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We study the dynamics of topological defects in active nematic
films with spatially varying activity and consider two set-ups:
(i) a constant activity gradient and (ii) a sharp jump in activity.
A constant gradient of extensile (contractile) activity endows
the comet-like +1/2 defect with a finite vorticity that drives
the defect to align its nose in the direction of decreasing
(increasing) gradient. A constant gradient does not, however,
affect the known self-propulsion of the +1/2 defect and has
no effect on the −1/2 that remains a non-motile particle. A
sharp jump in activity acts like a wall that traps the defects,
affecting the translational and rotational motion of both
charges. The +1/2 defect slows down as it approaches the
interface and the net vorticity tends to reorient the defect
polarization so that it becomes perpendicular to the interface.
The −1/2 defect acquires a self-propulsion towards the
activity interface, while the vorticity-induced active torque
tends to align the defect to a preferred orientation. This
effective attraction of the negative defects to the wall is
consistent with the observation of an accumulation of
negative topological charge at both active/passive interfaces
and physical boundaries.
1. Introduction
Active nematics are collections of elongated apolar particles that
consume energy from their surroundings to generate dipolar
forces that drive self-sustained flows [1]. Much progress in
understanding the rich dynamics of these active liquid crystals
has been achieved through a minimal hydrodynamic theory that
couples orientational order and flow and captures the behaviour
of biological systems from subcellular to multicellular scales [2].
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Figure 1. Illustration of (a) the +1/2 defect and (b) the −1/2 defect and their corresponding polarizations for θ0 = 0. The negative
defect has three equivalent polarizations.
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Within the biological realm, the active nematic paradigm describes mixtures of cytoskeletal filaments and
motor proteins [3–6], bacterial suspensions [1,7] and confluent cell monolayers [8,9].

What distinguishes the hydrodynamics of active nematics from that of their passive counterparts is
the presence of an active stress generated by active processes, which sets up spontaneous spatio-
temporally chaotic flows [7]. The active stress is given by sa

ij ¼ aQij with Q the nematic order
parameter and α a scalar activity parameter that encapsulates the biochemical processes that generate
active forces [10–13]. It can have either sign: α > 0 corresponds to a system of ‘pullers’ generating
contractile stresses on their surroundings, whereas α < 0 reflects a system of ‘pushers’ and their
induced extensile active stresses. With increasing activity, active flows are induced spontaneously and
create large distortions of the nematic order, including the formation of pairs of topological defects
that sustain active turbulence [3,14].

The lowest energy topological defects in active nematic films have half-integer charge, corresponding
to the comet-shaped +1/2 with polarity e+ defined by a head–tail arrow, and the −1/2 which has
threefold symmetry (see figure 1). These defects disrupt the nematic order locally and induce long-
range distortions in the orientation field, generating active stresses, which in turn lead to spontaneous
active flows surrounding the defects [12,15,16]. There is a net active flow through the core of the polar
+1/2 defect which makes it intrinsically motile and is referred to as the defect self-propulsion. For an
isolated +1/2 defect, the self-propulsion velocity aligns with the polarity vector and, depending on
the contractile/extensile properties of the active nematic, the defect moves in/opposite to the direction
of its polarization. The −1/2 defect does not create any net flow at the defect position and, thus, is
not self-propelled in systems with uniform activity. The motion of defects in the presence of spatially
inhomogeneous activity is far less understood and explored [17].

There are several approaches to realize experimentally systems with spatially dependent activity. In
[18], a varying substrate topography is used to control the frictional damping in a film of a microtubule-
kinesin suspension. This results in spatial variations of the concentration of active agents, thus indirectly
in the local activity. In [19], a similar effect is achieved by manipulating light-sensitive myosin motors
that activate the microtubules. Both studies find that the −1/2 defects localize near the interface
separating the region of higher activity from that of lower activity. In [19], it was reported that the
+1/2 defects are deflected by the active/passive interface. Analytical work based on a hydrodynamic
theory of the defect gas has predicted that a passive/active interface can be used to separate positive
and negative topological charge [17]. Numerical studies of how the defect dynamics is affected by the
spatially dependent activity show that the polarity of the +1/2 defect tends to align parallel to the
activity gradient [19–23], and that the confinement and motion of defects can be manipulated by
varying the steepness of the activity gradients [24,25]. A recent numerical study also shows that
the formation of defect dipoles can be controlled by imprinting special geometries into the activity
profile [22].

