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ABSTRACT

Night vision sensors, such as image-intensifier (II) tubes in night vision gog-

gles and forward looking infrared sensors (FLIR) are routinely used by U.S. naval

personnel for night operations. The quality of imagery from these devices however,

can be extremely poor. Since these sensors exploit different regions of the electromag-

netic spectrum, the information they provide is often complimentary, and therefore,

improvements are possible with the enhancement and subsequent fusion of this in-

formation into a single presentation. Such processing can maximize scene content

by incorporating information from both images as well as increase contrast and dy-

namic range. This thesis introduces a new algorithm, which produces such an en-

hanced/fused image. It performs adaptive enhancement of both the low-light visible

(II) and thermal infrared imagery (IR) inputs, followed by a data fusion for combining

the two images into a composite image. The methodology for visual testing of the

algorithm for comparison of fused and original II and IR imagery is also presented

and a discussion of the results is included. Tests confirmed that the fusion algorithm

resulted in significant improvement over either single-band image.
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I. BACKGROUND

A. INTRODUCTION
"Surprise is a vital ingredient in conducting successful warfare. As early as

500 B.C., the Chinese general Sun Tzu recognized this simple fact in his oft-quoted

treatise on the art of war. Throughout history, commanders have employed the

darkness of night to gain surprise and to grasp the initiative from the hands of the

enemy." Despite the difficulties associated with conducting such operations, history

has revealed that, " 'darkness is a double-edged weapon,' and like terrain, 'it favors

the one who best uses it and hinders the one who does not.' Furthermore, one

former-Soviet general and historian has noted, " 'troops should be equally capable

of operations both during the day and at night' and that night operations have an

'urgent significance in modern warfare [Ref. 9].' ' This thesis seeks to improve the

night operations capability of the military, by improvements in the imagery produced

by current night vision sensors. In particular, we address the problem of how two

sources of nighttime scenic information can be enhanced and combined to produce

an image superior to either.

B. PURPOSE
Current night vision sensors, such as image intensifier (II) tubes in night vision

goggles and forward looking infrared sensors (FLIR) are routinely used by U.S. naval

personnel for night operations. The quality of imagery from these devices however,

can be extremely poor, suffering from poor contrast, limited dynamic range, grain-

iness and many other reported problems. These deficiencies often lead to confusion

of textures, the inability to segment them and visual illusions, resulting in disorien-

tation, aborted missions, and lost aircraft and personnel [Ref. 10, 11]. Since these

sensors exploit different regions of the electromagnetic spectrum, the information

they provide is often complimentary, and therefore, improvements are possible with



the enhancement and subsequent fusion of this information into a single presentation.

Such processing can maximize scene content by incorporating information from both

input images as well as increase contrast and dynamic range. This thesis introduces

a new algorithm, which performs adaptive enhancement of both low-light visible (II)

and thermal infrared imagery (IR) inputs, followed by a data fusion technique for

combining the two images into a composite image. The goal is to develop an en-

hancement/fusion algorithm that consistently produces a final image that is superior

to either of the original images, for a wide range of reflectivity and emissivity con-

ditions. Utility of this development includes improvements in night piloting, both

navigation and targeting, man overboard detection, firefighting, special forces opera-

tions as well as civilian night driving, law enforcement and assistance for the visually

impaired.

C. HISTORY OF NIGHT VISION SYSTEMS
The high priority afforded to facilitate night operations has resulted in the

military's development and deployment of various night vision devices (NVDs). Such

devices are able to exploit the visible and infrared (IR) energy content of a nighttime

scene, enhancing visibility and even producing information previously invisible to the

naked eye. Of particular interest to this thesis, are NVD applications in USN/USMC

aircraft; hence a brief history of significant developments follows [Ref. 1, 12].

1. NIGHTBIRD
In the late 1970s the United Kingdom (U.K.) Royal Air Force, in conjunction

with contractor support at Royal Air Force Establishement, Farnborough, England,

explored the initial concept of using NVDs to provide an inexpensive, passive nav-

igation and attack system under night conditions. This program, which was called

NIGHTBIRD, formed the basis for current USN/USMC Night System concepts. The

program's intent was to demonstrate the feasibility of displaying imagery on a raster

heads-up display (HUD) to enable low altitude night pilotage. The system initially



used image-intensified (II) imagery; however this was later replaced by FLIR imagery

because of its ability to operate independently of scene illumination. Final develop-

ments incorporated the imagery of night vision goggles (NVG), a navigation FLIR

(NAVFLIR) receiver projected onto a wide field of view (FOV) HUD, and a moving

map display. Additionally, the project demonstrated the feasibility of sensor fusion,

a concept in which the combination of data from different sensors is used to form a

more complete view of the scene.

2. CHEAPNIGHT
CHEAPNIGHT was the first USN/USMC night vision program, initiated at

Naval Warfare Center, China Lake, CA. in 1984. This program was implemented

to test NIGHTBIRD technology and assess its applicability to USN/USMC avia-

tion platforms. The U.K. systems evaluated included a raster HUD, a pod-mounted

NAVFLIR, second and third generation NVGs, and a moving map. Operational

testing resulted in poof-of-concept of a passive Night Attack system.

3. QUICKNIGHT
The CHEAPNIGHT program was followed by QUICKNIGHT at the Naval

Air Test Center in Patuxent River, MD. This program examined the feasibility of

performing a quick install of third generation NVGs into the A-6E to give the platform

passive Night Attack capability. The program further evaluated both the CATS

EYES and Aviator's Night Vision Imaging System (ANVIS) NVGs. Additionally, low

altitude comfort levels in low light conditions were assessed and the A-6E's targeting

FLIR was tested as a NAVFLIR. The program concluded that the use of NVGs could

give the A-6E limited passive Night Attack capability, and full capability could be

achieved with a wide FOV NAVFLIR and HUD combined with NVGs and a moving

map. Testing also resulted in the selection of CATS EYES as the NVG of choice for

A-6E and other fixed-wing aircraft.



4. FLEETNIGHT
Following QUICKNIGHT was FLEETNIGHT, a fleet evaluation conducted in

1986 which included both east and west coast A-6E and F/A-18 squadrons. Selected

aircraft were modified with NVG compatible lighting and several crews were trained

to conduct night operations using CAT EYES NVGs. The results of this evaluation

supported the concept of NVGs and showed that they were very effective as a passive

complementary sensor to the radar in navigation and targeting applications.

5. REALNIGHT
The REALNIGHT program (1986-87) was developed to continue examination

of the full Night Attack concept and the uses of its various components. These

evaluations were performed at Naval Air Test Center in Patuxent River, MD, using

an A-6E test bed equipped with wide FOV HUDs, CATS EYES NVG, NAVFLIR,

touch screen displays, and a digital color map unit. The program tested operational

and integration issues, and further explored the concept of sensor fusion.

6. AV-8B Night System

The AV-8B Night System program began flight testing in 1987 and was com-

pleted in July of 1988. Testing results showed that the Night System, which includes

the NAVFLIR, CATS EYES and a moving map, gave the AV-8B an enhanced and

effective low-level capability under night visual conditions.

7. F/A-18 Night System

Flight testing began on the F/A-18 Night System upgrade in 1989 and was

completed in 1991. Testing indicated that the Night System, which includes the

NAVFLIR, CATS EYES and digital moving map, enhanced F/A-18s night vision

combat effectiveness; therefore, all subsequent F/A-18s have been equipped with

night vision capability.
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Figure 1. Spectral Response of a Typical Night Vision Goggle System [Ref. 1]

D. DISCUSSION OF SENSORS

1. Night Vision Goggles

Night vision goggles (NVGs) are passive image intensifiers which operate in

the red and near-IR regions of the electromagnetic spectrum (Figure 1). The image

intensifier tube produces a bright monochromatic (green) electro-optical image of a

scene in which light level is too low for normal human vision. A typical NVG assembly

consists of an objective lens, photocathode, microchannel plate, phosphor screen and

combiner eyepiece assembly (Figure 2).

