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ABSTRACT 

Desert areas cover approximately one-fifth of the Earth, making it important to 

understand how disturbance affects arid regions on a spectral level.  Remote sensing 

technology can be used to detect and characterize surface disturbance both literally 

(visually) and non-literally (analytically).  Non-literal approaches may even allow 

detection of anthropogenic-related surface disturbances that are not visible in individual 

images or color composites.   This is achievable through identification of differences in 

spectral reflectance among like soil components, both chemical and biological.  Previous 

research suggests that surface disturbances cause alteration of soil properties, making it 

feasible to detect variation in reflectance signatures.  This research supports that 

assumption and has determined that disturbance-related changes do have unique spectral 

characteristics in hyperspectral imagery that are detectable, even at the sub-pixel level 

and using endmembers from geographically different yet geologically similar regions.   
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I. INTRODUCTION 

A study published by Doug V. Prose in 1985 looked at the persisting effects of 

military maneuvers on soils in the Mojave Desert (Prose, 1985).  This study revealed that 

tracks left in a single pass of military equipment caused soil resistance (or electrical 

conductivity) 50% greater than in areas that were undisturbed.  The study also indicated 

that despite diminished visible evidence, there were underlying effects in the soil such as 

vertical and lateral increases in bulk density and soil impenetrability.  The implications 

are that even minimal surface disturbances have measurable impacts on desert soils that 

can serve as indicators of activity.   

Based on the idea posed by Prose (1985), this thesis has sought to demonstrate 

that one can use endmembers from a geographically different yet geologically similar 

area in conjunction with satellite imagery, and spectral mixture analysis to detect sub-

pixel surface disturbances related to anthropogenic uses in arid environments.  Spectral 

unmixing allows analysis of the distribution of surface components within a single image 

picture element (pixel) not visible to the naked eye and can be exploited to detect 

signature changes related to anthropogenic surface disturbances (Goetz et al., 1985).  

Areas with high concentrations of altered soil components can be mapped and analyzed 

to gain understanding of the spatial extent and location of those changes; providing 

comprehensive knowledge of target areas.  To be able to use these soil components for 

such applications gives us an edge on adversaries allowing us to track activity locations 

in a timely manner. By creating a library of spectral properties of soil types exposed to 

various surface disturbances in geologically similar conditions, surface disturbances in 

remote areas should be spectrally detectable on a sub pixel level in imaging spectrometer 

data; thus providing a means of analyzing large areas for signs of activity. 

As a spaced based asset, this technology poses the opportunity to conduct 

adversary tracking in regions that are highly inaccessible.  The ability to use endmembers 

from easily accessed areas to detect spectral changes in desert soils in general, enables 

quick response and potential mitigation efforts to be more effective in the long haul. As 

adversaries continue to adapt to current remote sensing methods, it becomes more 
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difficult to maintain an informational edge.  This makes it necessary to develop new 

methods for tracking their activity and whereabouts. Detection and mapping of disturbed 

soils using remote sensing and hyperspectral imaging technology is one approach that 

may contribute to the solution of this problem, however, this area requires further 

research to fully establish the potential of this technology. 
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II. THE PHYSICS BEHIND REMOTE SENSING 

A. REMOTE SENSING 

The term remote sensing refers to the ability to conduct measurements and 

interpretation of events without being present at the location being studied (Goetz and 

Rowan, 1981).  Remote Sensing instruments make measurements by utilizing solutions to 

the wave equation: 

 

                    (1) 
 

where: 

 

  is the wave amplitude, 

 

  is the angular frequency, 

 

  is the phase, 

 

  is the wave vector in some propagation medium (Elachi and Van Zyl, 2006). 

 

Remote sensing is useful for a variety of applications including mineral 

distribution mapping, geologic formation mapping, pollution studies, and geo-ecological 

relationships (Gathercole, 1987). Use of remote systems such as satellite borne sensors is 

possible because when light interacts with materials on the surface of the earth it is 

scattered, transmitted, reflected and absorbed by those materials (Figure 1).  Some of that 

light is then directed in the form of photons toward an observing sensor and measured as 

radiance (Clark, 1999).  The radiance measured by the sensor is calculated using the 

radiance equation (2) below after Gao and Goetz (1990). 

 

                                            (2) 

 

where: 

 

      is the radiance observed by the sensor, 
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        is the radiance above the atmosphere from the sun, 

 

     is the total atmospheric transmittance, 

 

     is reflectance from the surface material, 

 

  is the angle of incidence of the sensor, 

 

         is the path of the scattered radiance. 

 

 

 
 

Figure 1.   The above figure shows how incident light interacts with surface materials 

via transmission, reflection, scattering and absorption (From Olsen, 2007). 

The accuracy of measuring land surface characteristics remotely is dependent on 

spectral, spatial, temporal, and radiometric resolution (Jensen, 1983).  These different 

types of resolution are the dimension and number of wavelength intervals a sensor is 

sensitive to, the smallest angular or linear separation between imaged surface materials 

that can be determined by the sensor, how often the sensor is imaging the area, and how 
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sensitive a given sensor is to differences in the radiant flux being measured, respectively 

(Jensen, 1983).  It is the spatial, spectral, temporal, and radiometric resolutions that 

determine the sensors overall capability in distinguishing one signal from another 

(Jensen, 1983).  In hyperspectral imagery, these four resolution types are utilized to 

sample surface materials using contiguous bands allowing for identification of those 

materials.  This is done via spectral absorption features in the collected signal, or 

spectrum (Goetz et al., 1985).  This capability is discussed in detail in the Imaging 

Spectrometry section. 

B. THE ELECTROMAGNETIC SPECTRUM 

Electromagnetic radiation can come from a number of sources, mostly all 

associated with a changing of energy state of electrons (Olsen, 2007).  It travels in the 

form of transverse waves that result in a continuous spectrum of frequencies or 

wavelengths (Olsen, 1979).  The electromagnetic radiation concerning us here is the kind 

that interacts with matter, called incident radiation (Olsen, 2007). Generation of these 

electromagnetic waves occurs when energy is transformed from kinetic, chemical, 

thermal, and other similar sources (Elachi and Van Zyl, 2006). This electromagnetic 

radiation is how energy gets from some surface material to an optical sensor and is 

divided into a series of spectral regions that are illustrated in Figure 2 (Elachi and Van 

Zyl, 2006). 

Figure 2.   This figure from 

http://www.astro.cornell.edu/academics/courses/astro201/emspectrum.htm 

shows the divisions of the electromagnetic spectrum.  The region most often 

exploited by remote sensing scientists range from the ultraviolet to infrared 

portions of the spectrum (Halvatzis, 2002, Goetz and Rowan, 1981). 
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The spectral regions most often exploited by remote sensing scientists are the 

visible and infrared (Halvatzis, 2002). These regions have wavelengths that typically fall 

between 0.4 and 15 micrometers (400–1500 nm), though different applications will 

utilize different portions of this range (Goetz and Rowan, 1981; Halvatzis, 2002).  The 

wavelength range utilized is based on the material being analyzed and which spectral 

region will most easily distinguish this material from the others in the imagery (Jensen, 

1983).  It is widely agreed that the most appropriate regions for remotely sensing 

vegetation, soils, and rocks is the 0.4–2.5 micrometer (400–2500 nm) range; because of 

the detailed information on the unique properties of surface materials it can provide, even 

at the sub-pixel level (Goetz and Rowan, 1981; Jensen, 1983; Kruse et al, 2004). 

C. IMAGING SPECTROMETRY 

Imaging Spectrometry data measures reflectance or emissivity of surface 

materials using up to hundreds of spectral bands (Figure3) (Goetz et al., 1985; Kruse et 

al., 2003).  This technique allows for the collection of an entire spectral signature for 

every surface material within that image on a picture element (pixel) by pixel basis 

(Goetz et al., 1985).  Spectral features are a response to chemical bonds specific to a 

given material based on chemistry and structure, known as electronic and vibrational 

processes (Figure 2) (Clark, 1999) called absorption features (Goetz et al., 1985).  

Absorption features are the phenomena in which a collected spectrum from a material 

will have varying maxima and minima across the associated wavelength range.  Minima 

are related to absorption bands that are somewhat unique to the material and contribute to 

its characteristic spectrum (Goetz et al., 1985; Jensen, 2007; Clark, 1999).   
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Figure 3.   From Green et al. (1998), this figure shows the concept behind imaging 

spectroscopy and how it measures a spectrum for each image component 

(pixel) in a satellite image. 

1. Electronic Processes 

Electronic processes are the result of changes in energy states of electrons when 

they are emitted or absorbed by some material. The most common of these are related to 

the unfilled electron shells of transition elements such as Iron (Fe), also known as the 

Crystal Field Effect (Clark, 1999).  For transition elements, energy levels are split if an 

atom is in the crystal field, allowing an electron to jump from a lower to higher energy 

state when an photon with enough energy to make up the difference between energy 

states is absorbed (Clark, 1999).  Because the crystal field varies with the atomic 

structure of the material, the splitting energy will also vary causing spectral signatures 

unique to an individual material (Clark, 1999; Jensen, 2007). Other material specific 

electronic processes are associated with color centers, charge transfers, and conduction 

bands (Clark, 1999; Jensen, 2007).  Charge transfers occur when there are inter-element 
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transitions in which electron movement is between ions or ions and ligands and in Fe, for 

example, are the reason for its red color.  When electrons move amongst two different 

energy levels there is a gap in the band (band gap) represented by the difference in energy 

levels.  These bands often show themselves in the visible range and causes colorations in 

some minerals.  Color centers are a response to impurities and defects in the structure of 

the material and cause for example, the blue color in fluorite.  They show up as 

absorption features because they use photon energy to gain electrons (Clark, 1999). 

2. Vibrational Processes 

 Vibrational Processes are associated with the crystal lattice structure and the 

bonds within it and can be compared to a spring with a weight attached vibrating with 

fundamental frequencies and overtones (Clark, 1999; Jensen, 2007).  Fundamental 

frequencies are the normal modes of vibrations; overtones are multiples of the 

fundamental frequency as well as different combinations of it (Clark, 1999; Jensen, 

2007).  Natural materials exhibiting these vibrational processes include phosphates, 

borates, carbonates, water and hydroxyl (Jensen, 2007).  Vibration fundamental modes 

have traditionally been  represented as ν1, ν2, ν3 and overtones as 2 ν1, 3 ν1, 2 ν2 with 

combinations being represented as additions and subtractions of fundamentals (Clark, 

1999).    

3. Imagery Collection, Processing, and Analysis 

a. Collection 

The collection and analysis of these spectra allows one to identify such 

things as mineral and rock type in a given area remotely based on its unique absorption 

features.  The current Hyperspectral Imagery (HSI) technology utilizes spatial resolution 

of 2–20 m, spectral resolution of 10–20 nm and a signal-to-noise (SNR) ratio that is 

greater than 500:1 for data collection (Kruse, 2012)  On a mineral or rock surface, 

incident light (photons) can be absorbed, reflected/refracted, or passed through to other 

grains of a material.  Reflected or refracted light is also called scattered light which can 

be directed toward a remote sensing sensor capable of measuring abundances and 

properties of some material within the sensors field of view (FOV) (Figure 4).  When 
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analyzing imagery spectra, it is most useful to have the spectra in units of reflectance 

rather than radiance because radiance energy tends to be dominated by the solar spectrum 

(Roberts and Herold, 2004).  Remote sensing primarily uses two different types of 

reflectance; directional-hemispherical reflectance and bidirectional reflectance collected 

commonly in the nadir (normal to the surface) viewing geometry.  The differentiating 

factor between the two types of reflectance is that they are measured in the laboratory and 

in the field, respectively (Roberts and Herold, 2004). 