In this paper, we provide a theoretical study of how spatially varying activity affects the self-
propulsion and reorientation of isolated topological defects. We consider the representative basic
set-ups where the spatial activity profile is given either by a constant activity gradient (linear profile)
or a sharp interface separating two regions of constant bulk activity (Heaviside function profile). For
constant activity gradients, the +1/2 defect rotates due to a vorticity-induced active torque acting on
the defect polarization until the defect aligns parallel to the activity gradient and moves in the
direction of lower magnitude of activity. Thus the defect slows down. We show analytically that the
vorticity at the +1/2 defect core is proportional to the hydrodynamic dissipation length ‘d ¼

ffiffiffiffiffiffiffiffiffi
h=G

p
,

which measures the strength of viscous dissipation η relative to friction G. Numerical simulations of
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the active flow generated in a disc of radius R show that the vorticity depends on the system size for
small R, and crosses over to the analytically predicted value for large systems. The vorticity field
induced by an activity gradient parallel to the +1/2 defect’s polarization has a quadruple structure
with regions of alternating vorticity. This is confirmed by numerical simulations for a disc geometry
where four vortices are formed around the +1/2 defect. By contrast, the vorticity induced by constant
activity gradients at a −1/2 defect has an eightfold symmetry that leads to eight vortices with
alternating circulation in a finite domain. We also calculate the net translational self-propulsion and
reorientation that both ±1/2 defects acquire near a sharp active/passive interface. The +1/2 defect
slows down as it moves towards the interface, and the vorticity-induced torque tends to reorient it
such that its polarization becomes normal to the interface regardless of the sign of activity. The −1/2
defect also acquires a preferred orientation at the interface, and those that approach the interface with
this stable orientation are then attracted by it.

The structure of the paper is as follows. We start in §2 by introducing the minimal hydrodynamic
model active nematic films on a substrate. In §3, we derive and discuss the self-propulsion and
spontaneous rotation of +1/2 defects in the presence of a constant activity gradient. Section 4 focuses
on the analytical derivation of the self-propulsion and vorticity of ±1/2 defects close to a sharp
active/passive interface. Summary and concluding remarks are presented in §5.
Sci.10:221229
2. Hydrodynamics of active nematics with spatially varying activity
We consider the familiar hydrodynamic model of a 2D active nematics that couples the flow velocity uðrÞ
to the nematic order parameter Qij ¼ Sðn̂in̂j � 1

2 dijÞ, where S quantifies the degree of order and
n̂ðrÞ ¼ ðcos uðrÞ, sin uðrÞÞ is the orientational director field with head–tail symmetry. In the simplest
formulation, the Q-tensor is a minimizer of the de Gennes–Landau free energy [7]

F ¼ Ð dr K
2 j@iQ jkj2 þ g

4 (1� 1
2 Tr(Q

2))2
h i

, ð2:1Þ

with isotropic elastic constant K > 0 and g the strength of the local ordering potential. The uniform
nematic ordered state corresponds to S0 = 2. The flow field satisfies a Stokes equation that balances
forces on a fluid element, given by [7]

(G� hr2)u ¼ r � ½aðrÞQðrÞ� � rpðrÞ, r � u ¼ 0, ð2:2Þ
where G is a friction coefficient per unit area, η is the shear viscosity and α is the activity coefficient, with
dimensions of stress. For simplicity, we neglect the contributions from the passive stresses and flow
alignment to focus, instead, on the active flows generated by an isolated ±1/2 in the presence of non-
homogeneous activity aðrÞ.

