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Secretary of the Board of Regents 
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Reflecting on the plan of a work which you, Sir, suggested to me 

in conversation, the last time I had the pleasure of seeing you, I have 

attempted, in accordance with your views, to embody the sublime and 

useful truths of Geometrical science in a form which will render them 

easily accessible to the pupils of our higher schools and academies. 

The result occupies the following pages, to which I beg leave to 
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prefix your name, as a happy augury that the work may do faithful 

and successful service in the cause of education. 

I am, dear Sir, 

With great respect, 

Your obedient servant, 

Charles Davies. 

Hartford, March, 1841 





PREFACE. 

Those who are conversant with the preparation of ele¬ 

mentary text-books, have experienced the difficulty of 

adapting them to the various wrants which they are in¬ 

tended to supply. 

The institutions of education are of all grades, from the 

college to the district school, and although there is a wide 

difference between the extremes, the level, in passing 

from one grade to the other, is scarcely broken. 

Each of these classes of seminaries requires text-books 

adapted to its own peculiar wants; and if each held its 

proper place in its own class, the task of supplying suit¬ 

able works would not be difficult. 

An indifferent college is generally inferior in the system 

and scope of its instruction to the academy or high school; 

wdiile the district school is often found to be superior to 

its neighboring academy. 

The Geometry of Legendre, embracing a complete 

course of Geometrical science, is all that is desired in the 

colleges and higher seminaries; while the Practical Ge¬ 

ometry, published a few years since, meets the wants of 

those schools which are strictly elementary in their sys¬ 

tems of instruction. 
l* 



6 PREFACE. 

But still a large class of seminaries remained unsup- 

plied with a suitable text-book on Geometry : viz., those 

where the pupils are carried beyond the acquisition of 

facts and mere practical knowledge, but have not time to. 

go through with a full course of mathematical studies. 

It is for such, that the following work is designed. It 

has been the aim of the author to present the striking 

and important truths of Geometry in a form more simple 

and concise than could be adopted in a complete treatise, 

and yet to preserve the exactness of rigorous reasoning. 

In this system of Geometry nothing has been taken for 

granted, and nothing passed over without being fully de¬ 

monstrated. 

In order, however, to render the applications of Ge¬ 

ometry to the mensuration of surfaces and solids complete 

in itself, a few rules have been given which are not de¬ 

monstrated. This forms an exception to the general plan 

of the work, but being added in the form of an appendix, it 

does not materially break its unity. 

That the work may be useful in advancing the interests 

of education, is the hope and ardent wish of the author. 

Hartford, 

April, 1841. 
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ELEMENTARY 

GEOMETRY. 

BOOK I. 
* ' * • > 

DEFINITIONS AND REMARKS. 

1. A Line is length without breadth or thickness. 

2. The Extremities of a Line are called points: and any 

place between the extremities is also called a point. 

3. A Straight Line is the shortest dis¬ 

tance between two points. Thus AB is a a-B 

straight line, and is the shortest distance 

from A to B. 

4. A Curve Line is one which changes g 

its direction at every point. Thus, ABC 

is a curve line. 

5. The word Line, used by itself, means a straight line; 

and the word Curve, means a curve line. 

6. A Surface is that which has length and breadth, with¬ 

out height or thickness. 

7. A Plane Surface is that which lies even throughout its 

whole extent, and with which a straight line, laid in any di¬ 

rection, will exactly coincide in its whole length. 

8. A Curved Surface has length and breadth without thick¬ 

ness, and like a curve line is constantly changing its direction. 

9. A Solid or Body is that which has length, breadth, and 

thickness. Length, breadth, and thickness, are called dimen- 



10 GEOMETRY. 

Definitions. 

sions. Hence, a solid has three dimensions, a surface two, 

and a line one. A point has no dimensions, but position only. 

10. Geometry treats of lines, surfaces, and solids. 

11. A Demonstration is a course of reasoning which estab¬ 

lishes a truth. 

12. An Hypothesis is a supposition on which a demonstra¬ 

tion may be founded. 

13. A Theorem is something to be proved by demonstration 

14. A Problem is something proposed to be done. 
• > ! ' \ 

15. A Proposition is something proposed either to be done 

or demonstrated—and may be either a problem or a theorem. 

16. A Corollary is an obvious consequence, deduced from 

something that has gone before. 

17. A Scholium is a remark on one or more preceding propo¬ 

sitions. 

18. An Axiom is a self evident proposition. 

OF ANGLES. 

19. An Angle is the opening or inclination of two lines 

which meet each other at a point. 

Thus, the lines AC, AB, form an angle 

at the point A. The lines AC, AB are 

called the sides of the angle ; and the point 

A, at which they meet, is called the vertex of the angle. 

An angle is generally read, by placing the letter at the ver¬ 

tex in the middle. Thus, we say, the angle CAB. We may, 

however, say simply, the angle A. 

20. One line is said to be perpendicular to another when it 

inclines no more to the one side than to the other. 



BOOK I . 11 

Definitions. 

The two angles formed are then equal to 

each other. Thus, if the line DB is per¬ 

pendicular to AC, the angle DBA will 

be equal to DBC. 

21. When two lines are perpendicular 

to each other, the angles which they form 

are called right angles. Thus, DBA and 

DBC are called right angles. 
O O 

22. An acute angle is less than a right 

angle. Thus, DBC is an acute angle. 

23. An obtuse angle is greater than a 

right angle. Thus, DBC is an obtuse 

angle. 

24. The circumference of a circle is a 

curve line all the points of which are 

equally distant from a certain point within 

called the centre. 

Thus, if all the points of the curve AEB 

are equally distant from the centre C, this 

curve will be the circumference of a circle, 

25. Any portion of the circumference, 

as AED, is called an arc. 

26. The diameter of a circle is a 

straight line passing through the centre 

and terminating at the circumference. 

Thus, ACB is a diameter. 

27. One half of the circumference, as 

ACB is called a semicircumference; and 

one quarter of the circumference, as AC, 

is called a quadrant. 

C 
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Definitions. 

28. The circumference of a circle is used for the measure¬ 

ment of angles. For this purpose it is divided into 360 equal 

parts called degrees, each degree into 60 equal parts called 

minutes, and each minute into 60 equal parts called seconds. 

The degrees, minutes, and seconds are marked thus ° ‘ " ; and 

9° 18' 16/r, are read, 9 degrees 18 minutes and 16 seconds. 

29. Let us suppose the circumference 

of a circle to be divided into 360 degrees, 

beginning at the point B. If through 

the point of division marked 40, we draw 

CE, then, the angle E CB will be equal to 

40 degrees. If CF were drawn through 

the point of division marked 80, the angle B CF would be equal 

to 80 degrees. * 

OF LINES. 

30. Two straight lines are said to be 

parallel, when being produced either way, 

as far as we please, they will not meet 

each other. 

31. Two curves are said to be parallel 

or concentric, when they are the same dis¬ 

tance from each other at every point. 

32. Oblique lines are those which ap¬ 

proach each other, and meet if sufficiently 

produced. 

33. Lines which are parallel to the horizon, or to the water 

level, are called horizontal lines. 

34. Lines which are perpendicular to the horizon, or to the 

water level, are called vertical lines. 



BOOK I . i 13 

Definitions. 

OF PLANE FIGURES. 

35. A Plane Figure is a portion of a plane terminated on all 

sides by lines, either straight or curved. 

36. If the lines which bound a figure are straight, the space 

which they inclose is called a rectilineal figure, or polygon. 

The lines themselves, taken together, are called the perimeter 

of the polygon. Hence, the perimeter of a polygon is the sum 

of all its sides. 

37. A polygon of three sides is called 

a triangle. 

%r 

38. A polygon of four sides is called 

a quadrilateral. 

39. A polygon of five sides is called a 

pentagon. 

40. A polygon of six sides is called 

a hexagon. 

41. A polygon of seven sides is called a heptagon. 

42. A polygon of eight sides is called an octagon. 
2 
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Definitions. 

43. A polygon of nine sides is called a nonagon. 

44. A polygon of ten sides is called a decagon. 

45. A polygon of twelve sides is called a dodecagon. 

46. There are several kinds of triangles. 

First. An equilateral triangle, which has 

its three sides all equal. 

Second. An isosceles triangle, which has 

two of its sides equal. 

Third. A scalene triangle, which has its 

three sides all unequal. 

Fourth. A right angled triangle, which 

has one right angle. 

In the right angled triangle ABC, the 

side AC, opposite the right angle, is called 

the hypothenuse. 

47. The base of a triangle is the side on 

which it stands. Thus, AB is the base of 

the triangle ACB. 

The altitude of a triangle is a line drawn 

from the angle opposite the base and per- X D B 

pendicular to the base. Thus, CD is the altitude of the tri¬ 

angle ACB. 
o 
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D ef ini t ions. 

48. There are several kinds of quadrilaterals. 

First. The square, which has all its sides 

equal, and all its angles right angles. 

Second. The rectangle, the opposite sides 

of which are parallel and its angles right 

angles. 

Third. The parallelogram, which has its 

opposite sides parallel, but its angles not 

right angles. 

Fourth. The rhombus, which has all its 

sides equal, and the opposite sides parallel, 

without having its angles right angles. 

C 
Fifth. The trapezoid, which has only 

two of its sides parallel. 

49. The base of a figure is the side on_ 

which it stands, and the altitude is a line^ ^ ^ 

drawn from the opposite side, or angle, perpendicular to the 

base. Thus, AB is the base and CD is the altitude of the 

trapezoid. 

50. A diagonal is a line joining the ver¬ 

tices of two angles not adjacent. Thus, 

AB and AC are diagonals. 

A 
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Of Axioms. 

AXIOMS. 

1. Things which are equal to the same thing are equal to 

each other. 

2. If equals be added to equals, the wholes will be equal. 

3. If equals be taken from equals, the remainders will be 

equal. 

4. If equals be added to unequals, the wholes will be un¬ 

equal. 

5. If equals be taken from unequals, the remainders will be 

unequal. 

6. Things which are double of equal things, are equal to 

each other. 

7. Things which are halves of the same thing, are equal to 

each other. 

8. The whole is greater than any of its parts. 

9. The whole is equal to the sum of all its parts. 

10. All right angles are equal to each other. 

11. Magnitudes, which being applied to each other, coin¬ 

cide throughout their whole extent, are equal. 
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Of Angles 

PROPERTIES OF POLYGONS. 

THEOREM I. 

Every diameter of a circle divides the circumference into two 

equal parts. 

Let ABBE be the circumference of a 

circle, and ACB a diameter: then will 
» 

the part ABB be equal to the part AEB. 

For, suppose the part AEB to be turn¬ 

ed around AB, until it shall fall on the 

part ABB. The curve AEB will then 

exactly coincide with the curve ABB, or else there would 

be some point in the curve AEB or ABB, unequally distant 

from the centre C, which is contrary to the definition of a 

circumference (Def. 24). Hence the two curves will be 

equal (Ax. 11). 

Corollary 1. If two lines, AB, BE, 

be drawn through the centre C perpen¬ 

dicular to each other, each will divide the 

circumference into two equal parts ; and 

the entire circumference will be divided 

into the equal quadrants BB, BA, AE, 

and EB. 

D 

C ] 
i B 

E 

Cor. 2. Hence, a right angle, as BCB, is measured by one 

quadrant, or 90 degrees; two right angles by a semicircumfer¬ 

ence, or 180 degrees ; and four right angles by the whole cir¬ 

cumference, or 360 degrees. 
2* 



18 GEOMETRY. ' 

Of Angles. 

THEOREM II. 

If one straight line meet another straight line, the sum of the 

two adjacent angles will be equal to two right angles. 

Let the straight line CD meet the 

straight line AB, at the point C; then 

will the angle D'CB plus the angle DC A 

be equal to two right angles. 

About the centre C, with any radius as CB, suppose a 

semicircumference to be described. Then, the angle DCB 

will be measured by the arc BD, and the angle DC A by the 

arc AD. But the sum of the two arcs is equal to a semicir¬ 

cumference : hence, the sum of the two angles is equal to two 

right angles (Th. i, Cor. 2). 

Cor. 1. If one of the angles, as DCB, 

is a right angle, the other angle, DC A 

will also be a right angle. 

Cor. 2. Hence, all the angles which 

can be formed at any point C, by any 

number of lines, CD, CE, CF, &c., 

drawn on the same side of AB, will be 

equal to two right angles : for, they will 

be measured by the semicircumference 

AFEDB. 

Cor. 3. Hence also, all the angles 

which can be formed round any point, as 

C, will be equal to four right angles. For, 

the sum of all the arcs which measure 

them, will be equal to the entire circum¬ 

ference, which is the measure of four 

Cor. 2). 
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Of Triangles. 

THEOREM III. 

If two straight lines intersect each other, the opposite or ver¬ 

tical angles which they form, are equal. 

Let the two straight lines AB and 

CD intersect each other at the point 

E: then will the opposite angle AE C 

be equal to DEB, and AED—CEB. 

For, since the line AE meets the 

line CD, the angle AEC-\- AED— to two right angles. But 

since the line DE meets the line AB, we have DEB A AED— 

two right angles. Taking away from these equals the com¬ 

mon angle AED, and there will remain the angle AEC equal 

to the angle DEB (Ax. 3). 

In the same manner we may prove that the angle AED is 

equal to the angle CEB. 

THEOREM IV. 

If two triangles have two sides and the included angle of the 

one, equal to two sides and the included angle of the other, each 

to each, the two triangles will he equal. 

Let the triangles ABC and DEF q p 

have the side AC equal to DF, CB 

to FE, and the angle C equal to the 

angle Fthen will the triangle A CB 

be equal to the triangle DEF. 

For, suppose the side AC, of the 

triangle ACB, to be placed on DF, so that the extremity C 

shall fall on the extremity F: then, since the sides are equal, 

A will fall on D. 

But since the angle C is equal to the angle F, the line CB 

D 



20 GEOMETRY. 

Of Triangles. 

will fall on FE; and since CB is equal 

to FE, the extremity!] will fall on E; 

and consequently the side AB will fall 

on the side DE (Def. 3). Hence, the 

two triangles will fill the same space, 

and consequently are equal (Ax. 11.). 

Scholium. Two triangles are said to be equal, when being 

applied to each other, they will exactly coincide (Ax. 11). 

Hence, equal triangles have their like parts equal, each to each, 

since those parts coincide with each other. The converse of 

the proposition is also true, namely, that two triangles which have 

all the parts of the one equal to the corresponding parts of the 

other, each to each, are equal: for if applied to each other, the 

equal parts will coincide. 

; f. ( • A <> . 

THEOREM V. 

If two triangles have two angles and the included side of the 

one, equal to two angles and the included side of the other, each to 

each, the two triangles will he equal. 

Let the two triangles ABC and 

DEF have the angle A equal to the 

angle D, the angle B equal to the 

angle E, and the included side AB 

equal to the included side DE : then 

will the triangle ABC be equal to the 

triangle DEF. 

For, let the side AB be placed on the side DE, the extrem¬ 

ity A on the extremity D; and since the sides are equal, the 

point B will fall on the point E. 

Then, since the angle A is equal to the angle D, the side 

C F 
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Of Triangles. 

AC will take the direction DF: and since the angle B is 

equal to the angle E, the side BC will fall on the side EF: 

hence, the point C will be found at the same time on DF and 

EF, and therefore will fall at the intersection F: consequently, 

all the parts of the triangle ABC will coincide with the parts 

of the triangle DEF, and therefore, the two triangles are equal. 

THEOREM TI. 

In an isosceles triangle the angles opposite the equal sides are 

equal to each other. 

Let ABC be an isosceles triangle, hav¬ 

ing the side A C equal to the side CB: 

then will the angle A be equal to the an¬ 

gle B. 

For, suppose the line CD to be drawn dividing the angle C 

into two equal parts. 

Then, the two triangles ACD and DCB, have two sides and 

the included angle of the one equal to two sides and the in¬ 

cluded angle of the other, each to each: that is, the side AC 

equal to BC, the side CD common, and the included angle 

ACD equal to the included angle DCB: hence the two trian¬ 

gles are equal (Th. iv); and hence the angle A is equal to 

the angle B. 

Cor. 1. Hence, the line which bisects the vertical angle of 

an isosceles triangle, bisects the base. It is also perpendicu¬ 

lar to the base, since the angle CD A is equal to the angle 

CDB. 

Cor. 2. Hence, also, every equilateral triangle, must also 

be equiangular: that is, have all its angles equal, each to each. 

C 
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Of Triangles. 

THEOREM VII. 

Conversely.—If a triangle has two of its angles equal, the 

sides opposite those angles will also he equal. 

In the triangle AB C, let the angle A be 

equal to the angle B: then will the side 

BC be equal to the side AC. 

For, if the two sides are not equal, one 

of them must be greater than the other. 

Suppose AC to be the greater side. Then 

take a part AD equal to BC. 

Now, in the two triangles ADB and ABC, we have the 

side AD=BC, by hypothesis, the side AB common, and the 

angle A equal to the angle B: hence the two triangles have 

two sides and the included angle of the one equal to two sides 

and the included angle of the other, each to each: hence, the 

two triangles are equal (Th. iv), that is, a part ADB is 

equal to the whole ABC, which is impossible (Ax. 8) : conse¬ 

quently, the side AC cannot be greater than the side CB, and 

hence, the triangle is isosceles. 

Scholium 1. The method of reasoning pursued in the last 

theorem, is called the “ reductio ad absurdum,” or a proof that 

leads to a known absurdity. 

Let us analyze this method of reasoning. We wished to 

prove that the two sides AC, CB were equal. We supposed 

them unequal, and AC the greater—that was an hypothesis 

(See Def. 12). We then reasoned on the hypothesis, and 

proved a part equal to the whole, which we know to be false 

(Ax. 8). Hence, we conclude that the hypothesis is untrue, 

because after a correct chain of reasoning it leads to a result 

which we know to be absurd. 

C 
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Of Triangles. 

Scholium 2. Generally,—If the demonstration is based on 

known principles, previously proved, or admitted in the ax¬ 

ioms, the conclusion will always be true. But, if the demon¬ 

stration is based on an hypothesis, (as in the last theorem, that 

AC was the greater side), and the conclusion is contrary to 

what has been previously proved, or admitted in the axioms, 

then, it follows, that the hypothesis cannot be true. 

The former is called a positive, and the latter a negative 

demonstration. 

THEOREM VIII. 

If two triangles have the three sides of the one equal to the 

three sides of the other, each to each, the three angles will also he 

equal, each to each. 

Let the two triangles ABC, ABD, 

have the side AB equal to the side AB, 

the side AC equal to AD, and the side 

CB equal to DB: then will the corres¬ 

ponding angles also be equal, viz: the 

angle A will be equal to the angle A, the 

angle B to the angle B, and the angle C 

to the angle D. 

For, suppose the triangles to be joined 

by their longest equal sides AB, and the 

line CD to be drawn. 

Then, since the side AC is equal to AD, by hypothesis, the 

triangle ADC will be isosceles; and therefore, the angle ACD 

will be equal to the angle ADC (Th. vi). In like manner, 

in the triangle CBD, the side CB is equal to DB : hence, the 

angle BCD is equal to the angle BDC. 

Now, by the addition of equals, we have 
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Of Triangles. 

ACD+BCD=ADC+BDC * 

that is, the angle ACB=ADB. 

Now, the two triangles ACB and ADB A 

have two sides and the included angle of 

the one equal to two sides and the in¬ 

cluded angle of the other, each to each: hence, the remaining 

angles will be equal (Th. iv): consequently, the angle CAB 

is equal to BAD, and the angle CBA to the angle ABD. 

Sch. The angles of the two triangles which are equal to 

each other, are those which he opposite the equal sides. 

THEOREM IX. 

If one side of a triangle is produced, the outward angle is 

greater than either of the inward opposite angles. 

Let ABC be a triangle, having the side c F 

AB produced to D: then will the outward 

angle CBD be greater than either of the 

inward opposite angles A or C. 

For, suppose the side CB to be bisected at the point E. 

Draw AE, and produce it until EF is equal to AE, and then 

draw BF. 

Now, since the two triangles AEC and BEF have AE— 

EF and EC=EB, and the included angle AEC equal to the 

included angle BEF (Th. iii), the two triangles will be equal 

in all respects (Th. iv): hence, the angle i^BFwill be equal 

to the angle C. But the angle CBD is greater than the angle 

CBF, consequently it is greater than the angle C, 

In like manner,- if CB be produced to G, and AB be bi¬ 

sected, it may be proved that the outward angle ABG, or its 

equal CBD (Th. iii), is greater than the angle A, 

B 

D 
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Of Triangles. 

THEOREM X. 

The sum of any two sides of a triangle is greater than the 

third side. 

Let ABC be a triangle : then will the 
V/ 

sum of two of its sides, as AC, CB, be 

greater than the third side AB. 

For, the straight line AB is the short¬ 

est distance between the two points A and B (Def. 3): hence, 

A C —j— CB is greater than AB. 

THEOREM XI. 

The greater side of every triangle is opposite the greater angle; 

and conversely, the greater angle is opposite the greater side. 

First. In the triangle CAB, let the an- ^ 

gle C be greater than the angle B: then, 

will the side AB be greater than the side 

AC. 

For, draw CD, making the angle BCD 

equal to the angle B. Then, the triangle CBD will be 

isosceles: hence, the side CD = DB (Th. vi). 

But, by the last theorem AC is less than AD-\-CD; that 

is, less than AD-\~DB, and consequently less than AB. 

Secondly. Let us suppose the side AB to be greater than 

AC; then will the angle C be greater than the angle B. 

For, if the angle C were equal to B, the triangle CAB 

would be isosceles, and the side AC would be equal to AB 

(Th. vi), which would be contrary to the hypothesis. 

Again, if the angle C were less than B, then, by the first 

part of the theorem, the side AB would be less than AC, 

which is also contrary to the hypothesis. Hence, since C 
3 
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cannot be equal to B, nor less than B, it follows that it must 

be greater. 

THEOREM XII. 

If a straight line intersect two parallel lines, the alternate angles 

will he equal. 

If two parallel straight lines, AB CD, 

are intersected by a third line GH, the 

angles AEF and EFD are called alternate 

angles. It is required to prove that these 

angles are equal. 

If they are unequal one of them must be greater than the 

other. Suppose JZFD to be the greater angle. 

Now conceive FB to be drawn, making the angle EFB 

equal to the angle AEF, and meeting AB in B. 

Then, in the triangle FEB the outward angle FEA is greater 

than either of the inward angles B or EFB (Th. ix.); and 

therefore, EFB can never be equal to AEF so long as FB meets 

EB. ^ i •' . ' ‘ . . . 

But since we have supposed EFD to be greater than AEF, 

it follows that EFB could not be equal to AEF, if FB fell be¬ 

low FD. Therefore, if the angle EFB is equal to the angle 

AEF, FB cannot meet AB, nor fall below FD, and conse¬ 

quently must coincide with the parallel CD (Def. 30): and 

hence, the alternate angles AEF and EFD are equal. 

Cor. If a line be perpendicular to one 

of two parallel lines, it will also be per^ 

pendicular to the other. 
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THEOREM XIII. 

Conversely,—If a line intersect two straight lines, making the 

alternate angles equal, those straight lines will be parallel. 

Let the line EF meet the lines AB, 

CD, making the angle AEF equal to the 

angle EFD: then will the lines AB and 

CD be parallel. 

For, if they are not parallel, suppose 

through the point F the line FG to be drawn parallel to AB. 

Then, because of the parallels AB, FG, the alternate angles, 

AEF and EFG will be equal (Th. xii). But, by hypothesis, 

the angle AEF is equal to EFD : hence, the angle EFD is 

equal to the angle EFG (Ax. 1); that is, a part is equal to the 

whole, which is absurd (Ax. 8): therefore no line but CD can 

be parallel to AB. 

Cor. If two lines are perpendicular to 

the same- line, they will be parallel to 

each other. 

THEOREM XIV. 

If a line cut two parallel lines, the outward angle is equal to 

the inward opposite angle on the same side; and the two inward 

angles, on the same side, are equal to two right angles. 

Let the line EF cut the two parallels 

AB, CD : then will the outward angle 

FGB be equal to the inward opposite an¬ 

gle EIID ; and the two inward angles, C-—7---^ 

BGH and GIID, will be equal to two 

right angles. 

JE 
ya 

II 

V' 
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First. Since the lines AB, CD, are parallel, the angle AGH 

is equal to the alternate angle GHD E 

(Th. xii); but the angle AGH is equal 

to the opposite angle EGB: hence, the 

angle EGB is equal to the angle EHD 

(Ax. 1). 

Secondly. Since the two adjacent angles EGB and BGH 

are equal to two right angles (Th. ii) ; and since the angle 

EGB has been proved equal to EHD, it follows that the sum 

of BGH plus GHD, is also equal to two right angles. 

Cor. 1. Conversely, if one straight line meets two other 

straight lines, making the angles on the same side equal to 

each other, those lines will be parallel. 

Cor. 2. If a line intersect two other lines, making the sum 

of the two inward angles equal to two right angles, those two 

lines will be parallel. 

Cor. 3. If a line intersect two other lines, making the sum 

of the two inward angles less than two right angles, those 

lines will not be parallel, but will meet if sufficiently produced. 

THEOREM XV. 

All straight lines which are parallel to the same line, are parallel 

to each other. 

Let the lines AB and CD be each par¬ 

allel to EF: then will they be parallel 

to each other. 

For, let the line GI be drawn perpen¬ 

dicular to EF: then will it also be per¬ 

pendicular to the parallels AB, CD (Th. 

xii Cor.). 

G 
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Then, since the lines AB and CD are perpendicular to the 

line GI, they will be parallel to each other (Th. xiii. Cor). 

THEOREM XVI. 

If one side of a triangle be produced, the outward angle will be 

I equal to the sum of the inward opposite angles. 

In the triangle ABC, let the side AB 

be produced to D : then will the outward 

angle CBD be equal to the sum of the in¬ 

ward opposite angles A and C. 

For, conceive the line BE to be drawn 

parallel to the side AC. Then, since BC meets the two pa¬ 

rallels AC, BE, the alternate angles ACB and CBE will be 

equal (Th. xii). 

And since the line AD cuts the two parallels BE and AC, 

the angles EBD and CAB are equal to each other “^Th. xivju 

Therefore, the inward angles C and A, of the triangle ABC, 

are equal to the angles CBE and EBD; and consequently, 

the sum of the two angles, A and C, is equal to the outward 

angle CBD (Ax. 1). 

THEOREM XVII. 

In any triangle the sum of the three angles 

angles. 

Let ABC be any triangle : then will 

the sum of the three angles 

A-{-B-{-C=Liwo right angles. 

For, let the side AB be produced to D. 

Then, the outward angle 

CBD=A+C (Th. xvi). 
3* 

is equal to two right 

C 

A B D 
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To each of these equals add the angle 

CBA, and we shall have 

CBD+ CBA—A-\- C+B. 

But the sum of the two angles CBD 

and CBA, is equal to two right angles ^ 

(Th. ii): hence 

C=two right angles (Ax. 1). 

Cor. 1. If two angles of one triangle be equal to two angles 

of another triangle, the third angles will also be equal (Ax. 3). 

Cor. 2. If one angle of one triangle be equal to one angle 

of another triangle, the sum of the two remaining angles in 

each triangle, will also be equal (Ax. 3). 

Cor. 3. If one angle of a triangle be a right angle, the sum 

of the other two angles will be equal to a right angle; and 

each angle singly, will be acute. 

Cor. 4. No triangle can have more than one right angle, nor 

more than one obtuse angle ; otherwise, the sum of the three 

angles would exceed two right angles: hence, at least two 

angles of every triangle must be acute. 

THEOREM XVIII. 

I. A perpendicular is the shortest line that can he drawn from 

a given point to a given line. 

II. If any number of lines he drawn from the same point, those 

which are nearest the perpendicular are less than those which are 

more remote. 

Let A be a given point, and DE a 

straight line. Suppose AB to be diawn 

perpendicular to DE, and suppose the 

oblique lines AC and AD also to be 
D C B E 
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drawn: Then, AB will be shorter than either of the oblique 

lines, and AC will be less than AD. 

First. Since the angle B, in the triangle ACB, is a right 

angle, the angle C will be acute (Th. xvii. Cor. 3) : and since 

the less side of every triangle is opposite the less angle 

(Th. xi), the side AB will be less than AC. 

Secondly. Since the angle ACB is acute, the adjacent angle 

ACD will be obtuse (Th. ii) : consequently, the angle D is 

acute (Th. xvii. Cor. 3), and therefore less than the angle 

ACD. And since the less side of every triangle is opposite 

the less angle, it follows that AC is less than AD. 

Cor. A perpendicular is the shortest distance from a point 

to a line. 

THEOREM XIX. 

If two right angled triangles have the hypothenuse and a side 

of the one equal to the hypothenuse and a side of the other, the 

remaining parts will also he equal, each to each. 

Let the two right angled triangles 

ABC and DEF, have the hypothe¬ 

nuse AC equal to DF, and the side 

AB equal to DE: then will the re¬ 

maining parts be equal, each to each. ^ 

For, if the side BC is equal to EF, the corresponding an¬ 

gles of the two triangles will be equal (Th. viii). If the sides 

are unequal, suppose BC to be the greater, and take apart, 

BG, equal to EF, and draw AG. 

Then, in the two triangles ABG and DEF, the angle B is 

equal to the angle E, the side AB to the side DE, and the side 

BG to the side EF: hence, the two triangles are equal in a\l 

respects (Th. iv), and consequently, the side AG is equal to 

A D 
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DF. But DF is equal to AC, by ^ 

hypothesis; therefore, AC is equal 

to AC (Ax 1). But this is impos¬ 

sible (Th. xviii); hence, the sides 

B C and EF cannot be unequal; con- B < 

sequently, the triangles are equal (Th. viii). 

