

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
A PROTOTYPE SEMANTIC INTEGRITY FRONT END
EXPERT SYSTEM FOR A RELATIONAL DATABASE

by

George Joseph Salitsky

September, 1991

Thesis Advisor: Magdi N. Kamel

Approved for public release; distribution is unlimited

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
1b RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved tor public release; distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

37

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6c ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

8a NAME OF FUNDING/SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

Program tlement No Project No Task No Work unit Accession

Number

1 1 TITLE (Include Security Classification)

A PROTOTYPE SEMANTIC INTEGRITY FRONT END EXPERT SYSTEM FOR A RELATIONAL DATABASE

12 PERSONAL AUTHOR(S) Salitsky .George J.

13a. TYPE OF REPORT

Master's Thesis

13b TIME COVERED

From To

14 DATE OF REPORT (year, month, day) 15 PAGE COUNT
1991, September, 26 141

16 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those ofthe author and do not reflect the official policy or position of the Department of Defense or the U.S.

Government.

17 COSATI CODES

FIELD GROUP SUBGROUP

18 SUBJECT TERMS (continue on reverse if necessary and identify by block number)

Database integrity, Front end expert system, Prototype expert system. Semantic integrity.

19 ABSTRACT (continue on reverse if necessary and identify by block number)

Information is a critical resource in today's enterprises. Whether they are industrial, commercial, educational, or military, these organizations

maintain an ever increasing amount of information in databases. Ensuring the accuracy of information in a database is paramount to the

organization that maintain these databases. Many decisions are made from the information extracted from the database, and incorrect data will

lead to incorrect decision making. This thesis examines the feasibility of using expert systems for enforcing semantic integrity constraints to

relational databases. To accomplish this goal, the thesis develops a classification for semantic integrity constraints, applies it to develop rules for

the Navy's Naval Aircraft Flight Record application, and builds a front end expert system to enforce these rules dynamically. The expert system

enforces integrity rules for all maintenance operations(UPDATE, INSERT, and DELETE.)

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

|x| UNCLASSIFIED/UNLIMITED] SAME AS BEPOR1 ll DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL

Magdi N. Kamel

22b TELEPHONE (Include Area code)

(408)646-2494

22c OFFICE SYMBOL
AS/KA

DD FORM 1473. 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

T9RQ 1 qn

Approved for public release; distribution is unlimited.

A Prototype Semantic Integrity

Front End Expert System

for a Relational Database

by

George J. Salitsky

Lieutenant, United States Navy

B.S., University of Scranton

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September, 1991

/7/

ABSTRACT

Information is a critical resource in today's enterprises.

Whether they are industrial, commercial, educational, or

military, these organizations maintain an ever increasing

amount of information in databases. Ensuring the accuracy of

information in a database is paramount to the organizations

that maintain these databases. Many decisions are made from

the information extracted from the database, and incorrect

data will lead to incorrect decision making.

This thesis examines the feasibility of using expert

systems for enforcing semantic integrity constraints to

relational databases. To accomplish this goal, the thesis

develops a classification for semantic integrity constraints,

applies it to develop rules for the Navy' s Naval Aircraft

Flight Record application, and builds a front end expert

system to enforce these rules dynamically. The expert system

enforces integrity rules for all maintenance operations

(UPDATE, INSERT, and DELETE.)

111

CI

TABLE OF CONTENTS

I

.

INTRODUCTION 1

A. BACKGROUND 1

B. OBJECTIVES 2

C. RESEARCH QUESTIONS 3

D. SCOPE 4

E. ORGANIZATION OF THE STUDY 5

II. CLASSIFICATION OF INTEGRITY CONSTRAINTS 6

A. Domain Integrity Constraints 7

B. Column Integrity Constraints 8

C. Entity Integrity Constraints 10

D. Referential Integrity Constraints 11

E. User Defined Integrity Constraints 12

III. NAVAL AIRCRAFT FLIGHT RECORD RELATIONAL DATABASE

DESIGN 16

A. BACKGROUND 16

B. AIRCRAFT FLIGHT RECORD OBJECTS 20

1. ORGANIZATION Object 21

2. AIRCRAFT Object 21

3. FLIGHT Object 21

4. AIRCREW Object 22

5. AIRCREW FLIGHT Object 22

6. LOGISTICS Object 23

IV

7. DEPARTURE Object 23

8. ARRIVAL Object 23

C. NAVAL AIRCRAFT FLIGHT RECORD SCHEMA 24

1. ORGANIZATION Relation 24

2. AIRCRAFT Relation 24

3. FLIGHT Relation 25

4. AIRCREW Relation 26

5. AIRCREW FLIGHT Relation 26

6. LOGISTICS Relation 27

7. DEPARTURE Relation 28

8. ARRIVAL Relation 28

D. INTEGRITY CONSTRAINTS .29

1. Domain Integrity Constraints 29

2. Column Integrity Constraints 29

3. Entity Integrity Constraints 30

4. Referential Integrity Constraints 30

5. User Defined Integrity Constraints 30

a. Intra-Attribute Constraints 30

b. Intra-Relation Constraints 31

IV. DESIGN AND IMPLEMENTATION OF THE FRONT END EXPERT

SYSTEM 33

A. INFERENCE ENGINE 33

B. APPLICATION DESIGN 35

1. Append 36

2. Update 37

3. Delete 38

v

V. CONCLUSIONS AND RECOMMENDATIONS 4

A. CONCLUSIONS 4

B. RECOMMENDATIONS 41

APPENDIX A: NAVAL AIRCRAFT FLIGHT RECORD OBJECT

DIAGRAMS 43

APPENDIX B: NAVAL AIRCRAFT FLIGHT RECORD OBJECT

SPECIFICATIONS 4 6

APPENDIX C: NAVAL AIRCRAFT FLIGHT RECORD RELATIONAL

DIAGRAMS 4 8

APPENDIX D: SESSION WITH NAVAL AIRCRAFT FLIGHT RECORD

EXPERT SYSTEM 51

APPENDIX E: NAVAL AIRCRAFT FLIGHT RECORD RULE-BASE . . 69

LIST OF REFERENCES 132

BIBLIOGRAPHY 133

INITIAL DISTRIBUTION LIST 134

VI

I. INTRODUCTION

A. BACKGROUND

Semantic integrity is concerned with ensuring that the

database is always in a correct state even though some users

or application programs may attempt to change it to an

incorrect state. Enforcing semantic integrity means shielding

the database against invalid UPDATES , INSERTS , and DELETIONS .

Traditionally, most integrity checks are performed by

application programs or by periodic auditing of the database.

Problems of relying on application programs for integrity

checks include:

• Application programs that modify the database could
corrupt the whole database. That is, integrity checking is
likely to be incomplete because the application programmer
may not be aware of the semantics of the complete
database

.

• The criteria for integrity are buried in procedures and
are therefore hard to understand and control.

• Code to enforce the same integrity constraints occurs in
any number of applications; therefore inconsistencies
could be introduced easily.

Problems of these types could be detected through the use

of periodic auditing. Periodic auditing, on the other hand,

causes problems because of the time lag in detecting errors.

These problems include:

• There is considerable difficulty in tracing the source of
an error and correcting it.

• The incorrect data may have been used to propagate other
errors within the database and ultimately lead to
incorrect decisions based on incorrect data.

Thus the prevention of inaccurate data into the database

rather than the repair of the database once the damage has

occurred is the preferred method. The enforcement of these

integrity rules should be the responsibility of the DBMS, but

DBMS vendors have failed to provide adequate integrity

features to ensure accurate data within the database. [Ref . 1:

p. 109]

B . OBJECTIVES

This thesis suggests the use of a front-end expert system

to enforce semantic integrity features. This expert system

would oversee the update, insertion, and deletion operations,

monitoring for violations of integrity rules. Once a violation

had been identified, the system would take an appropriate

action. This appropriate action would mean rejecting the

operation and reporting the violation.

To understand how this will be accomplished, consider

Figure 1 . The expert system has a set of integrity rules that

define what errors will be checked. These rules are stored in

a knowledge base, which the inference engine of the expert

system uses to enforce database integrity. The major advantage

of this approach is that the validation of all data is handled

by the expert system, instead of being left to the user or the

application program. Another important advantage is that all

the integrity rules are located in the expert system'

s

knowledge base. With the knowledge base acting as a central

library, each integrity rule is easily queried and can be

changed as needed.

^
EXPERT SYSTEM

inference Engine

DATA ENTRY PERSONNEL

< >

Integrity Rules

DBMS O DATABASE

<^~zy

Figure 1 . 1 Front End Expert System

C. RESEARCH QUESTIONS

The Navy, through the use of the Naval Aircraft Flight

Record, collects data for the Individual Flight Activity

Reporting System (IFARS) . The IFARS is a data bank for

information that the Navy uses for safety analysis, budget

justification of hours flown, and pilot compliance of

established minimum standards. The accurate collection of

data enables Naval Aviation to justify its existence while

providing the means to make it inherently less dangerous. The

following research questions will be addressed:

• What are the integrity constraints to be enforced by a
front end expert system based on the Navy's Naval Aircraft
Flight Record, OPNAV 3710/4 and how will these constraints
be classified?

• What is the feasibility of using an expert system as a
front end in developing and enforcing these integrity
constraints in a relational database application such as
the Navy' s Naval Aircraft Flight Record?

D . SCOPE

This thesis develops a semantic integrity front end expert

system that monitors maintenance operations to a relational

database developed for the Navy's Naval Aircraft Flight

Record. It will address the issue of classification of

integrity constraints to provide a structure for the knowledge

base. It will also design a relational database representative

of the way the user perceives the data on the Naval Aircraft

Flight Record. Lastly it will design and implement a prototype

front end expert system to enforce the integrity constraints

developed, and maintain semantic integrity on the database.

This prototype will be limited in its' ability to capture all

data required by the Naval Aircraft Flight Record. It was not

feasible to include all data or integrity constraints related

to the data in the Naval Aircraft Flight Record due to the

time constraint on this thesis.

E. ORGANIZATION OF THE STUDY

The thesis is organized as follows. Chapter II provides a

classification of the integrity constraints that need to be

incorporated into the expert system. Chapter III addresses the

design of the relational database for the Naval Aircraft

Flight Record application and describes the integrity rules

that need to be enforced for this application. Chapter IV

describes the design and construction of the front end expert

system. Chapter V presents the conclusions of the research, as

well as the benefits, limitations, and weaknesses of using a

front end expert system.

II. CLASSIFICATION OF INTEGRITY CONSTRAINTS

An important goal of any database system is to model the

real world accurately, and in a manner consistent with the

user's perception of the data. The relational database model

is based on the abstraction that data is stored in two-

dimensional tables called relations. Each row in the table

represents a tuple and each column represents an attribute.

The entire table is equivalent to a file with all the

properties of that relation. One of the fundamental principles

of the relational database model is that relationships among

distinct relations are captured through common values. Certain

restrictions must be imposed on these relations to insure the

integrity of the data within the database and allow for

meaningful comparisons. The following is a list of integrity

constraints that must be incorporated into the relational

database model to guarantee these meaningful comparisons [Ref

.

2] .

• Domain Integrity Constraints
• Column Integrity Constraints
• Entity Integrity Constraints
• Referential Integrity Constraints
• User-Defined Integrity Constraints

Each type of constraint is detailed in the following sections.

A. Domain Integrity Constraints

The domain is the fundamental concept of the relational

database model. The domain is the set of all possible values

an attribute can have. It includes a physical description of:

• the data type

• range of values permitted for all columns within that
domain

• allowable comparison operators (e.g., greater than (>)

and less than (<)

)

and a semantic description (the function or purpose of the

variable) . A pair of values can be meaningfully compared, if

and only if these values are drawn from a common domain.

Consider the Naval Aircraft Flight Record in Figure 2.1.

DOC# Document Number
SIDE# Aircraft Side Number
EXCD Exception Code
BUNO# Aircraft Serial Number
ORG Organization Code
MSN1 Mission Code
HRS1 Mission Hours
TOTFLT Total Flights
ENG1 Engine 1 Hours
ENG2 Engine 2 Hours
ENG3 Engine 3 Hours
ENG4 Engine 4 Hours

DOC EXCD SIDE BUNO ORG MSN1 HRS1 TOTFLT ENG1 ENG2 ENG3 ENG4
001 C 052 152942 VP5 1A2 10.2 01 6.4 10.2 10.2 8.4

Figure 2 . 1 Domain Integrity Constraint

If both SIDE# and TOTFLT were declared to be numeric data

type, a query to list all aircraft by SIDE#, where TOTFLT is

greater than SIDE# would be a valid query. A query of this

type would produce as much meaningful information as comparing

apples to oranges. Enforcing domain constraints ensures that

two fields being compared not only have the same data types

but also are semantically comparable. This feature safeguards

users from meaningless information which could result from

comparisons of values from different domains. Although special

cases do arise that require the comparison of different

domains, these should be exceptions and handled as such.

The use of domain constraints results in an integrated

relational database [Ref . 2:p.45]. An advantage of this

integration is logical value-comparisons. As can be imagined,

the domain concept is fundamental to the support of each of

the other integrity constraints that are mentioned. Domain

constraints are what hold the relational database together and

allow it to model the real world accurately and in conjunction

with the user's way of thinking.

Today' s DBMSs unfortunately do not support the domain

concept. What they do support is basic data types (e.g.,

character, integer, float, calendar date, and clock times) and

the ability to define certain ranges on these data types.

B. Column Integrity Constraints

Column integrity constraints are a natural extension of

the domain concept. If the relational database supports the

domain concept, then it should be capable of declaring in

which domain the column belongs (inheriting the physical and

semantic constraints associated with that domain) , and any

additional constraints that are to apply to the columns. Each

column name then becomes a combination of a role name and a

domain name, where the role name designates the purpose of the

column's use in a specified domain. The advantages are as

follows

:

• The description of every column that belongs to a given
domain need only be declared once in the domain
declaration.

• Because a given domain need only be declared once, the
valid state of the database is ensured in future updates
to integrity constraints.

• Support for ensuring database values are semantically
comparable by checking to see if the columns belong to a
common domain.

• Column integrity constraints are facilitated.

The last advantage is very important. If the relational

database supports the domain concept, it has the ability to

detect column integrity violations. Therefore, users can

depend on the relational database to determine whether values

in two different columns are semantically comparable.

Column integrity constraints may include the following:

• An added range constraint that provides a more confined
range than in the domain declaration

• If missing values are allowed within a column

• Whether values must be distinct from each other within the
column (primary keys)

Consider once again the Naval Aircraft Flight Record in Figure

2.1. HRS1, ENG1, ENG2, ENG3, and ENG4 belong to the same

domain called Hours. The domain data type is a float type with

9

one decimal place. The range of values allowed is only

positive. Negative values are not feasible. The column

constraints for both HRS1 and ENG# are more restricted in that

the range of values allowed is only between 00.1 to 72.0.

Missing values are not allowed within the columns as long as

the Exception Code is not X. ENG# value must be equal to or

less than HRS1. This condition is specified to allow for

engines that are shut down during a flight. Although some of

these constraints within the example deal with other classes

of integrity constraints, the basic idea of column integrity

can be seen.

C. Entity Integrity Constraints

In order to understand Entity Integrity and Referential

Integrity, it is important to discuss primary and foreign

keys. Each row of a particular table in a relational database

contains a column which contains primary-key values that

uniquely identify and distinguish that row from every other

row in that table. The primary-key can be composite and formed

from more than one column. Everywhere else in the database

that there is a need to refer to that unique row, the same

value from the same domain is used but is referred to as a

foreign-key value. The column that the foreign-key value is

taken from is called the foreign key.

Entity Integrity implies that no component of a primary

key is allowed to have a missing value. The primary-key in the

10

relational database model is a compulsory feature. An example

of this is shown in Figure 2.2. The primary-key Document

Number is missing from both records which is a violation of

the Entity Integrity rule since it creates unidentified

objects within the database. From Figure 2 . 3 we can see that

duplicate primary-key values are prohibited, because of

basically the same consequences (loss of identity)

.

Also, no component of a foreign key is allowed to be

missing and inapplicable as opposed to missing and applicable.

This case requires additional attention in that Side Number

must adhere to referential integrity.

DOC EXCD SIDE BUNO ORG MSNl HRS1 TOTFLT ENG1 ENG2 ENG3 ENG4
C 052 152942 VP5 1A2 10.2 01 6.4 10.2 10.2 10.2
C 052 152942 VP5 1A2 9.3 01 7.0 9.3 9.3 9.3

Figure 2.2 Entity Integrity Constraint (Missing)

DOC EXCD SIDE BUNO ORG MSNl HRS1 TOTFLT ENG1 ENG2 ENG3 ENG4
001 C 052 152942 VP5 1A2 10.2 01 6.4 10.2 10.2 10.2
001 C 052 152942 VP5 1A2 9.3 01 7.0 9.3 9.3 9.3

Figure 2.3 Entity Integrity Constraint (Duplicate)

D. Referential Integrity Constraints

For each distinct foreign-key value in a relational

database, there must exist in the database an equal value of

a primary key from the same domain. If the foreign key is

composite, those components that are themselves foreign keys

must exist in the database as components of at least one

11

primary-key value drawn from the same domain. Consider the

relational diagram in Figure 2.4. Aircraft Side Number is the

primary-key value of the AIRCRAFT relation. Aircraft Side

Number is also a foreign-key in the FLIGHT relation. From the

relational diagram, FLIGHT must have one and only one Aircraft

Side Number per document number while the relation AIRCRAFT

can have one or more FLIGHTS associated with an Aircraft Side

Number

.

AIRCRAFT

AIRCRAFT SIDE NUMBER

FLIGHT

ORGANIZATION CODE*

o

DOCUMENT NUMBER AIRCRAFT SIDE NUMBER*

Figure 2 . 4 Relational Diagram

The entry of Document Number 0003AAA into the Flight

relation in Figure 2.5 violates referential integrity because

the Side Number 045 is not a primary-key in the Aircraft

relation. Referential integrity can be thought of as inclusion

dependency in that the foreign key must be a subset of a

database in which it is the primary key.

E. User Defined Integrity Constraints

Domain, column, entity, and referential integrity are the

building blocks of the relational database. User defined

12

integrity constraints are constraints that are peculiar to the

end-user or company. These constraints allow organization

practices and policy, or governmental legislation to be

reflected in the database delineated by the user. Consider the

Naval Aircraft Flight Record in Figure 2.6. The exception code

AIRCRAFT RELATION
SIDE# Aircraft Side Number
ORG Organization Code

SIDE# ORG
051 VP5
052 VP5
053 VP5

FLIGHT RELATION
DOCNUM Document Number
SIDE# Aircraft Side Number

DOCNUM SIDE#
0001AAA 052
0002AAA 051
0003AAA 045

Figure 2 . 5 Referential Integrity Constraint

DOC EXCD SIDE BDNO ORG MSN1 HRS1 TOTFLT ENG1 ENG2 ENG3 ENG4
001 X 052 152942 VP5 1A2 10.2 01 6.4 10.2 10.2 10.2

Figure 2 . 6 User Defined Integrity Constraint 1

X is used to document a canceled flight. A canceled flight is

one for which no flight time is obtained. Document 001 has

violated a user defined integrity rule because it has allowed

flight time to be documented for a canceled flight.

User defined constraints such as this, require that UPDATE

operations have an ordered sequence of events in order to

13

comply with all the integrity constraints defined for the

database. Examine the Naval Aircraft Flight Record in Figure

2.7. In an UPDATE operation on Document 001 the Exception Code

was changed to X. This resulted in the record change in the

database demonstrated in Figure 2.8. Not only did all flight

time need to be removed, the Mission Code needed to be changed

to reflect the user defined constraint that the 2nd position

of the Mission Code be N or the character if the Exception

Code is an X.

DOC EXCD SIDE BDNO ORG MSN1 HRS1 TOTFLT ENG1 ENG2 ENG3 ENG4
001 X 052 152942 VP5 1A2 10.2 01 6.4 10.2 10.2 10.2

Figure 2 . 7 User Defined Integrity Constraint 2

DOC EXCD SIDE BDNO ORG MSN1 HRS1 TOTFLT ENG1 ENG2 ENG3 ENG4
001 X 052 152942 VP5 1N2

Figure 2 . 8 User Defined Integrity Constraint 3

The intent of this chapter has been to develop the

framework for the expert system. Classifying the integrity

constraints allows for the building of rules according to

these constraints. In order for the expert system to function

properly, the integrity constraints must be transparent to the

user so that there is no reliance on voluntary action by the

user to maintain integrity within the database. In regard to

transparency, attempted violations of the integrity

constraints must be denied with an appropriate reason for

14

denial conveyed to the user. Also, any operations on the

database must be atomic in the sense that each operation must

be completed satisfactorily (satisfying all integrity

constraints) or denied and rolled back to its original state.

15

III. NAVAL AIRCRAFT FLIGHT RECORD RELATIONAL DATABASE DESIGN

As discussed in Chapter I, the thrust of this thesis is

the feasibility of using a front end expert system to enforce

semantic integrity constraints. This chapter discusses the

development of a relational database model and its associated

semantic integrity rules that will serve as the case study for

the front end expert system.

A. BACKGROUND

The relational database model developed in this chapter is

based on the Naval Aircraft Flight Record(OPNAV 3710/4), shown

in Figure 3.1. This record serves as the sole source of all

naval aircraft flight data and is applicable in specific areas

to aircraft simulators. The OPNAV 3710/4 record is prepared

for each attempt at flight of naval aircraft or training

evolution for simulators. The types of data collected are:

• A statistical description of the flight pertaining to the
aircraft and crew members

• A record of all logistic actions performed during the
flight

• A record of weapons proficiency

• A record of training areas utilized and other
miscellaneous data

The Operations Department within the aircraft squadron is

responsible for verifying the accuracy and completeness of

16

D
S
O
o
in
oc

z
O

t
<
a
o
cc

<

<
>
<
z

1 1

OO o

o£
C\J 5

*"§

-
?
i

:

•

; tli

""

5

JO
3
"35

_ -

.-51

— i

<

"is
*
-

j

« 5

i!

• - ¥

S £

"i_ i

_ I
s

_ «

!— a

:..

IE c g u u g o

c

r
t
a
a
O
o
lu
C

1

•J
>
£
c
<

I
P

g
o
IU

X
1

»-

5
•.
Ui

o
<

<
O

8

5
o
-i

it eK g> B
M. s ft e ft g k.

i

ji
a

o

1

-
-

- -
- -

<
•J
a
a

i
u

L
3?

t
~

:

»

xj^

/x

X s

X '

XX

xN

N>

V

o

a

- - - - — -

32

-

•

a

— - - -
- -

9
O

m

I

O

|

- i

*

<
o

\

2 - - - - - - 3

t~~

t

1

- - -
8-

3?X

3

X

h

5

I

.
— — - - - -

o

i!

3

Z

k
- - - - -

X

.
~" - - -

!