 

        Wavelength (µm) (1000–2600 nm) 

Figure 4.   This figure from Mustard et al (2008) shows the varying and somewhat 

unique absorption features for a variety of different minerals at the 1.4 and 

2.2 micrometer (1400–2200 nm) wavelengths.  These absorption features 

are related to the electronic and vibrational processes associated with the 

chemistry of the different materials (Goetz et al., 1985; Clark, 1999).  Here, 

a number of processes and interactions come into play, which determines 

the amount of energy each type of material will emit, absorb, and scatter 

(Jensen, 2007) 
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b. Processing 

The image processing of hyperspectral data involves several steps.  The 

most critical of these is the conversion of the spectrometer data into reflectance (Kruse et 

al., 2000).  Radiometric calibration is the method utilized in converting data to 

reflectance and does so by standardizing the collected signal via a series of gains and 

offsets that essentially divide each collected spectrum by the solar irradiance at the 

sensor; this step is a requirement for atmospheric correction during the image processing 

phase (Kruse et al., 2000; Roberts and Herold, 2004).  A method for checking the 

accuracy of the conversion is to compare it to wavelength ranges known to have 

atmospheric absorption features (Figure 5) to see if they are in the correct location after 

the conversion (Kruse et al., 2000).  Atmospheric absorption bands are portions of the 

electromagnetic spectrum that are opaque to a sensor viewing from space so the collected 

signal is noisy in these regions.  These absorption bands are always at the same 

wavelength (Olsen, 2007) so one should be able to utilize them as an accuracy check as 

Kruse et al. (2000) suggests.   

 

Figure 5.   This figure from the 

http://lasp.colorado.edu/~bagenal/3720/CLASS5/5Spectroscopy.html  

shows the regions of atmospheric absorption bands in the visible through 

short wave infrared regions of the electromagnetic spectrum. The 

atmospheric components responsible for a given absorption band are 

labeled (Olsen, 2007). 
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After data have been converted to reflectance, they must then be 

atmospherically corrected to account for interactions with the atmosphere such as 

scattering and absorption by atmospheric gas and particulate material (Kruse et al., 2000).  

Atmospheric correction is a necessary step that allows for determining physical aspects of 

imaged materials and making inferences with the data during analysis (Kruse et al., 

2000). 

c. Analysis Using Continuum Removal 

A continuum can be thought of as a mathematical means by which you 

can isolate a particular absorption feature of a spectrum and is related to the electronic 

and vibrational processes that occur within surface materials discussed earlier (Clark and 

Roush, 1984).  The purpose of continuum removal is to rid the spectrum being analyzed 

of affects from other processes within the material or other materials in a mixture so 

characteristics of an individual feature can be better examined (Clark and Roush, 1984; 

Clark, 1999; Clark et al., 2003; Kruse, 2008).  The continuum removal is done by 

estimating the other absorption processes using functions such as, but not limited to 

Gaussians and straight-line segments (Clark and Roush, 1984).    The mathematical 

function for continuum removal, according to Clark and Roush (1984) is expressed as: 

  
31 2 31 2 ( )( ) ( )

( )
k lk l k lr e e e  

   (3) 

 

where: 

 

r  is reflectance, 

 

1 1,k l
 

are functions of the wavelength and represent absorption of some process of 

interest in the material, 

 

2 2,k l
 are absorption related to other processes in the mineral,  

 

3 3,k l
 are absorption related to other processes from other materials. 

 

Continuum removal during spectral analysis is useful in both biological and 

mineralogical analysis.  This method has been found to be successful in correlation of 
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biochemical components of plants to absorption feature depths in plant material (Curran 

et al., 2001; Kokaly and Clark, 1999; Mutanga et al., 2004; Noomen et al., 2006).  Weber 

et al. (2008) and O’Neill (1994) were able to use the continuum removal method to 

discriminate biological crustal components of soils known as cryptobiotic crusts from 

bare soils and Clark and Roush (1984) as well as Kruse (1988) discuss the usefulness of 

continuum removal in mineral mixture analysis. 

D. RELEVANT MILITARY AND CIVILIAN APPLICATIONS OF IMAGING 

SPECTROSCOPY 

Imaging spectroscopy has been used by the military for a number of purposes.  

One instance is in determining terrain trafficability (the capability of an area to bear 

traffic and permit continued movement of that traffic) by first identifying and then 

mapping surface compositions of an area (Kruse et al., 2000).  While the hyperspectral 

data alone were not sufficient due to a lack of information on terrain such as slope or 

surface texture; when used in conjunction with digital elevation models (DEMs), 

synthetic aperture radar (SAR), or other datasets, hyperspectral imagery can be very 

useful (Kruse et al., 2000).  The information that was provided by hyperspectral data in 

this study included composition and distribution of soils, vegetation, manmade materials, 

and drainage features (Kruse et al., 2000).  Kruse et al. (2000) were then able to use this 

information to produce a trafficability product providing the consumer with information 

that is helpful in navigating through areas of potential risk; such as steep slopes with a 

principal constituent of clay that could potentially hinder movement (Kruse et al., 2000).  

A second example where hyperspectral imagery has been of use to the military is in the 

exploration of target and anomaly detection (Manolakis et al., 2003).  Because 

hyperspectral imagery relies on data collected over a contiguous spectrum, unlike some 

traditionally used passive imaging systems, it can identify objects that are partially 

hidden from view and identify them by their spectral characteristics instead (Manolakis et 

al., 2003). 

A study by Collins et al. (1997) provides an example of spectral characteristics 

being utilized to identify anomalies using SEBASS data in the long wave infrared regions 

(LWIR).  Through the use of Hyperspectral imagery and principal component analysis,  
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Collins et al. (1997) was able to successfully use the characteristic spectrum of desert 

varnish to not only detect targets such as military vehicles and fox holes, but tank tracks 

on the desert varnish itself (Colins et al., 1997).  Use of the differences in restrahlen 

emissivity between the desert varnish and other materials provided a useful visualization 

of vehicle traffic and target location (Figure 6) (Collins et al., 1997). 

 

Figure 6.   The above image from Collins et al. (1997) shows the results of using 

principal component analysis achieved using LWIR hyperspectral SEBASS 

data for their target detection and terrain classification study. 

Hyperspectral imagery have also proved useful for several environmental 

applications.  One in particular that applies to this research is the use of hyperspectral 

data to identify plant stress during a study conducted in 2004 (Smith et al., 2004).  

Observed spectral changes consisted of decreased reflectance in plants that were 

undergoing stress in the near infrared range between 0.72 and 0.73 µm (720 and 730 nm) 

(Smith et al., 2004).  Characteristic changes in reflectance related to stress can be seen in 



 14 

Figure 7 from the study by Smith et al. (2004). The stress of the plants was then 

successfully utilized to find where gas was leaking from pipe lines underground because 

gas injection into the soil caused a feature of discoloration known as chlorosis in addition 

to changes in chlorophyll A concentration of gassed grasses (Smith et al., 2004). 

 

Figure 7.   The above figure is from Smith et al. (2004), and shows the spectrum of 

control grass (i) compared to early-gassed grass (ii) at varying distances 

from a gas source along a transect (in meters).  Looking at the region 

between 350 and 850 nm (0.35–0.85 micrometers) in (i), you can see that 

reflectance does not vary much along the transect.  Contrastingly, the 

change in reflectance varies significantly with distance from the gas source 

due to varying levels of plant stress. 

The above studies illustrate the capability of hyperspectral data in characterizing 

target materials based on components not visible to the naked eye for multiple purposes.  
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These purposes include, but are not limited to locating a target itself, the ability to 

maneuver within the space the target material resides in, or finding hidden targets via the 

disruption they cause to some ecosystem constituent (Kruse et al., 2000; Manolakis et al., 

2003; Smith et al., 2004).  It seems a likely assumption that hyperspectral data can 

characterize changes in soil properties based on those reflectance changes in both 

biological and chemical components (Smith et al., 2004). It also seems a likely 

assumption that hyperspectral data can be used to track areas supporting anthropogenic 

activities by identifying alterations of characteristic properties caused by some surface 

disturbance (Prose, 1985). 
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III. DESERT ECOSYSTEM CHARACTERISTICS 

A. DESERTS AND THEIR DISTRIBUTION 

1. Humans and the Arid Environment 

By definition, deserts are arid or semi-arid regions where rainfall is the limiting 

factor for productivity and/or is unpredictable to the point that growing crops is not 

possible (Whitford, 2002).  Biological constituents of a desert are often considered to be 

living at or near their threshold of tolerance for a given environmental or ecological 

condition; resulting in local extinctions of some species when they are stressed beyond 

their ability to cope (Whitford, 2002).  Desert ecosystems have been found to be so 

sensitive that constant disturbances have been known to cause change in both the 

structure and function within the region itself and extending to surrounding ecosystems 

(Webb et al., 2009).  One example of how anthropogenic disturbances alter desert 

ecosystems is the distribution of plant communities and the close correlation of human 

impacts with increased rates of non-native plant invasions (Webb et al., 2009).  Other 

changes are decreases in soil conductivity (electricity) because of impact-related 

decreases in soil porosity. These alterations lead to higher erosion rates and wind 

transporting of soil materials (Prose, 1985).  Because structural characteristics of soils 

affect all processes in the desert environment, links can be established between bio-

chemical interactions and human-related impacts (Prose, 1985; Whitford, 2002) based on 

changes in reflectance within hyperspectral imagery (Smith et al., 2004). 

2.  Desert Biomes 

According to Whitford (2002), desert biomes cover roughly one-third of the 

Earth’s surface, occurring in areas with less than 50 cm/year of rainfall.   Figures 8 and 9 

illustrate a distribution of desert regions and correlating soil types, respectively. 

. 
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Figure 8.   In this image from http://serc.carleton.edu/eslabs/weather/4a.html the 

distribution of global biomes is shown.  The areas that are colored orange 

and yellow comprise the Desert and Steppe ecosystems of the world that 

constitute the hot and dry, coastal, and semiarid desert regions.  Cold 

deserts would be included in certain portions of the blue regions on the 

map. 

Desert biomes fall under four major classifications: hot and dry, semiarid, coastal, and 

cold (Allaby et al., 2011; McKinney et al., 2013; Whitford, 2002).  Examples of hot and 

dry deserts include the Chihuahuan, Sonoran, Mojave and Great Basin in the United 

States.  Examples outside of the United States include the Southern Asian Realm, 

Neotropical of South and Central America, the Ethiopian of Africa and the Australian 

desert.  These deserts are warm throughout the year to very hot over the summer months.  

Rainfall is scarce in these regions and when it does occur it is often in bursts after long 

dry spells.  Common plants are low growing shrubs, trees, and cacti.  Soils in these 

regions are course-textured and gravely, exhibit good drainage and have no subsurface 

water (Whitford, 2002).  Semiarid desert regions of the United States include the 
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sagebrush of Utah, Montana, and the Great Basin.  This biome can also be found in the 

Nearctic realm of North America, Newfoundland, Greenland, Russia, Europe, and 

northern Asia. Similar to hot and dry deserts, rainfall in these regions is low in the winter 

and summers are long and dry.  Plants here consist of spiny and glossy leafed varieties.  

These regions differ in that they have cool nights which allow for condensation of dew 

providing more water to these regions than hot and dry deserts.  Soils here range from 

sandy fines to larger fragmented rock, sand, or gravel.  Mountain slopes will typically 

have shallow soils with good drainage while the lower slopes characteristically have 

well-drained soils.  Both cases do not contain sub-surface water (Allaby et al., 2011; 

Lammers, 1991; Whitford, 2002).  Coastal deserts occur in moderately cool to warm 

regions and are characteristic of the Nearctic and Neotropical realm with the Atacama 

Desert located in Chile being a primary example.  They tend to have cool winters and 

somewhat long, warm summers.  Average rainfall in these deserts is generally 8–13 cm 

but places such as the Atacama can see 1.5 cm or less.  Soils here are generally fines and 

gravels with some salt content. The soil is porous with good drainage (Allaby et al., 2011; 

Warhol, 2007).  Lastly cold Deserts can be found in regions of the Antarctic, Greenland, 

and the Nearctic realm.  These deserts are known for cold winters with high overall 

rainfall during winter months.  They also receive snowfall and some rain during the short, 

moderately warm summer months.  Winters are quite long, cold, and receive considerable 

snowfall.  Annual precipitation ranges from 15–26 cm but can reach a maximum of 46 

cm and minimum of 9 cm.  Soils consist of heavy silts with high extractable mineral 

content often coinciding with porous soil of good drainage allowing for mineral leaching 

(Jonasson et al., 2000; Moore, 1978). 
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Figure 9.   The above figure is a map of world soil types and their distribution adapted 

from the http://www.cals.uidaho.edu/soilorders/i/worldorders.jpg (2012). 

Notice that the primary soil types associated with the arid regions in Figure 

7 are Aridisols (orange), and Entisols (pink) to some extent.  

