
NPS52-86-023

NAVAL POSTGRADUATE SCHOOL

Monterey, California

FOUR RELATIONAL PROGRAMS

B. J. MacLennan

November 1986

Approved for public release; distribution unlimited,

Prepared for:

Chief of Naval Research
Arlington, VA 22217

FedDocs
D 208.14/2
NPS-52-86-023

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin D. A. Schrady
Superintendent Provost

The work reported herein was supported by Contract from the
Office of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Chairman Dean of Information afftk,\

Department of Computer Science Policy Science

UNCLASSIFIED
SECURITY CLASSIFICATION ^ F THIS PAGE 'When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I REPORT NUMBER

NPS52-86-023

2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

FOUR RELATIONAL PROGRAMS

5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

i

7. AuTHORr»>

Bruce J. MacLennan

8 CONTRACT OR GRANT NUMBERfaJ

O
9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93943

10. PROGRAM ELEMENT. PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

N0001485WR24057
II. CONTROLLING OFFICE NAME AND ADDRESS

Chief of Naval Research
Arlington, VA 22217

12. REPORT DATE

November 1986
13. NUMBER OF PAGES

24
14 MONITORING AGENCY NAME ft ADDRESS^// dllterent Horn Controlltnt Olttce) 15. SECURITY CLASS, (of this report)

UNCLASSIFIED
15a. DECLASSIFICATION' DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (o(this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ot the abatract entered In Block 20, It dllterent trotn Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS i Continue on reverse aide It neceaaary and Identity by block number)

Relational programming, functional programming, relations, relational algebra,
relational calculus, applicative programming, logic programming, combinator,
very-high level language, Gaussian elimination, finite state automata,
higher order functions

20. ABSTRACT (Continue on reverae aide It neceaaary and Identity by block number)

Relational programming is a style of programming in which entire relations
are manipulated as data and in which programs are also considered relations.
Extensive use is made of higher-order, finite and infinite relations and
functions.

In this report we demonstrate the relational programming language RPL
by using it to develop four programs: (1) computing word frequencies from
text; (2) minimizing deterministic finite state automata; (3) Gaussian
elimination; and (4) updating an employee file. Transcripts of actual runs

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S N 0102- LF-014-6601 SECURITY CLASSIFICATION OF THIS PACK (Whan Data Bnfred)
UNCLASSIFIED

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entarad)

are included in the appendices, as is a summary of the language

S N 0102- LF- 014- 6601

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS P *.GE(Whan Data Entarad)

FOUR RELA TIONA L PROGRA MS

B. J. MacLennan
Computer Science Department

Naval Postgraduate School

Monterey, CA 93943

Abstract:

In this report we demonstrate the relational programming language RPL by using it to develop

four programs. These programs are: (1) computing a table of word frequencies from a text; (2)

minimizing a deterministic finite state automata; (3) Gaussian elimination; and (4) a simple data

processing example involving updating an employee file. Appendix A shows transcripts of execu-

tions of the programs on the Brown and Mitton interpreter [Brown&Mitton!. The reader is

presumed to be familiar with RPL, which is described in |MacLennan83 . For convenience, how-

ever. Appendix B contains the RPL grammar, and Appendix C describes the language accepted

by the Brown and Mitton interpreter.

1. Computing Word Frequencies

The first example, which is adapted from <MacLennan83 1, it to compute a frequence table F from

a text (sequence of words) S. That is, given 5 such that S[i is the i word, we compute F such

that F J w is the frequency (number of occurrences) of word w in S. For an example, we take S =
<"to". "be", "or", "not", "to", "be">, which is just an abbreviation for the relation:

S = {l:"to", 2:"be", 3:"or", 4:"not", 5:"to", 6:"be"}

Pictorially,

1 "to"

2 "be"

3 "or"

4 "not"

5 "to"

6 "be"

In this case, the desired frequency table F is:

F = {"to":2, "be":2, "or":l, "not":l}

Pictorially,

"to" 2

"be" 2

"or" 1

"not" 1

In other words, "to" occurs twice, "be" occurs twice, "or" occurs once, and "not" occurs once.

Of course, since F is a relation, the order in which the elements are listed is irrelevant.

To develop the general word-counting program, we work through this particular example.

Since the frequency table is a function from the words to their frequencies, the first step is to

reverse columns of S:

5-1 = {»to":l, "be":2. "or":3. "not":4. "to":5. "be":6}

The work reported herein was supported by Contract N00014-85- WR-24057 from the Office of Naval Research.

Pictorially.

"to" 1

"be" 2

"or" 3

"not" 4

"to" 5

"be" 6

Notice that this relation is not a function (i.e., it is not single valued). We can make it a func-

tion by forming the "unit image" of the table:

unimage 5" 1 = {"to":{l, 5}, "be":{2, 6}, "or":{3}, "not":{4}}

Pictorially,

"to" {1,5}
"be" {2.6}

"or" {3}

"not" {4}

This tells us. for example, that the word "be" occurs in positions 2 and 6 in the text. We do not

need to know the places where a given word occurs, but only the number of such places. There-

fore, we send the preceding table through the size (cardinality) function (by the relative product

operation):

unimage S" 1
size = {"to":2, "be":2. "or":l, "not":l}

This is the desired result; the final step is depicted in Figure 1. Notice that since size is defined

for all sets, it is in effect an infinite relation; this is permitted in RPL.

