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Abstract

This thesis describes the design and construction of a novel two-phase spherical electric
machine that generates rotating uniform magnetic fields, known as a fluxball machine.
Alternative methods for producing uniform magnetic fields with air-cored solenoidal mag-
nets are discussed and evaluated. Analytical and numerical models of these alternatives
are described and compared. The design details of material selection, slot geometry, and
mechanical connections are described for the fluxball machine.

The electrical properties of the machine are predicted and measured. Based on these
properties, two modes of operation for the fluxball machine, normal and resonant, are
described, and reference tables of important operating parameters are given. The drive and
measurement circuitry for the fluxball machine are described.

The magnetic properties of the fluxball machine are measured using Hall effect sensors.
The calibration of two different Hall effect sensors is performed, providing the ability to
measure the magnetic fields accurately to ±1%. Measurements of the magnetic field in
the uniform field region are taken and compared with predicted values. The attenuation
and distortion of the magnetic fields due to diffusion through the inner fluxball winding is
measured as a function of operating frequency.

Finally, future uses of this machine for various applications are discussed. The fluxball
machine provides uniform fields in the inner volume and point magnetic dipole fields in the
exterior volume. Both regions are extremely useful for conducting controlled magnetic fields
experiments. The fact that the machine can produce rotating fields of these types makes
it particularly useful for applications in ferrofluid research and in experimental research
related to large rotating machinery.
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Chapter 1

Introduction

1.1 Motivation

The research for this master’s thesis was motivated by the desire to gain a deeper under-

standing of two particular subject areas: rotating electric machinery and ferrofluids. Each

of these subjects straddle the gap between mechanical and electrical engineering, presenting

bountiful opportunities to learn, problem solve, and build.

Rotating magnetic fields are used to turn everything from screwdrivers and coffee

grinders to locomotive engines and ship propellers. These machines function on princi-

ples that are well understood and well documented. However, the design and construction

of these machines is a constantly evolving field. Engineers and scientists are continually

seeking ways to increase the power density, efficiency, and utility of these machines. While

this thesis does not discuss the design of industrial motors or generators, it does probe

the basic physics and engineering of these machines. In fact, the machine that has been

designed and built as part of this thesis was conceived in order to correct the deficiencies of

and to replace the conventional motor armatures that have been used to excite ferrofluids

in early experiments.

Ferrofluids are stable colloidal suspensions of permanently magnetized nanoparticles in

liquid volumes. These unique fluids exhibit superparamagnetic susceptibilities and offer new

and interesting ways to interact with fluids. The governing equations for these fluids are

being actively debated in the academic literature, allowing for interesting research at the first

17



18 CHAPTER 1. INTRODUCTION

principles level. Ferrofluids have found applications in consumer products, like cooling for

loudspeakers and rotary exclusion seals for computer disk drives, in advanced technologies,

such as nano-electromechanical systems and sensors, as well as in biomedical applications,

such as directed drug delivery, therapeutic hyperthermia, and enhanced magnetic resonant

imaging. New applications are currently being conceived and implemented in a wide variety

of industries.

1.2 Fluxball

The term fluxball is used throughout this thesis to describe any combination of spherical

windings. This type of current system has been described and analyzed in various forms

dating back to 1883 [1, 2]. The name has been applied broadly to any device created by

winding a coil around a sphere. The simplicity of this arrangement has led to a variety of

applications in the fields of magnetic sensing and uniform magnetic field generation [3–7].

Depending on the application, fluxballs have been designed and built with single or multiple

windings and in sizes ranging from a few inches to a few feet in diameter. These fluxballs

have been capable of generating magnetic fields of intensities between a few nano-Tesla (nT)

and a few milli-Tesla (mT). Appendix A describes some of the past implementations of

fluxballs.

Theoretically the fluxball provides a perfectly uniform magnetic field in the interior

volume of the winding. The design of a fluxball was considered for this thesis because a

machine was needed that could produce a volume with easily controlled uniform magnetic

fields. There were numerous other coil arrangements that could have been used to produce

uniform magnetic fields. A number of alternative arrangements are described in Chapter 2.

1.3 Fluxball Machine

The term fluxball machine refers specifically to the machine, shown in Fig. 1-1, built during

this thesis work. To the best of the author’s knowledge, this fluxball machine is one of

the largest and most powerful designs yet attempted. This fluxball machine features two

concentric, orthogonally oriented windings, each capable of producing a highly uniform
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Figure 1-1: The fluxball machine. This two concentric winding spherical electric machine
was built during the course of this thesis work in order to produce a 15cm diameter spherical
volume of highly uniform rotating magnetic fields. The inner winding has a radius of 11cm,
while the outer winding has a radius of 16 cm.

magnetic field of 25 mT in the interior region of the inner sphere. When excited with

alternating currents that are out of phase by 90◦ a rotating magnetic field is generated.

Fig. 1-2 demonstrates this mechanism graphically.
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ωt = 0 ωt = π/2 ωt = π

ωt = π

ωt = 0 ωt = π/2 ωt = π

ωt = π

ωt = 0 ωt = π/2 ωt = π

Iinner = i0 cos ωt

Iouter = i0 sin ωt

Iinner = i0 cos ωt

Iouter = i0 sin ωt

Figure 1-2: A rotating magnetic field is produced by driving two orthogonal coils with
sinusoidal currents with 90◦ phase shifts. The top row of images shows the magnetic fields
produced by the inner winding, while the second row shows the magnetic fields produced
by the outer winding. The bottom row shows the rotating magnetic field produced by the
combination of the inner and outer windings.
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Figure 1-3: A graphical overview of magnetic field imaging methods. [8]

1.4 Measuring Magnetic Fields

Operation and validation of the fluxball machine required some research into the area of

magnetic sensing. Depending on the particular magnetic sensing application, there are

generally two or three different methods that can be used to measure the magnetic fields.

Fig. 1-3 show some of these options and the applications for which they are suitable.

For this thesis, alternating current (AC) and direct current (DC) produced magnetic

fields of strengths between 0 and 25 mT were measured. The sensors that could be used

were nuclear magnetic resonant (NMR), induction method, or Hall effect sensors. De-

tailed descriptions of these methods, as well as many other methods, can be found in J.

L. Symonds’ article “Methods of Measuring Strong Magnetic Fields” [9]. NMR sensors,

which use radio-frequency signals to measure the resonant frequency of specific protons

in an applied magnetic field, are the most accurate, but they are prohibitively expensive.

Induction coils, which measure the applied magnetic fields by linking a small amount of

the flux with coils of wire, can have greater accuracy than Hall effect sensors, but these

sensors are generally built to each particular application. Great care must be taken in the

construction of induction sensors in order to realize their theoretical accuracy. Hall effect

sensors are readily available, inexpensive, integrated circuit packages that can be carefully

calibrated to give very good accuracy. For these reasons, Hall effect sensors were used to

measure the magnetic fields generated by the fluxball machine.
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Figure 1-4: The hexagonal peaking patterns produced by ferrofluids that are exposed to
perpendicular magnetic fields, 33 mT in this case [11].

Two different Hall effect sensors were used to make measurements for this thesis. The

first was a relatively expensive three axis probe and Teslameter combination manufactured

by F.W. Bell, a Sypris Test and Measurement Company(≈ $8,000). The second sensor is

a relatively inexpensive (≈ $35) three axis sensor containing three integrated circuit chips

positioned with their axis of sensitivity mutually orthogonal. This sensor was purchased

from GMW Associates and bore an Ametes logo on the chip package. Chapter 5 details the

evaluation and calibration of each of these sensors.

1.5 Ferrofluid Background and Applications

The research and development of ferrofluids has been an active interdisciplinary field since

their discovery more than thirty years ago. The primary starting point for understanding

the behavior of ferrofluids is R.E. Rosensweig’s text Ferrohydrodynamics [10]. Figs. 1-4

through 1-5 shows a few interesting ferrofluid patterns.

The academic literature and research concerning spin-up flows of ferrofluids lacks con-

sensus on the issue of ferrofluid rotation. The disagreement focuses on the role of spin
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Figure 1-5: The labyrinth instability produced by ferrofluids that are exposed to tangential
magnetic fields, 25 mT in this case. The fluid is constrained to a 1 mm layer by placing it
between two 10 cm diameter glass plates [11].

diffusion in the rotation of ferrofluids that are exposed to uniform rotating magnetic fields.

One side decouples the fluid mechanical and magnetic dynamics by taking the spin viscosity

term to be negligibly small and then argues that non-uniformities in the magnetic field alone

cause the rotation observed in ferrofluids. The other side points to fundamental properties

of the ferrofluids, contesting that the linear and spin velocity terms in the magnetization

relaxation equation account for the rotation, with velocity profiles determined by the large

values of spin viscosity. Careful experiments have been conducted that seem to prove the

latter theory correct [12, 13]. In these experiments values for the magnetization relaxation

time and spin viscosity were fit from measurements of ferrofluid velocity profiles using ul-

trasound velocimetry. These values showed good agreement with numerical simulations

conducted using the finite element software COMSOL Multiphysics [14].

The definitive experiment for resolving this disagreement would involve driving a volume

of ferrofluid with highly uniform magnetic fields and then measuring some quantity, either

magnetic of fluid dynamic, that reflects motion, or lack of motion, of the fluid volume. The

uniform magnetic field of the fluxball machine could be used to conduct this experiment,
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leading to a better understanding of the mechanics of ferrofluids.

Ferrofluids are currently being applied in a variety of different industries. They are being

used in loudspeakers and in electric power generation and transmission components because

of their enhanced heat transfer capabilities. Also, a number of industries have begun using

ferrofluids as liquid o-rings in rotary and exclusion seals. All of these applications take

advantage of ferrofluid response to DC magnetic fields.

The applications of ferrofluids that are excited by AC and rotating magnetic fields are

still being developed. Many applications are expected in the fields of micro and nano elec-

trical mechanical systems (mems/nems). Other expected application are in the biomedical

field where AC excited ferrofluids may be used for drug delivery, for biological material

separation, and to improve magnetic resonance imaging [15,16].

1.6 Units

This thesis and the majority of the technical details are published in SI units. However,

because many of the supplies were ordered in English units, the design work was done in

a combination of English and SI units. In this thesis the English units are included, where

helpful, in parenthesis.



Chapter 2

Uniform Magnetic Field

2.1 Overview

There are many different combinations of geometric arrangements and current distributions

that can be used to produce uniform magnetic fields. Each of these arrangements has its

own benefits and drawbacks. The typical trade-offs are between the degree of uniformity

of the field, measured by deviation from the center of uniformity, the strength of the field,

the volume of uniform field region, and the accessibility of the uniform field region.

Air-cored, axially symmetric electromagnets are the most common type of magnets

used to generate uniform fields. When low density (< 10 mT) fields are required these

magnets are usually cooled by circulating air or cooling water through the magnets. When

much stronger fields are required, these magnets are cooled with cryogens. For magnets

requiring cooling systems the mechanical design must be done simultaneously with the

electro-magnetic design. D.B. Montgomery’s text Solenoidal Magnet Design gives insight

into the design process for these larger electro-magnets [17].

Information on the design of square, polygon, saddle, and a variety of other geometries

can be found in the academic literature [18–21]. The analysis of these coils is very similar

to the approach described in Section 2.2, but the simplifications and calculations are done

in cartesian geometry rather than cylindrical.

One final method for producing a uniform field is with permanent magnets. J.H. Jensen

and M.G. Abele describe in “Generation of Highly Uniform Magnetic Fields with Magne-

25
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tized Wedges” a method for producing a uniform field using wedges of permanent mag-

nets [22]. Using a mechanical systems to rotate the system of wedges, a highly uniform

rotating magnetic field could be produced. This type of apparatus was not considered for

the design of this machine because it would limit the type and variety of experiments that

could be performed (e.g. experiments involving an oscillating magnetic field).

The electromagnets discussed below are all air-cored, axially symmetric magnets that do

not require dedicated cooling systems. The design of these systems is well document because

of their broad applications in nuclear resonance experimentation, geomagnetic sensing, mag-

netic resonance imaging, etc. . . . The magnet designs described below were all considered

for the design of the test apparatus built during this thesis. The coil distributions presented

here are idealized. The practical design of a spherical coil system is described in Chapter 3

and is analyzed in Chapter 6.

2.2 Calculating Magnetic Fields

All of the magnetic fields that are calculated in this section depend completely on the

winding geometry and current distribution. The Biot-Savart Law is the only mathematical

tool required to solve for the magnetic field density, B, at a distance, r, from a moving

charge, q. The B-field is given by:

B =
µ0qv × iQP

4πr2
T, (2.1)

where µ0 is the permeability of free space given in SI units. The signs of vectors B, v, and

iQP are given using the right-hand rule as shown in Fig. 2-1.

For the particular case of axially symmetric coils it is often easiest to use coil loops as the

basic unit of current and then calculate the total field by the superposition of each current

loop, again using the Biot-Savart Law. The field, B, at a point, P , given in cylindrical

geometry by the coordinates (r, φ, z), due to a circular loop of current that is centered at

the origin with magnitude I and radius a, has field components Br, Bφ, and Bz and is given
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r v

iQP
qB

Figure 2-1: The magnetic field, B, generated by a moving charge, q, at a point, r measured
from q, is perpendicular to both the direction of motion, v, and the unit vector joining the
charge to the field point, iQP [23].

by eqs. 2.2 - 2.7 [24].

