NPS52-86-023

NAVAL POSTGRADUATE SCHOOL Monterey, California

FOUR RELATIONAL PROGRAMS
B. J. MacLennan

November 1986

Approved for public release; distribution unlimited.

```
Prepared for:
Chief of Naval Research
Arlington, VA 22217
```


NAVAL POSTGRADUATE SCHOOL
 Monterey, California

Rear Admiral R. C. Austin
Superintendent
D. A. Schrady
Provost

The work reported herein was supported by Contract from the Office of Naval Research.

Reproduction of all or part of this report is authorized.
This report was prepared by:

Chairman
Department of Computer Science

Dean of Information and
Policy Science

16. DISTRIBUTION STATEMENT (of thls Roport)

Approved for public release; distribution unlimited
17. DISTRIBUTION STATEMENT (Of the abatract ontored in Bfock 20, If difforont from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse ide fl neceeeery and identfly by biock number)

Relational programming, functional programming, relations, relational algebra, relational calculus, applicative programming, logic programming, combinator, very-high level language, Gaussian elimination, finite state automata, higher order functions

20. ABSTRACT (Contlnue on reveree aldo if noceeeary and fdentlfy by block number)

Relational programming is a style of programming in which entire relations are manipulated as data and in which programs are also considered relations. Extensive use is made of higher-order, finite and infinite relations and functions.

In this report we demonstrate the relational programming language RPL by using it to develop four programs: (1) computing word frequencies from text; (2) minimizing deterministic finite state automata; (3) Gaussian elimination; and (4) updating an employee file. Transcrints of actual runs
are included in the appendices, as is a summary of the language.

B. J. MacLennan
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Abstract

:

In this report we demonstrate the relational programming language RPL by using it to develop four programs. These programs are: (1) computing a table of word frequencies from a text; (2) minimizing a deterministic finite state automata; (3) Gaussian elimination: and (4) a simple data processing example involving updating an employee file. Appendix A shows transcripts of executions of the programs on the Brown and Mitton interpreter Brown\&Mitton). The reader is presumed to be familiar with RPL, which is described in MacLennan83. For convenience, however. Appendix B contains the RPL grammar, and Appendix C describes the language accepted by the Brown and Mitton interpreter.

1. Computing Word Frequencies

The first example, which is adapted from MacLennan 83 . it to compute a frequence table F from a text (sequence of words) S. That is, given S such that $S \downarrow i$ is the $i^{\text {th }}$ word, we compute F such that $F \downarrow w$ is the frequency (number of occurrences) of word w in S. For an example, we take $S=$ <"to", "be", "or", "not", "to", "be">, which is just an abbreviation for the relation:

Pictorially,

1	"to"
2	"be"
3	"or"
4	"not"
5	"to"
6	"be"

In this case, the desired frequency table F is:

$$
F=\{\text { "to": } 2, \text { "be": } 2, \text { "or": } 1, \text { "not": } 1\}
$$

Pictorially,

"to""	2
"be""	2
"or""	1
"not"	1

In other words, "to" occurs twice, "be" occurs twice. "or" occurs once, and "not" occurs once. Of course, since F is a relation, the order in which the elements are listed is irrelevant.

To develop the general word-counting program, we work through this particular example. Since the frequency table is a function from the words to their frequencies, the first step is to reverse columns of S :

$$
S^{-1}=\{\text { "to"":1. "be":2. "or": } 3, \text { "not" }: 4 \text {. "to":5. "be"":6 } 6
$$

[^0]Pictorially.

"to""	1
"be""	2
"or"	3
"not"	4
"to""	5
"be""	6

Notice that this relation is not a function (i.e., it is not single valued). We can make it a function by forming the "unit image" of the table: ${ }^{1}$

$$
\text { unimage } S^{-1}=\{\text { "to"':\{1,5\}, "be"::\{2,6\}, "or"’:\{3\}, "not"":\{4\}\}}
$$

Pictorially,

"to""	$\{1,5\}$
"be""	$\{2,6\}$
"or""	$\{3\}$
"not"	$\{4\}$

This tells us. for example, that the word "be" occurs in positions 2 and 6 in the text. We do not need to know the places where a given word occurs, but only the number of such places. Therefore, we send the preceding table through the size (cardinality) function (by the relative product operation):

$$
\text { unimage } S^{-1} \text { size }=\{\text { "to"":2, "be": } 2 \text {, "or": } 1, \text { "not": } 1\}
$$

This is the desired result; the final step is depicted in Figure 1. Notice that since size is defined for all sets. it is in effect an infinite relation; this is permitted in RPL.

The resulting program is:

$$
F \equiv \text { unimage } S^{-1}: \text { size }
$$

We can turn it into a function definition to compute the frequency table for any text S by:

$$
\text { freq } S \equiv \text { unimage } S^{-1} \mid \text { size }
$$

It remains to define the 'unimage' function, which is not built into RPL. On the other hand, RPL does have the builtin operator unimg, defined to that T unimg x is the set of all y such that $x: y \in T$. This can be used to define unimage. To see this, note that the left section [T unimg is the function that takes any x into its image under T. Although T is finite (and extensional), sections are always intensional, so it is necessary to to convert $[T$ unimg to its extensional equivalent. This is accomplished with the RPL restrict operation, which converts an intensional relation to an extensional relation by restricting its domain to a finite set. Hence we define:

$$
\text { unimage } T \equiv \operatorname{dom} T \text { restrict } \mid T \text { unimg }
$$

The following is an example RPL session that defines the freq function an applies it to a particular text ($\cdot ?>$ ' is the RPL prompt):

[^1]| "to"" | $\{1,5\}$ |
| :--- | :--- |
| "be" | $\{2,6\}$ |
| "or" | $\{3\}$ |
| "not" | $\{4\}$ |

$\}$	0
$\{1\}$	1
$\{4\}$	1
$\{2,6\}$	2
$\{4,8\}$	2
$\{4,6,7\}$	3
\vdots	\vdots

|I

"to""	2
"be""	2
"or""	1
"not"	1

Figure 1. Piping unimage S^{-1} Through size Function

```
? > unimage \(T \equiv \operatorname{dom} T\) restrict \(T T\) unimg]
? \(>\) freq \(S \equiv\) unimage \(S^{-1}\) size
?> freq <"to","be", "or","not","to","be">
\{"'be":2,"to":2,"not":1,"or":1\}
?> done
```

The appendix contains the actual transcript of this RPL session; it shows how programs must be represented for the Brown and Mitton interpreter. The preceding formulas were produced from this transcript by a pretty printer.

2. Minimization of Deterministic Finite Automata

The next example program is the equivalence and minimization of deterministic finite automata by an algorithm developed by Robert Floyd ${ }^{2}$. We assume that we have a finite alphabet Σ and a finite set Q of states. The set $F \subseteq Q$ represents the final (accepting) states. The finite relation T is such that for $a \in \Sigma, T_{\downarrow} a$ is the transition relation for the symbol a. That is, $\left\langle q, q^{\prime}\right\rangle \in T \downarrow a$ if and only if the symbol a takes state q into state q^{\prime}.