THEOREM XX. 

The sum of the four angles of every quadrilateral is equal to four 

right angles. 

Let ACBD be a quadrilateral: then will 

A-\-B-\- C-j-C^four right angles. 

Let the diagonal DC be drawn dividing 
O O 

the quadrilateral AB, into two triangles, 

BDC, ADC. 

Then, because the sum of the three angles of each triangle 

is equal to two right angles (Th. xvii), it follows that the sum 

of the angles of both triangles is equal to four right angles. 

But the sum of the angles of both triangles, make up the angles 

of the quadrilateral. Hence, the sum of the four angles of the 

quadrilateral is equal to four right angles. 

Cor. 1. If then three of the angles be right angles, the 

fourth angle will also be a right angle. 

Cor. 2. If the sum of two of the four angles be equal to two 

right angles, the sum of the remaining two will also be equal 

to two right angles. 

THEOREM XXI. 

The sum of all the interior angles of any polygon is equal to 

twice as many right angles, wanting four, as the figure has 

sides. 

D 

>B 

C 
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Let ABCDE be any polygon: then vT 

the sum of its inward angles 

I) 

be equal to twice as many right angle, 

wanting four, as the figure has sides. 
O ' O 

For, from any point P, within the po** 

A+B+C+D+E E C 

A B 

gon, draw the lines PA, PB, PC, F, PE, to each of the 

angles, dividing the polygon into as liny triangles as the 

figure has sides. 

Now, the sum of the three angles of ech of these triangles 

is equal to two right angles (Th. xvii) :iience, the sum of the 

angles of all the triangles is equal to tvce as many right an¬ 

gles as the figure has sides. 

But the sum of all the angles about le point P is equal to 

four right angles (Th. ii. Cor. 3); and nee this sum makes 

no part of the inward angles of the po'gon, it must be sub¬ 

tracted from the sum of all the angles o the triangles, before 

found. Hence, the sum of the interior ngles of the polygon 

is equal to twice as many right angles, waring four, as the fgure 

has sides. 

Sch. This proposition is not applicah 

to polygons which have re-entrant angle. 

The reasoning is limited to polygor 

with salient angles, which may proper' 

be named convex polygons. 

THEOREM XXII. 

[f every side of a polygon be produced out, ie sum of all the out¬ 

ward angles thereby formed, will be equal o four right angles. 
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Let A, B, C, D, and E, be the outward 

angles of a polygon formed by producing 

all the sides. Then will 

C-j-D-f- E=four right angles. 

For, each interior angle, plus its exte¬ 

rior angle, as A-\-a, is equal to two right 

angles (Th. ii). But there are as many exterior as interior 

angles, and as many of each as there are sides of the polygon: 

hence, the sum of all the interior and exterior angles will be 

equal to twice as many right angles as the polygon has sides. 

But the sum of all the interior angles together with four right 

angles, is equal to twice as many right angles as the polygon 

has sides (Th. xxi): that is, equal to the sum of all the in¬ 

ward and outward angles taken together. 

From each of these equal sums take away the inward angles, 

and there will remain, the outward angles equal to four right 

angles (Ax. 3). 

THEOREM XXIII. 

The opposite sides and angles of every parallelogram are equal, 

each to each: and a diagonal divides the parallelogram into two 

equal triangles. 

Let ABCD be any parallelogram, and 

DB a diagonal: then will the opposite 

sides and angles be equal to each other, 

each to each, and the diagonal DB will 

divide the parallelogram into two equal 

triangles. 

For, since the figure is a parallelogram, the sides AB, DC 

are parallel, as also the sides AD, BC. Now, since the 
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parallels are cut by the diagonal DB, the alternate angles will 

be equal (Th. xii): that is the angle 

ADB—DBC and BDC=ABD. 

Hence, the two triangles ADB, BDC, having two angles in 

the one equal to two angles in the other, will have their third 

angles equal (Th. xvii. Cor. 1), viz. the angle A equal to the 

angle C, and these are two of the opposite angles of the 

parallelogram. 

Also, if to the equal angles ADB, DBC, we add the equals 

BDC, ABD, the sums will be equal (Ax. 2): viz. the whole 

angle ADC to the whole angle ABC, and these are the other 

two opposite angles of the parallelogram. 

Again, since the two triangles ADB, DBC, have the side 

DB common, and the two adjacent angles in the one equal to 

the two adjacent angles in the other, each to each, the two 

triangles will be equal (Th. v): hence, the diagonal divides 

the parallelogram into two equal triangles. 

Cor. 1. If one angle of a parallelogram be a right angle, 

each of the angles will also be a right angle, and the parallelo¬ 

gram will be a rectangle. 

Cor. 2. Hence, also, the sum of either two adjacent angles 

of a parallelogram, will be equal to two right angles. 

THEOREM XXIV. 
✓ r ■ ■ 

If the opposite sides of a quadrilateral, are equal, each to each, 

the equal sides will he parallel, and the figure will he a pa¬ 

rallelogram. 
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Let ABCD be a quadrilateral, having ^ ^ 

its opposite sides respectively equal, viz. 

AB — CD and AD=BC 

then will these sides be parallel, and the 

figure will be a parallelogram. 

For, draw the diagonal BD. Then, the two triangles ABD, 

BDC, have all the sides of the one equal to all the sides of 

the other, each to each: therefore, the tw*o triangles are equal 

(Th. viii); hence, the angle ADB, opposite the side AB, is 

equal to the angle DBC opposite the side DC; therefore, the 

sides AD, BC, are parallel (Th. xiii). For a like reason DC 

is parallel to AB, and the figure ABCD is a parallelogram. 

THEOREM XXV. 

If two opposite sides of a quadrilateral are equal and parallel, 

the remaining sides will also he equal and parallel, and the figure 

will he a parallelogram. 

Let ABCD be a quadrilateral, having 

the sides AB, CD, equal and parallel: 

then will the figure be a parallelogram. 

For, draw the diagonal DB, dividing 

the quadrilateral into two triangles. Then, 

since AB is parallel to DC, the alternate angles, ABD and 

BDC are equal (Th. xii): moreover, the side BD is common ; 

hence the two triangles have two sides and the included angle 

of the one, equal to two sides and the included angle of the 

other: the triangles are therefore equal, and consequently, 

AD is equal to BC, and the angle ADB to the angle DBC; 

and consequently, AD is also parallel to BC (Th. xiii). 

Therefore, the figure ABCD is a parallelogram. 
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THEOREM XXVI. 

The two diagonals of dftparallelogram divide each other into equal 

parts, or mutually bisect each other. 

Let ABCD be a parallelogram, and 

AC, BD its two diagonals intersecting at 

E. Then will 

AE=EC and BE=ED. 

Comparing the two triangles AED and 

BEC, we find the side AD—BC (Th. xxiii), the angle 

ADE=EBC and EAD—ECB: hence, the two triangles are 

equal (Th. v): therefore, AE, the side opposite ADE, is 

equal to EC, the side opposite EBC; and ED is equal to EB. 

Sch. In the case of a rhombus (Def. 48), p) 

the sides AB, B C being equal, the trian¬ 

gles AEB and BEC have all the sides of 

the one equal to the corresponding sides 

of the other, and are therefore equal. 

Whence it follows that the angles AEB 

and BEC are equal. Therefore, the diagonals of a rhombus 

bisect each other at right angles. 

4 
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DEFINITIONS. 
* 

/I *• ^ tX-- " i_ 

1. The circumference of a circle is a curve line, all the 

points of which are equally distant from a certain point within 

called the centre. 

2. The circle is the space bounded by this curve line. 

3. Every straight line, CA, CD, CE, 

from the centre to the circumference, is 

called a radius or semidiameter. Every 

line which, like AB, passes through the 

centre and terminates in the circumfe¬ 

rence, is called a diameter. 

4. Any portion of the circumference, 

as EFG, is called an arc. 

5. A straight line, as EG, joining the^? 

extremities of an arc, is called a chord. 

6. A segment is the surface or portion 

of a circle included between an arc and 

its chord. Thus, EFG is a segment. 
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7. A sector is the part of the circle in¬ 

cluded between an arc and the two radii 

drawn through its extremities. Thus, 

CAB is a sector. 

8. A straight line is said to be in¬ 

scribed in a circle, when its extremities 

are in the circumference. Thus, the 

line AB is inscribed in a circle. 

9. An inscribed angle is one which 

is formed by two chords that intersect 

each other in the circumference. Thus, 

BA C is an inscribed angle. 

10. An inscribed triangle is one 

which has its three angular points in 

the circumference. Thus, ABC is an 

inscribed triangle. 

A 

11. Any polygon is said to be in¬ 

scribed in a circle when the vertices of 

all the angles are in the circumference. 

The circle is then said to circumscribe 

the polygon. 
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12. A secant is a line which meets 

circumference in two points, and 

partly within and partly without 

circle. Thus, AB is a secant. 

13. A tangent is a line which has 

but one point in common with the cir¬ 

cumference. Thus, CMB is a tangent. 

M 

14. Two circles are said to touch 

each other internally, when one lies 

within the other, and their circumfe¬ 

rences have but one point in common. 

15. Two circles are said to touch 

each other externally, when one lies 

without the other, and their circumfe¬ 

rences have but one point in common. 



BOOK II. 41 

Of the Circle. 

THEOREM I. 
4 • . . 

Every chord is less than a diameter. 

Let AD be any chord. Draw 

the radii CA, CD to its extremities. 

We shall then have, AD less than 

AC+CD (Book I. Th. x*). But A 

AC-\-CD is equal to the diameter 

AB: hence, the chord AD is less than 

the diameter. 

THEOREM II. 
■ \ ■ .. ; •> •. v - i 

If from the centre of a circle a line be drawn to the middle of 

a chord, 

I. It will be perpendicular to the chord; 

II. And it will bisect the arc of the chord. 

Let C be the centre of a circle, and 

AB any chord. Draw CD through 

D, the middle point of the chord, and 

produce it to E: then will CD be 
• ' v X j. I * 

perpendicular to the chord, and the 

arc AE equal to EB. 

First. Draw the two radii CA, CB. 

Then the two triangles ACD, DCB, 

have the three sides of the one equal to the three sides of the 

•- ’ ) * ( 

*Note. When reference is made from one theorem to another, in the 

same Book, the number of the theorem referred to is alone given; but 

when the theorem referred to is found in a preceding Book, the number of 

the Book is also given. 

' 4* 
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other, each to each: viz. AC equal to 

CB, being radii, AD equal to DB, by 

hypothesis, and CD common: hence, 

the corresponding angles are equal 

(Book I. Th. viii): that is, the angle 

CDA equal to CDB, and the angle 

ACD equal to the angle DCB. 

But, since the angle CDA is equal E 

to the angle CDB, the radius CE is perpendicular to the 

chord AB (Bk. I. Def. 20). 

Secondly. Since the angle ACE is equal to BCE, the 

arc AE will be equal to the arc EB, for equal angles must. 
<* 

have equal measures (Bk. I. Def. 28). 

Hence, the radius drawn through the middle point of a chord, 

is perpendicular to the chord, and bisects the arc of the chord. 
>. , ... 

Cor. Hence, a line which bisects a chord at right angles, 

bisects the arc of the chord, and passes through the centre of 

the circle. Also, a line drawn through the centre of the cir¬ 

cle and perpendicular to the chord bisects it. 

THEOREM ' III. 

If more than two equal lines can he drawn from any point within 

a circle to the circumference, that point will he the centre. 

Let D be any point within the circle 

ABC. Then, if the three lines DA, 

DB, and DC, drawn from the point D 

to the circumference, are equal, the 

point D will be the centre. 

For, draw the chords AB, BC, bi¬ 

sect them at the points E and F, and 

min DE and DF. 

B 
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Then, since the two triangles DAE and DEB have the side 

AE equal to EB, AD equal to. DB, and DE common, they 

will be equal in all respects; and consequently, the angle 

DEA is equal to the angle DEB (Bk. I. Th. viii); and 

therefore, DE is perpendicular to AB (Bk. I. Def. 20). But, 

if DE bisects AB at right angles, it will pass through the 

centre of the circle (Th. ii. Cor). 

In like manner, it may be shown that DF passes through 

the centre of the circle, and since the centre is found in the 

two lines ED, DF, it will be found at their common inter¬ 

section D. 

THEOREM IV. 

Any chords which are equally distant from the centre of a circle, 

are equal. 

Let AB and ED be two chords equally 

distant from the centre C: then will the 

two chords AB, ED be equal to each 

other. 

Draw CF perpendicular to AB, and 

CG perpendicular to ED, and since these 

perpendiculars measure the distances from 

the centre, they will be equal. Also draw 

CB and CE. 

Then, the two right angled triangles CFB and CEG hav¬ 

ing the hypothenuse CB equal to the hypothenuse CE, and 

the side CF equal to C G, will have the third side BF equal to 

EG (Bk. I. Th. xix). But, BF is the half of BA, and EG 

the half of DE (Th. ii. Cor); hence, BA is equal to DE 

Ax. 6). 
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THEOREM V. 

A line which is perpendicular to a radius at its extremity, is 

tangent to the circle. 

Let the line ABD be perpendicular 

to the radius CB at the extremity B: 

then will it be tangent to the circle at 

the point B. 

For, from any other point of the 

line, as D, draw DFC to the centre, 

cutting the circumference in F. 

Then, because the angle B, of the 

triangle CDB, is a right angle, the angle at D is acute (Bk. I. 

Th. xvii. Cor. 3), and consequently less than the angle B. 

But the greater side of every triangle is opposite to the greater 

angle (Bk. I. Th. xi); therefore, the side CD is greater than 

CB, or its equal CF. Hence, the point D is without the cir- 
t 

cle, and the same may be shown for every other point of the 

line AD. Consequently, the line ABD has but one point in 

common with the circumference of the circle, and therefore 

is tangent to it at the point B (Def. 13). 

Cor. Hence, if a line is tangent to a circle, and a radius be 

drawn through the point of contact, the radius will be perpen¬ 

dicular to the tangent. 

J\yi ^ ' ' 4 

THEOREM VI. 

If the distance between the centres of two circles is equal to 

the sum of their radii, the two circles will touch each other 

externally. 

\ 



Let C and D be the two centres, and 

suppose the distance between them to 

be equal to the sum of the radii, that is, 

to CA-\-AD. 

The circumferences of the circles 

will evidently have the point A common, and they will have no 

other. Because, if they had two points common, that, is if they 

cut each other in two points, G and H, the distance CD be¬ 

tween their centres would be less than the sum of their radii 

CH, HD (Bk. I. Th. x); but this would be contrary to the 

supposition. 

THEOREM VII. 

If the distance between the centres of two circles is equal to 

the difference of their radii, the two circles will touch each other 

internally. 

Let C and D be the centres of two 

circles at a distance from each other 

equal to AD—AC=zCD. 

Now, it is evident, as in the last theo 

rem, thdfc the circumferences will have the 

point A common ; and they can have ne 

other. For, if they had two points common, the difference be¬ 

tween the radii AD and FC would not be equal to CD, the 

distance between their centres: therefore, they cannot have 

two points in common when the difference of their radii is 

equal to the distance between their centres: hence, they are 

tangent to each other. 

Sch. If two circles touch each other, either externally or 

internally, their centres and the point of contact will be in the 

same straight line 
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THEOREM VIII. 

An angle at the circumference of a circle is measured by half the 

arc that subtends it. 

Let BAD be an inscribed angle : then 

will it be measured by half the arc BED, 

which subtends it. 

A 

For, through the centre C draw* the 

diameter ACE, and draw the radii BC, 

CD. B 

Then, in the triangle ABC, the exte- ^ u 

rior angle BCE is equal to the sum of 

the interior angles B and A (Bk. I. Th. xvi). But since the 

triangle BAC is isosceles, the angles A and B are equal 

(Bk. I. Th. vi); therefore, the exterior angle BCE is equal 

to double the angle BAC. 

But, the angle BCE is measured by the arc BE, which 

subtends it; and consequently, the angle BAE, which is half 

of BCE, is measured by half the arc BE. 

It may be shown, in like manner, that the angle EAD is 

measured by half the arc ED: and hence, by the addition of 

equals, it would follow that, the angle BAD is measured by 

half the arc BED, which subtends it. 

Cor. 1. Hence, if an angle at the centre, and an angle at the 

circumference, both stand on the same arc, the angle at the 

centre will be double the angle at the circumference. 

Cor. 2. If two angles at the circumference stand on equal 

arcs they will be equal to each other. 



THEOREM IX. 

All angles at the circumference, which stand upon the same arc, 

are equal to each other. 

Let the angles BAC, BDC, BFC, have 

their vertices in the circumference, and 

stand on the same arc BE C: then will 

they be equal to each other. 

For, each angle is measured by half 

the arc BE C (Th. viii); hence, the an¬ 

gles are all equal. 

I) 

E 

THEOREM X. 

An angle in a semicircle, is a right angle. 

Let ABBC be a semicircle : then will 

every angle, as B, B, inscribed in it, be 

a right angle. 
O O 

For, each angle is measured by half j 

the semicircumference ADC, that is, by a 

quadrant, which measures a right angle 

(Bk. I. Th. i. Cor. 2). 
-j' '< > - ' V' A * 

THEOREM XI. 

If a quadrilateral he inscribed in a circle, the sum of either two 

of its opposite angles is equal to two right angles. 

Let ABCD be any quadrilateral in¬ 

scribed in a circle ; then will the sum of 

the two opposite angles, A and C, or B 

and D, be equal to two right angles. 

For, the angle A is measured by half 

the arc DCB, which subtends it (Th. viii); 
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and the angle C is measured by half the 

arc DAB, which subtends it. Hence, 

the sum of the two angles, A and C, is 

measured by half the entire circumference. 

But half the entire circumference is the 

measure of two right angles; therefore, 

the sum of the opposite angles A and C is equal to two right 

angles. 

In like manner, it may be- shown, that the sum of the 

two angles B and D is equal to two right angles. 

THEOREM XII. 

If the side of a quadrilateral, inscribed in a circle, be pro- 

duced out, the exterior angle will be equal to the inward opposite 

angle. 

Let the side BA, of the quadrilateral 

ABCD be produced to E, then will the 

outward angle DAE be equal to the in¬ 

ward opposite angle C. 

For, the angle DAB plus the angle C, 

is equal to two right angles (Th. xi). But 

DAB plus DAE is also equal to two right angles (Bk. I. Th. ii). 

Taking from each the common angle DAB, and we shall have 

the angle DAE equal to the interior opposite angle C. 

THEOREM XIII. 

Two parallel chords intercept equal arcs. 
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Let the chords AB and CD be parallel: 

then will the arcs AC and BD be equal. 

For, draw the line AD. Then, because 

the lines AB and CD are parallel, the 

alternate angles ADC and DAB will be 

equal (Bk. I. Th. xii). But the angle 

ADC is measured by half the arc AC, 

and the angle DAB by half the arc BD (Th. viii): hence, 

the two arcs AC and BD are themselves equal. 

THEOREM XIV. 

The angle formed by a tangent and a chord, is measured by half 

the arc of the chord. 

Let BAE be tangent to the circle at the 

point A, and AC any chord. 

From A, the point of contact, draw the 

diameter AD. 

Then, the angle BAD will be a right 

angle (Th. v. Cor), and therefore will be 

measured by half the semicircle AMD B 

(Bk. I, Th. i. Cor. 2). 

But the angle DAC being at the circumference, is measured 

by half the arc DC: hence, by the addition of equals, the two 

angles BAD and DAC, or the entire angle BAC will be meas¬ 

ured by half the arc AMDC. 

It may be shown, by taking the difference between the two 

angles DAE and DAC, that the angle CAE is measured by 

half the arc AC included between its sides. 

5 
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THEOREM XV. 

If a tangent and a chord are parallel to each other, they will 

intercept equal arcs. 

Let the tangent ABC be parallel to the 

chord DF: then will the intercepted arcs 

DB, BF, be equal to each other. 

For, draw the chord DB. Then, since 

A C and DF are parallel, the angle ABD 

will be equal to the angle BDF. But 

ABD being formed by a tangent and a 

chord, will be measured by half the arc 

DB : and BDF being an angle at the circumference will be 

measured by half the arc BF (Th. viii). But since the angles 

are equal, the arcs will be equal: hence DB is equal to BF. 

THEOREM XVI. 

The angle formed within a circle by the intersection of two 

chords, is measured by half the sum of the intercepted arcs. 

Let the two chords AB and CD inter¬ 

sect each other at the point E: then will 

the angle AEC, or its equal DEB, be 

measured by half the sum of the inter¬ 

cepted arcs AC, DB. 

For, draw the chord AF parallel to 

CD. Then because of the parallels, the 

angle DEB will be equal to the angle FAB (Bk I. Th. xiv), 

and the arc FD to the arc AC. But the angle FAB is meas¬ 

ured by half the arc FDB, that is, by half the sum of the arcs 

FD, DB. Now, since FD is equal to AC, it follows that the 

angle DEB, ox its equal AEC, will be measured by half the 

sum of the arcs DB and A C. 
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THEOREM XVII. 

The angle formed without a circle by the intersection of 

two secants is measured by half the difference of the intercepted 

arcs. A 

Let the two secants DE and EB inter- E 

sect each other at E: then will the angle / \ 

DEB be measured by half the intercepted OA 

arcs CA and DB. yy / \ \ 

Draw the chord AF parallel to ED. u/ / l ) 

Then, because AF and ED are parallel, \/ \ J 

and EB cuts them, the angles FAB and ~^Nvs^ Yff 

and DEB are equal (Bk. I. Th. xiv). 

But the angle FAB, at the circumference, is measured by 

half the arc FB (Th. viii), which is the difference of the arcs 

DFB and CA : hence, the equal angle E is also measured by 

half the difference of the intercepted arcs DFB and CA. 

THEOREM XVIII. 

An angle formed by two tangents is measured by half the 
difference of the intercepted 

Let CD and DA be two tangents to a 

the circle at the points C and A: then / \ 

will the angle CD A be measured by half 

the difference of the intercepted arcs CEA Cff 

and CFA. /[ / v\ 

For, draw the chord AF parallel to the l / J \ 

tangent CD. Then, because the lines \ / / 

CD and AF are parallel, the angle BAF F 

will be equal to the angle BDC (Bk. I. Th. xiv). But the 

angle BAF, formed by a tangent and a chord, is measured by 
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half the arc AF, that is, by half the 

difference of CFA and CF. 

But since the tangent DC and the 

chord AF are parallel, the arc CF is 

equal to the arc CA: hence the angle 

BAF, or its equal BDC, which is meas¬ 

ured by half the difference of CFA and 

CF, is also measured by half the differ¬ 

ence of the intercepted arcs CFA and CA. 

Cor. In like manner it may be proved 

that the angle E, formed by a tangent and 

secant, is measured by half the difference jj 

of the intercepted arcs AC and DBA. 

THEOREM XIX. 

The chord of an arc of sixty degrees is equal to the radius of 
the circle. 

Let AEB be an arc of sixty degrees 

and AB its chord: then will AB be equal 

to the radius of the circle. 

For, draw the radii CB and CA. 

Then, since the angle ACB is at the 

centre, it will be measured by the arc 

AEB: that is, it will be equal to sixty 

degrees (Bk. I. Def. 29). 

Again, since the sum of the three angles of a triangle is 

equal to one hundred and eighty degrees (Bk. I. Th. xvii), it 
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follows that the sum of the two angles A and B will be equal 

to one hundred and twenty degrees. But the triangle CAB 

is isosceles : hence, the angles at the base are equal (Bk. I. 

Th. vi): hence, each angle is equal to sixty degrees, and 

consequently, the side AB is equal to AC or CB (Bk. I. Th. vi). 

PROBLEMS 

RELATING TO THE FIRST AND SECOND BOOKS. 

The Problems of Geometry explain the methods of con¬ 

structing or describing the geometrical figures. 

For these constructions, a straight ruler and the common 

compasses or dividers, are all the instruments that are ab¬ 

solutely necessary. 
Y DIVIDERS OR COMPASSES. 

The dividers consist of the two legs ba, be, which turn 

easily about a common joint at b. The legs of the dividers 
5* 
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are extended or brought together by placing the forefinger on 

the joint at b, and pressing the thumb and fingers against the 

legs. 

PROBLEM I. 

On any line, as CD, to lay off a distance equal to AB 

Take up the dividers with the 

thumb and second finger, and place 

the forefinger on the joint at b. 

Then, set one foot of the dividers 

at A, and extend the legs with the 

thumb and fingers, until the other 

foot reaches B. 

Then, raise the dividers, place one foot at C, and mark 

with the other the distance CE : and this distance will evi¬ 

dently be equal to AB. 

PROBLEM II. 

To describe from a given centre 'the circumference of a circle 

having a given radius. 

Let C be the given centre, and 

CB the given radius. 

Place one foot of the dividers at 

C, and extend the other leg until it 

reaches to B. Then, turn the di¬ 

viders around the leg at C, and the 

other leg will describe the required 

circumference. 

B 
—i 

E D 
—I 
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OF THE RULER. 

\ 
A ruler of a convenient size, is about twenty inches in 

length, two inches wide, and one fifth of an inch in thickness. 
O' 1 

It should be made of a hard material, and perfectly straight 

and smooth. 
' t ■ ' / v, • . 

PROBLEM III. 

To draw a straight line through two given points A and B. 

Place one edge of the ruler on 

A and slide the ruler around until 

the same edge falls on B. Then, ^ ^ 

with a pen, or pencil, draw the 

line AB. 

PROBLEM IV. 

To bisect a given line: that is, to divide it into two equal parts. 

Let AB be the given line to be 

divided. With A as a centre, and 

radius greater than half of AB, 

describe an arc IFE. Then, with 

B as a centre, and an equal radius 

BI, describe the arc IHE. Join 

the points I and E by the line IE: 

the point D, where it intersects 

AB, will be the middle point of the 

line AB. 

<• 
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For, draw the radii AI, AE, 

BI, and BE. Then, since these 

radii are equal, the triangles AIE 

and BIE have all the sides of the 

one equal to the corresponding sides 

of the other ; hence, their corres¬ 

ponding angles are equal (Bk. I. 

Therefore, the two triangles AID and BID, have the side 

AI—IB, the angle AID—BID, and ID common: hence, 

they are equal (Bk. I. Th. iv), and AD is equal to DB. 

PROBLEM V. 

To bisect a given angle or a given arc. 

Let ACB be the given angle, 

and AEB the given arc. 

From the points A and B as 

centres, describe with the same 

radius two arcs cutting each other 

in D. Through D and the centre 

C, draw CED, and it will divide 

the angle ACB into two equal parts, 

AEB at E. 

For, draw the radii AD and BD. Then, in the two triangles 

ACD, CBD, we have 

AC—CB, AD — BD 

and CD common: hence, the two triangles have their corres¬ 

ponding angles equal (Bk I. Th. viii), and consequently, ACD 

is equal to BCD. But since ACD is equal to BCD, it fol¬ 

lows that the arc AE, which measures the former, is equal to 

the arc BE, which measures the latter. 
. / 

0 
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PROBLEM VI. 
*• • v » 

At a given point in a straight line to erect a perpendicular to the 

line. 

Let A be the given point, and B C 

the given line. 

From A lay off any two distances, 

AB and AC, equal to each other. 

Then, from the points B and C, as 

centres, with a radius greater than 

AB, describe two arcs intersecting each other at D: draw 

DA, and it will be the perpendicular required. 

For, draw the equal radii BD, DC. Then, the two trian¬ 

gles, BDA, and CDA, will have 

AB=AC BD—DC 

and AD common: hence, the angle DAB is equal to the angle 

DAC (Bk. I. Th. viii), and consequently, DA is perpendicu¬ 

lar to BC. 

SECOND METHOD. 

When the point A is near the extremity of the line. 

Assume any centre, as P, out of 

the given line. Then with P as a 

centre, and radius from P to A, de¬ 

scribe the circumference of a circle. 

Through C, where the circumference 

cuts BA, draw CPD. Then, through 

D, where CP produced meets the 

circumference, draw DA : then will 

DA be perpendicular to BA, since CAD is an angle in a 

semicircle (Bk. II. Th. x). 
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PROBLEM VII. 

From a given point without a straight line to let fall a perpen¬ 

dicular on the line. 

Let A be the given point, and BD 

the given line. 

From the point A as a centre, with 

a radius greater than the shortest 

distance to BD, describe an arc cut¬ 

ting BD in the points B and D. 

Then, with B and D as centres, and 

the same radius, describe two arcs intersecting each other at 

E. Draw AFE, and it will be the perpendicular required. 

For, draw the equal radii AB, AD, BE and DE. Then, 

the two triangles EAB and EAD will have the sides of the 

one equal to the sides of the other, each to each; hence, their 

corresponding angles will be equal (Bk. I. Th. viii), viz. the 

angle BAE to the angle DAE. Hence, the two triangles 

BAF and DAF will have two sides and the included angle of 

the one, equal to two sides and the included angle of the other, 

and therefore, the angle AFB will be equal to the angle 

AFD (Bk. I. Th.; iv): hence, AFE will be perpendicular 

to BD. mk 

SECOND METHOD. 

When the given point A is nearly 

opposite the extremity of the line. 

Draw AC, to any point C of the 

line BD. Bisect AC at P. Then, 

with P as a centre and PC as a ra¬ 

dius, describe the semicircle CD A ; 

draw AD, and it will be perpendicular 

to CD, since CD A is an angle in a semicircle (Bk. II. Th. x 
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PROBLEM VIII. 

At a given point in a given line, to make an angle equal to a 

given angle. 

Let A be the given point, AE 

the given line, and IKL the given 

angle. 

From the vertex K, as a centre, ^ 

with any radius, describe the arc IE, terminating in the two 

sides of the angle : and draw the chord IL. 