Br =
µIkz

4πr(ar)1/2

[
−J1 +

a2 + r2 + z2

(a− r)2 + z2
J2

]
(2.2)

Bφ = 0 (2.3)

Bz =
µIk

4π(ar)1/2

[
J1 +

a2 − r2 − z2

(a− r)2 + z2
J2

]
(2.4)

where k =
(

4ar
(a + r)2 + z2

)1/2

, and (2.5)

J1 and J2 are the elliptical integrals of Legendre given by [24]:

J1 = K (k) =
∫ 2π

0

dφ

(1− k2 sin2 φ)1/2
(2.6)

J2 = E (k) =
∫ 2π

0
(1− k2 sin2 φ)1/2dφ (2.7)

Milan Garrett, in a series of articles, details how other useful properties of the coil

system, such as the magnetic vector potential, mixed gradients, and mutual inductance

between coaxial loops, can be calculated [25–27].

Finally, some useful pieces of the computer code, written to analyze these magnets, are

included in Appendix B.
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2.3 Helmholtz Coils

A common method used to produce a uniform magnetic field, is a two coil system known

as a Helmholtz Coil. The Helmholtz coil consists of two windings of equal radius, a, placed

a distance, d, apart and energized with a current, I. The magnetic field at a point z along

the axis of the windings is given by eq. 2.8.

Bz(r = 0) =
µ0Ia2

2

(
1

(z2 + a2)3/2
+

1
((z − d)2 + a2)3/2

)
(2.8)

When a/d = 1 the first two spatial derivatives of Bz, ∂Bz/∂z and ∂2Bz/∂z2, equal zero at

r = z = 0 and produce a volume of nearly uniform B near the center of the coils. Plots

of the magnetic field lines and uniform volumes produced by four Helmholtz coils with

different ratios of a/d can be seen in Fig. 2-2. Although properly spaced Helmholtz coils do

produce a nearly uniform field, the volume of the uniform region is limited and the number

of turns necessary to produce a field of the strength required for this machine make it an

impractical option.

2.4 Higher Order Coils

In the same manner that properly spacing two coils can eliminate second order gradients in

the magnetic fields, higher order gradients can be eliminated by the use of a larger set of

compensating coils. The literature is full of different combinations of geometry and current

distribution that can be used to create uniform magnetic fields compensated to almost any

order desired [28–34]. Fig. 2-3 shows four coil systems that can be found in the literature.

These coils systems have been sized to produce a spherical region, 15 cm in diameter, of

25 mT uniform magnetic field with non-uniformity less than 0.1%. The turns per coil and

power consumption of the coil systems are listed in the figure. The dissipated power is

calculated by assuming that American Wire Gauge (AWG) 20 wire with a current rating

of 5 A is used to wind each coil.
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0 0.25 0.5 0.75 >1

a/d = 1/2 a/d = 1

a/d = 3/2 a/d = 2

Non-uniformity of B–field (%)

2 a

d

Figure 2-2: The magnetic field lines produced by Helmholtz coils of different ratios of coil
radius, a, and coil separation, d. The shading on the plots shows the regions in which the
magnitude of the magnetic field is uniform to within 1%.
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5 cm 5 cm

5 cm 5 cm

0 0.25 0.5 0.75 >1

4128 Turn Maxwell Coil: 172.6 W/mT 6223 Turn Garrett Coil: 195.8 W/mT

3787 Turn Barker Coil: 87.5 W/mT 2569 Turn Braunbek Coil: 96.7 W/mT

Non-uniformity of B–field (%)

Figure 2-3: The magnetic field lines produced by three and four coil axially symmetric
magnets. Each magnet produces a 15 cm diameter spherical 25 mT uniform magnetic field
region with non-uniformity less than 0.1%. The total number of turns for the coil system
and the power consumed per mT of field density produced are listed along with the name
for each coil system. The shading on the plots shows the regions in which the magnitude
of the magnetic field is uniform to within 1% [35].
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x

z

y

θ

Surface Current: K = iφ
N
2R i sin θ

Figure 2-4: Mathematical description of a fluxball of radius R with a uniformly distributed
winding in z with N total turns each carrying a current i as a sheet of surface current
flowing azimuthally, in the φ direction, and varying sinusoidally with the zenith angle, θ.

2.5 Fluxball

A perfectly uniform field can be produced by using a sinusoidal winding distribution. The

first description of this type of coil was presented by Éleuthère Mascart and J. Joubert

in their 1883 text, A Treatise on Electricity and Magnetism [1]. In their description, the

spherical coil was generated by the superposition of small, solenoidal currents of varying

radius. In subsequent models, the fluxball has been described mathematically as a current

sheet imposed on the surface of a sphere, as shown in Figure 2-4 [2]. For all of these models,

the scalar magnetic potential can be used to solve analytically for the magnetic field in the

regions inside and outside of the sphere. The field in the inner region is uniform and the

field in the region outside of the fluxball is that of a point magnetic dipole. The magnetic
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fields are given by eqs. 2.9 and 2.10.

B =
µ0Ni

3R
(ir cos θ − iθ sin θ) =

µ0Ni

3R
iz r < R (2.9)

B =
µ0Ni

6R
(R/r)3(ir2 cos θ + iθ sin θ) r > R (2.10)

Again an approximate design of the machine was done, this time using the fluxball

geometry. The magnetic field lines and basic design information for this geometry are

shown in Fig. 2-5. Theoretically, the magnetic field is perfectly uniform inside the entire

volume of the spherical coil. However, to allow for the perturbation due to discretization of

the coil, even in this ideal case, the spherical coil in Fig. 2-5 has a radius of 8 cm in order

to produce a 15 cm diameter uniform region.

2.6 Conclusions

The fluxball is clearly a more effective magnet for producing a uniform magnetic field

than any of the previous coils examined. The total number of coils required, the power

consumption, and the required radius of the winding are significantly lower than the other

magnets considered. The disadvantages of the spherical magnet are the complexity of

construction and the limited access that is available to the uniform field region.

There is another family of coil systems that can be found in the academic literature

that bridge the gap between the three and four coils systems discussed in Section 2.4 and

the fluxball [24, 35–40]. These systems are optimal coil systems that have been designed

for various applications and usually use larger numbers of compensating coils. For this

application the selection of the appropriate optimal solution would have provided a design

that was slightly less uniform and possibly consumed slightly less power. Based on the

overall size of this machine, power consumption was not a major concern, therefore, optimal

coils systems were not considered.

One final advantage of the fluxball, particularly for the theoretical research with fer-

rofluids, is the mathematical model itself. This model is relatively easy to work with in

spherical or cylindrical coordinates and allows for the analytical solution of many problems
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960 Turn Fluxball Coil: 12.3 W/mT

Figure 2-5: The magnetic field lines produced by a fluxball. The fluxball produces a 8 cm
diameter spherical 25 mT magnetic field region with theoretically perfect uniformity. The
total number of turns and the power consumed per mT of field density produced are listed.
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concerning the interactions between the fluids and fields. The coil systems of Section 2.4

require greater mathematical manipulation to account for the specific geometry of the coil.

While analytical work of this type can be done, it lends itself more to numerical analysis.



Chapter 3

Machine Design

3.1 Overview

Although the theory behind the fluxball is relatively simple, and there exist numerous

similar designs, the design of this particular machine was not simple. Two main design

goals drove the complexity of the design. First, a design goal was to generate a magnetic

field of 25 mT. This meant that multiple layers would need to be used to create the

windings and that thermal affects would be much greater. Technical specifications have

been written that specify the current carrying capacity of wire of standard sizes, however,

these specification become much less accurate when the wire is bundled together into a coil.

Therefore a protoype had to be built in order to test the winding design. The winding

design is discussed in greater detail in Section 3.3.

The second goal was to generate a rotating magnetic field. This meant that at least two

windings would need to be created and that their connections and interfaces would need to

be carefully designed. Because the decision was made to use concentric fluxballs for each

of the windings, the attenuation of the magnetic fields due to the diffusion of the magnetic

fields through the copper wire also needed to addressed. This attenuation was most easily

characterized by the skin depth, δ, of the material, given by:

δ =
√

2/(ωµσ) , (3.1)

35
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Frequency δ
(Hz) (mm)

1 65.2
10 20.6
50 9.2
60 8.4
100 6.5
500 2.9
1000 2.1

Table 3.1: The skin depth of copper calculated with µ = µ0 = 4π × 10−7 H/m and σ =
5.8× 107 S/m.

where ω is the angular frequency, µ is the magnetic permeability, and σ is the electri-

cal conductivity [23]. Table 3.1 lists the skin depth of copper, with µ = µ0 = 4π ×

10−7 Henries/meter and σ = 5.8×107 Siemens/meter, for frequencies between one and 1000

Hz.

The maximum thickness of the winding was ≈6mm, meaning that at frequencies above

30 Hz the magnetic field might be attenuated by the inner winding by more than 15%.

Furthermore, because the thickness was not uniform with respect to the incident magnetic

field, the attenuation would be non-uniform. In order to better understand the effects of the

winding on the magnetic fields, the mathematical model of the fluxball was used to analyze

the diffusion of the fields through the conducting sphere. Additionally, after the machine

was constructed the fields were measured at different excitation frequencies. The measured

attenuation was significantly smaller than predicted by simple skin depth approximations.

These measurements are discussed in Chapter 6.

Because of these complexities, a computer model was generated in Matlab and rendered

in Rhinoceros 3.0 [41, 42]. These tools allowed for rapid model generation and validation

in the early stages of the design. These tools proved very useful for developing the basic

parameters of the design and for improving the construction of the fluxball. Appendix B

describes the modeling tools in greater depth.

While the main specifications for the construction of the machine were known from the

computer models before construction began, most of the details of assembly and interconnec-
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tion, both mechanical and electrical, were designed as the machine was being constructed.

Two facilities were used to build the fluxball machine — the MIT Hobby Shop and the

Laboratory for Electromagnetic and Electronic Systems (LEES) shop. The knowledge and

experience of the shop staffs were the key enablers to production of the fluxball machine.

Detailed drawings, descriptions, and images of the constructions process are included in

Appendix C.

3.2 Test Chamber

This machine was designed and built in order to have a test chamber with highly control-

lable, highly uniform magnetic fields. Therefore the size and shape of the test chamber was

the first detail to be designed. The test chamber needed to be able to contain a sphere

of ferrofluid that was large enough to be studied with the ultrasound velocimetry sensors

that are operated by the laboratory. These sensors have a diameter of 8.5 mm. Therefore

the test sphere should be approximately ten times larger, having a diameter in excess of

≈80 mm. Allowing for cable runs and for other devices, such as a torque transducer, that

may be desirable in the future, the inner chamber diameter was designed to be 15 cm in

diameter. Fig. 3-1 shows the initial concept drawing for the inner fluxball.
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Winding

Rtc =
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of Ferrofluid

Figure 3-1: Test chamber sizing for the inner fluxball. The ferrofluid test sphere needed to
be at least 80 mm in diameter to allow for ultrasound velocimetry equipment. Allowing for
additional sensors and equipment inside the chamber, the test chamber needed to have a
radius, Rtc, of approximately 75 mm. Then leaving room for support structure, the initial
inner winding radius, Rwinding, was sized at 100 mm.

3.3 Winding Design

In order to generate a uniform field in the interior region of the sphere, the number of

turns per length along the axis of the winding needed to be uniform and the radius of the

winding needed to vary with the sin of the zenith angle, θ. This exact coil geometry was

not practically achievable for a fluxball with a large magnetic field. In this situation the

winding must be created by laying down multiple layers of wire at each height along the

axis of the winding. Therefore some wires would lay directly on the surface of the sphere,

but other wires would lay above the surface of the sphere by a few millimeters. Also laying

down the wires in such a way that the turns density remained constant while the radius

changed quickly would be very difficult to have done in practice. Finally, the operation of
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the spheres required that there be a mechanism for accessing the inner chamber in order

to change the ferrofluid test sphere or to route instrumentation. In order to solve these

problems, a number of different geometries were explored and the effect on the magnetic

fields were numerically predicted using the Biot-Savart Law.

Due to the necessity of laying down multiple layers of wire at each location along the

axis of the winding, the winding was bundled into slots so that the turns could lay with

the proper density along the axis of the winding. Additionally, a flange was required to

separate these slots so that turns could not slide from one slot to the next. These two

features were purely for construction reasons, and therefore it was desirable to reduce their

impact on magnetic field properties. The impact was reduced by using small slots and very

thin flanges.

In order to minimize the effect of skin depth, as well as to increase the turns density,

the smallest diameter wire that was capable of carrying the required current was used. The

required current was 5 A for a short interval (≈ 1 min) and 2 A for continuous operations.

From wire property tables, including some deduction for bundling, it was hypothesized that

AWG 20 wire, with a diameter of 0.81mm, would be smallest wire capable of carrying these

currents. The data sheet for this wire can be found in Appendix D. A prototype of two

winding slots was built in order to verify the capability of the bundled wire. Fig. 3-2 shows

the winding prototype.

