

LIBRARY, NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93940

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
ORGANIZATIONAL STRUCTURE CONSIDERATIONS

SOFTWARE DEVELOPMENT PROJECTS
FOR

by

KEVIN M. QUINN

December, 1982

Thesis Advisor Norman Lyons

Approved for Public Release, Distribution Unlimited

T208068

SECURITY CLASSIFICATION OF THIS »»« ,'W*a« Oatm £„..,.<*)

REPORT DOCUMENTATION PAGE
Rf PORT NUMIIK 2. OOvT ACCESSION NO

4 TlTuE <and iubnilm)

Organizational Structure Considerations fo
Software Development Projects

S TYPE OF HfPODT 4 PERIOD COVERED

Master's Thesis
T- December , 1982

7. *uTmo»;«,

Kevin M. Quinn

I. PERFORMING ORGANIZATION NAME ANO AOORESS

Naval Postgraduate School
Monterey, CA

II CONTROLLING OFFICE NAME ANO AOORESS

Naval Postgraduate School
Monterey, CA

READ INSTRUCTIONS
BEFORE COMPLETING FORM

J REClPlEN T'S C AT »lOG nu«

• • »««fO»MlNO ORG REPORT NUMBER

». contract or s«<ntH" N^MttAriJ

10. PROGRAM ELEMENT project T AS*AREA * *0«K UNIT xuhIEAS

12 REPORT OATE

December. 1982
IS. NUMBER OF PAGES

45
14 MONITORING AGENCY NAME 4 AOORESSOf dlllmrmtt mm Controlling Olllea) IS. SECURITY CLASS, (ol inia ri

liS. DECLASSIFICATION/ DOWNGRAOiwG
SCHEDULE

l«. DISTRIBUTION STATEMENT o< inn Aapo/i;

Approved for Public Release, Distribution Unlimited

17. DISTRIBUTION STATEMENT ol tho tottrmci mnlorod In Block 30, II dltlutmnt from Aaporfj

IB SUPPLEMENTARY NOTES

IS. KEY WORDS (Comtlnum on •wort* »t4m II n*caaa«f? anal aontitr kr mlock niatwi

Organizational Structure, Software Development
Team Size, Standardization, Division of Work

20. ABSTRACT iCmilnu* on r*vara« •< *• II noemmkmwr 4P4) ttmmtttf *r »iocm nvmm*t)

Organizational structure has long been recognized as having an
important impact on an organization's ability to accomplish its
objectives. This paper provides managers of software development
projects with an analysis of the importance of several elements
of organizational structure, and of how they can use this
knowledge to make decisions which will have a positive impact

fCont inued)

DO
,
:°:

M
7, 1473 EDITION OF 1 NOV SS IS OBSOLETE

S/N 0102-014- 6601 :

SECURITY CLASSIFICATION OF THIS PAOE (Whmm Dmim tnfrod)

^euwT y gy.*H' y|C«T)OM o» Twit »m^»»«« n»im tmtmm4

ABSTRACT (Continued) Block j 20

on the success of their projects. The structural elements dis-
cussed are specialization of activities, size of the work group
and standardization of activities.

on FrtT-rw 1J.71

Approved for public rsl^ase; distribution unlimited

Organizational Structure Considerations
for Software Development Projects

by

Kevin M. Quinn
Lieutenant, Uniteer States Navy

c.5. r United Sta-es Naval Academy, 1977

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

rom the

NAVAL POSTGRADUATE SCHOOL
December 1932

LIBRARY, NAVAL POSTCRADUA

MONTEREY, CA 93940

ABSTRACT

Organizational structure has long been recognized as

having an important impact on an organization's ability to

accomplish its objectives. This paper provides managers of

software development projects with an analysis of the impor-

tance of several elements of organizational structure, and

of hew they can use this knowledge to make decisions which

will have a positive impact on the success of their

projects. The structural elements discussed are specializa-

tion of activities, size of the work group, and

standardization of activities.

TABLE 0? CONTENTS

I. INTRODUCTION 8

II. SPECIALIZATION OF ACTIVITIES 10

A. REASONS FOR SPECIALIZATION 10

B. SPECIALIZATION IN SOFTWARE PROJECTS 11

C. MANAGEMENT DECISIONS 11

1. The Labor Mix Decision 12

2. The Labor Quantity Decision 19

III. SIZE Q? THE WORK GROUP 22

A. INTRODUCTION 22

B. PRODUCTIVITY IN GPOUPS 22

C. SMALL PROJECT TEAMS 25

1. Social Dynamics Considerations 27

9 D=siar. Considerations 23

D. SUMMAPY 23

IV. STANDARDIZATION DF ACTIVITIES 3^

A. REASONS FCR STAN DARDIZATIDN 3

B. SOFTWARE ENGINEERING 31

C. THE DESIGN PHASE 32

1. Tcp-Dcwn Design 3 3

2. Designing for Change 34

3. Design for Simple Conr.ec -ions and

Functional Binding 35

u. Designing Systems as Models 36

D. SUMMARY 3^

V. SUMMARY AND CONCLUSIONS 39

LIST OF REFERENCES 43

INITIAL DISTRIBUTION LIST U5

LIST OF TABLES

I. Group Size and Productivity Percentage 25

LIST OF FIGUR5S

2.1

2.2

2.3

2.4

2.5

3.1

Software DevelDpne nt Model 12

Programmer Labor Productivity 13

A Software Development Isoquant 14

Isccost Curve 16

The Optimum Labor Mix 17

Communication Patterns in 1D-Man Programming

Te = ms 27

I. INJRODOCTION

As software development projects have become more and

more complex, organizations have developed various struc-

tures to accomplish them in an effective, efficient, and

timely manner. This aspect of the organizational adaptation

process involves manipulating elements of organizational

structure in such a way as to optimize the utilization of

the organization's scarce resources. Stoner [Ref . 1] iden-

tifies four major determinants of organizational structure:

the organization's strategy for achieving its goals; the

skills and needs of the people employed; the technology

employed; and the size of the organization and its subunits.