[^2]Our goal is to define a relation R_{∞} such that $\left\langle q, q^{\prime}\right\rangle E R_{\infty}$ if and only if q and q^{\prime} are not equivalent states. This is done in a series of steps, starting from pairs of states that are known to be inequivalent, namely the final and nonfinal states:

$$
R_{0} \equiv F \times(Q \backslash F)
$$

We now work backward: any states that under the same input lead to inequivalent states are themselves considered inequivalent. For example, R_{0} relates inequivalent states: R_{1} relates states related by R_{0} together with those that under the same input character are taken into states related by $R_{0} ; R_{2}$ relates states related by R_{0} together with those that under the same one or two input characters lead to states related by R_{0}; and so on. Each step of this process is accomplished by a function ψ; that is, we will define ψ so that $R_{1+1}=\psi R_{1}$. It will be easy to see that this process converges in $n=(\text { size } Q)^{2}$ steps, so

$$
R_{\infty} \equiv \psi^{n} R_{0}
$$

Next we consider ψ.
As a preliminary we define the polymorphic image of one relation under another relation. If R and S are two relations. then the polymorphic image under R of S. or more briefly the R-image of S, is defined

$$
R_{-} S \equiv R: S: R^{-1}
$$

This has the following property: $R \perp S$ relates x to y if and only if there are u and v such that R relates x to u and y to v, and S relates u to v. That is, $\langle x, y\rangle \in R \perp S$ if and only if there are u and v such that $\langle x, u\rangle \in R,\langle y, v\rangle \in R$ and $\langle u, v\rangle \in S$. This can be visualized:

Now, if we have that R_{\imath} relates inequivalent states, then $(T \downarrow a) \perp R_{\imath}$ will relate those states that are carried by symbol a into states inequivalent by R_{i}. Thus. we define R_{i+1} so that it relates those states that are related by R_{1} together with those related by $(T \downarrow a) \perp R_{4}$. for any $a \in \Sigma$. Now, if by $\left[\perp R_{i}\right]$ we mean the function that takes a polymorphic image of R_{i}, that is,

$$
\left[\perp R_{t}\right] x=x \perp R_{t}
$$

then it is easy to see that

$$
\left(T \mid\left\lfloor R_{\mathrm{i}}\right\rfloor\right) \downarrow a=\left\lfloor\perp R_{\mathfrak{\imath}}\right](T \downarrow a)=(T \downarrow a) \perp R_{\mathfrak{t}}
$$

Hence, the union of $(T \downarrow a) \perp R_{i}$, for all $a \in \Sigma$, is just the union of the range of the relation $T: ~ \perp R_{i}$. This yields the definition of R_{i} and hence ψ :

$$
R_{\mathfrak{i}+1} \equiv \psi R_{\mathfrak{t}} \equiv R_{\mathfrak{i}} \cup \cup\left(\mathbf{r n g}\left(T \mid\left\lceil R_{\mathfrak{t}}\right)\right)\right.
$$

This completes the definition of the inequivalence relation R_{∞}. Two states are now equivalent if they are not inequivalent:

$$
R_{\equiv} \equiv Q^{2} \backslash\left(R_{\infty} \cup R_{\infty}^{-1}\right)
$$

where Q^{2} means $Q \times Q$.
The minimal machine is constructed on the basis of the equivalence classes of states under $R_{=}$. The equivalence class of a state q is just the unit image under $R_{=}$of q :

$$
\text { eclass } q \equiv R_{=\text {unimg } q}
$$

The set of all such equivalence classes results from taking the image of Q under eclass:

$$
Q=\equiv \text { eclass img } Q
$$

In general. we define

$$
\text { equiv } \equiv \text { eclass img },
$$

so $Q=\equiv$ equiv Q. We take $Q=$ to be the states in the minimal machine.
It remains to construct the transition relation $T_{=}$of the minimal machine. For all $\left\langle\boldsymbol{q}, q^{\prime}\right\rangle \in T \downarrow a$ we want

$$
<\text { eclass } q, \text { eclass } q^{\prime}>\in T_{=} a
$$

Thus $T_{=} \downarrow a$ is the isomorphic image under eclass of $T \downarrow a$:

$$
T=\downarrow a=\text { eclass } \$(T \downarrow a)
$$

Thus $T_{=}$is the (finite) composition of (eclass $\$$ and T. which is the (finite) relative product of T and eclass $\$$:

$$
T_{=} \equiv T ;[\text { eclass } \$]
$$

The remainder of the minimal machine is easy to construct. For example, the final states are just the equivalence classes of the original final states:

$$
F_{=} \equiv \text { equiv } F
$$

There follows the actual relational program to minimize a small automaton. It makes use of two auxiliary functions σ and ρ for defining the union of a set of sets:
-- DFA Minimization
-- Utility Functions

```
    \(1 \mathrm{st} \equiv[\downarrow 1]\)
    2nd \(\equiv[\downarrow 2]\)
\(r \perp s \equiv r|s| r^{-1}\)
    \(\sigma f \equiv\left(f \circ\left(1\right.\right.\) st \(^{-}(\epsilon \circ 2\) nd \(\left.\left.)\right)\right)\), \((\backslash] \circ(\mathrm{I},(\) un \(\circ \epsilon)) \circ 2\) nd \(\left.)\right)\)
\(f \rho i \equiv 1\) st \(\cdot(\sigma f\) while \(([\neq \emptyset] \cdot 2\) nd \()) \cdot[i\),
    \(\cup \equiv[\cup] \rho \emptyset\)
```

.- Example DFA

$$
\begin{aligned}
\Sigma & \equiv\{1,2\} \\
T & \equiv\{1:\{10: 10,20: 20\}, 2:\{10: 30,20: 30\}\} \\
Q & \equiv\{10,20,30\} \\
F & \equiv\{30\}
\end{aligned}
$$

-- Minimization

$$
\begin{aligned}
Q^{2} & \equiv Q \times Q \\
n & \equiv \text { size } Q^{2} \\
R_{0} & \equiv F \times(Q \backslash F) \\
\psi R & \equiv R \cup \cup(\operatorname{rng}(T \backslash \mid \perp R \backslash)) \\
R_{\infty} & \equiv \psi^{n} R_{0} \\
R_{=} & \equiv Q^{2} \backslash\left(R_{\infty} \cup R_{\infty}^{-1}\right) \\
\text { eclass } & \equiv R_{=} \text {unimg } \\
\text { equiv } & \equiv \text { eclass img } \\
Q & \equiv \text { equiv } Q \\
T= & \equiv T \mid \text { eclass } \$\} \\
F= & \equiv \text { equiv } F
\end{aligned}
$$

-. Minimized DFA
val $Q=$

$$
\{\{10,20\},\{30\}\}
$$

val $T_{=}$
\{1:\{\{10,20\}:\{10.20\}\}, $2:\{\{10,20\}:\{30\}\}\}$
val $F_{=}$
$\{\{30\}\}$
The val command prints the value of an identifier.