We rescale the Stokes equation in units of the nematic relaxation time τ = γ/g (where γ is the nematic
rotational friction) [16,26] and the coherence length j ¼ ffiffiffiffiffiffiffiffiffi

K=g
p

. Different dynamical regimes are then
controlled by one dimensionless number ζ = ℓd/ξ, where ‘d ¼

ffiffiffiffiffiffiffiffiffi
h=G

p
, and the rescaled activity

aðrÞ ! aðrÞg=ðGKÞ. The dimensionless form of the Stokes equation reads as

(1� z2r2)u ¼ F+ �rp, r � u ¼ 0, ð2:3Þ
where the active force field induced by an isolated ±1/2 defect is given by

F+ ¼ QðrÞ � raðrÞ þ aðrÞr �QðrÞ ¼ FI+ þ FB+: ð2:4Þ
The first contribution is an interfacial force FI+ originating from activity gradients. The second term is a
bulk force FB+ due to nematic distortions. The defect self-propulsion velocity v+ is defined as the net
active flow through the defect core, and thus can be computed from the active flow velocity u
obtained from the solution of equation (2.3) evaluated at the origin [26]. Due to viscosity, it depends
nonlinearly and non-locally on the force field through the integral solution of equation (2.3) given by

v+ ¼ 1
2pz2

ð
drK0

r
z

� �
[F+ðrÞ � rpðrÞ] ¼ vI+ þ vB+, ð2:5Þ

where K0(r) is the zeroth order Bessel function which is the Green’s function of equation (2.3) without the
incompressibility constraint. We distinguish the interfacial contributions vI+ from the bulk contributions
vB+. The incompressibility constraint gives rise to pressure gradients which may affect the defect
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kinematics. The pressure field is the solution of the corresponding Poisson’s equation

r2p ¼ r � F+ðrÞ: ð2:6Þ
The net vorticity at the defect core is also obtained from measuring the vorticity of the flow field induced
by the defect distortion, given by v ¼ @xuy � @yux ¼ �r? � u. Using equation (2.5) and evaluating it at
the defect position r0 ¼ 0, we obtain an expression for the defect vorticity

v+ ¼ � 1
2pz2

ð
drK0

r
z

� �
r? � F+ðrÞ ¼ vI

+ þvB
+: ð2:7Þ

Vorticity is also written as sums of interfacial vI
+ and bulk vB

+ contributions which depend on the defect
polarization e+ and are computed analytically in the next sections.

For isolated ±1/2 point-like defects, we can parametrize the Q-tensor order parameter in the quasi-
static phase approximation as [26]

Q+
xxðrÞ ¼ cosð+fðrÞ þ 2u0Þ and Q+

xyðrÞ ¼ sinð+fðrÞ þ 2u0Þ, ð2:8Þ

where fðrÞ ¼ arctanðy=xÞ is the singular part of the nematic orientation due to a ±1/2 defect located
at the origin, and θ0 is the slowly varying part of the background orientation of the nematic director.
The +1/2 defect has a well-defined polarization which is determined by the background nematic
orientation θ0 as

eþ ¼ r �Q
jr �Qj
� �

r¼0
¼ ½cosð2u0Þ, sinð2u0Þ�: ð2:9Þ

For the −1/2 defect, we can also introduce a polarization vector determined by θ0 and aligning with one
of the principal axes of the threefold symmetry [26]

e� ¼ cos
2u0
3

� �
, sin

2u0
3

� �� �
: ð2:10Þ

Both nematic defects and their respective polarizations are illustrated in figure 1.
It can be shown that a net vorticity at the defect core induces an active torque that tends to rotate the

defect polarization. This follows straightforwardly from taking the time derivative of the polarization in
equations (2.9) and (2.10), and using the evolution of the Q-tensor [17,26] to account for the change in the
background nematic field θ0 due to vorticity as ∂tθ0≈ ω/2. Thus, the evolution of the defect polarization
controlled by vorticity is