Management, by making decisions concerning these determi-

nants, seeks to develop the structure which will be most

ee-Pnl a?f 75* • -\ -isue cess rui. m accc!n^j.is.nn ci trie 'Tna_s on trie crcranxz

These managerial decisions are of extreme importance because

"the choices which top management make are one critical

determinants of organizational structure and process."

[Ref. 2: p. 548] Because of the impact of these decisions, it

is very important that managers of a software development

project understand what the elements of organizational

structure are and how they can be manipulated to improve the

performance of the development process.

Three elements of organizational structure noted by

Stoner [Ref. 1] will be the focus of this paper. The first

element will be the specialization of activities. This

concerns the br€aking down of the overall project into

component activities and assigning personnel with special-

ized training to accomplish those activities foe which their

training makes them most suited, and in which they will be

most productive. The objective of the chapter on

specialization of activities will be the making the critical

dscisicr.s of the optimal combination of specialized labor to

employ, and the optimal quantity of individual specialized

labor to apply to the software development process.

The second element will be the size cf the work group.

An analysis of the impact of work group size on productivity

will be made. The factors which influence work group

productivity will be explored, and approaches to mitigating

the negative factors while enhancing the positive factors

will be examined. The size and composition of a work grout?

with high productivity potential will be investigated, and

the manaaerial and systems design techniques needed to

support this work group will also be noted.

The third and final element will be the standardization

or activities The benefits of aotivitv standardization

within a software development project will first be

discussed in general terms. The standardization cf one

phase cf the prccess will then be analyzed in detail to

identify soecific contributions and relevance to the overall

management process.

II. SPECIALIZATION OF ACTIVITIES

A. REASONS FOR SPECIALIZATION

One of the most important elements of organizational

structure is the specialization of activities. This

specialization in the organizational sense includes the

breaking down cf the project into smaller, specialized

tasks. The benefits of ii vision of work have been repeat-

edly demonstrated throughout the history of civilization.

The order of magnitude improvements in productivity

resulting from division of work have had profound impact on

the world's industrial development. Division of work is

important because

no one person
operations in lost complex tasks, nor can any one person
acquire all the skills needed to perform the various
tasks that make up a complex operation. Thus, in ordar
to carry cut tasks requiring a number of steps, it is
necessarv no carcel cut the' various oarts of the task
a mono a number 'of pecDii. Such specialized division of
work allows oecpie to Isarn skills and become expert at
their individual iob functions. Simplified tasks' can be
learned in a relatively short Dsrlod cf time and be
completed quickly. [Ref. 1: p. 25^]

In a complex task such as a software development project

it would be impractical to assign or.e person to acccmplish

the task by himself. In order to achieve a high quality

product, this person would not only have to be expert in all

areas of software development, he would also have to be able

to provide his own clerical services, administative

services, computer services, etc. This one-man approach is

impractical for a multitude of reasons, no 4- the least of

which is the development time that would be required. With

development times for projects running into the hundreds or

10

thousands of man-years, only the smallest of projects would

be possible. Therefore, division of work in a complex

development project is absolutely essential to the success

of the project.

B. SPECIALIZATION IN SOFTWARE PROJECTS

The software development project is often broken down

into a sequence of tasks, phases, or activities such as

requirements analysis, system design, system coding, system

test, etc. This division of the overall -ask into many

subtasks has been widely discussed ir. "rhe literature.

As the task itself is divided into a variety of

subtasks, so to must the overall work requirement be divided

among many individuals. As discussed above, this division

of labor is necessary to produce a quality product within

time and cost constraints. The division of labor allows

individuals to specialize and bacom a expert at certain

skills. Systems analysts, programmers, technical analysts,

and database administrators are some cf the specializations

within software development projects. The chief programmer

team concept as described by Brooks (Ref. 3: p. 32-35],

makes clear distinctions between the skills, duties, and

responsibilities Df its team members. The specialization

within the chief programmer team includes a chief

programmer, assistant programmer, administrator, editor,

secretaries, clerk, tooismith, tester, and language lawyer.

This type of team, the individuals within it and their

duties will be discussed later in the paper.

C. MANAGEMENT DECISIONS

The thrust of this chapter will be towards developing

generic conceptual frameworks for the management decisions

concerning the combination and quantity of the specialized

11

labor skills to employ. The following management decision

questions will b€ addressed

:

1) What is the optimal mix of the different types of labor

to employ in the software development process?

2) What is the optimal quantity of a particular type of

labor to employ?

1 • The Labor. Mix Decis ion

a. The Production Process

The software development process is a production

process which transforms a particular sef of inputs (e.g.

systems analyst labor, programmer labor, computer services,

etc.) into a

process.

lesir ed i atput

.

Figure 2.1 model. h 1 Q

labor

capital-

software

3, eveiopment so ft war 2

- 1

process

Figure 2.1 Software Development Hodel,

12

The relationship between the inputs into the

process and the maximum output based upon those inputs

represents the production function for the process. In

other words, given the technology applied, the output of the

process is a function of the inputs employed in the process.

Brooks [Ref. 3] and Fried [Ref. 4] have demonstrated that if

the other inputs are held constant while one type of labor

is allowed to increase, that input will, at soma point, show

decreasing marginal productivity and will eventually display

a negative marginal productivity. Figure 2.2 illustrates

the se findings with respect to programmer labor. The slooe

of the in Figure 2.2 represents the marginal product

of programmer labor with respect

pro duced.

o total lines code

nr.es
of
code

prog ram msr labor

Figure 2.2 Programmer Labor Productivity.