B. CHEMICAL AND BIOLOGICAL SOIL COMPONENTS 

1. Soils 

Aridisols are the predominant soil type associated with the desert environment 

(Whitford, 2002). Figure 9 illustrates different soils throughout the world along with their 

respective regions, and Figure 10 shows the percentage distribution of aridosols in the 

United States.  Aridosols are CaCO3 containing soils generally found in arid regions that 

experience some subsurface horizon development.  Characteristically, these soils are dry 

through most of the year with limited leaching (Balba, 1995; Whitford, 2002).   

Subsurface horizons have accumulations of clays, calcium carbonate, silica salts, 

and gypsum in some cases, though gypsum and calcium carbonate tend to leach from 

soils in most climate types (Balba, 1995).  The properties of the subsurface soil horizons 

are important to know because variability in soil materials is detectable through Imaging 

Spectrometry (Clark, 1999; Kruse et al., 2000) and their presence may  

tell something about activities in the area (Webb et al., 2009). Other soil types also found 
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in desert regions include argids, orthids, mollisols, entisols, and shrink swell soils also 

known as cracking clays (Whitford, 2002). 

The structure and processes that occur within desert regions can be directly linked 

to soil properties and therefore make it possible to link changes in those properties to 

alterations in ecosystem functions (Prose, 1985; Whitford, 2002).  Because soils are a 

product of geology, geomorphology, and climate it is possible to make inferences as to 

what types of soil components may be present based on local geologic, geomorphologic 

and climatologic information (Whitford, 2002; Lammers, 1991).  These similarities 

should also allow for use of endmembers from a geographically different yet geologically 

similar area to be used to study surface disturbances in different arid regions of the world 

(Whitford, 2002; Lammers, 1991).  Soils also play a key role in nutrient availability and 

nutrient cycling critical to survival of biologic soil components such as cryptobiotic soil 

crusts (BSCs) (Whitford, 2002; Bowker et al., 2005).  It is a reasonable assumption that 

biological soil components exhibiting signs of stress can yield information (Smith et al., 

2004) on anthropogenic activities causing surface disturbances; because these impacts 

change ecosystem functions and nutrient delivery systems (Bowker et al., 2005; Evans et 

al., 1999; Prose, 1985) within and around an area (Webb et al., 2009).   
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Figure 10.   The above figure from the http://www.cals.uidaho.edu/soilorders/percentarid.gif shows the distribution of Aridisols in 

the US and includes areas of the ASD collection sites and AVIRIS imaged areas.  Knowing what soils are present in an 

area will be helpful in making predictions about how soil properties will respond to surface disturbances, which can in 

turn aid in tracking those disturbances consistently (Lammers, 1991; Whitford, 2002).

http://www.cals.uidaho.edu/soilorders/percentarid.gif
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2. Biological Soil Crusts (BSCs) 

Biological soil crusts (BSCs) are prevalent in two of the areas used for this study; 

both the Owens/Death Valley collection area and Canyonlands National Park (see 

Section IV below).  Figure 11 shows a photograph of the predominant species in the 

Owens Valley collection site compared to that of Canyonlands National Park.   Also 

known as cryptobiotic soils, BSCs are communities of sessile organisms that include 

bryophytes, lichens, eukaryotic algae, cyanobacteria, free-living fungi, and bacteria 

(Bowker et al, 2005).  Found on all continents, and in most habitats, BSCs are so 

prevalent, there are few areas in the world that can be considered BSC free (Bowker et 

al., 2005; Johnston, 1997). 

 

 

Figure 11.   Photograph of BSCs taken at the Owens/Death Valley collection (bottom 

two) site compared to those of Canyonlands National park (top photograph) 

(http://www.nps.gov/cany/naturescience/images/SoilCrust_CloseUp.jpg , 

Jessica Howard) 
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BSCs are characteristically located on the surfaces of mineral soils and perform 

key ecosystem functions in a variety of habitats worldwide and cover ~40% of the land 

surface up to 10cm thick in arid environments (Bowker et al., 2005).  BSCs have many 

names, cyptogamic, cryptobiotic, microphytic, though all imply some commonality.  The 

difference between cryptobiotic crusts and chemical/physical crusts is the fact that BSCs 

are formed by living organisms and their by-products while chemical/physical crusts 

(e.g., salt crusts) are inorganic (Johnston, 1997). These soils contribute to carbon and 

nitrogen fixation as well as affecting soil moisture and nutrient levels (Bowker et al., 

2005; Evans and Belnap, 1999).  In fact, soil texture, pH, and conductivity all play a role 

in whether crusts will be in an area or not (Johnston, 1997; Whitford, 2002).  As Prose 

pointed out in his study, surface disturbances change intrinsic properties of the soil and 

can therefore be exploited by hyperspectral imagery (Clark, 1999; Prose, 1985).  Davis 

(2007) made similar determinations about soil water content and vegetation health in his 

study on helicopter brown out.  It was found that the amount of chlorophyll present in the 

soil served as an indication of whether or not the soil was barren (Davis, 2007).  It is this 

premise that chlorophyll concentrations can be related to soil moisture and vegetation 

health that should allow for detection, using imaging spectrometry, on a sub pixel level of 

impact-related surface disturbance; since BSCs are typically at the top 1–4 mm of soil 

(the soil air interface) (Davis, 2007; Johnston, 1997; Weber et al., 2008).  Soil-air 

interface processes include soil stability and erosion, atmospheric N-fixation, nutrient 

contributions, soil-plant water relations, infiltration, seedling germination, and plant 

growth (Asner and Heidebrecht, 2002; Johnston, 1997; Webb et al., 2009; Whitford, 

2002).   

In non-disturbed regions, correlation between soil properties and BSCs can be 

made (Whitford, 2002).  One correlation is water availability (Weber et al., 2008).  

Disturbances generated by impact decrease water infiltration rates in soils and can 

register as stress in a biological soil component, further supporting the idea that BSCs can 

be useful in adversary tracking (Prose, 1985; Whitford, 2002).  Soil nutrients such as N, 

P, K, Mg, Fe, Mn, Zn, Cu, and others are also likely factors that affect the abundance of 

cryptobiotic soils making them useful in detection of IED supply lines (Smith et al., 
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2004), especially in cases where materials are spilled.  Adding Nitrogen to soil has 

demonstrated a retarding effect on natural nitrogen fixation by soil organisms (Asner and 

Heidebrecht, 2002; Johnston, 1997), however, studies on the relationship between 

nutrient availability and BSC abundance are limited (Bowker et al., 2005).  The study by 

Bowker et al. (2005) had data supporting the correlation between BSC abundance and 

micronutrient availability.  They found that in particular, Mn and Zn, had a strong 

relationship to the abundance of BSCs which could be useful in determining where soil 

crusts are located based on spectral signatures of soil composition.  Overall, components 

of BSCs were positively correlated with nutrient availability.  Because it is thought that 

BSCs are useful in monitoring the condition of various rangelands and determining when 

restoration efforts are successful, it makes sense that they can also be useful as indicators 

of when ecosystems are becoming off balance, and if there is an anthropogenic impact 

occurring in their region of growth causing the balance shift to occur (Haboudane et al., 

2008; Webb et al., 2009). 

According to Evans et al. (1999) cryptobiotic crusts in arid environments are 

especially susceptible to degradation resulting from land use changes and other impacts 

from both anthropogenic and natural causes.  Direct crustal damage is most often in the 

form of trampling because it breaks up sheaths and filaments which hold crustal soils 

together (Johnston, 1997).  If soil properties can be altered with even minimal 

impacts/disturbances (Prose, 1985), then the loss of permeability to water, changes in 

nutrient availability, and structural breakdown-related stresses should also register on a 

spectral level (Smith et al., 2004; Weber et al., 2008).  Studies have demonstrated that 

activities related to the military, overland recreational vehicles (ORVs) such as dirt 

bikes/all-terrain vehicles, hiking, biking, and livestock grazing place a heavy toll on 

BSCs because of unsuccessful adaptations to compressional disturbances such as 

trampling (Johnston, 1997).  The organisms comprising the crust have a different range 

of sensitivities with the dominant species being partially affected/determined by 

microclimate.  In particular an absorption feature related to chlorophyll A at 680 nm 

differentiates the BSCs from bare soil (O'Neill, 1994; Weber et al., 2008).  Since this 

feature has shown responses to the addition of water in a study done by O’Neill (1994) it 
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seems a likely candidate for analysis (O'Neill, 1994; Weber et al., 2008).  Similarly to 

soils, predictions based on climate, geology, and geomorphology of the region should 

also be possible with these biological soil components (Whitford, 2002). 
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IV. STUDY SITES 

The focus area of this study is in an area around Canyonlands National Park, 

covering areas in parts of Grand and San Juan Counties, Utah (Figure 12).  Geology units 

in the area range from 570 million years to about 80 million years old.  The area was 

relatively low and flat until around 11 million years ago when the Colorado Plateau 

began to uplift due to a laccolithic igneous intrusion (Lammers, 1991).  Elevation ranges 

from 1,219.2 m (4,000 ft) to 3962.4 m (13000 ft) with the higher elevations seeing nine 

different periods of glaciations (Lammers, 1991).  Major natural resources here consist of 

scenery, potash, copper, gold, silver, uranium, natural gas, oil, vegetation, soil, and 

surface and ground water.  The climate of the area is highly variable due to drastic 

changes in relief.  Precipitation can range from less than 8 inches to 30 inches annually or 

more with average annual snowfall consisting of 20 to 70 inches on the plateau 

(Lammers, 1991). 

 

 

Figure 12.   This figure adapted from Google maps and from the JPL AVIRIS website 

shows the primary study locations marked by the white arrows, and the 

available AVIRIS flight lines (red boxes) for the area. 
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The soil distribution of the Canyonlands study area is depicted in Figure 13 and 

includes some information on the parent material as well as the geomorphology of the 

area.  Overall the soil types are consistent with the nature of those of the ASD collection 

sites in Mono Basin and Mazourka Canyon.  Characteristics of all sites include igneous 

and sedimentary soil origins (Lammers, 1991; Tallyn, 1996) with sandstone, shale, 

diorite, limestone, and granite being the primary parent materials.  Soils of both locations 

show a history of being influenced by Aeolian, glacial, lake, and river presence with most 

soils exhibiting well drained characteristics though some units are poorly drained soils 

(Lammers, 1991; Tallyn, 1996).  Both the Utah and California sites are used primarily for 

rangeland, wildlife habitat, watershed, recreation, along with some cropland use and 

urbanization (Lammers, 1991; Tallyn, 1996). 

The area of collection for the Mono Basin and Owens and Death Valley areas 

consisted of Panum Crater in the vicinity of Mono Lake, and Mazourka Canyon near 

Independence, Ca. (Figure 14, Inset B).  Figure 14, inset C shows the author getting the 

spectrometer ready for collection at the Panum Crater location. The geology of Mono 

Basin includes Mono Lake, the remnant of Pleistocene Lake Russell, which has twice the 

salinity of the ocean (Figure 15, inset A).  The most recent volcanic eruption in this area 

was roughly 300 years ago with highly silicic lava types of dacite and rhyolite; obsidian 

is also present in the dome (Sharp and Glazner, 1997; Tallyn, 1996).  Panum Crater had 

eruption events between 1325 and 1365 CE and was the youngest vent of the Mono 

Craters eruptions and exhibited both pyroclastic (explosive) and phreatic (steam) type 

eruptions (Bursik and Sieh, 1989; Sieh and Bursik, 1986).  The ring around the dome of 

the volcano is the result of a strombolian type of eruption (Sieh and Bursik, 1986; Sharp 

and Glazner, 1997).  Rocks underlying Panum Crater consist of the granitic and 

metamorphic batholith associated with the Sierra Nevada.  On top of this sits a mixture of 

basaltic to rhyolitic volcanic rocks that are from 3.5 million years to less than 760,000 

years of age.  Also present are glacial deposits, gravel sediment, and rhyolitic glass and 

pumice formed domes (Sieh and Bursik, 1986). 
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Figure 13.   This figure illustrates the soil type and distribution of the Canyonlands 

National Park study site (Lammers, 1991). 