3. Gaussian Elimination

The matrix is represented as a vector of vectors:

$$
M=\begin{array}{cccc}
< & a_{11}, \ldots, & a_{1 n}, & b_{1}
\end{array}>,
$$

For the sake of simplicity we assume all the $a_{i j}$ are nonzero. We use the operator ' l ' to select the k th element of a vector. Thus ' $M \downarrow k$ ' is the k th row of M and ' $M \mid\lfloor\downarrow k$ ' is the k th column of M.

The Gauss Elimination function will use n successive steps. Each of these steps will accomplish the transformation

$$
<M . k>\rightarrow\left\langle M^{\prime} . k+1\right\rangle
$$

where M^{\prime} is obtained from M by performing the elimination process on the k th column:

$$
M^{\prime}=\operatorname{elim}\langle M . k\rangle
$$

Thus the complete process is defined:

$$
\text { Gauss } M=(\text { elim for }<1, \ldots, n>) M
$$

Here we make use of the functional ' f for S) x ' which computes the sequence of values

$$
\begin{aligned}
y_{1} & =f<x . S_{1}> \\
y_{2} & =f<y_{1}, S_{2}> \\
& \vdots \\
y_{n} & =f<y_{n-1}, S_{n}>
\end{aligned}
$$

and returns y_{n}. The 'for' functional is defined in terms of reduction as follows:

$$
f \text { for } S \equiv @ S \cdot \mid f \S
$$

This can be understood by the expansion:

$$
\begin{aligned}
(f \text { for } S) x & =([@ S] \cdot[f \S) x=[@ S](f \S x) \\
& =[@ S](f \S x)=(f \S x) @ S \\
& =(f \S x) S
\end{aligned}
$$

We turn now to the elimination process. We want $M^{\prime}=\operatorname{elim}\langle M, k\rangle$, where M^{\prime} results from M by zeroing all entries in column k of M, except the entry in row k, which is set to one. This can be accomplished by subtracting an appropriate matrix E from M :

$$
M^{\prime}=\text { matdif }\langle M, E\rangle
$$

Here 'matdif' is a component-wise matrix difference function.
The matrix E is produced by multiplying the appropriate factors by the individual rows of M. For the first elimination step E is:

$$
\begin{gathered}
<\left(1-1 / a_{11}\right) M_{1}, \\
\left(a_{21} / a_{11}\right) M_{1}, \\
\vdots \\
\left(a_{n 1} / a_{11}\right) M_{1}>
\end{gathered}
$$

The matrix resulting from subtracting E_{1} from M is

$$
\begin{aligned}
& \ll 1, a_{12}{ }^{\prime}, \cdots a_{1 n}{ }^{\prime} \cdot b^{\prime}{ }_{1}>, \\
& <0, a_{22}{ }^{\prime}, \cdots a_{2 n}{ }^{\prime}, b^{\prime}{ }_{2}>, \\
& <0, a_{n 2}, \cdots a_{n n}^{\prime}, b_{n}^{\prime} \gg
\end{aligned}
$$

At the next stage the elimination matrix is:

$$
\begin{gathered}
<\left(a_{12}^{\prime} / a_{22}^{\prime}\right) M_{2}^{\prime}, \\
E_{2}=\quad\left(1-1 / a_{22}^{\prime}\right) M_{2}^{\prime} \\
\vdots \\
\\
\left(a_{n 2}^{\prime} / a_{22}^{\prime}\right) M_{2}^{\prime}>
\end{gathered}
$$

In general, if $M^{\prime \prime}$ is the matrix resulting from the $k-1$ st elimination step, then the elimination matrix for the k th step is

$$
\begin{gathered}
<\left(a_{1 k}{ }^{\prime \prime} / a_{k k}{ }^{\prime \prime}\right) M_{k}{ }^{\prime \prime}, \\
\vdots \\
E_{k}=\quad \\
\left(\left[a_{k k}-1\right] / a_{k k}{ }^{\prime \prime}\right) M_{k}{ }^{\prime \prime}, \\
\vdots \\
\\
\\
\left(a_{n k}{ }^{\prime \prime} / a_{k k}{ }^{\prime \prime}\right) M_{k}^{\prime \prime}>
\end{gathered}
$$

It is easy to see that E_{k} results from multiplying a vector V_{k}^{\prime} by the k th row of $M^{\prime \prime}$. This is just the outer product of V_{k} and the k th row of $M^{\prime \prime}$:

$$
E_{k}=\text { outerprod }\left\langle V_{k}, M^{\prime \prime}, k\right\rangle
$$

The vector V_{k} is

$$
\begin{gathered}
<a_{1 k}^{\prime \prime} / a_{k k}{ }^{\prime \prime} \\
\vdots \\
\left(a_{k k}{ }^{\prime \prime}-1\right) / a_{k k}{ }^{\prime \prime} \\
\vdots \\
a_{n k}{ }^{\prime \prime} / a_{k k}^{\prime \prime}
\end{gathered}
$$

This is obtained by forming the scalar product of $1 / a_{k k}{ }^{\prime \prime}$ and the vector

$$
U_{k}=\left\langle a_{1 k}{ }^{\prime \prime}, a_{2 k}{ }^{\prime \prime}, \ldots, a_{k k}{ }^{\prime \prime}-1, \ldots, a_{n k}{ }^{\prime \prime}\right\rangle
$$

This in turn is the result of subtracting from the k th column of $M^{\prime \prime}$ the unit vector unit $\langle M, k\rangle$ ， which has a 1 in the k th position，and a 0 in all others．

We now develop an explicit relational formula for V_{k} ．For this purpose it will be convenient to treat it as a binary function $V_{k}=V\langle M . k\rangle$ ．We have：

$$
\begin{aligned}
V\langle M, k\rangle & =\text { scaprod }\left\langle 1 / \operatorname{diag}\langle M .\rangle . U_{k}\right\rangle \\
& =\text { scaprod }\langle 1 / \operatorname{diag}\langle M, k\rangle . \text { vecdif }\langle\text { column }\langle M, k\rangle, \text { unit }\langle M, k\rangle \gg
\end{aligned}
$$

The parameter $\langle M, k\rangle$ can be factored out by use of the construction operation＇- ＇，which is defined so that $(f, g) x=\langle f x . g x\rangle$ ．Factoring，we have：

$$
\begin{aligned}
& V\langle M, k\rangle=\text { scaprod }\langle 1 \text { ! diag }\langle M, k\rangle \text {. vecdif }\langle\text { column }\langle M . k\rangle \text {, unit }\langle M . k\rangle\rangle> \\
& =\text { scaprod }\langle(1 /] \circ \operatorname{diag})\langle M, k\rangle \text {. vecdif }((\text { column - unit })\langle M . k\rangle)\rangle \\
& =\text { scaprod }<(\mid 1 / \rho \circ \text { diag })<M, k>,(\text { vecdif。(column }- \text { unit }))<M, k\rangle> \\
& =\operatorname{scaprod}(((1 /] \circ \text { diag }) \text {. (vecdif。(column-unit) }))<M, k>) \\
& =(\text { scaprod } \cdot((1 / \cdot \operatorname{diag}) \text {, }(\text { vecdif } \circ(\text { column } \cdot \text { unit })))\langle M . k\rangle
\end{aligned}
$$