13

If wc allow two of th9 inputs to v=ry, we can

develop an isoquant representing all of the possible effi-

cient combinations of these two inputs which will produce

tha same quantity of output. For the purpose of this argu-

ment the two inputs used w ill be systems analyst labor and

programmer labor. Figurs 2.3 illustrates an isoquant which

represents the possible combinations of programmer labor and

systems analyst labor capable of producing a given quantity

of software (Qs) .

ra no r

programmer labor

j

Figure 2. 3 A Software Development Isoquant.

Points A and 3 on the isoquant represent two

different combinations of programmer and systems analyst

labor capable of producing the same amount of software; as

such, they represent two different technological processes

(within the given technology) used in the production of the

14

software. The slope of ths curve, therefore, represents the

marginal rate of technological substitution (MRTS) of

programmer labor for systems analyst labor. It can also be

shown that the marginal rate of technical substitution is

egual to the ratio of ths marginal products of the inputs

[Ref. 5: p. 158]. In symbols:

MRTS = -MPp/MPsa {eqn 2.1)

w he r e

:

H?p = margin ai product of programmer labor

MPsa = marginal product of systems analyst labor

MRTS = marginal rats of technical substitution.

b. The Costs

If w <= assume that the organization has a limited

amount of funds to expend on ths inputs to ths production

process, and that the total cost of the fixed inputs remains

constant and is less than the total amount available, then

there exists an amount which is available to partition among

the variable inputs: programmer ani systems analyst labor.

In symbols:

H = Pp*Qp « Psa*Qsa (eqn 2.2)

whe re

:

M

Fp

Psa

QP

Qsa

= the total amount available for programmer and

systems analyst labor

= the price of 3. unit of programmer labor

= the price of a unit of systems analyst labor

= the quantity of programmer labor used

= the quantity of systems analyst labor used.

15

If we graph aquation 2.2 we car. represent the

various possible combinations of programmer and systems

analyst labor that can bs aguired for the amount M by a

straight line as in Figure 2.4 . This line is called the

isocost curve for these input combinations. The slope of

the isocost curve is negative and can be shown to be equal

to Pp/Psa.

*Aa

amount or
systems
analyst
1 a bo r

amount of programmer labo:

Figure 2.4 Isocost Curve.

If a family of the previously developed isoguant

curves is superimposed upon the isocost curve of Figure 2.4,

as in Figure 2. 5, it is possible to graphically determine

the optimum mix of programmer and systems analyst labor to

employ in the software development process.

16

amount ofn
systems
analyst
labor

Figure 2.5 The Optimum Labor Mix.

Q1, Q2, and Q3 represent isoquants in increasing

order cf quantity of software produced. There may be any

number of isoquar.ts represented on the graph, bat it can be

seen that output will be maximized cor a given cost (M) an

the point where the isocost curve is tangent to the highest

isoquant curve. In Figure 2.5 this is point B, and 02 is

the maximum quantity of software than can be produced for

the given dollar amount available for programmer and systems

analyst labor. Alternately, in could be stated that M is

the minimum amount that would have to be spent on programmer

and systems analyst labor, other faotors held constant, in

order to produce a desired quantity Q2. points A and C

represer.-"-. suboptimum utilization of resources because the

same dollar amount is being expended to produce a smaller

amount cf output (Q1) than it is possible of producing.

17

Additionally, Figure 2.5 shows that, if other factors of

production are held constant, it is not possible to produce

more than Q2 (for example Q3) with a limit of a dollars

available for programmer and systems analyst: labor.

Therefore, from Figure 2.5 it is demonstrated that the

optimum mix of systems analyst aid programmer labor is

represented by the quantities Qsa and Qp respectively.

There is still more information available from

Figure 2.5 . As shown above, the slooe of the isocost curve

is equal tc - ne ratio of the prices of the inputs (-Pp/Psa)

,

and the slope of the isoquant curve is equal to the marginal

rate of technological substitution cr the ratio of the

marginal products of the inputs (-MPp/MPsa) . The optimum

mix has been shewn to be the point of tangency between the

isocost curve an d the isoquant curve. Therefore, at the

optimum, the ratio of the prices of the inputs will be equal

to the ratio of their marginal products. The optimal combi-

nation of programmer ana systems analyst labor, therefore,

is where:

Pp/Psa = HPp/MPsa (eqn 2.3)

or alternately where:

MPsa/Psa = HPp/Pp (eqn 2.4)

This second aquation reveals that the optimum

mix exists where the marginal productivity of a dollar's

worth of systems analyst labor is equal to a dollar's worth

of programmer labor.

18

This conclusion makes intuitive sense and can be

generalized for any number of inputs [Ref. 5: p. 175]. What

the relationship says is that if, at any point, output can

be increased by taking a dollar from input X and applying

that dollar to input Y, than it is beneficial to do so. The

equilibrium point will necessarily be where ^he ratio of the

marainal productivity to cost for all inputs is equal.

2 • The, Labor £u ant i t y_ Decision

mv second problem is to decide -he optimal quantity

or an input to utilize he sortware development process.

Programmer labor will be used as a represents tive input.

It was shown above that the marginal productivity of

programmer labor in the production of software, holding

other factors constant, is positive over the relevant range.