The resulting program is:

F = unimage S size

We can turn it into a function definition to compute the frequency table for any text S by:

freq S = unimage S~
]

size

It remains to define the 'unimage' function, which is not built into RPL. On the other hand,

RPL does have the builtin operator unimg, defined to that T unimg x is the set of all y such

that x:y t T. This can be used to define unimage. To see this, note that the left section

[T unimg is the function that takes any x into its image under T. Although T is finite (and

extensional), sections are always intensional, so it is necessary to to convert T unimg
j
to its

extensional equivalent. This is accomplished with the RPL restrict operation, which converts an

intensional relation to an extensional relation by restricting its domain to a finite set. Hence we
define:

unimage T = dom T restrict [T unimg

The following is an example RPL session that defines the freq function an applies it to a particu-

lar text ('?>' is the RPL prompt):

1. This function is related to the RPL unimg operator see below.

"to" {1<5}

"be" {2,6}

"or" {3}

"not" {4}

{}

{1} 1

{4} 1

{2,6} 2

{4,8} 2

{4,6,7} 3

"to" 2

"be" 2

"or" 1

"not" 1

Figure 1. Piping unimage 5 Through size Function

?> unimage T = domT restrict [Turning

?> freq S = unimage S~ size

?> freq <"to", "be", "or", "not", "to", "be">

{"be":2, "to":2, "not":l, "or":l}

?> done

The appendix contains the actual transcript of this RPL session; it shows how programs must be

represented for the Brown and Mitton interpreter. The preceding formulas were produced from

this transcript by a pretty printer.

2. Minimization of Deterministic Finite Automata

The next example program is the equivalence and minimization of deterministic finite automata

by an algorithm developed by Robert Floyd 2
. We assume that we have a finite alphabet £ and a

finite set Q of states. The set F C Q represents the final (accepting) states. The finite relation

T is such that for atE, T„a is the transition relation for the symbol a. That is, <q, q' > € T \ a

if and only if the symbol a takes state q into state q'

.

2. Private communication, 1985.

-3-

Our goal is to define a relation R^ such that <q, q' > t Rx if and only if q and q' are not

equivalent states. This is done in a series of steps, starting from pairs of states that are known to

be inequivalent. namely the final and nonfinal states:

R = Fx (Q\F)

We now work backward: any states that under the same input lead to inequivalent states are

themselves considered inequivalent. For example, R relates inequivalent states: R
x
relates states

related by R together with those that under the same input character are taken into states

related by R ; R 2
relates states related by R together with those that under the same one or two

input characters lead to states related by R ; and so on. Each step of this process is accom-

plished by a function ip\ that is, we will define ip so that R, +i
= tp Rr It will be easy to see that

this process converges in n = (size Q)~ steps, so

* oc = r Ro

Next we consider \l>.

As a preliminary we define the polymorphic image of one relation under another relation. If R
and 5 are two relations, then the polymorphic image under R of 5". or more briefly the i?-image

of 5, is defined

R i S = R
|
S

|
R- 1

This has the following property: R ± S relates x to y if and only if there are u and t; such that R
relates i to u and y to r. and 5 relates u to v. That is, <i, y> 6 R ± 5 if and only if there are u

and v such that <x, u> £ R, <y. v> t R and <u, v> £ S. This can be visualized:

7?

R i S

R

Now, if we have that R
t
relates inequivalent states, then (T I a) ± R

t
will relate those states

that are carried by symbol a into states inequivalent by R
t

. Thus, we define /?
l + 1

so that it

relates those states that are related by R
t
together with those related by (T

J.
a) ± R

t
. for any

a G £. Now, if by [± R t
]
we mean the function that takes a polymorphic image of /?,-, that is,

[±Ri]x = x± R
{

then it is easy to see that

(T\ [i /?,])! a = [± R,} (T [a) = {T I a) ± R,

Hence, the union of (T j a) _ R
t

, for all a £ E, is just the union of the range of the relation

T ! [j. /?, . This yields the definition of 7?, and hence ip:

1 «.]))

Two states are now equivalent if

R
l + 1

= il>R, = JR
1
u U (rng(T

This completes the definition of the inequivalence relation R.

they are not inequivalent:

R = = Q'MR^uR^)
where Q" means Q x Q.

The minimal machine is constructed on the basis of the equivalence classes of states under

R = . The equivalence class of a state q is just the unit image under /? = of q:

eclass q = R^ unimg q

The set of all such equivalence classes results from taking the image of Q under eclass:

Q = = eclass img Q

In general, we define

equiv = [eclass img .

so Q = = equiv Q. We take Q = to be the states in the minimal machine.

