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ABSTRACT 

The microstructure and aging behavior of a centrifugally cast A356 AI .SiCp 
metal matrix composite was studied as a function of post-fabrication processing 
via transmission electron microscopy (TEM) and differential scanning calorimetry 
(DSe). The effects of total rolling strain, slIain per rolling pass and rolling 
tempemture on both microstructure and precipitation behavior were investigated. 
It was found that post-fabrication processing had relatively little effect on the 
kinetics of the various precipitation processes that constilUte aging although they 
affected the amounts of the various precipitates significantly. 
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I. INTRODLCTION 

A. ,\1ETAt I"IATRIX COMPOSITES 

A~ (ile continuing quest for light weigh t, strong yet ductile materials drives 

i nve ~tigation~ into exotic metal alloys, one relatively uncomplicated, commercially 

,i' lb lt: market of maler i,lh has not ye t been fully explo ited, Metal matrix 

compos itc ~ (MMe ) call till t.he vo id for ease of production, large part ~ ize and 

L'Plbi:itcni mechanical propenie~ To date. the widespread u~e of cOl1lp()~ite 

,illoy~ ill enginee ring applications j, limited by cost of fabri cation, limi ted part ~i zc 

• .md ot.her re"tric tive characteristics. Po wder metallurgy processc~ where the 

pm-ticle reinforcement and a powdered metal matri x are mixed and compressed 

under e levated lempe ralure\ and pressures is a case in point 

Casting tec hniques used with ceramic reinforced c as table a lloys may reli e ve 

the fe~ t riction~ in hi f .h cost and low product <;ize . In fact. taking ad vantage o f 

KIlUWIl casting practices has resul ted in a cost-effectiv e wa y to benefit from the 

ilnproved l1lec ltanic <-t1 properties of metals reinforced w ith ceramic fibe rs, whiskcrs. 

or pa rticle.;. Recentl y. the ccn trifug<-t l casting process has been adapted 

~lJCl'essfu!ly by rese:.lrc hcrs :.It ~SWc. White Oak for produci ng high volume 

MMC part..; with rotatiOll:l1 sy mmetry at large production rates IRd. II. The 

pnll"e\\ bq, ins by injecting :.I pre mixed ce ramic reinfor ced metal melt into a 

heated cy lind rical pe rmancnt mo ld spinning at high rpm . On contact with the 

rota ting mold , ,;olid ifi ca ti on begins at l ite mold wall and proceed s through the 

thi ckness of the melt unti l a ~o lid pan with cyl indrical sy mme try is produced 

Uurillg \(ll idific'll iou. ,tn y difference in dellsil ies betweenlhe particulates and the 



melt may le~ ult in ~egregation of the pal1ides in the solid, usu ally in the form of a 

til ro ug h-thi ckness grad ient. Thi ~ typica lly results in a palliculate volume frac tion 

tli~lI v;lries through the thickness of the casting. the highest being significantly 

l ar~et than the nom inal re inforceme nt vo lume fraction in the melt. In add ition to 

tliis llUCfoscopic segregation. c lusters of pal-licles may occur on a micro scopic 

scali: due to surf"ce tension effects and vo id s may form inside clu sters [Ref. 2,31 

Such citl sl.ering and voids are known 10 produce poor ductility in cast MMC s 

On the pos itive side. the relat iv ely rapid cooling rate du ring centrifugal casting 

:l\ ; iI.; e~ II pos\ihle \() e lilllillate the delld ri tic structure of the as cast AI-Si eutectic 

a lloy that i,s un favorable tu reliable mechanical properties IRef 41. Also, a rapid 

cooling rate promotes a more homogeneous distribution of SiC particles which 

re~ults in higher as cas t strength parameters I Ref. 5, XI. Ultimately, however. as in 

;II1Y othcr casting process for MMCs, the mechani cal properties of the as

centrifug.; lll y cast MMCs mu st be improved in order to make it more commercially 

competit ive 

B. THERMO.\1ECHANICAL PROCESSIN(; OF A CAST MMC 

III C:.Ist tvlM Cs persistent problems of poor welling of the rein forcement by 

molten met:.ll ;lJld inhomogeneous reinforcement distribution due to flocculation 

It: \ul t in P,),) I ;l~-c ast lT1i c rostructule~ :lnd propenics IRef. 211. Thennomechanical 

prnc t:~ sillg. (TMP) ~uch as hot isostatic pressing (i-IIPin g). ex tru.\ion or ro llin g is 

cmployt:d TO i11lpro \'c the micro structure and hence the mechan ical properties_ In 

general. the met;il matrix mi cros tructure is impro ved through the eliminati on of 

micropores and interparti cle void~ and redistribution of reinforcement particles. 

Sliffic ie nt mec hanical processing is required to break down Th e as-cast 

IlI i (:r()~tl-ucturc :.I nd impart ductility and toughness through homogenization. Past 



~ t u d ics IRef" 6,7. I KI have esta bl i.' hed that TMP can ~ignificantl y im prove the 

mech,lIlical properties of ca~ t MM C~. It W:J~ found th at m:! teri:!i ducti lity was 

imfJ l<lved wlK ll TMP wa~ e mp loyed to more homogeneou~ly di str ibu te the 

ce ra il lic part icks Jnd. hence, le~~en the degree of localized deformation 

Ad dili oll ally, a prlOpria te TMP may ind uc e a ve ry fine grain an d subgrain 

'>1ll1cture . This can [:Ie attr ibuted ei ther to part icl e stimulated nucleation (PSN ) of 

\1l1:tll m:lt rix gr<lin.\ at p:.If!ick-matrix interfJces [Rcf. 6]. or the dynamic 

reny"r:d li zJ ti on of the matrix during TMP as dislocation\ con tinu ously recover at 

