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Abstract. The problem of approximate joint measurement of complementary observables, like
position and momentum, and the relevance of the uncertainty relations to that question were
at the heart of the investigations of Paul Busch into the foundations of quantum mechanics. A
good third of his published work dealt with this and closely related questions. This paper is an
attempt to survey some of the steps taken in that research starting with Paul’s first papers on
the subject matter in the early 1980’s and reaching its height in recent years.

1. Introduction
The problem of approximate joint measurement of complementary observables and the relevance
of the uncertainty relations to that question were at the heart of Paul Busch’s investigations
into the foundations of quantum mechanics.

The intuitive background of these investigations was defined in the early writings of Niels
Bohr, Wolfgang Pauli, and Werner Heisenberg and may be summarised as follows: on one
hand, according to Bohr [1, 2] and Pauli [3], position and momentum are complementary
observables in the sense that all the experimental arrangements allowing their unambiguous
operational definitions and measurements are mutually exclusive. Since mutually exclusive
arrangements cannot be applied jointly, such observables cannot be operationally defined and
measured together. On the other hand, according to Heisenberg [4], complementary observables,
like position and momentum, can be defined and measured jointly if sufficient ambiguities are
allowed in their definitions. For the necessary defining ambiguities or measurement inaccuracies
δq, δp for position and momentum Heisenberg gave his famous relation δq · δp ∼ h.

The problem arising from these heuristics read and still reads: how to express and possibly
confirm or reject these intuitive ideas in (the Hilbert space formulation of) quantum mechanics?

With this contribution I try to survey some steps taken in that research starting with Paul’s
first papers on the subject matter and reaching its height in recent years. I have been fortunate
to follow and participate in much of that work since 1981. A lot of our common work, with
many collaborators, is summarised in the monographs The Quantum Theory of Measurement [5],
Operational Quantum Physics [6], and Quantum Measurement [7]. I will use freely the standard
notions of quantum mechanics, with its minimal interpretation, as developed, for instance, in
our last book [7]. Part of the present contribution is based on a paper [8] appearing in the special
issue of Foundations of Physics, entitled Paul Busch: At the Heart of Quantum Mechanics.
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2. First steps
Though important conceptual and mathematical clarifications and extensions of Heisenberg’s
groundbreaking paper [4] of 1927 appeared almost immediately in the subsequent writings of
Kennard [9], Weyl [10], and Robertson [11], the interpretation and meaning of Heisenberg’s
uncertainty relations, notably their relevance to the joint measurability of the involved
observables, remained controversial over several decades to come. A clear modern account
of this development is given in [12].

A reason for that controversy was, at least partly, in the adopted mathematical theory of
quantum mechanics which contained the result, due to John von Neumann [13], according to
which observables, as self-adjoint operators, have a joint observable if and only if they commute,
and for commuting observables there are no (nontrivial) uncertainty relations. Another reason,
already clearly pointed out by Kennard [9] and further emphasized, for instance, by Popper [14],
is that quantum probabilities, measurement outcome distributions, do not reflect as such any
measurement errors or inaccuracies.

The possibility to resolve this controversy was slowly emerging in the late 1960s with the
works of Ludwig [15], Davies and Lewis [16], and others, where it was recognised that the
probabilistic or statistical structure of quantum mechanics is compatible with the assumption
that observables are given not only as spectral measures, associated with self-adjoint operators,
but, more generally, with semispectral measures, normalised positive operator measures, an
operator representation of an observable being just an idealized special case. This extension
was soon utilized to describe fuzzy observables and approximate measurements, to mention only
the papers of Ali, Emch, and Prugovečki [17, 18] and the monograph of Davies [19]. It is in
this context that Paul defended his doctoral thesis “Unbestimmtheitsrelation und simultane
Messungen in der Quantentheorie” in Cologne 1982 [20].

This thesis can be seen as a first systematic attempt to distinguish between preparation
(statistical) and measurement (individualistic) uncertainty relations, the latter being discussed in
terms of fuzzy position and fuzzy momentum observables and exemplified through an elaboration
and extension of the Arthurs-Kelly model [21] for an approximate joint measurement of position
and momentum. Since the emphasis of the thesis is on an individualistic/realist interpretation
of quantum mechanics, it contains also a detailed study of necessary ideality conditions of the
involved measurement processes needed in such an interpretation. Leaving aside the question
of a realist interpretation, the thesis argues, even only within a model, that the two aspects of
the uncertainty relations are closely related with each other, preparation uncertainty relations
appearing as a part of the measurement uncertainty relations, reflecting the intuitive idea
that the possibilities for measurements cannot overtake the possibilities for preparations. A
generic notion of a measurement error adequate for quantum mechanics still waited to be found.
Perhaps, a first clear formulation of this task is given in the 1983 monograph of Ludwig [22, pp
197-8].