It remains to construct the transition relation T = of the minimal machine. For all

<q, q' > 6 T i a we want

< eclass q, eclass q' > € T= [a

Thus T= [a is the isomorphic image under eclass of T I a:

T = I a = eclass $ (T [a)

Thus T= is the (finite) composition of [eclass $ and T. which is the (finite) relative product of T
and eclass $::

T- = T
\

[eclass $1

The remainder of the minimal machine is easy to construct. For example, the final states are just

the equivalence classes of the original final states:

F= = equiv F

There follows the actual relational program to minimize a small automaton. It makes use of two

auxiliary functions a and p for defining the union of a set of sets:

— DFA Minimization

— Utility Functions

1st =
[J 1]

2nd =
[| 2]

r ± s = r
[

s
\

r~
l

ef = (/ (lstT(e • 2nd)))T([\] • (IT(un • e)) • 2nd))

f pi = 1st • (tr f while ([^ 0] • 2nd)) • [i
,]

u =
l

uU0
Example DFA

E = {1,2}

T = {1 : {10 : 10, 20 : 20}, 2 : {10 : 30, 20 : 30}}

Q = {10, 20, 30}

F = {30}

— Minimization

Q
2 = Q x Q
n = size Q~

R = Fx (Q\F)
V R = i?U U(rng(rj [± R}))

R = ee Q
2 \(Rx uR^)

eclass = [R = unimg
equiv = jeclass img

<? = = equiv Q
T= = T

|

eclass $]

F= = equiv F

— Minimized DFA

val Q =

{ {10. 20}, {30} }

val T=

{ 1 : { {10, 20} : {10. 20} }.

2 : { {10. 20} : {30} } }

val F=

{ {30} }

The val command prints the value of an identifier.

3. Gaussian Elimination

The matrix is represented as a vector of vectors:

<< a n > • • • - «!„• ^i >,

< a
21 a2rr b

2 >>

M
anv bn >>

For the sake of simplicity we assume all the a, are nonzero. We use the operator 'J.' to select the

kth element of a vector. Thus lM j &' is the kth row of M and 'M
|

[J.
k]"

1

is the kth column of

M.

The Gauss Elimination function will use n successive steps. Each of these steps will accom-

plish the transformation

<M, k> — <M'. k + l>

where M' is obtained from M by performing the elimination process on the kth column:

M' = elim <M, k>

Thus the complete process is defined:

Gauss M = (elim for <1 , . . . , n>) M
Here we make use of the functional '(/ for 5) x' which computes the sequence of values

V\ = f<x, 5j>

y 2
= f<yv S2 >

Vn = /<J/n-n Sn>

-6-

and returns y n
. The "for* functional is defined in terms of reduction as follows:

/ for S = JO S] « (/ §]

This can be understood by the expansion:

(/for S) x = (|@ S] • (/§])* = [® S] ([/§]*)
= [@ 5] (/ § x) = (/ § x) @ 5
= (/§x)5

We turn now to the elimination process. We want M' = elim <M, k:^. where M ' results from

M by zeroing all entries in column k of M, except the entry in row k, which is set to one. This

can be accomplished by subtracting an appropriate matrix E from M:

M' = matdif <M, E>

Here 'matdif is a component-wise matrix difference function.

The matrix E is produced by multiplying the appropriate factors by the individual rows of M.
For the first elimination step E is:

< [1-1/

a

n)Mv
[a21/an)Mv

E, =
:

(
anl/ fl ll)^l >

The matrix resulting from subtracting E
l
from M is

<< 1, a12
', • • • olB ', b\ >,

< 0, a
2o', •

• • a2n
', b'\ >,

M
x

< °^ anl'^ a„ n
'-

*>'n >>

At the next stage the elimination matrix is:

< (a
12 '/a22 ')M' 2 ,

(l-l/o22 ')M2
',

E2
=

:

{
an2 I a2l')M2 >

In general, if M ' '
is the matrix resulting from the A: — 1st elimination step, then the elimination

matrix for the £th step is

< i
a ik" l

akk")Mk"i

E
k

- {\Hk -l]/akk ")Mk
'\

[«nk" l akk")Mk" >

It is easy to see that E
k
results from multiplying a vector Vk by the kth row of M' ' . This is just

the outer product of \\ and the /rth row of M' '

:

Ek
= outerprod < V

k , M' \k>

The vector \\ is

-7-

< Hk"l aVk"->

v
k = (

akk"- l)' akk" •

a nk"i akk" >

This is obtained by forming the scalar product of 1/

a

kk
'

' and the vector

U
k = <a\k"- a2k" y

< akk"- 1 - • >
ank">

This in turn is the result of subtracting from the kth column of A/' ' the unit vector unit < M, A;>,

which has a 1 in the Arth position, and a in all others.