In other words, an incremental increase m programmer do:

prcarammer labor required

will result, up to a point, in an incremental increase in

the amount of software produced. The amount of the increase

mtal

increase in software produced is called the marginal input

requirement of proqrammer labor in the production of soft-

ware (HIP.p) . If the market price of programmer labor is ?p,

than, in order to achieve a marginal increase in software

production, a marginal cost (MC) equal to the price of

programmer labor multipiiad by the marginal input require-

ment of programmer labor in the production of software will

be incurred. The equation is:

MC ? p*HIRp (eqn 2.5)

or alternately, since it can be shown that the marginal

input reguirement is equal to the inverse of the marginal

product:

19

MC = ?p*1/MPp (eqn 2.6)

The marginal revenue (MR) received by selling the

incremental amount of software produced can also be calcu-

lated. If the market price of the software produced is Rs r

then the marginal revenue is equal to this market price

multiplied bv the increase in software produced as a result

of an incremental increase in oroara^mer labcr. This second

term is the marginal product of programmer labcr in the

production of software. The marginal revenue equation is:

MB Rs*HPo (ear. 2.7)

Because the flow of funds for costs and revenues

occur a~ different periods in time. it is necessary to

discount them to present values befor? comparing them:

Present Value of MC
-ft

?p*MIFp*e (eqn 2.8)

Present Value of MR = Rs*MPp*e
rt

(eqn 2.9)

The difference between the present value of the

marginal revenue and the present value of the marginal cost

is the net present value of a marginal increase in the

amount of programmer labor used. If this net present value

is positive, that is if the present value of marginal

revenue is greater than the present value of marginal cost,

then, it is profitable to increase tie amount of programmer

labor used. If the net present value is negative, then it

is profitable to decrease the amount of programmer labor

used.

20

At the optimum, all other factors remaining

constant, programmer labor (or any other input) should ba

acquired to the point whare the present value of marginal

revenue equals the present value of marginal cost. In

symbols this is wher«=:

-rt -ft
Pp*?lIPp*e = Rs*MPp*e (eqn 2.10)

T, "2 r c b 1 a i in i m pi 3 mentin g this t ir o e of conceptual

framework is the difficulty of ieveioping an accurate

producxicn function for the software development process,

especially in vi=w of rh? paucity of good databases or. the

subject. A major benefit of this type of conceptual frame-

work is its compatibility with linear programming methods as

shown by Ein-Dor and Jones [Ref. 6].

21

HI- SIZE DF THE WORK GROUP

A. INTRODUCTION

The complex nature of software development projects has

necessitated the decomposition of the overall task into a

multitude of lesser tasks and ths assignment of groups of

people to accomplish *hose tasks. One would think that the

larqer the group of people assigned to a task, the shorter

would be the completion time for the task. Therefore, in

order to meet project deadlines, attempts have been made to

speed the completion of complex software development

projects by simply adding more manpower to the project. The

fallacy of this belief has been widely noted, most promi-

nently in Brocks' widely read book The Mythical Man Month in

which Brooks identified some of the faotors which restrained

increased group size from resulting in decreased project

completion time; and in which he described how ''adding

manpower to a late software project makes it later."

[P.ef. 3: p. 25] The impact of this phenomenon on the soft-

ware production function was discussed in the previous

chapter. This chapter will analyze how and why the size of

the work qrcup contributes to this phenomenon, and how the

negative influence en productivity may be mitigated.

B. PRODUCTIVITY IN GROUPS

Frcm studies as well as from our own work experience we

know that members of a group working on a task do net spend

all of their time doing constructive work. Some percentage

of the time is spent on coffee breads, meetings, illness,

training, vacations, communicating, socializing, etc. For a

10 member group "the non-productive time expected for each

22

member is 25 percent for vacation and the like; 10 percent

for idle time; and a base of 10 percent for time spent

communicating: a total of 45 percent. We may Therefore

estimate that 55 percent. of each employees time can be

considered productive in a group of up to 10 employees."

(Ref. 4: p- 3] Fried defines productivity in a software

development project as "developing a system with the

following characteristics: - Maintainability (documented,

modular, etc.) - Effectiveness (meets aciual user needs)

Efficiency (uses minimal resources). 11 [Ref. 4: p. 8]

The portion cf non-productive time that is most variable

with group size is the com municatiop. time. If each member

of the group has to interact with each other in the accom-

plishment of the task, the number of interactions rises

dramatically with the number of peoDle involved. If K were

the number cf people in the group, the number of interac-

tions (N) would be given by the for ma la:

N = K* (K-1) /2 (eqn 3.1)

This formula shows that the number of interactions in

the group increases in exponential fashion with an increase

in group size. This comma nica -ions effort has proven to be

a determining factor of productivity time in a group. Fried

[Ref. 4] has developed the following formulae for computing

the the percentage of productivity time:

Px = K*(T* .55 - .0001* (K* K-1 /2))
(egn 3.2)

where

:

Pt = productivity time

T = individual employee hours per work period

K = the number of people in the group.

23

The productivity percentage in the work group is therefore:

Pp = 100*(.55 - .0001* K*(K-1)/2) (eqn 3.3)

where :

Pp = percentage of productive time

K = the number of people in the group.

Solving the above equations for a 10 member group

working a 40 hour work week:

Pt = 1Q*(40* .55 - .0001(10* 10-1 /2)) = 213.2

Pp = 100*(.55 - .0001 10*(10-1)/2) = 54.55

whereas for an 8 member group working the same hours:

Pt = 80* (40* .55 - .0001*(80* 8 0-1 /2))
= 748.8

Pp = 100*(.55 - .0001* 80*(30-1)/2) = 23.4

Table I demonstrates how the productivity percentage

varies for groups of various size.

Fried [Ref- 4], and Weinberg [Sef. 7] have experienced

this inverse relationship between group size and produc-

tivity in complex projects with which they have been

associated. Furthermore, Fried postulates that it is

possible to reach a point of negative marginal productivity.

This is consistent with Brooks' [Ref. 3] earlier findings

that, after a point, adding manpower can increase time to

completion rather than decrease it.