Canceling $<M, k>$ from both sides yields an explicit formula for V ：

$$
V \equiv \operatorname{scaprod} \circ(([1 /] \circ \text { diag }) \overline{,}(\text { vecdif } \cdot(\text { column } \overline{,} \text { unit })))
$$

We proceed similarly to get a formula for elim：

$$
\begin{aligned}
\text { elim }\langle M, k\rangle & =\text { matdif }\left\langle M, E_{k}\right\rangle \\
& =\text { matdif }\left\langleM , \text { outerprod } \left\langle V_{k}, M \downarrow k \gg\right.\right. \\
& =\text { matdif }\langle M, \text { outerprod }\langle V<M, k>, M \downarrow k \gg
\end{aligned}
$$

We perform some minor rearrangements so that $\langle M, k\rangle$ can be factored out of the right－hand side：

$$
\begin{aligned}
& \text { elim }\langle M, k\rangle=\text { matdif }\langle M \text {, outerprod }\langle V<M, k\rangle,| \mid<M, k \ggg \\
& =\text { matdif }<M \text {, (outerprod } \cdot(V,[\downarrow]))<M, k \gg \\
& =\text { matdif }\left\langle\{\downarrow 1\}\langle M, k\rangle \text {, (outerprod } \circ\left(V^{-},[\downarrow]\right)\right)\langle M, k\rangle> \\
& \left.\left.=\left(\text { matdif } \circ\left([\downarrow 1]^{\text {- }} \text {, (outerprod } \circ\left(V^{\text {, }}(\downarrow\rfloor\right)\right)\right)\right)<M, k\right\rangle
\end{aligned}
$$

Canceling $<M, k>$ from both sides yields an explicit formula for elim：

$$
\operatorname{elim} \equiv \text { matdif } \circ([\downarrow 1]-(\text { outerprod } \circ(V,[\downarrow])))
$$

A complete RPL session demonstrating the Gaussian elimination function follows：
-- Litility Functions

$$
\begin{aligned}
\operatorname{con} k & \equiv \lambda x k \\
\text { transmap } f & \equiv \| f] \circ|\#| \\
\text { recdif } & \equiv \text { transmap }[-] \\
\text { scaprod }<k, v> & \equiv v \mid k \times] \\
\text { outerprod }<u, v> & \equiv u \mid \text { (scaprod } \circ[. v]) \\
\text { matdif } & \equiv \text { transmap vecdif } \\
\text { column }<M, k> & \equiv M \mid\lfloor k \mid \\
\text { unit }<M . k> & \equiv<1, \ldots, \text { size } M>\mid \|=k] \rightarrow \text { con } 1: \text { con } 0 \\
\text { diag }<M, k> & \equiv M \downarrow k \mid k \\
f \text { for } S & \equiv\lfloor @ S] \circ \mid f \S
\end{aligned}
$$

-- Gaussian Elimination

$$
\begin{aligned}
& \left.V \equiv \operatorname{scaprod} \circ\left((1.0 / / \circ \text { diag })^{-}(\text {vecdif。(column-unit })\right)\right) \\
& \text { elim } \equiv \text { matdif } \circ\left(\left[!1 \text {, (outerprod } \circ\left(V^{-},[\downarrow]\right)\right)\right) \\
& \text { Gauss } M \equiv(\text { elim for }<1, \ldots \text {, size } M>) M
\end{aligned}
$$

.- Example Matrix

$$
M \equiv \ll 3,9,33\rangle .<2,-1.1\rangle\rangle
$$

-- Execution
Gauss M

$$
\begin{array}{ccc}
\ll 1.0, & -2.38419 \mathrm{E}-7, & 2.0> \\
<0.0, & 1.0, & 3.0 \gg
\end{array}
$$

The matrix M represents the equations

$$
\begin{aligned}
3 x+9 y & =33 \\
2 x-y & =1
\end{aligned}
$$

The result of Gauss M correctly reflects the solution $x=2, y=3$.

4. Employee File Update

Next we consider a simple data processing example adapted from [MacLennan83]. We are given an employee file F indexed by employee number. That is, $F \downarrow n$ is the record for employee number n. The employee records themselves are represented by functions from attribute names into attribute values. For example, if R is an employee record, then $R \downarrow$ " N " is the employee's name, $R \downarrow$ " R " is his hourly rate, and $R \downarrow$ " H " is the hours worked this pay period. Here is an example employee file containing three records:

$$
\begin{aligned}
F \equiv & \{124:\{" N ": " J o h n ", " R ": 10 . " H ": 100\}, \\
& 118:\{" N ": \text { "Bill","R":15."H":120\}, } \\
& 207:\{" N ": " S a l l y ", " R ": 14, " H ": 115\}\}
\end{aligned}
$$

We are also given an update file U such that $U \downarrow n$ is the number of hours worked this week by employee number n. For example:

$$
U \equiv\{118: 6.124: 40,207: 40\}
$$

Our task is to generate an updated employee file F^{\prime} in which the hours worked ("H") field has been updated.

First we define 'sumhrs' so that if R is an employee record and h is the hours worked this week, then sumhrs $\langle R, h\rangle$ is the new total hours. Clearly,

$$
\text { sumhrs }\langle R, h\rangle \equiv(R \downarrow \text { "H") }+h
$$

Alternately. we can define this function variable-free style:

$$
\text { sumhrs } \equiv\{+\} \circ(\{. " H "\} \quad \mathbf{I})
$$

It is easy to see the two are equivalent:

$$
\begin{aligned}
& \text { sumhrs }\langle R, h\rangle=([+] \circ([\downarrow \text { " } \mathrm{H} \text { " }]| | \mathrm{I}))\langle R, h\rangle \\
& =[+](([\downarrow \text { 'H"] || } \mathrm{I})<R, h>) \\
& =[+]<\downarrow \text { " } \mathrm{H} \text { " }] R, \mathrm{I} h> \\
& =(R \downarrow \text { "H") }+h
\end{aligned}
$$

Our next task is to replace the old value of " H " field by h '. This can be accomplished by the ordered union operation ';'. For example.

$$
\left\{" \mathrm{H}^{\prime} " h^{\prime}\right\} ; R
$$

will return a record R^{\prime} in which $R^{\prime} \downarrow^{\prime} \mathrm{H}^{\prime \prime}=h^{\prime}$ but all other fields of R^{\prime} are the same as in R. How do we get the relation $\left\{{ }^{\prime} \mathrm{H}^{\prime}: h^{\prime}\right\}$? Since this is just a sequence that's equivalent to the array $\langle " H$ ". h ' \rangle. we can use as to convert the array to a sequence. We solve for the function f that computes $\left\{{ }^{\bullet} \mathrm{H}^{*}: h^{\prime}\right\}$ from $\langle R . h\rangle$ as follows:

$$
\begin{aligned}
& f\langle R, h\rangle=\left\{{ }^{\prime} \mathrm{H}^{\prime} \text { : sumhrs }\langle R, h\rangle\right\} \\
& =\text { as }\langle " H " \text {. sumhrs }\langle R, h\rangle\rangle \\
& =\text { as (}{ }^{\prime} \mathrm{H}^{\prime} \text { ", (sumhrs }\langle R, h>) \text {) } \\
& =\left(\text { as } \cdot \mid " H \text { ", }{ }^{\circ} \text {. sumhrs) }\langle R, h\rangle\right.
\end{aligned}
$$