We now develop an explicit relational formula for V^. For this purpose it will be convenient

to treat it as a binary function \\ = V <M. k>. We have:

V <M. k> = scaprod <1 / diag <M. <:>, Uk >

= scaprod <1 diag <M, k>. vecdif < column <M. k>, unit <M, k>>>

The parameter <Af, k> can be factored out by use of the construction operation 'T', which is

defined so that (f~g)x = <jx, gx>. Factoring, we have:

V <M, k> = scaprod <~\ ! diag <M, k>. vecdif <column <M. k>, unit <M. k>>>
= scaprod <((1 /] • diag) <M, &>. vecdif ((columnTunit) <M. k>)>
= scaprod <([l /) ° diag) <A/, ^>, (vecdif (columnTunit)) <M, k>>
= scaprod ((('l /] " diag)T(vecdif » (columnTunit))) <M. k>)
= (scaprod c

((1 / c diag)T(vecdif ° (columnTunit))) <M. k>

Canceling <M. ^> from both sides yields an explicit formula for V:

V = scaprod ° (([l /]
c diag)T(vecdif c (columnTunit)))

We proceed similarly to get a formula for elim:

elim <M. k> = matdif <M. Ek >

= matdif <M. outerprod < V
k

. M [k>>
= matdif <M, outerprod <V'<M. b,M| b>

We perform some minor rearrangements so that <M, &> can be factored out of the right-hand

side:

elim <M, k> = matdif <A/, outerprod < V <M. k>,
[|J

<M, ^>>>
= matdif <M. (outerprod (VT[1])) <M, k>>
= matdif <[| lj <M, /:>, (outerprod -

(VT"!!])) <M, k>>
= (matdif ([j l]T(outerprod •

(VT[1])))) <M, k>

Canceling <M, k> from both sides yields an explicit formula for elim:

elim = matdif •
([J. l]T(outerprod • (VT[i])))

A complete RPL session demonstrating the Gaussian elimination function follows:

-8-

— Utility Functions

con k = X z k

transmap /
=

[| /] • [#j

vecdif = transmap [—

]

scaprod <k. v> = v
j

[k x]

outerprod < u. v> = u\ (scaprod °
, v])

matdif = transmap vecdif

column <M. k> = M
\

[J. k]

unit <M. k> = <1 , . . . , size M>
|

[[= k] -» con 1: con

diag <M. k> = M [k { k

f for S = [Q 5] . [/ §]

— Gaussian Elimination

V = scaprod (([1-0 /] diag)T(vecdif ° (columnTunit)))

elim = matdif • (\l 1 T(outerprod ° (^T[{])))

Gauss M = (elim for < 1 , size M>) M
— Example Matrix

M = <<3, 9, 33>, <2, -1, 1>>

— Execution

Gauss M

<< 1.0, -2.38419E-7, 2.0>

< 0.0. 1.0. 3.0>>

The matrix M represents the equations

3j - 9t/ = 33

2x - y = 1

The result of Gauss M correctly reflects the solution z = 2, t/ = 3.

4. Employee File Update

Next we consider a simple data processing example adapted from !MacLennan83!. We are given

an employee file F indexed by employee number. That is. F [n is the record for employee

number n. The employee records themselves are represented by functions from attribute names

into attribute values. For example, if R is an employee record, then R ["N" is the employee's

name. R ["R" is his hourly rate, and R { "H'
1

is the hours worked this pay period. Here is an

example employee file containing three records:

F = {124 : {"N" : "John", "R" : 10. "H" : 100}.

118 : {"N" : "Bill". "R" : 15, "H" : 120},

207 : {"N" : "Sally", "R" : 14. "H" : 115}}

We are also given an update file U such that U
J,
n is the number of hours worked this week by

employee number n. For example:

U = {118 : 6. 124 : 40, 207 : 40}

Our task is to generate an updated employee file F' in which the hours worked ("H") field has

been updated.

First we define 'sumhrs
1

so that if R is an employee record and h is the hours worked this

week, then sumhrs <R. h> is the new total hours. Clearly.

sumhrs <R. h> = (R , "H") + h

Alternately, we can define this function variable-free style:

sumhrs = [+] • ([| "H"] || I)

It is easy to see the two are equivalent:

sumhrs <R, h> =
([+] • ([| "H"] || I)) <fl, h>

=
[+] (([j"H"j ill) <R,h>)

=
[+] <[j "H"] #,I h>

= {R i "H") + h

Our next task is to replace the old value of "H" field by h ' . This can be accomplished by the

ordered union operation ';'. For example.

{"H" : h'} ; R

will return a record R' in which R' { "H" = h' but all other fields of R' are the same as in R.

How do we get the relation {"H" : h' }? Since this is just a sequence that's equivalent to the

array <"H", h' >, we can use as to convert the array to a sequence. We solve for the function /

that computes {"H" : h' } from <R. h> as follows:

f<R,k> = {"H" : sumhrs <R. h>}
= as <"H'". sumhrs <R. h>>
= as (["H"

,]
(sumhrs </?, h>))

= (as ° ["H" ,j
° sumhrs) <R, h>

Hence.