The image produced in a NVG assembly is based on the amount of light present

in the scene, or the illuminance, and the amount of light reflected from objects in

that scene, the luminance. This reflected light enters the goggles and is focused by
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Figure 2. A Typical Night Vision Goggle Assembly [Ref. 1]

the objective lens onto the photocathode. The photocathode, which is responsive to

both visible and IR radiation, converts the incident light to electrical energy.

Photons of light striking the photocathode cause a release of electrons in an

amount proportional to the light incident on the photocathode. The released electrons

are then accelerated away from the photocathode surface by an externally applied

electric field. These accelerated electrons are then channeled through the microchan-

nel plate, a very thin wafer of tiny glass tubes coated with a material that promotes

secondary electron emissions. For each electron entering the microchannel plate, 1000

or more exit and are accelerated toward a phosphor screen. Incident electrons on the

phosphor screen result in light emission.



The phosphor used in Generation 2 and 3 image intensifier tubes is referred to

as P20 and emits a yellow-green light (560 nm) which matches the peak sensitivity

of the photopic (day) human eye. Additionally this phosphor has a fast decay time,

appropriate for aviation applications where high speeds require fast visual updates.

In the final part of the NVG assembly a combiner lens (not shown) carries

the intensified image from the phosphor screen to the eye. The combiner lens returns

the image to its natural orientation, rescales the image 1:1 and correctly registers the

image.

2. Forward-Looking Infrared (FLIR) Sensors

A forward-looking infrared sensor (FLIR) is a device which detects the self-

radiating and reflected infrared (IR) energy from objects in a scene and converts this

energy into a visible presentation. Generally, IR energy is generated from the heating

of an object, which increases molecular vibrational energy, causing an increase in

molecular energy state. The subsequent return to a normal energy state results in

the emission of IR radiation. The spectral distribution of IR energy is depicted in

Figure 3.

The ability of a material to emit IR energy compared to a blackbody at the

same temperature is known as its emissivity and indicates to what degree this heating

will result in the emission of IR radiation. Emissivity is a function of both the type

and surface finish of the material. Table I lists values for some common materials.

IR sources can be classified as either thermal or selective radiators. Thermal

radiators output a wide spectrum of energy with a maximum radiant energy at some

particular frequency, while selective radiators release energy concentrated about a

narrow band of frequencies (e.g., laser emission). Examples of thermal radiators

include, the sun, the hot metal of a jet engine tail pipe, aerodynamically heated

surfaces, motorized vehicles, human personnel, and terrain. Most objects of interest

are thermal radiators and emit maximum radiant energy in the 8-12 micron range,

corresponding to the detection range of many IR devices.
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A typical navigational FLIR (NAVFLIR) device is comprised of two major

systems; the sensor and the cockpit display systems. The sensor system is of most in-

terest here and is described below. This system is comprised of the sensor head/sensor

unit which includes the IR window, IR telescope, scanning assembly, detector array

and cooling system (see Figure 4).



material emissivity

highly polished silver 0.02

highly polished aluminum 0.08

polished copper 0.15

aluminum paint 0.55

polished brass 0.60

oxidized steel 0.70

bronze paint 0.80

gypsum 0.90

rough red brick 0.93

white lacquer 0.95

green or gray paint 0.95

lamp black 0.95

water 0.96

Table I. Emissivity of Some Common Materials [Ref. 1]

Electromagnetic energy incident to the FLIR interacts first with the IR win-

dow. The IR window preferentially passes IR energy in the 8-12 micron range to the

IR telescope. Since glass completely absorbs radiation in this band, the window is

composed of germanium with a high efficiency carbon coating for durability.

The IR telescope, which is located directly behind the IR window, focuses

the thermal energy onto the motor drive scanning assembly. The magnification level

of the telescope is selected to match the heads-up display field of view so that 1:1

registration with the true scene is achieved. The telescopic lenses are also made from

germanium.

The IR telescope transmits the thermal energy to the scanning assembly by a

series of mirrors and lenses. The scanning assembly consists of a motor driven scanner

which opto-mechanically scans the detector array across the thermal scene. A 2:1, 60

Hz interlaced scanning process is used resulting in a refresh rate (30 Hz) and field of

view (FOV) suitable for standard commercial TV 525 line format.
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Figure 4. NAVFLIR Sensor Head/Sensor Unit [Ref. 1]

The detector array is a quantum detector, composed of mercury-cadmium-

telluride. This material is sensitive to radiation wavelengths in the 8-12 micron range.

When subject to radiation of this wavelength, a dramatic increase in conductivity

and hence an increase in electrical current occurs in the material. The detector thus

converts incident thermal energy into a proportional electrical signal.

Due to the inherent thermal energy of the detector a cryogenic cooling system

is required to reduce the electrical current generated by ambient conditions. To ade-

quately minimize this current, the detector is maintained at a constant temperature

of approximately —193 degrees C.

10
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E. RELATED WORK
1. Image Fusion Program

The Army in conjunction with Texas Instruments Corporation (TI) has an

ongoing program investigating the night pilotage benefits of fusing imagery from in-

frared and image intensified sensors [Ref. 2, 13]. Known as the Aviation Applied

Technology Directorate's (AATD) Image Fusion Program, this program has recently

demonstrated significant night pilotage benefits from the fusion of FLIR and image-

intensified (II) imagery. Evaluation pilots have demonstrated overwhelming prefer-

ence for the fused output.

The impetus for these studies was based on several Government and industry

studies that evaluated the relative merits of image intensified and thermal imagery as

they pertained to helicopter night pilotage [Ref. 2, 13]. The results of these studies

revealed that each of the sensors performed optimally under different conditions and

environments and that most pilots preferred to have both sensors available. The stud-

11



ies further indicated that a complementary relationship existed between the sensors

and that an ideal pilotage system would incorporate both sensors.

Based on these studies TI developed a system to dynamically combine imagery

from both sensors and display them in a single presentation. A series of unsolicited

proposals and demonstration flights then resulted in the Army developing the TI

Image Fusion Program. Reference [Ref. 2] includes a full discussion of the program;

however, a basic system discussion and overview of the proprietary image fusion

process is excerpted below and a system block diagram is depicted in Figure 5.

The primary goal of the Image Fusion processing is to provide the

highest quality scene information at each pixel in the resultant fused image.

In order to accomplish this goal, it is necessary for the processing to be tightly

coupled with the individual sensors. As mentioned in the previous sections,

care is taken to register, optimize and normalize the individual sensor videos

prior to the fusion process. Resultant sensor signal to noise and other image

quality metrics are estimated as a function of individual sensor gains and post

processing statistics.

The fusion Kernel function, which performs the core Image Fusion al-

gorithms, receives distortion corrected FLIR video and enhanced II video. It

separates each video signal into components, based on local area criteria. The

Fusion Kernel further processes these components from each sensor using a

process which preserves maximum detail in the resultant fused images. The

Fusion Video Interface board combines the resultant fused digital video with

symbology and converts it to RS-170 composite video.

Apparently, after careful preprocessing (registration, enhancement, noise filtering), a

decomposition of each image (II and IR) is performed. The resultant components are

subject to processing (fusion kernel) to preserve maximum detail in the fused image.

2. Biological Models

References [Ref. 14, 3] propose a method to combine low-light visible and

thermal IR imagery, which provides a true color night vision capability. This method

is based on "biological models of color vision and visible-IR fusion." The color vision

model attempts to model the color processing observed in the retina of humans and

monkeys, while the visible-IR fusion method is developed from study of the fusion of

12



VISIBLE 4 Ifl

MAOERY

REGISTERED
NOISE CLEANED

CONTRAST ENHANCEMENT SINGLE-OPPONENT
ADAPTIVE XOSVALEATION COLOR CONTRAST

ON* Off IR CHANNELS WARM RED
COOL BLUE

RGB/HSV

COLOR
DISPLAY

HUE REMAP
DESATURATE

WAGE
SELECT

Figure 6. Neurocomputational Model of Proposed Color Night Vision System [Ref.

