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Interactions between plants and insects evolved during millions
of years of coevolution and maintain the trophic balance of
terrestrial ecosystems. Documenting insect damage types (DT)
on fossil leaves is essential for understanding the evolution of
plant–insect interactions and for understanding the effects of
major environmental changes on ecosystem structure. However,
research focusing on palaeoherbivory is still sparse and only a
tiny fraction of fossil leaf collections have been analysed. This
study documents a type of insect damage found exclusively on
the leaves of Parrotia species (Hamamelidaceae). This DT was
identified on Parrotia leaves from Willershausen (Germany,
Pliocene) and from Shanwang (China, Miocene) and on their
respective endemic modern relatives: Parrotia perisca in the
Hyrcanian forests (Iran) and Parrotia subaequalis in the Yixing
forest (China). Our study demonstrates that this insect DT
persisted over at least 15 Myr spanning eastern Asia to western
Europe. Against expectations, more examples of this type of
herbivory were identified on the fossil leaves than on the
modern examples. This mismatch may suggest a decline of this
specialized plant–insect interaction owing to the contraction of
Parrotia populations in Eurasia during the late Cenozoic.
However, the continuous presence of this DT demonstrates a
robust and long-term plant–herbivore association, and provides
new evidence for a shared biogeographic history of the two
host plants.
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1. Introduction

An ecosystem is a set of abiotic environmental conditions with communities of organisms living and
interacting therein. Interactions between organisms contribute to a fragile equilibrium within
ecosystems [1–3], and this balance can be drastically disturbed by modern human activities [4–6].
Global environmental change is expected to affect plant–insect associations in various ways, as insects
play significant roles such as herbivores [7] and pollinators for crop production [8]. These interactions
are the result of millions of years of evolution [9–11]. Plant–herbivore interactions are of particular
importance for terrestrial food webs that sustain biodiversity and ecosystem balance [12–14]. Variation
in the style and quantity of herbivory depends mostly on abiotic parameters, primarily climatic
conditions [9,15–17]. Consequently, it is not surprising that many studies have measured significant
changes in the patterns of herbivory on fossil leaves through geological time as environmental
conditions have changed [16,18–25].

Recent research has been carried out on some late Cenozoic floras from Europe using standardized
damage type (DT) nomenclature. This research includes work on the famous Lagerstätte of Willershausen
in Germany [26]. During the identification of herbivory traces on fossil leaves of Willerhsausen (i.e. 8073
fossil specimens analysed), an insect DT was recorded exclusively on fossil leaves similar to Parrotia
persica (DC.) C. A. Mey. These leaves were the most abundant within the fossil assemblage [26,27] and
hosted many examples of this specific insect feeding trace [26]. Parallel to this study, another investigation
was conducted mostly on modern leaves of P. persica from the Hyrcanian forest region [28]. During this
study, herbivory traces similar to those on the fossils were observed on living P. persica at Aliabad-e
Katul, Pasand and Molla Kala in Iran (figure 1). Lastly, within the framework of another project on fossil
plants from the Lagerstätte of Shanwang (Miocene), north-east China [31,32], around 1300 leaves were
studied and the same insect feeding trace was identified on just one Parrotia leaf.