The strength of the magnetic field in the interior of a spherical winding is given by

eq. 3.2:

Bz =
µ0Ni

3R
T , (3.2)

where µ0 = 4π× 10−7 H/m is the permeability of free space, N is the total number of turns

on the sphere, i is the current in the winding, and R is the radius of the sphere taken at the

midpoint of the winding bundle. Based on the design of the test chamber and on estimates

for the required support structure, R was taken to be 10cm for the inner winding and 15cm

for the outer winding. The 20 AWG wire size had been selected, and its current carrying

capacity verified with the prototype. This left only the number of turns to be calculated

for the desired field strength of 25 mT. The number of turns was a function of the slot
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Figure 3-2: A prototype of the fluxball winding that was built to verify the current carrying
capacity of the 20 AWG wire bundle. Two 1 cm high bundles of 56 turns were wrapped in
series on a 7.5 cm diameter white delrin cylinder and separated by a 0.8 mm black plastic
flange. The first turn was secured to the cylinder by the turns that were wrapped on top of
it, while the final turn had to be secured with the yellow electrical tape shown at the top
of the picture. This made the terminals of the coil available, while not allowing the coil to
unwind.
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geometry and the numbers of layers per bundles, as given by eqs. 3.3–3.5.

N = slots ∗ turns/slot (3.3)

slots =
2R

slot height− flange height
(3.4)

turns/slot = layers ∗ slot height
wire diameter

(3.5)

The slot and flange heights were selected from a catalog of standard material thicknesses,

and then it was calculated that 6 layers of wire would need to be wrapped in each slot to

produce the required magnetic field density. Each winding then had an Amp-turns density

of 308 A-turns/cm along the winding axis.

3.4 Structural Design

Once the test chamber dimensions were roughly known and the winding distribution was de-

signed, then the structure for supporting the winding could be designed. The ideal structure

for this machine would be perfectly spherical, have very thin, strong flanges for keeping the

winding distribution correct, and have very little radial thickness so that the winding radii

could be located very close together. There were not any commercially available structures

that met this description, so something had to be specially fabricated. Material selection,

design for fabrication, and design for future growth all had to be considered.

The material selected for the fluxball was polycarbonate. This is a very strong plastic

that is nonmagnetic, nonconducting, and relatively easy to machine. A wide variety of

sheets, shapes, and parts can be purchased in polycarbonate. As with all plastic, certain

liquid environments can be very destructive. For this device, ferrofluids made with oil or

water will be encountered, as well as some alcohol products. Polycarbonate is relatively

tolerant of these environments and is, therefore, a good choice for this application. Finally,

polycarbonate has a melting point of ≈ 115◦ C (240◦ F), which is below the expected

operating temperature of the winding. All of these properties made polycarbonate an

excellent choice for the fluxball structure.

A number of geometries were investigated for creating the spheres, but in the end discs
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Test Chamber
Rtc = 75 mm

80 mm Sphere
of Ferrofluid

5.9 mm
Polycarbonate Disc

0.50 mm
Polycarbonate Flange

Inner Winding
Bundle
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Figure 3-3: The design for fluxball winding support structures. Discs of different radii were
stacked and bonded in place to support the winding and test chamber apparatus.

were chosen as the basic building blocks. Thick discs were used to create the slots, and thin

discs were interleaved to serve as flanges. The inner radii of the spheres were cut in steps so

that assembly and later installations could be managed more easily. Dealing with doubly

curved surfaces can be quite challenging in terms of construction, so these were eliminated

altogether. A computer controlled OMAX waterjet cutter was used to precisely cut the

disc from large sheets of polycarbonate. Grooves were cut into all of the discs so that they

could be precisely aligned. The discs were then aligned and bonded in place with an acrylic

cement. The data sheets for the two thicknesses of polycarbonate sheet that were used to

construct the structure can be found in Appendix D. Fig. 3-3 shows the design for the inner

sphere. The outer sphere was built in precisely the same way.
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Characteristic Inner Fluxball Outer Fluxball
Interior B-field 5.4 mT/A 5.4 mT/A

Winding Axis Radius, r(θ = 0◦) 10.36 cm 15.04 cm
Quadrature Axis Radius, r(θ = 90◦) 11.02 cm 16.75 cm

Peak Current 5 A 5 A
Continuous Current 2 A 2 A

Total Turns 1280 1920
Length of Winding 700 m 1568 m

Total Slots 32 48
Slot Height 5.9 mm 5.9 mm

Flange Height 0.50 mm 0.50 mm

Table 3.2: Magnetic, geometric, and electrical specifications for the fluxball machine.

3.5 Final Design

Fig. 3-4 shows how the two fluxball windings fit together to form a single machine. In order

to assemble all of the pieces together into a single machine a number of connections needed

to be designed and constructed. These details were generally designed and built in the shop

with the advice of the shop staff. See Appendix C for more details and more pictures.

Table 3.2 lists the characteristics of the fluxball machine. There was a difference in

radius between the winding axis and quadrature axis because the disc radii were calculated

and cut based on ordered rather than measured material thicknesses. The small differences

between ordered and actual values were multiplied by the number of slots and flanges,

leading to final fluxball windings that were slightly oblate.
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Test Chamber
Rtc = 75 mm

80 mm Sphere
of Ferrofluid

1 cm

Figure 3-4: The design for the fluxball machine including support legs and inner fluxball
support tubing.



Chapter 4

Machine Operation

4.1 Lumped Parameter Model of Windings

Lumped parameter models are used in order to build the intuition and understanding re-

quired for operating complicated machinery. By the winding design this machine has high

inductance. Driving a highly inductive machine with alternating current requires detailed

knowledge of the frequency response of the circuit because the impedance of the circuit

changes significantly with excitation frequency. Operating parameters can then be tab-

ulated that enable the machine to be quickly reconfigured during experimentation. This

information is particularly important for this machine because it will be operated at a range

of frequencies while conducting experiments with ferrofluids.

The lumped parameter model seeks to characterize the machine by its response to single

frequency sinusoidal excitations across the frequency spectrum. The characterization is in

terms of the circuit’s inductance, capacitance, and resistance. These distinct circuit char-

acteristics are in reality all properties of the single circuit component - a single, continuous,

wire. The telegrapher’s equations would be a valid way to model this circuit, however the

periods of interest are long enough relative to the transit time of the signal down the wire

that a single set of circuit elements can be used to model the wire. Therefore, each of the

windings is characterized by the RLC circuit shown in Fig. 4-1.

The values for each of the components were predicted based on the wire properties

and then the actual component values were measured using the Hewlett-Packard 4192A

45
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Vs(t)

Rwinding

LwindingCwinding

Figure 4-1: The lumped parameter model of the fluxball being driven by a time domain
voltage signal, Vs(t). Each fluxball winding is characterized by it’s capacitance, Cwinding,
inductance, Lwinding, and resistance, Rwinding.

Component Predicted Value Measured Value %Error
Rinner 23.3 Ω 24.0 Ω 3.1
Linner 153.8 mH 172.8 mH 11.0
Cinner N/A 140 pF N/A
Router 52.1 Ω 53.0 Ω 1.7
Louter 517.5 mH 570.0 mH 9.2
Couter N/A 140 pF N/A

Table 4.1: The predicted and measured values of resistance, inductance, and capacitance for
each fluxball winding. Resistance values were measured at 5 Hz. Inductance and capacitance
measurements were taken in the frequency mid-range (≈100− 5000 Hz for inductances and
≈100− 5000 kHz for capacitances).

LF Impedance Analyzer. The complex impedance of each circuit was measured across the

entire range of the impedance analyzer, 5 Hz to 13 mHz. The measured and predicted

values for the circuit components are listed in Table 4.1

4.1.1 Resistance

The resistance of the windings were accurately predicted from properties of the wire. The

resistance of a length of wire is given by eq. 4.1:

R =
Lwρ

a
Ω (4.1)
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where Lw is the length of the wire in meters, ρ is the resistivity of the conductor in Ω-m,

and a is the cross sectional area of the conductor in m2. AWG 20 copper wire at 20◦ C has

ρ = 1.724× 10−8 Ω-m and a = πr 2
wire = π(0.4064× 10−3)2 = 0.5189× 10−6 m2.

4.1.2 Inductance

Hermann Haus and James Melcher, in their text Electromagnetic Fields and Energy, give

an expression for the external inductance of a spherical winding based on the model of the

fluxball as a φ directed current sheet [2]. Using eq. 4.2 and the fluxball properties given in

Table 3.2 the external component of the self inductance of each winding was predicted.

Lexternal =
2
9
πN2µ0R Henries (4.2)

The internal inductance of the coil accounts for the energy that is stored inside the wind-

ing. This inductance is only a function of the length of the wire, lw, and the permeability

of the wire, µ0 [23]. The internal inductance of wire is given by eq. 4.3.

Linternal =
µ0lw
8π

Henries (4.3)

Despite the length of each fluxball winding, the internal inductance contribution is only a

fraction of a percent of the total self-inductance.

The mutual inductance of the winding was predicted to be negligible due to the orthog-

onal orientation of the fluxball to one another. Measurements of the winding currents were

taken that verified this prediction.

4.1.3 Capacitance

Capacitance between the wires in the winding occurs at high frequencies when the current

in the wire does not have time to diffuse evenly into the wire; instead the charge resides on

the perimeter of the wire. The charge on the outside of the wire and the small separation

between the wires generates some capacitance. This effect was not of importance at the

operating frequencies of this machine, so the values were measured experimentally and noted

in Table 4.1 for completeness.
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Ẑ

w
in

d
in

g
(d

eg
)

Frequency (Hz)

1 10 100 1000 10000 100000 1e+006 1e+007
-90

-45

0

45

90

‖Ẑ
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Figure 4-2: The complex impedance of the fluxball windings as a function of frequency.
The impedance magnitude and phase were measured using a Hewlett-Packard 4192A LF
Impedance Analyzer. The modeled values were calculated using the measured values given
in Table 4.1 and the impedance model given by eq. 4.4 and shown in Fig. 4-1.
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Frequency ‖Ẑinner‖ 6 Ẑinner ‖Ẑouter‖ 6 Ẑouter

(Hz) (Ω) (Deg) (Ω) (Deg)
1 24.0 2.6 53.1 3.9
5 24.6 12.7 55.9 18.7
10 26.3 24.3 64.0 34.0
20 32.4 42.1 89.1 53.5
30 40.5 53.6 119.8 63.7
40 49.6 61.1 152.7 69.7
50 59.4 66.1 186.8 73.5
60 69.4 69.8 221.3 76.1
70 79.7 72.5 256.2 78.1
80 90.1 74.6 291.4 79.5
90 100.6 76.2 326.7 80.7
100 111.2 77.5 362.1 81.6
200 218.5 83.7 718.3 85.8
300 326.6 85.8 1076.0 87.2
400 435.0 86.8 1434.3 87.9
500 543.5 87.5 1792.9 88.3
1000 1087.0 88.7 3593.1 89.1

Table 4.2: Impedance magnitude and phase calculated at particular operating frequencies
for both the inner and outer fluxball windings.

4.1.4 Complex Impedance

Once the values of all of the circuit components are known, then it is convenient to model

the circuit by it complex impedance. Eq. 4.4 gives the expression for input impedance, Ẑ,

of the circuit shown in Fig. 4-1 as a function of angular frequency, ω.

Ẑ = −
jω
C + R

LC

ω2 − jωR
L − 1

LC

Ω (4.4)

Fig. 4-2 graphically describes the circuit’s measured and modeled complex impedance

using the component values given in Table 4.1. Table 4.2 lists the values for the impedance

of the windings at particular frequencies that may be used to operate the machine.
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4.2 Additional Circuitry

The fluxball windings could be driven in a variety of a ways. The difficulty, as always,

was how to drive them so that the important electrical and magnetic properties could be

easily controlled and measured. A number of different options were tested before the final

method described here was chosen. The following parts were used for evaluation, testing,

and operation of the fluxball machine: a personal computer with LabVIEW installed, the

National Instrument’s accessory BNC 2120, one dual channel LVC 5050 power amplifier,

two 1 Ω, 50 W resistors, a 5 V DC power supply, magnetic sensors that will be described in

Chapter 5, and numerous BNC cable connectors.

The LabVIEW PC interface provided a robust platform for performing numerous tasks

from generating waveforms to measuring currents and voltages from magnetic sensors to

writing and saving files of data. Using software generators, two drive signals were created

and routed to analog output BNC connections on the BNC 2120. From here the signals were

sent to the amplifier. Figs. 4-3 and 4-4 show the front and back panels from the LabVIEW

user interface that was built to operate the fluxball machine.

LEES operates two AE Techron Inc. LVC 5050, high voltage, general purpose, linear

power amplifiers. The data sheet for these amplifiers is included in Appendix D. For the

most part a single amplifier was used in the 20 gain mode. Since the BNC 2120 was able to

provide up to 10 volts and the amplifier began clipping and distorting the signal at ≈ 120V

this gain mode was sufficient. However, both amplifiers, operated in the parallel channel

mode, would be needed to operate the fluxball machine at it highest rated current of 5 A

at high frequencies.

In series with the fluxball windings were two 1 Ω resistors. The resistors, arranged in

this way, changed the circuit characteristics only minimally while ensuring that changes to

the drive circuitry or connections would not affect the winding current measurements. The

currents through the measurement resistors were equal to the currents through the fluxball

windings and proportional to the voltage across the resistors with a small correction for the

actual resistor values, listed in Table 4.3.

The voltages from the current measurement resistors, as well as voltages from the mag-
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Figure 4-3: A screen shot of the user interface of the LabVIEW program that was used to
excite, control, and measure the fluxball machine during operation.

Component Measured Value
Rminner 1.028 Ω
Rmouter 1.037 Ω

Table 4.3: The measured values of the 1 Ω current measurement resistors.
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Figure 4-4: An annotated screen shot of the back panel of the LabVIEW program that was
used to excite, control, and measure the fluxball machine during operation.
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netic field sensor, were then acquired by the eight analog input pins on the BNC 2120.

