travaux Scienlijiques de M. Gaston Darboux, Paris, 1884.
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A. Hurwitz/ applies to two theories, that of A. L. Cauchy and G. F. B.

Riemann, and that of K. Weierstrass. The two emanate from dif-

ferent definitions of a function. J. Lagrange, in his Theorie des fonc-
tions analytiques had tried to prove the incorrect theorem that every

continuous (stetige) function can be expanded in a power series. K.
Weierstrass called every function "analytic" when it can be expanded
into a power series, which is the centre of Weierstrass' theory of ana-

lytic functions. All properties of the function are contained in nuce in

the power series, with its coefficients Ci, C2, . .
, Q, . . The behavior

of a power series on the circle of convergence C had received considera-

tion long before this time. N. H. Abel had demonstrated that the

power series having a determinate value in a point on the circle of

convergence C tends uniformly toward that value when the variable

approaches that point along a path which does not touch the circle.

If two power series involve a complex variable, whose circles of

convergence overlap, so that the two series have the same value for

every point common to the too circular areas, then Weierstrass calls

each power series a direct continuation of the other. Using several

such series, K. Weierstrass introduces the idea of a monogenic system
of power series and then gives a more general definition of analytic

function as a function which can be defined by a monogenic system
of power series. In 1872 the Frenchman Ch. Meray gave independ-

ently a similar definition. In case of a uniform (eindeutige) function,

the points in a complex plane are either within the circle of conver-

gence of the power series in the system or else they are without. The
totality of the former points constitutes the "field of continuity"

(Stetigkeitsbereich) of the function. This field constitutes an ag-

gregate of "inner" points that is dense; if this continuum is given,

then there exist always single-valued analytic functions possessing

this field of continuity, as was first proved by G. M. Mittag-LelHer,

later by C. Runge and P. Stackel. The points on the boundary of

this field, called "singular points," constitute by themselves a set

of points, by the properties of which K. Weierstrass classifies the
function (1876). This classification was studied also by C. Guichard
(1883) and by G. M. Mittag-LeiSer, making use of theorems on point
sets, as developed in 1879-1885 by G. Cantor and by I. O. Bendlxson
and E. Phragmen, both of Stockholm. Thus, transfinite numbers
began to play a part in the theory of functions. Single-valued analytic

functions resolve themselves into two classes, the one class in which
the singular points form an enumerable (abzahlbares) aggregate, the
other class in which they do not.

Abel had proposed the problem, if one supposes the power series

convergent for all positive values less than r, find the limit to
which the function tends when x approaches t. The first sub-
stantial advance to a solution of Abel s problem was made in 1880

^ A. Hurwitz in Verh. des i. Intern. Congr., Zurich, iSgy, Leipzig, 1898, pp. 91-112.
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by G. Frobenius and in 1882 by 0. Holder, but neither of them
developed conditions that are both necessary and sufficient for

the estabHshment of the convergence of their expressions. Finally
in 1892 J. Hadamard obtained expressions which include those of

G. Frobenius and O. Holder and determined the conditions under
which they converge on the circle of convergence. The problem pre-
sented itself now thus: To set up analytic expressions of the complex
variable x that are linear in the constants c» and also represent the
function given by the power series, or rather a branch of this function
in a field D, in such a manner that they converge uniformly in the in-

terior of D and diverge in the exterior. The first important step
toward the resolution of this matter was taken in 1895 by E. Borel
who proved that the expression

hm 2 (CoH-Ci.T+ . . -l-c^Oe "
, ^ ..

u=c» v = o l.i'-l-Ij.''

converges not only in all regular points (points reguliers) of the circle

of convergence of the power series, but even beyond that, within a
summation polygon. E. Borel held the view that his formula gave the

sum of the power series even for points where it diverges. This inter-

pretation of Borel's resvilts was resisted by Gosta Magnus Mittag-Leffler

(1846- ) of Stockholm, the founder-' of the journal Acta mathe-
matica, and of a " Mathematical Institute " (in 1916) to further mathe-
matical research in the Scandinavian countries. Mittag-Leffler con-

ducted important researches along the above line. E. Borel's statement
implies that his formula extends the boundaries of the theory of ana-

lytic functions beyond the classic region, which is denied by Mittag-

LefHer. The latter published in 1898 studies on a problem more gen-

eral than that of Borel. If a ray ap revolves about a through an angle

2 IT, the variable distance ap always exceeding a fixed value I, a sur-

face is generated which Mittag-Leffier calls a star (Stern) with the

center a. A star E is called a convergence star (Konvergenzstem) for a

definite arithmetical expression, if the latter converges uniformly for

each region within E, but diverges for every outside point. He shows
that to each analytic function there corresponds a principal star, and
that there is an infinite number of arithmetical expressions for a given

star. Equivalent results were obtained by C. Runge. E. Borel gave
in 1912 an example of an analytic function which, by an extension of

the concept of a derivative so as to pass to the limit not through all

the neighboring points but only through those belonging to certain

dense aggregates, has a certain linear continuation beyond the do-

main of existence. Studies of monogenic uniform functions along

the line of E. Borel and G. M. Mittag-LefHer have been made also

by G. Vivanti, Marcel Riesz, Ivar Fredholm, and E. Phragmen.

1 See G. M. Mittag-LefBer in Aid del TV Congr. Intern, Roma, igo8. Roma, igog,

Vol. I, p. 69. Here Mittag-LeiBer gives a summary of recent results.
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Interesting is the manner in which K. Weierstrass in BerUn and
G. F. B. Riemann in Gottingen influenced each other. We have
seen that Weierstrass defined functions of a complex variable by the

power series and avoids geometrical means. Riemann begins with

certain differential equations in the region of mathematical physics.

In 1856 Riemann was urged by his friends to publish a resume of

his researches on Abelian functions, "be it ever so crude," because

Weierstrass was at work on the same subject. Riemann's publication

induced Weierstrass to withdraw from the press a memoir he had
presented to the Berlin Academy in 1857, because, as he himself says,

"Riemann published a memoir on the same problem which rested on
entirely different foundations from mine, and did not immediately

reveal that in its results it agreed completely with my own. The
proof of this required investigations which were not quite easy, and
took much time; after this difficulty had been removed a radical

remodelling of my dissertation seemed necessary." In 1875 Weier-

strass wrote H. A. Schwarz: "The more I ponder over the principles

of the theory of functions—and I do so incessantly—the stronger

grows my conviction that it must be built up on the foundation of

algebraical truths, and that, therefore, to employ for the truth of

simple and fundamental algebraical theorems the ' transcendental,'

if I may say so, is not the correct way, however enticing prima vista

the considerations may be by which Riemann has discovered many
of the most important properties of algebraical functions." This
refers mainly to the " Thomson-Dirichlet Principle," the validity of

which depended on a certain minimum theorem which was shown
by Weierstrass to rest upon unsound argument.

It has been objected that K. Weierstrass' definition of analytic

functions is based on power series. A. L. Cauchy's definition, which
was adopted by G. F. B. Riemann, is not open to this objection, but
labors under the burden of requiring at the start the most difficult

forms of the theory of limits. According to A. L. Cauchy a function

is analytic (his "synectic") if it possesses a single-valued differential

coefficient. Using Cauchy's integral theorem (Integralsatz), it follows

that the synectic function admits not only of a single-valued differen-

tiation but also of a single-valued integration. Giacinto Morera
(1856-1909) of Turin showed that the synectic function might be
defined by the single-valued integration. More recent researches,

1883-1895, which aim at a rigorous exposition of A. L. Cauchy's
integral theorem, are due to M. Falk, E. Gorfrsat, M. Lerch, C. Jor-

dan, and A. Pringsheim. Cauchy's theorem may be stated : If the func-

tion /(z) is synectic in a continuum in which every simply closed

curve forms the boundary of an area, then the integral i J{z)dz is

always zero, if it is extended over a closed curve which Hes wholly



THEORY OF FUNCTIONS 429

within the continuum. Here the questions arise, what is a curve, a
closed curve, a simply closed curve?

Analytic functions of several variables were treated by C. G. J.
Jacobi in 1832, in his Considerationes generates de transcendentibus
Ahelianis, but received no attention until Weierstrass set himself the
task presented to him by the study of Abelian functions, to find a
solid foundation for functions of several variables that would corre-

spond to his treatment of functions of one variable. He obtained a
fundamental theorem on null-places; he also enunciated, without
proof, the theorem that each single-valued (eindeutig) and in a finite

region meromorphic function of several variables can be represented
as the quotient of two integral functions, i. e. of two bestandig con-
vergent power series. This theorem was proved in 1883 by H. Poin-
care for two variables and in 1895 by Pierre Cousin of Bordeaux for

n variables. Later researches are by H. Hahn (1905), P. Boutroux
(1905), G. Faber (1905), and F. Hartogs (1907).

Dirichlet's principle has repeatedly commanded attention. The
question of its rigor has been put by E. Picard as follows: ^ "The
conditions at the limits that one is led to assume are very different

according as it is question of an equation of which the integrals are

or are not analytic. A type of the first case is given by the problem
generalized by P. G. L. Dirichlet; conditions of continuity there play

an essential part, and, in general, the solution cannot be prolonged
from the two sides of the continuum which serves as support to the

data; it is no longer the same in the second case, where the disposition

of this support in relation to the characteristics plays the principal

role, and where the field of existence of the solution presents itself

under wholly different conditions. . . . From antiquity has been
felt the confused sentiment of a certain economy in natural phenomena;'

one of the first precise examples is furnished by Fermat's principle

relative to the economy of time in the transmission of light. Then we
came to recognize that the general equations of mechanics correspond

to a problem of minimum, or more exactly of variation, and thus we
obtained the principle of virtual velocities, then Hamilton's principle,

and that of least action. A great number of problems appeared then

as corresponding to minima of certain definite integrals. This was a

very important advance, because the existence of a minimum could

in many cases be regarded as evident, and consequently the demon-
stration of the existence of the solution was effected. This reasoning

has rendered immense services; the greatest geometers, K. F. Gauss

in the problem of the distribution of an attracting mass corresponding

to a given potential, G. F. B. Riemann in his theory of Abelian func-

tions, have been satisfied with it. To-day our attention has been

called to the dangers of this sort of demonstration; it is possible for

the minima to be simply limits and not to be actually attained by
' Congress of Arts and Science, St. Louis, 1904, Vol. I, p. 510.
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veritable functions possessing the necessary properties of continuity.

We are, therefore, no longer content with the probabilities offered

by the reasoning long classic."

David Hilbert in 1899 spoke as follows: ^ "Dirichlet's principle

owed its celebrity to the attractive simplicity of its fundamental

mathematical idea, to the undeniable richness of its possible apphca-

tions in pure and applied mathematics and to its inherent persuasive

power. But after Weierstrass' criticism of it, Dirichlet's principle

was considered as only of historical interest and discarded as a means
of solving the boundary-value problem. C. Neumann deplores that

this beautiful principle of Dirichlet, formerly used so much, has no
doubt passed away forever. Only A. Brill and M. Noether arouse

new hopes in us by giving expression to the conviction that Dirichlet's

principle, being so to speak an imitation of nature, may sometime

receive new life in modified form." Hilbert proceeds thereupon to

rehabilitate the Principle, which involves a special problem in the cal-

culus of variations. Dirichlet's procedure was briefly thus: On the

xy plane erect at the points of the boundary curve perpendiculars the

lengths of which represent the boundary values. Among the surfaces

z =/(a;, y) which are bounded by the space-curve thus obtained, select the

one for which the value of the integral/(/)= / /{)+(^) \Axdy

is a minimum. As shown by the calculus of variations, that surface

is necessarily a potential surface. By reference to such a procedure

G. F. B. Riemann thought he had settled the existence of the solution

of boundary-value problems. But K. Weierstrass made it plain that

among an infinite number of values there does not necessarily exist

a minimum value; a minimum surface may therefore not exist. D.
Hilbert generalizes Dirichlet's principle in this manner: "Every prob-

lem of the calculus of variations has a solution, as soon as restricting

assumptions suitable to the nature of the given boundary conditions

are satisfied and, if necessary, the concept of the solution receives a
fitting extension." D. Hilbert shows how this may be used in finding

rigorous, yet simple, existence proofs. In 1901 it was used in disserta-

tions prepared by E. R. Hedrick and C. A. Noble.

Taking a birds' eye view of the development of the theory of •func-

tions during the nineteenth century since the time of A. L. Cauchy,
James Pierpont said in 1904:^ "Weierstrass and Riemann develop
Cauchy 's theory along two distinct and original paths. Weierstrass
starts with an explicft analytic expression, a power series, and defines

his function as the totality of its analytical continuations. No appeal
is made to geometric intuition, his entire theory is strictly arithmetical.

Riemann growing up under Gauss and Dirichlet, not only reHes largely

' Jahresh. d. d. Math. Vereinig., Vol. 8, 1900, p. 185.

'Bull. Am. Math. Soc, 2. S., Vol. 11, 1904, p. 137.
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on geometric intuition, but also does not hesitate to impress mathe-
matical physics into his service. Two noteworthy features of his

theory are the many-leaved surfaces named after him, and the ex-

tensive use of conformal representation. The history of functions

as first developed is largely a theory of algebraic functions and their

integrals. A general theory of functions is only slowly evolved. For
a long time the methods of Cauchy, Riemann, and Weierstrass were
cultivated along distinct lines by their respective pupils. The schools

of Cauchy and Riemann were first to coalesce. The entire rigor

which has recently been imparted to their methods has removed all

reason for founding, as Weierstrass and his school have urged, the

theory of functions on a single algorithm, viz., the power series. We
may therefore say that at the close of the century there is only one
theory of functions, in which the ideas of its three great creators are

harmoniously united."

The study of existence theorems, particularly in the theory of alge-

braic functions and the calculus of variations, began with Cauchy.
For implicit functions he assumed that they were expressible as power
series, a restriction removed by U. Dini of Pisa. Simplifications are

due to R. Lipschitz of Bonn. Existence theorems of sets of implicit

functions were studied by G. A. BUss of Chicago in the Princeton

CoUoquimn of igog. By means of a sheet of points Bliss deduces
from an initial solution at an ordinary point a sheet of solutions

somewhat analogous to K. Weierstrass' analytical continuation of a
branch of a curve.

Accompanying and immediately following Riemann 's time there

was a development of the theory of algebraic functions, that was
partly geometric in character and not purely along the line of function

theory. A. Brill and M. Noether ' in 1894 marked five directions of

advance: First, the geometrico-algebraic direction taken by G. F. B.

Riemann and G. Roch in the years 1862-1866, then by R. F. A.

Clebsch 1863 to 1865, by Clebsch and P. Gordan since 1865 and since

1871 by A. BriU and M. Noether; second, the algebraic direction,

followed by L. Kronecker and K. Weierstrass since i860, more gen-

erally known since 1872, and in 1880 taken up by E. B. Christoffel;

third, the invariantal direction, represented since 1877 by H. Weber,

M. Noether, E. B. Christoffel, F. Klein, F. G. Frobenius, and F.

Schottky; Fourth, the arithmetical direction of R. Dedekind and H.

Weber since 1880, of L. Kronecker since 1881, of K. W. S. Hensel and
others; Fifth, the geometrical direction taken by C. Segre and G.

Castelnuovo since 1888.

Hermann Amandus Schwarz (1845- ) of Berlin a pupil of K.

Weierstrass, has given the conform representation {Ahbildung) of

various surfaces on a circle. G. F. B. Riemann had given a general

theorem on the conformation of a given curve with another curve.

' A. Brill and M. Noether, Jahrb. d. d. Maih. Vereinigung, Vol. 3, p. 287.
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In transforming by aid of certain substitutions a polygon bounded
by circular arcs into another also bounded by circular arcs, Schwarz
was led to a remarkable diflerential equation i/'(m', t)=^{u, i), where
i/'(m, t) is the expression which Cayley called the " Schwarzian deriva-

tive," and which led J. J. Sylvester to the theory of reciprocants.

Schwarz's developments on minimum surfaces, his work on hyper-

geometric series, his inquiries on the existence of solutions to important

partial differential equations under prescribed conditions, have se-

cured a prominent place in mathematical literature.

Modular functions were at first considered merely as a by-product

of elliptic functions, growing out of the study of transformations.

After the epoch-making creations of E. Galois and G. F. B. Riemann,
the subject of elliptic modular functions was developed into an in-

dependent theory, mainly by the efforts of H. Poincare and F. Klein,

which stands in close relation to the theory of numbers, algebra and
synthetic geometry. F. Klein began to lecture on this subject in

1877; researches bearing upon this were pursued also by his then

pupils W. Dyck, Joseph Gierster, and A. Hurwitz. One of the problems
of modular functions is, to determine all subgroups of the lineargroup

a-^=(ax-|-/3) / (7a."-l-8), where a, /3, 7, 8 are integers and aS — /STf^o.

F. Klein's Vorlesungen uher das Ikoscsder, Leipzig, 1884, is a work
along this line. As an extended continuation of that are F. Klein's

Vorlesungen uber die Theorie der cUiptischen Modulfunctionen, gotten

out by Robert Fricke (Vol. i, 1890, Vol. II, 1892) and as a still

further generalization we have the theory of the general linear auto-

morphic functions, developed mainly by F. Klein and H. Poincare.

In 1897, under the joint authorship of Robert Fricke and Felix Klein,

there appeared the first volume of the Vorlesungen uber die Theorie

der Aulomorphen Funciionen, the second volume of which did not ap-

pear until 1912, after the theory had come under the influence of the

critical tendencies due to K. Weierstrass and G. Cantor, and after

E. Picard and H. Poincare had brought out further incisive researches.

It has been noted that F. Klein's own publications on these topics

are in the order in which the subject itself sprang into existence.

"Historically, the theory of automorphic functions developed from
that of the regular solids and modular functions. At least tJiis is the

path which F. Klein followed under the influence of the well-known
researches of Schwarz and of the early publications of H. Poincare.

If H. Poincare brings in also other considerations, namely the arith-

metic methods of Ch. Flermite . . . and the function-theoretical

problems of Fuchs with regard to single valued inversion of the solu-

tions of linear differential equations of the second order (eindeutige

Umkehr der Losungen . . . ), these topics in turn go back to the very
regions of thought from which have grown the theories of the regular

soUds and the elliptic modular functions." H. Poincare pubhshed
on this subject in Math. Annalen, Vol. 19, " Sur les fonctions uniformes
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qui se reproduisent par des substitutions lineaires," in the Acta ma-
thematica, Vol. i, a "Memoire sur les fonctions fuchsiennes," and a

procession of other papers extending over many years. Recently
active along this same line were P. Koebe and L. E. J. Brouwer.
The question what automorphic forms can be expressed analytically

by the H. Poincare series has been investigated by Poincare himself

and also by E. Ritter and R. Fricke (1901).

After the creation of the theory of automorphic functions of a single

variable, mainly by F. Klein and H. Poincare, similar generalizations

were sought for functions of several complex variables. The pioneer

in this field was E. Picard; other workers are T. Levi-Civita, G. A.
Bhss, W. D. MacMillan, and W. F. Osgood who lectured thereon at the

Madison (Wisconsin) Colloquium in 1913. Charles Emile Picard
(1856— ) whose extensive researches on analysis have been men-
tioned repeatedly and whose Traite d'Analyse is well known, was
born in Paris. He studied at the Ecole Normale where he was in-

spired by J. G. Darboux. In 1881 he married a daughter of Hermite.
Picard taught for a shorty time at Toulouse. Since 1881 he has been
professor in Paris at the Ecole Normale and the Sorbonne.

Uniformization

The uniformization of an algebraic or analytic curve, that is, the

determination of such auxiliary variables which taken as independent

variables render the co-ordinates of the points of the curve single-

valued (eindeutig) analytic functions, is organically connected with

the theory of automorphic functions. It was F. Klein and H. Poin-

care who soon after 1880 developed the theory of automorphic func-

tions and introduced systematically the idea of the uniformization of

algebraic curves which G. F. B. Riemann had visualized upon the

surfaces named after him. More recent researches on uniformi~ation

connect chiefly with the work of H. Poincare and are due to D. Hil-

bert (1900), W. F. Osgood, T. Broden, and A. M. Johanson. In 1907
followed important generalizations by H. Poincare and by P. Koebe
of Leipzig.^ Dirichlet's Principle, having been established upon a

sound foundation by D. Hilbert in 1901, was used as a starting point,

for the derivation of new proofs of the general principle of uniformiza-

tion, by P. Koebe of Leipzig and R. Courant of Gottingen.

Important works on the theory of functions are the Cours de Ch.

Hermite, J. Tannery's Theorie des Fonctions d'une variable seule, A
Treatise on the Theory of Functions by James Harkness and Frank Mor-
ley, and Theory of Functions of a Complex Variable \>y A. R. Forsyth.

A broad and comprehensive treatise is the Lehrbuch der Funktionen-

theorie by W. F. Osgood of Harvard University, the first edition of

which appeared in 1907 and the second enlarged edition in 1912.

1 P. Koebe, AUi del IV Congr., Roma, igoS, Roma, 1909, Vol. II, p. 25.
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Theory of Numbers

"Mathematics, the queen of the sciences, and arithmetic, the queen
of mathematics." Such was the dictum of K. F. Gauss, who was
destined to revolutionize the theory of numbers. When asked who
was the greatest mathematician in Germany, P. S. Laplace answered,

Pfaff. When the questioner said he should have thought Gauss was,

Laplace replied, "Pfaff is by far the greatest mathematician in Ger-

many; but Gauss is the greatest in all Europe." ^ Gauss is one of

the three greatest masters of analysis,—J. Lagrange, P. S. Laplace, K.
F. Gauss. Of these three contemporaries he was the youngest. While
the first two belong to the period in mathematical history preceding

the one now under consideration. Gauss is the one whose writings may
truly be said to mark the beginning of our own epoch. In him that

abundant fertility of invention, displayed by mathematicians of the

preceding period, is combined with rigor in demonstration which is too

often wanting in their writings, and which the ancient Greeks might
have envied. Unhke P. S. Laplace, Gauss strove in his writings after

perfection of form. He rivals J. Lagrange in elegance, and surpasses

this great Frenchman in rigor. Wonderful was his richness of ideas;

one thought followed another so quickly that he had hardly time to

write down even the most meagre outline. At the age of twenty
Gauss had overturned old theories and old methods in all branches of

higher mathematics; but little pains did he take to publish his results,

and thereby to establish his priority. He was the first to observe

rigor in the treatment of infinite series, the first to fully recognize

and emphasize the importance, and to make systematic use of de-

terminants and of imaginaries, the first to arrive at the method of

least squares, the first to observe the double periodicity of elliptic

functions. He invented the heliotrope and, together with W. Weber,
the bifilar magnetometer and the declination instrument. He re-

constructed the whole of magnetic science.

Karl Friedrich Gauss ^ (1777-1855), the son of a bricklayer, was
born at Brunswick. He used to say, jokingly, that he could reckon
before he could talk. The marvellous aptitude for calculation of the
young boy attracted the attention of Johann Martin Bartels (1769-

1836), afterwards professor of mathematics at Dorpat, who brought
him under the notice of Charles William, Duke of Brunswick. The
duke undertook to educate the boy, and sent him to the Collegium
CaroUnum. His progress in languages there was quite equal to that
in mathematics. In 1795 he went to Gottingen, as yet undecided
whether to pursue philology or mathematics. Abraham Gotthelf

Kastner (1719-1800), then professor of mathematics there, and now
chiefly remembered for his Geschichte der Mathematik (1796), was not

' R. Tucker, "Carl Friedrich Gauss," Nature, Vol. 15, 1877, p. 534.
^ W. Sartorius Waltershausen, Gauss, zum Gedachtniss, Leipzig, 1856.
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a teacher who could inspire Gauss, though Kastner's German con-

temporaries ranked him high and admired his mathematical and
poetical ability. Gauss declared that Kastner was the first mathe-
matician among the poets and the first poet among the mathemati-
cians. When not quite nineteen years old Gauss began jotting down
in a copy-book very brief Latin memoranda of his mathematical dis-

coveries. This diary was published in igoi.^ Of the 146 entries, the

first is dated March 30, 1796, and refers to his discovery of a method
of inscribing in a circle a regular polygon of seventeen sides. This dis-

covery encouraged him to pursue mathematics. He worked quite

independently of his teachers, and while a student at Gottingen made
several of his greatest discoveries. Higher arithmetic was his favorite

study. Among his small circle of intimate friends was Wolfgang
Bolyai. After completing his course he returned to Brunswick. In

1798 and 1799 he repaired to the university at Helmstadt to consult

the library, and there made the acquaintance of J. F. Pfaff, a mathe-
matician of much power. In 1807 the Emperor of Russia offered Gauss
a chair in the Academy at St. Petersburg, but by the advice of the

astonomer Olbers, who desired to secure him as director of a proposed

new observatory at Gottingen, he declined the offer, and accepted

the place at Gottingen. Gauss had a marked objection to a mathe-
matical chair, and preferred the post of astronomer, that he might
give all his time to science. He spent his life in Gottingen in the midst

of continuous work. In 1828 he went to Berlin to attend a meeting

of scientists, but after this he never again left Gottingen, except in

1854, when a railroad was opened between Gottingen and Hanover.

He had a strong will, and his character showed a curious mixture of

self-conscious dignity and child-like simplicity. He was little com-

municative, and at times morose. Of Gauss' collected works, or

Werke, an eleventh volume was planned in 1916, to be biographical and
bibliographical in character.

A new epoch in the theory of numbers dates from the pubhcation

of his Disquisitiones Arithmeticm, Leipzig, 1801. The beginning of

this work dates back as far as 1795. Some of its results had been

previously given by J. Lagrange and L. Euler, but were reached inde-

pendently by Gauss, who had gone deeply into the subject before he

became acquainted with the writings of his great predecessors. The
Disquisitiones Arithmetics was already in print when A. M. Legendre's

Theorie des Nombres appeared. The great law of quadratic reciprocity,

given in the fourth section of Gauss' work, a law which involves the

whole theory of quadratic residues, was discovered by him by in-

duction before he was eighteen, and was proved by him one year

later. Afterwards he learned that L. Euler had imperfectly enunciated

that theorem, and that A. M. Legendre had attempted to prove it,

I Gauss' wissenschafllkhe Tagebuch, 1796-1814. Mit Anmerkungen herausgege-

ben von Felix Klein, Berlin, 1901.
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but met with apparently insuperable diflSculties. In the fifth section

Gauss gave a second proof of this "gem" of higher arithmetic. In

1808 followed a third and fourth demonstration; in 18 17, a fifth and
sixth. No wonder that he felt a personal attachment to this theorem.

Proofs ^ were given also by C. G. J. Jacobi, F. Eisenstein, J. Liouville,

Victor Amedee Lebesgue (1791-1875) of Bordeaux, Angelo Genocchi

(1817-1889) of the University of Turin, E. E. Kummer, M. A. Stern,

Christian Zeller (1822-1899) of Markgroningen, L. Kronecker, Victor

Jacovlevich Bouniakovski (i 804-1 889) of Petrograd, Ernst Schering

(1833-1897) of Gottingen, Julius Peter Christian Petersen (1839-1910)
of Copenhagen, E. Busche, Th. Pepin, Fabian Franklin, J. C. Fields,

and others. Quadratic reciprocity "stands out not only for the in-

fluence it has exerted in many branches, but also for the number of

new methods to which it has given birth" (P. A. MacMahon). The
solution of the problem of the representation of numbers by binary

quadratic forms is one of the great achievements of Gauss. He created

a new algorithm by introducing the theory of congruences. The fourth

section of the Disquisitiones ArithmeticcB, treating of congruences of

the second degree, and the fifth section, treating of quadratic forms,

were, until the time of C. G. J. Jacobi, passed over with universal

neglect, but they have since been the starting-point of a long series

of important researches. The seventh or last section, developing the

theory of the division of the circle, was received from the start with

deserA'ed enthusiasm, and has since been repeatedly elaborated for

students. A standard work on Kreistheilung was published in 1872
by Paul Bachmann, then of Breslau,

The equation for the division of the circle and the construction of

a regular polygon of n sides, n being prime, can be solved by square
root extractions alone, always and only when n—i is a power of 2.

Hence such regular polygons can be constructed by ruler and com-
passes when the prime number n is 3, 5, 17, 257, 65,537, • • but cannot
be constructed when wis 7, 11, 13, . . The results may be stated also

thus: The Greeks knew how to inscribe regular polygons whose sides

numbered 2™, 2™. 3, 2™. 5 and 2'". 15. Gauss added in 1801 that the

construction is possible when the number of sides n is prime and of

the form 2^^-1-1. L. E. EHckson computed that the number of such
inscriptible polygons for » < 100 is 24, for n < 300 is 37, for n < 1000 is

52, for M < 100,000 is 206.

Three classical constructions of the regular inscribed polygon of

seventeen sides have been given: one by J. Serret in his Algebra, II,

§ 547, another by von Staudt in Crelle, Vol. 24, and a third by L.

Gerard in Math. Annalen, Vol. 48 (1897), using compasses only. The
analytic solution, as outlined by Gauss, was actually carried out for

the regular polygon of 257 sides by F. J. Richelot of Konigsberg in

four articles in Crelle, Vol. 9. For the polygon of 65,537 sides this

' O. Baumgart, Ucber das Quadratische Reciprocitatsgeseiz, Leipzig, 1885.
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was accomplished after ten years of labor by Oswald Hermes (1826-

1909) of Steglitz; his manuscript is deposited in the mathematical
seminar at Gottingen.^ Gauss had planned an eighth section of his Dis-

quisitiones Arithmeticae, which was omitted to lessen the expense of

publication. His papers on the theory of numbers were not all included
in his great treatise. Some of them were published for the first time
after his death in his collected works. He wrote two memoirs on the
theory of biquadratic residues (1825 and 1831), the second of which
contains a theorem of biquadratic reciprocity.

K. F. Gauss was led to astronomy by the discovery of the planet
Ceres at Palermo in 1801. His determination of the elements of its

orbit with sufficient accuracy to enable H. W. M. Olbers to rediscover

it, made the name of Gauss generally known. In 1809 he pubUshed
the Theoria motus corporum ccelestium, which contains a discussion

of the problems arising in the determination of the movements of

planets and comets from observations made on them under any cir-

cumstances. In it are found four formulae in spherical trigonometry,

now usually called "Gauss' Analogies," but which were published
somewhat earlier by Karl Brandon Mollweide (1774-1825) of Leipzig,

and earlier still by Jean Baptiste Joseph Delambre (1749-1822).^

Many years of hard work were spent in the astronomical and magnetic
observatory. He founded the German Magnetic Union, with the

object of securing continuous observations at fixed times. He took
part in geodetic observations, and in 1843 and 1846 wrote two me-
moirs, Ueber Gegenstdnde der hoheren Geodesic. He wrote on the at-

traction of homogeneous ellipsoids, 18 13. In a memoir on capillary

attraction, 1833, he solves a problem in the calculus of variations

involving the variation of a certain double integral, the limits of in-

tegration being also variable; it is the earliest example of the solution

of such a problem. He discussed the problem of rays of light passing

through a system of lenses.

Among Gauss' pupils were Heinrich Christian Schumacher, Chris-

tian Gerling, Friedrich Nicolai, August Ferdinand Mobius, Georg
Wilhelm Struve, Johann Frantz Encke.

Gauss' researches on the theory of numbers were the starting-point

for a school of writers, among the earhest of whom was C. G. J.

Jacobi. The latter contributed to Cfelle's Journal an article on cubic

residues, giving theorems without proofs. After the publication of

Gauss' paper on biquadratic residues, giving the law of biquadratic

reciprocity, and his treatment of complex numbers, C. G. J. Jacobi

found a similar law for cubic residues. By the theory of elliptical

functions, he was led to beautiful theorems on the representation of

' A. Mitzscherling, Das Problem der Kreisteilung, Leipzig u. Berlin, 19 13, pp. 14,

23.

.^I. Todhunter, "Note on the History of Certain Formulse in Spherical Trigo-

nometry," Philosophical Magazine, Feb., 1873.
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numbers by 2, 4, 6, and 8 squares. Next come the researches of P. G.

L. Dirichlet, the expounder of Gauss, and a contributor of rich results

of his own.
Peter Gustav Lejeune Dirichlet ^ (1805-1859) was bom in Diiren,

attended the gymnasium in Bonn, and then the Jesuit gymnasium
in Cologne. In 1822 he was attracted to Paris by the names of P. S.

Laplace, A. M. Legendre, J. Fourier, D.5. Poisson, and A. L. Cauchy.

The facilities for a mathematical education there were far better

than in Germany, where K. F. Gauss was the only great figure. He
read in Paris Gauss' Disquisitiones Arithmetics, a work which he

never ceased to admire and study. Much in it was simplified by
Dirichlet, and thereby placed within easier reach of mathematicians.

His first memoir on the impossibility of certain indeterminate equa-

tions of the fifth degree was presented to the French Academy in 1825.

He showed that P. Fermat's equation, a:"+y"=3", cannot exist when
M = 5. Some parts of the analysis are, however, A. M. Legendre's.

Dirichlet's acquaintance with J. Fourier led him to investigate Four-

ier's series. He became docent in Breslau in 1827. In 1828 he ac-

cepted a position in Berlin, and finally succeeded K. F. Gauss at

Gottingen in 1855. The general principles on which depends the

average number of classes of binary quadratic forms of positive and
negative determinant (a subject first investigated by Gauss) were
given by Dirichlet in a memoir, Ueber die Bestimmung der mittleren

Werthe in der Zahlentheorie, 1849. More recently F. Mertens of Graz,

since 1894 of Vienna, determined the asymptotic values of several

numerical functions. Dirichlet gave some attention to prime num-
bers. K. F. Gauss and A. M. Legendre had given expressions denoting
approximately the asymptotic value of the number of primes inferior

to a given limit, but it remained for G. F. B. Riemann in his memoir,
Ueher die Anzahl der Primzahlen unter einer gegehenen Grosse, 1859,
to give an investigation of the asymptotic frequency of primes which
is rigorous. Approaching the problem from a different direction,

P. L. Chebichev, formerly professor in the University of St. Petersburg,

established, in a celebrated memoir, Sur les Nombres Premiers, 1850,
the existence of limits within which the sum of the logarithms of the
primes P, inferior to a given number x, must be comprised.^ He
proved that, if w>3, there is always at least one prime between n
and 2n—2 (inclusive). This theorem is sometimes called "Bertrand's
postulate," since J. L. F. Bertrand had previously assumed it for

the purpose of proving a theorem in the theory of substitution groups.

This paper depends on very elementary considerations, and, in that
respect, contrasts strongly with Riemann's, which involves abstruse
theorems of the integral calculus. H. Poincare's papers, J. J. Syl-

1 E. E. Kummer, Gedachtnissrede auf Gustav Peter Lejeune-Dirichlei, Berlin, i860.
' H. J. Stephen Smith "On the Present State and Prospects of some Branches of

Pure Mathematics," Proceed. London Math. Soc, Vol. 8, 1876, p. 17.
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vester's contraction of Chebichev's limits, with reference to the dis-

tribution of primes, and researches of J. Hadamard (awarded the
Grand prix of 1892), are among the later researches in this line.

G. F. B. Riemann had advanced six properties relating to
00 I

? {s) = X — , where s= ff+ti,

none of which he was able to prove.^ In 1893 J- Hadamard proved
three of these, thereby establishing the existence of null-places in

Riemann's zeta-function; H. von Mangoldt of Danzig proved in 1895
a fourth and in 1905 a fifth of Riemann's six properties. The remain-
ing one, that the roots of ^(5) in the strip S O" ^ i, have all the real

part
-J, remains unproved, though progress in the study of this case

has been made by F. Mertens and R. v. Stemeck. If a; is a positive

number, and if 7r(x) denotes the number of primes less than x, then
what Landau calls the "prime-number theorem" (Primzahlsatz)

states that the ratio of 7r(x) to a;/log x approaches i a,s x increases

without end. A. M. Legendre, K. F. Gauss, and P. G. L. Dirichlet

had guessed this theorem. As early as 1737 L. Euler^ had given an
analogous theorem, that 2i/^ approaches log (log p), where the sum-
mation extends over all primes not greater than p. The prime-number
theorem was proved in 1896 by J. Hadamard and Charles Jean de la

Vallee Poussin of Louvain, in 1901 by Nils Fabian Helge von Koch
of Stockholm, in 1903 by E. Landau, now of Gottingen, in 1915 by
G. H. Hardy and J. E. Littlewood of Cambridge. Hardy discovered

an infinity of zeroes of the zeta-function with the real part J; E.