/ = as • ["H" ,]
sumhrs

It's necessary to get the corresponding records from the F and U files together so that they can

be processed by /. This is accomplished by the extensional construction operation £ defined so

that (F f U) I n = <F
J,

n. U { n>. With the given example files we have:

F # U = { 124 : <{"N" : "John", "R 1
'

: 10. "H": 100}, 40>.

118 : <{"N" : "Bill", "R" : 15, "H" : 120}, 6>.

207 : <{
ti N•

,

: "Sally". "R" : 14, "H" : 115}, 40>}

Notice that the pairs <F [n, U [n> are just the inputs required for /. We combine the preced-

ing results into a update file 'upd* denned so that upd j n is {"H" : A'}, representing the new

hours worked for employee number n. In this case,

upd = { 124 : {"H" : 140}.

118 : {"H" : 126},

207 : {"H" : 155}}

It's easy to solve for upd by using the relative product:

upd; n = /((F# U) I n)

= ((F # U)
\ f) I n

Hence, upd = (F f U)
\ f. Substituting for / yields:

upd = (F # U) (as !"H" ,]
• sumhrs)

Now we're almost done. We want each record in F' to be the ordered union of the corresponding

update record in upd and old record in F. Hence we solve:

-10-

F' i n = (upd [n) ; (F I n)

=
[;] <upd n. F ^ n>

[;]
((upd # F) 1 n)

((upd # F)
| [;]) i n

Hence.

/" (upd # f
)

The complete session follows:

— The Files

F = {124 : {"INT : "John", "R" : 10. "H" : 100},

118 : {"N" : "Bill", "R" : 15, "H" : 120},

207 : j"N" : "Sally", "R" : 14. "H" : 115}}

U = {118 : 6. 124 : 40. 207 : 40}

— Computing the New File

sumhrs = [+] • ([I "H"] || I)

upd = (F # U)
j

(as • "H" ,1
• sumhrs)

F' = (upd # F)
| [;]

— The New File

valF

{124

118

207

{"H"
{"H"
{"H"

140. "N" : "John". "R" : 10},

126. "N" : "Bill", "R" : 15},

155. "N" : "Sally", "R" : 14} }

This result correctly reflects the fact that John (employee 124) has worked 124 hours. Bill

(employee 118) has worked 15 hours, and Sally (employee 207) has worked 14 hours.

It is simple to modify the program so that it uses the input files OldMaster and Updates, and

defines the output file NewMaster:

F = file "OldMaster"

U = file "Updates"

sumhrs = |+] • ([, "H"] || I)

upd = (F # U)
i
(as • ["H" ,]

• sumhrs
file "NewMaster" = (upd # F)

j [;]

5. References

jBrown&Mitton] Brown. J. R.. and Mitton, S. J.. Relational Programming: Design and Imple-

mentation of a Prototype Interpreter, MS thesis, Naval Postgraduate School, June 1985.

iMacLennan83j MacLennan. B. J.. "Relational Programming." Naval Postgraduate School Com-

puter Science Department Technical Report NPS52-83-012, September 1983.

-11-

APPENDIX A: EXAMPLE RPL SESSIONS

This appendix contains transcripts of actual RPL sessions with the Brown and Mitton inter-

preter. Note that the interpreter follows the Interlisp convention of permitting a bracket ']' to

close any number of open parentheses.

Example 1: Word Frequence

It will be seen that the RPL interpreter computes a relation containing redundant tuples. They
do no harm, but can be eliminated (by a quadratic algorithm) if desired. The transcript follows:

Loading RPL DO YOU WANT TO RESUME A PREVIOUS RPL SESSION? <y/n> n

RPL INTERPRETER ON LINE!!

?> S == (list "to" "be" "or" "not" "to" "be"]

?> (S sup -1]

(rel (be 6
) (to 5

) (not 4
)

(or 3
) (

be 2
) (to 1

))

?> unimage T == ((dom T) restrict (Isec T unimg]

?> (unimage (S sup —1]

(set (be (set 6 2
)) (to (set 5 1

))

(not (set 4
))

(or (set 3
))

(be (set 6 2
))

(to (set 5 1
)))

?> ((unimage (S sup -1)) rp size]

(rel (be 2
) (to 2

) (not 1
) (or 1

)

(be 2
) (

to 2
))

?> freq S == ((unimage (S sup -1)) rp size]

?> (freq (list "to" "be" "or" "not" "to" "be"]

(rel (be 2
) (to 2

) (not 1
) (or 1

)

(be 2
) (

to 2
))

?> done

DO YOU WANT TO SAVE ENVIRONMENT FOR FUTURE USE? <y/n> n

12-

Example 2: Minimizing DFA

For this example we assume that commands for defining the DFA and performing the minimiza-

tion are on a file,
uexamples/dfa.rpr\ whose contents are:

1st —- (rsec sel 1))