3]

thermal and visible imagery observed in rattlesnakes and pythons. Both biological

models are incorporated into a set of neurodynamic equations which are solved us-

ing what is known as a feedforward center-surround shunting neural network. The

development of the neurodynamic theory is complex and is discussed in the cited

references.

Figure 6 shows a block diagram of the color night vision system. Inputs to

the system are low-level light (II) from a Gen III intensified charge-coupled device

(CCD) (0.6-0.9 jim) and long-wave infrared (LWIR) imagery from a Texas Instru-

ments thermal imager (7.5-13 iim). Nearly registered images are produced by each

sensor. The II imagery is median filtered for noise removal and registration distor-

13



tion present in the LWIR imagery is removed via distortion correction computations.

Center-surround shunting neural networks are used first within bands for contrast en-

hancement and normalization as well as for developing ON and OFF channels of IR.

Additional center-surround networks are then used between bands to create single-

opponent color-contrast (gray-scale fused) images. Following this, the images are

sharpened (not pictured) to create two double-opponent color-contrast images. The

double-opponent images and enhanced visible images are then mapped to the red-

green-blue (RGB) color domain for display, or remapped to the hue-saturation-value

(HSV) domain for a tailored display, i.e., more natural color scheme.

3. NRL Color Fusion

The Naval Research Laboratory, in conjunction with the Naval Postgraduate

School, is conducting research in the color fusion of imagery from image-intensified

charge-coupled devices (IICCD) and infrared (IR) sensors. The program, termed the

NITE Hawk project, has the objective of providing dual-band color night vision, by

using II and IR sensors integrated onto an aircraft pod, and outputing the resultant

fused imagery to multifunctional, navigation or helmet-mounted displays.

The sensor suite integrates an IICD into the gimbal assembly of the sensor

head of a Lockheed-Martin NITE Hawk IR pod [Ref. 4], simultaneously providing II

and IR imagery. This pod is manufactured for use on F/A-18 Hornet aircraft and is

pictured in Figure 7.

The fusion of the two sensors is achieved through an adaptive statistical pro-

cessing algorithm described in Figure 8. Band 1 (Li) and Band 2 (L2) information, II

and IR pixel intensities, are statistically decomposed into orthogonal components L\

and L'2 . The principal component direction L\ represents high correlation between

bands; i.e., both the II and IR images have similar intensities at a given pixel location,

and are represented by varying grayscale intensities. The orthogonal component L'2

accounts for uncorrelated pixel intensities; i.e., the II and IR images have different

intensities at a given pixel location, and are represented by varying color opponent

14
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Figure 7. Integrated IICCD/IR Sensor Suite for F/A-18 Use [Ref. 4]

intensities (red/cyan). Therefore fused image pixel intensity is assigned based on the

proximity of II and IR pixel intensity pairs to the principal component axis. II-IR

pairs that are close to L\ will result in a grayscale pixel intensity, while those that

are distant will result in some combination of the color opponent intensities. Figure 9

shows the lookup table or colormap that assigns pixel intensity pairs to fused intensity

output.

Figure 10 shows an example of this color fusion on an II-IR image-pair. Notice

that features exclusive to a single band are represented by red or cyan while features

prevalent in both are represented by varying grayscale intensity.

15



NRL DUAL BAND COLOR FUSION
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Figure 8. NRL Adaptive Statistical Processing Algorithm for Dual-Band Color Fusion

[Ref. 5]

4. Wavelet-Based Fusion

Reference [Ref. 6] introduces a multi-sensor fusion technique based on the

wavelet transform. This algorithm, which is depicted in Figure 11, performs pixel-

level fusion on the input images and produces an output image that affords improved

human visual perception of a given scene.

In the first stage of the algorithm, the wavelet transform is computed for each of

the input images. The images are decomposed into low-high, high-low and high-high

bands at different scales, where the transform coefficients with largest absolute value

generally correspond to sharper brightness changes (and thus the "salient features"

in the images). To extract the dominant features at each scale, at the next stage, a
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Figure 9. NRL Dual-Band Color Fusion Lookup Table [Ref. 5]

comparison of wavelet coefficients is performed and the one with the higher absolute

value is retained. Finally, the inverse wavelet transform is computed on the retained

coefficients, and the output image is produced.

This algorithm does not suffer from the contrast reduction prevalent with

the direct fusion methods nor the blocking artifacts often associated with Laplacian

pyramid based fusion techniques.

F. OUTLINE OF THESIS

This thesis presents a monochrome enhancement/fusion algorithm. This al-

gorithm seeks to maximize the "scene content" of an enhanced/fused output image

given low-light visible (II) and infrared (IR) input images. The remainder of this
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Figure 10. NRL Dual-Band Color Fusion Example [Ref. 5]

thesis is organized as follows. Chapter II describes the enhancement/fusion algorithm.

This chapter begins with a discussion of the Peli-Lim algorithm [Ref. 7, 8], which is the

basis for the enhancement/fusion in our algorithm. The chapter then presents a general

discussion of the enhancement/fusion algorithm, followed by a detailed description of the

algorithm, in the context of application to a particular image-pair. The final results of

application to an image-pair are then shown and discussed. Chapter III discusses the

methodology, analysis, and results of visual testing with human subjects performed on the

enhanced/fused output of the algorithm. Finally, Chapter IV provides conclusions and a

discussion of findings.
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Figure 11. Block Diagram of the Multi-Sensor Wavelet Fusion Algorithm [Ref. 6]

19



20



II. ENHANCEMENT/FUSION ALGORITHM

A. PELI-LIM ALGORITHM
Traditional methods of image enhancement, such as histogram-based gray scale

transformation or various filtering techniques, manipulate the entire image, i.e., they

are spatially invariant. In certain applications, it is desirable to modify only particular

regions of the image. The method described in [Ref. 7, 8], known as the Peli-

Lim algorithm, allows variation of local contrast and local luminance mean as local

characteristics of the image vary. As an example, if the strategy is to bring out detail

in dark regions of an image, the algorithm affords this capability without affecting

regions of the image which are not dark.

A block diagram of the Peli-Lim algorithm is given in Figure 12. The unpro-

cessed image is denoted by /(ni,n2), where n\ and n2 represent pixel indices within

the image. The local luminance mean, /z,(ni,n2 ), is obtained by passing the original

image through a simple low-pass FIR filter whose output is given by:

/i("" n2) =
(2iV1 + l)(2^ + l)iV=£ / <n

'
-^ ~ " <IU >

The parameters N\ and N2 control the neighborhood of the averaging operation. With

small values, averages are highly dependent on close neighbors while with larger values

they incorporate the influence of distant neighbors and result in more blurring. The

local contrast, denoted by /i/(ni,n2 ), is obtained from removing the local luminance

mean component from the original image

fH(n 1: n2 ) =/(ni,n2 )
- h{ni,n2 )

(II.2)

The resulting image /# contains just high spatial frequency components.

In the Peli-Lim algorithm, the two components /l and /# are modified sepa-

rately then recombined. The modification of these image components is based on the

local luminance mean. For example, if the strategy is to bring out detail in dark re-

gions of an image, dark regions are identified by observing where the local luminance

21



Figure 12. Block Diagram of the Peli-Lim Algorithm [Ref. 7]
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mean has low values, and local contrast is increased in these regions. The modifica-

tion occurs by scalar multiplication of the high-pass image by a gain factor K(fL ),

derived from the local luminance mean (see Figure 12). For K(fL ) > 1 contrast is

increased within the image, while for K(fL ) < 1 contrast is decreased.

The local luminance mean, fL , is modified by application of a generally non-

linear transformation. This modification restores the dynamic range of the resultant

image to that of the original. The final processed image is formed by the combination

of the modified components,

p(ni,n2 ) = /i(ni,n2 ) + /^(ni,n2 ) (II.3)

The Peli-Lim process has been used in several application with various gain and

local luminance transformation curves such as those shown in Figures 13, 14, and 15.