",1;1;11 P I' subg rai n Iw undar ;es , eventu a lly converti ng them to high angle 

hOllllJ<1I i e~ I Re!", 71· Mc Ne lle} d u!.IRe f. 2 11 subJect.ed an AI - IO Mg-O.I Zr 

lIonrr illtOl'ced alloy to TMP con sis ting of ro lling at. 3()[ r c w hich included a 3(1 

lIIinute int.erpass anne:!1 (lPA) ti TTlc also at 30crC. SuperplastlC elongations ilt 

3()O 'C exceeding lOOO<);- was attributed to PSN of recrystallilatio n and i t ~ 

:",s()ci,ltcd grain refi nemellt. (n composi t e~, such PS N may be utilized to obtain 

e nhanced ducliljtie~ Jnd IO llgh ne~ses via TMP 

(', EFFECT OF TMP ON A(aN(J IN AJ56 SILICON CAR HIDE PARTICLE 

}{EINH)RCED ALUMINUM ALU)Y 

I'he dfert o ! the addition of ceram ic part ic le,.; to the aging response of age 

harde ll abk aiu mill uill alloys has been docu mClltcd ill sever<l l s tudies [Ref 4, y

]' 1. Expelitnt"ntal evide nce illdicates dwl. the addition of SiC particulates to 

al ullli llu lli dot;:\ Ililt quaiiwtively alter the se qu ence by wh ich precipitation 

h;lIden illg \k'c urs However, il has been observed thaI the aging kinelics, as well 

a~ the amounts of di fferent precip itate phases in the com pos ite s are alten:d 

rel at ive [() the unreinlorced <llJoy [Ref. II I. The addition of reinforcement affects 

h,)tl1 tllH:ie:t(illll <lnd g.l()wth r<ltes of t.he metastable tran sit ion pha ses Generally it 



is agreed that the accele rated agin g of the composites is due to an increase in 

11I :ltl ix dis loc ation density that ari ses form a coe fficient of thermal expansion 

((TEl mislllatcll between the SiC particles and the AI matrix On quenching from 

tile solurionizing temperature a large plastic ~lraiTl is originated between matrix 

:Ind particle resultin !c! in a large increase in the dislocation density as observed by 

tr:mslllis\ion elenrol) microscopy (TEM) IRef II I This increase "ignificantly 

e nha nces the diffusivity of Mg in aluminum via dislocation pipe d iffusion and 

he nce :Iccele rates precipitation of thc transition phase In addition to acce1erat.cd 

growth of th~ preClpitating phases , nuc leation of the transi tio n phase is also 

accelerated as the large nUlllber of d islocations produced due to CTE mi~match 

prov ide s IlUlllenms sites for heterogeneous nucleation of transition precipitates, 

rcd uc illg the incubat io ll time for nucleation 

It is a lso worthwhile to note that a recen t study on a prec ipitation hardenable 

:lluHlillum alloy re inforced with SiC concluded that materials fabricated by 

different t e c hll i4 ue~, i.e. s4ueeze castin!! or powder metallurgy. did not show 

~ Ignifica n l ditlerences in their aging kinetics I Ref. 141 

Whi le the aging kinetic s of a reinforced alloy a~ compared to it.;.; ullfeinforced 

l'()Untc r rart h:ls been documented. little work has becn done on the relative 

etlec b of various TMP on a reinforced lm'denable alloy. In a study by May [Ref 

I ~ I. 11 wa~ foulld that an 1\.156 SiC partic le reinforced ,\lloy that had been 

e xtruded (1_5: 10 It'dilctillll j ages more slowl y than its a~-cast countcrpart 

Additionally. the formation of the primary hardening constituents wa,,, al so 

de layed . This was attri huted to reco very of interfa(',ial dislocation to the 

grain/subpain b(llindaries. decreasing the density of random di slocation available 

fo r precipita tion within subgrain~, May also correlated this decelerating trcn d in 



rhe pre;,; ipi ta tion of harden in g constituents thro ug h microhardne,s d atil. There. 

h<: tounu til;lt the dtecl.~ of ex trU .~iOIi affected the mono lith ,lIld compo.~ite 

d iffcr l.:!n tly: I.:!xtru.,wn accelerated ag ing in the monolith while del<ly ing it s ligh tly 

in the compo ,~i t e. He attrib ll ted the delay in peak hardness of the ex trud ed MMC 

al.,o to {he recovery () f di~loc;ltion-, generated due to the CTE mis matc h to 

grai n/s ubgrain boundarie~ 
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II. RESEARCH OBJECTIVE 

The slIIdy Oil the ~ffeCl of Ihe adrlition of SiC particlJ l ate~ (0 a luminum aJl()y~ 

iI;", It: n~lvt::d r\lIl\iderahle .1l1 e llli< )11 recelnly. Qualil'llively. the prec ipi tati o n 

~o:q ue ll ce in al um inum alloy" i ~ not a ltered by the add it ion of particulate. 