Hence,

$$
f \equiv \text { as } \circ\left[" \mathrm{H}^{\prime}\right] \cdot \text { sumhrs }
$$

It's necessary to get the corresponding records from the F and U files together so that they can be processed by f. This is accomplished by the extensional construction operation \# defined so that $\left(F \neq C^{\prime}\right), n=\langle F \downarrow n . U \downarrow n\rangle$. With the given example files we have:

$$
\begin{aligned}
F \# U= & \{124:<\{" N ": " J o h n ", " R ": 10, " H ": 100\}, 40> \\
& 118:<\{" N ": " B i l l ", " R ": 15, " H ": 120\}, 6>. \\
& 207:<\{" N ": " S a l l y " . " R ": 14, " H ": 115\}, 40>\}
\end{aligned}
$$

Notice that the pairs $\langle F \downarrow n . U \downarrow n>$ are just the inputs required for f. We combine the preceding results into a update file 'upd' defined so that upd $\downarrow n$ is $\{$ " H " : h ' $\}$, representing the new hours worked for employee number n. In this case,

$$
\begin{aligned}
\text { upd }= & \{124:\{" H ": 140\}, \\
& 118:\left\{"{ }^{\prime}{ }^{\prime} ": 126\right\}, \\
& 207:\{" H ": 155\}\}
\end{aligned}
$$

It's easy to solve for upd by using the relative product:

$$
\begin{aligned}
\operatorname{upd} \downarrow n & =f((F \# U) \downarrow n) \\
& =((F \# U) \mid f) \downarrow n
\end{aligned}
$$

Hence, upd $=(F \neq U) \mid f$. Substituting for f yields:

$$
\operatorname{upd} \equiv(F \# U) \quad \text { (as } \cdot[" \mathrm{H} ",] \circ \text { sumhrs })
$$

Now we're almost done. We want each record in F^{\prime} to be the ordered union of the corresponding update record in upd and old record in F. Hence we solve:

$$
\begin{aligned}
F^{\prime} \cdot n & =(\operatorname{upd}+n):(F \downarrow n) \\
& =[]<\operatorname{upd} n, F \cdot n> \\
& =\|((\operatorname{upd} \# F): n) \\
& =((\operatorname{upd} \# F) \mid[i), n
\end{aligned}
$$

Hence.

$$
F^{\prime}=(\operatorname{upd} \# F)
$$

The complete session follows:
-- The Files

$$
\begin{aligned}
F \equiv & \left\{124:\left\{" \mathrm{~N} ": "{ }^{\prime} \mathrm{John}^{\prime}, " \mathrm{R} ": 10 . " \mathrm{H}^{\prime}: 100\right\},\right. \\
& 118:\{" \mathrm{~N} ": \text { "Bill", "R":15,"H":120\}}, \\
& 207:\{" N ": " S a l l y ", " R ": 14, " H ": 115\}\} \\
U \equiv & \{118: 6,124: 40,207: 40\}
\end{aligned}
$$

-- Computing the New File

$$
\begin{aligned}
\text { sumhrs } & \equiv[+] \circ([\downarrow \text { "H'"] I }) \\
\text { upd } & \left.\equiv(F \neq U) \mid\left(\text { as } \circ \cdot{ }^{\prime} \mathrm{H}^{\prime} \text { ", }\right] \circ \text { sumhrs }\right) \\
F^{\prime} & \equiv(\text { upd \# } \#) \mid[;
\end{aligned}
$$

-- The New File
val F^{\prime}
\{124: \{"H": 140."N": "John", "R": 10\},
118: \{"H": 126. "N": "Bill", "R": 15\},
207 : \{"H": 155. "N": "Sally", "R": 14\} \}
This result correctly reflects the fact that John (employee 124) has worked 124 hours, Bill (employee 118) has worked 15 hours, and Sally (employee 207) has worked 14 hours.

It is simple to modify the program so that it uses the input files OldMaster and Updates, and defines the output file NewMaster:

$$
\begin{aligned}
& F \equiv \text { file "OldMaster" } \\
& U \equiv \text { file "Updates" } \\
& \text { sumhrs } \equiv[+] \circ\left(\left[{ }^{*} " H "\right]|\mid \mathbf{I})\right. \\
& \text { upd } \equiv(F \neq U) \text { (as . '"H". . 。 sumhrs } \\
& \text { file "NewMaster" } \equiv(\operatorname{upd} \# F) \mid ;
\end{aligned}
$$

5. References

[Brown\&Mitton] Brown, J. R.. and Mitton, S. J., Relational Programming: Design and Implementation of a Prototype Interpreter, MS thesis, Naval Postgraduate School, June 1985.
[MacLennan83] MacLennan, B. J., "Relational Programming." Naval Postgraduate School Computer Science Department Technical Report NPS52-83-012, September 1983.

APPENDIX A: EXAMPLE RPL SESSIONS

This appendix contains transcripts of actual RPL sessions with the Brown and Mitton interpreter. Note that the interpreter follows the Interlisp convention of permitting a bracket ']' to close any number of open parentheses.

Example 1: Word Frequence

It will be seen that the RPL interpreter computes a relation containing redundant tuples. They do no harm, but can be eliminated (by a quadratic algorithm) if desired. The transcript follows:

Loading RPL--- DO YOU WANT TO RESUME A PREVIOUS RPL SESSION? < $\mathrm{y} / \mathrm{n}>\mathrm{n}$

RPL INTERPRETER ON LINE!!

```
?> S == (list "to" "be" "or" "not" "to" "be"]
?> (S sup -1]
    (rel (be 6) (to 5) (not 4)
    (or 3) (be 2) (to 1))
?> unimage T == ((dom T) restrict (Isec T unimg)
?> (unimage (S sup -1]
    (set (be (set 6 2)) (to (set 5 1))
    ( not (set 4)) (or ( set 3))
    (be (set 6 2)) (to (set 5 1)))
?> ((unimage (S sup -1)) rp size]
(rel (be 2) (to 2) (not 1) (or 1)
    (be 2) (to 2))
?> freq S == ((unimage (S sup -1)) rp size)
?> (freq (list "to" "be" "or" "not" "to" "be"]
(rel (be 2) (to 2) (not 1) (or 1)
    (be 2) (to 2))
?> done
```

DO YOU WANT TO SAVE ENVIRONMENT FOR FUTURE USE? $<\boldsymbol{y} / \mathrm{n}>\mathrm{n}$