For example, in general enhancement of an image, it may be desirable to increase the

local contrast of an entire image which may be of inferior visual quality due to under-

or over-exposure during imaging. In this case, selection of K{Jl), is independent of

the local luminance mean. The enhancement is applied over the entire image. The

local luminance mean is modified by a non-linearity chosen to restore appropriate

dynamic range. Figure 13 depicts a set of gain and local luminance transformation

curves which are suited to this application.

A second application is the enhancement of images degraded by cloud cover.

Regions of an image covered by clouds exhibit an increase in local luminance mean

and a decrease in local contrast, both of which vary with the amount of cloud cover

present. In this case it is desirable to detect regions where local luminance mean is

high and increase the local contrast in these regions. The local luminance mean is

modified by a non-linearity, chosen as before, to restore the dynamic range. Figure

14 depicts a set of gain and local luminance transformation curves which are suited

to this application.

A final example is the enhancement of images degraded by shadow regions.

Regions of an image which are underexposed or have shaded regions exhibit decreased
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Figure 13. Gain (K) and Local Luminance Transformation (NL) Curves for Enhanc-

ing a General Image [Ref. 8]
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Figure 14. Gain (K) and Local Luminance Transformation (NL) Curves for En-

hancement of an Image Degraded by Cloud Cover [Ref. 8]
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Figure 15. Gain (K) and Local Luminance Transformation (NL) Curves for En-

hancement of an Image Degraded by Shadow Regions [Ref. 8]
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Original Image Enhanced Image

Figure 16. Original and Enhanced Image Using the Peli-Lim Algorithm [Ref. 8]

local luminance and decreased local contrast. In this case it is desirable to detect

regions where local luminance mean is low and increase the local contrast in these

regions. The local luminance mean is modified by a function, chosen as before, to

restore the dynamic range. Figure 15 depicts a set of gain and local luminance

transformation curves which are suited to this application.

Additional applications for this enhancement procedure include the enhance-

ment of images degraded by varying amounts of smoke cover, fog or haze in different

regions of an image and local luminance mean equalization for image segmentation

[Ref. 8]. In each case suitable transformation curves area chosen to match the appli-

cation.
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Figure 17. Image Depicting the Peli-Lim Decomposition and Enhancement Process

Figure 16 shows the results of this enhancement procedure on an image of a

boiler room (size of 512 x 512 pixels) degraded by large shadow regions. The image

is the same one used in [Ref. 7, 8] and the processing is similar to what is described

there. The image on the left is the unprocessed image, the one on the right is the

processed image. The parameters used for this processing were A\ = 3. N2 = 3. for

the low-pass averaging and the curves used are those of Figure 15 . Xote that the

processed image reveals significant details in the previously shaded regions. Details

in the back of the boiler room are visible as are some details within the trees outside.

Figure 17 illustrates how the various image components are formed, modified, and

recombined to achieve the final result.
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The major advantages of this enhancement procedure are that it is spatially

adaptive to particular regions within an image; it can be tailored to a particular class

of images, e.g., images with shadow regions; and it is both conceptually and compu-

tationally simple. The algorithm is intuitive and requires only algebraic computation.

Additionally, the algorithm is robust, in that for a particular class of images, the same

gain and local luminance transformation curves work well, even with some variation

within the class.

B. ENHANCEMENT/FUSION ALGORITHM
1. Overview of Algorithm

The algorithm proposed in this thesis, which produces a fused and enhanced

monochrome image, seeks to maximize "scene content" in the output image. The goal

is to incorporate all information available from each sensor and to optimally combine

this information into a single image presentation. The algorithm first performs adap-

tive modification of the local contrast and local luminance mean for enhancement of

both the low-light visible (II) and thermal infrared (IR) imagery; this is followed by a

data fusion technique which compares corresponding local energies between the two

images, then scales them based on their contribution to image detail. Finally, the

modified image components are recombined to produced the enhanced/fused image.

Figure 18 shows a block diagram of the algorithm.

The spatially adaptive enhancement and fusion is based on a modified version

of the Peli-Lim algorithm. In this stage, the raw visible and IR data are each separated

into spatial high- and low-pass components (/#, Jl^9Hi9l)- For each of these data

types, enhancement to the high-pass portion is achieved my multiplying by a gain

factor that depends on the local luminance mean through the function Ki(-). The

low-pass component is passed through a generally nonlinear luminance transformation

NLi(-) whose purpose is to reduce the dynamic range so that when this component

is recombined with the enhanced high-pass component, saturation will not occur.
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Figure 18. A Block Diagram of the Enhancement/Fusion Algorithm
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Different functions K{ and NLi are used for the low-light visible (II) and the IR

data, with each function specifically tailored to address the enhancement problems

pertinent to that type of data. Although the functions Ki and NL{ do not change,

contrast and other enhancement is spatially adaptive, depending on the luminance

characteristics in the local area.

For the next stage (fusion) , the enhanced high-pass components of the two data

types, which contain most of the detail, are compared through an energy computation,

and a weighting G and (1 — G) with < G < 1 is given to each of these components

based on a normalized difference of local energies:

E^ "*> = (av1 + i)W + i) j?Wi S A- -*,*-!) (H.4)

The energy comparison and weighting insures that the high-pass component (II or

IR) that contains the most detail will be most heavily weighted in the fusion.

In the final step, the four modified components (f'L , /#, g'L , g'{j) are recombined

to produce the enhanced, fused image. The low-pass components are first combined

to one composite image and the weighted high-pass components are added in. In

combining the two low-pass components, both linear and nonlinear functions have

been used to map intensity values in a two-dimensional space (II, IR) onto a one-

dimensional space (fused intensity). For the latter, nonlinear optimization algorithms

have been used to determine the mapping.

2. Mapping Considerations

Sammon [Ref. 15] describes a nonlinear mapping algorithm which preserves

structure when mapping points from an L-dimensional subspace to one of a lower

dimension. Structure is preserved by fitting the N points in the lower-dimensional

subspace such that their intersample distances approximate, as closely as possible,

the intersample distances of the TV points in the L-dimensional subspace.

We are given N vectors in an L-space designated Xi, i = 1,2, 3,..., AT and

corresponding to these we define a set of N vectors in a /-space (of lower dimension
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/) designated Y^ i = 1, 2, 3, ..., AT. The distance between the vectors Xi and Xj in the

.L-space is defined as d*j = dist[Xi,Xj] and the distance between the corresponding

vectors in the /-space is defined as dij = dist[Yi,Yj], where any appropriate distance

metric is used.
1 Now an initial /-space configuration is chosen either randomly or

based on some a priori knowledge about the data and is denoted by:

*i =
2/n

Y2 =

2/21

yu y2i

YN =
ym

Vm

Based on this /-space configuration, intersample distances, d^ are computed and

compared to the original L-space distances, d&. The squared error £ between the two

distances represents a measure of how well structure is preserved between dimensions

and is computed as follows:

1
£ =

>JV
f K - dl3f
^ d*

(II.5)
T yv

d*

By minimizing S using an appropriate optimization routine, the /-space configuration

which best preserves intersample distance, and hence structure, can be determined.

3. Algorithm Details

The following discussion provides details of the algorithm proposed in this

thesis. All elements of the algorithm, which include, enhancement, combination of

low-pass components, and complete image fusion are presented. Five strategies to

1A distance metric function dist[Xi,Xj] satisfies the following conditions, [Ref. 16]

dist[Xi,Xj] = l
>°

dist[Xi,Xj] = dist[Xj,Xi]

dist[Xi,Xj] + dist[Xj,Xk ] > dist[Xu Xk ].
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II Image IR Image

Figure 19. Unprocessed Image-Intensified and Infrared Images of Scene 1

achieve combination of low-pass components are offered, two linear and three nonlin-

ear methods. To facilitate this discussion, the application is described with reference

to a particular image-pair. This image-pair, referred to as Scene 1, is shown in Figure

19.

a. Enhancement

As previously discussed, the first stage of the algorithm (see Figure

18) results in the decomposition of each image into its high- and low-pass spectral

components. For the image-pairs considered in this thesis, the low-pass averaging

filter parameters used in Equation II. 1 were taken to be iVx = 5, N2 = 5.