Howevec ag ing kinetics have ocen found to be altered as composites usually age 

~ignifiC:Hltly faster than the mono lithic alloy 

Most ~lUdie~ have dealt strictly w it h the comp,Hi,;oll of unrein forced to 

It: ill forced alloy ;!Ild a re gClleral ly ce ntered around wro ught alloys . L ittle 

~y~1ell1atiL _\liJdy ha~ been directed to rei nfo rced castable alloy., and facto rs that 

loan affect thei r rnec hall ical properties. More specifically, little h,t~ been direc ted 

loward Pl)~ l fabrication T MP on particle reinforced ca q aluminum aJ!()y~ 

McN e lky' ilild K;d u [Ref 71 demonstrated an increase in strength and ductility 

w ith spec ific therrllomechanical t reatments on 6061 AI-A1203 composite . DuHa 

('( uf.I Ret lk l ~h()wed ,Ill increase in both stle ngth and ductility w ith increasing 

I' MI' 111 ,I CUllIllieiClidly ca',( alll ll lillUIll al loy 50l{1 le infon:ed witll 10 vo lume 

pe rce nl SiC panicles, and Cottu 1'1 ([I [Ref. 41 sllOwed that lhe precipitate phase 

coarsened if lhe alloy is s tra ined at ele vated temperature in a SiC fiber reinforced 

AS7(j(l5 al uminum alloy 

The purpose of the present work is two fold. The fir st objective is to 

c h;lractenZL' the ag ing behavior o f an A,56 particle composite alloy as a functi on 

,,1 TrvlP ,-oIIUilioll and com pare the fl'su lts with that obtai ned by May [Ref. 12 1 

Ull the same ,dl oy re inforced with 26 vol ume percent SiC panicles lila! had been 

either H1Ped (67(lK, :m ksi, 2 hrs) or co -e;>;lruded . The secoud objective is to 

,'Ilndlle ! ,I TEM ilivestij:;llion of the microstructural evolution of the same a ll oy as 



~ t funct ioll oj TMP schedule.\. The TMP parameters varied in this study are rolling 

temperature, amount of str;Jin per rolling pass and total ro ll ing strain , 



III. DESCRIPTION OF MATERIALS 

1'h-= lO lllp(l~ite material LJ~ed in this study. A356 reinforced with 19 vo lume 

percell! SiC pallicle~. W ;I.'> rec e ived trom the Naval Surface \Varfare Celllcr, While 

O'lk . Th i~ male lial was centrifugal ly cast as previously desc ribed lls ing a 

p:lttnled prucc \~ I Ref I I T he con trol monolith ic material WilS a commercial 

::I",IOe A.1 50 AI all,)}, also centrifug ally cast at the Naval Surface Wmiarc Ce nter 

The nominal co mposition of 1\356 is presented in Table I _ I Ref J 71 

Si ,rvl ' ell F, Zn 

6. 5 (1.45 (l.2I l lI.20 (1.20 0 .10 0.10 0.15 

7.5 0.25 total 

rable I. Composition of AJS6 aluminum. 

Tile ,I s-cast c()rnp(l~ite. which co nstituted a cyli ndric ,!i shell, was flattened by 

hU l- p roces~ i l1p :'1 SlOT into ba rs 22:-1 ,6 rnm (') inches) long by sO.X mm (7 

inches) wi d~ ;mJ 2'; 4 1111 11 (I in ch) thick . RecilUse of ~egregation of the SiC 

p<1r1l l·k , til tile ll1Jt~ide w:Jl l~ of the molo during centrifuga l casting, the bar'> 

lev caled a light gray clI lol o n t il::: illner diameter with a darker gray color on the 

0 utside d iameter. The darke r. Olltside diameter material was de termined through 

im:Jge ;lIlal y.',is to contain 14 volume percent SiC particl es while the ins ide 

d i;lI11el::: 1 \Na~ Illo llolithic I Rd. 20 1. The inside. monolithic layer was remo ved by 

di;]llloliu ~ dW so thilt stud ie ~ could be ce ntered strictly o n the co mpositc 

The C\l ll lp(l~ite wa~ then lolled at nominal reductiolls of either fi\'e Of ten 

p~rce llt pel p:J .\ ~ . Prim to f()Jlill~, and Ix:tween rOllillg pas~es , the ~amples were 



~oaked at temperatures of either 40()"C, 4XO"C, or 545°C for 45 minute.~. 

Fo ll uwill~ T'vlP. t.he samp l e~ w.::rc mechanically testtd in the solutionized and 

qut:llched state I Ref 2() 1. S<tfllpk~ used tor DSC and TEM analysis we re cut 

from the bun end or ten~ile coupons that had been previously cut and pulled . 

I II 



IV. EXPERIMENTAL PROCEDURE 

A. THERM()IV1"THA NTCAI . PROCESSIN(; 

Ti lt" material II sed for the generatio n of DSC thermograms and TE M 

micrograph s was cu t trom the bun end of ten<;iJe co upons uSed in a previous 

.~(lId y IRet 2()1 A "ynop~i s of the Hvtp gillen to those te n,; il e bar~ is appropriate 

All as-ca~t material under went an eight hour homogenization heat creatmeJlt 

at 54(r(: prim to proces~illg. To nalleJl the as -celst material it was fo rged at 

520"(' ;;(:1 forging press ure low enough to maintain dimensional integrity . The 

matcr i:11 w:!' the n t ilermomechanically processed by roll ing with ~oak ing times of 

45 rninute~ between l:ach pass. Three tcml}Cratures were lIsed duri ng the rolling 

pro(es'< 4()(rc, 4XO"C and 545"C . The lower temperature is signiticalltl y bel ow 

the solvus tem perat ure. the 4XO"C temper<H ure i~ very ne(lr yet below the solv iis 

line and the upper temperat ure is slightly aboVe the homogen ization curve . Two 

~train rate, of five or ten percent defo rmati on per rolling pass were used with mill 

dc fb:tillil taken into account. Table 2 ~ \Jmllla rizes the TMY given to eac h sample 

IIsed in t h i~ "Iudy. The nomenclallJre is that wh ic h was ass igned by Mull er and 

used during th e presen t qudy to retai n con tinui ty The strain percent;lges li sted 

<lrt' tflle s1ralll 

K. DIFFERENTIAL SCANNIN(; CAL(IRIMETRY 

A I-'erklll Elm';1 Model 7 Difh:renti:11 Scanning Calori meter (I)SC) was used to 