These waveforms were displayed to the screen and written to files for further processing in

Matlab. Labview also performed a calculation of the peak current in each winding and used

this value to adjust the amplitude of the output voltage in order to maintain a constant

current in the winding. The voltage controller was a proportional feedback controller with

some saturation logic.

4.3 Operation of the Fluxball Machine

4.3.1 Normal Operation

When operating the fluxball machine at any frequency above a few Hertz, the impedance

characteristics are dominated by the inductance of the windings. As the impedance increases

the voltage required to provide the same amount of current increases at the same rate. The

voltages, V̂op, required for operation at a given frequency and magnetic field density, B̂, can

be quickly calculated from the impedance, Ẑ, and current, Îop, of the circuit using eqs. 4.5

and 4.6 and Table 4.2.

V̂op = Îop (Ẑwinding + Rm) V (4.5)

B̂ = 5.4 Îop mT (4.6)

For convenience, Table 4.4 lists the V̂op required for each winding to produce a magnetic

field density of 1 mT in the interior region of the fluxball machine for some particular

frequencies.

Table 4.4 demonstrates that it quickly becomes impractical to operate the fluxball ma-

chine at high frequencies to produce 1 mT, let alone the 25 mT that it was designed to

produce. Clearly another mode of operation needed to be devised.
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Frequency ‖V̂opinner‖ 6 V̂opinner ‖V̂opouter‖ 6 V̂opouter

(Hz) (V/mT) (Deg) (V/mT) (Deg)
1 4.6 2.5 10.8 3.8
5 4.7 12.2 11.4 18.3
10 5.1 23.5 13.0 33.5
20 6.1 40.9 17.9 53.0
30 7.6 52.5 24.1 63.3
40 9.3 60.0 30.6 69.3
50 11.1 65.2 37.4 73.2
60 12.9 69.0 44.3 75.9
70 14.8 71.8 51.3 77.8
80 16.7 73.9 58.3 79.3
90 18.7 75.6 65.4 80.5
100 20.6 77.0 72.4 81.4
200 40.5 83.4 143.7 85.7
300 60.5 85.6 215.2 87.1
400 80.6 86.7 286.9 87.8
500 100.7 87.4 358.6 88.3
1000 201.3 88.7 718.6 89.1

Table 4.4: The operating voltages, V̂op, required for each winding to produce a magnetic
field density of 1 mT in the interior region of the fluxball machine.
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Vs(t)

RwindingRm

LwindingCwinding

Cpf

Figure 4-5: The model of one winding of the fluxball machine being operated with a resistor,
Rm, for measuring the current, and a capacitor, Cpf , for generating resonance in the circuit.

4.3.2 Operation at Resonance

As mentioned above, the problem with the circuit is the large amount of inductance. This

problem can be eliminated by adding capacitance into the circuit. When the inductance

and capacitance in the circuit is perfectly matched, the impedance seen by the source is

purely resistive, and the circuit is said to be in resonance. Sometimes this type of change to

the circuit is also called power factor correction because it corrects the angle between the

voltage and current waveforms as delivered by the source. Fig. 4-5 shows the model of a

fluxball winding with the measurement resistor, Rm, and power factor correcting capacitor,

Cpf , added to the circuit.

The value of Cpf depends on the operating frequency and can be calculated by finding

the imaginary part of the winding impedance, Ẑwinding, setting it equal to the negative of

the reactance of the capacitor, and then solving for Cpf , as shown in eq. 4.7:

Cpf =
1

ω Im(Ẑwinding)
Farads . (4.7)

When the correct value of Cpf is used in the resonant circuit, the imaginary components of

the impedance cancel, and the magnitude of the voltage required only depends on the real
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Figure 4-6: The real and imaginary components of the fluxball windings as a function of
frequency. The impedance magnitude and phase were measured using a Hewlett-Packard
4192A LF Impedance Analyzer. The modeled values were calculated using the measured
values given in Table 4.1 and the impedance model given by eq. 4.4 and shown in Fig. 4-1.
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part of Zwinding, given by eq. 4.8:

Re(Ẑwinding) =
Rw

ω4(LwCw)2 + ω2((RwCw)2 − 2LwCw) + 1
Ω , (4.8)

where the subscript, w, refers to the parameter of the given winding.

Fig. 4-6 shows the real and imaginary components of the winding impedance for both

windings for the range of frequencies where the fluxball machine would be operated. There

is a substantial difference in the measured and modeled values of the impedance at the

higher frequencies that is due to measurement error. This error occurs when the angle of

Zwinding is very close to 90◦. Because the angle is so steep, small errors in measurements

create very large errors in the calculated values. For this region it is more accurate to use

the model than the measurements.

Throughout the frequency range where the fluxball machine will be operated, Re(Zwinding)

changes its value only slightly. Therefore, a single value for the voltage, V̂op, required to

produce a magnetic field density of 1 mT in the interior region can be calculated. The ap-

proximate values for V̂op are 5 V and 10.8 V for the inner and outer windings, respectively.

This is only true when a perfectly matched Cpf is used. Table 4.5 lists resonant capacitor

values for particular frequencies.

Looking at the voltage ratings required for the capacitors listed in Table 4.5 it is clear

that operation in the resonance mode is not as easy a solution as it first appears. Capacitors

rated for alternating current operation in the kilo-Volt range quickly become very large and

very expensive.



58 CHAPTER 4. MACHINE OPERATION

Frequency Cpfinner
VCpfinner

Cpfouter VCpfouter

(Hz) (µF) (V) (µF) (V)
1 147,000 5 44,400 20
5 5,860 30 1,780 90
10 1,460 60 444 180
20 366 120 111 360
30 163 170 49.4 540
40 91.6 220 27.8 720
50 58.6 280 17.8 900
60 40.7 330 12.3 1,080
70 29.9 380 9.07 1,260
80 22.9 440 6.94 1,440
90 18.1 490 5.47 1,620
100 14.7 550 4.44 1,800
200 3.67 1,090 1.11 3,590
300 1.63 1,630 0.494 5,370
400 0.916 2,180 0.278 7,200
500 0.586 2,720 0.178 8,960
1000 0.146 5,440 0.044 18,000

Table 4.5: Capacitors, Cpf , required to create resonance in the fluxball windings at particu-
lar operating frequencies. VCpf

is the required voltage rating for Cpf operation at maximum
rated current of 5 A.
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Sensor Calibration

5.1 Sensors

5.1.1 Hall Effect

The Hall Effect was discovered by Edwin Hall in 1879. Hall observed that current flowing

perpendicular to a magnetic field was deflected by the Lorentz force on the charge carriers.

The deflection of the charge carriers created an accumulation of charge on the faces of

the conductor. This accumulation of charge gave rise to a potential difference across the

volume of the conductor that could be measured across the faces of the conductor. Fig. 5-1

describes this phenomenon in greater detail.

Modern Hall effect sensors, like the ones described in this chapter, are fabricated from

semiconductors and incorporated into integrated circuit chips that condition the voltage

signal in a variety of ways. Often this conditioning includes amplification and temperature

compensation.

5.1.2 F.W. Bell Three Axis Probe and Teslameter

Fig. 5-2 shows the F.W. Bell Hall effect three axis magnetic probe and 7030 advanced triple

channel digital Teslameter. The specifications for this system are included in Appendix D.

The Tesla-meter was acquired by the laboratory in August of 2002, and the three axis probe

was purchased in March of 2007. The Tesla-meter has not been calibrated since arriving at

59
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Equipotential Lines Hall Plate

Equipotential Lines With No Magnetic Field

Equipotential Lines In A Magnetic Field

(electrons)

Figure 1
Explanation of the Hall effect

This equation ignores many low
level effects but will suffice for

the depth of this discussion.

Note:
All B fields in the article refer to the
component of 
that is normal to the surface of
the Hall plate. A more general
equation for Hall voltage is V
yIB
between B and the normal to the
Hall plate surface.

(a)

(b)

(c)

B

B

I

I

II

VH=0

VH 0

F= q(vxB)
F= qEqvE

Figure 5-1: The Hall voltage, VH, generated in a conductor carrying current I by the
magnetic field B (a) when B = 0, (b) when B 6= 0, and (c) in the cross section of the
conductor when B 6= 0. Diagrams (a) and (b) show the lines of equipotential inside the
conductor. Diagram (c) describes the force mechanisms on the charge carriers [43].
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Figure 5-2: The F.W. Bell three axis probe and 7030 Teslameter System.

the laboratory. The total cost of this system was ≈$8, 000.

Before any data was taken, all channels were zeroed using Advanced AC Zeroing op-

tion. All calibration data was collected from the probe using the corrected analog output

terminals. Each channel was kept in the 3.0mT setting, and the analog outputs were in the

3.0 V setting.

5.1.3 GMW Three Axis Sensor

Fig. 5-2 shows the GMW Hall effect three axis magnetic sensor. The specifications for these

sensors are included in Appendix D. Six of the GMW sensors were purchased in March of

2007. The cost of each sensor was ≈ $35. Small sensors of this type were desired because

they could be placed in the interior region of the fluxball machine in order to verify the

strength and uniformity of the magnetic field.

The GMW sensors were supplied a constant 5.0 V DC supply voltage. Voltage signals

were read from the pins of the sensors using a shielded 18 conductor data cable.
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Figure 5-3: GMW three axis sensor.

5.2 Calibration Equipment

5.2.1 Reference Magnetic Field

The inner fluxball winding was used to create a reference magnetic field. The fluxball was

arranged so that there was a 38 mm gap between the two hemispheres. This allowed for

room to insert and manipulate the probe and sensors during the calibration procedure. The

magnetic field created by the fluxball could be calculated numerically using the Biot-Savart

Law; this gave a predicted magnetic field of 4.08 mT. The field was then measured at DC

with each element of the three probe F.W. Bell Hall Effect probe. All sensors agreed that

the reference magnetic field, Bz, was directly proportional to the current in the winding,

with the proportionality constant, α, equal to 4.47mT/A. Therefore the z directed magnetic

field could be calculated from the winding current, I, using eq. 5.1.

Bz = αI mT , α = 4.47 mT/A (5.1)

Fig. 5-4 show the magnetic field lines for the fluxball in the calibration arrangement.
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Figure 5-4: The geometry and magnetic field lines for the inner fluxball as set-up for
calibration procedures. The gap between the hemispheres is 38 mm. The shading on the
plot shows the region in which the magnitude of the magnetic field is uniform to within 1%.
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5.2.2 LabVIEW Interface

LabVIEW was used as the primary tool for controlling the fluxball current, monitoring the

sensors, and taking measurements. A program was design to automate the data acquisition

process so that multiple frequencies and current amplitudes could be tested in a quick and

precise way. Data was acquired for a range of frequencies between 1Hz and 1kHz and a

range of field strengths between 0 and 5 mT. The upper limit on the field strength was set

by the sensitivity ranges on the F.W. Bell Teslameter. Going above 5 mT put the device

in a new sensitivity range that could not be changed automatically. This was not really

a limitation because of the proportionality of the reference field and because the GMW

sensors began to clip at 7.3 mT. The LabVIEW user interface used to control the reference

magnet during the calibration procedures was very similar to the one shown in Fig. 4-3.

5.2.3 Data Processing in Matlab

The raw waveform data was written into text files by the LabVIEW program. This data

could then be read into the Matlab workspace and processed. The processing routine

involved taking the raw waveform and calculating the peak magnetic fields on each sensor.

Each text file contained five waveforms. The first two waveforms were the voltages measured

across the 1Ω resistors that were placed in series with the inner and outer magnet windings.

During calibration procedures only the inner winding was energized. The third, fourth,

and fifth waveforms corresponded to the voltages produced by the x, y, and z Hall effect

elements. Fig. 5-5 shows the voltage waveform data for a case where both windings are

energized.
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Figure 5-5: The raw voltage waveform data prior to processing in Matlab. One period of
data, corresponding to 50 samples, for the GMW sensor is shown. Vx and Vy are excited by
the current in the outer winding and are, therefore, proportional to the voltage measured
on the outer winding measurement resistor, VRout . Similarly, Vz is proportional to VRin ;
however, the direction is exactly opposite. This orientation was chosen for the GMW sensors
so that they could be positioned as closely as possible to the F.W. Bell probe elements.
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5.3 Procedure

A special apparatus was designed and built in order to keep the probe and sensor aligned

along all three axes. Figs. 5-6 and 5-7 show this device.

Both devices were calibrated against the reference field by exciting one axis of the sensor

at a time. Care was taken to assure that the excitation at each sensor was precisely the

same by positioning the sensors at the exact center of the reference field. Additionally,

the excitation of the sensor in the axis being calibrated was ≈ 100 times greater than the

excitation of the off axis elements. Figs. 5-8–5-11 show the calibration arrangements for all

three axes.

For the x and z elements three independent calibration runs were conducted across the

range of frequencies and field intensities. The first two runs were conducted one day and

then a third run was conducted on the following day. The sensors were left energized and

the geometry was unchanged between the second and third runs. For the y element two

runs were conducted on the same day. The entire procedure was completed in three days.

Once the data was collected, the probes were calibrated by fitting the data to the

known field using a third order polynomial fit. All of the data from a single run was used

to generate the fit. Higher order fits were tried, but they resulted in only marginally better

fits. Subsequent runs were plotted using the new fit to verify that it was correct.
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Figure 5-6: Probe and sensor alignment apparatus with GMW sensor removed. The circular
tip of the F.W. Bell probe can be seen; it is flush with the bottom of the milled slot for the
GMW sensor.