Mazourka Canyon of the Inyo Mountains between Owens Valley and Death 

Valley is the second collection area (Figure 14, inset C).  The geology of this region 

(Figure 15, inset B) consists of a continuous sequence of limestone roughly 457.2 m 

(1500 ft) thick (Merriam, 1973).  Other components of the limestone structure in 

Mazourka Canyon include calcareous siltstone, black chert, and gray chert (Merriam, 

1973).  Mazourka Canyon is part of the Inyo Mountains which once were part of the 

North Americas western continental shelf (Stone et al., 2009).  The substrate is the result 

of shallow-water sediments being uplifted during the mid to late Paleozoic era  

(570–240 mya). Once on the continental shelf, the marine sediments went through several 

periods of subsidence and uplift related to thrust faulting (Stevens and Stone, 2007; Stone 

and Stevens, 1998; Stone et al., 2009). 
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C  

Figure 14.   Inset A is the Mono Lake area collect showing the location of Panum Crater 

with a blowup image of the crater area.  Inset B shows the Independence, 

California area with a blow up image of the Mazourka Canyon collect site 

(adapted from Google maps).  C shows the author getting ready for 

collection using the ASD spectrometer at Panum Crater (Nathan Stuart). 

 

Panum 

crater 

Mazourka 

Canyon 
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Following the uplift that occurred during the Paleozoic, the Mesozoic Era (240–65 mya) 

resulted in the recession of ocean waters, during this time volcanism and volcanically 

generated sedimentation from the Inyo Mountains Volcanic Complex began covering the 

newly dried land (Dunne and Walker 1993; Dunne et al., 1998; Stone et al., 2009).  The 

most recent activity in the formation of the Inyo Mountains has been uplift related to 

basaltic volcanic activity associated with Basin and Range extension throughout the 

Cenozoic (65 mya-present) (Snow and Wernicke, 2000; Stone et al., 2009). 

A  

B  

C  

 

Figure 15.   A shows the key for the Mono basin and Owens/Death Valley collection 

areas, B shows the Mono Lake area, and C shows the 

Independence/Mazourka Canyon area.  Knowing the geology of an area is 

helpful in predicting what kind of soils will be present, allowing for 

predictability in disturbance related changes of properties (FromTallyn, 

1996). 
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V.  DATA AND METHODS 

A. DATA 

 Airborne imagery data were collected by the Airborne visible/Infrared 

Imaging Spectrometer (AVIRIS) system for the Canyonlands National Park area in Utah 

during 2011.  AVIRIS utilizes a whisk-broom imaging method collecting high resolution 

spectra over the 0.4–2.5 micrometer (400–2500 nm) wavelength range (Green et al., 

1998).  Through the employment of 224 contiguous spectral channels set at 10 nm 

intervals over the breadth of the spectrum, AVIRIS is able to measure detailed upwelling 

radiance of surface materials.  These measurements can then be used for determination of 

material composition based on the physics and chemistry of those materials.  A more 

detailed account of this process can be read in the paper by Green et al., (1998) and 

Roberts and Herold, (2004) (Green et al., 1998; Roberts and Herold, 2004).   AVIRIS 

imagery flight lines analyzed are of areas around Canyonlands National Park (Figure 12).   

The AVIRIS data used for this study were obtained from the JPL website 

(aviris.jpl.nasa.gov/alt_locator/) for multiple flight lines in the Canyonlands National 

Park area in Utah and Arizona on the Colorado Plateau.  The flight ID numbers for the 

flights used were f110512t01p00r07, f110512t01p00r08, f110609t01p00r13, 

f110615t01p00r05, f110623t01p00r10, f111110t01p00r08, and f111110t01p00r09.  

These flight lines were flown on 05/12, 05/12, 06/09, 06/15, 06/23, 11/10, and 11/10 of 

2011, respectively.  The data sets came as zipped archive files and were extracted then 

loaded into the Environment for Visualizing Images (ENVI) software for analysis.  

AVIRIS images were examined for quality and usefulness (e.g. clarity, cloud cover, bad 

data, etc.). 

Imaging spectrometer data collected in the Mono Basin and the Owens/Death 

Valley areas were also used for this study.  The main areas of collection were the Panum 

Crater and surrounding vicinity in Mono Basin at approximately 37
0
 55.537’ N, 119

0
 

02.923’ W, part of the Lee Vining quadrangle in the California 7.5 minute topographic 

quadrangle (Sharp and Glazner, 1997).  The Owens/Death Valley collection took place in 
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the Mazourka Canyon OHV park between Owens Valley and Death Valley at the base of 

the Inyo Mountains, the approximate coordinates for this site are 36
0
 49’ 18”N, 118

0
 05’ 

17”W.  A collection of spectra were also taken from the Santa Cruz mountains at 

approximately 37
0
 07' 26.55"N, 122

0
 00' 42.22"W for analysis of how soil reflectance 

changes with the same material under different disturbance conditions. 

B. METHODS 

1. Atmospheric Correction 

Atmospheric correction must be performed on the AVIRIS data to remove the 

effects of atmospheric absorption and scattering in order to obtain the surface reflectance 

of a material for comparison to library spectra (Figure 16).  Atmospheric corrections are 

applied on a pixel by pixel basis in order to analyze reflectance for materials in specific 

regions of the imagery.  AVIRIS data were atmospherically corrected using the Fast 

Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) method. 

 

 

Figure 16.   In this figure from Birvio et al. (2001) the solar radiation interactions are 

illustrated.  E0 is solar irradiance at the top of the atmosphere, Ed is diffuse 

solar irradiance. Ls represents radiance emitted from the target, Ld is the 

atmospheric path radiance and L0 is radiance measured by the sensor. θz and 

θv are downward and upward transmittance from the atmosphere, 

respectively, and θz and θv represent the solar zenith and sensor viewing 

zenith angles, respectively. 
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 FLAASH, which supports hyperspectral sensors such as Hyperspectral Mapper 

(HyMAP), AVIRIS, Hyperspectral digital Imagery Collection experiment (HYDICE), 

and a few others as well as multispectral sensors like Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER), is an automated atmospheric correction 

method developed by Spectral Sciences Inc. under sponsorship from the U.S. Air Force 

(Bernstein et al., 2012).  FLAASH performs atmospheric correction on wavelengths in 

the visible through shortwave infrared regions (up to 3000 nm) incorporating Moderate 

Resolution Atmospheric Radiance and Transmission Model 4 (MODTRAN4) radiative 

transfer code into the processing.  Options include standard MODTRAN atmosphere and 

aerosol types, but FLAASH also allows for correction for the adjacency affect, where 

pixel mixing occurs as a result of surface-reflected radiance scattering.  An average 

aerosol/haze amount can also be calculated for the scene, and cirrus and opaque clouds 

can be masked (Kruse et al., 2004).  FLAASH begins with the radiance equation at the 

sensor in the standard form of  

 

    
  

      
  

   

     
       (3) 

 

where: 

 

  is pixel surface reflectance 

 

   is the average surface reflectance for the pixel and the surrounding region 

 

  is the atmosphere’s spherical albedo 

 

aL is atmospherically back-scattered radiance 

 

        are coefficients dependent on atmospheric and geometric conditions 

 

The values for A, B, S, and    are determined using MODTRAN4 calculations 

that utilize viewing and solar angles and the mean surface elevation of the measurement.  

A model atmosphere, aerosol type, and visible range can be selected.  The values for A, 

B, S, and    are heavily dependent on the amount of water vapor present.  To account for 

this, MODTRAN4 calculations are looped over a column amount series with selected 
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wavelengths being analyzed to obtain the estimation per pixel.  Two channels are used, 

an absorption set centered on 1130 nm (a water band) and a reference set taken from 

beside the water band, in conjunction with a look up table constructed to look up the 

water vapor values (Bernstein et al., 2012). 

 Once the water vapor calculation has been completed, Equation (3) must 

then be solved to get pixel surface reflectance for all of the sensor channels. The 

calculation computes a spatially averaged radiance image Le, which is how ρe is 

estimated.  The following equation is used to calculate Le. 

 

     
       

     
       (4) 

 

The averaging is conducted using a point-spread function describing relative 

contributions of points on the ground to pixel radiance after cloudy pixels have been 

removed.  The ground points are measured at different distances relative to the direct line 

of sight (Bernstein et al., 2012).  Aerosol and haze estimation in the FLAASH model is 

done using dark land pixels in the imagery.  The aerosol/haze amount is obtained by 

running multiple iterations of Equations (3) and (4) over several visible ranges (say 12–

50 Km) and then interpolating the best estimate of the visible range through matching 

that ratio to an average ratio of ~0.45.  MODTRAN4 calculates a final loop over water 

using this visible range estimation (Bernstein et al., 2012). 

In order for the FLAASH atmospheric processing to be conducted information 

had to be obtained in the form of gain files and flight parameters from the JPL website 

(http://aviris.jpl.nasa.gov/alt_locator/).  These files come as part of the imagery zip files 

though one must go through them to obtain the required data.  This includes information 

on the elevation of the sensor, average scene elevation, time and date of acquisition, and 

the latitude/longitude position of the scene center.  Figures 17 A and B show the 

spectrum corresponding to latitude 37 57'43.92"N, -109 47' 46.03"W of the June 23 

Canyonlands data set (f110623t01p00r10rdn).  Noise-containing bands related to water 

vapor were removed at wavelengths near 1.4 and 1.9 micrometers by editing the bad 

bands list of the header file. 
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A  

B  

Figure 17.   A illustrates an AVIRIS radiance spectrum from pixel 393, 1731 in the 

f110623t01p00r10rdn file before atmospheric correction, and B illustrates 

the AVIRIS reflectance spectrum of the same location after atmospheric 

correction.  Radiance spectrum A illustrates the domination of the spectrum 

by atmospheric effects.  Reflectance spectrum B shows the spectrum after 

removal of the atmospheric effects. 
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2. Field Spectroscopy 

An Analytical Spectral Device (ASD) Imaging Spectrometer was also utilized to 

collect spectra in the California desert areas of the Mono Lake Basin Owens Valley, and 

Death Valley.  Imaging spectrometers, similar to AVIRIS, measure radiance from surface 

materials in the UV to near infrared (NIR) and shortwave infrared (SWIR) range (350-

2500nm) (Green et al., 1998; Roberts and Herold, 2004).  Unlike AVIRIS, an imaging 

spectrometer, field spectrometers such as the ASD do not portray collections as imagery, 

but as an individual spectrum or series of spectra (Figure 18) (Roberts and Herold, 2004).  

Spectra measured consisted of a variety of areas around the Panum Crater Trail and 

Mazourka Canyon Off Highway Vehicle (OHV) Park.  Spectra were taken from areas of 

zero disturbance, areas of minimal disturbance related to foot paths, areas of light duty 

dirt roads, areas of heavy duty dirt roads, and areas with both disturbed and non-disturbed 

vegetation including cryptobiotic soils.  Examples of non-atmospherically corrected 

spectra collected with the ASD imaging spectrometer can be seen in Figure 18.   

 

 

Figure 18.   This figure shows a series of non-atmospherically corrected spectra 

collected with the ASD spectrometer. 
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Specimens were sampled during the time periods of 0930–1130 and 1300–1500, 

falling within the +/- 2 hours of solar noon described by (Roberts and Herold, 2004).  

Collected spectra were then converted to reflectance using spectral math.  The spectral 

math equation used was s1/s2 where s2 was the average white reference spectrum and s1 

was one of the field collected spectra.  This process was conducted on each individual 

spectrum from each collection site, and utilized the site specific white reference spectrum 

for a given calculation.  One of the results of this process can be seen in Figure 19.  Once 

the spectra were in units of reflectance, they were examined for proof of concept with 

respect to detecting soil disturbance using reflectance spectroscopy and the continuum 

removal method.  To verify if differences were significant enough to be considered 

spectrally extreme, band depths were analyzed between both the ASD collected spectra 

and the imagery derived endmembers using the following equations (5) and (6) described 

by Kokaly and Clark, (1999) and  Kokaly (2001).  Equation (5) calculates the continuum 

removed reflectance required to then calculate the band depth using equation (6) (Kokaly 

and Clark, 1999; Kokaly (2001). 

   
   

      
  (5) 

 

where: 

 

   is the continuum removed reflectance at the absorption feature, 

 

    is the the reflectance at the base of the absorption feature, and 

 

       is the reflectance of the fitted continuum line that corresponds to the absorption   

feature. 

         (6) 
 
where: 

   is the calculated band depth of the continuum removed absorption feature and 

   is the previously calculated continuum removed reflectance from equation (5).      
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A spectral library was then built and the spectra for the various levels of disturbance were 

used as inputs for the mixture analysis and mapping of the AVIRIS imagery.   