From the point A, as a centre, with a distance AE, equal 

to KI, describe the arc DE; then with E, as a centre, and a 

radius equal to the chord IL, describe an arc cutting DE at 

D; draw AD, and the angle EAD will be equal to the 

angle K. 

For, draw the chord DE. Then the two triangles IKE 
and EAD, having the three sides of the one equal to the three 

sides of the other, each to each, the angle EA D will be equal 

to the angle K (Bk. I. Th. viii). j 

PROBLEM IX. ^ 

Through a given point to draw a line that shall he parallel to a 

given line. 

Let A be the given point and 

BC the given line. 

With A as a centre, and any ra¬ 

dius greater than the shortest dis- 

tance from A to BC, describe the indefinite arc DE. From 

the point E, as a centre, with the same radius, describe the 

arc AF: then, make ED equal to AF and draw AD, and it 

will be the required parallel. 
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For, since the arcs AF and ED 

are equal, the angles EAD and 

AEF, which they measure, are 

equal : hence, the line AD is 

parallel to BC (Bk I. Th. xiii). 

problem x. 

Two angles of a triangle being given or known, to find the third. 

Draw the indefinite line 

DEF. 

At any point, as E, make 

the angle DEC equal to one 

of the given angles, and then CEH equal to a second, by 

Prob.^.V^|r; then will the angle FIEF be equal to the third 

angle of the triangle. 

For, the sum of the three angles of a triangle is equal to 

two right angles (Bk. I. Th. xvii); and the sum of the three 

angles on the same side of the line DE is equal to two right 

angles (Bk. I. Th. ii. Cor. 2); hence, if DEC and CEH are 

equal to wo of the angles, the angle HEF will be equal to the 

lemaining angle of the triangle. 

PROBLEM XI. 

Three sides of a triangle being given, to describe the triangle. 

Let A, B, and C, be the given 

sides. 

Draw DE, and make it equal to 

the side A. From the point D, as 

a centre, with a radius equal to the 

second side B, describe an arc : 
B\-1 
a 
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from £asa centre, with the third side C, describe another arc 

intersecting the former in F: draw DF and FE: then will 

DEF be the required triangle. 

For, the three sides are respectively equal to the three lines 

A, B, and C. 

PROBLEM XII. 

The adjacent sides of a parallelogram, with the angle which they 

contain, being given, to describe the parallelogram. 
f ’ «. N > > 

Let A and B be the given sides 

and C the given angle. 

Draw the line DE and make it 

equal to A. At the point D make 

the angle EDF equal to the angle 

C. Make the side DF equal to B. Then describe two arcs, 

one from F, as a centre, with a radius FG equal to DE, the 

other from E, as a centre, with a radius EG equal to DF. 

Through the point G, the point of intersection, draw the lines 

EG and FG, and DEGF will be the required parallelogram. 

For, in the quadrilateral DFGE, the opposite sides DE 

and FG are each equal to A: the opposite sides DF and 

EG are each equal to B, and the angle EDF is equal 

to C. But, since the opposite sides are equal, they are 

also parallel (Bk. I. Th. xxiv), and therefore the figure is a 

parallelogram. 

PROBLEM XIII. 

To describe a square on a given line. 
6 

V
*
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Let AB be the given line. 

At the point B draw B C perpendicu¬ 

lar to AB, by Problem VI, and then 

make it equal to AB. 

Then, with A as a centre, and ra¬ 

dius equal to AB, describe an arc; and 

with C as a centre, and the same 

radius AB, describe another arc; and through D, their point 

of intersection, draw AD and CD: then will ABCD be the 

required square. 

For, since the opposite sides are equal, the figure will be a 

parallelogram (Bk. I. Th. xxiv): and since one of the angles 

is a right angle, the others will also be right angles (Bk. I. 

Th. xxiii. Cor. 1); and since the sides are all equal, the figure 

will be a square. 

PROBLEM XIV. 

To construct a rhombus, having given the length of one of the 

equal sides, and one of the angles. 

Let AB be equal to the given side, 

and E the given angle. 

At B lay off an angle, ABC, equal 

to E, by Prob. VIII. and make BC 

equal to AB. Then, with A and C 

as centres, and a radius equal to AB, 

describe two arcs. Through D, their point of intersection, 

draw the lines AD, CD: then will ABCD be the required 

rhombus. 

For, since the opposite sides are equal, they will be parallel 

(Bk. I. Th. xxiv). But they are each equal to AB, and the 

\ 

A B 
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angle B is equal to the angle E: hence, ABCD is the re¬ 

quired rhombus. 

PROBLEM XV. 

To find the centre of a circle. 

Draw any chord, as AB, and bisect it 

by Problem IY. Then, through F, the 

middle point, draw DCE, perpendicular 

to AB, by Problem VI. Then DCE 

will be a diameter of the circle (Bk. II. 

Th. ii. Cor.). Then bisect DE at C, 

and C will be the centre of the circle. 

PROBLEM XVI. 

To describe the circumference of a circle through three given 

points. 

Let A, B, C, be the given points. 

Join these points by the straight 

lines AC, AB, BC. 

Then, bisect any two of these 

straight lines, as AB, BC, by the ' 

perpendiculars OD, OP (Prob. iv); 

and the point O, where these per¬ 

pendiculars intersect each other, 

will be the centre of the circle. 

Then with O as a centre, and a radius equal to OA, de- 
•> ( V 

scribe the circumference of a circle, and it will pass through 

the points A, B, and C. 

For, the two right angled triangles OAP and OBP have the 

side AP equal to the side BP, OP common, and the included 
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angles OP A and OPB equal, being 

right angles ; hence, the side OB is 

equal to OA (Bk. I. Th. iv). 

In like manner it may be shown, 

that OC is equal to OB. Hence, a 

circumference described with the 

radius OA, will pass through the 

points B and C. 

Sch. This problem enables us to describe the circumference 

of a circle about a given triangle. For, we may consider the 

vertices of the three angles as the three points through which 

the circumference is to pass. 

PROBLEM XVII. 

Through a given point in the circumference of a circle, to draw 

a tangent line to the circle. 

Let A be the given point. 

Through A, draw the radius AC to the 

centre, and then draw DAE perpendicu¬ 

lar to AC, by Problem YI. Then will 

DAE be tangent to the circle at the point 

A (Bk. II. Th. v). 

PROBLEM XVIII. 

Through a given point without the circumference, to draw a 

tangent line to the circle. 
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Let C be the centre of the circle, and 

A the given point without the circle. 

Join A. and the centre C, and on AC, 

as a diameter, describe a circumference. 

Through the points B and D, where 

the two circumferences intersect each 

other, draw the lines AB and AD: 

these lines will be tangent to the circle \ 

whose centre is C. 

For, since the angles ABC and 

ADC are each inscribed in a semicircle, they will be right 

angles (Bk. II. Th. x). Again, since the lines AB, AD, 

are each perpendicular to a radius at its extremity, they will 

be tangent to the circle (Bk. II. Th. v). 

PROBLEM XIX. 

To inscribe a circle in a given triangle. 

Let ABC be the given tri¬ 

angle. 

Bisect the angles A and B 

by the lines A 0 and B O, meet¬ 

ing at the point O. From O, 

let fall the perpendiculars OD, 

OE, OF, on the three sides of 

the triangle—these perpendiculars will be equal to each other. 

For, in the two right angled triangles DAO and FAO, we 

have the right angle D equal the right angle F, the angle FAO 

equal to DAO, and consequently, the third angles AOD and 

AOF are equal (Bk. I. Th. xvii. Cor 1). But the two 

triangles have a common side AO, hence, they arc equal 

(Bk. I. Th. v), and consequently, OD is eq’ual to OF. 
6* 
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In a similar manner, it may 

be proved that OE and OD are 

equal: hence, the three per¬ 

pendiculars, OD, OF, and OE, 

are all equal. 

Now, if with O as a 

and OF as a radius, we describe 

the circumference of a circle, it will pass through the points 

D and E» and since the sides of the triangle are perpendicular 

to the radii OF, OD, OE, they will be tangent to the circum¬ 

ference (Bk. II. Th. v). Hence, the circle will be inscribed 

in the triangle. 

PROBLEM XX. 

To inscribe an equilateral triangle in a circle. 

Through the centre C draw any diam¬ 

eter, as ACB. From B as a centre, with 

a radius equal to BC, describe the arc 

DCE. Then, draw AD, AE, and DE, 

and DAE will be the required triangle. 

For, since the chords BD, BE, are 

each equal to the radius CB, the arcs BD, BE, are each equal 

to sixty degrees (Bk. II. Th. xix), and the arc DBE to one 

hundred and twenty degrees; hence, the angle DAE is equal 

to sixty degrees (Bk. II. Th. viii). 

Again, since the arc BD is equal to sixty degrees, and the 

arc BDA equal to one hundred and eighty degrees, it follows 

that DA will be equal to one hundred and twenty degrees: 

hence, the angle DEA is equal to sixty degrees, and conse¬ 

quently, the third angle ADE, is equal to sixty degrees. 
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Therefore, the triangle ADE is equilateral (Bk. I. Th. vi. 

Cor. 2). 
v -Y - 

V • ; - V . ■ ■ 

PROBLEM XXI. 

To inscribe a regular hexagon in a circle. 

Draw any radius, as AC. Then ap¬ 

ply the radius A C around the circum¬ 

ference, and it will give the chords AD, H 
DE, EF, FG, GH, and HA, which will 

be the sides of the regular hexagon. For, 

the side of a hexagon is equal to the radius (Bk. II. Th. xix). 

PROBLEM XXII. 

To inscribe a square in a given circle. 

Let ABCD be the given circle. 

Draw the two diameters A C, BD, at 

right angles to each other, and through 

the points A, B, C and D draw the 

lines AB, B C, CD, and DA: then 

will ABCD be the required square. 

For, the four right angled triangles, 

AOB, BOC, COD, and DO A are 

equal, since the sides AO, OB, OC, and OD are equal, being 

radii of the circle; and the angles at O are equal in each, 

being right angles: hence, the sides AB, BC, CD, and DA 
are equal (Bk. I. Th. iv). 

But each of the angles ABC, BCD, CD A, DAB, is a right 

angle, being an angle in a semicircle (Bk. II. Th. x): hence, 

the figure ABCD is a square (Bk. I. Def. 48). 
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Sch. If we bisect the arcs AB, 

BC, CD, DA, and join the points, 

we shall have a regular octagon in- o o 

scribed in the circle. If we again 

bisect the arcs, and join the points of 

bisection, we shall have a regular 

polygon of sixteen sides. \S 

PROBLEM XXIII. 

To describe a square about a given circle. 

Draw the diameters AB, DE, at 

right angles to each other. Through 

the extremities A and B draw FAG 

and HBI parallel to DE, and through 

E and D, draw FEH and GDI par¬ 

allel to AB: then will FGIH be the 

required square. 

For, since ACDG is a parallelogram, the opposite sides are 

equal (Bk. I. Th. xxiii): and since .the angle at C is a right angle, 

all the other angles are right angles (Bk. I. Th. xxiii. Cor. 1): 

and as the same may be proved of each of the figures Cl, CH, 
and CF, it follows that all the angles, F, G, I, and H, are 

right angles, and that the sides GI, IH, HF, and FG, are 

equal, each being equal to the diameter of the circle. Hence, 

the figure GIHF is a square (Bk. I. Def. 48). 
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% ' " . 1 • ' ' 

DEFINITIONS. 

1. Ratio is the quotient arising from dividing one quantity 

by another quantity of the same kind. Thus, if the numbers 

3 and 6 have the same unit, the ratio of 3 to 6 will be 

expressed by 

And in general, if A and B represent quantities of the same 

kind, the ratio of A to B will be expressed by 

A 
B' 

2. If there be four numbers, 2, 4, 8, 16, having such values 

that the second divided by the first is equal to the fourth di¬ 

vided by the third, the numbers are said to be in proportion. 

And in general, if there be four quantities, A, B, C, and D, 
having such values that 

BJD 
A~C’ 

then, A is said to have the same ratio to B, that C has to D ; 
or, the ratio of A to B is equal to the ratio of C to D. When 
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four quantifies have this relation to each other, they are said to 

be in proportion. Hence, proportion is an equality of ratios. 
To express that the ratio of A to B is equal to the ratio of 

C to D, we write the quantities thus : 

A : B : : C : D; 

and read, A is to B, as C to D. 

The quantities which are compared together are called the 

terms of the proportion. The first and last terms are called 

the two extremes, and the second and third terms, the two 
means. Thus, A and D are the extremes, and B and C the 

means. 

3. Of four proportional quantities, the first and third are 

called the antecedents, and the second and fourth the conse¬ 
quents ; and the last is said to be a fourth proportional to the 

other three taken in order. Thus, in the last proportion, A 

and C are the antecedents, and B and D the consequents. 

4. Three quantities are in proportion when the first has the 

same ratio to the second, that the second has to the third ; and 

then the middle term is said to be a mean proportional between 

the other two. For example, 

3 : 6 : : 6 : 12; 

and 6 is a mean proportional between 3 and 12. 

5. Quantities are said to be in proportion by inversion, or 

inversely, when the consequents are made the antecedents and 

the antecedents the consequents. 

Thus, if we have the proportion 

3 : 6 : : 8 : 16. 

the inverse proportion would be 

6 : 3 : : 16 8. 
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6. Quantities are said to be in proportion by alternation, or 

alternately, when antecedent is compared with antecedent and 

consequent with consequent. 

Thus, if we have the proportion 

3 : 6 : : 8 : 16, 

the alternate proportion would be 

3 : 8 : : 6 : 16. 

7. Quantities are said to be in proportion by composition, 

when the sum of the antecedent and consequent is compared 

either with antecedent or consequent. 

Thus, if we have the proportion 

2 : 4 : : 8 : 16, 

the proportion by composition would be 

2 + 4 : 4 : : 8+16 : 16; 

that is, 6 : 4 : : 24 : 16. 

8. Quantities are said to be in proportion by division, when 

the difference of the antecedent and consequent is compared 

either with the antecedent or consequent. 

Thus, if we have the proportion 
T •! ' 4 ' 11 • . * ■' ■ 

3 : 9 ; : 12 : 36, 

the proportion by division will be 

9-3 : 9 : : 36-12 : 36; 

that is, 6 : 9 : : 24 : 36. 

9. Equimultiples of two or more quantities are the products 

which arise from multiplying the quantities by the same 

number. 

Thus, if we have any two numbers, as 6 and 5, and multiply 
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them both by any number, as 9, the equimultiples will be 54 

and 45 ; for 

6x9 = 54 and 5x9 = 45. 

Also, mxA and mxB are equimultiples of A and B, the 

common multiplier being m. 

10. Two quantities, A and B, are said to be reciprocally 
proportional, or inversely proportional, when one increases in 

the same ratio as the other diminishes. When this relation 

exists, either of them is equal to a constant quantity divided by 

the other. 

Thus, if we had any two numbers, as 2 and 4, so related to 

each other that if we divided one by any number we must 

multiply the other by the same number, one would increase 

just as fast as the other would diminish, and their product 

would not be changed. 

THEOREM I. 

If four quantities are in proportion, the product of the two ex¬ 
tremes will he equal to the product of the two means. 

If we have the proportion 

A : B : : C : D 

we have, by Def. 2, 

B_D 
A~~ C 

and by clearing the equation of fractions, we have 

BC=AD 

Sch. The general principle is verified in the proportion 

between the numbers 

2 : 10 : : 12 : 60 

which gives 

2x60 = 10x12 = 120 
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THEOREM II. 

If four quantities are so related to each other, that the product 

of two of them is equal to the product of the other two; then, 

two of them may be made the means, and the other two the 

extremes of a proportion. 

Let A, B, C, and D, have such values that 

BxC—AxD 
Divide both sides of the equation by A, and we have 

-xC=D 
A 

r 

Then divide both sides of the last equation by C, and we 

have 

B__D 
A~C 

hence, by Def. 2, we have 

A : B : : C : D. 

Sch. The general truth may be verified by the numbers 

2 X 18=i9 x 4 

which give 

2 : 4 : : 9 : 18 

THEOREM III. 

If three quantities are in proportion, the product of the two 

extremes will be equal to the square of the middle term. 

Let us suppose that we have 

A : B : : B : C 
Then, by Def. 2, we have 

B_C 
A~H 

and by clearing the equation of its fractions, we have 
7 
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b2=cxa 

Sch. The proposition may be verified by the numbers 

3 : 6 : ; 6 : 12 

which give 

3x12 = 6x6 = 36 

THEOREM IV. 

If four quantities are in proportion, they will he in proportion 

when taken alternately. 

Let A : B ; : C : D 

Then, by Def. 2, we have 

B_D 

~A~C 
Q 

Multiplying both members of this equation by —, we have 

C_D 

A~ B 

and consequently, 

A : C : : B : D. 

Sch. The theorem may be verified by the proportion 

10 : 15 : : 20 : 30 

for, we have, by alternation, 

10 : 20 : : 15 : 30. 

THEOREM V. 

If there he two sets of proportions, having an antecedent and 

a consequent in the one, equal to an antecedent and a consequent 

in the other; then, the remaining terms will he proportional. 

If we have 

ji . B : : C : D, and A : B : : E : F \ 

then we shall have . . 
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B__D 

A~ C i 
and 

B_F 

A~E 

Hence, by Ax. 1, we have 

D_F 

C~E 
and consequently, 

C : D : : E : F. 

Sch. The proposition may be verified by the following 

proportions, 

2 : 6 : : 8 : 24 and 2 : 6 : : 10 : 30 

which give 
8 : 24 : : 10 : 30. 

THEOREM VI. 

If four quantities are in proportion, they will he in proportion 

when taken inversely. 

If we have the proportion 

A : B : : C : D 
we have, by Th. I, 

AxD=BxC, 

or Bx C=AxD. 
Hence, we have, by Th. II, 

B : A D : C. 

Sch. The proposition may be verified by the proportion 

7 : 14 : : 8 : 16; 

which, when taken inversely, gives 

14 : 7 : : 16 : 8. 

THEOREM VII. 

If four quantities are in proportion, they will he in proportion hy 

composition. 
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Let us suppose that we have 

A : B : : C : D 
we shall then have 

AxD=Bx C. 
To each of these equals, add BxD, and we have 

(A+B)xD=(C+D)xB; 
and by separating the factors by Th. II, we have 

A-\-B : B : : C+D : D. 

Sch. The proposition may be verified by the following 

proportion, 

9 : 27 : : 16 : 48. 

We shall have, by composition, 

9 + 27 : 27 : : 16 + 48 : 48, 

that is, 36 : 27 : : 64 : 48, 

in which the ratio is three fourths. 

' s - • ' v * . \ 

THEOREM VIII. 
, t 

v s . ■ . 

If four quantities are in proportion, they will he in proportion by 

division. 
t 

Let us suppose that we have * 

A : B : : C : D; 

we shall then have 

AxD=Bx C. 
From each of these equals let us subtract BxD, and we 

have 

(.A-B)xD=(C-D)xB; 
and by separating the factors by Th. II, we have, 

+—B : B : : C—D : D. 

Sch. The proposition may be verified by the proportion, 

24 : 8 : : 48 : 16. 
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We have, by division, 

24-8 : 8 : : 48-16 : 16; 

that is, 16 : 8 : : 32 : 16; 

in which the ratio is one-half. 

THEOREM IX. 

Equal multiples of two quantities have the same ratio as the 

quantities themselves. 

If we have the proportion 

A : B : : C : D 

we shall have 

B_D 

A~C 

Now, let M be any number, and by it multiply the nu- 
• • 

merator and denominator of the first member of the equation 

which will not change its value: we shall then have 

MxB__D 

MxA~C 

and hence we have 

MxA : MxB : : C : D, 

that is, the equal multipliers MxA and MxB, have the same 

ratio as A to B. 

Sch. The proposition may be verified by the proportion, 

5 : 10 :: 12 : 24; 

for, by multiplying the first antecedent and consequent by any 

number, as 6, we have 

. 30 : 60 : : 12 : 24, 

in which the ratio is still 2. i j * * f » 
7* / 
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THEOREM X. 

If four quantities are proportional, and one antecedent and its 

consequent he augmented by quantities which have the same ratio 

as the antecedent and consequent, the four quantities will still be 

in proportion. 

Let us take the proportions 

A : B : : C : D, and A : B : : E : F, 
which give 

AxD=BxC and AxF=BxE; 
adding these equals we have 

Ax(D+F)=Bx{C+E); 

and by Th. II, we have 

A : B : : C+E : D+F 

in which the antecedent C and its consequent D, are augment¬ 

ed by the quantities E and F, which have the same ratio. 

Sch. The proposition may be verified by the proportion, 

9 : 18 : : 20 : 40, 

in which the ratio is 2. 

If we augment the antecedent and its consequent by 15 and 

30, which have the same ratio, we have 

9 : 18 : : 20+15 : 40+30 

that is, 9 : 18 : : 35 : 70, 

in which the ratio is still 2. , 

THEOREM XI. 

If four quantities are proportional, and one antecedent and its 

consequent be diminished by quantities which have the same ratio 

as the antecedent and consequent, the four quantities will still be 

in proportion. 
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Let us take the proportions 

A : B : : G : D, and A : B : : E : F, 
which give 

AxD=zBxC and AxF=BxE. 
By subtracting these equalities, we have 

A x (D—F)—B x (C—E); 
and by Th. II, we obtain 

A : B : : C-E : D-F, 

in which the antecedent and consequent, C and D, are dimin¬ 

ished by E and F, which have the same ratio. 

Sch. The proposition may be verified by the proportion, 

9 : 18 : : 20 : 40, 

for, by diminishing the antecedent and consequent by 15 and 

30, we have 

9 : 18 : : 20-15 : 40-30; 

that is 9 : 18 : : 5 : 10 

in which the ratio is still 2. 

» - ' - 7 ' * . v ( 

THEOREM XII. 

If we have several sets of proportions, having the same ratio, 

any antecedent will he to its consequent, as the sum of the ante¬ 

cedents to the sum of the consequents. 

If we have the several proportions, 

A B : : C : D which gives AxD=BxC 

A B : : E : F which gives AxF—BxE 

A B : : G : H which gives o AxH=zBx G 

We shall then have, by addition, 

Ax{D+F+H)=Bx(C+E+G); 

and consequently, by Th. II. 

A : B :: : D+F+R. 
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Sch. The proposition may be verified by the following 

proportions : viz. 

2 : 4 : : 6 : 12 and 1 : 2 : : 3 : 6. 

Then, 2:4:: 6+3 : 12-f 6; 

that is, 2 : 4 : : 9 : 18, 

in which the ratio is still 2. 

THEOREM XIII. 

If four quantities are in proportion, their squares or cubes will 

also be proportional. 

If we have the proportion 

A : B : : C : D, 

it gives 

B_D 

A~C 

Then, if we square both members, we have 

52 Z>2 

!2~C2 

and if we cube both members, we have 

53_D'3 
J S M3~C3 

and then, changing these equalities into a proportion, we have 

for the first, 

and for the second 

A3 : B3 : : C3 : D3. 

Sch. We may verify the proposition by the proportion, 

2 : 4 : : 6 : 12, 

and by squaring each term we have, 

4 : 16 : : 36 : 144, 
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numbers which are still proportional, and in which the ratio 

is 4. 

If we cube the numbers we have, 
03 a 3 £*3 1 
2 : 4 : : 6 : 12 

that is, 8 : 64 : : 216 : 1728, 

in which the ratio is 8. 

THEOREM XIV. 
l 1 r j 

If we have two sets of proportional quantities, the products of 

the corresponding terms will he proportional. 

Let us take the proportions, 

A : B : : C : D which gives 
B D 
A~C 

E : F : : G : H which gives 
F H 
E~G 

Multiplying the equalities together, we have 

BxF DxH 
AxE~CxG 

and this by Th. II, gives 

AxE : BxF :: CxG : DxH. 

Sch. The proposition may be verified by the following 

proportions: 

8 : 12 : : 10 : 15, 

and 3 : 4 : : 6 : 8; 

we shall then have 

24 : 48 : : 60 : 120 

which are proportional, the ratio being 2. 



GEOMETRY 

BOOK IV 

OF THE MEASUREMENT OF AREAS, AND THE 

PROPORTIONS OF FIGURES. 

'> * * 1 
DEFINITIONS. 

1. Similar figures, are those which have the angles of the 

one equal to the angles of the other, each to each, and the 

sides about the equal angles proportional. 

2. Any two sides, or any two angles, which are like placed 

in the two similar figures, are called homologous sides or 

angles. 

3. A polygon which has all its angles equal, each to each, 

and all its sides equal, each to each, is called a regular polygon. 

A regular polygon is both equiangular and equilateral. 

4. If the length of a line be computed in feet, one foot is 

the unit of the line, and is called the linear unit. If the length 

of a line be computed in yards, one yard is the linear unit. 

5. If we describe a square on the unit 

of length, such square is called the unit of 

surface. Thus, if the linear unit is one 

foot, one square foot will be the unit of 

surface. 

1 foot. 

unit 
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6. If the linear unit is one yard, one 

square yard will be the unit of surface; 

and this square yard contains nine square 

feet. 

1 yd. =3 feet. 

7. The area of a figure is the measure of its surface. The 

unit of the number which expresses the area, is a square, the 

side of which is the unit of length. 

8. Figures have equal areas, when they contain the same 

measuring unit an equal number of times. 

9. Figures which have equal areas are called equivalent. 

The term equal, when applied to figures, implies an equality 

in all respects. Such figures being applied to each other, will 

coincide in all their parts. The term equivalent, implies an 

equality in one respect only : viz. an equality in their areas. 

, * '■'x 

THEOREM I. 

Parallelograms which have equal bases and equal altitudes, are 

equivalent. 

Place the base of one parallel¬ 

ogram on that of the other, so that 

AB shall be the common base of 

the two parallelograms ABCD 

and ABEF. Now, since the par¬ 

allelograms have the same altitude, their upper bases, DC and 

FE, will fall on the same line FEDC, parallel to AB. Since 

the opposite sides of a parallelogram are equal to each other 

(Bk. I. Th. xxiii),AD is equal to BC. Also, DC and FE are 

each equal to A.B : and consequently, they are equal to each 
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other (Ax. 1). To each, add ED : 

then will CE be equal to DF. 

But since the line FC cuts the 

two parallels CB and DA, the 

angle BCE will be equal to the 

angle ADF (Bk. I. Th. xiv): hence, the two triangles ADF 

and BCE have two sides and the included angle of the one 

equal to two sides and the included angle of the other, each 

to each; consequently, they are equal (Bk. I. Th. iv). 

If then, from the whole space ABCF we take away the tri¬ 

angle ADF, there will remain the parallellogram ABCD; but 

if we take away the equal triangle BE C, there will remain the 

parallelogram ABEF: hence, the parallelogram ABEF is 

equivalent to the parallelogram ABCD (Ax. 3). 

Cor. A parallelogram and a 

rectangle, having equal bases and 

equal altitudes, are equivalent. 

•' _ v / 

THEOREM II. 

Triangles which have equal bases and equal altitudes, are 

equivalent. 

Place the base of one triangle 

on that of the other, so that AB C 

and ABD shall be the two trian¬ 

gles, with the common base AB, 

and for their altitude the distance 

between the two parallels AB, FC: then will the triangle 

ABC be equivalent to the triangle ADB. 

For, through A draw AE parallel to BC, and AF parallel to 

BD, forming the two parallelograms BE and BF. Then, 

/ 
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since these parallelograms have a common base and equal 

altitudes, they will be equivalent (Th. i). 

But the triangle ABC is half the parallelogram BE (Bk. I. 

Th. xxiii); and ABD is half the equal parallelogram BF: 

hence, the triangle ABC is equivalent to the triangle ABD. 

THEOREM III. 

If a triangle and a parallelogram have equal bases and equal 

altitudes, the triangle will be half the parallelogram. 

Place the base of the triangle on the 

base of the parallelogram, so that AB 

shall be the common base of the tri¬ 

angle and parallelogram : then will the 

triangle ABE be half the parallelogram 

BD. 

For, draw the diagonal AC. Then, since the altitude of 

the triangle AEB is equal to that of the parallelogram, the 

vertex will be found some where in CD, or in CD produced. 

Now the two triangles ABC and ABE, having the same base 

AB, and equal altitudes, are equivalent (Th. ii). But the tri¬ 

angle ABC is half the parallelogram BD (Bk. I. Th. xxiii): 

hence, the triangle ABE is half the parallelogram BD (Ax. 1). 

Cor. Plence, if a triangle and a rect¬ 

angle have equal bases and equal alti¬ 

tudes, the triangle will be half the 

rectangle. 

For, the rectangle would be equiva¬ 

lent to a parallelogram of the same base 

and altitude (Th. ix. Cor.), and since the triangle is half the 

parallelogram, it is also equivalent to half the rectangle. 
8 
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C H_G 

B E 

THEOREM IV. 

Rectangles which are described on equal lines are equivalent. 

Let BD and FH be two rectangles, 

having the sides AB, BC, equal to 

the two sides EF, FG, each to 

each: then will the rectangle ABCD, 

described on the lines AB, BC, be 

equivalent to the rectangle EFGH, 

described on the lines EF, FG. 

For, draw the diagonals AC, EG, dividing each parallel¬ 

ogram into two equal parts. 

Then the two triangles, ABC, EFG, having two sides and 

the included angle of the one equal to two sides and the in¬ 

cluded angle of the other, each to each, are equal (Bk. I. 

Th. iv). But these equal triangles are halves of the respective 

rectangles (Th. iii. Cor.): hence, the rectangles are equal 

(Ax. 7); and consequently equivalent. 

Cor. The squares on equal lines are equal. For a square 

is but a rectangle having its sides equal. 

THEOREM V. 