1I I(>Il itui :lIld record the sol id ~ tatt' pha~e trans itions occu rring in the tes1 alloy 

Fiw m illimeter di,cs were c ut from the butt end of len~ile hars with a Ser vomet 

~park machine . The samples we re then hand sanded on 34(] gril pape r to a 



wo.:ight o f ;lpproxilll:Jlely 46 mg (( 15 - 1,(1 n1ln in thickness). An analytical scale 

was u ~ed to wei.!,'h the sa mple s Th e disc-s haped samp les we re wrapped in 

alulTl illl llll lo il and soili tioni zed in a Marshall Model 1134 horizo ntal tu be furnllCl~ 

CO IItr(l llcd by a Furolherm Model KOK contro ller at 54(j"C. Argon gllS W(lS used 

to pre ven t (lxidati(1I1. T he samp le, were solution ized for!}O minu tes fol lowed by 

;) vigoroll~ ice water ljuench 

total strain rolling temp slam per pass 

(%) (OC) ('Yo) 

K 10-2 27.6 545 III 

K-I()-~ 27. 3 545 

K- [O-4 24 .6 4()() JO 

K- ]O· S 2S.LJ 4HO III 

K-IO-6 53 4()(l III 

w [ ·1 

Tallie 2. TMP .~chedulcs for givcn sample nomenclature. 

Illlmed ia tely UpOIl ljuench ing the samples were dried, encapsulated in a 

~ample ran all(J rlaced in the left hand chamber of the DSC. The time interval 

from ice bath to DSC c hamber was 011 average two minutes. Pure aluminum of 

approx imatel y the same wcight as the sample was placed in a sample pall and 

used a~ ;1 refnencc in the DSC's right hand chamber A baseline was fUn using 

empty sample P<lIlS in cllch c hamber each day before any samples were scanned . 

The ba~elille wa,~ used and subtracted from cach run Allwsts were run w ilh the 

r" III)willg rarall letcrs 

Lower Telllpe r<llllre 313 K 

• Il pper T emperature H33 K 

J2 



Scan Rate : J() K I minute 

Nitrogen gas flow rate : I buhble per .,eco nn (mon itored from exhaust 
p~Ht) 

Se ve ral sample;,; of eac h proces~ed condi tiorl were scanned to ensure 

reprodul'ihiJity of results. After a scan W<lS completed, the heat flow \'e rsu~ 

temperature data was conve ned TO he<lt cap<lcity versus temperature using the 

toJillwing equ ation 

Heatflow(\V)X_'_ = ~C ( J ) 

SC<Ulfate(Y) moles AI - r ~ 
(11 

l\'loJes ~) f aluminuill wa~ obtained by first converting the volume fraction of the 

Sit ' p;,rticles tu we ig ht fraction of SiC as 

PCOlllp<.,slle = ( PmVl\l + PpVp ) / VcolTlpo~ite 

Pcomposite :::: pmtl m + Pp1'}p 

wI. fr:lctioll 01 SiC :::: lJppp/Pc 

Weight of aluminum in the sample was the n cal culated (IS 

wI. of AI = wt , of MMC ~ample x (I-I.'.'\. frac tion of SiC) 

rhe daw hom all material rU Il~ wele nonnali zed by mass of the aluminum alloy 

c:. HARDNFSS TESTlN(; 

(5) 

Hardn ess samples were wra pped in aluminum foil then sol utionized in a 

M:lr sh;il l Model 11.14 horizontal tube fUliace wit h a Eurotherm Model X(lX 

u)ll\ro lier at S40"c' Argun ga~ was ll ,sed to prevent oxid at ion. The samples were 

hom ogell ized fur ninety minut.es then vigorously qu ench ed in ice water. 

rlw ",lIn ple" were the n aged in a Blue·M furnace Mod e l B-2730Q at a 

temperatu re of I ))'c. '1l1e samples wne put on an aluminum plate with the plate 

tempe rature being moni tored with an Omega microcom puter thermometer Mode! 

1.1 



DP7()), After aging, the samples were quenched in ice water, then tested for 

ha rdlles~ . Hardness testing was co nducted using a Rockwell Hardnes~ Tester 

MlldeJ I JR. A 1/16 inch diameter ball was used with a 100 kg mass for the 

Ruckwell B "cale The hardness of each ,~ample was t e~ted len times Ihen 

;lve raged IRd. 20 1 

I), TRA NSI"tISSI()N EtECTR()N I\HCR{)Sc(}PY 

The prepar:1tiol\ of samples for v iewing under the TEM is made difficu lt by 

the presence of the hard SiC panicles within a relaTively soft aluminum matrix 

rite SiC particJe~ hinders the ability to obtain large regions of thin metal man-ix 

which prompted a slig hl lTlodification 01 Iypical ion millin g procedure 

Again usin& the butt end of th e tensile coupons, very thin wafers of the 

comp(ls ite were cut us ing a hi gh concentration diamond wheel and a Buehler 

hornet I 1- II XU low speed saw. The wafers were mounted o n to a sleel plug with 

thermal wax and ha nd reduccd on emery paper through the normal succession of 

24() to (iOO gri t paper. Reduction was ceased when it was certain the wafer was 

less than IO()1ll1ll in thi ckness, Carefully lifting the thin sample from the plug by 

fll;;t heal ing .. 'lllln diameter disks were punched and placed in a TEM sample 

holder, Ind iv idual samples were dimpled on it Galan model 656 dimple grinder by 

the method 01 ~elling the final thickness. 3 micron alumina paste was used a the 

;,hr-asive medium . A final thickness setting of 35 mm produced consistem results 