This study describes the type of the plant–herbivore interaction found exclusively on leaves of the two
known Parrotia species. In addition to the fossil and modern materials mentioned previously, some
modern leaves of Parrotia subaequalis were also measured in the Yixing forest (China), where one of
the small endemic populations of P. subaequalis still exists [33]. We discuss how such external leaf
feeding remained unchanged for 15 Myr across Eurasia, in the face of major environmental changes.
Finally, we discuss how this discovery provides new perspectives on the evolution of plant–insect
interactions.
2. Material and methods
2.1. Fossil record of Parrotia
Parrotiawas present in East Asia and possibly North America during the Eocene and seemed to spread to
western Eurasia across Central Asia during the Oligocene [34]. During the early Oligocene the genus was
present in Kazakhstan from where it disappeared during the Miocene [35]. Parrotia pristina
(Ettingshausen) Stur and Parrotia fagifolia (Göppert) Heer were described from Europe. These names
were also used for Palaeogene and Neogene leaf fossils of East Asia [36,37]. In addition, Fothergilla
Hu & Chaney [38] was described from the early to middle Miocene Shanwang flora of China. Based
on the morphological similarity with the extant Shaniodendron subaequalis (=Parrotia subaequalis),
Fothergilla virburnifolia was later transferred to Shaniodendron viburnifolium (Hu and Chaney) Wang &
Li [39]. In Europe and Kazakhstan, fossils assigned to Parrotia are commonly called P. pristina
(P. fagifolia being a junior synonym). In East Asia, the nomenclature is somewhat unclear:
S. viburnifolium should be treated as Parrotia virburnifolia based on the current taxonomic treatment of
Shaniodendron as a synonym of Parrotia [40]. At the same time, this name competes with the earlier
name P. pristina, which also has been used for East Asian fossils. For practical reasons, in this study
we refer to the European fossils as P. pristina and to the East Asian examples, as P. viburnifolia.

2.2. Parrotia persica (DC.) C. A. Mey
Parrotia perisca is a deciduous tree 8–25 m tall [41]. The leaves are oblong to obovate, up to 15 cm long and
6 cm wide, with 5–8 pairs of secondary veins [27,41,42]. Nowadays, P. persica exists only in the Hyrcanian
forest south of the Caspian Sea (Iran, Azerbaijan). The leaf shape of P. persica is very consistent despite
there being size variability in leaves throughout the Hyrcanian forest owing to variable local abiotic
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Figure 1. Eurasian locations including both fossil and modern occurrences of Parrotia that contain examples of the damage type
DT297. The distribution for P. subaequalis in China has been drawn in one large area for clarity. In reality, the distribution of
P. subaequalis in the Yangtze River valley is very fragmented, only small isolated populations occur in the valley. More details
are provided by Geng et al. [29] and Li & Zhang [30].
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conditions [43]. Parrotia persica is an Arcto-Tertiary relict species [34]. Its close fossil relatives were very
common in European forests during the Neogene [42,44–50]. In this study, fossil leaves from
Willershausen (Pliocene) in Germany and modern leaves from the Hyrcanian forest in northern Iran
were studied comparatively (figure 1).

2.2.1. Willershausen, 3 Ma, Germany

Willershausen is a Lagerstätte in the centre of Germany, close to Göttingen (figure 1). It is a lacustrine clay
pit containing more than 130 fossil plant species including many leaves of Zelkova zelkovifolia, Carpinus
orientalis Mill., Carya minor Schenk and P. pristina [27,48,51] the last of these is the most abundant in
the fossil plant assemblage of Willershausen [26]. The palaeoforest represented by this fossil leaf
assemblage is dated around 3 Ma; MN 16/17 [34,52]. Adroit et al. [26], analysed 8073 leaf specimens
of which 517 were attributed to a fossil relative of Parrotia.

2.2.2. Hyrcanian forest, modern, northern Iran

In terms of plant species richness, the Hyrcanian forest region (figure 1) is considered a good modern
analogue of the European forests of the late Cenozoic [42,53], such as that represented by the
Willershausen Lagerstätte. The Hyrcanian forest region is a refuge for several extant Arcto-Tertiary
plant species that are endemic to this area (such as P. persica) [34,42,54,55]. This forest extends from
Golestan National Park (northeastern Iran) to eastern Azerbaijan, and is bordered by the Caspian Sea
to the north and the Alborz mountains to the south, encompassing 1.85 million ha [56]. Adroit et al.
[28] collected and analysed 2160 leaves of P. persica and observed additional leaves from other species
(such as Zelkova carpinifolia (Pall.) K. Koch, Quercus castaneifolia C. A. Mey, Acer cappadocicum Gled.),
which commonly co-occur with Parrotia.