Two rectangles having equal altitudes are to each other as tlieii 

bases. 

Let AEFD and EBCF be two B 

rectangles having the common alti¬ 

tude AD; then will they be to each 

other as the bases AE and EB. 

F 

A 

C 

E B 

For, suppose the base AE to be to the base EB, as any two 

numbers, say the numbers 4 and 3. Let AE be then divided 
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into four equal parts, and EB into three equal parts, and 

through the points of division draw parallels to AD. We 

shall thus form seven rectangles, all equivalent to each other 

since they have equal bases and equal altitudes (Th. iv). 

But the rectangle AEFD will contain four of these partial 

rectangles, while the rectangle EBCF will contain three; 

hence, the rectangle AEFD will be to the rectangle EBCF as 

4 to 3 ; that is, as the base AE to the base EB. 
The same reasoning may be applied to any other rect¬ 

angles whose bases are whole numbers: hence, 

AEFD : EBCF :: AE : EB. 

THEOREM VI. 

Any two rectangles are to each other as the products of their 

bases and altitudes. 

Let ABCD and AEGF be 

two rectangles : then will 

ABCD : AEGF :: ABxAD 

: AFxAE 
For, having placed the two 

rectangles so that BAE and © 
DAF shall form straight lines, produce the sides CD and GE 
until they meet in H. 

Then, the two rectangles ABCD, AEHD, having the com¬ 

mon altitude AD, are to each other as their bases AB and 

AE (Th. v). In like manner, the two rectangles AEHD, 

AEGF, having the same altitude AE, are to each other as 

their bases AD and AF. Thus, we have the proportions 

ABCD : AEHD : : AB : AE, 

AEHD : AEGF : : AD : AF. 

IT_I)_C 

A B 

G F 
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H 
If now, we multiply the cor¬ 

responding terms together, the 

products will be proportional 

(Bk. III. Th. xiv); and the 

common multiplier AEHD may 

be omitted (Bk. III. Th. ix) : 

hence, we shall have 

ABCD : AEGF : : ABxAD 

D C 

A B 

G 

AE x AF. 

Sch. Hence, the product of the base 

by the altitude may be assumed as the 

measure of a rectangle. This product 

will give the number of superficial units 

in the surface: because, for one unit in 

height, there are as many superficial units 

as there are linear units in the base; for two units in height, 

twice as many; for three units in height three times as 

many, &c. 

THEOREM VII. 

The sum of the rectangles contained by one line, and the 

several parts of another line any way divided, is equivalent to the 

rectangle contained by the two whole lines. 

Let AD be one line, and AB the other, 

divided into the parts AE, EF, FB: then “p- 

will the rectangles contained by AD and 

AE, AD and EF, AD and FB, be equiv¬ 

alent to the rectangle AC which is con¬ 

tained by the lines AD and AB. 

For, through E and F draw EG and FH parallel to AD, to 

which they will be equal (Bk. I. Th. xxiii). Then, AG will 

D G H C 

A E F B 
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be equal to the rectangle of AD x AE ; EH will be equal to 

EGx EF, or to AD x EF; and FC will be equal to FHx FB, 

or to AD x FB. 
But the rectangle AC is equal to the sum of the partial 

rectangles: hence, 

AD x AB=AD x AE-\- AD x EF-\- AD x FB. 

THEOREM VIII. 

The area of any parallelogram is equal to the product of its base 

by its altitude. 

Let ABCD be any parallelogram, and 

BE its altitude : then will its area be 

equal to AB x BE. 
For, draw AF perpendicular to the 

base AB, and produce CD to F. Then, 

the parallelogram BD and the rectangle BF, having the same 

base and altitude are equivalent (Th. i. Cor.). But the area 

of the rectangle BF is equal to the product of its base AB by 

the altitude AF (Th. vi. Sch.): hence, the area of the paral¬ 

lelogram is equal to AB x BE. 

Cor. Parallelograms of equal bases are to each other as their 

altitudes; and if their altitudes are equal, they are to each 

other as their bases. 

For, let B be the common base, and C and D the altitudes 

of two parallelograms. Then, by the theorem, their areas are 

to each other, as 

B x C : BxD, 

that is, (Bk. III. Th ix), as C : D. 
If A and B be their bases, and C their common altitude, 

then they will be to each other, as 

A X C : Bx C: that is, as 
8* 

A : B. 
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THEOREM IX. 

The area of a triangle is equal to half the product of its base by 

its altitude. 

Let ABC be any triangle and CD its 

altitude : then will its area be equal to 

half the product of AB x CD. 

For, through B draw BE parallel to 

AC, and through C draw CE parallel 

to AB : we shall then form the parallelogram AE, having the 

same base and altitude as the triangle ABC. 

But the area of the parallelogram is equal to the product of 

the base AB by its altitude DC; and since the parallelogram is 

double the triangle (Th. iii), it follows that the area of the tri¬ 

angle is equal to half this product: that is, to half the product 

of AB x CD. 

Cor. Two triangles of the same altitude are to each other 

as their bases ; and two triangles of the same base are to each 

other as their altitudes. And generally, triangles are to each 

other as the products of their bases and altitudes. 

THEOREM X. ' 

The area of a trapezoid is equal to half the product of its altitude 

midtiplied by the sum of its parallel sides. 

Let ABCD be a trapezoid, CG 

its altitude, and AB, DC its par¬ 

allel sides: then will its area be 
C 

equal to half the product of 

CGx(AB+DC). 
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For, produce AB until BE is equal to DC, and complete 

the rectangle AF; also, draw BH perpendicular to AB. 

Then, the rectangle AC will be equivalent to BF, since they 

have equal bases and equal altitudes (Th. iv). The diagonal 

BC will divide the rectangle GH into two equal triangles; 

and hence, the trapezoid ABCD will be equivalent to the 

trapezoid BEFC; and consequently, the rectangle AF, is 

double the trapezoid ABCD. 

But the rectangle AF is equivalent to the product of 

ADxAE; that is, to CGx(AB-FDC); and consequently, 

the trapezoid AB CD is equal to half that product. 

THEOREM XI. 

If a line be divided into two parts, the square described on the 

whole line is equivalent to the sum of the squares described on the 

two parts, together with twice the rectangle contained by the parts. 

Let the line AB be divided into two 

parts at the point E: then will the square 

described on AB be equivalent to the two 

squares described on AE and EB, to¬ 

gether with twice the rectangle contained 

by AE and EB: that is 

D DC 

F 

A E B 

ABl=AEl+EB2+2AExEB. 
* 

For, let AC be a square on AB, and AF a square on AE, 

and produce the sides EF and GF to H and I. 

Then, since EH is equal to AD, being the opposite side of 

a rectangle, it is also equal to AB; and GI is likewise equal 

to AB. If, therefore, from these equals we take away EF and 
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GF, there will remain FH equal to FI, 

and each will be equal to HC or IC; and 

since the angle at F is a right angle, it 

follows that FC is equal to a square de¬ 

scribed on EB. It also follows, that DF 

and FB are each equal to the rectangle 

of AE into EB. 

But the square ABCD is made up of four parts, viz., the 

square on AE; the square on EB; the rectangle DF, and 

the rectangle FB. Hence, the square on AB is equivalent 

to the square on AE plus the square on EB, plus twice the 

rectangle contained by AE and EB. 

Cor. If the line AB was divided into 

two equal parts, the rectangles DF and 

FB would become squares, and the square 

described on the whole line would be 

equivalent to four times the square de¬ 

scribed on half the line. 

Sch. The property may be expressed in the language of 

algebra, thus, 

(a+b)" — a -j- 2ab + b? 

THEOREM XII. 

The square described on the hypothenuse of a right angled 

triangle, is equivalent to the sum of the squares described on the 

other two sides. 
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Let BAC be a right an¬ 

gled triangle, right angled at 

A : then will the square de¬ 

scribed on the hypothenuse 

BC, be equivalent to the two 

squares described on BA 

and A C. 

Having described the 

squares BG, BL and AI, 

let fall from A, on the hy¬ 

pothenuse, the perpendicular 

AD, and produce it to E; then draw the diagonals AF, CH. 

Now, the angle ABF is made up of the right angle FBC 

and the angle CBA; and the angle CBH is made up of the 

right angle ABH and the same angle CBA : hence, the angle 

ABF is equal to CBH. But FB is equal to BC, being sides 

of the same square; and for a like reason, BA is equal to 

HB. Therefore, the two triangles ABF and CBH, having 

two sides and the included angle of the one equal to two sides 

and the included angle of the other, each to each, are equal 

(Bk. I. Th. iv). 

Since the angles BAC and BAL are right angles, as also 

the angle ABH, it follows that CAL is a straight line parallel 

to BH. Hence, the square HA and the triangle HBC, stand 

on the same base and between the same parallels ; therefore, 

the triangle is half the square (Th. iii. Cor.). For a like 

reason, the triangle ABF is half the rectangle BE. 

But it has already been proved that the triangle ABF is 

equal to the triangle CBH : hence, the rectangle BE, which 

is double the former, is equivalent to the square BL, which is 

double the latter (Ax. 6). 
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In the same manner it 

may be proved, that the rect¬ 

angle DG is equivalent to 

the square CK. 

But the two rectangles 

BE, DG, make up the 

square B G : therefore, the 

square BG, described on 

the hypothenuse, is equiva¬ 

lent to the squares BL and 

CK, described on the other 

two sides. 

K 

Cor. Hence, the square of either side 

of a right angled triangle is equivalent to 

the square of the hypothenuse diminished 

by the square of the other side. That is, 

in the right angled triangle ABC 

AB2=AC2—BC2 

or BC2-AC2—AB2. 
\U 

Sch. The last theorem 

may be illustrated by de¬ 

scribing a square on the hy¬ 

pothenuse BC, equal to 5, 

also on the sides BA, AC, 

respectively equal to 4 and 3 ; 

and observing that the num¬ 

ber of small squares in the 

large square is equal to the 

number in the two small 

squares. 
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THEOREM XIII. 

If a line be drawn parallel to the base of a triangle, it will divide 
the other two sides proportionally. 

Let ABC be any triangle, and DE a 

straight line drawn parallel to the base 

B C: then will 

AD : DB :: AE : EC. 

For, draw BE and DC. Then, the 

two triangles BDE and DCE have the 

same base DE, and the same altitude, 

since their vertices B and C, lie in the line BC parallel to 

DE : hence, they are equivalent (Th. ii). 

Again, the triangles ADE and BDE, having a common 

vertex i?^<have the same altitude; and consequently, are to 

each other as their bases (Th. ix, Cor.) ; hence, we have 

ADE : BDE : : AD : DB. 
But the triangles ADE and CDE, having a common vertex 

D, are to each other as their bases AE and EC: hence, we 

have 
ADE c CDE : : AE : EC. 

But the triangles BDE and CDE have been proved equiva¬ 

lent : hence, in the two proportions, the first antecedent and 

consequent in each are equal: therefore, by (Bk. III. Th. v), 

we have 
AD : BD : : AE : EC. 

Cor. The sides AB, AC, are also proportional to the parts 

AD, AE, or to BD, CE. 

For, by composition (Bk. III. Th. vii), we have 

AD+BD : BD :: AE+EC : EC. 

Then, by alternation (Bk. III. Th. iv). 

AB : AC : : BD : EC, hence, also, AB : AC : : AD : AE. 

,/s • 

A 
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THEOREM XIV. 

A line which bisects the vertical angle of a triangle divides 

the base into two segments which are proportional to the adjacent 

sides. 

Let ACB be a triangle, hav¬ 

ing the angle C bisected by the 

line CD : then will 

AD : DB : : AC : CB. 

For, draw BE parallel to 

CD and produce AC to E. 

Then, since CB cuts the two 

parallels CD, EB, the alternate angles BCD and CBE are 

equal (Bk. I. Th. xii): hence, CBE is equal to angle ACD. 

But, since AE cuts the two parallels CD, BE, the angle 

ACD is equal to CEB (Bk. I. Th. xiv): consequently, the 

angle CBE is equal to the angle CEB (Ax. 1): hence, the 

side CB is equal to CE (Bk. I. Th. vii). 

Now, in the triangle ABE the line CD is drawn parallel 

to BE : hence, by the last theorem, we have 

AD : DB - AC : CE, 

and by placing for CE, its equal CB, we have 

AD : DB : : AC : CB. 

THEOREM XV. 

Equiangular triangles have their homologous sides proportional. 

Let AB C and DEF be two equi¬ 

angular triangles, having the angle 

A equal to the angle D, the angle C 

to the angle F, and the angle B to 

the angle E : then will 

AB : AC :: DE : DF. 

D 

E 
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For, on the sides of the larger triangle DEF, make DI 

equal to AC, and DG equal to AB, and join IG. Then the 

two triangles ABC and DIG, having two sides and the in¬ 

cluded angle of the one equal to two sides and the included 

angle of the other, each to each, will be equal (Bk. I Th. iv). 

Hence, the angles I and G are equal to C and B, and conse¬ 

quently, to the angles F and E: therefore, IG is parallel to 

EF (Bk. I. Th. xiv, Cor. 1). 

Now, in the triangle DEF, since IG is parallel to the base, 

we have (Th. xiii). 

DG : DI : : DE : DF, 

that is, AB : AC : : DE : DF. 
- ' \X/ ■ ■ , */ 

THEOREM XVI. 

Two triangles which have their homologous sides proportional are 

equiangular and similar. 

Let BAC and EDF be two 

triangles having 

BC : EF : : AB : ED, 

and BC : EF :: AC : DF; 

then will they have the homolo¬ 

gous angles equal, viz., the angle 

B=E, A=D and C=F. 

For, at the point E make FE G equal to the angle B; 

and at F make the angle EFG equal to the angle C: Then 

will the angle at G be equal to A, and the two triangles BAC 

and EGF will be equiangular (Bk. I. Th. xvii. Cor 1). 

Therefore, by the last theorem we shall have 

BC : EF : : AB : EG; 
9 



98 GEOMETRY. 

Proportions of Triangles. 

but by hypothesis, 

BC : EF : : AB : DE: 

hence, EG is equal to ED. 

By the last theorem we also 

have 

BC : EF : : 

and by hypothesis, 

BC : EF : : AC : DF; 

hence, FG is equal to DF. 

Therefore, the triangles DEF and EGF, having their three 

sides equal, each to each, are equiangular (Bk. I. Th. viii) 

But, by construction, the triangle EFG is equiangular with 

BAC: hence, the triangles BAC and EDF are equiangular, 

and consequently they are similar. 

Sch. By Theorem XV, it appears that if the corresponding 

angles of two triangles are equal, each to each, the homolo¬ 

gous sides will be proportional; and in the last theorem it was 

proved that if the sides are proportional, the corresponding 

angles will be equal. 

Now, these proportions do not hold good in the quadrilate¬ 

rals. For, in the square and rectangle, the corresponding 

angles are equal, but the sides are not proportional; and the 

angles of a parallelogram or quadrilateral, may be varied at 

pleasure, without altering the lengths of the sides. 

THEOREM XVII. 

If two triangles have an angle in the one equal to an angle in 

the other, and the sides containing these angles proportional, the 

two triangles will he equiangular and similar. 



BOOK IV. 99 

Proportions of Triangles. 

Let ABC and DEF be two tri¬ 

angles having the angle A equal to 

the angle D, and 

AB : DE : : AC : DF; 

then will the two triangles be 

similar. 

For, lay ofY AG equal to DE, and through G draw GI par¬ 

allel to B C. Then the angle A GI will be equal to the angle 

ABC (Bk. I. Th. xiv); and the triangles AG I and ABC will 

be equiangular. Hence, we shall have 

AB : AG : : AC : AI. 

But, by hypothesis, we have 

AB : DE :: AC : DF, 

and by construction, A G is equal to DE; therefore, AI is 

equal to DF, and consequently, the two triangles AGI and 

DEF are equal in all their parts (Bk. I. Th. iv). But the tri¬ 

angle ABC is similar to AGI, consequently it is similar to 

DEF. 

THEOREM XVIII. 

If from the right angle of a right angled triangle, a perpen¬ 

dicular he let fall on the liypothenuse, then 

I. The two partial triangles thus formed will he similar to 

each other and to the whole triangle. 

II. Either side including the right angle will he a mean pro¬ 

portional between the liypothenuse and the adjacent segment. 

III. The perpendicular will he a mean proportional between the 

segments of the liypothenuse. 
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Let ABC be a right angled 

triangle, and AD perpendicular 

to the hypothenuse. 

The two triangles BAC and 

BAD having the common angle 

B, and the right angle BAC equal 

to the right angle at D, will be equiangular (Bk. I. Th. xvii. 

Cor. 1); and, consequently, similar (Th. xv). For a like 

reason the triangles BAC and CAD are similar. 

Now, from the triangles BAC and BAD, we have 

BC : BA : : BA : BD. 

From the triangles BAC and CAD, we have 

BC : CA :: CA : CD; 
and from the triangles BAD and DA C, we have 

BD : AD :: AD : DC. 

Cor. If from a point A, in the 

circumference of a circle, AD be 

drawn perpendicular to any diam¬ 

eter as BC, and the chords AB 

AC be also drawn, then the an¬ 

gle BAC will be a right angle 

(Bk. II. Th. x): and by the 

theorem we shall have, 

1st The perpendicular AD a 

the segmentsJ3Z) and DC. 
o 

mean proportional between 

2d Each chord will be a mean proportional between the 

diameter and the adjacent segment. 

That is, AD2—BDxDC 

AB>=BCxBD 

AC?—BCx CD. 

L 
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THEOREM XIX. 

Similar triangles are to each other as the squares described on 
their homologous sides. '■ 

Let ABC and DEF be 

two similar triangles, and 

AL and DN the squares de¬ 

scribed on the homologous 

sides AB, DE: then will 

the triangle 

ABC : DEF : : AL : DN. 

For, draw CG and FH perpendicular to the bases AB, DE, 
and draw the diagonals BK and EM. 

Then, the similar triangles ABC and DEF, having their 

like sides proportional, we have 

AC : DF :: AB : DE; 

and the two ACG, DFH, give 

AC : DF : : CG : FH; 

hence, (Bk. III. Th. v), we have 

AB : DE : : CG : FH, 

or (Bk. III. Th. iv), 

AB -'i CG : : DE : FH. 

Now, the two triangles ABC and A KB have the common 

base AB; and the triangles DEF and DEM have the common 

base DE; and since triangles on equal bases are to each other 

as their altitudes (Th. ix, Cor.), we have 

the triangle 

ABC : ABK : : CG : AK or AB 

and the triangle, 

DEF : DME : : FH : DM or DE. 
9* 

F 



102 GEOMETRY. 

Proportions of Triangles. 

But we have proved 

CG : AB : : 

hence, ABC : ABK : : 

or, alternately, 

ABC : DEF : : 

But the squares AL and 

DN, being each double of the 

triangles A KB and DME 

will have the ratio ; hence, 

ABC : DEF : : AL : DK. 

THEOREM XX. 

Two similar polygons may be divided into an equal number of 

triangles, similar each to each, and similarly placed. 

Let ABCDE and FGHIK be two similar polygons. 

From the angle A draw 

the diagonals A C, AD: 

and from the homologous 

angle F, draw FH, FI. 

Now, since the poly¬ 

gons are similar, the ho¬ 

mologous angles B and G 

will be equal, and the sides about the equal angles propor¬ 

tional (Def. 1): that is, 

AB : BC : : FG : GH. 

Hence, the triangles ABC and FGH have an angle in each 

equal, and the sides about the equal angles proportional: there¬ 

fore, they are similar (Th. xvii), and consequently, the angle 

ACB is equal to FUG. Taking these from the equal angles 

BCD and GUI, there will remain ACD equal to FHI. The 

FH : DE; 

DEF : DME, 

ABK : DME. 
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two triangles ACD and FIJI will then have an angle in each 

equal, and the sides about the equal angles proportional: hence, 

they will be similar. 

In the same manner it may be shown that the triangles 

AED and FKI are similar: and, hence, whatever be the 

number of sides of the polygons, they may be divided into an 

equal number of similar triangles. 

THEOREM XXI. 

Similar polygons are to each other as the squares described on 

their homologous sides. 

Let ABCDE and FGNIK, be two similar polygons ; then 

will they be to each other 

as the squares described 

on AB, FG, or any other 

two homologous sides. 

For, let the polygons be 

divided, as in the last the¬ 

orem, into an equal num¬ 

ber of similar triangles. Then, by Theorem XIX, we have 

the triangles 

ABC i FGN : : H? : FG2 

ADC : FIN : : DC2 : IN2 

ADE : FIK : : DE2 : If? 
But since the polygons are similar, the ratio of the last ante¬ 

cedent to its consequent, in each of the proportions, is the 

same: hence, we have (Bk. III. Th. xii). 

ABC+ADC+ADE : FGN+FIN+FIK : : AT? : FG\ 

that is, ABCDE : FGNIK : : AB’ : FG 

Hence, the areas of similar polygons are to each other as 

the squares described on their homologous sides. 
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THEOREM XXII. 

If similar polygons are inscribed in circles, their homologous 

sides, and also their perimeters, will have the same ratio to each 
other as the diameters of the circles in winch they are inscribed. 

Let ABCDE, FGNIK, 
be two similar figures, in¬ 

scribed in the circles whose 

diameters are AL and FM: 
then will each side, AB, 

BC, &c., of the one, be to 

the homologous side FG, GN, &c., of the other, as the 

diameter AL to the diameter FM. Also, the perimeter 

ABA-BCA- CD &c., will be to the perimeter FGA~ GNA-NI 
&c., as the diameter AL to the diameter FM. 

For, draw the two corresponding diagonals AC, FN, as also 

the lines BL and GM. 

Then, the two triangles ACB and FNG will be similar 

(Th. xx); and therefore, the angle ACB is equal to the angle 

FNG. But, the angle ACB is equal to the angle ALB, and 

the angle FNG to the angle FMG (Bk. II. Th. ix): hence, 

the angle ALB is equal to the angle FMG (Ax. 1); and since 

ABL and FGM are right angles (Bk. II. Th. x), the two tri¬ 

angles ALB and FMG will be equiangular (Bk. I. Th. xvii. 

Cor. 1), and consequently similar (Th. xv). 

Therefore, 

AB : FG : : AL : FM. 

Again, since any two homologous sides are to each other in 

the same ratio as AL to FM, Aye have (Bk. III. Th. xii), 

ABA-BCA-CD &c. : FGA-GN+ NI &c. : : AL : FM. 
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c m 

THEOREM XXIII. 

Similar polygons inscribed in circles are to each other as the 

squares of the diameters of the circles. 

Let ABODE, FGNIK, 

be two polygons inscribed 

in the circles whose diam¬ 

eters are AL and FM: 
then will the polygon 

ABCDE, be to the poly¬ 

gon FGNIK as the square of AL to the square of FM. 

For, the polygons being similar, are to each other as the 

squares of their like sides (Th. xxi); that is, as AB to FG . 

But, by the last theorem, 

AB : FG 

therefore (Bk III. Th. xiii), 

: FG2 

AL 

AV 

FM; 

FM 

FGNIK AL FMl 

AB~ 

consequently, 

ABCDE 

Sch. If any regular polygon, 

ABDEFG, be inscribed in a circle, 

and then the arcs AB, BE, &c., be 

bisected, and lines be drawn through 

these points of bisection, a new poly¬ 

gon will be formed having double the 

number of sides. It is plain that this ^ ^ "B 
new polygon will differ less from the circle than the first 

polygon, and its sides will lie nearer the circumference than 

the sides of the first polygon. 

If now, we suppose the number of sides to be continually 

increased, the length of each side will constantly diminish, 
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until finally the polygon will become 

equal to the circle, and the perimeter 

will coincide with the circumference. 

When this takes place, the line CH, 

drawn perpendicular to one of the 

sides, will become equal to the radius 

of the circle. 

c 
THEOREM XXIV. 

The circumferences of circles are to each other as their diameters. 

Let there be two circles 

whose diameters are AL 
and FM: then will their 

circumferences be to each 

other as AL to FM. 

For, suppose two similar polygons to be inscribed in the 

circles: their perimeters will be to each other as AL to FM 
(Th. xxii). 

Let us now suppose the arcs Which subtend the sides of the 

polygons to be bisected, and new polygons of double the num¬ 

ber of sides to be formed: their perimeters will still be to 

each other as AL to FM, and if the number of sides be in¬ 

creased until the perimeters coincide with the circumference, 

we shall have the circumferences to each other as the diam¬ 

eters AL and FM. 

THEOREM XXV. 

The areas of circles are to each other as the squares of their 
diameters. 
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Let there be two circles 

whose diameters are AL 
and FM: then will their 

areas be to each other as 

the square of AL to the 

square of FM. 
For, suppose two similar polygons to be inscribed in the 

circles: then will they be to each other as AL to FM 

(Th. xxiii). 

Let us now suppose the number of sides of the polygons to 

be increased, by bisecting the arcs, until their perimeters 

shall coincide with the circumference of the circles. The 

polygons will then become equal to the circle, and hence, the 

areas of the circles w7ill be to each other as the squares of their 

diameters. 

Cor. Since the circumferences of circles are to each other 

as their diameters (Th. xxiv), it follows, that the areas which 

are proportional to the squares of the diameters, will also be 

proportional to the squares of the circumferences. 

THEOREM XXVI. 

The area of a regular polygon inscribed in a circle, is equal to 
half the product of the perimeter and the perpendicular let fall 
from the centre on one of the sides. 

Let C be the centre of a circle cir¬ 

cumscribing the regular polygon, and 

CD a perpendicular to one of its sides: 

then will its area be equal to half the 

product of CD by the perimeter. 

For, from C draw radii to the ver¬ 

tices of the angles, forming as many 
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equal triangles as the polygon has 

sides, in each of which the perpen¬ 

dicular on the base will be equal to 

CD. Now, the area of one of them, 

as A CB, will be equal to half the pro¬ 

duct of CD by the base AB; and the 

same will be true for each of the other 

triangles : hence, the area of the poly¬ 

gon will be equal to half the product of CD by the perimeter. 

THEOREM XXVII. 

The area of a circle is equal to half the product of the radius by 
the circumference. 

Let C be the centre of a circle : 

then will its area be equal to half the 

product of the radius AC by the cir¬ 

cumference ABE. 
For, inscribe within the circle a 

regular hexagon, and draw CD perpen¬ 

dicular to one of its sides. Then, 

the area of the polygon will be equal to half the product of 

CD multiplied by the perimeter (Th. xxvi). 

Let us now suppose the number of sides of the polygons to 

be increased, until the perimeter shall coincide with the cir¬ 

cumference ; the polygon will then become equal to the circle, 

and the perpendicular CD to the radius CA. Hence, the area 

of the circle will be equal to half the product of the radius by 

the circumference. 

B 

t 
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' PROBLEMS 

RELATING TO THE FOURTH BOOK. 

i 

PROBLEM I. 

To divide a line into any proposed number of equal parts. 

Let AB be the line, and let it be 

required to divide it into four equal 

parts. 

Draw any other line, AC, forming 

an angle with AB, and take any dis¬ 

tance, as AD, and lay it off four times on AC. Join C and B, 
and through the points D, E, and F, draw parallels to CB. 
These parallels to BC will divide the line AB into parts pro¬ 

portional to the divisions on AC (Th. xiii): that is, into equal 

parts. 

PROBLEM II. 
< . " \ 

To find a third proportional to two given lines. 

Let A and B be the given lines. 

Make AB equal to A, and draw g 

AC, making an angle with it. On 

AC lay off AC equal to B, and join 

BC: then lay off AD, also equal to 

B, and through D draw DE parallel to BC: then will AE 
be the third proportional sought. 

For, since DE is parallel to BC, we have (Th. xiii). 

AB : AC : : AD or AC : AE; 

therefore, AE is the third proportional sought. 
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PROBLEM III. 

To find a fourth proportional to the lines A, B, and C. 

Place two of the lines forming an 
. A- 

angle with each other at A; that is, g. 
make AB equal to A, and AC equal C- 

B; also, lay off AD equal to C. 

Then join BC, and through D draw 

DE parallel to BC, and AE will be the fourth proportional 

sought. 

For, since DE is parallel to BC, we have 

AB : AC :: AD : AE; 
therefore, AE is the fourth proportional sought. 

PROBLEM IV. 

To find a mean proportional between two given lines, A and B. 

Make AB equal to A, and 

BC equal to B: on AC de¬ 

scribe a semicircle. Through 

B draw BE perpendicular to 

A C, and it will be the mean proportional sought (Th. xviii. Cor). 

problem v. 

To make a square which shall be equivalent to the sum of two 
given squares. 

Let A and B be the sides of the 

given squares. 

Draw an indefinite line AB, and 

make AB equal to A. At B draw 

BC perpendicular to AB, and make 

BC equal to B: then draw AC, and the square described on 

AC will be equivalent to the squares on A and B (Th. xii). 
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PROBLEM VI. 

To make a square which shall he equivalent to the difference be¬ 
tween two given squares. 

Let A and B be the sides of 

the given squares. 

Draw an indefinite line, and 

make CB equal to A, and CD 
equal to B. At D draw DE 

perpendicular to CB, and with C as a centre, and CB as a 

radius, describe a semicircle meeting DE in E, and join CE: 

then will the square described on ED be equal to the differ¬ 

ence between the given squares. 

For, CE is equal to CB, that is, equal to A, and CD is 

equal to B: and by (Th. xii. Cor.), 

E&=ctf-cn\ 

PROBLEM VII. 

To make a triangle which shall he equivalent to a given quad* 
rilateral. 

Let AB CD be the given quadri¬ 

lateral. 

Draw the diagonal A C, and through 

D draw DE parallel to AC, meeting 

BA produced at E. Join EC: then will the triangle CEB 
be equivalent to the quadrilateral BD. 