24

TABLE I

i

Group Size and Productivi ty Percentage

Grou£ Si ze Pro lug tivity Fircen tacje

10
20
40
6
30

54.55
53. 1

47.2
37.3
23.4

\ ,_.,,. j

C. SMALL PROJECT TEAMS

The above findings suggest that, 3

tivity time, project teams should be created which are of

iliiiltefl 5IZS. A -earn with :wo memoers would seem to have

the highest productivity percentage; n i ~ - r^ -n a

coordination and communication that would be required

between groups, as well as the limited division of labor

possible within the group, would eliminate any possible

advantages. Alternately, too large a group results in low

or negative marginal produc tivity.

Brooks [Ref. 3] encountered this dilemma of balancing

the desireable aspects of email groups against the absolute

need to produce the large and complex OS/360 system within

time and budget constraints. He described his problem as

follows:

For effiency and conceptual integrity, one prefers a few
good minds doing design and construction. Yet for large
systems one wants a way to being considerable manpower to
bear, so that the product can make a timely appearance. How
can these two needs be reconciled?" [Ref* 3: p. 31]

25

The answer that Brooks [Ref. 3], Mills [Ref • 8], and

others have advocated is the chief programmer team concept.

This concept calls for a 10 person team headed by a chief

programmer who designs, codes, tests, and documents the

system; and who is totally responsible for the product. All

the other team members ars tasked with supporting the chief

programmer in his duties. The other lembers of the team and

their duties are:

- The "copilot" vho serves as the Drimary assistant and

understudy to the chief programmer;

- The administrator who handles the logistics and

administrative coordination for ths team;

- The editor who reviews the chief programmer's rough

documentation and performs the necessary editing and

reworking required to Droduce the final product;

- Two secretaries, one each for the administrator and the

editor, for the necessary typing, filing,

correspondence, etc.;

- The program clerk who maintains the program product

library

;

- The "toolsmith" who provides basic utilities, creates

macro libraries, and in general facilitates and ensures

the adeguacy of computer services;

- The tester who designs and plans module and systems

testing, produces test oases, test data, etc.;

- The language lawyer who is expert in the chosen

programming language and can adviss the chief

programmer on sophisticated or intricate uses of the

language. [Ref. 3: pp. 3 2-35]

25

The hierarchy of individuals performing specialized

functions in support of a group leader not only provides the

benefits of division of labor and specialization discussed

earlier, it also provides conceptual integrity in design and

coding, as well as simplifying the interpersonal communica-

tion required. This reduot ion in coamunication requirements

coupled with the small size of the team results in a higher

productivity percentage far the team. Figure 3.1 illus-

trates the communication patterns within the chief

programmer team. [Ref . 3: p. 35]

[ADMINISTRATOR
u
-::::r::::;-

J

SECRETARY

I EDITOR I

5ECSETARYJ

SURGEON

CO? ILOTJ

clerk!

j TOOLSMITHJ

-| TESTER1

LANGUAGE
LAWYER

Figure 3-1 Coaiunication Patterns in 10-Man Programming Teams.

1 • Social Dynamics Considerations

The small size of these teams and the specialization

of function within them also helps to mitigate the negative

impact of such social dynamics as the "Commons Dilemma"

27

[Ref. 9] and "social loafing" [Ref . 10]- These dynamics

suggest that individuals in a group may use more than their

share of a common resource or contribute less than their

share to the common effort if they feel that their excesses

or delinquencies will not be distinguishable from the common

consumption or effort. The small size of the team and the

specialized functions of the team members in the chief

programmer team concept alleviate these problems by making

each team member accountable for a visible, distinct secment

[roup effort.

2. Ensign Ccnsi derations

In order to reap the benefits of small groups such

as the chief programmer teams in large, complex projects i 4-

is necessary to have many of these teams working concur-

rently in coordinated fashion. To minimize the coordination

and management required, and thereby enhance the productive-

ness of each tea it, it is essential -hat the overall system

be designed in a structured, modular manner with clear,

unambiguous specifications and documentation. Such stan-

dardized design methodologies will be discussed later in the

paper. Their benefit is that they allow independent,

concurrent production of modules which can be "integrated

into the whole without further coordination." [Ref. 4: p.

10]

D. SUMMARY

The above analysis indicates that, in a systems develop-

ment prelect, the size of the work groups should be

relatively small. The benefits of these small work groups

lie mainly in the improved percentage of time spent produc-

tively. This benefit results not only from the fewer number

of communications within the group; but also from the

28

ability cf small, hierarchically structured groups to miti-

gate some of the non-productive aspects of group dynamics.

Certain managerial and system design techniques may be

required to ensure that these benefits result. These tech-

niques include:

- Proper schedulinq and task: loading based on an
understanding of "productive time.

- Clear assignment of task and product responsibility

,

accompanied by measurement and recognition of
individual performance.

- Modular desian that supports cliir ass i an men t of
product responsibility!* [Ref. 4: p. 10]

29

IV. STANDARDIZATION OF ACTIVITIES

A. SEASONS FOR STANDARDIZATION

Standardization of activities is a very important

element of organizational structure because it is the way in

which the organization ensures that its efforts will produce

predictable results in the quantity, quality, timeliness,

and cost of the software produced. in activity is standard-

ized when the procedure is mads uniform and consistent.

The advantages of standardization of activities have

long been recognized in production processes. In an automo-

bile assembly line the order in which activities are

performed, the manner in which they ire performed, the qual-

ifications of workers, the rate of production, the tools,

par^s, etc., are ail highly standardized. This standardiza-

tion is one of the reasons -hat -his type of production is

so successful. There are, of course, significant differ-

ences between automobile assembly and software development,

but the benefits of standardization of activities are reccg-

nizeable in both areas.