After decomposition, each image is modified by application of a set the

functions A'
?:
and NL

7
. The selection of these functions is based on the particular
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Figure 20. Transformation Curves (K and NL) Used in the Enhancement of Scene 1

luminance characteristics of the given image and the desired contrast enhancement.

For example, for a given image-pair where both the II and IR images contain large

shadow regions (as is often the case in our application), it is desirable to increase gain

(K) in regions where the local luminance mean is low. Figure 20 shows selection of

such a curve for the processing of Scene 1. Observe that the gain coefficient is chosen

relatively large (K = 5) for low luminance intensities, and constant at K = 1.5 for

other values of the luminance intensity. This results in the two-fold effect of increasing

contrast in shadow regions and enhancing overall contrast of the image.
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Without compensation, upon recombination of the high and low-pass

components, these modifications in contrast would result in intensity values in excess

of the original image's dynamic range . This requires the application of a luminance

transformation NL to the luminance image. Figure 20 also shows the luminance

transformation curves used to restore the dynamic range in both the II and the IR

images for Scene 1.

b. Fusion of High-pass Components

The second stage of the algorithm involves the fusion of the enhanced

high- and low-pass components. At this point in the processing, the energy associated

with each high-pass image is compared and the pixel intensities associated with each

are scaled accordingly. Since the high-pass images contain the "details" in the images,

the image (II or IR) where the most detail is present is weighted most heavily in

the processed image. The difference in energies, calculated from Equation II. 4, is

computed and normalized to obtain

. Ei(ni 1
n2 ) - E2 {n l ,n2 ) (

.

AE{n l ,n2 ) = —— 'r
— —

,
II.6)

\El {n l ,n2)-E2 {n l ,n2 ) \ max

where the maximum is over all pixels in the image. Thus the energy difference at

any pixel AE(rii,n2 ) satisfies —1 < AE < 1. This normalized energy difference,

AE, is then used to compute the scaling factor from the function G(AE) shown

in Figure 21. The function G(AE) could also be made nonlinear. Examples when

a nonlinear relationship might be considered include cases when it is desirable to

weight the energy contribution due to a particular sensor more heavily than the other

or the situation when the range of AE is limited and an increase in dynamic range

is desired.

If Ei represents the energy associated with the II image and E2 rep-

resents that of the IR image, a value of AE(rii,n2 ) = 1 at a given pixel (ni,n2 )

indicates that the largest amount of energy associated with that particular pixel was

due to the II image and the scaling factor is assigned the value G(l) = 1.0. Likewise

AE(rii,n2 ) = — 1 indicates that the largest amount of energy associated with that
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Figure 21. Function G(AE) Providing the Energy Scaling Factor as a Function of

Normalized Energy Difference

particular pixel was due to the IR image and the scaling factor is assigned the value

G{— 1) = 0. For A£,

(ni,n2 ) = 0, the energy associated with that particular pixel

was equally distributed between the two images and the scaling factor is assigned the

value G(0) = 0.5.

As shown in Figure 18, the contrast-enhanced high-pass II image is

scaled by G(AE) and the IR image is scaled by 1 - G(AE). The resultant images

are combined to form the final high-pass image, that is

kH {ni,n2 ) = fff(nu n2 ) + ^(ni, n2 )
(II.7)

where

and

/£(n i> n2) = /ff(ni,n2)G(ni,n2 )

9H{ni,n2 ) = g'H (n 1 ,n2 ){l - G{nu n2 ))

(II.8)

(II.9)
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Method Mapping Function

Direct Linear Mapping kL {ni,n2 ) = [f'L {nu n2 ) + g'L (nu n2 )]/2

Weighted Linear Mapping kL (n l: n2 ) = a/[(ni,n2 ) + (1 -a)g'L {nu n2 )

Nonlinear-1 Mapping H(I, R) = (ai + a2I + a3I
2
){a4 + a5R + a6R2

)

Nonlinear-2 Mapping H{I, R) = (ax + a2I + a3I
2
){a4 + a5R)

Nonlinear-3 Mapping H(I, R) = (ai + a2I)(az + a4R + a5R2
)

Table II. Methods Used for Combining Modified Low-Pass Images

c. Combination of Low-pass Components

The modified low-pass images, f'L and g'
L , are combined using a particu-

lar function that maps intensity values in a two-dimensional space (II, IR intensities)

onto a one-dimensional space, the fused low-pass intensity domain. Five methods

were tested in this thesis. Two of the methods use a linear mapping function to

accomplish this, while the others use a nonlinear mapping function based on the

Sammon mapping criterion previously discussed in this chapter. These five methods

are listed in Table II and are discussed separately below.

(1) Direct Linear Mapping Algorithm . The first method,

referred to as direct linear mapping, is simply the average of the two modified low-pass

images:

, / n /[(ni,n2)+^(n 1 ,n2 ) , ,

kL {ni,n2 )
= (11.1UJ

This method is the simplest to implement and requires no image-dependent parame-

ters.

(2) Weighted Linear Mapping Algorithm . The second lin-

ear mapping, referred to as weighted linear mapping, is the linear combination of the

two modified low-pass components:

kL {ni,n2 ) = af'L {nu n2 ) + (1 - ajg'^n^n-z) (11.11)
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In applying this method the values for a evaluated were from a = to a = 1 in steps

of 0.1. Application of this mapping for Scene 1 resulted in choosing a = 0.2.

(3) Nonlinear Mapping Algorithms . The three remaining

mapping methods are based on the nonlinear mapping theory discussed earlier. That

is, we consider a pixel at a location (711,712) in the II image and assume that the II

image intensity at this location is represented by the variable /. Similarly, the image

intensity at the same location (711,712) in the IR image is represented by the variable

R. These two values can be represented by a point in the (2-dimensional) I-R plane

(see Figure 22). Then combining the images is equivalent to mapping this point in

the plane to a one-dimensional space or line (again see Figure 22). The points in the

I-R space are the Xi in the Sammon mapping discussion and the mapped values are

the Yi.

Polynomial forms with certain constraints on their coefficients,

were chosen for the nonlinear mapping functions. Specifically, the three nonlinear

mapping functions considered are:

H(I, R) = (ai + a2I + a3I
2
)(a4 + a5R + a6R2

) (11.12)

H{I, R) = (ai + a2I + a3I
2
){a4 + a5R) (11.13)

H{I, R) = (a x + a2I){a3 + a4R + a5R2
), (11.14)

where / and R represent pixel intensity in the modified low-pass II and IR images,

respectively and H(I,R) represents the combined low-pass pixel intensity (&l)- In

this method the coefficients of the appropriate nonlinear function are chosen that

best preserve intersample distances according to the Sammon mapping criterion II. 5.

Recall that the Sammon mapping criterion attempts to preserve intersample distances

and thus preserve structure when mapping from a higher to a lower-dimensional space.
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Figure 22. Mapping from the I-R Domain to the Fused Intensity Domain

To determine the coefficients we formulate the following con-

strained optimization problem:

'

#(0,0) =0

minimize f(a) subject to : <

#(255, 255) = 255

dH(I,R) > n
dl — u

dH(I,R) > n
dR — U

where f(a) is,

m "
[<%(/, A)-*,- (a)]

2

(11.15)

(11.16)

E&«W*)£j d*
3
(I,R)

and dij(a) are the intersample distances in the fused intensity domain, which are im-

plicitly a function of the parameter vector a. The first two constraints are chosen to
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preserve the dynamic range of the image, while the second two ensure monotonicity

of the resultant nonlinear function. The monotonicity criterion guarantees a unique

mapping from two- to one-dimensional space, i.e., no two (I,R) pairs can map to the

same fused intensity point. Packaged optimization software [Ref. 17], based on the

sequential quadratic programming method (SQP) was used to solve the constrained

nonlinear optimization problem. In performing the optimization the Euclidean dis-

tance is used as the distance metric, that is d*j(I, R) and dy(a) are computed from:

<$(J, R) = [(/« - I(j))
2 + (R(i) - R(j))

2
]> (H.17)

dtJ (a) =\ H(I(i),R(i);a) - H(I(j),R(j);a)
|

(11.18)

where {I{i), R{i)) represent the coordinates of the zth point in Figure 22 and we have

indicated the explicit dependence of the mapping function H on the parameter a.