2nd == (rsec sel 2))

r ppd s == (r
|

(s
|

(cnv r))))

sigma f == ((f o (1st (. bar) (epsilon o 2nd))) (, bar) ((op) o ((I (. bar) (un o epsilon)) o 2nd))))

f rho i == (1st o (((sigma f) while ((rsec != empty) o 2nd)) o (Isec i .))))

union == ((op cup) rho empty))

SIGMA == (set 1 2))

T == (rel (1 : (rel (10 : 10) (20 : 20))) (2 : (rel (10 : 30) (20 : 30)))))

Q == (set 10 20 30))

F == (set 30))

Q_sup_2= (Q cart Q))
n == (size Q sup_2))

R_sub_0 == (F cart (Q F)))

psi R == (R cup (union (rng (T rp (rsec ppd R))))))

R sub inf == ((psi sup n) R sub_0))

R sub_= == ((Q_sup_2 R_sub_inf) cap (Q sup_2 (cnv R_sub_jnf))))

rom eclass == (Isec R sub_= unimg))

rom equiv == (Isec rom eclass img))

Q sub = == (rom equiv Q))
T sub = == (T rp (Isec rom eclass $)))

F sub = == (rom equiv F))

EOF

This file is executed by being loaded into RPL. The resulting transition function and states of

the minimal machine are then displayed. They can be seen to be sets of sets, since the states in

the minimal machine are represented by equivalence classes. ° The transcript follows:

DO YOU WANT TO RESUME A PREVIOUS RPL SESSION? <y/n> y

INPUT FILENAME
examples/dfa.rpl

Loading Session loaded

?> val Q sub_=

(set (set 10 20
) (

set 10 20
) (set 30

))

?> val T_sub_=

(rel (1 (rel
((set 10 20

) (set 10 20
)) ((set 10 20

) (

set 10 20
)))) (2 (rel

((set 10 20
)

(set 30
)) ((set 10

20
)

(set 30
)))))

?> val F_sub_=

(set (set 30
))

?> done

3. Note that as usual there is benign redundancy in the sets.

13-

Example 3: Gaussian Elimination

The program for performing the Gaussian elimination is in the file "examples/gauss. rpP", whose

contents are:

con k == (func x k))

transmap f == ((rsec rp f) o (op #)))

vecdif == (transmap (op —
)))

scaprod (k v) —= (v rp (Isec k times)))

outerprod (u v) == (u rp (scaprod o (rsec . v))))

matdif == (transmap vecdif))

column (M k) == (M rp (rsec sel k)))

unit (M k) == ((listrange 1 to (size M)) rp (if (rsec = k) -> (con 1) ; (con 0))))

diag (M k) == ((M sel k) sel k))

f for S == ((rsec @ S) o (Isec f red)))

V == (scaprod o (((Isec 1.0 divide) o diag) (. bar) (vecdif o (column (. bar) unit)))))

elim == (matdif o ((rsec sel 1) (. bar) (outerprod o (V (. bar) (op sel))))))

Gauss M == ((elim for (listrange 1 to (size M))) M))

M == (list (list 3 9 33) (list 2 -1 1)))

a == (diag (list M 1)))

b == (vecdif (list (column (list M 1)) (unit (list M 1)))))

v == (scaprod (list 0.33 b)))

EOF

The session shown in the following transcript performs the Gaussian elimination on the matrix

M:

DO YOU WANT TO RESUME A PREVIOUS RPL SESSION? <y/n> y

INPUT FILENAME
examples/gauss. rpl

Loading Session loaded

?> (Gauss M]

(rel (1 (rel (1 1.0
) (2 -2.38419E-07

) (3 2.0)))

(2 (rel (1 0.0
) (2 1.0

) (3 3.0
))))

?> done

Note that the resulting matrix is printed as a relation rather than a list of lists, since it is quite

expensive for the interpreter to determine if a relation is in fact a list.

14-

Example 4: Data Processing

In this example, the employee file to be updated is small (thr^e records), and so typed in interac-

tively. More typically, the RPL file facility would be used to load F from disk. The transcript

follows:

RPL INTERPRETER ON LINE!!

?> F == (rel (124 :

(rel ("N" : "John") ("R" : 10) ("H" : 100)))

(118 :

(rel ("N" : "Bill") ("R" : 15) ("H" : 120)))

(207 :

(rel ("N" : "Sally") ("R" : 14) ("H" : 115]

?> U == (rel (118 : 6) (124 : 40) (207 : 40]

?> (F# U]

(rel (124 (rel

(1 (rel (N John
) (R 10

) (H 100
)))

(2 40
)))

(118 (rel

(1 (rel (N Bill
) (

R 15
) (H 120

)))

(26)))
(207 (rel

(1 (rel (N Sally
) (R 14

) (H 115
)))

(2 40
))))

?> sumhrs == ((op +) o ((rsec sel "H") || I]

?> upd == ((F # U) rp

(aso ((Isec "H" .) o sumhrs]

?> F' == ((upd # F) rp (op ;]

?> val F'

(rel (124

(rel (H 140
) (

N John
) (R 10

)))