2.3. Parrotia subaequalis (H. T. Chang) R. M. Hao and H. T .Wei
Similar to its sibling species [57,58], P. subaequalis is a large shrub or small tree, 5–10 m tall [57]. Rarely, it
reaches up to 20 m tall with pruning and staking, as evident in a village on Qingliang Peak, Linan, China.
Leaf blades of P. subaequalis are mostly broad-obovate or elliptic, 4–6.5 cm long, and 2–4.5 cm wide, and
thinly leathery [59]. Parrotia subaequalis is a Cenozoic relic plant species endemic to eastern China [29].
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Fossil specimens from Miocene strata indicate the former distribution of Parrotia in Shanwang, Shandong

Province, northeastern Central China [60,61] and in Huadian, Jilin Province, northeastern China [62]. Its
population size severely decreased during Quaternary glaciations [63]; the modern species has a narrow
and scattered distribution on Mt Qinling-Dabie and Mt Tianmu (China). Parrotia subaequalis was
described from Yixing, Jiangsu province as Hamamelis subaequalis H. T. Chang and later transferred to
the monotypic genus Shaniodendron [64]. Subsequently, flower morphology [60] and a molecular
phylogenetic study [58] suggested that Shaniodendron should be included within Parrotia resulting in
the name P. subaequalis. The modern leaves of P. subaequalis came from the Yixing forest in eastern
China (figure 1).

2.3.1. Shanwang, 18–15 Ma, China

Shanwang is a Lagerstätte [31] containing a diverse assemblage of organisms dominated by angiosperms
[31,32]. It is located in northeastern China, in Shandong province (figure 1).

According to various dating methods, the Shanwang deposit is early—middle Miocene [65], i.e.
18–15 Ma [31,66–69]. Both pollen and fossil leaf studies indicate the presence of Quercus, Pterocarya,
Ulmus, Populus, Fraxinus, Carpinus and Betula [70]. They represent an evergreen broad-leaved and mixed
deciduous forest [70]. The fossil collection from this deposit is stored in the Nanjing Institute of Geology
and Palaeontology (Nanjing, China) and includes 1298 leaves, of which 40 are attributed to Parrotia.

2.3.2. Yixing forest, modern, eastern China

The modern Yangtze River valley is an appropriate environmental analogue of the Shanwang Miocene
site, although the Shanwang palaeoforest may have experienced lower annual temperatures including
possibly colder summers and lower seasonality in rainfall. Yixing Forest Farm, located in the Yangtze
River valley (figure 1), is one of the most significant state-owned forest farms in southwestern Jiangsu
Province, covering 34 km2, with 97% forest coverage. This farm is set in the region of Mt Yili, which is
geographically a low-altitude hilly terrain forming the eastern extension of Mt Qinlin-Dabie [71].
There is a small population of P. subaequalis trees in the central part of Yixing Forest Farm, with three
eminent old trees and around 20 mature individuals. Other small populations occur within and
around the farm [29]. In the field, 41 leaves of P. subaequalis were sampled.

2.4. Observations
All the specimens were studied with a stereomicroscope (Leica EZ4) and a transmitted light microscope
(Zeiss AXIO Zoom V.16). They were photographed with a Lumix GX8 mounted on a copy stand. The
fossil leaves from the various collections were sampled many years ago and described in previous
works. No additional sampling was attempted, as the fossil collections are large enough and because,
nowadays, collecting in Willershausen (Germany) and Shanwang (China) is forbidden. All the modern
leaves were sampled from the ground (litter) in the Hyrcanian forest region (Iran) and Yixing forest
(China). Leaves from the litter are more representative for plant–insect interactions as herbivory is not
homogeneously distributed throughout the tree and the whole spectrum of leaf DTs is best captured
when leaves from all parts of the tree including the canopy are considered [72–75]. Moreover, to
collect a fallen leaf from the litter means collecting after the whole lifespan of this leaf, and then no
more herbivory can happen. Lastly, the leaves from the litter represent at least a part of the
taphonomy process. For those reasons, the leaf litter is better for the standardization of samples for
the whole study.