 

 

Figure 19.   This figure illustrates the original sample radiance data (red) and white 

reference spectrum (black) collected with the ASD spectrometer (left) 

compared to the spectrum calculated using spectral math (right).  The blue 

reflectance spectrum (right), represents the red spectrum (left) divided by 

the black spectrum (left) (solar spectrum removed). 

3. Spectral Mixture Analysis 

The mixture-tuned matched filter (MTMF) approach was used in this research.  

The MTMF process combines older methods of Matched Filtering (MF), used for target 

signal detection and signal processing, with newer methods and algorithms that account 

for mixing of reflectance that occurs within a pixel (Figure 20) (Boardman and Kruse, 

2011).  The previous MF method had a high false alarm rate and exhibited difficulty 

distinguishing between similar yet rare targets in the image space because of mixing that 
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occurs on a sub-pixel level (Boardman and Kruse, 2011).  The MTMF method has proven 

successful at leveraging mixing between a point of interest and the background to 

eliminate such problems as false alarms during the analysis process (Boardman and 

Kruse, 2011). Through the combination of spectral unmixing, MF, and convex geometry, 

MTMF excels at accurately mapping subtle sub-pixel targets with sufficiently reduced 

false alarms (Boardman and Kruse, 2011). 

 

 

Figure 20.   This figure from Boardman and Kruse (2011) shows how mixing in a 

picture element (pixel) occurs based on 2 (left) and 3 (right) endmember 

concepts.  The 3 endmember example shows how this occurs both spatially 

and spectrally within the pixel. 

The MTMF method is broken into the following steps:  pre-processing and data 

preparation, MF abundance estimation, and mixture tuning (MT) to reject any false 

positives (Boardman and Kruse, 2011).  Before MTMF can be conducted, it makes sense 

to first derive endmembers from the data using the hourglass method illustrated in Figure 

21 (below) (Boardman and Kruse, 2011).  For the purposes of this research, endmembers 

have been derived both from the data using the hourglass approach described in 

(Boardman and Kruse, 2011), as well as via the use of a spectral library created using the 

ASD collected spectra.  Imagery derived endmembers come from the AVIRIS flight lines 
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after atmospherically correcting the data using the FLAASH method described 

previously.  As Figure 21 illustrates, once the endmembers have been identified, the next 

step is to perform MTMF to determine where endmembers occur within an image and 

what their abundances are within a given pixel.  Once this has been conducted, maps of 

this information can then be generated (Boardman and Kruse, 2011). 

 

 

Figure 21.   This figure shows the processing methods for spectral mixing analysis using 

the N-dimensional approach adapted from Kruse et al., (2003) and 

Boardman and Kruse (2011). 

a. The Hourglass Approach 

The hourglass method is suitable for the purposes of this study because it 

allows for accurate endmember extraction without any prior knowledge of location 

details (Boardman and Kruse, 2011).  In general, the hourglass method converts radiance 

data to apparent reflectance (required for spectral analysis) using an atmospheric 

correction model (in this case FLAASH).  The minimum noise fraction (MNF) 

(transformation resulting in new components being ordered by image quality (Boardman 
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and Kruse, 2011; Green et al., 1988)) portion performs noise suppression within the data 

as well as some reduction in both spatial and spectral space.  Pixel Purity Index (PPI) 

determination is where the purest pixels (endmembers) are identified using convex 

geometry.  Endmembers are then visualized through utilization of the n-dimensional 

visualizer in the ENVI software package. The endmembers were identified through the 

use of both the ASD spectral library described previously and libraries built by USGS 

(Clark et al., 2007).  The endmembers were then run through the MTMF spectral (partial) 

unmixing process to determine location and abundance in the HSI data. 

b. The MTMF Method 

MTMF involves three analysis steps.  Step one involves an MNF 

transform, step two calculates the matched filter, and step three is where mixture tuning 

(MT) occurs.  MT utilizes convex geometry to measure pixel mixture probabilities that 

are composites of both the target spectrum and background spectra.  MTMF is an 

automated process that only requires the data and predetermined endmembers (Boardman 

and Kruse, 2011).  In order for step one to occur, pre-processing of the data must be 

completed.  Pre-processing has two main objectives performed as part of the execution of 

the MNF transform (Boardman and Kruse, 2011).  During the pre-processing phase, 

noise whitening is done via decorrelation of noise present in the data and unit variance 

across all dimensions of the spectra.  The noise whitening and data characterization step 

is a crucial part of the MTMF process because it is a main element of what allows 

estimation and target detection within the imagery (Boardman and Kruse, 2011).  Three 

possible options exist in estimating an MNF transform, estimation using a shift 

difference, using a dark current image, or through use of known noise parameters.  All 

three methods are statistical approaches that are useful under varying conditions.  The 

end result is to determine the eigenvectors and project the noise whitened data onto them 

in order to decorrelate the data using equation (7) from Boardman and Kruse (2011).   
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   (7) 

 

where: 

 

           is the mean corrected and noise whitened result 

 

   is the diagonal matrix with elements being a square root of the reciprocal to the 

noise eigenvalues 

 

       is the nb, nb matrix of noise eigenvectors with nb being the number of bands 

 

       is the original data set as a number of pixels, number of bands matrix 

 

    is set as the mean value of a band j of        

 

The goal of step two is use of the calculated matched filter along with the 

minimum noise fraction (MNF) to estimate target abundances on a sub-pixel level.  With 

the final MNF output (Dmnf) being calculated using equation (8) from Boardman and 

Kruse (2011). 

 

                        (8) 
 

where: 

 

     is the MNF data, 

 

          represents the diagonal covariance structure containing MNF eigenvalues that 

are equivalent to the covariance values, 

 

      is the principal component transform result from the data that has been both mean 

corrected and noise whitened. 

 

The MNF data have a zero mean and uncorrelated unit variance white noise that, when 

projected onto their eigenvectors, yield a diagonal covariance structure.  The covariance 

values are equal to the MNF eigenvalues and are the base by which MTMF processing 

then occurs (Boardman and Kruse, 2011).   

When a pixel is filled with certain materials, the degree of spectral variability is 

reduced simultaneously.  If the pixel is filled to 50% with that material, one encounters 
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the situation where mixing freedom within the pixel is halfway between the background-

plus-noise freedom of a 0% filled pixel and the noise-only-freedom of the pixel filled to 

50% (Boardman and Kruse, 2011).  It is this concept that allows the MTMF process to 

identify false positives by placing pixels well outside their plausible mixing freedom into 

an infeasible mixtures category.  Finally, MTMF creates a distribution range for feasible 

mixtures (Boardman and Kruse, 2011).  Further details on the mathematics behind this 

process are given in the paper by Boardman and Kruse (2011).   

The MNF process revealed that the eigenvalues for the AVIRIS 

f110512t01p00r07 flight log drop to 1 at approximately eigenvalue band 49, which 

means that the bands after eigenvalue band 49 contain mainly noise.  Based on this, the 

data were then reduced from the initial 207 bands used to using only the first 50 bands in 

steps after the MNF process in order to eliminate noise from the data and providing a new 

dimensionality of 50 (Figure 22). 

 

Figure 22.   The plot (A) shows that the eigenvalues calculated for the image drop 

toward 1 at approximately eigenvalue band 50, meaning that most of the 

data in this band is noise.  The bottom figure (B) is a visualization of 

eigenvalue band 50, confirming that though there is some signal present, 

band 50 is dominated by noise. 

As an example of the Pixel Purity Index (PPI) calculation using the f110512t01p00r07 

data set, the number of PPI iterations was set at the default setting of 5,000 iterations, and 

a PPI threshold value of 2.5.  The resulting plot can be seen in Figure 23.  When looking 

at the plot, the curve flattens off at around 2000 iterations, so the index was run a second 

time with 3000 iterations because 5000 seemed unnecessary.  The lower iteration plot can 
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also be seen in Figure 23.  The leveling off of the pixel purity index curve at 

approximately 2000–3000 pixels is the basis that determines the maximum number of 

pixels to be used in the visualization step.  To be sure that the best subset possible was 

used, 3000 pixels were set for the maximum. Once the purest pixels were identified and 

previewed, they were then extracted as endmembers.   

Two options for endmember extraction are possible, the first is imagery 

derived endmembers, which intuitively means that the endmembers are extracted from 

the imagery itself and is generally thought of as the best option (Kruse and Boardman, 

2011, Kruse and Perry, 2009).  The second option is to input user supplied endmembers, 

which means one can input field or laboratory collected spectra into the algorithm and try 

to detect those as target material.  Both options were run on the two data sets with the 

highest spatial resolution for the Canyonlands site.  The data sets were AVIRIS flight 

logs f110512t01p00r07 and f110512t01p00r08 with 2.9 m and 3.3 m spatial resolution, 

respectively. In some cases a third data set with 15.2 m resolution was utilized 

(f110623t01p00r10). This was done for two reasons; the first is because the BSC 

component does not necessarily take up large areas and the bigger the pixel, the less 

likely it is that BSCs will be detectable in the imagery.  To test how the BSCs and other 

endmembers might be distributed in the imagery, they were compared to the results using 

imagery derived endmembers.  The second reason it was run on two data sets was for a 

repeatability test with the same endmembers at the same success rate.  To try and create 

the most similar conditions, the data sets with the most similar spatial resolution and 

topography were selected; the third data set was used when further testing was required.  

Figure 24 shows some of the 48 endmembers derived from the imagery sets compared to 

the spectra collected using the ASD imaging spectrometer in the Owens/Death Valley 

area and input as user supplied endmembers.  MF and infeasibility scores were then used 

to determine areas with high MF and low infeasibility scores.  These correspond to areas 

with high abundance and feasible mixtures.   These areas were then analyzed to see if the 

endmembers could actually be related to any features within the imagery and potentially 

mapped as areas of interest. 
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Figure 23.   This figure illustrates the number of times a pixel is marked as pure and 

shows the leveling off of pixels at around 2000.  Analysis of this graph 

helps to determine how many pixels to use in visualization and endmember 

derivation. 
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Figure 24.   This figure is a comparison between the imagery derived endmembers (top) 

and the spectra collected from Owens/Death Valley Mazourka Canyon 

(bottom).  Looking at the two plots, one sees similarities between the two so 

it is feasible that using the collected spectral library may be useful as an 

endmember input for the AVIRIS imagery. 
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VI. RESULTS AND ANALYSIS 

Spectral libraries collected using the ASD spectrometer were analyzed to 

determine if differences could be seen in reflectance and absorption features of spectra 

between those collected before and after disturbance.  This was primarily to determine if 

changes in soil characteristics could be immediately seen within the individual spectra.  

Upon examination there were visual differences in spectra collected from the same 

location before and after disturbance and they are illustrated in Figure 25 below.  The 

most noticeable differences show up around 500 nm (0.5 µm), 1125 nm (1.13µm), and 

2200 nm (2.2µm) and are regions of absorption features in the spectra.  These changes 

show not only difference in apparent reflectance, but also show variation in the width and 

depth of the absorption features at these key locations when using the continuum 

removed function previously discussed. 
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Figure 25.   This figure shows ASD collected soil spectra under various conditions of 

impaction/surface disturbance with the continuum removed.  Variation in 

feature depths and widths at 500 nm, 1100–1125 nm, and 2200 nm are 

measureable, supporting the prediction that surface disturbances are 

detectable in Hyperspectral imagery.  The depths of features show an 

overall pattern of decreasing feature depth with increasing disturbance at 

500 nm and 2200 nm.  At 1125 nm the depth of features seemed to increase, 

for the most part, with increasing disturbance. 
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The absorption feature band depths for the ~500 nm, 1125 nm, and 2200 nm 

features are 0.0232, 0.0176, and 0.0304 for burnt clay (Table 1).  The field road clay 

values were 0.052, 0.0193, 0.0745, gate clay values 0.057, 0.021, 0.0645, gopher till 

values 0.0419, 0.026, 0.073, home hill clay values 0.092, 0.0087, 0.137, and hard picnic 

area clay values 0.0805, 0.154, 0.000 (flat) are for 500 nm, 1125nm, and 2200 nm, 

respectively (Table 1).  The continuum removed values are representative of the depths of 

the absorption features at each wavelength calculated using (5) and (6), and are thought 

to be associated with how the soil components are altered with various levels of 

disturbance. As previously mentioned, Clark and Roush (1984) discussed how the use of 

the continuum removed function allows one to analyze a spectrum that is not heavily 

influenced by the processes of other minerals in a mixture or those within the mineral 

itself.  Therefore, the depths of the absorption features and the changes occurring 

amongst them must be related to some change in the intrinsic properties of the soils 

themselves, as was suggested by Prose (1985) and postulated by this study. 