Figure 5-7: Probe and sensor alignment apparatus with GMW sensor installed.
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Figure 5-8: Calibration set-up for x and y axis Hall effect elements.

Figure 5-9: A close-up view of the calibration set-up for x and y axis Hall effect elements.
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Figure 5-10: Calibration set-up for z axis Hall effect element.

Figure 5-11: A close-up view of the calibration set-up for z axis Hall effect element.
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5.4 Results

The calibration procedure was completed for the F.W. Bell probe and for one of the six

GMW sensors. The F.W. Bell sensor generally gave better precision across field strengths

and frequencies. However it had very poor accuracy in the y and z axis elements, indicating

that the systems needed to be calibrated by the manufacturer. Using the known field to

calibrate the probe the absolute error could be reduced to less than 25 µT. Additionally,

the calibrated error grew with the field strength so that the error never exceeded 1% of the

actual magnetic field. Fig. 5-12 shows the error in the F.W. Bell probe before and after the

calibration procedure.

The GMW sensors showed very good initial calibration. The absolute error across

the sensor sensitivity range was ≈ ±0.05 mT. Unlike the F.W. Bell system, the error

curve had a distinctly non-linear shape. This shape can be seen in Fig. 5-13. The sensor

measurements were very repeatable and had no significant frequency dependency. All three

sensors elements gave the best accuracy around 5 mT. Fitting this data to the known field

did not significantly improve the accuracy of the sensors.
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Figure 5-12: The initial and calibrated error for each element of the F.W. Bell three axis
Hall effect probe and Teslameter system. Each element was calibrated using a single set of
data points for one frequency of one run.



72 CHAPTER 5. SENSOR CALIBRATION

0 1 2 3 4 5 6 7
-0.1

-0.05

0

0.05

0.1
x-axis element

0 1 2 3 4 5 6 7
-0.1

-0.05

0

0.05

0.1
x-axis element

0 1 2 3 4 5 6 7
-0.1

-0.05

0

0.05

0.1
y-axis element

0 1 2 3 4 5 6 7
-0.1

-0.05

0

0.05

0.1
y-axis element

0 1 2 3 4 5 6 7
-0.1

-0.05

0

0.05

0.1
z-axis element

0 1 2 3 4 5 6 7
-0.1

-0.05

0

0.05

0.1
z-axis element

+, ◦, ∗ 5 Hz
+, ◦, ∗ 10 Hz
+, ◦, ∗ 50 Hz
+, ◦, ∗ 100 Hz

+, ◦, ∗ 200 Hz
+, ◦, ∗ 300 Hz
+, ◦, ∗ 400 Hz
+, ◦, ∗ 500 Hz

+, ◦, ∗ 600 Hz
+, ◦, ∗ 700 Hz
+, ◦, ∗ 800 Hz
+, ◦, ∗ 900 Hz

+, ◦, ∗ 1000 Hz
+ 1st Run
◦ 2nd Run
∗ 3rd Run

Initial Error Calibrated Error

Magnetic Field (mT)

E
rr

or
(m

T
)

Figure 5-13: The initial and calibrated error for each element of the GMW three axis Hall
effect sensor. Each element was calibrated using a single set of data points for one frequency
of one run



Chapter 6

Magnetic Field Measurements

6.1 Predicted Magnetic Field

The mathematical machinery for predicting the magnetic fields of the fluxball machine was

developed in Chapter 2. Using the current loop as the basic unit of current and neglecting

pitch in the current, the predicted field densities were calculated numerically. Fig. 6-1 shows

the field lines and predicted non-uniformity of the fluxball machine. The current systems

of the fluxball machine are irrotational (i.e ∇×B = 0), which means that all magnetic field

lines should close on themselves. Due to numerical limitation in the “streamline” plotting

function in matlab, this does not always happen.

6.2 Measured Magnetic Field

The calibration procedures described in Chapter 5 showed that the GMW sensors, using the

specified sensitivity of 280 mV/T, were accurate to ± 0.05 mT. Around 5.0 mT the GMW

sensors had an accuracy closer to ± 0.015 mT. Therefore, the windings of the fluxball

were excited with AC signals of 1 A peak amplitude, generating a peak field of ≈ 5.4 mT

and providing measurement accuracy in excess of ± 1.0%. Sensors were placed at six

different locations in the interior volume of the fluxball machine as shown in Fig. 6-2. A

new apparatus was constructed to accurately position the sensors in the fluxball machine.

Figs. 6-3 and 6-4 show the sensor platforms with the GMW sensors installed. Two different
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Figure 6-1: The predicted magnetic fields lines and percent of non-uniformity of the mag-
netic field produced by the fluxball machine as built. The windings are energized with
currents that are 90◦ out of phase. Iinner = i0 cos(ωt) and Iouter = i0 sin(ωt). The open
field lines are due to numerical limitations; they are not physical.
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Figure 6-2: The locations of the sensors inside the fluxball machine for magnetic field
measurements. The number and coordinates, (x, z), of each sensor are shown. All sensors
were located at y = 0. The sensors are drawn to scale.

configurations had to be used to take all of the data. The first set was taken with two

sensor platforms mounted on a guide rail that was machined to fit into the access tubes,

thereby maintaining vertical alignment. The second set of data was taken with just one

sensor platform shimmed to the top of the inner winding structure. A 30 Hz AC waveform

was used to excite the fluxball winding for all of the field uniformity measurements.
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Figure 6-3: The side view of the sensor platform apparatus. The sensors were placed tightly
into a milled slot 4 cm apart from each other. The platforms were threaded onto a 20 cm
nylon screw and secured with lock washers. The data cables were run out of the machine
through the cable-ways, and the screws were capped with cylinders that fit tightly into the
access tubes.

Figure 6-4: The top view of the GMW sensor platform shimmed to the top of the inner
fluxball structure.
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6.3 Magnetic Field Uniformity

Measurements of the magnetic fields were taken with each winding energized alone and

then with both windings energized. Figs. 6-5–6-7 show the results of these measurements.

The inner winding produced magnetic fields that were z-directed, while the outer winding

produced magnetic fields that were x-directed. When each coil was energized alone the

magnetic field components along the two axes orthogonal to the winding axis were neg-

ligible. When both windings were operated simultaneously both x and z directed fields

were measured, producing very similar values to those measured when each coil was excited

alone.

Fig. 6-8 shows one period of the measured data for each sensor, as well as the predicted

magnetic field. The waveforms follow each other nicely, showing no distortion of the mag-

netic field. The measured waveforms had a larger amplitude, in the range of 5–9%, than

the predicted waveforms, as shown in Tables 6.1 and 6.2. The reasons for this error are

discussed in Chapter 7.

The mechanism for creating a rotating field is clearly present; however, the phase dif-

ference between the x and z directed fields is not 90◦ deg. This occurred because the

windings were excited with voltages, rather than currents, that were 90◦ deg out of phase.

As discussed in Chapter 4, the impedance characteristics of the winding are different and

therefore the angle between the voltage and the current is different. A slight adjustment

must be made to the phase difference in the excitation voltage waveforms in order to ac-

count for this. This correction depends on the operating frequeny. Using the LabVIEW

drive circuitry discussed in Chapter 4 this correction is easily applied.

Tables 6.1 and 6.2 list the predicted and measured magnetic field strength at the sensor’s

locations, as well as the error of the prediction and the non-uniformity of the field.
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Figure 6-5: The peak magnetic field density inside the fluxball machine with only the inner
winding excited by a 30Hz AC signal with a peak amplitude of 1.0A. The peak values have
been measured over 20 periods and corrected for slight deviations in the winding current
from the 1 A peak amplitude.
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Figure 6-6: The peak magnetic field density inside the fluxball machine with the outer
winding excited by a 30Hz AC signal with a peak amplitude of 1.0A. The peak values have
been measured over 20 periods and corrected for slight deviations in the winding current
from the 1 A peak amplitude.
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Figure 6-7: The peak magnetic field density inside the fluxball machine with both windings
excited by a 30 Hz AC signal with a peak amplitude of 1.0 A. The peak values have been
measured over 20 periods and corrected for slight deviations in the winding current from
the 1 A peak amplitude.
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Figure 6-8: One period of the predicted, Bp, and measured, Bm, magnetic field strength at
each sensor when both windings are energized with 1 A peak amplitude 30 Hz currents.
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Sensor Position Position Predicted Measured Error Non-uniformity
Number x z Bx Bx Bx Bx

(cm) (cm) (mT/A) (mT/A) (%) (%)
1 1 0 5.06 5.45 7.0 0.3
2 5 0 5.06 5.42 6.6 0.1
3 1 3 5.06 5.43 6.7 0.0
5 5 3 5.06 5.47 7.4 0.7
3 0 6 5.07 5.40 6.2 0.5
5 4 6 5.06 5.34 5.1 1.7

Table 6.1: The predicted and measured values of x-directed magnetic field density at each
of the sensor locations with both windings energized. The measured values have been
averaged over 20 periods. The field strength at the center of the test chamber is 5.43mT/A.
Both windings have been excited with 1 A peak amplitude 30 Hz currents, with the phase
relationship shown in Fig. 6-8.

Sensor Position Position Predicted Measured Error Non-uniformity
Number x z Bz Bz Bz Bz

(cm) (cm) (mT/A) (mT/A) (%) (%)
1 1 0 5.02 5.48 8.5 0.9
2 5 0 5.01 5.38 6.8 0.9
3 1 3 5.03 5.41 7.0 0.4
5 5 3 5.03 5.46 7.9 0.5
3 0 6 5.05 5.42 6.9 0.2
5 4 6 5.03 5.50 8.5 1.3

Table 6.2: The predicted and measured values of z-directed magnetic field density at each
of the sensor locations with both windings energized. The measured values have been
averaged over 20 periods. The field strength at the center of the test chamber is 5.43mT/A.
Both windings have been excited with 1 A peak amplitude 30 Hz currents, with the phase
relationship shown in Fig. 6-8.
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6.4 Magnetic Field Diffusion

It was hypothesized, based on the skin depth of copper, that attenuation of the magnetic

field strength might be considerable at operating frequencies above a few Hertz. Using

the set-up already described, measurements were taken at six different frequencies. The

fluxball machine was operated with the inner winding open circuited and the outer winding

energized with the maximum voltage available using the normal mode of operation. The

current in the outer winding was measured and the expected magnetic field at DC, BDC ,

was calculated for the location of the sensor.

The attenuation of the signal could then be measured by looking at the peak magnitudes

of the measured AC magnetic fields. Because the outer winding was energized, the uniform

field was in the x direction. Therefore, Bx was compared with BDC , and the attenuation due

to diffusion was calculated. Distortion of the signal could be seen by graphing a single period

of the magnetic field waveform. A small part of the distortion resulted from the response

time in the Hall effect sensor. Fig. 6-9 shows the results of the skin effect measurements.

6.5 Magnetic Field with a Sphere of Ferrofluid

A final experiment was conducted to measure the change in inductance of the fluxball when

a sphere of ferrofluid was placed inside the test chamber. In this configuration there are

three magnetic field regions. The derivation for the fields in this situation can be found in

the doctoral thesis of Shihab Elborai [12]. Modeling the ferrofluid as a linear, magnetizable

material and applying the constant flux condition, a new inductance, La, can be derived.

La is given by eq. 6.1:

La = L0

[
1 +

2r3
a

r3
w

(
µa − µ0

2µ0 + µa

)]
H , (6.1)

where L0 is the measured self-inductance of the winding at 1 kHz given in Table 6.3, ra is

the radius of the sphere of ferrofluid, rw is the average radius of inner or outer winding,

given in Table 3.2, µa is the magnetic permeability of the ferrofluid, and µ0 is the magnetic

permeability of free space.

La was measured with a 4 cm diameter sphere, ra = 2 cm, filled with MSG W11
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Figure 6-9: The distortion and attenuation of the x-directed magnetic field in the test
chamber, Bx, produced by the outer winding at six different operating frequencies between
1–1000 Hz. Bx is normalized by the DC magnetic field, BDC , that would be produced by
the same current.
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Winding Initial Value Predicted Value Measured Value
L0 Lap Lam

Inner 171.0 mH 174.9 mH 176.0 mH
Outer 559.7 mH 563.6 mH 561.4 mH

Table 6.3: The predicted, Lap , and measured, Lam , values of inductance for each fluxball
winding with a 4 cm radius sphere of MSG W11 ferrofluid at the center of the fluxball
machine. Lap was based on an initial winding inductance, L0, that was measured for each
winding without the sphere of ferrofluid inside the test chamber. All inductances were
measured at 1 kHz using a Hewlett-Packard 4192A LF Impedance Analyzer.

ferrofluid, manufactured by Ferrotec Corporation [44], placed in the middle of the fluxball

machine. MSG W11 has µa = 1.56µ0 H/m. Table 6.3 lists the measured and predicted

values of the new inductance La for both of the fluxball windings.

As predicted the inductance of the windings increased. However, there were significant

sources of error in both the prediction and the measurement. First of all the magnetic

permeability of the ferrofluid was not verified before it was placed into the 4 cm sphere.