3. Complementarity as a lack of joint tests
In spite of the numerous essays Bohr wrote on the topic, he never gave an explicit definition of the
notion of complementarity, nor wrote an extensive treatise on the subject matter, a fact which
may explain the abundance of the secondary literature on this theme. Leaving that aside, let us
note that complementarity can be, and has been expressed in quantum mechanics (as well as in
more general probabilistic theories) in several alternative ways in terms of measurement outcome
probabilities, observables, instruments, or measurement schemes, see, e.g. [6, 7, 22]. In [23,24] a
formulation of the complementarity of observables as a lack of joint tests was advanced. Here it
will be expressed directly on the level of effects constituting the observables, as further developed
more recently in [8].

For any two effects E,F ∈ E(H) = {A ∈ L(H) | 0 ≤ A ≤ I}, the yes-outcome of a yes-no
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measurement of a (nontrivial) dichotomic observable {0, A, I −A, I}, with A ≤ E,A ≤ F , gives
probabilistic information on both E and F . Such a measurement is a joint test of E and F . The
bigger A the better joint test though, unless E or F is a projection, the set of their common
lower bounds

l.b.{E,F} = {A ∈ E(H) |A ≤ E,A ≤ F}

need not have a greatest element. No such tests exist exactly when E and F are disjoint:

l.b.{E,F} = {0}, that is, E ∧ F = 0.

For any two observables E : A → L(H) and F : B → L(H) their lack of joint tests may vary
between the two extremes,

l.b.{E(X),F(Y )} = {0} for all X,Y, E(X) 6= I 6= F(Y ),

l.b.{E(X),F(Y )} 6= {0} for all X,Y, E(X) 6= 0 6= F(Y ),

giving rise to the question of where to put the definition of complementarity? To decide on that,
recall that for an operational definition of an observable E : A → L(H) it suffices to know the
effects E(X) for a semiring R which generates the σ-algebra A ⊂ 2Ω and covers the value set Ω
in the sense of countable (disjoint) union. Hence, we define:

Observables E and F are complementary if E(X) ∧ F(Y ) = 0 for all X ∈ R, Y ∈ S (such
that E(X) 6= I 6= F(Y )) for some generating and covering semirings R ⊂ A and S ⊂ B.

As an immediate observation we note that complementary observables have no joint
measurements. In fact, if M is a joint measurement of E and F, that is, E(X) = M(X,Ξ),F(Y ) =
M(Ω, Y ) for all X ∈ A, Y ∈ B, then M(X,Y ) is a common lower bound of E(X) and F(Y ) for all
X,Y ; thus, if E and F are complementary, then I = M(Ω,Ξ) = M(∪Xi,∪Yj) =

∑
M(Xi, Yj) = 0,

for some disjoint covers (Xi) ⊂ R and (Yj) ⊂ S of the value spaces Ω and Ξ, respectively. This
is a contradiction.

The study of the complementarity of observables reduces to the study of the set of the lower
bounds of their effects. Let us recall that if one of the effects E and F is a projection, then
the set l.b.{E,F} contains the greatest elements E ∧ F (in the order of E(H) [25]) and if both
are projections then E ∧ F is equal to their greatest lower bound in the projection lattice, the
projection onto the closed subspace E(H)∩F (H), the intersection of the ranges of E and F . In
general, the range E(H) = ran(E) of an effect E need not be closed. If PE denotes the support

projection of E, that is, the projection onto HE = (kerE)⊥ = ran(E), we have E ≤ PE , so that,
in general, the set l.b.{E,F} is bounded from above by the projection PE ∧ PF .