Landau simplified Hardy's proof.

G. F. B. Riemann's zeta-function ^{s) was first studied on account
of its fundamental importance in the theory of prime numbers, but it

has become important also in the theory of analytic functions in

general. In 1909 E, Landau published his Handhuch der Lehre von

der Verteilung der Primzahlen. In 19 12 he pronounced the following

four questions to be apparently incapable of answer in the present

state of the science of numbers: (i) Does n^+i for integral values of

n represent an infinite number of primes? (2) C. Goldbach's theorem:

Can prime values of p and p' be found to satisfy m=p+Y>' for each

even m larger than 2? (3) Has 2=p—p^ an infinite number of solutions

in primes? (4) Is there between n^ and (n+i)^ at least one prime for

every positive integral n?

The enumeration of prime numbers has been undertaken at differ-

ent times by various mathematicians. Factor tables, giving the least

factor of every integer not divisible by 2, 3, or 5, did not extend above

408,000 previous to the year 1811, when Ladislaus Chernac published

his Cribrum arithmeticum at Deventer in Netherlands, which gives

' For details, consult E. Landau in Proceed. Jlh Intern. Congress, Cambridge, 19 12,

Vol. I, 1913, P- 97-
2 G. Enestrom in Bibliothcca malhematica, 3. S., Vol. 13, p. 81.



440 A HISTORY OF MATHEMATICS

factors for numbers up to 1,020,000. J. Ch. Burckhardt (1773-1815)
published factor tables in Paris, in 1817 for the numbers i to 1,020,000,

in 1814 for the numbers 1020000 to 2028000, in 1816 for the numbers
2,028,000 to 3,036,000. James Glaisher (1809-1903) published factor

tables at London, in 1S79 for the numbers 3,000,000 to 4,000,000, in

1880 for numbers 4,000,000 to 5,000,000, in 1883 for the numbers
5,000,000 to 6,000,000. Zacharias Ease (1824-1861) pubhshed factor

tables at Hamburg, in 1862 for the numbers 6,000,001 to 7,002,000, in

1S63 for the numbers 7,002,001 to 8,010,000, in 1865 for the numbers
8 010,001 to 9,000,000. In 1909 the Carnegie Institution of Washing-
ton published factor tables for the first ten millions, prepared by D.

N. Lehmer of the University of California. Lehmer gives the errors

discovered in the earlier publications. Historical details about factor

tables are given by Glaisher in his Factor Table. Fourth Million, 1879.

Miscellaneous contributions to the theory of numbers were made
by A. L. Cauchy. He showed, for instance, how to find all the infinite

solutions of a homogeneous indeterminate equation of the second

degree in three variables when one solution is given. He established

the theorem that if two congruences, which have the same modulus,

admit of a common solution, the modulus is a divisor of their resultant.

Joseph Liouville (1809-1882), professor at the College de France,

investigated mainly questions on the theory of quadratic forms of two,

and of a greater number of variables. A research along a different

line proved to be an entering wedge into a subject which since has
become of vital importance. In 1844 he proved {Liouville's Journal,

Vol. 5) that neither e nor e^ can be a root of a quadratic equation with

rational coefficients. By the properties of convergents of a continued

fraction representing a root of an algebraical equation with rational

coefficients he established later the existence of numbers—the so-

called transcendental numbers—which cannot be roots of any such
equation. He proved this also by another method. A still different

approach is due to G. Cantor. Profound researches were instituted

by Ferdinand Gotthold Eisenstein (1823-1852), of Berlin. Ternary
quadratic forms had been studied somewhat by K. F. Gauss, but the

extension from two to three indeterminates was the work of Eisen-

stein who, in his memoir, Neue Theoreme der hbheren Arithmetic,

defined the ordinal and generic characters of ternary quadratic forms
of uneven determinant; and, in case of definite forms, assigned the

weight of any order or genus. But he did not publish demonstrations
of his results. In inspecting the theory of binary cubic forms, he was
led to the discovery of the first covariant ever considered in analysis.

He showed that the series of theorems, relating to the presentation

of numbers by sums of squares, ceases when the number of squares

surpasses eight. Many of the proofs omitted by Eisenstein were sup-

plied by Henry Smith, who was one of^the few Englishmen who de-

voted themselves to the study of higher arithmetic.
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Henry John Stephen Smith ^ (1826-1883) was born in London,
and educated at Rugby and at Balliol College, Oxford. Before 1847
he travelled much in Europe for his health, and at one time attended
lectures of D. F. J. Arago in Paris, but after that year he was never
absent from Oxford for a single term. In 1849 he carried off at Oxford
the highest honors, both in the classics and in mathematics, thus

ranking as a " double first." There is a story that he decided between
classics and mathematics as the field for his life-work, by tossing up a
penny. He never married and had no household cares to destroy the

needed serenity for scientific work, "excepting that he was careless in

money matters, and trusted more to speculation in mining shares

than to economic management of his income." ^ In 1861 he was
elected Savilian professor of geometry. His first paper on the theory

of numbers appeared in 1855. The results of ten years' study of

everything published on the theory of numbers are contained in his

Reports which appeared in the British Association volumes from 1859
to 1865. These reports are a model of clear and precise exposition

and perfection of form. They contain much original matter, but the

chief results of his own discoveries were printed in the Philosophical

Transactions for 1861 and 1867. They treat of linear indeterminate

equations and congruences, and of the orders and genera of ternary

quadratic forms. He established the principles on which the exten-

sion to the general case of n indeterminates of quadratic forms de-

pends. He contributed also two memoirs to the Proceedings of the

Royal Society of 1864 and 1868, in the second of which he remarks that

the theorems of C. G. J. Jacobi, F. Eisenstein, and J. Liouville, re-

lating to the representation of numbers by 4, 6, 8 squares, and other

simple quadratic forms are deducible by a uniform method from the

principles indicated in his paper. Theorems relating to the case of

5 squares were given by F. Eisenstein, but Smith completed the enunci-

ation of them, and added the corresponding theorems for 7 squares.

The solution of the cases of 2, 4, 6 squares may be obtained by elliptic

functions, but when the number of squares is odd, it involves processes

pecuHar to the theory of numbers. This class of theorems is limited

to 8 squares, and Smith completed the group. In ignorance of Smith's

investigations, the French Academy offered a prize for the demon-

stration and completion of F. Eisenstein's theorems for 5 squares.

This Smith had accomplished fifteen years earlier. He sent in a dis-

sertation in 1882, and next year, a month after his death, the prize

was awarded to him, another prize being also awarded to H. Min-

kowsky of Bonn. The theory of numbers led Smith to the study of

elliptic functions. He wrote also on modern geometry. His succes-

sor at Oxford was J. J. Sylvester. Taking an anti-utiHtarian view of

1
J. W. L. Glaisher in Monthly Notices R. Astr. Soc, Vol. 44, 1884.

2 A. Macfarlane, Ten British Mathematicians, 1916, p. 98.
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mathematics, Smith once proposed a toast, "Pure mathematics;

may it never be of any use to any one."

Ernst Eduard Kummer (1810-1893), professor in the University

of BerUn, is closely identified with the theory of numbers. P. G. L.

Dirichlet's work on complex numbers of the form a+ib, introduced

by K. F. Gauss, was extended by him, by F. Eisenstein, and R. Dede-
kind. Instead of the equation a:^— 1=0, the roots of which yield

Gauss' units, F. Eisenstein used the equation :j;^— 1=0 and complex

numbers a+bp (p being a cube root of unity), the theory of which

resembles that of Gauss' numbers. E. E. Kummer passed to the

general case a;" — i =0 and got complex numbers of the form a=aiA 1+
aiAi+a:iA^+ . .

.
, were a; are whole real numbers, and Ai roots of the

above equation. Euclid's theory of the greatest common divisor is

not apphcable to such complex numbers, and their prime factors can-

not be defined in the same way as prime factors of common integers

are defined. In the effort to overcome this difficulty, E. E. Kummer
was led to introduce the conception of "ideal numbers." These
ideal numbers have been applied by G. Zolotarev of St. Petersburg

to the solution of a problem of the integral calculus, left unfinished by
Abel.^ J. W. R. Dedekind of Braunschweig has given in the second

edition of Dirichlet's Vorlesungen uber ZaMentheorie a new theory

of complex numbers, in which he to some extent deviates from the

course of E. E. Kummer, and avoids the use of ideal numbers. De-
dekind has taken the roots of any irreducible equation with integral

coefficients as the units for his complex numbers. F. Klein in 1893
introduced simplicity by a geometric treatment of ideal numbers.

Fermat's " Last Theorem," Waring's Theorem

E. E. Kummer's ideal numbers owe their origin to his efforts to

prove the impossibility of solving in integers Fermat's equation
x'^-\-yn=^ for n>2. We premise that some progress in proving this

impossibility has been made by more elementary means. For in-

tegers X, y, z not divisible by an odd prime n, the theorem has been
proved by the Parisian mathematician and philosopher Sophie Ger-

main (1776-1831) for «<ioo, by Legendre for «<2oo, by E. T. Mail-

let for w<223, by Dmitry MirimanofE for m<257, by L. E. Dickson
for nK'jooo} The method used here is due to Sophie Germain and
requires the determination of an odd prime p for which x^+y"-\-

z''=o (mod. p) has no solutions, each not divisible by p, and n is not
the residue modulo p of the «tli power of any integer. E. E. Kum-
mer's results rest on an advanced theory of algebraic numbers which he

' H. J. S. Smith, "On the Present State and Prospects of Some Branches of Pure
Mathematics," Proceed. London Math. Sac, Vol. 8, 1876, p. 15.

^ See L. E. Dickson in Annals of Malhematks, 2. S., Vol. 18, 1917, pp. 161-187.
See also L. E. Dickson in Aili del IV. Congr. Roma, 1908, Roma, 1909, Vol. II,

p. 172,



THEORY OF NUMBERS 443

helped to create. Once at an early period he thought that he had a com-
plete proof. He laid it before P. G. L. Dirichlet who pointed out that,

although he had proved that any number /( a) , where a is a complex w'"

root of unity and n is prime, was the product of indecomposable factors,

he had assumed that such a factorization was unique, whereas this was
not true in general.^ After years of study, E. E. Kummer concluded
that this non-uniqueness of factorization was due to /(a) being too
small a domain of numbers to permit the presence in it of the true prime
numbers. He was led to the creation of his ideal numbers, the ma-
chinery of which, says L. E. Dickson,^ is "so dehcate that an expert
must handle it with the greatest care, and (is) nowadays chiefly of

historical interest in view of the simpler and more general theory of

R. Dedekind." By means of his ideal numbers he produced a proof
of Fermat's last theorem, which is not general but excludes certain

particular values of n, which values are rare among the smaller values
of n; there are no values of n below 100, for which E. E. Kummer's
proof does not serve. In 1857 the French Academy of Sciences

awarded E. E. Kummer a prize of 3000 francs for his researches on
complex integers.

The first marked advance since Kummer was made by A. Wieferich

of Miinster, in Crelle's Journal, Vol. 136, 1909, who demonstrated that

if p is prime and 2^— 2 is not divisible by p^, the equation xi'+yP=zP

cannot be solved in terms of positive integers which are not mul-
tiples of p. Waldemar Meissner of Charlottenburg found that 2^ — 2

is divisible by p^ when p=iogT, and for no other prime p less than

2000. Recent advances toward a more general proof of Fermat's

last theorem have been made by D. Mirimanoff of Geneva, G. Fro-

benius of BerUn, E. Hecke of Gottingen, F. Bernstein of Gottingen,

Ph. Furtwangler of Bonn, S. Bohnicek and H. S. Vandiver of Phila-

delphia. Recent efforts along this line have been stimulated in part

by a bequest of 100,000 marks made in 1908 to the Konigliche Gesell-

schaft der Wissenschaften in Gottingen, by the mathematician F. P.

WoHskehl of Darmstadt, as a prize for a complete proof of Fermat's

last theorem. Since then hundreds of erroneous proofs have been

pubHshed. Post-mortems over proofs which fall still-born from the

press are being held in the " Sprechsaal" of the Archiv der Mathematik

und Physik.

At the beginning of the present century progress was made in prov-

ing another celebrated theorem, known as "Waring's theorem." In

1909 A. Wieferich of Miinster proved the part which says that every

positive integer is equal to the sum of not more than 9 positive cubes.

He established also, that every positive integer is equal to the sum
of not more than 37 (according to Waring, it is not more than 19)

positive fourth powers, while D. Hilbert proved in 1909 that, for

1 Festschrift z. Feierdes lOO. Geburtstages Eduard Kummers, Leipzig, igio, p. 22.

2 Bull. Am. Math. Soc, Vol. 17, 1911, p. 371-
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every integer «>2 (Waring had declared for every integer n>4),

each positive integer is expressible as the sum of positive «th powers,

the number of which lies within a limit dependent only upon the

value of 11. Actual determinations of such upper limits have been

made by A. Hurwitz, E. T. Maillet, A. Fleck, and A. J. Kempner.

Kempner proved in 1912 that there is an infinity of numbers which

are not the sum of less than 4 . 2" positive 2™th powers, w^2.

Other Recent Researches. Number Fields

Attracted by E. E. Summer's investigations, his pupil, Leopold

Kronecker (1823-1891) made researches which he applied to algebraic

equations. On the other hand, efforts have been made to utilize in

the theory of numbers the results of the modern higher algebra.

Following up researches of Ch. Hermite, Paul Bachmaim of Miinster,

now of Weimar, investigated the arithmetical formula which gives

the automorphics of a ternary quadratic form.^ Bachmann is the

author of well-known texts on Zahlentheorie, in several volumes, which

appeared in 1892, 1894, 1S72, 1898, and 1905, respectively. The prob-

lem of the equivalence of two positive or definite ternary quadratic

forms was solved by L. Seeber; and that of the arithmetical auto-

morphics of such forms, by F. G. Eisenstein. The more difficult prob-

lem of the equivalence for indefinite ternary forms has been investi-

gated by Eduard Selling of Wiirzburg. On quadratic forms of four

or more indeterminates little has yet been done. Ch. Hermite showed
that the number of non-equivalent classes of quadratic forms having

integral coefficients and a given discriminant is finite, while Zolotarev

and Alexander Korkine (183 7-1 908), both of St. Petersburg, investi-

gated the minima of positive quadratic forms. In connection with

binary quadratic forms, H. J. S. Smith established the theorem that

if the joint invariant of two properly primitive forms vanishes, the

determinant of either of them is represented primitively by the dupli-

cate of the other.

The interchange of theorems between arithmetic and algebra is

displayed in the recent researches of J. W. L. Glaisher (1848- )

of Trinity College and J. J. Sylvester. Sylvester gave a Constructive

Theory of Partitions, which received additions from his pupils, F.

Franklin, now of New York city, and George Stetson Ely (?-i9i8),

for many years examiner in the U. S. Patent Office.

By the introduction of "ideal numbers" E. E. Kummer took a
first step toward a theory of fields of numbers. The consideration of

super fields (Oberkorper) from which the properties of a given field

of numbers may be easily derived is due mainly to R. Dedekind and
to L. Kronecker. Thereby there was opened up for the theory of

numbers a new and wide territory which is in close connection with

' H. J. S. Smith in Proceed. London Math. Soc., Vol. 8, 1876, p. 13.
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algebra and the theory of functions. The importance of this subject
in the theory of equations is at once evident if we call to mind E.
Galois' fields of rationality. The interrelation between number theory
and function theory is illustrated in Riemann's researchfes in which
the frequency of primes was made to depend upon the zero-places of

a certain analytical function, and in the transcendence of e and tt

which is an arithmetic property of the exponential function. In 1883-
1890 L. Kronecker pubHshed important results on elliptic functions
which contain arithmetical theorems of great elegance. The Dedekind
method of extending Kummer's results to algebraic numbers in

general is based on the notion of an ideal. A common characteristic

of Dedekind and Kronecker's procedure is the introduction of com-
pound moduU. G. M. Mathews says ^ that, in practice it is convenient
to combine the methods of L. Kronecker and R. Dedekind. Of
central importance are the Galoisian or normal fields, which have been
studied extensively by D. HLlbert. L. Kronecker established the
theorem that all Abelian fields are cyclotomic, which was proved also

by H. Weber and D. Hilbert. An important report, prepared by D.
Hilbert and entitled Theorie der algehraischen Zahlkdrper, was pub-
lished in 1894.^ D. Hilbert first develops the theory of general number-
fields, then that of special fields, viz., the Galois field, the quadratic

field, the circle field (Kreiskorper) , the Kummer field. A report on
later investigations was pubHshed by R. Fueter in 191 1.^ Chief among
the workers in this subject which have not yet been mentioned are

F. Bernstein, Ph. Furtwangler, H. Minkowski, Ch. Hermite, and A.

Hurwitz. Accounts of the theory are given in H. Weber's Lehrbuck der

Algebra, Vol. 2 (1899), J. Sommer's Vorlesungen uber Zahlentheorie

(1907), and Hermann Minkowski's Diophaniische Approximaiionen,

Leipzig (1907). H. Minkowski gives in geometric and arithmetic

language both old and new results. His use of lattices serves as a

geometric setting for algebraic theory and for the proof of some new
results.

A new and powerful method of attacking questions on the theory

of algebraic numbers was advanced by Kurt Hensel of Konigsberg

in his Theorie der algebraischen Zahlen, 1908, and in his Zahlentheorie,

1913. His method is analogous to that of power series in the theory

of analytic functions. He employs expansions of numbers into power

series in an arbitrary prime number p. This theory of ^-adic numbers

is generalized by him in his book of 1913 into the theory of g-adic

numbers, where g is any integer.*

The resolution of a given large number into factors is a difficult

problem which has been taken up by Paul Seelhof, Francois Edouard

' Art. "Number" in the Encydop. Britannica, nth ed., p. 857.

^Jahresbericht d. d. Math. Vereinigung, Vol. 4, pp. 177-546.
^ Loc. cit., Vol. 20, pp. 1-47.

< Bull. Am. Math. Soc, Vol. 20, 1914, p. 259.
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Anatole Lucas (1842-1S91) of Paris, Fortune Landry (1799-?), A. J. C.

Cunningham, F. W. P. Lawrence and D. N. Lehmer.

Transcendental Numbers. The Infinite

Building on the results previously reached by J. Liouville, Ch.

Hermite proved in 1S73 in the Comptes Rendus, Vol. 77, that e is

transcendental, while F. Lindemann in 1882 {Ber. Akad. Berlin)

proved that tt is transcendental. Ch. Hermite reached his result by
showing that ae'^+be'^+ce''+ ... =0 cannot subsist, where m,n,r,...
a, b, c, . . . are whole numbers; F. Lindemann proved that this equa-

tion cannot subsist when m, n, r, . . a, b, c . . are algebraic numbers,

that in particular, e*-='-|-i=o cannot subsist if x is algebraic. Conse-

quently TT cannot be an algebraic number. But, starting with two
points, (o, o) and (i, o), a third point (a, o) can be constructed by the

aid of ruler and compasses only when a is a certain special type of

algebraic number that is obtainable by successive square root extrac-

tions. Hence the point (tt, o) cannot be constructed, and the "quad-
rature of the circle" is impossible. The proofs of Ch. Hermite and F.

Lindemann involved complex integrations and were complicated.

Simplified proofs were given by K. Weierstrass in 1885, Th. J. Stieltjes

in 1890, D. Hilbert, A. Hurwitz, and P. Gordan in 1S96 {Math. An-
nalen, Vol. 43), F. Mcrtens in 1896, Th. Vahlen in 1900, H. Weber,
F. Enriques, and E. W. Hobson in 1911. G. B. Halsted says of the

circle, "John Bolyai squared it in non-Euclidean geometry and Linde-
mann proved no man could square it in Euclidean geometry."
That there are many other transcendental numbers beside e and it

is evident from the researches of J. Liouville, E. Maillet, G. Faber
and Aubrey J. Kempncr, who give new forms of infinite series which
define transcendental numbers. Of interest are the theorems estab-

lished in 1913 by G. N. Bauer and H. L. Slobin of Minneapolis, that

the trigonometric functions and the hyperbolic functions represent

transcendental numbers whenever the argument is an algebraic num-
ber other than zero, and vice versa, the arguments are transcendental

numbers whenever the functions are algebraic numbers.^
The notions of the actually infinite have undergone radical change

during the nineteenth century. As late as 183 1 K. F. Gauss expressed
himself thus: "I protest against the use of infinite magnitude as

something completed, which in mathematics is never permissible.

Infinity is merely a fa^on de parler, the real meaning being a limit

which certain ratios approach indefinitely near, while others are per-

mitted to increase without restriction." ^ Gauss' contemporary, A. L.

Cauchy, likewise rejected the actually infinite, being influenced by

' Rendiconti d. Circolo Math, di Palermo, Vol. 38, igi4, p. 353.
2 C. I'\ Gauss, Brief on Schumacher, Werke, Bd. 8, 216; quoted from Moritz,

Memorabilia mathcmalica, 1914, p. 337.
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the eighteenth century philosopher of Turin, Father Gerdil.' In 1886
Georg Cantor occupied a diametrically opposite position, when he
said: "In spite of the essential difference between the conceptions of

the potential and the actual infinite, the former signifying a variable

finite magnitude increasing beyond all finite limits, while the latter

is a fixed, constant quantity lying beyond all finite magnitudes, it

happens only too often that the one is mistaken for the other. . . .

Owing to a justifiable aversion to such illegilimate actual infinities

and the influence of the modern epicuric-materialistic tendency, a
certain horror injlnili has grown up in extended scientific circles,

which finds its classic expression and support in the letter of Gauss,
yet it seems to me that the consequent uncritical rejection of the

legitimate actual infinite is no lesser violation of the nature of things,

which must be taken as they are." ^

In 1904 Charles Emile Picard of Paris expressed himself thus: ^

"Since the concept of number has been sifted, in it have been found
unfathomable depths; thus, it is a question still pending to know, be-

tween the two forms, the cardinal number and the ordinal number,
under which the idea of number presents itself, which of the two is

anterior to the other, that is to say, whether the idea of number prop-

erly so called is anterior to that of order, or if it is the inverse. It

seems that the geometer-logician neglects too much in these questions

psychology and the lessons uncivilized races give us; it would seem to

result from these studies that the priority is with the cardinal number."

Applied Mathematics. Celestial Mechanics

Notwithstanding the beautiful developments of celestial mechanics

reached by P. S. Laplace at the close of the eighteenth century, there

was made a discovery on the first day of the nineteenth century which
presented a problem seemingly beyond the power of that analysis.

We refer to the discovery of Ceres by Giuseppe Piazzi in Italy, which

became known in Germany just after the philosopher G. W. F. Hegel

had pubhshed a dissertation proving a priori that such a discovery

could not be made. From the positions of the planet observed by
Piazzi its orbit could not be satisfactorily calculated by the old

methods, and it remained for the genius of K. F. Gauss to devise a

method of calculating elliptic orbits which was free from the assumption

of a small eccentricity and inclination. Gauss' method was developed

further in his Theoria Motus. The new planet was re-discovered with

aid of Gauss' data by H. W. M. Gibers, an astronomer who promoted

science not only by his own astronomical studies, but also by discem-

1 See F. Cajori, "History of Zenos Arguments on Motion," Am. Math. Monthly,

Vol. 22, 1915, p. 114.
2 G. Cantor, Zum Problem dcs actualen Unendlichen, Nalur und OJenbarung,

Bd. 32, 1886, p. 226; quoted from Moritz, Mcmorabitia mathemalica, 1914, p. 337.
^ Congress oj Arts and Science, St. Louis, 1904, Vol. I, p. 498.
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ing and directing towards astronomical pursuits the genius of F. W.
Bessel.

Friedrich Wilhelm Bessel ' (1784-1846) was a native of Minden in

Westphalia. Fondness for figures, and a distaste for Latin grammar
led him to the choice of a mercantile career. In his fifteenth year he

became an apprenticed clerk in Bremen, and for nearly seven years

he devoted his days to mastering the details of his business, and part

of his nights to study. Hoping some day to become a supercargo on
trading exjjeditions, he became interested in observations at sea.

With a sextant constructed by him and an ordinary clock he deter-

mined the latitude of Bremen. His success in this inspired him for

astronomical study. One work after another was mastered by him,

unaided, during the hours snatched from sleep. From old observa-

tions he calculated the orbit of Halley's comet. Bessel introduced

himself to H. W. M. Olbers, and submitted to him the calculation,

which Olbers immediately sent for publication. Encouraged by Ol-

bers, Bessel turned his back to the prospect of afHuence, chose poverty

and the stars, and became assistant in J. H. Schroter's observatory at

Lilienthal. Four years later he was chosen to superintend the con-

struction of the new observatory at Konigsberg.^ In the absence of

an adequate mathematical teaching force, Bessel was obliged to lecture

on mathematics to ])reparc students for astronomy. He was reheved

of this work in 1825 by the arrival of C. G. J. Jacobi. We shall not
recount the labors by which Bessel earned the title of founder of

modem ])ractical astronomy and geodesy. As an observer he towered
far above K. F. Gauss, but as a mathematician he reverently bowed
before the genius of his great contemporary. Of Bessel's papers, the

one of greatest mathematical interest is an " Untersuchung des Theils

dcr plandarischcn Stiirungen, wclchcr aus dcr Bcwegung dcr Sonne
entsteht" (1824), in which he introduces a class of transcendental

functions, /„(.v), much used in applied mathematics, and knowii as

"Bessel's functions." He gave their principal properties, and con-

structed tables for their evaluation. It has been observed that Bes-
sel's functions appear much earlier in mathematical literature.^ Such
functions of the zero order occur in papers of Daniel Bernoulli (1732)
and L. Eulcr on vibration of heavy strings suspended from one end.

All of Bessel's functions of the first kind and of integral orders occur
in a paper by L. Euler (1764) on the vibration of a stretched elastic

membrane. In 1878 Lord Rayleigh proved that Bessel's functions

are merely particular cases of Laplace's functions. J. W. L. Glaisher

illustrates by Bessel's functions his assertion that mathematical

' Bessel als Bremer Ilandlungslcltrlinii, Bremen, i8qo.
^ J. Frantz, Festrcde aus Vcranlassnng von Bessel's hundcrij'dhrigem Cchirislag,

KOnigsherg, 1884.
= Ma.xime Bdcher, "A bit of Mathematical History," Bull, of Ihe N. Y. Malh. Soc,

\ul. II, 1R93, p. 107.
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branches growing out of physical inquiries as a rule "lack the easy
flow or homogeneity of form which is characteristic of a mathematical
theory properly so called." These functions have been studied by
Carl Theodor Anger (1803-1858) of Danzig, Oskar Schlomilch (1823-

1901) of Dresden who was the founder in 1856 of the Zeitschrift fur
M'athematik und Physik, R. Lipschitz of Bonn, Carl Neumann of

Leipzig, Eugen Lommcl (1837-1899) of Munich, Isaac Todhunter of St.

John's College, Cambridge.
Prominent among the successors of P. S. Laplace are the follow-

ing: Simeon Denis Poisson (1781-1840), who wrote in 1808 a classic

Memoire sur les incgalitcs seculaires des nioyens mouvemenis des plan-

eles. Giovanni Antonio Amaedo Plana (1781-1864) of Turin, a nephew
of J. Lagrange, who published in 1811 a Memoria sulla teoria dell'

atlrazione degli sferoidl cllitici, and contributed to the theory of the

moon. Peter Andreas Hansen (1795-1S74) of Gotha, at one time a
clockmaker in Tondeni, then H. C. Shumachcr's assistant at Altona,

and finally director of the observatory at Gotha, wrote on various

astronomical subjects, but mainly on the lunar theory, which he

elaborated in his work Fundamenta nova investigationes orbilce verce quam
Luna perlustrat (1838), and in subsequent investigations embracing
extensive lunar tables. George Biddel Airy (1801-1S92), royal as-

tronomer at Greenwich, published in 1826 his Mathematical Tracts

on the Lunar and Planetary Theories. These researches were later

greatly extended by him. August Ferdinand Mobius (1790-1868)

of Leipzig wrote, in 1842, Elcmente der Mechanik des Himmels.
Urbain Jean Joseph Leverrier (1811-1877) of Paris wrote, the

Reclierches Aslronomiques , constituting in part a new elaboration of

celestial mechanics, and is famous for his theoretical discovery of

Neptune. John Couch Adams (1819-1892) of Cambridge divided

with Leverrier the honor of the mathematical discovery of Nep-
tune, and pointed out in 1S53 that Laplace's explanation of the

secular acceleration of the moon's mean motion accounted for only

half the observed acceleration. Charles Eugene Delaunay (bom
1816, and drowned off Cherbourg in 1872), professor of mechanics at

the Sorbonne in Paris, explained most of the remaining acceleration of

the moon, unaccounted for by Laplace's theory as corrected by J. C.

Adams, by tracing the effect of tidal friction, a theory previously

suggested independently by Immanuel Kant, Robert Mayer, and

William Ferrcl of Kentucky. G. H. Darwin of Cambridge made
some very remarkable investigations on tidal friction.

Sir George Howard Darwin (1845-1912), a son of the naturalist

Charles Darwin, entered Trinity College, Cambridge, was Second

Wrangler in 1868, Lord Moulton being Senior Wrangler. He began

in 187s to publish important papers on the application of the theory

of tidal friction to the evolution of the solar system. The earth-moon

system was found to form a unique example within the solar system
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of its particular mode of evolution. He traced back the changes in

the figures of the earth and moon, until they united into one pear-

shaped mass. This theory received confirmation in 1885 from a paper
in Ada math., Vol. 7 by H. Poincare in which he enunciates the prin-

ciple of exchange of stabilities. H. Poincare and Darwin arrived at

the same pear-shaped figure, Poincare tracing the process of evolution

forwards, Darwin proceeding backwards in time. Questions of

stability of this changing pear-shaped figure occupied Darwin's later

years. Researches along the same line were made by one of his

pupils, James H. Jeans of Trinity College, Cambridge.

About the same time that George Darwin began his researches,

George William Hill (1838-1914) of the Nautical Almanac Office

in Wasliington began to study the moon. Hill was born at Nyack,
New York, graduated at Rutgers College in 1859, and was an as-

sistant in the Nautical Almanac Office from his graduation till 1892,

when he resigned to pursue further the original researches which
brought him distinction. In 1877 he published Researches on Lunar
Theory, in which he discarded the usual mode of procedure in the

problem of three bodies, by which the problem is an extension of the

case of two bodies. Following a suggestion of Eulcr, HiU takes the

earth finite, the sun of infinite mass at an infinite distance, the moon
infinitesimal and at a finite distance. The differential equations which
express the motion of the moon under the limitations adopted are

fairly simple^ and practically useful. "It is this idea of Hill's that

has so profoundly changed the whole outlook of celestial mechanics.

H. Poincare took it up as the basis of his celebrated prize essay of

1887 on the problem of three bodies and afterwards expanded his

work into the three volumes, Les mcihodes nouvelles de la mecanique
celeste," 1892-1899. It seems that at first G. H. Darwin paid little

attention to Hill's paper; Darwin often spoke of his difficulties in

assimilating the work of others. However in 1888 he recommended
to E. W. Brown, now professor at Yale, the study of Hill. Nor docs
Darwin seem to have studied closely the "planetesimal hypothesis"
of T. C. Chamberlin and F. R. Moulton of the University of Chicago.

A marked contrast between G. H. Darwin and H. Poincare lay in

the fact that Darwin did not undertake investigations for their

mathematical interest alone, while H. Poincare and some of his

followers in applied mathematics "have less interest in the phenomena
than in the mathematical processes which are used by the student

of the phenomena. They do not expect to examine or predict physical

events but rather to take up the special classes of functions, differen-

tial equations or series which have been used by astronomers or phy-
sicists, to examine their properties, the validity of the arguments and
the limitations which must be placed on the results" (E. W. Brown).

' We are using E. W. Brown's article in Scientific Papers liy Sir C. H. Darwin,
Vol. V, 1916, pp. xxxiv-lv.
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Prominent in mathematical astronomy was Simon Newcomb
(1835-1909), the son of a comitry school teacher. He was born at Wal-
lace in Nova Scotia. Although he attended for a year the Lawrence
Scientific School at Harvard University, he was essentially self-taught.

In Cambridge he came in contact with B. Peirce, B. A. Gould, J. D.
Runkle, and T. H. Saflord. In 1861 he was appointed professor in

the United States Navy; in 1877 he became superintendent of the

American Ephemeris and Nautical Almanac Office. This position

he held for twenty years. During 1884-1895 he was also professor

of mathematics and astronomy at the Johns Hopkins University,

and editor of the American Journal of Malhemalics. His researches

were mainly in the astronomy of position, in which line he was pre-

eminent. In the comparison between theory and observation, in

deducing from large masses of observations the results which he
needed and which would form a basis of comparison with theory,

he was a master. As a supplement to the NaiUical Almanac for 1897
he published the Elements of the Four Inner planets, and the Funda-
mental Constants of Astronomy, which gathers together Newcomb's
life-work.^ For the unravelling of the motions of Jupiter and Saturn,

S. Newcomb enlisted the services of G. W. Hill. All the publications

of the tables of the planets, except those of Jupiter and Saturn, bear

Newcomb's name. These tables supplant those of Leverrier. S. New-
comb devoted much time to the moon. He investigated the errors in

Hansen's lunar tables and continued the lunar researches of C. E.

Delaunay. Brief reference has already been made to G. W. Hill's

lunar work and his contribution of an elegant paper on certain possible

abbreviations in the computation of the long-period of the moon's
motion due to the direct action of the planets, and made elaborate

determination of the inequalities of the moon's motion due to the

figure of the earth. He also computed certain lunar inequalities due

to the action of Jupiter.

The mathematical discussion of Saturn's rings was taken up first

by P. S. Laplace, who dernonstrated that a homogeneous solid ring

could not be in equilibrium, and in 1851 by B. Peirce, who proved

their non-solidity by showing that even an irregular solid ring could

not be in equilibrium about Saturn. The mechanism of these rings

was investigated by James Clerk Maxwell in an essay to which the

Adams prize was awarded. He concluded that they consisted of an

aggregate of unconnected particles. "Thus an idea put forward as a

speculation in the seventeenth century, and afterwards in the eight-

eenth century by J. Cassini and Thomas Wright, was mathematically

demonstrated as the only possible solution." ^

The progress in methods of computing planetary, asteroidal, and
cometary orbits has proceeded along two more or less distinct lines,

1 E. W. Brown in Bull. Am. Math. Soc, Vol. t6, 1910, p. 353.
" W. W. Bryant, A History of Astronomy, London, 1907, p. 233.
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the one marked out by P. S. Laplace, the other by K. F. Gauss. ^ La-
place's method possessed theoretical advantages, but lacked practical

applicability for the reason that in the second approximation the

results of the first approximation could be used only in part and the

computation had to be gone over largely anew. To avoid this labor

in finding asteroidal and cometary orbits, Heinrich W. M. Gibers

(1758-1840) and K. F. Gauss devised more expeditious processes for

carrying out the second approximation. The Gaussian procedure

was refined and simplified by Johann Franz Encke (1791-1865),

Francesco Carlini (1783-1862), F. W. Bcssel, P. A. Hansen, and es-

pecially by Theodor von Oppolzer (1S41-1886) of Vienna whose
method has been used by practical astronomers down to the present

day. Most original among the new elaborations of Gauss' method is

that of /. Willard Gibbs of Yale, which employs vector analysis and,

though rather complicated, yields remarkable accuracy even in the

first approximation. Gibbs' procedure was modified in 1905 by J.