Table 1.   This table lists the absorption feature depths for each soil spectrum 

using the continuum removed function and the deepest portion of the 

feature.  The values listed show changes in the depth of features for the 

same material under different disturbance conditions for wavelengths of 

~500 nm, 1125 nm, and 2200 nm.  The depths are ordered by least to 

greatest disturbance and show, for the most part, a trend of decreasing 

depth, increasing depth, and decreasing depth at 500 nm, 1125 nm, and 

2200 nm, respectively. 
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Looking at Figure 25 it is apparent that the top four spectra are the same material 

based on the similarity of the visible features.  The only exception to the similarities of 

the spectra is the hard packed picnic area clay.  However, the picnic clay spectrum (with 

the continuum line) has heavily subdued features that are much shallower in depth and 

shifted slightly.  When considering this, there are some similarities between it and the 

other spectra.   The burnt clay expresses higher overall reflectance values than the gopher 

till, but has more similarity to the hard packed clay than the other soil spectra.  Like the 

hard packed clay, the burnt clay absorption features are subdued and the absorption 

feature at 2200 nm seems to have disappeared altogether.  The home hill clay is the least 

disturbed of the samples, the gopher till was a recent dig site and had not been exposed to 

any rains or sitting long.  Gate clay was a less recent dig site conducted a few months 

prior to collection that was then packed back down, and the field road clay has been 

exposed to impact disturbance on a  level between the home hill and picnic clay spectra.  

Based on the fact that each spectrum is comprised of the same soil material and were 

collected under the same weather conditions, the only known differentiating factor 

between them is the level and type of disturbance the soil has been exposed to and is 

likely the cause of the differences illustrated by the spectra. 

Table 1 has spectra ordered by least to greatest disturbance with hill clay being 

the least and hard picnic clay considered the greatest; however the type of disturbance 

seems more relevant at this point.  Using hill clay as the undisturbed reference as 

previously discussed, impact-related disturbances show decreases in absorption features 

at 500 nm and 2200 nm but increases in depth of absorption features at 1125 nm.  

Digging-related disturbances show decreases in absorption features at all three 

wavelengths.  Burning disturbances show a decrease in feature depth at 500 nm and 2200 

nm, and increase in feature depth at 1125 nm similar to impacts.  Since the patterns of 

depth change at each wavelength are the same for the same type of disturbance, it can be 

inferred that depth changes increasing at 500 nm and 2200 nm can be correlated with 

impact disturbances and those that decrease at all wavelengths can be correlated with 

digging disturbances.  Also, a burn disturbance seems to register a pattern similar to that 

of impact disturbances but the depths do not appear to change as much. 
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BSC collected spectra show similar results to those discussed by Weber et al 

(2008) and O'Neill (1994) with an absorption feature around 650 nm that can distinguish 

BSCs from bare soils because bare soils have a mainly flat spectrum in this region.  The 

absorption features can be seen in Figure 26 along with a spectrum of soil (bottom) that 

does not have the absorption feature at 650 nm; these features have been emphasized 

using the previously discussed continuum removal method.  Also of note is the difference 

in reflectance between the healthy BSC spectrum and the disturbed BSC spectrum 

representing a measure of 0.00359 difference in depth calculated using the difference of 

the results of each spectrum from equations (5) and (6).  The deepest portion of the 

feature is also shifted from 675.40 nm for the healthy BSC to 685.20 nm for the disturbed 

BSC.  The disturbance for this particular BSC is related to trampling by foot traffic of 

one pass.  This means a single footstep registers an immediate decrease in feature depth 

of 0.00359, a shift to longer wavelengths of 9.8 nm, and visible narrowing of the feature 

for this BSC. 

 

Figure 26.   This figure shows undisturbed and disturbed BSC spectra collected from 

Mazourka Canyon plotted with bare soil.  These BSCs have a prominent 

absorption feature around 650 nm similar to that observed by Weber et al 

(2008) that is useful for discrimination from bare soils. The absorption 

feature at 650–700 nm changes in width and depth between BSCs.  Also, as 

mentioned by Weber et al (2008) the bare soil does not express the 

absorption feature.  The feature exhibited by the spectra at around 760 nm is 

possibly due to ozone that was not fully removed by the atmospheric 

correction. 
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A. IMAGERY DERIVED ENDMEMBERS 

The initial run of the MTMF algorithm was conducted using imagery derived 

endmembers for the purpose of determining if the patterns observed were comparable to 

those of the collected field spectra.  Imagery derived endmembers are obtained from the 

imagery itself and are typically thought to yield the best results so should provide a good 

standard of achievement for the user supplied endmembers (Kruse and Boardman, 2011).  

The MF score verses infeasibility plots of imagery derived endmembers were also 

analyzed to see how imagery derived endmembers stacked up against user supplied 

endmembers (Figure 27).  Figure 27, inset C shows a 2D scatter plot of MF versus 

infeasibility for the mean class 1 endmember from the f110512t01p00r07 flight and 

includes a true color version (Figure 27, inset A) of the imagery for comparison. 

The colored area (Figure 27, inset B) is the class created in the scatter plot based 

on the criteria of a high MF score and low infeasibility score, corresponding to areas with 

high abundances (0.30–0.76) and feasible mixtures with the composite background.  The 

imagery depicted in Figure 27 is from flight f110512t01p00r07 of the Newspaper Rock 

National Historic Monument area near the Needles entrance of Canyonlands National 

Park so trails are expected.  The average trail can be between 2 and 6 feet depending on 

what it is used for.  With a resolution of 2.9 m per pixel (9.5149 ft), a 0.61 m (2 ft) trail 

would represent a maximum of 21%, a 1.22 m (4 ft) trail would be a maximum of 42%, 

and a 1.83 m (6 ft) trail would reach a maximum of 63% of the pixel.  Based on the 

results from endmember 1 and other imagery derived endmembers, and the maximum 

possibilities for trails, which would be the largest target to identify, the goal for a match 

of user supplied endmembers will be between 15–60 %.  Mainly the 15–60% range is 

based on the fact that while achievable higher percentages are possible with imagery 

derived endmembers, user supplied endmembers utilized for imagery are from 

geographically different areas.  Therefore, the expectation is that the user supplied 

endmembers will produce less accurate results.   
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A B C

 

Figure 27.   This figure shows the true color image (A) and the associated MF verses 

infeasibility scatterplot (C) being utilized to analyze an imagery derived 

endmember and see what type of score distribution is associated with areas 

of the highest pixel concentration.  In B, Yellow ranges are areas with low 

infeasibility and high MF scores highlighted in the scatterplot, and represent 

the most likely areas for target mixtures.  The range associated with these 

areas contains 30–76 % of the endmember. 

Figure 28 illustrates some of the imagery-derived endmembers utilized.  Figure 29 

illustrates one of the imagery derived primary soil components identified using the USGS 

mineral spectral library as a possible zunyite mixture. Zunyite is a mineral common to the 

San Juan County area of Colorado and is associated with the Zunyite Mine in Anvil 

Mountain of the Red Mountain District proving it to be a feasible match for the imagery 

area (http://www.merriam-webster.com, http://colorado.hometownlocator.com).  

http://www.merriam-webster.com/
http://colorado.hometownlocator.com/


 56 

 

Figure 28.   The above shows some of the imagery derived endmembers from the 

Colorado AVIRIS flight log f110512t01p00r07 where the endmember has 

been identified as a Zunyite mixture.  The continuum removal allows us to 

see how absorption feature depth differences show a similar pattern to those 

collected with the ASD spectrometer in figure 24 at ~500 nanometers, 

1125 nanometers, and 2200 nanometers. 
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Figure 29.   This figure shows the USGS spectral library entry for Zunyite and the 

imagery derived endmember mean class 9 thought to be a Zunyite mix.  

Both spectra are shown with the continuum removed. 

The zunyite spectra show similar spectral reflectance differences to those 

observed by Smith et al (2004) as well as in the ASD clay collected spectra previously 

discussed (Figure 28).  Differences again show up at the wavelength regions of 

approximately 500 nm, 1125 nm, and 2200.  Like the spectra collected using the ASD 
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spectrometer, reflectance values were used to identify regions of change in absorption 

feature overall spectral reflectance for the zunyite mixtures.  These endmembers were 

also analyzed using the continuum removed method to calculate the absorption depths at 

500 nm, 1125 nm, and 2200 nm for endmembers.  Absorption feature depths for 

endmembers 6, 9, 14, 28, 34, 43, and 42 are 0.056, 0.133, 0.0340; 0.225, 0.1281, 0.0350; 

0.034, 0.0693, 0.0376; 0.028, 0.0688, 0.0535; 0.047, 0.076, 0.0293; 0.026, 0.128, 0.050, 

and 0.109, 0.301, 0.117, respectively (Table 3).  The similarity between the band depth 

calculation results of both the user-supplied endmembers and the imagery-derived 

endmembers suggest that differences in the features can potentially be related to different 

levels of disturbance affecting the surface material (Table 3). The spectra in Figure 28 

also show slight shifts in location and prominence of the features.  Widths of features in 

this case varied as well. 

For the clay collect, the hill clay sample appeared to be the least impacted by 

disturbance and was therefore used as a control to determine the disturbance-related 

differences.  Since the least impacted clay sample had similar reflectance characteristics 

to the imagery derived zunyite endmember 28, that endmember was used for the zunyite 

control.  The average differences in absorption depth at 500 nm, 1125 nm, and 2200 nm 

for the ASD collected clay spectra and imagery derived zunyite endmembers are 0.0342, 

0.0190, .0738; 0.0476, 0.0553, and 0.0207, respectively (Table 2). These values shown 

represent the difference in depth of absorption features (including the averages) at each 

respective wavelength for two different materials with similar, not identical properties. 

Since these materials are similar, not identical, some minor differences are expected. 

For example, impact-related disturbances in the clay showed a decrease in the 

feature at 2200 nm; endmembers derived from the imagery also showed patterns of 

absorption features decreasing in the SWIR region of the electromagnetic spectrum with 

respect to what is thought to be an undisturbed zunyite spectrum; but unlike the clay, they 

show an increase at 1125 nm.  While the patterns of feature depth do not match those of 

the clay at 1125 nm, the correlation is still possible because the clay and zunyite materials 

are not an exact match.  Certain features may express themselves differently at 1125 nm 

because those features are related to vibrational processes while wavelengths less than 
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1000 nm are affected by electronic processes (Clark, 1999; Jensen, 2007).  Ground-

truthing needs to be conducted to verify a relationship between the observed spectral 

phenomena of the imagery-derived endmembers and types/degrees of disturbance.  

 

Table 2.   This table shows the differences in absorption feature depth from the 

imagery derived Zunyite endmembers corresponding to the approximate 

deepest point of the absorption features at wavelengths of 500 nm, 1125 

nm, and 2200 nm.  The pattern of difference (features decreasing in depth 

with greater disturbance) in the 500 nm range were used to try and predict 

endmembers of greatest disturbance for the Zunyite endmembers because it 

shows a close value for average depth differences to that of the clay spectra. 

 

 

While it is understood that such properties as grain size and soil moisture content 

can have effects on reflectance values (Ben-Dor et al., 2003), the fact that impact energy 

applied to the soils also can have dramatic effects on these characteristics is the reason 
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such an inference can be made (Ben-Dor et al., 2003; Davis, 2007; Prose, 1985).   Other 

imagery-derived endmembers corresponded to various types of vegetation, rivers, paved 

roads, and different mineral depositions.  These endmembers were evaluated only on 

their ability to be identified within the imagery as a method of determining what spatial 

extent should be expected and as a comparison to where user supplied endmembers were 

detected to make sure there was no crossover. 