_e+ � �3�1=2þqv+e?+, ð2:11Þ

where the defect charge is q = ±1/2 and e? ¼ ½ey, � ex� represents the 90° clockwise rotation of the
polarization vector. For motile defects, there are additional torques due to defect interactions, the
elastic stiffness K or the coupling to the flow alignment [17,26]. Here, we focus on the active torque
induced by a non-zero vorticity which emerges from spatially varying activity alone. In the
subsequent sections, we investigate how this active torque reorients the defect polarization relative to
activity gradients for two set-ups: (i) a constant activity gradient and (ii) an interface with a sharp
jump in activity.
3. Constant activity gradient
We first study the kinematics of an isolated defect in a region where the activity gradient is locally
constant. Without loss of generality, we consider an activity gradient in the x-direction such that the
activity has the linear profile α(r) = α0 + αg x. The defect orientation is arbitrary and controlled by
the background nematic orientation θ0. We demonstrate that a constant gradient αg does not modify
the defect self-propulsion velocity as compared with what was obtained for uniform bulk activity α0.
An activity gradient across the texture of a +1/2 defect generates, however, a flow that may yield a
finite vorticity at the defect core, which tends to align the defect polarization according to equation
(2.11) in the direction of the gradient. The −1/2 defect remains stationary both in its motion
and orientation.
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Figure 2. Interfacial active force field from equation (3.1) induced by a +1/2 defect with (a) θ0 = 0, (b) θ0 = π/8 and (c) θ0 = π/4.
Note that cases (b,c) lead to rotation of the defect together with the nematic field until the defect polarization aligns with the direction
of the activity gradient. The dark solid lines in (a) show the nematic field around the +1/2 defect oriented in the x direction.
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3.1. +1/2 defect
The interfacial active force given in equation (2.4) arising from a constant activity gradient αg is

FIþðrÞ ¼ ag[ cosð2u0Þr̂� sinð2u0Þr̂?], ð3:1Þ

where r̂ is the radial unit vector and r̂? ¼ ðŷ, � x̂Þ. This expression corresponds to the Helmholtz
decomposition of FIþ into a curl-free part (� r̂) and a divergence-free part (� r̂?). These two
contributions are plotted in figure 2. The divergence-free part gives a net vorticity at the defect core
which tends to rotate its polarization until it aligns with the activity gradient. This is most easily
demonstrated in the friction-dominated limit where the active flow velocity is Gu ¼ FIþ � rp. The
incompressibility constraint thereby removes the curl-free contribution through the contribution of the
interfacial pressure which is radially symmetric and given by

pIþðrÞ ¼ ag cosð2u0Þðr� LÞ, ð3:2Þ

making the interface flow purely rotational. Here the constant L is a length comparable with the system
size which controls the divergent terms. More generally, to incorporate viscous dissipation we need to
evaluate the integral expression for the defect velocity given in equation (2.5). In an infinite system,
the symmetry of the integrand leads to no contribution to the defect speed from the interfacial active
force, thus vIþ ¼ 0. This contribution may become finite in non-radially symmetric bounded domains.

The contribution from the bulk active force in equation (2.4) reduces to

FBþðrÞ ¼ F0þðrÞ þ agxr �Qþ ¼ F0þðrÞ þ ag
x
r
ðcosð2u0Þx̂þ sinð2u0ÞŷÞ, ð3:3Þ

where F0þðrÞ is the known active force corresponding to a constant activity α0 which leads to a constant
self-propulsion velocity [16,26]. Since the contribution due to activity gradient αg is antisymmetric
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around the defect position, its integral according to equation (2.5) vanishes. Therefore, there is no
contribution from activity gradients to the defect self-propulsion. This is not changed when we add
the gradient of the bulk pressure which is given as