2.5. Terminology
Currently, the main reference to identify and classify the plant–insect interactions in the fossil record is
the ‘Guide to Insect (and Other) Damage Types on Compressed Plant Fossils’ [76]. This guide subdivides
herbivory traces on leaves into seven functional feeding groups (FFGs): hole feeding, margin feeding,
skeletonization, surface feeding, mining, piercing and sucking and galling. For each FFG, numerous
DTs are recognized. For each of these DTs, a host specificity index (HS) is assigned that distinguishes
between generalist and specialist damage [77]. The determination of this HS index is based on diverse
parameters, such as its geographical distribution, plant species diversity affected by the damage,
damage quantity, shape variations, among others factors (more details in [25,70]).
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2.6. Deposition of fossil specimens

Fossil P. persica leaves from Willershausen (Germany) analysed in this study are all deposited at
the Geoscience Centre of the University of Göttingen (GZG.W collection). The fossil leaves of
P. viburnifolia (labelled as P. subaequalis in the collection) belong to the Nanjing Institute of Geology
and Palaeontology, Chinese Academy of Sciences (China).

2.7. Measurements
With the help of photography and the software IMAGEJ, each leaf was measured following several
parameters, such as length, width and surface area of the leaf blade. Where possible, the width of
the petiole was also measured in order to determine the leaf mass per area (LMA) for each
specimen. LMA is an index that corresponds to the relationship between the thickness and the
density of the leaf [78,79]. Thereafter, the specific damage on each Parrotia leaves was recorded and
described, and the measurements of the surface area of the damage, the length and the width at
three different positions along the damage, and the number of holes, were compared between the
two Parrotia species and both fossil and modern leaves. Basic statistical tests based on the averages
of measurements (Shapiro, Fisher and Wilcoxon) were made in addition to these morphological
comparisons.
:201449
3. Results
At Willershausen, 32 leaves of P. pristina had the DT DT297 and we counted 143 occurrences in total. In
general, one leaf can include more than one damage occurrence (figure 2). In Shanwang, four leaves of
the species P. viburnifolia (= P. subaequalis fossil relative) had 13 occurrences of this specific DT. In all
of the fossil collections, no leaves from other species had DT297. In the modern Hyrcanian forest,
despite the large amount of P. persica leaves collected, only six had this DT, and in a low quantity as
only seven occurrences in total were recognized. In the Yixing forest, damage abundance is even
lower; only four occurrences on two leaves of P. subaequalis were identified.

Overall, 167 damage occurrences were observed in this study among 43 leaves of Parrotia species
(figure 2). A large majority of them were observed on P. pristina from Willershausen (85%) and then
7% on P. viburnifolia from Shanwang. The modern samples of Parrotia spp. (i.e. P. persica and
P. subaequalis together) represent 8% of our observations.

3.1. Morphological description
The average of the damage measurements has been calculated by counting all the occurrences from all
the leaves, but it must be noted that fossil Parrotia leaves from Willershausen are the most representative
in terms of the size variability for this specific damage (figure 3). This is certainly a consequence of the
large quantity of specimens analysed. Nevertheless, we split and compared the average of damage sizes
per locality (then per Parrotia species) (figure 3).

The damage trace is a curved skeletonization subdivided in a row of several holes. This long,
curved chain of small holes usually is less than 1 cm long. However, some of the specimens can reach
1.5 cm in length, but this is quite rare. Individual holes are commonly rectangular with rounded
corners. The length of each hole never exceeds more than 1 mm and the width of each hole, i.e. the
width of the damage, is around 0.6 mm. There is no variation of the width along the course of the
damage. On average, the surface area of the damage is 4.1 mm2 (±1.4) with a length of 5.4 mm (±1.3)
and a global width of 0.6 mm (±0.08). The number of holes can vary from 3 to 12, but in most cases it
is 5–8.