(118

(rel (H 126
) (

N Bill
) (R 15

)))

(207

(rel (H 155
) (N Sally

) (R 14
))))

?> done

15-

APPENDIX B: RPL GRAMMAR

session = command done

command

expression

application =

prefixid [identifier] = expression

display expression

[expression infix] application I

superscription

([application primary

iter ' primary -* primary

I

application

superscription = expression sup <

primary

literal

prefixid

I

infix

infix primary

primary infix

primary -» primary
;
primary

(expression [.. expression]
)

{ expression ... expression] }

< primary ,
• • >

file string

infix = infixop bar

identifier = letter

letter

digit
prime

prime =

literal

digit* [. digit*] [E
[

-f-
|

]
rft^tt"

1
"]

string

true

false

string char "

•16-

infixop =

sel . : cup member nomem Isubset subset = -> <- restr : cl cr cap \

@hat ! cat @ .
|

|
$ red + - times divide != < > <= > =

andsign orsign cart

{identifier
\

£1 I

prefixop I

prefixop =

- un cur unc theta size str DELTA inv dom rng mem Lm Rm Mm run lun bun

init term alpha omega ALPHA OMEGA min max mu index select join as sa saO

rp rpi rsort sort unimg all ssm img curry uncurry PHI Id while upsilon

phi delta PI extend restrict wig not

17-

APPENDIX C: RPL INPUT FORM SUMMARY

TABLE 1. Primitive Extensional Operations

Name Old Input Form New Input Form Publication Form

selection t sel x t sel x t ; X

relative product t u t
|

u t
|

u

construction t . bar u t # u *# ii

pair formation x : y x : y x : y

union t cup u t cup u t U u

unit set un x un x un x

currying cur t cur t cur t

uncurrying unc t unc t unc /

unique element selection theta s theta s 9 s

element selection (added) epsilon t e t

cardinality size t size t size t

structure str t (deleted) (deleted)

transitive closure t sup + t sup + t
+

empty set empty- empty

TABLE 2. Nonprimitive Extensional Operations: Group 1

Name Old Input Form New Input Form Publication Form

pair list (x, y) (x,y) (*i y)

left pair section (x.) (deleted) (deleted)

right pair section (,y) (deleted) (deleted)

duplication DELTA x DELTA x A x

membership x member t x member t x e t

nonmembership x nomem t x nomem t x i t

improper subset s Isubset t s Isubset t s C t

proper subset s subset t s subset t s C t

equality s = t s = t s = t

converse inv t. t sup -1 cnv t. t sup -1 cnv /. r 1

domain dom t dom t dom t

range rng t rng t rng t

members mem t mem t mem t

left member Lm (x,t) x Lm t x Lm t

right member Rm (x.t) x Rm t x Rm t

member Mm (x,t) x Mm t x Mm t

right univalent run t run t run /

left univalent lun t lun t lun /

bi-univalent bun t bun t bun t

initial members init t init t init /

terminal members term t term t term t

reflexive transitive closure t sup *
t sup

**
t

domain restriction p -> t p-> t p^t
range restriction t <- p t <- p t - P
restriction t restr p t restr p t T p
sequence filtering (added) p xi t p^t

-18-

TABLE 3. Nonprimitive Extensional Operations: Group 2

Name Old Input Form New Input Form Publication Form

first member alpha t alpha t Q t

last member omega t omega t U) t

initial sequence ALPHA t ALPHA t A t

final sequence OMEGA t OMEGA t n t

ordered union t ; u t ; u t ; u

cons left x cl t x cl t x cl t

cons right t cr x t cr x t cr i

minimum min s min s min s

maximum max s max s max s

intersection s cap t s cap t s n t

set difference s \ t s \ t s \ t

apply functional record t @ hat x t @hat x t @ X

apply functional structure t ! x t ! x t ! x

minimize mu t mu t n t

database index index x d x index d x index d

database select select x x select d x select <l

database join join x x join dblist i join dblist

array to sequence as t as t as /

sequence to array sa t t sa i t sa i

seq. to zero-origin array saO t (deleted) (deleted)

relative product rp f t t rp f t\ f
relative product inverse rpi f t f rpi t /! t

array concatenation t cat u t cat u t cat u

relation sort rsort s rsort s rsort s

sort sort s sort s sort s

unit image unimg t x t unimg x t unimg i

all all t all t all /

sequence to matrix ssm t ssm t ssm t

TABLE 4. Primitive Intensional Operations

Name Old Input Form New Input Form Publication Form

application f 6 x f @ X / @ X

image img f s f img s f img 5

composition fg fog / 9

infix to prefix (added) (op +), (op times), ... [+].[*], •••

left section (x+), (x-), ... (lsec x +), (lsec x -), ... [z+], [*-], • •
•

right section (+y), (-y), - (rsec -t- y), (rsec - y), ... [+y], [-y],

paralleling f|
!
g fi

I
g f\\g

isomorphism f $ t f $ t /$ t

formal application f @ bar g (deleted) (deleted)

functional condition (p -> f; g) (ifp->f;g) [p-f\9)
curry curry f curry f curry /
uncurry uncurry f uncurry f uncurry /
filtering PHI p (d. r) pPHI S p $ S
iteration iter jp -> f] (iter p -> f) iter [p - f
formalization + bar, times bar, ... (+ bar), (times bar), ... T, x, ...