4. The case of Q and P
The canonical position-momentum pair (Q,P), as studied in the thesis [20], is the prototype
example of complementary observables, their complementarity can be derived from their Fourier
equivalence and is manifested in the relation:

Q(X) ∧ P(Y ) = 0, (4.1)

for all bounded X,Y ∈ B(R), independently of the Lebesgue measures `(X), `(Y ) of the sets.
Their Fourier equivalence gives equally well Q(X) ∧ P(Y )⊥ = Q(X)⊥ ∧ P(Y ) = 0 for those sets,
underlying together with (4.1) the non-Boolean structure of the projection lattice P(H). For
the complements of such sets one instead has

Q(R \X) ∧ P(R \ Y ) 6= 0, (4.2)
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a result going back to [26,27]. In addition, Q and P have both totally noncommutative spectral
projections (associated with half-lines) as well as mutually commutative spectral projections
(associated with appropriate periodic sets), cases of interest also to Busch et al. [28]. In view of
the importance of these results in the quantum probability calculus as developed in [29], they
were collectively referred to as the Jauch theorem in [30].

Many more examples of complementary observables are known and extensively discussed
in [8], to mention number N and canonical phase Φ, any two (rotated) quadratures Qα,Qβ, as
well as the pairs (Qα,H), where H is an energy observable, with the operator H = 1

2mP
2 +V (Q),

where V is any function such that H has a purely discrete spectrum.
The equal importance of the complementary observables for the full description of (the state

of) the system was underlined in some of Bohr’s writings. Hence, it is worth recalling that, due
to the informational incompleteness of the pair (Q,P), as shown by Bargmann and reported
in [31, p 92], some complementary information is hereby lacking for a full state description.
Any triple (Q,P,H), with a discrete energy H, is pairwise complementary but none is known to
be informationally complete. However, any set of rotated quadratures {Qθ | θ ∈ J ⊂ [0, π)} is
pairwise complementary and informationally complete if J is a dense subset of [0, π) [32].

5. Breaking complementarity of Q and P: generalized Jauch theorem
The fuzzy position and momentum observables studied in [20] were of the convolution form
µ ∗ Q = Qµ, ν ∗ P = Pν , with the effects

Qµ(X) =

∫
(µ ∗ χX)(q) dQ(q), (5.1)

Pν(Y ) =

∫
(ν ∗ χY )(p) dP(p), (5.2)

and with the probability measures µ and ν having the densities f = |ϕ|2 and g = |ψ|2 (defined
by unit vectors ϕ,ψ in L2(R)). It was further assumed that the standard deviations of µ and ν,
∆(µ),∆(ν), describe the measurement inaccuracies. From [18,19] it was known that if ψ is the
Fourier transform of ϕ, that is, ψ = ϕ̂, then the fuzzy observables Qµ and Pν can be obtained
as the marginal observables of a (covariant) phase space observable GT , T = |ϕ〉〈ϕ|, with the
effects

GT (X × Y ) =
1

2π

∫
X×Y

Wq,pTW
∗
q,p dqdp, (5.3)

where Wq,p are the Weyl operators. In this case

0 6= GT (X × Y ) ∈ l.b.{Qµ(X),Pν(Y )},

for all X,Y, meaning that the thus introduced fuzziness has broken the complementarity of Q and
P. Moreover, now ∆(µ)∆(ν) = ∆(Q, ϕ)∆(P, ϕ) ≥ 1

2~, indicating that the assumed measurement
inaccuracies are related to the preparation of the joint measurement modelled by the phase space
observable GT .

This model led to the study of the question of how much inaccuracy in the form of convolutions
is to be introduced in position and momentum to break their complementarity and possibly allow
their joint measurements [24,30].

The first question is answered in what Paul called generalised Jauch theorem, [30, Theorem

(J̃)], a result generalising the equivalence of the statements l.b.{Q(X),P(Y )} 6= {0} and
ran(Q(X)) ∩ ran(P(Y )) 6= {0}, to the effects Qµ(X) and Pν(Y ):

l.b.{Qµ(X),Pν(Y )} 6= {0} ⇐⇒ ran(
√

Qµ(X)) ∩ ran(
√

Pν(Y )) 6= {0}. (5.4)
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A partial answer to the second question came from the observation that

Qµ(X) ≤ Q(supp(µ ∗ χX)), Pν(Y ) ≤ P(supp(ν ∗ χY )), (5.5)

showing that if the spectral projections Q(supp(µ ∗ χX)) and P(supp(ν ∗ χY )) are disjoint then
also the effects Qµ(X) and Pν(Y ) are disjoint, independently of the standard deviations of µ and
ν. The converse question whether Qµ(X)∧Pν(Y ) = 0 also implies Q(supp(µ∗χX))∧P(supp(ν ∗
χY )) = 0 was left open in [30] (but was to be answered in the negative, see below).