Note that the d*j are computed only once, prior to optimization, since the I and R

image values do not change during the optimization.

Since the images evaluated have 640 x 480 = 307, 200 pixels,

there would be f
307

2

200
j
= 4.7 x 10 10 intersample distances, and it is not computa-

tionally feasible to attempt the optimization using all of the points. Thus a sub-

optimal method is used to find the coefficients of the nonlinear mapping. The goal

of this method is to represent the image data in the I-R plane (see Figure 23), by

some smaller, yet representative set, that will make the optimization computationally

feasible. This is achieved by using some representative I-R "centers" instead of the

complete set of points in the I-R plane. A clustering algorithm known as the K-means

algorithm [Ref. 16] was used to extract an appropriate number of centers represen-

tative of the structure of the original data, (Nc = 25 for all image-pairs considered

in this thesis). Figure 23 shows the I-R plane and the resultant centers identified by

the K-means algorithm for Scene 1.

In applying the clustering and optimization techniques different

values of the parameter a would be obtained for each pair of images. Table III shows
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Figure 23. Modified Low-Pass I-R Plane with Associated Centers for Scene 1

the values obtained by optimization for Scene 1 . The hope is that the values obtained

by considering typical image examples would be sufficiently robust to produce good

results over a larger class of images without reoptimization. We discuss how well this

was realized in Section D.

Algorithm al a2 a3 a4 a5 a6

Nonlinear-1 0.7637 0.0000 0.0000 0.0000 1.9256 -0.0024

Nonlinear-2 0.0000 4.0715 -0.0074 0.4586 0.0000 -

Nonlinear-3 0.6700 0.0000 0.0000 0.8587 0.0025 -

Table III. Optimization Coefficients for Nonlinear Mappings (Scene 1)
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Figure 24. Algorithm Results Using the Direct Linear Mapping (Scene 1)

d. Complete Image Fusion

The final fused enhanced image m is obtained by adding the fused high-

pass image kn and the combined low-pass image kL (derived according to one of the

methods of Table TI). The final fused image is thus given by

771(711,712) = fcjy(ni, no) + ^^(^1,^2)- (11.19)

C. ENHANCEMENT/FUSION RESULTS
In this section, the results of processing Scene 1 using the various methods for

combining low-pass images are described. The results of the direct linear mapping.

11.10. are shown in Figure 24. while the results of the weighted linear mapping. 11.11.
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Figure 25. Algorithm Results Using the Weighted Linear Mapping (Scene 1)

are shown in Figure 25. The results of the three nonlinear mapping methods, 11.12,

11.13 and 11.14, are given in Figures 26, 27 and 28, respectively.

To assess the performance of the enhancement/fusion algorithm, a visual com-

parison was made between the images processed according to the various methods

and the original II and IR images. The performance criteria used included contrast,

edge sharpness, clarity of details and among the processed images, scene content.

Scene content refers to a qualitative measure of the extent that a combined image

portrays "all the information" contained in both the II and IR images.

For Scene 1 it was judged that the best result was achieved from application

of the nonlinear-1 mapping. This result is shown in Figure 26. The contrast of the

image is superior to all others, the edges are sharpest, revealing mast, superstructure,
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Figure 26. Algorithm Results Using the Xonlinear-1 Mapping (Scene 1) (This was

judged to be the best result)

and hull-form details not evident in either original image. In addition, lighting de-

tails from the II image are portrayed while artifacts due to saturation ("blooming")

are minimized. The other images shown in Figures 24, 25, 27, and 28, suffer from

decreased contrast, and remnants from saturation in the II image: but in every case,

the processed images offer an improvement to either original.

A set of five other image-pairs (Scenes 2 through 6) were processed as part of

this thesis research. The results of processing are given in Appendix A.



Figure 27. Algorithm Results Using the Nonlinear-2 Mapping (Scene 1)

D. GENERAL ENHANCEMENT/FUSION RESULTS
The images processed in this thesis. Scenes 1-6, are generally similar (poor

contrast, limited dynamic range, nighttime scenes) and can therefore be considered

to be a particular "class" of images. As discussed in Section 3, it is desirable to

consider a typical image within such a class, perform optimization on it and compute

a so that it may then be used in the processing of all other images within the class. By

using a from such a typical image, it would not be necessary to perform optimization

for the remaining images, and therefore a significant savings in processing could be

achieved.

The coefficients a derived from the nonlinear-3 mapping for Scene 2 were used

as the class standard. Other sets of coefficients derived from other scenes were tried
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Figure 28. Algorithm Results Using the Xonlinear-3 Mapping (Scene 1)

on all image-pairs, but this set produced the best results. The nonlinear-3 mapping

was chosen because of its preference in visual testing discussed in Chapter III. Figure

29 shows the result of using these coefficients on the image-pair of Scene 1. Results

for all other images are included in Appendix B. The processing of Scene 1 by this

method results in an image that we judge to be visually superior to either (II or IR)

original image (based on criteria discussed in Section C), but poorer than any method

using optimized coefficients.

The next chapter presents the methodology and results of human testing of the

enhancement/fusion algorithm. Particularly, we examine the performance of each of

the methods among themselves and as compared to the original single-band images.
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Figure 29. Algorithm Results Using General Coefficients Derived from Scene 2 (Scene

1)
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III. TESTING RESULTS

A. INTRODUCTION
Any system whose goal is the improvement or enhancement of human sensory

perception (e.g., visual, auditory, tactile) requires frequent interaction with the in-

tended user throughout its design. Theoretical figures of merit and other engineering

computations, are useful in quantifying such a systems performance or effectiveness,

but are often inadequate in predicting human response. Therefore it is critical to

perform human testing during system development.

To evaluate the performance of the various forms of the enhancement/fusion

algorithm previously discussed, human perception testing was performed. The goal of

this testing was to determine if monochrome fusion was an improvement over either

of the single-band (II or IR) presentations, and if so, which of the five fusion methods

was preferred.

B. PARTICIPANTS
Nine male military officers ranging in age from 30 to 39 years old with a mean

age of 33.7 (2.8a) volunteered for testing. All subjects signed informed consents and

were briefed on the ethical conduct of subject participation specified in the Protection

of Human Subjects, SECNAV Instruction 3900.39B. All subjects had normal or cor-

rected to normal visual acuity (20/20). All subjects, except two, had military aviation

experience, with an average of 1387 hours of flight time in their primary aircraft. All

subjects, except one, had experience with either NVG or FLIR systems, and six had

experience with both. The average NVG experience was 106 (102a) hours and the

FLIR experience was 92 (165a) hours.
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C. EQUIPMENT
A Sun SPARCstation 20 microprocessor workstation equipped with a 24-bit

Parallax video card using a 20-inch RGB monitor (30.3-degree by 24.2-degree viewable

area) with a resolution of 1280 by 1024 pixels (0.31 mm dot pitch) and frame rate

of 76 Hz were used to present the stimuli. The participants viewed the screen from

approximately 60 cm. The test room was darkened and a backlight was positioned

on the floor behind the monitor to minimize the luminance differential between the

monitor and environment.

D. IMAGES
Five night-time still image-pairs were collected from the U.S. Army Advanced

Helicopter Pilotage program [Ref. 2, 13]. These image-pairs were obtained using a

low-light visible Gen III image intensifier tube (0.6-0.9 /mi) and a first generation

FLIR display (8-12 /mi). The five scenes were imaged in varying night-time illumi-

nation conditions and included both ocean surfaces as well as differing land terrains.

This variation in lighting and terrain provided a wide range of reflectivity and emis-

sivity conditions for analysis. All five image-pairs had 640x480 pixel resolution. The

image-pairs were not spatially registered and required minor translational adjust-

ments of no more than 20 pixels for proper registration. No geometric distortion was

evident. A sixth image-pair was used with 276x508 pixel resolution and required no

registration. Table IV list the scenes and a brief descriptor.