Frischauf of Graz. P. S. Laplace's method has attracted mathemati-

cians by its elegance. It received the attention of A. L. Cauchy,
Antoine Yvon Villarceau (1813-1883) of the Paris Observatory,

Rodolphe Radau of Paris, H. Bruns of Leipzig, and H. Poincare. Paul

Harzer of Kiel and especially Armin Otto Leuschner of the University

of California made striking advances in rendering Laplace's method
available for rajiid comi^utation. Leuschner adopts from the start

geocentric co-ordinates and considers the effects of the perturbating

body in the very first approximation; it is equally applicable to plane-

tary and to cometary orbits.^

Problem of Three Bodies

The problem of three bodies has been treated in various ways since

the time of J. Lagrange, and some decided advance towards a more
complete solution has been made. Lagrange's particular solution

based on the constancy of the relative distances of the three bodies,

one from the other (called by L. 0. Hesse the reduced problem of

three bodies) has recently been modified by Carl L. Charlier of the

observatory at Lund, in which the mutual distances are replaced

by the distances from the centre of gravity.^ This new form possesses

no marked advantage. "Theoretical interest in the Lagrangian solu-

tions has been increased," says E. 0. Lovett, "by K. F. Sundman's
theorem that the more nearly all three bodies in the general problem
tend to collide simultaneously, the more nearly do they tend to as-

sume one or the other of Lagrange's configurations; . . . practical

' We are using an article by A. Vcnturi in Rivisla di Aslronomia, June, igi3.
^ For a fuller historical account, see A. O. Leuschner in Science, N. S., Vol. 45,

1917, PP- 571-584-
' We are drawing from E. O. Lovett's "The Problem of Three Bodies" in Science,

N. S., Vol. 29, 1909, pp. 81-91.
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interest in them has been revived by the discovery of three small
planets, 1906 T. G., 1906 V. Y., 1907 X. M., near the equilateral tri-

angular points of the Sun-Jupiter-Asteroid system. ... R. Leh-
mann-Filhes, R. Hoppe, and Otto Dziobek, all three of Berlin, have
generalized the exact solutions to cases of more than three bodies
placed on a Hne or at the vertices of a regular polygon or polyhe-
dron. . . . Among the most interesting extensions of Lagrange's
theorem are those due to T. Banachievitz of Kasan and F. R. Moul-
ton." In 1912 H. Poincare indicated that on the basis of a ring

representation (but in Kcplerian variables), that if a certain geometric
theorem (later established by G. D. BirkhofI of Harvard University)
were true, the existence of an infinite number of periodic solutions

would follow in the restricted problem of three bodies. These results

were amplified by G. D. Birkhoff.^ The so-called isosceles-triangle

solutions of the problem of three bodies (periodic solutions in which
two of the masses are finite and equal, while the third body moves in

a straight line and remains equidistant from the equal bodies) received

the attention of Giulio Pavanini of Trcviso in Italy in 1907, W. D.
MacMillan of Chicago in 1911, and D. Buchanan of Ontario in 1914.

G. W. Hill, in his researches on lunar theory, added in 1877 to the

Lagrangiaii periodic solution, which for 105 years had been the only
such solution known, another periodic solution which could serve as

a starting jwint for a study of the moon's orbit. Says E. O. Lovett:

"With these memoirs he broke groimd for the erection of the new
science of dynamical astronomy whose mathematical foundations

were laid broad and deep by Poincare," in a research which in 1889
won a prize offered by King Oscar II, and which he developed more
fully later. The original memoir of Poincare, says Moulton, "con-

tained an error which was discovered by E. Phragmen, of Stockholm,

but it affected only the discussion of the existence of the asymptotic

solutions; and in correcting this part H. Poincare . . . confessed

fully his obligations to Phragmen. . . . There is not the slightest

doubt that in spite of it . . . the prize was correctly bestowed."

The researches of G. W. Hill and H. Poincare have been continued

mainly by E. W. Brown, G. H. Darwin, F. R. Moulton, Hugo Gylden
(1841-1S96) of Stockholm, P. Painleve, C. L. W. Charlier, S. E.

Stromgren, and T. Levi-Civita, in which questions of stability have re-

ceived much attention. The general question, whether the solar

system is stable, was affirmed by eighteenth century mathematicians;

it was re-opened by K. Weicrstrass who, in the last years of his life,

devoted considerable attention to it. Expressions for the co-ordinates

of the planets converge either not at all or for only limited time. In

addition to the complex mixture of known cyclical changes, there

might, perhaps, be a small residue of change of such a nature that

the system will ultimately be wrecked. At present no rigorous answer
1 Bull. Am. Malh. Soc, Vol. 20, 1914, p. 292.
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has been given, but "Poincarc showed that solutions exist in which
the motion is purely periodic, and therefore that in them at least no
disaster of collision or indefinite departure from the central mass will

ever occur" (F. R. Moulton). A startling result was Poincare's dis-

covery that some of the series which have been used to calculate the

positions of the bodies of the solar system are divergent. An exam-
ination of the reasons why the divergent series gave sufficiently ac-

curate results gave rise to the theory of asymptotic series now applied

to the representation of many functions. Does the ultimate diver-

gence of the series throw doubt upon the stability of the solar system?

H. Gylden thought that he had overcome the difficulty, but H. Poin-

care showed that in part it still exists. Following Poincare's lead,

E. W. Brown has formulated the sufficient conditions for stabihty in

the «-body problem. T. Levi-Civita worked out criteria in which
the stability is made to depend upon that of a certain point trans-

formation associated with the periodic function. He proved the

existence of zones of instability surrounding Jupiter's orbit. The
new methods in celestial mechanics have been found useful in com-
puting the perturbations of certain small planets. Material advances

in the problem of three bodies were made by Karl F. Sundman of

Helsingfors in Finland, in a memoir which received a prize of the

Paris Academy in 19 13. This research is along the path first blazed

by P. Painleve, continued by T. Levi-Civita and others.

In the transformation and reduction of the three-body problem, "a
principal role has been j^layed by the ten known integrals, namely,

the six integrals of motion of the centre of gravity, three integrals of

angular momentum, and the integral of energy. The question of

further progress in this reduction is vitally related to the non-existence

theorems of H. Bruns, H. Poincare, and P. Painleve. H. Bruns demon-
strated that the w-body problem admits of no algebraical integral

other than the ten classic ones, and H. Poincare proved the non-
existence of any other uniform analytical integral." Other researches

on these non-existence theorems are due to P. Painleve, D. A. Grave,
and K. Bohlin.

E. Picard expresses himself as follows:^ "What admirable recent

researches have best taught them [analysts] is the immense difficulty

of the problem; a new way has, however, been opened by the study
of particular solutions, such as the periodic solutions and the asymp-
totic solution which have already been utilized. It is riot perhaps
so much because of the needs of practice as in order not to avow it-

self vanquished, that analysis will never resign itself to abandon, with-
out a decisive victory, a subject where it has met so many brilliant

triumphs; and again, what more beautified field could the theories

new-born or rejuvenated of the modern doctrine of functions find,

to essay their forces, than this classic problem of n bodies?"
' Congress of Arts and Science, St. Louis, 1904, Vol. I, p. 512.
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Among valuable text-books on mathematical astronomy of the
nineteenth century rank the following works: Manual of Spherical
and Practical Astronomy by William Chauvenel (1863), Practical and
Spherical Astronomy by Robert Main of Cambridge, Theoretical As-
tronomy by James C. Watson of Ann Arbor (1868), Traite iltnentaire

de Mecanique Celesfe of H. Resal of the Ecole Polytechnique in Paris,

Cours d^Astronomic de VEcole Polytechnique by Faye, Traite de Mecani-
que Celeste by F. F. Tisserand, Lehrbuch der Bahnbestimmung by T.

Oppolzer, Mathematische Theorien der Planetenbewegung by O. Dziobek,

translated into English 'by M. W. Harrington and W. J. Hussey.

General Mechanics

During the nineteenth century we have come to recognize the ad-

vantages frequently arising from a geometrical treatment of me-
chanical problems. To L. Poinsot, M. Chasles, and A. F. Mobius we
owe the most important developments made in geometrical mechanics.

Louis Poinsot (1777-1859), a graduate of the Polytechnic School in

Paris, and for many years member of the superior council of public

instruction, published in 1804 his Elements de Stalique. This work
is remarkable not only as being the earliest introduction to synthetic

mechanics, but also as containing for the first time the idea of couples,

which was applied by Poinsot in a publication of 1834 to the theory

of rotation. A clear conception of the nature of rotary motion was
conveyed by Poinsot's elegant geometrical representation by means
of an ellipsoid rolling on a certain fixed plane. This construction was
extended by J. J. Sylvester so as to measure the rate of rotation of the

ellipsoid on the plane.

A particular class of dynamical problems has recently been treated

geometrically by Sir Robert Stawell Ball (1840-1913) at one time

astronomer royal of Ireland, later Lowndean Professor of Astronomy
and Geometry at Cambridge. His method is given in a work entitled

Theory of Screws, Dublin, 1876, and in subsequent articles. Modern
geometry is here drawn upon, as was done also by W. K. Clifford

in the related subject of Bi-quaternions. Arthur Buchheim (1859-

1888), of Manchester showed that H. G. Grassmann's Ausdehnungs-

lehre supplies all the necessary materials for a simple calculus of screws

in elliptic space. Horace Lamb applied the theory of screws to the

question of the steady motion of any solid in a fluid.

Advances in theoretical mechanics, bearing on the integration and

the alteration in form of dynamical equations, were made since J.

Lagrange by S. D. Poisson, Sir William Rowan Hamilton, C. G. J.

Jacobi, Madame Koalevski, and others. J. Lagrange had estabhshed

the "Lagrangian form" of the equations of motion. He had given a

theory of the variation of the arbitrary constants which, however,

turned out to be less fruitful in results than a theory advanced by S. D.
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Poisson.' Poisson's theory of the variation of the arbitrary constants

and the method of integration thereby afforded marked the first

onward step since J. Lagrange. Then came the researches of Sir

William Rowan Hamilton. His discovery that the integration of the

dynamic differential equations is connected with the integration of a

certain partial differential equation of the first order and second degree,

grew out of an attempt to deduce, by the undulatory theory, results

in geometrical optics previously based on the conceptions of the emis-

sion theory. The Philosophical Transactions of 1833 and 1834 contain

Hamilton's papers, in which appear the first applications to mechanics

of the principle of varying action and the characteristic function,

established by him some years previously. The object which Hamilton
proposed to himself is indicated by the title of his first paper, viz.,

the discovery of a function by means of which all integral equations

can be actually represented. The new form obtained by him for the

equation of motion is a result of no less importance than that which
was the professed object of the memoir. Hamilton's method of in-

tegration was freed by C. G. J. Jacobi of an unnecessary complica-

tion, and was then applied by him to the determination of a geodetic

line on the general ellipsoid. With aid of elliptic co-ordinates Jacobi

integrated the partial differential equation and expressed the equation

of the geodetic in form of a relation between two Abelian integrals.

C. G. J. Jacobi applied to differential equations of dynamics the theory

of the ultimate multiplier. The differential equations of dynamics are

only one of the classes of differential equations considered by Jacobi.

Dynamic investigations along the lines of J. Lagrange, Hamilton, and
Jacobi were made by J. Liouville, Adolphe Desboves, (1818-1888)

of Amiens, Serret, J. C. F. Sturm, Michel Ostrogradski, J. Bertrand,

William Fishburn Donkin (1814-1S69) of Oxford, F. Brioschi, leading

up to the development of the theory of a system of canonical integrals.

An important addition to the theory of the motion of a solid body
about a fixed point was made by Madame Sophie Kovalevski (1850-

1891), who discovered a new case in which the differential equations

of motion can be integrated. By the use of theta-functions of two
independent variables she furnished a remarkable example of how
the modern theory of functions may become useful in mechanical
problems. She was a native of Moscow, studied under K. Weierstrass,

obtained the doctor's degree at Gottingen, and from 1884 until her

death was professor of higher mathematics at the University of Stock-

holm. The research above mentioned received the Bordin prize

of the French Academy in 1888, which was doubled on account of

the exceptional merit of the paper.

There are in vogue three forms for the expression of the kinetic

energy of a dynamical system: the Lagrangian, the Hamiltonian, and

1 Arthur Cayley, "Report on the Recent Progress of Theoretical Dynamics,"
Report British Ass'n for 1857, p. 7.
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a modified form of Lagrange's equations in which certain velocities

are omitted. The kinetic energy is expressed in the first form as a
homogeneous quadratic function of the velocities, which are the time-

variations of the co-ordinates of the system; in the second form, as

a homogeneous quadratic function of the momenta of the system;

the third form, elaborated recently by Edward John Routh (183 1-

1907) of Cambridge, in connection with his theory of "ignoration of

co-ordinates," and by A. B. Basset of Cambridge, is of importance in

hydro-dynamical problems relating to the motion of perforated solids

in a liquid, and in other branches of physics.

Practical importance has come to be attached to the principle of

mechanical similitude. By it one can determine from the performance
of a model the action of the machine constructed on a larger scale.

The principle was first enunciated by I. Newton {Principia, Bk. II,

Sec. VIII, Prop. 32), and was derived by Joseph Bertrand from the

principle of virtual velocities. A corollary to it, applied in ship-

building, is named after the British naval architect William Froude

(1810-1879), but was enunciated also by the French engineer Frederic

Reech.
The present problems of dynamics differ materially from those of

the last century. The explanation of the orbital and axial motions

of the heavenly bodies by the law of universal gravitation was the

great problem solved by A. C. Clairaut, L. Euler, D'Alembert, J.

Lagrange, and P. S. Laplace. It did not involve the consideration of

frictional resistances. In the present time the aid of dynamics has

been invoked by the physical sciences. The problems there arising

are often comphcated by the presence of friction. Unhke astronomical

problems of a century ago, they refer to phenomena of matter and

motion that are usually concealed from direct observation. The great

pioneer in such problems is Lord Kelvin. While yet an undergraduate

at Cambridge, during holidays spent at the seaside, he entered upon

researches of this kind by working out the theory of spinning tops,

which previously had been only partially explained by John Hewitt

Jellett (1817-1888) of Trinity College, Dublin, in his Treatise on the

Theory of Friction (1872), and by Archibald Smith (1813-1872).

Among standard works on mechanics of the nineteenth century are

C. G. J. Jacobi's Vorlesungen uber Dynamik, edited by R. F. A.Clebsch,

i806; G. R. Kirchhojf's Vorlesungen uher mathematische Physik, 1876;

Benjamin Peirce's Analytic Mechanics, 1855; /. /. Somoff's Theoretische

Mechanik, 1879; P. G. Tail and W. J. Steele's Dynamics of a Particle,

1856; George Minchin's Treatise on Statics; E. J. Routh's Dynamics of

a System of Rigid Bodies; J. C. F. Sturm's Cours de Mecanique de I'Ecole

Polytechnique. George M. Minchin (1845-1914) was professor at the

Indian engineering college.

In 1898 FeUx Klein pointed out the separation which existed be-

tween British and Continental mathematical research, as seen, for
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instance, by the contents of E. J. Routh's Dynamics, which contains

the results of twenty years of research along that line in England and,

in comparison with the German school, emphasizes a concrete and
practical treatment. To make these treasures more readily accessible

to German students, Routh's text was translated into German by
Adolf Schepp (1837-1905) of Wiesbaden in i8g8. Particularly strong

was Routh in the treatment of small oscillations of systems; the

technique of integration of linear differential equations with con-

stant coefficients is highly developed, except that, perhaps, the extent

to which the developments are valid may need closer examination.

This is done in F. Klein and A. Sommerfeld's Theorie des Kreisels,

1897-1910. This last work gives attention to the theory of the top,

the history of which reaches back to the eighteenth century.

In 1744 Serson started on a ship (that was lost), to test the prac-

ticabiUty of the artificial horizon furnished by the pohshed surface

of a top. This idea has been recently revived by French navigators.^

Serson's top induced J. A. Segner of Halle in 1755 to give precision

to the theory of the spinning top, which was taken up more fuUy by
L. Euler in 1765 and then by J. Lagrange. L. Euler considers the

motion on a smooth horizontal plane. Later come the studies due
to L. Poinsot, S. D. Poisson, C. G. J. Jacobi, G. R. Kirchhoff, Eduard
Lottner (1826-1887) of Lippstadt, WiUielm Hess, Clerk MaxweU,
E. J. Routh and finally F. Klein and A. Sommerfeld. In 1914 G.

Greenhill prepared a Report on Gyroscopic Theory ^ which is of more
direct interest to engineers than is Klein and Sommerfeld's Theorie des

Kreisels, developed by the aid of the theory of functions of a complex
variable. Among recent practical applications of gyroscopic action

are the torpedo exhibited before the Royal Society of London in 1907
by Louis Brennan, also Brennan's monorail system, and the methods
of steadying ships and aircraft, devised by the American engineer

Elmer A. Sperry and by Otto Schlick in Germany.
Among the deviations of a projectile from the theoretic paraboUc

path there are two which are of particular interest. One is a slight

bending to the right, in the northern hemisphere, owing to the rotation

of the earth; it was explained by S. D. Poisson (1838) and W. Ferrel

(1889). The other is due to the rotation of the projectile; it was ob-
served by I. Newton in tennis balls and apphed by him to explain

certain phenomena in his corpuscular theory of hght; it was known
to Benjamin Robins and L. Euler. In 1794 the Berhn academy
offered a prize for an explanation of the phenomenon, but no satis-

factory explanation appeared for over half a century. S. D. Poisson
in 1839 {Journ. ecole polyL, T. 27) studied the effect of atmospheric

1 See A. G. Greenhill in VerhandJ. III. Intern. Congr., Heidelberg, igo4, Leipzig,

1905, p. 100. We are summarizing this article.

^Advisory Committee for Aeronautics, Reports and Memoranda, No. 146, London,
1914.



APPLIED MATHEMATICS 459

friction against the rotating sphere, but finally admitted that friction

was not sufficient to explain the deviations. The difference in the
pressure of the air upon the rotating sphfere also demands attention.

An explanation on this basis, which was generally accepted as valid

was given by H. G. Magnus (1802-1870) of Berlin, in PoggendorfE's

Annalen, Vol. 88, 1853. In connection with golf-balls the problem
was taken up by Tait.

Peter Guthrie Tait (1831-1901) was born at Dalkeith, studied at

Cambridge and came out Senior Wrangler in 1854, which was a sur-

prise, as W. J. Steele had been generally ahead in college examinations.

From 1854-1860 Tait was professor of mathematics at Belfast, where
he studied quaternions; from i860 to his death he held the chair of

Natural Philosophy at Edinburgh. Tait found the problem of the

flight of the golf ball capable of exact statement and approximate
solution. One of his sons had become a brilliant golfer. Tait at first

was scoffed at when he began to offer explanations of the secret of

long driving. In 1887 {Nature, 36, p. 502) he shows that "rotation"

played an important part, as established experimentally by H. G.

Magnus (1852). Says P. G. Tait: "In topping, the upper part of the

ball is made to move forward faster than does the center, consequently

the front of the ball descends in virtue of the rotation, and the ball

itself skews in that direction. When a ball is undercut it gets the

opposite spin to the last, and, in consequence, it tends to deviate up-

wards instead of downwards. The upward tendency often makes the

path of a ball (for a part of its course) concave upwards in spite of

the effects of gravity. . .
." P. G. Tait explained the influence of

the underspin in prolonging not only the range but also the time of

flight. The essence of his discovery was that without spin a ball

could not combat gravity greatly, but that with spin it could travel

remarkable distances. He was fond of the game while H. Helmholtz

(who was in Scotland in 1871) "could see no fun in the leetle hole."

P. G. Tait generalized in 1898 the Josephus problem and gave the

rule for n persons, certain v of which shall be left after each m "' man
is picked out.

The deviations of a body falling from rest near the surface of the

earth have been considered in many memoirs from the time of P. S.

Laplace and K. F. Gauss to the present. All writers agree that the

body will deviate to the eastward with respect to the plumb-line hung
from the initial point, but there has been disagreement regarding the

deviation measured along the meridian. Laplace found no meridional

deviation. Gauss found a small deviation toward the equator. Re-

cently this problem has commanded the attention of writers in the

United States. R. S. Woodward, president of the Carnegie Institution

in Washington, found in 1913 a deviation away from the equator.

F. R. Moulton of the University of Chicago found in 1914 a formula

indicating a southerly deviation. W. H. Rover of Washington Uni-
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versity in St. Louis has, since igoi, treated the subject in several

articles which indicate southerly deviations. He declares that "no
potential function is known that fits all parts of the earth," "that
the formula of Gauss, the three formula; of Comte de Sparre [Lyon,

1905], the formula of Professor F. R. Moulton, and my first formula,

are all special cases of my general formula." ^

Fluid Motion

The equations which constitute the foundation of the theory of

fluid motion were fully laid down at the time of J. Lagrange, but the

solutions actually worked out were few and mainly of the irrotational

type. A powerful method of attacking problems in fluid motion is

that of images, introduced in 1843 by G. G. Stokes of Pembroke Col-

lege, Cambridge. It received little attention until Sir William Thom-
son's discovery of electrical images, whereupon the theory was ex-

tended by G. G. Stokes, W. M. Hicks, and T. C. Lewis.

George Gabriel Stokes (1819-1903) was born at Skreen, County
Sligo, in Ireland. In 1S37, the year of Queen Victoria's accession, he
commenced residence at Cambridge, where he was to find his home,
almost without intermission, for sixty-six years. At Pembroke College

his mathematical abiUties attracted attention and in 1841 he graduated
as Senior Wrangler and first Smith's prizeman. He distinguished

himself along the fines of applied mathematics. In 1845 he published

a memoir on "Friction of Fluids in Motion." The general motion of

a medium near any point is analyzed into three constituents—a mo-
tion of pure translation, one of pure rotation and one of pure strain.

Similar results were reached by H. Helmholtz twenty-three years

later. In applying his results to viscous fluids, Stokes was led to

general dynamical equations, previously reached from more special

hypotheses by L. M. H. Navier and S. D. Poisson. Both Stokes and
G. Green were followers of the French school of applied mathemati-
cians. Stokes applies his equations to the propagation of sound, and
shows that viscosity makes the intensity of sound diminish as the

time increases and the velocity less than it would otherwise be

—

especially for high notes. He considered irie two elastic constants in

the equations for an elastic solid to be independent and not reducible

to one as is the case in Poisson's theory. Stokes' position was sup-

ported by Lord Kelvin and seems now generally accepted. In 1847
Stokes examined anew the theory of oscillatory waves. Another
paper was on the effect of internal friction of fluids on the motion of

pen^ijlums. He assumed that the viscosity of the air was propor-

tional to the density, which was shown later by Maxwell to be erro-

neous. In 1849 he treated the ether as an elastic solid in the study of

diffraction. He favored Fresnel's wave theory of light as opposed to

' See Washington University Studies, Vol. ill, 1916, pp. 153-168.
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the corpuscular theory supported by David Brewster. In a report

on double refraction of 1862 he correlated the work of A. L. Cauchy,

J. MacCullagh, and G. Green. Assuming that the elasticity of the

ether has its origin in deformation, he inferred that J. MacCullagh's
theory was contrary to the laws of mechanics, but recently J. Larmor
has shown that J. MacCullagh's equations may be explained on the

supposition that what is resisted is not deformation, but rotation.

Stokes wrote on Fourier series and the discontinuity of arbitrary

constants in semi-convergent expansions over a plane. His contribu-

tions to hydrodynamics and optics are fundamental. In 1849 William
Thomson (Lord Kelvin) gave the maximum and minimum theorem
peculiar to hydrodynamics, which was afterwards extended to dynam-
ical problems in general.

A new epoch in the progress of hydrodynamics was created, in 1856,

by H. Helmholtz, who worked out remarkable properties of rotational

motion in a homogeneous, incompressible fluid, devoid of viscosity.

He showed that the vortex filaments in such a medium may possess

any number of knottings and twistings, but are either endless or the

ends are in the free surface of the medium ; they are indivisible. These
results suggested to WOliam Thomson (Lord Kelvin) the possibility

of founding on them a new form of the atomic theory, according to

which every atom is a vortex ring in a non-frictional ether, and as

such must be absolutely permanent in substance and duration. The
vortex-atom theory was discussed by J. J. Thomson of Cambridge
(bom 1856) in his classical treatise on the Motion of Vortex Rings, to

which the Adams Prize was awarded in 1882. Papers on vortex motion
have been published also by Horace Lamb, Thomas Craig, Henry A.

Rowland, and Charles Chree of Kew Observatory.

The subject of jets was investigated by H. Helmholtz, G. R. Kirch-

hofi, J. Plateau, and Lord Rayleigh; the motion of fluids in a fluid by
G. G. Stokes, W. Thomson (Lord Kelvin), H. A. Kopcke, G. Greenhill,

and H. Lamb; the theory of viscous fluids by H. Navier, S. D. Poisson,

B. de Saint-Venant, Stokes, Oskar Emil Meyer (1834-1909) of Breslau,

A. B. Stefano, C. Maxwell, R. Lipschitz, T. Craig, H. Helmholtz, and
A. B. Basset. Viscous fluids present great difficulties, because the

equations of motion have not the same degree of certainty as in per-

fect fluids, on account of a deficient theory of friction, and of the

difficulty of connecting oblique pressures on a small area with the

differentials of the velocities.

Waves in liquids have been a favorite subject with English mathe-

maticians. The early inquiries of S. D. Poisson and A. L. Cauchy
were directed to the investigation of waves produced by disturbing

causes acting arbitrarily on a small portion of the fluid. The velocity

of the long wave was given approximately by J. Lagrange in 1786 in

case of a channel of rectangular cross-section, by Green in 1839 for

a channel of triangular section, and by Philip Kelland (1810-1879)
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of Edinburgh for a channel of any uniform section. Sir George B.

Airy, in his treatise on Tides and Waves, discarded mere approxima-

tions, and gave the exact equation on which the theory of the long

wave in a channel of uniform rectangular section depends. But he

gave no general solutions. J. McCowan of University College at

Dundee discussed this topic more fully, and arrived at exact and com-

plete solutions for certain cases. The most important application of

the theory of the long wave is to the explanation of tidal phenomena
in rivers and estuaries.

The mathematical treatment of solitary waves was first taken up
by S. Earnshaw in 1845, then by G. G. Stokes; but the first sound

approximate theory was given by J. Boussinesq in 1871, who obtained

an equation for their form, and a value for the velocity in agreement

with experiment. Other methods of approximation were given by
Lord Rayleigh and John McCowan. In connection with deep-water

waves, Osborne Reynolds (1842-1912) of the University of Manchester

gave in 1877 the dynamical explanation for the fact that a group of

such waves advances with only half the rapidity of the individual

waves.

The solution of the problem of the general motion of an ellipsoid

in a fluid is due to the successive labors of George Green (1833),

R. F. A. Clebsch (1856), and Carl Anton Bjerknes (1825-1903) of

Christiania.(i873). The free motion of a solid in a liquid has been
investigated by W. Thomson (Lord Kelvin), G. R. KirchhofE, and
Horace Lamb. By these labors, the motion of a single soHd in a fluid

has come to be pretty well understood, but the case of two solids in a
fluid is not developed so fully. The problem has been attacked by
W. M. Hicks.

The determination of the period of oscillation of a rotating liquid

spheroid has important bearings on the question of the origin of the

moon. G. H. Darwin's investigations thereon, viewed in the light of

G. F. B. Riemann's and H. Poincare's researches, seem to disprove
P. S. Laplace's hypothesis that the moon separated from the earth
as a ring, because the angular velocity was too great for stability;

G. H. Darwin finds no instability.

The explanation of the contracted vein has been a point of much
controversy, but has been put in a much better fight by the appfication
of the principle of momentum, originated by W. Froude and Lord
Rayleigh. Rayleigh considered also the reflection of waves, not at
the surface of separation of two uniform media, where the transition

is abrupt, but at the confines of two media between which the transition

is gradual.

The first serious study of the circulation of winds on the earth's
surface was instituted at the beginning of the second quarter of the last

century by William C. Redfield (1789-1857), an American meteorolo-
gist and railway projector, James Pollard Espy (i 786-1 860) of Wash-
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ington, through whose stimulus the present United States Weather
Bureau was started and Heinrich Wilhelm Dove (1803-1879) of Berlin,
followed by researches by Sir William Reid (1791-1858) a British
major-general who developed his circular theory of hurricanes while in

the West Indies, Henry Piddington (1797-1858) a British commander
in the mercantile marine who accumulated data for determining the
course of storms at sea and originated the term "cyclone," and Elias
Loomis (1811-1889) of Yale University. But the deepest insight into
the wonderful correlations that exist among the varied motions of the
atmosphere was obtained by William Ferrel (1817-1891). He was
born in Fulton County, Pa., and brought up on a farm. Though in

unfavorable surroundings, a burning thirst for knowledge spurred
the boy to the mastery of one branch after another. He attended
Marshall College, Pa., and graduated in 1844 from Bethany College.

WhUe teaching school he became interested in meteorology and in

the subject of tides. In 1856 he wrote an article on "the winds and
currents of the ocean." The following year he became connected
with the Nautical Almanac. A mathematical paper followed in 1858
on "the motion of fluids and solids relative to the earth's surface."

The subject was extended afterwards so as to embrace the mathe-
matical theory of cyclones, tornadoes, water-spouts, etc. In 1885
appeared his Recent Advances in Meteorology. In the opinion of

Julius Hann of Vienna, Ferrel has " contributed more to the advance
of the physics of the atmosphere than any other Uving physicist or

meteorologist."

W. Ferrel taught that the air flows in great spirals toward the poles,

both in the upper strata of the atmosphere and on the earth's smrface

beyond the 30th degree of latitude; while the return current blows'at

nearly right angles to the above spirals, in the middle strata as well

as on the earth's surface, in a zone comprised between the parallels

30° N. and 30° S. The idea of three superposed currents blowing spirals

was first advanced by James Thomson (1822-1892), brother of Lord
Kelvin, but was pubHshed in very meagre abstract.

W. Ferrel's views have given a strong impulse to theoretical re-

search in America, Austria, and Germany. Several objections raised

against his argxunent have been abandoned, or have been answered

by W. M. Davis of Harvard. The mathematical analysis of F. Waldo
of Cambridge, Mass., and of others, has further confirmed the accuracy

of the theory. The transport of Krakatoa dust and observations made
on clouds point toward the existence of an upper east current on the

equator, and Josef M. Pernter (1848-1908) of Vienna has mathe-

matically deduced from Ferrel's theory the existence of such a current.

Another theory of the general circulation of the atmosphere was

propounded by Werner Siemens (1816-1892) of Berlin, in which an

attempt is made to apply thermodynamics to aerial currents. Im-

portant new points of view have been introduced by H. Helmholtz,
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who concluded that when two air currents blow one above the other

in different directions, a system of air waves must arise in the same

way as waves are formed on the sea. He and Anton Oberbeck (1846-

1900) of Tubingen showed that when the waves on the sea attain

lengths of from 16 to 33 feet, the air waves must attain lengths of from

10 to 20 miles, and proportional depths. Superposed strata would

thus mix more thoroughly, and their energy would be partly dissipated.

From hydrodynamical equations of rotation H. Hehnholtz established

the reason why the observed velocity from equatorial regions is much
less in a latitude of, say, 20° or 30°, than it would be were the move-

ments unchecked. Other important contributors to the general theory

of the circulation of the atmosphere are Max MoUer of Braunschweig

and Luigi de Marchi of the University of Pavia. The source of the

energy of atmospheric disturbances was sought by W. Ferrel and Th.

Reye in the heat given off during condensation. Max Margules of the

University of Vienna showed in 1905 that this heat energy contributes

nothing to the kinetic energy of the winds and that the somrce of

energy is found in the lowering of the centre of gravity of an air colimm
when the colder air assumes the lower levels, whereby the potential

energy is diminished and the kinetic energy increased.-"- Asymmetric
cyclones have been studied especially by Luigi de Marchi of Pavia.

Anticyclones have received attention from Henry H. Clayton of the

Blue Hill Observatory, near Boston, from Julius Hann of Vienna, F.

H. Bigelow of Washington, and Max Margules of Vienna.

Sound. Elasticity

About i860 acoustics began to be studied with renewed zeal. The
mathematical theory of pipes and -vibrating strings had been elabo-

rated in the eighteenth century by Daniel Bernoulli, D'Alembert,
L. Euler, and J. Lagrange. In the first part of the present century
P. S. Laplace corrected Newton's theory on the velocity of sound in

gases; S. D. Poisson gave a mathematical discussion of torsional

vibrations; S. D. Poisson, Sophie Germain, and Charles Wheatstone
studied Chladni's figures; Thomas Young and the brothers Weber
developed the wave-theory of sound. Sir J. F. W. Herschel (1792-
1871) wrote on the mathematical theory of sound for the Encyclo-
posdia Metropolitana, 1845. Epoch-making were H. Helmholtz's
experimental and mathematical researches. In his hands and Ray-
leigh's, Fourier's series received due attention. H. Helmholtz gave
the mathematical theory of beats, difference tones, and summation
tones. Lord Rayleigh (John William Strutt) of Cambridge (bom
1S42) made extensive mathematical researches in acoustics as a part
of the theory of vibration in general. Particular mention may be
made of his discussion of the disturbance produced by a spherical

' Encyklopiidie der Math. Wissenschaften, Bd. VI, i, 8, 1912, p. 216.
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obstacle on the waves of sound, and of phenomena, such as sensitive

flames, connected with the instability of jets of fluid. In 1877 and 1878
he published in two volumes a treatise on The Theory of Sound. Other
mathematical researches on this subject have been made in England
by William Fishburn Donkin (1814-1869) of Oxford and G. G. Stokes.

An interesting point in the behavior of a Fourier's series was brought
out in 1898 by J. W. Gibbs of Yale. A. A. Michelson and S. W. Strat-

ton at the University of Chicago had shown experimentally by their

harmonic analyses that the summation of 160 terms of the series

2(— i)i"+'(5mnx)/w revealed certain unexpected small towers in the

curve for the sum, as n increased. J. W. Gibbs showed {Nature, Vol.

59, p. 606) by the study of the order of variation of n and x that these

phenomena were not due to imperfections in the machine, but were
true mathematical phenomena. They are called the "Gibbs' phenom-
enon," and have received further attention from Maxime Bocher,

T. H. Gronwall, H. Weyl, and H. S. Carslaw.

The theory of elasticity ^ belongs to this century. Before 1800 no
attempt had been made to form general equations for the motion or

equilibrium of an elastic solid. Particular problems had been solved

by special hypotheses. Thus, James Bernoulli considered elastic

laminae; Daniel BemoulU and L. Euler investigated vibrating rods;

J. Lagrange and L. Euler, the equilibrium of springs and columns.

The earUest investigations of this century, by Thomas Young
("Young's modulus of elasticity") in England, J. Binet in France,

and G. A. A. Plana in Italy, were chiefly occupied in extending and
correcting the earlier labors. Between 1820 and 1840 the broad out-

line of the modem theory of elasticity was established. This was ac-

complished almost exclusively by French writers,—Louis-Marie-

Henri Navier (1785-1836), S. D. Poisson, A. L. Cauchy, Mademoiselle

Sophie Germain (1776-1831), Felix Savart (1791-1841). , Says H.

Burkhardt: "There are two views respecting the beginnings of the

theory of elasticity of solids, of which no dimension can be neglected:

According to one view the deciding impulse came from Fresnel's

undulatory theory of light, according to the other, everything goes

back to the technical theory of rigidity (Festigkeitstheorie) , the rep-

resentative of which was at that time Navier. As always in such

cases, the truth lies in the middle: Cauchy to whom we owe primarily

the fixing of the fundamental concepts, as strain and stress, learned

from Fresnel as well as from Navier."

Simeon Denis Poisson ^ (1781-1840) was bom at Pithiviers. The

boy was put out to a nurse, and he used to tell that when his father

(a common soldier) came to see him one day, the nurse had gone out

1 1. Todhunter, History of the Theory of Elasticity, edited by Karl Pearson, Cam-

bridge, 1886.