3

-
-

-

Q
O

<

o

I

1

i 2f
1

ii
•

-
• •

-

'

i 3?
t"

!
c

1

a

X

- - - i U
3

4 - - - i 3,
t~

a

1

§

«

• •

i 3? ,:

5 5

• • * • • • •

3

o

o i

• • • • • • • • • •

1

E -
• 1 * •

-
•

....
3

t
o

!
f

1

- — — - -
.» u s

M ™
a t

c
o

o
1

ftl

§
u
u
M

It

L>

z

-

X.

5
<

i

• •

s

'->

^ C'

\\
-

5°

II "
t

~ _

— ~~ —J

__

K
t

c
o
u

'

*""
t

— ""

_

c

<
t-

<
o

f

3 e

5

_ r
A —J

I

5^
A —
s

|= rA —
1 r

u .£. ; s? :

u 5? • Mia S

<
.... ."1 - - - - - - •T • * - - * *

i: £ 2 o

<

' <

I
—

i -

it"
-

-

(

- —

i

-

i

* —
•
»

-

t 1

g 1
! a"

-

!i i a"
-

a

<1 _

a

—

i

1

It"
-

3|
< *

! _ -

1 :! a"
-

i

*

i

i _
5

-

:

I."

-

— -

c 5j" -

X

3 -_
r

> _

i

i

j
1

4
a

:

•
[K

•

;

i
-

! -
-

!jx

;

i

. s
•

:

; -
-

s :

>s
•

'-• -

it t_S

i;

:

ii

i
-

c!- -V
Iu -

-
-

.ILL

i

l

. :
i

t —
ii t

_ »

o —
_ f

*
t

— o —
S a

i

\IH
5

" *~

5 « -

|
|

FIGURE 3.1 Naval Aircraft Flight Record (OPNAV3710/4)

17

naval aircraft flight records submitted for data processing as

well as verifying the daily audit reports, and coordinating

the correction of errors with the maintenance analyst. The

Maintenance Analyst is the NAVFLIRS coordinator who is

responsible for accomplishing the daily submission of

completed naval aircraft flight records for processing,

distributing daily audit and monthly reports to the operations

and maintenance departments, and coordinating error

corrections with operation and maintenance control. Completed

naval aircraft flight records are then forwarded to the Naval

Safety Center (NAVSAFCEN) for processing. A Monthly Individual

Flight Activity Report (MIFAR) , shown in Figure 3.2, is

produced by the NAVFLIRS system and forwarded to the aviator

by NAVSAFCEN. The MIFAR contains all individual activity for

that month, excluding those records appearing on the error

reports processed by NAVSAFCEN. This includes a summarization

by aircraft bureau number and by the flight times (First Pilot

Time(FPT), Co-Pilot Time(CPT), and Special Crew Time(SCT)),

including instrument (Actual Instrument Time (ACT) and

Simulated Instrument Time (SIM)), and night times for that

month. The MIFAR also contains a weapons proficiency summary,

a miscellaneous data section, and a fiscal year to date

summary indicating what is on record in the NAVFLIRS system.

In addition to producing the MIFAR, the NAVSAFCEN is the

collection and maintenance activity for the IFARS data bank.

The IFARS is the primary source of individual flight data,

a
'0 UI am a r>

Oa u o
IU z
ui 19 OJ

1- U)

a 3
too

a 3 >

-i
u

» X z
• -
• * t-
l/l

ui o z
x a
g">-
o o z

-

,

1 i nK Z
a ru >-

a k z
iS & 6

_ _ „ — ^ £ S
• in
• — »- •« n * •* M 3

• X z

i

sa 1 §
•
in o z so a cZ <*> - r * <P

o a 2
z z

<u - - ;

i S s
a <m i- <« •A
_i L
• z m OJ OJ OJ OJ
» H
• in
• — i- r) tO u u. n OJ u <j> ia i 1 1 1

Ul UI in 9 n • 9 n
t- E .• n •# * e>
Z -

I
5

E
r> • n • n in 9 9 • h

h in
•* •* * •j OJ OJ A i

•* in
z _ & OJ OJ <« «— »- .

g K
•* ** •* <v " K •" M M n - m

en

»- ICI
i K o
a 01

UI § S
M E * v & OJ 4 r> 9 s< r c
UI •* 1- lla i- a •* n
a ua
19

»-

-J
u oj n r> M r> SO n 0> • •J 9 9

t-
ff> a n <M "J n «l ri OJ M * 0> OJ OJ

IL "* OJ I 8
<\i

a x a 1-

I
8 S

r> UI u
N o> u u u U u • UI U U • u • u ?s a a n »s| f-J n -X X n #h M

59u a z Z z z z
X 1 X

z
(/i

— a X X X X X Z t- ^
UI > 9 9 s 9 n 9 n 9 • H u K

in E a n n *
5

* •
it

— E OJ "J * P)
i- a OJ oj 9

*» u
o (J u u u u O UI U u E
a a n p*j m n IS* M X ** M

K- U UI Z z z z z z z
i

a jf
Z _, a X X X x X X z X t V
*"

UI 9 s 9 9 9 9 r> 9 • rf 8 5
E a
— UI i 2 3

l 1
ft

s
«

i
H 1

o H> a
1- Q 9 "• * OJ 9 - J m

UI P> _ CO- <"» (0 m m OJ n S o
H * in HI vO «D m

s
s K

1

1

aa a s
OJ

3 2 3 3 at
$

UI UI UI UI UI
S UI

s
Q

> u m at IS <L a a> 5
a UI in in in in in in in in

5a - a a a a a a a a
<\j UI
2 E
a OJ OJ OJ n

o 2UI z

g ia i 3 3 3 3 3 3 3 3 a
O z in 1

Figure 3.2 Monthly Individual Flight Activity Report

19

including those flights flown in authorized simulators. The

reporting vehicle for IFARS data is the Naval Aircraft Flight

Record OPNAV 3710/4. The IFARS data bank provides valuable

exposure data for flight safety analysis and also provides

data for other uses such as budget justification, past and

future program evaluation, and pilot compliance with

established minimum standards. Commander of Naval Military

Personnel Command (COMNAVMILPERSCOM) annually convenes a flight

board to review pilot flight activity by looking at the IFARS

data bank against the annual flying requirements as set forth

in OPNAVINST 3710. Each year, the Naval Safety Center mails to

reporting individuals their flight data report for the

previous fiscal year. IFARS data is applicable to naval

aviators, student naval aviators, naval flight officers,

aviation pilots flying naval aircraft, naval flight surgeons,

and aerospace physiologists/psychologists in a DIFOPS (duty in

a flying status for an officer involving operational or

training flights) or DIFDEN(duty in a flying status for an

officer not involving flying) status on active duty or

participating in the Navy or Marine reserve program. [Ref.

3:pp.l0 (1-4)

]

B. AIRCRAFT FLIGHT RECORD OBJECTS

In order to develop a relational schema for the Naval

Flight Data application, a series of objects were developed to

capture the data requirements for the Naval Aircraft Flight

20

Record, OPNAV 3710/4. An object is a named collection of

properties that sufficiently describes an entity in the user's

work environment [Ref . 4:p.90] . The objects developed for this

application include: ORGANIZATION, AIRCRAFT, AIRCREW, FLIGHT,

AIRCREW-FLIGHT, LOGISTICS, ARRIVAL, DEPARTURE. In the

following sections, each object is described in more detail.

The complete Object Diagrams are shown in Appendix A.

1. ORGANIZATION Object

This object represents a generic naval aircraft

squadron. It is identified by an Organization Code and

includes properties such as Data Processing Code, Organization

Short Name, Support Code, Departure Time Zone, Departure IACO,

Cats/Jato, Airlift Mission, Payload Configuration Data, and

Training Codes. Typically an organization will have several

aircraft

.

2. AIRCRAFT Object

This compound object represents a generic naval

aircraft. It can be identified by the Aircraft Side Number or

Buno/Serial Number and includes properties such as Type

Equipment Code, and Number of Engines. Typically an aircraft

is assigned to exactly one organization and is used for many

flights.

3. FLIGHT Object

This compound object represents a generic naval

aircraft flight. It is identified by the Document Number and

21

includes properties such as Exception Code, Total Flights,

Ship/Field Operations Code, Catapult/ Jato Launches, Airlift

Mission Number, Number of Hoists, and Remarks. Mission Code,

Mission Hours, Engine Number and Engine Hours are multi-valued

properties and can contain more than single values. A flight

can only involve one aircraft but may typically involve many

aircrew members while carrying out many logistic missions.

4. AIRCREW Object

This object represents a generic naval aircrew member.

It is identified by the Social Security Number and includes

properties such as Last Name, First Initial, Service, Grade,

Organization, Natops Qualification Expiration Date, Medical

Expiration Date, Instrument Qualification Expiration Date,

Water Qualification Expiration Date, Physiology Qualification

Expiration Date, Assigned Syllabus, Syllabus Status Code,

Aircrew Status Code, and Exception Code. Typically an aircrew

member will be involved in many aircrew flights.

5. AIRCREW FLIGHT Object

This association object represents a generic naval

aircrew flight. It is identified by the combination of

properties, Document Number and Social Security Number. The

justification for making AIRCREW FLIGHT an association object

instead of a compound object stems from the fact that AIRCREW

FLIGHT is perceived as an independent object. Independent,

because it contains non-key data and documents a relation

22

between FLIGHT and AIRCREW. Its properties include First Pilot

Time, Co-Pilot Time, Special Crew Time, Actual Instrument

Time, Simulated Instrument Time, and Night Time. Multi-valued

properties include Type Landings, Number Landings, Type

Approach, Number Approaches, Training Code, Training Area,

Training Hours, Ordnance Code, Delivery Code, Runs, Score,

Miscellaneous Data Code and Miscellaneous Data.

6. LOGISTICS Object

This object represents a generic naval logistic flight

leg. It is a composite object that is identified by the

composite key of Document Number and Leg Number and contains

the property Time Zone. Each logistic leg will be associated

with a flight and have one arrival and departure.

7. DEPARTURE Object

This composite object represents a generic naval

flight departure leg. It is identified by Document Number, Leg

Number, and Departure Time. Its properties include Departure

Date, Departure ICAO, Confirmed Payload Cargo, Opportune

Payload Cargo, Maximum Passenger, and Maximum Cargo. Delay

Departure Code, Delay Departure Hours, Passenger Priority, and

Opportune Payload Code are multi-valued properties. Each

departure will be associated with one logistic leg.

8. ARRIVAL Object

This composite object represents a generic naval

flight arrival leg. It is identified by Document Number, Leg

23

Number, and Arrival Time. Its properties include Arrival Date,

Arrival ICAO, System Status, and Distance. Delay Arrival Code

and Delay Arrival Hours are multi-valued properties. Each

arrival will be associated with one logistic leg.

C. NAVAL AIRCRAFT FLIGHT RECORD SCHEMA

In this section we perform a logical database design by

transforming the objects developed in the previous section

into a relational schema. The output from this phase is a set

of relations, relation definitions, relationships between

relations, and constraints on these relationships. In the

following sections, we discuss the main relations and

relationships of the schema. Refer to the Object Diagrams in

Appendix A and the Relational Diagrams in Appendix C for the

following discussion.

1. ORGANIZATION Relation

This relation is transformed from the object

ORGANIZATION. It is identified by the attribute organization

code. This relation is associated in a one to many optional

relationship with the AIRCRAFT relation. In other words, a

record of this relation may be associated with one or more

records of the AIRCRAFT relation.

2. AIRCRAFT Relation

This relation is transformed from the compound object

AIRCRAFT. It is identified by the attribute aircraft side

number. It contains the foreign attribute of organization code

24

from the ORGANIZATION relation. Whereas the ORGANIZATION did

not need any instances of aircraft, the AIRCRAFT has a

mandatory relationship with the ORGANIZATION. This represents

a many to one mandatory relationship. On the other hand, the

AIRCRAFT relation is associated in a one to many optional

relation with the FLIGHT relation. As with the ORGANIZATION

relation, a record in this relation may be associated with one

or more records of the FLIGHT relation.

3. FLIGHT Relation

This relation is transformed from the compound object

FLIGHT. It is identified by the attribute document side

number. It contains the foreign attribute aircraft side number

from the AIRCRAFT relation. FLIGHT is represented by a many to

one mandatory relationship with AIRCRAFT, indicating that any

records from this relation must be associated with one record

of the parent AIRCRAFT. The object FLIGHT is also a composite

object meaning that it contains repeating groups of non object

properties. Each of these groups is represented by a relation

in the database. The first relation, MISSION, is identified by

the composite key document number and mission code. It is

represented as a many to one mandatory relationship indicating

the possibility of many mission records, each associated with

a FLIGHT record. The second relation, ENGINE, is identified by

document number and engine number. It is also represented as

a many to one mandatory relationship, indicating as many

25

records as the aircraft has engines.

The relation FLIGHT also serves as the parent to both

the relations AIRCREW FLIGHT and LOGISTICS. In both instances,

the relation is associated in a one to many optional

relationship. Each record of FLIGHT may be associated with one

or more records of both the AIRCREW FLIGHT and LOGISTICS

relations

.

4. AIRCREW Relation

This relation is transformed from the object AIRCREW.

It is identified by the attribute ssn (Social Security

Number) . This relation is associated in a one to many optional

relationship with the AIRCREW FLIGHT relation. In other words,

a record of this relation may be associated with one or more

records of the AIRCREW FLIGHT relation.

5. AIRCREW FLIGHT Relation

This relation is transformed from the association

object AIRCREW FLIGHT representing the relationship between

FLIGHT and AIRCREW. The relation is identified by the

composite properties of document number and ssn, each of which

are the keys of the parent relations. Although this object

does not contain a key of its own, it does contain non-key

data that indicate details of a specific flight and represents

a real object in the user's environment. The non-key data are

represented by multiple repeating groups. Each of these

repeating groups is represented by a relation with a one to

26

many optional relationship with AIRCREW FLIGHT. The first

relation, LANDING, is identified by document number, ssn, and

type landing. The second relation, APPROACH, is identified by

document number, ssn, and type approach. The third relation,

TRAINING, is identified by document number, ssn, and training

code. The fourth relation, TRAINING AREA, is identified by

document number, ssn, and training area. The fifth relation,

WEAPONS, is identified by document number, ssn, and delivery

number. The final relation within the association object is

MISCELLANEOUS, identified by document number, ssn, and

miscellaneous data code.

6. LOGISTICS Relation

This relation is transformed from the composite object

LOGISTICS. It is identified by the composite properties

document number and leg number. It is associated with FLIGHT

in a many to one mandatory relationship indicating that any

records in this relation must be associated with a record in

the FLIGHT relation. The relation is also associated with the

relations DEPARTURE and ARRIVAL as a one to one mandatory

relation. Both relations DEPARTURE and ARRIVAL contain records

that describe different aspects of the same relation LOGISTIC.

Although these relations may be combined into one, a better

user understanding of the relational database design and

better database performance can be achieved by the separating

the two

.

27

7. DEPARTURE Relation

This relation is transformed from the composite object

DEPARTURE. It is identified by the composite properties

document number, leg number, and departure time. As was

mentioned previously, it is represented as a one to one

mandatory relationship with the LOGISTIC relation. It also

contains multiple repeating groups represented by the

following relations which maintain a one to many optional

relationships with DEPARTURE. The first relation, PASSENGER,

is identified by document number, leg number, and passenger

priority. The second relation, PAYLOAD, is identified by

document number, leg number, and opportune payload code. The

last relation, DEPARTURE DELAY, is identified by document

number, leg number, and delay departure code.

8. ARRIVAL Relation

This relation is transformed from the composite object

ARRIVAL. It is identified by the composite properties document

number, leg number, and arrival time. Once again, it is

represented as a one to one mandatory relationship with the

LOGISTIC relation. It is also represented by a relation,

ARRIVAL DELAY, representing a one to many optional

relationship. The relation is identified by document number,

leg number, and delay arrival code.

28

D. INTEGRITY CONSTRAINTS

In this section, we present the semantic integrity rules

that need to be maintained for the relational schema developed

in the previous section [Ref . 5] . Due to the sheer size of the

database design, it was decided to narrow the focus of the

front end expert system by limiting the integrity constraints

to the FLIGHT relation. The narrowed focus still allowed the

system to address all the classes of integrity constraints

developed in Chapter II.

1 . Domain Integrity Constraints

The domain constraints enforced in this application

are presented in Appendix B.

2 . Column Integrity Constraints

The column constraints as discussed previously in

Chapter II can be thought of as a subset of the domain

integrity constraints. The following column integrity

constraints are enforced in the front end expert system:

• Exception Code must be C, D, X, or BLANK

• Mission Code (n) where n = 1 must be in the range of 1-6
or BLANK

• Mission Code (n) where n > 1 must be in the range of 1-5
or BLANK

• Mission Hours (n) where n = 1 must be in the range of 0.1
to 72.0 or BLANK

• Mission Hours (n) where n > 1 must be in the range of 0.1
to (72.0 - Sum of Mission Hours) or BLANK

• Total Flight must be in the range of 1-99 or BLANK

29

• Ship/Field Operations must be A, B, 1, 2, or BLANK

• Catapult/ Jato Launches must be in the range of 1-99 or
BLANK

• Engine Hours (n, n+1, n+2, . . .) must be in the range of 0.1
to 72.0 or BLANK

• Number of Hoists must be in the range of 1-99 or BLANK

3 . Entity Integrity Constraints

The following entity integrity constraints are

enforced by the front end expert system:

• Document Number cannot be missing or duplicated

• Aircraft Side Number cannot be missing

• Mission Code (n) where n = 1 cannot be missing

4 . Referential Integrity Constraints

The following referential integrity constraints are

enforced by the front end expert system:

• Aircraft Side Number must be validated against the
AIRCRAFT object for the purpose of recording a valid
Buno/Serial number and ensuring the correct number of
engines are recorded for flight time

• Document Number for the composite objects is the same as
the FLIGHT document number

5 . User Defined Integrity Constraints

The following user defined integrity constraints are

enforced by the front end expert system.

a. Intra-Attribute Constraints

These user defined integrity constraints apply to

the relationships within an attribute:

• Mission Code (n) , Position 2, when n=l or >1, must be R or
in the range of A-I or N-P if Position 1 is a 1

30

• Mission Code (n) , Position 2, when n=l or >l,must be in
the range of J-R if Position 1 is a 2

• Mission Code (n) , Position 2, when n=l must be or in the
range of S-Z if Position 1 is 3-6 or Position Code is 3-5
when n>l

• Mission Code (n) , Position 2, when n=l must be or N if
Exception Code is X

• Mission Code (n) , Position 1,2, and 3 when n>l must be
BLANK when Exception Code is X

• Mission Code (n) , Position 1,2, and 3 when n>2 must be
BLANK when Mission Code (n-1) is BLANK

b. Intra-Relation Constraints

These user defined integrity constraints apply to

the relationships within a relation:

Mission Hours (n) , when n=l or >1, must be Blank if
Exception Code is X

The sum of Mission Hours (n+ (n+1) + (n+2) + . . .) must not
exceed 72.0 hours

Mission Hours (n) , when n>l, must be BLANK if Mission Code
(n) is BLANK

Total Flight must be BLANK if Exception Code is X

Total Flight must meet its column integrity constraints if
the Exception Code is not X

Ship/Field Operations Code must be BLANK if Exception Code
is X

Ship/Field Operations Code must meet its column integrity
constraints if the Exception Code is not X

Catapult/ Jato Launches must be BLANK if Exception Code is
X

Catapult/ Jato Launches must meet its column integrity
constraints if the Exception Code is not X

Airlift Mission Number must be BLANK if Exception Code is
X

31

• Airlift Mission Number must meet its column integrity
constraints if the Exception Code is not X

• Engine Hours (n, n+1, n+2, . . .) must be BLANK if Exception
Code is X

• Engine Hours (n,n+l,n+2, . . .) must be in the range of 0.1
to Mission Hours (n,n+l,n+2, . . .) if the Exception Code is
not X

• Number of Hoists must be BLANK if Exception Code is X

• Number of Hoists must meet its column integrity
constraints if the Exception Code is not X

In the next chapter, the design and implementation of

a front end expert system that enforces the above integrity

rules is described.

32

IV. DESIGN AND IMPLEMENTATION OF THE FRONT END EXPERT
SYSTEM

Expert systems are programs that respond to information

very much like a human expert in a well-defined area (the

program's domain). They capture and distribute knowledge to

the non-experts and general practitioners in specific

application areas where:

• Difference in performance is largely based on expert
knowledge

.

• This knowledge is experienced-based.

• The knowledge can be stated as "If .. .then" rules
[Ref. 6:p.l7]

An important aspect of some expert systems is the ability to

capture knowledge and then record it as a set of rules in a

knowledge base. Expert system shells such as VP-Expert use an

inference engine that interacts with the user and navigates

through the knowledge base to deliver this knowledge.

A. INFERENCE ENGINE

The search strategy or problem solving method used in this

thesis application and supported by VP-Expert is called

"backward-chaining." The inference engine starts by

identifying a target variable and then moves through a

sequence of rules until it finds a value that can be assigned

to that target variable. Consider the following example in

33

Figure 4.1.

In this example, any of the three rules can assign a value

to TOTFLT_VALID. If the value for EXCD is not known then the

inference engine looks for the rule assigning a value to EXCD

FIND TOTFLT_VALID; -The target variable is
identified as
TOTAL_FLIGHT_VALID

RULE USER_DEFINED_CONSTRAINT__TOTFLT_ 1

IF
EXCD = X -If Exception Code is

equal to the value "X"
THEN

TOTFLT = (BLANK) -Then assign a null
TOTFLT_VALID = TRUE; value to TOTFLT and

assign TRUE to
TOTAL_VALID

RULE USER_DEFINED_CONSTRAINT__TOTFLT_ 2

IF
EXCD <> X AND -If Exception Code is
TOTFLT >= 1 AND not equal "X" and the
TOTFLT <= 99 value assigned to

TOTFLT is greater than
and less than 100

THEN
TOTFLT_VALID = TRUE; -Then assign TRUE to

TOTFLT_VALID

RULE USER_DEFINED_CONSTRAINT__TOTFLT__3
IF

EXCD <> X AND -If Exception Code is
TOTFLT < 1 OR not equal "X" and the
TOTFLT > 99 value assigned to

TOTFLT is less than
1 or greater than 99

THEN
TOTFLT_VALID = FALSE; -Then assign FALSE to

TOTFLT_VALID

Figure 4 . 1 "Backward" Chaining

in its conclusion. If the value assigned to EXCD is

X,USER DEFINED CONSTRAINT TOTFLT 1 is fired and the value for

34

TOTFLT becomes null. On the other hand if the value of EXCD is

not equal to X, then the first rule is passed and the second

rule is applied. Once again, if the value for TOTFLT is not

known, then the inference engine must look for a rule that

assigns a value to TOTFLT. This pattern continues if other

variables within the rule were not known. Once all the values

are known, the inference engine retraces its steps and tests

the original rule. In the example above if TOTFLT is 2, then

rule USER_DEFINED_C0NSTRAINT_T0TFLT_2 is fired and

TOTFLT_VALID is assigned TRUE.