pBþðrÞ ¼ p0þðrÞ þ
ag cosð2u0Þ

6
ðx2 � y2Þ

r
þ 3ðr� LÞ

� �
� ag sinð2u0Þ

3
xy
r

: ð3:4Þ

Here p0þ is the pressure for the constant activity term α0 [16].
Activity gradients induce, however, a vortical flow that is finite at the defect core, resulting in an

angular velocity of the +1/2 defect, given by

vþ ¼ ag

2pz2
sinð2u0Þ

ð
drK0

r
z

� �
1
r
þ x2

r3

� �
, ð3:5Þ

where the first term in the bracket originates from the interfacial active force and the second is due to the
bulk force. The integral can be carried out in polar coordinates, with the result

vþ ¼ 3pag

4z
sinð2u0Þ: ð3:6Þ

We can rewrite this equivalently in physical units as

vþ ¼ 3pag

4G‘d
sinð2u0Þ ¼

3pag

4
ffiffiffiffiffiffi
Gh

p sinð2u0Þ ¼
3pag

4h
‘d sinð2u0Þ, ð3:7Þ

to highlight that the defect angular velocity scales linearly with the hydrodynamic dissipation length ld,
similar to the self-propulsion speed of a defect in a constant activity [16]. The effect of this vorticity is to
align the polarization so that it is pointing opposite to the activity gradient. This is consistent with recent
numerical results, where defects align normal on soft interfaces separating extensile and contractile
regions [23].

To test the validity of these analytical predictions for a bounded system, we have solved numerically
the Stokes flow from equation (2.3) in a disc of radius R. Equation (2.2) is solved with non-slip boundary
conditions using the finite-element package FEniCS [27,28]. The active stress is computed from the
analytical form of the Q tensor corresponding to a single point defect in a uniform background nematics.

In figure 3, we show that the defect angular velocity is proportional to R for radii smaller than ld, and
crosses over to the asymptotic value for an infinite system given by equation (3.7) at large R. We have also
computed the vorticity field for α0 = 0 and different defect orientations relative to the activity gradient, as
shown in figure 4. When the defect polarization is parallel to the activity gradient (θ0 = 0), we observe a
quadruple structure of the vortical flow. This is consistent with the analytical prediction in the friction-
dominated limit, where the vorticity field away from the defect is determined by the activity gradient αg
as (for α0 = 0)

vþðr, fÞ ¼
ag sinð2fÞ

2Gr
cosð2u0Þ þ

ag

Gr
sinð2u0Þ(1þ cos2ðfÞ), ð3:8Þ
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where r and ϕ are the polar coordinates centred at the defect position. By contrast, when the defect
polarization is normal to the activity gradient (θ0 = π/2), we obtain a single vortex centred at the core
of the defect.
3.2. −1/2 defect
A similar analytical calculation can be carried out for the −1/2 defect using the parametrization of the Q-
tensor in equation (2.8). The interfacial and bulk components of the active force field are obtained from
equation (2.4) as

FI�ðrÞ ¼
ag

r
[ðxx̂� yŷÞ cosð2u0Þ þ ðyx̂þ xŷÞ sinð2u0Þ] ð3:9Þ

and

FB�ðrÞ ¼
agx
r3

[ðy2 � x2Þðcosð2u0Þx̂þ sinð2u0ÞŷÞ þ 2xyðcosð2u0Þŷ� sinð2u0Þx̂Þ]: ð3:10Þ

From symmetry considerations these forces as well as their curl vanish upon integration. This implies that
a constant activity gradient alone does not induce any self-propulsion of the −1/2 defect nor a rotation of
its orientation. Including the pressure contributions does not alter this effect.
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In the friction-dominated limit and for α0 = 0, we can evaluate the vorticity field, and show that a
constant activity gradient αg induces eight counter-rotating vortices, with a vortical flow given by