2Ch. Hermite, "Discours prononc^ devant le prfoident de la R^publique,"

Bulletin d^s sciences mathSmatiques, XIV, Janvier, 1890.
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and left him suspended by a thin cord to a nail in the wall in order to

protect him from perishing under the teeth of the carnivorous and un-

clean animals that roamed on the floor. Poisson used to add that his

gymnastic efforts when thus suspended caused him to swing back and

forth, and thus to gain an early familiarity with the pendulum, the

study of which occupied him much in his maturer life. His father

destined him for the medical profession, but so repugnant was this

to him that he was permitted to enter the Polytechnic School at the

age of seventeen. His talents excited the interest of J. Lagrange' and

P. S. Laplace. At eighteen he wrote a memoir on finite differences

which was printed on the recommendation of A. M. Legendre._ He
soon became a lecturer at the school, and continued through life to

hold various government scientific posts and professorships. He pre-

pared some 400 publications, mainly on applied mathematics. His

Traite de Mecanique, 2 vols., 1811 and 1833, was long a standard work.

He wrote on the mathematical theory of heat, capillary action, proba-

bility of judgment, the mathematical theory of electricity and mag-
netism, physical astronomy, the attraction of ellipsoids, definite in-

tegrals, series, and the theory of elasticity. He was considered one

of the leading analysts of his time. The story is told that in 1802 a

young man, about to enter the army, asked IPoisson to take $100 in

safe-keeping. "All right," said Poisson," set it down there and let

me work; I have much to do." The recruit placed the money-bag on
a shelf and Poisson placed a copy of Horace over the bag, to hide it.

Twenty years later the soldier returned and asked for his money,
but Poisson remembered nothing and asked angrily: "You claim

to have put the money in my hands?" "No," replied the soldier,

" I put in on this shelf and you placed this book over it." The soldier

removed the dusty copy of Horace and found the $100 where they had
been placed twenty years before.

His work on elasticity is hardly excelled by that of A. L. Cauchy,
and second only to that of B. de Saint-Venant.. There is hardly a
problem in elasticity to which he has not contributed, while many of

his inquiries were new. The equilibrium and motion of a circular plate

was first successfully treated by him. Instead of the definite integrals

of earlier writers, he used preferably finite summations. Poisson's

contour conditions for elastic plates were objected to by Gustav
Kirchhoff of Berlin, who established new conditions. But Thomson
(Lord Kelvin) and P. G. Tait in their Treatise on Natural Philosophy

have explained the discrepancy between Poisson's and Kirchhoff's

boundary conditions, and established a reconciliation between them.
Important contributions to the theory of elasticity were made by

A. L. Cauchy. To him we owe the origin of the theory of stress, and
the transition from the consideration of the force upon a molecule
exerted by its neighbors to the consideration of the stress upon a
small plane at a point. He anticipated G. Green and G. G. Stokes
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in giving the equations of isotropic elasticity with two constants.

The theory of elasticity was presented by Gabrio Piola of Italy ac-

cording to the principles of J. Lagrange's Mechanique Analytique, but
the superiority of this method over that of Poisson and Cauchy is far

from evident. The influence of temperature on stress was first in-

vestigated experimentally by Wilhelm Weber of Gottingen, and
afterwards mathematically by J. M. C. Duhamel, who, assuming
Poisson's theory of elasticity, examined the alterations of form which
the formulee. undergo when we allow for changes of temperatme. W.
Weber was also the first to experiment on elastic after-strain. Other
important experiments were made by different scientists, which dis-

closed a wider range of phenomena, and demanded a more compre-
hensive theory. Set was investigated by Franz Joseph von Gerstner

(1756-183 2), of Prague and Eaton Hodgkinson of University College,

London, while the latter physicist in England and Louis Joseph Vicat

(1786-1861) in France experimented extensively on absolute strength.

L. J. Vicat boldly attacked the mathematical theories of flexure be-

cause they failed to consider shear and the time-element. As a result,

a truer theory of flexure was soon propounded by B. de Saint-Venant.

J. V. Poncelet advanced the theories of resilience and cohesion.

Gabriel Lame (i 795-1870) was bom at Tours, and graduated at

the Polyteclmic School. He was called to Russia with B. P. E. Clap-

eyron and others to superintend the construction of bridges and roads.

On his return, in 1832, he was elected professor of physics at the Poly-

technic School. Subsequently he held various engineering posts and
professorships in Paris. As engineer he took an active part in the con-

struction of the first railroads in France. Lame devoted his fine mathe-

matical talents mainly to mathematical physics. In four works:

Leqons sur les fondions inverses des franscendantes et les surfaces isother-

mes; Sur les coordonnees curvilignes et leurs diverses applications; Sur

la theorie anaiytique de la chaleur; Sur la theorie mathematique de I'elas-

ticite des corps solides (1852), and in various memoirs he displays fine

analytical powers; but a certain want of physical touch sometimes re-

duces the value of his contributions to elasticity and other physical

subjects. In considering the temperature in the interior of an ellip-

soid under certain conditions, he employed functions analogous to La-

place's functions, and known by the name of "Lame's functions."

A problem in elasticity called by Lame's name, viz., to investigate

the conditions for equilibrium of a spherical elastic envelope subject

to a given distribution of load on the bounding spherical surfaces, and

the determination of the resulting shifts is the only completely general

problem on elasticity which can be said to be completely solved. He
deserves much credit for his derivation and transformation of the

general elastic equations, and for his appUcation of them to double

refraction. Rectangular and triangular membranes were shown by

him to be connected with questions in the theory of numbers. H.
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Burkhardt ^ is of the opinion that the importance of the classic

period of French mathematical physics, about 1810-1835, is often

undervalued, but that the direction it took finally under the leader-

ship of Lame was unfortunate. "By his (Lame's) taste for algebraic

elegance he was misled to prefer problems which are of interest in pure

rather than applied mathematics; he went so far as to require of tech-

nical men the study of number theory, because the determination of

the simple tones of a rectangular plate with commensurable sides

calls for the solution of an indeterminate quadratic equation."

Continuing our outline of the history of elasticity, we observe that

the field of photo-elasticity was entered upon by G. Lame, F. E. Neu-
mann, and Clerk Maxwell. G. G. Stokes, W. Wertheim, R. Clausius,

and J. H. Jellett, threw new light upon the subject of " rari-constancy
"

and " multi-constancy," which has long divided elasticians into two op-

posing factions. The uni-constant isotropy of L. M. H. Navier and
S. D. Poisson had been questioned by A. L. Cauchy, and was severely

criticised by G. Green and G. G. Stokes.

Barre de Saint-Venant (i 797-1886), ingenieur des ponts et chaus-

sees, made it his Ufe-work to render the theory of elasticity . of prac-

tical value. The charge brought by practical engineers, like Vicat,

against the theorists led Saint-Venant to place the theory in its true

place as a guide to the practical man. Numerous errors committed
by his predecessors were removed. He corrected the theory of flexure

by the consideration of slide, the theory of elastic rods of double
curvature by the introduction of the third moment, and the theory

of torsion by the discovery of the distortion of the primitively plane
section. His results on torsion abound in beautiful graphic illustra-

tions. In case of a rod, upon the side surfaces of which no forces act,

he showed that the problems of flexure and torsion can be solved,

if the end-forces are distributed over the end-surfaces by a definite

law. R. F. A. Clebsch, in his Lehrhiwh der Elasticitat, 1862, showed
that this problem is reversible to the case of side-forces without end-
forces. Clebsch - extended the research to very thin rods and to very
thin plates. B. de Saint-Venant considered problems arising in the
scientific design of built-up artillery, and his solution of them differs

considerably from G. Lame's solution, which was popularized by W. J.
M. Rankine, and much used by gun-designers. In Saint-Venant's
translation into French of Clebsch's Elasticitat, he develops extensively

a double-suffix notation for strain and stresses. Though often advan-
tageous, this notation is cumbrous, and has not been generally adopted.
Karl Pearson, Galton professor of eugenics at the University of London,
in his early mathematical studies, examined the permissible limits of
the application of the ordinary theory of flexure of a beam.

^Jaliresb. d. d. Math. Vernniginig, Vol. 12, igo3, p. 564.

^ Alfred Clebsch, Vcrsuch cincr Darlegung tmd Wiirdiguyig seiner wissenschafllichen
Leistungen von einigen seiner Freundc, Leipzig, 1873.
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The mathematical theory of elasticity is still in an unsettled con-

dition. Not only are scientists still divided into two schools of "rari-

constancy" and "multi-constancy," but difference of opinion exists

on other vital questions. Among the numerous modern writers on
elasticity may be mentioned Emile Mathieu (183 5-1 890), professor

at Besanjon, Maurice Levy (1838-1910) of the College de France in

Paris, Charles Chree, superintendent of the Kew Observatory, A. B.

Basset, Lord Kelvin of Glasgow, J. Boussinesq of Paris, and others.

Lord Kelvin applied the laws of elasticity of solids to the investigation

of the earth's elasticity, which is an important element in the theory

of ocean-tides. If the earth is a solid, then its elasticity co-operates

with gravity in opposing deformation due to the attraction of the sun

and moon. P. S. Laplace had shown how the earth would behave if it

resisted deformation only by gravity. G. Lame had investigated how
a solid sphere would change if its elasticity only came into play.

Lord Kelvin combined the two results, and compared them with the

actual deformation. Kelvin, and afterwards G. H. Darwin, computed
that the resistance of the earth to tidal deformation is nearly as great

as though it were of steel. This conclusion was confirmed more re-

cently by Simon Newcomb, from the study of the observed periodic

changes in latitude and by others. For an ideally rigid earth the

period would be 360 days, but if as rigid as steel, it would be 441, the

observed period being 430 days.

Among the older text-books on elasticity may be mentioned the

works of G. Lame, R. F. A. Clebsch, A. Winckler, A. Beer, E. L.

Mathieu, W. J. Ibbetson, and F. Neumann, edited by O. E. Meyer.

In recent years the modem analytical developments, particularly

along the hne of integral equations, have been brought to bear on

theories of elasticity and potential. The solution of the static prob-

lem of the theory of elasticity of a homogeneous isotropic body under

certain given surface conditions has been taken up particularly by

E. I. Fredholm of Stockholm, G. Lauricella of the University of

Catania, R. Marcolongo of Naples and Hermann Weyl of Zurich,

and by a somewhat different mode of procedure, by A. Kom of Berlin

and T. Boggio of Turin.^

Closely connected with researches on attraction and elasticity is

the development of spherical harmonics. After the initial paper of

A. M. Legendre on zonal harmonics applied by him to the study of

the attraction of solids of revolution, and after the remarkable memoir

of 1782 by P. S. Laplace who used spherical harmonics in finding the

potential of a solid nearly spherical, the first advance was made by

Olinde Rodrigues (1794-1851), a French economist and reformer,

who in 1816 gave a formula for P" which later was derived independ-

ently by J. Ivory and C. G. J. Jacobi. The name " Kugelfunktion "

is due to K. F. Gauss. Important contributions were made in Ger-

1 See Rendiconti del Circolo Math, di Palermo, Vol. 39, 1915, p. i.
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many by C. G. J. Jacobi, L. Dirichlet, Franz Ernst Neumann (1798-

1895) who was professor of physics and mineralogy in Konigsberg,

his son Carl Neumann (1832- ), Elwin Bruno Christoffel (1829-

1900) of the University of Strassburg, R. Dedekind, Gustav Bauer

(1820-1906) of Munich, Gustav Mehler (1835-1895) of Elbingin West

Prussia, and Karl Baer (1851- ) of Kiel. Especially active was

Eduard Heine (1821-1881) of the University of Halle, the author of

the Handbuch der KugelfunkHonen, 1861, 2. Ed. 1878-1881. The chief

representative in the cultivation of this subject, in Switzerland, was

L. Schlafli of the University of Bern; in Belgium, was Eugene Catalan

of the University of Liege; in Italy, was E. Beltrami; in the United

States, was W. E. Byerly of Harvard University. In France there

were S. D. Poisson, G. Lame, T. J. Stieltjes, J. G. Darboux, Ch.

Hermite, Paul Mathieu, Hermann Laurent (1841-1908), Professor at

the Polytechnic School in Paris whose researches gave rise to contests

of priority with German writers. In Great Britain spherical har-

monics received the attention of Thomson, (Lord Kelvin) and P. G.

Tait in their Natural Philosophy of 1867, and of Sir William D. Niven
of Manchester, Norman Ferrers (1829-1903) of Cambridge, E. W.
Hobson of Cambridge, A. E. H. Love of Oxford, and others.

Light, Electricity, Heat, Potential

G. F. B. Riemann's opinion that a science of physics only exists since

the invention of differential equations finds corroboration even in this

brief and fragmentary outline of the progress of mathematical physics.

The undulatory theory of light, first advanced by C. Huygens, owes
much to the power of mathematics: by mathematical analysis its

assumptions were worked out to their last consequences. Thomas
Young ^ (1773-1829) was the first to explain the principle of inter-

ference, both of light and sound, and the first to bring forward the

idea of transverse vibrations in Hght waves. T. Young's explanations,

not being verified by him by extensive numerical calculations, at-

tracted Httle notice, and it was not until Augustin Fresnel (1788-

1827) applied mathematical analysis to a much greater extent than
Young had done, that the undulatory theory began to carry convic-

tion. Some of Fresnel's mathematical assumptions were not satis-

factory; hence P. S. Laplace, S. D. Poisson, and others belonging to

the strictly mathematical school, at first disdained to consider the
theory. By their opposition Fresnel was spurred to greater exertion.

D. F. J. Arago was the first great convert made by Fresnel. When
polarization and double refraction were explained by T. Young and
A. Fresnel, then P. S. Laplace was at last won over. S. D. Poisson
drew from Fresnel's formulas the seemingly paradoxical deduction

' Arthur Schuster, "The InQuence of Mathematics on the Progress of Physics,"
Nature, Vol. 25, 1882, p. 398.
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that a small circular disc, illuminated by a luminous point, must cast
a shadow with a bright spot in the centre. But this was found to be
in accordance with fact. The theory was taken up by another great
mathematician, W. R. Hamilton, who from his formulae predicted
conical refraction, verified experimentally by Humphrey Lloyd. These
predictions do not prove, however, that Fresnel's formulae are correct,

for these prophecies might have been made by other forms of the
wave-theory. The theory was placed on a sounder dynamical basis

by the wTitings of A. L. Cauchy, J. B. Biot, G. Green, C. Neumann,
G. R. KirchhofI, J. MacCullagh, G. G. Stokes, B. de Saint-Venant,
Emile Sarrau (1837-1904) of the Polytechnic School in Paris, Ludwig
Lorenz (1829-1891) of Copenhagen, and Sir William Thomson (Lord
Kelvin). In th& wave-theory, as taught by G. Green and others, the
luminiferous ether was an incompressible elastic solid, for the reason
that fluids could not propagate transverse vibrations. But, according
to G. Green, such an elastic solid would transmit a longitudinal dis-

turbance with infinite velocity. G. G. Stokes remarked, however, that
the ether might act like a fluid in case of finite disturbances, and like

an elastic solid in case of the infinitesimal disturbances in light prop-
agation. A. Fresnel postulated the density of ether to be different in

different media, but the elasticity the same, while C. Neumann and

J. MacCullagh assumed the density uniform and the elasticity different

in all substances. On the latter assumption' the direction of vibration

lies in the plane of polarization, and not perpendicular to it, as in the

theory of A. Fresnel.

while the above writers endeavored to explain all optical properties

of a medium on the supposition that they arise entirely from difference

in rigidity or density of the ether in the medium, there is another
school advancing theories in which the mutual action between the

molecules of the body and the ether is considered the main cause of

refraction and dispersion.^ The chief workers in this field were J.

Boussinesq, W. Selhneyer, H. Helmholtz, E. Lommel, E. Ketteler,

W. Voigt, and Sir William Thomson (Lord Kelvin) in his lectures

delivered at the Johns Hopkins University in 1884. Neither this nor
the first-named school succeeded in explaining all the phenomena.
A third school was founded by C. Maxwell. He proposed the electro-

magnetic theory, which has received extensive development recently.

It will be mentioned again later. According to Maxwell's theory, the

direction of vibration does not lie exclusively in the plane of polariza-

tion, nor in a plane perpendicular to it, but something occurs in both

planes—a magnetic vibration in one, and an electric in the other.

G. F. Fitzgerald and F. T. Trouton in Dublin verified this conclusion

of C. Maxwell by experiments on electro-magnetic waves.

Of recent mathematical and experimental contributions to optics,

1 R. T. Glazebrook, "Report on Optical Theories," Report British Ass'n for 1885,

p. 213.
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mention must be made of Henry Augustus Rowland (1848-1901), who
was professor of physics at the Johns Hopkins University and his

theory of concave gratings, and of A. A. Michelson's work on interfer-

ence, and his appHcation of interference methods to astronomical

measurements.
A function of fundamental importance in the mathematical theories

of electricity and magnetism is the "potential." It was first used by

J. Lagrange in the determination of gravitational attractions in 1773.

Soon after, P. S. Laplace gave: the celebrated differential equation,

which was extended by S. D. Poisson by writing—47r^ in place of

zero in the right-hand member of the equation, so that it applies not

only to a point external to the attracting mass, but to any point what-

ever. The first to apply the potential function to other than gravita-

tion problems was George Green (1793-1841). He introduced it into

the mathematical theory of electricity and magnetism. Green was a
self-educated man who started out as a baker, and at his death was
fellow of Caius College, Cambridge. In 1828 he pubHshed by private

subscription at Nottingham a paper entitled Essay on the application

of mathematical analysis to the theory of electricity and magnetism.

About 100 copies were printed. It escaped the notice even of Enghsh
mathematicians until 1846, when Wilham Thomson (Lord Kelvin) had
it reprinted in Crelle's Journal, vols. xliv. and xlv. It contained what is

now known as "Green's theorem" for the treatment of potential.

Meanwhile all of Green's general theorems had been rediscovered by
William Thomson (Lord Kelvin), M. Chasles, J. C. F. Sturm, and
K. F. Gauss. The term potential function is due to G. Green. W. R.
Hamilton used the word force-function, while K. F. Gauss, who about
1840 secured the general adoption of the function, called it simply

potential. G. Green wrote papers on the equilibrium of fluids, the

attraction of ellipsoids, on the reflection and refraction of sound and
light. His researches bore on questions previously considered by
S.'D. Poisson. K. F. Gauss proved what C. Neumarm has called

"Gauss' theorem of mean value" and then considered the question of

maxima and minima of the potential.^

Large contributions to electricity and magnetism have been made
by William Thomson later Sir William Thomson and Lord Kelvin
(1824-1907). He was born at Belfast, Ireland, but was of Scotch de-

scent. He and his brother James studied in Glasgow. From there he
entered Cambridge, and was graduated as Second Wrangler in 1845.
William Thomson, J. J. Sylvester, C. Maxwell, W. K. Clifford, and J. J.
Thomson are a group of great men who were Second Wranglers at Cam-
bridge. At the age of twenty-two W. Thomson was elected professor

' For details see Max Bacharach, Geschichte der Potentialtheorie, Gottingen, 1883.
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of natural philosophy in the University of Glasgow, a position which
he held till his death. For his brilliant mathematical and physical

achievements he was knighted, and in 1892 was made Lord Kelvin.
He was greatly influenced by the mathematical physics of J. Fourier
and other French mathematicians. It was Fourier's mathematics on
the flow of heat through solids which led him to the mastery of the

diffusion of an electric current through a wire and of the difficulties

encountered in signalling through the Atlantic telegraph. In 1845
W. Thomson visited Paris. P. S. Laplace, A. M. Legendre, J. Fourier,

Sadi Carnot, S. D. Poisson, and A. Fresnel were no longer living. W.
Thomson met J. Liouville to whom he gave the now famous memoir
of G. Green of the year 1828. He met M. Chasles, J. B. Biot, H. V.
Regnault, J. C. F. Sturm, A. L. Cauchy, and J. B. L. Foucault. A. L
Cauchy tried to convert him to Roman Catholicism. One evening.

J. C. F. Sturm called upon him in high excitement. "Vous avez le

memoire de Green," he exclaimed. The Essay was produced; Sturm
eagerly scanned its contents. "Ah! voila mon affaire," he cried,

jumping from his seat as he caught sight of the formula in which G.
Green had anticipated his theorem of the equivalent distribution.

Kelvin's researches on the theory of potential are epoch-making.

What is called "Dirichlet's principle" was discovered by him in 1848,

somewhat earUer than by P. G. L. Dirichlet. Jointly with P. G. Tait

he prepared the celebrated Treatise of Natural Philosophy, 1867.

As a mathematician he belonged most decidedly to the intuitional

school. Purists in mathematics often carped at Kelvin's "instinctive"

mathematics. "Do not imagine," he once said, "that mathematics
is hard and crabbed, and repulsive to common sense. It is merely the

etherealization of common sense." Yet even in mathematics he had
his dislikes. When in 1845 he met W. R. Hamilton at a British Asso-

ciation meeting, who then read his first paper on Quaternions, one

might have thought that W. Thomson would welcome the new
analysis : but it was not so. He did not use it. On the merits of quater-

nions he had a thirty-eight years' war with P. G. Tait.^ We owe to

W. Thomson new synthetical methods of great elegance, viz., the

theory of electric images and the method of electric inversion founded

thereon. By them he determined the distribution of electricity on a

bowl, a problem previously considered insolvable. The distribution

of static electricity on conductors had been studied before this mainly

by S. D. Poisson and G. A. A. Plana. In 1845 F. E. Neumann of

Konigsberg developed from the experimental laws of Lenz the mathe-

matical theory of magneto-electric induction. In 1855 W. Thomson
predicted by mathematical analysis that the discharge of a Leyden jar

through a linear conductor would in certain cases consist of a series of

decaying oscillations. This was first established experimentally by

Joseph Henry of Washington. William Thomson worked out the

> S. P. Thompson, Life of William Thomson, London, 1910, pp. 452, 1136-1139,
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electro-static induction in submarine cables. The subject of the

screening effect against induction, due to sheets of different metals,

was worked out mathematically by Horace Lamb and also by Charles

Niven. W. Weber's chief researches were on electro-dynamics. H.

Helmholtz in 185 1 gave the mathematical theory of the course of in-

duced currents in various cases. Gustav Robert Kirchhoff ' (1824-

1887), who was professor at Breslau, Heidelberg and since 1875 at

Berlin, investigated the distribution of a current over a flat conductor,

and also the strength of current in each branch of a network of linear

conductors.

The entire subject of electro-magnetism was revolutionized by
James Clerk Maxwell (1831-1879). He was born near Edinburgh,

entered the University of Edinburgh, and became a pupil of Kelland

and Forbes. In 1S50 he went to Trinity College, Cambridge, and

came out Second Wrangler, E. Routh being Senior Wrangler. Max-
well then became lecturer at Cambridge, in 1856 professor at Aber-

deen, and in i860 professor at King's College, London. In 1865 he

retired to private life until 1871, when he became professor of physics

at Cambridge. Maxwell not only translated into mathematical lan-

guage the experimental results of Michael Faraday, but established

the electro-magnetic theory of light, since verified experimentally by
H. R. Hertz. His first researches thereon were pubhshed in 1864.

In 187 1 appeared his great Treatise on Electricity and Magnetism.

He constructed the electro-magnetic theory from general equations,

which are established upon purely dynamical principles, and which
determine the state of the electric field. It is a mathematical discus-

sion of the stresses and strains in a dielectric medium subjected to

electro-magnetic forces. The electro-magnetic theory has received

developments from Lord Rayleigh, J. J. Thomson, H. A. Rowland,
R. T. Glazebrook, H. Helmholtz, L. Boltzmann, O. Heaviside, J. H.
Poynting, and others. Hermann von Helmholtz (1821-1894) was
born in Potsdam, studied medicine, was assistant at the charity hos-

pital in Berlin, then a military surgeon, a teacher of anatomy, a pro-

fessor of physiology at Konigsberg, at Bonn and at Heidelberg. In
187 1 he went to Berhn as successor to Magnus in the chair of physics.

In 1887 he became director of the new Physikalisch-Technische
Reichsanstalt. As a young man of twenty-six he published the now
famous pamphlet Veber die Erhaltung der Kraft. His work on Tonemp-
findung was written in Heidelberg. After he went to Berlin he was
engaged chiefly on inquiries in electricity and hydrodynamics. Helm-
holtz aimed to determine in what direction experiments should be
made to decide between the theories of W. Weber, F. E. Neumann,
G. F. B. Riemann, and R. Clausius, who had attempted to explain
electro-dynamic phenomena by the assumption of forces acting at a
distance between two portions of the hypothetical electrical fluid,

—

' W. Voigt, Zitm Ged'dchiniss von G. Kirchhojf, Gottingen, 1888.
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the intensity being dependent not only on the distance, but also on
the velocity and acceleration,—and the theory of M. Faraday and
C. Maxwell, which discarded action at a distance and assumed stresses

and strains in the dielectric. His experiments favored the British

theory. He wrote on abnormal dispersion, and created analogies

between electro-dynamics and hydrodynamics. Lord Rayleigh com-
pared electro-magnetic problems with their mechanical analogues,
gave a dynamical theory of diffraction, and applied Laplace's coeflS-

cients to the theory of radiation. H. Rowland made some emenda-
tions on G. G. Stokes' paper on diffraction and considered the pro-

pagation of an arbitrary electro-magnetic disturbance and spherical

waves of light. Electro-magnetic induction has been investigated

mathematically by Oliver Heaviside, and he showed that in a cable

it is an actual benefit. O. Heaviside and J. H. Poynting have reached
remarkable mathematical results in their interpretation and develop-

ment of Maxwell's theory. Most of Heaviside's papers have been
published since 1882; they cover a wide field.

One part of the theory of capillary attraction, left defective by P. S.

Laplace, namely, the action of a solid upon a liquid, and the mutual
action between two liquids, was made dynamically perfect by K. F.

Gauss. He stated the rule for angles of contact between liquids and
solids. A similar rule for liquids was established by Franz Ernst

Neumann. Chief among more recent workers on the mathematical

theory of capillarity are Lord Rayleigh and E. Mathieu.

The great principle of the conservation of energy was established

by Robert Mayer (1814-1878), a physician in Heilbronn, and again

independently by Ludwig A. Colding of Copenhagen, J. P. Joule, and
H. Helmholtz. James Prescott Joule (1818-1889) determined ex-

perimentally the mechanical equivalent of heat. H. Helmholtz in

1847 applied the conceptions of the transformation and conservation

of energy to the various branches of physics, and thereby linked to-

gether many well-known phenomena. These labors led to the aban-

donment of the corpuscular theory of heat. The mathematical treat-

ment of thermic problems was demanded by practical considerations.

Thermodynamics grew out of the attempt to determine mathemati-

cally how much work can be gotten out of a steam engine. Sadi

Nicolas Leonhard Camot (1796-1832) of Paris, an adherent of the

corpuscular theory, gave the first unpulse to this. The principle

known by his name was published in 1824. Though the importance

of his work was emphasized by B. P. E. Clapeyron, it did not meet

with general recognition until it was brought forward by William

Thomson (Lord Kelvin). The latter pointed out the necessity of

modifying Camot's reasoning so as to bring it into accord with the

new theory of heat. William Thomson showed in 1848 that Carnot's

principle led to the conception of an absolute scale of temperature.

In 1849 he pubUshed "an account of Carnot's theory of the motive
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power of heat, with numerical results deduced from Regnault's ex-

periments." In February, 1850, Rudolph Clausius (1822-1888), then

in Zurich (afterwards professor in Bonn) , communicated to the Berlin

Academy a paper on the same subject which contains the Protean

second law of thermodynamics. In the same month WiUiam John
M. Rankine (1820-1872), professor of engineering and mechanics

at Glasgow, read before the Royal Society of Edinburgh a paper in

which he declares the nature of heat to consist in the rotational mo-
tion of molecules, and arrives at some of the results reached previously

by R. Clausius. He does not mention the second law of thermody-

namics, but in a subsequent paper he declares that it could be derived

from equations contained in his first paper. His proof of the second

law is not free from objections. In March, 185 1, appeared a paper

of William Thomson (Lord Kelvin) which contained a perfectly

rigorous proof of the second law. He obtained it before he had seen

the researches of R. Clausius. The statement of this law, as given by
Clausius, has been much criticised, particularly by W. J. M. Rankine,

Theodor Wand, P. G. Tait, and Tolver Preston. Repeated efforts to

deduce it from general mechanical principles have remained fruitless.

The science of theormodynamics was developed with great success

by W. Thomson, Clausius, and Rankine. As early as 1852 W. Thom-
son discovered the law of the dissipation of energy, deduced at a
later period also by R. Clausius. The latter designated the non-
transformable energy by the name entropy, and then stated that the

entropy of the universe tends toward a maximum. For entropy
Rankine used the term thermodynamic function. Thermodynamic
investigations have been carried on also by Gustav Adolph Hirn (1815-

1890) of Colmar, and H. Helmholtz (monocyclic and polycyclic sys-

tems). Valuable graphic methods for the study of thermodynamic
relations were devised by J. W. Gibbs of Yale College.

Josiah Willard Gibbs (1839-1903) was born m New Haven, Conn.,
and spent the first five years after graduation mainly in mathematical
studies at Yale. He passed the winter of 1866-1867 in Paris, of 1867-
i858 in Berlin, of 1868-1869 in Heidelberg, studying physics and
mathematics. In 187 1 he was elected professor of mathematical physics
at Yale. " His direct geometrical or graphical bent is shown by the at-

traction which vectorial modes of notation in physical analysis exerted
over him, as they had done in a more moderate degree over C. Max-
well." Greatly influenced by Sadi Carnot, by William Thomson (Lord
Kelvin) and especially by R. Clausius, Gibbs began in 1873 to pre-
pare papers on the graphical expression of thermodynamic relations,

in which energy and entropy appeared as variables. He discusses the
entropy-temperature and entropy-volume diagrams, and the volume-
energy-entropy surface (described in C. Maxwell's Theory of Heat).
Gibbs formulated the energy-entropy criterion of equilibrium and
stability, and expressed it in a form applicable to complicated problems



APPLIED MATHEMATICS 477

of dissociation. That chemistry has tended to take a mathematical
turn, says E. Picard, is evident from "the celebrated memoir of J. W.
Gibbs on the equilibrium of chemical systems, so analytic in char-

acter, and where is needed some effort on the part of the chemists to

recognize, under their algebraic mantle, laws of high importance."
In igo2 appeared J. W. Gibbs' Elementary Principles in Statistical

Mechanics, developed with special reference to the rational foundation
of thermodynamics. The modern kinetic theory of gases was mainly
the work of R. Clausius, C. Maxwell, and Boltzmann. "In reading
Clausius we seem to be reading mechanics; in reading Maxwell, and
in much of L. Boltzmann's most valuable work, we seem rather to be
reading in the theory of probabiUties." C. Maxwell, and L. Boltzmann
are the creators of "statistical dynamics." While they treated of

molecules of matter directly, J. W. Gibbs considers "the statistics

of a definite vast aggregation of ideal similar mechanical systems of

types completely defined beforehand, and then compares the precise

results reached in this ideal discussion with the principles of thermo-
dynamics, already ascertained in the semi-empirical manner." ^ Im-
portant works on thermodynamics were prepared by R. Clausius
in 1875, by R. Riihlmann in 1875, and by H. Poincare in 1892.

In the study of the law of dissipation of energy and the principle

of least action, mathematics and metaphysics met on common ground.
The doctrine of least action was first propounded by P. L. M. Mau-
pertius in 1744. Two years later he proclaimed it to be a universal

law of nature, and the first scientific proof of the existence of God.
It was weakly supported by him, violently attacked by Konig of

Leipzig, and keenly defended by L. Euler. J. Lagrange's conception

of the principle of least action became the mother of analytic me-
chanics, but his statement of it was inaccurate, as has been remarked
by Josef Bertrand in the third edition of the Mecanique Analytique.

The form of the principle of least action, as it now exists, was given

by W. R. Hamilton, and was extended to electro-dynamics by F. E.

Neumann, R. Clausius, C. Maxwell, and H. Helmholtz. To sub-

ordinate the principle to all reversible processes, H. Helmholtz intro-

duced into it the conception of the "kinetic potential." In this forifi

the principle has universal validity.

An offshoot of the mechanical theory of heat is the modern kinetic

theory of gases, developed mathematically by R. Clausius, C. Maxwell,

Ludwig Boltzmann of Vienna, and others. The first suggestions of a

kinetic theory of matter go back as far as the time of the Greeks. The
earliest work to be mentioned here is that of Daniel BernoulH, 1738.

He attributed to gas-molecules great velocity, explained the pressure

of a gas by molecular bombardment, and deduced Boyle's law as a

consequence of his assumptions. Over a century later his ideas were

taken up by J. P. Joule (in 1846), A. K. Kronig (in 1856), and R.

' Proceed, of the Royal Soc. of London, Vol. 75, 1905, p. 293.
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Clausius (in 1857). J. P. Joule dropped his speculations on this

subject when he began his experimental work on heat. A. K. Kronig

explained by the kinetic theory the fact determined experimentally

by Joule that the internal energy of a gas is not altered by expansion

when no external work is done. R. Clausius took an important step

in supposing that molecules may have rotary motion, and that atoms

in a molecule may move relatively to each other. He assumed that

the force acting between molecules is a function of their distances,

that temperature depends solely upon the kinetic energy of molecular

motions, and that the number of molecules which at any moment are

so near to each other that they perceptibly influence each other is

comparatively so small that it may be neglected. He calculated the

average velocities of molecules, and explained evaporation. Objections

to his theory, raised by C. H. D. Buy's-Ballot and by Emil Jochmann,
were satisfactorily answered by R. Clausius and C. Maxwell, except in

one case where an additional hypothesis had to be made. C. Maxwell
proposed to himself the problem to determine the average number
of molecules, the velocities of which lie between given limits. His
expression therefor constitutes the important law of distribution of

velocities named after him. By this law the distribution of molecules

according to their velocities is determined by the same formula (given

in the theory of probability) as the distribution of empirical observa-

tions according to the magnitude of their errors. The average mo-
lecular velocity as deduced by C. Maxwell differs from that of R.
Clausius by a constant factor. C. Maxwell's first deduction of this

average from his law of distribution was not rigorous. A sound deriva-

tion was given by O. E. Meyer in 1866. C. Maxwell predicted that

so long as Boyle's law is true, the coefficient of viscosity and the coeffi-

cient of thermal conductivity remain independent of the pressure.

His deduction that the coefficient of viscosity should be proportional

to the square root of the absolute temperature appeared to be at

variance with results obtained from pendulum experiments. This
induced him to alter the very foundation of his kinetic theory of gases
by assuming between the molecules a repelling force varying inversely

as the fifth power of their distances. The founders of the kinetic

theory had assumed the molecules of a gas to be hard elastic spheres;
but Maxwell, in his second presentation of the theory in 1866, went
on the assumption that the molecules behave like centres of forces.

He demonstrated anew the law of distribution of velocities; but the
proof had a flaw in argument, pointed out by L. Boltzmann, and
recognized by C. Maxwell, who adopted a somewhat different form
of the distributive function in a paper of 1879, intended to explain
mathematically the effects observed in Crookes' radiometer. L. Boltz-
mann gave a rigorous general proof of Maxwell's law of the distribu-

tion of velocities.

None of the fundamental assumptions in the kinetic theory of gases
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leads by the laws of probability to results in very close agreement
with observation. L. Boltzmann tried to establish kinetic theories

of gases by assuming the forces between molecules to act according to

different laws from those previously assumed. E^. Clausius, C. Max-
well, and their predecessors took the mutual action of molecules in

collision as repulsive, but L. Boltzmann assumed that they may be
attractive. Experiments of J. P. Joule and Lord Kelvin seem to sup-
port the latter assumption.

Among the later researches on the kinetic theory is Lord Kelvin's
disproof of a general theorem of C. Maxwell and L. Boltzmann, as-

serting that the average kinetic energy of two given portions of a
system must be in the ratio of the number of degrees of freedom of

those portions.