identity Id I I

-19-

TABLE 5. Nonprimitive Intensional Operations

Name Old Input Form New Input Form Publication Form

while loop while (p, f] (f while p) / while p
array reduction f red i f red x /§*
repeated composition f sup n f sup n r
value of node upsilon f upsilon f vf
operate on form phi f phif 0f
operate on data delta f delta f Sf
image of structure PIf PIf n/
extension extend (t, f) t extend f t extend /
restriction restrict (s, f) s restrict f s restrict /
formal negation wig p wig p ~P

TABLE 6. Miscellaneous Operations

Name Old Input Form New Input Form Publication Form

sum x + y x -r y x - y

difference x - y x- y x - y
product x times y x times y x x y

quotient x divide y x divide y x i y

inequality x != y x != y x ^ y

less x < y x < y x < y

greater x > y x > y x > y

less or equal x <= y x <= y i<y
greater or equal x >= y x >= y x > y

conjunction x andsign y x andsign y x A y
disjunction x orsign y x orsign y x V y

negation not x not x —'i

cartesian product s cart t s cart t S x /

TABLE 7. Data Input Operations and Syntax

Name Input Form Publication Form

identifiers

strings

booleans

a. b'. total, etc.

"abed"

true, false

a. b' , total, etc.

"abed"

true, false

relation

set

(rel (x : y), ...
)

(set x y ...
)

((*y), •••
)

{z, y, }

sequence

list

subrange set

(seq x y ...
)

(list x y ...
)

(setrange m to n)

{x,y, • •

)

<i, y, • • • >

{m, . . . ,n)

subrange sequence

subrange list

(seqrange m to n)

(listrange m to n)

(m, . . . ,n)

<m, . . . , n>

20-

TABLE 8. RPL Command Types

Name Input Form Publication Form

data definition x == y x = y

prefix function definition f x == y f x = y
infix function definition x f y == z x f y = z

write data to a file file "name" == x file "name" = x

read data from a file x == (file "name") x = file "name"
output, form 1 display x display i

output, form 2 dis x display x

output, form 3 d X d x

output, form 4 X X

output value of definition val x val j

output function environment env f env /
output entire environment env env

-21-

INITIAL DISTRIBUTION LIST

Defense Technical Information Center

Cameron Station

Alexandria. VA 22314 2

Dudley Knox Library

Code 0142

Naval Postgraduate School

Monterey, CA 93943 2

Office of Research Administration

Code 012

Naval Postgraduate School

Monterey, CA 93943 1

Chairman, Code 52

Department of Computer Science

Naval Postgraduate School

Monterey. CA 93943 40

Bruce J. MacLennan
Code 52ML
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943 12

Ralph Wachter

Code 433

Office of Naval Research

800 N. Quincy

Arlington, VA 22217-5000 1

S. Kamal Abdali

Tektronix Laboratories

Computer Research Laboratory

M/S 50-662

P. O. Box 500

Beaverton, OR 97077 1

Drew D. Adams
Centre de Recherches de la C.G.E.

Laboratories de Marcoussis

Division Informatique

Route de Nozay

91460 Marcoussis

France 1

Vinay Apsingikar

CMC Limited

R&D Division

115 Sarojini Devi Road
Secunderabad 500003

India 1

-22-

John Backus

IBM Almaden Research Center

650 Harry Road
San Jose. CA 95120-6099

Jospeh H. Fasel

Los Alamos National Laboratory

C-10. MS B296

Los Alamos, NM 87545

Robert Floyd

Computer Science Department

Stanford University

Stanford, CA 94305

Joseph A. Goguen

SRI International

Computer Science Laboratory

333 Ravenswood Avenue

Menlo Park, CA 94025

Peter Henderson

Department of Computer Science

SUNY at Stony Brook

Long Island, NY 11794

Paul Hudak
Yale University

Department of Computer Science

Box 2158, Yale Station

New Haven, CT 06520

Bharat Jayaraman

University of North Carolina

Department of Computer Science

New West Hall 035 A
Chapel Hill, NC 27514

A. Dain Samples

Computer Science Division - EECS
University of California

Berkeley, CA 94720

Mayer Schwartz

Computer Research Laboratory

MS 50-662

Tektronix. Inc.

P. O. Box 500

Beaverton. OR 97077

Guy L. Steele

Thinking Machines Corporation

245 First Street

Cambridge, MA 02142

Richard Taylor

INMOS Limited

-23-

Whitefriars

Lewins Mead
Bristol BSl 2NP
UK

24-

DUDLEY KNOX LIBRARY

3 2768 0030241 1 8