v�ðr, fÞ ¼ �ag cosð2u0Þ
2Gr

ð3 sinð4fÞ � sinð2fÞÞ þ ag sinð2u0Þ
2Gr

(3 cosð4fÞ � cosð2fÞ): ð3:11Þ

The same structure is observed in bounded domains where the vorticity forms vortices of alternating
circulation, as shown in figure 5 for a disc geometry.
4. Activity jump at an interface
We now consider an activity profile corresponding to a sharp interface separating a region of high
activity α0 from a region of low activity α1. Isolated ±1/2 defects are situated at a distance xv from the
interface in the region of high activity, α0, as illustrated in figure 6. The activity profile across this
interface is given by the Heaviside step function

aðrÞ ¼ a0 � DaHðx� xvÞ,
corresponding to a singular activity gradient ∂xα =−Δαδ(x− xv) with Δα = α0− α1 the interfacial jump in
activity. An active/passive interface corresponds to α1 = 0 and Δα = α0. In this case, we find that the self-
propulsion of the +1/2 defect is reduced as the defect approaches the interface. The vorticity-induced
active torque tends to reorient the ±1/2 defects moving toward the interface to preferred orientations
that depend on extensile/contractile activity. The −1/2 defect that already has the selected orientation
is attracted to the wall, while that with different polarizations might be repelled.
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Figure 7. Plot of (a) fþv and (b) fþv as functions of the distance xv of the +1/2 defect from the interface. Note that fþv diverges at
xv = 0 due to the bulk terms.
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4.1. +1/2 defect
The active force field induced by a +1/2 defect located at a distance xv from a sharp interface is given by

FIþðrÞ ¼ �Dadðx� xvÞ( cosð2u0Þr̂� sinð2u0Þr̂?) ð4:1Þ

and

FBþðrÞ ¼
a0

r
� Da

r
Hðx� xvÞ

� �
êþ: ð4:2Þ

Inserting these expressions in equation (2.5), we obtain the contributions to the self-propulsion velocity
from interfacial and bulk active forces as

vBþ ¼ a0p

4z
êþ � Da

2pz2
êþ
ð
drK0

r
z

� �
Hðx� xvÞ 1r ð4:3Þ

and

vIþ ¼ � Da

2pz2
êþ
ð1
�1

dyK0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2v þ y2

p
z

 !
xvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2v þ y2
p : ð4:4Þ

The first term in the bulk contribution is the well-known constant self-propulsion velocity from a
constant activity α0 [16]. The second term is the additional drift due to the activity jump Δα and
depends on the distance xv from the interface. As we will see below, this contribution suppresses the
defect self-propulsion near the interface.

If we now specialize to the case of an active/passive interface, i.e. Δα = α0. In dimensional units, the
self-propulsion velocity of the +1/2 defect is then given by

vþ ¼ a0

4h
p‘dfþv ðxvÞêþ, ð4:5Þ

with

fþv ðxvÞ ¼ 1� 2
p2

ð1
�1

dy

"
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2v þ y2

q� �
xvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2v þ y2
p þ

ð1
xv

dxK0(r)
1
r

#
: ð4:6Þ

The function fþv ðxvÞ is plotted in figure 7a. We note that the self-propulsion speed vanishes as the defect
hits the interface xv = 0. In other words, the defect slows down as it approaches the interface, and
eventually remains at rest at the interface. We note that equation (4.5) is obtained by incorporating the
incompressibility constraint only in the v0þ term. Additional pressure gradients may arise due to
activity jump. These are, however, difficult to obtain analytically and are not included in this study.

We now compute the vorticity at the defect position to investigate how its contribution to the active
torque tends to reorient the defect as it approaches the interface to a stable orientation. From equation
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(2.7), we obtain the following expressions for interfacial and bulk contributions

vI
þ ¼ � Da

2pz2
sinð2u0Þ

ð1
�1

dy K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2v þ y2

p
z

 !
x2v

ðx2v þ y2Þ3=2
"

þK1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2v þ y2

p
z

 !
x2v

zðx2v þ y2Þ

#
,

ð4:7Þ

and

vB
þ ¼ � Da

2pz2
sin 2u0

ð1
�1

dy K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2v þ y2

p
z

 !"