In recent years the kinetic theory of gases has received less attention;

it is considered inadequate since the founding of the quantum hypothe-
sis in physics.

Relativity

Profound and startUng is the " theory of relativity." On the theory

that the ether was stationary it was predicted that the time required

for light to travel a given distance forward and back would be diflferent

when the path of the light was parallel to the motion of the earth in its

orbit from what it was when the path of the light was perpendicular.

In 1887 A. A. Michelson and E. W. Morely found experimentallythat

such a difference in time did not exist. More generally, the results

of this and other experiments indicate that the earth's motion through
space cannot be detected by observations made on the earth alone.

In order to explain Michelson and Morley's negative result and at

the same time save the stationary-ether theory, H. A. Lorentz con-

structed in 1895 a " contraction hjrpothesis," according to which a mov-
ing solid contracts slightly longitudionally. This same idea occurred

independently to G. F. Fitzgerald. In 1904 and in his Columbia Uni-

versity Lectures Lorentz aimed to reduce the electromagnetic equations

for a moving system to the form of those that hold for a system at

rest. Instead of x, y, z, i he introduced new independent variables,

vi?., x'=\yix—vi), y=\y, z'=\z, t'=\y{t—-^x),vi\itre. 7 depends

upon velocity of Ught c and of the moving body v, and X is a numerical

coefficient such that, X=i when v=o. His fundamental equations

turned out to be invariant under this now called " Lorentz transforma-

tion." In 1906 H. Poincare made use of this transformation for the

treatment of the dynamics of the electron and also of universal gravi-

tation.^ In 1905 A. Einstein published a paper on the electrodynam-

ics of moving bodies in Annalen der Physik, Vol. 17, aiming at perfect

iL. Silberstein, The Theory of Relaliiriiy, London, 1914, p. 87.
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reciprocity or equivalence of a pair o^ moving systems, and investi-

gating the whole problem from the bottom, carefully considering the

matter of "simultaneous" events in two distant places; he has suc-

ceeded in giving plausible support to and a striking interpretation

of Lorentz's transformations. Einstein opened the way to the modern
" theory of relativity." He developed it somewhat more fully in 1907.

A fundamental point of view in his theory was that mass and energy

are proportional. For the purpose of taking account of gravitational

phenomena, Einstein generalized his theory by assuming that mass

and weight are also proportional, so that, for example, a ray of hght

is attracted by matter. The mathematical part of Einstein's theory,

as developed by M. Grossmann in 1913, employs quadratic differential

forms and the absolute calculus of Gregorio Ricci of Padua. Another

remarkable speculation was brought out in 1908 by Hermann Min-

kowski who read a lecture on Raum und Zeit, in which he maintained

that the new views of space and time, developed from experimental

considerations, are such that "space by itself and time by itself sink

into the shadow and only a kind of union of the two retains self-de-

pendence." No one notices a place, except at some particular time,

nor time except at a particular place. A system of values x, y, 2, t

he calls a "world point" (Weltpunkt) ; the life-path of a material point

in four-dimensional space is a "world line." The idea of time as a

fourth dimension had been conceived much earlier by J. Lagrange in

his Theorie des fonctions analytiques and by D'Alembert in his article

"Dimension" in Diderot's Encyclopedic,^ i754- H. Minkowski con-

siders the group belonging to the differential equation for the propaga-

tion of waves of light. Hermann Minkowski (1864-1909), was bom at

Alexoten in Russia, studied at Konigsberg and Berlin, held associate

professorships at Bonn and Konigsberg and was promoted to a full

professorship at Konigsberg in 1895. In 1896 he went to the poly-

technic school at Zurich and in 1903 to Gottingen. The importance

which H. Minkowski, starting with the principle of relativity in the

form given it by Einstein, has given to the Lorentzian transforma-

tions by the introduction of a four dimensional manifoldness or space-

time-world, has been made intuitively evident by a number of writers,

particularly F. Klein (1910), L. Heffter (1912), A. Brill (1912), and
H. E. Timerding (1912). F. Klein said: "What the modem physicists

call 'theory of relativity' is the theory of invariants of the fourth di-

mensional space-time-region x, y, z, / (Minkowski's world) in relation

to a definite group of coUineations, namely the 'Lorentz-group.' "^

A novel presentation aiming at great precision was given in 1914 by
Alfred A. Robb who on the idea of "conical order" and 21 postulates

builds up a system in which the theory of space becomes absorbed in

the theory of time. A philosophical discussion of relativity, mechan-

' R. C. Archibald in Btdl. Am. Math. Soc, Vol. 20, igi4, p. 410.
2 Klein in Jahresb. d, d. Math. Verein., Vol. 19, igio, p. 287.



APPLIED MATHEMATICS 481

ics and geometrical axioms is given by Federigo Enriques of Bologna
in his Problems of Science (1906), which has been translated into Eng-
lish by Katharine Royce in 19 14. F. Enriques argues that certain

optical and electro-optical phenomena seem to lead to a direct contra-

diction of the principles of classic mechanics, especially of Newton's
principle of action and reaction. "Physics," says Enriques, "instead
of affording a more precise verification of the classic mechanics, leads

rather to a correction of the principles of the latter science, taken a
priori as rigid."

The Russian mathematician, Vladimir Varicak found that the

Lobachevskian geometry presented itself as the best adapted for the

mathematical treatment of the physics of relativity. He enters upon
optical phenomena and the resolution of paradoxes due to Ehrenfest
and Bonn. Starting from this point of view, E. Borel in 1913 was able

to deduce new consequences of the theory of relativity. One advantage
of Varicak's presentation is that it safeguards the parallelism between
the old enunciations of physics and the new. L. Rougier of Lyon ^

asks the question, is then the Lobachevskian geometry physically

true and the Euclidean wrong? No. One may keep, says he, the or-

dinary geometry for the discussion of the physics of relativity, as is

done by H. A. Lorentz and A. Einstein, or one may add a fourth imag-

inary dimension to our three dimensions in the manner of H. Min-
kowski, or one may use the non-Euclidean geometries of mechanics
and electromagnetics developed by E. B. Wilson and G. N. Lewis,^

then of Boston. Each of these interpretations enjoys some particular

advantages of its own.

Nomography

The use of simple graphic tables for computation is encountered in

antiquity and the middle ages. The graphic solution of spherical

triangles was in vogue in the time of Hipparchus,^ and in the seven-

teenth century by W. Oughtred,* for instance. Edmund Wingate's

Construction and Use of the Line of Proportion, London, 1628, de-

scribed a double scale upon which numbers are indicated by spaces

on one side of a straight line and the corresponding logarithms by
spaces on the other side of the line.* Recently this idea has been car-

ried out by A. Tichy in his Graphische Logarithmentafeln, Vienna, 1897.

The Longitude Tables and Horary Tables of Margetts, London, 1791,

were graphical. More systematic use of this idea was made by
Pouchet in his Arithmetique lineaire, Rouen, 1795. In 1842 appeared

the Anamorphose logarithmique of the Parisian engineer Leon Lalanne

1 VEnseignement Maihematique, Vol. XVI, 1914, p. 17.

2 Proceed. Am. Acad, of Arts and Science, Vol. 48, 1912.
^ A. von Braunmuhl, Ceschichte der Trigonometric, Leipzig, Vol. I, 1900, pp. 3, 10,

85, 191.
* F. Cajori, William Oughtred, Chicago and London, 1916.

* F. Cajori, Colorado College Publication, General Series 47, 1910, p. 182.



482 A HISTORY OF MATHEMATICS

(1811-1892) in which the distances of points from the origin are not

necessarily proportional to the actual values of the data, but may be

other functions of them, judiciously chosen. In the product ziZ2=Z3,

the variables Zi and zi are brought in correspondence, respectively,

with the straight lines x=\og zi, 3'=log Zi, so that .-v;+3'=log Z3,

which represents the straight Unes perpendicular to the bisectors of the

angle between the co-ordinate axes. Advances along this line were

made by J. Massau of the University of Ghent, in 1884, and E. A.

Lallemand in 1886. The Scotch Captain Patrick Weir in 1889 gave

an azimuth diagram which was an anticipation of a spherical triangle

nomogram. But the real creator of nomography is Maurice d'Ocagne

of the Ecole Polytechnique in Paris, whose first researches appeared in

1891; his Traite de nomographie came out in 1899. The principle of

anamorphosis, by successive generalizations, "has led to the con-

sideration of equations representable not only by two systems of

straight Unes parallel to the axes of co-ordinates and one other un-

restricted system of straight lines, but by three systems of straight

Hnes under no such restrictions." D'Ocagne also studied equations

representable by means of systems of circles. He has introduced the

method of collinear points by which "it has been possible to represent

nomographically equations of more than three variables, of which

the previous methods gave no convenient representation." ^

Mathematical Tables

The increased accuracy now attainable in astronomical and geodetic

measurements and the desire to secure more complete elimination of

errors from logarithmic tables, has led to recomputations of logarithms.

Edward Sang of Edinburgh published in 1871 a 7-place table of com-
mon logarithms of numbers to 200,000. These were mainly derived

from his unpublished 28-place table of logarithms of primes to 10,037

and composite numbers to 20,000, and his 15-place table from 100,000

to 370,000.^ In 1889 the Geographical Institute of Florence issued a
photographic reproduction of G. F. Vega's Thesaurus of 1794 (10

figures). .Vega had computed A. Vlacq's tables anew, but his last

figure was unrehable. In 1891 the French Government issued 8-

place tables which were derived from the unpublished Tables du
Cadastre (14-places, 12 correct) which had been computed near the

close of the eighteenth century under the supervision of G. Riche de
Prony. These tables give logarithms of numbers to 120,000, and of

sines and tangents for every 10 centesimal seconds, the quadrant being

divided centesimally.* Prony consulted A. M. Legendre and other

' D'Ocagne in Napier Tercentenary Memorial Volume, London, 1915, pp. 279-
283. See also D'Ocagne, Le calciil simptifie, Paris, 1905, pp. 145-153.

^ E. M. Horsburgh, Napier Tercentenary Celebration Handbook, 1914, pp. 38-43.
' This and similar information is drawn from J. W. L. Glaisher in Napier Ter-

centenary Memorial Volume, London, 1915, pp. 71-73.
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mathematicians on the choice of methods and formulas, and entrusted
the computation of primary results to professional calculators, while
the task of filling the rest of the columns beyond the primary results

was performed by assistants "apt merely in performing additions"
by the use of the method of differences. " It is curious,

'

' says D 'Ocagne
"to note that the majority of these assistants had been recruited from
among the hair-dressers whom the abandonment of the powdered wig
in men's fashion had deprived of a livelihood."

In 1891 M. J. de Mettdizdbel-Tamborrel published at Paris tables of

logarithms of numbers to 125,000 (8 places) and of sines and tangents

(7 or 8 places) for every millionth of the circumference, which were
almost wholly derived from original lo-place calculations. W. W.
Duffield pubhshed in the Report of the U. S. Coast and Geodetic Sur-
vey, 1895-1896, a lo-place table of logarithms of numbers to 100,000,
in 1910, 8-place tables of numbers to 200,000 and trigonometric tables

to every sexagesimal second were published by J. Bauschinger and
/. Peters of Strassburg: A special machine was constructed for the

computation of these tables. In 191 1 H. Andoyer of Paris published a
14-place table of logarithms of sines and tangents to every 10 sex-

agesimal seconds. "This table was derived from a complete recalcula-

tion, made entirely by M. Andoyer himself, without any assistance,

personal or mechanical."

In recent years a demand has arisen for tables giving the natural

values of sines and cosines. In 191 1 /. Peters published in Berlin such
a table, extending from 0° to 90°, and carried to 21 decimals, for every

10 sexagesimal seconds (and for every second of the first six degrees).

Extensive tables of natural values, first computed by Rhaeticus and
published in 1613, were abandoned after the invention of logarithms,

but are now returning in use again, since they are better fitted for the

growing practice of calculating directly by means of machines and
without resort to logarithms.

The decimal division of angles has been agitated again in recent

years. In 1900 R. Mehmke made a report to the German Mathema-
tiker Vereinigung.^ Why are degrees preferred to radians in practical

trigonometry? Because, on account of the periodicity of the trig-

onometric functions, we frequently would have to add and subtract

TT or 2 7r which are irrational numbers and therefore objectionable.

The sexagesimal subdivision of the degree which resulted in great

harmony among the Babylonians who used the sexagesimal notation

of munbers and fractions, and the sexagesimal divisions of the day,

hovir and minute, is less desirable now that we have the decimal

notation of numbers. There has been some difference of opinion

among advocates of the decimal system in angular measurement, what
unit should be chosen for the decimal subdivision. In 1864 Yvon

1 See Jahresb. d. d. Math. Vereinigung, Leipzig, Vol. 8, Part i, 1900, p. i39-
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Villarceau, at a meeting of the Bureau of Longitudes in Paris,_ sug-

gested the decimal subdivision of the entire circumference, while in

1896 Bouquet de la Grye preferred the semi-circumference. R. Mehmke
argues that whatever the unit may be that is subdivided, the four

arithmetical operations with angles would be materially siniplified,

interpolation in the use of trigonometric tables would be easier, the

computation of the lengths of arcs would be shorter. If the right

angle is the unit that is subdivided, then the reduction of large angles

to corresponding acute angles can be effected merely by the subtrac-

tion of the integers i, 2, 3, . . The determination of supplementary or

complementary angles is less laborious. A more convenient arrange-

ment of trigonometric tables was claimed by G. J. Hoiiel and greater

comfort in taking observations was promised by J. Delambre. Never-

theless, no decimal division of angles is at the present time threatened

with adoption, not even in France.

A very specialized kind of logarithms, the so-called "Gaussian loga-

rithms," which give log {a+h) and log (a—b), when log a and log b

are known, were first suggested by the Italian physicist Guiseppe

Zecchini Leonelli (i 776-1847) in his Theorie des logarithmes, Bordeaux

1803; the first table was published by K. F. Gauss in 1812 in Zach's

Monatliche Korrespondenz. It is a 5-place table. More recent tables

are the 6-place tables of Carl Bremiker (1804-1877) of the geodetic

institute of Berlin, Siegmund Gundelfinger (1846-1910) of Darmstadt,

and George WiUiam Jones (1837-1911) of Cornell University, and the

7-place table of T. Wittstein.

Proceeding to hyperbolic and exponential functions, we mention
the 7-place tables of log 10 sink x and log 10 cosh x prepared by Christoph

Gudermann of Munster in 1832, the 5-place tables by Wilhehn
Ligowski (1821-1893) of Kiel in 1890, the 5-place tables by G. F.

Becker and C. E. Van Orstrand in their Smithsonian Mathematical
Tables, 1909. Tables for sinh x and cosh x were published by Ligowski

(1890), Burrau (1907), Dale, Becker, and Van Orstrand. In the Cam-
bridge Philosophical Transactions, Vol. 13, 1883, there are tables for

log e^ and e^ by J. W. L. Glaisher, for e~^ by F. W. Newman.
G. F. Becker and C. E. Van Orstrand also give tables for these

functions.

An isolated matter of interest is the origin of the term "radian,"
used with trigonometric functions. It first appeared in print on
June 5, 1873, in examination questions set by James Thomson at
Queen's College, Belfast. James Thomson was a brother of Lord
Kelvin. He used the term as early as 1871, while in 1869 Thomas
Muir, then of St. Andrew's University, hesitated between "rad,"
"radial" and "radian." In 1874 T. Muir adopted "radian" after

a consultation with James Thomson'.^

' Nature, Vol. 83, pp. 156, 217, 459, 460.
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Calculating Machines, Planimeters, Integraphs

The earliest calculating machine, invented by Blaise Pascal in 1641,
was designed only to effect addition. Three models of Pascal's ma-
chine are kept in the Conservatoire des arts et metiers in Paris. It

was G. W. Leibniz who conceived the idea of adapting to a machine
of this sort a mechanism capable of repeating several times, rapidly,

the addition of one and the same number, so as to effect multiplication

mechanically. Of the two Leibniz machines said to have been con-

structed, one (completed 1694?) is preserved in the library of Hanover.
This idea was re-invented and worked out for actual use in practice

in 1820 by Ch. X,. Thomas de Colmar in his Arithmometre. More
limited practical use was given to the machine of Ph. M. Hahn, first

constructed in Stuttgart in 1774.
A machine effecting multiplication, not by repeated additions, but

directly by the multiphcation table, was first exhibited at the universal

exposition in Paris in 1887. This decidedly original design was the

invention of a young Frenchman, Leon BoUee, who took also a prom-
inent part in the development of the automobile. In his computing
machine there are calculating plates furnished with tongues of appro-

priate length which constitute a kind of multiplication table, acting

directly on the recording apparatus of the machine. A somewhat
simpler elaboration of the same idea is due to O. Steiger (1892) in a
machine called the millionnaire} In 1892 a Russian engineer, W. T.

Odhner, invented and constructed a widely used machine, called the

Brunsviga Calculator, which is of the "pin wheel and cam disc" type,

the first idea of which goes back to Polenus (1709) and to Leibniz.

Of American origin are the Burroughs Adding and Listing machine,

and the Comptometer invented about 1887 by Dorr E. Felt of Chicago.

The first idea of automatic engines calculating by the aid of func-

tional differences of various orders goes back to J. H. Miiller (1786),

but no steps towards definite plans and actual construction were

taken before the time of Babbage. Charles Babbage (1792-1871) in-

vented a machine, called a "difference-engine," about 1812. Its con-

struction was begun in 1822 and was continued for 20 years. The
British Government contributed £17,000 and Babbage himself £6000.

Through some misunderstanding with the Government, work on the

engine, though nearly finished, was stopped. Inspired by Ch. Bab-
bage's design, Georg und Eduard Scheutz (father and son) of Stock-

holm made a difference engine which was acquired by the Dudley
Observatory in Albany.

In 1833 Ch. Babbage began the design of his "analytical engine";

' D'Ocagne in the Napier Tercentenary Memorial Volume, London, igis, pp. 283-

285. For details, see D'Ocagne, Le calciil simplify, Paris, 1905, pp. 24-92; Ency-

klopddie d. Math. Wiss., Bd. I, Leipzig, 1 898-1904, pp. 952-982; E. H. Horsburgh,

Napier Tercentenary Celebration Handbook, Edinburgh, 19 14, "Calculating Ma-
chines" by J. W. Whipple, pp. 69-135.
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a small portion of it was put together before his death. This engine

was intended to evaluate any algebraic formula, for any given values

of the variables. In 1906 H. P. Babbage, a son of Charles Babbage,

completed part of the engine, and a table of 25 multiples of 7r to 29

figures was published as a specimen of its work.^

Planimeters have been designed independently and in many dif-

ferent ways. It is probable that J. M. Hermann designed one in 1814.

Planimeters were devised in 1824 by Gonella in Florence, about 1827-

by Johannes Oppikofler (1783-1859) ^ of Bern and constructed by
Ernst in Paris, about 1849 by Wetli of Vienna and improved by the

astronomer Peter Andreas Hansen of Gotha, about 1851 by Edward
Sang of Edinburgh and improved by Clerk Maxwell, J. Thomson and
Lord Kelvin. All of these were rotation planimeters. Most noted of

polar planimeters are that of Jakoh Amsler (1823-1912) and those con-

structed by Coradi of Zurich. J. Amsler was at one time privatdocent

at the University of Zurich, later manufacturer of instruments for

precise measurements. He invented his polar planimeter in 1854; his

account of it was published in 1856.

Another interesting class of instruments, called "integraphs" has

been invented by Abdank Abakanovicz (1852-1900) in 1878 and by C.

Vernon Boys ' in 1882. These instruments draw an "integral curve"
when a pointer is passed round the periphery of a figure whose area is

required. More recently numerous integraphs have been invented

through the researches of E. Pascal of the University of Naples. Thus
in 191 1 he designed a polar integraph for the quadrature of differential

equations.

^Napier Tercentenary Celebration Handbook, IQ14, p. 127.
^ Morin, Les Apparcils d'Inlegration, 1913. See E. M. Horsburgh, op. cit., p. 190.
' Boys in Phil. Mag., 1882; Abdank Abakanowicz, Les Inlegraphes, Paris, 1886.

See also H. S. Hele Shaw, "Graphic Methods in Mechanical Science" in Report of
British Ass'n for 1892, pp. 373-531; E. M. Horsburgh, Handbook, pp. 194-206.
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Asymptotic solutions of equations, 391, 392.

454
Asymptotic values, 438

Atabeddin Jamshid, 1 10

Athelard of Bath, 118

Atomic theory, 126

Atwood, G., 155

Aubrey, 151

Augustine, St., 67

Ausdehnungslehre, 336, 337
Axioms, Geometrical, 11, 26, 31, 32, 48,

108, 184, 302, 303, 305, 308. Algebraical,

409

Babbage, C, 485; 272, 405, 486

Babbage, H. P., 486
Babylonians, 2, 4-8, 17

Bacharach, M., 472
Bachet de Meziriac, 167; 168, 170, 254

Bachmann, P., 444; 436
Backlund, A. V., 321, 325
Bacon, R., 126

Baer, K., 470
Bagnera, G., 360
Baillet, J., 14

Baire, R., 401, 402

Baker, H. F., 317, 319, 343. Quoted, 282,

283. 316
Baker, Th., 107, 203

Bakhshali arithmetic, 84, 85, 89, 91, 92

Ball, R. S., 45s; 308
Ball, W. W. R , 204

BalUstic curve, 266

Baltzer, H. R., 321; 304, 341
Banachievitz, T., 453
Bang, A. S., 300
Barbier, E., 341, 379
Bar-le-Duc, Eward. See Eward de Bar-le-

Duc
Barnard, F. P., 122

Barr, A., 301

Barrow, I., 188-190; 158, 163, 192, 207, 212

Bartels, J. M., 434
Basset, A. B., 319, 320, 457, 461, 469
Bateman, H., 319
Battaglini, G., 354; 308
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Bauer, C, 470; 312, 365
Bauer, G. N., 446
Bauer, M., 348
Baumgart, 0., 239, 436
Bauschinger, J., 483
Bayes, Th., 230, 263. Bayes's theorem, 377,
378

Bayle, P., 182

Beaumont, E. de., 266, 267

Beaune, F. de., 180; 174, 176, 209, 210;

B.'s problem, 2og

Becker, G. F., 484
Becker, K., 381

Bede, the Venerable, 114; 120

Beer, A., 469
Beetle, R. D., 39s
Beha-Eddin, 106, 108, no
Bellavitis, G., 224, 292, 297, 306, 332, 337,
366

Beltrami, E., 307; 306, 321, 346, 470
Beman, W. W., 177, 265, 291

Bendixson, 1. 0., 426
Bennett, G. T., 301

Bentley, 226

Bergman, H., 368
Berkeley, G., 219; 228; Analyst, 218;

Lemma, 219

Bemelinus, 116; 117

Bernoulli, Daniel (bom, 1700) 220; 222, 227,

240, 242, 251, 252, 365, 378, 382, 383, 448,

464, 465. 477
Bernoulli, Jakob (James, bom 1654) 220,

221; 81, 171, 173, 210, 211, 213, 220, 224,

234, 238; 331, 380, 465; Numbers of B.,

221, 238; B.'s theorem, 222, 263, 377;

Law of large numbers, 222, 380
Bernoulli, Jakob (James, bom 1758) 220; 223

Bernoulli, Johann (John, bom 1667) 220,

222; 57, 210, 211, 213, 216-218, 220, 221,

224, 227, 232, 234-238, 242, 251

Bernoulli, Johann (John, bora 1710) 220;

223

Bernoulli, Johann (John, bom 1744) 220;

223

Bernoulli, Nicolaus (born 1687) 220; 223

Bernoulli, Nicolaus (bom, 1695) 220; 222,

238

Beraoullis, genealogical Table of, 220

Bernstein, B. A., 409

Bemstein, F., 401, 443, 445

Berry, A., 344
BerthoUet, C. L., 270

Bertillon, J., 380

Bertini, E., 307

Bertrand, J. L. F., 379; 340, 37i, 374. 378,

382, 385- 416. 438, 456. 457, 477

Bertrand's postulate, 438

Bessel, F. W., 448; 304, 311, 377, 382, 452

Bessy, Frenicle de, 169, 170

Bettazzi, R., 409
Betti, E., 346; 307, 352, 358, 417
Bevan, B., 298

Beyer, J. H., 148

Bfeout, E., 249; 235, 253, 259. 361

B^zoutiant, 249

Bhaskara, 85; 86-88, 92, 93, 141, 142

B'anchi, L., 321, 325
Bieberbach, 360
Bienaymfi, J., 382

Bigelow, F. H., 464
Billingsley, H., 130

Billy, Jacobo de. See Jacobo de Billy

Binet, J. P. M., 340; 465
Bing, J., 378
Binomial coefficients, 76, 140

Binomial theorem, 178, 186, 187, 192, 205,

212, 213, 221, 222, 238, 374, 411

Biot, J. B., 275; 216, 262, 471, 473
Biquatemions, 307

Birational transformations, 295, 314, 316,

317, 319
Birch, S., 9
Birkhoff, G. D., 324, 391, 392, 394, 396, 453
Bjerknes, C. A., 462; 412, 421

Bjombo, A. A., 45
Blasckke, E., 381

Blaschke, W., 370
Bledsoe, A. T., 173

Blichfeldt, H. F., 360. Quoted, 360
Bliss, G. A., 372, 406, 431, 433
Blumberg, H., 348
Bobillier, E., 310

Bocher, M., 394; 2, 363, 387, 391, 393, 448,

465. Quoted, 284, 286

Bochert, A., 357, 359
Bode, J. E., 384

Boethius, 67; 52, 53, 68, 113-116, 118, 119,

127

Boggio, T., 469
Bohlin, K., 454
Bohniceck, S., 443
Bois-Reymond, P. du, 377; 326, 371, 374-

376. 393, 40O1 42s
Bollfe, L., 485
Boltzmann, L., 326; 176, 474, 477-479
Bolyai, J., 304; 278, 303, 305-307, 446
Bolyai, W., 303; 278, 302, 304, 435
Bolza, 0., 201, 319, 372, 413. Quoted, 371
Bolzano, B., 367; 258

Bombelli, R., 135; 137, 141, 147

Bompiani, E., 322

Boncompagni, B., 178

Bond, H., 189

Bonnet, O., 321; 374, 385
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Bonok, R., 48, 108, 184, 307

Boole, G., 407; 278, 281, 28s, 342, 383, 384,

386, 391, 408

Booth, J., 312

Bopp, K., 181

Borchardt, C. W., 418; 42S
Borda, J. C, 266

Borel, E., 375, 386, 401. 402. 404. 427, 481.

Quoted, 389
Borelli, G. A., 184

Bortkewich, L. v. See Bortkievicz

Bortkievicz, v., 379, 381

Bortolotti, E., 349, 350
Bosmans, H., 77

Bouguer, P., 157, 273

Boundary-value problems, 270, 2S4, 391,

396, 430
Bouniakovski, V. J., 436
Bouquet, J. C, 3S8; 241, 383, 387, 418, 420
Bouquet de ia Grye, 484
Bour, E., 384
Boussinesq, J., 462, 469, 471
Boutroux, E., 410

Boutroux, P., 429
Bouvelles, C, 162

Bowditch, N., 262; 33S

Bowley, A. L., 381

Boj'S, v., 486

Brachlstochrone, 234
Bradwardine, T., 127; 116, 128, 132, 161

Brahmagupta, 85; 71, 86, 87, 92, 94, 97, 99
Braikenridge, W., 228

Brancker, T., 140, 169

Braunmiihl, A. v. 48; 137, 235, 481

Bredon, S., 128

Bremiker, C, 484
Brennan, L., 458
Bret, J. J., 269

Bretschueider, C. A., g; 88, 336
Brewster, D., 191, 193, 201, 461

Brianchon, C. J., 166, 275, 287, 288, 298

Briggs, H., 150-152; iss, 187, 343
BriU, A., 293, 313, 316, 328, 419, 430, 431

480

Brill L. 309, 328

Bring, E. S., 349
Brioschi, F„ 345-347; 279, 307, 340, 341,

347, 348, 361, 370, 388, 413, 417, 456
Briot, C, 388; 241, 383, 387, 418, 420

Brisson, M. J., 265

Brocard, H., 298; 299; B. points, 299;

B. angles, 299; B. circle, 299, 300

Broch, O. J., 414

Brod6n, T., 433
Brouncker, W., 156; 169, 187, 188, 228

Brouwer, L. E. J., 403, 433
Brown, C, 329

Brown, E. W., 450, 4Si. 453. 454- Quoted,

450
Brownlee, J. W., 383

Brunei, H. M., 301

Bruno, Fa4 de, 34s
Bruns, H., 452, 454
Brussels academy of sciences, 168

Bryant, W. W., 451

Bryson of Heradea, 23; 24

Bubnow, N., 98

Buchanan, D., 453
Buchheim, A., 455; 308

Buckle, H. T., 190

Buckley, W., 147; 183

Budan, F. D., 269, 27r

Buffon, Count de, 243, 244, 263, 378, 379
Biihler, 88

Bungus, P., 144
Burckhardt, J. C. H., 440
BuraU-Forti, C., 289, 322, 335, 401, 402, 408

Burgess, E., 85

Biirgi, J., 152; 137, 148, 154, 178

Biirja, A., 155, 258

Burkhardt, H., 280; 350, 252, 318. Quoted,

465, 468
Burkhardt, J. P., 262

Burmann, H., 272

Burmester, L., 297
Burns, J. E., 352
Burnside, W., 357, 358, 359, 360
Burrau, 484
Burroughs, 485
Busche, E., 436
Buteo, J., 143, 156
Butterworth, J., 298

Biitzberger, F., 292

Buy's-Ballot, C. H. D., 478
Byerly, W. E., 470
Cajori, F., 3, 24, 127, 156, 174, 182, igo, 202,

224, 248, 271, 330, 344, 447
Calandri, Ph., 128

Calculate, origin of word, 64

Calculating engine. See Arithmetical ma-
chine.

Calculus, See Differential C, Integral C.

Calculus integrahs, the name, 221

Calculus of functions, 405
Calculus of residues, 420
Calculus of variations, 232, 234, 25T, 255,

267, 281, 29r, 394, 313, 367, 369-372,

404, 405, 430, 43r, 437
Calendars, 8, 66, 70, 76, 78, ir4, 122, 132,

144

Callet, F., 266

CalUsthenes, 7

Cambuston, H., 332
Campano, G., 120; 142
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Campbell, G., 202

Cantor, G., 397-404; 24, 67, 172, 285, 325,

367, 400, 404, 409, 426, 432, 440, 447.
Quoted, 447

Cantor, M., 6; 10, 13, 14, 42, 63, 87, 91, 96,

loi, 105, 106. no. 114, IIS. 117. 119. 123,

140, 211, 247, 249, 269, 384
Capella, M., 113

Capelli, A., 365
Capillarity, 264
Caporali, E., 314; 319
Caqu6, J., 387
Cardan, H., 134-136; 137-141, 145, 147,

170, 179, i8i7-r&2;-T84, 185
Carette, A. M., 268

Carlini, F., 452
Carll, L. B., 370
Carmichael, R. D., 391, 396. Quoted, 391
Camot, L. N. M., 276; 46, 219, 221,' 287,

302, 349,
Carnot, S., 475, 476; 473
Carra de Vaux, 98
Caislaw, H. S., 48, 108, 465
Cartan, E. J., 339, 358
Carvallo, E., 335, 365
Casey, J., 314; 324
Casorati, F., 346; 307, 383
Cassini, D., 244; 190, 222, 245, 451
Casslni, J., 244
Cassini's oval, 221, 245

Cassiodorius, 68, 113

Castellano, F., 409
Castelnuovo, G., 316; 317, 318, 431
Casting out nines, 59, 91, 103

Catalan, E. C, 341; 330, 383, 470
Cataldi, P. A., 147, 184, 254
Catenary, 183, 217

Cattle problem, 59, 60

Cauchy, A. L., 368-370; 227, 232, 238, 249,

253, 258, 265, 287, 337, 340, 341, 349,

354, 361-363, 367, 373, 374, 37^, 383-

389, 395, 396, 405, 412, 416. 417, 419, 420,

426, 428, 430, 431, 438, 440, 446, 452, 461,

465-468, 471, 473. Cauchy's theorem on
groups, 352. Cours d'analyse, 369, 373.

Tests of convergence of series, 373
Caustic curves, 222, 225

Cavalieri, B., 161, 162; 79, 159, 162, 165,

175, 177, 190, 191, 207

Cayley, A., 342-348; 240, 278, 290, 291, 293,

295-297, 302, 308, 310, 312-314, 316-320,

323, 332-335, 338-340. 351-353, 361, 383,

415, 417, 418, 432, 456. Cayley line, 291,

Quoted, 280. Sixth memoir on quantics,

307, 308

Celestial element method, 75-80

Center of gravity, 289

Center of oscillation, 183, 227

Center of similitude of circles, 275
Centrifugal force, 172, 183, 200, 244
Ceskro, E., 324, 375, 379
Ceva, G., 277

"

Chamberlin, T. C, 450
ChampoUion, 11

Chance. 5ee Probability

Chandler, S. C, 241

Chang Ch'iu-chien, 73
Chang Chun-Ch'ing, 88

Chang T'sang, 71; 97
Characteristic triangle, i8g, 207

Chapman, C. H., 340
Charlier, C, 380, 452, 453
Charpit, P., 255
Chasles, M., 292-294; 33, 39-41, 43, 162,

174, 246, 276, 287, 295, 297, 308, 310, 312,

314, 319, 418, 455, 472, 473
Chauvenet, W., 383 ; 455
Chebichev, P. L., 380; 301, 344, 438
Ch' fing Tai-wei, 76

Chemac, L., 439
Chevaher de M6r6, 170

Cheyne, G., 194
Child, J. M., 189

Ch' in Chiu-shao, 74; 75
Chinese, 71-77; 17, 84. Solution of equa-

tions, 74, 75, 271. Magic squares, 76, 77
Ching Ch' ou-ch' ang, 71

Chittenden, E. W., 395
Chiu-chang, 71

Chladni, 464
Choquet, C, 363
Chou-pei, 71

Chree, C, 461, 469
Christina, Queen, 179

Christoffel, E. B., 314; 346, 356, 431, 470
Chrystal, G., 378; 379
Chuproff, A. A., 379
Chuquet, N., 125, 178

Chu Shih-Chieh, 75; 76
Cipher, origin of term, 121

Circle, 20, 22, 23, 25, 42, 104, 143, 297-300,

370. Nine-point Circle, 298. Division

of, 107. 350. 414. 435, 436
Cirde-squarers, i, 331. See Quadrature of

the circle.

Circular points at infinity, 282

Circumference, 297

Cissoid, 42, 51, 182

Clairaut, A. C, 244; 227, 229, 239, 242, 245,

252, 302, 457. His differential equal., 245
Clapeyron, B. P. E., 467, 475
Clarke, A. R., 379
Classes, theory of, 410
Clausen, T., 330; 22
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Clausius, R., 476; 468, 474, 477-470
Clavius, C, 144; 47, 143, 158, 181, 184

Clayton, H. H., 464

Clebsch, R. F. A., 313, 314; 291, 2g6, 311,

316, 318, 319, 337, 345-348, 369, 371. 384.

422, 431, 457, 462, 468, 469
Clifford, W. K., 307; 278, 303, 308, 317, 333,

335, 340. 348, 422. 423, 4SSi 472

Cockle, J., 321

Colburn, Zerah, 169

Colding, L. A., 475
Cole, F. N., 347, 354. 358
Colebrooke, H. T., 85

Colla, 133, 135

Collins, J., 192, 193, 203, 209, 212-216

Colson, J., 193

Corabescure, E., 315

Combinations, theory of, 128, 170, 183, 221

Combinatorial school, 231, 232

Commandinus, F., 141; 175, 184

Commercium epistolicum (Collins') 194,

215, 216

Commercium epistolicum (Wallis') 168.