The permeability measurement dated back at least two years, during which time there

has most likely been degradation of the ferrofluid’s magnetic susceptibility. Additionally,

the measurement for the inner winding was somewhat unstable using the Hewlett-Packard

4192A LF Impedance Analyzer. The displayed value varied with every update between 173

and 178 mH.
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Chapter 7

Conclusions

7.1 Fluxball Machine

7.1.1 Error

This section describes the numerous sources for error in the measurement of the uniformity

of the magnetic fields. These sources of error were carefully considered and steps were

taken to minimize their effects. Nevertheless, significant error remained in some of the

measurements.

Appendix C described how the construction process was controlled to minimize error.

Once construction was complete, the geometric dimensions of the fluxball windings were

carefully measured. The turns were wrapped with care by the author of this report. The

process was very manual, and therefore susceptible to human error. Certainly a few extra

turns were wrapped in a few of the slots, but the cumulative error in the turns per fluxball

winding did not exceed 25 turns, 2% of the total turns.

All numerical predictions were based on the geometry of the fluxball machine as built.

Complete elliptical integrals were solved numerically using double precision numbers to give

the highest degree of accuracy to the numerical calculations.

The calibration of the measurement devices was described in detail in Chapter 5. Mul-

tiple sensors were used in the both the AC and DC modes to verify the strength of the

magnetic fields. These sensors gave very good agreement regarding the strength of the field
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in the inner region of the fluxball machine.

The data processing was very involved for the set of experiments described in this thesis.

The use of many sensors, in different locations, at different operating frequencies and field

amplitudes, made each calculation a little different from the previous. Data was continually

plotted graphically in order to ensure that signals were not being corrupted by noise or

other sources of error. Additional calculations were made whenever possible to serve as

“reality checks” on the processed data.

The main error that is obvious in the work described in this thesis is the difference in

magnitude of the predicted and the measured magnetic field densities. There is no real

mechanism for error in the prediction, and the measurement process was controlled so that

error should be less than 1%. Problems in the construction process can only account for

another 1–2% percent of the error.

The remaining error is mostly likely caused by reflected fields from the steel table upon

which the machine was sitting. The table is made of a large sheet of stainless steel with

non-zero conductivity and magnetic permeability. This table can be modeled as a plane of

infinite magnetic permeability, and the reflected fields can be calculated using the method

of images. This was done using the geometry of fluxball machine, with the origin of the

machine 21 cm above the table. The resulting predicted fields were 5% stronger than the

fields predicted when neglecting the image currents. Next the inner winding of the machine

was lifted so that its origin was 56 cm off the table and a measurement of the DC field was

taken with the winding excited by 1 A of current. The measured magnetic field was ≈2%

weaker.

Despite the error in the magnitude of the magnetic fields, the uniformity of the fields

was very close to the predicted values, and well within the tolerance of the known error.

The values, for magnetic field strength, operating voltages, etc. . . , given in this thesis reflect

the measured magnetic field densities.

7.1.2 Mathematical Model

The actual geometry of the fluxball machine is quite complex. To develop analytical solu-

tions for experiments that use the fluxball machine, it would be convenient to have a simpler
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mathematical model. The model described in Chapter 2 is very convenient since it only re-

quires 3 variables: the total number of turns on the ball, the radius of the winding, and the

current, i, in the winding. The proper radius, Rm, is the average radius of the winding and

quadrature axis. The proper number of turns, Nm, should be the calculated turns required

to produce the fields measured in Chapter 6. Eq. 7.1 gives the mathematical model for the

fluxball machine; the parameter values are listed in Table 7.1. Obviously, the coordinates

of one of the windings must be changed if the windings are oriented orthogonally.

K = iφ
Nm

2Rm
i sin θ (7.1)

Using this model, the magnetic fields, as shown in Chapter 2, are given by eqs. 7.3 and 7.2.

Characteristic Inner Fluxball Outer Fluxball
Interior B–field 5.43 mT/A 5.43 mT/A

Radius, Rm 10.7 cm 15.9 cm
Turns, Nm 1392 2069

Table 7.1: Parameters for the mathematical model of the fluxball machine.

B =
µ0Nmi

3Rm
(ir cos θ − iθ sin θ) =

µ0Nmi

3Rm
iz r < R (7.2)

B =
µ0Nmi

6Rm
(Rm/r)3(ir2 cos θ + iθ sin θ) r > Rm (7.3)

7.2 Future Ferrofluid Experiments

The fluxball machine can be used to conduct a large variety of experiments involving fer-

rofluids. Because of the spherical geometry of the current distribution, it is convenient

to work with spherical volumes of ferrofluids. An experimental set-up for working with a

sphere of ferrofluid has been established. An 8 cm diameter plastic ball was filled with fer-

rofluid using a syringe. This sphere was then placed at the center of the test chamber using

a funnel that was fitted to the bottom access tube of the inner fluxball structure. GMW

sensors were placed in the interior and exterior regions of the fluxball machine in order to

measure the changes to both the uniform field region and the point magnetic dipole field
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Figure 7-1: A top view of the inner fluxball winding with the sphere of ferrofluid positioned
at the center of the fluxball machine. The sphere of ferrofluid is held by a funnel that is
fitted to the bottom access tube. The funnel may be adjusted to hold spheres with different
diameters. The GMW sensors can be seen shimmed to the top of the test chamber, seen on
the hemisphere to the right.

region. This set-up can be seen in Figs. 7-1 and 7-2.

In addition to measuring changes in the magnetic fields that result from the addition

of ferrofluids to the machine, future fluid dynamical measurements could be made with the

fluxball machine. As described in Chapter 3, ultrasound velocimetry experiments could

be conducted inside the test chamber of the machine by running the ultrasound probes

through the machine’s cable-ways. These experiments would verify and build on the results

presented by Shihab Elborai and Xiaowei He [12,13]

7.3 Future Machinery Experiments

The demand for electrical power and speed has driven military and commercial shipbuilders

to move towards ever larger electric machines. The U.S. Navy has recently embarked on

the contract design of a new class of destroyers that will feature a fully integrated electric

propulsion system; an artist rendering of this ship can be seen in Fig. 7-3. This systems is
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Figure 7-2: A side view of the inner fluxball winding with the sphere of ferrofluid positioned
at the center of the fluxball machine.

composed of four gas turbine engines that provide electrical power for two 34.6 MW electric

motors, as well as all ship service electrical requirements [45]. The two large electric motors

will be operated in machinery rooms where personnel will be exposed to alternating and

rotating magnetic fields. While the medical community has studied the effects of electric

and magnetic fields on the human body, there is still not a consensus on the effects of low

and mid level magnitude fields in the low frequency range [46–50]. These are exactly the

types of fields to which shipboard personnel will be exposed. The fluxball machine could

be used to conduct a variety of experiments related to the biological effects of these types

of fields.

A second set of experiments that could be conducted using the fluxball machine involve

podded propulsors, such as the one show in Fig. 7-4. These pods contain large electric

motors that radiate very specific electromagnetic fields. While most of these fields are

confined to the ferrous elements of the motors, a portion of the fields radiate. These fields

are further attenuated by the enclosures that support them, which are usually made of steel.

Nevertheless, low-level fields passing through the propulsor enclosures are present and could

be used to detect and classify particular ships. The fluxball machine could be used to model
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Figure 7-3: An artist’s rendering of the next generation destroyer. This ship will have two
34.6 MW electric motors [45].

Figure 7-4: The podded propulsors installed on the Queen Mary 2. These are Rolls-Royce
MermaidTM pods that contain 21.5 MW Alstom electric motors [51].



7.3. FUTURE MACHINERY EXPERIMENTS 93

the flux leakage from large electric motors and to test the efficacy of propulsor enclosures

in containing radiated magnetic fields.
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Appendix A

Fluxball — A Design History

A.1 John W. Clark’s Fluxball

Figure A-1: A spherical magnet designed by John W. Clark in 1938 for producing uniform
magnetic fields used for nuclear research [3].
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Figure A-2: A fluxball of Clark’s design is still operated by the Physics Department at the
Massachusetts Institute of Technology.
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A.2 John A. Hipple Jr.’s Fluxball

Figure A-3: Spherical winding drawing by John A. Hipple Jr. from his 1941 United States
Patent for a Magnetic Field Generator [7].
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A.3 William F. Brown and John H. Sweers’ Fluxball

Figure A-4: A 1945 fluxball test coil for point magnetic field measurements, as constructed
[4].

Figure A-5: A 1945 fluxball test coil for point magnetic field measurements, in cross section
[4].
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A.4 J.E. Everett and J.E. Osemeikhians’ Fluxball

Figure A-6: A 1966 three axis fluxball arrangement used to build a proton magnetometer [5].
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A.5 F. Primdahl and P Jensens’ Fluxball

Figure A-7: A 1981 three axis fluxball arrangement for fluxgate magnetometer vector feed-
back [6].



Appendix B

Computer Design Tools

B.1 MATLAB R©

This section contains useful pieces of commented code that were used to aid in the con-

struction and analysis of the fluxball machine.

B.1.1 Magnetic Fields Generated by a Loop of Current

% Script Name: current_loop.m
% Author: Clint Lawler
% Date: 19 APR 2007
% This function calculates the magnetic field at a point (rp,zp) in
% cylindrical coordinates due to a loop of current with magnitude i_wire
% with radius r_wire that is centered at z_wire. J1 and J2 are the first
% and second elliptical integrals of Legendre
%
function [Br Bz] = current_loop(rp,zp,i_wire,r_wire,z_wire)
%
mu=pi*4e-7; z = zp-z_wire; p = abs(rp); a = r_wire;
%
if p == 0

Br = 0;
[J1 J2] = ellipke(0);
Bz = ellipke(0)*(1+(a^2-z^2)/(a^2+z^2))*mu*i_wire/(2*pi*(a^2+z^2)^0.5);
return

end
%

101
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k=sqrt(4*a*p/((a+p)^2+z^2)); const = mu*i_wire*k/(4*pi*sqrt(a*p));
[J1 J2] = ellipke(k^2);
if z == 0

Br = 0;
else

Br = (rp/p)*const*(z/p)*(-J1+J2*(a^2+p^2+z^2)/((a-p)^2+z^2));
end
Bz = const*(J1+J2*(a^2-p^2-z^2)/((a-p)^2+z^2));
%

B.1.2 Magnetic Fields by the Superposition of Current Loops

% Script Name: Magnet.m
% Author: Clint Lawler
% Date: 25APR2007
% Description: This script takes a winding geometry and current
% distribution, and then it calculates the magnetic field at specified
% positions and draws the magnetic field lines. If has an option to show
% the uniformity of the fields. The numbers specified here are for a
% Helmholtz coil. This routine is for air-cored, axially symmetric coils.
% The function current_loop is required.
%
percent_uniform = 1;
axes; hold on; grid off
rho=1.724e-8; %Resistivity of Copper at 20 deg C
a_wire = pi*(0.00082/2)^2; %20 AWG wire
i_wire = [1 1]; % Current distribution (A)
r_wire = [1 1]; % Radius of loops (m)
z_wire = [0.5 -0.5]; % Height of loops (m)
N=length(i_wire); max_r = max(r_wire); pts = 128; nr=pts;
r_end=max_r; dr=r_end/(nr-1); r=0:dr:r_end; nz=pts; z_end=max_r;
dz=z_end/(nz-1); z=0:dz:z_end; B=zeros(nr,nz,2);
%This uses the Biot-Savart Law to calculate the magnetic field
%from the superposition of each hoop of line current.
for i_r=1:nr

for i_z=1:nz
for n=1:N

[Br Bz]=current_loop(r(i_r),z(i_z),...
i_wire(n),r_wire(n),z_wire(n));

B(i_r,i_z,1)=B(i_r,i_z,1)+Br;
B(i_r,i_z,2)=B(i_r,i_z,2)+Bz;
Br = 0;
Bz = 0;



B.2. RHINOCEROS R© 3.0 CAD/CAM 103

end
end

end
%Calculate resistance for the specified magnet
Length_winding = 2*pi*sum(r_wire);
R_winding=rho*Length_winding/a_wire;
% Plot the Field Lines - this assumes symmetry around x and z axis
sr_end=max_r; ds=sr_end/8; SR=0:ds:sr_end; SZ=zeros(size(SR));
h_stream(1,:) = streamline(r,z,B(:,:,1)’,B(:,:,2)’,SR,SZ);
h_stream(2,:) = streamline(r,-z,B(:,:,1)’,-B(:,:,2)’,SR,SZ);
h_stream(3,:) = streamline(-r,z,-B(:,:,1)’,B(:,:,2)’,-SR,SZ);
h_stream(4,:) = streamline(-r,-z,-B(:,:,1)’,-B(:,:,2)’,-SR,SZ);
axis([-max_r max_r -max_r max_r]) colormap(’pink’)
Error=abs((B(:,:,2)-B(1,1,2))/B(1,1,2));
Error(nr,nz)=percent_uniform*1e-2;% Max deviation at 1 percent
Error(Error>Error(nr,nz))= Error(nr,nz);
[X,Z] = meshgrid(r,z);
h_pcolor(1) = pcolor(X,Z,Error);
h_pcolor(2) = pcolor(-X,Z,Error);
h_pcolor(3) = pcolor(X,-Z,Error);
h_pcolor(4) = pcolor(-X,-Z,Error);
shading interp

B.2 RHINOCEROS R© 3.0 CAD/CAM

In addition to analyzing the magnetic field lines and uniformity, Matlab was used to write

a text file that could be read into Rhinoceros and rendered. This was important because

Rhinoceros was a much better tool for exploring geometry changes, and it was necessary

in order to produce the type of file, .dfx, that could be used to by the waterjet machine

software. Fig. B-1 shows a rendering of an intermediate design that was produced by

Rhinoceros. Fig. B-2 show one of the flange layouts that was created using Rhinoceros.