For, the two triangles ACE and ADC, having the same base 

A C, and the vertices of the angles D and E in the same line 

DE parallel to AC, are equivalent (Th. ii). If to each, we 

add A CB, we shall then have the triangle E CB equal to the 

quadrilateral BD (Ax. 2). 
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PROBLEM VIII. 

To make a triangle which shall be equivalent to a given polygon. 

Let ABCDE be the polygon. 

Draw the diagonals AD, BD. 

Produce AB in both directions, 

and through C and E draw CG 

and EF, respectively parallel to 

AD and BD: then join FD and 

DG, and the triangle FDG will be equivalent to the polygon 

ABCDE. 

For, the triangle ADE is equivalent to the triangle DAF, 

and DBC to DBG (Th. ii); and by adding ADB to the 

equals, we shall have the triangle FDG equivalent to the 

polygon ABCDE. 

D 

PROBLEM IX. 

To make a rectangle that shall be equivalent to a given triangle. 

Let ABC be the given triangle. 

Bisect the base AB at D, and draw 

DH perpendicular to AB. Through C, 

the vertex of the triangle, draw CHG 
parallel to AB, and draw BG perpen¬ 

dicular to it: then will the rectangle 

DG be equivalent to the triangle ABC. 

For, the triangle would be half a rectangle having the same 

base and altitude : hence, it is equivalent to DG, having half 

the same base and the same altitude. 
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PROBLEM X. 

To inscribe a circle in a regular polygon. 

Bisect any two sides of the polygon 

by the perpendiculars GO, FO, and 

with their point of intersection O, as a 

centre, and OG as a radius describe 

the circumference of a circle—this 

circle will touch all the sides of the 

polygon. 

For, draw OA. Then in the two right angled triangles OAG 
and OAF, the side AO is common, and AG is equal to AF, 

since each is half of one of the equal sides of the polygon: 

hence, OG is equal to OjF(Bk.I.Th. xix). In the same man¬ 

ner it may be shown that OH, OK and OL are all equal to 

each other : hence, a circle described with the centre O and 

radius OF will be inscribed in the polygon. 

Cor. Hence, also the lines OA, ON &c., drawn to the 

angles of the polygon are equal. 

APPENDIX 

OF THE REGULAR POLYGONS. 

1. In a regular polygon the angles are all equal to each 

other (Def. 3). If then, the sum of the inward angles of a 

regular polygon be divided by the number of angles, the quo¬ 

tient will be the value of one of the angles. 

But the sum of the inward angles is equal to twice as many 

right angles, wanting four, as the polygon has sides, and we 

shall find the value in degrees by simply placing 90° for the 

right angle. 
10* 



114 GEOMETRY. 

Appendix. 

2. Thus, for the sum of all the angles of an equilateral 

triangle, we have 

6 x 90°—4 X 90°-540°-360° = 180° 

and for each angle 

180°^-3 = 60°: 

Hence, each angle of an equilateral triangle, is equal to 60 

degrees. 

3. For the sum of all the angles of a square, we have 

8 x 90° — 4 X 90° = 720° — 360°=: 360°, 

and for each of the angles 

360° -f- 4 = 90° 

4. For the sum of all the angles of a regular pentagon, we 

have 

10 x 90° — 4 X 90° = 900° - 360° = 540°, 

and for each angle 

540°-f-5 = 108°. 

5. For the sum of all the angles of a regular hexagon, we 

have 

12 X 90°—4 X 90°=: 1080° — 360°=720°, 

and of each angle 

720°-^ 6 = 120°. 

6. For the sum of the angles of a regular heptagon, we 

have 

14 x 90°-4 x 90° = 1260° — 360° = 900° : 

and for one of the angles 

900°-f-7 = 128° 34' + . 

7. For the sum of the angles of a regular octagon, we have 

16 X 90°—4 x 90° = 1440° - 360° = 1080° : 

and for each angle 

1080° 4-8 = 135°. 



BOOK IV. 115 

Regular Polygons. 

8. Since the sum of the angles about any point is equal to 

four right angles (Bk. I. Th. ii. Cor. 3), it may be observed that 

there are only three kinds of regular polygons, which can be 

arranged around any point, as C, so as exactly to fill up the 

space. These are, 

First.—Six equilateral triangles, in 

which each angle about C is equal to 

60°, and their sum to 

60° X 6 = 360. 

Second.—Four squares, in which 

each angle is equal to 90°, and their 

sum to 

90° x 4=360° 

Third.—Three hexagons, in 

which each angle is equal to 

120, and the sum of the three 

to 

120° X 3 = 360°. 
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OF PLANES AND THEIR ANGLES. 

DEFINITIONS. 

a straight line is perpendicular to a plane, when it is per¬ 

pendicular to every straight line of the plane which it meets. 

The point at which the perpendicular meets the plane, is 

called thz foot of the perpendicular. 

2. If a straight line is perpendicular to a plane, the plane 

is also said to be perpendicular to the line. 

3. A line is parallel to a plane when it will not meet that 

plane, to whatever distance both may be produced. Con¬ 

versely, the plane is then parallel to the line. 

4. Two planes are parallel to each other, when they will 

not meet, to whatever distance both are produced. 

5. If two planes are not parallel, they intersect each other 

in a line that is common to both planes : such line is called 

their common intersection. 

6. The angle, or inclination of two planes, is measured by 

two lines, one in each plane, and both perpendicular to the 

common intersection at the same point. 

This angle may be acute, obtuse, or a right angle. When 

it is a right angle, the planes are said to be perpendicular to 

each other. 
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Let AB be a plane coinciding with 

the plane of the paper, and ECF a 

plane intersecting it in the line FC. 
% 

Now, if from any point of the common 

intersection as C, we draw CD in the 

plane AB, and CE in the plane ECF, 

and both perpendicular to CF at C, 

then will the angle DCE measure the inclination between 

the two planes. 

It should be remembered that the line EC is directly over 

the line CD. 

7. A solid angle is the angular space 

included between several planes meet¬ 

ing at the same point. 

Thus, the solid angle S is formed 

by the meeting of the planes A SB, 

BSC, CSD, DSA. 

Three planes, at least, are requisite 

to form a solid angle. 

THEOREM I. 

Two straight lines which intersect each other, lie in the same 

plane, and determine its position. 

Let AB and A C be two straight lines 
° A 

which intersect each other at A. 

Through AB conceive a plane to be 

passed, and let this plane be turned 

around AB until it embraces the point 

C: the plane will then contain the two 

lines AB, A C, and if it be turned either way it will depart 

from the point C, and consequently from the line A C. Hence, 
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the position of the plane is determined 

by the single condition of containing 

the two straight lines AB, AC. 

Cor. 1. A triangle ABC, or three 

points A, B, C, not in a straight line, 

determine the position of a plane. 

Cor. 2. Hence, also, two parallels 

AB, CD determine the position of a 

plane. For drawing EF, we see that 

the plane of the two straight lines AE, 

EF is that of the parallels AB, CD. 

A E/ B 

C /F D 

THEOREM II. 

A perpendicular is the shortest line which can he drawn from a 

point to a plane. 

Let A be a point above the plane 

DE, and AB a line drawn perpen¬ 

dicular to the plane : then will AB be 

shorter than any oblique line AC. 

For, through B, the foot of the per¬ 

pendicular, draw BC to the point 

where the oblique line AC meets the 

plane. 

Now, since AB is perpendicular to 

the plane, the angle ABC will be a 

right angle (Def. 1.), and consequently less than the angle C: 

therefore, AB, opposite the angle C, will be less than AC, 

opposite the angle B (Bk. I. Th. xi). 
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Cor. It is evident that if several lines be drawn from the 

point A to the plane, that those which are nearest the perpen¬ 

dicular AB, will be less than those more remote. 

Sch. The distance from a point to a plane is measured on 

the perpendicular: hence, when the distance only is named, 

the shortest distance is always understood. 

THEOREM III. 

The common intersection of two planes is a straight line. 

Let the two planes AB, CD, cut 

each other. Join any two points E 

and F, in the common intersection, 

by the straight line EF. This line 

will lie wholly in the plane AB, and 

also wholly in the plane CD (Bk. I. 

Def. 7); therefore, it will be in both 

planes at once, and consequently, is 

their common intersection. 

THEOREM IV. 

A straight line which is perpendicular to two straight lines at 

their point of intersection, will he perpendicular to the plane of 

those lines. 

Let the line PA be perpen¬ 

dicular to the two lines AD, 

AB: then will it be perpendic¬ 

ular to the plane BC which con¬ 

tains them. 

For, if AP is not perpendicular 

to the plane BC, suppose a plane 
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to be drawn through A, that shall 

be perpendicular to AP. 

Now, every line drawn through 

A, and perpendicular to AP, 

will be a line of this last plane 

(Def. 1): hence, this last plane 

will contain the lines AB, AD, 

and consequently, a line which is perpendicular to two lines 

at the point of intersection, will be perpendicular to the plane 

of those lines. 

THEOREM V. 

If two straight lines are perpendicular to the same plane they 

will he parallel to each other. 

Let the two lines AB, CD, be 

perpendicular to the plane EF: 

then will they be parallel to each 

other. 

For, join the points B and D, 

in which the lines meet the 

plane EF. 

Then, because the lines AB, CD, are perpendicular to the 

plane EF, they will be perpendicular to the line BD 

(Def. 1); and since they are both contained in the plane 

ABDC (Th. ii. Cor. 2), they will be parallel to each other 

(Bk. I. Th. xiii Cor.) 

Cor. If two lines are parallel, and one of them is perpen¬ 

dicular to a plane, the other will also be perpendicular to the 

same plane. 

A C 

F 

B D 

E 
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THEOREM VI. 

If two planes intersect each other at right angles, and a line 

he drawn in one plane perpendicular to the common intersection, 

this line will be perpendicular to the other plane. 

Let the plane FE be perpen¬ 

dicular to MN, and AP be drawn 

in the plane FE, and perpen¬ 

dicular to the common intersec¬ 

tion DE: then will AP be per¬ 

pendicular to the plane MN. 

For, in the plane MN draw 

CP perpendicular to the common 

intersection 11E. Then, because the planes MN and FE are 

perpendicular to each other, the angle APC, which measures 

their inclination, will be a right angle (Def. 6). Therefore, 

the line AP is perpendicular to the two straight lines P C and 

PD; hence, it is perpendicular to their plane MN (Th. iv). 

THEOREM VII. 

If one plane intersects another plane, the sum of the angles on 

the same side will he equal to two right angles. 

Let the plane GEF intersect 

the plane AB in the line FE: 

then will the sum of the two 

angles on the same side be equal 

to two right angles. 

For, from any point, as E, in 

the common intersection, draw 

the lines EG and DEC, one in each plane, and both perpen¬ 

dicular to the common intersection at E. Then, the line GE 

makes, with the line DEC, two angles, which together are 
11 
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equal to two right angles (Bk I. 

Th. ii): but these angles measure 

the inclination of the planes ; there¬ 

fore, the sum of the angles on the 

same side, which two planes make 

with each other, is equal to two 

right angles. 

Cor. In like manner it may be demonstrated, that planes 

which intersect each other have their vertical or opposite 

angles equal. 

THEOREM VIII. 

Two planes which are perpendicular to the same straight line are 

' parallel to each other. 

Let the planes MN and PQ 

be perpendicular to the line AB: 

then will they be parallel. 

For, if they can meet any 

where, let O be one of their 

their common points, and draw 

OB, in the plane PQ, and OA, 

in the plane MN. 

Now, since AB is perpendicular to both planes, it will 

be perpendicular to OB and OA (Def. 1): hence, the triangle 

OAB will have two right angles, which is impossible (Bk. I. 

Th. xvii. Cor. 4); therefore, the planes can have no point, as 

O, in common, and consequently, they are parallel (Def. 4). 

THEOREM IX. 

If a plane cuts two parallel planes, the lines of intersection will 

be parallel. 
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Let the parallel planes MN and 

PA be intersected by the plane 
t V 

EH: then will the lines of inter¬ 

section EF, GH, be parallel. 

For, if the lines EF, GH, were 

not parallel, they would meet each 

other if sufficiently produced, since 

they lie in the same plane. If this 

were so, the planes MN, PA, would 

meet each other, and, consequently, could not be parallel; 

which would be contrary to the supposition. 

THEOREM X. 

If two lines are parallel to a third line, though not in the same 

plane with it, they will be parallel to each other. 

Let the lines AB and CD be each 

parallel to the third line EF, though 

not in the same plane with it: then 

will they be parallel to each other. 

For, since EF and CD are parallel, 

they will lie in the same plane FC 

(Th. i. Cor. 2), and AB, EF will also 

lie in the plane EB. 

At any point, G, in the line EF, let GI and GH be drawn 

in the planes FC, BE, and each perpendicular to FE at G. 

Then, since the line EF is perpendicular to the lines GH, 

GI, it will be perpendicular to the plane HGI (Th. iv). And 

since FE is perpendicular to the plane HGI, its parallels 

AB and DC will also be perpendicular to the same plane 

(Th. v). Hence, since the two lines AB, CD, are both per¬ 

pendicular to the plane HGI, they will be parallel to each other. 
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THEOREM XI. 

If two angles, not situated in the same plane, have their sides 

parallel and lying in the same direction, the angles will he 

equal. 

Let the angles ACE and BDF 

have the sides AC parallel to BD, 

and CE to DF: then will the angle 

ACE be equal to the angle BDF. 

For, make AC equal to BD, and 

CE equal to DF, and join AB, CD, 

and EF; also, draw AE, BF. 

Now since AC is equal and par¬ 

allel to BD, the figure AD will be a 

parallelogram (Bk. I. Th. xxv); there¬ 

fore, AB is equal and parallel to CD. 

Again, since CE is equal and parallel to DF, CF will be 

a parallelogram, and EF will be equal and parallel to CD. 

Then, since AB and EF are both parallel to CD, they will 

be parallel to each other (Th. x); and since they are each 

equal to CD, they will be equal to each other. Hence, the 

figure BAEF is a parallelogram (Bk. I. Th. xxv), and conse¬ 

quently, AE is equal to BF. Hence, the two triangles ACE 

and BDF have the three sides of the one equal to the three 

sides of the other, each to each, and therefore the angle ACE 

is equal to the angle BDF (Bk. I. Th. viii). 

THEOREM XII. 

If two planes are parallel, a straight line which is perpendicular 

to the one will also he perpendicular to the other. 
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Let MN and PQ be two par¬ 

allel planes, and let AB be per¬ 

pendicular to MN: then will it 

be perpendicular to PQ. 

For, draw any line, B C, in the 

plane PQ, and through the lines 

AB, BC, suppose the plane 

ABC to be drawn, intersecting 

the plane MN in the line AD: then, the intersection AD will 

be parallel to BC (Th. ix). But since AB is perpendicular 

to the plane NM, it will be perpendicular to the straight line 

AD, and consequently, to its parallel PC (Bk. I. Th. xii. Cor.) 

In like manner, AB might be proved perpendicular to any 

other line of the plane PQ, which should pass through B; 

hence, it is perpendicular to the plane (Def. 1). 

11* 

•> 
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OF SOLIDS. 

DEFINITIONS. 

1. Every solid bounded by planes is called a polyedron. 

2. The planes which bound a polyedron are called faces. 

The straight lines in which the faces intersect each other, 

are called the edges of the polyedron, and the points at which 

the edges intersect, are called the vertices of the angles, or 

vertices of the polyedron. 

3. Two polyedrons are similar, when they are contained 

by the same number of similar planes, similarly situated, and 

equally inclined to each other. 

4. A prism is a solid, whose ends 

are equal polygons, and whose side 

faces are parallelograms. 

Thus, the prism whose lower base 

is the pentagon ABCDE, terminates 

in an equal and parallel pentagon 

FGHIK, which is called the upper 

base. The side faces of the prism 

are the parallelograms DH, DK, EF, 

AG, and BH. These are called the convex, or lateral surface 

of the prism. 

K 
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5. The altitude of a prism is the distance between its upper 

and lower bases : that is, it is a line drawn from a point of the 

upper base, perpendicular, to the lower base. 

6, A right prism is one in which 

the edges AF, BG, EK, HC, and 

DI, are perpendicular to the bases. 

In the right prism, either of the per¬ 

pendicular edges is equal to the 

altitude. In the oblique prism the 

altitude is less than the edge. 

7. A prism whose base is a triangle, is called a triangular 

prism; if the base is a quadrangle, it is called a quadrangular 

prism; if a pentagon, a pentagonal prism; if a hexagon a 

hexagonal prism; &c. 

, / ; ' ; ' 

8. A prism whose base is a parallelo¬ 

gram, and all of whose faces are also 

parallelograms, is called a parallelopipe- 

don. If all the faces are rectangles, it is 

called a rectangular parallelopipedon 

K 

9. If the faces of the rectangular par¬ 

allelopipedon are squares, the solid is 

called a cube: hence, the cube is a prism 

bounded by six equal squares. 
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10. A pyramid is a solid, formed by 

several triangles united at the same 

point S, and terminating in the differ¬ 

ent sides of a polygon ABCDE. 

The polygon ABCDE, is called the 

base of the pyramid; the point S, is 

called the vertex, and the triangles 

ASB, BSC, CSD, DSE, and ESA, 

form its lateral, or convex surface. 

11. A pyramid whose base is a triangle, is called a trian- 

gular pyramid; if the base is a quadrangle, it is called a 

quadrangular pyramid; if a pentagon, it is called a petagonal 

pyramid; if the base is a hexagon, it is called a hexagonal 

pyramid; &c. 

12. The altitude of a pyramid, is the 

perpendicular let fall from the vertex, 

upon the plane of the base. Thus, 

SO is the altitude of the pyramid 

S—ABCDE. 

13. When the base of a pyramid is a regular polygon, and 

the perpendicular SO passes through the middle point of the 

base, the pyramid is called a regular pyramid, and the line 

SO is called the axis. 
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14. The slant height of a regular 

pyramid, is a line drawn from the ver¬ 

tex, perpendicular to one of the sides 

of the polygon which forms its base. 

Thus, SF is the slant height of the 

pyramid S—ABCDE. 

15. If from the pyramid S—ABCDE 

the pyramid S—abcde be cut off by a 

plane parallel to the base, the remain¬ 

ing solid, below the plane, is called 

the frustum of a pyramid. 

The altitude of a frustum is the per¬ 

pendicular distance between the upper 

and lower planes. 

16. A Cylinder is a solid, described by 

the revolution of a rectangle, AEFD, 

about a fixed side, EF. 

As the rectangle AEFD, turns around 

the side EF, like a door upon its hinges, 

the lines AE and FD describe circles, 

and the line AD describes the convex sur¬ 

face of the cylinder. 

The circle described by the line AE, is called the lower 

base of the cylinder, and the circle described by DF, is called 

the upper base. 
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The immovable line EF is called the axis of the cylinder. 

A cylinder, therefore, is a round body with circular ends. 

17. If a plane be passed through the 

axis of a cylinder, it will intersect it in a 

rectangle, PG, which is double the re¬ 

volving rectangle EB. 

18. If a cylinder be cut by a plane par¬ 

allel to the base, the section will be a cir¬ 

cle equal to the base. For, while the 

side FC, of the rectangle MC, describes 

the lower base, the equal side MP, will 

describe the circle MLKN, equal to the 

lower base. 
■ '/ ' • t - i K :: 1 • 

; ' • , • • > i 

19. If a polygon be inscribed in the 

lower base of a cylinder, and a corres¬ 

ponding polygon be inscribed in the upper 

base, and their vertices be joined by 

straight lines, the prism thus formed is 

said to be inscribed in the cylinder. 
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20. A cone is a solid, described by 

the revolution of a right angled triangle, 

ABC, about one of its sides, CB. 

The circle described by the revolving 

side, AB, is called the base of the cone. 

The hypothenuse, AC, is called the 

slant height of the cone, and the surface 

described by it, is called the convex ^ 

surface of the cone. 

The side of the triangle, CB, which remains fixed, is called 

the axis, or altitude of the cone, and the point C, the vertex 

of the cone. 

21. If a cone be cut by a plane par¬ 

allel to the base, the section will be a 

circle. For, while in the revolution of 

the right angled triangle SA C, the line 

CA describes the base of the cone, its 

parallel FG will describe a circle 

FKHI, parallel to the base. If from 

the cone S— CDB, the cone S—FKH 

be taken away, the remaining part is 

called the frustum of the cone. 

22. If a polygon be inscribed 

in the base of a cone, and straight 

lines be drawn from its vertices 

to the vertex of the cone, the pyra¬ 

mid thus formed is said to be in¬ 

scribed in the cone. Thus, the 

pyramid S—ABCD is inscribed in 

the cone. 
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23. Two cylinders are similar, when the diameters of their 

bases are proportional to their altitudes. 

24. Two cones are also similar, when the diameters of their 

bases are proportional to their altitudes. 
t , 

25. A sphere is a solid terminated by a curved surface, all 

the points of which are equally distant from a certain point 

within called the centre. 

26. The sphere may be described 

by revolving a semicircle, ABD, 

about the diameter AD. The plane 

will describe the solid sphere, and 

the semicircumference ABD will 

describe the surface 

27. The radius of a sphere is a 

line drawn from the centre to any 

point of the circumference. Thus, 

CA is a radius. 

28. The diameter of a sphere is 

a line passing through the centre, 

and terminated by the circumfer¬ 

ence. Thus, AD is a diameter. 
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29. All diameters of a sphere are equal to each other; and 

each is double a radius. 

30. The axis of a sphere is any line about which it re¬ 

volves ; and the points at which the axis meets the surface, 

are called the poles. 

31. A plane is tangent to a sphere 

when it has but one point in com¬ 

mon with it. Thus, AB is a tan¬ 

gent plane, touching the sphere at B. 

32. A zone is a portion of the sur¬ 

face of a sphere, included between 

two parallel planes which form its 

bases. Thus, the part of the surface 

included between the planes AE 

and DF is a zone. The bases of 

this zone are the two circles whose 

diameters are AE and DF. 

33. One of the'planes which 

bound a zone may become tangent 

to the sphere; in which case the 

zone will have but one base. Thus, 

if one plane be tangent to the sphere 

at A, and another plane cut it in the 

circle DF, the zone included be¬ 

tween them, will have but one base. 

12 
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34. A spherical segment is a portion of the solid sphere in¬ 

cluded between two parallel planes. These parallel planes 

are its bases. If one of the planes is tangent to the sphere, 

the segment will have but one base. 

35. The altitude of a zone or segment, is the distance be¬ 

tween the parallel planes which form its bases. 

V . . s r* k .. *V q ? /.: v 

THEOREM I. 

The convex surface of a right prism is equal to the perimeter of 

its base multiplied by its altitude. 

Let ABODE—K be a right 

prism: then will its convex surface 

be equal to 

(AB+BC+ CD+DE+EA) x AF. 

For, the convex surface is equal 

to the sum of the rectangles AG, 

BH, Cl, DK, and EF, which com¬ 

pose it; and the area of each is equal 

to the product of its base by its alti¬ 

tude. But the altitudes are equal to the altitudes of the prism: 

hence, their areas, that is, the convex surface of the prism, is 

equal to 

(AB+BC+ CD+DE+EA) x AF; 

that is, equal to the perimeter of the base of the prism multi¬ 

plied by its altitude. 
1 . \ ' • ‘ - ^ ‘ 

* - . 1 v j • J x. 

THEOREM II. 

The convex surface of a cylinder is equal to the circumference of 

its base multiplied by its altitude. 

K 
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Let DB be a cylinder, and AB the 

diameter of its base : the convex sur¬ 

face will then be equal to the altitude 

AD multiplied by the circumference 

of the base. 

For, suppose a regular prism to be 

inscribed within the cylinder. Then, 

the convex surface of the prism will be 

equal to the perimeter of the base mul¬ 

tiplied by the altitude (Th. i). But the altitude of the prism 

is the same as that of the cylinder; and if we suppose the 

sides of the polygon, which forms the base of the prism, to 

be indefinitely increased, the polygon will become the circle 

(Bk. IV. Th. xxv), in which case, its perimeter will become the 

circumference, and the prism will coincide with the cylinder. 

But its convex surface is still equal to the perimeter of its base 

multiplied by its altitude: hence, the convex surface of a cylin¬ 

der is equal to the circumference of its base multiplied by its al¬ 

titude. (> theorem hi. 

In every prism the sections formed by planes parallel to the base 

are equal polygons. 

Let A G be any prism, and IL a sec¬ 

tion made by a plane parallel to the 

base AC: then will the polygon IL 

be equal to A C. 

For, the two planes AC, IL, being 

parallel, the lines AB, IK, in which 

they intersect the plane AF, will also 

be parallel (Bk. V. Th. ix). For a 

like reason, BC and KL will be par- 
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allel; also, CD will be parallel to LM, 

and AD to IM. 

But, since AI and BK are parallel, 

the figure AK will be a parallelogram : 

hence AB is equal to IK (Bk. I. 

Th. xxiii). In the same way it may be 

shown that BC is equal to KL, CD to 

LM, and AD to IM. 

But, since the sides of the polygon 

AC are respectively parallel to the 

sides of the polygon IL, it follows that their corresponding 

angles are equal (Bk. Y. Th. xi), viz., the angle A to the angle 

7, the angle B to K, the angle C to Lr and the angle M to D; 

hence, the polygon IL is equal to AC. 

Sch. It was shown in Definition 18, that the section of a 

cylinder, by a plane parallel to the base, is a circle equal to 

the base. 

THEOREM IV. 

If a pyramid be cut by a plane parallel to the base, 

I. The edges and altitude will be divided proportionally. 

II. The section will be a polygon similar to the base. 

Let the pyramid S—ABCDE, of 

which SO is the altitude, be cut by the 

plane abcde parallel to the base: then 

will, 

Sa : SA : : Sb : SB, 

and the same for the other edges ; and 

the polygon abcde will be similar to the 

base ABCDE. 

First. Since the planes ABC and abc 
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are parallel, their intersections, AB, ab, by the plane SAB, 

will also be parallel (Bk. V. Th. ix); hence, the triangles 

SAB, sab, are similar, and we have 

SA : Sa : : SB : Sb; 

for a similar reason, we have 

SB : Sb :: SC : Sc; 

and the same for the other edges: hence, the edges SA, SB, 

SC, <fec., are cut proportionally at the points a, b, c, &c. 

The altitude SO is likewise cut proportionally at the point 

o; for, since BO is parallel to bo, we have 

SO : So :: SB : Sb. 
n i:'. • > ' ' " r : l. . - 1 > . \ 

' Secondly. Since ab is parallel to AB, be to BC, cd to CD, 

&c.; the angle abc is equal to ABC, the angle bed to BCD, 

and so on (Bk. V. Th. xi). 

Also, by reason of the similar triangles, SAB, Sab, we have 
■ ■ ' • ' 

AB : ab : SB : Sb, 

and by reason of the similar triangles SB C, Sbc, we have 

SB : Sb : : BC : be; 

hence (Bk. III. Th. v), 

AB : ab : : BC : be; 

and for a similar reason, we also have 

BC : be : : CD : cd, &c. 

Hence, the polygons ABODE, abode, having their angles 

respectively equal, and their homologous sides proportional, 

are similar. 

12* 
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THEOREM V. 

If two pyramids, having equal altitudes and their bases in the 

same plane, be intersected by planes parallel to the plane of the 

bases, the sections in each pyramid will be proportional to the bases. 

Let $—ABODE, and 

S—XYZ, be two pyra¬ 

mids, having a common 

vertex, and their bases sit¬ 

uated in the same plane. 

If these pyramids are cut 

by a plane parallel to the 

plane of their bases, giv¬ 

ing the sections abcde, 

xyz, then will the sections 

abcde, xyz, be to each other as the bases ABCDE, XYZ. 

For, the polygons ABCDE, abcde, being similar, their sur¬ 

faces are as the squares of the homologous sides AB, ab; 

but AB : ab : : .SA : Sa; 

hence, ABCDE : abcde : : SA2 : Sci 

For the same reason, 

XYZ : xyz : : SX2 : Sx. 

But since abc and xyz are in one plane, the lines SA, Sa, 

SX, Sx, are proportional to SO, So: therefore, 

SA : Sa : : SX : Sx; 

hence, ABCDE : abcde : : XYZ : xyz. 

consequently, the sections abcde, xyz, are to each other as the 

bases ABCDE, XYZ. 

Cor. If the bases ABCDE, XYZ, are equivalent, any sec¬ 

tions abcde, xyz, made at equal distances from the bases, will 

be also equivalent. 
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THEOREM VI. 

The convex surface of a regular pyramid is equal to half the pro¬ 

duct of the perimeter of its base multiplied by the slant height. 

Let $—AB CDE be a regular pyra¬ 

mid, SF its slant height: then will its 

convex surface be equal to half the 

product 

SFx (AB+BC+ CD+DE+EA). 

For, since the pyramid is regular, the 

point 0, in which the axis meets the 

base, is the centre of the polygon 

ABODE; hence, the lines OA, OB, 

Sic. drawn to the vertices of the base, 

are equal (Bk. IV. prob. x. Cor). 

Now, in the right angled triangles SAO, SBO, the bases 

and perpendiculars are equal: hence, the hypothenuses are 

equal; and in the same way it may be proved that all the 

edges of the pyramid are equal. The triangles, therefore, 

which form the convex surface of the prism, are all equal to 

each other. 

But the area of either of these triangles, as SAB, is equal 

to half the product of the base AB, by the slant height of the 

pyramid SF: hence, the area of all the triangles, which form 

the convex surface of the pyramid, is equal to half the product 

of the perimeter of the base by the slant height. 

THEOREM VII. 