Compensation of errors, 219

Complex variables, 420, 422

Comte, A., 285

Conchoid, 42, 51, 202

Condorcet, N. C. de, 244; 252, 266, 380

Cone, 27, 33, 39, 46, 79, 141, 310

Congresses, international. See Interna-

tional c.

Conies, 27, 29, 33, 36, 38-41, 50, SI, 88, 141,

142, 160, 165-167, 181, 184, 246; Con-
jugate diameters, 41; Foci, 40, 41, 160;

Generation of, 180, 22S; Names ellipse,

parabola, hyperbola, 39; Name latus

rectum, 40

Conoid, 36

Conon, 34; 36

Conservation of areas, 240

Conservation of ms viva- or energy, 183

Constructions, 2, 21, 22, 27, 47, 84, 86,

106, 297, 300, 310, 336, 436; By com-
passes only, 268; By insertion, 36; By
ruler and compasses, 124, 174, 177, 202,

292, 3SO, 436, 446; By ruler and fixed

circle, 291; By single opening of com-

passes, 106; Of maps, 29s; Of regular

polygons, 47, 128

Contact-transformation, 354, 335
Conti, A. S., 216

Continued fractions, in, 147, 188, 246, 258,

375
Continuity, 22, 24, 29, 94, 160, 184, 185,

211, 218, 282, 283, 287, 318, 326, 367, 391,

399. 419-421. 426

Continuum, 24, 35, 126, 285, 397, 398,

400; Well-ordered, 401; Not denumerable,

402

Convergence of series. See Series

Convergence of aggregates, 398

Convergent series, use of term, 228, 237

Coolidge, J. L., 300, 308

Coordinates, 40, 42, 174, 17s, 184, 211, 23s,

289, 294, 310, 314, 321, 324, 482; Elliptic,

456; Generalized, 255; Homogeneous, 297;

Intrinsic, 324; Oblique, 174; Pentaspher-

ical, 315; Polar, 221; Tangential, 310;

Trilinear, 310; Movable axes, 321

Copernicus, N., 46, 130, 131

Cosserat, E., 315, 325

Cotes, R., 226; 199, 236, 382; Theorem of,

228

Counters, 122

Coimting board, 75, 90, 91, 122

Courant, R., 433
Cournot, 281

Courtivron, 227

Cousin, P., 429
Cousin6ry, B. E., 296

Couturat, L., 286

Covariants, 34s, 348, 349, 356, 417, 440
Cox, H., 308

Craig, C. F., 319
Craig, J., 171, 210

Craig, T., 418; 308, 391, 461

Cramer, G., 241; 175, 204, 223, 320; C.

paradox, 228

Crelle, A., 411; 289, 290, 298, 299, 418

Cremona, L., 295, 296; 278, 287, 291, 307,

314, 318, 319, 346.; C. transfonnation,

295

Crew, H., 172

Crofton, M. W., 379; 380, 382

Crone, C, 320

Cross-ratio, 166, 289, 293, 294, 297, 308
Crozet, C, 276

Ctesibius, 43
Cube, duplication of. See Duplication

Cube root, 71, 74, 123

Cubic curves, 204, 228, 229, 244, 249, 295,

320

Cubic equations, 74, 107, no, in, 124, 133—

138, 140, 142, 177, 247, 330
Culmann, K., 296; 294, 297

Cuneiform writing, 4, 7, 8

Cimningham, A. J. C, 446
Curtze, M., 296; 73, 123, 170

Curvature, theory of, 275, 296, 320, 321
Curves, 163, 202, 204, 206, 207, 209, 224,

226, 228, 23s, 244, 250, 275, 295, 318-320,

321; Algebraic, 302, 419; Ballistic, 266;

Catenary, 183, 217; Caustic curves, 222,

225; Class of curves, 288; Conchoid, 42,
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SI, 202; Courbe du diable, 341; Cubics,

204, 228, 22g, 244, 249, 2Q5, 320; Defi-

ciency, 313, 317; Definition of curve, 325,

326; Elastic curve, 221, 291; Fourth or-

der, 310, 313; Fourteentli order, 312;

Genus, 316, 320; Hippopede, 42; Logarith-

mic curve, is6, 183, 236; Logarithmic

spiral, 156, 221; Loxodromic, 142, 221;

Multiple points, 224, 229; Of pursuit, 273;

Of swiftest descent, 222; Order of, 288;

Panalgebraic, 320; Peano curve, 325;

Polar curve, 307; Prony curve, 301;

Quartic, 188, 241, 245, 319, 320; Quintic,

241; Rectification of, 181, 182, 221, 224,

225; Second degree, 290; Space curves,

so, 29s, 322; Third degree, 310, 312;

Third order, 310, 312; Three-bar-curve,

301; Transcendental, 21, 320; Twisted,

321; Versiera, 2So; Witch of Agnesi, 250;

Without tangents, 326

Cusanus, N., 143

Cyclic method (Hindu), 9s, 96
Cycloid, 162, i6s, 166, 177, 181-184, 188,

210, 217

Cyzicenus, 29

Czuber, E., 378, 379, 381, 382

Dale, 484
D'Alembert, J., 241-24S; 220, 233, 237, 2Si,

2S2. 2S7-2S9. 269, 306, 369, 40s, 4S7, 464.

480; D. principle, 242

Damasdus, sij 32, loi

Dandelin, 364: 363

Darboux, J. G., 313; 301, 310. 3i4. 3i9. 321,

322, 32s, 347, 354, 3SS. 372, 383, 386, 406,

42s, 433, 47°; Quoted, 276, 279, 287-289,

292

Darwin, G. H., 449; 430, 453, 4^2, 469
Dase, Z., 440
Davies, T. S., 271, 298

Da Vind, Leonardo; See Vind, da

Davis, E. W., 308

Davis, W. M., 463

De Beaime, F., 180; 174, 176

Decimal fractions, s, 119, 147, 148

Decimal point, 148

Decimal system, 4-6, 11, 72, 88

Decimal weights and measures, 148, 256;

Dec. subdivision of degree, 148, 484;

Centesimal subdivision of degree, 152,

482-484
Dedekind, J. W. R., 397-399; 32, 35, I72,

28s, 331. 339. 348, 354, 357, 362, 4°°. 40i,

407, 421, 431, 442, 445, 470

Definite integrals. See Integrals

Degree, decimal subdivision of, 148, 483,

484; Centesimal subdivision of, 152,

482-484; Sexagesimal, 6, 152, 483

De Gua, J. P., 224; 175
Dehn, M. W., 327
De Lahire, 166; 141, 167, 170, 222, 273, 288

Delamain, R., 158, 159

Delambre, J. B. J., 437; 484
Delaunay, C. E., 449; 369, 370, 451
Delboeuf, J., 302

Del Ferro, S., 133; 134
Delian problem, 21, 27

Del Pezzo, P., 307
Del Re, A., 319
Demartres, G., 315
Democritus of Abdera, 25; 15

De Moivre, A., 229; 222, 224, 377, 380;

De Moivre's problem, 230

De Morgan, A., 330; 32, 159, 194, 196, 212,

215. 233, 250, 271, 273, 278, 323, 331, 369,

374, 377, 379. 381, 382, 405, 407; Quoted,

I. 2, 57. 95. 149. 172, 213, 217, 263, 363;

Budget of Paradoxes, 332
Demotic writing, 11

Demoulin, A., 315
Denton, W. W., 322

Derivatives, method of, 258

Desargues, G., 166; 141, 146, 164, 167, 174,

273, 285, 287; Theorem of, 285, 327
Desboves, A., 456
Descartes, R., 173-184; 2, 40, 50, 107, 141,

146, 156, 162-167, 172, 181, 190, 192, 200,

205, 207, 209, 239, 240, 273, 276, 310,

355. 361, 363. 401; FoUum of, 177, 229;

Ovals, 176; Rule of Signs, 178, 179, 201,

224, 248

Descriptive geometry, 246, 274-276, 296,

297, 308, 327; Shades and shadows, 297

De Sluse. See Sluse

De Sparre, 459
Determinants, 80, 21T, 249, 254, 264, 266,

312, 314, 340-342, 362, 370, 434; Name
"determinant,*' 340; Skew, 340; Pfaf-

fians, 340; Infinite, 341, 394
Devanagari numerals, 100, 101

De Witt, J., 180

Dichotomy, 23

Dickson, L. E., 318, 339, 348, 357-359, 360,

442; Quoted, 443
Differentiability, 376, 399, 423, 425
Differential Calculus, 3, 41, 163, 191, 196,

201, 208-210, 276, 393, 320, 367-369.

Controversy on invention of, 212-218;

Japanese, 79
Differential coefficient, first use of word, 272

Differential equations, 164, 195, 196, 208,

2X1, 222-225, 227, 238, 239, 243, 24s, 254,

255, 263, 264, 282, 324, 332, 367, 371, 372,

373. 383-391. 394. 396. 405, 417. 432, 450.

456; Hyper-geometric, 282; Linear, 238,
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263, 391, 393. See Partial differential

equations, Singular solutions, Differential

calculus. Integral calculus. Three bodies

(problem of).

Differential geometry, 306, 315, 32T, 322

Differential invariants, 34s, 35s, 356. 388

Dingeldey, F., 323

Dini, 375 ; 279, 377, 431

Dinostratus, 27; 21

Diodes, 42

Diodorus, g, 34
Diogenes Laertius, 9, 16

Dionysodorus, 45

Diophantine analysis, 62, 81, 95, 168

Diophantus, 60-62; 45, 48, 31, 87, 93-95.

loi, 103, 105, 106, III, 13s, 167, 168,

401

Directrix, 50

Dirichlet, P. G. L., 438; 168, 170, 270, 278,

3S7, 362, 372, 376, 377, 392, 400, 412, 418,

419, 421, 422, 424, 429, 439, 442, 443, 470;

D. principle, 284, 392, 422, 428, 429, 430,

433, 473
Discriminant (name) 345
Distance, 308

Divergent series, 228, 237, 238, 242

Division of circle, 107, 350, 414, 435, 436
Division of numbers, 7, 73, 117, 119

Diwani-numerals, 100

D'Ocagne, M., 482; 483, 485

Dodd, E. L., 382

Dodgson, C. L., 302

Dodson, J., iss

Donkin, W. F., 456; 465

Dositheus, 34
Dostor, G. J., 341

Double false position. See False position

Dove, H. W., 463

D'Ovidio, E., 308, 341

Drach, S. M., 366

Drobisch, M. W., 224

Dronke, A., 311

Duality, principle of, 288, 290, 294, 310

Dubois-Aym6, 273

Duffield, W. W., 483
Duhamel, J. M. C, 383; 363, 369, 416, 467

Duhem, P., 127; 128

Diihring, E., 183

Duillier. See Fatio de Duillier

Dulaurens, F., 225

Dumas, W., 348
Duns Scotus, 126

Duodecimals, 63, 64, 117, 119

Dupin, C, 275; 296, 320, 379; D. theorem,

275

Duplication of a cube, 2, 19, 20, 21, 27, 38,

42, 142, 177, 202, 246

Dupuy, P., 351

Durege, H., 311; 418

Diirer, A., 141; 170, i4S

Dyck, W., 324, 329. 432

Dyname, 335
Dynamics, 171, 172, 183, 223, 255, 307, 322,

332, 477. See Potential

Dziobek, O., 4S3, 455
Earnshaw, S., 462

Earth, figure and size of, 102, 229, 281

Earth, rigidity of, 240, 469

Kcole normdle founded, 256

Ecole polytechnique founded, 256

Eddy, H. T., 296

Edgeworth, F. Y., 378. 381

Edleston, J., 212, 216

Eells, W. C., 70

Egyptians, 9-15, 17-19

Ehrenfest, 481

Einstein, A., 335, 479, 480, 481

Eisenhart, L. P., 319, 321; Quoted, 315

Eisenlohr, A., 9, 10

Eisenlohr, F., 369.

Eisenstein, F. G., 440; 346, 348, 417, 421,

436, 441, 442, 444
Elastic curve,, 221, 296

Elasticity, 460, 464-470
Eliminant, 249
Elimination, 311, 312, 361

Elizabeth, Princess, 179

Elliott, E. B., 348
Ellipsoid, attraction of, 229, 244, 263, 266,

267, 273, 293,437
Elliptic functions, 225, 232, 239, 291, 313,

314, 362, 390, 441, 414-4x7, 434, 437;
Addition-theorem, 291; Double periodi-

city, 414
EUiptic integrals, 239, 258, 266, 267, 414
ElUs, A. J., 155

Ellis, L., 152

Ely, G. S., 444
Emsh, A., 300
Emmerich, A., 300
Encke, J. F., 452; 364, 377, 382, 437
Encyclop^die des sciences math., 280

Encyklopadie d. math. Wiss., 280

Enestrom, G., 128, 140, 148, 158, 173, 174,

179, 184, 221, 223, 225, 233, 23s, 239,

439
Engel, F., 184, 354, 355, 356
Enneper, A., 416, 417
Enriques, F., 316, 317, 322, 328, 446, 481

Entropy, 476
Enumerative geometry, 292, 293, 295
Envelopes, theory of, 211

Epicycloids, 141, 166, 224

Epimenides puzzle, 402
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Epping, J., 8

Equations, theory of, 138, 139, 156, 201, 249,

253. 254. 264, 344, 347, 349-366; Abelian,

411; Cubic, 74, 107, no. III, 124,

133-137, 140, 177, 247; irreducible case,

13s. 138, 142, 35°; Every e. has a

root, 3, 237, 233, 34Q; Functional, 395,

405; Indeterminate, 60, 73, 74, 94-96, 106,

124, 167, 441; Linear, 13, 75, 95, 103, 211,

393> 394; Modular, 352, 416, 417; Nega-
tive roots of, 176; Of squared differences,

249, 254; Resultant of, 249; Rule of signs,

178, 179, 201, 224, 248; Quadratic, 13,

57; 74. 75. 94. 95. I03. 106, 107, 138;

Quartic, 61, 107, 75, I77. 235, 13s, 138;

Resolvents, 138; Quintic, 253, 332, 349,

350, 411; solution by elliptic integrals,

350. See Differential e., Integral e.,

numerical e

EquipoUences, 337
Eratosthenes, 38; 21, 30, 34, 58. His

"sieve," 58
Erdmann, G., 371
Ermakoff, W., 375
Errard de Bar-le-Duc, I., 158

Escherich, G., v., 372
Espy, J. P., 462

Ether, theory of, 460, 461
Ettinghausen, A. v., 363
Euclid, 29-34; 18. 22, 25, 29, 39, 46, 53, 59,

loi, 123, 184, 268, 353, 442
Euclid's Ehments, 15, 18, 19, 27, 28-35, 44.

47. SO. 51. 57. 58. 67, 86, 104, 108, 118-

120, 125, 129, 130, 142, 148, 165, 167, 192,

205, 226, 302, 303, 307; Euclid's Data, zy.

Elements in China, 77; Algebra, 61

Eudemian summary, 15, 16, 18, 26, 28, 30
Eudemus, 15, 19, 38, 39, 57
Eudoxus, 28; IS, 25, 27, 30, 31, 32, 35, 42,

327

Euler, L., 232-242; 62, 95, 143, 144, 152,

158; 175, 190, 220, 222, 223, 225-227, 231,

232, 245-247, 249, 251-254, 257, 260, 264,

270, 27s, 297, 320, 322, 324, 329, 330,

353, 365. 369. 373. 377, 380, 381, 389, 405,

411, 419, 420, 435, 439, 448, 450, 457, 458,

464, 465, 477; 'E.tiet's Algebra, 233;Analy-

sis situs, 323; Euler line, 298; Infinite

series, 373; Institutiones caladi diff., 233,

239; Institutiones calculi int., 233, 239;

Integrating factors, 239; Introductio in

analysin, 227, 233, 241; Magic squares,

170; Mechanica, 240; Methodus inveniendi

lineas curvas, 234; Method of elimina-

tion, 25; Number-theory, 168-170, 239;

Polyedra, 240; Quadratic reciprocity, 239;

Symmetric functions, 235; Theoria mo-

tuum lunae, 234; Theoria motuum plane-

tarum, 234
Eutocius, 51; 38, 44. Si, 54
Evans, G. C, 395
Evolutes, 41, 183

Exchequer, 122

Exhaustion, method and process of, 23, 24,

28, 31. 35. 36. 41. 109. 160, 161

Exhaustion, origin of name, 181

Exponential calculus, 222

Exponents, 140, 148, 149, 178, 187, 235;

Fractional, 148,185, 238, 247; Imaginary,

225; Literal, 192; Negative, 185, 238

Faber, G., 429, 446
Fabri, H., 206

Fabry, C. E., 375
Faerber, C, 366
Fagnano, Count de, 225; 239
Falk, M., 428
Falling bodies, 171, 183

False position, 12, 13, gi, 93, 103, 137, 366;

Double, 44, 103, no, 123

Fano, G., 322, 327, 409
Faraday, M., 474, 475
Farkas, J., 405
Farr, W., 383
Fatio de Duillier, 214

Faye, H., 455
Fechner, G. T., 381

Fekete, M., 362

Felt, D. E., 48s
Fenn, J., 302
Fermat, P. de, 163-170; 142, 146, 147, 162,

174-177, 180-182, 189-191, 239, 250, 276,

401, 438
Fermat's theorem, 169, 239, 254
Fermat's last theorem, 106, 168, 239, 254,

442, 443
Ferrari, L., 135; 134, 139, 253
Ferrel, W., 463; 449, 458, 464
Ferrero, A., 382
Ferrers, N., 470
Ferro, S. del. See Del Ferro, S.

Ferroni, P., 221

Feuerbach, K. W., 298

Fibonacci. See Leonardo of Pisa

Fiedler, W., 297; 313
Field, P., 320

Fields, J. C, 436
Fifteen school girls, problem of, 323
Finck, Th., 151

Fine, H. B., 362, 383; Quoted, 362

Finger symbolism, 63, 65, 68, 114

Finite differences, 224, 226, 230, 238, 258,

264, 405, 408, 466
Fink, K., 291

Fischer, E., 376, 396
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Fisher, A., 378
Fiske, T. S., 270

File, W. B., 357
Fitzgerald, G. F., 471, 479
Fleck, A., 444
Floquet, G., 348
Floridas, 133, 134

Flower, R., 155

Fluents, 193, 194, igs, 200, 213

Fluxions, 150, 192-197, 200, 210, 213, 228,

247; Controversy on invention, 212-218;

Berkeley's attack on, 219, 220; Compen-
sation of errors in, 219

Folium of Descartes, 177, 229

Foncenex, D. le., 237; 257

Fonctionelles, 395, 405
Fontaine, A., 239; 242

Ford, W. B., 37S
Forsyth, A. R., 279, 343, 356, 384, 38s, 386,

388, 433: Quoted, 281, 416, 342
Foster, S., 138

Foucault, J. B. L., 473
Fourier, J., 269-271; 164, 234, 242, 247, 281,

363. 364, 36s. 40°, 413, 418, 419, 438, 473;

Analyse des equations, 269, 284; Fourier's

series, 242, 270, 283, 375-377, 393, 396,

461, 463; Fourier's theorem, 269, 284,

438; Theorie analytique de la chalcur, 270,

271

Fourth dunension, 184, 256, 318, 335, 480

Foville, A. de, 380
Fractions: Duodecimal, 63, 64, 117, 119;

Partial, 211; Rational, 22; Sexagesimal,

5, 54, 483; Unit-fractions, 12, 14, 44, 71,

123; Continued, iii, 147, 188, 246, 258,

375; Roman, 64; Chinese, 71; Decimal,

5, 119, 147, 148: Fractional line, 123

Francesca, Pier della, 128

Franklin, B., 170

Franklin, Clu-istine I^add, 407
FrankUn, F., 343, 345, 436, 444
Frantz, J., 448
Fr&het, M., 372, 393, 394, 404-406
Fredholm, E. I., 393; 394, 341, 427, 469
Frege, 0., 408; 286, 407, 409
Frenicle de Bessy, 169, 170

Fresnel, A. J., 470, 471; 183, 273, 3:1, 314,

319. 333> 344. 460, 465, 473
Fr^zier, A. F., 274
Fricke, R., 417, 432, 433
Fricdlein, G., 64; 65

Frischauf, J., 452
Frizell, A. B., 402, 403
Frobenius, F. G., 354; 339, 341, 347, 353,

357, 360, 362, 387, 390, 427, 431, 443;

Quoted, 362

Frost, A. H., 366

Froude, W., 457; 462

Fuchs, L., 387; 383, 388, 390, 432

Fuchs, R., 279, 347
Fueter, R., 445
Fujita Sadasuke, 81

Functional calculus, 392, 395
Functionals, 395
Functions, 127, 211, 234, 238, 238, 270, 284,

388, 389, 400, 411-433, 44S. 446; Abelian

f., 281, 313, 342, 390, 411, 412, 41S, 418,

419, 421, 423, 424; Algebraic, f., 293, 418,

430, 431; Analytic, f., 237, 258, 425-428,

439; Arbitrary, f., 242, 251, 232, 258, 270,

419; Automorphic f., 432; Bessel f., 448;

Beta f., 234; Calculus of, 331, 332; Com-
plex variables, 420, 422; Definition of, 270,

326, 400, 419; Fuchsian f., 389, 390;

Gamma f., 234, 416; Hyperbolic f., 246,

424, 484; Hyperelliptic f., 281, 411, 418;

Modular f., 416, 417, 432; Multiply-

periodic f., 283; Non-differentiable f., 326;

F. on point sets, 403, 404; Orthogonal f.,

396; Potential f., 284, 422; Sigma f., 417;

Symmetric f., 293, 361, 414; Theta, 342,

415,416,418. 5e« Elliptic functions

Trigonometric f., 234, 236; Zeta I., 439.

Funicular polygons, 296

Fiirstenau, E., 341, 363

Furtwangler, P. H., 443, 445
Fuss, P. H., 157, 237, 249

Gaba, M. G., 395
Galbrun, H., 391

GaUleo, 171, 172; 37, 80, 130, 146, 159, 161,

162, 170, 179, 223

Galloway, T., 382

Galois. E., 331; 332, 333, 334, 338, 411, 432,

443; G. resolvent, 411; G. group, 318
Galton, F., 381:380
Garbieri, G., 341
Gardiner, 235

Gauss, K. F., 434-439; 3, 6, 62, 146, 169,

184, 231, 232, 235, 237, 238, 248, 253, 265,

278, 281, 284, 289, 295, 314, 320, 322, 325,

336, 340, 342. 348-351, 353. 361, 366,

369, 371. 373. 382. 430, 438-440, 442, 446-

448, 452, 459. 460, 469. 472. 475. 484;
Disquisiliones ariihmeticae, 433-437; Non-
euclidean geometry, 303-306; Theoria

molus, 437, 447
Gay de Vernon, S. F., 274
Gay-Lussac, 273

Geber, 109

Gehrke, J., 300
Geiser, C. F., 318
GelUbrand, H., 131-132

Geminus, 44; 39, 42, 45, 47, 48
General Analysis, 392, 394, 395
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Genocchi, A., 436
Gentry, R., 320
Geodesies, 234, 267, 372
Geometrical progressions, s, 7, 13, 140, 150,

IS4. i8s, 235

Geometrographics, 300
Geometry, Analytic, 40, xsg, 162, 163, 167,

173- 184, 324. 275, 276, 2Q3-2gs, 30Q-

329; Analytic geometry, rivalry with

synthetic, 288; Analysis situs, 211, 285,

323, 324; Arabic, 104; Babylonian, 6, 7;

Chinese, 76; Descriptive, 246, 274, 17s;

Differential, 306, 315, 321, 322: Egj^itian,

9-11; Enmnerativc, 292, 293; Gpometro-
grapliics, 300; Greek, 13-52; Hindu, 83-

88; Ideal elements in, 2S8; Knots, 322;

Models, 328, 32g; Non-archimedian, 327;

Non-desarguesian, 327; Non-eucUdean,

32, 302-309; Of position, 276, 297; Of

n dimensions, 184, 256, 293, 306, 308, 31S,

321, 322, 333, 337, 480; Projective, 276,

285, 292-294, 297, 308, 327, 328; Roman,
65; Shades and shadows, 297; Synthetic,

166, 167, 286-309

Gerard, L., 436
Gerard of Cremona, 132

Gerbert, 115; 116-120

Gerdil, 447
Gergonne, J. D., 288, 289; 166, 287, 290, 310
Gergorme's Annates, 273, 2S8

Gerhardt, C. I., 208, 210, 212, 214, 215, 217

Gerling, C, 347
Germain, S., 442; 464, 465
Gerson, Levi ben, 128

Gerstner, F. J. v., 467
Ghetaldi, M., 174

Gibbs, J. W., 476, 477; 278, 282, 289, 334,

452, 465: Gibbs phenomena, 465

Gierster, J., 432

Giorgi, G. L. T. C, 395
Girard, A., 156; 148, 158, 202

Giudice, F., 408

Glaisher, J., 440
Glaisher, J. W. L., 153, 15s, 341, 381, 382,

441, 444, 448, 482, 484

Glazebrook, R. T., 471, 474
Globular projection, 167

Godfrey, T., 204

Goldbach, C., 236; 249; Theorem, 249, 439
Golden section, 28, 142

Gonella, 486

Gopel, A., 418

Gordan, P., 346; 3i3, 345. 347> 348, 361,

431, 446; His theorem, 347

Gossard, H. C, 298

Gould, B. A., 383; 451

Goum^rie, J. de la, 313, 296

Goursat, E. J. B., 385; 279, 325, 360, 372,

386, 413, 428
Gow, J., 10, 22, Si, 55, 59, 60, 62, 129

Grace, J. H., 348
Graffe, C. H., 364; 365, 366
Grammateus, 140

Grandi, G., 238; 250

Graphic statics, 294, 296

Grassmann, H., 289, 407, 408
Grassmann, H. G., 335-337; 289, 306, 322, ,

332, 338, 407, 408, 455
Graunt, J., 171, 380

Gravfi, D. A., 454
Graves, J., 330
Gravitation, law of, 183, 199, 200, 232,

259, 260, 262

Gravity, center of, 183

Gray, P., 155

Greatest common divisor, 32, 58, 148, 180

Grebe, E. W., 299; 471

Green, G., 472; 281, 342, 419, 422, 460-462,

466, 468, 473
Green, G. M., 322

Greenhill, A. G., 344, 417, 458, 461

Greenwood, S. M., 383
Gregory, D., 201, 217

Gregory, D. F., 273; 330
Gregory, J., 143; 156, 189, 190, 206, 212, 216,

225, 228, 238

Griffith, F. L., 10

Gronwall, T. H., 465
Grossmann, M., 480
Grote, 24

Grotefend, 4
Groups, 253, 282, 283, 28s, 335, 346, 347,

349-366, 388, 438, 480; Continuous, 282,

306, 339, 355. 417, 357; Isometric, 325;

Use of word, 351; Abstract, 352, 353, 360;

Of regular solids, 353; Primitive, 354, 359;
Solvable, 357; Simple, 358, 360; Linear,

358, 359
Grunert, J. A., 320; 248, 336
Griison, J. P., 268

Gua, de J. P., 175, 248

Gubar-numerals, 68, 100

Guccia, G. B., 296

Gudermann, C, 424; 417, 484; Guderman-
nian, 424

Guerry, A. M., 381

Guichard, C, 315, 392, 321, 322, 325, 426
GuimarSes, R., 142

Guldin, P., 159; 49, 161; His theorem, 159
Gundelfinger, S., 484; 366

Gunter, E., 151

Giinther, S., i, iii, 115, 204, 250, 341, 365
Guthri, F., 323
GutzlaS, C. E., 417
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Gyld^n, H., 453; 454
Haan, D. B. de, 372

Haas, A., 321

Habenicht, B., 250

Hachette, J. N. P., 276; 275, 2g6

Hadamard, J., 372; 324, 340, 37s, 39s, 402.

427, 439; Quoted, 392

Hadley, J., 204

Hagen, G. H. L., 382

Hahn, H., 372, 400, 406, 429
Hahn, Ph. M., 485
Halifax, J., 127

Hallam, 139

Halley, E., 156; 38, 41, 171, 190, 199, 200,

203, 219, 229, 251, 343, 380, 381, 448
Halphen, G. H., 313; 293, 321, 322, 345, 355,

375, 388, 390, 417

Halsted, G. B., 130, 304, 327, 389, 390, 425;

Quoted, 446
Hamburger, A., 387
Hamburger, M., 383

Hamel, G., 405
Hamilton, W., 172, 173, 273, 278, 331

Hamilton, W. R., 332; 255, 280, 314, 322,

330, 331. 333, 335. 337, 338, 340, 342, 347,

349, 384, 352, 353, 453, 456, 471, 473,

477; Conical refraction, 332, 471; Hamil-

tonian group, 357
Hammond, J., 345, 348
Hancock, H., 371, 372

Hankel, H., 423; 10, 25, 52, 57, 62, 91, 93-

96, 102, 105, 115, 120, 129, 13s, 141, 226,

273, 337. 341, 367, 376. 400. 404, 423;

Principle of permanence, 337; Quoted,

290, 367

Hansen, P. A., 449; 382, 451, 452, 486

Ilanus, P. H., 341

Hann, J., 463, 464
Hardy, A. S., 265

Hardy, C., 164

Hardy, G. H., 439
Harkness, J., 433
Hamack, A., 404
Harmonics, theory of, 40, 46
Harmuth, Th., 366

Harpedonaptae, 10, 25

Harrington, M. W., 455
Harriot, T., 156, 157; 137, i4r, 149, 158,

178, 179, 184

Hart, A. S., 298; 29r, 318
Hart, H., 301

Hartogs, F. M., 401, 429
Harzer, P., 452
HaskeU, M. W., 310

Haskins, C. N., 356
Hatzidakis, N., 321

Hawkes, H. E., 339

Hayashi, T., 78, 82

Hazlett, O. C., 339
Hearn, 155

Heat, theory of, 270, 391, 470-479

Heath, R. S., 30S

Heath, T. L., 32, 41, 60, 62, 168, 302

Heaviside, O., 334. 474. 475

Heawood, P. J., 323

Hebrews, 7, 17

Hecke, E., 433
Hecker, J., 349
Hedrick, E. R., 328, 372, 430
Heffter, L., 324, 480

Hegel, 447
Helberg, J. H., 34, 35, 44
Heine, E., 377; 397. 398, 400, 470
Hellinger, E., 406

Helmholtz, H., 474-477; 459. 46°. 461. 463,

464, 471. 477
Henderson, A., 317, 318

Henrici, 0., 422, 423

Henry, J., 473
Hensel, K. W. S., 431, 445
H^rigone, P., 205

Hermann, J. M., 486
Hermes, O., 436
Hermite, C, 415, 416; 4, 7, 279, 345, 346,

348, 350, 375. 388, 391, 412, 413, 418, 420,

432, 433. 444-446, 465, 470
Hermotimus, 28

Hero. See Heron
Herodianic signs, 52

Herodianus, 52

Herodotus, quoted, 9, 11

Heron, 43-45; 42, 54, 61, 66, 84, 86, loi, 114,

131

Heron the Younger, 43
Herschel, J. F. W., 464; 126, 272, 405
Hertz, H. R., 281, 474
Hertzian waves, 393
Hess, W., 458
Hesse, L. 0., 311, 312; 313, 320, 341, 346,

351, 361, 369, 384, 452
Hessel, L. 0., 291

"Hessian," 312, 345
Hettner, G., 425
Heuraet, H. van, 181

Hexagon, 6, 18, 166, 228, 290, 291, 318,

327

Hexagrammum mysticum. See Hexagon
Heywood, H. B., 383
Hicks, W. M., 460, 462

Hieratic writing, 11

Hieroglyphics, 11

Hilbert, D., 279, 309, 325, 326, 328, 341, 348,

372, 391, 393-395. 404, 430, 433, 443, 445.