Dimpled samples were so lution and quenched in the same manner as the DSC 

~amp l e, al\d the n immediate ly aged at 155T for 7()() minutes in the left h,md 

chamocr of tile USC 7 . The 7()() minute age tjme W(jS determined to be the time to 

peak age as e~[ablished via an '-1ging cu rve ge nerated from samples of the 

uIlllpo,.;ite thaI had heen rolled to 24 .6'1 reduction at 400'C Fig ure I pertains 

14 



l. pOll ag illg all ~a!)Jple~ were lIuenchtd in Ice ,vater. Any ~torage after I hi ,~ point 

W;I~ in a Ireezer Th e ~al1l ple~ we re furthtr prepared with a Gatan modd oliO duo 

i(l ll -I11i1 ln . O il ;1 cold ~Lage cooled with li lluid nitrogell _ Thc accelerating yo ltilge 

wa_~ 7 kV ;lIld the s:un currel]{ was I rnA. The specimens \vcre milled for the fir ~ t 

1' i\/.: ho urs al a gUll ang le of 13 degree~ and then for the remainder of thc mill time 

with the gun set at 125 dtgrces , Thi ,~ ~trategy wa~ cstablished to help max imi ze 

the amount of th in metal matrix area and minimi ze ion damage. Ty pical mi ll ing 

ti me WitS <) hour~ ptr sam ple TEM obsCfy ation was performed on a JEOL 100 

ex TEM al all dccciL:raling vo ltage o f 12(l k V 

"' i 55 

I'im~ Imih) 

Figure I. Aging data for A356 SiC p rolled to 24.5 % reduction at 400uC. 
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V. RESlJLTS AND DISClJSSION 

A. EFFECT OF PARTICULATE ADDITION TO MATRIX AGING 
RESPONSE 

In comparing the DSC thermo grams of the as-cast MMC to rhe monolithic 

alloy in rigure 2, two features are apparent. BOlh the 13" and )3' transfonnations 

arc accelerated in the MMC and the relative volume fractions of both met.1Slable 

phases are reduced. The peak temperatures of cach cxotherm is listed in Table 3. 

As previously rationalized [Ref. Ill, the increased dis location density of the 

MMC due to CTE mismatch of the SiC particles and AI matrix provides for 

increased number of heterogeneous nuc leation siles, decreased incubation lime 

and increased nucleation rate of the metastable transition phase. Diffusion is also 

aided by dislocation pipes. accelerating aging times in the MMCs. The reduced 

volume fraction of the transition phases is attributed to decreased vacancy 

concentration in the MMCs. 

B. EFFECT OF STRAIN PER ROLLING PASS 

Figure 3 shows the DSC thermograms of the MMC subject to 27.3% 

reduction at 545 ' C and 5% reduction per pass and the MMC subject to 27.6% 

reduction at 545 ' C and 10% reduction per pass both after soJutionizing and 

quenching. Three distinct exothermic peaks are visible. The first exothermic 

peak represents the formatia!] of the metastable P" phase, the second represents 
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the formation of the W ph<l .~e and th e third set of exothermic peaks represents the 

fo rmat ion of the equ ilibri um ~ platelets IRef 161. Tile peak tempe rature,s of the 

W' W ;lIld ~ PC;II\" alc li,..;ted in Table,. 

St' vcr-;ti effect.-; of th is T ,\tlP schedu le are evident. First. th e W' peak 

a"stll" ialed wi th rhe MMC rolled at 5% per pass is slightly accelerated rela tiv e to 

the \-f MC rol led at I()C/~ per pass The peak representing Wa nd II phase show no 

,i gn ifio lll ~hirl in temperature suggesting that the kinetics o f the precipitati on of 

the se two I'ha,e, are no t altered by TMP Second, by cornparillg the felo'H ive 

.~ lles ot the pL:ak" w hich is plOponioll<l11O the volume fraction of cach precipi tate 

tormed, the \1\flC rol led <It S% per pass shows a greater amount of W' and ~ ' 

rel:t li ve to the MM r roll ed at I07r per pas~ . 

r EIVl ch,Hac terizati()n~ of tlte resultant microstructure are represe nted in 

Fi g ure~ 4 and 5 for the MMC ro lled at 5% and 10 % pc r pass respec ti ve ly 

E.\aminalion by TEM of the MMC rolled to 27.3% reduction at 54S"C and So/" 

pcr IX I~~ ( Fi g ul'':~ 4:1 and 4 bl. revea led a recovered microstructure with a clearly 

ddi ued ~ubgrail1 ~tructurc . Subgrains showcd low 1ll1~o r ientations with widely 

~p:lCcd di~locations c learly visible in the . ..; uograin boundaries. The subgrains 

thelll,elve~ conta ined nume rous dislocations. The microstructure of the MM C 

rolled at IWl poer pass is show n in Figure S. Here, the subgrain boundaries did 

not show reso lvable dislocations suggesting that recrystall ization has probahly 

occuneu. Th.: average .-; ubgrain size was comparable to th e 5% per pas .~ sample. 

,IS was the overall density of d islocations, suggestin g that the slIbgrain 

h(llilldal·ie., h,H'e turneu in to hig h angk bnundarics via absorption o f disl oc<tlioll 

during TMP (i.e .. dynamic recrystaJli 7 .. atioll) 
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Figure 4. TE IV) micrographs of MMC strai ll l;!d to 27.3% at 545"C and 5 % 
Iwr Pl.ISS . Rl'covered su bgrain slructUn· in vicinity of SiC particl e (a). Close 

up of sllbgrain boundary (b). 
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Figure 5. TEM micrograllh of MMC strained 27.6% at 545"C 31ld 10 % per 
rollillg pass. 