Result (5.4) extends to arbitrary effects. Indeed, [33, Theorem 3] characterises the range
of the square root of an effect in terms of the rank-1 operators contained in it: for any effect
E ∈ E(H) and for any rank-1 operator |ϕ〉〈ϕ|, ‖ϕ‖ ≤ 1, one has

ϕ ∈ ran
√
E ⇐⇒ ∃λ > 0 s.t. λ|ϕ〉〈ϕ| ≤ E. (5.6)

This then shows that for any E,F ∈ E(H),

l.b.{E,F} 6= {0} ⇐⇒ ran
√
E ∩ ran

√
F 6= {0}. (5.7)

A direct study of either of these equivalent conditions may be difficult in concrete cases,
as already exemplified by the study of the various cases of Q(X) and P(Y ), and a further
complication may arise since the range (of the square root) of an effect need not be closed. To
study complementarity, it is thus useful to have some upper bound estimates for (5.7). From

ran
√
E ⊂ ran

√
E = HE , one immediately gets one: if HE ∩ HF = {0}, that is, PE ∧ PF = 0,

then also E ∧ F = 0. However, the converse implication does not hold: there are effects E,F
which are disjoint though PE ∧ PF 6= 0 [8, Proposition 7].

The fuzzy position and momentum effects are of a special form of being (nontrivial) functions
of a spectral measure. In general, if E =

∫
h dA for some spectral measure A : B (R) → L(H)

and a Borel measurable function h : R → [0, 1], then a direct calculation shows that
PE ≤ A(supp(h)), extending the observation (5.5). Again, there are (even nontrivial) examples
showing that this inequality may be strict [8, Lemma 4].

For any two effects E,F ∈ E(H) of the above form E =
∫
hdA, F =

∫
kdB, one thus has the

equivalent conditions:

l.b.{E,F} ⊆ {D ∈ E(H) |D ≤ PE ∧ PF }
⊆ {D ∈ E(H) |D ≤ A(supp(h)) ∧ B(supp(k))},

ran
√
E ∩ ran

√
F ⊆ HE ∩HF ⊆ A(supp(h))(H) ∩ B(supp(k))(H),

where all the inclusions may be proper.
To close this section let us return briefly to the fuzzy position and fuzzy momentum studied

in [20]. By now it is known that any observable which shares the symmetry properties of
position (translation covariance and boost invariance) is of the form µ ∗ Q for some probability
measure µ. Similarly, any observable which shares the symmetry properties of momentum (boost
covariance, translation invariance) is of the form ν ∗ P for some ν [34]. Moreover, any such pair
(µ ∗ Q, ν ∗ P) is jointly measurable exactly when they can be obtained as the margins of some
covariant phase space observable GT as defined in (5.3) [35]. In addition, any observable M which
is covariant under the phase space translations (translations and boosts) is of that form for some
T ≥ 0, trT = 1, a result going back to Holevo [36] and Werner [37] (for alternative revised proofs,
see [38,39]). Further, any such an observable can be realised by a modified Arthurs-Kelly model
(eight-port homodyne detection scheme) of an approximate joint measurement of position and
momentum [40].
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For any unsharp position µ ∗ Q and momentum ν ∗ P we now have

l.b.{Qµ(X),Pν(Y )} 6= {0} ⇔ ran

(√
Qµ(X)

)
∩ ran

(√
Pν(Y )

)
6= {0}.

Since, for instance, supp(χX ∗ µ) ⊂ X + supp(µ), one observes that µ ∗ Q and ν ∗ P remain
complementary if the unsharpness measures µ and ν have bounded supports, independently of
the sizes of ∆(µ) and ∆(ν). On the other hand, the pair (µ ∗ Q, ν ∗ P) is jointly measurable if
and only if they can be obtained as the margins of a phase space observable GT , in which case
∆(µ)∆(ν) = ∆(Q, T )∆(P, T ) ≥ ~

2 . Still, the question of the possible relation of µ, or ∆(µ),
to the actual measurement accuracy is not explicitly addressed. Finally, the question left open
in [30] is answered in the following [8, Proposition 13]:

For any bounded intervals X, Y ⊂ R with lengths dX , dY satisfying dXdY ≤ π/2, there
exist probability measures µ, ν with finite variance, such that the effects Qµ(X) and Pν(Y )
are complementary, but Q(supp(µ ∗ χX)) ∧ P(supp(ν ∗ χY )) 6= 0.