446; Quoted, 430
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Hildebrandt, T. H., 406
Hill, G. F., 121

Hill, G. W., 4So; 304, 341, 451, 453
HiU, J. E., 319
HUl, J. M., 384
HiU, Th., 324
Hilprecht, H. V., 7

Hilton, H., 360
Hindenburg, C. F., 373; 272

Hindu-Arabic numerals, 2, 52, 68, 88-go,

98, 100, loi, 107, 120, 121, 128, 147
Hindus, 83-98; 2, 8; Geometry, 83-86

Hipparchus, 43; s, 45-47, 141, 481
Hippasus, 19

Hippias of Elis, 21

Hippocrates of Chios, 21; 22, 23, 25, 26, 30,

51. 57, 61

Hippolytos, 59, 91

Hippopede, 42
Him, G. A., 476
History of Math's, why studied, 1-3

Hobson, E. W., 22, 144, 268, 446, 470;
Quoted, 398

Hodgkinson, E., 467
Hodograph, 332
Hoemly, R., 85

Holder, O., 357, 358, 427
Holmboe, B., 414; 374, 411
Holzmann, W., 141

Homography, 293

Homological figures, 166

Hooke, R., 199, 200, 29s
HopitaJ, G. F. A. See Hospital

Hoppe, R., 309; 453
Horn, J., 387

Homer, J., 366

Homer, W. G., 75

Homer's method, 72, 74, 75, 271, 365

Horsburgh, E. M., 329, 482, 485, 486

Hospital, G. F. A. 1', 224; 177, 213, 217,

222, 244
Hoiiel, J., 315; 304, 334, 369, 484
Hsii, 77

Hudde, J., 180; 178, 181, 193

Hudson, R. W. H. T., 319
Hugel, Th., 367

Hughes, T. M. P., 74

Humbert, M. G., 317

Hunain ibn Ishak, loi

Huntington, E. V., 357, 395, 409
Hunyadi, E., 341

Hurwitz, A., 376, 423, 426, 432, 444, 445,

446
Hurwitz, W. A., 395
Hussey, W. J., 45s
Hutchinson, J. I., 319

Hutton, C., 247; 154, 155

Huxley, 344
Huygens, C., 182, 183; 143, 166, 169-171,

173, 179, 188, 190, 199, 200, 20s, 206,

217, 221, 225, 230, 244, 470; Cydoidal
pendulum, 166

Hyde, E. W., 250, 337
Hydrodynamics, 223, 240, 242

Hydrostatics, 37
Hypatia, 50; 31

Hyperbola, 185, 188, 206, 247; Equilateral,

188. See Conies

Hyperbolic functions, 246, 424, 484
Hyperelliptic functions, 281, 411, 418
Hypergeometric equation, 282

Hypergeometric series, 185, 238, 373, 385,

386

Hyperspace. See Geometry of » dimensions

Hypsicles, 58; s, 32, 42, 43, loi

lambhchus, 59; 6, 9, 19, 45, in
Ibbetson, W. J., 469
Ibn Albanna, no
Ibn Al-Haitam, 104, 107, 109

Ibn Junos, 109

Ideal numbers, 442, 443
Ikeda, 80

Imaginaries, 225, 226, 229, 236, 237, 275,

279, 284, 288, 292-294, 315, 332, 390, 420,

434
Imaginary roots, 123, 135, 156, 179, 202,

248, 249, 363-365; Graphic representa-

tion of, 184, 237, 264, 26s
Imamura Chisho, 79
Impact, 179

Imshenets ki, W. G., 385; 386
Incommensurables, 22, 28, 31, 32, 57, 126;

Indeterminate coefficients, 176, 204

Indeterminate equations, 60, 73, 74, 94-97,

106, 124, 167, 441; Of second degree, 62

Indeterminate form %, 222. 224

Indian notation. See Hindu-Arabic

Indicatrix, 275

Indivisibles, 126, 161, 162, 165, 172, 175,

184

Induction (math'l), 169, 331
Infinite products, 186, 187, 417
Infinite series, 75, 77, 80, 81, 106, 127, 172,

181, 187, 188, 192, 193, 196, 206, 212,

227, 232, 238, 246, 248, 257, 258, 361,

367, 373. 425. 434. 411; Convergence of,

227, 249, 270, 284, 367, 373-375, 417
Infinitely small, i6q, 165, 194-198, 207,

210, 218, 220, 237

Infinitesimals, 24, 35, 48, 49, 51, 181, 189,

195, 196, 198, 210, 257, 258, 399
Infinitesimal calculus. See Differential

calculus

Infinity, 23, 24, 66, 126, 160, 166, 177, 184,
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i8s, 219, 237, 241, 243, 257, 283, 287,

367, 402, 446, 447
Ingold, L., 328, 333
Ingram, J. R., 292

Insurance, 171, 223

Integral calculus, 3, 79, 81, 161, 2og, 210,

222, 270, 393, 398, 367
Integral equations, 392-394, 405, 406, 413
Integrals, 36, 316, 376, 386, 388, 424;

Algebraic, 283; Definite, 189, 237, 263,

369, 385, 414, 416, 421, 466; Double, 420;

Elliptic, 239, 258, 266, 267, 414; Eulerian,

267, 272; Hyperelliptic, 413, 415; Lebes-

gue, 406, 407; Multiple, 284, 392; Pier-

pont, 406; Radon, 406; Riemann, 406, 407

Integraphs, 486
Integrations ante-dating the calculus, 189

Integro-differential equations, 392, 395,

40s
International commission on teaching, 356
International congresses, 280

Interpolation, 186, 187, 192

Invariants, 282, 312, 316, 319, 321, 342-

348, 349, 35'. 35S, 356, 388, 417, 444;
Name 345

Inverse method of tangents, 180, 207-209

Inversion, Hindu method of, 92

Inversion (in geometry), 292

Involute, 183

Involution of points, 50, 166

Ionic school, 15-17

Irrationals, 2, 19, 22, 32, 43, 57, 61, 86, 93,

94. i°3, 133. 140. 330. 396-400, 483;
First use of word, 68

Irrational roots. See Roots

Ishak ibn Hunain, loi

Isidorus, 51, 113, 121

Isochronous curve, 217, 221

Isomura Kittoku, 79
Isoperimetrical figures, 42, 221, 222, 234,

251

Isothermic surfaces, 314
Itelson, G., 286

Ivory, J., 273; 469; His theorem, 273

Jabir ibn Aflah, 109; 119

Jacobi, C. G. J., 414, 415; 266, 278, 289, 290,

311, 321, 332, 340, 341, 351, 362, 36s, 369-

37i> 377, 384, 385, 388, 411-413, 417, 418,

421, 424, 42s, 429, 436, 437, 441, 448,

455, 45S, 469, 470; Jacobian, 345; Theory
of ultimate multipher, 456

Jacobi, K. F. A., 298; 299

Jacobo de Billy, 158

Jacobs, J., 380

Jahnke, E., 335
Jahrbuch iiber die Fortschritte der Malhe-

matik, 278

Jaoni, G., 341
Japanese, 78-82

Jastremski, 381

Jeans, J. H., 450
JeUett, J. H., 370; 457, 468

Jerard of Cremona, 119; 123

Jerrard, G. B., 349
Jevons, W. S., 378; 281, 407
Joachim, G., See Rhaeticus

Joachimsthal, F., 424
Jochmann, E,, 478
Johanson, A. M., 433
John of Palermo, 1 24
John of Seville, 118; 119, 147
Johnson, W. W., 302

Joly, C. J., 333
Jones, G. W., 484
Jones, W., 155, 158, 235
Jordan, C., 318, 325, 326, 347, 348, 353, 354,

357-360, 379, 390, 428; Jordan curve,

325, 326; Jordan's problem, 359
Jordanus Nemorarius, 118

Josephus, F., 79

Josephus problem, 79, 459
Joubert P., 417
Joule, J. P., 475:477-479
Jourdain, P. E. B., 205, 212, 215, 257, 399,

400, 401, 402; Quoted, 407, 408, 409
Journal des Savans founded, 209

Journal of the Indian Math. Society, 98
Journals (math'l), 82, 98, 209, 273, 278, 288,

289, 343, 346, 355, 411, 427
Jupiter's satellites, 252

Jilrgensen, C., 414
Jurin, J., 219; 369
Kant, I., 261, 449
Karpinski, L. C, 68, 88, 89, 102, 103, 121
Karsten, W. J. G., 237; 265
Kasner, E., 318, 320, 322; Quoted, 324
Kastner, A. G., 434, 435; 204, 248
Kaye, G. R., 84-87, 91, 94, 96-98
Keill, J., 215; 216, 218

Kelland, P., 461; 474
Kelvin, Lord (Sir William Thomson), 472,

473; 271, 272, 279, 292, 323, 329, 334, 422,
457. 460, 461, 463, 466, 469-471, 475, 476,
479. 486; Thomson's principle, 284, 422,
428-430, 433, 473; Tide-calculating ma-
chine, 329; Vortex atoms, 323

Kempe, A. B., 286, 302, 323, 324, 409
Kempner, A. J., 444, 446
Kepler, J., 159-161; 131, 145, 146^ j^g^ jj^^

163, 170, 178, 184, 192, 199
Kepler's problem, 252

Ketteler, C., 471
Keyser, C. J., 66, 174, 285

Khayyam, Omar, 103, 108
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Killing, W., 308, 347, 3S8
Kimura, S., 335
Kinckhuysen's algebra, 193
Kirchhoff, G. R., 474; 281, 311, 457, 438,

461, 462, 466, 471
Kirkman, T. P., 323; 351; K. point, 290
Klein, F., 356; 177, 278, 293, 306-309, 311,

314, 318, 319, 328, 346. 347, 354. 355, 350,

360, 38S, 390, 391, 417, 418, 431-433. 442,

457, 458, 480; Ikosaeder, 347, 359, 417
Klugel, G. S„ 234
Knapp, G. F., 381

Kneser, A., 327, 371, 372, 387, 303
Knoblauch, J., 425
Knots, theory of, 323
Knott, C. G., 333
Kobel, 122

Koch, N. F. Helge v., 326, 341, 439
Kochansky, A. A., 367
Koebe, P., 433
Kohn, G., 375, 293, 294
Konig, J., 401; 402, 409
Konigs, G. P. X., 302, 315; Quoted, 294
Konigsberger, L., 413, 417, 418, 348
Kopcke, H. A., 461

Korkine, A. N., 444; 384
Kom, A., 469
Komdorfer, G. H. L., 314
Kortum, L. H., 292

Kossak, H., 397
Kotjelnikoff, A. P., 335
Kotter, E., 287, 288

Kotter, F., 425
Kotteritzsch, T., 341
Kovalevski, Madame, 456; 415, 455, 456
Kowalewski, G., 324, 341, 393
Kramp, C., 341
Krause, K. C. F., 324
Krause, M., 418
Krazer, A., 418

Kries, J. v., 378, 379, 381

Kroman, 378
Kronecker, L., 362; 340, 342, 346, 347, 348,

350. 353, 354, 359, 398, 423, 424, 431, 436,

444; Quoted, 362

Kronig, A. K., 477, 478

Kuhn, H. W., 360

Kuhn, J., 205

Kiihnen, F., 318

Kummer, E. E., 442-445; 168, 314, 319, 362,

375, 3S5, 424, 436, 438; K. surface, 314,

318,319, 328, 418

Kurushima Gita, 8i

Kiistermann, W. W., 376

Lacroix, S. F., 324; 255, 272, 274, 336, 383,

419

Lagny, T. F. de, 203; 143

Lagrange, J., 250-259; 3, 62, 164, 169, 172,

190, igi, 203, 219, 227, 229-232, 234, 237,

240-243, 246, 247, 263, 264, 266, 267,

276, 292, 29s, 306, 311, 314, 320, 336,

342, 349, 351-353, 356, 357, 365, 368,

369, 371, 372, 382-384, 40s, 407, 426, 434,

435, 449, 452, 1.55-458, 460, 461, 464-467,

477, 480; Caicid des fonclions, 256;

Generalized coordinates, 253 ; Theorem on

groups, 253; Mecanique analylique, 252,

237; Method of derivatives, 258; Resolu-

tion des equations num., 227, 253, 256;

Theorie des Jonctions, 236-238

Laguerre, E., 361; 248, 293, 308, 313, 373
Lahire, P. de., 166; I4r, 167, 170, 222, 273,

288

Laisant, C. A., 334
Lalande, F. de, 230

Lalanne, L., 481

Lalesco, T., 393
Lallemand, E. A., 482
La Louv6re, A., 163

Lamb, H., 26, 453, 461, 462; Quoted, 284,

474
Lambert, J. H., 243-247; 132, 133, 184, 287,

302, 303, 314, 407
Lambert, P. A., 363
Lamd, G., 467-470; 297, 388, 469, 470;

L. equation, 416; L. functions, 467
Lampe, E., 343; 278

Landau, E., 22, 439
Landen, J., 247; 257

Landry, F., 446
Laplace, P. S., 239-264; 164, 191, 223, 230-

232, 243, 232, 234, 236, 238, 266, 271, 273,

302, 336, 368, 369, 374, 377, 379, 380, 382,

384, 386, 403, 408, 420, 434, 438, 447-449,

451, 432, 457, 439, 462, 464, 466, 469, 470,

472, 473, 473; Great inequality, 261; L.

coefficients, 263; L. equation, 264; L.

theorem, 264; Laws of Laplace, 26r;

Mechanique Celeste, 261-263, 332, 338,

374; Systeme du monde, 261; Thcorie

analytique des probabilites, 260, 262, 378
Laquife, E. M., 366

Larmor, J., 332
Lasswitz, K., 49
Last Theorem of Fermat, 106, 168, 239,

254, 442, 443
Latham, M., 48

Latin square, 239, 367
Laurent, P. M. H., 470; 420
Lauricella, G., 469

Lavoisier, A. L., 256

Lawrence, F. W. P., 446
Laws of motion, 171, 179, rgo
Least action, 240, 233, 284, 429, 477
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Least resistance (solid of), 3br, 234, 284
Least squares, 263, 266, 267, 273, 382, 434
Lebesgue, V. A., 405; 341, 369, 401, 402,

406, 421, 436
Lebon, E., 389
Legendre, A. M., 266-268; 231, 232, 246,

247, 256, 263, 293, 303, 306, 349, 351, 370,

371, 382, 383, 385, 405, 411-413, 417, 435,

438, 439, 442, 466, 469, 473, 482: Geome-
tric, 268, 302; L. coefficients, 414; Num-
ber theory, 170, 239

Lehmann-Filhd's, R., 383, 453
Lehmer, D. N., 440, 446
Leibniz, G. W., 205-219; 3, 51, 80, 146, 158,

161, 165, 169, 173, 175, 179, 182, 183, 188,

191, 193, 196-198, 220, 222, 224, 226,

236-239, 246, 248, 2S7, 323, 369, 373, 407,

408, 410, 485; De arte combinatoria, 205;

Notation of calculus, 207, 208, 210;

Otlier notations, 211, 157; Controversy

with Newton, 212-218

Leitzmann, H., 340
Lemniscate, 188, 221, 245
Lemoine, E., 299; 300, 379; L. point, 299;

L. circle, 300

Lemonnier, P. C, 256

Leodamas, 28

Leon, 28; 30
Leonardo de Vinci, 128

Leonardo of Pisa, 120-125; 13, 104, no,
120-125, 127, 128, 141

Leonelli, G. Z., 484; 155, 366

Lerch, M., 428

Leslie, J., 218, 145

Leuschner, A. O., 452
Le Vavasseur. See Vavasseur, Le
Lever, 37
Leverrier, U. J. J., 449; 332, 451
Levi ben Gerson, 128

Levi-Civita, T., 333, 356, 433, 453, 454
Levy, M., 469; 296

Lewis, C. I., 408

Lewis, G. N., 33s, 481

Lewis, T. C, 460

Lexis, W., 381; 380; Dispersion theory, 381

Lezius, J., 98

L'Hospital. See Hospital

Li Ch' unfSng, 71

Lie, S., 354; 279, 306, 307, 319, 320, 321,

346> 347, 354. 355, 35^, 357, 384, 3S8, 414;

Quoted, 355
Light, corpuscular theory of, 204; Wave

theory of, 183

Ligowski, W., 484
Liguine, V., 302

Lllavati, 8s, 87, 92

Lilienthal, R. v., 321

Limits, 24, 182, 184, 198, 220, 243, 257, 283,

367. 369, 373. 396, 398, 399, 421, 446
Lindeberg, J. W., 372

Lindelof, L. L., 370
Lindemann, F., 308, 362, 419, 446
Linear transformations, 282, 289, 340, 342

Ling, G. H., 357, 358
Linkages, 300-302, 344
Linteria, 221

LiouviUe, J., 440; 292, 321, 340, 351, 352,

364, 388, 393, 413, 418, 420, 436, 441,

446, 456. 473
Lipkin, 301

Lipschitz, R., 308; 376, 431, 449, 461

Listing, J. B., 323; 359
Little, C. N., 323

Littlewood, J. E., 439
Lituus, 226

Liu Hui, 71, 73
Lloyd, H., 471
Lobachevski, N. I., 303; 278, 304, 306, 307,

42s
Local probabiHty, 244
Local value, principle of, 5, 69, 78, 88, 94,

100, 102

Loewy, A., 360
Logarithmic curve, 156, 183, 236
Logarithmic series, 188

Logarithmic spiral, 156, 221

Logarithms, 140, 149-156, 189, 235; Com-
mon, 151; Computation of, 153-156, 188;

radbt method, 153, 155; Characteristic,

152; L. of cross-ratio, 293; L. of imagina-
ries; 225, 235-237, 243, 330, "Gaussian,"

484, Natural 1, 150, 152, 153; 247; Man-
tissa, 152; In China, 77; Logarithmii
curve, 156, 183, 236; Logarithmic spiral,

156, 221; Logarithmic tables, 482, 483
Logic, 22, 205, 246

Lommel, E., 449, 471
London, F., 292

Long, J., 155

Longomontanus, C, 169
Loornis, E., 463
Lorentz, H. A., 479, 481
Lorenz, J. F., 302
Lorenz, L., 471
Loria, G., 7, 22, 42, 156, 176, 177, 183, 24s,

250, 275, 293, 301, 308, 320
Lottner, E., 458
Lotze, R. H., 309
Loud, F. H., 294
Love, A. E. H., 470
Lovett, E. O.; Quoted, 452, 453
Loxodromic curve, 142
Loxodromic spiral, 221

Lucas, E., 446; 366
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Lucas rle Burgo, 125, 187

Lucretius, T., 66

Ludlam, W., 302

Ludolph Van Ceulen. See Van Ceulen
Lunar theory. See Moon
Lune, squaring of, 22, 57
Lupton, S., 15s
Liiroth, J., 422; 377
Mac Cullagh, J., 312; 461, 471
Mac Coll, H., 408; 379, 407
Macdonald, W. R., 150

Macfarlane, A., 335; 323, 334, 407, 441
Mach E., 37; 219

Machin, J., 206; 227

Mackay, J. S., 299; M. circle, 300
Madaurin, C, 228, 229; 177, 202, 220, 226,

244, 267, 273, 277, 293, 369, 377; M
theorem, 226, 228, 365

Mac Mahon, P. A., 240, 343, 345, 348, 366,

436
Mac Millan, W. D., 433, 453
Magic circles, 76, 77, 79, 80

Magic cubes, 79, 81

Magic squares, 76, 77, 79, 80, 92, 93,^104
128, 141, 145, 167, 366, 367

Magic wheels, 79
Magnus, H. G., 459
Magnus, L. I., 295

Mahavira, 85; 86, 88, 96, 97
MaiUet, E., 354; 357, 359, 366, 442, 444,

446
Main, R., 455
Mainardl, G-, 370
M' Laren, J., 366

Malebranche, N., 222

Malfatti, G. F., 291; 349
Malfatti's problem, 81, 291, 314
Mangoldt, H. von, 314, 439
Mannheim, A., 324
Manning, Th., 15s

Manning, W. A., 360

Mannoury, G., 403

Mansion, P., 384
Map coloring, 323, 324

Map construction, 48, 167, 295, 314

Marchi, L. de, 464

Marcolongo, R., 33Si 4^9

Margetts, 481

Margules, M., 464

Marie, Abb6, 266; 252

Marie, M., 294; 43, 162

Mascheroni, L., 268; 47, 269

Maschke, H., 339; 318, 333, 347, 3S6

Maslama al-Majrlti, 104

Mason, M., 372, 391
Massau, J., 482

Mathematical induction, 142

Mathematical periodicals. See Journals

Mathematical physics, 392-394
Mathematical seminar, 424
Mathematical societies. See Societies

Mathematical Tables, 482-484
Mathematics, definition of, 285, 286

Mathews, G. B., 395, 414, 44s
Mathieu, E., 353; 417, 358, 469, 47s
Mathieu, P., 470
Matrices, 335, 337, 338, 339, 340, 344, 408
Matthiessen, L., 107, no, 253

Maudith, J., 128, 132

Maupertius, P., 244; 240, 477
Maurolycus, 141; 142, 145

Maxima and minuna, 32, 40, 81, 142, 160,

163, 164, 180, 193, ig6, 210, 229, 267,

291, 394. 370, 376, 384
Maxwell, C, 474-479; 271, 279, 281, 296,

322, 333. 334, 337, 4SI. 4S8, 460, 461, 468,

471, 472, 477, 479, 486
Maya, 69, 70

Mayer, A., 425; 355
Mayer, M., 363
Mayer, R., 475; 449
McClintodi, E., 365; 360
McColl, H. See MacCoU, H.
McCowan, J., 462

Mean Value, theorem of, 420
Measurement, 41; In Projective Geometry,

294; In theory of irrationals, 397; Of
areas, 455

Mechanics, 19, 37, 171, 172, 179, 183, 211,

229, 231, 240, 242, 255, 260, 276, 288, 296,

307, 308, 338, 384, 391, 447-464, 477, 481;

Theory of top, 458; Fluid motion, 46a-

464; Least action, 240, 255 See Statics,

Dynamics
Mehler, G., 470
Mehmke, R., 266, 366, 483, 484
Mei Ku-ch'tog, 77
Meissel, E., 416
Meissner, W., 443
Melanchthon, 140

Menaechmus, 27; 29, 39, 40, 107

Mendizdbel-Tamborrel, M. J. de, 483
Menelaus, 46, 47; 119; Lemma, 46
Mengoli, P., 173

Mensuration in Euclid, 33; in Boethius, 67;

in China, 71

M&ay, C, 397; 400, 426
Mercator, G., 189, 295, 314
Mercator, N., 156; 188, 206

Meridian measured, 200, 244; Zero merid-

ian, 259

Mersenne, P., 156, 163, 168, 174, 177, 181,

183, 188; M. numbers, 167

Mertens, F., 373, 43S, 439, 446
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Meteorology, 462-464
Method of exhaustion. See Exhaustion

Method of fluxions, 194, 196. See Fluxions

Method of tangents, 51, 163, 164, 177, 180,

189, 193, 207, 209, 212; Inverse method
of, 180, 207-209

Metius, A., 73
Metric system, 256, 259, 265, 266

Meusnier, J. B. M., 320
Meyer, A., 384
Meyer, G. F., 372
Meyer, O. E., 461; 469, 478
Meyer, R., 190

Meyer, W. F., 280, 300, 346
M^ziriac. See Bachet de M^ziriac

Michell, J., 230

Michelson, A. A., 465, 472, 479
Mikami, Y., 71, 78-81, 88

Mill, J. S., 379; 173

Miller, G. A., 82, 279, 341, 350, 351-355,

357-361

Milner, I., 248

Minchin, G. M., 457 .

Minding, F. A., 414; 321

Minimal surfaces. See Surfaces, minimal
Minkowski, H., 480; 335, 371, 404, 441, 445,

481

Miran Chelebi, no
Mirimanoff, D., 442, 443
Mises, R. M. E., 391

MitcheU, H. H., 360

Mittag-LeflSer, G. M., 427; 279, 388, 426
Mitzscherling, A., 437
Miyai Antai, 81

Mobius, A. F., 289; 2S7, 297, 3ro, 323, 336,

337, 408, 423, 437, 449, 455
Models (geometric), 328, 329
Modular equations, 352, 4r6, 417
Modulus, first use of term, 265
Mohr, O., 296

Moigno, F., 370; 241, 364
Moivre, A. de. See De Moivre
Molenbroek, P., 335
Molien, Th., 339
Molk, J., 280

MoUer, M., 464
Mollerup, P. J,, 327
Mollweide, K. B., 235; 437
Moments of fluxions, 194
Moments of quantities, 195, 196
Momentum, 172

Monge, G., 274, 275; 41, 231, 232, 246, 266,

270, 276, 286, 287, 290, 296, 309, 315, 319,

320, 322, 371, 384, 385, 386
Montmort, P. R. de, 224; 222, 230, 383
Montucla, J. F., 250; 162, 185

Moon, theory of, 105, 204, 240, 245, 259,

260, 262, 449, 450, 451, 453, 462; Libra-

tion of, 252; Variation of, 106

Moore, C. L. E., 322

Moore, E. H., 318, 325, 357, 358, 394, 39S,

404, 405; Quoted, 403
Moore, H. L., 380
Moore, R. L., 325, 328
Morera, G., 428
M6ri Kambei Shigeyoshi, 78'

Morin, 486
Moritz, R., 152, 345, 446, 447
Morley, E. W., 479
Morley, F., 319, 320, 433
Morley, S. G., 69
Mortality, 171

Moschopulus, M., 128

Moser, L., 381

Motion, laws of, 171, 179, 199
Moulton, F. R., 327, 450, 453, 459, 460;

Quoted, 389, 454
Mourraille, J. R., 247, 269, 364
Mouton, G., 206; 215

Muir, Th., 340, 341, 484
Miiller, F., 279
Miiller, J. See Regiomontanus
Miiller, J. H., 485
MUUer, R., 301

Multiple points, 295

Mu Niko, 77
Muramatsu, 79
Musa Sakir, 104

Musical proportion, 6

Mydorge, C., 166; 164
Nachreiner, V., 341
Nagelsbach, H., 341, 365
Napier, J., 149-155; 127, 145, 146, 148;

Analogies, 152; Rule of circular parts, 152

Napier, M., 147

Napoleon I, 31, 26S, 270, 275, 276

Nascent quantities, 192

Nasir-Eddin, 108

Nau, M. F., 89
Navier, M. H., 465; 379, 383, 460, 461, 468
Nebular hypothesis, 260, 450
Negative numbers, 61, 71, 75, '93, 94, 107,

123, 138, 141, 276, 289

Neikirk, L. I., 360
NeU, W., 181; 1S8

NekrasoS, P., 365
Nemorarius, J., 127; ii8
Neocleides, 28

Nesselmann, G. H. F., 62, iii

Netto, E., 341, 348, 354, 425
Neuberg, J., 300; his circle, 300
Neumann, C, 470; 311, 321, 393, 430, 449,

471. 472
Neumann, P., 311, 313
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Neumann, F. E., 470; 468, 473, 474, 475, 477
Neville, E. H., 395
Newcomb, S., 451; 308, 309, 383
Newman, F. W., 484
Newton, I., 191-205; 3, 42, 50, 80, 143, 161,

182, 183, 189, 190, 219, 220, 222-224, 226,

228, 229, 231, 232, 234, 239, 242-245,

251. 257, 160, 262, 264, 273, 287, 303, 332,

342, 361, 3661 369, 373, 4S8, 464- 481,
.Anagram, 213; Approximation to roots,

, 202, 227, 247, 269, 271, 364; Binomial
theorem, 186; Controversy with Leibniz,

212-218; De analysi per aequationes, 192,

196, 202, 212, 214; Enutneratio linearum

tertiC ordinis, 204, 320; Fractional and
negative exponents, 178; Gravitation

Gaw of), 199; Least resistance (solid of),

201, 234, 284; Method of Fluxions, 193-

196, 202, 203; Notation of fluxions, 212,

220; Parallelogram (Newton's), 203;

Portsmouth collection of MSS., 200,

204; Principia, 196, 199, 200, 210, 213,

220, 226, 234; Problem of Newton, 201;

Problem of Pappus, 176; Quadrature of

Curves, 196, 197, 214; Reflecting telescope,

204; Rule of imaginary roots, 202, 344;

SchoUum (Prin. II, 7), 213, 214, 216;

Sextant, 204; Similitude, mechanical,

457; Universal Arithmetic, 201, 235
. Newton, J., 152

Nicolai, F., 437
Nicole, F., 224; 227

Nicolo of Brescia. See Tartaglia

Nicomachus, 58; 48, 59, 67

Nicomedes, 42

Nieuwentijt, B., 218

Nievenglowski, B. A,, 241

Nine-point-circle, 298

Nippur, library at, 4, 7

Niven, C, 473
Niven, W. D., 470
Noble, C. A., 430
Noether, M., 136-138, 295, 296, 313, 314,

316, 319, 340, 354, 419, 430, 431

Nomography, 481, 482

Non-euchdean geometry, 32, 302-309; and

relativity, 481

Nonius. See Nunez
Noriund, N. E., 391

Norwood, R., 158

Notation of Algebra and Analysis: Abridged

in analytics, 310; Arabs, early, 100;

Arabs, late, in; Algebraic forms, 34s,

346; Algebraic equations, 247; Calculus,

206, 207, 249, 272; Chinese, 76; Con-

tinued fractions, 239; Determinants,

340, 341; "Function of," 234; Greek, 125;

Infinity, 185; Hindu, 93, 125; Logic, 410;

MultipUcation, 157, 158; Ratio, 157;

Renaissance, 125-127, 139, 156, 157;

Trigonometry, 158, 234, 272; Vector

analysis, 334; Symbols used by Diophan-

tus, 61, by Oughtred, 157; by Leibniz,

211: Symbols + and — , 139, 140; > and

<, 157; re/, 341; identity =, 342; (), 158;

summation S, 235; i for V-ii 23s; e =
2.718. . ., 234; =, 140; -^, 140; V, 140;

IT = 3.14159. 158; X, 157;::, 157; ^,
157; a', 178; a', 178; a", 192

Notation of arithmetic: Fractions, 12, 65;

Decimal fractions, 148; Proportion, 211

Notation of Geometry: Similarity, 211;

Congruence, 2ii

Notation of Numbers: Babylonian, 4-6;

Egyptian, 11; Chinese, 72, 77; Hindu, 88-

90; Maya, 69, 70; Greek, 52, 53; Roman,
63

Notation, principles of, 4, 11

Nother, M. See Noether, M.
Nozawa, 79
Number-fields, 444-446
Number-mysticism, 7, 55, 56, 144, 145. See

Magic squares

Niunber-systems, 70. .See Notation of

mmibers
Numbers: Algebraic, 446, 447; Amicable, 56,

104, 109, 239; Complex, 442; Cardinal,

403, 447; Cubic residues, 414, 437; Bi-

quadratic residues, 437; Quadratic res-

idues, 435; Concept of 22; Defective, 56;

Excessive, 56; Heteromedc, 56; Ideal,

442; Negative, 61, 71, 75, 93, 94, 107, 123,

138, 141, 276, 289; Ordinal, 403, 447;
Partition of 239, 344, 367, 444; Perfect,

56, 104, 114,' 167; Prime, 58, 167, 169,

239, 249, 254, 344, 438, 439; Pentagonal,

168; Polygonal, 168; Irrational, 2, 19,

22, 32, 43, 57, 61, 86, 93, 94, 103, 133, 140,

330, 396-400, 483; Transcendental, 143,

440, 446, 447; Transfinite, 426; Trian-

gular, 56, 168, 173

Numbers, theory of, 48, 59, 106, 114, 124,

285, 344, 348, 362, 434-446; Euler, 168-

170, 239; Fermat, 167-169; Fields, 444,

445; Lagrange, 254; Legendre, 266, 267;

Law of quadratic red procity, 435; Law
of large numbers, 222, 380. See Last

theorem of Fermat, Magic squares.

Numerals. See Hindu-Arabic numerals.

Notation of numbers

Numerical equations, solution of, 74, 75-

77, no, 202, 203, 227, 247; Chinese, 74,

76, 77, in; Continued fractions, 254;

DandeUn, 364, 365; Graffe, 364-366;
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Homer, 74, 75, 271, 36s; Infinite deter-

minants, 365; Infinite series, 227, 365;

Japanese, 80, 81; Leonardo of Pisa, 124;

Newton, 203: Rapiison, 203; Recent re-

searciies, 363-366- See Algebra, Equa-
tions, Roots

Nunez, P., 142; 143

Obenraucii, F. J., 297
Oberbeck, A., 464
Ocagne. See D'Ocagne
Odhner, W. T., 485
Oenopides, 17; 15

Ohm, G. S., 281

Ohm, M., 329; 330, 424
Oiirtmann, C, 278
Gibers, H. W. M., 452; 435, 437, 447,

448
Oldenburg, H., 178, 187, 212-214, 215

Olivier, T., 296

Omar Khayyam, 103, 107

Oppel, F. W., 235

Oppert, 8

Oppikoffer, J., 486
Oppolzer, T. v., 452; 45s
Orchard, 155

Ordinate, 175

Oresme, N., 127; 148

Ongen, 67, 126

Orontius, 116

Orthocenter, 297

Oscillation, center of, 183

Osculating ciu^es, 211

Osgood, W. F., 372, 40s, 433
Ostrogradski, M., 369, 371, 456
Otho, v., 73, 132

Otto, V. 5eeOtho, V
Oughtred, W., 157-159; iir, 137, 148, 152,

153, 15s, 174. 192, 481

Ovals of Descartes, 176

Ovidio, E. d', 308
Ozanam, J., 170, 155
IT, approximations to, 7, 10, 35, 71, 73, 77,

79-81, 87, 186, 206, 238, 104, 143, 483,

486; Determination of, 17, 185, 225, 238;

Notation of, 158; Proved irrational, 246,

268; Proved transcendental, 2, 143, 362,

440, 446
Pacioli, L., 128-130; 125, 133, 141, 144, 146

Fade, H., 375
Padmanabha, 85

Padoa, A., quoted, 410
Pagani, G. M., 330
Painlev^, P., 279, 389, 453, 454
Pajot, L. L., 170

Palatine anthology, 59, 60

PaoUs, R. de, 308

Papperitz, E., 286

Pappus, 49, so; 21, 30, 33, 41, 42, 4S> S4> 55.

142, 166; Problem of 50

Parabola, 162, 177, 185, 188, 206, 224;

Cubical, 182, 188, 208; Divergent, 204,

244; Semi-cubical, 181; Focus of, 5°

Paradoxes, 400, 409. See Zeno

Parallel lines, 166, 302, 303, 327; Defined,

48. See Parallel postulate, Euclid, Non-

euclidean geometry

Parallel motion, 300

Parallel postulate, 32, 48, 108, 184, 302, 303,

305, 308; "proofs" of, 48, 108

Parallelogram of forces, 172

Parent, A., 167

Paris academy of sciences, 168, 182, 246

Parmenides, 24

Parseval, M. A., 376
Partial difierential equations, 196, 242, 251,

255, 263, 264, 270, 275, 281, 392, 313,

355, 384-388, 422, 456
Partition of numbers, 239, 344, 367, 444
Pascal, B., 164-166; 76, 142, 146, 147, 163,

162, 167, 180, 183, 184, 187, 190, 206, 207,

246, 272, 273, 287, 311, 485; Pascal line,

290; On chance, 170; Theorem on hexa-

gon, 228, 166, 318, 327; Calculating ma-
chine, 165, 485

Pascal, Ernesto, 318, 319, 340, 371, 486;

Quoted, 371
Pasch, M., 309, 399, 400, 409
Pavanini, G., 453
Pascal, Etienne, 164
Peacock, G., 273; 122, 125, 272, 145, 330,

332; Principle of permanence, 273, 337
Peano, G., 285, 289, 309, 325, 326, 348, 387,

400, 401, 407-409; Formulaire, 408
Pearson, K., 380, 381, 383, 465, 468
Peaucellier, A., 301

Pedal curves, 228

Peu-ce, B., 338; 278, 285, 286, 332, 383, 451,
457; Linear associative algebra, 338, 339

Pekce, C. S., 407; 31, 285, 309, 337, 338, 339
Peletier, J., 137, 156

PeU, A. J., 395
PeU, J., 169; 206

Pell's equation, 96, 169
Pemberton, H., 219; 192, 199, 220
Pendulum, 183, 205, 266, 460, 478
Pendulum clocks, 1S3

Pentagram, 19

Pepin, Th., 436
Perfect numbers, 56, 104, 114, 167
Periodicals (mathematical). 5ee Journals
Permutations, 221. See Probability
Pernter, J.M., 463
Perrault, C, 182

Perron, O., 348, 370
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Perseus, 42
Persons, W. M., 380
Perspective, 166, 227. See Projective

geometry. Descriptive geometry
Perturbations of planets, 240 252, 261;

See Astronomy
Pesloiian, C. L de, 412
Peters A., 324
Peters, J., 483
Petersburg problem, 223, 243
Peterson, J., 436; 323
Petrus Hartsingius, 81

Peurbach, G., 127; 131, 132
Pezzo, Del, 307
Pfaff, J. F., 384; 434, 435
Pliilalethes Cantabrigiensis, 219. See

Jurin, J.

Philippus of Mende, 29

Pliilolaus, 19; 25, 55
Philonides, 39
Phragmen, E., 426, 427, 453
Piazzi, G , 447
Picard, C. E., 433; 279, 281, 315-317, 35i,

387, 388, 391, 413, 415, 416, 432; Quoted,

258, 264, 353, 429, 447, 454, 477; Inte-

grals, 317
Picard, J., 200

Picone, M., 391
Picquet, H., 341
Piddington, H., 463
Pieri, M., 327; 309, 328, 400, 409
Pierpont, J., 406, 351; Quoted, 425, 430, 431
Pincherle, S., 394, 405
Piola, G., 467
Pitcher, A. D., 395
Pitigianis, F. de, 126

Pitiscus, B., 132; 137, 148

Pizzetti, P., 382

Plana, G. A. A., 449; 465, 473
Planetesimal hypothesis, 450
Planimeters, 486
Planisphere, 48
Planudes, M., 128

Plateau, J., 371; 461

Plato, 25-29; 7, 15, ig, 21, 23, 30, 59; In-

scription at his academy, 2, 26; Quoted,

9, 15

Plato Tiburtinus (Plato of Tivoli), 105, 118,

123

Platonic figures, 33
Platonic number, 7

Platonic school, 25-29

Playfair, J., 145, 192, 218, 302

Pulcker, J., 309-312; 278, 288, 297, 306,

313, 314, 335, 354; P- equations, 310; P.

lines, 290

Plutarch, 15, 16, 34

Pohlke, K., 296

Poignard, 170

Poincard, H., 388-391; 327, 339, 341, 353,

355. 361, 375. 378, 386, 387, 393, 4°!. 402,

415, 429, 432, 433, 438, 450, 452, 453,

454. 462, 477, 479
Poinsot, L., 455; 293, 379, 458
Point, 26

Point sets, 325, 326, 394, 395, 404; Denu-
merable, 403; Non-measurable, 403. See

Aggregates

Poisson, S. D , 465-467; 164, 223, 293, 349,

369, 377. 379. 380, 383, 413, 438, 449,

455, 456, 458, 460, 461, 464, 468, 470,

472, 473
Polar coordinates, 221, 224

Polars, theory of, 167

Pole, W., 383
Polenus, 48s
Polya, G., 362

Polyhedra, 240
Poncelet, J. V., 287, 288; 166, 190, 268, 275,

276, 286, 290, 297, 298, 301, 308, 3n,
354. 395, 467; P- paradox, 310

Poor, V. C, 335
Porism, $3
Porphyrins, 7, 45
Posidonius, 48
Position, principle of. See Local value

Postulates, 35; complete independence of,

395; Of Euclid, 31; Of geometry, 326-

328. See Parallel postulate

Potential, 256, 263, 264; 284, 314, 389, 393,

394, 419, 422, 472, 477
Potron, M., 360
Pouchet, 481

Powell, B., 260

Power series, 185, 387, 420, 431, 445. See

Series

Poynting, J. H., 474, 475
Prandl, L., 334
Precession of equinoxes, 242

Prestet, J., 248; 170

Preston, T., 476
Prihonski, F., 367
Prime numbers, 58, 167, 239, 249, 254, 344,

438, 439; Fermat, 169; Prime number
theorem, 439

Prime and ultimate ratios, 189, 257
Principia oj Newton. See Newton
Principle of duality. See Duality

Principle of position. See Local value

Pringsheim, A., 374, 400, 475, 428
Probability, 165, 170, 171, 183, 221-224,

229, 230, 240, 243, 244, 258, 262, 263, 273,

344, 367, 377-383, 478; Inverse pro-

bability, 230, 378; Local probability, 230,
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378, 37q; Moral expectation, 223, 378;

Problem of points, 170, 224, 263; Law of

large numbers, 222, 380

Problems for quickening the mind, 114

Problem of Pappus, 176

Problem of three bodies. See Three bodies

Proclus, 51; 15, 17, 21, 28, 30, 31, 33, 42.