Tile (llC Urre ll ce of dynamic recry~tallizatioll in the MMC rolled al 1O'X- pel 

p;\\\ afi'eCb the overall vacancy conccnlf;.ltion with in \ubgrains . The more clearly 

defined and J;encrally higher ang le boundaries of the recrystallized microstructure 

act as a more efficienl sink for vacancies than the lower angle houndaries 

observed in the MMC rolled at 5% per pass. This. coupled with the observation 

th;\t the dislocation densities within s ubgrains are nearl y eljual between the 10% 

and 5'.1, per pas~ samplt: (dislocations art: weaker vacancy ."inks than gra in 

hound:\rit:~J. kads In the concl usion that the overall vacancy co ncentration is le ss 

tOI th e II)';' pel pass sample re lative to the 5% per pas~ sample. As the W' phase 

precipitates at ljuc nc hed-in vacancies. I Ref. I I I a hig her nucleation rate is 

expec ted fo r the MMC with the higher vacancy concentration. Additionally. the 

Ili g iJ e r V;\Cl IKy conccntration wi ll aid growth of thi ~ phase by enhancin g 
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diffusion of Mg through the matrix. Thc DSC thcrmogram in Figure 3 shows that 

the sample with highcr vacancy concentration, i.e .• the 5% per pass sample, 

con tai ns more 13" phase relative to the 10% per pass sample as well as slightly 

accelerated transformation kinetics of the 13" phase. 

The higher vacancy concentration for the sample rolled at 5% per pass also 

affects the relative amount of 13' phase. As the P' phase nueleates at dislocations 

[Ref. I I ). growth is enhanced by vacancy concentration and hence the 5% per 

pass sample shows a greater volume fraction of W precipitatc relativc to the 10% 

pcr pass MMC. Also noted from Figure 3 is the absence of any relative 

acceleration of the W phase in the 5% per pass MMC. The presence of subgrain 

boundary dislocations could be expected to accelerate nucleation of 13' . Perhaps 

this is not observed because the random dislocation density inside the subgrains 

is not significantly higher in the 5% per pass sample than in the 10% per pass 

sample. the majority of the dislocations being arranged in low angle boundaries. 

Within the subgrain boundaries, the nucleation rate of W will be high, but the 

growth rate may not be very high, since the local concentration of vacancies may 

be low in the boundary. The evcnmal growth rate is likely to he determined by 

the competition of vacancy aided lattice diffusion and dislocation pipe diffusion 

in the boundary, and may nOI be significantly higher than that in the 10% per 

pass sample, where the higher angle grain boundaries can also act as effective 

nucleation sites and growth paths. 

C. EFFECT OF ROLLING TEMPERATURE 

The effect of rolling temperature on the aging response of A356 SiCp is 

illustrated in Figure 6. Table 5 catalogs the peak temperature associated with 

Figure 6. Three separate samples were reduced at 10% per rolling pass to nearly 
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lli e \,1111<:: amOlJnt hut at varying rolling temperature,s : 40WC. 4KO'C and 545'C. 

r. \,llllin;lrioll of Table .5 shows tlwt differences between the W' pt:ak temperatures 

:lIt:: Ilor cle,lrly d i~cernible, but it appear\ that in general. the peak temperallLre 

dt::cre<tses with deClea~ i ng rolling temperature; i,e .. the 13" most accelerated is thaT 

fur the ~aJt rple I-oiled at 4(l() ' C. Additionally . the (3" exotherm is ~een to become 

l,lI-gn ,I~ rolling Temperature is increased showing that the llmounl of (3" formed 

illne;.r..;t::s directly with rolling temperature 

Froll1 T:lble .) it is also evident that the W peak of the MMC rolJed at the 

highest. temperature (545'C) is accelerated relative to the samples rolled at 4X()"C 

:Ind 4()()'( Tlw latter two sampks ,..;howed ,llmost no j3' peak temperature 

IiMi:.Jt i(lIl hetween tlien1, The vo lume fraction of 13' formed is seen to be the least 

hn the M\tlC rulled at 545"C, while thost' rolled at 4()(fC and 4KO"C show 

Jl<:aily <::quill ,lIllOUlih of If 

hgllie 7 i~ the TEM microg raph for the MMC rolled to 24_6% reduction at 

4()l l C alld 10 (;;- per roiling pass. This TMP schedule produced a recovered 

micros truc ture consisting of sllbgrains bounded by low angle boundaries. The 

dL~I(lcati{'lh wilhill the ,~llbgrai ns boundaries were closely spaced , Overall. rhe 

,h, l(lcatj"ll d~l1sity wa~ moderate except 1'01 areas near SiC panicle,s where 

di~locarioll dell~jty was generally heavier. Figure 5 is the TEM micrographs of 

tht:: ,..; ample rulled to 27.6% reduction al 545 ·C llnd I()% per rolling pass. The 

ft'iltUl'e, of Ihi~ 1\1 icI'Ostructure were detailed earlier. 

file DSC thermograms in Figure 6 clearly shows that as rolling temperature 

increase ,. the vullime fraction of (3" also increases. This sugge~ts that the 

V<lC:IIWV l',ll1<:<::n tr,lIioll ill the sample \trained to 276'7r at 54" ' (, is higher than 

tht:: ,ample \trailled to 24,6'1<- at 4()O"(' As observed in the micrographs. the 
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Figure 7. TEM micrograph of MMC rolled to 24.6~7o reduction at 400T and 
10% per rolling pass. 

milch highel- dislocation density of the samplt: rolled at 4(Xrc particularly in the 

,I rea~ around the SiC particles has had a more pronounced effect a~ a VllC<lIlCY 

~ ink than t.he recry stall ized structure 01' the samp le rolled at 54S"C with its lower 

dislocation density_ The overall effect of a microstruc ture consisting of relatively 

high subgraill bou ndarie s and low subgrain dislocation den~ity. as in the 545"C 

~'lI llplc. i~ to leave more quellched ill vacancies th an a microstructure consisting 

of s tlh)..' r 'llJl boundary d islocation ~ and a higher overall subgrain dislocalion 

tleJl~ ity . a ~ in the 40WC sample . The higher vacancy concentration leads 10 

increased ~" prec ipitation . 