The goals of standardization are to produce predictable

results in quantity, quality, timeliness, and cost. The

quantity metric could be lines of code, number of modules,

applications programs completed, etc., depending on manage-

ment's desired control system. The quality metric is a

complex and mult ifaceted one. What constitutes good soft-

ware is a question that continues to be debated.

Reliability, predictability, readability, maintainability,

modif iabilty, flexibility, robustness, efficiency, and

understandabilit y are soma of the concepts currently associ-

ated with evaluating the quality of software.

3D

The timeliness and cost: metrics are fairly simple

concepts. The time it -cakes to complete a project and the

cost of the project will vary with the nature of the

project, assigned resource s, etc.; with the general goal

being tc complete the project within the budgeted cost and

time period. The predictability of the above metrics is

itself a major goal of standardization. From a management

viewpoint, the predictability of the outcome of the organi-

zation's efforts is absolutely essential for the planning

and control of those efforts.

B. SOFTWARE ENGINEERING

The field cf software engineering has developed in

response to the need to improve and standardize the methods

and techniques enpioyed in the software development process.

The re have been various attempts to define the field of

software engineering. Wasserman and Freeman [Ref . 11]

defined if as:

the attempt to seek out and use techniques that can
assist in the economical development of software which
executes reiiabiv and efficiently on real machines,
Baking effective 'use of the human resources available.
Software Engineering tries to take an overall systems
viewDcint in which the optimization of ail resources -

developmental as well as operational - is considered.
[Ref. 11: p. 256]

3.W. Boehm [Ref. 12] shows a slightly different perspec-

tive in his definition of software engineering as:

the means by which we attempt to produce all of this
software in a way that is both cost-effective and reli-
able enough tc deserve our trust... (It is) the
practical application of scientific knowledge in the
design and construction of computer programs and the
associated documentation required to develop, operate,
and maintain them. [Ref. 12: p. 1227]

31

The decision of which techniques and methodologies to

utilize in the software development process is a choice of

the technology tc employ. This choice is of critical impor-

tance to the development process because the technology

employed serves to define the software production function.

"The production function summarizes the characteristics of

the existing technology at a given point in time; it shows

the technological constraints that the firm must reckon

with." [Ref, 5: p. 146] Therefore, by selecting certain

techniques and methodologies, and implementing them as stan-

dards fcr the conduct of the dsvelopaent process, the choice

of the technology which will form the boundary of the organ-

ization's productivity is made. The importance of

structured, modular software design to the implementation

and effectiveness cf small project teams was discussed

earlier in this paper. To provide continuity, design meth-

odologies will be used as the example of how activities in

the development process are being standardized to contribute

to the success of software development projects.

C. THE DESIGN PHASE

The importance of standardizing the design phase cf a

software development project has grown with that of the

design phase itself. Developing standard design methods is

one of the thrusts cf software engineering and many

approaches have been championed. The standard approaches

that have been most widely accepted are those which advocate

a structured approach to the design process. The very term

"structured" implies that seme sort of standard method,

mechanism, or approach is used. Stevens, Myers, and

Constantine [Ref. 13] have defined structured design as "a

set of proposed general program design considerations and

technigues for making coding, debugging, and modification

32

easier, faster, and less expensive by reducing complexity."

[Ref. 13: p. 216]

1 • l-CEzDown De si.gn

Perhaps the best known structured design technique

is Top-down design which results from a stepwise refinement

process. Stepwise refinement is a methodology which

consists of the following steps:

1) Star* with a high-level, overall statement ::

description of the desired system function made up

of: a) the overall statement of the system function;

and b) comments/description of the next level of

detail.

2) Refine the abcve by replacing the comments/description

with a) lower level functions; and

b) comment s/ d esc ript ion of the next level.

3) Repeat the refinement until ther= are no comments left

so that the bottom level consists only of functions

which can be implemented on the hardware/software

machine.

This Top-down design can be represented as a hier-

archy of modules in which the "uses" relationship exists

between the higher and lower level modules. The "uses"

relationship can be interpreted as "requires the presence of

a correct version of." [Ref. 14: p 230]

Erooks £Ref. 3] termed Top-down design "the most

important new programming formulation of the (1970-1980)

decade." [Ref. 3: p. 144] Among the benefits that Brooks

attributed *o Tcp-dcwn design were four ways in which if

assists the designer to avoid errors or bugs:

First, the clarity of structure and representation makes
the precise statement cf requirements and functions of

33

the modules <=asier. Second, the partitioning and
independence of modules avoids system bugs. rhira, the
suppression of detail makes flaws in the structure more
apparent. Fourth, tha design :an be tested at each of
its refinement steps, 30 x esting can start earlier and
focus on the proper level of detail at each step."
[Ref. 3: p. 1431

The concepts of modularity and clear structure

present in the Top-down design approach are represented in

the more resent design approaches although the manner and

criteria of the decomposition have varied in some cases.

2« Designing; fo r Change

Parnas [Hef. 15] has proposed a design methodology

which focuses on designing software that can be easily

changed. His approach uses a modular decomposition based

upon information -hiding modules within a hierarchical struc-

ture. Parnas £Hef. 15] proposes a design procedure which

would include:

1) Idertifyinci all difficult design decisions and these

design decisions which are likely to chance.

2) Isolating the changeable design decisions into

information-hiding modules with clearly defined

interfaces which will be unaffected by potential

changes.

3) Establish the "uses" relationship between the modules.

4) Set up the "uses" hierarchy by: a) listing the modules

at level (i.e. those nodules which use no other

module) ; and b) working up the hierarchy to the top

level (i.e. that module which is used by no other

module) .

3'4

Parnas' approach to system design has been of

significant interest to those in the software engineering

field because his methods:

1) Bring software design closer to being a science.

2) Result in programs whioh are easier to fix and modify.

3) Result in programs which are easily subsettable and

extendable.