The small lines that separate individual holes from each other are very thin, commonly inconspicuous
or missing. Although these lines are indistinct, it is possible to infer their existence by carefully observing
the internal borders of the damage. In some cases, the small lines are missing along longer portions of the
damage (figure 2, C2). The margin of the damage is marked by black edges. This black scar is a typical
reaction from the leaf after being attacked by insect feeding and makes it possible to distinguish a
herbivory trace made by an insect during the leaf’s lifespan from a detritivorous trace made after
abscission [76,77]. Overall, the path of the damage is not affected by the leaf venation. However, we
noted that the damage usually follows a secondary vein instead of removing it. Exceptionally, we
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Figure 2. Damage type DT297 on every type of leaf attributed to Parrotia. A1–A6 Fossil specimens of P. pristina from the Pliocene
of Willershausen, Germany. The material is deposited in the Geoscience Centre, University of Göttingen (GZG), Germany. B1–B2
Modern specimens of P. persica from the Hyrcanian forest (northern Iran), more details are provided by Adroit et al. [28].
C1–C2 Modern leaves of P. subaequalis from the Yixing forest, Yangtze River area, eastern China. D1–D4 Fossil specimens of
S. subaequalis (= synonym of P. subaequalis) from the mid-Miocene of Shanwang, China. The material is deposited in the
collection belonging to the Nanjing Institute of Geology and Palaeontology (NIGPAS), China. Black bars represent 2.5 mm.
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noted that damage crosses over the primary vein (figure 2, D4) but without removing the vein. There is
usually more than one damage example per leaf blade; a single example of damage per leaf is rare. We
also observed some cases in which the entire leaf blade was covered by this damage (figure 2, A3).
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3.2. Host plant
Based on the fossil record, there is little doubt that DT297 is exclusively found on Parrotia species.
Investigations of fossil leaves from Willershausen were based on around 8000 fossil specimens
representing more than 130 plant species/morphotypes. The Shanwang collection consists of around
1300 leaf specimens and includes more than 100 morphotypes.



royalsocietypublishing.org/journal/rs
8
3.3. The specimen reference of DT297

This DT was originally described as a trace fossil Phagophytichnus catellarius ichnosp. nov. by Straus [51].
The fossil specimen of P. pristina from which Ph. catellarius was described belongs to the Willershausen
fossil collection from Göttingen. We photographed in high resolution the sample used for the holotype of
this DT (electronic material supplementary, S1). The holotype is labelled GZG.W no. 10626 and is located
in the Willershausen plant macrofossil collection at Göttingen University, Germany.

3.4. Classification
The classification of this DT follows the rules and terminology of the Guide to Insect (and Other) Damage
Types on Compressed Plant Fossils [76]. This damage is now designated: DT297.
os
R.Soc.Open

Sci.7:201449
4. Discussion
First and foremost, it is important to mention that there is no difference in terms of leaf thickness between
the two extant Parrotia species or between fossil and modern leaves, as estimated by LMA (electronic
material supplementary, S2) based on the method from Royer et al. [79]. LMA can be correlated with
climatic factors [80–82], leaf nutrient availability [83,84] and, furthermore, can affect herbivory
patterns observable on the leaf blade [78,85].

4.1. DT297: a new classification for this specialist insect damage trace
Our observations demonstrate that modern P. persica and P. subaequalis bear the same insect feeding trace
(DT297). Morphological descriptions are consistent and statistical assessments support this observation.
Indeed, measurements of the surface area, length and the width of this DT between the Parrotia species
and between fossil and modern specimens do not reveal any significant differences (α = 0.1) (figure 3).
The statistics may be quite weak owing to the small number of measurements on modern leaves.
However, as the statistics did not demonstrate any significant variations of measurements, our results
indicate little size variation of the damage.

The DT DT297 (figure 4) is new for the ‘Guide to Insect (and Other) Damage Types on Compressed Plant
Fossils’ [76] and will be will be considered for the next version of that guide and classified into the
‘skeletonization’ FFG.