B. APPLICATION DESIGN

The front end expert system is the user's interface with

the database. It is designed to perform maintenance on the

database to include append , update , and delete operations.

While the rules have been defined in the last chapter, this

section deals with the logic needed in the application. Which

questions are asked initially? Which answers lead to other

questions? In the following sections we discuss each of the

maintenance operations.

NOTE: While all the maintenance operations require access to

all objects of the database design, no maintenance operations

are allowed on the following objects; ORGANIZATION, AIRCRAFT,

and AIRCREW. The security of these objects require that they

be protected from either malicious or accidental destruction

or corruption.

35

1 . Append

After the user selects APPEND RECORD from the main

menu, the expert system uses a system-generated dialogue with

the user to generate a record for the FLIGHT object. Each

attribute is checked against the integrity constraints for

that specific attribute by the inference engine. Each

attribute that meets the constraints imposed by the expert

system is stored until the end of the transaction. If the

attribute cannot meet the integrity constraints of the

knowledge base, the system continues to ask the user for the

attribute and offers assistance as to a valid attribute the

system will accept. This feature disallows an invalid

attribute and prevents the invalid record from being added to

the database, since the user cannot continue until a valid

attribute is entered.

The logical ordering of questions follow from the

Naval Aircraft Flight Record (OPNAV 3710/4) as shown in Figure

3.1. Some of the answers that lead to other questions include

the following:

• Exception Code = X

• Mission Code 1/Position 1=6
• Mission Code 2 = Unknown

These answers affect the logical ordering of questions to be

asked. The rules from Figure 4.1 used earlier in finding

TOTFLT_VALID show this ordering. If the Exception Code is

36

equal to X then TOTFLT is set to null. This made the attribute

TOTFLT appear to be overlooked, when in fact the rule

USER_DEFINED_C0NSTRAINT_T0TFLT_1 fired and assigned (BLANK) to

the attribute TOTFLT.

At the end of the append operation, all values

assigned to the attributes are committed to the database. If

at any time during the transaction the user quits, or the

append operation is terminated, the attribute values are

effectively rolled back to their previous values.

2 . Update

This maintenance operation is probably the most

critical of all the operations. Questions, that are asked in

a logical order in the append operation, may not have been

asked when updating the value of one attribute. The ability to

change attribute values of a record requires a clear

understanding of the semantics of the whole database.

The selection of the UPDATE RECORD from the main menu

provides the user with another menu showing all possible Naval

Aircraft Flight Records within the database to update. After

selection of a record, the user is then presented with a sub-

menu of all possible attributes to update. The changing of one

attribute may not only fire the rule for that attribute but

may also fire multiple other rules for attributes that are

logically affected by the update of that attribute. For

example, a Naval Aircraft Flight Record with the attribute

37

Exception Code equal to X designates a canceled flight and,

therefore, cannot contain flight data. In the event that the

canceled flight was later flown, an update to the record

should ensure that all the attributes of a flight are updated.

Because of this, each unique update operation fires a separate

rule. This presents a logical ordering of questions, which

preserves the semantic integrity of the record in conjunction

with the attribute updated. Figure 4.2 is an example of one of

many update rules searched to update Mission Code 1. The

inference engine searches the knowledge base after a valid

Mission Code 1 has been entered to provide the logic that is

needed to preserve the integrity of the record. This rule

could only fire after Mission Code 1 met the Integrity

Constraints defined in Chapter III. No attributes are

committed to the database until all attributes meet all

integrity constraints as determined by the inference engine.

3. Delete

The final maintenance operation deals with purging the

database of unwanted records. This requires a cascaded delete

operation. This operation deletes the designated FLIGHT record

and all optional records related to the deleted FLIGHT record.

These relations are shown in the relational schema of Appendix

C. This function is based on referential integrity and the

associated concept of inclusion dependency as discussed in

Chapter II. Because this operation is potentially destructive,

38

a confirmation message that explains the consequences of the

process is displayed, and the user is given the opportunity to

cancel the delete operation. This operation doesn't mark the

RULE MISSION CODE 1 _RULE 2

IF
FIELD TO UPDATE = MISSION CODE 1 AND -Field tc > Update =

MSN1 1=6 AND Mission Code 1 and
EXCD <> X -Mission Code 1

Positiori 1 = 6 and
-Exception Code = "X"

THEN
MISSION C0DE1 RULE = USED -Assigns USED to
TOTAL = target variable
FIND HRS1 VALID -Assigns to TOTAL
MSN2 1 - (BLANK) for Total Hours flown
MSN2 2 = (BLANK) -Looks for HRS1 VALID
MSN2 3 = (BLANK) -Assigns null to
HRS2 = (BLANK) MSN2_1
MSN3 1 = (BLANK) -Assigns null to
MSN3 2 = (BLANK) MSN2_2
MSN3 3 = (BLANK) -Assigns null to
HRS3 = (BLANK) MSN2_3
FIND MISSION1 ENGHRS _VALID -Assigns null to
PUT FLIGHT HRS2
CLOSE FLIGHT; -Assigns

MSN3_1
null to

-Assigns null to
MSN3_2
-Assigns null to
MSN3_3
-Assigns null to
HRS3

-Looks for
MISSI0N1 ENGHRS VALID
-Commits attributes to
database

-Closes database

Figure 4.2 Update Operation Mission Code 1

record for deletion, instead it assigns an unknown value

(BLANK) to each attribute of the record and then commits these

values to the associated relations.

39

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis has addressed the issue of dynamic enforcement

of integrity constraints in a relational database through the

use of a front end expert system. It has also addressed the

classification of integrity constraints as a framework for

designing and building the front end expert system. The

development of a front end expert system for the Navy's Naval

Aircraft Flight Record served as the vehicle for demonstrating

the feasibility of this concept in a well-defined, structured

area

.

Although limited in functionality, the Naval Aircraft

Flight Record front end expert system was successful in

maintaining semantic integrity for any given maintenance

operation (insertion, deletion, and update.) Because of the

atomic nature of all maintenance operations, the integrity of

the database is guaranteed at all times. A separate validation

program is, therefore, not required to audit the database

periodically

.

The use of an expert shell with an If... Then construct

proved to be a viable method to test and implement the

integrity constraints developed. The ability to store these

rules in one central repository (knowledge base) was the most

40

significant benefit of using an expert shell. Any maintenance

to the program itself was made easier by the ability of the

user to ask why a particular response was obtained. This

allowed for query of the appropriate rule and examination of

the constraints imposed, therefore simplifying program

maintenance

.

The expert shell (VP-Expert) , while user friendly, proved

to be inefficient in building and supporting the atomic nature

of the maintenance operations and the integrity constraints.

VP-Expert was not designed to access a database efficiently.

The limitation of single record access commands, such as GET

and PUT, severely inhibits the performance of the shell in any

query operations on medium to large databases.

The validity of using an expert system as a front end to

check potential violations of one or more integrity

constraints was proved. Naturally, the correctness of all

values in the database could not be guaranteed. Any semantic

integrity system could only ensure that the data in the

database meet the integrity constraints defined in the system.

B . RECOMMENDATIONS

Initially, this researcher attempted to use an expert

shell other than VP-Expert to develop the front end system. A

Structured Query Language Interface (VP-Expert /SQL) was the

first choice. It was hoped that using this system would

provide a powerful tool for the enforcement of integrity

41

constraints within a relational database. However, this

software proved to be unstable and was recently withdrawn,

along with all technical support. This was unfortunate, but

SQL should still be considered a feasible tool for follow-up

research in this area. SQL would enable subqueries and join

operations and eliminate many of the inefficiencies inherent

to the system (i.e., loops, nested loops, see Appendix E)

The prototype front end expert system developed in this

thesis resulted in a knowledge base of approximately 150

rules. If the number of rules increase, the opportunity for

redundant and possibly conflicting rules would multiply. This

would inhibit the process of revalidating the system after

making changes to the knowledge base. The importance of

checking the knowledge base becomes even greater as this

happens

.

Other follow-up research may include the feasibility of

using an object oriented database in providing semantic

integrity. Object oriented languages provide for the notion of

objects, classes, and inheritance. As opposed to tuples in the

relational model, objects have an identity which is

independent of their value. This characteristic is central to

the domain concept and should enhance this approach to enforce

integrity

.

42

APPENDIX A

NAVAL AIRCRAFT FLIGHT RECORD OBJECT DIAGRAMS

8.8

Q- .2 .2 5= eo q. Z
8 I 3 1 | f |

E E

c
en
c

©
c

c 1

1

> >

HI
O
_i

t
u_

CO
o

1 OC (0
o O o
DC DC o< < _j

-j
LL

.o
E
C

1_
©

E
c

© .p.

_

o CO

(0 I—

*= CO

6
o

t_ 3
(0 XI

O 8
O CD

- .<=

2 c
E o

II
2? c

z
O
H;

S
Z 1-
< X
o o
QC _lO u.

<
DC
O
DC

<

organization

code

data

processing

code

organization

short

name

support

code

departure

time

zone

departure

iaco

cats/jato

airlift

mission

number

payload

config

data

training

code

i

t
s
o
oc

<

o

z
<
o
DC

o

43

C/)

O

Is

UJ
<r
3

<

_l

1 fe

Q. DC o
UJ x -JO < u.

CO

CD
Q

>
E

>
E

c
tt> ^
E

80
D>

§ 2
Z 9-

o

CO 03

51 J f
II 1

1

©

E
3
C

CO O)
c c

to 5

09

o ° or 0) o a)

o) 2 >« "S "2

= § © © "° "°

c c > (« S o o

1 1

1

§ 1

1

iA= o tj c to E E

DC
o
<

X
o
_l
Li.

X

CC
O
DC

<

| V

&
a 1

<D (0
1

"O a. ©

CO w l£

L I r 1 8"
s

a> c: 3 >< 3 is
c - a o- © cr >,O JO >?*-_, >, to3 © C (0 g _

CT _ © 3 §' ^
E © « .S>

1 I |1£ $ a. to

• /TVo ©

3 |

S 5

©

8
c
o
a.

(D i_ w. U) i.
to o> o c e

II 8
<o to ©

X
o

X
o
X
<

CC
O
DC

<

44

»

-

(A O SZ

time
date

o
i

system

statu

distance

delay

arrival

delay

arrival

as «>
«

arriv arriv

1

CO

g

I
fX
fX
<

departure

time

departure

date

departure

icao

delay

departure

code

1

delay

departure

hours

J
mv

passenger

priority

)mv

confirmed

payload

cargo

opportune

payload

passenger

opportune

payload

cargo

opportune

payload

code

}mv

maximum

passengers

maximum

cargo

CO
O

i

HI
DC

h-

<
Q.
LU
O

45

APPENDIX B

NAVAL AIRCRAFT FLIGHT RECORD OBJECT SPECIFICATIONS

Object Definitions

FLIGHT OBJECT
document number; docnum
aircraft side number; sidenum
exception code; excd
mission code; msn MV
mission hours; hours MV
total flights; totflt
operations code; ops
catapult/ jato; cj
airlift mission number; misnum
engine number; engnum MV
engine hours; hours MV
number of hoists; numhoists
remarks; remarks
AIRCRAFT; AIRCRAFT object; SUBSET [aircraft side number]
AIRCREW FLIGHT; AIRCREW FLIGHT object, MV
LOGISTICS; LOGISTICS object; MV

Domain Definitions

docnum ;

Text 7

Unique number for organization's Naval Flight Record
sidenum ;

Numeric 5

Unique number of an organizations aircraft
excd ;

Text 1

Code to record other than routine flight
msn ;

Text 3, mask FGS,
where F is the Flight Purpose Code - numeric

G is the General Purpose Code - alpha
S is the Specific Purpose Code - numeric

Unique mission code for a specific flight
hours ;

Numeric 3, mask 99.9
Hours dedicated to performance of mission

totflt ;

Numeric 2

Total number of flights
ops ;

Text 1

Code for ship/shore operational scenario

46

Numeric 1

Total number of catapult/jet assisted takeoff launches
misnum ;

Text 9, mask ORGDATENN,
Where ORG is the organization code - Text

DATE is the Julian date - numeric
NN is 01-99 sequentially assigned

engnum ;

Numeric 1

Unique engine number
numhoists ;

Numeric 2

Total number of hoists on a flight
remarks ;

Text 15
Used as needed

47

APPENDIX C

NAVAL AIRCRAFT FLIGHT RECORD RELATIONAL DIAGRAMS

•

, o/

o e
3
O
-C

CD
c
O)
c
CD

•

1

1 U\
*

8
c
o
i
N

1
o

2
3
O£
c
o
'55

CO

E

ui
z
O
z
Hi

•

1 o7

*

5

E
3
C
CDo
'«>

!

*

E
3
C
c
CD

E

s

1
c
o

N

i

*

|E
3
C
c
S
E
3
o

i

4
E
3
C
O
T3

I
"<0

I
z

1 W 1 (_/

<

1
E
3
C

5
E
3
O
oo

rr

|E
3
C

s
g
CD

O

t

io
DC

<

CD

1
c
o
'«»

w
E

1 kJ

i
(0

u.

•

*

1
E
3
C
c
CD

E

x»

8
E

1
E
3

CO C

§ s

5

DC

o
DC

5

8

48

r\

•

• *

(0

°\
•

CO

.Mm *it

c
v> k.
v> •

•

1* Pi E
3\ •It

1 • C

f E
C
C

r\ * c
CO
CO

3m

g CD

ECD
LA. c

(0
(0 *

LL
i E ^

• *
1*

E
3C

1

x>

Cu kJs.

a.
o "O 5 E

3
LL +^*— *c

CO
0)

3
c c

CD

E

C

CD
CD< \

• CD

E
§ o

E

CO

8
CO

*
*
c
CO 2

E
3

o
<

13
o
LU
z

"O
<o
3
O
CD

* LU

CD C
CD

< co >_

5 3 1
E
3
C

5
E
3

E
3o

Oz
z

1-

CD

1
c
'c

1

z
z
s

CO

ac
'c

COz
O
Q.

2

E
3
C

CD
.>

CDa

LU
O
CO

2

8

1

o
X
o< ?o Q.
rr s

o» n CO

O c Q. CD

z
Q

o
c
CO

< 1
Z
3

CD

49

• •

*

• 1
E E
a 3

c
§ H

a>

E

I
EC

UJ
a

o*

2
E ^

*

5 3
C

5
E
3

DC
OC
<

1
E
3
C

1o

. •

1 <v

a>t-

i
v

•

•

2
E
3
C

1
>

*
*

1
E

k
5

1 •E
8
in

3
c E O

o
3
C %

to

I
•a

1 o
S
E •

•

\

X * \
1
EIn O * #

^

E

.8
E
3

E

2
1
E

3
C 5

E
33 C 3 <r> CC

I
C E C

5
E 8 a

3
*

Ijt

£
o

q I

Oo * ^

o 1 «
Ij

_i
L* t_

u. E E 53
C <52

3
C E

C E
3
C S

3
C

f
Q
T3 •

1

11 > 1
111

oc

5

E
3
C

, y
o
•ca fa. 5

UJ
Q

£

DC © i
t/

a c Ul 5

uu
Q

UJ c

a

O

>

1a.
o

i
1

<D

oz
UJ

< <

50

APPENDIX D
SESSION WITH NAVAL AIRCRAFT FLIGHT RECORD EXPERT SYSTEM

r-H iH
<d a)

51

•

pi
Em

• D
Pi Z
w

Em •

Q 2, Q in
« D H ^*
O Z CO o
CJ
N Eh EH Pi
5 Z Pm W
Em 9 s

m
Eh D u D
Em CJ Pi Z
Hi O H
W Q rtj Em
Q Q

< < H
CO

Pi • Pi • •

w Eh Em Eh a Eh
Eh Em Eh Em EC Em
Z
El) £ W Cm *S

u CJ as u
D Pi D Pi Eh Pi
O H O H H H

• >H < Sh rf! £ rt!

pq
CO Q CO w CO Em Z Cm
3 « CO as co as O EC
n o w Eh pq Eh H Eh

< u l-q hH Eh
Eh W 53 Ph Z Em < Em
< Pi JD O 5 O N O
Q H
W Q Pi Q Pi Z Pi

Em Eh • W • Em Em Em < Ed
03 < Eh Pi U Cm CO W Cm o n
Eh Q H w CJ El) § cj s Pi s

Cm X CQ O CD D O D O D
S D W § Pi S Z Pi Z z
O D Cm D Cm Em

Z z W Em 33 EmS o Q O Q Eh Q
Cm Eh Eh Eh H Eh H H
O Z Z CO CO Z CO
Em M w Em Em H
Pi § ^ 2 Em hH Em w
pq D 93 an 3£ CO B3
Pi CJ Eh Eh Eh

O O CO
o Q W Q pq Em Em h pq
Eh Q cq Eh P3 Eh X Eh
Q Pi 5 £ < < Pa <

K Pi O pq Eh pq U Eh CJ CJWOO Z O Z H O M Eh h
rtj U Em Z Q Z Q Em Q
Eh pq Pi pq w Z Z a z
« m j as H hH M Cm H

<c >h Eh i-q Eh ^H hH U
Q < H O w H W Pi Em

UShl Pi S Pi o CO £ CO H CO
CO pq Cm Em pq o < rtj 4<
O Cm CO Eh D Eh o Em D Ed in pq in
OPjH
33 <tj Q

Z O Z o hH Onlt O hJ m
W f^. $h pq < Cm r* >h Cm O Z Cm O

U

p
•H

P
o«

i
c

c
D
H

4-1

M
a)

P
c
pq

-p

cu

cu

CO

p
M
0)

p
cs

pq

52

>H X >H

ft ft ft
Eh Eh Eh

z Z Z
pa ft ft

• z z Z
w o o o P
p H H H •H
z Eh Eh Eh 3
H H H H cr
Eh co CO CO

Z o o O
o ft ft ft P
u

t • ft ft ft a
w o pa u u u \
z Eh z < rtj <
o o ft ft ft
z ft z

Q A ft ft ft
ft O ft ft pa pa ft z c
o U U o Eh Eh Eh O >
ft < ft ft • ft asz ft < lO <C c
A o co A H X
W H V pa ft O ft ft CO c
U Eh u ft Eh ft pa o D
< ft ft < Eh Eh Eh ft
ft ft o ft Z •H Z Z M
CO U co ft ft ft Q
V X hj V s Z m

ft X Eh O Eh Eh O
ft ft M ft H H U M
o a ** o ft ft ft ft ft <D

H a CO P
pa

9
pa tat ft * *. C

Q *• Q ft ft pq ft ft ft
o > u o Q ft o Q ft
u u O S O O Eh wfl

*: <a O D U U Z
z z Z ft t^.

o ft ft o t-i 1-1 i-i

H pa ft H <
Eh Eh Eh Eh z Z Z
ft Z Z ft o ft o O «H
W ft ft ft H W M H P
U U CO Eh CO CO U
X o X to Z CO CO 0)

w Eh ft H ft M H rH
S S s a)

§
a
ft
u

1 «C

Eh
CO <
D

rtj

(0

ft z ft ft £ ft ft p
ft ft ft ft ft
Eh D Eh Eh D Eh Eh n
Z O Z Z O Z 3 <D

W ft >H ft a ft r* !* ft «-h ft tSJ P
C

1 ft

53

54

>H X £
Eh

Pi
EH iz Z z

W H pa

z Z z
o o o p
H H H •H
Eh Eh Eh s
H H H D1

CO CO CO

o O O
PM Pi Ph p
B 03 n a
O U u \
< < <
W w o pa

« Pi CN Pi
w z PJ z r^ pa c
Eh O Eh O Eh s
P* H Pli H O

S< EH 3 Eh • Eh • c
H H rH rH ^

Pi CO « co rH Pi c
W O W O Z • z pa p
Eh ft En Ph o o O Eh

z Z pq H O H z u
W Q w a P co CO w
Z K z co 2 CO 4-1

Eh O Eh h H H O H Eh
H O h EC Eh 2 « 2 H M
K W S3 Eh Z Ph re a)

CO O Z Z +J
*» *Pi U C « o ^ c
u £ w w w pa pa
Q w Q Eh O 25 CO 2 Q
O Eh O Z Eh [2 S 5 o u8

U Z u w O P o o
H X J Z rH" o*

rH rH W Pn pH CN
tf rtj

z Z tf CO CO z
O rH O rH fH P Pi pi o
H H 2 p w p H +J

co CO <J o Eh O CO
co co m Z S CO a)

H H CO W H rH
s s CO w pq S cu

H w Eh EC CO

< rt! « Eh CO Eh <
Ph P

« Pi pi S Pi Pi +j
pq w CO pa o pa
Eh Eh Eho P Eh • Eh M
Z Z rH zo O Z o Z B a)

W K W rH Pi pq rH >H pa rH pa vo 4J
rH c

pa

55

X >H >H

ft ft ft
Eh Eh Eh
Z Z Z
ft ft ft

Z Z Z
O O o
H H H
Eh Eh Eh
H H H
CO CO CO
O O O
ft ft ft

m ft ft
u CJ u
rt! < <o w w ft

CM ft ft ft
z r« w ft ft z
o Eh Eh Eh O
H
Eh •

O
Eh • a

• ft 35M t-H i-i H
CO i-H ft O ft ft CO
o Z • z w Eh ft ft O
ft o O O Eh Eh Eh ft

W H O H Z "H Z Z
Q D CO CO ft ft ft Q
ft Z CO S CO s Z
H H H O H Eh O Eh Eh O
ft Eh S ft S H ft H H U
EH Z ft m ft ft ft ft

o z z CO
ct: u o « o ** ft - *
w w w ft w ft ft
Eh o z ft Z Q ft Q Q ft

Z Eh £ S Is O s o O En

ft O D O U D U U Z
>H J Z J z ft
W ft fa (N CN CN
ft < <

ft co CO z z Z
iH >h ft « en o ft o O CN

Z D ft D M ft H H
< o Eh O CO Eh CO CO
k Z as CO Z CO CO

CO ft H ft H H
w w w £ s £
ft 33 Eh ft Eh
ft Eh CO Eh < CO <C rtl

ft D D
ft S ft ft S ft ft
ft ft O w ft ft
Eh o D Eh • Eh D Eh Eh

H Z O O Z O Z O Z
ft ™i-H ft ft rH S* ZUr-i ft VD >H ft CM

i-H

p
•H
3
D1

P
a

c

o
c
M
c
D
P.

u
<D

P
C
ft

P
Q)

iH
<D

CO

P
M
<d

P
c
ft

56

57

>H t* >H

ft ft ft
Eh Eh Eh
Z Z Z
ft ft ft

Z Z Z
o O oH H H
Eh Eh Eh
M H M
CO CO CO
O O O
Cm ft ft

m EC ft
u U u
< < <
w w ft

ft ft ft CN
w z ft z W Z \o
Eh O Eh O Eh O
ft H

3 Eh
• ft H O

< Eh cr\ rij Eh • Eh •

H H H CN CN
ft CO ft co O ft CO iH
w o w o Eh ft O z • z
Eh ft Eh ft Eh ft ft C o O
Z Z O Z P H O H
W Q ft Q ft Q Z co CO
z ft 2 ft H CO S CO

Eh O Eh H O Eh H Eh H O H
H U H ft ft H ft Z 2 ft sx ft ft Eh ft ft Eh O ft

CO U 2 z
K -ft ft •> ft o ft o
w a ft ft WWW O ft
Q ft Q Eh ft Q Eh Eh 2
O Eh O Z £ O Z S S 2E
U z U ft D U ft >h C P O

ft Z ft J Z J
(N CN CN ft ft ft

rf! rtj

z Z n Z T> J* C/ CO
O (N O CN ft O <N z ft ft ftH H ft H rtj D ft D
CO CO Eh CO O En O
CO CO Z CO (0 ft Z ftH H ft H CO ft
S S S ft ft ft

Eh ft ft Eh ft
< < CO < ft E- CO Eh

P P
ft ft 2 ft ft S ft
w ft ft ft
Eh Eh D Eh Eh P Eh o
Z Z O Z CN Z O O Z •

ft ID ft & >h ft CN h> ft r- >h ft r^
CN

p
•H

D1

P
a

c

c

c
p
M

4-1

M
a>

+j
c
ft

ca

(V.