The com petiti ve nature of the fo rmation ot ~" and W [Ref. III due to Mg 

deplet io JJ wlt.hin the matrix suggests th ~IL the lo rmatioJJ of a relati ve ly large 



alllount oj ~" pila.'ie w i ll le nd to resu lt in relat ivel y Ics~ W formatioll. T his 

1l:lllk lll'\ I~ SC e ll, W ~!Il ~xt~l\t , III Figure 6, The relatlve amO llnts of [l" and ~' 

fOi'llled hdWccn t h ~ M .'-'lC mJleo at 54:;°(' ano rhe MMC rolJed ill. 4(}O" C 

~xhj bit \ t h~ co mpcritive naltlre of the formation of t he~e two phases as the 

It'bttve allHlutth ;Ire reversed OIl precipitati ng W Howe\'e r, the ouservation lhat 

hpth P" and W pte <l \;-; in thte MMC ,;,;trained at 4XOT are large r than fho\e ill th~ 

rvlM C rolled at 'i4 'i "C ~ugge~b t1ta t other factors need to be con,\id ercd wi th 

r~gald w W prec ipitati oll 

It. has beett slrowll previously that dislocatiotls are th e preferred si te for 

tluci e<rlio\l 01 Ihe rr pha~c Once nucleated at random dislocations. the g rowth of 

I\' wil l depetld on the diff tlsio n of Mg re main ing in so lid solution ei the r by 

disIOl'<ltion pi pe" o r by vac ancy mo tion, Both modes compete fo r Mg and whic h 

(lIlC dom inates co uld depeltd on the relative proport ion of 4uettched -in vacancies 

ill lh..: rnanix. atld th~ dtl1"jty of random d is locations whic h serve u.s short c ircu il 

dit'tusion p;rlh~ The observ at io\\ that more i3' precipitated in the MMC ~ traincJ 

~tI 4XO"C than til.: MMC \tr:li11eo at 40lre ~ugge~t~ that an adequate di slocation 

den,ity W;I , ~lv; li l~t h l e fo r W nucleation and that. relative to tl te 4()O"C MMe, the 

g rowth c(ln diti on~ via the le lative proport io n of dislocation pipe<.; to vaca nc ies 

favo red growth of B' in the 4XO"C MMC over W growth in the 4()OT MMC 

D. EFFECT OF TOTAL ROLLlN(; STRAIN 

Figure X "how, the DSC tllcrtnogram<.; rcprc<.;enting the effec t of total rolling 

,1I:lill , 2-4 (" i/ an d .'i1"'k <II 4(IWC, 0 11 the MMC as compared LO the as ca~t MMe. 

'L lhle (-, lis ts the pC;Jk tem peratures obsen'ed in the ~ame thennograms. From the 

pe~t k le l lll)Cr: jtur~ dat;1 it is ~~e!lthal the W' phase for the MMC stra ined to 24 .6% 

~II --WII" ( ' i., , I i~h tl y lkce ln:lled I'elati\i~ \0 th~ ,Is -cast '-'l MC ;Itld the MM C 
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, lI;llIleu [(I 'iJ'l ;tl 4(lOT Furthe r. rhe W peak. as a trend, i~ slig htly decelerated 

with inne :l~i n~, s trai n _ This deceleration with str;[in i~ consistent with r(""lI !t~ 

ulnaim:d by May IRef. 12] in a ~tudy 011 the ;; <lme mate ria l. Mos t notable m the 

the i"lllnglalll~ of Fi g ure X is Ihe fairly con~ tan( amount of 13" prec ipita ted in all 

three MMCs, followed by arnounls of W that ill crease~ directly with strain 

TI-:Yl lepresc IlL:l(i o n of the MMC '>tramed to )3°+ at 40()"(' and [(I 'l'c pel 

P:IS, IS slwwll in Fi~ures I.)( a) and (}(b). Th is 'I'MI' schedule produced it recovered 

lllicro\lruCUJre cOll~islillg of sLJhgrain~ bounded by low angle boundaries 

l)isJo-::!liulls within II Ie subglain bOlJndarie~ were clearly reso lvable . (n the areas 

;ldl~lc e lll w SiC panicle, d i sl oc~!li(lils were very dense ;.1\ seen ill Figure \}(a) 

.';' IV:IY frolll the p:lnicles, the dislocations density wa\ mode rate although not.ably 

lllUie deJJ~e tl1:Ul t ile sample s tra ined !O 24 .69} at the same temrcrature and strail! 

1:><: 1 ,uliillt' p:I" 

A" l!()\ed abov e. the)3" exotherm~ for all three Mr-..·1C~ are nearly identical. It 

W:I\ expected that the higller straiu alld resultant lower vacancy concentration 

dlle tl' :lhSl1lption at di slOCation s would have a more pronounced effect on ~" 

pl eL' ipit:ttion kinetic~ and amounts . Given that the mi crostructures of these three 

':lll1ple~ Jre vl: ry si lil il ar with rhe exce ption of di~location den~ity, it is concluded 

rl,:11 tilt' difference between the di slocation den"itie~ in the three ~arnple~ by 

tliell),elve, is 1101 sufficient to affect the vac ancy cOllcentration enough to 

~ i.~n ificantly influence )3" nucleation or Mg diffusion in the solid solution. Sillce 

W' pl\;,'ipil<ltt', ;lrt' very small. rel.juirillg olil y a very small fract ion of the excess 

\(lIiHe to UHlle IlIlI of solution. Ihe relatively ~rn;11I difference in vacancy 

l"lI11'e lll l< lll (11i ill rill: lIHC~ sall1 ple~ (due to difference in tht' dislocation density) is 

nil! Idlt't'lcd ill the W' :ml(l Unts 
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I"' 
Figure 9, MMC strained to 53% at 400 'C, 10% per rolling pass. 