E. PROCEDURES
A two-alternative forced-choice procedure was used for the comparison of im-

ages. For each trial, two different representations of the same scene were presented

to the subject in sequential order. At the beginning of each trial a fixation cross

(0.67-degree) was displayed in the center screen. The subject initiated the first trial

by clicking the left button of a trackball controller, 30 msec after this, the fixation
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Scene Descriptor

1 Nested ships

2 Winding road

3 Distant tower

4 Distant tower (near-view)

5 Fence on the horizon

6 Beach scene

Table IV. Image Scenes and Brief Descriptor

cross was extinguished, followed by presentation of the first image. The first image

was displayed for 3000 msec, followed by a 30 msec blank, then the second image was

displayed for 3000 msec. The subject responded "A," indicating preference of the first

image displayed, by clicking the left button on the trackball controller or responded

"B," indicating preference of the second image displayed, by clicking the right but-

ton on the trackball controller. The next trial began 100 msec after the response to

the previous trial. A subject could repeat a trial without penalty. The test images

were evaluated in six distinct blocks (a block for each scene), each block consisting

of \V\ = 42 image-pair trials, which accounts for all permutations of the seven image

types (sensors) considered in this thesis. Therefore each subject observed 6x42 for a

total of 252 image-pair trials.

Participants were presented all pairwise combinations of the images shown in

Table V for each scene. This set included the original II and IR images of each scene

and the images derived from their fusion. For all (nine) participants and all (six)

scenes, each ordered image-pair was presented 54 times. For example, the combi-

nation of presenting the direct linear mapping derived image (image 2) followed by

the weighted linear mapping derived image (image 6) occurred 6 times per partici-

pant, once per scene. Therefore the ordered-pair 2-6, was encountered 6 times per

participant for the 9 participants or 6 x 9 = 54 times.
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Identifier Image Type/Algorithm

Original II

1 Original IR

2 Direct Linear Mapping

3 Weighted Linear Mapping

4 Nonlinear-1 Mapping

5 Nonlinear-2 Mapping

6 Nonlinear-3 Mapping

Table V. Image Types and their Identifiers Used in Visual Testing

For each image-pair, the evaluation criterion was, "Between the two, which

image conveys the most information about the scene?" The intent of this criterion

was to determine which sensor fusion algorithm provided the most scene content for

a given scene.

F. ANALYSIS

1. Method of Discordances

To determine fusion algorithm performance from visual testing results, a method

is used which analyzes image orderings by counting discordances [Ref. 18, 19]. The

ordering with the fewest number of discordances is considered the best. From this

analysis, a ranking of images and thus algorithms, most to least preferred, is deter-

mined.

Table VI shows the results of the visual testing. The table indicates the number

of times the image presented first was preferred over the image presented second. Row

elements represent the first image, while column elements represent the second image.

Entries in the table represent the number of times the first image was chosen over

the second image. For example, when image 2 was presented before image 6, image

'2 was chosen 17 times, and when image 6 was presented before image 2, image 6 was

chosen 19 times.
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2nd Image

1st

I

m
a

g
e

1 2 3 4 5 6

NA 16 11 14 17 16 12

1 37 NA 14 14 10 13 10

2 42 39 NA 19 21 30 17

3 42 42 18 NA 18 28 13

4 40 44 16 18 NA 29 13

5 38 36 23 17 11 NA 14

6 39 40 19 26 23 28 NA

Table VI. Image Preferences Based on Visual Testing

The ordering of the images refers to the ranking of each image from most

preferred to least. For example, the ordering 6-0-2-1-5-3-4 indicates that image 6 is

most preferred, image is the next preferred, and so on. Given seven images, there

are 7! = 5040, possible orderings to consider. For a particular ordering, the number

of discordances is the number of times a particular image is preferred contrary to the

order specified. For example if the ordering is 6-0-2-1-5-3-4, any observation where

image was preferred over image 6 would be recorded as a discordance.

For image-pair (0-1), of the 54 presentations when image was presented first,

it was preferred 16 times and therefore image 1 was preferred 38 times (54 — 16).

When image 1 was presented first, of the 54 presentations, it was preferred 37 times

and therefore image was preferred 17 times (54 — 37). This pair would contribute

38+37 = 75 discordances for those orderings where image was ordered preferentially

over image 1, and 16 + 17 = 33 discordances for those orderings where image 1 was

ordered preferentially over image 0. Based on this analysis, over the complete set of

orderings, Table VII indicates the ranking of algorithms. The preferred ranking is

6-2-3-4-5-1-0, indicating that overall, the nonlinear-3 mapping algorithm performed

the best, followed by the direct linear mapping algorithm, weighted linear mapping

algorithm, nonlinear-1 mapping algorithm, nonlinear-2 mapping algorithm, original

IR image, and finally the original II image.
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6 2 3 4 5 1

6 2 4 3 5 1

6 3 2 4 5 1

2 6 3 4 5 1

2 6 4 3 5 1

6 4 2 3 5 1

6 3 4 2 5 1

6 4 3 2 5 1

Table VII. Preferred Ordering Based on Method of Discordances

2. Ordering Effects

Another consideration in pairwise analysis is the effect of ordering. For exam-

ple, if image-pair (0-1) is shown and then image-pair (1-0), it is expected that there

should be no variation in preference, i.e., ordering should not effect the decision made.

Therefore, by examining ordering effects, we can measure the certainty viewers have

for a particular choice (confidence) . For decisions of high certainty, order differences

should have a minimal impact on choice, while for decisions of low certainty, order

differences may evoke large variations in choice.

A nonparametric test, sign test [Ref. 20], was used to test the direction of the

differences between two sets of data. Specifically, did subjects prefer one interval com-

pared to another interval regardless of image or sensor type. For a given image-pair,

the number of times the second interval was preferred over the first was examined.

Preference for the second interval was indicated by a plus sign (+), while preference

for the first interval was indicated by a minus sign (— ). No preference was indicated

by a zero (0). The comparison results are shown in Table VIII.

To test the order effect, the probability of committing a Type I error (rejecting

the null hypothesis, Hq, when it is, in fact, true) will be set at 0.025. If there was an
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Order 2nd Image Preferred Order 1st Image Preferred Sign Test
0-1 38 1-0 37 +
0-2 43 2-0 42 +
0-3 40 3-0 42 -

0-4 37 4-0 40 -

0-5 38 5-0 38

0-6 42 6-0 39 +
1-2 40 2-1 39 +
1-3 40 3-1 42 -

1-4 44 4-1 44

1-5 41 5-1 36 +
1-6 44 6-1 40 +
2-3 35 3-2 18 +
2-4 33 4-2 16 +
2-5 24 5-2 23 +
2-6 37 6-2 19 +
3-4 36 4-3 18 +
3-5 26 5-3 17 +
3-6 41 6-3 26 +
4-5 25 5-4 11 +
4-6 41 6-4 23 +
5-6 40 6-5 28 +

Table VIII. Ordering Effects on Visual Testing

order effect, the alternative hypothesis (Hi) will be accepted. Accordingly, setting

a stringent level of significance at 0.025 will assure that the rejection of the null

hypothesis was due to the independent variable rather than due to chance alone.

The null hypothesis Hq, is the probability that there is no order effect, i.e., each

sensor has the same probability of being chosen in either interval, and is represented

by

#o : P[Xt > Yi\ = P[Xl < Y{ ]
= 1/2 ,

(III.l)

where Xi is subject's preference for interval one and Yi is subject's preference for

interval two. When the null hypothesis is true, half the pairs will yield a positive

sign and the other half will yield a negative sign. H will be rejected (Hi), if too few

differences of sign occur, implying that subject's prefer interval two over interval one

regardless of sensor or image type. The probability associated with the occurrence

of a particular number of pluses and minuses can be calculated from the binomial
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distribution as

P[Yi > x] = £ (^)p
1

Q
N- 1

,
(IH.2)

l=X

where N is the total number of pairs and x is the total number of instances where

the second interval is prefererred over the first (number of pluses). Note that two

orders were in agreement (represented by zero) and therefore the sample size was

reduced from N = 21 to N = 19 and x the number of pluses is 16. From the

binomial distribution, the probability of observing 16 or more pluses has a one-tailed

probability, when H is true, of 0.0022. Since 0.0022 is less than 0.025, H is rejected

and Hi is accepted. Thus we can conclude subjects preferred interval two regardless

of sensor characteristics or scene texture compared to interval one.