44, 48, 49, 142, 302

Probleme des rencontres, 366

Progression. Sec Arithmetical; Geometrical

Projection; Stereographic, 48, 167; Ortho-

graphic, 48; Globular, 167

Projective geometry, 276, 285, 292-294,

297, 308, 327, 328

Prony, F. M. de, 300, 301

Prony, G. Richc de, 482

Proportion, 6, 10, 16, 19, 20, 22, 31, 32, 56,

S8, 73, 7S; Euclid's theory, 32; Arith-

metical, 56; Geometrical, 56; Harmonic,

56; Musical, 56

Prym, F., 418

Pseudo-sphere, 305
Ptolemy, 46-48; 5, 7, 45, &7, 96, lor, 102,

105, lOQ, 127, 129-131, 160, 184, 306, 314;

Almagesi, 5, 46, 49, 50, 54, 88, 100, loi,

104, 119, 120; Ptolemaic system, 46;

Tables of chords, 47
Puchta, A., 340
Puiseux, V. A., 420
Pulverizer, 95
Purbach, G., 127; 131, 132

Pyramids of Egypt, 9, 10, 14, 16

Pythagoras, 17-20; 2, 15, 55, 57, 68, 80,

104

Pythagorean school, 17-19

Pythagorean theorem, 2, 18, 30, 86-88, 97;

Nicknames of, 129

Pythagoreans, 7, 31, 239

Quadrant, centesimal division of, 259. See

Degree

Quadratic equations, 13, 57, 72, 74, 94;

Hindu method of solving, 94
Quadratic reciprocity, 239, 267

Quadratrix, 21, 28, 49
Quadratura curvarum (Newton's) 196, 197,

r98

Quadrature of curves, 181, 184, 192, 206,

207

Quadrature of the circle, i, 2, 17, 74, 79, 133,

143, 169, 181, 182, 185, 212, 236, 246, 446;

Impossibility, i, 2, 143, 362, 440, 446
Quadrivium, 113

Quantity, 285, 396, 398

Quaternions, 307, 323, 330, 332-335. 337,

353, 473; Quaternion-Ass'n, 335

Quercu, a, 143

Querret, J. J., 273

Quetelet, A., 380; 144, 148, 378; Average

man, 380

Quetelet, L. A. J., 289

Raabe, J. L., 374; 397
Radau, R., 452
Radians, 483; Origin of word, 484

Radius of curvature, 196, 221

Radon, J., 406

RaSy, L., 325
Rahn, J. H., 140; 169

Rallier des Ourmes, 170

Ramanujan, S., 367

Ramus, P., 142

Rangacarya, 85

Rankine, W. J. M., 476; 468

Ranum, A., 322

Raphson, J., 203; 227, 247, 271, 364
Rational, origin of word, 68

Rawlinson, R., 234

Rayleigh, Lord, 464; 448, 461, 462, 465, 474
Reciprocal polars, 288, 296

Reciprocal radii, 392
Recorde, R., 140; 146

Recurring series, 227, 230

Redfield, W. C, 462

Reductio ad absurdum, 25

Reech, F., 457
Regiomontanus, 131; iii, 132, 139, 141,

143, 145, 146, 147

Regnault, H. V., 473, 476
Regula falsa, 12, 13, 91, 93, 103, 137, 366;

Double, 44, 103, no, 123

Regula sex quantitatum, 46, 47, 109

Regular solids, 18, 27, 29, 33, 43, 106, 139,

347
Reid, A., 155
Reid, W., 463
Reiff, R., 238
Reiss, M., 341
Relativity, principle of, 335, 479-481
Resal, H., 455
Residual analysis, 247
Resolvents, 253

Resultant, 249
Revue semestrielle, 278
Reye, T., 294, 464
Reymer, 178

Reynolds, O., 462
Rhaetius, 131, 132; 483
Rhind collection, 9
Riccati, J. F., 224; 223, 247; Riccati's

dilTerential equation, 223, 225
Riccati, v., 247
Ricci, G., 333, 356
Ricci, M., 77
Richard, J. A., 401', 402, 409
Richard of Wallingtord, 128
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Richardson, L. J., 68

Richelot, F. J., 417; 311, 313, 436
Richmond, H. W., 318, 319
Riemann, G. F. B., 421-423; 238, 279, 284,

306, 307, 313, 314, 316, 324, 342, 375, 376
385, 386, 387, 398, 400, 405, 418, 419, 428,

429, 430, 431, 432, 433, 438, 439, 445, 462;
Riemann's surface, 307, 347, 417, 422,

426, 470, 474; Zeta-function, 439
Riesz, F., 376, 396, 406
Riesz, M., 427
Rietz, H. L., 357, 360
Right triangle, 169. See Triangle

Ritlunomachia, 116

Ritter, E., 433
Robb, A. A., 480
Robert of Chester, 119
Roberts S., 301, 302
Roberts W., 314
Roberval, G. P., 162; 42, 146, 163, 164, 165,

176, 177, 178, 180, 181, 183, 190, 191

Robins, B., 219; 220, 369, 458
Roch, G., 431
Rodriques, O., 469
Roe, N., 152

Rogers, R. A. P., 313
Robn, K., 3r9

RoUe, M., 224; 220; Rolle's theorem, 224;

Method of cascades, 224

Roman notation and numerals, 63, 178
Romanus, A., 143; 133, 138, 144
Romer, O., 190

Roots, 80, 106, III, 115, 123, 141, 440:

Chauchy's theorem, 363; Cube root, 71,

74, 123; Equal roots, 180; Every equa-

tion has a root, 349; Imaginary, 123, 135,

156, 179, 202, 248, 249, 363-365; In

Galois theory, 351; Irrational, 43, 6r, 103;

Negative roots, 61, 107, 135, 141, 156;

Square root, 54, 71, 94, in; Sturm's

theorem, 363; Upper and lower limits,

180, 202, 225, 269, 361. See Equation,

Irrationals, Negative numbers

Rosenhain, J. G., 418; 414, 417

Ross, R., 383

Rossi, C, 36s
Rothe, R., 322

Rothenberg, S., 384
Rouche, E,, 393
Rougier, L., 481

Roulettes, 81, 167, 224

Routh, E. J., 457, 458, 474
Rover, W. H., 459; Quoted, 460

Rowland, H. A., 472; 461, 474, 475

Royal Society of London, founded, 184

Royce, J., 410

Rudio, F., 17, 51

Rudolfli, Ch., 140

Ruffini, P., 349; 75, 271, 350, 352, 353;

Ruffini's theorem, 350
Ruhlmann, R., 477
Rule of false position. See False position

Rule of three, 93, 103

Ruled surfaces, 295

Ruler and compasses. See Constructions

Runge, C, 426, 427
Runkle, J. D., 451
Russell, B., 285, 328, 399, 400, 402, 407,

409
Saccheri, G., 304; 184, 302, 305

Sachse, A., 375
Sacro Bosco, 129

Safford, T. H., 451
Saint-Venant, B. de, 468; 337, 350, 461, 466,

467, 471
Saladini, G., 221

Salmon, G. (1819-1904), 290, 297, 312, 313,

317, 320, 342, 345. 346. 361; Salmon

point, 291

Salvis, A. de, 172

Sand-counter, 54, 78, 90
Sang, E., 482, 486

Sangi pieces, 76, 78, 80

Sarasa, A. A. de, 181, 188

Sarrau, E., 471
Sarrus, P. F., 369; 301, 370
Sarton, G,, 389

Sato Seiko, 79
Saturn's rings, 451
Saurin, J„ 224; 143

Sauveur, J., 170, 367
Savart, F., 465
Savasorda, A., 121, 123

Sawaguchi, 79
Sawano Chiian, 81

Scaliger, J., 143

Scarpio, U., 357
Scheffers, G. W., 339, 355
Scheffler, H., 367
Schellbach, C. H., 291

Schepp, A., 458; 371, 377
Schering, E., 436; 308, 421

Scherk, H. F., 340
Scheutz, 48s
Schiaparelli, G. V., 382

Schilling, M., 328

Schimmack, R., 405
Schlafli, L., 417; 308, 318, 376, 470
Schlegel, V., 337; 309. 336
Schlesinger, J., 296

Schlesinger, L., 387
Schlick, O., 458
Schlomilch, O., 449; 365

Schmidt, C, 383
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Schmidt, E., 341, 393, 394
Schmidt, F., 303
Schmidt, W., 44
Schone, H., 44
Schonemann, P., 348
SchoniJies, A., 326, 400, 401

Schottenfels, I. M., 359
Schottky, F., 425, 431
Schreiber, G. 296; 276

Schreiber, H. See Grammateus
Schroder, E., 407; 285, 365, 405, 408
Schroter, H., 466; 314, 417

Schubert, F. T. v., 348
Schubert, H., 293
Schulze, J. K., 247
Schumacher, H. C, 411, 437, 449
Schur, F., 327
Schuster, A., 470
Schiitte, F., 176, 177, 183, 245, 27s
Schwarz, H. A., 431-432; 293, 319, 347,

359, 368, 370, 372, 376, 390, 391, 428;

Schwarzian derivative, 432
Schweikart, F. K., 305
Schweins, F., 340
Schweitzer, A. R., 395
Scott, R. F., 341

Scotus, Dims, 126

Sebokht, S., 89

Section, golden, 28

Seeber, L., 444
Seelhoff, P., 167, 445
Segner, J. A., 248; 458
Segre, C, 289, 307, 318, 322, 431
Siguier, J. A. de, 360

Seidel, P. L. v., 377
Seitz, E. B., 379
Seki Kswa, 80; 81

SeUing, E., 444
Selhneyer, W., 471

Serenus, 45
Series, 75, 77, 80, 81, 106, 127, 172, 181, 187,

188, 192, 196, 206, 212, 227, 232, 238, 246,

248, 2S7, 258, 361, 367, 373, 42s, 434, 411;

Alternating, 373; Asymptotic, 37s; Con-

ditionally convergent, 374; Convergence

of, 227, 249, 270, 284, 367, 373-375, 417;

Divergent, 37s, 454; Hypergeometric,

185, 387, 432; Product of two series, 373,

374; Of reciprocal powers, 238; Power-

series, 185, 387, 420, 431, 44S; Trigo-

nometric series, 419, 431; Uniform con-

vergence, 84, 377; Recurrent, 127. See

Arithmetical progression. Geometrical

progression

Serret, J. A., 314; 319, 352, 384, 385, 436, 456

Serson, 45S

Servant, M. G., 325, 37s

Servois, F., 273, 275, 2S8

Sets of curves, 405

Sets of lines, 405

Sets of planes, 405
Sets of points, 325, 326, 394, 39s, 404

Severi, F., 293, 317, 319
Sexagesimal numbers, 4, 5; 43. 47, 88, 100,

483; Fractions, 5, 54, 483; Invention of,

5,6
Sextant, 204

Sextus Empiricus, 48

Sextus JuUus Africanus, 48

Shades and shadows, 297. See Descriptive

geometry

Shakespeare, 190

Shanks, W., 206

Sharp, A., 206; 24

Sharpe, F. R., 319
Shaw, H. S. Hele, 486

Shaw, J. B., 333, 339, 410

Sheldon, E. W., 372

Shotoku Taishi, 78

Siemens, W., 463

Silberstein, L., 479
Simart, G., 316

Similar polygons, 19, 22, 32, 184

Similitude, mechanical, 457
Simony, O., 323
Simphcius, 51; 22, 23, 48, 184

Simpson, T., 235; 227, 234, 244, 365, 382

Simson, R., 277; 31, 33
Sindhind, 99
Sine function, 104, no; Origin of name,

los, 119

Singbalesian signs, 89

Singular solutions, 211, 224, 227, 239, 24S1

254. 255, 264, 383
Sinigallia, L., 395
Sisam, C. H., 322

Slide rtile, 158, 139
Slobin, H. L., 446
Sluse, R. F. de, 180; 42, 188, 208, 209
Sluze. See Sluse

Smith, A., 457
Smith, D. E,, 7, 68, 71, 78, 86, 88, 89, 116,

121, 128, 177, 184, 291, 332
Smith, H. J. S., 441; 342, 416, 438, 442, 444
Smith, R., 226

Smith, St., 292

SneUius, W., 143
Sniadecki, J. B., 258
Snyder, V., 320
Societies (mathematical), 279, 296
Socrates, 25

Sohncke, L, A., 417
Solar system (stabihty of\ 284
Solids, regular, 19, 33, 106, 159
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Solidus, for writing fractions, 33s

Sommer, J., 445
Sommerfeld, A., 458
Sommerville, D. M. Y., 305, 306, 329
SomoS, J. I., 457
Sophists, 20-25

Soroban, 78

Sosigenes, 66

Sound, 240, 251, 460, 464-470; Velocity of,

264

Space of n dimensions. See geometry, »
dimensions

Sparre, Comte de, 459
Specific gravity, 37
Speidell, J., 152; 158

Speny, E. A., 458
Sphere, 19, 27, 33, 36, 42, 45, 50, 79, 106,

107, 314
Spherical harmonics, 232, 263, 469
Spherical trigonometry. See Trigonometry

Sphero-circle (imaginary), 293

Spheroid, 36; Attraction of, 200, 267

Spirals of Archimedes, 36, 50; Fermatian,

224; Spherical, 50

Spitzer, S., 369; 365
Spottiswoode, 341; 337; Quoted, 281

Square root. See Root
Squaring the circle. See Quadrature of the

circle

S'ridhara, 8s, 94
Stability of solar system, 260, 262

Stackel, P., 184, 238, 426

"Stade," 24

Stager, H. W., 353
Stahl, H., 308
Star-polygons, 127

Statics, 171, 172, 181, 2SS, 282, 289; Theory

of couples, 4SS. See Graphic statics.

Mechanics

Statistics, 377-383; Arithmetic mean, 381,

382; Averages, theory of, 381; Normal

curve, 382; Median, 381; Frequency

curve, 383; Mode, 381; Mortality, 381;

Population, 381; In biology, 381; Stand-

ard deviation, 382

Staudt, von, 294-308; 280, 287, 297, 309,

310

St. Augustine, 67

Steele, W. J., 457, 459
Stefano, A. B., 461

Steiger, O., 48s
Steiner, J., 290-292; 287, 289, 297, 309,

310, 311, 312, 313, 317, 318, 320, 323, 336,

346, 362, 370, 411, 421, 423, 424; Steiner

point, 290; Steiner surface, 319

Stekloff, W. A., 393

Stephanos, C, 289; 348

Stereographic projection, 48

Stern, M. A., 364; 365, 421, 436
Stemeck, R. v., 439
Stevin, S., 147; 127, 137, 148, 171, 178, 187

Stewart, M., 277

Stieltjes, T. J., 375; 406, 446, 470
Stifel, M., 140; 139, 141, 144-146, 149, 183,

187

Stirling, J., 229; 204, 229, 377
St. Laurent, T. de, 273

Stokes, G. G., 460, 461; 281, 284, 332, 377,

461, 462, 465, 466, 468, 471, 47S
Stolz, O., 425; 35, 368, 399, 400

Stone, E. J., 382

Story, W., 308, 323, 348
Stouffer, E. B., 322

Strassmaier, P. J. R., 8

Stratton, S. W., 465

Strauch, G. W., 370
Stringham, W. I., 308; 309
Stroh, E., 348
Stromgren, F. E., 453
Strutt, J. W. See Rayleigh, Lord

Strove, G. W., 437
Stubbs, J. W., 292

Stubner, F. W., 248

Study, E., 289, 293, 308, 335, 339, 348, 356
Sturm, C, 363; 166, 269, 273, 310, 344, 420,

456, 457. 472, 473; Sturm's theorem, 363,

364, 366

Sturm, R., 317; 295, 318, 319

St. Venant, B. de, 297

St. Vincent, Gregory, 181; 182, 188, 190,

206

Suan-pan, 52, 76, 78

Substitutions, theory of, 281, 417; Orthog-

onal, 342
Sulvasutras, 84-86

Sumerians, 4
Sundman, K. F., 452, 454
Sun-Tsu, 72; 73, 75, 78

Surfaces, 49, 235, 275, 295, 296, 314-318,

321, 322; Anchor-ring, 323; Confocal,

293; Cubic, 29s, 313, 314, 317, 318, 329,

343; Deformation, 321; Isothermic, 314;

Kummer, 418, 328; Minimal, 315, 325,

355, 371. 385, 432; Of negative curvature,

307; Plectoidal, 50; Polar, 307; Pseudo-

spherical, 321; Quintic, 319; Quartic, 329;

Ruled, 295, 319, 320; Third order, 291,

318; Fourth order, 314, 318, 319; Second

degree, 275, 290; Second order, 235, 295,

311; Universal, 296; Wave-surface, 311,

314. 319, 333
Surveying, 44, 66, 77

SiJiya siddhanta, 84

Sussmilch, J. P., 380
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Suter, H., 104, log, 181

Swan-pan. See Suan-pan

Swedenborg, E., 260

Sylow, L., 354; 414, 352, 357, 361; Sylow's

theorem, 354
Sylvester, J. J., 343-349; 202, 249, 278, 282,

285, 297, 312, 313, 317, 323, 32-4, 333, 334,

340, 341, 342, 3SI, 361, 363, 379, 432, 418,

438, 441, 444, 455, 472; Link-motion, 301;

Partitions, 344; Reciprocants, 344
Symbolic logic, 205, 246

Symmedian point, 299

Symmetric functions, 235, 414
Synthesis, 27

Synthetic geometry, 166, 167, 286-309.

See geometry. Projective geometry

Syrianus, 51

Syzygies, 348
Tabit ibn Korra, 104; loi, no
Tables, mathematical, 482-484

Taber, H., 339, 340
Tait, P. G., 459; 272, 279, 322, 323, 333,

334, 335, 337, 382, 4S7. 466, 470, 473, 476;

Golf-ball, 459
Takebe, 80; 81

Talbot, H. F., 413
Tanaka Kisshin, 79; 8r

Tangents, method of. See Method of tan-

gents

Tannery, J., 385; 314, 401, 351, 387, 433
Tannery, P., 401; 7, 24, 32, 43, 45, 46, 53,

60, 96, 177, 400; Quoted, 175

Tartaglia, 133, 134; 139, 141, r42, 146, 158,

170, 183

Taurinus, F. A., 305; 184

Tautochronoios curve, r83, 4r3

Taylor, B., 226; 155, 218, 229, 242, 245, 251;

His theorem, 226, 251, 257, 258, 394, 369,

385, 422

Taylor, H. M., 300; His circle, 300

Tedenat, 273

Teixeira, G., 320

Telescope, 183; Reflecting, 204

Tenzan method, 80

Terquem, 0., 228

Teubner, B. G. (firm of), 328

Thales, 15-18

Theaetetus, 28; 30, 31, 57

Theodorus of Gyrene, 57

Theodosius, 44, 45, 104, 118-120

Theon of Alexandria, 50; 31, 42, 43, 45, 54,

67

Theon of Smyrna, 59; 45, 48, 142

Theorem of Pythagoras. See Pythagorean

theorem

Theory of numbers. See Numbers, theory of

Theudius, 28, 30

Thiele, T. N., 378
Thomae, H., 400
Thomae, J, 416

Thoman, 155

Thomas, A., 127, 182

Thomas, Ch. X., 485
Thomas Aquinas, 126

Thomg, L. W., 387; 390
Thompson, S. P., 271, 334, 473
Thomson, J., 463; 472, 484, 486

Thomson, J. J., 461, 474
Thomson, W. See Kelvin, Lord

Three bodies, problem of, 240, 243, 252, 452-

455; Reduced problem of, 452

Thybaut, A. L., 325
Thjonaridas, 59, in
Tichy, A., 481

Tides, 240, 264, 393, 336, 378, 449
Timaeus of Locri, 25

Time a fourth dimension, 306, 480
Timerding, H. E., 480

Tisserand, F. F., 388, 455
Todhunter, I., 370; 170, 171, 223, 230, 243-

24s, 331, 371, 437, 449, 46s
Tohoku Mathematical Journal, 82

ToneUi, A., 423
TonstaU, C, 146

Top, theory of, 458
Torricelli, E., 162, 163; 146, 156, 190
Torsor, 335
Tortolini, B., 346
Tractrix, 182, 328
Trajectories, orthogonal, 217, 222, 322
Transcendental numbers, 2, 143, 362, 440,

446,447
Transfinite numbers, 426
Transformation, birational, 295, 314, 316,

317, 319; Linear, 295; 297
Transon, A., 321

Treviso arithmetic, 128

Triangle, 16, iS, 19, 71, 116, 297-300;
Arithmetical, 76, 183, 187; Right, 10,

49, 56, 66, 71, 86, 104, 160, 165, 166;

Similar, 16, 73; Spherical, 46, 48, 50;
Isosceles, 86, 104; Heron's formula for

area, 43, 66, 86, 123

Triangular numbers, 56, 168, 173
Triangulum characteristicum, 189, 207
Trigonometry, 108, 109, 127, 131, 138, 149-

157, 169, 222, 226, 229, 234-236, 265,

483, 484; Arabic, 104-106; First use of

word, 132; Greek, 43, 47; Hindu, 83, g5,

97; Notation for trig, functions, 158;
Notation for inverse functions, 223;
Spherical, 47, 76, 97, 105, 109, no, 132,

144, 267, 437, 481; Trigonometric func-
tions, cosecant, 106; Cosine, no, 151;
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Cotangent, 105, 151; Tangent, 104, 106,

132; Secant, 106, 132; Sine, q6, 99, to),

los, 110, 131, 132; Versed sine, 96

Trisection of an angle, a, 20, 36, 42, 104,

106, 138, 142, 177, 202, 246; Proved im-

possible, 3S0
Trisectrix, 229

Tropfke, J., 211

Trouton, F. T., 471
Trudj, N., 341
Truel, H. D., 265

Tschebytschew. Sec Chebichev

Tscliimhausen, E. W., 225; 209, 210, 226,

2S3i 349; His transformation, 225, 349
Tsu Ch' ung-cliih, 73

Tucker, R., 299; 414; His circle, 300

Two mean proportionals, 19

Tycho Brahe, 105, 159
Tzitzeica, G., 315
Ubaldo, G., 172

Uleg Beg, 108

Ultimate ratios. See Prime and ultimate r.

Underbill, A. L., 372
Undetermined coefficients. See Indetermi-

nate c.

Unger, F., 128

Uniformization, 433
Universities, math's in, 129

Unknown quantity, sjonbol for, 75

Vacca, G., 142

Vahlen, T., 327, 446
Vailati, G., 328
Valentin, G., 425
Valentiner, H., 359, 360

VaUee Poussin, C. J. de la, 376, 439
Valson, C. A., 368

Van Ceulen, L., 143

Vandermonde, C. A., 266; 253, 264

Vandiver, H. S., 443
Van Orstrand, C. E., 484
Van Schooten. See Schooten

Van Velzer, C. A., 341

Van Vleck, E. B., 405, 406; Quoted, 396,

40s, 422

Varaha, Mihira, 84

Variable parameters, 211

Variables, complex, 420

Variations, calculus of. See Calculus of

variations

Variation of arbitrary constants, 240

Varignon, P., 224; 156, 185, 220, 222

Varic£k, V., 481

Vasiliev, A., 425

Vavasseur, R. P. Le, 357, 360

Veblen, O., 309, 324, 326, 328, 409

Vector analysis, 308, 322, 334, 33S, 452, 476

Vega, G. F., 156, 482

Velaria, 221

Vine, A. A., 27b

Venn, J., 379; 407, 408
Venturi, 44
Venturi, A., 452
Verbiest, F., 77

Vernier, P., 142

Veronese, G., 291, 307, 309, 327
Vibrating strings, 226, 242, 251, 252, 258,

464
Vicat, L. J., 467; 468
Victorius, 65.

Vieta, F., 137-139; 41, iii, 133, 141, 142,

143, 144, 146, 156, 174, 177, 178, 187, 192,

203, 233

Vigesimal system, 69, 70

Vija-ganita, 85

Villarceau, A. Y., 452; 482

Vincent, A. J. H., 330
Vincent, Gregory St., 181

Vinci, Leonardo da, 273

Virtual velocities, 29, 172, 255
• Vitali, G., 405
Vivanti, G., 218, 427
Viviani, G., 409
Viviani, V., 162

Vlack, A., 151; 77, IS2, IS4, 482

Vogt, H., 29

Vogt, W., 308
Voigt, W., 471, 474
Volpi, R., 405
Volterra, V., 346, 372, 387, 393, 394, 39s,

40s, 406

Von Staudt, 280, 395, 409, 436
Voss, A., 297, 308, 32s, 374, 394; Quoted,

410

Xenocrates, 26

Xylander, 141

Wachter, F. L., 305
Wada, Nei, 81

Wagner, U., 128

Waldo, F., 463
Wallenberg, G. F., 387
Wallingford, R., 128

Wallis, J., 183-188; 88, 108, 137, 146, 148,

156, IS7. 138, 165, 168, 169, 178, 179, 181,

190, 191, 192, 196, 202j 213, 21S, 23s, 26s,

302, 306, 331, 343, 373
Wallner, C. R., 126

Waltershausen, W. S., 232

Walton, J., 219

Walton, W., 324
Wand, Th., 476
Wang Hs' lao-t'ung, 74
Wantzel, P. L., 350; 416
Ward, Seth, 157

Vi^aring, E., 248-249; 143, 202, 241, 248,
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254, 320, 361, 364; Miscellanea analytica,

241; Waring's theorem, 248, 442, 443
Warren, J., 330
Watson, J. C., 455
Watson, S., 379
Watt, J., 300; Watt's curve, 300

Wave theory of light, 183

Weaver, J. H., 50

Weber, H., 361; 318, 353, 357, 3g9, 400, 418
Weber, W., 6, 421, 434, 467, 474
Weddle, Th., 365; 155, 319; Surface, 319
Weierstrass, K., 423-426; 32, 258, 279, 285;

326, 345, 346, 347, 362, 368, 370, 371, 372,

376, 385, 38S, 397, 398, 399, 400, 415,

417, 418, 422> 428, 429, 430, 431, 432,

446, 453, 4S6; Weierstrass' Construction,

372

Weigel, E., 205

Weiler, A., 384
Weingarten, J., 314; 325
Weir, P., 482

Weissenborn, H., 115
Weldon, W. F. R., 381
Wendt, E., 357
Werner, J., 141

Werner, H., 347
Wertheim, G., 60

Wertheim, W., 468
Wessel C, 265; 420
Westergaard, H., 380, 381
WetU, 486

Weyl, H., 391, 46s, 469
Wheatstone, C, 465
Whewell, W., 324; 37, 160, 240

Whipple, J. W., 485
Whist, 383
Whiston, W-, 201

White, H. S., 278, 300; Quoted 3, 250, 295
Whitehead, A. N., 407, 409; Quoted, 294, 328
Whitley, J., 298

Whitney, W. D., 85

Whittaker, E. T., 386
Widmann, J., 139; 125

Wieferith, A., 443
Wieleitner, H., 127, 174, 182, 235, 250
Wiener, A., 366
Wiener, C, 297; 274, 276, 317, 326
Wiener, H., 289, 329
Wiener, N., 409
Wilczynski, E. J., 322
Williams, K. P., 392
Williams, T., 265

Wilson, E. B., 335, 401, 481; Quoted, 327
Wilson, J., 248; 2S4; Wilson's theorem, 248,

254
Windder, A., 469
Wing, v., 157

friuted Id the United

Wingate, E., 481
Winlock, J., 383
Winter, M., 410
Witt, F. de. See De Witt
Witting, A., 318
Wittstein, A., 291

Wittstein, T., 381

Woepcke, 68, 100

Wolf, C, 158, 175, 226

Wolf, R., 259, 379
Wolffing, E., 324
Wolfram, 247
Wolfshekl, F. P., 443
Wolstenholme, J., 379
Woodhouse, R., 272; 219, 370
Woodward, R. S., 459
Woolhouse, W. S. B., 365, 379
Wren, C, 166; 179, 181, 188, 199, 27s
Wright, E., 153, 155, 189

Wright, J. E., 356
Wright, T., 451
Wronski, H., 340; 258; Wronskians, 340
Yan Hui, 75

Yendan method, 80

Yenri, 80, 8i

Yoshida Shichibei Koyu, 78; 79
Young, A., 348
Young, G. C., 32s, 326

Young, J. R., 271

Young, J. W., 328

Yoimg, Th., 470; II, 183, 464, 465
Young, W. H., 325, 326, 406
Yii, emperor, 76
Yule, G. v., 381

Zach, 484
Zehfuss, G., 341
Zeller, C, 436
Zeno of Elea, 23; 24, 29, 51; On motion,

48, 67, 126, 182, 219, 400
Zenodarus, 42; 370
Zermelo, E., 372, 401, 402, 403; Principle of,

401

Zero, invention and use of, 119, 121, 147;

2, 5, 116; by Maya, 69; Symbols for, 5,

S3, 69. 75. 78, 88, 89, 94, 100; division by,

94. 284

Zero-denominator, 185

Zero, first use of term, 128

Zerr, G. B. M., 379
Zeuner, G., 381

Zeuthen, H. G., 32, 190, 293, 314, 316, 320
Zeujdppus, 34
Zizek, F., 380
ZoUner, F., 309
Zolotarev, G., 442, 444
Zorawski, K., 356

Zyklographic, 297
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ADDITIONS AND CORRECTIONS
CP. = page, 1. = line, F : = for, R: = read.)

P. 4 1. 13, P : employed R : employed in most instances

;

P. 4 1. 35, F: posses R: cite; P. 10 1. 19, F: sides R: legs;

P. II 1. I, F : of 3000 R : of perhaps 3000 ; P. 19 1. 3, F : solids

R : regular solids ; P. 23 11. 28, 36, F : paradoxies R : paradoxes
;

P. 32 1. 13, F :
> R : =

; P. 36 1. 37, F : Appolonius R : Apol-

lonius ; P. 39 1. 21, F : sides R : elements ; P. 49 1. 30, F : of a

R : of tlie area bounded by a ; P. 52 1. 39, F : zeta R : vau

;

P. 53 1. 4, F : final sigma R : vau ; P. 56 1. 14, F : called R : called

by the later Greeks and Euclid ; P. 57, 1. 42, F : Mittelalter

imd Alterthum R : Alterthum .und Mittelalter ; P. 58, 1. 6, F :

are R: and for perfect numbers are; P. 60 1. 21, F: age was

R: age at the time of his death was; P. 80, 1. 34, F: in R:
known in ; P. 80 1. 38, F : ?i' R : w

!
; P. 93 1. 29, F : has R

:

(having real roots) has
; P. 99 1. 20, F : Euphrates R : Tigris

;

P. 105 1. 22, F : V 1 + -D^ R
: V (1 + ^^)

;
P- 105 1- 27> 'P or

R : of
; P. 106 1. 25, F: discovered R: observed: P. 114 1. 13

F : Ireland R : York ; P. 1 16 1. 14, F : Fine R : Fine ; P. 1 16 1. 37'

dele : a ; P. 122 1. 31, F : nor R : not ; P. 123 1. 36, F : Tivolis^

R : Tivoli's ; P. 127 1. 2, F : profundis R : profundus ; P. 133 1. 39,

F: a;' = mo; - n R: a^ + ma; = w ; P. 133 1. 41, F : /'-V R /-V F :

—
j
R :

(
—

j
; P. 136 1. 13, F : equations R : general equations

;

P. 137 1. 46, F : Trigonometry R : Trigonometric ; P. 139 11. 13,

14, in the quotation, F : a, & R : A, B, respectively ; P. 142 1. 46,

F : Coimpre R : Coimbre ; P. 156 1. 7, F : Wallis in 1695 ob-

tained \ log(l + 0)/log(l — 2) R : James Gregory in 1668 and

Edmund Halley in 1695 obtained substantially the series

\ log(l 4- 2) — i log(l — «) ; P. 156 1. 20, F : Pierre Varignon • •

1722 R : Jakob Bernoulli in a paper published in the Acta eru-

ditorum in 1691 ; P. 157 1. 2, F : equations R : equations (having
'515



616 A HISTOKY OP MATHEMATICS.

real roots) ; P. 157 1. 5, F: in an R: in such, an; P. 167 1. 38,

F : 23550336 R : 33550336 ; P. 167 1. 43, F : by E : by J. Pervusin

and; P. 181, 1. 8, F: hyperbola back E: parabola back;

P. 181 1. 8, F : The curve E. : The earliest absolute rectification

was that of the logarithmic spiral, by E. Torricelli in 1640.

The curve; P. 181 1. 10, F: first E: next; P. 182 1. 3, dele:

possibly; P. 184 1. 24, F : C. S. Clavio E: C. Clavius ; P. 184

1. 26, dele : The existence Simplicius ; P. 185 1. 29, F : greater

than unity and negative E : less than minus one ; P. 209 1. 34,

F : Berlin E : Leipzig ; P. 213 1. 30, F : G. G. E : G-. W. ; P. 239

1. 23, F : 3 E : 2 pairs were false, 3 ; P. 239 1. 26, F : 2 w E : 2"

;

P. 240 1, 25, also P. 244 1. 26, P. 477 1. 24, P. 503 1. 13. F : Mau-

pertius E : Maupertuis ; P. 250 1. 22, F : , but E : ; a related

curve was; P. 271 1. 35, F: 1765 E: 1865; P. 282 1. 8, F :

them E : it; P. 287 1. 3, F : Synthetic R: Modern synthetic;

P. 296 1. 6, F : at E : out at ; P. 299, in the figure, Z ABO = a,

Z ACD = 6 ; P. 310 1. 2, F : abbreviated E : abridged
; P. 310 1. 4,

F : Marne] E : Marne, by G. Lame and by J. D. Gergonne]
;

P. 312 1. 28, F : Flachen. E: Flachen ; P. 316 1. 46, F: H. B.

E : H. F. ; P. 320 1. 28, add : It was enlarged and translated

into French in 1908 and 1909 ; P. 320 1. 34, F : E. P. C. R
F.P. C. ; P. 323 1. 38, F: Peterson E: Petersen; P. 327 1. 38,

F: sum E: angle sum; P. 330 1. 10, F : e^""' = E:e2""f* =
P. 338 1. 18, dele : first ; P. 348 11. 34, 35, F : F. W. P. E : T.

P. 353 1. 40, F : 1861 E : 1860 ; P. 358 1. 46, F : only one E : no

P. 360 1. 33, F : degree E : order ; P. 361 1. 26, F : was E : were

P. 372 1. 39, F : 1862 E : 1862-1867 ; P. 373 1. 3, F : this E
the preceding ; P. 373 1. 17, F : thus named E : bearing a name
used ; P. 401 1. 32, F : V. A. E : H. ; P. 429 1. 17, F : Dirichlet's

R : Thomson-Dirichlet's ; P. 444 1. 39, F : first step E : step

P. 489 1. 37, F : 1758 E : 1769 ; P. 494 1. 42, F : Emsh E : Emch
P. 499 1. 44, F : 169, 331 E : 142, 169, 331 ; P. 502 11. 3, 4, dele

401, 402, 406, 406, 421 ; P. 502 1. 4, insert : Lebesgue, H., 406

401, 402, 406, 421 ; P. 503 1. 25, dele : 360 ; P. 503 1. 47, F : 142

R: 142, 169, 331 ; P. 507 1. 11, F: Peterson R: Petersen.