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2v þ y2

p �
ð1
xv

dxK0
r
z

� �
x
r3

#
, ð4:8Þ

where the bulk vorticity diverges at xv = 0. The total defect angular velocity is given by the sum of these
two contributions evaluated at the defect core. In dimensional units, it is given by

vþðxv, u0Þ ¼ � Da

2ph
sinð2u0Þfþv ðxvÞ, ð4:9Þ

where the wall-dependence function fþv ðxvÞ is plotted in figure 7b. Hence, near an active/passive interface,
the vorticity-induced rotation is at a rate _u0 ¼ 1

2vþðxv, u0Þ until ω+(xv , θ0) = 0. It is clear from figure 7b that
reorientation only occurs within a distance of order ℓd from thewall. As the +1/2 defect approaches thewall,
fþv increases and eventually diverges at xv→ 0. This means that the defect tends to reorient its polarization
until sin(2θ0) = 0. From the stability criterion that (dω+/dθ0) < 0, this corresponds to the stable orientation
2θ0 = π for α0 < 0 (extensile) and 2θ0 = 0 for α0 > 0 (contractile). In both cases, the defect polarization is
normal to the interface eþ ¼ ½+1, 0� and points away from the interface for extensile systems and into
the interface for contractile systems, respectively. Numerical simulations [19] report that +1/2 defects
tend to reorient and drift parallel to the boundary when the angle between the interface and the
incoming velocity is below a critical value that depends on activity. Above this critical angle, i.e more
head-on collisions, the defect hits the wall and tunnels through it. This effect is probably coming from the
additional contributions to the active torque that are not considered here, namely the interactions
between defects, deformations in the nematic order parameter due to the wall and the coupling to flow
alignment. It is likely that these terms are important close to the interface, both for determining the
defect orientation and the tunnelling effect observed both experimentally and numerically [19].

4.2. −1/2 defect
The components of the interfacial active force due to a −1/2 defect at a distance xv from the activity jump
are given by

FIx� ¼ �Da

r
dðx� xvÞðx cos 2u0 þ y sin 2u0Þ ð4:10Þ

and

FIy� ¼ �Da

r
dðx� xvÞð�y cos 2u0 þ x sin 2u0Þ: ð4:11Þ

The corresponding bulk active force is

FBx� ¼ ða0 � DaHðx� xvÞÞ 1r3 ½ðy
2 � x2Þ cos 2u0 � 2xy sin 2u0� ð4:12Þ

and

FBy� ¼ ða0 � DaHðx� xvÞÞ 1r3 ½ðy
2 � x2Þ sin 2u0 þ 2xy cos 2u0�: ð4:13Þ

Using these expressions, and neglecting the contribution from the pressure gradient, the net drift velocity
of the defect can be written as

v�ðxvÞ ¼ � Da

2ph
‘df�v ðxvÞn̂�, ð4:14Þ
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Figure 8. Profile of (a) f�v ðxvÞ and (b) f�v ðxvÞ as function of xv. Note that the function f�v ðxvÞ diverges at xv = 0.
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where n̂� ¼ cosð2u0Þx̂þ sinð2u0Þŷ. The function f�v ðxvÞ describes the dependence on the distance xv to the
interface and is given by

f�v ðxvÞ ¼
ð1
1

dyK0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2v þ y2

q
Þ xvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2v þ y2
p

�
ð1
xv

ð1
�1

dxdyK0ðrÞ x
2 � y2

r3
:

It has been evaluated numerically and is plotted in figure 8a. The −1/2 defect acquires a finite self-
propulsion close to the wall in a region of thickness of order ℓd near the activity jump. Its motion is
either towards or away from the boundary, depending on the defect’s orientation and the sign of the
activity.