Based on this analysis, we can make the following remarks. The II images (im-

age 0) are never preferred over other images. IR images (image 1) are only preferred

over II images (image 0). Direct mapping images are preferred over nonlinear-1 map-

ping images. All other image comparisons resulted in low confidence and no additional

conclusive remarks can be made.
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IV. CONCLUSIONS

This thesis has introduced a new algorithm which performs adaptive enhance-

ment and fusion of low-light visible and infrared imagery. Variants of the algorithm

were used to process six nighttime scenes and the composite images were tested along

with the originals to determine which image displayed "maximum scene content".

Based on the results of this study, the following conclusions were reached:

The enhancement/fusion algorithm result (all variants) is superior to either

single-band image (II and IR). This is based on the results of human testing where

the method of discordances revealed that the preferred images, in order of best to

worst, were derived from the nonlinear-3 mapping, direct linear mapping, weighted

linear mapping, nonlinear-1 mapping, nonlinear-2 mapping, original IR, original II.

From ordering effects analysis the data again shows that all other mappings were

preferred over the single-band imagery (II and IR).

The best variant of the enhancement/fusion algorithm is not clear. As stated

before, all variants are preferred over single-band imagery, but the results of the

discordance analysis and ordering effects analysis are inconclusive. The discordance

method points to nonlinear-3 mapping as the most preferred variant; however the

ordering analysis shows low certainty when nonlinear-3 mapping is compared to all

other variants. This lack of certainty is exhibited for all comparisons among variants.

Therefore, it appears that the variants perform comparably.

Given that the visual testing shows that performance differences are minor,

the next consideration in comparing variants is their computational efficiency. The

direct linear mapping, which averages modified low-pass pixels from each image, is

the least computationally intensive and is therefore recommended. However weighted

linear mapping is only slightly more computationally intensive and provides additional

flexibility. This may also be a good choice.
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Although a number of variations were implemented, and perceptual testing was

conducted, a number of additional issues could be considered for further evaluation

of the algorithm.

During enhancement, when examining a class of similar images, a class specific

set of gain and local luminance transformation curves can be used. While this may

degrade performance on some scenes, the use of more generic transformation curves

on an entire class of images is ultimately necessary in a practical implementation of

the algorithm.

To conduct human testing, six scenes were analyzed using nine participants.

For future studies, greater benefit would be achieved by increasing both the number

of scenes processed and presented as well as the number of subjects tested.

Ordering effects are an important consideration in pairwise comparisons of im-

ages. The testing revealed that in almost every case, that algorithm variant preference

was a function of presentation order. The viewer's assessment of a particular image-

pair was different depending on the order the pair was presented. To preclude such

anomalies, future pairwise testing procedure should not use sequential presentation

of images, but instead use simultaneous presentation of the images.
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APPENDIX A. ENHANCEMENT/FUSION
RESULTS

The following images result from the application of the enhancement/fusion

algorithm presented in this thesis. The image labels (m0-m4) refer to the particular

method used in the algorithm.

Identifier Method

mO Direct Linear Mapping

ml Weighted Linear Mapping

m2 Nonlinear-1 Mapping

m3 Nonlinear-2 Mapping

m4 Nonlinear-3 Mapping

Table IX. Image Identifiers and Associated Algorithm Methods
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Figure 30. Set of Processed Images for Scene 1
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Figure 31. Set of Processed Images for Scene 2
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Figure 32. Set of Processed Images for Scene 3
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Figure 33. Set of Processed Images for Scene 4
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Figure 34. Set of Processed Images for Scene 5
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Figure 35. Set of Processed Images for Scene 6
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APPENDIX B. GENERAL
ENHANCEMENT/FUSION RESULTS

The following images result from the general enhancement/fusion method dis-

cussed in Chapter II. The image labels (1-6) refer to the image scene.

3 4

Figure 36. Set of General Processed Images
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APPENDIX C. GAIN AND LUMINANCE
TRANSFORMATION CURVES

Transformation curves used for the results shown in Appendix A.
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Figure 37. Gain and Local Luminance Transformation Curves for Scene 1
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Figure 38. Gain and Local Luminance Transformation Curves for Scene 2
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Figure 39. Gain and Local Luminance Transformation Curves for Scene 3
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Figure 40. Gain and Local Luminance Transformation Curves for Scene 4

72



II image IR image

100 200
Input Local Luminance

II image

100 200
Input Local Luminance

250

100 200
Input Local Luminance

IR image

100 200
Input Local Luminance

Figure 41. Gain and Local Luminance Transformation Curves for Scene 5
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Figure 42. Gain and Local Luminance Transformation Curves for Scene 6
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APPENDIX D. CLUSTERING RESULTS USED
TO IDENTIFY NONLINEAR MAPPING

COEFFICIENTS

Figure 43. Modified Low-Pass I-R Plane with Associated Centers for Scene 1
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Figure 44. Modified Low-Pass I-R Plane with Associated Centers for Scene 2
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Figure 45. Modified Low-Pass I-R Plane with Associated Centers for Scene 3
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Figure 46. Modified Low-Pass I-R Plane with Associated Centers for Scene 4
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Figure 47. Modified Low-Pass I-R Plane with Associated Centers for Scene 5
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Figure 48. Modified Low-Pass I-R Plane with Associated Centers for Scene 6
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APPENDIX E. MAPPING COEFFICIENTS

a (1-a)

Scene 1 0.2 0.8

Scene 2 0.7 0.3

Scene 3 0.4 0.6

Scene 4 0.4 0.6

Scene 5 0.4 0.6

Scene 6 0.6 0.4

Table X. Optimization Coefficients for the Weighted Linear Mapping Method

al a2 a3 a4 a5 a6

Scene 1 0.7637 0.0000 0.0000 0.0000 1.9256 -0.0024

Scene 2 0.0000 0.0484 0.0000 0.0175 0.2029 -0.0004

Scene 3 0.0000 0.2231 -0.0004 0.0000 0.0703 -0.0001

Scene 4 0.0000 0.0775 -0.0001 0.0000 0.1895 -0.0004

Scene 5 0.0000 0.2597 -0.0005 1.5927 0.0479 -0.0001

Scene 6 0.0000 0.2026 -0.0004 2.8830 0.0491 -0.0001

Table XL Optimization Coefficients for the Nonlinear-1 Mapping Method

al a2 a3 a4 a5

Scene 1 0.0000 4.0715 -0.0074 0.4586 0.0000

Scene 2 0.0000 1.2094 0.5827 0.0067 0.0000

Scene 3 0.0000 1.6022 -0.0031 0.0001 0.0049

Scene 4 0.0000 3.2911 -0.0065 0.0000 0.0024

Scene 5 0.0000 13.9587 0.0089 0.0616 0.0000

Scene 6 0.0000 0.0079 126.6983 0.0000 0.0000

Table XII. Optimization Coefficients for the Nonlinear-2 Mapping Method
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al a2 a3 a4 a5

Scene 1 0.6700 0.0000 0.0000 0.8587 0.0025

Scene 2 0.0000 0.0051 66.8386 1.0036 -0.0020

Scene 3 5.9179 0.0000 0.0000 0.2197 -0.0002

Scene 4 0.0000 0.0080 0.0072 0.9761 -0.0019

Scene 5 0.1309 0.0034 0.0000 2.0199 -0.0040

Scene 6 0.1509 0.0000 0.0000 6.3589 0.0010

Table XIII. Optimization Coefficients for the Nonlinear-3 Mapping Method
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