6. Approximate measurements and measurement uncertainty
The notion of a fuzzy or approximate observable, like µ∗Q, has been used in the above discussed
investigations to model an approximate measurement of the given observable, like Q, with the
idea that the probability measure µ accounts for the approximation. This is well justified
since the convolving measure simply adds state independent noise in the measurement outcome
statistics, like (µ ∗Q)ρ = µ ∗Qρ. Still, no systematic theory of an approximate measurement of
an observable is given here.

With the revised operational tools of quantum measurement theory, the study of the
measurement uncertainty relations, including noise and disturbance, got a new boost in the turn
of the millennium. Part of this new wave of interest was triggered by the work of Ozawa [41,42]
on the error-disturbance relations. The proposed notions of Ozawa were independently criticised
in the papers of Busch et al. [43] and Werner [44].

Common to [43, 44] was a search for operationally meaningful measures of measurement
error, noise, and disturbance, with the idea that such notions should be built on comparing the
outcomes and statistics of the target observable, the observable one intends to measure, and
the approximating observable, the observable that is actually implemented by the measurement
scheme – an idea advanced already by Ludwig [22, pp 197-8] in 1983 but missing in Ozawa’s
work. Following this idea several measures of error (noise and disturbance) have been proposed
and developed, among them are the notions of metric error, calibration error, and error bar
width, studied also in many writings of Paul and his collaborators [45–50], and [7, Chpt. 13].

A breakthrough step was taken in the 2004 paper of Werner [44] where a metric error ∆1(Ẽ,E)

in measuring the approximator Ẽ in place of the target E was defined as the worst-case (state

independent) limit of the Monge distance d1 between the distributions Ẽρ and Eρ:

∆1(Ẽ,E) = sup
ρ
d1(Ẽρ,Eρ).

In subsequent work [47, 49, 50] this was extended to use the Wasserstein distance of order α,
1 ≤ α <∞, that is, replacing d1 with

dα(Ẽρ,Eρ) = inf
γ

(

∫
|x− y|α dγ(x, y))

1
α ,
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where the infimum (actually minimum) is taken over all the couplings γ of the (real) probability

measures Ẽρ and Eρ. If, for instance, E is a spectral measure and Ẽ = µ ∗ E, then

∆α(Ẽ,E) = dα(µ, δ0) = (

∫
|x|α dµ(x))

1
α ,

where δ0 is the point measure at 0. For α = 2, this gives ∆2(Ẽ,E) ≥ ∆(µ), with equality
whenever

∫
x dµ(x) = 0.

The paper [44] also developed an averaging method to construct, under appropriate
conditions, a covariant observable from a given observable. For approximate joint measurements
of position and momentum this all led to the following fundamental result [47, 49], see also [7,
Chpt. 15], a result which can be seen as a completion of the study of the problem faced in [20],
now in the frame of the minimal interpretation of quantum mechanics.

Theorem 1. Let M be any phase space observable (covariant or not), with the marginal
observables M1,M2, and 1 ≤ α, β < ∞. If the measurement errors ∆α(M1,Q) and ∆β(M2,P)
both are finite then there is a covariant phase space observable GT such that ∆α(GT1 ,Q) ≤
∆α(M1,Q) and ∆β(GT2 ,P) ≤ ∆β(M2,P), and thus

∆α(M1,Q)∆β(M2,P) ≥ ∆α(GT1 ,Q)∆β(GT2 ,P) (6.1)

= dα(QΠTΠ,δ0)dβ(PΠTΠ,δ0) ≥ cαβ~,

where Π is the parity operator, and the constant cαβ is connected to the ground state energy
gαβ of the Hamiltonian Hαβ, the closure of the essentially selfadjoint operator |Q|α + |P |β, by
the equation

cαβ = α
1
β β

1
α (

gαβ
α+ β

)
1
α

+ 1
β .

The latter inequality in (6.1) is an equality exactly when ΠTΠ arise from the ground state of
Hαβ by phase space translation and dilation.