Example 2: Minimizing DFA

For this example we assume that commands for defining the DFA and performing the minimization are on a file, "examples/dfa.rpl", whose contents are:

```
(1st \(==(r \sec\) sel 1\())\)
(2nd \(==(r \sec \operatorname{sel} 2))\)
\((r \operatorname{ppd} s==(r \mid(s \mid(c n v r))))\)
\((\) sigma \(f==((f \circ\) (1st (. bar) \()(\) epsilon o 2nd \()))(\) bar) \(((\) op ) \(\circ((1\) (. bar) (un o epsilon) ) o 2nd \())))\)
\((f\) rho \(i==(1\) st \(\circ(((\) sigma \(f)\) while \(((\) rsec \(!=\) empty \() \circ 2\) nd) \() \circ(\) Isec \(i))))\).
(union \(==(\) (op cup) rho empty))
\((\) SIGMA \(==(\) set 12\()\) )
\((T==(\operatorname{rel}(1:(\operatorname{rel}(10: 10)(20: 20)))(2:(\operatorname{rel}(10: 30)(20: 30)))))\)
( \(\mathrm{Q}==(\) set 102030 ) )
( \(\mathrm{F}==(\) set 30 ) )
( Q _sup_2 \(==(\mathrm{Q}\) cart Q\()\) )
( \(\mathrm{n}==(\) size Q _sup_2) \()\)
(R_sub_0 \(==(F \operatorname{cart}(\mathrm{Q} F)))\)
( \(\mathrm{psi} R==(\mathrm{Rcup}(\) union (rng ( T rp (rsec ppd R\())\) ))))
(R_sub__inf \(==\left(\left(\right.\right.\) psi sup n) \(R \_\)sub_o \(\left.)\right)\)
(R_sub_= ==((Q_sup_2 R_sub_inf) cap (Q_sup_2 (cnv R__sub_inf))))
(rom_eclass \(==(\) Isec R_sub_=unimg) \()\)
(rom_equiv \(==(\) Isec rom_eclass img) \()\)
(Q_sub_= ==(rom_equiv \(Q\) ))
(T_sub_= ==(Trp (|sec rom_eclass \$)))
\((F\) _sub_ \(===(\) rom_equiv \(F)\) )
EOF
```

This file is executed by being loaded into RPL. The resulting transition function and states of the minimal machine are then displayed. They can be seen to be sets of sets, since the states in the minimal machine are represented by equivalence classes. ${ }^{3}$ The transcript follows:

DO YOU WANT TO RESUME A PREVIOUS RPL SESSION? $<\boldsymbol{y} / \mathrm{n}>\mathrm{y}$
INPUT FILENAME
examples/dfa.rpl
Loading--- Session loaded
?> val Q_sub_=
(set (set 1020) (set 1020) (set 30))
?> val T__sub__=
(rel (1 (rel ((set 10 20) (set 10 20)) ((set 10 20) (
set 1020$))$)) ($2\left(\operatorname{rel}\left(\left(\begin{array}{l}\text { set } 1020)(\text { set } 30))\end{array}\left(\begin{array}{l}\text { set } 10\end{array}\right.\right.\right.\right.$
20) (set 30))))
?> val F_sub_=
(set (set 30))
? $>$ done
3. Note that as usual there is benign redundancy in the sets.

Example 3: Gaussian Elimination

The program for performing the Gaussian elimination is in the file "examples/gauss.rpl", whose contents are:

```
\((\) con \(k==(\) func \(\times k))\)
(transmap \(\mathrm{f}==((\) rsec rpf) \(\circ(\mathrm{op} \#)))\)
(vecdif \(==(\) transmap \((o p-)))\)
\((\operatorname{scaprod}(k v)==(v r p(\operatorname{lsec} k\) times \()))\)
(outerprod (u v) \(==(\mathrm{urp}(\mathrm{scaprod}\) o (rsec , v) ) ) )
(matdif \(==(\) transmap vecdif))
(column (M k) \(==\binom{\) rpp \(\left.(r s e c ~ s e l ~}{k}\right)\)
\((\) unit \((\mathrm{M} \mathrm{k})==((\) listrange 1 to \((\operatorname{size} \mathrm{M})) \mathrm{rp}(\) if \((\mathrm{rsec}=\mathrm{k})->(\operatorname{con} 1):(\operatorname{con} 0))))\)
\(\left(\operatorname{diag}(M \operatorname{k})==\left(\left(\mathrm{M}_{\text {sel }} \mathrm{k}\right)\right.\right.\) sel k\(\left.)\right)\)
\((f\) for \(S==((r s e c @ S) \circ(\mid \sec f\) red \()))\)
( \(\mathrm{V}==(\operatorname{scaprod}\) o (((Isec 1.0 divide) o diag) (. bar) (vecdif o (column (. bar) unit) \())\) ))
(elim \(==(\) matdif o ((rsec sel 1) (. bar) (outerprod o (V (. bar) (op sel) )) )) )
(Gauss \(M==((\) elim for \((\) listrange 1 to \((\) size \(M))) M)\)
( \(M==(\) list (list 3933 ) (list 2 -1 1)))
( \(\mathrm{a}==(\) diag (list M1)))
(b==(vecdif (list (column (list M 1)) (unit (list M 1)))))
( \(v==(\operatorname{scaprod}(\) list 0.33 b\()))\)
EOF
```

The session shown in the following transcript performs the Gaussian elimination on the matrix M:

```
DO YOU WANT TO RESUME A PREVIOUS RPL SESSION? <y/n> y
INPUT FILENAME
examples/gauss.rpl
Loading--- Session loaded
?> (Gauss M]
(rel (1 (rel (1 1.0) (2 -2.38419E-07) (3 2.0)))
(2 (rel (1 0.0) (2 1.0) (3 3.0))))
```

? > done

Note that the resulting matrix is printed as a relation rather than a list of lists, since it is quite expensive for the interpreter to determine if a relation is in fact a list.

Example 4: Data Processing

In this example. the employee file to be updated is small (three records), and so typed in interactively. More typically, the RPL file facility would be used to load F from disk. The transcript follows:

```
RPL INTERPRETER ON LINE!!
?> F== (rel (124 :
    (rel ("N": "John") ("R":10) ("H" : 100)))
(118
    (rel ("N" : "Bill") ("R" : 15) ("H" : 120)))
(207 
    (rel ("N": "Sally") ("R":14) ("H" : 115]
?> U == (rel (118:6) (124:40) (207:40]
?> (F # U]
(rel (124 (rel
    (1 (rel (N John) (R 10) (H 100)))
    (2 40)))
    (118 ( rel
    (1 (rel (N Bill) (R 15) (H 120)))
    (26)))
    (207 (rel
        (1 (rel (N Sally) (R 14) (H 115)))
        (240))))
?> sumhrs == ((op +) ०((rsec sel "H") || |
?> upd == ((F#U) rp
    (as o ((Isec "H".) o sumhrs]
?> F'== ((upd # F) rp (op ;]
?> valF'
(rel (124
    (rel (H 140) (N John) (R 10)))
    (118
    (rel (H126) (N Bill) (R 15)))
    (207
        (rel (H 155) (N Sally) (R14))))
```