4) Allow modules to be programmed and tested

independently [Ref. 15].

Note that the ability to independently program and

test modules which is cited here and in suseguent design

techniques is what was shown to be naccessary for the effec-

tive utilization of small Droject teams within a large,

complex project.

3. 2~§i2H for Simple Connections and Functional linking

Stevens, Myers, and Const antine [Ref. 13] have

proposed structured design techniques base! on principles

similar to those of Parnas. These "Techniques emphasize a

structure of simply connected, functionally bound modules.

They emphasize the use of structure oharts rather than flow-

charts in the design phase. Reference 13 provides the

somewhat lengthy step-by-step procedure for developing the

input-process -o utput general structure that Stevens, Myers,

and Constantine advocate.

The benefits of this design technique include:

1) Its ccmpatability with the HIPO hierarchy charting

format [Ref. 16].

2) Better maintainability of resultant proqrams.

3) Results in independently programmable and testable

modules.

35

4) Ability to identify ani optimize critical modules.

5) Ability to develop reuseable modules.

** • Des igni n,g Systems as Mo dels

Jackson [Ref. 17] has proposed a different approach

to software design. He argues that there are some serious

disad vantaaes to the functional approach to systems design.

Among the disadvantages he cites are:

1) The difficulty of applying functional design to complex

problems.

2) The frequent requests for changes in system function.

3) The lack of a clear distiction between functions to be

performed by software and those to be performed by

hardware.

Jackson's approach is to design the system primarily

as a mcdei of the reality which it is representing and

subsequently superimpose the desirei functions on the model.

The steps in the process are:

1) Represent each active entity in the real world system to

be modeled as a process acting on a dedicated processor.

2) Represent the communication between the processes

themselves, and between the processes and the outside

world as a data stream.

3) Superimpose desired functions on the model.

36

Henard [Ref . 18] of the Communications and Computer

Science Department of Exxon corporation has used Jackson's

design method in combination with top-down implementation

and structured walkthroughs. This combination was called

the Program Structure Technology (PST) . Henard found that

the benefits derived from the use of PST r measured
statistically for several applications, include
increased programmer productivity and reduced mainte-
nance costs. With PST as a design method, the
programmer can produce double the industry standard
number of lines of code per year.. The reduced mainte-
nance cos~? re su 1*" from — n co u ^ t - " i n cr

cs -^c- bucjs in the
program code and from having the simpler, structured
code which is easier to modify." [Ref • 18: p. 89]

Menard [Sef . 18] found that, whereas the PST method

required them tc spend more time oi the design phase of a

project, this time was more than made up in the implementa-

tion phase of the project.

D. SUHHARY

The design methodologies discusssed above -re import ^.n
-

for providing conceptually sound frameworks for the design

of "good" software; but, in ord=»r to realize the maximum

benefit, the chosen methodology must be standardized

throughout the development project. It is the standardiza-

tion of the process which provides the organization with the

benefits by reducing tha necessity for communication and

coordination while maintaining design integrity and facili-

tating successful integration.

The standards themselves form the basis of the organiza-

tion's planning, control, and a valuation processes. Biggs,

Birks, and Atkins [Ref. 19] summarized the importance of

standardization as fellows:

and
e

gress iuringthe systems development pre

37

inhibiting the necessary analytical and creative work
required to produce successful new systems. The struc-
ture allows management to make and monitor incremental
commitments and the ability tc impact interim results.
It is an important key to an organization's effective
management of the systems development process.
[Ref- 19: p. 47]

The importance of standardizing the activities in the

software development process continues to receive management

attention. The emphasis on develODing standard methods and

approaches to requirements analysis, specifications, docu-

mentation, integration, and testing manifests the vital

importance of activity standardization in the software

development process.

33

V. SOMMARX AND CONCLOSIONS

Organizational structure has long been recognized as

having an important impact on an organization's ability to

accomplish its objectives. Managers, therefore, need tc be

aware of how organizational structure affects performance.

This paper has provided the managers of software development

projects with an analysis of the importance of several

elements of organizational structure , and cf how they can

use this knowledge to make decisions about organizational

structure which will have a positive impact on the success

of their projects.

The firs- structural element analyzed was the speciali-

zation cf activities. It was founi that the manager ccul^

proceed with specific or general knowledge of the software

production function as provided by Brooks [Ref . 3], Fried

[Ref. 4], Weinberg [Ref. 7], and Ein-Dcr and Jones [Ref. 6],

to develop conceptual frameworks to assist in making deci-

sions for optimizing the utilization of the specialized

inputs into the software development process. Two of the

most important decisions are the determination of the

optimal mix of these inputs, and the determination of the

optimal guantity of a particular input to aguire.

The optimal mix cf the various inputs was shown to exist

at that point where the marginal productivity of a dollar's

worth of any input in the production of the software output

is egual to the marginal productivity of a dollar's worth of

any other input.

The optimal guantity cf an input to employ, other

factors remaining constant, is that quantity at which the

present value of the marginal revenue received due tc a

marginal increment of the input is equal to the present

39

value cf the marginal cost incurred do to that marginal

increment.

This type of conceptual framework provides the addi-

tional benefit of being compatible with technical analysis

and linear programming as shown by Ein-Dor and Jones

[Ref. 6].

One element of organ! zational structure that affects

labor productivity and thus the production function is the

size cf the work group. Brooks [Ref. 3] found that, after a

point, increases in programmer labor contributed less and

less to software production ana that, ultimately, increases

in programmer labor would have a negative impact on produc-

tion. Fried [Ref. 4] experienced similar results as did

Weinberg [Ref. 7]. Fried [Ref. 4] and Brooks [Ref. 3] found

that communications reguirements were the major factor in

reduced productivity as group size increased. Fried

[Ref. 4] has developed a formula from case studies and prac-

tical experience which can be used to calculate the amount

of time spent spent productively by a group based upon the

size of the croup. This formula and Weinberg's [Ref. 7]

findings suagest that groups with more than 33 people will

spend less than 50 percent of thsir time doing productive

work.