For α = β = 2, Hαβ is twice the harmonic oscillator Hamiltonian with the ground state
energy g22 = 1, giving rise to the familiar lower bound ~/2. In the case of finite measurement
errors, the errors are bounded from below by the preparation uncertainties characterizing the
measurement scheme implementing the approximate joint measurement GT ; for α = β = 2, one
has ∆2(M1,Q) ≥ ∆(QΠTΠ) and ∆2(M2,P) ≥ ∆(PΠTΠ).

There is now an increasing flow of papers analysing in one or another form something like a
measurement uncertainty region for two (or more) incompatible observables Ei, with the value
spaces (Ωi,Ai),

MU(Ω1,Ω2) = {(∆1(M1,E1),∆2(M2,E2)) | M : A1 ⊗A2 → L(H)}, (6.2)

and with various measures ∆1,∆2 of uncertainty. During the past five years also Paul was highly
active in this research, as illustrated, e.g., by the papers [51,52].

7. Fragility of complementarity
For any two effects E,F the set of their common lower bounds is characterized by the intersection
of the ranges of their square roots. This set can easily be modified with a small perturbation of
one of the effects. Indeed, we have [8, Proposition 11]:

For any effect E and for any λ, p ∈ (0, 1) define Eλ,p = λE+(1−λ)pI. Then ran
√
Eλ,p = H.
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This shows that the complementarity of any two observables E1,E2 is immediately broken by
adding trivial noise in one of the observables, say, E1 → Ẽ1 = λE1 + (1− λ)T1, with the trivial
observable X 7→ T1(X) = µ1(X)I defined by the probability measure µ1.

In fact, any two observables E1 and E2 can even be made compatible by mixing them with
trivial noise,

Ẽ1 = λE1 + (1− λ)T1,

Ẽ2 = γE2 + (1− γ)T2,

and choosing the weights 0 < λ, γ < 1 appropriately, for instance, γ = 1 − λ. See, for
instance, [53,54].

In studying position-momentum uncertainty, this way of breaking complementarity and
making them compatible is, however, not very useful since the errors grow without bound. This
can indirectly be concluded from [44,49] together with [54] but can also be seen directly [55], as
reported below.

Lemma 1. Let Q̃ = λQ + (1 − λ)T be an approximate position obtained by mixing Q with a

trivial observable T with a weight 0 < λ < 1. Then ∆α(Q̃,Q) =∞ for all 1 ≤ α <∞.

Proof. Let µ be the probability measure defining T. We use the Kantorovich duality theorem [56,

Theorem 5.10] (in the form [49, Lemma 5]) to compute the distance ∆α(Q̃,Q)α. To that end,
fix any pair of positive continuous functions f, g : R→ R with compact supports satisfying the
condition

f(y)− g(x) ≤ |x− y|α for all x, y. (7.1)

Assume, in addition, that f(0) > 0 (if necessary, replace both functions with the translates
f(y+y0) and g(x+y0) where f(y0) > 0). Fix a compact set K containing the supports of f and
g. Then, for any r > 0, also the scaled functions fr(y) = rf(r−1/αy) and gr(x) = rg(r−1/αx)
satisfy (7.1) and their supports are contained in the set r1/αK extending along r. For each
r > 0 choose a unit vector φr ∈ L2(R) such that its support is outside the set r1/αK. Thus,

〈φr|Q[fr]φr〉 =
∫
fr dQφr,φr = 0 and

〈
φr|Q̃[fr]φr

〉
= (1−λ)µ[fr] for each r. Thus for each r > 0

∆α(Q̃,Q)α ≥
〈
φr|(Q̃[fr]− Q[gr])φr

〉
= (1− λ)µ[fr] = r(1− λ)

∫
f(r−1/αy)dµ(y).

Since the continuous bounded function y 7→ f(r−1/αy) converges pointwise to the constant
function f(0), the dominated convergence theorem implies that limr→∞

∫
f(r−1/αy)dµ(y) =∫

f(0)dµ(y) = f(0) > 0, showing that the right hand side of the above inequality approaches

infinity along with r →∞. The Kantorovich duality theorem thus gives ∆α(Q̃,Q) =∞.

This result shows that though the trivial perturbation may be arbitrarily small on the level
of effects, it is not at all small in the sense of the Wasserstein distance of observables.