B.3 OMAX R© Layout and Make

OMAX Layout is a computer-aided machining (CAM) program that can be used to generate

tool paths for OMAX Make, the software program that actually controls the waterjet cut-

ter [52]. Layout was used to import the rhino generated disc patterns and then to generate

tool paths.
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Figure B-1: A 2-D RHINO rendering of an intermediate fluxball machine design.
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Figure B-2: An example of the layout patterns done in RHINO for machining. This is one
of three 48 x 24 in sheets that was arranged with flanges. The alignment details were added
later.
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Appendix C

Fluxball Construction

C.1 Fabrication of Parts

Nearly all of parts for the fluxball machine were fabricated in the MIT hobby shop using the

OMAX 2626 watejet cutter, shown in Fig. C-1. 80 discs were cut from 0.25 in polycarbonate

sheet. 82 flanges were cut from 0.07 in polycarbonate film. For both discs and flanges, two

sheets were stacked and cut together to save time. One mistake that was made in this

process was the calculation of the disc diameters. The calculation was made before the

actual material was received and measured. The small error in the actual thickness was

small enough that the calculations and processing of the model did not need to be redone,

but it was still significant.

In addition to the discs and flanges, a number of smaller connectors had to be built.

Fig. C-2 shows the two main designs that were employed. The circular pieces held the

top flanges on securely and created a part the could be removed, by simply removing four

screws, in order to change the configuration. The square pieces were used to align the two

hemispheres and to hold the two fluxball structures together. Additionally the square pieces

could be used to construct interchangeable set-ups inside the test chamber.

107
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Figure C-1: The Omax 2626 Waterjet cutting machine, maintained by the MIT Hobby
Shop, that was used to fabricate the parts for the fluxball machine.

Figure C-2: Two parts that were created for alignment and connection of the fluxball
structures.
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Figure C-3: The fixture that was made and used for alignment of the discs and flanges.

C.2 Assembly and Bonding

Notches had been cut into the inner radii of all of the discs and flanges to aid in the assembly.

Nevertheless, a complex fixture had to be built in order to ensure proper alignment of the

individual parts. Figs. C-3 and C-4 show these fixtures. This method is not recommended.

A better method would be to cut two alignment holes in each disc. Then a plastic rod could

be inserted and either bonded or mechanically fastened until the until the bonding step was

completed. These alignment holes would have to be staggered, but this design could easily

be completed using 3-D computer modeling tools.

The waterjet machine leaves a lot of sediment on the parts, so before the parts could be

assembled, they needed a thorough cleaning. All of the discs were washed with soapy water

and then dried. Before final assembly the discs were wiped down with isopropyl alcohol.

Using the alignment fixtures the discs and flanges were stacked one by one. Acrylic

cement was dropped on the surface of the highest part on the stack and then the next part

was laid down. This was done until the entire hemisphere was bonded, then a weight was

put atop the stack and the hemisphere was left for a day to cure. The bonding procedure
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Figure C-4: The alignment fixtures stacked with discs and flanges.

was done in a hood because of the large amounts of acrylic cement that were used.

This procedure left small gaps between some of the flanges and discs where the cement

didn’t make it to the edge, therefore a second round of bonding was conducted. This time

the hemisphere was turned on its side and a small bead of cement was run down the crack

between each disc and flange. The cement filled in the gaps quite nicely. Figs. C-5 and C-6

show the final, bonded fluxball structures.
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Figure C-5: The inner fluxball structure after both bonding procedures were completed.

Figure C-6: The fluxball structures just prior to winding of coils.
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C.3 Winding the Coils

A number of methods were experimented with for winding the fluxballs. The best method

was a lathe assisted method. A plastic rod with an outer diameter of 3/4 in was inserted

into the bits of the lathe. Next the fluxball structure, with a 3/4 in inner diameter access

tube was fitted onto the smaller rod. Finally a spool of wire was secured parallel to the

axis of the sphere so that it could payout easily into the slots of the fluxball. The lathe

was turned at its slowest speed and the loose coupling between the rod and the access tube

turned the hemisphere. The hemisphere could be stopped from turning just by holding it

tightly. In this case the rod would continue spinning, while the hemisphere stood still. This

method increased both the speed and the safety of the operation significantly. The author

was then able to man the spool, ensuring that the correct number of turns were going into

each slot and that the wire was laying nicely and tightly. The diameter of the large fluxball

ball exceeded the height of the lathe bed, so a similar process was used by feeding the rod

out the non bed side of the lathe bits. Figs. C-7 and C-8 show the set-up that was used for

winding the coil onto the fluxball structures.
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Figure C-7: The fluxball structure on the lathe as positioned for winding the coil around
the structure.

Figure C-8: A close-up view of the fluxball structure on the lathe as positioned for winding
the coil around the structure.
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Figure C-9: The electrical connections on the support structure of the fluxball machine.
There are BNC power connections for each of the fluxball windings and banana plug con-
nections for reading the voltage over the 1 Ω current measurement resistors.

C.4 Electrical Connections

As the coil was being wound, solder connections were located approximately every 300 ft.

Besides these connections, the hemisphere had to be connected to each other and the power

sources needed to be connected to each of the windings. Inline male and female connectors

were used to connect the hemispheres to one another. BNC terminals were placed in the left

leg of the outer fluxball structure for connections to power sources. Additionally, banana

jacks were soldered in parallel with the terminals of the 1 Ω current measurement resistors.

All of these details can be seen in Fig. C-9.

C.5 Final Configuration

The final configuration is discussed in detail throughout this thesis. Figs. C-10–C-12 show

various details of the fluxball machine.
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Figure C-10: An interior view of the four winding hemispheres.

Figure C-11: An exploded front view of the fluxball machine.
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Figure C-12: The fluxball machine with the outer winding canted outwards.
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Specifications

D.1 Fluxball Materials

All of the materials for the fluxball machine were ordered from McMaster-Carr.

117

http://www.mcmaster.com
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D.2 Series Resistor
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D.3 National Instruments BNC 2120
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D.4 AE Techron Inc LVC 5050 Amplifier

The LEES facility in building N10 operates two of these amplifiers. Although these ampli-

fiers look identical, one is actually an older model that is operated differently. In the older

model, the front panel controls have been disabled so that the only voltage controls are the

on/off switch and the gain selector in the rear.
LVC 5050 AMPLIFIER 

AE Techron 

APPLICATION 
The LVC 5050 is a general purpose, 
high voltage, medium continuous 
current, linear power amplifier.  It 
works best when driving loads of  
2 - 16 ohms.  The LVC 5050 works 
well with either pulsed or 
continuous test signals or 
environments that have both 
conditions. The LVC 5050 has two (2) separate channels that can be operated independently or combined for greater 
maximum voltage or current.  In Bridge-mono mode the available output voltage doubles.  In Parallel-mono mode the 
amplifier operates with twice the available output current 

FEATURES 
Bi Level TM Power Supply, amplifier optimizes itself for either, high pulse voltage or low voltage high current, 
dynamically.  The LVC 5050 produces less heat, higher long term power, with no added distortion. 
Output of 20.0 amperes rms, or 106 volts rms, per channel depending on load.  

Frequency bandwidth of DC to 20 kHz at full power. 

Option of controlled voltage, or controlled current operation, modes changed via a jumper 

User-adjustable voltage or current limiting 

Remote switching to standby mode by contact closure 

External monitoring of voltage and current output 

Equipped with circuitry to protect the amplifier from input overloads, improper output connection (including shorts and 
improper loads), excessive temperature, voltage or current. 
Shipped ready to operate using single-phase, 120-volt AC mains.  Also available in 100, 200, 208, 230 and 240 VAC 
versions.  
Installs easily into a standard 19 inch rack, or stands alone for bench top operations 

 
INDICATORS AND CONTROLS 

Front panel LEDs indicate signal presence and output 
overload 
A pushbutton power “On/Off” located on the front  
panel 
Two gain controls on the front panel for controlled 
voltage applications 

A back panel slide switch to lift signal ground from chassis ground 

A back panel slide switch to choose between 2 channel, bridge mono and parallel mono operation 
 
Call us or visit our website! When your project or product requires a low noise, low distortion, high power amplifier 
solution, contact  AE Techron Inc.  We are happy to help. 

AE Techron Inc.  
2507 Warren Street 

Elkhart, IN 46516 USA 
Phone: 574-295-9495 Fax: 574-295-9496 

E-mail: Sales@aetechron.com, Web: www.aetechron.com 

AE Techron, Inc. LVC 5050 
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PHYSICAL CHARACTERISTICS 
Chassis: The Amplifier is designed for stand alone, or rack mounted, operation.  The Chassis is black steel  with a silver 
finished aluminum front panel.  The unit occupies three EIA 19-inch-wide units. 
Weight: 77 lbs. (35.2 kg),  Shipping 88 lbs. (40.2 kgs) 
AC Power:  Single phase, 120 volts, 60 Hz, 30 amperes ac service. (Note: 100, 120, 200, 208, 230 or 240 volt, 50-60 Hz 
models are available Call for specifications.)  US models come with 3 blade NEMA TT30P plug. 
Cooling: Forced air cooling from the front, through removable filters, to the back. 
Dimensions: 19 in. x 16 in. x 5.25 in (48.3 cm x 40.3.0 cm x 13.3 cm) 

PERFORMANCE (One hour continuous ratings) 
Frequency response 
     +/- 0.1 dB from 20 Hz to 20 kHz at 1 watt 
Phase response 
     +/- 10 Degrees (10 Hz to 20 kHz at 1 watt 
Signal-to-noise ratio  
     At 26 dB gain, better than 105 dB (A-weighted) below 
     full output 
THD  
     Less than 0.05% from 20 Hz to 1 kHz increasing 
     linearly to 0.1% at 20 kHz at full output 
I.M. Distortion 
     <0.05% from 410 milliwatts to full output at 26 dB gain 
     with and 8 ohm load 
Slew rate  
     > 31V per microsecond 
Load Impedance 
     Rated for 16,8,4 and 2 ohm use.  Safe with all load types 
     even reactive ones. 
Input Impedance 
     Greater than 10K ohms, balanced, and 5K ohms  
     unbalanced. 
Output impedance 
     Less than 10 milliohms in series with less than 2     
     microhenries 

 

SUPPORT 
When you purchase an AE Techron amplifier,  a full complement of 
technical and factory support personnel join your team. AE Techron Inc. 
provides: 

Applications engineering for your technical questions and customized 
product needs. 
A one year limited warranty to protect your equipment investment. 

A fully equipped service center to keep your amplifier operating at 
original performance requirements. 

AE Techron Inc. 
2507 Warren Street 

Elkhart, IN 46516 USA 
Phone: 574-295-9495  

Fax: 574-295-9496 
E-mail: Sales@aetechron.com 

Web: www.aetechron.com  

OUTPUT POWER LVC 5050 

 40 mSec  

Ohms Watts Volts Amps Watts Volts Amps 

2 2505 71 35 800 40 20 

4 1940 88 22 576 48 12 

8 1270 101 12 1205 98.2 12 

1 Hour Continuous  

16 702 106 7 702 106 7 

 40 mSec  1 Hour Continuous  

Ohms Watts Volts Amps Watts Volts Amps 

4 5320 146 36    

8 3003 155 19 3003 155 19 

16 2036 180 11 2036 180 11 

 40 mSec  1 Hour Continuous  

Ohms Watts Volts Amps Watts Volts Amps 

1 5320 73 73    

2 4045 90 45    

4 2670 103 26 2416 98.3 25 

8 1378 105 13 1324 102.9 13 
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D.5 F.W. Bell Three Probe and 7030 Teslameter

A C D EB F G
Stem

Material

Transverse Flexible Probes

Axial Flexible Probes

Standard 3-Axis Probes

Magnaprobes

Model

FTF71-0215-05
FTF71-0215-15
FTF71-0215-05-T
FTF71-0215-15-T
FTF71-0215-30-T
FTM71-0215-05
FTM71-0215-30
FTM71-0215-05-T
FTM71-0215-15-T

A
L
U
M
T
I
P

*F
 S
 E
 D

*FLEXIBLE STEM EXPOSED DEVICE

  0.25%
to

30kG

15" 
±0.125"

0.100"
±0.005"

1.00"
±0.010"

0.180"
+0.002"
-0.004"

0.015"
±0.010"

DC to 
20kHz

0.070"
Dia.

0.040"
Dia.

0.030"
Dia.

±0.090 – 0.040

±0.130 ± 0.005

0ºC
to

+75ºC

1X

  0.15%
to

30kG

DC to 
400Hz 10X

N/AN/A

Linearity
% of

Reading

Frequency
Range

Sensitivity
Nominal
Active
Area

Oper.
Temp.
Range

Temp. Stability (Max)
Zero

(G/ºC)
Calibrate
(%/ºC)

SEE FIGURES ABOVE FOR DIMENSIONS

A C D EB F G
Stem

MaterialModel

FAF71-1815-05
FAF71-1815-15
FAF71-1815-05-T
FAF71-1815-15-T
FAF71-1815-30-T

FAM71-1815-30

  0.25%
to

30kG

DC to 
20kHz

±0.090 – 0.040

±0.130 ± 0.005

0ºC
to

+75ºC
1X

  0.15% to
30kG

DC to 
400Hz 10X

Linearity
% of

Reading

Frequency
Range

Sensitivity
Nominal
Active
Area

Oper.
Temp.
Range

Temp. Stability (Max)
Zero

(G/ºC)
Calibrate
(%/ºC)

Alum.8.0" 
±0.125"

0.312"
±0.005"

0.060"
Dia.