The convex surface of the frustum of a regular pyramid is 

equal to half the sum of the perimeters of the upper and lower 

bases multiplied by the slant height. 
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Let a—ABODE be the frustum of a 

regular pyramid: then will its convex 

surface be equal to half the product of 

the perimeter of its two bases multi¬ 

plied by the slant height Ff 

For, since the upper base abcde, is 

similar to the lower base ABCDE 

(Th. iv), and since ABCDE is a regular polygon, it follows 

that the sides ab, be, cd, de, and ea, are all equal to each other. 

Hence, the trapezoids EAae, ABba, &c., which form the 

convex surface of the frustum are equal. But the perpen¬ 

dicular distance between the parallel sides of these trapezoids 

is equal to Ef the slant height of the frustum. 

Now, the area of either of the trapezoids, as AEea, is equal 

to half the product of Ffx (EA-\-ea) (Bk. IY. Th. x): hence, 

the area of all of them, that is, the convex surface of the 

frustum, is equal to half the sum of the perimeters of the 

upper and lower bases, multiplied by the slant height. 

THEOREM VIII. 

The convex surface of a cone is equal to half the product of the 

circumference of the base multiplied by the slant height. 

In the circle which forms the base 

of the cone, inscribe a regular poly¬ 

gon, and join the vertices with the 

vertex S, of the cone. We shall 

then have a regular pyramid in¬ 

scribed in the cone. 

The convex surface of this pyra¬ 

mid will be equal to half the product 
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of the perimeter of the base by the 

slant height (Th. vi). 

Let us now suppose the number 

of sides of the polygon to be indefi¬ 

nitely increased: the polygon will 

then coincide with the base of the 

cone, the pyramid will become the 

cone, and the line Sf which meas¬ 

ures the slant height of the pyramid, 

will then measure the slant height 

of the cone. 

Hence, the convex surface of the cone is equal to half the 

product of the slant height by the circumference of the base. 

THEOREM IX. 

The convex surface of the frustum of a cone is equal to half 

the sum of the circumferences of its two bases multiplied by the 

slant height. 

For, if we suppose the frustum of 

a regular pyramid to be inscribed in 

the frustum of a cone, its convex 

surface will be equal to half the pro¬ 

duct of its slant height by the perim¬ 

eters of its two bases. But if we 

increase the number of sides of the 

polygons indefinitely, the frustum of the pyramid will become 

the frustum of the cone : hence, the area of the frustum of the 

cone is equal to half the sum of the circumferences of its two 

bases multiplied by the slant height. 
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THEOREM X. 

Two rectangular parallelopipedons, having equal altitudes and 

equal bases, are equal. 

Let E—ABCD, and F—KGHI, be two rectangular par- 

allelopipedons Laving equal pd 
V 

bases, A C and KH, and equal 

altitudes, AE and KF: then 

will they be equal. 

For, apply the base of the 

one parallelopipedon to that B C 

of the other, and since the bases are equal, they will coincide. 

Again, since the edges are perpendicular to the bases, the 

edges of the one parallelopipedon will coincide with those of 

the other; and since the altitude A E is equal to KF, the 

planes of the upper bases will coincide. Hence, the paral- 

lelopipedons will coincide, and consequently they are equal. 

THEOREM. XI. 

Two rectangular parallelopipedons, which have the same base, are 

to each other as their altitudes. 

Let the parallelopipedons AG, AL, 

have the same base BD, then will they 

be to each other as their altitudes AE 

AI. 

Suppose the altitudes AE, AI, to 

be to each other as two whole num¬ 

bers, as 15 is to 8, for example. Di¬ 

vide AE into 15 equal parts, whereof 

AI will contain 8; and through x, y, z, 

&c.,the points of division, draw planes 
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parallel to the base. These planes 

will cut the solid AG into 15 partial 

parallelopipedons, all equal to each 

other, because they have equal bases 

and equal altitudes—equal bases, since 

every section, IL, made parallel to 

the base BD, of a prism, is equal 

to that base ; equal altitudes, because 

the altitudes are the equal divisions Ax, 

xy, yz, Sic. But of those 15 equal par¬ 

allelopipedons, 8 are contained inAL; 

hence, solid AG : solid AL : : 

or generally, 

solid AG : solid AL : : 

THEOREM XII. 

Two regular parallelopipedons, having the same altitude, are to 

each other as their bases. 

Let the parallelopipe¬ 

dons A G, AK, have the 

same altitude AE; then 

will they be to each 

other as their bases A C, 

AN. 

Having placed the two 

solids by the side of each 

other, as the figure re¬ 

presents, produce the 

plane ONKL until it 

meets the plane DCGH 

in PQ; you will thus 

E H 
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have a third parallelo- 

pipedon AQ, which may¬ 

be compared with each 

of the parallelopipedons 

A G, AK. The two sol¬ 

ids AG, AQ, having the 

same base AEHD, are 

to each other as their 

altitudes AB, AO; in 

like manner, the two 

solids AQ AK, having 

the same base AOLE, 

are to each other as their 

altitudes AD, AM. 

Hence, we have the two proportions, 

solid AG : solid AQ : : AB : AO, 

solid AQ : solid AK : : AD : AM. 

Multiplying together the corresponding terms of these pro¬ 

portions, and omitting the common'multiplier solid AQ, we have 

solid AG : solid AK :: ABxAD : AO x AM. 

But ABxAD represents the base ABCD; and AOxAM 

represents the base AMNO: hence, two rectangular parallel¬ 

opipedons of the same altitude are to each other as their bases. 

THEOREM XIII. 

Any two rectangular parallelopidedons are to each other as the 

products of their three dimensions. 

For, having placed the two solids AG, AZ, (see next figure) 

so that their surfaces have the common angle BAE, produce 

the planes necessary for completing the third parallelopipedon 

AK, having the same altitude with the parallelopipedon AG. 

By the last proposition we shall have the proportion, 
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solid AG : solid AK : : ABCD : AMNO. 

But the two paral- 

lelopipedons AK, AZ, 

having the same base 

AMNO, are to each 

other as their altitudes 

AE, AX; hence, we 

have 

solid AK : 

Multiplying together the corresponding terms of these pro¬ 

portions, and omitting in the result the common multiplier 

solid AK, we shall have 

solid AG : solid AZ : : ABCD x AE : AMNO x AX. 

Instead of the bases ABCD and AMNO, put ABxAD 

and AO x AM, and we have 

solid AG : solid AZ : : ABxADxAE : AO x AMx AX. 

Hence, any two rectangular parallelopipedons are to each 

other as the product of their three dimensions. 

Sch. We are consequently authorized to assume, as the 

measure of a rectangular parallelopipedon, the product of its 

three dimensions. 

In order to comprehend the nature of this measurement, it 

is necessary to reflect, that the number of linear units in one 
13 
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dimension of the base multiplied by the number of linear units 

of the other dimension of the base, will give the number of 

superficial units in the base of the parallelopipedon (Bk. IV. 

Th. vi. Sch). For each unit in height, there are evidently as 

many solid units as there are superficial units in the base. 

Therefore, the number of superficial units in the base multi¬ 

plied by the number of linear units in the altitude, gives the 

number of solid units in the parallelopipedon. 

If the three dimensions of another parallelopipedon are valued 

according to the same linear unit, and multiplied together in 

the same manner, the two products will be to each other as 

the solids, and will serve to express their relative magnitude. 

Let us illustrate this by an example. 

Let ABCD be the base of a 

parallelopipedon, and suppose 

AB = 4 feet, and BC — 3 feet. 

Then the number of square feet 

in the base ABCD will be equal 

to 3x4 = 12 square feet. 

Therefore, 12 equal cubes of 1 

foot each, may be placed by the 

side of each other on the base. If the parallelopipedon be 1 

foot in height, it will contain 12 cubic feet; were it 2 feet in 

height, it would contain two tiers of cubes, or 24 cubic feet; 

were it 3 feet in height, it would contain three tiers of cubes, 

or 36 cubic feet. 

The magnitude of a solid, its volume or extent, forms what 

is called its solidity; and this word is exclusively employed 

to designate the measure of a solid ; thus, we say the solidity 

of a rectangular parallelopipedon is equal to the product of its 

base by its altitude, or to the product of its three dimensions, 
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As the cube has all its three dimensions equal, if the side 

is 1, the solidity will be 1 X 1 X 1 = 1 ; if the side is 2, the 

solidity will be 2x2x2=8; if the side is 3, the solidity 

will be 3x3x3 = 27 ; and so on: hence, if the sides of a 

series of cubes are to each other as the numbers 1, 2, 3, &c. 

the cubes themselves, or their solidities, will be as the num¬ 

bers 1, 8, 27, &c. Hence it is, that in arithmetic, the cube of 

a number is the name given to a product which results from 

three factors, each equal to this number. 

THEOREM XIV. 

If a parallclopipedon, a prism, and a cylinder, have equivalent 

bases and equal altitudes, they will be equivalent. 

Let F—ABCD, be a parallelopipedon ; F—ABCDE, a 

prism; and D—ABC, a cylinder, having equivalent bases 

and equal altitudes : then will they be equivalent. 

For, since their bases are equivalent they will contain the 

same number of units of surface (Bk. IV. Def. 9). Now, 

for each unit of height there will be one tier of equal cubes 

in each solid, and since the altitudes are equal, the number of 

tiers in each solid will be equal: hence, the solidities will be 

equal, and therefore the solids will be equivalent. 

Cor. Hence, we conclude, that the solidity of a prism or 

cylinder is equal to the area of its base multiplied by its 
v \ 

altitude. 
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THEOREM XV. 

Two triangular pyramids, having equivalent bases and equal 

altitudes, are equivalent, or equal in solidity. 

S 

* 

4 

Let their equivalent bases, ABC, abc, be situated in the 

same plane, and let IT be their common altitude. If they 

are not equivalent, let £—abc be the smaller; and suppose 

Aa to be the altitude of a prism, which, having ABC for its 

base, is equal to their difference. 

Divide the altitude AT into equal parts Ax, xy, yz, &c., 

each less than Aa, and let k be one of those parts : through 

the points of division pass planes parallel to the plane of the 

bases : the corresponding sections formed by these planes in 

the two pyramids will be respectively equivalent, namely, 

DEF to dcf, GHI to ghi, &c. (Th. v. Cor.). 
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This being granted, upon the triangles ABC, DEF, GHI, 

&c., taken as bases, construct exterior prisms having for 

edges the parts AD, DG, GK, &c., of the edge SA; in like 

manner, on bases def, ghi, klm, &c., in the second pyramid, 

construct interior prisms, having for edges the corresponding 

parts of Sa. It is plain that the sum of the exterior prisms of 

the pyramid S—AB C will be greater than the pyramid; while 

the sum of the interior prisms of the pyramid S—abc, will be 

less than the pyramid. Hence, the difference between these 

sums will be greater than the difference between the pyramids. 

Now, beginning with the bases ABC, abc, the second ex¬ 

terior prism DEF—G is equivalent to the first interior prism 

def-—a, because they have the same altitude k, and their bases 

DEF, def, are equivalent; for like reasons, the third exterior 

prism GHI—K, and the second interior prism ghi—d, are 

equivalent; the fourth exterior and the third interior ; and so 

on, to the last of each series. Hence, all the exterior prisms 

of the pyramid S—ABC, excepting the first prism ABC—D, 

have equivalent corresponding ones in the interior prisms of 

the pyramid S—abc: hence, the prism ABC—D is the differ¬ 

ence between the sum of all the exterior prisms of the pyramid 

S—ABC, and of the interior prisms of the pyramid S—abc. 

But this difference has already been proved to be greater than 
v 

that of the two pyramids: which, by supposition, differ by 

the prism a—ABC: hence, the prism ABC—D, must be 

greater than the prism a—ABC. But in reality it is less, for 

they have the same base ABC, and the altitude Ax, of the 

first, is less than Aa, the altitude of the second. Hence, the 

supposed inequality between the two pyramids cannot exist: 

hence, the two pyramids; S—ABC, S—abc, having equal al¬ 

titudes and equivalent bases, are themselves equivalent. 

13* 
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THEOREM XVI. 

Every triangular pyramid is a third part of a triangular prism 

having the same base and the same altitude. 

Let F—ABC be a trian¬ 

gular pyramid, AB C—DEF 

a triangular prism of the 

same base and the same al¬ 

titude : the pyramid will be 

equal to a third of the prism. 

Cut off the pyramid F— 

AB C from the prism, by the 

plane FAC; there will re¬ 

main the solid F—A CDE, 

which may be considered 

as a quadrangular pyramid, whose vertex is F, and whose 

base is the parallelogram A CDE. Draw the diagonal CE; 

and pass the plane FCE, which will cut the quadrangular 

pyramid into two triangular ones, F^ACE, F-CDE. These 

two triangular pyramids have for their common altitude the 

perpendicular let fall from F on the plane A CDE; and 

their bases are also equal, being halves of the parallelogram 

AD: hence, the pyramid F-ACE, and the pyramid F-CDE, 

are equivalent (Th. xv). 

But the pyramid F—CDE, and the pyramid F—ABC, have 

equal bases, ABC, DEF; they have also the same altitude, 

namely, the distance between the parallel planes ABC, DEF, 

hence, the two pyramids are equivalent. Now, the pyramid 

F—CDE has already been proved equivalent to F—ACE; 

hence, the three pyramids F—ABC, F—CDE, F—ACE, 

which compose the prism ABC—DEF are all equivalent. 
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Hence, the pyramid F—ABC is the third part of the prism 

ABC—DEF, which has the same base and the same altitude. 

Cor. The solidity of a triangular pyramid is equal to a third 

part of the product of its base by its altitude. 

THEOREM XVII. 

The solidity of every pyramid is equal to the base multiplied by 

a third of the altitude. 

Let S—ABCDE be a pyramid. 

Pass the planes SEB, SEC through 

the diagonals EB, EC; the polygonal 

pyramid $—ABCDE will be divided 

into several triangular pyramids all 

having the same altitude SO. But 

each of these pyramids is measured by 

multiplying its base ABE, BCE, or A 

CDE, by the third part of its altitude 

SO (Th. xvi. Cor.); hence the sum 

of these triangular pyramids, or the polygonal pyramid 

S—ABCDE, will be measured by the sum of the triangles 

ABE, BCE, CDE, or the polygon ABCDE, multiplied by 

one third of SO. 

Cor. 1. Every pyramid is the third part of the prism which 

has the same base and the same altitude. 

Cor. 2. Two pyramids having the same altitude, are to 

each other as their bases. 

Cor. 3. Two pyramids having equivalent bases, are to each 

other as their altitudes. 

Cor. 4. Pyramids are to each other as the products of their 

bases by their altitudes. 



152 GEOMETRY. 

Solidity of the C one.____ 

THEOREM XVIII. 

The solidity of a cone is equal to one third of the product of the 

base Tnultiplied by the altitude. 

Let ABODE be the base, S the 

vertex, and SO the altitude of the 

cone : then will its solidity be equal 
) 

to one third the product of its base 

by its altitude SO. 

Inscribe in the base of the cone 

any regular polygon, ABODE, and 

join the vertices A, B, C, &c., with 

the vertex S, of the cone ; then will 

there be inscribed in the cone a regular pyramid, having 

for its base the polygon ABODE. The solidity of this 

pyramid is equal to one third of the base multiplied by the 

altitude (Th. xvii). 

Let now, the number of sides of the polygon be indefinitely 

increased: the polygon will then become equal to the circle, 

and the pyramid and cone will coincide and become equal. 

But the solidity of the pyramid will still be equal to one third 

of the product of the base multiplied by the altitude, whatever 

be the number of sides of the polygon which forms its base: 

hence, the solidity of the cone is equal to one third of the 

product of its base multiplied by its altitude. 

Cor. 1. A cone is the third part of a cylinder having the 

same base and the same altitude ; whence it follows : 

1st, That cones of equal altitudes are to each other as their 

bases. 

2nd, That cones of equal bases are to each other as their 

altitudes. 
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Cor. 2. The solidity of a cone is equivalent to the solidity 

of a pyramid having an equivalent base and the same altitude. 

THEOREM XIX. 

Similar prisms are to each other as the cubes of their homologous 

edges. 

Let ABC—D, EFG—H be 

similar prisms: then we shall 

have 

solid AD : solid EH 

or solid AD : solid EH : : CD3 : HG3; 

or, the solids will be to each other as the cubes of any other 

of their homologous edges. 

For, the solids are to each other as the products of their 

bases and altitudes (Th. xiv. Cor.), that is, 

solid ABC-D : solid EFG-H : : ABCx CD : EFGx GH. 

But the bases being similar polygons are to each other as the 

squares of their like sides (Bk. IV. Th. xxi); that is, 

ABC : EFG AB2 : EF\ 

therefore, 

solid ABC-D : solid EFG-H : : AB^xCD : EF2 x GH. 
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But since the solids are simi¬ 

lar, the parallelograms BD and 

FH are similar (Def. 3): hence, 

CD and GH are proportional to 

BC and FG, and consequently 

to AB and EF: hence, we have, 

solid ABC-D : solid EFG-H : : AB*xAB : EF1 x EF. 

that is, 

solid ABC-D : solid EFG-H : : AB3 : EF3; 

and in a similar manner it may he shown that the solids 

are to each other as the cubes of any other homologous sides. 

Cor. Since cylinders are to each other as the product of 

their bases and altitudes (Th. xiv. Cor.), it follows that similar 

cylinders are to each other as the cubes of the linear dimen¬ 

sions. 

THEOREM XX. 

Every section of a sphere, made by a plane, is a circle. 

Let AMB be a section, made by 

a plane, in the sphere whose cen¬ 

tre is C. 

From the centre C draw CO, 

perpendicular to the plane AMB, 

and also draw the lines CA, CM, 

&c., to the points of the curve 

AMB, which terminate the sec¬ 

tion, and join OA, OM, &c. 
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D Then, since CO is perdendic- 

ular to the plane AMB, the an¬ 

gles CO A, COM & c., will be 

right angles, and since the radii 

of the sphere are all equal, the 

right angled triangles CA O, C OM’, 

&c., will have the hypothenuses 

equal, and the side CO common : 

hence, the remaining sides will be equal (Bk. I. Th. xix). 

Therefore, all lines drawn from O to any point of the curve 

AMB are equal: hence AMB is a circle. 

Cor. 1. If the section passes through the centre of the 

sphere, its radius will be the radius of the sphere : hence, all 

great circles are equal. 

Cor. 2. Two great circles always bisect each other; for 

their common intersection, passing through the centre, is a 

diameter. 

Cor. 3. Every great circle divides the sphere and its sur¬ 

face into two equal parts : for, if the two hemispheres were 

separated and afterwards placed on the common base, with 

their convexities turned the same way, the two surfaces would 

exactly coincide, no point of the one being nearer the centre 

than any point of the other. 

Cor. 4. The centre of a small circle, and that of the sphere, 

are in the same straight line, perpendicular to the plane of the 

small circle. 

Cor. 5. Small circles are the less the farther they lie from 
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the centre of the sphere ; for the greater CO is, the less is 

the chord AB, the diameter of the small circle AMB. 

THEOREM XXI. 

Every plane perpendicular to a radius at its extremity is tan¬ 

gent to the sphere. 

Let FAG be a plane perpen¬ 

dicular to the radius OA, at its 

extremity A. Any point M, in 

this plane, being assumed, and 

OM, AM, being drawn, the an¬ 

gle OAM will be a right angle, 

and hence, the distance OM will 

be greater than OA. Hence, 

the point M lies without the sphere ; and as the same can be 

shown for every other point of the plane FAG, this plane can 

have no point but A common to it and the surface of the 

sphere ; hence it is a tangent plane (Def. 31). 

Sch. In the same way it may be shown, that two spheres 

have but one point in common, and therefore touch each 

other, when the distance between their centres is equal to the 

sum, or the difference of their radii; in either case, the 

centres and the point of contact lie in the same straight line. 

THEOREM XXII. 

If a regular semi-polygon be revolved about a line passing 

through the centre and the vertices of two opposite angles, the 

surface described by its perimeter will be equal to the axis multi¬ 

plied by the circumference of the inscribed circle. 

F 
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Suppose the regular semi-polygon 

ABODE to be revolved about the line 

AF as an axis : then will the surface 

described by its perimeter be equal to 

AF multiplied by the circumference of 

the inscribed circle. 

From E and D, the extremities of 

one of the equal sides, let fall the per¬ 

pendiculars EH, DI, on the axis AF, 

and from the centre O, draw ON per¬ 

pendicular to the side DE: ON will then be the radius of the 

inscribed circle (Bk. IV. Prob. x). 

Let us first find the measure of the surface described by 

one of the equal sides, as DE. 

From N, the middle point of DE, draw NM perpendicular 

to the axis AF, and through E, draw EK, parallel to it, meet¬ 

ing MN in S. 

Then, since EN is half of ED, NS will be half of DK 
i 

(Bk. IV. Th. xiii): and hence, NM is equal to half the sum 

of EH+DI. 

But, since the circumferences of circles are to each other as 

their diameters (Bk. IV. Th. xxiv), or as their radii, the 

halves of the diameters, we shall have the circumference de¬ 

scribed by the point N, equal to half the sum of the circum¬ 

ferences described by the points D and E. 

But in the revolution of the polygon the line ED describes 

the surface of the frustum of a cone, the measure of which is 

equal to DE multiplied into half the sum of the circumfe¬ 

rences of the two bases (Th. ix); that is, equal to DE into 

the circumference described by the point N. 
14 

F 
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But, the triangle ENS is similar to 

SNT (Bk. IV. Th. xviii), and also to 

EDK, and since TNS is similar to 

ONM, it follows that EDK and ONM 

are similar; hence, 

ED : EK or HI ON : NM, 

or ED : HI : : circumference ON : circumference MN. 

consequently, 

ED X circumference MN = HI x circumference ON, 

that is, ED multiplied into the circumference of the circle de¬ 

scribed with the radius NM, is equal to HI into the circum¬ 

ference of the circle described with the radius ON. But the 

former is equal to the surface described by the line ED in the 

revolution of the polygon about the axis AF; hence, the latter 

is equal to the same area; and since the same may be shown 

for each of the other sides, it is plain that the surface des¬ 

cribed by the entire perimeter is equal to 

(FH+HI+IP-\-PQ+QA)xcirf ON=AFxcirf ON. 

Cor. The surface described by any portion of the perim¬ 

eter, as EDC, is equal to the distance between the two per¬ 

pendiculars let fall from its extremities, on the axis, multiplied 

by the circumference of the inscribed circle. For, the sur¬ 

face described by DE is equal to HI X circumference ON, 

and the surface described by DC is equal to /Pxcircumfe- 
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rence ON: hence, the surface described by ivD-hDC, is equal 

to (HI-\-IP) x circumference ON, or equal to HP x circum¬ 

ference ON. 

THEOREM XXIII. 

The surface of a sphere is equal to the product of its diameter 

hy the circumference of a great circle. 

Let ABODE be a semicircle. In¬ 

scribe in it any regular semi-polygon, 

and from the centre O draw OF per¬ 

pendicular to one of the sides. 

Let the semicircle and the semi¬ 

polygon be revolved about the axis 

AE: the semicircumference ABODE 

will describe the surface of a sphere 

(Def. 26); and the perimeter of the 

semi-polygon will describe a surface 

which has for its measure AE X cir¬ 

cumference OF (Th. xxii); and this will be true whatever be 

the number of sides of the polygon. But if the number of 

sides of the polygon be indefinitely increased, its perimeter 

will coincide with the circumference ABODE, the perpen¬ 

dicular OF will become equal to OE, and the surface de¬ 

scribed by the perimeter of the semi-polygon will then be the 

same as that described by the semicircumference ABODE. 

Hence, the surface of the sphere is equal to AE X circum¬ 

ference OE. 

Cor. Since the area of a great circle is equal to the product 

of its circumference by half the radius, or by one-fourth of 

the diameter (Bk. IV. Th. xxvii), it follows that the surface 

of a sphere is equal to four of its great circles. 
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THEOREM XXIV. 

The surface of a zone is equal to its altitude multiplied by 

the circumference of a great circle. 

For, the surface described by any 

portion of the perimeter of the in¬ 

scribed polygon, as BC-\-CD is equal 

to EHx circumference OF (Th. xxii. 

Cor). But when the number of sides 

of the polygon is indefinitely increased, 

BC-\-CD, becomes the arc BCD, OF 

becomes equal to OA, and the surface 

described by BC-\-CD, becomes the 

surface of the zone described by the 

arc BCD: hence, the surface of the 

zone is equal to EH X circumference 

0,4. 
Sch. 1. When the zone has but one base, as the zone de¬ 

scribed by the arc ABCD, its surface will still be equal to 

the altitude AE multiplied by the circumference of a great 

circle. 

Sch. 2. Two zones taken in the same sphere, or in equal 

spheres, are to each other as their altitudes ; and any zone is 

to the surface of the sphere as the altitude of the zone is to 

the diameter of the sphere. 

THEOREM XXV. 

The solidity of a sphere is equal to one third of the product of 

the surface multiplied by the radius. 

For, conceive a polyedron to be inscribed in the sphere. 

A 
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This polyedron may be considered as formed of pyramids, each 

having for its vertex the centre of the sphere, and for its base 

one of the faces of the polyedron. Now, the solidity of each 

pyramid, will be equal to one third of the product of its base 

by its altitude (Th. xvii). 

But if we suppose the faces of the polyedron to be continu¬ 

ally diminished, and consequently, the number of the pyra¬ 

mids to be constantly increased, the polyedron will finally 

become the sphere, and the bases of all the pyramids will 

become the surface of the sphere. When this takes place, 

the solidities of the pyramids will still be equal to one third 

the product of the bases by the common altitude, which will 

then be equal to the radius of the sphere. 

Hence, the solidity of a sphere is equal to one third of the 

product of the surface by the radius. 

THEOREM XXVI. 

The surface of a sphere is equal to the convex surface of the 

circumscribing cylinder; and the solidity of the sphere is two 

thirds the solidity of the circumscribing cylinder. 

Let MPNQ be a great circle of 

the sphere; ABCD the circumr 

scribing square : if the semicircle 

PMQ, and the half square PADQ, 

are at the same time made to re¬ 

volve about the diameter PQ, the 

semicircle will describe the sphere, 

while the half square will describe 

the cylinder circumscribed about 

that sphere. 

The altitude AD, of the cylinder, is equal to the diameter 
14* ' 
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PQ; the base of the cylinder is 

equal to the great circle, since its 

diameter AB is equal MN; hence, 

the convex surface of the cylin¬ 

der is equal to the circumference 

of the great circle multiplied by 

its diameter (Th. ii). This meas¬ 

ure is the same as that of the sur¬ 

face of the sphere (Th. xxiii): 

face of the circumscribing cylinder. 

In the next place, since the base of the circumscribing 

cylinder is equal to a great circle, and its altitude to the di¬ 

ameter, the solidity of the cylinder will be equal to a great 

circle multiplied by a diameter (Th. xiv. Cor). But the so¬ 

lidity of the sphere is equal to its surface multiplied by a third 

of its radius; and since the surface is equal to four great 

circles (Th. xxiii. Cor.), the solidity is equal to four great cir¬ 

cles multiplied by a third of the radius; in other words, to 

one great circle multiplied by four-thirds of the radius, or 

by two-thirds of the diameter; hence, the sphere is two-thirds 

of the circumscribing cylinder. 
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APPENDIX 

) r , 

OF THE FIVE REGULAR POLYEDRONS. 

A regular polyedron, is one whose faces are all equal poly¬ 

gons, and whose solid angles are equal. There are five such 

solids. 

1. The Tetraedron, or equilateral pyramid, is a solid bounded 

by four equal triangles. 

\ 

2. The hexaedron or cube, is a solid, bounded by six equal 

squares. 

3. The octaedron, is a solid, bounded by eight equal equi 

lateral triangles. 
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4. The dodeeaedron, is a solid bounded by twelve equal 

pentagons. 

5. The icosaedron, is a solid, bounded by twenty equal 

equilateral triangles. 

6. The regular solids may easily be made of pasteboard. 

Draw the figures of the regular solids accurately on paste¬ 

board, and then cut through the bounding lines : this will give 

figures of pasteboard similar to -the diagrams. Then, cut 

the other lines half through the pasteboard, after which, turn 

up the parts, and glue them together, and you will form the 

bodies which have been described. 



APPLICATIONS 

OF 

GEOMETRY. 

MENSURATION OF SURFACES. 

DEFINITIONS. 

1. The area of any figure has already been defined to be 

the measure of its surface (Bk. IY. Def. 7). This measure is 

merely the number of squares which the figure is equal to. 

A square whose side is one inch, one foot, or one yard, 

&c., is called the measuring unit; and the area or contents of 

a figure is expressed by the number of such squares which 

the figure contains. 

2. In the questions involving decimals, the decimals are 

generally carried to four places, and then taken to the nearest 

figure. That is, if the fifth decimal figure is 5, or greater 

than 5, the fourth figure is increased by one. 

3. Surveyors, in measuring land, generally use a chain 

called Gunter’s chain. This chain is four rods, or 66 feet in 

length, and is divided into 100 links. 

4. An acre is a surface equal in extent to 10 square chains; 

that is, equal to a rectangle of which one side is ten chains, 

and the other side one chain. 

One quarter of an acre, is called a rood. 

Since the chain is 4 rods in length, 1 square chain contains 

16 square rods ; and therefore, an acre, which is 10 square 

chains, contains 160 square rods, and a rood contains 40 

square rods. The square rods are called perches. 



166 APPLICATIONS 

Mensuration of Surfaces. 

5. Land is generally computed in acres, roods, and perches, 

which are respectively designated by the letters A, R, P. 

When the linear dimensions of a survey are chains or links, 

the area will be expressed in square chains or square links, 

and it is necessary to form a rule for reducing this area to 

acres, roods, and perches. For this purpose, let us ' form the 

following 

TABLE. 

1 square chain=100 X 100 = 10000 square links. 