Cass and Edney [Ref. 9] and Latane, wiliiams, and

Harkins [Ref. 10] disco7=red aspects of social dynamics

which also contribute to reduced individual productivity in

iarae groups. These findings indicate that individuals tend

to use more resources and contribute less effort if their

consumption and performance are felt to be indist inqishable

from that of the group.

A possible solution to the team size problem in view of

these findings is the chief programmer team concept. This

hierarchically structured, 10 person team is organized in a

manner which provides for design integrity, quality output,

40

simple ccmmunica tion pat-tarns, visible job performance, and

high productivity. Successful implementation of this small

team concept in complex projects requires a modular project

design as well as managerial emphasis on planning, control,

and evaluation.

The achievement of good planning, control, and evalua-

tion requires the standardization of software development

activities including: requirements analysis, specifica-

tions, design, documentation, integration, and testing. The

selection and implementation of standard techniques and

met hodcicgies represents the choice of technology for the

project. This technological choice, in turn, serves to

define the production function for the project.

Stevens, Myers, and Constantine [Ref . 13], Parnas

[Ref. 15], and Jackson [Ref. 17], among others have proposed

software design methodologies which have been used with

success as the standard for software projects. The modular

structure and clearly defined interfaces resulting from the

structured design methodologies allow for the successful

division of work among small, efficient programming teams.

Biggs, Birks and Atkins [Ref. 19] emphasize the impor-

tance cf activity standardization in all phases of the

development process as i key element of organizational

structure. Its importance is recognized not only because it

makes effective planning, control, and evaluation possible;

but alsc for the reduction in communication and coordination

it allows.

The field of organizational structure and its impact on

organizations' success is vast, with myriad subtle interre-

lationships. It is an interdisciplinary field with

applications from economics, operations research,

psychology, sociology, ana various technologies. This paper

has delved into several of the relationships between

elements of or aanizatioaa 1 structure and the software

41

development process. A common thread that has appeared in

each element is the software development production func-

tion. As the database of development projects improves, so

too will our ability to analyze and improve the software

development process.

42

LIST OF REFERENCES

1. Stoner, J. A., Manacrem ent, 2d ed. , Prentice-Hall, 1982.

2. Mil^s, S. , Snow, C. , Meyer, A., and Coleman, H.

,

"Organizational Strateqy, Structure, and Process,"
Academy of Management Review, p. 546-56 2, July 1978.

3. Brooks, F., The Mythical Man Month, Addison-Wesley

,

4. Fried, L., "The Impact of Team Size on Systems
Development Performance," Auerbach (3-10-19), 1932.

5. Mansfield, E. , Microeconomics, 3d ed. , Norton, 1979.

6. Ein-Dcr, P. and Jones, C. , Economics and Management of
C0j.2u-er.ized Information Systems, "Unoubilsnea manu-
script, N"a vai PosFgr actuat e""5cn*551, 1982.

7. Weinbera, G. A The Psychology of Comoute^ P£2S.rajnming

,

8.

9.

12.

Weinbera, G. , Th Psychol
Reinhcld, 19/1.

Mills
t

H. , "Chief Programmer Teams, Principles, and
Procedures," IBM Federal Svsteras Division Report ?SC
71-5108, 1971.

CasSf R. and Edney , J., "The Commons Dilemma: A
Simulation Testing trie Effects of Resource Visibi lity
and Territorial Dimension," Human Ecology, p. 371-335:

10. Latane, B. , Williams, K. , and Harkins, S., "Social
Loafing," Psychology Today, p. 104-110, October 1979.

11. Wasserman, A. and Freeman, P., "Software Engineering
Education: Status and Prospects," Pror:o£d^ngs of the
IEEE . Vol. 66, No. 3, p. 256-25 5, August 1978.

Boehm, 3., "Software Engineering," IEE Trans actions
en Com£uters. Vol. C-2 5, No. 12, p." 122"5-T7^T7
D"ecem"5er TT76

.

13. Stevens, W. , Myers, G., and Constantine, L.

,

"Structured Design," IBM Systems Journal, Vol. 13,
No. 2, 1974. ~x

43

14. Parnas, D., "Designing Software for Ease of Extension
and Contraction," TEF?: transactions on Software
Engineering, p. 226-235, Maroh 1979.

15. Parnas, D. , "On the Criteria tD be iJsed in Decomposing
Svstems into Modules," Communications of the ACM, p.
220-225, December 1972.

"* "

16. "HIPO and Integrated Program Design," I3H Svstems
Journal, Vcl- 15 # No « 2 * P» 253-257,^1976."

17. Jackson, H. , "Information Svstems: Modeling,
Sequencing, and Ira nsformations

,

j1 Proceedings, 3rd
Inzernatonal Conference on Software Engineering, p.
33-42, 1978.

18. Menard, J., "Exxon's Experience with the Michael
Jackson Design Method," DAt5.ba.ss, o. 33-92,
Sinter- Spring 1980.

19. Biggs, C. , Birks, E. , and &tkins
f

»., Manacjincj ^he
Systems De ye,lop men- Proc§ss, ?r snt.ice-Hall7 T9b"D".

44

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93 940

3. LT Kevin Quinn, USN 1

1360 At kins or noad
Libertyville, Illinois 60048

45

Thesis
Q68
c.l

200248

Quinn
Organizational

structure consider-
ations for software
development projects,

19 OCT 87 3 35 52

WO^B
Thesis

Q68
c.l

Quinn
Organizational

structure consider-

ations for software

development projects