This herbivory trace is exclusively found on Parrotia for at least 15 Myr. Indeed, it is important to note
that the outcrops mentioned in this study are not the only ones which have been investigated for the
present study. Several fossil localities in Eurasia of Cenozoic age have also been investigated but
lacked any trace of this DT [20,23,28,75,86–89], either on Parrotia leaves or on any other plant species.
Such assemblages include the fossil leaves of Parrotia from Berga and Bernasso documented by Adroit
et al. [26]. Further, the method of identification of DTs in the leaf fossil record [76] has now been used
for more than 10 years in numerous studies throughout the world and through all geological time
periods [18,21,24,25,90–92], and none mentioned feeding traces equivalent to DT297. Hence, DT297
can be considered a highly specialized term of skeletonization with a host specificity index of 3 (HS = 3).

4.2. Specialist herbivory pattern for 15 Myr in Eurasia
DT297 provides direct evidence of the continuous relationship between a plant and a herbivore. So far,
this is the most ancient herbivory trace specifically identified and still distinctive in the modern flora on
the same plant genus. This specific damage has never changed in terms of plant host association or
morphological characteristics (shape, size). It has been distinguished from western Europe to eastern
Asia over at least 15 Myr; a long period of time and a large geographical area characterized by
marked environmental differences.

The warm climate during the Middle Miocene Climatic Optimum (17–15 Ma) [93], followed by
progressive cooling during the Middle Miocene Climate Transition (15–13 Ma) [94], and the onset of
glacial–interglacial cycles from the Middle Pleistocene Transition (1.2–0.7 Ma) onwards [95] occurred
between the first known traces of DT297 and the present. In addition, orogenesis was extremely
important in Eurasia, especially with the rise of the Tibet-Qinghai Plateau [96–98], which formed a
barrier between eastern Asia (P. subaequalis) and the Caucasus—Europe (P. persica) during this interval.
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Figure 4. Artistic representation of both Parrotia persica (left) and Parrotia subaequalis (right) bearing the damage type DT297.
The illustration was produced by Mr Dinghua Yang from the Nanjing Institute of Geology and Palaeontology, Nanjing, China.
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DT297 represents remarkable stasis in a feeding strategy. Numerous studies have demonstrated shifts
in herbivory during various geological events [16,23,99,100]. Those herbivory changes are mostly caused
by climate variations impacting insect physiology [101–105] and, in some cases, by interruptions of gene
exchange between plant and insect species [106,107] created by the emergence of new landforms.

Although the specific damage on Parrotia over (at least) 15 Myr can be used to reconstruct the trophic
relationships of Parrotia in its environment, it is very difficult to determine the insect causing this
damage. Straus [51] suggested that this trace fossil could have been produced by Chrysomelidae
larvae. Based on our comparisons with known insect feeding from the literature we suggest that
DT297 could have been caused by insects belonging to subfamily Galerucinae/Alticinae, probably by
Altica which was widely distributed in Eurasia from at least the Eocene [108–110]. Both subfamilies
are recorded in the Yangtze River valley and the Hyrcanian forest region with some endemic species
of these regions [111–116].

The present specific damage shared between P. subaequalis and P. persica which are today completely
isolated from each other, provides direct evidence that they occupied a common ecological niche, which
is today separated by vicariance into two geographical areas [117]. The congenerity of the Parrotia species
between eastern Asia and Caucasus is still not clear based on previous studies and has led some to assign
the Asian taxon to S. subaequalis (= P. subaequalis) for some researchers [39,64]. However, Li et al. [118]
used internal transcribed spacers from the nuclear gene of Hamamelidaceae and found support for
Parrotia and Shaniodendron as a monophyletic group [118,119]. Additional studies based on the
chloroplast gene ‘matK’ segregated Parrotia and Shaniodendron as distinct taxa [120,121]. A recent
study even describes the whole chloroplast genome of P. subaequalis [122]. However, chloroplast
markers usually do not reconstruct taxonomic but biogeographic relationships [123–127]. Thus DT297
can contribute to better understanding of the shared biogeographic history of the two host lineages in
western Eurasia and eastern Asia and supports the accordance of lineages between these Parrotia
species presented in this study.