-P

a)

rH
<u

co

o
4->

M
0)

-P
C
w

58

59

o

P
•H

D1

P
a

o
o
3
H

W
m
co
«

• D • • • •

i-H O rH CN co **
W

W pq pq pq pq
3 w 3 3 3 3M 3 H H H H
O H O O O o
3 o s 3 3 3
w

pa
pq pq pq

« tt « tt «
o K O O O O
Ph

Eh
Pm b Pm

co 3 CO CO CO CO
« w a tf K tf
D D D D P
O Eh O O O O
X CO S

D
ca EH 33

« 2 « « « *
W pq o pq o pq o pq o
En O D Eh • Eh • Eh • Eh •

3 in O 3 m 3 r- 3 r* 3 r»
pq --H >h pq <-h pq «-h pq «-h pq «h

c

c

c
D
M

iw

M
a>

+j
c
pq

t*

(^

P
o
0)

iH
0)

to

p
u

p
c
pq

60

61

^o
Eh Eh

< <
U T>

homo
Eh Eh

<NOhl
Eh Pn

Eh W
J CU Q
<! P O

CO U
m •

CO •

Pi •

Q K < •

K Eh H
O ro <; P
U Z Q Z
w CO M
«

w
Eh

Z
En O CN Pi O
EC • CO u
o r- Pi Z
H B3 O o
J H Eh
b CN CO

CM Z CO >h

Eh bWH W
En CN S 2 «

O rH J
• CO rtj

>H

O Z
pes O Pi Eh <£
M <-H m O
< Eh

i-H

CO
CO

9
^H Z w
Pi CO CO o o o o Pi

> H S • Eh • • • • Ph

< O CO in r- r- r^
Z

in U
z H
O

i-H i-i <-\ i-i

£§ ffi CO CO CO CO
Pi K Pi pi

P P P P
Q O O O O
ffl U W EC as m
S£

•

o w W w w
z z 2M M H H

« z uuuo
CN W o z z z z

< (^ CO M w K W W
Eh r» "^ CO

i-i < ** o CO i-H rs ro *tf

o Q in ; H o o o oo rH D s Z 2o Eh no fa Eh w H W wo
a
Q H X U Q |X| Z Z Z 5

< M H H H H
u <-H W • Hi o o o o

• Pi in o. o Pi z z z z
O H H Z H w W W W
Z < CO <

62

Q
Pi
O
U
w
«
a
Eh
w
pa
Q

K
EH

<C
Q
P
O
Eh

CM
O
O
o
o
o
<

w
co

§
s
Q
w
Eh

Z
o

o
u
w
Pi

w
Eh

<C Eh
Q H
Ph X
D W

O
Pi
w
Ph

o
Eh

«

Eh

Q
q Pi
pi o
o u
u w
w Pi
Pi

P <
%
z

w z J BG
WWft u w
O Ch CO H ZOPjH
SB 3 P

ts o
5 z

u

63

PS
u
g

CO h-l

HCNK
Q DO
O W O Eh CO
u q m < fa
O h> D •ZUn O >H X

O Eh 33 fa fa
H Z Z J EH EhHOODW Z ZOlHHPjZ
pq co co rtj h

W W
U CO CO Eh O Z Z
X H H <; z o o
w s s u w H

Eh
M
CO

H
Eh
H
CO

• O o
w fa fa
Eh Z
< O t 33 33
Q H W U U
fa Eh z < <
D *a; co

CO K Eh
o fa W
z

O fa n w co fa fa
Eh • D PLl H fa W w z
W o w o o o EH Eh O

-1 Eh fa 33 Q 33 w
Si

fa Ho < pq O Q < EH
o Q fflHUhlh A H
o fa S WO w fa fa CO
O D D Z Z M Q u w w oo Z O O fa fa <; Eh Eh fa
< O H H W >H fa Z Z

Eh W CO CO fa C h" CO W W Q
• Q CO CO H S Eh V Z
O Eh H M H 33 D Z Eh Eh O
z z CO S 2 CO Z W fa H H U

<J s o 33 33 W
Q & S CO
fa D w *» *»

O D U Q W w fa
U O O Q Q W
W {h

§
CO O O O Eh

fa H U U Z
Q D z W

Q J Z w o .-i t-H

w w Q M
Eh H fa CO z O Eh z z
Ufa WhK O O fa o O iH
w g D CO H W H H
j m S W O Eh CO Z U CO CO
w u D Q 33 33 CO o X CO CO
CO M Z O OH H w H H

33 UMHS Eh £ S
H £ Eh m-

> Z Z Z fa Eh
fa
W § < rt!

< Eh WOO w U
33 U S H H m" H

D co co rtj i-q w
X fa fa fa

W w w w wDJOCOCOEnfaZ Eh Eh EhOWOHHOHO w Z Z
W KXWQSSEn<Q 33 W X W iH

Eh

p
•H

cr

o
p
a

e

I
c

c
D
M

4-i

H
<D

-p
c
w

p
o
a)H
Q)

CO

-P

u
0)

p
c
w

64

65

>H >H

« «
E-i Eh
Z Z
W W
3 z
O oM H
E-i Eh
H H
CO CO
O O
PL, Ph

n h
u u
< <
w w
a «
pa z pa z
Eh O Eh O
as £<5
H H

pc co K CO
w o pa o
E-" Pm Eh Cm
Z Z pa
W Q pa q D
Z en Z

Eh O Eh H H
H CJ h m Eh
PC W EC Eh Z

CO O
^ *tf CJ
K K pa pa
Q W Q Eh O
O Eh o z Eh
U Z u pa
W >h

«H i-H pa

Z z z
O rH O «H >H
H
CO

H
CO g

CO CO
H H CO
S s CO

pa
<: <

Pm
« «
w h
Eh Eh

Z z iH
w z pa «h z

i-H

66

^o
Eh En

< <

OftW

Q
fa
O
U
w
S
Eh
fa
OH
fa

E^
fa

U
fa

z

Eh Eh
O J
b^ fa

Eh fa
J fa Q3do

co o
ro
CO
fa
aa <c

Enn <;
Z Q
to
2 Oi

fa
CN fa
CO
fa z
m oM
CN CO
Z CO
CO H
s 2
rH *3
CO <C
fa En
fa O

Eh
.-H

•H Z
Z CO
•H 2

in O
fa fa
> o
Q
fa U
fa fa
< Eh

fa
OJ fa

< CT> CO
Eh r» \

•h icj; ** oo q m zo hD
o Eh fao faOfljXWXU
rtj fa
U «-• W •

• fa in q oOH HZ
Z < CO

CO
En
CO
H
O
fa

fa
D
ZH
EH

§
U
O
H
>H

fa
fa

CO
CO
fa
fa
fa

o
z
z
oH
CO
co
M
2

fa
H
fa
H

CO
fa
p
O

zH
o
z
fa

o
z
fa
zH
o
z
fa

67

p*

u
D
ZH
Eh

Z
O

T o
Q o Q
« Eh Pi
O o
u Eh u

T

• CN 5
pa
Pi

pa W O pa
H Eh O D Eh •

pq W O O pa &J J O >H ha pa
w W O pa H
Q Q < O

Q
a >

O o
ir>

Q
Eh

fr Ph Eh

S
O
U

5 pa
3

&
D D

• O Eh • O
w X M pa >H
CO Q U CO Q
rt! « o H < p o
CQ O
< u

Q
Ph 3

o
u

a
Eh W Q Eh Pa Q
rt! 2 Pi pa < Pi PiQ O «H ^ Q O rH
W u o o pa U O

W Eh W O m pa Er* pa o
SB < En Ph O s s: <& Pi o
Eh Q H O & a H o

Ph X E-i o &a o 04 X E^ o
2 D W m <c 03 Z S C s <O

H
Eh o O

MS HH pa s ^
2 Ph ir> Pi Ph
O pa o
Ph Eh i-a Ph Eh
Ph Ph pa Ph Ph
w <j Q pa

3Oh K Ph
u .-a T u

O Ph hi O Pi
Eh Q H H ^ a H
Q « < & Q Pi <<

« « o ua p
CO O U

g
Z CO o u

Srtj u w o < u pa
eh pa Pi > H ^ & >
« < Eh Pi <

rt| X z U < >H Z
w z 3 m T

Q
pa z a ta

CO PQ Ph u w CO CO pa Ph u Pa
O Ph CO H Z H CO O Ph CO H z
O Ph H EC O as pa O

a
H EC O

E <C Q 5 Z ^ >H m Q 5 z
U o

c

o
c

c
D
u

m
p.

P
•H

a
o
p
a

0)

H->

a>

E

op
Q
Z
pa

+j
u
a)

.h
0)

(0

o
-p

M
a>

H->

c
pa

68

APPENDIX E

NAVAL AIRCRAFT FLIGHT RECORD RULE-BASE

Naval Aircraft Flight Record Expert System
By George J. Salitsky
Naval Postgraduate School
This program is a prototype Front End Expert System
designed to maintain semantic integrity within the
database according to the integrity constraints specified
in the knowledge base.

AUTOQUERY;
RUNTIME;
ENDOFF;

ACTIONS
FORMAT TOTAL, 4.1
DISPLAY "THIS IS A FRONT END INTEGRITY EXPERT SYSTEM TO

ENABLE THE ACCURATE COLLECTION OF INFORMATION FOR THE
NAVYS AIRCRAFT FLIGHT RECORD, OPNAV 3710/4.

PRESS ANY KEY TO BEGIN...-"

loop to ask user which maintenance operation to perform on
the database, whichtask is the main menu, options include:

1. APPEND
2

.

UPDATE
3. DELETE
4. DISPLAY
5. EXIT

CLS
RESET WHICHTASK

WHILETRUE WHICHTASK <> EXIT THEN
RESET ALL

! set up variable BLANK
CHR 32, BLANK
FIND WHICHTASK
FIND TASKCOMPLETED

END;

I ******************** APPEND OPERATION *******************

RULE APPEND_RECORD
IF

69

WHICHTASK = APPEND_RECORD
THEN

FIELD_TO_UPDATE = NONE
TASKCOMPLETED = YES
RESET DOCNUM_NEW

! ask user for document number
FIND DOCNUM_NEW
RESET DOCNUM_NOT_MISSING

! cannot allow a null value for document number
FIND DOCNUM_NOT_MISSING
RESET DOCNUM_DUPLICATE

! cannot allow duplicate document numbers
FIND DOCNUM_DUPLICATE
DOCNUM = (DOCNUM_NEW)
CLOSE FLIGHT
RESET SIDENUM_NEW

! ask user for aircraft side number
FIND SIDENUM_NEW
RESET SIDENUM_NOT_MISSING

! cannot allow a null value for side number
FIND SIDENUM_NOT_MISSING
RESET SIDENUM_EXISTS

! side number must match an aircraft in organization
FIND SIDENUM_EXISTS
CLOSE AIRCRAFT
RESET EXCD

! ask user for exception code
FIND EXCD
RESET EXCD_VALID

! only certain exception codes allowed
FIND EXCD_VALID

! find mission code 1 position 1

CLS
RESET MSN1_1
FIND MSN1_1
RESET MSN11_VALID
FIND MSN11_VALID

! find mission code 1 position 2

CLS
RESET MSN1_2
FIND MSN1_2
RESET MSN12_VALID
FIND MSN12_VALID

! find mission code 1 position 3
CLS
RESET MSN1_3
FIND MSN1_3
RESET MSN13_VALID
FIND MSN13_VALID
CLS

! find mission 1 hours

70

RESET CHECK
FIND CHECK
TEMPHRS1 =

TEMPHRS2 =

TEMPHRS3 =

TOTHRS =72.0
SUBTOTAL =

RESET HRS1_VALID
FIND HRS1_VALID

! find mission code 2 position 1

CLS
RESET MSN21_VALID
FIND MSN21_VALID

! find mission code 2 position 2

CLS
RESET MSN22_VALID
FIND MSN22_VALID

! find mission code 2 position 3
CLS
RESET MSN23_VALID
FIND MSN23_VALID
CLS

! find mission 2 hours
RESET HRS2_VALID
FIND HRS2_VALID

! find mission code 3 position 1

CLS
RESET MSN31_VALID
FIND MSN31_VALID

! find mission code 3 position 2

CLS
RESET MSN32_VALID
FIND MSN32_VALID

! find mission code 3 position 3
CLS
RESET MSN33_VALID
FIND MSN33_VALID
CLS

! find mission 3 hours
RESET HRS3_VALID
FIND HRS3_VALID
CLS

! find total flights
RESET TOTFLT_VALID
FIND TOTFLT_VALID
CLS

! find ship/field operations code
RESET OPS_VALID
FIND OPS_VALID
CLS

! find catapult/ jato launches as necessary

71

GET ALL, ORGAN, CATSJATO
RESET CJ_VALID
FIND CJ_VALID
CLOSE ORGAN
CLS

! find airlift mission number as necessary
GET ALL, ORGAN, AIRLIFT
RESET AIRLIFT_VALID
FIND AIRLIFT_VALID
CLOSE ORGAN
CLS

! find number of hoists
RESET NUMHOIST_VALID
FIND NUMHOIST_VALID
CLS

! append new record to flight database
APPEND FLIGHT

! loop to get engine hours for aircraft on flight
! determined by aircraft record

GET SIDENUM = (SIDENUM_NEW) , AIRCRAFT, ENGINES
CLOSE AIRCRAFT
RESET ENGHRS_VALID
FIND ENGHRS_VALID
CLS;

I ******************** UPDATE OPERATION *******************

RULE UPDATE_DOCUMENT
IF

WHICHTASK = UPDATE_RECORD
THEN

TASKCOMPLETED = YES
RESET DOCNUM_UPDATE
MENU DOCNUMJJPDATE, ALL, FLIGHT, DOCNUM

! ask user for document number from menu of all document
! numbers

FIND DOCNUM_UPDATE
MRESET DOCNUMJJPDATE
RESET UPDATE
FIND UPDATE;

! determine if there are any Flight Records to update
RULE UPDATE
IF

DOCNUMJJPDATE = NONE AND
UPDATE = UNKNOWN

THEN
! no flight records to update

UPDATE = NO
DISPLAY " THERE IS NO FLIGHT RECORD TO UPDATE.

72

PRESS ANY KEY TO CONTINUE

CLS
ELSE
! flight records available to update

UPDATE = YES
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL
CLOSE FLIGHT
CLS
DISPLAY " YOU HAVE SELECTED RECORD NO. {DOCNUM_UPDATE}

TO UPDATE." RESET FIELD_TO_UPDATE
! ask user for attribute to update by menu field_to_update

WHILETRUE FIELD_TO_UPDATE <> DONE THEN
RESET FIELD_TO_UPDATE
RESET UPDATE_COMPLETED
FIND FIELD_TO_UPDATE
FIND UPDATE_COMPLETED

END;

I *************** UPDATE DOCUMENT NUMBER *******************

RULE UPDATE_DOCUMENT_NUMBER
IF

FIELD_TO_UPDATE = DOCUMENT_NUMBER
THEN

UPDATE_COMPLETED = YES
! display current document number

DISPLAY " {DOCNUM_UPDATE} IS CURRENTLY THE DOCUMENT
NUMBER

.

it

CLOSE FLIGHT
RESET DOCNUM_NEW

! ask user for document number
FIND DOCNUM_NEW
RESET DOCNUM_NOT_MISSING

! cannot allow a null value for document number
FIND DOCNUM_NOT_MISSING
RESET DOCNUM_DUPLICATE

! cannot allow duplicate document numbers
FIND DOCNUM_DUPLICATE
RESET DOCNUM_NOT_MISSING
RESET DOCNUM_DUPLICATE
CLOSE FLIGHT
GET DOCNUMJJPDATE = DOCNUM, FLIGHT, DOCNUM
DOCNUM = (DOCNUM_NEW)
PUT FLIGHT
CLOSE FLIGHT

! change document number on ENGINE records
GET DOCNUMJJPDATE = DOCNUM, FLTENG, DOCNUM
WHILETRUE DOCNUM <> UNKNOWN THEN

DOCNUM = (DOCNUM NEW)

73

PUT FLTENG
GET DOCNUM_UPDATE = DOCNUM, FLTENG, DOCNUM

END
CLOSE FLTENG
FIELD_TO_UPDATE = DONE;

i *************** UPDATE AIRCRAFT SIDE NUMBER **************

RULE UPDATE_SIDE_NUMBER
IF

FIELD_TO_UPDATE = SIDE_NUMBER
THEN

UPDATE_COMPLETED = YES
GET DOCNUMJJPDATE = DOCNUM, FLIGHT, SIDENUM

! display current side number
DISPLAY "THE AIRCRAFT SIDE NUMBER IS CURRENTLY

{SIDENUM}

.

it

CLOSE FLIGHT
RESET SIDENUMJJPDATE

! ask user for new aircraft side number
FIND SIDENUMJJPDATE
RESET SIDENUM_UPDATE_NOT_MISSING

! cannot allow a null value for side number
FIND SIDENUM_UPDATE_NOT_MISSING
RESET SIDENUM_UPDATE_EXISTS

! side number must match an aircraft in organization
FIND SIDENUM_UPDATE_EXISTS
RESET SIDENUM_UPDATE_EXISTS
RESET SIDENUM_UPDATE_NOT_MISSING
CLOSE FLIGHT
GET DOCNUMJJPDATE = DOCNUM, FLIGHT, SIDENUM
SIDENUM = (SIDE)
PUT FLIGHT
CLOSE FLIGHT
FIELDJTOJJPDATE = DONE;

I *************** UPDATE EXCEPTION CODE **************

RULE UPDATE_EXCEPTION_CODE
IF

FIELDJTOJJPDATE = EXCEPT ION_CODE
THEN

UPDATE_COMPLETED = YES
! display current exception code

DISPLAY "THE EXCEPTION CODE IS CURRENTLY {EXCD}
ii

RESET EXCD_NEW
FIND EXCD_NEW

! find if new exception code meets constraints
RESET UPDATE EXCD VALID

74

FIND UPDATE_EXCD_VALID
! from new exception code determine logic to keep database
! in a valid state

RESET EXCD_RULE
FIND EXCD_RULE;

*************** EXCEPTION CODE LOGIC **************
********************** RULE 1 ********************

change exception code to X (canceled flight)

RULE EXCEPT I0N_RULE_1
IF

FIELD_TO_UPDATE <> MISSI0N_1_C0DE AND
FIELD_TO_UPDATE = EXCEPT ION_CODE AND
EXCD_NEW = X AND
EXCD_RULE = UNKNOWN

THEN
EXCD_RULE = TRUE
GET DOCNUMJJPDATE = DOCNUM, FLIGHT, EXCD
RESET EXCD
EXCD = (EXCD_NEW)

! need to get valid mission code 1

RESET MSN1_1
FIND MSN1_1
RESET MSN11_VALID
FIND MSN11_VALID
CLS
RESET MSN1_2
FIND MSN1_2
RESET MSN12_VALID
FIND MSN12_VALID
CLS
RESET MSN1_3
FIND MSN1_3
RESET MSN13_VALID
FIND MSN13_VALID
CLS
RESET MSN11_VALID
RESET MSN12_VALID
RESET MSN13_VALID

! set all other flight attributes are null
HRS1 = (BLANK)
MSN2_1 = (BLANK)
MSN2_2 = (BLANK)
MSN2_3 = (BLANK)
HRS2 = (BLANK)
MSN3_1 - (BLANK)
MSN3_2 = (BLANK)
MSN3_3 = (BLANK)
HRS3 = (BLANK)
TOTFLT = (BLANK)

75

OPS = (BLANK)
CJ = (BLANK)
MISNUM = (BLANK)
NUMHOISTS = (BLANK)
REMARKS = (BLANK)
PUT FLIGHT
CLOSE FLIGHT

! loop to remove related ENGINE records
GET DOCNUMJJPDATE = DOCNUM, FLTENG, ALL
WHILETRUE ENGNUM <> UNKNOWN THEN

DOCNUM = (BLANK)
ENGNUM = (BLANK)
ENGHRS = (BLANK)
PUT FLTENG
GET DOCNUMJJPDATE = DOCNUM, FLTENG, ALL

END
CLOSE FLTENG
FIELD_TO_UPDATE = DONE;

*************** EXCEPTION CODE LOGIC **************
*********************** RULE 2 ********************
change exception code from X (canceled flight)

RULE EXCEPT ION_RULE_2
IF

FIELD_TO_UPDATE = EXCEPT ION_CODE AND
EXCD_RULE = UNKNOWN AND
EXCD_NEW OX AND
EXCD = X

THEN
EXCD_RULE = TRUE
GET DOCNUMJJPDATE = DOCNUM, FLIGHT, EXCD
DOCNUM = (DOCNUMJJPDATE)
RESET EXCD
EXCD = (EXCD_NEW)
RESET MSN1_1
FIND MSN1_1
RESET MSN11_VALID
FIND MSN11_VALID

! find mission code 1 position 2
CLS
RESET MSN1_2
FIND MSN1_2
RESET MSN12_VALID
FIND MSN12_VALID

! find mission code 1 position 3
CLS
RESET MSN1_3
FIND MSN1_3
RESET MSN13_VALID
FIND MSN13 VALID