N/AN/AN/AN/AN/A

A C D EB F G
Stem

MaterialModel

ZOA73-3208-05
ZOA73-3208-05-T
ZOA73-3208-15
ZOA73-3208-15-T
ZOA73-3208-30
ZOA73-3208-30-T

0.25% to
10kG

DC to 
400Hz

±0.100 – 0.0400ºC to
+75ºC

1X

Linearity
% of

Reading

Frequency
Range

Sensitivity
Nominal
Active
Area

Oper.
Temp.
Range

Temp. Stability (Max)
Zero

(G/ºC)
Calibrate
(%/ºC)

Lexan9" 
±.030"

6"
0.480"
±0.030"

6" x .25N/AN/AN/A
0.250"
±.010"

A C D EB F G
Stem

MaterialModel

MOX71-2506-05
MOX71-2506-15
MOX71-2506-30

.5% to
2G

DC to 
400Hz

±0.070 – 0.040
0ºC to
+75ºC.01X

Linearity
% of

Reading

Frequency
Range

Sensitivity
Nominal
Active
Area

Oper.
Temp.
Range

Temp. Stability (Max)
Zero

(G/ºC)
Calibrate
(%/ºC)

HALL PLATES 
MUTUALLY
PERPENDICULAR ±2º

HALL 
PLATE

PAINTED AREA
OR NOTCH

Bx

By Bz

0.062" 0.084"

0.060"

0.129"

0.100"3.000" ±0.063"

0.750" ±0.063"
"B"

"A"

VINYL FIBERGLASS TUBING

FIELD DIRECTION

+B

"A"

"C"

"D" "E""B"

2.00" ±.025"
.500" ±.005"

15" ±.0.125"

.040" + .002" - .007"
+B

FIELD DIRECTION

2.00" ±.025"

.500" ±.005"

THERMISTOR ELEMENT

EXPOSED HALL ELEMENT

.025" ±.003"

.150" ±.015"

.150" ±.010"
.100" ±.005"

.053" ±.005"

.020" ±.003"

.375" ±.063"

.130" ±.008"
.130" ±.003"

.192" ±.032"

TRANSVERSE FLEXIBLE
EXPOSED ELEMENT

"A"

"D"

+B FIELD DIRECTION

ACTIVE LENGTH

"C"

"B"

Note: Due to continuous process improvement, specifications subject to change without notice.

Description
The Model 7030 three-channel GAUSS/TESLA METER from F.W. Bell leads the way

for Advanced Hall Effect Magnetic measuring technology. The easy-to-use front panel

programming feature incorporates the latest in user control operations.  The 7030 is

capable of simultaneously measuring and displaying seven different parameters per

channel -- flux density, frequency, temperature, min, max, peak and valley.  With the

7030’s vector summation feature, that makes a total of 27 different parameters.

This high accuracy instrument is fully equipped to meet most magnetic measuring

applications. Bell’s exclusive dynamic probe correcting software increases the 7030

measurement capabilities to make it the most versatile magnetic measuring tool in

the world.

Key features include high-resolution, high-accuracy and high-speed with a large graphic

electroluminescent display.  The 7030 features 50 kHz frequency response, temperature

and frequency measurements, Auto Zero, Auto Range, Hold functions for Peak, Valley,

Min and Max, corrected and uncorrected outputs for each channel and Vector

Summation and angle. The Model 7030 provides the user with gauss, tesla, Oe, A/m,

IEEE-488 and RS-232 communications ports and Classifier output.

The 7030 operates with Bell’s fifth generation Hall Effect probes.  These probes provide

temperature compensation and measurement readings (0°C to +75°C) while

monitoring the magnetic field.  The easy-to-read 1/4 VGA display is easily viewable in

most light conditions and can be customized to meet a user’s specific needs.

Applications range from basic magnetic measuring to sensitive complicated three-

axis vector summing requirements.  All instruments are fully CE compliant.

. •  61 2 0  H a n g i n g  M o s s  R o a d  •  O r l a n d o ,  Fl o r i d a   3 2 8 0 7  •  P h o n e  ( 4 0 7 )  67 8 - 690 0  •  Fa x  ( 4 0 7 )  67 7 - 5 7 65  •  

Features
•  Bright 1/4-VGA Readout

•  Large electroluminescent graphic display

•  Over 100 standard probes available

•  Automatic probe coefficient correction

•  Displays in Gauss, Tesla, Amp/meter or Oe

•  Relative Mode

•  Fully menu-driven for easy operation

•  Auto Zero and Auto Calibration

•  IEEE-488 and RS-232 interface

•  CE Compliant

•  Manufactured to ISO 9000 standards

•  Comprehensive Technical Support
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Ranges

Resolution

Accuracy (Displayed Reading)
dc basic
ac basic

Frequency Range
dc mode
ac mode

Accuracy (Corrected Analog Output)
dc basic
ac basic
Frequency Range

Frequency Range (Uncorrected Analog Output)
dc mode
ac mode

Analog Output
Output Voltage
Source Impedance
Connector

Additional Influences
Temperature Coefficient

Temperature Range
Operating
Storage

Front Panel Display

Communication Ports
RS-232

Baud Rate
IEEE-488

Protocol

Power

Size
Width
Height
Depth

Weight
Net
Shipping

Model 7030 Specifications

300mG (30µT)*
3G (300µT)*
30G (3mT)
300G  (30mT)

3kG(300mT)
30kG (3T)
300kG(30T)†

1 µG (0.1nT) to 1G (0.1mT) 

±0.05% of reading
±2% of reading

dc to 250Hz
20Hz to 50kHz

±0.1% of range
±2% of range
dc to 500Hz

dc to 100Hz
20Hz to 50kHz

±3V F.S. or ±10V F.S. or adjustable from 0.1 - 9.9V
<100 ohms
Standard BNC

±(0.02% of reading ±1 count)/ ºC

0ºC to +50ºC
-20ºC to +60ºC

1/4 VGA, 320 x 240 pixels
Electroluminescent graphic display with 4 shades of amber
4.7” (119 mm) W x 3.5” (89mm) H

Standard 9-pin “D” connector
300,600,1200,2400,4800,9600,19200,38400 bits/sec
Standard 24-pin GPIB connector
IEEE-1987.2 and SCPI-1999

Volts: 100/120 or 220/240
Frequency: 50-60 Hz or 50-60 Hz
Current: 1.0 A  (max) or 0.5 A  (max)

16.3” (414 mm)
5.2” (132mm)
13.5” (343mm)

19.6 lbs. (8.9 kg)
25.8 lbs. (11.6 kg)

SPECIFICATION

®

*  Low field probe
† High field probe

H
all E

ffect GAUSSM
ETERS

Sypris Test & Measurement, Inc. •  6120 Hanging Moss Road •  Orlando, Florida  32807 •  Phone (407) 678-6900 •  Fax (407) 677-5765 •  www.fwbell.com

Due to continuous process improvement, specifications subject to change without notice.

Rev. date 03/2005

(Depending on probe selection)



128 APPENDIX D. SPECIFICATIONS

D.6 GMW Three Axis Magnetic Field Sensor



D.6. GMW THREE AXIS MAGNETIC FIELD SENSOR 129

Sentron CSA-1V
Revised Jan 2005

G M W  Associates.955 Industrial Rd, San Carlos, CA 94070
w w w .gm w .com .   Tel:  (650) 802-8292.   Fax:  (650) 802-8298.   Em ail sales@ gm w.com

M anufactured by: Sentron AG  (A M elexis Com pany) ••   Baarerstrasse 73 ••   6300 Zug ••   Sw itzerland ••   Tel: +41 (41) 711 

2170 ••   Fax: +41 (41) 711 2188 w w w .sentron.ch •• sales@ sentron.ch •
1

G M W
CSA-1V

Current Sensor

Features:
• Sensitive to a m agnetic field parallel to 

the chip surface
• Very high sensitivity
• Linear output voltage proportional to a 

m agnetic field
• W ide-band: DC to 100kHz
• Very low offset and offset-drift
• Very low noise

• Isolated from  current conductor
• Surface m ount SO IC-8 package

Applications:
• AC and/or DC current m easurem ent
• W ide-Band M agnetic Field 

M easurem ent
• Battery Chargers
• AC-DC Converters
• M otor Control

G eneral Description

The CSA-1V is a single-axis integrated m agnetic field sensor based on the Hall effect. The circuit is 
fabricated using a conventional CM O S technology with an additional ferrom agnetic layer. The 
ferrom agnetic layer is used as a m agnetic flux concentrator providing a high m agnetic gain. Therefore, 
the circuit features very high m agnetic sensitivity, low offset, and low noise. 
The CSA-1V is packaged in a standard SO IC-8 full plastic package. This package provides:

• highest isolation for applications with the current conductor on the PCB (up to 600V)
• highest sensitivity for applications with the current lead above the chip. 

Package: SOIC-8

Pin O ut:

Note 1: Used for factory program m ing

B

1   A_OUT, analog sensor output
2   VDD  pos. supply voltage
3   Not connected
4   PV, program m ing voltage 1)

5   G ND, supply com m on
6   PD, program m ing data 1)

7   PC, program m ing clock 1)

8   CO_OUT, com m on output
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G M W
Absolute M axim um  Ratings

Sym bol Param eter M in. Typ. M ax. Unit Rem arks

VSUP Supply Voltage 0 6 V

T Am bient Tem perature -40 +150 oC

Recom m ended O perating Conditions

Sym bol Param eter M in. Typ. M ax. Unit Rem arks

VSU P Supply Voltage 4.5 5 5.5 V

IOUT O utput Current -1 1 m A

CL Load Capacitance 1000 pF

Electrical Characteristics

At T=-40°C to 150°C , VSUP =4.5V to 5.5V if not otherwise specified.

Sym bol Param eter M in. Typ. M ax. Unit Test Conditions

ISUP Supply Current 11 16 m A

VCom m on Com m on (reference) 
O utput Voltage2)

VSUP/2
-20m V

VSUP/2 VSUP/2
+20m V

IOUT=0m A

BW Bandwidth: DC to 100 kHz

tR Response Tim e 6 µs

Note 2: Ratiometric (proportional to VSUP)

Characteristics of the Linear M agnetic Field Sensor 3,4)

W ith VSUP= 5V and in the tem perature range -40
o
C to 150

o
C, if not otherwise specified.

Sym bol Param eter M in. Typ. M ax. Unit Test Conditions
S M agnetic Sensitivity 3) 270 280 6) 290 V/T B = BL

ΔS/SΔT M agn. Sensitivity 
Tem perature Drift

-
0.02

0.02 % /°C IOUT=0m A
T=-20°C to 125°C

Voff O ffset Voltage 3) -15 0 15 m V B=0T, Iout=0m A, 
T=20°C

Boff Equivalent M agnetic O ffset 
3)

-50 0 50 μT B=0T, IOUT=0m A
T=-20°C to 80°C

ΔVoff/ΔT O ffset Tem perature Drift -0.2 0 0.2 m V/°C B=0T, IOUT=0m A,
T=-20°C to 125°C

BFS Full Scale M agnetic Field 
Range 5)

-7.5 7.5 m T

BL Linear M agnetic Field 
Range

-5 5 m T

0.1 0.2 B = BLNL Non Linearity
0.5 1

%
B = BFS

ΔBnoise Input referred m agnetic noise 
spectrum  density (RM S)

125 nT/√H z f=10Hz to 10kHz

Note 3: Ratiom etric (proportional to V SUP )
Note 4: W hen the analog output pin A_OUT is used in differential m ode (ie Vout = A_OUT – CO_OUT)
Note 5: Device saturates for B>Bfs but is not dam aged
Note 6: Specification correction: W as 300+/- 10 V/T. Now 280+/- 10 V/T.   All parts m anufactured to date, have been calibrated 
to 280+/- V/T
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G M W
Block Diagram

Fig. 1 Block diagram  of CSA-1V

IM PORTANT For reliable operation within the specifications the sensor m ust be connected 

as follows: 

Connect Pin 6 (PD) to Pin 5 (G ND)
Connect Pin 7 (PC) to Pin 2 (Vdd)
Connect Pin 4 (PV) to Pin 2 (Vdd)
Put a 100nF capacitor close to the chip between Pin 2 (Vdd) and Pin 5 (G ND)

* If the supply voltage is disturbed by EM I it can be useful to place a second capacitor (100pF, 
ceram ic) parallel to the 100nF capacitor. 

Fig. 2 Connection diagram  of CSA-1V

1 A_Out

2 Vdd

3 n.c.

4 PV

CO OUT 8

PC 7

PD 6

GND 5
GND

VSUP

G ND

100nF*

CSA -1V
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G M W
Package Inform ation SOIC-8

Fig. 3 Package inform ation and m agnetic sensitive direction

O rdering Inform ation

Order part num ber: CSA-1V-SO

Parts are supplied on tape and reels.

Q uantiites below 2600 pcs are available in cut reels to the quantiity ordered
Q uantities above 2600 pcs are available in com plete 13“,  2600 pc reels

B:  M agnetic sensitive direction 

B

0.012 (0.3)
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