While !luI bl'eat ly <1fft'ct ing W' precipit<1tion. di slocation densi ty show~ a very 

pro ll o llllc~d effect 0 11 precip itation of W As dis IOC:J\ion den~ity incre<lscs IllI.:rc is 

;1 propo ni on;l te innc<.1se ill heter~)gene()lIs nucleation sites for W precipitation 

i\dditi(ll1ally . the dislocatioll>. enhance W grow th by pro vidi ng s hort c ircuit 

diffusioll paths o r d islocation pipes. As a re.~ull, P' nucleation alld growth is 

ellhall~'ed by the pre~cllce of dislocal iorr..; resu lting from hot working. Also noted 

h om FigUi c X, the rise in P' volume fr act ion and subsequent depletion of solu te 

trOll I ~n l id \OIUli 0 1l redllce~ the amounts of st;Jble ~ prc('ipi t<)te 

Tht' dJLI prt'sc llrcd hcre is c()n~i~tcm with results obtained by May lRef. 121 

The additIon uf TM P to the material had th e effect of decelerating tne 

prec ipitation of both W' and W Howeve r. TEM pho tornicrogra pn~ do no t 

support til e con(Cntion that recovery of interfacial dislocations to grain/~ lIbgrai li 

b()lIndarie~ has decrea~ed the density of nmdorn disloca tion s available for 

prec ipitati on within slIbg ra ins . Rath er. it W(lS observed under the TEM tnat 

1:lIldolll disillcat.i(,n den~ity in the MMC strai ned to 53% was higher than the 

MMC "Harned to 24 NK-. both !'OIled at liC)() C, It i~ plausible that the additional 

qr: li n in the metal matrix increases tht" energy' barrier. 6.G* , for nucleation due to 

:111 increased strail1 energy term . AGE, Once thi ~ energy barrier is overcome. 

~mw!h is :I ided by ~hort ci rcu ited dinu~i ()n paths . 
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VI. CONCLLlSIONS 

Til t:: ,tdd ili ull llf ce ramic parti c ul ates ha s a pronounced eHect o n aging 

l-.in d lC~ (It the a~ cast A.1S6 aluminum alloy . In compari~on 10 lhe monolithIC 

,d lo) _ tlk 1)" and W phasc.~:lIc both :lcceJcratcd by the addition of SiC particu late 

to the aluminum matrix with the W pha~e showing the most sign ificant degree of 

;1l'{:clet;,jtU Ill Further, the an !0un t of prec i pitate~ is affected by the addition of 

Siep Tht:: ,IIllOU lit of 13" formed in the a~ cast MM C is incrci.lsed wherea~ the 

aillou nt ill' W pha.se is reduced 

Therrnomech'lI1ici.ll proce~sing of the as-cast MMC had no significant impacl 

on ;!ging kinetics of lhe matrix al loy . This would suggest that the addition of 

S iCp has a much stronger effect on matrix prec ipitatio n (and he nce on the matrix 

V ;IGlI1C Y co nce illralion and dislocation density whic h provide si tes lor nucleation 

dlld affect growth ) th an pos t-fab rication thermomechanical proces;;ing. at Icast 

within lhe strall1 ,md Icmperatu re ranges examined here 

!-ruill Ihe TEM investig at io ll, it was fo und thai the addition of 24 .6 '''' strain 

by ro lling at 400T induces a recovered m icrostructure with a well dcfined sub

ce ll structu re consi ~ting of low angle boundarie~. increasing roUing ~ Lraill to 53°k 

jllilll ;lIil y ;ltleCl::,d oilly thl': d is location dens ity by increasing it notably. Varying 

th e s trai n pcr pa.,~ whi le rolling to 2Yk reduct ion at 545T affected subgrain 

boundary Ill isoli en tatioll \ igni ficalltly . as .seen under the TEM. Straining at 50/. 

pel' pa\" resu lted in a recove .. ;d H! iCIO~llllc t llre wherea~ 10% per pass res uited in a 

IlC:l r!y recrystal lized mic l 'o~truc ture 

rhe etkCl of increas in g rolling temperature while ho lding rol lin g strain 

UllhLtIl t ~IJg llt ly JeL"elcratcu lile formation of tile P" metastable phase whi le aho 

3 ::; 



\Ilcrei\~inf". tile amount of W' formed_ The transformation kinetics of the W phase 

was lIot atle.c ted by rolling temperaturc. but thc amount of W formed decreased 

witll illl'lea~illg rolli ng tcmpcratllre 

Inc re;t~illf' till;: amount of total rollin g \t rain at 4(l(rC had a triv ial effect on 

the preciJ-litatioli killetics and grow th o f 13" metastable phase. Precipitation of the 

W ph a~l~ wa\ -; Iightly decelerated with incre,lsed rolling strain. c on s istent with 

I ·e~ul l~ olot,\il\eu by May IRef. 121 Mos! notabl y. there was a marked incrcase in 

W precipitation with matrix strain. 

Al 545 ' C, increasing the strain rate from 5% per rolling pass to 1(V"/o per 

ro lling r;I~\ had little effect on aging kinetics of A356 MMC The amounts of W' 
ilnd 13' i l1c rea~ed slightly with increased strai n per pass. 

Fill;tlly. it i\ concluded that a TMP schedul e that resulted in an observable 

inClC,l\e in di\]oC,lI ioll densi ty also resulted ill an increase in If transition ph lise 
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