? $>$ done

APPENDIX B: RPL GRAMMAR

$$
\begin{aligned}
& \text { session }=\text { command }{ }^{\text {done }} \\
& \text { command }=\left\{\begin{array}{l}
\text { prefixid }[\text { identifier }] \equiv \text { expression } \\
\text { display expression }
\end{array}\right\} \\
& \text { expression }=\left\{\begin{array}{l}
\text { iexpression infix application } \\
\text { superscription }
\end{array}\right\} \\
& \text { application }=\left\{\begin{array}{l}
\text { application }{ }^{\text {apimary }} \\
\text { iter '['primary } \rightarrow \text { primary']' }
\end{array}\right\} \\
& \text { superscription }=\text { expression sup }\left\{\begin{array}{l}
\text { application } \\
- \\
*
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { infix }=\text { infixop bar } \\
& \text { identifier }=\text { letter }\left[\begin{array}{l}
\text { letter } \\
\text { digit }
\end{array}\right]^{\text {. }} \text { prime* } \\
& \text { prime }= \\
& \text { literal }=\left\{\begin{array}{l}
\text { digit } \left.^{+} \mid \cdot \text { digit }^{+}\right]\left[\mathbf{E}[+\mid-] \text { digit }^{+}\right] \\
\text {string } \\
\text { true } \\
\text { false }
\end{array}\right\} \\
& \text { string }=\text { "char" }{ }^{*}
\end{aligned}
$$

infixop $=$
sel . : cup member nomem !subset subset $=-><-$ restr ; cl cr cap @hat!cat @.| \$ red + - times divide $:=<><=>=$ andsign orsign cart
prefixid $=\left\{\begin{array}{l}\text { identifier } \\ \text { prefixop }\end{array}\right\}$
prefixop =

- un cur unc theta size str DELTA inv dom rng mem Lm Rm Mm run lun bun init term alpha omega ALPHA OMEGA min max mu index select join as sa sa0 rp rpi rsort sort unimg all ssm img curry uncurry PHI Id while upsilon phi delta PI extend restrict wig not