76

CLS
! find mission 1 hours

RESET CHECK
FIND CHECK
TEMPHRS1 =

TEMPHRS2 =

TEMPHRS3 =

TOTHRS = 72.0
SUBTOTAL =

RESET HRS1_VALID
FIND HRS1_VALID

! find mission code 2 position 1

CLS
RESET MSN21_VALID
FIND MSN21_VALID

! find mission code 2 position 2
CLS
RESET MSN22_VALID
FIND MSN22_VALID

! find mission code 2 position 3
CLS
RESET MSN2 3_VALID
FIND MSN23_VALID
CLS

! find mission 2 hours
RESET HRS2_VALID
FIND HRS2_VALID

! find mission code 3 position 1

CLS
RESET MSN31_VALID
FIND MSN31_VALID

! find mission code 3 position 2
CLS
RESET MSN32_VALID
FIND MSN32_VALID

! find mission code 3 position 3
CLS
RESET MSN33_VALID
FIND MSN33_VALID
CLS

! find mission 3 hours
RESET HRS3_VALID
FIND HRS3_VALID
CLS

! find total flights
RESET TOTFLT_VALID
FIND TOTFLT_VALID
CLS

! find ship/field operations code
RESET OPS_VALID
FIND OPS VALID

77

CLS
! find catapult/ jato launches as necessary

GET ALL, ORGAN, CATS JATO
RESET CJ_VALID
FIND CJ_VALID
CLOSE ORGAN
CLS

! find airlift mission number as necessary
GET ALL, ORGAN, AIRLIFT
RESET AIRLIFT_VALID
FIND AIRLIFT_VALID
CLOSE ORGAN
CLS

! find number of hoists
RESET NUMHOIST_VALID
FIND NUMHOIST_VALID

! append new record to flight database
PUT FLIGHT
CLOSE FLIGHT

! find engine hours for aircraft on flight
GET SIDE = (SIDENUM) , AIRCRAFT, ENGINES
CLOSE AIRCRAFT
RESET UPDATE_ENGHRS_VALID
FIND UPDATE_ENGHRS_VALID
CLS
FIELD_TO_UPDATE = DONE;

*************** EXCEPTION CODE LOGIC **************
********************** RULE 2 *********************
change exception code from a value not X to a value
not X

RULE EXCEPT I0N_RULE_3
IF

FIELD_TO_UPDATE = EXCEPT ION_CODE AND
EXCD_RULE = UNKNOWN AND
EXCD_NEW OX AND
EXCD <> X

THEN
EXCD_RULE = TRUE
CLS
GET DOCNUMJJPDATE = DOCNUM, FLIGHT, ALL
EXCD = (EXCD_NEW)
PUT FLIGHT
CLOSE FLIGHT
CLS
FIELD_TO_UPDATE = DONE;

I *************** UPDATE MISSION CODE 1 *******************

RULE UPDATE MISSION CODE 1

78

IF
FIELD_TO_UPDATE = MISSI0N_C0DE_1

THEN
UPDATE_COMPLETED = YES

! display current mission code 1

DISPLAY "THE MISSION NUMBER 1 CODE IS CURRENTLY
{MSN1 1HMSN1 2}{MSN1 3}

PRESS ANY KEY TO CONTINUE-"

! find mission code 1 position 1

CLS
GET DOCNUMJJPDATE = DOCNUM, FLIGHT, EXCD
RESET EXCD_VALUE
FIND EXCD_VALUE

! find mission code 1 position 1

RESET MSN1_1
FIND MSN1_1
RESET MSN11_VALID
FIND MSN11_VALID

! find mission code 1 position 2

CLS
RESET MSN1_2
FIND MSN1_2
RESET MSN12_VALID
FIND MSN12_VALID

! find mission code 1 position 3
CLS
RESET MSN1_3
FIND MSN1_3
RESET MSN13_VALID
FIND MSN13_VALID
CLS

! from new mission code 1 determine logic to keep database
! in a valid state

RESET MISSI0N_C0DE1_RULE
FIND MISSI0N_C0DE1_RULE;

*************** MISSION CODE 1 LOGIC **************
*********************** RULE 1 ********************

exception code is X

RULE MISSI0N_C0DE_1_RULE_1
IF

FIELD_TO_UPDATE = MISSI0N_C0DE_1 AND
EXCD = X

79

THEN
MISSI0N_C0DE1_RULE = USED
PUT FLIGHT
CLOSE FLIGHT
FIELD_TO_UPDATE = DONE;

*************** MISSION CODE 1 LOGIC **************
*********************** RULE 2 ********************
mission code 1 position 1 is 6 and exception code

is not X

RULE MISSI0N_C0DE_1_RULE_2
IF

FIELD_TO_UPDATE = MISSI0N_C0DE_1 AND
MSN1_1 = 6 AND
EXCD <> X

THEN
MISSI0N_C0DE1_RULE = USED
CLS

! find mission 1 hours
RESET CHECK
FIND CHECK
TOTAL =
RESET HRS1_VALID
FIND HRS1_VALID
RESET MSN2_1

! no other mission codes allowed
MSN2_1 = (BLANK)
RESET MSN2_2
MSN2_2 = (BLANK)
RESET MSN2_3
MSN2_3 = (BLANK)
RESET HRS2
HRS2 = (BLANK)
RESET MSN3_1
MSN3_1 = (BLANK)
RESET MSN3_2
MSN3_2 = (BLANK)
RESET MSN3_3
MSN3_3 = (BLANK)
RESET HRS3
HRS3 = (BLANK)
PUT FLIGHT
CLOSE FLIGHT

! update engine hours for aircraft
RESET MISS ION1_ENGHRS_VALID
FIND MISSI0N1_ENGHRS_VALID
FIELD_TO_UPDATE = DONE;

! loop to update engine hours resulting from updating
! mission code 1 when mission code 1 position 1 is 6

80

! and exception code is not equal to X

RULE UPDATE_MISSI0N_1_ENGINE_H0URS
IF

MSN1_1 = 6 AND
EXCD <> X AND
MISSI0N1_ENGHRS_VALID = UNKNOWN AND
FIELD_TO_UPDATE = MISSI0N_C0DE_1

THEN
MISS ION1_ENGHRS_VALID = TRUE
Y = 1

GET DOCNUM_UPDATE = DOCNUM AND ENGNUM = (Y) , FLTENG,
ALL WHILETRUE ENGNUM <> UNKNOWN THEN

RESET ENGHRS
FIND ENGHRS
RESET ENGHRS_VALID
RESET ENGHRS_LOOP
FIND ENGHRS_LOOP
Y = (Y +1)
PUT FLTENG
CLS
GET DOCNUMJJPDATE = DOCNUM AND ENGNUM = (Y)

,

FLTENG, ALL
END

CLOSE FLTENG;

*************** MISSION CODE 1 LOGIC **************
*********************** RULE 3 ********************
mission code 1 position 1 is not 6 and exception code

is not X

RULE MISSI0N_C0DE_1_RULE_3
IF

FIELD_TO_UPDATE = MISSI0N_C0DE_1 AND
MSN1_1 <> 6 AND
EXCD <> X

THEN
MISSI0N_C0DE1_RULE = USED
PUT FLIGHT
CLOSE FLIGHT
FIELD_TO_UPDATE = DONE;

I *************** UPDATE MISSION HOURS 1 ***************

RULE UPDATE_HRS1
IF

FIELD_TO_UPDATE = MISSI0N_1_H0URS
THEN

UPDATE_COMPLETED = YES
TOTAL =
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL

81

RESET EXCD_VALUE
FIND EXCD_VALUE

! find if mission hours 1 is valid
RESET UPDATE_HRS1_VALID
FIND UPDATE_HRS1_VALID
PUT FLIGHT
CLOSE FLIGHT

! loop to update ENGINE records after change to mission
! hours 1

GET SIDENUM = SIDE, AIRCRAFT, ENGINES
CLOSE AIRCRAFT
Y = 1

WHILETRUE UPDATE_HRS1_VALID <> FALSE AND Y <= (ENGINES)
THEN

GET DOCNUMJJPDATE = DOCNUM AND ENGNUM = (Y)

,

FLTENG, ALL
RESET ENGHRS
FIND ENGHRS

! find if engine hours is valid
RESET ENGHRS_VALID
RESET ENGHRS_LOOP
FIND ENGHRS_LOOP
Y = (Y +1)
PUT FLTENG
CLS

END
CLOSE FLTENG
FIELD_TO_UPDATE = DONE;

I *************** UPDATE MISSION CODE 2 ***************

RULE UPDATE_MISSI0N_C0DE_2
IF

FIELD_TO_UPDATE = MISSI0N_C0DE_2
THEN

UPDATE_COMPLETED = YES
! display current mission code 2

DISPLAY "THE MISSION NUMBER 2 CODE IS CURRENTLY
{1MSN2 1H1MSN2 2 } { 1MSN2 3}

PRESS ANY KEY TO CONTINUE-"

! find mission code 2 position 1

CLS
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL
CLOSE FLIGHT

82

TOTAL = (HRS1)
! determine if you are allowed to update mission code 2

RESET MISSI0N_C0DE2_RULE
FIND MISSI0N_C0DE2_RULE

! from new mission code 2 determine logic to keep database
! in a valid state

RESET MISSI0N_2_VALUE
FIND MISSI0N_2_VALUE
FIELD_TO_UPDATE = DONE;

*************** MISSION CODE 2 ALLOWED ************
mission code 2 not allowed if exception code is X

or mission code 1 position 1 is equal to 6

RULE MISSI0N_C0DE_2_RULE
IF

FIELD_TO_UPDATE = MISSI0N_C0DE_2 AND
EXCD = X OR
MSN1_1 = 6

THEN
! mission code 2 not allowed
! display message

MISSI0N_C0DE2_RULE = NOT_USED
DISPLAY " YOU ARE NOT ALLOWED TO ENTER A MISSION CODE

FOR ONE OF THE FOLLOWING REASONS:
1

.

EXCEPTION CODE = X
2. MISSION CODE 1 BEGINS WITH A 6

PRESS ANY KEY TO CONTINUE

~ ii

CLS
CLOSE FLIGHT

ELSE
! mission code 2 allowed

MISSI0N_C0DE2_RULE = USED
GET DOCNUMJJPDATE = DOCNUM, FLIGHT, ALL

! find mission code 2 position 1
RESET MSN2_1
RESET MSN2_2
RESET MSN2_3
RESET MSN21_VALID
FIND MSN21_VALID

! find mission code 2 position 2
CLS
RESET MSN22_VALID
FIND MSN22_VALID

! find mission code 2 position 3
CLS
RESET MSN2 3 VALID

83

FIND MSN23_VALID
PUT FLIGHT
CLOSE FLIGHT;

*************** MISSION CODE 2 LOGIC **************
*********************** RULE 1 ********************

new mission code 2 is null

RULE MISSI0N_C0DE2_VALUE_RULE1
IF

FIELD_TO_UPDATE = MISSI0N_C0DE_2 AND
MISSI0N_C0DE2_RULE = USED AND
SKIP = YES

THEN
MISSI0N_2_VALUE = MISSING
GET DOCNUMJJPDATE = DOCNUM, FLIGHT, ALL

! remove mission code 2, 3 along with mission hours 2, 3
RESET MSN2_2
MSN2_2 = (BLANK)
RESET MSN2_3
MSN2_3 = (BLANK)
RESET HRS2
HRS2 = (BLANK)
RESET MSN3_1
MSN3_1 = (BLANK)
RESET MSN3_2
MSN3_2 = (BLANK)
RESET MSN3_3
MSN3_3 = (BLANK)
RESET HRS3
HRS3 = (BLANK)
PUT FLIGHT
CLOSE FLIGHT
Y = 1

! loop to update ENGINE records
GET DOCNUMJJPDATE = DOCNUM AND ENGNUM = (Y) , FLTENG,
ALL

WHILETRUE ENGNUM <> UNKNOWN THEN
RESET ENGHRS
FIND ENGHRS
RESET ENGHRS_VALID
RESET ENGHRS_LOOP
FIND ENGHRS_LOOP
Y = (Y +1)
PUT FLTENG
CLS
GET DOCNUMJJPDATE = DOCNUM AND ENGNUM = (Y)

,

FLTENG, ALL
END

CLOSE FLTENG;

84

*************** MISSION CODE 2 LOGIC **************
*********************** RULE 2 ********************

replace current mission code 2

RULE MISSION_CODE2_VALUE_RULE2
IF

FIELD_TO_UPDATE = MISSI0N_C0DE_2 AND
MISSI0N_C0DE2_RULE = USED AND
TOTAL <> (HRS1 + HRS2 + HRS3) and
SKIP = NO

THEN
MISSI0N_2_VALUE = NOT_MISSING
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL
PUT FLIGHT
CLOSE FLIGHT;

*************** MISSION CODE 2 LOGIC **************
*********************** RULE 3 ********************

mission code 2 was previously null

RULE MISSION_CODE2_VALUE_RULE3
IF

FIELD_TO_UPDATE = MISSI0N_C0DE_2 AND
MISSI0N_C0DE2_RULE = USED AND
TOTAL = (HRS1) AND
SKIP = NO

THEN
MISSI0N_2_VALUE = NOT_MISSING
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL
CLS
RESET CHECK
FIND CHECK
TEMPHRS1 =
TEMPHRS2 =

TEMPHRS3 =

TOTHRS =72.0
SUBTOTAL =

! find mission 2 hours
RESET HRS2
FIND HRS2
RESET TEST_HRS2
WHILETRUE TEST_HRS2 = UNKNOWN OR TEST_HRS2 = NOT_TRUE
THEN

! find if mission hours 2 is valid
RESET TEST_HRS2
FIND TEST_HRS2

END
CLS
PUT FLIGHT
CLOSE FLIGHT

! loop to update ENGINE records

85

Y = 1

GET DOCNUMJJPDATE = DOCNUM AND ENGNUM = (Y) , FLTENG,
ALL
WHILETRUE ENGNUM <> UNKNOWN THEN

RESET ENGHRS
FIND ENGHRS

! find if engine hours is valid
RESET ENGHRS_VALID
RESET ENGHRS_LOOP
FIND ENGHRS_LOOP
Y = (Y +1)
PUT FLTENG
CLS
GET DOCNUMJJPDATE = DOCNUM AND ENGNUM = (Y) ,

FLTENG, ALL
END
CLOSE FLTENG;

*************** MISSION CODE 2 LOGIC **************
*********************** RULE 4 ********************

mission code 2 is not allowed

RULE MISSION_CODE2_VALUE_RULE4
IF

FIELD_TO_UPDATE = MISSION_CODE_2 AND
MISSI0N_C0DE2_RULE = NOTJJSED

THEN
MISSION_2_VALUE = NOT_REQUIRED
CLS;

|
*************** UPDATE MISSION HOURS 2 ***************

RULE UPDATE_HRS2
IF

FIELD_TO_UPDATE = MISSION_2_HOURS
THEN

UPDATE_COMPLETED = YES
GET DOCNUMJJPDATE = DOCNUM, FLIGHT, ALL
TOTAL = (HRS1)
CHECKSUM = (HRS1 +HRS2)
RESET EXCD_VALUE
FIND EXCD_VALUE

! find if mission hours 2 is valid
RESET UPDATE_HRS2_VALID
FIND UPDATE_HRS2_VALID
PUT FLIGHT
CLOSE FLIGHT

! loop to update ENGINE records
Y = 1

GET DOCNUMJJPDATE = DOCNUM AND ENGNUM = (Y) , FLTENG,
ALL

86

WHILETRUE ENGNUM <> UNKNOWN AND UPDATE_HRS2_VALID <>
FALSE
THEN

RESET ENGHRS
FIND ENGHRS
RESET ENGHRS_VALID
RESET ENGHRS_LOOP
FIND ENGHRS_LOOP
Y = (Y +1)
PUT FLTENG
CLS
GET DOCNUMJJPDATE = DOCNUM AND ENGNUM = (Y)

,

FLTENG, ALL
END
CLOSE FLTENG
FIELD_TO_UPDATE = DONE;

I *************** UPDATE MISSION CODE 2 ***************

RULE UPDATE_MISSION_CODE_3
IF

FIELD_TO_UPDATE = MISSION_CODE_3
THEN

UPDATE_COMPLETED = YES
! display current mission code 3

DISPLAY "THE MISSION NUMBER 3 CODE IS CURRENTLY
{1MSN3 1H1MSN3 2 } { 1MSN3 3}

PRESS ANY KEY TO CONTINUE- 11

! find mission code 3 position 1

CLS
GET DOCNUMJJPDATE = DOCNUM, FLIGHT, ALL
CLOSE FLIGHT
TOTAL 1 = (HRS1)
TOTAL2 = (HRS1 + HRS2)
TOTAL = (TOTAL2)

! determine if you are allowed to update mission code 3
RESET MISSION_CODE3_RULE
FIND MISSION_CODE3_RULE

! from new mission code 3 determine logic to keep database
! in a valid state

RESET MISSI0N_3_VALUE
FIND MISSION_3_VALUE
FIELD TO UPDATE = DONE;

87

*************** MISSION CODE 3 ALLOWED ************
mission code 3 not allowed if exception code is X

or mission code 1 position 1 is equal to 6 or
mission code 2 is null

RULE MISSI0N_C0DE_3_RULE
IF

FIELD_TO_UPDATE = MISSI0N_C0DE_3 AND
EXCD = X OR
MSN1_1 = 6 OR
T0TAL2 = (T0TAL1)

THEN
! mission code 3 is not allowed
! display message

MISSI0N_C0DE3_RULE = NOT_USED
DISPLAY " YOU ARE NOT ALLOWED TO ENTER A MISSION CODE

FOR ONE OF THE FOLLOWING REASONS: 1.
EXCEPTION CODE = X

2. MISSION CODE 1 BEGINS WITH A 6

3. THERE IS NO MISSION 2 CODE

PRESS ANY KEY TO CONTINUE

~ it

CLS
CLOSE FLIGHT

ELSE
! mission code 3 is allowed

MISSION_CODE3_RULE = USED
GET DOCNUMJJPDATE = DOCNUM, FLIGHT, ALL

! find mission code 3 position 1

RESET MSN3_1
RESET MSN3_2
RESET MSN3_3
RESET MSN31_VALID
FIND MSN31_VALID

! find mission code 3 position 2
CLS
RESET MSN32_VALID
FIND MSN32_VALID

! find mission code 3 position 3
CLS
RESET MSN33_VALID
FIND MSN33_VALID
PUT FLIGHT
CLOSE FLIGHT;

*************** MISSION CODE 3 LOGIC **************
*********************** RULE 1 ********************

mission code 3 is null

88

RULE MISSI0N_C0DE3_VALUE_RULE1
IF

FIELD_TO_UPDATE = MISSI0N_C0DE_3 AND
MISSI0N_C0DE3_RULE = USED AND
SKIP_AGAIN = YES

THEN
MISSI0N_3_VALUE = MISSING
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL
RESET MSN3_2

! all related flight attributes are null
MSN3_2 = (BLANK)
RESET MSN3_3
MSN3_3 = (BLANK)
RESET HRS3
HRS3 = (BLANK)
RESET MSN3_1
PUT FLIGHT
CLOSE FLIGHT

! loop to update ENGINE records
Y = 1

GET DOCNUMJJPDATE = DOCNUM AND ENGNUM = (Y) , FLTENG,
ALL
WHILETRUE ENGNUM <> UNKNOWN THEN

RESET ENGHRS
FIND ENGHRS
RESET ENGHRS_VALID
RESET ENGHRS_LOOP
FIND ENGHRS_LOOP
Y = (Y +1)
PUT FLTENG
CLS
GET DOCNUMJJPDATE = DOCNUM AND ENGNUM = (Y)

,

FLTENG, ALL
END
CLOSE FLTENG;

*************** MISSION CODE 3 LOGIC **************
*********************** RULE 2 ********************

replace current mission code 3

RULE MISSION_CODE3_VALUE_RULE2
IF

FIELD_TO_UPDATE = MISSION_CODE_3 AND
MISSI0N_C0DE3_RULE = USED AND
T0TAL2 <> (HRS1 + HRS2 + HRS3) and
SKIP AGAIN = NO

THEN
MISSION_3_VALUE = NOT_MISSING
GET DOCNUMJJPDATE = DOCNUM, FLIGHT, ALL
PUT FLIGHT
CLOSE FLIGHT;

89

*************** MISSION CODE 3 LOGIC **************
*********************** RULE 2 ********************

mission code 3 was previously null

RULE MISSION_CODE3_VALUE_RULE3
IF

FIELD_TO_UPDATE = MISSI0N_C0DE_3 AND
MISSI0N_C0DE3_RULE = USED AND
T0TAL2 = (HRS1 + HRS2 +HRS3) AND
SKIP = NO

THEN
MISSI0N_3_VALUE = NOT_MISSING
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL
CLS

! find mission 3 hours
RESET CHECK
FIND CHECK
TEMPHRS1 =

TEMPHRS2 =

TEMPHRS3 =
TOTHRS =72.0
SUBTOTAL =

! find mission 3 hours
RESET HRS3
FIND HRS3
RESET TEST_HRS3
WHILETRUE TEST_HRS3 = UNKNOWN OR TEST_HRS3 = NOT_TRUE
THEN

RESET TEST_HRS3
FIND TEST_HRS3

END
CLS
PUT FLIGHT
CLOSE FLIGHT

! loop to update ENGINE records
Y = 1

GET DOCNUMJJPDATE = DOCNUM AND ENGNUM = (Y) , FLTENG,
ALL
WHILETRUE ENGNUM <> UNKNOWN THEN

RESET ENGHRS
FIND ENGHRS
RESET ENGHRS_VALID
RESET ENGHRS_LOOP
FIND ENGHRS_LOOP
Y = (Y +1)
PUT FLTENG
CLS
GET DOCNUMJJPDATE = DOCNUM AND ENGNUM = (Y)

,

FLTENG, ALL
END
CLOSE FLTENG;

90

*************** MISSION CODE 3 LOGIC **************
*********************** RULE 2 ********************

mission code 3 not allowed

RULE MISSION_CODE3_VALUE_RULE4
IF

FIELD_TO_UPDATE = MISSI0N_C0DE_3 AND
MISSI0N_C0DE3_RULE = NOT_USED

THEN
MISSI0N_3_VALUE = NOT_REQUIRED
CLS;

I *************** UPDATE MISSION HOURS 3 ***************

RULE UPDATE_HRS3
IF

FIELD_TO_UPDATE = MISSI0N_3_H0URS
THEN

UPDATE_COMPLETED = YES
GET DOCNUMJJPDATE = DOCNUM, FLIGHT, ALL

! display current mission hours 3
DISPLAY " {HRS3} IS CURRENTLY THE MISSION 3 HOURS.

ii

T0TAL1 = (HRS1 + HRS2 + HRS3)
TOTAL = (HRS1 + HRS2)
CHECKSUM = (HRS1)
RESET EXCD_VALUE
FIND EXCD_VALUE

! find if mission hours 3 is valid
RESET UPDATE_HRS3_VALID
FIND UPDATE_HRS3_VALID
PUT FLIGHT
CLOSE FLIGHT

! loop to update ENGINE records
Y = 1

GET DOCNUM_UPDATE = DOCNUM AND ENGNUM = (Y) , FLTENG,
ALL
WHILETRUE ENGNUM <> UNKNOWN AND UPDATE_HRS3_VALID <>
FALSE THEN

RESET ENGHRS
FIND ENGHRS
RESET ENGHRS_VALID
RESET ENGHRS_LOOP
FIND ENGHRS_LOOP
Y = (Y +1)
PUT FLTENG
CLS
GET DOCNUM_UPDATE = DOCNUM AND ENGNUM = (Y) ,

FLTENG, ALL
END
CLOSE FLTENG

91

FIELD_TO_UPDATE = DONE;

I **************** UPDATE TOTAL FLIGHTS ****************

RULE UPDATE_TOTAL_FLIGHTS
IF

FIELD_TO_UPDATE = TOTAL_FLIGHTS
THEN

UPDATE_COMPLETED = YES
! display current total flight

DISPLAY " {TOTFLT} IS CURRENTLY THE TOTAL FLIGHTS.
it

CLOSE FLIGHT
! find if total flight is valid

RESET UPDATE_TOTFLT_VALID
FIND UPDATE_TOTFLT_VALID
CLS
FIELD_TO_UPDATE = DONE;

I ************ UPDATE SHIP/FIELD OPERATIONS **************

RULE UPDATE_SHIP_FIELD_OPERATIONS_CODE
IF

FIELD_TO_UPDATE = SHIP_FIELD_OPERATIONS_CODE
THEN

UPDATE_COMPLETED = YES
! display current ship/field operations code

DISPLAY "{OPS} IS CURRENTLY THE SHIP/FIELD OPERATIONS
CODE .