 

Table 3.   This table shows the depths for the  zunyite features in the order of 

decreasing feature depth  at 500 nm.  It is inconclusive how the pattern of 

feature depth change is associated with different levels of disturbance, 

though patterns of change with respect to the reference endmember 28 can 

be seen.  These are imagery derived endmembers so the level of disturbance 

is unknown.  Without proper ground-truthing there is no way to be sure if a 

relationship exists, however the similarity between these patterns and those 

in the clay spectra suggests disturbance can be correlated with these 

changes in depth as well.   
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B. ASD SPECTROMETER MEASURED ENDMEMBERS 

ASD collected endmembers yielded some interesting results.  They were, to an 

extent, able to identify features, however the method required significant human 

interference, unlike using imagery derived endmembers.  User supplied endmembers also 

rarely turned out MF scores greater than 50% and in many cases they could only achieve 

30%.  Likely this is the result of the endmembers used being either too dissimilar to 

materials in the imagery, or not being spectrally unique enough to be detected in large 

quantity.  In this particular study the results were still useful because the size of the 

features (trails in particular) being identified would generally only occupy a pixel 

percentage between approximately 20 and 60% in conditions where the feature is 

unoccluded by other objects in the imagery. 

1. Camp Road Endmember 

User supplied endmembers from the clay collect, and the Mono/Owens valley 

areas were processed using the MTMF method first on the f110512t01p00r07 image 

subset then on the f110512t01p00r08 flight log subset. Figure 30 shows one of the 

endmember infeasibility images along with the resulting analysis using the scatterplot of 

infeasibility verses MF score.  In this case, the endmember used is the spectrum of a 

moderate use dirt road leading into a camp at the Mazourka Canyon site that has been 

input into the f110512t01p00r07 flight log data.  Infeasibility images show the highest 

value pixels, and therefore the least feasible mixture of the target and background, as the 

brightest.  There are a few dirt roads visible in the true color imagery that appear in the 

infeasibility image with scores of 5–10.  These scores are close enough to zero (zero 

being a perfect match) to confirm the target material, especially since the brightest 

materials have scores of 30–100 (not feasible mixtures of background and target 

material).  Using this information with a scatterplot analysis, only sections with very low 

infeasibility (around 0–6) scores and an MF score of 10–25 were selected (Figure 30, 

inset A).  The result was very few pixels being highlighted, and those that were had an 

MF of .11 or 11%.   
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While this is lower than the hoped for 15–60%, comparison of the imagery to 

higher spatial resolution Google Earth imagery shows that there do seem to be trails in  

most of the areas that were marked.  Other areas with higher MF scores between 15 and 

25 also yielded positive results for trails not readily seen in the imagery, but also had 

some false positives.   

 

 

Figure 30.   The above figure shows the MF verses Infeasibility scatter plot for the camp 

road endmember result plotted on a grayscale image of the 

f110512t01p00r07 data set with B being the zoomed in version of A.  Red 

pixels represent target material with MF scores between 10 and 49%.  The 

NE to SW trending pixels are thought to be a trail and have MF scores of 

11–12%, the NW to SE trending pixels are along a drainage and have MF 

scores of 16–22% but may still be trail material. 
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The false positives were typically associated with bare rock drainages in the 

imagery when they had an MF score between 16 and 25 though values of this range were 

also associated with what appeared to be trails.  Pixels with MF scores for this 

endmember that represented greater than 25% of the pixel were always associated with 

bare lithified rock features, typically steeply sloped and unlikely to harbor any trails due 

to terrain.  When the camp road endmember was run on the second data set, similar 

results were obtained.   Figure 31 shows results of the camp road endmember for both the 

3.0 m pixel resolution data set (f110512t01p00r08) (inset A) and the 15.2 m pixel 

resolution data set (inset B). 

The higher resolution image had positive matches for target material at 9–11%, 

very similar to the results of the f110512t01p00r07 data set, and the latter 

(f110623t01p00r10) had positive matches at 4–9% target material (Figure 31).  

 

A B  

Figure 31.   This image shows the camp road endmember MF verses infeasibility image 

for the f110512t01p00r08 (A) andf110623t01p00r10 (B) data sets.  The 

result is similar to that of the camp road endmember in the 

f110512t01p00r07 in that the target material identified as road had between 

9 and 11% target fill in the pixel for A and 4 to 9% for B. 
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While the lower value would initially seem a setback, remember a larger pixel 

size means the same feature will occupy a smaller percentage of the pixel so this result is 

actually within the predicted range.  As Figure 31 illustrates, the results were actually 

better with the larger resolution image for this particular endmember.  Upon inspection of 

Google Earth imagery of the site, dirt sides of a paved road, what looked like ridgeline 

trails, dirt roads, dirt parking areas, and what appear to be ATV roads that look like 

drainages in the actual data set all had positive matches to the target material ranging 

from 4–9%. 

2. Adjacent to Tread Endmember 

The adjacent to tread endmember collect also yielded the close to expected 

results.  Areas with the MF scores between 7 and 49 (49 was the highest yielded 

percentage value) are shown in red (Figure 32).   

 

Figure 32.   The image shows the MF vs infeasibility scatterplot and target material 

image of the user supplied adjacent to tread endmember in the 

f110512t01p00r07 data set.  Detected target material corresponds with red 

areas (regions with highest MF score and lowest infeasibility) suggesting 

they are the best matches. 
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The target material shows up in various regions associated with what appears to 

be steeper terrain and the sides of drainages where unconsolidated material often appears; 

corresponding to the conditions of the material during collection.  This endmember was 

given a slightly different margin for MF and infeasibility scores (closer to 5 and 10, 

respectively) because unconsolidated material is expected to be mixed with other material 

such as vegetation and different mineral mixtures.  Therefore, you would expect the pixel 

percentages to potentially be lower. 

For the repeatability test, the f110512t01p00r08 data set also had positive matches 

to targets.  In this test, however, there were significantly fewer pixels identified with 

feasible mixtures (Figure 33).  Since there were so few pixels identified under the 

standard ranges, the scatter plot class was increased to encompass MF scores to 52 (the 

highest possible range, and as low as 5.  Even then most of the pixels were concentrated 

in certain areas rather than distributed throughout the imagery as seen in the 

f110512t01p00r07 data set.  This is a good result however, considering the terrain is very 

flat in most of this image.  Areas where the endmember corresponds to flat areas appear 

to be areas of runoff in both the imagery and looking at Google Earth.  The high 

concentrations of areas determined to be target material are again associated with regions 

of steep terrain where you would expect loosely consolidated material.  The majority of 

those regions are located, in most instances, around the edges of the landscape features 

depicted in Figure 33.  These main imagery features appear to be highly lithified rock 

structures in the imagery and are confirmed as such to the greatest possible extent using 

Google Earth.  The areas where the target material has been identified do appear to be 

steeper regions with less consolidated surface material as well as deposits at the base of 

the structures. 
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Figure 33.   This figure shows the adjacent to tread endmember results with MF scores 

of 5–52% using the f110512t01p00r08 for a repeatability test.  Areas of 

highest target material concentrations are associated with regions of 

unconsolidated material on steep sides of lithified rock structures.  Areas 

surrounding the rock structures are thought to have less target material 

because they are flat and may be more settled. 

3. Biological Soil Crust Endmembers 

BSCs yielded results with similar value ranges to other endmembers of 9–11% in 

most cases.  Some areas yielded smaller values closer to 5–7%.  To test BSCs, imagery-

derived endmembers, following the parameters of Weber et al (2008), had to be 

identified.  This meant first identifying imagery derived endmembers as BSCs using the 

absorption feature seen around 650 nm in continuum removed spectra not present in bare 

soils (Weber et al., 2008).  Most of the endmembers corresponded to vegetation and soils,  
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but there were a few that looked plausible.  Endmembers 2, 3, and 32 (BSC 2, BSC 3, 

and BSC 1 in Figure 34, respectively) seemed the most likely candidates when inspected 

using the continuum removed method.   

 

 

Figure 34.   This figure is the spectra for three imagery derived mean class endmembers 

thought to be BSCs and the spectrum for an endmember believed to be soil 

based on criteria established previously from Weber et al (2008) and the 

results of the spectral libraries with the continuum removed function 

showing an absorption feature at ~650 nm not seen in soil (Figure 25). 

The endmembers chosen for BSC candidates showed shallower absorption 

features than vegetation endmembers that were slightly offset from the vegetation 

absorption feature near 650–700 nm.  Endmember 14 is thought to be bare soil, though 

there may be a BSC or vegetation component there as well due to a slight absorption 

feature also around 700 nm; though it is much shallower and a different shape.  Once the 

endmembers were determined they were scatter plotted as MF verses infeasibility to see 

how they were distributed within the imagery and what MF scores would be associated 

with the most likely matches.  The result of this can be seen in Figure 35 A and B.   

The collected endmembers from Mazourka Canyon were then scatter plotted in 

the same image data set as the imagery derived ones and analyzed (Figure 35 C and D).  
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Inset C of Figure 35 is the same data set (f110512t01p00r07) utilized with the imagery 

derived BSC endmembers in Figure 35, inset A and B.  Inset D of Figure 35 is the 

f110512t01p00r08 data set result using the same endmember as in inset C for a 

repeatability test.  While the healthy BSC result using the imagery derived endmember 

(Figure 35, inset A) was not repeatable using any of the ASD collected BSC 

endmembers, the disturbed BSC endmember results did appear to be replicable to the 

imagery derived ones with 7–11% providing the best result range in the 

f110512t01p00r07 data set.  Similar results for the f110512t01p00r08 data set of 5–9% 

yielding the best range for the disturbed BSC endmember were obtained.   

Slightly different results are expected as the resolution of the two images is close 

but not exact.  Figure 35, inset D shows the result for the f110512t01p00r08 data set.  

BSC results are, however, somewhat inconclusive as they appear in high concentrations 

in areas that other endmembers have also been detected, particularly the adjacent to tread 

endmember.  The distribution of the BSC pixels did look slightly different, and there is 

no reason they could not occur in the same location, as BSCs tend to also cause soil to 

become more consolidated via their growth method and are known to be a stabilizing 

mechanism of slope material (Johnston, 1997). 
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A B  

C D  

Figure 35.   A shows results using BSC endmember 2 derived from the imagery.  B and 

C show areas suspected to contain BSCs using endmember 3 and the 

Mazourka Canyon disturbed BSCs in green.  While B and C show similar 

results, the results of A were not repeatable with the collected BSC 

endmembers. D shows the results from the repeatability test using the same 

endmember as in C.  In all cases, the range was between 9–11% for target 

material, with higher values of 15–30% associated with possible bare to 

nearly bare soil. 
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However, the presences of BSCs are much more difficult to determine even 

utilizing Google Earth for virtual ground-truthing; the resolution is just not good enough 

to make a positive determination.  Also, the expectation was that BSCs would be found in 

higher concentrations but the lack of large swaths of target material does not support this 

assumption, indicating that either there is minimal to no presence of BSCs or the spectra 

are not unique enough to be differentiated from the soil.   

4. Disturbed Creek Soil Endmember 

While the majority of this analysis focuses on the two data sets with the highest 

resolution, the lack of a substantial creek feature in the f110512t01p00r08 data set made 

it necessary to use the lower resolution 15.2 m pixel f110623t01p00r10 data set. 

Fortunately this larger data set had several creek features that could be analyzed using the 

disturbed creek soil endmember for a repeatability test. Figure 36, insets A-C show the 

results, which are somewhat similar to the camp road endmember in the initial 

f110512t01p00r07 data set (Figure 36, inset A-C).  However, the f110623t01p00r10 

results were quite different than the camp road endmember (Figure 37).  Similarly to 

other results, the best identifications of target material are consistently within ranges 

between 9-16% with increasingly greater false positives for larger percentage pixel 

contributions. 
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A B  

C  

Figure 36.   A and B are the results from the initial f110512t01p00r07 data set overlain 

on a gray scale image and in the MF verses infeasibility class scatterplot 

results, respectively. C shows a zoomed in portion of the creek area with red 

pixels representing the disturbed creek soil endmember in the 

f110512t01p00r07 data set.  Pixel percentages range from 9-37% with the 

best matches falling between 9 and 16%. 