In a continuous coevolution between insect attack and plant defence strategies [128,129], it is difficult to
explain why such a specific herbivory mode has never changed over 15 Myr. One hypothesis is that this
insect damage can be mutualistic in some cases. Although this is debated within the scientific
community, Agrawal [130] demonstrated, based on plant fitness, that certain types of insect feeding could
represent mutualistic interactions between the insect and the plant. Moreover, a recent meta-analysis of
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hundreds of scientific publications [131] about the ‘overcompensation’ for insect herbivoryalso supports this

hypothesis. However, to focus only on plant fitness is insufficient to discuss mutualism as awhole, because
mutualism also implies an evolutionary history of the plant–animal interaction [132], in which a specific
feeding trace, such as DT297, can be considered as a direct evidence.

4.3. DT297 more common in the fossil record than on modern leaves
We observed many more examples of DT297 on fossil than on modern leaves. The most striking
difference is seen in P. persica and its fossil relative P. pristina, as we observed around 500 fossil
specimens from Willershausen [26] versus more than 2300 modern specimens in its modern range in
the Hyrcanian forest [133], and yet the large majority of DT297 has been observed on the fossil leaves
(electronic supplementary material, S3). This is also true for the Chinese fossil leaf assemblages, which
recorded almost 10 times more occurrences of DT297 than the modern P. subaequalis leaves from the
Yixing forest area (electronic supplementary material, S3). This unexpected pattern can be explained in
various ways.

These significant differences in occurrence could indicate an ecological change for this specialist
plant–insect interaction. The populations of insects specialized on Parrotia could have significantly
decreased during the last 15 Myr until they became relictual in the Hyrcanian and Yixing forests. The
large climatic changes during the Miocene [93,134,135] and the introduction of glacial–interglacial
cycles in the Quaternary [52,95] had a huge impact on numerous plant species’ populations and their
distributions [55,136–138], including Parrotia [139–141]. However, there are some examples of insect
species that survived the glacial–interglacial cycles and recolonized the same area, such as the arctic–
alpine insect species Arcynopteryx dichroa in the Central European highlands [142].

Sampling biases might also have caused the marked differences of occurrences between fossil and
modern leaves. The modern leaves sampled represent only 1 or 2 years of leaf shedding, whereas fossil
leaves may represent many years of leaf production and hence environmental variation, such as dry or
wet years. Fossil leaves from Shanwang were recovered from several layers (19 sub-units in total) of
diatomaceous sedimentary rocks [143] and represent a maximum of 3 Myr of elapsed time [31,66,69]. At
Willershausen, fossils were collected from a clay pit and fossils from various layers were mixed. Based
on lithological differences and contrasting fossil preservation, it is certain that the leaves from this
outcrop represent many years of deposition [144,145]. Plant–insect interactions can significantly change
from 1 year to another owing to a multitude of factors, such as climate seasonality [146–149]. Thus,
insect feeding observed in the fossil record is generally more representative of the global herbivory
pattern on Parrotia taxa than the observations made on modern leaf litter.

Only increased sampling efforts for Parrotia leaves from modern sites and fossil assemblages will
enable better characterization of this differences in DT occurrences. Accordingly, one of the main
objectives of our study was to thoroughly describe the specific DT DT297 in order to provide a basis
for more comprehensive investigations in the future.
5. Conclusion
This study highlights and describes a long-term mode of herbivory, expressed as a skeletonization, which
is exclusively represented on Parrotia species. We corroborate the damage (DT297) affinity to Parrotia taxa,
for at least 15 Myr, and document this likeness relationship by providing structural similarities and
detailed measurements supported by statistics. This specific DT provides direct evidence, quite rare in
palaeoecology, of a long-term relationship between a plant species and its herbivore. DT297 is
currently the most specific long-term herbivory trace identifiable on the same modern plant lineage.
Henceforth, in order to better understand this interaction, fieldwork should be made in the Hyrcanian
and/or Yixing forests in order to directly observe the insect species causing this distinct damage form.

The continuous presence of this DT over 15 Myr demonstrates a robust and long-term plant–
herbivore association, and provides new evidence for a shared biogeographic history of the two host
plants. This may have implications for improved understanding of phylogenetic relationships between
the western Eurasian and East Asian host plant species.
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