To see how the −1/2 reorients as it approaches the interface, we evaluate the flow vorticity at the
defect core as a function of the wall distance. Again, there are contributions to the vorticity from both
flows driven by interfacial and bulk forces, given by

vI
� ¼ � Da

2pz2
sin 2u0

ð1
�1

dy K1
r
z

� ��

� x2v
zðx2v þ y2Þ � K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2v þ y2

p
z

 !
x2vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2v þ y2
p 3

#
ð4:15Þ

and

vB
� ¼ � Da

2pz2
sin 2u0

ð
drK0

r
z

� � 
dðx� xvÞ y

2 � x2

r3

þHðx� xvÞ 3xðx
2 � 3y2Þ
r5

!
: ð4:16Þ

Note that the bulk term diverges when xv→ 0. The total angular velocity of the −1/2 defect can then be
written as

v�ðxv, u0Þ ¼ � a0

2ph
sinð2u0Þf�v ðxvÞ: ð4:17Þ

The function fvðxvÞ has been calculated numerically and is shown in figure 8b. The dependence on thewall
distance xv changes sign near the wall, indicating that the vorticity tends to rotate the defect to a preferred
orientation at the wall. The preferred orientation is determined by the stationary condition sin2θ0 = 0, and
the stability criterion (dω−/dθ0) < 0, which implies that θ0 = 0 for α0 < 0 and 2θ0 = π for α0 > 0. In other
words for extensile activity the stable orientation of a −1/2 defect at a sharp active/passive interface
corresponds to a polarization e− = [1, 0]. Therefore, as a result of both their self-induced translational
and rotational motion, in an extensile system −1/2 defects are attracted to a sharp active/passive
interface and orient themselves with one of the three axis normal to the interface. This is consistent
with the accumulation of negative topological charge observed in experiments at active/passive
interfaces [18,19] and near physical walls [29], as well as in simulations [24,25].
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5. Conclusion
Activity gradients or sharp jumps can guide the motion and orientation of nematic defects. In a constant
activity gradient, +1/2 defects acquire an angular velocity that may rotate their orientation such that the
defect polarization aligns parallel to the activity gradient. The defects then self-propel in the direction of
the gradient, always moving towards regions of lower magnitude of activity, where it is less motile. Thus,
we expect that activity gradients will introduce more circular motion in the trajectories of the +1/2
defects. By contrast, a constant activity gradient yields no net vorticity or active force at the core of
the −1/2 defect, which remains stationary.

We find that the self-propulsion velocity of +1/2 defects moving towards a sharp active/passive
interface is also reduced, and that the defect will eventually stagnate at the wall. By contrast, −1/2
defects acquire a finite propulsion speed in the interfacial region and can overcome the positive
defects, explaining the observation of negative charge accumulation in experiments and simulations
[18,19,24,25,29]. We also predict that the active torque acting on a +1/2 defect that reaches the
interface tends to reorient it toward a preferred polarization that is perpendicular to the interface and
points away/toward it depending on extensile/contractile activity. The vorticity-induced active torque
also acts on the orientation of a −1/2 defect migrating toward interface, by rotating the defect until it
reaches the stable orientation which minimizes the net vorticity at the defect position. We show that a
−1/2 defect with a stable orientation gets attracted to a sharp interface. This stable orientation is
selected by the sign of activity, i.e whether the system is contractile or extensile. Tunnelling across the
interface observed numerically may be due to soft interfaces where the activity gradients are not
sufficiently steep, as well as due to defect interactions and other hydrodynamic effects. Here, we have
neglected additional contributions of pressure gradients induced by activity gradients, as well as
elastic stresses, flow alignment, nematic distortions due to the active/passive interface and defect
interactions, which may change qualitatively the defect dynamics.

Our results offer a simple understanding of the dynamics of nematic defects in the presence of
spatially varying activity. They can provide the starting point for designing structures capable of
controlling defect dynamics and associated active flows.
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