CLOSE FLIGHT
! find if ship/field operations code is valid

RESET UPDATE_OPS_VALID
FIND UPDATE_OPS_VALID
CLS
FIELD_TO_UPDATE = DONE;

!
************ UPDATE CATAPULT/JATO LAUNCHES **************

RULE UPDATE_CATAPULT_JATO_LAUNCHES
IF

FIELD_TO_UPDATE = CATAPULT_JATO_LAUNCHES
THEN

UPDATE_COMPLETED = YES
! display current catapult/jato launches

DISPLAY " {CJ} IS CURRENTLY THE NUMBER OF CATAPULT/JATO
LAUNCHES.
ii

CLOSE FLIGHT
! find catapult/jato launches as necessary

GET ALL, ORGAN, CATSJATO
! find if cj is valid

92

RESET UPDATE_CJ_VALID
FIND UPDATE_CJ_VALID
CLOSE ORGAN
CLS
FIELD_TO_UPDATE = DONE;

I ************ UPDATE AIRLIFT MISSION NUMBER **************

RULE UPDATE_AIRLIFT_MISSION_NUMBER
IF

FIELD_TO_UPDATE = AIRLIFT_MISSION_NUMBER
THEN

UPDATE_COMPLETED = YES
! display current airlift mission number

DISPLAY " {MISNUM} IS CURRENTLY THE AIRLIFT MISSION
NUMBER.
ii

CLOSE FLIGHT
! find airlift mission number as necessary

GET ALL, ORGAN, AIRLIFT
! find if airlift mission number is valid

RESET UPDATE_AIRLIFT_VALID
FIND UPDATE_AIRLIFT_VALID
CLOSE ORGAN
CLS
FIELD_TO_UPDATE = DONE;

I ************ UPDATE NUMBER OF HOISTS **************

RULE UPDATE_NUMBER_OF_HOISTS
IF

FIELD_TO_UPDATE = NUMBER_OF_HOISTS
THEN

UPDATE_COMPLETED = YES
! display current number of hoists

DISPLAY " {NUMHOISTS} IS CURRENTLY THE NUMBER OF HOISTS
ii

CLOSE FLIGHT
! find if number of hoists is valid

RESET UPDATE_NUMHOISTS_VALID
FIND UPDATE_NUMHOISTS_VALID
CLS
FIELD_TO_UPDATE = DONE;

I ************ UPDATE ENGINE HOURS **************

RULE UPDATE_ENGINE_HOURS
IF

FIELD_TO_UPDATE = ENGINE_HOURS
THEN

UPDATE COMPLETED = YES

93

! find if engine hours valid
RESET UPDATE_ENGINE_HOURS_VALID
FIND UPDATE_ENGINE_HOURS_VALID
CLS
FIELD_TO_UPDATE = DONE;

I ********************* UPDATE DONE ***********************

RULE DONE
IF

FIELD_TO_UPDATE = DONE
THEN

UPDATE_COMPLETED = YES;

I ****** ***************DELETE OPERATION********************

RULE DELETE_DOCUMENT
IF

WHICHTASK = DELETE_RECORD
THEN

TASKCOMPLETED = YES
MENU DOCNUM_DELETE, ALL, FLIGHT, DOCNUM

! ask user for document number from menu of document numbers
FIND DOCNUM_DELETE
MRESET DOCNUM_DELETE

! ask user to confirm delete operation
RESET CONTINUE
FIND CONTINUE

! find if any documents to delete
RESET DELETE
FIND DELETE;

! determine if there are any flight records to delete

RULE DELETE
IF

DOCNUM_DELETE = NONE OR
CONTINUE = NO AND
DELETE = UNKNOWN

THEN
! no records to delete or user has changed mind
! display message

DELETE = NO
DISPLAY " NO FLIGHT RECORD DELETED.

PRESS ANY KEY TO CONTINUE

CLS
ELSE
! records available to delete
! and user has confirmed deletion

94

DELETE = YES
GET DOCNUM_DELETE = DOCNUM, FLIGHT, ALL

! all attributes are set to null
DOCNUM = (BLANK)
EXCD = (BLANK)
MSN1_1 = (BLANK)
MSN1_2 = (BLANK)
MSN1_3 = (BLANK)
HRS1 = (BLANK)
MSN2_1 = (BLANK)
MSN2_2 = (BLANK)
MSN2_3 = (BLANK)
HRS2 = (BLANK)
MSN3_1 = (BLANK)
MSN3_2 = (BLANK)
MSN3_3 = (BLANK)
HRS3 = (BLANK)
TOTFLT = (BLANK)
OPS = (BLANK)
CJ = (BLANK)
MISNUM = (BLANK)
NUMHOISTS = (BLANK)
REMARKS = (BLANK)
SIDENUM = (BLANK)
PUT FLIGHT
CLOSE FLIGHT

! Cascade delete feature
! all associated records in with FLIGHT set to null

GET DOCNUM_DELETE = DOCNUM, FLTENG, ALL
WHILETRUE ENGNUM <> UNKNOWN THEN

DOCNUM = (BLANK)
ENGNUM = (BLANK)
ENGHRS = (BLANK)
PUT FLTENG
GET DOCNUM_DELETE = DOCNUM, FLTENG, ALL

END
CLOSE FLTENG;

I ********************* VIEW OPERATION ********************

RULE VIEW_DOCUMENT
IF

WHICHTASK = DISPLAY_RECORD
THEN

RESET ALL
WHICHTASK = DISPLAY_RECORD
FORMAT HRS1, 4.1
FORMAT HRS2, 4.1
FORMAT HRS3, 4.1
FORMAT ENGHRS, 4.1
TASKCOMPLETED = YES

95

RESET DOCNUM_VIEW
MENU DOCNUM_VIEW, ALL, FLIGHT, DOCNUM

! ask user for document number
FIND DOCNUM_VIEW
MRESET DOCNUM_VIEW

! find if any flight records to view
RESET VIEW
FIND VIEW;

! determine if there are any documents to view

RULE VIEW
IF

DOCNUM_VIEW = NONE AND
VIEW = UNKNOWN

THEN
! no flight records to view

VIEW = NO
DISPLAY " THERE IS NO FLIGHT RECORD TO VIEW.

PRESS ANY KEY TO CONTINUE

CLS
ELSE
! flight record available to view

VIEW = YES
GET DOCNUM_VIEW = DOCNUM, FLIGHT, ALL
SIDENO = (SIDENUM)
CLOSE FLIGHT
GET SIDENO = SIDE, AIRCRAFT, ALL
CLOSE AIRCRAFT
GET ALL, ORGAN, ALL
CLOSE ORGAN
CLS

! format for display
DISPLAY " NAVAL AIRCRAFT FLIGHT RECORD

NO. {DOCNUM}
AIRCRAFT DATA
{3SIDENUM} {1EXCD} {6BUN0}

{ 1MSN1_1 } { 1MSN1_2 } { 1MSN1_3

}

{ 1MSN2_1 } { 1MSN2_2 } { 1MSN2_3

}

{ 1MSN3_1 } { 1MSN3_2 } { 1MSN3_3

}

{10PS} {2CJ} SIDE E BUNO/SER TEC
HRS2 MSN3 HRS3 SUPT TOT CAT/

TOTAL MISSION REQ DATA CODE

{4TEC}
{4HRS1}
{4HRS2}
{4HRS3}

{30RG}

{2SUPTCD} {2T0TFLT}
ORG MSN1 HRS1 MSN2

NO. X
FLT P JATO C

S

{9MISNUM}
AIRLIFT MISSION NO.

{2NUMHOISTS}
NO.

96

HOISTS
i

GET DOCNUM_VIEW = DOCNUM, FLTENG, ALL
WHILEKNOWN ENGNUM

DISPLAY " ENGINE NO {ENGNUM} ENGINE HOURS
{4ENGHRS}"
GET DOCNUM_VIEW = DOCNUM, FLTENG, ALL

END
DISPLAY "

PRESS ANY KEY TO CONTINUE....-"
CLOSE FLTENG
CLS;

l ********************* EXIT OPERATION ********************

RULE EXIT
IF

WHICHTASK = EXIT
THEN

TASKCOMPLETED = YES;

! rule to determine if exception code within record is
! null and assign value BLANK to it

RULE EXCEPT ION_CODE_VALUE
IF

WHICHTASK = UPDATE_RECORD AND
EXCD = UNKNOWN

THEN
EXCD_VALUE = NEEDED
RESET EXCD
EXCD = (BLANK)

ELSE
EXCD_VALUE = NOT_NEEDED;

! rule to check value of exception code is equal to X
! and mission code 1 position 1 is equal to 6

RULE CHECK_VALUE
IF

MSN1_1 = 6 OR
EXCD = X

THEN
CHECK = YES

ELSE
CHECK = NO;

! rules to determine if repeating attributes
! (mission code n, n+1, ...) should be skipped

97

RULE TEST_UNKN0WN1
IF

MSN2_1 = UNKNOWN OR
MSN2_1 = (BLANK)

THEN
SKIP = YES
SKIP_AGAIN = YES

ELSE
SKIP = NO;

RULE TEST_UNKNOWN2
IF

MSN3_1 = UNKNOWN OR
MSN3_1 = (BLANK)

THEN
SKIP_AGAIN = YES

ELSE
SKIP_AGAIN = NO;

I*********** KNOWLEDGE BASE LIBRARY *************

;********* DOMAIN INTEGRITY CONSTRAINTS *********

! THESE CONSTRAINTS ARE DEFINED IN DATA TYPES

;********* COLUMN INTEGRITY CONSTRAINTS *********

RULE EXCEPTION_CODE_VALID
IF

EXCD_VALID = UNKNOWN
THEN

WHILETRUE EXCD_VALID = UNKNOWN THEN
RESET TEST_EXCD
FIND TEST_EXCD

END
EXCD_VALID = TRUE;

RULE COLUMN_INTEGRITY_EXCEPTION_CODE
IF

EXCD = C OR
EXCD = D OR
EXCD = X OR
EXCD = UNKNOWN OR
EXCD = (BLANK) AND
EXCD_VALID = UNKNOWN

THEN
TEST_EXCD = YES
EXCD_VALID = TRUE

ELSE
TEST_EXCD = YES
DISPLAY " YOU NEED TO ENTER A VALID EXCEPTION CODE TO

98

CONTINUE."
RESET EXCD
FIND EXCD;

RULE UPDATE_EXCEPTION_CODE_VALID
IF

FIELD_TO_UPDATE = EXCEPT ION_CODE AND
UPDATE_EXCD_VALID = UNKNOWN

THEN
WHILETRUE UPDATE_EXCD_VALID = UNKNOWN THEN

RESET TEST_UPDATE_EXCD
FIND TEST_UPDATE_EXCD

END
UPDATE_EXCD_VALID = TRUE;

RULE COLDMN_INTEGRITY_UPDATE_EXCEPTION_CODE
IF

EXCD_NEW = C OR
EXCD_NEW = D OR
EXCD_NEW = X OR
EXCD_NEW = (BLANK) AND
FIELD_TO_UPDATE = EXCEPT ION_CODE

THEN
TEST_UPDATE_EXCD = YES
UPDATE_EXCD_VALID = TRUE

ELSE
TEST_UPDATE_EXCD = YES
DISPLAY " YOU NEED TO ENTER A VALID EXCEPTION CODE TO
CONTINUE.

"

RESET EXCD_NEW
FIND EXCD_NEW;

RULE MISSION_l_POSITION_l
IF

MSN11_VALID = UNKNOWN
THEN

WHILETRUE MSN11_VALID = UNKNOWN THEN
RESET TEST_MSN11
FIND TEST_MSN11

END
MSN11_VALID = TRUE;

RULE COLUMN_INTEGRITY_MISSIONll_CODE
IF

MSN1_1 >= 1 AND
MSN1_1 <= 6

THEN
TEST_MSN11 = YES
MSN11_VALID = TRUE

ELSE
TEST MSN11 = YES

99

DISPLAY " YOU MUST ENTER A NUMBER FROM 1 TO 6."
RESET MSN1_1
FIND MSN1_1;

RULE MISSION_l_POSITION_3
IF

MSN13_VALID = UNKNOWN
THEN

WHILETRUE MSN13_VALID = UNKNOWN THEN
RESET TEST_MSN13
FIND TEST_MSN13

END
MSN13_VALID = TRUE
DISPLAY "{MSN1_1} {MSN1_2} {MSN1_3}

PRESS ANY KEY TO CONTINUE- "

;

RULE TEST_MISSION13_CODE_VALID
IF

MSN1_3 >= AND
MSN1_3 <= 9

THEN
TEST_MSN13 = YES
MSN13_VALID = TRUE

ELSE
TEST_MSN13 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM TO 9."
RESET MSN1_3
FIND MSN1_3;

RULE HRS_1_VALID
IF

EXCD = X
THEN

HRS1_VALID = NOT_NEEDED
ELSE

RESET HRS1
FIND HRS1
WHILETRUE HRS1_VALID = UNKNOWN THEN

RESET TEST_HRS1
FIND TEST_HRS1

END
HRS1_VALID = TRUE;

RULE UPDATE_HRS_1_VALID
IF

FIELD_TO_UPDATE = MISSION_l_HOURS AND
EXCD = X

THEN
DISPLAY " YOU ARE NOT ABLE TO ENTER HOURS FOR MISSION 1

BECAUSE THE EXCEPTION CODE IS CURRENTLY {EXCD}

100

ELSE
UPDATE_HRS1_VALID = FALSE

SUBTOTAL_HOURS = ((HRS2) + (HRS3)

)

ALLOWED_HOURS = (72 - (SUBTOTAL_HOURS)

)

RESET HRS1
FIND HRS1
WHILETRUE UPDATE_HRS1_VALID = UNKNOWN THEN

RESET UPDATE_TEST_HRS1
FIND UPDATE_TEST_HRS1

END
UPDATE HRS1 VALID = TRUE;

RULE UPDATE_HRS_2_VALID
IF

FIELD_TO_UPDATE = MISSION_2
CHECK = YES OR
TOTAL = (CHECKSUM)

HOURS AND

THEN
DISPLAY "YOU ARE NOT ABLE TO ENTER HOURS FOR MISSION i

BECAUSE

:

1. THE EXCEPTION CODE IS CURRENTLY X
2. THE MISSION 1 CODE BEGINS WITH A 6

3. THE MISSION 2 CODE IS MISSING

ELSE
UPDATE_HRS2_VALID = FALSE

SUBTOTAL_HOURS = ((HRS1) + (HRS3)

)

ALLOWED_HOURS = (72 - (SUBTOTAL_HOURS)

)

RESET HRS2
FIND HRS2
WHILETRUE UPDATE_HRS2_VALID = UNKNOWN THEN

RESET UPDATE_TEST_HRS2
FIND UPDATE_TEST_HRS2

END
UPDATE HRS2 VALID = TRUE;

RULE UPDATE_HRS_3_VALID
IF

FIELD_TO_UPDATE = MISSION
CHECK = YES OR
TOTAL = (CHECKSUM) OR
TOTAL = (TOTAL1)

3 HOURS AND

THEN
DISPLAY "YOU ARE NOT ABLE TO ENTER HOURS FOR MISSION 3

BECAUSE:
THE EXCEPTION CODE
THE MISSION 1 CODE
THE MISSION 2 CODE
THE MISSION 3 CODE

IS CURRENTLY X
BEGINS WITH A 6

IS MISSING
IS MISSING

UPDATE HRS3 VALID = FALSE

101

ELSE
SUBTOTAL_HOURS =

((HRS1) + (HRS2))
ALLOWED_HOURS = (72 - (SUBTOTAL_HOURS)

)

RESET HRS3
FIND HRS3
WHILETRUE UPDATE_HRS3_VALID = UNKNOWN THEN

RESET UPDATE_TEST_HRS3
FIND UPDATE_TEST_HRS3

END
UPDATE_HRS3_VALID = TRUE;

RULE C0LUMN_INTEGRITY_UPDATE_HRS1
IF

FIELD_TO_UPDATE = MISSION_l_HOURS AND
HRS1 > 0.0 AND
HRS1 <= (ALLOWED_HOURS)

THEN
UPDATE_TEST_HRS1 = YES
UPDATE_HRS1_VALID = TRUE
TOTAL = ((HRS1) + (SUBTOTAL_HOURS)

)

ELSE
UPDATE_TEST_HRS1 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 00.1 TO
{ ALLOWED_HOURS }

"

RESET HRS1
FIND HRS1;

RULE COLUMN_INTEGRITY_UPDATE_HRS2
IF

FIELD_TO_UPDATE = MISSION_2_HOURS AND
HRS2 > 0.0 AND
HRS2 <= (ALLOWED_HOURS)

THEN
UPDATE_TEST_HRS2 = YES
UPDATE_HRS2_VALID = TRUE
TOTAL = ((HRS2) + (SUBTOTAL_HOURS)

)

ELSE
UPDATE_TEST_HRS2 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 00.1 TO
{ALLOWED_HOURS}"
RESET HRS2
FIND HRS2;

RULE COLUMN_INTEGRITY_UPDATE_HRS3
IF

FIELD_TO_UPDATE = MISSION_3_HOURS AND
HRS3 > 0.0 AND
HRS3 <= (ALLOWED_HOURS)

THEN
UPDATE_TEST_HRS3 = YES
UPDATE HRS3 VALID = TRUE

102

TOTAL = ((HRS3) + (SUBTOTAL_HOURS)

)

ELSE
UPDATE_TEST_HRS3 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 00.1 TO
{ALLOWED_HOURS}"
RESET HRS3
FIND HRS3;

RULE COLUMN_INTEGRITY_HRSl
IF

HRS1 > 0.0 AND
HRS1 <= 72.0

THEN
TEST_HRS1 = YES
HRS1_VALID = TRUE
TOTAL = (HRS1)

ELSE
TEST_HRS1 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 00.1 TO 72.0"
RESET HRS1
FIND HRS1;

RULE MISSION_2_POSITION_l
IF

CHECK = YES
THEN

MSN21_VALID = NOT_NEEDED
SKIP = YES
SKIP_AGAIN = YES

ELSE
RESET MSN2_1
FIND MSN2_1
RESET SKIP
FIND SKIP
WHILETRUE MSN21_VALID = UNKNOWN THEN

RESET TEST_MSN21
FIND TEST_MSN21

END
MSN21_VALID = TRUE;

RULE COLUMN_INTEGRITY_MISSION2

1

IF
MSN2_1 >= 1 OR
MSN2_1 = UNKNOWN OR
MSN2_1 = (BLANK) AND
MSN2_1 <= 5 OR
MSN2_1 = UNKNOWN OR
MSN2_1 = (BLANK)

THEN
TEST_MSN21 = YES
MSN21 VALID = TRUE

103

ELSE
TEST_MSN21 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 1 TO 5."
RESET MSN2_1
FIND MSN2_1;

RULE MISSION_2_POSITION_2
IF

CHECK = YES OR
SKIP = YES

THEN
MSN22_VALID = NOT_NEEDED;

RULE TEST_MISSION23_CODE_VALID
IF

CHECK = YES OR
SKIP = YES

THEN
MSN23_VALID = NOT_NEEDED

ELSE
RESET MSN2_3
FIND MSN2_3
WHILETRUE MSN2 3_VALID = UNKNOWN THEN

RESET TEST_MSN23
FIND TEST_MSN23

END
MSN2 3_VALID = TRUE
DISPLAY "{MSN2_1} {MSN2_2} {MSN2_3}

PRESS ANY KEY TO CONTINUE-";

RULE TEST_MISSION23_CODE_VALID
IF

MSN2_3 >= AND
MSN2_3 <= 9

THEN
TEST_MSN23 = YES
MSN23_VALID = TRUE

ELSE
TEST_MSN2 3 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM TO 9."
RESET MSN2_3
FIND MSN2_3;

RULE HRS_2_VALID
IF

CHECK = YES OR
SKIP = YES

THEN
HRS2_VALID = NOT_NEEDED

ELSE
RESET HRS2

104

FIND HRS2
WHILETRUE HRS2_VALID = UNKNOWN THEN

RESET TEST_HRS2
FIND TEST_HRS2

END
HRS2_VALID = TRUE;

RULE COLUMN_INTEGRITY_HRS2
IF

HRS2 > 0.0 AND
HRS2 <= 72.0 AND
TOTHRS >= (HRS1 + HRS2 + TEMPHRS3)

THEN
TEST_HRS2 = YES
HRS2_VALID = TRUE
TOTAL = ((TOTAL) + (HRS2))

ELSE
TEST_HRS2 = YES
SUBTOTAL = (TOTHRS - HRS1)
DISPLAY " YOU MUST ENTER A NUMBER FROM 00.1 TO
{SUBTOTAL}"
RESET HRS2
FIND HRS2;

RULE MISSION_3_POSITION_l
IF

CHECK = YES OR
SKIP = YES

THEN
MSN31_VALID = NOT_NEEDED

ELSE
RESET MSN3_1
FIND MSN3_1
RESET SKIP_AGAIN
FIND SKIP_AGAIN
WHILETRUE MSN31_VALID = UNKNOWN THEN

RESET TEST_MSN31
FIND TEST_MSN31

END
MSN31_VALID = TRUE;