8. Where do we stand?
The problem of approximate joint measurability of complementary observables and the relevance
of the uncertainty relations to that question was a major subject in Paul’s investigations into
the foundations of quantum mechanics. Perhaps, the first poetic formulation of the problem is
due to Wolfgang Pauli in a letter to Werner Heisenberg, dated 19 October 1926 [57]:

Man kann die Welt mit dem p-Auge und man kann sie mit dem q-Auge ansehen, aber
wenn man beide Augen zugleich aufmachen will [,] dann wird man irre.
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Paul’s equally poetic answer to Pauli is given in the Epilogue of [6]:

We hope to have demonstrated that one can safely open a pair of complementary ‘eyes’
simultaneously. He who does so may even ‘see more’ than with one eye only. The
means of observation being part of the physical world, Nature Herself protects him from
seeing too much and at the same time protects Herself from being questioned too closely:
quantum reality, as it emerges under physical observation, is intrinsically unsharp. It
can be forced to assume sharp contours – real properties – by performing repeatable
measurements. But sometimes unsharp measurements will be both, less invasive and
more informative.

The notion of joint test of a pair of effects, which is behind our formulation of the
notion of complementarity of observables is a weaker notion than the notion of their joint
measurability (coexistence). Even the pairwise joint measurability of all the effects constituting
the observables does not guarantee their joint measurability (see, e.g. [58]). Hence, it is natural
that one may break the complementarity of observables without allowing their approximate joint
measurement.

The complementarity of position and momentum is manifested in the relation Q(X)∧P(Y ) =
0, equivalently, ran(Q(X)) ∩ ran(P(Y )) = {0}, for all bounded sets X,Y . To break this
relation one needs to introduce inaccuracies (unsharpness, fuzziness) in the measurements of

the observables to get jointly measurable or at least jointly testable approximators Q̃ and P̃

with ran

√
Q̃(X) ∩ ran

√
P̃(Y ) 6= {0} (possibly) for all X,Y . This is the content of Paul’s

generalized Jauch theorem.
There are natural measurement schemes which lead to jointly testable, though possibly

incompatible approximators Q̃ = Qµ and P̃ = Pν . The quality of these approximations
can be quantified using, for instance, the Wasserstein 2-distances ∆2(Qµ,Q) ≥ ∆(µ) and
∆2(Pν ,P) ≥ ∆(ν), but there need be no correlation between the errors ∆(µ) and ∆(ν). Such
approximators are jointly measurable exactly when the error measures µ and ν are Fourier
related, in which case ∆(µ)∆(ν) ≥ ~

2 . Moreover, in this case the errors can be traced back to
the preparation uncertainties of the position and momentum of the probe (measuring apparatus).
This is essentially the result which led Paul to formulate his answer to Pauli.

A simple way to break the complementarity of any two observables is mixing trivial noise in
the statistics of one of them. But, for instance, in the case of position or momentum such
an approximation is always extremely bad. Indeed, for instance, ∆2(Qp,Q) = ∞ for any
Qp = pQ + (1− p)T1, p < 1.

As concerns position and momentum, the problem formulated in the opening sentence of this
paper is now solved by the following result. Consider any biobservable B, that is, an observable
with two independent outcomes, as an approximate joint observable of Q and P. If the degrees
of approximations ∆2(B1,Q) and ∆2(B2,P) are finite then there is also a covariant phase space
observable GT which serves no worse joint approximator, with

∆2(B1,Q)∆2(B2,P) ≥ ∆2(GT1 ,Q)∆2(GT2 ,P) ≥ ∆(QΠTΠ)∆(PΠTΠ) ≥ ~
2
.

This is just a reformulation of Theorem 1.
The notion of joint measurability of two (or more) observables is well understood and it

has various equivalent characterisations, see, for instance, [7, Theorem 11.1]. However, as
noted above, there are obvious weakenings of this notion based on the joint measurability and
joint testability of pairs of the effects constituting the observables. A further, perhaps extreme
weakening of this concept is the joint measurability of two (or more) observables understood
as any measurement the statistics of which allows one to reconstruct the statistics of the
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observables in question. Then any two observables can be measured together using tomographic
methods (state reconstruction). In the case of Q and P there are even non-tomographic methods
(applying informationally incomplete measurements) to measure Q and P together in the sense
of “statistical postprocessing” [59].

There is no end in sight in this story.
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