APPENDIX C: RPL INPUT FORM SUMMARY

TABLE 1. Primitive Extensional Operations

Name	Old Input Form	New Input Form	Publication Form
```selection relative product construction pair formation union unit set currying uncurrying unique element selection element selection cardinality structure transitive closure empty set```	```t sel x t u t,bar u x : y t cup u un x cur t unc t theta s (added) size t str t t sup + empty```	```t sel x t\|u t # u x : y t cup u un x cur t unc t theta s epsilon t size t (deleted) t sup + empty```	```t x t u t # u x:y t\cupu un } cur t unc t 0s \epsilon} size t (deleted) t+ \emptyset```

TABLE 2. Nonprimitive Extensional Operations: Group 1

Name	Old Input Form	New Input Form	Publication Form
pair list	( $\mathrm{x}, \mathrm{y}$ )	( $\mathrm{x}, \mathrm{y}$ )	$(x, y)$
left pair section	( x )	(deleted)	(deleted)
right pair section	(,y)	(deleted)	(deleted)
duplication	DELTA $x$	DELTA x	$\Delta x$
membership	$x$ member t	$x$ member $t$	$x \in t$
nonmembership	x nomem t	$x$ nomem t	$x \notin t$
improper subset	s !subset t	s !subset t	$s \subseteq t$
proper subset	s subset t	s subset t	$s \subset t$
equality	$\mathrm{s}=\mathrm{t}$	$\mathrm{s}=\mathrm{t}$	$s=t$
converse	inv $t$, $t$ sup - 1	cnve t, t sup-1	$\operatorname{cnv} t . t^{-1}$
domain	dom t	dom t	dom $t$
range	rng t	rng t	$\mathbf{r n g} t$
members	mem t	mem t	mem $t$
left member	$\operatorname{Lm}(\mathrm{x}, \mathrm{t})$	$x \mathrm{Lm}$ t	${ }_{x} \mathrm{Lm} t$
right member	Rm( $\mathrm{x}, \mathrm{t}$ )	$x \mathrm{Rm}_{\mathrm{t}}$	$x \mathrm{Rm} t$
member	Mm ( $\mathrm{x}, \mathrm{t}$ )	x Mm t	${ }_{x} \mathbf{M m} t$
right univalent	run t	run t	run $t$
left univalent	lun t	lun t	lun $t$
bi-univalent	bunt	bun t	bun $t$
initial members	init t	init t	init $t$
terminal members	term t	term t	term $t$
reflexive transitive closure	$t \mathrm{sup}$ *	$t$ sup **	
domain restriction	p->t	p - > t	$p \rightarrow t$
range restriction	$\mathrm{t}<-\mathrm{p}$	$t<-\mathrm{p}$	$t \leftharpoondown p$
restriction	$t$ restr p	$t$ restr p	$t \wedge p$
sequence filtering	(added)	pxit	$p \xi t$

TABLE 3. Nonprimitive Extensional Operations: Group 2

Name	Old Input Form	Neu lnput Form	Publication Form	
first member	alphat	alphat	$\alpha t$	
last member	omega t	omega t	$\omega t$	
initial sequence	ALPHA t	ALPHA	A $t$	
final sequence	OMEGA t	OMEG A t	$\Omega t$	
ordered union	t ; u	t ; u	$t$; u	
cons left	xcl t	xcl t	$x \mathrm{cl} t$	
cons right	tcr x	$t \mathrm{cr} x$	$t$ cr $x$	
minimum	min $s$	min $s$	min $s$	
maximum	max s	max s	max $s$	
intersection	scap t	scap t	$s \cap t$	
set difference	$s \backslash t$	$s \backslash t$	$s \backslash t$	
apply functional record	t @ hat x	t @hat x	$t$ @ $x$	
apply functional structure	t ! x	t ! x	$t!x$	
minimize	mut	mut	$\mu t$	
database index	index x d	x index d	$x$ index d	
database select	select x	x select d	$x$ select d	
database join	join x	x join dblist	$x$ join dblist	
array to sequence	as t	as t	as $t$	
sequence to array	sat	t sai	$t$ sa $i$	
seq. to zero-origin array	sa0 t	(deleted)	(deleted)	
relative product	rp ft	$t \mathrm{rp}$ f	$t \\| f$	
relative product inverse	rpift	frpit	$f \mid t$	
array concatenation	$t$ cat u	t cat u	$t$ cat $u$	
relation sort	rsort s	rsort s	rsort $s$	
sort.	sort s	sort s	sort $s$	
unit image	unimg $\mathrm{t} x$	$t$ unimg $x$	$t \text { unimg } x$	
all sequence to matrix	all t ssm t	all t ssm t	$\begin{aligned} & \text { all } t \\ & \text { ssm } t \end{aligned}$	

TABLE 4. Primitive Intensional Operations

Name	Old Input Form	New Input Form	Publication Form	
application	f @ x	f @ x	$f @ x$	
image	img fs	f img s	$f$ img $s$	
composition	f.g	$\mathrm{f} \circ \mathrm{g}$	$f \circ g$	
infix to prefix	(added)	(op +), (op times), ...	$[+],[\times]$	
left section	( $\mathrm{x}+\mathrm{)}$, ( $\mathrm{x}-\mathrm{l}, \ldots$	$(\sec x+),(\sec x-), \ldots$	$x+1, \times x$	
right section	$(+y),(-y), \ldots$	$(\mathrm{rsec}+\mathrm{y}),(\mathrm{rsec}-\mathrm{y}), \ldots$	$[+y],[-y]$	
paralleling	$\mathrm{f} \mid \mathrm{g}$	$\mathrm{f}\|\mid \mathrm{g}$	$f \\| g$	
isomorphism	f \$ t	f \$ t	$f \$ t$	
formal application	f @ bar g	(deleted)	(deleted)	
functional condition	( $\mathrm{p}->\mathrm{f} ; \mathrm{g}$ )	(if $\mathrm{p}->\mathrm{f} ; \mathrm{g}$ )	$(p \rightarrow f ; g$ )	
curry	curry f	curry f	curry $f$	
uncurry	uncurry $f$	uncurry f	uncurry $f$	
filtering	PHI p (d, r)	p PHI S	$p$ ¢ S	
iteration	iter [ $\mathrm{p}-\mathrm{P} \mathrm{f}$ ]	(iter p -> f)	iter $[p \rightarrow f]$	
formalization identity	+ bar, times bar, ...   Id	$(+ \text { bar }),(\text { times bar }), \ldots$	$\begin{aligned} & \mp \\ & \mathrm{I} \end{aligned}$	

TABLE 5. Nonprimitive Intensional Operations

Name	Old Input Form	New Input Form	Publication Form
while loop	while (p, f	(f while p)	$f$ while $p$
array reduction	f red i	fred $x$	$f \S x$
repeated composition	f sup n	f sup n	$f^{n}$
value of node	upsilon f	upsilon f	$v f$
operate on form	phif	phif	$\phi f$
operate on data	delta f	delta f	$\delta f$
image of structure	PIf	PI f	$\Pi f$
extension	extend (t, f)	t extend f	$t$ extend $f$
restriction	restrict (s, f)	s restrict f	$s$ restrict $f$
formal negation	wig p	wig p	$\sim p$

TABLE 6. Miscellaneous Operations

Name	Old Input Form	New Input Form	Publication Form
sum	$\mathrm{x}+\mathrm{y}$	$\mathrm{x}+\mathrm{y}$	$x+y$
difference	$\mathrm{x}-\mathrm{y}$	$\mathrm{x}-\mathrm{y}$	$x-y$
product	x times y	x times y	$x \times y$
quotient	x divide y	x divide y	$x / y$
inequality	$\mathrm{x}!=\mathrm{y}$	$\mathrm{x}!=\mathrm{y}$	$x \neq y$
less	$\mathrm{x}<\mathrm{y}$	$\mathrm{x}<\mathrm{y}$	$x<y$
greater	$\mathrm{x}>\mathrm{y}$	$\mathrm{x}>\mathrm{y}$	$x>y$
less or equal	$\mathrm{x}<=\mathrm{y}$	$\mathrm{x}<=\mathrm{y}$	$x \leqslant y$
greater or equal	$\mathrm{x}>=\mathrm{y}$	$\mathrm{x}>=\mathrm{y}$	$x \geqslant y$
conjunction	xandsign y	x andsign y	$x \wedge y$
disjunction	x orsign y	x orsign y	$x \vee y$
negation	not x	not x	$-x$
cartesian product	s cart t	scart t	$s \times t$

TABLE 7. Data Input Operations and Syntax

Name	Input Form	Publication Form
identifiers	$\mathrm{a}, \mathrm{b}$, total, etc.	$a . b^{\prime}$, total, etc.
strings	"abed	"abed
booleans	true, false	true, false
relation	$(\operatorname{rel}(x: y), \ldots)$	$\left(\left(\begin{array}{ll}x\end{array}\right), \cdots\right.$
set	$($ set $x$ y ...)	$\{x, y, \cdots\}$
sequence	(seq x y ...)	$(x, y, \cdots)$
list	(list x y ... )	$\langle x, y, \cdots>$
subrange set	(setrange $m$ to $n$ )	$\{m, \ldots, n\}$
subrange sequence	(seqrange m to $n$ )	$(m, \ldots, n)$
subrange list	(listrange m to n )	$<m, \ldots, n>$

TABLE 8. RPL Command Types

Name	Input Form	Publication Form
data definition	$\mathrm{x}==\mathrm{y}$	$x \equiv y$
prefix function definition	$\mathrm{f} x==\mathrm{y}$	$f x \equiv y$
infix function definition	$\mathrm{xf} y==z$	$x f y \equiv z$
write data to a file	file "name" $==\mathrm{x}$	file "name" $\equiv x$
read data from a file	$\mathrm{x}==($ file "name" $)$	$x \equiv$ file "name"
output, form 1	display x	display $x$
output, form 2	dis x	display $x$
output, form 3	d x	d $x$
output, form 4	x	$x$
output value of definition	val x	val $x$
output function environment	env f	env $f$
output entire environment	env	env

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey, CA 93943
Office of Research Administration
Code 012
Naval Postgraduate School
Monterey, CA 93943
Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943
Bruce J. MacLennan
Code 52 ML
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943
Ralph Wachter
Code 433
Office of Naval Research
800 N. Quincy
Arlington, VA 22217-5000
S. Kamal Abdali

Tektronix Laboratories
Computer Research Laboratory
M/S 50-662
P. O. Box 500

Beaverton, OR 97077
Drew D. Adams
Centre de Recherches de la C.G.E.
Laboratories de Marcoussis
Division Informatique
Route de Nozay
91460 Marcoussis
France
Vinay Apsingikar
CMC Limited
R \& D Division
115 Sarojini Devi Road
Secunderabad 500003
India

John Backus
IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099

Jospeh H. Fasel
Los Alamos National Laboratory
C-10. MS B296
Los Alamos, NM 87545

Robert Floyd
Computer Science Department
Stanford University
Stanford, CA 94305
Joseph A. Goguen
SRI International
Computer Science Laboratory
333 Ravenswood Avenue
Menlo Park, CA 94025
Peter Henderson
Department of Computer Science
SUNY at Stony Brook
Long Island, NY 11794

Paul Hudak
Yale University
Department of Computer Science
Box 2158, Yale Station
New Haven, CT 06520

Bharat Jayaraman
University of North Carolina
Department of Computer Science
New West Hall 035 A
Chapel Hill, NC 27514
A. Dain Samples

Computer Science Division - EECS
University of California
Berkeley, CA 94720
Mayer Schwartz
Computer Research Laboratory
MS 50-662
Tektronix, Inc.
P. O. Box 500

Beaverton. OR 97077

Guy L. Steele
Thinking Machines Corporation
245 First Street
Cambridge, MA 02142
Richard Taylor
INMOS Limited

Whitefriars
Lewins Mead
Bristol BS1 2NP
UK


[^0]:    * The work reported herein was supported by Contract N00014-85-WR-24057 from the Office of Naval Research.

[^1]:    1. This function is related to the RPL unimg operator, see below.
[^2]:    2. Private communication, 1985.