RULE COLUMN_INTEGRITY_MISSION31
IF

MSN3_1 >= 1 OR
MSN3_1 = UNKNOWN OR
MSN3_1 = (BLANK) AND
MSN3_1 <= 5 OR
MSN3_1 = UNKNOWN OR
MSN3_1 = (BLANK)

THEN
TEST MSN31 = YES

105

MSN31_VALID = TRUE
ELSE

TEST_MSN31 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 1 TO 5."
RESET MSN3_1
FIND MSN3_1;

RULE MISSION_3_POSITION_2
IF

CHECK = YES OR
SKIP = YES OR
SKIP_AGAIN = YES

THEN
MSN32_VALID = NOT_NEEDED;

RULE TEST_MISSION33_CODE_VALID
IF

CHECK = YES OR
SKIP = YES OR
SKIP_AGAIN = YES

THEN
MSN33_VALID = NOT_NEEDED

ELSE
RESET MSN3_3
FIND MSN3_3
WHILETRUE MSN33_VALID = UNKNOWN THEN

RESET TEST_MSN33
FIND TEST_MSN33

END
MSN33_VALID = TRUE
DISPLAY " {MSN3_1} {MSN3_2} {MSN3_3}

PRESS ANY KEY TO CONTINUE-";

RULE TEST_MISSION33_CODE_VALID
IF

MSN3_3 >= AND
MSN3_3 <= 9

THEN
TEST_MSN33 = YES
MSN33_VALID = TRUE

ELSE
TEST_MSN33 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM TO 9."
RESET MSN3_3
FIND MSN3_3;

RULE HRS_3_VALID
IF

CHECK = YES OR
SKIP = YES OR
SKIP AGAIN = YES

106

THEN
HRS3_VALID = NOT_NEEDED

ELSE
RESET HRS3
FIND HRS3
WHILETRUE HRS3_VALID = UNKNOWN THEN

RESET TEST_HRS3
FIND TEST_HRS3

END
HRS3_VALID = TRUE;

RULE COLUMN_INTEGRITY_HRS3
IF

HRS3 > 0.0 AND
HRS3 <= 72.0 AND
TOTHRS >= (HRS1 + HRS2 + HRS3)

THEN
TEST_HRS3 = YES
HRS3_VALID = TRUE
TOTAL = ((TOTAL) + (HRS3)

)

ELSE
TEST_HRS3 = YES
SUBTOTAL = (TOTHRS - (HRS1 + HRS2)

)

DISPLAY " YOU MUST ENTER A NUMBER FROM 00.1 TO
{SUBTOTAL}"
RESET HRS3
FIND HRS3;

RULE TOTAL_FLIGHTS_VALID
IF

EXCD = X
THEN

TOTFLT_VALID = NOT_NEEDED
ELSE

RESET TOTFLT
FIND TOTFLT
WHILETRUE TOTFLT_VALID = UNKNOWN THEN

RESET TEST_TOTFLT
FIND TEST_TOTFLT

END
TOTFLT_VALID = TRUE;

RULE UPDATE_TOTAL_FLIGHTS_VALID
IF

EXCD = X AND
FIELD_TO_UPDATE = TOTAL_FLIGHTS

THEN
UPDATE_TOTFLT_VALID = NOT_NEEDED
DISPLAY " YOU ARE NOT ABLE TO ENTER TOTAL FLIGHTS FOR
{ DOCNUMJJPDATE } BECAUSE THE EXCEPTION CODE IS CURRENTLY
{EXCD}

107

PRESS ANY KEY TO CONTINUE-"
CLS

ELSE
GET DOCNUMJJPDATE = DOCNUM, FLIGHT, TOTFLT
RESET TOTFLT
FIND TOTFLT
WHILETRUE UPDATE_TOTFLT_VALID = UNKNOWN THEN

RESET TEST_TOTFLT
FIND TEST_TOTFLT

END
PUT FLIGHT
CLOSE FLIGHT
UPDATE TOTFLT VALID = TRUE;

RULE COLDMN_INTEGRITY_TOTFLT
IF

TOTFLT >= 1 AND
TOTFLT <= 99

THEN
TEST_TOTFLT = YES
TOTFLT_VALID = TRUE
UPDATE_TOTFLT_VALID = TRUE

ELSE
TEST_TOTFLT = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 1 TO 99"
RESET TOTFLT
FIND TOTFLT;

RULE OPS_CODE_VALID
IF

EXCD = X
THEN

OPS_VALID = NOT_NEEDED
ELSE

WHILETRUE OPS_VALID = UNKNOWN THEN
RESET TESTJDPS
FIND TEST_OPS

END
OPS_VALID = TRUE;

RULE UPDATE_SHIP_FIELD_OPS_CODE_VALID
IF

EXCD = X AND
FIELD_TO_UPDATE = SHIP_FIELD_OPERATIONS_CODE

THEN
UPDATE_OPS_VALID = NOT_NEEDED
DISPLAY "YOU ARE NOT ABLE TO ENTER SHIP/FIELD

OPERATIONS CODE FOR {DOCNUMJJPDATE

}

BECAUSE THE EXCEPTION CODE IS CURRENTLY {EXCD}

108

PRESS ANY KEY TO CONTINUE-"
CLS

ELSE
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, OPS
RESET OPS
FIND OPS
WHILETRUE UPDATE_OPS_VALID = UNKNOWN THEN

RESET TESTJDPS
FIND TEST_OPS

END
PUT FLIGHT
CLOSE FLIGHT
UPDATE_OPS_VALID = TRUE;

RULE COLUMN_INTEGRITY_OPS_CODE
IF

OPS = A OR
OPS = B OR
OPS = 1 OR
OPS = 2

THEN
TEST_OPS = YES
OPS_VALID = TRUE
UPDATE_OPS_VALID = TRUE

ELSE
TESTJDPS = YES
DISPLAY " YOU NEED TO ENTER AN A, B, 1, OR 2 .

"

RESET OPS
FIND OPS;

RULE CATS_JATO_VALID
IF

CATSJATO = N OR
EXCD = X

THEN
CJ_VALID = NOT_NEEDED

ELSE
RESET CJ
FIND CJ
WHILETRUE CJ_VALID = UNKNOWN THEN

RESET TEST_CJ
FIND TEST_CJ

END
CJ_VALID = TRUE;

RULE UPDATE_CATAPULT_JATO_LAUNCHES_VALID
IF

CATSJATO = N OR
EXCD = X AND
FIELD TO UPDATE = CATAPULT JATO LAUNCHES

109

THEN
UPDATE_CJ_VALID = NOT_NEEDED
DISPLAY "YOU ARE NOT ABLE TO ENTER CATAPULT/ JATO

LAUNCHES FOR {DOCNUMJJPDATE } BECAUSE EITHER
1. YOUR ORGANIZATION DOES NOT DOCUMENT CATAPULT/JATO

LAUNCHES
2. THE EXCEPTION CODE IS CURRENTLY X

PRESS ANY KEY TO CONTINUE-"
CLS

ELSE
GET DOCNUMJJPDATE = DOCNUM, FLIGHT, CJ
RESET CJ
FIND CJ
WHILETRUE UPDATE_CJ_VALID = UNKNOWN THEN

RESET TEST_CJ
FIND TEST_CJ

END
PUT FLIGHT
CLOSE FLIGHT
UPDATE_CJ_VALID = TRUE;

RULE COLUMN_INTEGRITY_CJ
IF

CJ >= 1 OR
CJ = UNKNOWN OR
CJ = (BLANK) AND
CJ <= 99 OR
CJ = UNKNOWN OR
CJ = (BLANK)

THEN
TEST_CJ = YES
CJ_VALID = TRUE
UPDATE_CJ_VALID = TRUE

ELSE
TEST_CJ = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 1 TO 99 OR

<SPACE> FOR NONE"
RESET CJ
FIND CJ;

RULE AIRLIFT_MISSION_NUMBER_VALID
IF

AIRLIFT = N OR
EXCD = X

THEN
AIRLIFT_VALID = NOT_NEEDED

ELSE
RESET MISNUM
FIND MISNUM
AIRLIFT VALID = TRUE;

110

RULE UPDATE_AIRLIFT_MISSION_NUMBER_VALID
IF

AIRLIFT = N OR
EXCD = X AND
FIELD_TO_UPDATE = AIRLIFT_MISSION_NUMBER

THEN
UPDATE_AIRLIFT_VALID = NOT_NEEDED
DISPLAY "YOU ARE NOT ABLE TO ENTER AIRLIFT MISSION

NUMBERS FOR { DOCNUMJJPDATE } BECAUSE EITHER
1. YOUR ORGANIZATION DOES NOT DOCUMENT AIRLIFT

MISSION NUMBERS
2. THE EXCEPTION CODE IS CURRENTLY X

PRESS ANY KEY TO CONTINUE-"
CLS

ELSE
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, MISNUM
RESET MISNUM
FIND MISNUM
PUT FLIGHT
CLOSE FLIGHT
UPDATE_AIRLIFT_VALID = TRUE;

RULE NUMHOIST_VALID
IF

NUMHOIST_VALID = UNKNOWN AND
EXCD = X

THEN
NUMHOIST_VALID = NOT_NEEDED

ELSE
WHILETRUE NUMHOIST_VALID = UNKNOWN THEN

RESET TEST_NUMHOIST
FIND TEST_NUMHOIST

END
NUMHOIST_VALID = TRUE;

RULE UPDATE_NUMHOISTS_VALID
IF

EXCD = X AND
FIELD_TO_UPDATE = NUMBER_OF_HOISTS

THEN
UPDATE_NUMHOISTS_VALID = NOT_NEEDED
DISPLAY "YOU ARE NOT ABLE TO ENTER NUMBER OF HOISTS FOR

{DOCNUMJJPDATE} BECAUSE THE EXCEPTION CODE IS
CURRENTLY {EXCD}

PRESS ANY KEY TO CONTINUE-"
CLS

ELSE
GET DOCNUMJJPDATE = DOCNUM, FLIGHT, NUMHOISTS
RESET NUMHOISTS

111

FIND NUMHOISTS
WHILETRUE UPDATE_NUMHOISTS_VALID = UNKNOWN THEN

RESET TEST_NUMHOIST
FIND TEST_NUMHOIST

END
PUT FLIGHT
CLOSE FLIGHT
UPDATE NUMHOISTS VALID = TRUE;

RULE COLUMN_INTEGRITY_NUMHOIST
IF

NUMHOISTS >= 1 OR
NUMHOISTS = UNKNOWN OR
NUMHOISTS = (BLANK) AND
NUMHOISTS <= 9 9 OR
NUMHOISTS = UNKNOWN OR
NUMHOISTS = (BLANK)

THEN
TEST_NUMHOIST = YES
NUMHOIST_VALID = TRUE
UPDATE_NUMHOISTS_VALID = TRUE

ELSE
TEST_NUMHOIST = YES
DISPLAY " YOU NEED TO ENTER A NUMBER FROM 1 TO 99, OR ?

FOR NONE."
RESET NUMHOISTS
FIND NUMHOISTS;

RULE UPDATE_ENGINE_HOURS_VALID
IF

EXCD = X AND
FIELD TO UPDATE = ENGINE HOURS

THEN
UPDATE_ENGINE_HOURS_VALID = NOT_NEEDED
DISPLAY " YOU ARE NOT ABLE TO ENTER ENGINE HOURS FOR

{DOCNUM_UPDATE} BECAUSE THE EXCEPTION CODE IS
CURRENTLY {EXCD}

PRESS ANY KEY TO CONTINUE- 11

CLS
ELSE

UPDATE_ENGINE_HOURS_VALID = NEEDED
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL
TOTAL = (HRS1 + HRS2 + HRS3)
CLOSE FLIGHT
RESET ENGINE_NUMBER
MENU ENGINE_NUMBER, DOCNUMJJPDATE = DOCNUM, FLTENG,
ENGNUM
FIND ENGINE_NUMBER
MRESET ENGINE NUMBER

112

CLOSE FLTENG
GET DOCNUMJJPDATE = DOCNUM AND ENGINE_NUMBER = ENGNUM,
FLTENG, ENGHRS
RESET UPDATE_ENGHRS
FIND UPDATE_ENGHRS
ENGHRS = (UPDATE_ENGHRS)
RESET ENGHRS_VALID
RESET ENGHRS_LOOP
FIND ENGHRS_LOOP
PUT FLTENG
CLS
CLOSE FLTENG
FIELD_TO_UPDATE = DONE;

RULE COLUMN_INTEGRITY_ENGINE_HOURS
IF

ENGHRS > AND
ENGHRS <= (TOTAL)

THEN
TEST_ENGHRS = YES
ENGHRS_VALID = TRUE

ELSE
TEST_ENGHRS = YES
DISPLAY " YOU MUST ENTER ENGINE HOURS BETWEEN 00.1 AND
{4 TOTAL} .

"

RESET ENGHRS
FIND ENGHRS;

1*********** ENTITY CONSTRAINT RULES ***********

RULE ENTITY_INTEGRITY_DOCNUM_MISSING
IF

DOCNUM_NEW = UNKNOWN OR
DOCNUM_NEW = (BLANK)

THEN
! loop to get user to enter a document number

WHILETRUE DOCNUM_NEW = UNKNOWN OR DOCNUM_NEW = (BLANK)
THEN

DISPLAY " YOU WILL NOT BE ABLE TO PROCEED UNLESS
YOU ENTER A DOCUMENT NUMBER."
RESET DOCNUM_NEW
FIND DOCNUM_NEW

END
DOCNUM_NOT_MISSING = TRUE

ELSE
DOCNUM_NOT_MISSING = TRUE;

RULE ENTITY__INTEGRITY_DOCNUM_DUPLICATE
IF

DOCNUM_NEW <> UNKNOWN OR
DOCNUM NEW <> (BLANK)

113

THEN
GET DOCNUM_NEW = DOCNUM, FLIGHT, DOCNUM
WHILETRUE DOCNUM = (DOCNUM_NEW) THEN

CLOSE FLIGHT
DISPLAY " THERE IS ALREADY A DOCUMENT NUMBER
{DOCNUM_NEW} THAT EXISTS WITHIN THE DATABASE."
RESET DOCNUM_NEW

! get another document number
FIND DOCNUM_NEW
RESET DOCNUM_NOT_MISSING

! once again must verify that document number is not a null
! value

FIND DOCNUM_NOT_MISSING
GET DOCNUM_NEW = DOCNUM, FLIGHT, DOCNUM

END
DOCNUM_DUPLICATE = FALSE;

RULE ENTITY_INTEGRITY_UPDATE_SIDENUM_MISSING
IF

FIELD_TO_UPDATE = SIDE_NUMBER AND
SIDENUM_UPDATE = UNKNOWN OR
SIDENUM_UPDATE = (BLANK)

THEN
! loop to get user to enter a aircraft side number

WHILETRUE SIDENUM_UPDATE = UNKNOWN OR SIDENUMJJPDATE =

(BLANK) THEN
DISPLAY " YOU WILL NOT BE ABLE TO PROCEED UNLESS
YOU ENTER A AIRCRAFT SIDE NUMBER."
RESET SIDENUM_UPDATE
FIND SIDENUM_UPDATE

END
SIDENUM UPDATE NOT MISSING = TRUE

ELSE
SIDENUM UPDATE NOT MISSING = TRUE;

RULE ENTITY_CONSTRAINT_SIDENUM_MISSING
IF WHICHTASK = APPEND_RECORD AND

SIDENUM_NEW = UNKNOWN OR
SIDENUM_NEW = (BLANK)

THEN
! loop to get user to enter a aircraft side number

WHILETRUE SIDENUM_NEW = UNKNOWN OR SIDENUM_NEW =

(BLANK) THEN
DISPLAY " YOU WILL NOT BE ABLE TO PROCEED UNLESS
YOU ENTER A AIRCRAFT SIDE NUMBER."
RESET SIDENUM_NEW
FIND SIDENUM_NEW

END
SIDENUM_NOT_MISSING = TRUE

ELSE
SIDENUM NOT MISSING = TRUE;

114

I *********** REFERENTIAL CONSTRAINT RULES ***********

RULE REFERENTIAL_INTEGRITY_SIDENUMJBXISTS
IF

WHICHTASK = APPEND_RECORD AND
SIDENUM_NEW <> UNKNOWN OR
SIDENUM_NEW <> (BLANK)

THEN
GET SIDENUM_NEW = SIDE, AIRCRAFT, SIDE

! loop till side number matches an aircraft in organization
WHILETRUE SIDE = UNKNOWN THEN

CLOSE AIRCRAFT
DISPLAY " NO AIRCRAFT EXISTS IN THE ORGANIZATION
WITH THE SIDE NUMBER { SIDENUM_NEW} .

"

RESET SIDENUM_NEW
! get another side number

FIND SIDENUM_NEW
RESET SIDENUM_NOT_MISSING

! once again must verify that side number is not a null
! value

FIND SIDENUM_NOT_MISSING
GET SIDENUM_NEW = SIDE, AIRCRAFT, SIDE

END
SIDENUM_EXISTS = TRUE
SIDENUM = (SIDE)

;

RULE REFERENTIAL_INTEGRITY_UPDATE_SIDENUM_EXISTS
IF

FIELD_TO_UPDATE = SIDE_NUMBER AND
SIDENUMJJPDATE <> UNKNOWN OR
SIDENUMJJPDATE <> (BLANK)

THEN
GET SIDENUMJJPDATE = SIDE, AIRCRAFT, SIDE

! loop till side number matches an aircraft in organization
WHILETRUE SIDE = UNKNOWN THEN

CLOSE AIRCRAFT
DISPLAY " NO AIRCRAFT EXISTS IN THE ORGANIZATION
WITH THE SIDE NUMBER { SIDENUMJJPDATE }

.

"

RESET SIDENUMJJPDATE
! get another side number

FIND SIDENUMJJPDATE
RESET SIDENUM_UPDATE_NOT_MISSING

! once again must verify that side number is not a null
! value

FIND SIDENUM_UPDATE_NOT_MISSING
GET SIDENUMJJPDATE = SIDE, AIRCRAFT, SIDE

END
SIDENUM_UPDATE_EXISTS = TRUE
SIDENUM = (SIDE)
CLOSE AIRCRAFT;

115

RULE ENGINE_HOURS_VALID
IF

EXCD = X AND
ENGHRS_VALID = UNKNOWN AND
FIELD_TO_UPDATE <> ENGINE_HOURS

THEN
ENGHRS_VALID = NOT_NEEDED

ELSE
Y=
ENGINE = (ENGINES - 1)

WHILETRUE Y <= (ENGINE) THEN
RESET ENGHRS_VALID
ENGNUM = (Y +1)
RESET ENGHRS
FIND ENGHRS
RESET ENGHRS_LOOP
FIND ENGHRS_LOOP
Y = (Y +1)
APPEND FLTENG
CLS

END
ENGHRS_VALID = TRUE;

RULE ENGINE_HOURS_LOOP
IF

ENGHRS_LOOP = UNKNOWN
THEN

WHILETRUE ENGHRS_VALID = UNKNOWN THEN
RESET TEST_ENGHRS
FIND TEST_ENGHRS

END
ENGHRS_LOOP = TRUE;

RULE UPDATE_ENGINE_HOURS_VALID_l
IF

EXCD = X AND
UPDATE_ENGHRS_VALID = UNKNOWN AND
WHICHTASK = UPDATE_RECORD AND
FIELD_TO_UPDATE <> ENGINE_HOURS

THEN
UPDATE_ENGHRS_VALID = NOT_NEEDED;

RULE UPDATE_ENGINE_HOURS_VALID_2
IF

EXCD <> X AND
UPDATE_ENGHRS_VALID = UNKNOWN AND
WHICHTASK = UPDATE_RECORD AND
FIELD_TO_UPDATE <> ENGINE_HOURS

THEN
Y =

ENGINE = (ENGINES - 1)

116

WHILETRUE Y <= (ENGINE) THEN
RESET ENGHRS_VALID
ENGNUM = (Y + 1)

RESET ENGHRS
FIND ENGHRS
RESET ENGHRS_LOOP
FIND ENGHRS_LOOP
Y = (Y +1)
APPEND FLTENG
CLS

END
UPDATE_ENGHRS_VALID = TRUE;

RULE UPDATE_ENGINE_HOURS_LOOP
IF

UPDATE_ENGHRS_LOOP = UNKNOWN
THEN

WHILETRUE UPDATE_ENGHRS_VALID = UNKNOWN THEN
RESET TEST_ENGHRS
FIND TEST_ENGHRS

END
UPDATE_ENGHRS_LOOP = TRUE;

I*********** USER DEFINED CONSTRAINT RULES ***********

RULE MISSION_POSITION_12A
IF

MSN1_1 = 1 AND
EXCD <> X AND
MSN12_VALID = UNKNOWN

THEN
WHILETRUE MSN12_VALID = UNKNOWN THEN

RESET CK_MSN12A
FIND CK_MSN12A
RESET REPEAT_REQUEST2A
FIND REPEAT_REQUEST2A

END
MSN12_VALID = TRUE;

RULE USER_DEFINED_MISSION12A_CODE
IF

MSN1_2 = A OR
MSN1_2 = B OR
MSN1_2 = C OR
MSN1_2 = D OR
MSN1_2 = E OR
MSN1_2 = F OR
MSN1_2 = G OR
MSN1_2 = H OR
MSN1_2 = I OR
MSN1 2 = N OR

117

THEN

MSN1_2 = OR
MSN1_2 = P OR
MSN1_2 = R AND
MSN1_1 = 1 AND
EXCD <> X

CK_MSN12A = YES
MSN12_VALID = TRUE;

RULE USER_DEFINED_MISSION12AA_CODE
IF

MSN1_2 <> A OR
MSN1_2 <> B OR
MSN1_2 <> C OR
MSN1_2 <> D OR
MSN1_2 <> E OR
MSN1_2 <> F OR
MSN1_2 <> G OR
MSN1_2 <> H OR
MSN1_2 <> I OR
MSN1_2 <> N OR
MSN1_2 <> OR
MSN1_2 <> P OR
MSN1_2 <> R AND
MSN1 1=1 AND

THEN
EXCD <> X

CK MSN12A = YES;

RULE REPEAT_REQUEST_12A
IF

MSN12_VALID <> UNKNOWN
THEN

REPEAT_REQUEST2A = NO
ELSE

CK_MSN12A = YES
REPEAT_REQUEST2A = YES
CLS
DISPLAY " POSITION 2 MUST BE R, A-I, OR N-P

PRESS ENTER TO CONTINUE. ~"

CLS
RESET MSN1_2
FIND MSN1_2;

RULE MISSION_POSITION_12B
IF

MSN1_1 = 2 AND
EXCD <> X AND
MSN12_VALID = UNKNOWN

THEN
WHILETRUE MSN12 VALID = UNKNOWN THEN

118

RESET CK_MSN12B
FIND CK_MSN12B
RESET REPEAT_REQUEST2B
FIND REPEAT_REQUEST2B

END
MSN12_VALID = TRUE;