The repeatability test seemed to yield much more accurate results with the lower 

resolution image.  The results were between 5 and 11 % which at first seems low, but 

remembering that the resolution is 15.2 m per pixel, even large features are expected to 

occupy lower percentages of pixels.  Red pixel areas correspond to what appeared to be 

creek drainages with potential oxbow lakes (Figure 37, inset A and C), but upon looking 

at Google Earth for virtual ground-truthing, most of these pixels are associated with ATV 

trails within the drainages (Figure 37, inset B).  This is a very good result as the 

endmember was collected from ATV trails along creek drainages in Mazourka Canyon.  
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A B  

C  

Figure 37.   Inset A shows the image result of the MTMF analysis for the disturbed 

creek soil endmember in the f110623t01p00r10 data set.  As expected, this 

endmember shows up in areas that look like dry creek beds and along river 

banks. Inset B shows the gray scale image with the results overlain, and 

Inset C shows a concentration of endmember containing pixels 

corresponding to the area in the red box in A. The red pixels are not only in 

creek drainages, but looking at Google Earth; these drainages also contain 

ATV trails.  In most cases, the red pixels are associated with the ATV trails, 

some not readily apparent in the imagery. 

5. Color Composites of Endmembers 

A final test of the endmembers was to look at them as color composites enhanced 

to emphasize the endmember being investigated.  The best results were when a user 

supplied (ASD measured) endmember was put into a composite (R, G, B space) with two 

imagery derived endmembers.  Figure 38, insets A and B illustrate the creek soil and 
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camp road endmembers, respectively.  Figure 38, inset C shows a color composite of the 

atmospherically corrected imagery from the f110512t01p00r07 data set.  The image 

colors were chosen to enhance different surface materials in the image to makes sure the 

endmembers were accurately identifying potential target material, particularly in the 

creek areas where there are significant quantities of vegetation (shown as red in inset C of 

Figure 38). 

The composites illustrate both the successes and failures of the endmembers, yet 

still seem to do the job of identifying the types of features being looked for based only on 

changes in spectra related to surface disturbances supplied by the ASD collected 

endmembers.  In the color composites, the brightest pixels are associated with the largest 

percentage values, typically around 20%.  These were generally associated as false 

positives, while the more muted pixels corresponded to lower ranges between 9 and 18% 

and were the most accurately identified pixels, as far as trail like features are concerned.  

Many of the endmembers yielded similar results but with higher concentrations in areas 

associated with the type of region the samples were collected from.  For example, the 

disturbed creek soil endmember had more successes and higher positive matches in areas 

where creeks and drainage basins were found. 
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A B  

C  

Figure 38.   Inset A shows a color composite result using the ASD measured camp road 

endmember and 2 imagery derived endmembers for RGB color composite.  

Red pixels represent the camp road material. Inset B shows a color 

composite using an imagery derived endmember, the ASD measured camp 

road endmember, and another imagery derived endmember for R, G, B, 

respectively with green pixels representing target material.  The potential 

trail identified with this endmember in Figure 29 shows up in green here, 

and is particularly noticeable as an s shape closer to the creek.  With both 

ASD measured endmembers, the most accurate results were in the range of 

9-18% pixel fill.  Higher than 18% resulted in some matches and some false 

positives with lithified rock faces. Inset C shows an example of a color 

composite of the actual imagery with band combinations highlighting 

specific image elements.  This was to help verify target material was 

accurately identified in the color composites depicted in A and B. 
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VII. DISCUSSION AND CONCLUSIONS 

A. SPECTRAL MEASUREMENTS AND SOIL DISTURBANCE 

Analysis of the collected spectral libraries established that there were measurable 

differences between spectra of disturbed versus undisturbed areas of the same 

composition materials.  Endmembers collected in the field were all categorized by a 

material first undisturbed and then disturbed from the same location.  The disturbances 

were all caused by impact-related use such as walking, driving over, or dropping 

something onto the soil, OHV and equestrian use (horses).  Firerelated disturbances were 

also used in order to have information regarding camp fires to help associate the source 

as anthropogenic.  For the initial clay collection the samples were all taken from the same 

area and spanned a section of roughly 1.62 Km
2
.  The continuum removed spectral 

differences occur in the wavelength regions of approximately 500 nm, 1200 nm, and 

2200 nm.  The changes observed at these wavelengths involve differences in apparent 

reflectance received at the sensor and calculated differences in band depth and observable 

width differences of absorption features in the same material.  Similarities in the amount 

of difference in depths between ASD collected endmembers and imagery derived 

endmembers suggested that these differences made the spectra unique enough to be 

successfully used to detect features such as trails based on differences in spectral 

characteristics. 

Clearly properties of soils are altered once they have been exposed to some 

surface disturbance, particularly those caused by impacts.  It is the chemical and 

structural make-up of soil that causes it to exhibit its characteristic absorption feature.  

Previous studies have found similar changes in reflectance and spectra shape, depth, and 

width of vegetation exposed to gasses injected into soils.  These changes were the result 

of a stress response by vegetation to the gasses as a function of distance from the source.  

It makes sense then that if reflectance changes in vegetation are a response to an 

ecosystem disturbance, then the reflectance changes in this study can be correlated to 

anthropogenically caused surface disturbances as well.  The data shown in this report 

support this line of thinking because the changes in reflectance are similar enough to the 
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differences in the studies by other researchers to suggest that they too can be correlated 

with some sort of functional disruption.  Supporting evidence of spectral alteration due to 

impact was determined between ASD collected undisturbed BSC spectra and BSC 

spectra associated with trampling. Because the endmembers are soils and biological soil 

components that are confirmed to have undergone impact-related surface disturbances, 

then it is reasonable to think the differences in reflectance are related to impact-related 

changes in the soil. 

B. INFEASIBILITY AND MF SCORES 

For comparison purposes, both imagery derived and field-measured endmembers 

were used in the MTMF analysis.  The idea behind this was to determine if the measured 

endmembers could achieve similar success results to the imagery derived ones for 

identifying disturbance-related changes in reflectance.  If so, then it could be said that 

user supplied endmembers from geologically similar areas would be a successful way of 

tracking disturbances in imagery from a geographically different area. Imagery derived 

endmembers and user supplied ones were evaluated by continuum removed changes in 

band depth, and results indicate that these differences are similar to those collected in the 

field.  The similarities in calculated band depths associated with absorption features at 

500 nm, 1125 nm, and 2200 nm allowed for the postulation that if the results using the 

user supplied endmembers were similar to those achieved with the imagery derived 

endmembers for similar types of materials (soils and BSCs), then the test could be 

considered successful.  The MF and Infeasibility scores obtained for the measured 

endmembers were, for the most part, as successful as the imagery derived endmembers. 

Because the measured endmembers come from areas that are different than the 

location of the imagery data, a perfect match was not expected and the percentage rate for 

successful detection was set at a lower value than those of the imagery derived 

endmembers.  The idea here was to have the results yield a low enough infeasibility 

number that one could reasonably assume what you were looking at was some mixture of 

that endmember and the background.  The camp road endmembers are a good example of 

this at work.  While not a perfect match, the infeasibility score of between 6 and 10 
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allows for reasonable certainty that the linear feature depicted is a dirt road because it is 

close to zero, with zero indicating a perfect match to the target material.  Also, the fact 

that the second imagery data set yielded a result of 5–10 is significant; because not only 

is the endmember from a geographically different area, but the two images are also from 

geographically different parts of the Canyonlands area.  The two images yielding such 

similar results is a sign of both successful use of the endmember to find roads/trails, but 

also that it can be used with similar success rates in different areas. Not only that, but we 

know that these  infeasibility scores do accurately identify dirt roads because each image 

has at least one that can be confirmed as such within the true color imagery.  The 

roads/trails were identified with these scores and the data sets have been compared to 

Google Earth for virtual ground-truthing. 

The adjacent to tread endmember performed well in areas associated with steep 

terrain and is likely associated with poorly consolidated material.  This is a promising 

result because this particular spectra was collected on an unconsolidated hill side with a 

moderate slope angle of around 15
0
–20

0
.  When looking at the red colored target material 

distribution, you can begin to make out what looks like topography.  Comparing the 

material distribution image to the true color imagery, the NW to SE trending features are 

drainages in the true color image.  Other features that can be seen with the target material 

in the NE corner, these are steep curving slopes in the true color image. 

One area that did not quite yield the anticipated results was the use of BSCs as 

endmembers.  While pixels with a reasonable percentage level were detected, there were 

so few of them that it is hard to say without ground-truthing that these areas legitimately 

contained BSCs.  Potentially, the reason for this is twofold.  On the one hand, the 

concentration of BSCs in the field collected spectra from Mazourka Canyon were not 

heavily concentrated and therefore contained more of the soil spectra with a minimal 

peak in the green portion of the spectrum (500 nm) making them not spectrally 

significant enough to show up en masse in the data sets.  The other issue may have been a 

resolution problem.  BSCs were expected to occupy larger swaths of imagery if present, 

even with a resolution of approximately 3 m pixels in both the f110512t01p00r07 and 

f110512t01p00r08 data sets.  If present in the imagery, they may well have been in very 
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small concentrations making them un-useful for target detection.  If, however, higher 

resolution imagery were available it may still prove to be a useful target based on the fact 

that positive hits were detected and BSCs were found to exhibit similar changes in 

spectral characteristics as soils when exposed to impact-related surface disturbances. 

What seems, at this point to be the most successful test, was the disturbed creek 

soil endmember in the f110623t01p00r10 data set.  This was a bit of a surprise because 

the expectation was that the higher resolution imagery would be more successful which is 

why it was utilized for both the initial and repeatability tests.  The lower resolution 

imagery was only utilized when results in the repeatability test were too inconclusive to 

be considered a valid test and further testing was required.  The fact that the 

f110512t01p00r08 data set was not successful and the f110623t01p00r10 was can also 

serve as a positive reflection on the test.  The issue was that the distribution of positively 

identified pixels was confined to steep slopes for the most part with a few in what looked 

like runoff areas in the higher resolution data set.   

This could mean that the circumstances creating the spectral characteristics 

specific to the disturbed creek endmember were not present in the imagery.  This theory 

is further supported by the lack of a substantial creek feature within the 110512t01p00r08 

imagery.  The f110623t01p00r10 data set however, had several features that appeared to 

be drainage basins.  The result was significant successful identification of areas that 

appear to be drainage basins with OHV trails in them not always visible in the imagery.  

In almost every case, a pixel with a value between 5-11% was a positive match to an area 

with an OHV trail or a drainage basin.  While 5-11% seems a lower range than other data 

sets, one must remember to take into account the fact that a larger pixel size means 

similar features will take up less of a percentage than in smaller pixels.  The positive 

identification range is consistent with the expected percentage of a pixel that a trail/OHV 

route should occupy. 

C. COLOR COMPOSITES 

Color composites using the user supplied endmembers in conjunction with 

imagery derived endmembers provided useful results.  While the composites illustrate 
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potential failures in endmember ability to accurately identify target material beyond a 

certain threshold, they also illustrate the success of these endmembers in identifying 

features such as trails.  Use of the color composites filled in gaps between pixels that 

were difficult to correlate alone, such as s shaped feature seen in Google Earth. This 

feature did appear to be part of a trail that continues up a ridgeline and around the back 

side of the peak identified by the camp road endmember.  These color composites serve 

as an example of the potential for this method in identifying features not readily seen in 

true color satellite imagery. 

D. FUTURE WORK 

Given more time, further work on this topic should include going to the imagery 

flight locations to physically ground truth the MTMF results and trying the experiment 

again on other types of available Hyperspectral imagery.  Hyperspectral systems of 

interest would be those covering a 380-2500 nm wavelength range, and higher spatial 

resolution if possible. Lower resolution imagery should also be explored due to the 

surprising success using the disturbed creek soil endmember in the f110623t01p00r10 

data set.  Studies utilizing BSC spectral changes should also be further explored.  

Endmembers for BSCs from areas with higher concentrations of the organisms should be 

collected as well as those with better species matches to the areas under analysis.   

While the California collection sites were chosen to be as close to the Colorado 

sites as possible, there are other areas outside of California that have soil components 

more closely matched to the Colorado locations.  Spectral libraries from other similar 

locations to the study sites should be collected and tested.  Libraries should also be 

collected from the actual study areas while ground-truthing.  The same analysis should be 

run with site spectra and compared to the California endmember results to test for 

accuracy.  This could also serve in developing a difference threshold between collection 

and imagery sites that would still allow for successful target material identification. 

Another potential area of study is the amount of variation in feature depths as a response 

to disturbances.  The amount of variation across a given soil component may help in 

establishing a baseline to judge how much/what type of disturbance has occurred in the 
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area making it possible to tell what type of traffic has come through the area.   This could 

potentially be useful when selecting the best possible endmembers from a library to use 

in analysis for a given type of disturbance.     
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