1 acre = 10 square chains = 100000 square links. 

1 acre=4 roods = 160 perches. 

1 square mile = 6400 square chains=640 acres. 

6. Now, when the linear dimensions are links, the area 

will be expressed in square links, and may be reduced to 

acres by dividing by 100000, the number of square links in an 

acre: that is, by pointing off five decimal places from the 

right hand. 

If the decimal part be then multiplied by 4, and five places 

of decimals pointed off from the right hand, the figures to the 

left hand will express the roods. 

If the decimal part of this result be now multiplied by 40, 

and five places for decimals pointed off, as before, the figure^ 

to the left will express the perches. 

If one of the dimensions be in links, and the other in chains 

the chains may be reduced to links by annexing two ciphers 

or, the multiplication may be made without annexing the ci 

phers, and the product reduced to acres and decimals of ai 

acre, by pointing off three decimal places at the right hand. 

When both dimensions are in chains, the product is re 
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duced to acres by dividing by 10, or pointing off one decimal 

place. 

From which we conclude : that, 

I. If links be multiplied by links, the product is reduced to 

acres by pointing off five decimal places from the right hand. 

II. If chains be multiplied by links, the product is reduced to 

acres by pointing off three decim,al places from the right hand. 

III. If chains be multiplied by chains, the product is reduced 

to acres by pointing off one decimal place from the right hand. 

7. Since there are 16,5 feet in a rod, a square rod is equal 

to 16,5 X 16,5=272,25 square feet. 

If the last number be multiplied by 160, we shall have 

272,25 X 160 = 43560 the square feet in an acre. 

Since there are 9 square feet in a square yard, if the last 

number be divided by 9, we obtain 

4840 = the number of square yards in an acre. 

PROBLEM i. 

To find the area of a square, a rectangle, a rhombus, or a 

parallelogram. 
. • 

RULE. 

Multiply the base by the perpendicular height and the product 

will be the area (Bk. IV. Th. viii). 

EXAMPLES. 

D_C 

B 

1. Required the area of the square 

ABCD, each of whose sides is 36 feet. 

A 
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We multiply two sides of 

the square together, and the 

product is the area in square 

feet. 

Operation. 

36x36 = 1296 sq. ft. 

2. How many acres, roods, and perches, in a square whose 

side is 35,25 chains ? Ans. 124 A. 1 R. 1 P. 

3. What is the area of a square whose side is 8 feet 4 

inches? Ans. 69 ft. 5' 4". 

4. What is the contents of a square field whose side is 46 

rods? Ans. 13 A. 0 R. 36 P. 

5. What is the area of a square whose side is 4769 yards'? 

Ans. 22743361 sq. yds. 

6. What is the area of the parallelo¬ 

gram ABCD, of which the base AB is 

64 feet, and altitude DE, 36 feet ? 

We multiply the base 64, 

by the perpendicular height Operation. 

36, and the product is the re- 64x36=2304 sq. ft. 

quired area. 

7. What is the area of a parallelogram whose base is 12,25 

yards, and altitude 8,5 ? Ans. 104,125 sq. yds. 

8. What is the area of a parallelogram whose base is 8,75 

chains, and altitude 6 chains ? Ans. 5 A. 1 R. 0 P. 

9. What is the area of a parallelogram whose base is 7 feet 

9 inches, and altitude 3 feet 6 inches ? 
Ans. 27 sq.ft. V 6". 
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10. To find the area of a rectangle 

ABCD, of which the base AB=45 

yards, and the altitude AD = 15 yards. 

Here we simply multiply 

the base by the altitude, and 

the product is the area. 

A 

Operation. 

45x15 = 675 sq. yds. 

11. What is the area of a rectangle whose base is 14 feet 

6 inches, and breadth 4 feet 9 inches ? 

Ans. 68 sq.ft. 10' 6". 

12. Find the area of a rectangular board whose length is 

112 feet, and breadth 9 inches. Ans. 84 sq. ft. 

13. Required the area of a rhombus whose base is 10,51 

and breadth 4,28 chains. Ans. 4 A. 1 R. 39,7 P-f-. 

14. Required the area of a rectangle whose base is 12 feet 

6 inches, and altitude 9 feet 3 inches. 

Ans. 115 sq. ft. 7' 6". 

PROBLEM II. 
• •> * * A , Vrf sJ 

To find the area of a triangle, when the base and altitude 

are known. 

RULE. 

I. Multiply the base by the altitude, and half the product will 

be the area. 

II. Multiply the base by half the altitude and the product will 

be the area (Bk. IY. Th. ix). 

EXAMPLES. 

1. Required the area of the triangle 

ABC, whose base AB is 10,75 feet, 

and altitude 7,25 feet. 

15 
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We first multiply the base 

by the altitude, and then di¬ 

vide the product by 2. 

Operation. 

10,75 X 7,25 = 77,9375 

and 

77,9375-^-2 = 38,96875 

= area. 

2. What is the area of a triangle whose base is 18 feet 4 

inches, and altitude 11 feet 10inches? 

Ans. 108 sq. ft. 5' 8". 

3. What is the area of a triangle whose base is 12,25 

chains, and altitude 8,5 chains? Ans. 5 A. OR. 33 P. 

4. What is the area of a triangle whose base is 20 feet, 

and altitude 10,25 feet. Ans. 102,5 sq. ft. 

5. Find the area of a triangle whose base is 625 and alti¬ 

tude 520 feet. Ans. 162500 sq. ft. 

6. Find the number of square yards in a triangle whose 

base is 40 and altitude 30 feet. Ans. 66f sq. yds. 

7. What is the area of a triangle whose base is 72,7 yards, 

and altitude 36,5 yards? Ans. 1326,775 sq. yds. 

PROBLEM III. 

To find the area of a triangle when the three sides are 

known. 

RULE, 

I. Add the three sides together and take half their sum. 

II. From this half sum take each side separately. 

III. Multiply together the half sum and each of the three 

remainders, and then extract the square root of the product, 

which will he the required area. 
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EXAMPLES. 

1. Find the area of a triangle whose sides are 20, 30, and 

40 rods. 

20 45 45 45 
30 20 30 40 
40 25 1a£ rem. 15 2 d rem. 5 3d rem. 

2)90 

45 half sum, 

Then, to obtain the product, we have 

45 X 25 X 15 x 5 = 84375 ; 

from which we find 

area= -y/84375=290,4737 perches. 

2. How many square yards of plastering are there in a tri¬ 

angle, whose sides are 30, 40, and 50 feet ? Ans. 66f. 

3. The sides of a triangular field are 49 chains, 50,25 

chains,, and 25,69 : what is its area ? 

Ans. 61 A. 1 R. 39,68 P. 

4. What is the area of an isosceles triangle, whose base is 

20, and each of the equal sides 15 ? Ans. 111,803. 

5. How many acres are there in a triangle whose three 

sides are 380, 420 and 765 yards. Ans. 9 A. OR. 38 P. 

6. How many square yards in a triangle whose sides are 

13, 14, and 15 feet. Ans. 9^. 

7. What is the area of an equilateral triangle whose side 

is 25 feet? Ans. 270,6329 sq. ft. 

8. What is the area of a triangle whose sides are 24, 36, 

and 48 yards ? Ans. 418,282 sq. yds. 
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PROBLEM IV. 

To find the hypothenuse of a right angled triangle when 

the base and perpendicular are known. 

RULE. 

I. Square each of the sides separately. 

II. Add the squares together. 

III. Extract the square root of the sum, which will he the hy¬ 

pothenuse of the triangle (Bk. IY. Th. xii). 

EXAMPLES. 

1. In the right angled triangle ABC, 

we have, AB—30 feet, BC—AO feet, to 

find A C. 

We first square each side, 

and then take the sum, of 

which we extract the square 

root, which gives 

AC=i/2500 = 50 feet. 

C 

302= 900 

402z=z1600 

sum=2500 

2. The wall of a building, on' the brink of a river, is 120 

feet high, and the breadth of the river 70 yards: what is the 

length of a line which would reach from the top of the wall to 

the opposite edge of the river ? Ans. 241,86 ft. 

3. The side roofs of a house of which the eaves are of the 

same height, form a right angle at the top. Now, the length 

of the rafters on one side is 10 feet, and on the other 14 feet: 

what is the breadth of the house ? Ans. 17,204 ft. 

4. What would be the width of the house, in the last ex¬ 

ample, if the rafters on each side were 10 feet? 

Ans. 14,142 ft. 
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5. What would be the width, if the rafters on each side 

were 14 feet? Ans. 19,7989 ft. 

PROBLEM V. 

When the hypothenuse and one side of a right angled tri¬ 

angle are known, to find the other side. 

RULE. 

Square the hypothenuse and also the other given side, and 

take their difference : extract the square root of this difference, 

and the result will he the required side (Bk. IY. Th. xii. Cor.). 

EXAMPLES. 

1. In the right angled triangle ABC, 

there are given 

AC—50 feet, and AB—40 feet, 

required the side BC. 

We first square the hypoth¬ 

enuse and the other side, after 

which we take the difference, 

and then extract the square 

root, which gives 

BC=^/900-3° feet. 

2. The height of a precipice on the brink of a river is 103 

feet, and a line of 320 feet in length will just reach from the 

top of it to the opposite bank: required the breadth of the 

river. Ans. 302,9703 ft. 

3. The hypothenuse of a triangle is 53 yards, and the per¬ 

pendicular 45 yards : what is the base ? Ans. 28 yds. 

4. A ladder 60 feet in length, will reach to a window 40 
15* 

50' 

40s 

:2500 

: 1600 

Diff.= 900 
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feet from the ground on one side of the street, and by turning 

it over to the other side, it will reach a window 50 feet from 

the ground: required the breadth of the street. 

Ans. 77,8875 ft. 

PROBLEM VI. 

To find the area of a trapezoid. 

RULE. 

Multiply the sum of the parallel sides by the perpendicular 

distance between them, and then divide the product by two: the 

quotient will be the area (Bk. IV. Th. x). 

EXAMPLES. 

1. Required the area of the trapezoid 

ABCD, having given 

AB—321,51 feet, DC=214,24 feet, and Ci2=171,16 feet. 

We first find the sum of the 

sides, and then multiply it by 

the perpendicular height, after 

which, we divide the product 

by 2, for the area. 

Operation. 

321,514-214,24 = 535,75 = 

' sum of parallel sides. 

Then, 

535,75x171,16 = 91698,97 

, 91698,97 
and, ---= 45849,485 

2 

=the area. 

2. What is the area of a trapezoid, the parallel sides of 

which, are 12,41 and 8,22 chains, and the perpendicular dis¬ 

tance between them 5,15 chains ? 

Ans. 5 A. 1 R. 9,956 P. 

3. Required the area of a trapezoid whose parallel sides 
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are 25 feet 6 inches, and 18 feet 9 inches, and the perpen¬ 

dicular distance between them 10 feet and 5 inches. 

Ans. 230 sq. ft. 5' 7". 

4. Required the area of a trapezoid whose parallel sides 

are 20,5 and 12,25, and the perpendicular distance between 

them 10,75 yards. Ans. 176,03125 sq. yds. 

5. What is the area of a trapezoid whose parallel sides are 

7,50 chains, and 12,25 chains, and the perpendicular height 

15,40 chains? Ans. 15 A. 0 R. 33,2 P. 

PROBLEM VII. 

To find the area of a quadrilateral. 

RULE. 

Measure the four sides of the quadrilateral, and also one of the 

diagonals: the quadrilateral will thus he divided into two trian¬ 

gles, in both of which all the sides will he known. Then, fnd 

the areas of the triangles separately, and their sum will be the 

area of the quadrilateral. 

EXAMPLES. 

1. Suppose that we have meas¬ 

ured the sides and diagonal A C, of 

the quadrilateral ABCD, and found 

AB=40,05 chains; CD=29,87 chains, 

BC—26,27 chains, AD=37,07 chains, 

and AC=55 chains : 

required the area of the quadrilateral. 

Ans. 101 A. 1 R. 15 P. 
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Remark.—Instead of measuring 

the four sides of the quadrilateral, 

we may let fall the perpendicu¬ 

lars Bb, Dg, on the diagonal AC. 

The area of the triangles may then 

be determined by measuring these 

perpendiculars and diagonal AC. The pendiculars are,Dg=z 

18,95 chains, and Bb—17,92 chains. 

2. Required the area of a quadrilateral whose diagonal is 

00,5, and two perpendiculars 24,5, and 30,1 feet. 

Ans. 2197,65 sq.ft. 

3. What is the area of a quadrilateral whose diagonal is 

108 feet 6 inches, and the perpendiculars 56 feet 3 inches, 

and 60 feet 9 inches ? Ans. 6347sq.ft. 3'. 

4. How many square yards of paving in a quadrilateral 

whose diagonal is 65 feet, and the two perpendiculars 28, and 

33| feet ? Ans. 222j% sq. yds. 

5. Required the area of a quadrilateral whose diagonal is 

42 feet, and the two perpendiculars 18, and 16 feet. 

Ans. 714 sq. ft. 

6. What is the area of a quadrilateral in which the diago¬ 

nal is 320,75 chains, and the two perpendiculars 69,73 chains, 

and 130,27 chains? Ans. 3207 A. 2 R. 

PROBLEM VIII. 

To find the area of a regular polygon. 

RULE. 

Multiply half the perimeter of the figure by the perpendicular 

let fall from the centre on one of the sides, and the product will 

be the area (Bk. IV. Th. xxvi). 
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EXAMPLES. 

1. Required the area of the regular 

pentagon ABODE, each of whose 

sides AB, BC, &c., is 25 feet, and 

the perpendicular OP, 17,2 feet. 

D 

We first multiply one side 

by the number of sides and 

divide the product by 2 : this 

gives half the perimeter which 

we multiply by the perpen¬ 

dicular for the area. 

Operation. 

25^X 5_62,5 —hajf the perim¬ 

eter. Then, 

62,5x17,2 = 1075 sq. ft.-the 

area. 

2. The side of a regular pentagon is 20 yards, and the per¬ 

pendicular from the centre on one of the sides 13,76382 ; re¬ 

quired the area. 
Ans. 688,191 sq. yds. 

3. The side of a regular hexagon is 14, and the perpen¬ 

dicular from the centre on one of the sides 12,1243556: re¬ 

quired the area. 
Ans. 509,2229352 sq.ft. 

4. Required the area of a regular hexagon whose side is 

14 6, and perpendicular from the centre 12,64 feet. 

Ans. 553,632 sq. ft. 

5. Required the area of a heptagon whose side is 19,38, 

and perpendicular 20 feet. 
Ans. 1356,6 sq. ft. 

The following table shows the areas of the ten regular 



.178 APPLICATIONS 

Mensuration of Surfaces. 

polygons when the side of each is equal to 1 : it also shows 

the length of the radius of the inscribed circle. 

Number of 
sides. Names. Areas. Radius of inscribed 

circle. 

3 Triangle, 0,4330127 0,2886751 
A Square, 1,0000000 0,5000000 

5 Pentagon, 1,7204774 0,6881910 
6 Hexagon, 2,5980762 0,8660254 
7 Heptagon, 3,6339124 1,0382617 
8 Octagon, 4,8284271 1,2071068 
9 Nonagon, 6,1818242 1,3737387 

10 Decagon, 7,6942088 1,5388418 
11 Undecagon, 9,3656404 1.2028437 
12 Dodecagon, 11,1961524 1,8660254 

Now, since the areas of similar polygons are to each other 

as the squares described on their homologous sides (Bk. IV. 

Th. xx), we have 

l2 : tabular area : : any side squared : area. 

Hence, to find the area of a regular polygon, we have the 

following 

RULE. 

I. Square the side of the polygon. 

II. Multiply the square so found, by the tabular area set oppo¬ 

site the polygon of the same number of sides, and the product 

will be the area. 

EXAMPLES. 

1. What is the area of a regular hexagon whose side is 20? 

202 = 400 and tabular area—2,5980762. 

Hence, 

2,5980762 X 400 = 1039,23048=the area. 
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2. What is the area of a pentagon whose side is 25 ? 

Ans. 1075,298375. 

3. What is the area of a heptagon whose side is 30 feet ? 

Ans. 3270,52116. 

4. What is the area of an octagon whose side is 10 feet ? 

Ans. 482,84271 sq. ft. 

5. The side of a nonagon is 50 : what is its area ? 

Ans. 15454,5605. 

6. The side of an undecagon is 20 : what is its area ? 

Ans. 3746,25616. 

7. The side of a dodecagon is 40 : what is its area ? 

Ans. 17913,84384. 

PROBLEM IX. 

To find the area of a long and irregular figure, bounded on 

one side by a straight line. 

RULE. 

I. Divide the right line or base into any number of equal 

parts, and measure the breadth of the figure at the points of di¬ 

vision, and also at the extremities of the base. 

II. Add together the intermediate breadths, and half the sum 

of the extreme ones. 

III. Multiply this sum by the base line, and divide the product 

by the number of equal parts of the base. 

EXAMPLES. 

1. The breadths of an irregu¬ 

lar figure, at five equidistant 

places, A, B, C, D, and E, be¬ 

ing 8,20 chains, 7,40 chains, 
A—B t D 27 
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9,20 chains, 10,20 chains, and 8,60 chains, and the whole 

length 40 chains : required the area. 

8.20 35,20 
8,60 40 

2)16,80 4)1408,00 

8.40 mean of the extremes. 352,00 square chains. 
7.40 
9.20 

10,20 

35,20 the sum. 

Ans. 35 A. 32 P. 

2. The length of an irregular piece of land being 21 chains, 

and the breadths, at six equidistant points, being 4,35 chains, 

5,15 chains, 3,55 chains, 4,12 chains, 5,02 chains, and 6,10 

chains: required the area. Ans. 9 A. 2 R. 30 P. 

3. The length of an irregular figure is 84 yards, and the 

breadths at six equidistant places are 17,4 ; 20,6 ; 14,2 ; 16,5; 

20,1 ; and 24,4 : what is the area ? Ans. 1550,64 sq. yds. 

4. The length of an irregular field is 39 rods, and its 

breadths at five equidistant places, are 4,8 ; 5,2 ; 4,1 ; 7,3, 

and 7,2 rods : what is its area? Ans. 220,35 sq. rods. 

5. The length of an irregular field is 50 yards, and its 

breadths at seven equidistant points, are 5,5 ; 6,2 ; 7,3 ; 6; 

7,5 ; 7 ; and 8,8 yards : what is its area ? 

Ans. 342,916 sq. yds. 

6. The length of an irregular figure being 37,6, and the 

breadths at nine equidistant places, 0; 4,4 ; 6,5 ; 7,6 ; 5,4 ; 8; 

5,2 ; 6,5 ; and 6,1 : what is the area? Ans. 219,255. 

PROBLEM X. 

To find the circumference of a circle when the diameter is 

known. 
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RULE 

Multiply the diameter by 3,1416, and the product will be the 

j circumference. 

EXAMPLES. 

1. What is the circumference of a circle whose diameter 

is 17? 

We simply multiply the 

number 3,1416 by the diam¬ 

eter, and the product is the 

circumference. 

Operation. 

3,1416x17 = 53,4072, 

which is the circumference. 

2. What is the circumference of a circle whose diameter is 

40 feet? Ans. 125,664 ft. 

3. What is the circumference of a circle whose diameter is 

12 feet ? Ans. 37,6992 ft. 

4. What is the circumference of a circle whose diameter is 

22 yards? Ans. 69,1152 yds. 

5. What is the circumference of the earth—the mean diam¬ 

eter being about 7921 miles? Ans. 24884,6136 mi. 

PROBLEM XI. 

To find the diameter of a circle when the circumference is 

known. 

RULE. 

Divide the circumference by the number 3,1416, and the quo¬ 

tient will be the diameter. 

examples. 

1. The circumference of a circle is 69,1152 yard§: what 

is the diameter ? 
16 
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We simply divide the cir¬ 

cumference by 3,1416, and 

the quotient 22 is the diam¬ 

eter sought. 

2. What is the diameter of a circle whose circumference is 

11652,1944 feet ? Ans. 3709. 

3. What is the diameter of a circle whose circumference is 

6850? Ans. 2180,4176. 

4. What is the diameter of a circle whose circumference is 

50 ? Ans. 15,915. 

5. If the circumference of a circle is 25000,8528, what is 

the diameter ? Ans. 7958. 

Operation. 

3,1416)69,1152(22 
62832 

62832 
62832 

PROBLEM XII. 

To find the length of a circular arc, when the number of 

degrees which it contains, and the radius of the circle are 

known. 

RULE. 

Multiply the number of degrees by the decimal ,01745, and 

the product arising by the radius of the circle. 

EXAMPLES. 

1. What is the length of an arc of 30 degrees, in a circle 

whose radius is 9 feet. 

We merely multiply the 

given decimal by the number 

of degrees, and by the radius. 

Operation. 

,01745 x 30 x 9 = 4,7115, 

which is the length of the arc. 

Remark.—When the arc contains degrees and minutes, re¬ 

duce the minutes to the decimals of a degree, which is done 

by dividing them by 60. 
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2. What is the length of an arc containing 12° 10' or 

12^,° the diameter of the circle being 20 yards ? 

Ans. 2,1231. 

3. What is the length of an arc of 10° 15' or 10^°, in a 

circle whose diameter is 68? Ans. 6,0813. 

PROBLEM XIII. 

To find the length of the arc of a circle when the chord 

and radius are given. 

RULE. 

I. Find the chord of half the arc. 

II. From eight times the chord of half the arc, subtract the 

chord of the whole arc, and divide the remainder by 3, and the 

quotient will be the length of the arc, nearly. 

EXAMPLES. 

1. The chord AB—30 feet, and the 

radius AC—20 feet: what is the 

length of the arc ADB ? 

First draw CD perpendicular to the 

chord AB: it will bisect the chord at 

P, and the arc of the chord at D. 

Then AP= 15 feet. Hence, 

AC2—AP2= CP2: that is, 

400—225 = 175 and yT75= 13,228= CP. 

Then CD— CP=20 -13,228=6,772=DP. 

Again, AD=FlP+Plf = -^225+45,859984: 

hence, 

Then, 

AD=16,4578 = chord of the half arc. 

16,4578x8-30 QO 
-=33,8874 = arc ADB. 

3 
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2. What is the length of an arc the chord of which is 24 

feet, and the radius of the circle 20 feet ? 

Ans. 25,7309 ft. 

3. The chord of an arc is 16 and the diameter of the circle 

20 : what is the length of the arc ? Ans. 18,5178. 

4. The chord of an arc is 50, and the chord of half the 

arc is 27 : what is the length of the arc ? Ans. 55^. 

PROBLEM XIV. 

To find the area of a circle when the diameter and circum¬ 

ference are both known. 

RULE. 

Multiply the circumference by half the radius and the product 

will be the area (Bk. IV. Th. xxvii). 

EXAMPLES. 

1. What is the area of a circle whose diameter is 10, and 

circumference 31,416? 

If the diameter be 10, the 

radius is 5, and half the ra¬ 

dius is 2}: hence, the cir¬ 

cumference multiplied by 24 

gives the area. 

Operation. 

31,416x2^=78,54; 

which is the area. 

2. Find the area of a circle whose diameter is 7; and cir¬ 

cumference 21,9912 yards. Ans. 38,4846 yds. 

3. How many square yards in a circle whose diameter is 

3i feet, and circumference 10,9956. Ans. 1,069016. 

4. What is the area of a circle whose diameter is 100, and 

circumference 314,16 ? Ans. 7854. 
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5. What is the area of a circle whose diameter is 1, and 

circumference 3,1416. Ans. 0,7854. 

6. What is the area of a circle whose diameter is 40, and 

circumference 131,9472? Ans. 1319,472. 

problem xv. 

To find the area of a circle when the diameter only is 

known. 

RULE. 
• • V V . i >« 

Square the diameter, and then multiply by the decimal ,7854. 

EXAMPLES. 

What is the area of a circle 

We square the diameter, 

which gives us 25, and we 

then multiply this number 

and the decimal ,7854 to¬ 

gether. 

whose diameter is 5 ? 

Operation. 

,7854 

52 3 4 5= 25 

39270 
15708 

area= 19,6350 

2. What is the area of a circle whose diameter is 7 ? 

Ans. 38,4846. 

3. What is the area of a circle whose diameter is 4,5 ? 

Ans. 15,90435. 

4. What is the number of square yards in a circle whose 

diameter is yards ? Ans. 1,069016. 

5. What is the area of a circle whose diameter is 8,75 

feet? Ans. 60,1322 sq.ft. 

PROBLEM XVI. 

To find the area of a circle when the circumference only 

is known. 
16* 
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RULE. 

Multiply the square of the circumference by the decimal ,07958, 

and the product will be the area very nearly. 

EXAMPLES. 

1. What is the area of a circle whose circumference is 

3,1416? 

We first square the cir¬ 

cumference, and then multi¬ 

ply by the decimal ,07958. 

Operation. 

3,14162 = 9,86965056 
,07958 

area =:,7854-f- 

2. What is the area of a circle whose circumference is 91 ? 

Ans. 659,00198. 

3. Suppose a wheel turns twice in tracking 16^ feet, and 

that it turns just 200 times in going round a circular bowling- 

green : what is the area in acres, roods, and perches ? 

Ans. 4 A. 3 R. 35,8 P. 

4. How many square feet are there in a circle whose cir¬ 

cumference is 10,9956 yards? Ans. 86,5933. 

5. How many perches are there in a circle whose circum¬ 

ference is 7 miles ? Ans. 399300,608. 

PROBLEM XVII. 

Having given a circle, to find a square which shall have an 

equal area. 

RULE. 

I. The diameter X ,8862=:side of an equivalent square. 

II. The circumference X,2821 =side of an equivalent square 
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EXAMPLES. 

1. The diameter of a circle is 100: what is the side of a 

square of equal area ? Ans. 88,62. 

2. The diameter of a circular fishpond is 20 feet, what 

would be the side of a square fishpond of an equal area 1 

Ans. 17,724 ft. 

3. A man has a circular meadow of which the diameter is 

875 yards, and wishes to exchange it for a square one of equal 

size : what must be the side of the square ? 

Ans. 775,425. 

4. The circumference of a circle is 200: what is the side 

of a square of an equal area 1 Ans. 56,42. 

5. The circumference of a round fishpond is 400 yards: 

what is the side of a square pond of equal area 1 

Ans. 112,84. 

6. The circumference of a circular bowling-green is 412 

yards: what is the side of a square one of equal area ? 

Ans. 116,2252 yds. 

7. The circumference of a circular walk is 625: what is 

the side of a square containing the same area ? 

Ans. 176,3125. 

PROBLEM XVIII. 

Having given the diameter or circumference of a circle, to 

find the side of the inscribed square. 

RULE. 

I. The diameter X ,7071= side of the inscribed square. 

II. The circumference X ,2251 —side of the inscribed square 
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EXAMPLES. 

1. The diameter AB of a circle 

is 400 : what is the value of AC, 

the side of the inscribed square ? 

Here, 

,7071 x 400=282,8400=AC. 

2. The diameter of a circle is 412 feet: what is the side 

of the inscribed square? Ans. 291,3252 sq. ft. 

3. If the diameter of a circle be 600, what is the side of 

the inscribed square ? Ans. 424,26. 

4. The circumference of a circle is 312 feet: what is the 

side of the inscribed square ? Ans. 70,2312 ft. 

5. The circumference of a circle is 819 yards: what is the 

side of the inscribed square? Ans. 184,3569 yds. 

6. The circumference of a circle is 715 : what is the side 

of the inscribed square ? ' Ans. 160,9465. 

7. The circumference of a circular walk is 625: what is 

the side of an inscribed square ? Ans. 140,6875. 

PROBLEM XIX. 

To find the area of a circular sector. 

RULE. 

I. Find the length of the arc by Problem XII. 

II. Multiply the arc by one half the radius, and the product 

will be the area. 
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EXAMPLES. 

1. What is the area of the circular 

sector ACB, the arc AB containing 

18°, and the radius CA being equal to 

3 feet. 

First, ,01745 x 18 x 3 = ,94230=length AB. 

Then, ,94230 x 11=1,41345 = area. 

2. What is the area of a sector of a circle in which the ra¬ 

dius is 20 and the arc one of 22 degrees ? 

Arts. 76,7800. 

3. Required the area of a sector whose radius is 25 and 

the arc of 147° 29'. Ans. 804,2448. 

4. Required the area of a semicircle in which the radius is 

13. Ans. 265,4143. 

5. What is the area of a circular sector when the length of 

the arc is 650 feet and the radius 325 ? 
* ' - k i ~\ 

Ans. 105625 sq. ft 

PROBLEM XX. 

To find the area of a segment of a circle. 

RULE. 

I. Find the area of the sector having the same arc with the 

segment, by the last Problem. 

II. Find the area of the triangle formed by the chord of the 

segment and the two radii through its extremities. 

III. If the segment is greater than the semicircle, add the two 

areas together; but if it is less, subtract them, and the result in 

either case, will be the area required. 
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EXAMPLES. 

1. What is the area of the seg¬ 

ment ADB, the chord AP=24 

feet and CA =20 feet. 

First, CP=y/CA2-APl 

= -^400—144=16 

Then, 
PD=CD— CP=20 —16=4. 

And, AD—^AP1+ PP2=y/144-f-16 = 12,64911 : 

then. 
, 12,64911x8-24 

arc AI)B—-—-=25,7309. 

Arc ADB=25,7309 
half radius = 10 

area sector ADBC=257,3090 
area CAP=192 

AP =12 
CP =16 

area CAP=192 

65,309=area of segment ADP 

2. Find the area of the segment 

AFB, knowing the following lines, 

viz: AP=20,5; FP= 17,17; AF 

=20; FG=11,5; and CA = 11,64. 