RULE DSER_DEFINED_MISSI0N12B_C0DE
IF

MSN1_2 = J OR
MSN1_2 = K OR
MSN1_2 = L OR
MSN1_2 = M OR
MSN1_2 = N OR
MSN1_2 = OR
MSN1_2 = P OR
MSN1_2 = Q OR
MSN1_2 = R AND
MSN1_1 = 2 AND
EXCD <> X

THEN
CK_MSN12B = YES
MSN 12 VALID = TRUE;

RULE USER_DEFINED_MISSI0N12BB_C0DE
IF

MSN1 2 <> J OR
MSN1 2 <> K OR
MSN1 2 <> L OR
MSN1 2 <> M OR
MSN1 2 <> N OR
MSN1 2 <> OR
MSN1 2 <> P OR
MSN1 2 <> Q OR
MSN1 2 <> R AND
MSN1 1 = 2 AND
EXCD <> X

THEN
CK_MSN12B = YES;

RULE REPEAT_REQUEST_12B
IF

MSN12_VALID <> UNKNOWN
THEN

REPEAT_REQUEST2B = NO
ELSE

REPEAT_REQUEST2B = YES
CLS
DISPLAY " POSITION 2 MUST BE IN THE RANGE OF J-R,

PRESS ENTER TO CONTINUE. ~"

CLS

119

RESET MSN1_2
FIND MSN1_2;

RULE MISSI0N_P0SITI0N_12C
IF

MSN1_1 >= 3 AND
EXCD OX AND
MSN 12 VALID = UNKNOWN

THEN
WHILETRUE MSN12_VALID = UNKNOWN THEN

RESET CK_MSN12C
FIND CK_MSN12C
RESET REPEAT_REQUEST2C
FIND REPEAT_REQUEST2C

END
MSN 12 VALID = TRUE;

RULE
IF

USER_DEFINED_MISS IONI 2C_CODE

MSN1 2 = N OR
MSN1 2 = OR
MSN1 2 = S OR
MSN1 2 = T OR
MSN1 2 = U OR
MSN1 2 = V OR
MSN1 2 = W OR
MSN1 2 = X OR
MSN1 2 = Y OR
MSN1 2 = Z AND
MSN1 1 >= 3 AND
EXCD <> X

THEN
CK_MSN12C = YES
MSN 12 VALID = TRUE;

RULE USER_DEFINED_MISSION12CC_CODE
IF

THEN

MSN1 2 <> N OR
MSN1 2 <> OR
MSN1 2 <> S OR
MSN1 2 <> T OR
MSN1 2 <> U OR
MSN1 2 <> V OR
MSN1 2 <> w OR
MSN1 2 <> X OR
MSN1 2 <> Y OR
MSN1 2 <> Z AND
MSN1 1 >= 3 AND
EXCD <> X

CK MSN12C = YES

120

RULE REPEAT_REQUEST_12C
IF

MSN12_VALID <> UNKNOWN
THEN

REPEAT_REQUEST2C = NO
ELSE

REPEAT_REQUEST2C = YES
CLS
DISPLAY " POSITION 2 MUST BE N, 0, OR S-Z

PRESS ENTER TO CONTINUE. ~"

CLS
RESET MSN1_2
FIND MSN1_2;

RULE MISSI0N_P0SITI0N_12D
IF

EXCD = X AND
MSN12_VALID = UNKNOWN

THEN
WHILETRUE MSN12_VALID = UNKNOWN THEN

RESET CK_MSN12D
FIND CK_MSN12D
RESET REPEAT_REQUEST2D
FIND REPEAT_REQUEST2D

END
MSN12_VALID = TRUE;

RULE USER_DEFINED_MISSI0N12D_C0DE
IF

MSN1_2 = N OR
MSN1_2 = AND
EXCD = X

THEN
CK_MSN12D = YES
MSN12_VALID = TRUE;

RULE TEST_MISSI0N12DD_C0DE_VALID
IF

MSN1_2 <> N AND
EXCD = X

THEN
CK_MSN12D = YES;

RULE TEST_MISSI0N12DDD_C0DE_VALID
IF

MSN1_2 <> AND
EXCD = X

THEN
CK_MSN12D = YES;

RULE REPEAT REQUEST 12D

121

IF
MSN12_VALID <> UNKNOWN

THEN
REPEAT_REQUEST2D = NO

ELSE
REPEAT_REQUEST2D = YES
CLS
DISPLAY " POSITION 2 MUST BE N, OR .

PRESS ENTER TO CONTINUE. ~"

CLS
RESET MSN1_2
FIND MSN1_2;

RULE MISSION_POSITION_22A
IF

MSN2_1 = 1 AND
MSN22 VALID = UNKNOWN

THEN
WHILETRUE MSN22_VALID = UNKNOWN THEN

RESET CK_MSN22A
FIND CK_MSN22A
RESET REPEAT_REQUEST2A
FIND REPEAT_REQUEST2A

END
MSN22 VALID = TRUE;

RULE USER DEFINED MISSION22A CODE
IF

MSN2 2 = A OR
MSN2 2 = B OR
MSN2 2 = C OR
MSN2 2 = D OR
MSN2 2 = E OR
MSN2 2 = F OR
MSN2 2 = G OR
MSN2 2 = H OR
MSN2 2 = I OR
MSN2 2 = N OR
MSN2 2 = OR
MSN2 2 = P OR
MSN2 2 = R AND
MSN2 1 = 1 AND
EXCD <> .X

THEN
CK_MSN22A = YES
MSN22_VALID = TRUE;

RULE USER_DEFINED_MISSION22AA_CODE
IF

MSN2_2 <> A OR
MSN2 2 <> B OR

122

MSN2 2 <> c OR
MSN2""2 <> D OR
MSN2""2 <> E OR
MSN2""2 <> F OR
MSN2" 2 <> G OR
MSN2""2 <> H OR
MSN2" 2 <> I OR
MSN2" 2 <> N OR
MSN2" 2 <> OR
MSN2" 2 <> P OR
MSN2""2 <> Q AND
MSN2" 1 L AND
excd" <> X

THEN
CK MSN22A = YES;

RULE REPEAT_REQUEST_2A
IF

MSN22_VALID <> UNKNOWN
THEN

REPEAT_REQUEST22A = NO
ELSE

CK_MSN22A = YES
REPEAT_REQUEST22A = YES
CLS
DISPLAY " POSITION 2 MUST BE R, A-I, OR N-P

PRESS ENTER TO CONTINUE. ~"

CLS
RESET MSN2_2
FIND MSN2_2;

RULE MISSION_POSITION_22B
IF

MSN2_1 = 2 AND
EXCD <> X AND
MSN22_VALID = UNKNOWN

THEN
WHILETRUE MSN22_VALID = UNKNOWN THEN

RESET CK_MSN22B
FIND CK_MSN22B
RESET REPEAT_REQUEST22B
FIND REPEAT_REQUEST22B

END
MSN22_VALID = TRUE;

RULE USER_DEFINED__MISSION22B_CODE
IF

MSN2_2 = J OR
MSN2_2 = K OR
MSN2_2 = L OR
MSN2 2 = M OR

123

MSN2 2 = N OR
MSN2 2 = OR
MSN2 2 = P OR
MSN2 2 = Q OR
MSN2 2 = R AND
MSN2 1 = 2 AND
EXCD O - X

THEN
CK_MSN22B = YES
MSN22 VALID = TRUE;

RULE USER_DEFINED_MISSION22BB_CODE
IF

MSN2 2 <> J OR
MSN2" 2 <> K OR
MSN2"~2 <> L OR
MSN2 ~2 <> M OR
MSN2" 2 <> N OR
MSN2 2 <> OR
MSN2" 2 <> P OR
MSN2" 2 <> Q OR
MSN2" 2 <> R AND
MSN2" 1 = 2 AND
EXCD" <> X

THEN
CK MSN22B = YES;

RULE REPEAT_REQUEST_22B
IF

MSN22_VALID <> UNKNOWN
THEN

REPEAT_REQUEST22B = NO
ELSE

REPEAT_REQUEST22B = YES
CLS
DISPLAY " POSITION 2 MUST BE IN THE RANGE OF J-R,

PRESS ENTER TO CONTINUE. ~"

CLS
RESET MSN2_2
FIND MSN2_2;

RULE MISSION_POSITION_22C
IF

MSN2_1 >= 3 AND
EXCD <> X AND
MSN22 VALID = UNKNOWN

THEN
WHILETRUE MSN22_VALID = UNKNOWN THEN

RESET CK_MSN22C
FIND CK_MSN22C
RESET REPEAT REQUEST22C

124

FIND REPEAT_REQUEST22C
END
MSN22_VALID = TRUE;

RULE USER_DEFINED__MISSION22C_CODE
IF

MSN2_2 = N OR
MSN2_2 = OR
MSN2_2 = S OR
MSN2_2 = T OR
MSN2_2 = U OR
MSN2_2 = V OR
MSN2_2 = W OR
MSN2_2 = X OR
MSN2_2 = Y OR
MSN2_2 = Z AND
MSN2_1 >= 3 AND
EXCD <> X

THEN
CK_MSN22C = YES
MSN22 VALID = TRUE;

RULE USER_DEFINED_MISSION22CC_CODE
IF

MSN2 2 <> N OR
MSN2 2 <> OR
MSN2 2 <> S OR
MSN2 2 <> T OR
MSN2 2 <> U OR
MSN2 2 <> V OR
MSN2 2 <> W OR
MSN2 2 <> X OR
MSN2 2 <> Y OR
MSN2 2 <> Z AND
MSN2 1 >= 3 AND
EXCD <> X

THEN
CK MSN22C = YES;

RULE REPEAT_REQUEST_22C
IF

MSN22_VALID <> UNKNOWN
THEN

REPEAT_REQUEST22C = NO
ELSE

REPEAT_REQUEST22C = YES
CLS
DISPLAY " POSITION 2 MUST BE N, 0, OR S-Z

PRESS ENTER TO CONTINUE. ~"

CLS
RESET MSN2 2

125

FIND MSN2_2;

RULE MISSION_POSITION_32A
IF

MSN3_1 = 1 AND
MSN32_VALID = UNKNOWN

THEN
WHILETRUE MSN32_VALID = UNKNOWN THEN

RESET CK_MSN32A
FIND CK_MSN32A
RESET REPEAT_REQUEST32A
FIND REPEAT_REQUEST32A

END
MSN 3 2 VALID = TRUE;

RULE USER DEFINED MISSION32A CODE
IF

MSN3 2 = A OR
MSN3 2 = B OR
MSN3 2 = C OR
MSN3 2 = D OR
MSN3 2 = E OR
MSN3 2 = F OR
MSN3 2 = G OR
MSN3 2 = H OR
MSN3 2 = I OR
MSN3 2 = N OR
MSN3 2 = OR
MSN3 2 = P OR
MSN3 2 = R AND
MSN3 1 = 1 AND
EXCD <> .X

THEN
CK_MSN32A = YES
MSN 3 2 VALID = TRUE;

RULE USER__DEFINED MI SSION3 2AA CODE
IF

MSN3 2 <> A OR
MSN3 2 <> B OR
MSN3 2 <> C OR
MSN3 2 <> D OR
MSN3 2 <> E OR
MSN3 2 <> F OR
MSN3 2 <> G OR
MSN3 2 <> H OR
MSN3 2 <> I OR
MSN3 2 <> N OR
MSN3 2 <> OR
MSN3 2 <> P OR
MSN3 2 <> R AND

126

MSN3_1 = 1 AND
EXCD <> X

THEN
CK_MSN32A = YES;

RULE REPEAT_REQUEST_3A
IF

MSN32_VALID <> UNKNOWN
THEN

REPEAT_REQUEST32A = NO
ELSE

CK_MSN32A = YES
REPEAT_REQUEST32A = YES
CLS
DISPLAY " POSITION 2 MUST BE R, A-I, OR N-P

PRESS ENTER TO CONTINUE. ~"

CLS
RESET MSN3_2
FIND MSN3_2;

RULE MISSION_POSITION_3
IF

MSN3_1 = 2 AND
EXCD <> X AND
MSN32_VALID = UNKNOWN

THEN
WHILETRUE MSN32_VALID = UNKNOWN THEN

RESET CK_MSN32B
FIND CK_MSN32B
RESET REPEAT_REQUEST32B
FIND REPEAT_REQUEST32B

END
MSN32_VALID = TRUE;

RULE USER_DEFINED_MISSION32B_CODE
IF

MSN3_2 = J OR
MSN3_2 = K OR
MSN3_2 = L OR
MSN3_2 = M OR
MSN3_2 = N OR
MSN3_2 = OR
MSN3_2 = P OR
MSN3_2 = Q OR
MSN3_2 = R AND
MSN3_1 = 2 AND
EXCD <> X

THEN
CK_MSN32B = YES
MSN32 VALID = TRUE;

127

RULE USER_DEFINED_MISSION32BB_CODE
IF

MSN3_2 <> J OR
MSN3_2 <> K OR
MSN3_2 <> L OR
MSN3_2 <> M OR
MSN3_2 <> N OR
MSN3_2 <> OR
MSN3_2 <> P OR
MSN3_2 <> Q OR
MSN3_2 <> R AND
MSN3_1 = 2 AND
EXCD <> X

THEN
CK_MSN32B = YES;

RULE REPEAT_REQUEST_32B
IF

MSN32_VALID <> UNKNOWN
THEN

REPEAT_REQUEST32B = NO
ELSE

REPEAT_REQUEST32B = YES
CLS
DISPLAY " POSITION 2 MUST BE IN THE RANGE OF J-R.

PRESS ENTER TO CONTINUE. ~"

CLS
RESET MSN3_2
FIND MSN3_2;

RULE MISSION_POSITION_32C
IF

MSN3_1 >= 3 AND
EXCD <> X AND
MSN32 VALID = UNKNOWN

THEN
WHILETRUE MSN32_VALID = UNKNOWN THEN

RESET CK_MSN32C
FIND CK_MSN32C
RESET REPEAT_REQUEST32C
FIND REPEAT_REQUEST32C

END
MSN32 VALID = TRUE;

RULE USER_ DEFINED MISSION32C CODE
IF

MSN3 2 = N OR
MSN3""2 = OR
MSN3" 2 = S OR
MSN3 2 = T OR
MSN3 2 = U OR

128

THEN

MSN3_2 = V OR
MSN3_2 = W OR
MSN3_2 = X OR
MSN3_2 = Y OR
MSN3_2 = Z AND
MSN3_1 >= 3 AND
EXCD <> X

CK_MSN32C = YES
MSN32 VALID = TRUE;

RULE USER_DEFINED_MISSION32CC_CODE
IF

MSN3 2 <> N OR
MSN3 2 <> OR
MSN3 2 <> S OR
MSN3 2 <> T OR
MSN3 2 <> U OR
MSN3 2 <> V OR
MSN3 2 <> W OR
MSN3 2 <> X OR
MSN3 2 <> Y OR
MSN3 2 <> Z AND
MSN3 1 >= 3 AND
EXCD <> X

THEN
CK_MSN32C = YES;

RULE REPEAT REQUEST 32C
IF

MSN32_VALID <> UNKNOWN
THEN

REPEAT__REQUEST32C = NO
ELSE

REPEAT _REQUEST32C = YES
CLS
DISPLAY " POSITION 2 MUST BE N, 0, OR S-Z

PRESS ENTER TO CONTINUE. ~"

CLS
RESET MSN3 :2

FIND MSN3 2 t

ASK WHICHTASK: "CHOOSE A TASK TO PERFORM ON THE DATABASE.";
CHOICES WHICHTASK: APPEND_RECORD, UPDATE_RECORD,
DELETE_RECORD, DISPLAY_RECORD, EXIT;
ASK DOCNUM_NEW: " ENTER THE NEW DOCUMENT NUMBER.";
ASK SIDENUM_NEW: " PLEASE INDICATE THE SIDE NUMBER OF THE
AIRCRAFT.";
ASK SIDENUM UPDATE: " PLEASE INDICATE THE NEW SIDE NUMBER.";

129

ASK EXCD
ASK MSN1
POSITION"
ASK MSN1
POSITION"

ENTER AN EXCEPTION CODE OR <SPACE> FOR NONE
1: " ENTER
ENTRY .

"

;

2: " ENTER
ENTRY

A MISSION 1 CODE, HIT ENTER AFTER EACH

MISSION 1 CODE,
{MSN1 1}

HIT ENTER AFTER
ENTER SECOND

EACH

MISSION 1 CODE, HIT ENTER AFTER
{MSN1 1HMSN1 2} ENTER

EACH
THIRD

HOURS FLOWN ON MISSION 1.";
MISSION 2 CODE, HIT ENTER AFTER EACH

MISSION 2 CODE,
{MSN2 1}

HIT ENTER AFTER EACH
ENTER SECOND

MISSION 2 CODE, HIT ENTER AFTER
{MSN2 1}{MSN2 2} ENTER

EACH
THIRD

EACH
HOURS FLOWN ON MISSION 2.";
MISSION 3 CODE, HIT ENTER AFTER

{MSN3_1} {MSN3_2} {MSN3_3}";
MISSION 3 CODE, HIT ENTER AFTER EACH

{MSN3 1} ENTER SECOND

MISSION 3 CODE, HIT ENTER AFTER
{MSN3 1}{MSN3 2} ENTER

EACH
THIRD

POSITION";
ASK MSN1_3: " ENTER A
POSITION ENTRY
POSITION";
ASK HRS1: " ENTER THE
ASK MSN2_1 :

" ENTER A
POSITION ENTRY";
ASK MSN2_2 :

" ENTER A
POSITION ENTRY
POSITION";
ASK MSN2_3: " ENTER A
POSITION ENTRY
POSITION";
ASK HRS2 :

" ENTER THE
ASK MSN3_1: " ENTER A
POSITION ENTRY
ASK MSN3_2: " ENTER A
POSITION ENTRY
POSITION";
ASK MSN3_3: " ENTER A
POSITION ENTRY
POSITION";
ASK HRS3: " ENTER THE HOURS FLOWN ON MISSION 3.";
ASK TOTFLT: " ENTER THE TOTAL NUMBER OF FLIGHTS.";
ASK OPS: " ENTER THE SHIP/FIELD OPERATIONS CODE.";
ASK CJ: " ENTER THE NUMBER OF CATAPULT SHOTS OR JATO
LAUNCHES.";
ASK NUMHOISTS: " ENTER THE NUMBER OF AIRCRAFT HOISTS
ASK ENGHRS: " ENTER HOURS FOR ENGINE {ENGNUM}.";
ASK UPDATE_ENGHRS :

" ENTER HOURS FOR ENGINE
{ENGINE_NUMBER}

.

ASK DOCNUM_VIEW: "

WANT TO VIEW.";
ASK DOCNUM_DELETE

:

YOU WANT TO DELETE
ASK DOCNUMJJPDATE

:

YOU WANT TO UPDATE.";
ASK FIELD_TO_UPDATE: " SELECT WHICH FIELD YOU WANT TO
UPDATE.";
CHOICES FIELD_TO_UPDATE: DOCUMENT_NUMBER, SIDE_NUMBER,
EXCEPTION_CODE, MISSION_CODE_l , MISSION_l_HOURS,
MISSION_CODE_2, MISSION_2_HOURS, MISSION_CODE_3,
MISSION_3_HOURS, TOTAL_FLIGHTS, SHIP_FIELD_OPERATIONS_CODE,
CATAPULT_JATO_LAUNCHES, AIRLIFT_MISSION_NUMBER,
NUMBER_OF_HOISTS, ENGINE_HOURS, DONE;
ASK EXCD NEW: " ENTER AN EXCEPTION CODE OR <SPACE> FOR

WHICH NAVAL AIRCRAFT FLIGHT RECORD DO YOU

" WHICH NAVAL AIRCRAFT FLIGHT RECORD DO
ii .

" WHICH NAVAL AIRCRAFT FLIGHT RECORD DO

130

NONE .

"

;

ASK ENGINE_NUMBER: " CHOOSE THE ENGINE NUMBER THAT YOU WANT
TO CHANGE THE HOURS FLOWN."/
ASK CONTINUE: " THIS ACTION WILL DELETE THE WHOLE FLIGHT
RECORD! DO YOU WANT TO CONTINUE?"/
CHOICES CONTINUE: YES, NO/

131

LIST OF REFERENCES

1. Fernandez, E. B. , Summers, R.C.,and Wood,C, Database
Security and Integrity, Addison-Wesly Publishing

Company Inc., 1981.

2. Codd,E.F., The Relational Model for Database
Management, Version 2, Addison-Wesly Publishing
Company Inc., 1990.

3. Department of the Navy, Office of the Chief of
Naval Operations, OPNAVINST 3710. 7N, Natops General
Flight and Operating Instructions, 10 April 1990.

4. Kroenke, D .M. , and Dolan,K.A., Database Processing,
3rd ed., Science Research Associates Inc., Chicago,
Illinois, 1988.

5. Shafer,S.L., and Westney, R.E . , "Six Steps To
Successful Expert Systems, "Cost Engineering,
v.30, p. 17, June 1988.

6. Department of the Navy. Office of the Chief of Naval
Operations, OPNAVINST 4790. 2E, The Naval Aviation
Maintenance Program, 1 January 1989.

132

BIBLIOGRAPHY

Guida,G., and Tasso, C, Topics in Expert System Design,
Elsevier Science Publishers B.V., North Holland, 1989.

Kerschberg, L
.

, Expert System Databases, The
Ben jamin/Cummings Publishing Company, Menlo Park,
California, 1987.

Rolston, D.W., Principles of Artificial Intelligence and
Expert Systems Development, McGraw-Hill Inc., 1988.

Moose, A., Schussler, T
.

, and Shafer, D., VP-Expert,
Paperback Software International, Berkeley, California,
1989.

Whitten, J.L., Bentley, L.D., and Ho, T.L., Systems Analysis
and Design Methods, Times Mirror/Mosby College
Publishing, St. Louis, Missouri, 1986.

133

INITIAL DISTRIBUTION LIST

w/-

NO. COPIES

1

.

Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Dudley Knox Library, Code 52 2

Naval Postgraduate School
Monterey, California 93943-5002

3. Prof. Magdi N. Kamel, Code AS/KA 2

Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

4. Prof. Hemant K. Bhargava, Code AS/BH 1

Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

5. Commanding Officer 1

Naval Sea Logistics Center
Code 612.2
5450 Carlisle Pike
P.O. Box 2060
Mechanicsburg, Pennsylvania 17055-0795

6. LT. George J. Salitsky, USN 2

117 School St.
Childs, Pennsylvania 18407

134

S1538 Salitsky

c .l A prototype semantic in-

tegrity front end expert

system for a relational

database.

Thesis
S1538
c.l

Salitsky
A prototype semantic in-

tegrity front end expert
system for a relational
database.

^0
10-93 _