Arc AGF= 
FGxS—AF 11,5x8-20 

3 3 

and sector AGFBC=24 x 11,64=279,36 : 

but CP=PP—A C=17,17 —11,64 = 5,53 : 

_ APxCP 20,5X5,53 
Then, area ACP=-=-- 

=24 

2 2 
= 56,6825. 
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Then, area of sector AFBC=279,36 

do. of triangle ABC= 56,6825 

gives area of segment AFB—336,0425 
l 

3. What is the area of a segment; the radius of the circle 

being 10, and the chord of the arc 12 yards ? 

Ans. 16,324 sq. yds. 
' 

4. Required the area of the segment of a circle whose 

chord is 16, and the diameter of the circle 20. 

Ans. 44,5903. 

5. What is the area of a segment whose arc is a quadrant, 

the diameter of the circle b£ing 18? Ans. 63,6174. 

6. The diameter of a circle is 100, and the chord of the 
( 

segment 60 : what is the area of the segment ? 

Ans. 408, nearly. 

PROBLEM XXI. 

To find the area of an ellipse. 

Multiply the two axes together, and their product by the decimal 

,7854, and the result will be the required area. 

EXAMPLES. 

1. Required the area of an ellipse, 

whose transverse axis ABzzzlQ feet, 

and the conjugate axis DE = 50 feet. 

ABxDE-70 x50=3500 : 

Then, * ,7854 x 3500=2748,9 = area. 

2. Required the area of an ellipse whose axes are 24 and 

18. Ans. 339,2928. 
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3. What is the area of an ellipse whose axes are 80 and 

60 ? Ans. 3769,92. 

4. What is the area of an ellipse whose axes are 50 and 

45? Ans. 1767,15. 

PROBLEM XXII. 

To find the area of a circular ring: that is, the area in¬ 

cluded between the circumferences of two circles, having a 

common centre. 

RULE. 

I. Square the diameter of each ring, and subtract the square 

of the less from that of the greater. 

II. Multiply the difference of the squares by the decimal 

,7854, and the product will be the area. 

EXAMPLES. 

1. In the concentric circles 

having the common centre C, we 

have 

,45 = 10 yds., and DE = 6 yards : 

what is the area of the space in¬ 

cluded between them ? 

BA2=fo2=ioo 
DE2= 62= 36 

Difference=64 

Then, 63 x ,7854 = 50,2656=area. 

2. What is the area of the ring when the diameters of the 

circle are 20 and 10 ? Ans. 235,62. 
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3. If the diameters are 20 and 15, what will be the area in¬ 

cluded between the circumferences ? Ans. 137,445. 

4. If the diameters are 16 and 10, what will be the area in¬ 

cluded between the circumferences ? Ans. 122,5224. 

5. Two diameters are 21,75 and 9,5 ; required the area of 

the circular ring. Ans. 300,6609. 

6. If the two diameters are 4 and 6, what is the area of the 

ring ? Ans. 15,708. 
O 

MENSURATION OF SOLIDS. 

DEFINITIONS. 

The mensuration of solids is divided into two parts. 

1st, The mensuration of the surfaces of solids : and 

2d, The mensuration of their solidities. 

We have already seen that the unit of measure for plane 

surfaces, is a square whose side is the unit of length (Bk. IY. 

Def. 7). 

2. A curve line which is expressed by numbers is also re¬ 

ferred to an unit of length, and its numerical value is the num¬ 

ber of times which the line contains the unit. 

If then, we suppose the linear unit to be reduced to a 

straight line, and a square constructed on this line, this square 

will be the unit of measure for curved surfaces. 

3. The unit of solidity is a cube, whose edge is the unit in 

which the linear dimensions of the solid are expressed; and 

17 
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the face of this cube is the superficial unit in which the sur¬ 

face of the solid is estimated (Bk. YI. Th. xiii. Sch). 

4. The following is a table of solid measure. 

1 cubic foot =1728 cubic inches. 

1 cubic yard =27 cubic feet. 

1 cubic rod =4492] cubic feet. 

1 ale gallon =282 cubic inches. 

1 wine gallon=231 cubic inches. 

1 bushel =2150,42 cubic inches. 

PROBLEM i. 

To find the surface of a right prism. 

RULE. 

Multiply the perimeter of the base by the altitude and the pro¬ 

duct will be the convex surface: and to this add the area of the 

bases, when the entire surface is required (Bk. VI. Th. i). 

EXAMPLES 

1. Find the entire surface of the 

regular prism whose base is the reg¬ 

ular polygon ABCDE and altitude 

AF, when each side of the base is 

20 feet and the altitude AF, 50 feet. 

B 

AB-\-BC-\-CD-\-DE-\-EA —100and4F=50: then* 

(AB-{-BC-\- CD A- DE-\-EA}x 4F=corwex surface 
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which becomes, 100x50=5000 square feet; which is the 

convex surface. For the area of the end, we have 

AB* x tabular number=area ABCDE, 

that is, 20s x tabular number, or 400 x 1,720477=688,1908= 

the area ABCDE. 

Then, convex surface = 5000 square feet, 

lower base 688,1908 square feet, 

upper base 688,1908 square feet. 

Entire surface 6376,3816 

2. What is the surface of a cube, the length of each side 

being 20 feet ? Ans. 2400 sq. ft. 

3. Find the entire surface of a triangular prism, whose base 

is an equilateral triangle, having each of its sides equal to 18 

inches, and altitude 20 feet. Ans. 91,949 sq. ft. 

4. What is the convex surface of a regular octagonal prism, 

the side of whose base is 15 and altitude 12 feet? 

Ans. 1440 sq. ft. 

5. What must be paid for lining a rectangular cistern with 

lead at 2d a pound, the thickness of the lead being such as to 

require 7lb. for each square foot of surface; the inner dimen¬ 

sions of the cistern being as follows : viz. the length 3 feet 2 

inches, the breadth 2 feet 8 inches, and the depth 2 feet 6 

inches ? Ans. £2 3s. 10|d. 

PROBLEM II. 

To find the solidity of a prism. 

RULE. 

Multiply the area of the base by the perpendicular height, ana 

the product will be the solidity. 
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EXAMPLES. 

1. What is the solidity of a reg¬ 

ular pentagonal prism whose altitude 

is 20, and each side of the base 15 

feet ? 

To find the area of the base we 

have by Problem VIII. page 178. 

j. ' / * 

15s=225: and 225x1,7204774=387,107415 = 

the area of the base : hence, 

387,107415 X 20 = 7742,1483 = solidity. 

2. What is the solid contents of a cube whose side is 24 

inches ? Ans. 13824 solid in. 

3. How many cubic feet in a block of marble, of which the 

length is 3 feet 2 inches, breadth 2 feet 8 inches, and height 

or thickness 2 feet 6 inches ? ' Ans. 21| solid ft. 

4. How many gallons of water, ale measure, will a cistern 

contain whose dimensions are the same as in the last ex¬ 

ample ? Ans. 129!y. 

5. Required the solidity of a triangular prism whose alti¬ 

tude is 10 feet, and the three sides of its triangular base 3, 4, 

and 5 feet. Ans. 60 solid ft. 

6. What is the solidity of a square prism whose height is 

5J feet, and each side of the base 1^ foot ? 

Ans. 9£ solid ft. 
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7. What is the solidity of a prism whose base is an equi¬ 

lateral triangle, each side of which is 4 feet, the height of the 

prism being 10 feet? Ans. 69,282 solid ft. 

8. What is the number of cubic or solid feet in a regular 

pentagonal prism of which the altitude is 15 feet and each 

side of the base 3,75 feet? Ans. 362,913. 

PROBLEM III. 

To find the surface of a regular pyramid. 

RULE. 

Multiply the perimeter of the base by half the slant height, 

and the product will be the convex surface: to this add the area 

of the base, if the entire surface is required (Bk. VI. Th. vi). 

EXAMPLES. 

1. In the regular pentagonal pyramid 

/S—ABODE, the slant height SF is 

equal to 45, and each side of the base 

is 15 feet: required the convex sur¬ 

face, and also the entire surface. 

15 x 5=75=perimeter of the base, 

75x22|=1687,5 square feet=area of 

convex surface. 

And 152=225: then 225 x 1,7204774=387,107415=the area 

of the base. 

Hence, convex surface =1687,5 

area of the base= 387,107415 

Entire surface =2074,607415 square feet. 
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2. What is the convex surface of a regular triangular pyra¬ 

mid, the slant height being 20 feet, and each side of the base 

3 feet ? Ans. 90 sq. ft. 

3. What is the entire surface of a regular pyramid whose 

slant height is 15 feet, and the base a regular pentagon, of 

which each side is 25 feet? Ans. 2012,798 sq. ft. 

PROBLEM IV. 

To find the convex surface of the frustum of a regular 

pyramid. 

RULE. 

Multiply half the sum of the perimeters of the two bases by 

the slant height of the frustum, and the product will be the con¬ 

vex surface (Bk. VI. Th. vii). 

EXAMPLES. 

1. In the frustum of the regular pen¬ 

tagonal pyramid each side of the lower 

base is 30, and each side of the upper 

base is 20 feet, and the slant height 

fF is equal to 15 feet. What is the 

convex surface of the frustum ? 

Ans. 1875 sq. ft. 

2. How many square feet are there in the convex surface 

of the frustum of a square pyramid, whose slant height is 10 

feet, each side of the lower base 3 feet 4 inches, and each 

side of the upper base 2 feet 2 inches ? Ans. 110. 

3. What is the convex surface of the frustum of a heptago- 

nal pyramid whose slant height is 55 feet, each side of the 

lower base 8 feet, and each side of the upper base 4 feet ? 
Ans. 2310 sq. ft. 



OF GEOMETRY. 199 

Mensuration of Solids. 

PROBLEM V. 

To find the solidity of a pyramid. 

RULE. 

Multiply the area of the base by the altitude and divide the pro- 

duct by 3, the quotient will be the solidity (Bk. YI. Th. xvii). 

EXAMPLES. 

1 What is the solidity of a pyramid 

the area of whose base is 215 square 

feet and the altitude S0 = 45 feet? 

First, 215 x 45 = 9675 : 

then, 9675 -f- 3 = 3225 

which is the solidity expressed in solid 

feet. 

2. Required the solidity of a square pyramid, each side of 

its base being 30 and its altitude 25. Ans. 7500 solid ft. 

3. How many solid yards are there in a triangular pyramid 

whose altitude is 90 feet, and each side of its base 3 yards ? 

Ans. 38,97117. 

4. How many solid feet in a triangular pyramid the altitude 

of which is 14 feet 6 inches, and the three sides of its base 5, 

6 and 7 feet? Ans. 71,0352. 

5. What is the solidity of a regular pentagonal pyramid, its 

altitude being 12 feet, and each side of its base 2 feet ? 

Ans. 27,5276 solid ft. 
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6. How many solid feet in a regular hexagonal pyramid, 

whose altitude is 6,4 feet, and each side of the base 6 inches? 

Ans. 1,38564. 

7. How many solid feet are contained in a hexagonal pyra¬ 

mid the height of which is 45 feet, and each side of the base 

10 feet? Ans. 3897,1143. 

8. The spire of a church is an octagonal pyramid, each side 

of the base being 5 feet 10 inches, and its perpendicular 

height 45 feet. Within is a cavity, or hollow part, each side 

of th,e base being 4 feet 11 inches, and its perpendicular 

height 41 feet: how many yards of stone does the spire 

contain? Ans. 32,197353. 

PROBLEM VI. 

To find the solidity of the frustum of a pyramid. 

RULE. 

Add together the areas of the two bases of the frustum and 

a geometrical mean proportional between them ; and then multi¬ 

ply the sum by the altitude, and take one-third the product for 

the solidity. 

EXAMPLES. 

1. What is the solidity of the frus¬ 

tum of a pentagonal pyramid the area 

of the lower base being 16 and of the 

upper base 9 square feet, the altitude 

being 7 feet ? 
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First, 16x9 = 144: then,-y/144=12, the mean. 

Then, area of lower base =16 

area of upper base = 9 

mean of bases =12 

~~37 

height 7 

3) 259_ 

solidity = 86 i- solid ft. 

2. What is the number of solid feet in a piece of timber 

whose bases are squares, each side of the lower base being 

15 inches, and each side of the upper base being 6 inches, 

the length being 24 feet? Ans. 19,5. 

3. Required the solidity of a regular pentagonal frustum, 

whose altitude is 5 feet, each side of the lower base 18 

inches, and each side of the upper base 6 inches. 

Ans. 9,31925 solid ft. 

4. What is the contents of a regular hexagonal frustum, 

whose height is 6 feet, the side of the greater end 18 inches, 

and of the less end 12 inches ? Ans. 24,681724 cubic ft. 

5. How many cubic feet in a square piece of timber, the 

areas of the two ends being 504 and 372 inches, and its 

length 31| feet? Ans. 95,447. 

6. What is the solidity of a squared piece of timber, its 

length being 18 feet, each side of the greater base 18 inches, 

and each side of the smaller 12 inches ? 

Ans. 28,5 cubic ft. 

7. What is the solidity of the frustum of a regular hexago¬ 

nal pyramid, the side of the greater end being 3 feet, that of 

the less 2 feet, and the height 12 feet? 

Ans. 197,453776 solid ft. 
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MEASURES OF THE THREE ROUND BODIES. 

PROBLEM I. 

To find the surface of a cylinder. 

RULE. 

Multiply the circumference of the base by the altitude, and the 

product will be the convex surface; and to this, add the areas of 

the two bases, when the entire surface is required (Bk. YI. Th. ii). 

EXAMPLES. 

1. What is the entire surface of the 

cylinder in which AB, the diameter of 

the base, is 12 feet, and the altitude EF 

30 feet ? 

First, to find the circumference of the 

base, (Prob. X. page 180): we have 

3,1416 x 12 — 37,6992=: circumference of 

the base. 

Then, 37,6992 x 30=1130,9760 = convex surface. 

Also, 122= 144 : and 144x,7854 =113,0976 = area of the 

base. 

Then, convex surface = 1130,9760 

lower base 113,0976 

upper base 113,0976 

Entire area =1357,1712 

2. What is the convex surface of a cylinder, the diameter 

of whose base is 20, and the altitude 50 feet ? 

Ans. 3141,6 sq. ft. 
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3. Required the entire surface of a cylinder, whose altitude 

is 20 feet, and the diameter of the base 2 feet. 

Ans. 131,9472 ft. 

4. What is the convex surface of a cylinder, the diameter 

of whose base is 30 inches, and altitude 5 feet ? 

Ans. 5654,88 sq. in. 

5. Required the convex surface of a cylinder, whose alti¬ 

tude is 14 feet, and the circumference of the base 8 feet 4 

inches. Ans. 116,6666, &c., sq. ft. 

PROBLEM II. 

To find the solidity of a cylinder. 

RULE. 

Multiply the area of the base by the altitude, and the product 

will be the area. 

EXAMPLES. 

1. What is the solidity of a cylinder, 

the diameter of whose base is 40 feet, 

and altitude EF, 25 feet ? 

First, to find the area of the base, we 

have (Prob. xv. page 185), 

402= 1600 : then, 1600 X ,7854=1256,64. 

=area of the base. 

Then, 1256,64x25=31416 solid feet, which is the solidity. 

2. What is the solidity of a cylinder, the diameter of whose 

base is 30 feet, and altitude 50 feet ? 

Ans. 35343 cubic ft. 
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3. What is the solidity of a cylinder whose height is 5 feet, 

and the diameter of the end 2 feet ? Ans. 15,708 solid ft 

4. What is the solidity of a cylinder whose height is 20 

feet, and the circumference of the base 20 feet ? 

Ans. 636,64 cubic ft. 

5. The circumference of the base of a cylinder is 20 feet, 

and the altitude 19,318 feet: what is the solidity? 

Ans. 614,93 cubic ft. 

6. What is the solidity of a cylinder whose altitude is 12 

feet, and the diameter of its base 15 feet ? 

Ans. 2120,58 cubic ft. 
I ‘ * i ' \ 

7. Required the solidity of a cylinder whose altitude is 20 

feet, and the circumference of whose base is 5 feet 6 inches ? 

Ans. 48,1459 cubic ft. 

8. What is the solidity of a cylinder, the circumference of 

whose base is 38 feet, and altitude 25 feet ? 

Ans. 2872,838 cubic ft. 

9. What is the solidity of a cylinder, the circumference of 

whose base is 40 feet, and altitude 30 feet ? 

10. The diameter of the base of a cylinder is 84 yards, and 

the altitude 21 feet: how many solid or cubic yards does it 

contain ? Ans. 38792,4768. 

PROBLEM III. 

To find the surface of a cone. 

RULE. 

Multiply the circumference of the base by the slant height, and 

divide the product by 2 ; the quotient will be the convex surface, 

to which add the area of the base, when the entire surface is 

required (Bk. VI. Th. viii). 
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EXAMPLES. 

1. What is the convex surface of the 

cone whose vertex is C, the diameter 

AD, of its base being 8J feet, and the 

side CA, 50 feet. 

First, 

Then, 

3,1416 x 8i=:26,7036=rcircumference of base. 

26^70362££2 _ 667,59=convex surface. 

2. Required the entire surface of a cone whose side is 36, 

and the diameter of its base 18 feet. 

Ans. 1272,348 sq. ft. 

3. The diameter of the base is 3 feet, and the slant height 

15 feet: what is the convex surface of the cone ? 

Ans. 70686 sq. ft. 

4. The diameter of the base of a cone is 4,5 feet, and the 

slant height 20 feet: what is the entire surface ? 

Ans. 157,27635 sq. ft. 

5. The circumference of the base of a cone is 10,75, and 

the slant height is 18,25 : what is the entire surface ? 

Ans. 107,29021 sq. ft. 

PROBLEM IV. 

To find the solidity of a cone. 

RULE. 

Multiply the area of the base by the altitude; and divide the pro¬ 

duct by 3, the quotient will be the solidity (Bk. YI. Th. xviii). 
18 
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EXAMPLES. 

J 

1. What is the solidity of a cone, the 

area of whose base is 380 square feet, 

and altitude CB, 48 feet ? 

Operation. 

We simply multiply the 

area of the base by the alti¬ 

tude, and then divide the pro¬ 

duct by 3. 

380 
48 

3040 
1520 

3)18240 

area=6080 

2. Required the solidity of a cone whose altitude is 27 

feet, and the diameter of the base 10 feet. 

Ans. 706,86 cubic ft. 

3. Required the solidity of a cone whose altitude is 10| 

feet, and the circumference of its base 9 feet ? 

Ans. 22,5609 cubic ft. 

4. What is the solidity of a cone, the diameter of whose 

base is 18 inches, and altitude 15 feet? 

Ans. 8,83575 cubic ft. 

5. The circumference of the base of a cone is 40 feet, and 

the altitude 50 feet: what is the solidity ? 

Ans. 2122,1333 solid ft. 
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PROBLEM V. 

To find the surface of the frustum of a cone. 

RULE. 

Add together the circumferences of the two bases; and multi¬ 

ply the sum by half the slant height of the frustum; the product 

will be the convex surface, to which add the areas of the bases, 

when the entire surface is required (Bk. VI. Th. ix). 

EXAMPLES. 

1. What is the convex surface of the 

frustum of a cone, of which the slant 

height is 12| feet, and the circumfe¬ 

rences of the bases 8,4 and 6 feet. 

We merely take the sum 

of the circumferences of the 

bases, and multiply by half 

the slant height, or side. 
half side 

8,4 
6 

l4~4 
6,25 

area=90 sq. ft. 

2. What is the entire surface of the frustum of a cone, the 

side being 16 feet, and the radii of the bases 2 and 3 feet ? 

Ans. 292,1688 sq. ft. 

3. What is the convex surface of the frustum of a cone, 

the circumference of the greater base being 30 feet, and of 

the less 10 feet; the slant height being 20 feet ? 

Ans. 400 sq. ft. 

4. Required the entire surface of the frustum of a cone 

whose slant height is 20 feet, and the diameters of the bases 

8 and 4 feet. Ans. 439,824 sq. ft. 
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PROBLEM VI. 

To find the solidity of the frustum of a cone. 

RULE. 

I. Add together the areas of the two ends and a geometrical 

mean between them. 

II. Multiply this sum by one-third of the altitude and the 

product will be the solidity. 

EXAMPLES. 

1. How many cubic feet in the frus¬ 

tum of a cone whose altitude is 26 feet, 

and the diameters of the bases 22 and 

18 feet ? 

First, 22s X ,7854= 380,134 = area of 

lower base: 

and 182 3 4 x ,7854=254,47=area of upper base. 

Then, V380,134lx 254,47 = 311,018=mean. 
26 

Then, (380,134 + 254,47 + 311,018)x —=8195,39 which 
O 

is the solidity. 

2. How many cubic feet in a piece of round timber the di¬ 

ameter of the greater end being 18 inches, and that of the less 

9 inches, and the length 14,25 feet? Ans. 14,68943. 
) 

3. What is the solidity of a frustum, the altitude being 18, 

the diameter of the lower base 8, and of the upper 4 ? 

Ans. 527,7888. 

4. If a cask, which is composed of two equal conic frus¬ 

tums joined together at their larger bases, have its bung di¬ 

ameter 28 inches, the head diameter 20 inches, and the length 
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40 inches, how many gallons of wine will it contain, there 

being 231 cubic inches in a gallon? Ans. 79,0613. 

PROBLEM VII. 

To find the surface of a sphere. 

RULE. 

Multiply the circumference of a great circle by the diameter, and 

the product will be the surface (Bk. YI. Th. xxiii). 

EXAMPLES. 

1. What is the surface of the sphere 

whose centre is C, the diameter being 

7 feet? 

Ans, 153,9384 sq. ft. 

2. What is the surface of a sphere whose diameter is 24 ? 

Ans. 1809,5616. 

3. Required the surface of a sphere whose diameter is 

7921 miles. Ans. 197111024 sq. miles. 

4. What is the surface of a sphere the circumference of 

whose great circle is 78,54? Ans. 1963,5. 

5. What is the surface of a sphere whose diameter is 1| 

feet ? Ans. 5,58506 sq. ft. 

PROBLEM VIII. 

To find the convex surface of a spherical zone. 

RULE. 

Multiply the height of the zone by the circumference of a great 

circle of the sphere, and the product will be the convex surface 

(Bk. VI. Th. xxiv). 
18* 
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EXAMPLES. 
• 

1. What is the convex surface of 

the zone ABD, the height BE being 

9 inches, and the diameter of the 

sphere 42 inches ? 

First, 42 X 3,1416 = 131,9472=circumference, 

height = 9 

surface =1187,5248 square inches. 

2. The diameter of a sphere is 12| feet: what will be 

the surface of a zone whose altitude is 2 feet 1 

Ans. 78,54 sq. ft. 

3. The diameter of a sphere is 21 inches : what is the sur¬ 

face of a zone whose height is 4| inches ? 

Ans. 296,8812 sq. in. 

4. The diameter of a sphere is 25 feet and the height of 

the zone 4 feet: what is the surface of the zone ? 

Ans. 314,16 sq. ft. 

5. The diameter of a sphere is 9, and the height of a zone 

3 feet: what is the surface of the zone 1 

Ans. 84,8232. 

PROBLEM IX. 

To find the solidity of a sphere. 

RULE i. 

Multiply the surface by one-third of the radius and the product 

will be the solidity (Bk. VI. Th. xxv)- 
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EXAMPLES. 

1. What is the solidity of a sphere 

whose diameter is 12 feet ? 

First, 3,1416 x 12 = 37,6992 = 

circumference of sphere. 

diameter = 12 

surface =452,3904 
one-third radius = 2 

Solidity =904,7808 cubic feet. 

2. The diameter of a sphere is 7957,8: what is its solidity? 

Ans. 263863122758,4778. 

3. The diameter of a sphere is 24 yards : what is its solid 

contents ? Ans. 7238,2464 cubic yds. 

4. The diameter of a sphere is 8 : what is its solidity? 

Ans. 268,0832. 

5. The diameter of a sphere is 16 : what is its solidity ? 

Ans. 2144,6656. 

RULE II. 

Cube the diameter and multiply the number thus found, by the 

decimal ,5236, and the product will be the solidity. 

EXAMPLES. 

1. What is the solidity of a sphere whose diameter is 20 ? 

Ans. 4188,8. 

2. What is the solidity of a sphere whose diameter is 6 ? 

Ans. 113,0976. 

3. What is the solidity of a sphere whose diameter is 10? 

Ans. 523,6. 
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PROBLEM'-X. 

To find the solidity of a spherical segment with one base. 

RULE. 

I. To three times the square of the radius of the base, add the 

square of the height. 

II. Multiply this sum hy the height, and the product by the 

decimal ,5236, the result will be the solidity of the segment. 

EXAMPLES. 

! 

1. What is the solidity of the seg¬ 

ment ABD, the height BE being 4 

feet, and the diameter AD of the 

base being 14 feet ? 

First, 

72x3-f42=147-F16 = 163: 

Then, 163x4x,5236 = 341,3872 solid feet, which is the 

s rlidity of the segment. 

2. What is the solidity of the segment of a sphere whose 

height is 4, and the radius of its base 8 ? Ans. 435,6352. 

3. What is the solidity of a spherical segment, the diam¬ 

eter of its base being 17,23368, and its height 4.5 ? 

Ans. 572,5566. 

4. What is the solidity of a spherical segment, the diam¬ 

eter of the sphere being 8, and the height of the segment 2 

feet? Ans. 41,888 cubic ft. 

5. What is the solidity of a segment, when the diameter 
r 

of the sphere is 20, and the altitude of the segment 9 feet ? 

# Ans. 1781,2872 cubic ft. 
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OF THE S PH E R 0 I D . 

A spheroid is a solid described by the revolution of an 

ellipse about either of its axes. 

If an ellipse ACBD, be re¬ 

volved about the transverse or 

longer axis AB, the solid de¬ 

scribed is called a prolate 

spheroid: and if it be revolved 

about the shorter axis CD, the solid described is called an 

oblate spheroid. 

The earth is an oblate spheroid, the axis about which it 

revolves being about 34 miles shorter than the diameter per¬ 

pendicular to it. 

PROBLEM XI. 

To find the solidity of an ellipsoid. 

RULE. 

Multiply the fixed axis by the square of the revolving axis, 

and the product by the decimal ,5236, the result will be the re¬ 

quired, solidity. 

' EXAMPLES. 

1. In the prolate spheroid 

ACBD, the transverse axis 

A5 = 90, and the revolving 

axis CD — 70 feet: what is 

the solidity? 

Here, AB—90 feet: CD = 

AB x CD2 X ,5236 = 90 x 4900 x ,5236=230907,6 cubic feet, 

which is the solidity. 
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2. What is the solidity of a prolate spheriod, whose fixed 

axisis 100, and revolving axis 6 feet? Ans. 1884,96. 

3. What is the solidity of an oblate spheroid, whose fixed 

axis is 60, and revolving axis 100 ? Ans. 314160. 

4. What is the solidity of a prolate spheroid, whose axes 

are 40 and 50 ? Ans. 41888. 

5. What is the solidity of an oblate spheroid, whose axes 

are 20 and 10 ? Ans. 2094,4. 

6. What is the solidity of a prolate spheroid, whose axes 

are 55 and 33 ? Ans. 31361,022. 

7. What is the solidity of an oblate spheroid, whose axes 

are 85 and 75 ? Ans. - 

OF CYLINDRICAL 

A cylindrical ring is formed by 

bending a cylinder until the two 

ends meet each other. Thus, if a 

cylinder be bent round until the axis 

takes the position mon, a solid will 

be formed, which is called a cylin¬ 

drical ring. 

The line AB is called the outer, and cd the inner diameter. 

PROBLEM XII. 

To find the convex surface of a cylindrical ring. 

RULE. 

I. To the thickness of the ring add the inner diameter. 

II. Multiply this sum hy the thickness, and the product by 

9,8696, the result will be the area. 

RINGS 
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EXAMPLES. 

1. The thickness Ac, of a cylindri¬ 

cal ring is 3 inches, and the inner 

diameter cd, is 12 inches: what is 

the convex surface 1 

.Ac-f-cd=3-f-12 = 15: 

15 X 3 X 9,8696 = 444,132 square 

inches=the surface. 

2. The thickness of a cylindrical ring is 4 inches, and the 

inner diameter 18 inches : what is the convex surface ? 

Ans. 868,52 sq. in. 

3. The thickness of a cylindrical ring is 2 inches, and the 

inner diameter 18 inches : what is the convex surface ? 

Ans. 394,784 sq. in. 

PROBLEM XIII. 

To find the solidity of a cylindrical ring. 

RULE. 

I. To the thickness of a ring add the inner diameter. 

II. Multiply this sum by the square of half the thickness, and 

the product by 9,8696, the result will be the required solidity. 

EXAMPLES. 

1. What is the solidity of an anchor ring, whose inner di¬ 

ameter is 8 inches, and thickness in metal 3 inches ? 

8-1-3 = 11: then, 11 X (f)2X 9,8696 = 244,2726, which ex¬ 

presses the solidity in cubic inches. 

2. The inner diameter of a cylindrical ring is 18 inches, 

and the thickness 4 inches : what is the solidity of the ring ? 

Ans. 868,5248 cubic inches. 
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3. Required the solidity of a cylindrical ring whose thick¬ 

ness is 2 inches, and inner diameter 12 inches ? 

Ans. 138,1744 cubic in. 

4. What is the solidity of a cylindrical ring, whose thick¬ 

ness is 4 inches, and inner diameter 16 inches? 

Ans. 789,568 cubic in. 

5. What is the solidity of a cylindrical ring, whose thick¬ 

ness is 8 inches, and inner diameter 20 inches ? 

Ans. - 

6. What is the solidity of a cylindrical ring whose thick¬ 

ness is 5 inches, and inner diameter 18 inches ? 

Ans. - 

THE END, 










